On the surface density of X-ray selected BL Lacertae objects
NASA Technical Reports Server (NTRS)
Maccacaro, T.; Gioia, I. M.; Maccagni, D.; Stocke, J. T.
1984-01-01
Only a handful of BL Lac objects have been found as a result of systematic optical identification of serendipitous Einstein X-ray sources. By combining the data from two flux-limited complete X-ray surveys (the HEAO 1 A-2 and the Einstein Observatory Medium Sensitivity Survey) the surface density of X-ray emitting BL Lac objects is evaluated as a function of their X-ray flux. It is found that a single power law is not an acceptable representation of the BL Lac objects' X-ray log N-log S. The number-flux relationship is consistent with the Euclidean slope at 'high' flux levels but shows a drastic flattnring below fluxes of the order of 10 to the -12th ergs per sq cm/s. The implications of this result are briefly discussed with respect to the luminosity function, the cosmological evolution, and the X-ray to optical flux ratio in BL Lac objects.
Effect of X-ray flux on polytetrafluoroethylene in X-ray photoelectron spectroscopy
NASA Technical Reports Server (NTRS)
Wheeler, D. R.; Pepper, S. V.
1982-01-01
The effect of the X-ray flux in X-ray photoelectron spectroscopy (STAT) on the constitution of the polytetrafluoroethylene (PTFE) surface has been examined. The radiation dose rate for our specimen was about 10 to the 7th rad/s. The structure, magnitude and binding energy of the C(1s) and F(1s) features of the XPS spectrum and the mass spectrum of gaseous species evolved during irradiation are observed. The strong time dependence of these signals over a period of several hours indicated that the surface constitution of PTFE is greatly affected by this level of radiation dose. The results are consistent with the development of a heavily cross-linked or branched structure in the PTFE surface region and the evolution of short chain fragments into the gas phase.
EXTREME ULTRAVIOLET EXPLORER OBSERVATIONS OF HERCULES X-1 OVER A 35 DAY CYCLE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leahy, D. A.; Dupuis, Jean, E-mail: leahy@ucalgary.c
2010-06-01
Observations of Hercules X-1 by the Extreme Ultraviolet Explorer covering most of the 35 day cycle are reported here. This is the only long extreme ultraviolet (EUV) observation of Her X-1. Simultaneous X-ray observations with the Rossi X-ray Timing Explorer All-Sky Monitor (RXTE/ASM) X-ray show that Her X-1 is in an X-ray anomalous low state. The first 4 days are also observed with the RXTE proportional counter array (PCA), which shows that the X-ray properties are nearly the same as for normal low states in Her X-1 with flux reduced by a factor of 2. In contrast, the EUV emissionmore » from Her X-1 is reduced by a factor of {approx}4 compared to normal low states. The twisted-tilted accretion disk responsible for the normal 35 day X-ray cycle can be modified to explain this behavior. An increased disk twist reduces the X-ray illumination of HZ Her by a factor of {approx}2 and of the disk surface by a somewhat larger factor, leading to a larger reduction in EUV flux compared to X-ray flux.« less
Cross-correlation of the X-ray background with nearby galaxies
NASA Technical Reports Server (NTRS)
Jahoda, Keith; Mushotzky, Richard F.; Boldt, Elihu; Lahav, Ofer
1991-01-01
The detection of a signal in the cross-correlation of the diffuse 2-10 keV HEAO 1 A-2 X-ray surface brightness with the galaxy surface density derived from diameter-limited samples from the Uppsala General Catalogue is reported. An ad hoc relationship between the X-ray flux and the galaxy counts is used to estimate the local X-ray volume emissivity at 2.8 + or - 1.0 x 10 to the 38th ergs/s/cu Mpc. This result implies that unevolved populations of X-ray sources correlated with present-epoch galaxies can contribute only 13 + or - 5 percent of the cosmic X-ray background.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Mengnan; Gaowei, Mengjia; Zhou, Tianyi
Diamond X-ray detectors with conducting nitrogen-incorporated ultra-nanocrystalline diamond (N-UNCD) films as electrodes were fabricated to measure X-ray beam flux and position. Structural characterization and functionality tests were performed for these devices. The N-UNCD films grown on unseeded diamond substrates were compared with N-UNCD films grown on a seeded silicon substrate. The feasibility of the N-UNCD films acting as electrodes for X-ray detectors was confirmed by the stable performance in a monochromatic X-ray beam. The fabrication process is able to change the surface status which may influence the signal uniformity under low bias, but this effect can be neglected under fullmore » collection bias.« less
Low- to Middle-Latitude X-Ray Emission from Jupiter
NASA Technical Reports Server (NTRS)
Bhardwaj, Anil; Elsner, Ronald F.; Gladstone, G. Randall; Waite, J. Hunter, Jr.; Branduardi-Raymont, Graziella; Cravens, Thomas E.; Ford, Peter G.
2006-01-01
The Chandra X-ray Observatory (CXO) observed Jupiter during the period 24-26 February 2003 for approx. 40 hours (4 Jupiter rotations), using both the spectroscopy array of the Advanced CCD Imaging Spectrometer (ACIS-S) and the imaging array of the High-Resolution Camera (HRC-I). Two ACIS-S exposures, each -8.5 hours long, were separated by an HRC-I exposure of approx. 20 hours. The low- to middle-latitude nonauroral disk X-ray emission is much more spatially uniform than the auroral emission. However, the low- to middle-latitude X-ray count rate shows a small but statistically significant hour angle dependence and depends on surface magnetic field strength. In addition, the X-ray spectra from regions corresponding to 3-5 gauss and 5-7 gauss surface fields show significant differences in the energy band 1.26-1.38 keV, perhaps partly due to line emission occurring in the 3-5 gauss region but not the 5-7 gauss region. A similar correlation of surface magnetic field strength with count rate is found for the 18 December 2000 HRC-I data, at a time when solar activity was high. The low- to middle-latitude disk X-ray count rate observed by the HRC-I in the February 2003 observation is about 50% of that observed in December 2000, roughly consistent with a decrease in the solar activity index (F10.7 cm flux) by a similar amount over the same time period. The low- to middle-latitude X-ray emission does not show any oscillations similar to the approx. 45 min oscillations sometimes seen from the northern auroral zone. The temporal variation in Jupiter's nonauroral X-ray emission exhibits similarities to variations in solar X-ray flux observed by GOES and TIMED/SEE. The two ACIS-S 0.3-2.0 keV low- to middle-latitude X-ray spectra are harder than the auroral spectrum and are different from each other at energies above 0.7 keV, showing variability in Jupiter's nonauroral X-ray emission on a timescale of a day. The 0.3-2.0 keV X-ray power emitted at low to middle latitudes is 0.21 GW and 0.39 GW for the first and second ACIS-S exposures, respectively. We suggest that X-ray emission from Jupiter's disk may be largely generated by the scattering and fluorescence of solar X rays in its upper atmosphere, especially at times of high incident solar X-ray flux. However, the dependence of count rate on surface magnetic-field strength may indicate the presence of some secondary component, possibly ion precipitation from radiation belts close to the planet.
Burst Oscillations: A New Spin on Neutron Stars
NASA Technical Reports Server (NTRS)
Strohmayer, Tod
2007-01-01
Observations with NASA's Rossi X-ray Timing Explorer (RXTE) have shown that the X-ray flux during thermonuclear X-ray bursts fr-om accreting neutron stars is often strongly pulsed at frequencies as high as 620 Hz. We now know that these oscillations are produced by spin modulation of the thermonuclear flux from the neutron star surface. In addition to revealing the spin frequency, they provide new ways to probe the properties and physics of accreting neutron stars. I will briefly review our current observational and theoretical understanding of these oscillations and discuss what they are telling us about neutron stars.
Suppression of 1/f Flux Noise in Superconducting Quantum Circuits
NASA Astrophysics Data System (ADS)
Kumar, Pradeep; Freeland, John; Yu, Clare; Wu, Ruqian; Wang, Zhe; Wang, Hui; Shi, Chuntai; Pappas, David; McDermott, Robert
Low frequency 1/f magnetic flux noise is a dominant contributor to dephasing in superconducting quantum circuits. It is believed that the noise is due to a high density of unpaired magnetic defect states at the surface of the superconducting thin films. We have performed X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) experiments that point to adsorbed molecular oxygen as the dominant source of magnetism in these films. By improving the vacuum environment of our superconducting devices, we have achieved a significant reduction in surface magnetic susceptibility and 1/f flux noise power spectral density. These results open the door to realization of superconducting qubits with improved dephasing times. State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, China.
Low- to Mid-Latitude X-Ray Emission from Jupiter
NASA Technical Reports Server (NTRS)
Bhardwaj, Anil; Elsner, Ronald F.; Gladstone, G. Randall; Waite, J. Hunter, Jr.; Branduardi-Raymont, Graziella; Cravens, Thomas E.; Ford, Peter
2006-01-01
The Chandra X-ray Observatory (CXO) observed Jupiter during the period 2003 February 24-26 for approx.40 hours (4 Jupiter rotations), using both the spectroscopy array of the Advanced CCD Imaging Spectrometer (ACIS-S) and the imaging array of the High-Resolution Camera (HRC-I). Two ACIS-S exposures, each approx.8.5 hr long, were separated by an HRC-I exposure of approx.20 hr. The low- to mid-latitude non-auroral disk X-ray emission is much more spatially uniform than the auroral emission. However, the low- to mid-latitude X-ray count rate shows a small but statistically significant hour angle dependence, and is higher in regions of relatively low surface magnetic field strength, confirming ROSAT results. In addition, the spectrum from the low surface field region shows an enhancement in the energy band 1.14- 1.38 keV, perhaps partly due to line emission from that region. Correlation of surface magnetic field strength with count rate is not found for the 2000 December HRC-I data, at a time when solar activity was high. The low- to mid-latitude disk X-ray count rate observed by the HRC-I in the 2003 February observation is about 50% of that observed in 2000 December, roughly consistent with a decrease in the solar activity index (F10.7 cm flux) by a similar amount over the same time period. The low- to mid-latitude X-ray emission does not show any oscillations similar to the -45 minute oscillations sometimes seen from the northern auroral zone. The temporal variation in Jupiter's non-auroral X-ray emission exhibits similarities to variations in solar X-ray flux observed by GOES and TIMED/SEE. The two ACIS-S 0.3-2 keV low- to mid-latitude X-ray spectra are harder than the auroral spectrum, and are different from each other at energies above 0.7 keV, showing variability in Jupiter s non-auroral X-ray emission on a time scale of a day. The 0.3-2.0 keV X-ray power emitted at low- to mid-latitudes is 0.21 GW and 0.39 GW for the first and second ACIS-S exposures, respectively. We suggest that X-ray emission from Jupiter's disk may be largely generated by solar X-rays resonantly and fluorescently scattered in its upper atmosphere, especially at times of high incident solar X-ray flux. However, the correlation of higher count rate with low surface magnetic-field strength indicates the presence of some secondary component, possibly ion precipitation from radiation belts closer to the planet than elsewhere at low- to mid-latitudes.
X-ray lithography using holographic images
Howells, Malcolm R.; Jacobsen, Chris
1995-01-01
A non-contact X-ray projection lithography method for producing a desired X-ray image on a selected surface of an X-ray-sensitive material, such as photoresist material on a wafer, the desired X-ray image having image minimum linewidths as small as 0.063 .mu.m, or even smaller. A hologram and its position are determined that will produce the desired image on the selected surface when the hologram is irradiated with X-rays from a suitably monochromatic X-ray source of a selected wavelength .lambda.. On-axis X-ray transmission through, or off-axis X-ray reflection from, a hologram may be used here, with very different requirements for monochromaticity, flux and brightness of the X-ray source. For reasonable penetration of photoresist materials by X-rays produced by the X-ray source, the wavelength X, is preferably chosen to be no more than 13.5 nm in one embodiment and more preferably is chosen in the range 1-5 nm in the other embodiment. A lower limit on linewidth is set by the linewidth of available microstructure writing devices, such as an electron beam.
The effect of vacuum birefringence on the polarization of X-ray binaries and pulsars
NASA Technical Reports Server (NTRS)
Novick, R.; Weisskopf, M. C.; Angel, J. R. P.; Sutherland, P. G.
1977-01-01
In a strong magnetic field the vacuum becomes birefringent. This effect is especially important for pulsars at X-ray wavelengths. Any polarized X-ray emission from the surface of a magnetic neutron star becomes depolarized as it propagates through the magnetic field. The soft X-ray emission from AM Her, believed to be a magnetic white dwarf, may show about one radian of phase retardation. In this case, circular polarization of the X-ray flux would be a characteristic signature of vacuum birefringence.
X-ray conversion efficiency of high-Z hohlraum wall materials for indirect drive ignition
NASA Astrophysics Data System (ADS)
Dewald, E. L.; Rosen, M.; Glenzer, S. H.; Suter, L. J.; Girard, F.; Jadaud, J. P.; Schein, J.; Constantin, C.; Wagon, F.; Huser, G.; Neumayer, P.; Landen, O. L.
2008-07-01
The conversion efficiency of 351nm laser light to soft x rays (0.1-5keV) was measured for Au, U, and high Z mixture "cocktails" used as hohlraum wall materials in indirect drive fusion experiments. For the spherical targets in a direct drive geometry, flattop laser pulses and laser smoothing with phase plates are employed to achieve constant and uniform laser intensities of 1014 and 1015W/cm2 over the target surface that are relevant for the future ignition experiments at the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Nucl. Fusion 44, 228 (2004)]. The absolute time and spectrally resolved radiation flux is measured with a multichannel soft x-ray power diagnostic. The conversion efficiency is then calculated by dividing the measured x-ray power by the incident laser power from which the measured laser backscattering losses are subtracted. After ˜0.5ns, the time resolved x-ray conversion efficiency reaches a slowly increasing plateau of 95% at 1014W/cm2 laser intensity and of 80% at 1015W/cm2. The M-band flux (2-5keV) is negligible at 1014W/cm2 reaching ˜1% of the total x-ray flux for all target materials. In contrast, the M-band flux is significant and depends on the target material at 1015W/cm2 laser intensity, reaching values between 10% of the total flux for U and 27% for Au. LASNEX simulations [G. B. Zimmerman and W. L. Kruer, Comm. Plasma Phys. Contr. Fusion 2, 51 (1975)] show good agreement in conversion efficiency and radiated spectra with data when using XSN atomic physics model and a flux limiter of 0.15, but they underestimate the generated M-band flux.
Superhydrophobic surfaces allow probing of exosome self organization using X-ray scattering
NASA Astrophysics Data System (ADS)
Accardo, Angelo; Tirinato, Luca; Altamura, Davide; Sibillano, Teresa; Giannini, Cinzia; Riekel, Christian; di Fabrizio, Enzo
2013-02-01
Drops of exosome dispersions from healthy epithelial colon cell line and colorectal cancer cells were dried on a superhydrophobic PMMA substrate. The residues were studied by small- and wide-angle X-ray scattering using both a synchrotron radiation micrometric beam and a high-flux table-top X-ray source. Structural differences between healthy and cancerous cells were detected in the lamellar lattices of the exosome macro-aggregates.Drops of exosome dispersions from healthy epithelial colon cell line and colorectal cancer cells were dried on a superhydrophobic PMMA substrate. The residues were studied by small- and wide-angle X-ray scattering using both a synchrotron radiation micrometric beam and a high-flux table-top X-ray source. Structural differences between healthy and cancerous cells were detected in the lamellar lattices of the exosome macro-aggregates. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr34032e
A Three Dimensional Picture of RS CVN Stellar Atmospheres
NASA Astrophysics Data System (ADS)
Linsky, Jeffrey L.
The ROSAT all-sky survey provides a unique opportunity to study an RS CVn system simultaneously at x-ray, EUV, UV, optical, and radio wavelengths at many phases throughout an orbital period. ROSAT can detect the x-ray flux of each candidate system during each 30 second viewing 16 times per day for at least 2 days. We request a block of 7 IUE shifts to obtain NEAR SIMULTANEOUS emission line fluxes (SWP-LO) and Mg IT line profiles (LWP-HI), and we will obtain contemporaneous optical photometry and spectroscopy and VLA radio fluxes (3.6, 6, and 20 cm). one objective of this PROPOSAL is to obtain the FIRST 3-D MODEL OF THE INHOMOGENEOUS PHOTOSPHERE, CHROMOSPHERE, AND CORONA OF A STAR OTHER THAN THE SUN. We will use optical photometry and spectroscopy to map the spotted photospheres of each star, and the Mg II line profiles to DOPPLERIMAGE their chromospheres, to determine the location, size, and surface flux of the active regions. We will then use the time variation of the UV emission line and x-ray fluxes to determine what fluxes are due to the quiet and active regions separately. These data will provide SURFACE FLUXES for the quiet and active regions separately. We will then will model BOTH REGIONS independently using an emission measure analysis. We will also model any flares observed. The second part of the program will be a simultaneous UV/X-ray SURVEY with the objective of DETERMINING THE RANGE OF PHYSICAL MODELS APPLICABLE TO THE CHROMOSPHERES AND CORONAE OF RS CVN SYSTEMS. We propose to obtain emission line fluxes (SWP-LO) and Mg II line profiles (LWP-HI) of all bright RS CVns observed by ROSAT from mid-July through September 1990 that meet the IUE observing constraints. About 17 systems in the Strassmeier catalog will likely be observed during this period. While many RS CVn systems have been observed separately by IUE and x-ray satellites, SIMULTANEOUS UV and x-ray observations are required to model these spatially inhomogenous and timevariable systems. This research program and the ROSAT RS CVn survey will constitute most of the data for the Ph.D. Thesis of the Lead Investigator, Anthony Veale.
Reevaluation of the Apollo orbital X-ray fluorescence data
NASA Technical Reports Server (NTRS)
Hubbard, N. J.; Keith, J. E.
1977-01-01
A combination of Al/Mg ratios and Al/Si ratios has provided high-quality geochemical and geological information from the Apollo orbital X-ray fluorescence data. The high sensitivity of the characteristic Si X-rays to alterations in the energy spectra of the solar X-ray flux limits the analytical usefulness of the ratios involving Si. A photometric study indicates that the Si concentration in lunar materials varies by less than about + or - 15% of the Si present. In addition, particle size and surface roughness are shown to have small effects on the characteristic fluorescent X-ray radiation of Si.
A Long Decay of X-Ray Flux and Spectral Evolution in the Supersoft Active Galactic Nucleus GSN 069
NASA Astrophysics Data System (ADS)
Shu, X. W.; Wang, S. S.; Dou, L. M.; Jiang, N.; Wang, J. X.; Wang, T. G.
2018-04-01
GSN 069 is an optically identified very low-mass active galactic nuclei (AGN) that shows supersoft X-ray emission. The source is known to exhibit a huge X-ray outburst, with flux increased by more than a factor of ∼240 compared to the quiescence state. We report its long-term evolution in the X-ray flux and spectral variations over a timescale of ∼decade, using both new and archival X-ray observations from the XMM-Newton and Swift. The new Swift observations detected the source in its lowest level of X-ray activity since the outburst, a factor of ∼4 lower in the 0.2–2 keV flux than that obtained with the XMM-Newton observations nearly eight years ago. Combining with the historical X-ray measurements, we find that the X-ray flux is decreasing slowly. There seemed to be spectral softening associated with the drop of X-ray flux. In addition, we find evidence for the presence of a weak, variable, hard X-ray component, in addition to the dominant thermal blackbody emission reported before. The long decay of X-ray flux and spectral evolution, as well as the supersoft X-ray spectra, suggest that the source could be a tidal disruption event (TDE), though a highly variable AGN cannot be fully ruled out. Further continued X-ray monitoring would be required to test the TDE interpretation, by better determining the flux evolution in the decay phase.
Anticorrelation of X-ray bright points with sunspot number, 1970-1978
NASA Technical Reports Server (NTRS)
Golub, L.; Davis, J. M.; Krieger, A. S.
1979-01-01
Soft X-ray observations of the solar corona over the period 1970-1978 show that the number of small short-lived bipolar magnetic features (X-ray bright points) varies inversely with the sunspot index. During the entire period from 1973 to 1978 most of the magnetic flux emerging at the solar surface appeared in the form of bright points. In 1970, near the peak of solar cycle 20, the contributions from bright points and from active regions appear to be approximately equal. These observations strongly support an earlier suggestion that the solar cycle may be characterized as an oscillator in wave-number space with relatively little variation in the average total rate of flux emergence.
NASA Technical Reports Server (NTRS)
Ayres, T. R.; Simon, T.; Linsky, J. L.
1982-01-01
IUE far-UV and Einstein Observatory soft X-ray observations for the red giant Arcturus and the nearby yellow dwarf Alpha-Centauri A, which are archetypes of solar mass stars in different stages of evolution, are compared. Evidence is found for neither coronal soft X-ray emission from the red giant, at surface flux levels of only 0.0006 that detected previously for the yellow dwarf, nor C II and IV resonance line emission at surface flux levels of only 0.02 those of the yellow dwarf. The resonance line upper limits and previous detections of the C II intersystem UV multiplet 0.01 near 2325 A provide evidence for an Arcturus outer atmosphere that is geometrically extended, tenuous and cool. The red giant has, in addition, a prominent cool stellar wind. An extensive tabulation of line identifications, widths and fluxes for the IUE far-UV echelle spectra of the two stars is given, and two competing explanations for the Wilson-Bappu effect are discussed.
NASA Technical Reports Server (NTRS)
Elsner, R. F.; Ramsey, B. D.; Waite, J. H., Jr.; Rehak, P.; Johnson, R. E.; Cooper, J. F.; Swartz, D. A.
2004-01-01
Remote observations with the Chandra X-ray Observatory and the XMM-Newton Observatory have shown that the Jovian system is a source of x-rays with a rich and complicated structure. The planet's polar auroral zones and its disk are powerful sources of x-ray emission. Chandra observations revealed x-ray emission from the Io Plasma Torus and from the Galilean moons Io, Europa, and possibly Ganymede. The emission from these moons is certainly due to bombardment of their surfaces of highly energetic protons, oxygen and sulfur ions from the region near the Torus exciting atoms in their surfaces and leading to fluorescent x-ray emission lines. Although the x-ray emission from the Galilean moons is faint when observed fiom Earth orbit, an imaging x-ray spectrometer in orbit around these moons, operating at 200 eV and above with 150 eV energy resolution, would provide a detailed mapping (down to 40 m spatial resolution) of the elemental composition in their surfaces. Here we describe the physical processes leading to x-ray emission fiom the surfaces of Jupiter's moons and the instrumental properties, as well as energetic ion flux models or measurements, required to map the elemental composition of their surfaces. We discuss the proposed scenarios leading to possible surface compositions. For Europa, the two most extreme are (1) a patina produced by exogenic processes such as meteoroid bombardment and ion implantation, and (2) upwelling of material fiom the subsurface ocean. We also describe the characteristics of X - m , an imaging x-ray spectrometer under going a feasibility study for the JIM0 mission, with the ultimate goal of providing unprecedented x-ray studies of the elemental composition of the surfaces of Jupiter's icy moons and Io, as well as of Jupiter's auroral x-ray emission.
A first determination of the surface density of galaxy clusters at very low x-ray fluxes
NASA Technical Reports Server (NTRS)
Rosati, Piero; Della Ceca, Roberta; Burg, Richard; Norman, Colin; Giacconi, Riccardo
1995-01-01
We present the first results of a serendipitous search for clusters of galaxies in deep ROSAT position sensitive proportional counter (PSPC) pointed observations at high Galactic latitude. The survey is being carried out using a wavelet-based detection algorithm which is not biased against extended, low surface brightness sources. A new flux-diameter limited sample of 10 cluster candidates has been created from approximately 3 deg(exp 2) surveyed area. Preliminary CCD observations have revealed that a large fraction of these candidates correspond to a visible enhancement in the galaxy surface density, and several others have been identified from other surveys. We believe these sources to be either low- to moderate-redshift groups or intermediate- to high-redshift clusters. We show X-ray and optical images of some of the clusters identified to date. We present, for the first time, the derived number density of the galaxy clusters to a flux limit of 1 x 10(exp -14) ergs cm(exp -2) s(exp -1) (0.5-2.0 keV). This extends the log N-log S of previous cluster surveys by more than one decade in flux. Results are compared to theoretical predictions for cluster number counts.
M dwarf energetic proton flux on exoplanets during flares: estimates using solar UV-proton relations
NASA Astrophysics Data System (ADS)
Youngblood, Allison, France; Kevin; Mason, James P.
2016-10-01
UV and X-ray stellar radiation impacts planetary atmospheres through heating and photochemistry, even regulating production of potential biomarkers. The surface conditions on M dwarf planets are not greatly affected by flares in the emission line-dominated far-UV spectra of M dwarfs (M < 0.5 Msun), however, theoretical investigations have largely ignored the additional influence of stellar energetic particles (SEPs) released during flares. Magnetospheric compression and atmospheric stripping by SEPs could allow life-damaging (or catalyzing) radiation to reach the planetary surface and cause atmospheric heating closer to the surface. For the sun, a relationship between >10 MeV proton flux and 1-8 Å irradiance has been established with data from the GOES satellites (Belov et al. 2005), however, only a few X-ray observations of M-dwarf flares covering the complete 1-8 Å bandpass exist. Current M dwarf SEP estimates (Segura et al. 2010) employ the Neupert effect to first estimate the average X-ray flux over a broad band (1-62 Å) from the observed near- and far-UV flare flux (Mitra-Kraev et al. 2005). To improve the quality of proton flux estimates, we have analyzed the GOES >10 MeV observed proton flux and SDO EVE's solar spectral irradiance measurements to define relationships between SEPs and extreme-UV emission lines with formation temperatures similar to far-UV lines directly accessible by the Hubble Space Telescope (HST). Under the necessary assumption that an M dwarf's SEP production mechanism is similar to the sun's, we estimate SEP fluxes during M-dwarf flares observed with HST as part of the MUSCLES (Measurements of the Ultraviolet Spectral Characteristics of Low-mass Exoplanetary Systems) Treasury Survey.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Dong In; Kwak, Ho Jae; Noh, Hyunwoo
Over the past several decades, phenomena related to critical heat flux (CHF) on structured surfaces have received a large amount of attention from the research community. The purpose of such research has been to enhance the safety and efficiency of a variety of thermal systems. A number of theories have been put forward to explain the key CHF enhancement mechanisms on structured surfaces. However, these theories have not been confirmed experimentally due to limitations in the available visualization techniques and the complexity of the phenomena. To overcome the limitations of the previous visualization techniques and elucidate the CHF enhancement mechanismmore » on the structured surfaces, we introduce synchrotron X-ray imaging with high spatial (~2 μm) and time (~20,000 Hz) resolutions. Lastly, this technique has enabled us to confirm that capillary-induced flow is the key CHF enhancement mechanism on structured surfaces.« less
Yu, Dong In; Kwak, Ho Jae; Noh, Hyunwoo; ...
2018-02-23
Over the past several decades, phenomena related to critical heat flux (CHF) on structured surfaces have received a large amount of attention from the research community. The purpose of such research has been to enhance the safety and efficiency of a variety of thermal systems. A number of theories have been put forward to explain the key CHF enhancement mechanisms on structured surfaces. However, these theories have not been confirmed experimentally due to limitations in the available visualization techniques and the complexity of the phenomena. To overcome the limitations of the previous visualization techniques and elucidate the CHF enhancement mechanismmore » on the structured surfaces, we introduce synchrotron X-ray imaging with high spatial (~2 μm) and time (~20,000 Hz) resolutions. Lastly, this technique has enabled us to confirm that capillary-induced flow is the key CHF enhancement mechanism on structured surfaces.« less
Effect of enhanced x-ray flux on the ionosphere over Cyprus during solar flares
NASA Astrophysics Data System (ADS)
Mostafa, Md. Golam; Haralambous, Haris
2015-06-01
In this work we study the effect of solar flares on the ionosphere over Cyprus. Solar flares are impulsive solar activity events usually coupled with Coronal Mass Ejection (CME). The arrival and the subsequent impact of solar flares on geospace, following an eruption on the Sun's surface is almost immediate (around 9 min) whereas the impact of CMEs is rather delayed (2-3 days) as the former is based on X-ray radiation whereas the latter phenomenon is related with particles and magnetic fields travelling at lower speeds via the Solar Wind. The penetration of X-rays down to the Dregion following such an event enhances the electron density. This increase can be monitored by ionosondes, which measure the electron density up to the maximum electron density NmF2. The significance of this increase lies on the increase of signal absorption causing limited window of operating frequencies for HF communications. In this study the effect of enhanced X-ray flux on the ionosphere over Cyprus during solar flares has been investigated. To establish the correlation and extent of impact on different layers, data of X-ray intensity from Geostationary Operational Environmental Satellite (GOES) and ionospheric characteristics (D & F layer) over Nicosia station (35° N, 33° E) were examined for all solar flares during the period 2011-2014. The analysis revealed a positive and good correlation between frequency of minimum reflection, fmin and X-ray intensity for D layer demonstrating that X-rays play a dominant role in the ionization of lower ionosphere. Hence, X-ray flux can be used as a good proxy for studying the solar flare effects on lower ionosphere. The correlation coefficient between maximum electron density of F layer, NmF2 and X-ray intensity was found to be poor.
Flux Relaxation after Two Outbursts of the Magnetar SGR 1627–41 and Possible Hard X-Ray Emission
NASA Astrophysics Data System (ADS)
An, Hongjun; Cumming, Andrew; Kaspi, Victoria M.
2018-05-01
We report on the long-term flux relaxation of the magnetar SGR 1627‑41 after its 2008 outburst, and evidence for hard X-ray excess measured with NuSTAR. We use new observations made with Chandra and XMM-Newton, and an archival NuSTAR observation, which add flux measurements at ∼2000 days into quiescence after the 2008 outburst. We find that the source flux has further declined since the last measurement made in 2011, ∼1000 days after the outburst in 2008. This trend is similar to the relaxation after the source’s 1998 outburst. We use crustal cooling models to reproduce the flux relaxation; if the whole surface of the star is heated in the outbursts, the modeling suggests that the 2008 outburst of SGR 1627‑41 deposited energy into the inner crust and that the core temperature of SGR 1627‑41 is low (T c ≲ 108 K), as previously suggested. On the other hand, if only a small fraction of the surface is heated or the temperature in the crust reached the melting temperature, relaxation at early times requires another emission mechanism. Finally, we report on evidence for hard X-ray emission in SGR 1627‑41 that follows the observational correlation suggested by Kaspi & Boydstun in magnetars.
Pulsar Polar Cap Heating and Surface Thermal X-ray Emission. 1; Curvature Radiation Pair Fronts
NASA Technical Reports Server (NTRS)
Harding, Alice K.; Muslimov, Alexander G.; White, Nicholas E. (Technical Monitor)
2002-01-01
We investigate the effect of pulsar polar cap (PC) heating produced by positrons returning from the upper pair formation front. Our calculations are based on a self-consistent treatment of the pair dynamics and the effect of electric field screening by the returning positrons. We calculate the resultant X-ray luminosities and discuss the dependence of the PC heating efficiencies on pulsar parameters, such as characteristic spin-down age, spin period, and surface magnetic field strength. In this study we concentrate on the regime where the pairs are produced in a magnetic field by curvature photons emitted by accelerating electrons. Our theoretical results are not in conflict with the available observational x-ray data and suggest that the effect of PC heating should significantly contribute to the thermal x-ray fluxes from middle-aged and old pulsars. The implications for current and future x-ray observations of pulsars are briefly outlined.
Chandra Observations of Magnetic White Dwarfs and Their Theoretical Implications
NASA Technical Reports Server (NTRS)
Musielak, Z. E.; Noble, M.; Porter, J. G.; Winget, D. E.; Six, N. Frank (Technical Monitor)
2002-01-01
Observations of cool DA and DB white dwarfs have not yet been successful in detecting coronal X-ray emission but observations of late-type dwarfs and giants show that coronae are common for these stars. To produce coronal X-rays, a star must have dynamo-generated surface magnetic fields and a well-developed convection zone. There is strong observational evidence that the DA star LHS 1038 and the DB star GD 358 have weak and variable surface magnetic fields. Since these fields are likely to be generated by dynamo action and since both stars have well-developed convection zones, theory predicts detectable levels of coronal X-rays from these white dwarfs. However, we present analysis of Chandra observations of both stars showing no detectable X-ray emission. The derived upper limits for the X-ray fluxes provide strong constraints on theories of formation of coronae around magnetic white dwarfs.
An X-ray excited wind in Centaurus X-3
NASA Technical Reports Server (NTRS)
Day, C. S. R.; Stevens, Ian R.
1993-01-01
We propose a new interpretation of the behavior of the notable X-ray binary source Centaurus X-3. Based on both theoretical and observational arguments (using EXOSAT data), we suggest that an X-ray excited wind emanating from the O star is present in this system. Further, we suggest that this wind is responsible for the mass transfer in the system rather than Roche-lobe overflow or a normal radiatively driven stellar wind. We show that the ionization conditions in Cen X-3 are too extreme to permit a normal radiatively driven wind to emanate from portions of the stellar surface facing toward the neutron star. In addition, the flux of X-rays from the neutron star is strong enough to drive a thermal wind from the O star with sufficient mass-flux to power the X-ray source. We find that this model can reasonably account for the long duration of the eclipse transitions and other observed features of Cen X-3. If confirmed, this will be the first example of an X-ray excited wind in a massive binary. We also discuss the relationship between the excited wind in Cen X-3 to the situation in eclipsing millisecond pulsars, where an excited wind is also believed to be present.
Method and apparatus for micromachining using hard X-rays
Siddons, D.P.; Johnson, E.D.; Guckel, H.; Klein, J.L.
1997-10-21
An X-ray source such as a synchrotron which provides a significant spectral content of hard X-rays is used to expose relatively thick photoresist such that the portions of the photoresist at an exit surface receive at least a threshold dose sufficient to render the photoresist susceptible to a developer, while the entrance surface of the photoresist receives an exposure which does not exceed a power limit at which destructive disruption of the photoresist would occur. The X-ray beam is spectrally shaped to substantially eliminate lower energy photons while allowing a substantial flux of higher energy photons to pass through to the photoresist target. Filters and the substrate of the X-ray mask may be used to spectrally shape the X-ray beam. Machining of photoresists such as polymethylmethacrylate to micron tolerances may be obtained to depths of several centimeters, and multiple targets may be exposed simultaneously. The photoresist target may be rotated and/or translated in the beam to form solids of rotation and other complex three-dimensional structures. 21 figs.
Method and apparatus for micromachining using hard X-rays
Siddons, David Peter; Johnson, Erik D.; Guckel, Henry; Klein, Jonathan L.
1997-10-21
An X-ray source such as a synchrotron which provides a significant spectral content of hard X-rays is used to expose relatively thick photoresist such that the portions of the photoresist at an exit surface receive at least a threshold dose sufficient to render the photoresist susceptible to a developer, while the entrance surface of the photoresist receives an exposure which does not exceed a power limit at which destructive disruption of the photoresist would occur. The X-ray beam is spectrally shaped to substantially eliminate lower energy photons while allowing a substantial flux of higher energy photons to pass through to the photoresist target. Filters and the substrate of the X-ray mask may be used to spectrally shape the X-ray beam. Machining of photoresists such as polymethylmethacrylate to micron tolerances may be obtained to depths of several centimeters, and multiple targets may be exposed simultaneously. The photoresist target may be rotated and/or translated in the beam to form solids of rotation and other complex three-dimensional structures.
X-ray lithography using holographic images
Howells, M.S.; Jacobsen, C.
1997-03-18
Methods for forming X-ray images having 0.25 {micro}m minimum line widths on X-ray sensitive material are presented. A holographic image of a desired circuit pattern is projected onto a wafer or other image-receiving substrate to allow recording of the desired image in photoresist material. In one embodiment, the method uses on-axis transmission and provides a high flux X-ray source having modest monochromaticity and coherence requirements. A layer of light-sensitive photoresist material on a wafer with a selected surface is provided to receive the image(s). The hologram has variable optical thickness and variable associated optical phase angle and amplitude attenuation for transmission of the X-rays. A second embodiment uses off-axis holography. The wafer receives the holographic image by grazing incidence reflection from a hologram printed on a flat metal or other highly reflecting surface or substrate. In this second embodiment, an X-ray beam with a high degree of monochromaticity and spatial coherence is required. 15 figs.
X-ray lithography using holographic images
Howells, Malcolm S.; Jacobsen, Chris
1997-01-01
Methods for forming X-ray images having 0.25 .mu.m minimum line widths on X-ray sensitive material are presented. A holgraphic image of a desired circuit pattern is projected onto a wafer or other image-receiving substrate to allow recording of the desired image in photoresist material. In one embodiment, the method uses on-axis transmission and provides a high flux X-ray source having modest monochromaticity and coherence requirements. A layer of light-sensitive photoresist material on a wafer with a selected surface is provided to receive the image(s). The hologram has variable optical thickness and variable associated optical phase angle and amplitude attenuation for transmission of the X-rays. A second embodiment uses off-axis holography. The wafer receives the holographic image by grazing incidence reflection from a hologram printed on a flat metal or other highly reflecting surface or substrate. In this second embodiment, an X-ray beam with a high degree of monochromaticity and spatial coherence is required.
NASA Astrophysics Data System (ADS)
Mushtukov, Alexander A.; Verhagen, Patrick A.; Tsygankov, Sergey S.; van der Klis, Michiel; Lutovinov, Alexander A.; Larchenkova, Tatiana I.
2018-03-01
The luminosity of accreting magnetized neutron stars can largely exceed the Eddington value due to appearance of accretion columns. The height of the columns can be comparable to the neutron star radius. The columns produce the X-rays detected by the observer directly and illuminate the stellar surface, which reprocesses the X-rays and causes additional component of the observed flux. The geometry of the column and the illuminated part of the surface determine the radiation beaming. Curved space-time affects the angular flux distribution. We construct a simple model of the beam patterns formed by direct and reflected flux from the column. We take into account the possibility of appearance of accretion columns, whose height is comparable to the neutron star radius. We argue that depending on the compactness of the star, the flux from the column can be either strongly amplified due to gravitational lensing, or significantly reduced due to column eclipse by the star. The eclipses of high accretion columns result in specific features in pulse profiles. Their detection can put constraints on the neutron star radius. We speculate that column eclipses are observed in X-ray pulsar V 0332+53, leading us to the conclusion of large neutron star radius in this system (˜15 km if M ˜ 1.4 M⊙). We point out that the beam pattern can be strongly affected by scattering in the accretion channel at high luminosity, which has to be taken into account in the models reproducing the pulse profiles.
Evolution of X-ray activity of 1-3 Msun late-type stars in early post-main-sequence phases
NASA Astrophysics Data System (ADS)
Pizzolato, N.; Maggio, A.; Sciortino, S.
2000-09-01
We have investigated the variation of coronal X-ray emission during early post-main-sequence phases for a sample of 120 late-type stars within 100 pc, and with estimated masses in the range 1-3 Msun, based on Hipparcos parallaxes and recent evolutionary models. These stars were observed with the ROSAT/PSPC, and the data processed with the Palermo-CfA pipeline, including detection and evaluation of X-ray fluxes (or upper limits) by means of a wavelet transform algorithm. We have studied the evolutionary history of X-ray luminosity and surface flux for stars in selected mass ranges, including stars with inactive A-type progenitors on the main sequence and lower mass solar-type stars. Our stellar sample suggests a trend of increasing X-ray emission level with age for stars with masses M > 1.5 Msun, and a decline for lower-mass stars. A similar behavior holds for the average coronal temperature, which follows a power-law correlation with the X-ray luminosity, independently of their mass and evolutionary state. We have also studied the relationship between X-ray luminosity and surface rotation rate for stars in the same mass ranges, and how this relationships departs from the Lx ~ vrot2 law followed by main-sequence stars. Our results are interpreted in terms of a magnetic dynamo whose efficiency depends on the stellar evolutionary state through the mass-dependent changes of the stellar internal structure, including the properties of envelope convection and the internal rotation profile.
Ren, Kuan; Liu, Shenye; Du, Huabing; Hou, Lifei; Jing, Longfei; Zhao, Yang; Yang, Zhiwen; Wei, Minxi; Deng, Keli; Yao, Li; Yang, Guohong; Li, Sanwei; Lan, Ke; Liu, Jie; Zhu, Xiaoli; Ding, Yongkun; Yi, Lin
2015-10-01
The space-resolving measurement of X-ray flux from a specific area (laser spot, re-emitting wall, or capsule) inside the hohlraum is an ongoing and critical problem in indirectly driven inertial-confinement fusion experiments. In this work, we developed a new two-dimensional space-resolving flux detection technique to measure the X-ray flux from specific areas inside the hohlraum by using the time- and space-resolving flux detector (SRFD). In two typical hohlraum experiments conducted at the Shenguang-III prototype laser facility, the X-ray flux and radiation temperature from an area 0.2 mm in diameter inside the hohlraum were measured through the laser entrance hole (LEH). The different flux intensities and radiation temperatures detected using the SRFD from the inner area of the LEH were compared with the result measured using the flat-response X-ray detector from the entire LEH. This comparison was also analyzed theoretically. The inner area detected using the SRFD was found to be the re-emitting wall area alone. This important improvement in space-resolving X-ray flux measurement will enhance the current X-ray flux space characterization techniques, thereby furthering the quantitative understanding of X-ray flux space behavior in the hohlraum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Kuan; Research Center of Laser Fusion, China Academy of Engineering Physics, P.O. Box 919-986, Mianyang 621900; Liu, Shenye, E-mail: lsye1029@163.com
2015-10-15
The space-resolving measurement of X-ray flux from a specific area (laser spot, re-emitting wall, or capsule) inside the hohlraum is an ongoing and critical problem in indirectly driven inertial-confinement fusion experiments. In this work, we developed a new two-dimensional space-resolving flux detection technique to measure the X-ray flux from specific areas inside the hohlraum by using the time- and space-resolving flux detector (SRFD). In two typical hohlraum experiments conducted at the Shenguang-III prototype laser facility, the X-ray flux and radiation temperature from an area 0.2 mm in diameter inside the hohlraum were measured through the laser entrance hole (LEH). Themore » different flux intensities and radiation temperatures detected using the SRFD from the inner area of the LEH were compared with the result measured using the flat-response X-ray detector from the entire LEH. This comparison was also analyzed theoretically. The inner area detected using the SRFD was found to be the re-emitting wall area alone. This important improvement in space-resolving X-ray flux measurement will enhance the current X-ray flux space characterization techniques, thereby furthering the quantitative understanding of X-ray flux space behavior in the hohlraum.« less
Observations of Scorpius X-1 with IUE - Ultraviolet results from a multiwavelength campaign
NASA Technical Reports Server (NTRS)
Vrtilek, S. D.; Raymond, J. C.; Penninx, W.; Verbunt, F.; Hertz, P.
1991-01-01
IUE UV results are presented for the low-mass X-ray binary Sco X-1. Models that predict UV continuum emission from the X-ray-heated surface from the companion star and from an X-ray illuminated accretion disk are adjusted for parameters intrinsic to Sco X-1, and fitted to the data. X-ray heating is found to be the dominant source of UV emission; the mass-accretion rate increases monotonically along the 'Z-shaped' curve in an X-ray color-color diagram. UV emission lines from He, C, N, O, and Si were detected; they all increase in intensity from the HB to the FB state. A model in which emission lines are due to outer-disk photoionization by the X-ray source is noted to give good agreement with line fluxes observed in each state.
NASA Astrophysics Data System (ADS)
Ma, X.; Cianciosa, M.; Hanson, J. D.; Hartwell, G. J.; Knowlton, S. F.; Maurer, D. A.; Ennis, D. A.; Herfindal, J. L.
2015-11-01
Non-axisymmetric free-boundary equilibrium reconstructions of stellarator plasmas are performed for discharges in which the magnetic configuration is strongly modified by the driven plasma current. Studies were performed on the Compact Toroidal Hybrid device using the V3FIT reconstruction code incorporating a set of 50 magnetic diagnostics external to the plasma, combined with information from soft X-ray (SXR) arrays. With the assumption of closed magnetic flux surfaces, the reconstructions using external magnetic measurements allow accurate estimates of the net toroidal flux within the last closed flux surface, the edge safety factor, and the outer boundary of these highly non-axisymmetric plasmas. The inversion radius for sawtoothing plasmas is used to identify the location of the q = 1 surface, and thus infer the current profile near the magnetic axis. With external magnetic diagnostics alone, we find the reconstruction to be insufficiently constrained. This work is supported by US Department of Energy Grant No. DE-FG02-00ER54610.
NASA Technical Reports Server (NTRS)
Gubarev, Mikhail; Marshall, Joy K.; Ciszak, Ewa; Ponomarev, Igor
2000-01-01
We present here an optimized microfocus x-ray source and polycapillary optic system designed for diffraction of small protein crystals. The x-ray beam is formed by a 5.5mm focal length capillary collimator coupled with a 40 micron x-ray source operating at 46Watts. Measurements of the x-ray flux, the divergence and the spectral characteristics of the beam are presented, This optimized system provides a seven fold greater flux than our recently reported configuration [M. Gubarev, et al., J. of Applied Crystallography (2000) 33, in press]. We now make a comparison with a 5kWatts rotating anode generator (Rigaku) coupled with confocal multilayer focusing mirrors (Osmic, CMF12- 38Cu6). The microfocus x-ray source and polycapillary collimator system delivers 60% of the x-ray flux from the rotating anode system. Additional ways to improve our microfocus x-ray system, and thus increase the x-ray flux will be discussed.
Multi-wavelength properties of two supersoft X-ray sources CAL83 and RXJ0513.9-6951
NASA Astrophysics Data System (ADS)
Rajoelimanana, A.; Meintjes, P.; Charles, P.
2017-10-01
Supersoft X-ray sources (SSS) are highly luminous (˜10^{38} erg s^{-1}), yet low temperature 10^{6} K sources, interpreted as a white dwarf (WD) accreting matter at a very high rate from its (heavy) companion, leading to Eddington-limited, steady hydrogen burning on the WD surface at T˜15-80 eV. A large fraction of this energy irradiates the surface of the disc, which gives rise to a reprocessed flux much larger than the intrinsic disc luminosity, accounting for the large optical and UV fluxes detected in SSS. We present the multi-wavelength properties of two prototypical LMC SSS, CAL83 and RXJ0513.9-6951, with particular emphasis on the anti-correlation between their X-ray and optical behaviour. Our SALT spectra show variable high excitation OVI emission as a function of optical brightness state, and which we link to the cyclic changes in the temperature and size of the WD, and hence the mass accretion rate.
Studies of neutron star X-ray binaries
NASA Astrophysics Data System (ADS)
Thompson, Thomas W. J.
Neutron stars represent the endpoint in stellar evolution for stars with initial masses between ~3 and 8 solar masses. They are the densest non- singularities in the universe, cramming more than a solar mass of matter into a sphere with a radius of about 10 km. Such a large mass-to-radius ratio implies deep potential wells, so that when mass transfer is taking place ~10% of the rest-mass is liberated as gravitational binding energy, resulting in prodigious amounts of X-ray emission that contains valuable information on the physical characteristics in accreting binary systems. Much of my research in this dissertation focuses on the spectroscopic and timing properties of the canonical thermonuclear bursting source GS 1826-238. By measuring the relationship between the X-ray flux (which is assumed to trace the accretion rate onto the stellar surface) and the time intervals between subsequent bursts, I find that although the intervals usually decreased proportionately as the persistent flux increased, a few measurements of the flux-recurrence time relationship were significant outliers. Accompanying spectral and timing changes strongly suggest that the accretion disk extends down to smaller radial distances from the source during these atypical episodes. This result is important for understanding the nature of accretion flows around neutron stars because it indicates that accretion disks probably evaporate at some distance from the neutron star surface at lower accretion rates. I also contribute to our understanding of two newly discovered and heavily- absorbed pulsars (neutron stars with strong magnetic fields) by determining the orbital parameters of the systems through pulse timing analysis. Orbital phase- resolved spectroscopy of one source revealed evidence for an "accretion wake" trailing the pulsar through its orbit, showing that X-rays emanating from the surface can ionize the stellar wind in its vicinity. Finally, I develop an innovative application of dust scattering halos (diffuse emission surrounding X-ray sources, resulting from photons scattering from dust grains) to geometrically determine the distance and the distribution of dust along the line of sight to X-ray sources. The distance is clearly important for inferring the absolute luminosities of systems from measured fluxes, and knowledge of the distribution of dust can further understanding of the interstellar medium.
The cyclical variation of energy flux and photospheric magnetic field strength from coronal holes
NASA Technical Reports Server (NTRS)
Webb, D. F.; Davis, J. M.
1985-01-01
The average soft X-ray emission from coronal holes observed on images obtained during rocket flights from 1974 to 1981 is measured. The variation of this emission over the solar cycle was then compared with photospheric magnetic flux measurements within coronal holes over the same period. It was found that coronal hole soft X-ray emission could be detected and that this emission appeared to increase with the rise of the sunspot cycle from activity minimum to maximum. These quantitative results confirmed previous suggestions that the coronal brightness contrast between holes and large-scale structure decreased during this period of the cycle. Gas pressures at the hole base were estimated for assumed temperatures and found to vary from about 0.03 dyne/sq cm in 1974 to 0.35 dyne/sq cm in 1981. The increase in coronal hole X-ray emission was accompanied by a similar trend in the surface magnetic flux of near-equatorial holes between 1975 and 1980 (Harvey et al., 1982).
Future Probes of the Neutron Star Equation of State Using X-ray Bursts
NASA Technical Reports Server (NTRS)
Strohmayer, Tod E.
2004-01-01
Observations with NASA s Rossi X-ray Timing Explorer (RXTE) have resulted in the discovery of fast (200 - 600 Hz), coherent X-ray intensity oscillations (hereafter, %urstoscillations ) during thermonuclear X-ray bursts from 12 low mass X-ray binaries (LMXBs). Although many of their detailed properties remain to be fully understood, it is now beyond doubt that these oscillations result from spin modulation of the thermonuclear burst flux from the neutron star surface. Among the new timing phenomena revealed by RXTE the burst oscillations are perhaps the best understood, in the sense that many of their properties can be explained in the framework of this relatively simple model. Because of this, detailed modelling of burst oscillations can be an extremely powerful probe of neutron star structure, and thus the equation of state (EOS) of supra-nuclear density matter. Both the compactness parameter beta = GM/c(sup 2)R, and the surface velocity, nu(sub rot) = Omega(sub spin)R, are encoded in the energy-dependent amplitude and shape of the modulation pulses. The new discoveries have spurred much new theoretical work on thermonuclear burning and propagation on neutron stars, so that in the near future it is not unreasonable to think that detailed physical models of the time dependent flux from burning neutron stars will be available for comparison with the observed pulse profiles from a future, large collecting area X-ray timing observatory. In addition, recent high resolution burst spectroscopy with XMM/Newton suggests the presence of redshifted absorption lines from the neutron star surface during bursts. This leads to the possibility of using large area, high spectral resolution measurements of X-ray bursts as a precise probe of neutron star structure. In this work I will explore the precision with which constraints on neutron star structure, and hence the dense matter EOS, can be made with the implementation of such programs.
Insights on the X-ray weak quasar phenomenon from XMM-Newton monitoring of PHL 1092
NASA Astrophysics Data System (ADS)
Miniutti, G.; Brandt, W. N.; Schneider, D. P.; Fabian, A. C.; Gallo, L. C.; Boller, Th.
2012-09-01
PHL 1092 is a z ˜ 0.4 high-luminosity counterpart of the class of Narrow-Line Seyfert 1 galaxies. In 2008, PHL 1092 was found to be in a remarkably low X-ray flux state during an XMM-Newton observation. Its 2 keV flux density had dropped by a factor of ˜260 with respect to a previous observation performed 4.5 yr earlier. The ultraviolet (UV) flux remained almost constant, resulting in a significant steepening of the optical-to-X-ray slope αox from -1.57 to -2.51, making PHL 1092 one of the most extreme X-ray weak quasars with no observed broad absorption lines (BALs) in the UV. We have monitored the source since 2008 with three further XMM-Newton observations, producing a simultaneous UV and X-ray data base spanning almost 10 yr in total in the activity of the source. Our monitoring programme demonstrates that the αox variability in PHL 1092 is entirely driven by long-term X-ray flux changes. We apply a series of physically motivated models with the goal of explaining the UV-to-X-ray spectral energy distribution and the extreme X-ray and αox variability. We consider three possible models. (i) A breathing corona scenario in which the size of the X-ray-emitting corona is correlated with the X-ray flux. In this case, the lowest X-ray flux states of PHL 1092 are associated with an almost complete collapse of the X-ray corona down to the marginal stable orbit. (ii) An absorption scenario in which the X-ray flux variability is entirely due to intervening absorption. If so, PHL 1092 is a quasar with standard X-ray output for its optical luminosity, appearing as X-ray weak at times due to absorption. (iii) A disc-reflection-dominated scenario in which the X-ray-emitting corona is confined within a few gravitational radii from the black hole at all times. In this case, the intrinsic variability of PHL 1092 only needs to be a factor of ˜10 rather than the observed factor of ˜260. We discuss these scenarios in the context of non-BAL X-ray weak quasars.
NASA Astrophysics Data System (ADS)
Winters, V. R.; Brezinsek, S.; Effenberg, F.; Rasinski, M.; Schmitz, O.; Stephey, L.; Biedermann, C.; Dhard, C. P.; Frerichs, H.; Harris, J.; Krychowiak, M.; König, R.; Pedersen, T. Sunn; Wurden, G. A.; the W7-X Team
2017-12-01
The first operational campaign of Wendelstein 7-X (W7-X) provided an excellent environment for the study of plasma-surface interaction (PSI) in a stellarator. In situ spectroscopic analysis via a combined visible/infrared camera system and a filterscope system revealed that the primary erosion zone was correlated with the high heat flux regions on the limiter. This analysis matched to where the erosion zone was found in the post-mortem analysis, which was done with scanning electron microscopy/focused ion beam/electron dispersive x-ray spectroscopy imaging. Additionally, a region of prompt deposition was found to the inside of these high heat flux zones. A region of far scrape-off layer (SOL) deposition was found at the edges of the limiter tiles. All deposition regions were identified by their homogeneous, increased oxygen content compared to the pure carbon makeup of the limiters. Poloidal variation of the impinging heat flux follow the imprint of the 3D SOL flux tubes. In how far this reflects in the PSI will require further analysis and modeling.
Chandra Deep X-ray Observation of a Typical Galactic Plane Region and Near-Infrared Identification
NASA Technical Reports Server (NTRS)
Ebisawa, K.; Tsujimoto, M.; Paizis, A.; Hamaguichi, K.; Bamba, A.; Cutri, R.; Kaneda, H.; Maeda, Y.; Sato, G.; Senda, A.
2004-01-01
Using the Chandra Advanced CCD Imaging Spectrometer Imaging array (ACIS-I), we have carried out a deep hard X-ray observation of the Galactic plane region at (l,b) approx. (28.5 deg,0.0 deg), where no discrete X-ray source has been reported previously. We have detected 274 new point X-ray sources (4 sigma confidence) as well as strong Galactic diffuse emission within two partidly overlapping ACIS-I fields (approx. 250 sq arcmin in total). The point source sensitivity was approx. 3 x 10(exp -15)ergs/s/sq cm in the hard X-ray band (2-10 keV and approx. 2 x 10(exp -16) ergs/s/sq cm in the soft band (0.5-2 keV). Sum of all the detected point source fluxes account for only approx. 10 % of the total X-ray fluxes in the field of view. In order to explain the total X-ray fluxes by a superposition of fainter point sources, an extremely rapid increase of the source population is required below our sensitivity limit, which is hardly reconciled with any source distribution in the Galactic plane. Therefore, we conclude that X-ray emission from the Galactic plane has truly diffuse origin. Only 26 point sources were detected both in the soft and hard bands, indicating that there are two distinct classes of the X-ray sources distinguished by the spectral hardness ratio. Surface number density of the hard sources is only slightly higher than observed at the high Galactic latitude regions, strongly suggesting that majority of the hard X-ray sources are active galaxies seen through the Galactic plane. Following the Chandra observation, we have performed a near-infrared (NIR) survey with SOFI at ESO/NTT to identify these new X-ray sources. Since the Galactic plane is opaque in NIR, we did not see the background extragalactic sources in NIR. In fact, only 22 % of the hard sources had NIR counterparts which are most likely to be Galactic origin. Composite X-ray energy spectrum of those hard X-ray sources having NIR counterparts exhibits a narrow approx. 6.7 keV iron emission line, which is a signature of Galactic quiescent cataclysmic variables (CVs).
Effect of low NH3 flux towards high quality semi-polar (11-22) GaN on m-plane sapphire via MOCVD
NASA Astrophysics Data System (ADS)
Omar, Al-Zuhairi; Shuhaimi Bin Abu Bakar, Ahmad; Makinudin, Abdullah Haaziq Ahmad; Khudus, Muhammad Imran Mustafa Abdul; Azman, Adreen; Kamarundzaman, Anas; Supangat, Azzuliani
2018-05-01
The effect of ammonia flux towards the quality of the semi-polar (11-22) gallium nitride thin film on m-plane (10-10) sapphire is presented. Semi-polar (11-22) gallium nitride epi-layers were obtained using a two-step growth method, consisting of high temperature aluminum nitride followed by gallium nitride via metal organic chemical vapor deposition. The surface morphology analysis via field emission scanning electron microscopy and atomic force microscopy of the semi-polar (11-22) gallium nitride has shown that low ammonia flux promotes two-dimensional growth with low surface roughness of 4.08 nm. A dominant diffraction peak of (11-22) gallium nitride was also observed via X-ray diffraction upon utilizing low ammonia flux. The on- and off-axis X-ray rocking curve measurements illustrate the enhancement of the crystal quality, which might result from the reduction of the basal stacking faults and perfect dislocation. The full width half maximum values were reduced by at least 15% for both on- and off-axis measurements.
Discovery of X-Ray Emission from the Crab Pulsar at Pulse Minimum
NASA Technical Reports Server (NTRS)
Tennant, Allyn F.; Becker, Werner; Juda, Michael X.; Elsner, Ronald F.; Kolodziejczak, Jeffery J.; Murray, Stephen S.; ODell, Stephen L.; Paerels, Frits; Swartz, Douglas A.; Shibazaki, Noriaki;
1999-01-01
The Chandra X-ray Observatory observed the Crab Nebula and Pulsar using the Low-Energy Transmission Grating (LETG) with the High-Resolution Camera (HRC). Time-resolved zeroth-order images reveal that the pulsar emits x rays at all pulse phases. Analysis of the flux at minimum -- most likely nonthermal in origin -- places an upper limit (T(sub infinity) < 2.1 MK) on the surface temperature of the underlying neutron star. In addition, analysis of the pulse profile appears to confirm the absolute timing of the Observatory to within about 0.2 ms.
Discovery of X-Ray Emission from the Crab Pulsar at Pulse Minimum
NASA Technical Reports Server (NTRS)
Tennant, Allyn F.; Becker, Werner; Juda, Michael; Elsner, Ronald F.; Kolodziejczak, Jeffery J.; Murray, Stephen S.; ODell, Stephen L.; Paerels, Frits; Swartz, Douglas A.
2001-01-01
The Chandra X-Ray Observatory observed the Crab pulsar using the Low-Energy Transmission Grating with the High-Resolution Camera. Time-resolved zeroth-order images reveal that the pulsar emits X-rays at all pulse phases. Analysis of the flux at minimum - most likely non-thermal in origin - places an upper limit (T(sub infinity) < 2.1 MK) on the surface temperature of the underlying neutron star. In addition, analysis of the pulse profile establishes that the error in the Chandra-determined absolute time is quite small, -0.2 +/- 0.1 ms.
The X-ray properties of high redshift, optically selected QSOs. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Anderson, S. F.
1985-01-01
In order to study the X-ray properties of high redshift QSOs, grism/grens plates covering 17 deg. of sky previously imaged to very sensitive X-ray flux levels with the Einstein Observatory were taken. Following optical selection of the QSO, the archived X-ray image is examined to extract an X-ray flux detection or a sensitive upper limit.
Optical and X-ray studies of Compact X-ray Binaries in NGC 5904
NASA Astrophysics Data System (ADS)
Bhalotia, Vanshree; Beck-Winchatz, Bernhard
2018-06-01
Due to their high stellar densities, globular cluster systems trigger various dynamical interactions, such as the formation of compact X-ray binaries. Stellar collisional frequencies have been correlated to the number of X-ray sources detected in various clusters and we hope to measure this correlation for NGC 5904. Optical fluxes of sources from archival HST images of NGC 5904 have been measured using a DOLPHOT PSF photometry in the UV, optical and near-infrared. We developed a data analysis pipeline to process the fluxes of tens of thousands of objects using awk, python and DOLPHOT. We plot color magnitude diagrams in different photometric bands in order to identify outliers that could be X-ray binaries, since they do not evolve the same way as singular stars. Aligning previously measured astrometric data for X-ray sources in NGC 5904 from Chandra with archival astrometric data from HST will filter out the outlier objects that are not X-ray producing, and provide a sample of compact binary systems that are responsible for X-ray emission in NGC 5904. Furthermore, previously measured X-ray fluxes of NGC 5904 from Chandra have also been used to measure the X-ray to optical flux ratio and identify the types of compact X-ray binaries responsible for the X-ray emissions in NGC 5904. We gratefully acknowledge the support from the Illinois Space Grant Consortium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brax, Philippe; Zioutas, Konstantin
2010-08-15
We analyze the creation of chameleons deep inside the Sun (R{approx}0.7R{sub sun}) and their subsequent conversion to photons near the magnetized surface of the Sun. We find that the spectrum of the regenerated photons lies in the soft x-ray region, hence addressing the solar corona problem. Moreover, these back-converted photons originating from chameleons have an intrinsic difference with regenerated photons from axions: their relative polarizations are mutually orthogonal before Compton interacting with the surrounding plasma. Depending on the photon-chameleon coupling and working in the strong coupling regime of the chameleons to matter, we find that the induced photon flux, whenmore » regenerated resonantly with the surrounding plasma, coincides with the solar flux within the soft x-ray energy range. Moreover, using the soft x-ray solar flux as a prior, we find that with a strong enough photon-chameleon coupling, the chameleons emitted by the Sun could lead to a regenerated photon flux in the CAST magnetic pipes, which could be within the reach of CAST with upgraded detector performance. Then, axion helioscopes have thus the potential to detect and identify particle candidates for the ubiquitous dark energy in the Universe.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, X.; Cianciosa, M. R.; Ennis, D. A.
In this research, collimated soft X-ray (SXR) emissivity measurements from multi-channel cameras on the Compact Toroidal Hybrid (CTH) tokamak/torsatron device are incorporated in the 3D equilibrium reconstruction code V3FIT to reconstruct the shape of flux surfaces and infer the current distribution within the plasma. Equilibrium reconstructions of sawtoothing plasmas that use data from both SXR and external magnetic diagnostics show the central safety factor to be near unity under the assumption that SXR iso-emissivity contours lie on magnetic flux surfaces. The reconstruction results are consistent with those using the external magnetic data and a constraint on the location of qmore » = 1 surfaces determined from the sawtooth inversion surface extracted from SXR brightness profiles. The agreement justifies the use of approximating SXR emission as a flux function in CTH, at least within the core of the plasma, subject to the spatial resolution of the SXR diagnostics. Lastly, this improved reconstruction of the central current density indicates that the current profile peakedness decreases with increasing external transform and that the internal inductance is not a relevant measure of how peaked the current profile is in hybrid discharges.« less
NASA Astrophysics Data System (ADS)
Ma, X.; Cianciosa, M. R.; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Herfindal, J. L.; Howell, E. C.; Knowlton, S. F.; Maurer, D. A.; Traverso, P. J.
2018-01-01
Collimated soft X-ray (SXR) emissivity measurements from multi-channel cameras on the Compact Toroidal Hybrid (CTH) tokamak/torsatron device are incorporated in the 3D equilibrium reconstruction code V3FIT to reconstruct the shape of flux surfaces and infer the current distribution within the plasma. Equilibrium reconstructions of sawtoothing plasmas that use data from both SXR and external magnetic diagnostics show the central safety factor to be near unity under the assumption that SXR iso-emissivity contours lie on magnetic flux surfaces. The reconstruction results are consistent with those using the external magnetic data and a constraint on the location of q = 1 surfaces determined from the sawtooth inversion surface extracted from SXR brightness profiles. The agreement justifies the use of approximating SXR emission as a flux function in CTH, at least within the core of the plasma, subject to the spatial resolution of the SXR diagnostics. This improved reconstruction of the central current density indicates that the current profile peakedness decreases with increasing external transform and that the internal inductance is not a relevant measure of how peaked the current profile is in hybrid discharges.
Ma, X.; Cianciosa, M. R.; Ennis, D. A.; ...
2018-01-31
In this research, collimated soft X-ray (SXR) emissivity measurements from multi-channel cameras on the Compact Toroidal Hybrid (CTH) tokamak/torsatron device are incorporated in the 3D equilibrium reconstruction code V3FIT to reconstruct the shape of flux surfaces and infer the current distribution within the plasma. Equilibrium reconstructions of sawtoothing plasmas that use data from both SXR and external magnetic diagnostics show the central safety factor to be near unity under the assumption that SXR iso-emissivity contours lie on magnetic flux surfaces. The reconstruction results are consistent with those using the external magnetic data and a constraint on the location of qmore » = 1 surfaces determined from the sawtooth inversion surface extracted from SXR brightness profiles. The agreement justifies the use of approximating SXR emission as a flux function in CTH, at least within the core of the plasma, subject to the spatial resolution of the SXR diagnostics. Lastly, this improved reconstruction of the central current density indicates that the current profile peakedness decreases with increasing external transform and that the internal inductance is not a relevant measure of how peaked the current profile is in hybrid discharges.« less
Measurement of the Cosmic Ray and Neutrino-Induced Muon Flux at the Sudbury Neutrino Observatory
DOE R&D Accomplishments Database
SNO collaboration; Aharmim, B.; Ahmed, S. N.; Andersen, T. C.; Anthony, A. E.; Barros, N.; Beier, E. W.; Bellerive, A.; Beltran, B.; Bergevin, M.; Biller, S. D.; Boudjemline, K.; Boulay, M. G.; Burritt, T. H.; Cai, B.; Chan, Y. D.; Chen, M.; Chon, M. C.; Cleveland, B. T.; Cox-Mobrand, G. A.; Currat, C. A.; Dai, X.; Dalnoki-Veress, F.; Deng, H.; Detwiler, J.; Doe, P. J.; Dosanjh, R. S.; Doucas, G.; Drouin, P.-L.; Duncan, F. A.; Dunford, M.; Elliott, S. R.; Evans, H. C.; Ewan, G. T.; Farine, J.; Fergani, H.; Fleurot, F.; Ford, R. J.; Formaggio, J. A.; Gagnon, N.; Goon, J. TM.; Grant, D. R.; Guillian, E.; Habib, S.; Hahn, R. L.; Hallin, A. L.; Hallman, E. D.; Hargrove, C. K.; Harvey, P. J.; Harvey, P. J.; Heeger, K. M.; Heintzelman, W. J.; Heise, J.; Helmer, R. L.; Hemingway, R. J.; Henning, R.; Hime, A.; Howard, C.; Howe, M. A.; Huang, M.; Jamieson, B.; Jelley, N. A.; Klein, J. R.; Kos, M.; Kruger, A.; Kraus, C.; Krauss, C. B.; Kutter, T.; Kyba, C. C. M.; Lange, R.; Law, J.; Lawson, I. T.; Lesko, K. T.; Leslie, J. R.; Levine, I.; Loach, J. C.; Luoma, S.; MacLellan, R.; Majerus, S.; Mak, H. B.; Maneira, J.; Marino, A. D.; Martin, R.; McCauley, N.; McDonald, A. B.; McGee, S.; Mifflin, C.; Miller, M. L.; Monreal, B.; Monroe, J.; Noble, A. J.; Oblath, N. S.; Okada, C. E.; O'Keeffe, H. M.; Opachich, Y.; Orebi Gann, G. D.; Oser, S. M.; Ott, R. A.; Peeters, S. J. M.; Poon, A. W. P.; Prior, G.; Rielage, K.; Robertson, B. C.; Robertson, R. G. H.; Rollin, E.; Schwendener, M. H.; Secrest, J. A.; Seibert, S. R.; Simard, O.; Simpson, J. J.; Sinclair, D.; Skensved, P.; Smith, M. W. E.; Sonley, T. J.; Steiger, T. D.; Stonehill, L. C.; Tagg, N.; Tesic, G.; Tolich, N.; Tsui, T.; Van de Water, R. G.; VanDevender, B. A.; Virtue, C. J.; Waller, D.; Waltham, C. E.; Wan Chan Tseung, H.; Wark, D. L.; Watson, P.; Wendland, J.; West, N.; Wilkerson, J. F.; Wilson, J. R.; Wouters, J. M.; Wright, A.; Yeh, M.; Zhang, F.; Zuber, K.
2009-07-10
Results are reported on the measurement of the atmospheric neutrino-induced muon flux at a depth of 2 kilometers below the Earth's surface from 1229 days of operation of the Sudbury Neutrino Observatory (SNO). By measuring the flux of through-going muons as a function of zenith angle, the SNO experiment can distinguish between the oscillated and un-oscillated portion of the neutrino flux. A total of 514 muon-like events are measured between -1 {le} cos {theta}{sub zenith} 0.4 in a total exposure of 2.30 x 10{sup 14} cm{sup 2} s. The measured flux normalization is 1.22 {+-} 0.09 times the Bartol three-dimensional flux prediction. This is the first measurement of the neutrino-induced flux where neutrino oscillations are minimized. The zenith distribution is consistent with previously measured atmospheric neutrino oscillation parameters. The cosmic ray muon flux at SNO with zenith angle cos {theta}{sub zenith} > 0.4 is measured to be (3.31 {+-} 0.01 (stat.) {+-} 0.09 (sys.)) x 10{sup -10} {micro}/s/cm{sup 2}.
NASA Technical Reports Server (NTRS)
Zhang, Shuo; Hailey, Charles J.; Baganoff, Frederick K.; Bauer, Franz E.; Boggs, Steven E.; Craig, William W.; Christensen, Finn E.; Gotthelf, Eric V.; Harrison, Fiona A.; Mori, Kaya;
2014-01-01
We report the first detection of high-energy X-ray (E (is) greater than 10 keV) emission from the Galactic center non-thermal filament G359.89-0.08 (Sgr A-E) using data acquired with the Nuclear Spectroscopic Telescope Array (NuSTAR). The bright filament was detected up to approximately 50 keV during a NuSTAR Galactic center monitoring campaign. The featureless power-law spectrum with a photon index gamma approximately equals 2.3 confirms a non-thermal emission mechanism. The observed flux in the 3-79 keV band is F(sub X) = (2.0 +/- 0.1) × 10(exp -12)erg cm(-2) s(-1) , corresponding to an unabsorbed X-ray luminosity L(sub X) = (2.6+/-0.8)×10(exp 34) erg s(-1) assuming a distance of 8.0 kpc. Based on theoretical predictions and observations, we conclude that Sgr A-E is unlikely to be a pulsar wind nebula (PWN) or supernova remnant-molecular cloud (SNR-MC) interaction, as previously hypothesized. Instead, the emission could be due to a magnetic flux tube which traps TeV electrons. We propose two possible TeV electron sources: old PWNe (up to (is) approximately 100 kyr) with low surface brightness and radii up to (is) approximately 30 pc or MCs illuminated by cosmic rays (CRs) from CR accelerators such as SNRs or Sgr A*.
Microfabrication: LIGA-X and applications
NASA Astrophysics Data System (ADS)
Kupka, R. K.; Bouamrane, F.; Cremers, C.; Megtert, S.
2000-09-01
X-ray LIGA (Lithography, Electrogrowth, Moulding) is one of today's key technologies in microfabrication and upcoming modern (meso)-(nano) fabrication, already used and anticipated for micromechanics (micromotors, microsensors, spinnerets, etc.), micro-optics, micro-hydrodynamics (fluidic devices), microbiology, in medicine, in biology, and in chemistry for microchemical reactors. It compares to micro-electromechanical systems (MEMS) technology, offering a larger, non-silicon choice of materials and better inherent precision. X-ray LIGA relies on synchrotron radiation to obtain necessary X-ray fluxes and uses X-ray proximity printing. Inherent advantages are its extreme precision, depth of field and very low intrinsic surface roughness. However, the quality of fabricated structures often depends on secondary effects during exposure and effects like resist adhesion. UV-LIGA, relying on thick UV resists is an alternative for projects requiring less precision. Modulating the spectral properties of synchrotron radiation, different regimes of X-ray lithography lead to (a) the mass-fabrication of classical nanostructures, (b) the fabrication of high aspect ratio nanostructures (HARNST), (c) the fabrication of high aspect ratio microstructures (HARMST), and (d) the fabrication of high aspect ratio centimeter structures (HARCST). Reviewing very recent activities around X-ray LIGA, we show the versatility of the method, obviously finding its region of application there, where it is best and other competing microtechnologies are less advantageous. An example of surface-based X-ray and particle lenses (orthogonal reflection optics (ORO)) made by X-ray LIGA is given.
Polar Coronal Hole Ephemeral Regions, the Fast Solar Wind and the Global Magnetic Dynamo
NASA Technical Reports Server (NTRS)
Cirtain, Jonathan W.
2010-01-01
The X-Ray Telescope aboard Hinode has been regularly observing both the north and south solar polar coronal holes from November 2006 through March 2009. We use the observations of emerged flux regions within the coronal hole as evidenced by small x-ray bright points to study the physical properties of these regions. The width of the emerged flux region loop footpoints, the duration of the x-ray emission lifetime for the emerged flux region, the latitude of formation and whether an x-ray or EUV jet was observed were all recorded. In the present work we detail these observations and show a dependence on the width of the emerged flux region (bright point) to the number of x-ray jets observed. The distribution of base width is then related to a power law for number of emerged flux regions as a function of base width.
The HectoMAP Cluster Survey. II. X-Ray Clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sohn, Jubee; Chon, Gayoung; Bohringer, Hans
Here, we apply a friends-of-friends algorithm to the HectoMAP redshift survey and cross-identify associated X-ray emission in the ROSAT All-Sky Survey data (RASS). The resulting flux-limited catalog of X-ray cluster surveys is complete to a limiting flux of ~3 × 10 –13 erg s –1 cm –2 and includes 15 clusters (7 newly discovered) with redshifts z ≤ 0.4. HectoMAP is a dense survey (~1200 galaxies deg –2) that provides ~50 members (median) in each X-ray cluster. We provide redshifts for the 1036 cluster members. Subaru/Hyper Suprime-Cam imaging covers three of the X-ray systems and confirms that they are impressivemore » clusters. The HectoMAP X-ray clusters have an L X–σ cl scaling relation similar to that of known massive X-ray clusters. The HectoMAP X-ray cluster sample predicts ~12,000 ± 3000 detectable X-ray clusters in RASS to the limiting flux, comparable with previous estimates.« less
The HectoMAP Cluster Survey. II. X-Ray Clusters
Sohn, Jubee; Chon, Gayoung; Bohringer, Hans; ...
2018-03-10
Here, we apply a friends-of-friends algorithm to the HectoMAP redshift survey and cross-identify associated X-ray emission in the ROSAT All-Sky Survey data (RASS). The resulting flux-limited catalog of X-ray cluster surveys is complete to a limiting flux of ~3 × 10 –13 erg s –1 cm –2 and includes 15 clusters (7 newly discovered) with redshifts z ≤ 0.4. HectoMAP is a dense survey (~1200 galaxies deg –2) that provides ~50 members (median) in each X-ray cluster. We provide redshifts for the 1036 cluster members. Subaru/Hyper Suprime-Cam imaging covers three of the X-ray systems and confirms that they are impressivemore » clusters. The HectoMAP X-ray clusters have an L X–σ cl scaling relation similar to that of known massive X-ray clusters. The HectoMAP X-ray cluster sample predicts ~12,000 ± 3000 detectable X-ray clusters in RASS to the limiting flux, comparable with previous estimates.« less
Acoustic waves in M dwarfs: Maintaining a corona
NASA Technical Reports Server (NTRS)
Mullan, D. J.; Cheng, Q. Q.
1994-01-01
We use a time-dependent hydrodynamics code to follow the propagation of acoustic waves into the corona of an M dwarf star. An important qualitative difference between M dwarfs and stars such as the Sun is that the acoustic spectrum in M dwarfs is expected to peak at periods close to the acoustic cutoff P(sub A): this allows more effective penetration of waves into the corona. In our code, radiative losses in the photosphere, chromosphere, and corona are computed using Rosseland mean opacities, Mg II kappa and Ly alpha emission, and optically thin emissivities respectively. We find that acoustic heating can maintain a corona with a temperature of order 0.7-1 x 10(exp 6) K and a surface X-ray flux as large as 10(exp 5)ergs/sq cm/s. In a recent survey of X-rays from M dwarfs, some (20%-30%) of the stars lie at or below this limiting X-ray flux: we suggest that such stars may be candidates for acoustically maintained coronae.
NASA Technical Reports Server (NTRS)
Hurley, K.; Anderson, K. A.
1972-01-01
Models of Jupiter's magnetosphere were examined to predict the X-ray flux that would be emitted in auroral or radiation zone processes. Various types of X-ray detection were investigated for energy resolution, efficiency, reliability, and background. From the model fluxes it was determined under what models Jovian X-rays could be detected.
Chandra Observations of Magnetic White Dwarfs and their Theoretical Implications
NASA Technical Reports Server (NTRS)
Musielak, Z. E.; Noble, M.; Porter, J. G.; Winget, D. E.
2003-01-01
Observations of cool DA and DB white dwarfs have not yet been successful in detecting coronal X-ray emission, but observations of late-type dwarfs and giants show that coronae are common for these stars. To produce coronal X-rays, a star must have dynamo-generated surface magnetic fields and a well-developed convection zone. There is some observational evidence that the DA star LHS 1038 and the DB star GD 358 have weak and variable surface magnetic fields. It has been suggested that such fields can be generated by dynamo action, and since both stars have well-developed convection zones, theory predicts detectable levels of coronal X-rays from these white dwarfs. However, we present analysis of Chandra observations of both stars showing no detectable X-ray emission. The derived upper limits for the X-ray fluxes provide strong constraints on theories of formation of coronae around magnetic white dwarfs. Another important implication of our negative Chandra observations is the possibility that the magnetic fields of LHS 1038 and GD 358 are fossil fields.
Simultaneous Multiwavelength Observations of the Blazar 1ES 1959+650 at a Low TeV Flux
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tagliaferri, G.; Ghisellini, G.; Foschini, L.
We present the results from a multiwavelength campaign on the TeV blazar 1ES 1959+650, performed in 2006 May. Data from the optical, UV, soft- and hard-X-ray, and very high energy (VHE) gamma-ray (E > 100 GeV) bands were obtained with the Suzaku and Swift satellites, the MAGIC telescope, and other ground-based facilities. The source spectral energy distribution (SED), derived from Suzaku and MAGIC observations at the end of 2006 May, shows the usual double hump shape, with the synchrotron peak at a higher flux level than the Compton peak. With respect to historical values, during our campaign the source exhibitedmore » a relatively high state in X-rays and optical, while in the VHE band it was at one of the lowest level so far recorded. We also monitored the source for flux spectral variability on a time window of 10 days in the optical-UV and X-ray bands and 7 days in the VHE band. The source varies more in the X-ray than in the optical band, with the 2-10 keV X-ray flux varying by a factor of {approx}2. The synchrotron peak is located in the X-ray band and moves to higher energies as the source gets brighter, with the X-ray fluxes above it varying more rapidly than the X-ray fluxes at lower energies. The variability behavior observed in the X-ray band cannot be produced by emitting regions varying independently and suggests instead some sort of 'standing shock' scenario. The overall SED is well represented by a homogeneous one-zone synchrotron inverse Compton emission model, from which we derive physical parameters that are typical of high-energy peaked blazars.« less
Observations of X-ray and EUV fluxes during X-class solar flares and response of upper ionosphere
NASA Astrophysics Data System (ADS)
Mahajan, K. K.; Lodhi, Neelesh K.; Upadhayaya, Arun K.
2010-12-01
Most studies dealing with solar flare effects in the upper ionosphere, where ionization is caused by EUV photons, have been based upon X-ray fluxes measured by the SOLRAD and GOES series of satellites. To check the validity of such studies, we compare simultaneous observations of GOES X-ray fluxes and SOHO EUV fluxes for 10 X-class solar flares which occurred during the maximum phase of sunspot cycle 23. These include the greatest flare of 4 November 2003, the fourth greatest flare of 28 October 2003 and the 14 July 2000 Bastille Day flare. We find that the peak intensities of the X-ray and EUV fluxes for these flares are poorly correlated, and this poor correlation is again seen when larger data containing 70 X-class flares, which occurred during the period January 1996 to December 2006, are examined. However, this correlation improves vastly when the central meridian distance (CMD) of the flare location is taken into account. We also study the response of the upper ionosphere to these fluxes by using the midday total electron content (TEC), observed for these flares by Liu et al. (2006). We find that peak enhancement in TEC is highly correlated with peak enhancement in EUV flux. The correlation, though poor with the X-ray flux, improves greatly when the CMD of flare location is considered.
Upper limits for X-ray emission from Jupiter as measured from the Copernicus satellite
NASA Technical Reports Server (NTRS)
Vesecky, J. F.; Culhane, J. L.; Hawkins, F. J.
1975-01-01
X-ray telescopic observations are made by the Copernicus satellite for detecting X-ray emission from Jupiter analogous to X-rays from terrestrial aurorae. Values of X-ray fluxes recorded by three Copernicus detectors covering the 0.6 to 7.5 keV energy range are reported. The detectors employed are described and the times at which the observations were made are given. Resulting upper-limit spectra are compared with previous X-ray observations of Jupiter. The upper-limit X-ray fluxes are discussed in terms of magnetospheric activity on Jupiter.
Optical/Infrared properties of Be stars in X-ray Binary systems
NASA Astrophysics Data System (ADS)
Naik, Sachindra
2018-04-01
Be/X-ray binaries, consisting of a Be star and a compact object (neutron star), form the largest subclass of High Mass X-ray Binaries. The orbit of the compact object around the Be star is wide and highly eccentric. Neutron stars in the Be/X-ray binaries are generally quiescent in X-ray emission. Transient X-ray outbursts seen in these objects are thought to be due to the interaction between the compact object and the circumstellar disk of the Be star at the periastron passage. Optical/infrared observations of the companion Be star during these outbursts show that the increase in the X-ray intensity of the neutron star is coupled with the decrease in the optical/infrared flux of the companion star. Apart from the change in optical/infrared flux, dramatic changes in the Be star emission line profiles are also seen during X-ray outbursts. Observational evidences of changes in the emission line profiles and optical/infrared continuum flux along with associated X-ray outbursts from the neutron stars in several Be/X-ray binaries are presented in this paper.
Is there a UV/X-ray connection in IRAS 13224-3809?
NASA Astrophysics Data System (ADS)
Buisson, D. J. K.; Lohfink, A. M.; Alston, W. N.; Cackett, E. M.; Chiang, C.-Y.; Dauser, T.; De Marco, B.; Fabian, A. C.; Gallo, L. C.; García, J. A.; Jiang, J.; Kara, E.; Middleton, M. J.; Miniutti, G.; Parker, M. L.; Pinto, C.; Uttley, P.; Walton, D. J.; Wilkins, D. R.
2018-04-01
We present results from the optical, ultraviolet, and X-ray monitoring of the NLS1 galaxy IRAS 13224-3809 taken with Swift and XMM-Newton during 2016. IRAS 13224-3809 is the most variable bright AGN in the X-ray sky and shows strong X-ray reflection, implying that the X-rays strongly illuminate the inner disc. Therefore, it is a good candidate to study the relationship between coronal X-ray and disc UV emission. However, we find no correlation between the X-ray and UV flux over the available ˜40 d monitoring, despite the presence of strong X-ray variability and the variable part of the UV spectrum being consistent with irradiation of a standard thin disc. This means either that the X-ray flux which irradiates the UV emitting outer disc does not correlate with the X-ray flux in our line of sight and/or that another process drives the majority of the UV variability. The former case may be due to changes in coronal geometry, absorption or scattering between the corona and the disc.
The Secret Lives of Cepheids: δ Cep—The Prototype of a New Class of Pulsating X-Ray Variable Stars
NASA Astrophysics Data System (ADS)
Engle, Scott G.; Guinan, Edward F.; Harper, Graham M.; Cuntz, Manfred; Remage Evans, Nancy; Neilson, Hilding R.; Fawzy, Diaa E.
2017-03-01
From our Secret Lives of Cepheids program, the prototype Classical Cepheid, δ Cep, is found to be an X-ray source with periodic pulsation-modulated X-ray variations. This finding complements our earlier reported phase-dependent FUV-UV emissions of the star that increase ˜10-20 times with highest fluxes at ˜ 0.90{--}0.95φ , just prior to maximum brightness. Previously δ Cep was found as potentially X-ray variable, using XMM-Newton observations. Additional phase-constrained data were secured with Chandra near X-ray emission peak, to determine if the emission and variability were pulsation-phase-specific to δ Cep and not transient or due to a possible coronally active, cool companion. The Chandra data were combined with prior XMM-Newton observations, and were found to very closely match the previously observed X-ray behavior. From the combined data set, a ˜4 increase in X-ray flux is measured, reaching a peak {L}{{X}} = 1.7 × 1029 erg s-1 near 0.45ϕ. The precise X-ray flux phasing with the star’s pulsation indicates that the emissions arise from the Cepheid and not from a companion. However, it is puzzling that the maximum X-ray flux occurs ˜0.5ϕ (˜3 days) later than the FUV-UV maximum. There are several other potential Cepheid X-ray detections with properties similar to δ Cep, and comparable X-ray variability is indicated for two other Cepheids: β Dor and V473 Lyr. X-ray generating mechanisms in δ Cep and other Cepheids are discussed. If additional Cepheids are confirmed to show phased X-ray variations, then δ Cep will be the prototype of a new class of pulsation-induced X-ray variables.
Hard X-ray Flux from Low-Mass Stars in the Cygnus OB2 Association
NASA Astrophysics Data System (ADS)
Caramazza, M.; Drake, J. J.; Micela, G.; Flaccomio, E.
2009-05-01
We investigate the X-ray emission in the 20-40 keV band expected from the flaring low-mass stellar population in Cygnus OB2 assuming that the observed soft X-ray emission is due to a superposition of flares and that the ratio of hard X-ray to soft X-ray emission is described by a scaling found for solar flares by Isola and co-workers. We estimate a low-mass stellar hard X-ray flux in the 20-40 keV band in the range ~7×1031-7×1033 erg/s and speculate the limit of this values. Hard X-ray emission could lie at a level not much below the current observed flux upper limits for Cygnus OB2. Simbol-X, with its broad energy band (10-100 keV) and its sensitivity should be able to detect this emission and would provide insights into the hard X-ray production of flares on pre-main sequence stars.
BioCARS: a synchrotron resource for time-resolved X-ray science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graber, T.; Anderson, S.; Brewer, H.
2011-08-16
BioCARS, a NIH-supported national user facility for macromolecular time-resolved X-ray crystallography at the Advanced Photon Source (APS), has recently completed commissioning of an upgraded undulator-based beamline optimized for single-shot laser-pump X-ray-probe measurements with time resolution as short as 100 ps. The source consists of two in-line undulators with periods of 23 and 27 mm that together provide high-flux pink-beam capability at 12 keV as well as first-harmonic coverage from 6.8 to 19 keV. A high-heat-load chopper reduces the average power load on downstream components, thereby preserving the surface figure of a Kirkpatrick-Baez mirror system capable of focusing the X-ray beammore » to a spot size of 90 {micro}m horizontal by 20 {micro}m vertical. A high-speed chopper isolates single X-ray pulses at 1 kHz in both hybrid and 24-bunch modes of the APS storage ring. In hybrid mode each isolated X-ray pulse delivers up to {approx}4 x 10{sup 10} photons to the sample, thereby achieving a time-averaged flux approaching that of fourth-generation X-FEL sources. A new high-power picosecond laser system delivers pulses tunable over the wavelength range 450-2000 nm. These pulses are synchronized to the storage-ring RF clock with long-term stability better than 10 ps RMS. Monochromatic experimental capability with Biosafety Level 3 certification has been retained.« less
Soft x ray properties of the Geminga pulsar
NASA Technical Reports Server (NTRS)
Halpern, J. P.; Ruderman, M.
1993-01-01
The ROSAT soft x ray spectrum and pulse profile of the Geminga pulsar are analyzed and interpreted in terms of thermal emission from the surface of the neutron star. The x ray spectrum appears to consist of two blackbody components with T(sub 1) = (5.2 +/- 1.0) x 10 (exp 5) K and T(sub 2) approximately 3 x 10(exp 6) K, respectively. The inferred ratio of surface areas, A(sub 2)/A(sub 1), is approximately 3 x 10(exp -5). Both components are highly modulated at the pulsar rotation period, but the harder x ray pulse is narrower, and leads the main (soft) x ray pulse by about 105 deg of phase. The soft x ray component is interpreted as photospheric cooling of much of the neutron star's surface area, while the small, hot region could be part of the much smaller polar cap heated by energetic particles flowing inward from the magnetospheric accelerator which is responsible for the production of Geminga's gamma rays. Geminga's gamma ray emission is consistent with outer-magnetosphere accelerator models for highly inclined dipoles. These predict the beaming of energetic gamma rays close enough to the star to give copious e(+/-) production in the stellar magnetic field and a large circumstellar pair density from pair inflow toward the surface. These pairs may quench radio emission, and also reflect most of the hard polar cap x rays back to the stellar surface by cyclotron resonance scattering. They are then reemitted from that much larger area at the lower temperature T(sub 1). The single-peaked nature of the x ray pulse and its energy-dependent phase suggest an off-center dipole geometry for the surface magnetic field. Under the assumption that the soft x ray emission comes from the full surface of a neutron star of radius R = 10 km, a distance estimate of (150-400) pc is derived. This range is consistent with the fit interstellar column density of (1.5 +/- 0.5) x 10(exp 20) cm(exp -2). Distances less than 150 pc are probably ruled out both by the lower limit on the column density, and also by the requirement that the Rayleigh-Jeans extrapolation of the soft x ray spectrum not exceed the observed blue flux of the faint optical counterpart. This distance estimate implies that Geminga's efficiency for converting spindown power into gamma-rays is near unity, and that there may be significant beaming of the gamma rays as well. These results tend to bolster the prospect that most of the unidentified high-energy gamma ray sources in the Galactic plane are pulsars, some of which may be radio quiet.
Astrophysical radiation environments of habitable worlds
NASA Astrophysics Data System (ADS)
Smith, David Samuel
Numerous astrophysical sources of radiation affect the environment of planets orbiting within the liquid-water habitable zone of main-sequence stars. This dissertation reaches a number of conclusions about the ionizing radiation environment of the habitable zone with respect to X-rays and gamma-rays from stellar flares and background Galactic cosmic rays. Gamma-rays and X-rays incident on terrestrial-like exoplanet atmospheres can be efficiently reprocessed into diffuse UV emission that, depending on the presence of atmospheric UV absorbers, can reach the surface. Extreme solar X-ray flares over the last 4.6 Gyr could have delivered large enough radiation doses to the Martian surface to sterilize any unprotected organisms, depending on the largest energy releases possible. These flares also pose a significant hazard to manned space missions, since a large flare can occur with little or no warning during an extravehicular activity. A flare as large as the largest observed could deliver radiation doses exceeding safety limits to an astronaut protected by only a spacesuit. With respect to particle radiation, the nature of Galactic cosmic-ray modulation by astrospheres means that habitable-zone cosmic-ray fluxes change by much larger magnitudes when passing through low- densities regions of the interstellar medium. In contrast to the popular idea that passages through dense molecular clouds are required to significantly enhance Galactic cosmic-ray fluxes and affect planets' electrical circuits, background mutation rates, and climates, we find that densities of only 0.1-10 cm -3 , the densities of most interstellar clouds, are sufficient to bring fluxes close to the full, interstellar level. Finally, passages through dense molecular clouds are necessary to shrink astrospheres to within the habitable zone, but such events produce even higher interstellar hydrogen and dust accretion rates than have been estimated because of the combination of enhanced charge-exchange rates between stellar-wind ions and interstellar neutrals and the growing importance of the central star's gravity on particle trajectories as the astrosphere shrinks.
Regolith X-Ray Imaging Spectrometer (REXIS) Aboard the OSIRIS-REx Asteroid Sample Return Mission
NASA Astrophysics Data System (ADS)
Masterson, R. A.; Chodas, M.; Bayley, L.; Allen, B.; Hong, J.; Biswas, P.; McMenamin, C.; Stout, K.; Bokhour, E.; Bralower, H.; Carte, D.; Chen, S.; Jones, M.; Kissel, S.; Schmidt, F.; Smith, M.; Sondecker, G.; Lim, L. F.; Lauretta, D. S.; Grindlay, J. E.; Binzel, R. P.
2018-02-01
The Regolith X-ray Imaging Spectrometer (REXIS) is the student collaboration experiment proposed and built by an MIT-Harvard team, launched aboard NASA's OSIRIS-REx asteroid sample return mission. REXIS complements the scientific investigations of other OSIRIS-REx instruments by determining the relative abundances of key elements present on the asteroid's surface by measuring the X-ray fluorescence spectrum (stimulated by the natural solar X-ray flux) over the range of energies 0.5 to 7 keV. REXIS consists of two components: a main imaging spectrometer with a coded aperture mask and a separate solar X-ray monitor to account for the Sun's variability. In addition to element abundance ratios (relative to Si) pinpointing the asteroid's most likely meteorite association, REXIS also maps elemental abundance variability across the asteroid's surface using the asteroid's rotation as well as the spacecraft's orbital motion. Image reconstruction at the highest resolution is facilitated by the coded aperture mask. Through this operation, REXIS will be the first application of X-ray coded aperture imaging to planetary surface mapping, making this student-built instrument a pathfinder toward future planetary exploration. To date, 60 students at the undergraduate and graduate levels have been involved with the REXIS project, with the hands-on experience translating to a dozen Master's and Ph.D. theses and other student publications.
Observations of magnetic fields on solar-type stars
NASA Technical Reports Server (NTRS)
Marcy, G. W.
1982-01-01
Magnetic-field observations were carried out for 29 G and K main-sequence stars. The area covering-factors of magnetic regions tends to be greater in the K dwarfs than in the G dwarfs. However, no spectral-type dependence is found for the field strengths, contrary to predictions that pressure equilibrium with the ambient photospheric gas pressure would determine the surface field strengths. Coronal soft X-ray fluxes from the G and K dwarfs correlate well with the fraction of the stellar surface covered by magnetic regions. The dependence of coronal soft X-ray fluxes on photospheric field strengths is consistent with Stein's predicted generation-rates for Alfven waves. These dependences are inconsistent with the one dynamo model for which a specific prediction is offered. Finally, time variability of magnetic fields is seen on the two active stars that have been extensively monitored. Significant changes in magnetic fields are seen to occur on timescales as short as one day.
Infrared LED Enhanced Spectroscopic CdZnTe Detector Working under High Fluxes of X-rays
Pekárek, Jakub; Dědič, Václav; Franc, Jan; Belas, Eduard; Rejhon, Martin; Moravec, Pavel; Touš, Jan; Voltr, Josef
2016-01-01
This paper describes an application of infrared light-induced de-polarization applied on a polarized CdZnTe detector working under high radiation fluxes. We newly demonstrate the influence of a high flux of X-rays and simultaneous 1200-nm LED illumination on the spectroscopic properties of a CdZnTe detector. CdZnTe detectors operating under high radiation fluxes usually suffer from the polarization effect, which occurs due to a screening of the internal electric field by a positive space charge caused by photogenerated holes trapped at a deep level. Polarization results in the degradation of detector charge collection efficiency. We studied the spectroscopic behavior of CdZnTe under various X-ray fluxes ranging between 5×105 and 8×106 photons per mm2 per second. It was observed that polarization occurs at an X-ray flux higher than 3×106 mm−2·s−1. Using simultaneous illumination of the detector by a de-polarizing LED at 1200 nm, it was possible to recover X-ray spectra originally deformed by the polarization effect. PMID:27690024
BioCARS: a synchrotron resource for time-resolved X-ray science
Graber, T.; Anderson, S.; Brewer, H.; Chen, Y.-S.; Cho, H. S.; Dashdorj, N.; Henning, R. W.; Kosheleva, I.; Macha, G.; Meron, M.; Pahl, R.; Ren, Z.; Ruan, S.; Schotte, F.; Šrajer, V.; Viccaro, P. J.; Westferro, F.; Anfinrud, P.; Moffat, K.
2011-01-01
BioCARS, a NIH-supported national user facility for macromolecular time-resolved X-ray crystallography at the Advanced Photon Source (APS), has recently completed commissioning of an upgraded undulator-based beamline optimized for single-shot laser-pump X-ray-probe measurements with time resolution as short as 100 ps. The source consists of two in-line undulators with periods of 23 and 27 mm that together provide high-flux pink-beam capability at 12 keV as well as first-harmonic coverage from 6.8 to 19 keV. A high-heat-load chopper reduces the average power load on downstream components, thereby preserving the surface figure of a Kirkpatrick–Baez mirror system capable of focusing the X-ray beam to a spot size of 90 µm horizontal by 20 µm vertical. A high-speed chopper isolates single X-ray pulses at 1 kHz in both hybrid and 24-bunch modes of the APS storage ring. In hybrid mode each isolated X-ray pulse delivers up to ∼4 × 1010 photons to the sample, thereby achieving a time-averaged flux approaching that of fourth-generation X-FEL sources. A new high-power picosecond laser system delivers pulses tunable over the wavelength range 450–2000 nm. These pulses are synchronized to the storage-ring RF clock with long-term stability better than 10 ps RMS. Monochromatic experimental capability with Biosafety Level 3 certification has been retained. PMID:21685684
Start of Eta Car's X-ray Minimum
NASA Technical Reports Server (NTRS)
Corcoran, Michael F.; Liburd, Jamar; Hamaguchi, Kenji; Gull, Theodore; Madura, Thomas; Teodoro, Mairan; Moffat, Anthony; Richardson, Noel; Russell, Chris; Pollock, Andrew;
2014-01-01
Analysis of Eta Car's X-ray spectrum in the 2-10 keV band using quicklook data from the XRay Telescope on Swift shows that the flux on July 30, 2014 was 4.9 plus or minus 2.0×10(exp-12) ergs s(exp-1)cm(exp-2). This flux is nearly equal to the X-ray minimum flux seen by RXTE in 2009, 2003.5, and 1998, and indicates that Eta Car has reached its X-ray minimum, as expected based on the 2024-day period derived from previous 2-10 keV observations with RXTE.
The Relationship Between X-Ray Radiance and Magnetic Flux
NASA Astrophysics Data System (ADS)
Pevtsov, Alexei A.; Fisher, George H.; Acton, Loren W.; Longcope, Dana W.; Johns-Krull, Christopher M.; Kankelborg, Charles C.; Metcalf, Thomas R.
2003-12-01
We use soft X-ray and magnetic field observations of the Sun (quiet Sun, X-ray bright points, active regions, and integrated solar disk) and active stars (dwarf and pre-main-sequence) to study the relationship between total unsigned magnetic flux, Φ, and X-ray spectral radiance, LX. We find that Φ and LX exhibit a very nearly linear relationship over 12 orders of magnitude, albeit with significant levels of scatter. This suggests a universal relationship between magnetic flux and the power dissipated through coronal heating. If the relationship can be assumed linear, it is consistent with an average volumetric heating rate Q~B/L, where B is the average field strength along a closed field line and L is its length between footpoints. The Φ-LX relationship also indicates that X-rays provide a useful proxy for the magnetic flux on stars when magnetic measurements are unavailable.
Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary
1991-01-01
A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.
X-ray microlensing in the quadruply lensed quasar Q2237+0305
NASA Astrophysics Data System (ADS)
Zimmer, F.; Schmidt, R. W.; Wambsganss, J.
2011-05-01
We use archival data of NASA's Chandra X-ray telescope to compile an X-ray light curve of all four images of the quadruply lensed quasar Q2237+0305 (zQ= 1.695) from 2006 January to 2007 January. We fit simulated point spread functions to the four individual quasar images using Cash's C-statistic to account for the Poissonian nature of the X-ray signal. The quasar images display strong flux variations up to a factor of ˜4 within one month. We can disentangle the intrinsic quasar variability from flux variations due to gravitational microlensing by looking at the flux ratios of the individual quasar images. Doing this, we find evidence for microlensing in image A. In particular, the time sequence of the flux ratio A/B in the X-ray regime correlates with the corresponding sequence in the optical monitoring by OGLE in the V band. The amplitudes in the X-ray light curve are larger. For the most prominent peak, the increase of the X-ray ratio A/B is larger by a factor of ˜1.6 compared to the signal in the optical. In agreement with theory and other observations of multiply-imaged quasars, this suggests that the X-ray emission region of this quasar is significantly smaller than the optical emission region.
Detection of X-ray emission from the young low-mass star Rossiter 137B
NASA Technical Reports Server (NTRS)
Vilhu, O.; Linsky, J. L.
1987-01-01
Rst 137B, a close M-dwarf companion to the active K-star HD 36705, has been detected in a High Resolution Image in the Einstein Observatory Archive. The X-ray surface fluxes (0.2-4 keV) from both stars are close to the empirical saturation level, F(x)/F(bol) of about 0.001, defined by rapid rotators and very young stars. This supports the earlier results of the youthfulness of the system. This young couple is an excellent subject for studies of dependence of early evolution on stellar mass. Rst 137B is one of the latest spectral types and thus lowest-mass premain-sequence stars yet detected as an X-ray source.
NASA Astrophysics Data System (ADS)
Yang, Jun; Zezas, Andreas; Coe, Malcolm J.; Drake, Jeremy J.; Hong, JaeSub; Laycock, Silas G. T.; Wik, Daniel R.
2018-05-01
We report the evidence for the anti-correlation between pulsed fraction (PF) and luminosity of the X-ray pulsar SXP 1323, found for the first time in a luminosity range 1035-1037 erg s-1 from observations spanning 15 years. The phenomenon of a decrease in X-ray PF when the source flux increases has been observed in our pipeline analysis of other X-ray pulsars in the Small Magellanic Cloud (SMC). It is expected that the luminosity under a certain value decreases as the PF decreases due to the propeller effect. Above the propeller region, an anti-correlation between the PF and flux might occur either as a result of an increase in the un-pulsed component of the total emission or a decrease of the pulsed component. Additional modes of accretion may also be possible, such as spherical accretion and a change in emission geometry. At higher mass accretion rates, the accretion disk could also extend closer to the neutron star (NS) surface, where a reduced inner radius leads to hotter inner disk emission. These modes of plasma accretion may affect the change in the beam configuration to fan-beam dominant emission.
First Results from a Microfocus X-Ray System for Macromolecular Crystallography
NASA Technical Reports Server (NTRS)
Gubarev, Mikhail; Ciszak, Ewa; Ponomarev, Igor; Gibson, Walter; Joy, Marshall
1999-01-01
The design and performance of a 40 Watt laboratory crystallography system optimized for the structure determination of small protein crystals are described. This system combines a microfocus x-ray generator (40 microns FWHM spot size at a power level of 40 Watts) and a short focal length (F = 2.6 mm) polycapillary collimating optic, and produces a small diameter quasi-parallel x-ray beam. Measurements of x-ray flux, divergence and spectral purity of the resulting x-ray beam are presented. The x-ray flux in a 250 microns diameter aperture produced by the microfocus system is 14.7 times higher .than that from a 3.15 kW rotating anode generator equipped with graphite monochromator. Crystallography data taken with the microfocus system are presented, and indicate that the divergence and spectral purity of the x-ray are sufficient to refine the diffraction data using a standard crystallographic software. Significant additional improvements in flux and beam divergence are possible, and plans for achieving these coals are discussed.
The Geminga Pulsar: Soft X-Ray Variability and an EUVE Observation
NASA Technical Reports Server (NTRS)
Halpern, Jules P.; Martin, Christopher; Marshall, Herman L.; Oliversen, Ronald (Technical Monitor)
2001-01-01
We observed the Geminga pulsar with the EUVE satellite, detecting pulsed emission in the Deep Survey imager. Joint spectral fits of the EUVE flux with ROSAT PSPC data are consistent with thermal plus power-law models in which the thermal component makes the dominant contribution to the soft X-ray flux seen by EUVE and ROSAT. The data are consistent with blackbody emission of T = (4 - 6) x 10(exp 5) K over most of the surface of the star at the measured parallax distance of 160 pc. Although model atmospheres are more realistic, and can fit the data with effective temperatures a factor of 2 lower, current data would not discriminate between these and blackbody models. We also find evidence for variability of Geminga's soft X-ray pulse shape. Narrow dips in the light curve that were present in 1991 had largely disappeared in 1993/1994, causing the pulsed fraction to decline from 32% to 18%. If the dips are attributed to cyclotron resonance scattering by an e1 plasma on closed magnetic field lines, then the process that resupplies that plasma must be variable.
The Geminga Pulsar: Soft X-Ray Variability and an EUVE Observation
NASA Technical Reports Server (NTRS)
Halpern, Jules P.; Martin, Christopher; Marshall, Herman L.
1996-01-01
We observed the Geminga pulsar with the EUVE satellite, detecting pulsed emission in the Deep Survey imager. Joint spectral fits of the EUVE flux with ROSAT PSPC data are consistent with thermal plus power-law models in which the thermal component makes the dominant contribution to the soft X-ray flux seen by EUVE and ROSAT. The data are consistent with blackbody emission of T = (4-6) x 10(exp 5) K over most of the surface of the star at the measured parallax distance of 160 pc. Although model atmospheres are more realistic, and can fit the data with effective temperatures a factor of 2 lower, current data would not discriminate between these and blackbody models. We also find evidence for variability of Geminga's soft X-ray pulse shape. Narrow dips in the light curve that were present in 1991 had largely disappeared in 1993/1994, causing the pulsed fraction to decline from 32% to 18%. If the dips are attributed to cyclotron resonance scattering by an e(+/-) plasma on closed magnetic field lines, then the process that resupplies that plasma must be variable.
Two types of electron events in solar flares
NASA Technical Reports Server (NTRS)
Daibog, E. I.; Kurt, V. G.; Logachev, Y. I.; Stolpovsky, V. G.
1985-01-01
The fluxes and spectra of the flare electrons measured on board Venera-I3 and I4 space probes are compared with the parameters of the hard (E sub x approximately 55 keV) and thermal X-ray bursts. The electron flux amplitude has been found to correlate with flare importance in the thermal X-ray range (r approximately 0.8). The following two types of flare events have been found in the electron component of SCR. The electron flux increase is accompanied by a hard X-ray burst and the electron spectrum index in the approximately 25 to 200 keV energy range is gamma approximately 2 to 3. The electron flux increase is not accompanied by a hard X-ray burst and the electron spectrum is softer (Delta gamma approximately 0.7 to 1.0).
Behavior of characteristic X-rays from a partial-transmission-type X-ray target.
Raza, Hamid Saeed; Kim, Hyun Jin; Ha, Jun Mok; Cho, Sung Oh
2013-10-01
The angular distribution of characteristic X-rays using a partial-transmission tungsten target was analyzed. Twenty four tallies were modeled to cover a 360° envelope around the target. The Monte Carlo N-Particle (MCNP5) simulation results revealed that the characteristic X-ray flux is not always isotropic around the target. Rather, the flux mainly depends on the target thickness and the energy of the incident electron beam. A multi-energy photon generator is proposed to emit high-energy characteristic X-rays, where the target acts as a filter for the low-energy characteristic X-rays. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Homan, Jeroen; Buxton, Michelle; Markoff, Sera; Bailyn, Charles D.; Nespoli, Elisa; Belloni, Tomaso
2005-05-01
We report on quasi-simultaneous Rossi X-Ray Timing Explorer and optical/near-infrared (NIR) observations of the black hole candidate X-ray transient GX 339-4. Our observations were made over a time span of more than 8 months in 2002 and cover the initial rise and transition from a hard to a soft spectral state in X-rays. Two distinct patterns of correlated X-ray-optical/NIR behavior were found. During the hard state, the optical/NIR and X-ray fluxes correlated well, with a NIR versus X-ray flux power-law slope similar to that of the correlation found between X-ray and radio fluxes in previous studies of GX 339-4 and other black hole binaries. As the source went through an intermediate state, the optical/NIR fluxes decreased rapidly, and once it had entered the spectrally soft state, the optical/NIR spectrum of GX 339-4 was much bluer, and the ratio of X-ray to NIR flux was higher by a factor of more than 10 compared to the hard state. In the spectrally soft state, changes in the NIR preceded those in the soft X-rays by more than 2 weeks, indicating a disk origin of the NIR emission and providing a measure of the viscous timescale. A sudden onset of NIR flaring of ~0.5 mag on a timescale of 1 day was also observed during this period. We present spectral energy distributions, including radio data, and discuss possible sources for the optical/NIR emission. We conclude that, in the hard state, this emission probably originates in the optically thin part of a jet and that in none of the X-ray states is X-ray reprocessing the dominant source of optical/NIR emission. Finally, comparing the light curves from the all-sky monitor (ASM) and Proportional Counter Array (PCA) instruments, we find that the X-ray/NIR delay depends critically on the sensitivity of the X-ray detector, with the delay inferred from the PCA (if present at all) being a factor of 3-6 times shorter than the delay inferred from the ASM; this may be important in interpreting previously reported X-ray-optical/NIR lags.
On the modulation of X ray fluxes in thunderstorms
NASA Technical Reports Server (NTRS)
Mccarthy, Michael P.; Parks, George K.
1992-01-01
The production of X-ray fluxes in thunderstorms has been attributed to bremsstrahlung. Assuming this, another question arises. How can a thunderstorm modulate the number density of electrons which are sufficiently energetic to produce X-rays? As a partial answer to this question, the effects of typical thunderstorm electric fields on a background population of energetic electrons, such as produced by cosmic ray secondaries and their decays or the decay of airborne radionuclides, are considered. The observed variation of X-ray flux is shown to be accounted for by a simple model involving typical electric field strengths. A necessary background electron number density is found from the model and is determined to be more than 2 orders of magnitude higher than that available from radon decay and a factor of 8 higher than that available from cosmic ray secondaries. The ionization enhancement due to energetic electrons and X-rays is discussed.
Piestrup, M.A.; Boyers, D.G.; Pincus, C.
1991-12-31
A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.
Spectral and Timing Investigations of Dwarf Novae Selected in Hard X-Rays
NASA Technical Reports Server (NTRS)
Thorstensen, John; Remillard, Ronald A.
2000-01-01
There are 9 dwarf novae (DN) among the 43 cataclysmic variables (accreting white dwarfs in close binary systems) that were detected during the HEAO-1 all-sky X-ray survey (1977-1979). On the other hand, there are roughly one hundred dwarf novae that are closer and/or optically brighter and yet they were not detected as hard X-ray sources. Two of the HEAO-1 DN show evidence for X-ray pulsations that imply strong magnetic fields on the white dwarf surface, and magnetic CVs are known to be strong X-ray sources. However, substantial flux in hard X-rays may be caused by non-magnetic effects, such as an optically thin boundary layer near a massive white dwarf. We proposed RXTE observations to measure plasma temperatures and to search for X-ray pulsations. The observations would distinguish whether these DN belong to one of (rare) magnetic subclasses. For those that do not show pulsations, the observations support efforts to define empirical relations between X-ray temperature, the accretion rate, and the mass of the white dwarf. The latter is determined via optical studies of the dynamics of the binary constituents.
Focused Study of Thermonuclear Bursts on Neutron Stars
NASA Astrophysics Data System (ADS)
Chenevez, Jérôme
2009-05-01
X-ray bursters form a class of Low Mass X-Ray Binaries where accreted material from a donor star undergoes rapid thermonuclear burning in the surface layers of a neutron star. The flux released can temporarily exceed the Eddington limit and drive the photosphere to large radii. Such photospheric radius expansion bursts likely eject nuclear burning ashes into the interstellar medium, and may make possible the detection of photoionization edges. Indeed, theoretical models predict that absorption edges from 58Fe at 9.2 keV, 60Zn and 62Zn at 12.2 keV should be detectable by the future missions Simbol-X and NuSTAR. A positive detection would thus probe the nuclear burning as well as the gravitational redshift from the neutron star. Moreover, likely observations of atomic X-ray spectral components reflected from the inner accretion disk have been reported. The high spectral resolution capabilities of the focusing X-ray telescopes may therefore make possible to differentiate between the potential interpretations of the X-ray bursts spectral features.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report contains viewgraphs on the following topics. The advanced light source U8 undulator beamline, 20--300 eV; gas-phase actinide studies with synchrotron radiation; atomic structure calculations for heavy atoms; flux growth of single crystal uranium intermetallics: Extension to transuranics; x-ray absorption near-edge structure studies of actinide compounds; surface as a new stage for studying actinides: Theoretical study of the surface electronic structure of uranium; magnetic x-ray scattering experiments at resonant energies; beamline instruments for radioactive materials; the search for x-ray absorption magnetic circular dichroism in actinide materials: preliminary experiments using UFe[sub 2] and U-S; the laser plasma laboratory light source:more » a source of preliminary transuranic data; electron spectroscopy of heavy fermion actinide materials; study of thin layers of actinides. Present status and future use of synchrotron radiation; electronic structure and correlated-electron theory for actinide materials; and heavy fermion and kondo phenomena in actinide materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report contains viewgraphs on the following topics. The advanced light source U8 undulator beamline, 20--300 eV; gas-phase actinide studies with synchrotron radiation; atomic structure calculations for heavy atoms; flux growth of single crystal uranium intermetallics: Extension to transuranics; x-ray absorption near-edge structure studies of actinide compounds; surface as a new stage for studying actinides: Theoretical study of the surface electronic structure of uranium; magnetic x-ray scattering experiments at resonant energies; beamline instruments for radioactive materials; the search for x-ray absorption magnetic circular dichroism in actinide materials: preliminary experiments using UFe{sub 2} and U-S; the laser plasma laboratory light source:more » a source of preliminary transuranic data; electron spectroscopy of heavy fermion actinide materials; study of thin layers of actinides. Present status and future use of synchrotron radiation; electronic structure and correlated-electron theory for actinide materials; and heavy fermion and kondo phenomena in actinide materials.« less
X-ray Spectra and Pulse Frequency Changes in SAX J2103.5+4545
NASA Technical Reports Server (NTRS)
Baykal, A.; Stark, M. J.; Swank, J. H.; White, Nicholas E. (Technical Monitor)
2002-01-01
The November 1999 outburst of the transient pulsar SAX J2103.5+4545 was monitored with the large area detectors of the Rossi X-Ray Timing Explorer until the pulsar faded after a year. The 358 s pulsar was spun up for 150 days, at which point the flux dropped quickly by a factor of approximately 7, the frequency saturated and, as the flux continued to decline, a weak spin-down began. The pulses remained strong during the decay and the spin-up/flux correlation can be fit to the Ghosh and Lamb derivations for the spin-up caused by accretion from a thin, pressure-dominated disk, for a distance approximately 3.2 kpc and a surface magnetic field approximately 1.2 x 10(exp 13) Gauss. During the bright spin-up part of the outburst, the flux was subject to strong orbital modulation, peaking approximately 3 days after periastron of the eccentric 12.68 day orbit, while during the faint part, there was little orbital modulation. The X-ray spectra were typical of accreting pulsars, describable by a cut-off power-law, with an emission line near the 6.4 keV of Kappa(sub alpha) fluorescence from cool iron. The equivalent width of this emission did not share the orbital modulation, but nearly doubled during the faint phase, despite little change in the column density. The outburst could have been caused by an episode of increased wind from a Be star, such that a small accretion disk is formed during each periastron passage. A change in the wind and disk structure apparently occurred after 5 months such that the accretion rate was no longer modulated or the diffusion time was longer. The distance estimate implies the X-ray luminosity observed was between 1 X 10(exp 36) ergs s(exp -1) and 6 x 10(exp 34) ergs s(exp -1), with a small but definite correlation of the intrinsic power-law spectral index.
X-Ray and UV Orbital Phase Dependence in LMC X-3
NASA Technical Reports Server (NTRS)
Dolan, Joseph F.; Boyd, P. T.; Smale, A. P.
2001-01-01
The black-hole binary LMC X-3 is known to be variable on time scales of days to years. We investigated X-ray and ultraviolet variability in the system as a function of the 1.7 d binary orbit using a 6.4 day observation with the Rossi X-ray Timing Explorer (RXTE) in 1998 December. An abrupt 14 % flux decrease lasting nearly an entire orbit was followed by a return to previous flux levels. This behavior occurred twice at nearly the same binary phase, but is not present in consecutive orbits. When the X-ray flux is at lower intensity, a periodic amplitude modulation of 7 % is evident in data folded modulo the orbital period. The higher intensity data show weaker correlation with phase. This is the first report of X-ray variability at the orbital period of LMC X-3. Archival RXTE observations of LMC X-3 during a high flux state in 1996 December show similar phase dependence. An ultraviolet light curve obtained with the High Speed Photometer (HSP) on the Hubble Space Telescope (HST) shows a phase dependent variability consistent with that observed in the visible, ascribed to the ellipsoidal variation of the visible star. The X-ray spectrum of LMC X-3 is acceptably represented by a phenomenological disk black-body plus a power law. Changes in the spectrum of LMX X-3 during our observations are compatible with earlier observations during which variations in the 2-10 keV flux are closely correlated with the disk geometry spectral model parameter.
Development of a High Dynamic Range Pixel Array Detector for Synchrotrons and XFELs
NASA Astrophysics Data System (ADS)
Weiss, Joel Todd
Advances in synchrotron radiation light source technology have opened new lines of inquiry in material science, biology, and everything in between. However, x-ray detector capabilities must advance in concert with light source technology to fully realize experimental possibilities. X-ray free electron lasers (XFELs) place particularly large demands on the capabilities of detectors, and developments towards diffraction-limited storage ring sources also necessitate detectors capable of measuring very high flux [1-3]. The detector described herein builds on the Mixed Mode Pixel Array Detector (MM-PAD) framework, developed previously by our group to perform high dynamic range imaging, and the Adaptive Gain Integrating Pixel Detector (AGIPD) developed for the European XFEL by a collaboration between Deustsches Elektronen-Synchrotron (DESY), the Paul-Scherrer-Institute (PSI), the University of Hamburg, and the University of Bonn, led by Heinz Graafsma [4, 5]. The feasibility of combining adaptive gain with charge removal techniques to increase dynamic range in XFEL experiments is assessed by simulating XFEL scatter with a pulsed infrared laser. The strategy is incorporated into pixel prototypes which are evaluated with direct current injection to simulate very high incident x-ray flux. A fully functional 16x16 pixel hybrid integrating x-ray detector featuring several different pixel architectures based on the prototypes was developed. This dissertation describes its operation and characterization. To extend dynamic range, charge is removed from the integration node of the front-end amplifier without interrupting integration. The number of times this process occurs is recorded by a digital counter in the pixel. The parameter limiting full well is thereby shifted from the size of an integration capacitor to the depth of a digital counter. The result is similar to that achieved by counting pixel array detectors, but the integrators presented here are designed to tolerate a sustained flux >1011 x-rays/pixel/second. In addition, digitization of residual analog signals allows sensitivity for single x-rays or low flux signals. Pixel high flux linearity is evaluated by direct exposure to an unattenuated synchrotron source x-ray beam and flux measurements of more than 1010 9.52 keV x-rays/pixel/s are made. Detector sensitivity to small signals is evaluated and dominant sources of error are identified. These new pixels boast multiple orders of magnitude improvement in maximum sustained flux over the MM-PAD, which is capable of measuring a sustained flux in excess of 108 x-rays/pixel/second while maintaining sensitivity to smaller signals, down to single x-rays.
Towards shot-noise limited diffraction experiments with table-top femtosecond hard x-ray sources.
Holtz, Marcel; Hauf, Christoph; Weisshaupt, Jannick; Salvador, Antonio-Andres Hernandez; Woerner, Michael; Elsaesser, Thomas
2017-09-01
Table-top laser-driven hard x-ray sources with kilohertz repetition rates are an attractive alternative to large-scale accelerator-based systems and have found widespread applications in x-ray studies of ultrafast structural dynamics. Hard x-ray pulses of 100 fs duration have been generated at the Cu K α wavelength with a photon flux of up to 10 9 photons per pulse into the full solid angle, perfectly synchronized to the sub-100-fs optical pulses from the driving laser system. Based on spontaneous x-ray emission, such sources display a particular noise behavior which impacts the sensitivity of x-ray diffraction experiments. We present a detailed analysis of the photon statistics and temporal fluctuations of the x-ray flux, together with experimental strategies to optimize the sensitivity of optical pump/x-ray probe experiments. We demonstrate measurements close to the shot-noise limit of the x-ray source.
Towards shot-noise limited diffraction experiments with table-top femtosecond hard x-ray sources
Holtz, Marcel; Hauf, Christoph; Weisshaupt, Jannick; Salvador, Antonio-Andres Hernandez; Woerner, Michael; Elsaesser, Thomas
2017-01-01
Table-top laser-driven hard x-ray sources with kilohertz repetition rates are an attractive alternative to large-scale accelerator-based systems and have found widespread applications in x-ray studies of ultrafast structural dynamics. Hard x-ray pulses of 100 fs duration have been generated at the Cu Kα wavelength with a photon flux of up to 109 photons per pulse into the full solid angle, perfectly synchronized to the sub-100-fs optical pulses from the driving laser system. Based on spontaneous x-ray emission, such sources display a particular noise behavior which impacts the sensitivity of x-ray diffraction experiments. We present a detailed analysis of the photon statistics and temporal fluctuations of the x-ray flux, together with experimental strategies to optimize the sensitivity of optical pump/x-ray probe experiments. We demonstrate measurements close to the shot-noise limit of the x-ray source. PMID:28795079
The supersoft X-ray source in V5116 Sagittarii. I. The high resolution spectra
NASA Astrophysics Data System (ADS)
Sala, G.; Ness, J. U.; Hernanz, M.; Greiner, J.
2017-05-01
Context. Classical nova explosions occur on the surface of an accreting white dwarf in a binary system. After ejection of a fraction of the envelope and when the expanding shell becomes optically thin to X-rays, a bright source of supersoft X-rays arises, powered by residual H burning on the surface of the white dwarf. While the general picture of the nova event is well established, the details and balance of accretion and ejection processes in classical novae are still full of unknowns. The long-term balance of accreted matter is of special interest for massive accreting white dwarfs, which may be promising supernova Ia progenitor candidates. Nova V5116 Sgr 2005b was observed as a bright and variable supersoft X-ray source by XMM-Newton in March 2007, 610 days after outburst. The light curve showed a periodicity consistent with the orbital period. During one third of the orbit the luminosity was a factor of seven brighter than during the other two thirds of the orbital period. Aims: In the present work we aim to disentangle the X-ray spectral components of V5116 Sgr and their variability. Methods: We present the high resolution spectra obtained with XMM-Newton RGS and Chandra LETGS/HRC-S in March and August 2007. Results: The grating spectrum during the periods of high-flux shows a typical hot white dwarf atmosphere dominated by absorption lines of N VI and N VII. During the low-flux periods, the spectrum is dominated by an atmosphere with the same temperature as during the high-flux period, but with several emission features superimposed. Some of the emission lines are well modeled with an optically thin plasma in collisional equilibrium, rich in C and N, which also explains some excess in the spectra of the high-flux period. No velocity shifts are observed in the absorption lines, with an upper limit set by the spectral resolution of 500 km s-1, consistent with the expectation of a non-expanding atmosphere so late in the evolution of the post-nova. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA.
The X-ray Variability of Eta Car, 1996-2010
NASA Technical Reports Server (NTRS)
Corcoran, Michael F.; Hamaguchi, K.; Gull, T.; Owocki, S.; Pittard, J.
2010-01-01
X-ray photometry in the 2-10 keY band of the the supermassive binary star Eta Car has been measured with the Rossi X-ray Timing Explorer from 1996-2010. The ingress to X-ray minimum is consistent with a period of 2024 days. The 2009 X-ray minimum began on January 162009 and showed an unexpectedly abrupt recovery starting after 12 Feb 2009. The X-ray colors become harder about half-way through all three minima and continue until flux recovery. The behavior of the fluxes and X-ray colors for the most recent X-ray minimum, along with Chandra high resolution grating spectra at key phases suggests a significant change in the inner wind of Eta Car, a possible indicator that the star is entering a new unstable phase of mass loss.
NASA Astrophysics Data System (ADS)
Ebeling, H.; Edge, A. C.; Bohringer, H.; Allen, S. W.; Crawford, C. S.; Fabian, A. C.; Voges, W.; Huchra, J. P.
1998-12-01
We present a 90 per cent flux-complete sample of the 201 X-ray-brightest clusters of galaxies in the northern hemisphere (delta>=0 deg), at high Galactic latitudes (|b|>=20 deg), with measured redshifts z<=0.3 and fluxes higher than 4.4x10^-12 erg cm^-2 s^-1 in the 0.1-2.4 keV band. The sample, called the ROSAT Brightest Cluster Sample (BCS), is selected from ROSAT All-Sky Survey data and is the largest X-ray-selected cluster sample compiled to date. In addition to Abell clusters, which form the bulk of the sample, the BCS also contains the X-ray-brightest Zwicky clusters and other clusters selected from their X-ray properties alone. Effort has been made to ensure the highest possible completeness of the sample and the smallest possible contamination by non-cluster X-ray sources. X-ray fluxes are computed using an algorithm tailored for the detection and characterization of X-ray emission from galaxy clusters. These fluxes are accurate to better than 15 per cent (mean 1sigma error). We find the cumulative logN-logS distribution of clusters to follow a power law kappa S^alpha with alpha=1.31^+0.06_-0.03 (errors are the 10th and 90th percentiles) down to fluxes of 2x10^-12 erg cm^-2 s^-1, i.e. considerably below the BCS flux limit. Although our best-fitting slope disagrees formally with the canonical value of -1.5 for a Euclidean distribution, the BCS logN-logS distribution is consistent with a non-evolving cluster population if cosmological effects are taken into account. Our sample will allow us to examine large-scale structure in the northern hemisphere, determine the spatial cluster-cluster correlation function, investigate correlations between the X-ray and optical properties of the clusters, establish the X-ray luminosity function for galaxy clusters, and discuss the implications of the results for cluster evolution.
Frank, Viktoria; Chushkin, Yuriy; Fröhlich, Benjamin; Abuillan, Wasim; Rieger, Harden; Becker, Alexandra S; Yamamoto, Akihisa; Rossetti, Fernanda F; Kaufmann, Stefan; Lanzer, Michael; Zontone, Federico; Tanaka, Motomu
2017-10-26
Lensless, coherent X-ray diffraction microscopy has been drawing considerable attentions for tomographic imaging of whole human cells. In this study, we performed cryogenic coherent X-ray diffraction imaging of human erythrocytes with and without malaria infection. To shed light on structural features near the surface, "ghost cells" were prepared by the removal of cytoplasm. From two-dimensional images, we found that the surface of erythrocytes after 32 h of infection became much rougher compared to that of healthy, uninfected erythrocytes. The Gaussian roughness of an infected erythrocyte surface (69 nm) is about two times larger than that of an uninfected one (31 nm), reflecting the formation of protein knobs on infected erythrocyte surfaces. Three-dimensional tomography further enables to obtain images of the whole cells with no remarkable radiation damage, whose accuracy was estimated using phase retrieval transfer functions to be as good as 64 nm for uninfected and 80 nm for infected erythrocytes, respectively. Future improvements in phase retrieval algorithm, increase in degree of coherence, and higher flux in combination with complementary X-ray fluorescence are necessary to gain both structural and chemical details of mesoscopic architectures, such as cytoskeletons, membraneous structures, and protein complexes, in frozen hydrated human cells, especially under diseased states.
CORRELATION OF HARD X-RAY AND WHITE LIGHT EMISSION IN SOLAR FLARES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhar, Matej; Krucker, Säm; Battaglia, Marina
A statistical study of the correlation between hard X-ray and white light emission in solar flares is performed in order to search for a link between flare-accelerated electrons and white light formation. We analyze 43 flares spanning GOES classes M and X using observations from the Reuven Ramaty High Energy Solar Spectroscopic Imager and Helioseismic and Magnetic Imager. We calculate X-ray fluxes at 30 keV and white light fluxes at 6173 Å summed over the hard X-ray flare ribbons with an integration time of 45 s around the peak hard-X ray time. We find a good correlation between hard X-raymore » fluxes and excess white light fluxes, with a highest correlation coefficient of 0.68 for photons with energy of 30 keV. Assuming the thick target model, a similar correlation is found between the deposited power by flare-accelerated electrons and the white light fluxes. The correlation coefficient is found to be largest for energy deposition by electrons above ∼50 keV. At higher electron energies the correlation decreases gradually while a rapid decrease is seen if the energy provided by low-energy electrons is added. This suggests that flare-accelerated electrons of energy ∼50 keV are the main source for white light production.« less
The UV and X-ray activity of the M dwarfs within 10 pc of the Sun
NASA Astrophysics Data System (ADS)
Stelzer, B.; Marino, A.; Micela, G.; López-Santiago, J.; Liefke, C.
2013-05-01
M dwarfs are the most numerous stars in the Galaxy. They are characterized by strong magnetic activity. The ensuing high-energy emission is crucial for the evolution of their planets and the eventual presence of life on them. We systematically study the X-ray and ultraviolet emission of a subsample of M dwarfs from a recent proper-motion survey, selecting all M dwarfs within 10 pc to obtain a nearly volume-limited sample (˜90 per cent completeness). Archival ROSAT, XMM-Newton and GALEX data are combined with published spectroscopic studies of Hα emission and rotation to obtain a broad picture of stellar activity on M dwarfs. We make use of synthetic model spectra to determine the relative contributions of photospheric and chromospheric emission to the ultraviolet flux. We also analyse the same diagnostics for a comparison sample of young M dwarfs in the TW Hya association (˜10 Myr). We find that generally the emission in the GALEX bands is dominated by the chromosphere but the photospheric component is not negligible in early-M field dwarfs. The surface fluxes for the Hα, near-ultraviolet, far-ultraviolet and X-ray emission are connected via a power-law dependence. We present here for the first time such flux-flux relations involving broad-band ultraviolet emission for M dwarfs. Activity indices are defined as flux ratio between the activity diagnostic and the bolometric flux of the star in analogy to the Ca IIR'HK index. For given spectral type, these indices display a spread of 2-3 dex which is largest for M4 stars. Strikingly, at mid-M spectral types, the spread of rotation rates is also at its highest level. The mean activity index for fast rotators, likely representing the saturation level, decreases from X-rays over the FUV to the NUV band and Hα, i.e. the fractional radiation output increases with atmospheric height. The comparison to the ultraviolet and X-ray properties of TW Hya members shows a drop of nearly three orders of magnitude for the luminosity in these bands between ˜10 Myr and few Gyr age. A few young field dwarfs (<1 Gyr) in the 10-pc sample bridge the gap indicating that the drop in magnetic activity with age is a continuous process. The slope of the age decay is steeper for the X-ray than for the UV luminosity.
NASA Technical Reports Server (NTRS)
Madejski, Greg M.; Schwartz, Daniel A.
1988-01-01
Accurate, soft X-ray spectra of two BL Lac objects, OJ 287 and PKS 0735+178, are presented. The X-ray spectra are well described by a power-law model with a low-energy cutoff consistent with photoelectric absorption within the Galaxy. The best-fit values of the energy spectral index in the 0.2-4.0 keV band are 0.91 and 0.76 respectively. The X-ray flux from OJ 287 is variable by a ratio of three from low to high state; PKS 0735+178 shows no indication of X-ray variability. The X-ray emission in OJ 287 is interpreted to be due to the synchrotron process from a volume common with either a beamed radio component or a stationary optical component. In PKS 0735+178, where the X-ray emission is most likely due to the Compton process operating in one of the VLBI radio components. The synchrotron self-Compton process with modest kinematic Doppler factors predicts the measured X-ray flux from PKS 0735+178 and lower than the measured flux in OJ 287.
Burst Oscillations: Watching Neutron Stars Spin
NASA Technical Reports Server (NTRS)
Strohmayer, Tod
2010-01-01
It is now almost 15 years since the first detection of rotationally modulated emission from X-ray bursting neutron stars, "burst oscillations," This phenomenon enables us to see neutron stars spin, as the X-ray burst flux asymmetrically lights up the surface. It has enabled a new way to probe the neutron star spin frequency distribution, as well as to elucidate the multidimensional nature of nuclear burning on neutron stars. I will review our current observational understanding of the phenomenon, with an eye toward highlighting some of the interesting remaining puzzles, of which there is no shortage.
NASA Astrophysics Data System (ADS)
Loftus, K.; Saar, S. H.
2017-12-01
NOAA's Space Weather Prediction Center publishes the current definitive public soft X-ray flare catalog, derived using data from the X-ray Sensor (XRS) on the Geostationary Operational Environmental Satellites (GOES) series. However, this flare list has shortcomings for use in scientific analysis. Its detection algorithm has drawbacks (missing smaller flux events and poorly characterizing complex ones), and its event timing is imprecise (peak and end times are frequently marked incorrectly, and hence peak fluxes are underestimated). It also lacks explicit and regular spatial location data. We present a new database, "The Where of the Flare" catalog, which improves upon the precision of NOAA's current version, with more consistent and accurate spatial locations, timings, and peak fluxes. Our catalog also offers several new parameters per flare (e.g. background flux, integrated flux). We use data from the GOES Solar X-ray Imager (SXI) for spatial flare locating. Our detection algorithm is more sensitive to smaller flux events close to the background level and more precisely marks flare start/peak/end times so that integrated flux can be accurately calculated. It also decomposes complex events (with multiple overlapping flares) by constituent peaks. The catalog dates from the operation of the first SXI instrument in 2003 until the present. We give an overview of the detection algorithm's design, review the catalog's features, and discuss preliminary statistical analyses of light curve morphology, complex event decomposition, and integrated flux distribution. The Where of the Flare catalog will be useful in studying X-ray flare statistics and correlating X-ray flare properties with other observations. This work was supported by Contract #8100002705 from Lockheed-Martin to SAO in support of the science of NASA's IRIS mission.
The x ray reflectivity of the AXAF VETA-I optics
NASA Technical Reports Server (NTRS)
Kellogg, Edwin M.; Chartas, G.; Graessle, D.; Hughes, John P.; Vanspeybroeck, Leon; Zhao, Ping; Weisskopf, M. C.; Elsner, R. F.; Odell, S. L.
1992-01-01
The x-ray reflectivity of the VETA-I optic, the outermost shell of the AXAF x-ray telescope, with a bare Zerodur surface, is measured and compared with theoretical predictions. Measurements made at energies of 0.28, 0.9, 1.5, 2.1, and 2.3 keV are compared with predictions based on ray trace calculations. The data were obtained at the x-ray calibrations facility at Marshall Space Flight Center with an electron impact x-ray source located 528 m from the grazing incidence mirror. The source used photoelectric absorption filters to eliminate bremsstrahlung continuum. The mirror has a diameter of 1.2 m and a focal length of 10 m. The incident and reflected x-ray flux are detected using two proportional counters, one located in the incident beam of x-rays at the entrance aperture of the VETA-I, and the other in the focal plane behind an aperture of variable size. Results on the variation of the reflectivity with energy as well as the absolute value of the reflectivity are presented. We also present a synchrotron reflectivity measurement with high energy resolution over the range 0.26 to 1.8 keV on a flat Zerodur sample, done at NSLS. We present evidence for contamination of the flat by a thin layer of carbon on the surface, and the possibility of alteration of the surface composition of the VETA-I mirror perhaps by the polishing technique. The overall agreement between the measured and calculated effective area of VETA-I is between 2.6 percent and 10 percent, depending on which model for the surface composition is adopted. Measurements at individual energies deviate from the best-fitting calculation to 0.3 to 0.8 percent, averaging 0.6 percent at energies below the high energy cutoff of the mirror reflectivity, and are as high as 20.7 percent at the cutoff. We also discuss the approach to the final preflight calibration of the full AXAF flight mirror.
NASA Astrophysics Data System (ADS)
Swadling, G. F.; Ross, J. S.; Datte, P.; Moody, J.; Divol, L.; Jones, O.; Landen, O.
2016-11-01
An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause "blanking" (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated to be ˜8 J cm-2. This is significantly above the expected threshold for the onset of "blanking" effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate "blanking." Estimates suggest that an areal density of 1019 cm-2 Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.
Swadling, G F; Ross, J S; Datte, P; Moody, J; Divol, L; Jones, O; Landen, O
2016-11-01
An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause "blanking" (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated to be ∼8 J cm -2 . This is significantly above the expected threshold for the onset of "blanking" effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate "blanking." Estimates suggest that an areal density of 10 19 cm -2 Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.
Gamma-ray lines from neutron stars as probes of fundamental physics
NASA Technical Reports Server (NTRS)
Brecher, K.
1978-01-01
The detection of gamma-ray lines produced at the surface of neutron stars will serve to test both the strong and gravitational interactions under conditions unavailable in terrestrial laboratories. Observation of a single redshifted gamma-ray line, combined with an estimate of the mass of the star will serve as a strong constraint on allowable equations of state of matter at supernuclear densities. Detection of two redshifted lines arising from different physical processes at the neutron star surface can provide a test of the strong principle of equivalence. Expected fluxes of nuclear gamma-ray lines from accreting neutron stars were calculated, including threshold, radiative transfer and redshift effects. The most promising probes of neutron star structure are the deuterium formation line and the positron annihilation line. Detection of sharp redshifted gamma-ray lines from X-ray sources such as Cyg X-1 would argue strongly in favor of a neutron star rather than black hole identification for the object.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, Tetsuya T.; Miyoshi, Y., E-mail: tyamamot@stelab.nagoya-u.ac.jp
We found 217 X-ray brightening events in Earth's magnetosphere. These events occur in the high-energy band (0.5-4 Å) of the Geostationary Operational Environmental Satellite (GOES) X-ray light curves, although GOES X-ray light curves are frequently used as indices of solar flare magnitudes. We found that (1) brightening events are absent in the low-energy band (1-8 Å), unlike those associated with solar flares; and (2) the peak fluxes, durations, and onset times of these events depend on the magnetic local time (MLT). The events were detected in 2006, 2010, and 2011 at around 19-10 MLT, that is, from night to morning.more » They typically lasted for 2-3 hr. Their peak fluxes are less than 3 × 10{sup –8} W m{sup –2} in the 0.5-4 Å band and are maximized around 0-5 MLT. From these MLT dependencies, we constructed an MLT time profile of X-ray brightening events. Because 0.5-4 and 1-8 Å fluxes were observed and had the same order of magnitude when GOES 14 passed through Earth's shadow, we expected that X-ray brightening events in the 1-8 Å band are obscured by high-background X-ray fluxes coming from the Sun. We also found coincidence between X-ray brightening events and aurora substorms. In the majority of our events, the minimum geomagnetic field values (AL index) are below –400 nT. From these results and consideration of the GOES satellite orbit, we expect that these X-ray brightening events occur in the magnetosphere. We cannot, however, clarify the radiative process of the observed X-ray brightening events.« less
High-flux soft x-ray harmonic generation from ionization-shaped few-cycle laser pulses
Brahms, Christian; Gregory, Andrew; Tisch, John W. G.; Marangos, Jon P.
2018-01-01
Laser-driven high-harmonic generation provides the only demonstrated route to generating stable, tabletop attosecond x-ray pulses but has low flux compared to other x-ray technologies. We show that high-harmonic generation can produce higher photon energies and flux by using higher laser intensities than are typical, strongly ionizing the medium and creating plasma that reshapes the driving laser field. We obtain high harmonics capable of supporting attosecond pulses up to photon energies of 600 eV and a photon flux inside the water window (284 to 540 eV) 10 times higher than previous attosecond sources. We demonstrate that operating in this regime is key for attosecond pulse generation in the x-ray range and will become increasingly important as harmonic generation moves to fields that drive even longer wavelengths. PMID:29756033
Use of electron cyclotron resonance x-ray source for nondestructive testing application
NASA Astrophysics Data System (ADS)
Baskaran, R.; Selvakumaran, T. S.
2006-03-01
Electron cyclotron resonance (ECR) technique is being used for generating x rays in the low-energy region (<150keV). Recently, the source is used for the calibration of thermoluminescent dosimetry (TLD) badges. In order to qualify the ECR x-ray source for imaging application, the source should give uniform flux over the area under study. Lead collimation arrangement is made to get uniform flux. The flux profile is measured using a teletector at different distance from the port and uniform field region of 10×10cm2 has been marked at 20cm from the x-ray exit port. A digital-to-analog converter (DAC) circuit pack is used for examining the source performance. The required dose for nondestructive testing examination has been estimated using a hospital x-ray machine and it is found to be 0.05mSv. Our source experimental parameters are tuned and the DAC circuit pack was exposed for nearly 7min to get the required dose value. The ECR x-ray source operating parameters are argon pressure: 10-5Torr, microwave power: 350W, and coil current: 0A. The effective energy of the x-ray spectrum is nearly 40keV. The x-ray images obtained from ECR x-ray source and hospital medical radiography machine are compared. It is found that the image obtained from ECR x-ray source is suitable for NDT application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, C. F.; Zhao, T. Z.; Behm, K.
Here, bright and ultrashort duration x-ray pulses can be produced by through betatron oscillations of electrons during laser wakefield acceleration (LWFA). Our experimental measurements using the Hercules laser system demonstrate a dramatic increase in x-ray flux for interaction distances beyond the depletion/dephasing lengths, where the initial electron bunch injected into the first wake bucket catches up with the laser pulse front and the laser pulse depletes. A transition from an LWFA regime to a beam-driven plasma wakefield acceleration regime consequently occurs. The drive electron bunch is susceptible to the electron-hose instability and rapidly develops large amplitude oscillations in its tail,more » which leads to greatly enhanced x-ray radiation emission. We measure the x-ray flux as a function of acceleration length using a variable length gas cell. 3D particle-in-cell simulations using a Monte Carlo synchrotron x-ray emission algorithm elucidate the time-dependent variations in the radiation emission processes.« less
NASA Astrophysics Data System (ADS)
Dong, C. F.; Zhao, T. Z.; Behm, K.; Cummings, P. G.; Nees, J.; Maksimchuk, A.; Yanovsky, V.; Krushelnick, K.; Thomas, A. G. R.
2018-04-01
Bright and ultrashort duration x-ray pulses can be produced by through betatron oscillations of electrons during laser wakefield acceleration (LWFA). Our experimental measurements using the Hercules laser system demonstrate a dramatic increase in x-ray flux for interaction distances beyond the depletion/dephasing lengths, where the initial electron bunch injected into the first wake bucket catches up with the laser pulse front and the laser pulse depletes. A transition from an LWFA regime to a beam-driven plasma wakefield acceleration regime consequently occurs. The drive electron bunch is susceptible to the electron-hose instability and rapidly develops large amplitude oscillations in its tail, which leads to greatly enhanced x-ray radiation emission. We measure the x-ray flux as a function of acceleration length using a variable length gas cell. 3D particle-in-cell simulations using a Monte Carlo synchrotron x-ray emission algorithm elucidate the time-dependent variations in the radiation emission processes.
Dong, C. F.; Zhao, T. Z.; Behm, K.; ...
2018-04-24
Here, bright and ultrashort duration x-ray pulses can be produced by through betatron oscillations of electrons during laser wakefield acceleration (LWFA). Our experimental measurements using the Hercules laser system demonstrate a dramatic increase in x-ray flux for interaction distances beyond the depletion/dephasing lengths, where the initial electron bunch injected into the first wake bucket catches up with the laser pulse front and the laser pulse depletes. A transition from an LWFA regime to a beam-driven plasma wakefield acceleration regime consequently occurs. The drive electron bunch is susceptible to the electron-hose instability and rapidly develops large amplitude oscillations in its tail,more » which leads to greatly enhanced x-ray radiation emission. We measure the x-ray flux as a function of acceleration length using a variable length gas cell. 3D particle-in-cell simulations using a Monte Carlo synchrotron x-ray emission algorithm elucidate the time-dependent variations in the radiation emission processes.« less
The Ophiuchus cluster - A bright X-ray cluster of galaxies at low galactic latitude
NASA Technical Reports Server (NTRS)
Johnston, M. D.; Bradt, H. V.; Doxsey, R. E.; Marshall, F. E.; Schwartz, D. A.; Margon, B.
1981-01-01
The discovery of an extended X-ray source identified with a cluster of galaxies at low galactic latitude is reported. The source, designated the Ophiuchus cluster, was detected near 4U 1708-23 with the HEAO 1 Scanning Modulation Collimator, and identified with the cluster on the basis of extended X-ray size and positional coincidence on the ESO/SRC (J) plate of the region. An X-ray flux density in the region 2-10 keV of approximately 25 microJ was measured, along with an X-ray luminosity of 1.6 x 10 to the 45th ergs/sec and an X-ray core radius of approximately 4 arcmin (0.2 Mpc) for an assumed isothermal sphere surface brightness distribution. The X-ray spectrum in the range 2-10 keV obtained with the HEAO 1 A-2 instrument is well fit by a thermal bremsstrahlung model with kT = 8 keV and a 6.7-keV iron line of equivalent width 450 eV. The steep-spectrum radio source MSH 17-203 also appears to be associated with the cluster, which is the closest and brightest representative of the class of X-ray clusters with a dominant central galaxy.
How Extreme is TRAPPIST-1? A look into the planetary system’s extreme-UV radiation environment
NASA Astrophysics Data System (ADS)
Peacock, Sarah; Barman, Travis; Shkolnik, Evgenya L.
2018-01-01
The ultracool dwarf star TRAPPIST-1 hosts three earth-sized planets at orbital distances where water has the potential to exist in liquid form on the planets’ surface. Close-in exoplanets, such as these, become vulnerable to water loss as stellar XUV radiation heats and expands their upper atmospheres. Currently, little is known about the high-energy radiation environment around TRAPPIST-1. Recent efforts to quantify the XUV radiation rely on empirical relationships based on X-ray or Lyman alpha line observations and yield very different results. The scaling relations used between the X-ray and EUV emission result in high-energy irradiation of the planets 10-1000x greater than present day Earth, stripping atmospheres and oceans in 1 Gyr, while EUV estimated from Lyman alpha flux is much lower. Here we present upper-atmosphere PHOENIX models representing the minimum and maximum potential EUV stellar flux from TRAPPIST-1. We use GALEX FUV and NUV photometry for similar aged M stars to determine the UV flux extrema in an effort to better constrain the high-energy radiation environment around TRAPPIST-1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teets, William K.; Weintraub, David A.; Kastner, Joel H.
2012-11-20
EX Lupi is the prototype for a class of young, pre-main-sequence stars which are observed to undergo irregular, presumably accretion-generated, optical outbursts that result in a several magnitude rise of the optical flux. EX Lupi was observed to optically erupt in 2008 January, triggering Chandra ACIS Target of Opportunity observations shortly thereafter. We find very strong evidence that most of the X-ray emission in the first few months after the optical outburst is generated by accretion of circumstellar material onto the stellar photosphere. Specifically, we find a strong correlation between the decreasing optical and X-ray fluxes following the peak ofmore » the outburst in the optical, which suggests that these observed declines in both the optical and X-ray fluxes are the result of declining accretion rate. In addition, in our models of the X-ray spectrum, we find strong evidence for a {approx}0.4 keV plasma component, as expected for accretion shocks on low-mass, pre-main-sequence stars. From 2008 March through October, this cool plasma component appeared to fade as EX Lupi returned to its quiescent level in the optical, consistent with a decrease in the overall emission measure of accretion-shock-generated plasma. The overall small increase of the X-ray flux during the optical outburst of EX Lupi is similar to what was observed in previous X-ray observations of the 2005 optical outburst of the EX Lupi-type star V1118 Ori but contrasts with the large increase of the X-ray flux from the erupting young star V1647 Ori during its 2003 and 2008 optical outbursts.« less
NASA Technical Reports Server (NTRS)
Teets, William K.; Weintraub, David A.; Kastner, Joel H.; Grosso, Nicholas; Hamaguchi, Kenji; Richmond, Michael
2012-01-01
EX Lupi is the prototype for a class of young, pre-main-sequence stars which are observed to undergo irregular, presumably accretion-generated, optical outbursts that result in a several magnitude rise of the optical flux. EX Lupi was observed to optically erupt in 2008 January, triggering Chandra ACIS Target of Opportunity observations shortly thereafter. We find very strong evidence that most of the X-ray emission in the first few months after the optical outburst is generated by accretion of circumstellar material onto the stellar photosphere. Specifically, we find a strong correlation between the decreasing optical and X-ray fluxes following the peak of the outburst in the optical, which suggests that these observed declines in both the optical and X-ray fluxes are the result of declining accretion rate. In addition, in our models of the X-ray spectrum, we find strong evidence for an approx 0.4 keV plasma component, as expected for accretion shocks on low-mass, pre-main-sequence stars. From 2008 March through October, this cool plasma component appeared to fade as EX Lupi returned to its quiescent level in the optical, consistent with a decrease in the overall emission measure of accretion-shock-generated plasma. The overall small increase of the X-ray flux during the optical outburst of EX Lupi is similar to what was observed in previous X-ray observations of the 2005 optical outburst of the EX Lupi-type star V1118 Ori but contrasts with the large increase of the X-ray flux from the erupting young star V1647 Ori during its 2003 and 2008 optical outbursts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baerwald, P.; Guetta, D.
2013-08-20
In this work, we give an estimate of the neutrino flux that can be expected from the microquasar Cyg X-3. We calculate the muon neutrino flux expected here on Earth as well as the corresponding number of neutrino events in the IceCube telescope based on the so-called hypersoft X-ray state of Cyg X-3. If the average emission from Cyg X-3 over a period of 5 yr were as high as during the used X-ray state, a total of 0.8 events should be observed by the full IceCube telescope. We also show that this conclusion holds by a factor of amore » few when we consider the other measured X-ray states. Using the correlation of AGILE data on the flaring episodes in 2009 June and July to the hypersoft X-ray state, we calculate that the upper limits on the neutrino flux given by IceCube are starting to constrain the hadronic models, which have been introduced to interpret the high-energy emission detected by AGILE.« less
NASA Technical Reports Server (NTRS)
Hamaguchi, Kenji; Grosso, Nicolas; Kastner, Joel H.; Weintraub, David A.; Richmond, Michael
2009-01-01
The Suzaku X-ray satellite observed the young stellar object V1647 Ori on 2008 October 8 during the new mass accretion outburst reported in August 2008. During the 87 ksec observation with a net exposure of 40 ks, V1647 Ori showed a. high level of X-ray emission with a gradual decrease in flux by a factor of 5 and then displayed an abrupt flux increase by an order of magnitude. Such enhanced X-ray variability was also seen in XMM-Newton observations in 2004 and 2005 during the 2003-2005 outburst, but has rarely been observed for other young stellar objects. The spectrum clearly displays emission from Helium-like iron, which is a signature of hot plasma (kT approx.5 keV). It also shows a fluorescent iron Ka line with a remarkably large equivalent width of approx. 600 eV. Such a, large equivalent width indicates that a part of the incident X-ray emission that irradiates the circumstellar material and/or the stellar surface is hidden from our line of sight. XMM-Newton spectra during the 2003-2005 outburst did not show a strong fluorescent iron Ka line ; so that the structure of the circumstellar gas very close to the stellar core that absorbs and re-emits X-ray emission from the central object may have changed in between 2005 and 2008. This phenomenon may be related to changes in the infrared morphology of McNeil's nebula between 2004 and 2008.
Photospheric soft X-ray emission from hot DA white dwarfs
NASA Technical Reports Server (NTRS)
Wesemael, F.; Raymond, J. C.; Kahn, S. M.; Liebert, J.; Steiner, J. E.; Shipman, H. L.
1984-01-01
The Einstein Observatory's imaging proportional counter has detected 150-eV soft X-ray radiation from the four hot DA white dwarfs EG 187, Gr 288 and 289, and LB 1663. The observed pulse height spectra suggest that the emission is generated by hot photospheres whose T(eff) lie in the 30,000-60,000 K range. The IUE spacecraft UV spectra and H-beta line profiles for the four stars have been fitted, along with the X-ray fluxes, with a grid of hot, high gravity, homogeneous model atmospheres of mixed H-He composition. In all cases, the data require the presence of some X-ray opacity in the photosphere. Attention is given to the implications of this result in the context of white dwarf surface layer diffusion theories. Also noted are the limits imposed on the hot white dwarf population by the Einstein Medium Sensitivity Survey.
Recent X-ray Variability of eta Carinae: the Quick Road to Recovery
NASA Technical Reports Server (NTRS)
Corcoran, M. Francis; Hamaguchi, K.; Pittard, J. M.; Russell, C. M. P.; Owocki, S. P.; Parkin, E. R.; Okazaki, A.
2010-01-01
We report continued monitoring of the superluminous binary system eta Car by the Proportional Counter Array on the Rossi X-ray Timing Observatory (RXTE) through the 2009 X-ray minimum. The RXTE campaign shows that the minimum began on 2009 January 16, consistent with the phasings of the two previous minima, and overall, the temporal behavior of the X-ray emission was similar to that observed by RXTE in the previous two cycles. However, important differences did occur. The 2-10 keV X-ray flux and X-ray hardness decreased in the 2.5-year interval leading up to the 2009 minimum compared to the previous cycle. Most intriguingly, the 2009 X-ray minimum was about one month shorter than either of the previous two minima. During the egress from the 2009 minimum the X-ray hardness increased markedly as it had during egress from the previous two minima, although the maximum X-ray hardness achieved was less than the maximum observed after the two previous recoveries. We suggest that the cycle-to-cycle variations, especially the unexpectedly early recovery from the 2009 X-ray minimum, might have been the result of a decline in eta Car's wind momentum flux produced by a drop in eta Car's mass loss rate or wind terminal velocity (or some combination), though if so the change in wind momentum flux required to match the X-ray variation is surprisingly large.
Giant Radio Flare of Cygnus X-3 in September 2016
NASA Astrophysics Data System (ADS)
Trushkin, S. A.; Nizhelskij, N. A.; Tsybulev, P. G.; Zhekanis, G. V.
2017-06-01
In the long-term multi-frequency monitoring program of the microquasars with RATAN-600 we discovered the giant flare from X-ray binary Cyg X-3 on 13 September 2016. It happened after 2000 days of the 'quiescent state' of the source passed after the former giant flare (˜18 Jy) in March 2011. We have found that during this quiet period the hard X-ray flux (Swift/BAT, 15-50 keV) and radio flux (RATAN-600, 11 GHz) have been strongly anti-correlated. Both radio flares occurred after transitions of the microquasar to a 'hypersoft' X-ray state that occurred in February 2011 and in the end of August 2016. The giant flare was predicted by us in the first ATel (Trushkin et al. (2016)). Indeed after dramatic decrease of the hard X-ray Swift 15-50 keV flux and RATAN 4- 11 GHz fluxes (a 'quenched state') a small flare (0.7 Jy at 4-11 GHz) developed on MJD 57632 and then on MJD 57644.5 almost simultaneously with X-rays radio flux rose from 0.01 to 15 Jy at 4.6 GHz during few days. The rise of the flaring flux is well fitted by a exponential law that could be a initial phase of the relativistic electrons generation by internal shock waves in the jets. Initially spectra were optically thick at frequencies lower 2 GHz and optically thin at frequencies higher 8 GHz with typical spectral index about -0.5. After maximum of the flare radio fluxes at all frequencies faded out with exponential law.
Nearly simultaneous observations of chromospheric and coronal radiative losses of cool stars
NASA Technical Reports Server (NTRS)
Schrijver, C. J.; Dobson, A. K.; Radick, R. R.
1992-01-01
The flux-flux relationships of cool stars are studied on the basis of nearly simultaneous measurements of Ca II H+K, Mg II h+k, and soft X-ray fluxes. A linear relationship is derived between IUE Mg II h+k fluxes and Mount Wilson Ca II H+K fluxes which were obtained within 36 hr of each other for a sample of 26 F5-K3 main-sequence stars. Nearly simultaneous EXOSAT soft X-ray fluxes are compared with Ca II H+K fluxes for a sample of 20 dwarfs and gaints with spectral types ranging from F6 to K2, and 72 additional cool stars for which noncontemporaneous Ca II H+K and EINSTEIN soft X-ray fluxes are available are compared. It is confirmed that a nonradiatively heated chromosphere exists on even the least active main-sequence stars. This basal chromosphere is probably independent of stellar magnetic activity.
High flux, narrow bandwidth compton light sources via extended laser-electron interactions
Barty, V P
2015-01-13
New configurations of lasers and electron beams efficiently and robustly produce high flux beams of bright, tunable, polarized quasi-monoenergetic x-rays and gamma-rays via laser-Compton scattering. Specifically, the use of long-duration, pulsed lasers and closely-spaced, low-charge and low emittance bunches of electron beams increase the spectral flux of the Compton-scattered x-rays and gamma rays, increase efficiency of the laser-electron interaction and significantly reduce the overall complexity of Compton based light sources.
Rosat observations of FK comae berenices
NASA Technical Reports Server (NTRS)
Welty, Alan D.; Ramsey, Lawrence W.
1994-01-01
We obtained ROSAT PSPC observations of FK Com over a period of 24.4 h, or 0.42 rotation. During the observations the x-ray flux increased by a factor of at least 5 before declining toward its previous level. A single temperature Raymond-Smith model is adequate to model the low signal-to-noise ratio spectrum from each observation interval. Initially the spectrum was that of a 8.5 x 10(exp 6) K plasma, with L9sub x)=0.66 x 10(exp 31) erg s(exp -1). When the x-ray flux was greatest, the model plasma temperature rose to 2.5 x 10(exp 7) K, and L(sub x)=3.46 x 10(exp 31) ergs(exp -1). During the post-maximum decline in luminosity the plasma temperature was approximately 12 x 10(exp 6) K. We conclude that the increase of x-ray flux recorded by ROSAT was due to an x-ray flare with a 1.5 h decline time scale.
Limits on soft X-ray flux from distant emission regions
NASA Technical Reports Server (NTRS)
Burrows, D. N.; Mccammon, D.; Sanders, W. T.; Kraushaar, W. L.
1984-01-01
The all-sky soft X-ray data of McCammon et al. and the new N sub H survey (Stark et al. was used to place limits on the amount of the soft X-ray diffuse background that can originate beyond the neutral gas of the galactic disk. The X-ray data for two regions of the sky near the galactic poles are shown to be uncorrelated with 21 cm column densities. Most of the observed x-ray flux must therefore originate on the near side of the most distant neutral gas. The results from these regions are consistent with X-ray emission from a locally isotropic, unabsorbed source, but require large variations in the emission of the local region over large angular scales.
"Magnetar-like Emission from the Young Pulsar in Kes 75"
NASA Technical Reports Server (NTRS)
Gavrill, R.; Gonzalez, M.; Livingstone, M.; Gotthelf, E.; Kaspi, V.; Woods, P.
2008-01-01
Soft Gamma Repeaters (SGRs) and Anomalous X-ray Pulsars (AXPs) are thought to be magnetars - isolated neutron stars with ultra-high magnetic fields. These sources exhibit X-ray and gamma-ray bursts, and week to month-long flux enhancements, all too bright to be accounted for by their spindown luminosity. A mystery in neutron star astrophysics is why such emission has never been seen from rotation-powered pulsars with magnetar-like fields. Here we report the first detection of magnetar-like X-ray bursts from what has been long thought to be a rotation-powered pulsar, PSR 51846-0258, at the center of the supernova remnant Kes 75. PSR J1846-0258 has an inferred surface dipolar magnetic field of 4.9 X 1103 G, which is sixth highest among the > 1700 known rotation-powered pulsars, but less than those of the approximately 12 confirmed magnetars. The bursts coincided with a sudden flux increase and an unprecedented change in timing behavior, f m l y establishing PSR 51 846-0258 as a rotation-powered pulsar/magnetar transition object. These observations demonstrate that magnetar-like emission can be seen from sources with fields lower than the magnetars, and suggest that the intensity of magnetar-like activity in neutron stars depends on magnetic field strength in a more continuous way than previously thought.
Exceptional AGN long-timescale X-ray variability: The case of PHL 1092
NASA Astrophysics Data System (ADS)
Miniutti, G.; Brandt, W. N.; Schneider, D. P.; Fabian, A. C.; Gallo, L. C.; Boller, Th.
2012-12-01
PHL 1092 is a z ˜ 0.4 high-luminosity counterpart of the class of Narrow-Line Seyfert 1 galaxies. In 2008, PHL 1092 was found to be in a remarkably low X-ray flux state during an XMM-Newton observation. Its 2 keV flux density had dropped by a factor of ˜ 260 with respect to a previous observation performed 4.5 yr earlier. The UV flux remained almost constant, resulting in a significant steepening of the optical-to-X-ray slope αox from - 1.57 to - 2.51, making PHL 1092 one of the most extreme X-ray weak quasars with no observed broad absorption lines (BALs) in the UV. We have monitored the source since 2008 with three further XMM-Newton observations, producing a simultaneous UV and X-ray database spanning almost 10 yr in total in the activity of the source. We present here results from our monitoring campaign.
X-ray outbursts and high-state episodes of HETE J1900.1-2455
NASA Astrophysics Data System (ADS)
Šimon, Vojtěch
2018-06-01
HETE J1900.1-2455 is an ultra-compact low-mass X-ray binary that underwent a long-lasting (about 10 yr) active state. The analysis presented here of its activity uses the observations of RXTE/ASM, Swift/BAT, and ISS/MAXI for investigating this active state and the relation of time evolution of fluxes in the hard and medium X-ray bands. We show that the variations of the flux of HETE J1900.1-2455 on the time-scales of days and weeks have the form both of the outbursts and occasional high-state episodes. These outbursts are accompanied by the large changes of the hardness of the spectrum in the surroundings of the peaks of their soft X-ray flux. The very strong peaks of these outbursts occur in the soft X-ray band (2-4 keV) and are accompanied by a large depression in the 15-50 keV band flux. We interpret these events as an occasional occurrence of a thermal-viscous instability of the accretion disc that gives rise to the outbursts similar to those in the soft X-ray transients. On the other hand, the 2-4 and the 15-50 keV band fluxes are mutually correlated in the high-state episodes, much longer than the outbursts. In the interpretation, the episodes of the X-ray high states of HETE J1900.1-2455 during the active state bear some analogy with the standstills in the Z Cam type of cataclysmic variables.
NASA Astrophysics Data System (ADS)
Zimina, A.; Dardenne, K.; Denecke, M. A.; Grunwaldt, J. D.; Huttel, E.; Lichtenberg, H.; Mangold, S.; Pruessmann, T.; Rothe, J.; Steininger, R.; Vitova, T.
2016-05-01
A new hard X-ray beamline for CATalysis and ACTinide research has been built at the synchrotron radiation facility ANKA. The beamline design is dedicated to X-ray spectroscopy, including ‘flux hungry’ photon-in/photon-out and correlative techniques with a special infrastructure for radionuclide and catalysis research. The CAT-ACT beamline will help serve the growing need for high flux/hard X-ray spectroscopy in these communities. The design, the first spectra and the current status of this project are reported.
NASA Technical Reports Server (NTRS)
Swank, J.
2011-01-01
Most of the stellar end-state black holes, pulsars, and white dwarfs that are X-ray sources should have polarized X-ray fluxes. The degree will depend on the relative contributions of the unresolved structures. Fluxes from accretion disks and accretion disk corona may be polarized by scattering. Beams and jets may have contributions of polarized emission in strong magnetic fields. The Gravity and Extreme Magnetism Small Explorer (GEMS) will study the effects on polarization of strong gravity of black holes and strong magnetism of neutron stars. Some part of the flux from compact stars accreting from companion stars has been reflected from the companion, its wind, or accretion streams. Polarization of this component is a potential tool for studying the structure of the gas in these binary systems. Polarization due to scattering can also be present in X-ray emission from white dwarf binaries and binary normal stars such as RS CVn stars and colliding wind sources like Eta Car. Normal late type stars may have polarized flux from coronal flares. But X-ray polarization sensitivity is not at the level needed for single early type stars.
Dante soft x-ray power diagnostic for National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dewald, E.L.; Campbell, K.M.; Turner, R.E.
2004-10-01
Soft x-ray power diagnostics are essential for measuring the total x-ray flux, radiation temperature, conversion efficiency, and albedo that define the energetics in indirect and direct drive, as well as other types of high temperature laser plasma experiments. A key diagnostic for absolute radiation flux and radiation temperature in hohlraum experiments is the Dante broadband soft x-ray spectrometer. For the extended range of x-ray fluxes predicted for National Ignition Facility (NIF) compared to Omega or Nova hohlraums, the Dante spectrometer for NIF will include more high energy (<2 keV) edge filter band-pass channels and access to an increased dynamic rangemore » using grids and signal division. This will allow measurements of radiation fluxes of between 0.01 to 100 TW/sr, for hohlraum radiation temperatures between 50 eV and 1 keV. The NIF Dante will include a central four-channel imaging line-of-sight to verify the source size, alignment as well as checking for any radiation contributions from unconverted laser light plasmas.« less
NASA Technical Reports Server (NTRS)
Schmidt, M.; Hasinger, G.; Gunn, J.; Schneider, D.; Burg, R.; Giacconi, R.; Lehmann, I.; MacKenty, J.; Truemper, J.; Zamorani, G.
1998-01-01
The ROSAT Deep Survey includes a complete sample of 50 X-ray sources with fluxes in the 0.5 - 2 keV band larger than 5.5 x 10(exp -15)erg/sq cm/s in the Lockman field (Hasinger et al., Paper 1). We have obtained deep broad-band CCD images of the field and spectra of many optical objects near the positions of the X-ray sources. We define systematically the process leading to the optical identifications of the X-ray sources. For this purpose, we introduce five identification (ID) classes that characterize the process in each case. Among the 50 X-ray sources, we identify 39 AGNs, 3 groups of galaxies, 1 galaxy and 3 galactic stars. Four X-ray sources remain unidentified so far; two of these objects may have an unusually large ratio of X-ray to optical flux.
Spatial Fluctuations in the Diffuse Cosmic X-Ray Background. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Shafer, R. A.
1983-01-01
The bright, essentially isotropic, X-ray sky flux above 2 keV yields information on the universe at large distances. However, a definitive understanding of the origin of the flux is lacking. Some fraction of the total flux is contributed by active galactic nuclei and clusters of galaxies, but less than one percent of the total is contributed by the or approximately 3 keV band resolved sources, which is the band where the sky flux is directly observed. Parametric models of AGN (quasar) luminosity function evolution are examined. Most constraints are by the total sky flux. The acceptability of particular models hinges on assumptions currently not directly testable. The comparison with the Einstein Observatory 1 to keV low flux source counts is hampered by spectral uncertainties. A tentative measurement of a large scale dipole anisotropy is consistent with the velocity and direction derived from the dipole in the microwave background. The impact of the X-ray anisotropy limits for other scales on studies of large-scale structure in the universe is sketched. Models of the origins of the X-ray sky flux are reviewed, and future observational programs outlined.
Radial Distribution of X-Ray Point Sources Near the Galactic Center
NASA Astrophysics Data System (ADS)
Hong, Jae Sub; van den Berg, Maureen; Grindlay, Jonathan E.; Laycock, Silas
2009-11-01
We present the log N-log S and spatial distributions of X-ray point sources in seven Galactic bulge (GB) fields within 4° from the Galactic center (GC). We compare the properties of 1159 X-ray point sources discovered in our deep (100 ks) Chandra observations of three low extinction Window fields near the GC with the X-ray sources in the other GB fields centered around Sgr B2, Sgr C, the Arches Cluster, and Sgr A* using Chandra archival data. To reduce the systematic errors induced by the uncertain X-ray spectra of the sources coupled with field-and-distance-dependent extinction, we classify the X-ray sources using quantile analysis and estimate their fluxes accordingly. The result indicates that the GB X-ray population is highly concentrated at the center, more heavily than the stellar distribution models. It extends out to more than 1fdg4 from the GC, and the projected density follows an empirical radial relation inversely proportional to the offset from the GC. We also compare the total X-ray and infrared surface brightness using the Chandra and Spitzer observations of the regions. The radial distribution of the total infrared surface brightness from the 3.6 band μm images appears to resemble the radial distribution of the X-ray point sources better than that predicted by the stellar distribution models. Assuming a simple power-law model for the X-ray spectra, the closer to the GC the intrinsically harder the X-ray spectra appear, but adding an iron emission line at 6.7 keV in the model allows the spectra of the GB X-ray sources to be largely consistent across the region. This implies that the majority of these GB X-ray sources can be of the same or similar type. Their X-ray luminosity and spectral properties support the idea that the most likely candidate is magnetic cataclysmic variables (CVs), primarily intermediate polars (IPs). Their observed number density is also consistent with the majority being IPs, provided the relative CV to star density in the GB is not smaller than the value in the local solar neighborhood.
Insights on the X-ray weak quasar phenomenon from XMM-Newton monitoring of PHL 1092
NASA Astrophysics Data System (ADS)
Miniutti, Giovanni; Fabian, Andy; Gallo, Luigi; Brandt, Niel; Schneider, Donald
2012-09-01
PHL 1092 is a z~0.4 high-luminosity counterpart of the class of Narrow Line Seyfert 1 galaxies. In 2008, PHL 1092 was found to be in a remarkably low X-ray flux state during an XMM-Newton observation. Its 2 keV flux density had dropped by a factor of ~260 with respect to a previous observation performed 4.5 yr earlier. The UV flux remained almost constant, resulting in a significant steepening of the optical-to-X-ray slope alpha_ox from -1.57 to -2.51, making PHL 1092 one of the most extreme X-ray weak quasars with no observed broad absorption lines (BALs) in the UV. We have monitored the source since 2008 with XMM-Newton, producing a simultaneous UV and X-ray database spanning almost 10 yr in total in the activity of the source. We apply a series of physically motivated models to the data with the goal of explaining as self-consistently as possible the UV-to-X-ray spectral energy distribution (SED) and the extreme X-ray and alpha_ox variability. We discuss our results in the context of the class of non-BAL X-ray weak quasars and so-called PHL 1811 analogs.
A Systematic Search for Solar Wind Charge Exchange Emission from the Earth's Exosphere with Suzaku
NASA Astrophysics Data System (ADS)
Ishi, D.; Ishikawa, K.; Ezoe, Y.; Ohashi, T.; Miyoshi, Y.; Terada, N.
2017-10-01
We report on a systematic search of all the Suzaku archival data covering from 2005 August to 2015 May for geocoronal Solar Wind Charge eXchange (SWCX). In the vicinity of Earth, solar wind ions strip an electron from Earth's exospheric neutrals, emitting X-ray photons (e.g., Snowden et al. 1997). The X-ray flux of this geocoronal SWCX can change depending on solar wind condition and line of sight direction. Although it is an immediate background for all the X-ray astronomy observations, the X-ray flux prediction and the dependence on the observational conditions are not clear. Using the X-ray Imaging Spectrometer onboard Suzaku which has one of the highest sensitivities to the geocoronal SWCX, we searched the data for time variation of soft X-ray background. We then checked the solar wind proton flux taken with the WIND satellite and compared it with X-ray light curve. We also analyzed X-ray spectra and fitted them with a charge exchange emission line model constructed by Bodewits et al. (2007). Among 3055 data sets, 90 data showed SWCX features. The event rate seems to correlate with solar activity, while the distribution of SWCX events plotted in the solar magnetic coordinate system was relatively uniform.
Single-pulse x-ray diffraction using polycapillary optics for in situ dynamic diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maddox, B. R., E-mail: maddox3@llnl.gov; Akin, M. C., E-mail: akin1@llnl.gov; Teruya, A.
2016-08-15
Diagnostic use of single-pulse x-ray diffraction (XRD) at pulsed power facilities can be challenging due to factors such as the high flux and brightness requirements for diffraction and the geometric constraints of experimental platforms. By necessity, the x-ray source is usually positioned very close, within a few inches of the sample. On dynamic compression platforms, this puts the x-ray source in the debris field. We coupled x-ray polycapillary optics to a single-shot needle-and-washer x-ray diode source using a laser-based alignment scheme to obtain high-quality x-ray diffraction using a single 16 ns x-ray pulse with the source >1 m from themore » sample. The system was tested on a Mo sample in reflection geometry using 17 keV x-rays from a Mo anode. We also identified an anode conditioning effect that increased the x-ray intensity by 180%. Quantitative measurements of the x-ray focal spot produced by the polycapillary yielded a total x-ray flux on the sample of 3.3 ± 0.5 × 10{sup 7} molybdenum Kα photons.« less
X-ray Monitoring of eta Carinae: Variations on a Theme
NASA Technical Reports Server (NTRS)
Corcoran, M. F.
2004-01-01
We present monitoring observations by the Rossi X-ray Timing Explorer of the 2-10 keV X-ray emission from the supermassive star eta Carinae from 1996 through late 2003. These data cover more than one of the stellar variability cycles in temporal detail and include especially detailed monitoring through two X-ray minima. We compare the current X-ray minimum which began on June 29, 2003 to the previous X-ray minimum which began on December 15, 1997, and refine the X-ray period to 2024 days. We examine the variations in the X-ray spectrum with phase and with time, and also refine our understanding of the X-ray peaks which have a quasi-period of 84 days, with significant variation. Cycle-to-cycle differences are seen in the level of X-ray intensity and in the detailed variations of the X-ray flux on the rise to maximum just prior to the X-ray minimum. Despite these differences the similarities between the decline to minimum, the duration of the minimum, and correlated variations of the X-ray flux and other measures throughout the electromagnetic spectrum leave little doubt that that the X-ray variation is strictly periodic and produced by orbital motion as the wind from eta Carinae collides with the wind of an otherwise unseen companion.
The cosmic X-ray background-IRAS galaxy correlation and the local X-ray volume emissivity
NASA Technical Reports Server (NTRS)
Miyaji, Takamitsu; Lahav, Ofer; Jahoda, Keith; Boldt, Elihu
1994-01-01
We have cross-correlated the galaxies from the IRAS 2 Jy redshift survey sample and the 0.7 Jy projected sample with the all-sky cosmic X-ray background (CXB) map obtained from the High Energy Astronomy Observatory (HEAO) 1 A-2 experiment. We have detected a significant correlation signal between surface density of IRAS galaxies and the X-ray background intensity, with W(sub xg) = (mean value of ((delta I)(delta N)))/(mean value of I)(mean value of N)) of several times 10(exp -3). While this correlation signal has a significant implication for the contribution of the local universe to the hard (E greater than 2 keV) X-ray background, its interpretation is model-dependent. We have developed a formulation to model the cross-correlation between CXB surface brightness and galaxy counts. This includes the effects of source clustering and the X-ray-far-infrared luminosity correlation. Using an X-ray flux-limited sample of active galactic nuclei (AGNs), which has IRAS 60 micrometer measurements, we have estimated the contribution of the AGN component to the observed CXB-IRAS galaxy count correlations in order to see whether there is an excess component, i.e., contribution from low X-ray luminosity sources. We have applied both the analytical approach and Monte Carlo simulations for the estimations. Our estimate of the local X-ray volume emissivity in the 2-10 keV band is rho(sub x) approximately = (4.3 +/- 1.2) x 10(exp 38) h(sub 50) ergs/s/cu Mpc, consistent with the value expected from the luminosity function of AGNs alone. This sets a limit to the local volume emissivity from lower luminosity sources (e.g., star-forming galaxies, low-ionization nuclear emission-line regions (LINERs)) to rho(sub x) less than or approximately = 2 x 10(exp 38) h(sub 50) ergs/s/cu Mpc.
European Scientific Notes. Volume 33, Number 5,
1979-05-31
Towers I and III will also have six anemometers. Turbulence meas- urements will be carried out with three- dimensional sonic anemometers, a bivane and a...project management sions, and atmospheric infrasonic waves. of S. Ullaland of the Univ. of Bergen The auroral x-ray fluxes are measured in Norway. The...omnidirectional x-ray fluxes and electric fields, VLF emissions, and electric fields contains one uncol- and atmospheric infrasonic waves. limated x-ray
SphinX Measurements of the 2009 Solar Minimum X-Ray Emission
NASA Astrophysics Data System (ADS)
Sylwester, J.; Kowalinski, M.; Gburek, S.; Siarkowski, M.; Kuzin, S.; Farnik, F.; Reale, F.; Phillips, K. J. H.; Bakała, J.; Gryciuk, M.; Podgorski, P.; Sylwester, B.
2012-06-01
The SphinX X-ray spectrophotometer on the CORONAS-PHOTON spacecraft measured soft X-ray emission in the 1-15 keV energy range during the deep solar minimum of 2009 with a sensitivity much greater than GOES. Several intervals are identified when the X-ray flux was exceptionally low, and the flux and solar X-ray luminosity are estimated. Spectral fits to the emission at these times give temperatures of 1.7-1.9 MK and emission measures between 4 × 1047 cm-3 and 1.1 × 1048 cm-3. Comparing SphinX emission with that from the Hinode X-ray Telescope, we deduce that most of the emission is from general coronal structures rather than confined features like bright points. For one of 27 intervals of exceptionally low activity identified in the SphinX data, the Sun's X-ray luminosity in an energy range roughly extrapolated to that of ROSAT (0.1-2.4 keV) was less than most nearby K and M dwarfs.
Luminosity correlations in quasars
NASA Technical Reports Server (NTRS)
Chanan, G. A.
1983-01-01
Simulations are conducted with and without flux thresholds in an investigation of quasar luminosity correlations by means of a Monte Carlo analysis, for various model distributions of quasars in X-rays and optical luminosity. For the case where the X-ray photons are primary, an anticorrelation between X-ray-to-optical luminosity ratio and optical luminosity arises as a natural consequence which resembles observations. The low optical luminosities of X-ray selected quasars can be understood as a consequence of the same effect, and similar conclusions may hold if the X-ray and optical luminosities are determined independently by a third parameter, although they do not hold if the optical photons are primary. The importance of such considerations is demonstrated through a reanalysis of the published X-ray-to-optical flux ratios for the 3CR sample.
NASA Astrophysics Data System (ADS)
O'Steen, M. L.; Fedler, F.; Hauenstein, R. J.
1999-10-01
Reflection high-energy electron diffraction (RHEED) and laterally spatially resolved high resolution x-ray diffraction (HRXRD) have been used to identify and characterize rf plasma-assisted molecular-beam epitaxial growth factors which strongly affect the efficiency of In incorporation into InxGa1-xN epitaxial materials. HRXRD results for InxGa1-xN/GaN superlattices reveal a particularly strong dependence of average alloy composition x¯ upon both substrate growth temperature and incident V/III flux ratio. For fixed flux ratio, results reveal a strong thermally activated behavior, with over an order-of-magnitude decrease in x¯ with increasing growth temperature within the narrow range 590-670 °C. Within this same range, a further strong dependence upon V/III flux ratio is observed. The decreased In incorporation at elevated substrate temperatures is tentatively attributed to In surface-segregation and desorption processes. RHEED observations support this segregation/desorption interpretation to account for In loss.
AG Draconis observed with XMM-Newton
NASA Astrophysics Data System (ADS)
González-Riestra, R.; Viotti, R. F.; Iijima, T.; Rossi, C.; Montagni, F.; Bernabei, S.; Frasca, A.; Skopal, A.
2008-04-01
Context: AG Draconis is the brightest symbiotic star in X-rays and one of the prototypes of the supersoft X-ray source class. Aims: Study of the X-ray spectrum of this peculiar binary system, covering both quiescence and activity periods, is necessary to investigate the physics of the high temperature spectral component, and to unveil the origin of the outbursts. Methods: X-ray and UV observations with XMM-Newton during 2003-2005 and coordinated optical spectrophotometric monitoring, together with archive data, are employed to derive the behaviour of the high energy source of the AG Dra system during different orbital and activity phases. Results: During quiescence the X-ray emission is very soft and is close in strength to the previous ROSAT observations, with an estimated luminosity of 2600 L_⊙ and a radius of 0.06 R_⊙. We also found a 20% flux decrease in June 2005 at the time when a U-band minimum coincided with a V-band maximum. The X-ray flux in the XMM range largely decreases, and even vanishes near the optical light maxima (bursts). The UV fluxes measured with the XMM Optical Monitor is close to the fluxes observed with the IUE satellite. There is a marked anticorrelation between X-ray fluxes, and ultraviolet and optical fluxes, indicating that during outburst the WD is mostly emitting below 0.1 keV. Conversely, the large strengthening of the He II 4686 Å emission during the October 2003 and July 2005 light maxima indicates a marked increase of the far-UV brightness especially during the early stages of the outbursts. A high energy 0.5-0.6 keV X-ray excess seems to be present both in quiescence and outburst. Conclusions: This is the first time that X-ray spectra of AG Draconis during an active phase are obtained. These data have allowed us to investigate the change of the energy distribution. The anti-correlation between X-ray and optical/ultraviolet emission appears to be a general feature of AG Dra independent of the type and strength of the outburst. We suggest that during outburst the WD radiation increases, but is strongly absorbed by the circumstellar ionised gas. The newly-found high energy X-ray component is probably an indication of the presence of a shocked region produced by interaction of the WD wind with the circumbinary envelope fed by the red giant's wind.
First refraction contrast imaging via Laser-Compton Scattering X-ray at KEK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakaue, Kazuyuki; Aoki, Tatsuro; Washio, Masakazu
2012-07-31
Laser-Compton Scattering (LCS) is one of the most feasible techniques for high quality, high brightness, and compact X-ray source. High energy electron beam produced by accelerators scatters off the laser photon at a small spot. As a laser target, we have been developing a pulsedlaser storage cavity for increasing an X-ray flux. The X-ray flux was still inadequate that was 2.1 Multiplication-Sign 10{sup 5}/sec, however, we performed first refraction contrast imaging in order to evaluate the quality of LCS X-ray. Edge enhanced contrast imaging was achieved by changing the distance from sample to detector. The edge enhancement indicates that themore » LCS X-ray has small source size, i.e. high brightness. We believe that the result has demonstrated good feasibility of linac-based high brightness X-ray sources via laser-electron Compton scatterings.« less
A ROSAT Survey of Contact Binary Stars
NASA Astrophysics Data System (ADS)
Geske, M. T.; Gettel, S. J.; McKay, T. A.
2006-01-01
Contact binary stars are common variable stars that are all believed to emit relatively large fluxes of X-rays. In this work we combine a large new sample of contact binary stars derived from the ROTSE-I telescope with X-ray data from the ROSAT All Sky Survey (RASS) to estimate the X-ray volume emissivity of contact binary stars in the Galaxy. We obtained X-ray fluxes for 140 contact binaries from the RASS, as well as two additional stars observed by the XMM-Newton observatory. From these data we confirm the emission of X-rays from all contact binary systems, with typical luminosities of approximately 1.0×1030 ergs s-1. Combining calculated luminosities with an estimated contact binary space density, we find that contact binaries do not have strong enough X-ray emission to account for a significant portion of the Galactic X-ray background.
Soft x-ray properties of the binary millisecond pulsar J0437-4715
NASA Technical Reports Server (NTRS)
Halpern, Jules P.; Martin, Christopher; Marshall, Herman L.
1995-01-01
We obtained a light curve for the 5.75 ms pulsar J0437-4715 in the 65-120 A range with 0.5 ms time resolution using the Deep Survey instrument on the EUVE satellite. The single-peaked profile has a pulsed fraction of 0. 27 +/- 0.05, similar to the ROSAT data in the overlapping energy band. A combined analysis of the EUVE and ROSAT data is consistent with a power-law spectrum of energy index alpha = 1.2-1.5, intervening column density NH = (5-8) x 10(exp 19)/sq cm, and luminosity 5.0 x 10(exp 30) ergs/s in the 0.1-2. 4 keV band. We also use a bright EUVE/ROSAT source only 4.3 deg from the pulsar, the Seyfert galaxy RX J0437.4-4711 (= EUVE J0437-471 = lES 0435-472), to obtain an independent upper limit on the intervening absorption to the pulsar, NH less than 1.2 x 10(exp 20)/sq cm. Although a blackbody spectrum fails to fit the ROSAT data, two-component spectral fits to the combined EUVE/ROSAT data are used to limit the temperatures and surface areas of thermal emission that might make partial contributions to the flux. A hot polar cap of radius 50-600 m and temperature (1.0-3.3) x 10(exp 6) K could be present. Alternatively, a larger region with T = (4-12) x 10(exp 5) K and area less than 200 sq km, might contribute most of the EUVE and soft X-ray flux, but only if a hotter component were present as well. Any of these temperatures would require some mechanism(s) of surface reheating to be operating in this old pulsar, the most plausible being the impact of accelerated electrons and positrons onto the polar caps. The kinematically corrected spin-down power of PSR J0437-4715 is only 4 x 10(exp 33) ergs/s, which is an order of magnitude less than that of the lowest-luminosity gamma-ray pulsars Geminga and PSR B1055-52. The absence of high-energy gamma-rays from PSR J0437-4715 might signify an inefficient or dead outer gap accelerator, which in turn accounts for the lack of a more luminous reheated surface such as those intermediate-age gamma-ray pulsars may have.
Soft X-Ray Properties of the Binary Millisecond Pulsar J0437-4715
NASA Technical Reports Server (NTRS)
Halpern, Jules P.; Martin, Christopher; Marshall, Herman, L.; Oliversen, Ronald (Technical Monitor)
2001-01-01
We obtained a light curve for the 5.75 ms pulsar J0437-4715 in the 65-120 A range with 0.5 ms time resolution using the Deep Survey instrument on the EUVE satellite. The single-peaked profile has a pulsed fraction of 0.27 +/- 0.05, similar to the ROSAT data in the overlapping energy band. A combined analysis of the EUVE and ROSAT data is consistent with a power-law spectrum of energy index alpha = 1.2 - 1.5, intervening column density N(sub H) = (5 - 8) x 10(exp 19)/sq cm, and luminosity 5.0 x 10(exp 30) ergs/s in the 0.1 - 2.4 keV band. We also use a bright EUVE/ROSAT source only 4.2 min. from the pulsar, the Seyfert galaxy RX J0437.4-4711 (= EUVE J0437-471 = IES 0435-472), to obtain an independent upper limit on the intervening absorption to the pulsar, N(sub H) less than 1.2 x 10(exp 20)/sq cm. Although a blackbody spectrum fails to fit the ROSAT data, two-component spectral fits to the combined EUVE/ROSAT data are used to limit the temperatures and surface areas of thermal emission that might make partial contributions to the flux. A hot polar cap of radius 50 - 600 m and temperature (1.0 - 3.3) x 10(exp 6) K could be present. Alternatively, a larger region with T = (4 - 12) x 10(exp 5) K and area less than 200 sq km, might contribute most of the EUVE and soft X-ray flux, but only if a hotter component were present as well. Any of these temperatures would require some mechanism(s) of surface reheating to be operating in this old pulsar, the most plausible being the impact of accelerated electrons and positrons onto the polar caps. The kinematically corrected spin-down power of PSR J0437-4715 is only 4 x 10(exp 33) ergs/s, which is an order of magnitude less than that of the lowest-luminosity gamma-ray pulsars Geminga and PSR B1055-52. The absence of high-energy gamma-rays from PSR J0437-4715 might signify an inefficient or dead outer gap accelerator, which in turn accounts for the lack of a more luminous reheated surface such as those intermediate-age gamma-ray pulsars may have.
NASA Technical Reports Server (NTRS)
Mirabal, N.; Halpern, Jules P.; Eracleous, M.; Becker, R. H.; Oliversen, Ronald (Technical Monitor)
2001-01-01
Most of the EGRET high-energy gamma-ray sources remain unidentified. It is highly likely that many of these are fainter blazars or pulsars, but there may also be new types of sources to be discovered. We have focussed our search for novel gamma-ray sources on 3EG 1835+5918, which is the brightest and most accurately positioned of the unidentified EGRET sources at high Galactic latitude (l, b = 89 deg, 25 deg). In this talk, we will summarize the results of X-ray, radio, and optical surveys of this location. In particular, we have made complete optical identifications of all of the ROSAT and ASCA sources in this region to a flux limit of approximately 1 x 10(exp -13) ergs/sq cm s. All of the X-ray sources within the EGRET error circle are radio-quiet quasars or coronally emitting stars. Previous radio pulsar searches have been unsuccessful. We set an upper limit of 3.8 mJy (at 1.4 GHz) on any possible radio counterpart to 3EG 1835+5918. We also find several quasars and white dwarfs using optical color selection, and we have monitored the entire field for variable optical objects on short and long time scales. Since no blazar-like or pulsar-like candidate has been found as a result of these searches, we assert that 3EG 1835+5918 must be lacking in one or more of the physically essential attributes of those classes of gamma-ray emitters. In particular, its radio flux is at least two orders of magnitude fainter than any of the securely identified EGRET blazars, and its soft X-ray flux is at least 30 times fainter than that of Geminga and other EGRET pulsars. If it is an AGN it lacks the beamed radio emission of blazars. If it is an isolated neutron star, it lacks both the thermal X-rays from a cooling surface and the magnetospheric non-thermal X-ray emission that is characteristic of all EGRET pulsars. As such, it is more problematic physically than Geminga, which is an ordinary pulsar that only lacks radio emission. As a pulsar, 3EG 1835+5918 would have to be either older or more distant than Geminga, and probably an even more efficient gamma-ray engine.
X-ray Flaring Activity in HBL Source PKS 2155-304
NASA Astrophysics Data System (ADS)
Kapanadze, Bidzina
2013-08-01
We report an increasing X-ray flux through 0.3-10 keV band in the high-energy peaked BL Lacertae source PKS 2155-304 (z=0.117) which has been observed three times between 2013 July 25 and August 3 with the X-ray Telescope (XRT) onboard the Swift satellite. Using the data provided at the website http://www.swift.psu.edu/monitoring/ we have found that the object increased its 0.3-10 keV flux almost 3-times from 0.98+/-0.06 cts/s (July 25, ObsID=00030795114) to 2.85+/-0.08 cts/s corresponding to the observation performed July 31. The last pointing performed on August 3 (ObsID0008028002) shows even higher flux of 3.08+/-05 cts/s. No subhour flux variability at 99.9% confidence are detected from each observation, lasting 0.7 ks - 2.1 ks. On the basis of our recent study of long-term X-ray flux variability in this source (Kapanadze et al. 2013, submitted to the Monthly Notices of Royal Astronomical Society) we suggest that the similar situation was generally an indicator of the! onset of a longer-term flare with weeks-months duration. Therefore, further densely sampled observations with Swift-XRT and other X-ray instruments are highly recommended. Since X-ray flares in BL Lacertae sources are mostly followed by those in other spectral bands, we encourage intensive multiwavelength observations of PKS 2155-304.
Space and time resolved emission of hard X-rays from a plasma focus
NASA Technical Reports Server (NTRS)
Harries, W. L.; Lee, J. H.; Mcfarland, D. R.
1978-01-01
The X-ray emission from focused plasmas was observed with an image converter camera in the streak and framing modes. Use of a very high gain image intensifier enabled weak hard X-ray emission (above 25 keV) to be recorded. The use of an admixture of higher atomic number into the deuterium was avoided, and the role of the vapor from the anode surface could be discerned. The recorded bremsstrahlung emission seemed to be from a metallic plasma of copper released from the anode surface by bombardment from an intense electron beam. The intensity of emission was determined by the density of copper and the density and energy of the electron beam. The main emission recorded occurred several 100 nsec after the focus was over, which implies that the electric fields driving the beam existed for this duration. It is suggested that the fields were created by annihilation of magnetic flux for a time much longer than the focus duration.
Generation of plasma X-ray sources via high repetition rate femtosecond laser pulses
NASA Astrophysics Data System (ADS)
Baguckis, Artūras; Plukis, Artūras; Reklaitis, Jonas; Remeikis, Vidmantas; Giniūnas, Linas; Vengris, Mikas
2017-12-01
In this study, we present the development and characterization of Cu plasma X-ray source driven by 20 W average power high repetition rate femtosecond laser in ambient atmosphere environment. The peak Cu- Kα photon flux of 2.3 × 109 photons/s into full solid angle is demonstrated (with a process conversion efficiency of 10-7), using pulses with peak intensity of 4.65 × 1014 W/cm2. Such Cu- Kα flux is significantly larger than others found in comparable experiments, performed in air environment. The effects of resonance plasma absorption process, when optimized, are shown to increase measured flux by the factor of 2-3. The relationship between X-ray photon flux and plasma-driving pulse repetition rate is quasi-linear, suggesting that fluxes could further be increased to 1010 photons/s using even higher average powers of driving radiation. These results suggest that to fully utilize the potential of high repetition rate laser sources, novel target material delivery systems (for example, jet-based ones) are required. On the other hand, this study demonstrates that high energy lasers currently used for plasma X-ray sources can be conveniently and efficiently replaced by high average power and repetition rate laser radiation, as a way to increase the brightness of the generated X-rays.
Dowsett, Mark G; Adriaens, Annemie; Jones, Gareth K C; Poolton, Nigel; Fiddy, Steven; Nikitenko, Sergé
2008-11-15
XANES and EXAFS information is conventionally measured in transmission through the energy-dependent absorption of X-rays or by observing X-ray fluorescence, but secondary fluorescence processes, such as the emission of electrons and optical photons (e.g., 200-1000 nm), can also be used as a carrier of the XAS signatures, providing complementary information such as improved surface specificity. Where the near-visible photons have a shorter range in a material, the data will be more surface specific. Moreover, optical radiation may escape more readily than X-rays through liquid in an environmental cell. Here, we describe a first test of optically detected X-ray absorption spectroscopy (ODXAS) for monitoring electrochemical treatments on copper-based alloys, for example, heritage metals. Artificially made corrosion products deposited on a copper substrate were analyzed in air and in a 1% (w/v) sodium sesquicarbonate solution to simulate typical conservation methods for copper-based objects recovered from marine environments. The measurements were made on stations 7.1 and 9.2 MF (SRS Daresbury, UK) using the mobile luminescence end station (MoLES), supplemented by XAS measurements taken on DUBBLE (BM26 A) at the ESRF. The ODXAS spectra usually contain fine structure similar to that of XAS spectra measured in X-ray fluorescence. Importantly, for the compounds examined, the ODXAS is significantly more surface specific, and >98% characteristic of thin surface layers of 0.5-1.5-microm thickness in cases where X-ray measurements are dominated by the substrate. However, EXAFS and XANES from broadband optical measurements are superimposed on a high background due to other optical emission modes. This produces statistical fluctuations up to double what would be expected from normal counting statistics because the data retain the absolute statistical fluctuation in the original raw count, while losing up to 70% of their magnitude when background is removed. The problem may be solved in future through optical filtering to isolate the information-containing band, combined with the use of higher input X-ray fluxes available on third-generation light sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Shiyang; Song, Peng; Pei, Wenbing
2013-09-15
Based on the conjugate gradient method, a simple algorithm is presented for deconvolving the temporal response of photoelectric x-ray detectors (XRDs) to reconstruct the resolved time-dependent x-ray fluxes. With this algorithm, we have studied the impact of temporal response of XRD on the radiation diagnosis of hohlraum heated by a short intense laser pulse. It is found that the limiting temporal response of XRD not only postpones the rising edge and peak position of x-ray pulses but also smoothes the possible fluctuations of radiation fluxes. Without a proper consideration of the temporal response of XRD, the measured radiation flux canmore » be largely misinterpreted for radiation pulses of a hohlraum heated by short or shaped laser pulses.« less
Characterization of the Infrared/X-ray sub-second variability for the black-hole transient GX 339-4
NASA Astrophysics Data System (ADS)
Vincentelli, F. M.; Casella, P.; Maccarone, T. J.; Uttley, P.; Gandhi, P.; Belloni, T.; De Marco, B.; Russell, D. M.; Stella, L.; O'Brien, K.
2018-03-01
We present a detailed analysis of the X-ray/IR fast variability of the Black-Hole Transient GX 339-4 during its low/hard state in August 2008. Thanks to simultaneous high time-resolution observations made with the VLT and RXTE, we performed the first characterisation of the sub-second variability in the near-infrared band - and of its correlation with the X-rays - for a low-mass X-ray binary, using both time- and frequency-domain techniques. We found a power-law correlation between the X-ray and infrared fluxes when measured on timescales of 16 seconds, with a marginally variable slope, steeper than the one found on timescales of days at similar flux levels. We suggest the variable slope - if confirmed - could be due to the infrared flux being a non-constant combination of both optically thin and optically thick synchrotron emission from the jet, as a result of a variable self-absorption break. From cross spectral analysis we found an approximately constant infrared time lag of ≈0.1s, and a very high coherence of ˜90 per cent on timescales of tens of seconds, slowly decreasing toward higher frequencies. Finally, we report on the first detection of a linear rms-flux relation in the emission from a low-mass X-ray binary jet, on timescales where little correlation is found between the X-rays and the jet emission itself. This suggests that either the inflow variations and jet IR emission are coupled by a non-linear or time-variable transform, or that the IR rms-flux relation is not transferred from the inflow to the jet, but is an intrinsic property of emission processes in the jet.
Characterization of the infrared/X-ray subsecond variability for the black hole transient GX 339-4
NASA Astrophysics Data System (ADS)
Vincentelli, F. M.; Casella, P.; Maccarone, T. J.; Uttley, P.; Gandhi, P.; Belloni, T.; De Marco, B.; Russell, D. M.; Stella, L.; O'Brien, K.
2018-07-01
We present a detailed analysis of the X-ray/IR fast variability of the Black-Hole Transient GX 339-4 during its low/hard state in 2008 August. Thanks to simultaneous high time resolution observations made with the VLT and RXTE, we performed the first characterization of the subsecond variability in the near-infrared band - and of its correlation with the X-rays - for a low-mass X-ray binary, using both time- and frequency-domain techniques. We found a power-law correlation between the X-ray and infrared fluxes when measured on time-scales of 16 s, with a marginally variable slope, steeper than the one found on time-scales of days at similar flux levels. We suggest the variable slope - if confirmed - could be due to the infrared flux being a non-constant combination of both optically thin and optically thick synchrotron emission from the jet, as a result of a variable self-absorption break. From cross spectral analysis, we found an approximately constant infrared time lag of ≈0.1 s, and a very high coherence of ˜90 per cent on time-scales of tens of seconds, slowly decreasing towards higher frequencies. Finally, we report on the first detection of a linear rms-flux relation in the emission from a low-mass X-ray binary jet, on time-scales where little correlation is found between the X-rays and the jet emission itself. This suggests that either the inflow variations and jet IR emission are coupled by a non-linear or time-variable transform, or that the IR rms-flux relation is not transferred from the inflow to the jet, but is an intrinsic property of emission processes in the jet.
Obtaining high resolution XUV coronal images
NASA Technical Reports Server (NTRS)
Golub, L.; Spiller, E.
1992-01-01
Photographs obtained during three flights of an 11 inch diameter normal incident soft X-ray (wavelength 63.5 A) telescope are analyzed and the data are compared to the results expected from tests of the mirror surfaces. Multilayer coated X ray telescopes have the potential for 0.01 arcsec resolution, and there is optimism that such high quality mirrors can be built. Some of the factors which enter into the performance actually achieved in practice are as follows: quality of the mirror substrate, quality of the multilayer coating, and number of photons collected. Measurements of multilayer mirrors show that the actual performance achieved in the solar X-ray images demonstrates a reduction in the scattering compared to that calculated from the topography of the top surface of the multilayer. In the brief duration of a rocket flight, the resolution is also limited by counting statistics from the number of photons collected. At X-ray Ultraviolet (XUV) wavelengths from 171 to 335 A the photon flux should be greater than 10(exp 10) ph/sec, so that a resolution better than 0.1 arcsec might be achieved, if mirror quality does not provide a limit first. In a satellite, a large collecting area will be needed for the highest resolution.
Use of a priori spectral information in the measurement of x-ray flux with filtered diode arrays
Marrs, R. E.; Widmann, K.; Brown, G. V.; ...
2015-10-29
Filtered x-ray diode (XRD) arrays are often used to measure x-ray spectra vs. time from spectrally continuous x-ray sources such as hohlraums. A priori models of the incident x-ray spectrum enable a more accurate unfolding of the x-ray flux as compared to the standard technique of modifying a thermal Planckian with spectral peaks or dips at the response energy of each filtered XRD channel. A model x-ray spectrum consisting of a thermal Planckian, a Gaussian at higher energy, and (in some cases) a high energy background provides an excellent fit to XRD-array measurements of x-ray emission from laser heated hohlraums.more » If high-resolution measurements of part of the x-ray emission spectrum are available, that information can be included in the a priori model. In cases where the x-ray emission spectrum is not Planckian, candidate x-ray spectra can be allowed or excluded by fitting them to measured XRD voltages. Here, examples are presented from the filtered XRD arrays, named Dante, at the National Ignition Facility and the Laboratory for Laser Energetics.« less
THE IDENTIFICATION OF THE X-RAY COUNTERPART TO PSR J2021+4026
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weisskopf, Martin C.; Elsner, Ronald F.; O'Dell, Stephen L.
2011-12-10
We report the probable identification of the X-ray counterpart to the {gamma}-ray pulsar PSR J2021+4026 using imaging with the Chandra X-ray Observatory Advanced CCD Imaging Spectrometer and timing analysis with the Fermi satellite. Given the statistical and systematic errors, the positions determined by both satellites are coincident. The X-ray source position is R.A. 20{sup h}21{sup m}30.{sup s}733, decl. +40 Degree-Sign 26'46.''04 (J2000) with an estimated uncertainty of 1.''3 combined statistical and systematic error. Moreover, both the X-ray to {gamma}-ray and the X-ray to optical flux ratios are sensible assuming a neutron star origin for the X-ray flux. The X-ray sourcemore » has no cataloged infrared-to-visible counterpart and, through new observations, we set upper limits to its optical emission of i' > 23.0 mag and r' > 25.2 mag. The source exhibits an X-ray spectrum with most likely both a power law and a thermal component. We also report on the X-ray and visible light properties of the 43 other sources detected in our Chandra observation.« less
The Identification Of The X-Ray Counterpart To PSR J2021+4026
Weisskopf, Martin C.; Romani, Roger W.; Razzano, Massimiliano; ...
2011-11-23
We report the probable identification of the X-ray counterpart to the γ-ray pulsar PSR J2021+4026 using imaging with the Chandra X-ray Observatory ACIS and timing analysis with the Fermi satellite. Given the statistical and systematic errors, the positions determined by both satellites are coincident. The X-ray source position is R.A. 20h21m30s.733, Decl. +40°26'46.04" (J2000) with an estimated uncertainty of 1."3 combined statistical and systematic error. Moreover, both the X-ray to γ-ray and the X-ray to optical flux ratios are sensible assuming a neutron star origin for the X-ray flux. The X-ray source has no cataloged infrared-to-visible counterpart and, through newmore » observations, we set upper limits to its optical emission of i' > 23.0 mag and r' > 25.2 mag. The source exhibits an X-ray spectrum with most likely both a powerlaw and a thermal component. We also report on the X-ray and visible light properties of the 43 other sources detected in our Chandra observation.« less
A Compact X-Ray System for Macromolecular Crystallography. 5
NASA Technical Reports Server (NTRS)
Gubarev, Mikhail; Ciszak, Ewa; Ponomarev, Igor; Joy, Marshall
2000-01-01
We describe the design and performance of a high flux x-ray system for macromolecular crystallography that combines a microfocus x-ray generator (40 gm FWHM spot size at a power level of 46.5Watts) and a 5.5 mm focal distance polycapillary optic. The Cu K(sub alpha) X-ray flux produced by this optimized system is 7.0 times above the X-ray flux previously reported. The X-ray flux from the microfocus system is also 3.2 times higher than that produced by the rotating anode generator equipped with a long focal distance graded multilayer monochromator (Green optic; CMF24-48-Cu6) and 30% less than that produced by the rotating anode generator with the newest design of graded multilayer monochromator (Blue optic; CMF12-38-Cu6). Both rotating anode generators operate at a power level of 5000 Watts, dissipating more than 100 times the power of our microfocus x-ray system. Diffraction data collected from small test crystals are of high quality. For example, 42,540 reflections collected at ambient temperature from a lysozyme crystal yielded R(sub sym) 5.0% for the data extending to 1.7A, and 4.8% for the complete set of data to 1.85A. The amplitudes of the reflections were used to calculate difference electron density maps that revealed positions of structurally important ions and water molecules in the crystal of lysozyme using the phases calculated from the protein model.
Hadronic gamma-ray and neutrino emission from Cygnus X-3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahakyan, N.; Piano, G.; Tavani, M., E-mail: narek@icra.it
2014-01-01
Cygnus X-3 (Cyg X-3) is a remarkable Galactic microquasar (X-ray binary) emitting from radio to γ-ray energies. In this paper, we consider the hadronic model of emission of γ-rays above 100 MeV and their implications. We focus on the joint γ-ray and neutrino production resulting from proton-proton interactions within the binary system. We find that the required proton injection kinetic power, necessary to explain the γ-ray flux observed by AGILE and Fermi-LAT, is L{sub p} ∼ 10{sup 38} erg s{sup –1}, a value in agreement with the average bolometric luminosity of the hypersoft state (when Cyg X-3 was repeatedly observedmore » to produce transient γ-ray activity). If we assume an increase of the wind density at the superior conjunction, the asymmetric production of γ-rays along the orbit can reproduce the observed modulation. According to observational constraints and our modeling, a maximal flux of high-energy neutrinos would be produced for an initial proton distribution with a power-law index α = 2.4. The predicted neutrino flux is almost two orders of magnitude less than the two-month IceCube sensitivity at ∼1 TeV. If the protons are accelerated up to PeV energies, the predicted neutrino flux for a prolonged 'soft X-ray state' would be a factor of about three lower than the one-year IceCube sensitivity at ∼10 TeV. This study shows that, for a prolonged soft state (as observed in 2006) possibly related to γ-ray activity and a hard distribution of injected protons, Cyg X-3 might be close to being detectable by cubic-kilometer neutrino telescopes such as IceCube.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swadling, G. F.; Ross, J. S.; Datte, P.
An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause “blanking” (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimatedmore » to be ∼8 J cm{sup −2}. This is significantly above the expected threshold for the onset of “blanking” effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate “blanking.” Estimates suggest that an areal density of 10{sup 19} cm{sup −2} Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swadling, G. F.; Ross, J. S.; Datte, P.
An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Labs (LLNL). This diagnostic is designed to make measurements of hohlraum plasma parameters, such as the electron temperature and density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature hohlraums produce intense soft x-ray emission, which can cause “blanking” (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated tomore » be ~ 8 J cm -2. This is then significantly above the expected threshold for the onset of “blanking” effects. A novel Xenon Plasma X-ray Shield (XPXS) has been proposed to protect the blast shield from x-rays and mitigate “blanking”. Finally, these estimates suggest that an areal density of 10 19 cm -2 Xe atoms will be sufficient to absorb 99.5% the soft x-ray flux. Two potential designs for this shield are presented.« less
Swadling, G. F.; Ross, J. S.; Datte, P.; ...
2016-07-21
An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Labs (LLNL). This diagnostic is designed to make measurements of hohlraum plasma parameters, such as the electron temperature and density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature hohlraums produce intense soft x-ray emission, which can cause “blanking” (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated tomore » be ~ 8 J cm -2. This is then significantly above the expected threshold for the onset of “blanking” effects. A novel Xenon Plasma X-ray Shield (XPXS) has been proposed to protect the blast shield from x-rays and mitigate “blanking”. Finally, these estimates suggest that an areal density of 10 19 cm -2 Xe atoms will be sufficient to absorb 99.5% the soft x-ray flux. Two potential designs for this shield are presented.« less
Use of barium-strontium carbonatite for flux welding and surfacing of mining machines
NASA Astrophysics Data System (ADS)
Kryukov, R. E.; Kozyrev, N. A.; Usoltsev, A. A.
2017-09-01
The results of application of barium-strontium carbonatite for modifying and refining iron-carbon alloys, used for welding and surfacing in ore mining and smelting industry, are generalized. The technology of manufacturing a flux additive containing 70 % of barium-strontium carbonatite and 30 % of liquid glass is proposed. Several compositions of welding fluxes based on silicomanganese slag were tested. The flux additive was introduced in an amount of 1, 3, 5 %. Technological features of welding with the application of the examined fluxes are determined. X-ray spectral analysis of the chemical composition of examined fluxes, slag crusts and weld metal was carried out, as well as metallographic investigations of welded joints. The principal possibility of applying barium-strontium carbonatite as a refining and gas-protective additive for welding fluxes is shown. The use of barium-strontium carbonatite reduces the contamination of the weld seam with nonmetallic inclusions: non-deforming silicates, spot oxides and brittle silicates, and increases the desulfurizing capacity of welding fluxes.
Hard X-ray Emission along the Z Track in GX 17 + 2
NASA Astrophysics Data System (ADS)
Ding, G. Q.; Huang, C. P.
2015-09-01
Using the data from the Proportional Counter Array (PCA) and the High-Energy X-ray Timing Experiment (HEXTE) on board Rossi X-Ray Timing Explorer for Z source GX 17 + 2, we investigate the evolution of its PCA spectra and HEXTE spectra along a `Z' track on its hardness-intensity diagram. A hard X-ray tail is detected in the HEXTE spectra. The detected hard X-ray tails are discontinuously scattered throughout the Z track. The found hard X-ray tail hardens from the horizontal branch, through the normal branch, to the flaring branch in principle and it contributes ˜(20-50)% of the total flux in 20-200 keV. Our joint fitting results of the PCA + HEXTE spectra in 3-200 keV show that the portion of Comptonization in the Bulk-Motion Comptonization (BMC) model accounts for the hard X-ray tail, which indicates that the BMC process could be responsible for the detected hard tail. The temperature of the seed photons for BMC is ˜2.7 keV, implying that these seed photons might be emitted from the surface of the neutron star (NS) or the boundary layer between the NS and the disk and, therefore, this process could take place around the NS or in the boundary layer.
Did LMC X-3 Undergo a 'Her X-1-like' Anomalous Low State?
NASA Technical Reports Server (NTRS)
Boyd, Patricia t.
2008-01-01
The black hole X-ray binary LMC X-3 has been monitored by the Rossi X-ray Timing Explorer (RXTE) from its launch to the present by the All-Sky Monitor (ASM). This well-sampled light curve is supplemented by frequent pointed observations with the PCA and HEXTE instruments which provide improved sensitivity, time resolution and spectral information. The long-term X-ray luminosity of the system is strongly modulated on timescales of hundreds of days. The mean 2-10 kev X-ray flux varies by a factor of more than 100 during this long-term cycle. This variability has been attributed to the precession of a bright, tilted, and warped accretion disk---the mechanism also invoked to explain the 35-day super-orbital period in the X-ray binary pulsar system Her X-1. The ASM light curve displays a unique episode, starting in December 2003, during which LMC X-3 displayed a very low, nearly constant flux, for about 80 days. This is markedly different from the typical low-flux excursions in LMC X-3, which smoothly evolve toward and then away from a minimum flux on about a 10-day time scale. The character of the long-term variability, as measured by amplitude and characteristic time scale, is not the same after this long low state as it was before. Similar shifts in long-term period and amplitude are seen after the so-called "anomalous low states" in Her X-1, when the 35-day X-ray modulation ceases for an unpredictable length of time. These similar shifts in the long-term amplitude and timescale in the two systems suggests they share a similar mechanism which gives rise to the anomalous low states
X-ray observations of the burst source MXB 1728 - 34
NASA Technical Reports Server (NTRS)
Basinska, E. M.; Lewin, W. H. G.; Sztajno, M.; Cominsky, L. R.; Marshall, F. J.
1984-01-01
Where sufficient information has been obtained, attention is given to the maximum burst flux, integrated burst flux, spectral hardness, rise time, etc., of 96 X-ray bursts observed from March 1976 to March 1979. The integrated burst flux and the burst frequency appear to be correlated; the longer the burst interval, the larger the integrated burst flux, as expected on the basis of simple thermonuclear flash models. The maximum burst flux and the integrated burst flux are strongly correlated; for low flux levels their dependence is approximately linear, while for increasing values of the integrated burst flux, the flux at burst maximum saturates and reaches a plateau.
Search for X rays from the planet Jupiter.
NASA Technical Reports Server (NTRS)
Hurley, K. C.
1972-01-01
Actively collimated balloon-borne scintillation counters employing a special phoswich anticoincidence technique were flown a total of 5 times from Palestine, Texas. Jupiter was observed for a total of 133 min, and an upper limit to the flux of X rays present at the observation time is .016 X rays/sq cm sec in the energy range 30-100 keV. Three separate calculations are made to estimate the flux of Jovian X rays at the earth. These estimates range from .000000001 to .1 X rays/sq cm sec in the energy range 30-100 keV. It is concluded that, since there was no decametric emission at the time of the flight and there had been no significant solar activity for several days prior to the flight, no X rays were being generated at the time of the observation.
A SEARCH FOR X-RAY EMISSION FROM COLLIDING MAGNETOSPHERES IN YOUNG ECCENTRIC STELLAR BINARIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Getman, Konstantin V.; Broos, Patrick S.; Kóspál, Ágnes
Among young binary stars whose magnetospheres are expected to collide, only two systems have been observed near periastron in the X-ray band: the low-mass DQ Tau and the older and more massive HD 152404. Both exhibit elevated levels of X-ray emission at periastron. Our goal is to determine whether colliding magnetospheres in young high-eccentricity binaries commonly produce elevated average levels of X-ray activity. This work is based on Chandra snapshots of multiple periastron and non-periastron passages in four nearby young eccentric binaries (Parenago 523, RX J1622.7-2325 Nw, UZ Tau E, and HD 152404). We find that for the merged samplemore » of all four binaries the current X-ray data show an increasing average X-ray flux near periastron (at a ∼2.5-sigma level). Further comparison of these data with the X-ray properties of hundreds of young stars in the Orion Nebula Cluster, produced by the Chandra Orion Ultradeep Project (COUP), indicates that the X-ray emission from the merged sample of our binaries cannot be explained within the framework of the COUP-like X-ray activity. However, due to the inhomogeneities of the merged binary sample and the relatively low statistical significance of the detected flux increase, these findings are regarded as tentative only. More data are needed to prove that the flux increase is real and is related to the processes of colliding magnetospheres.« less
A Search For X-Ray Emission From Colliding Magnetospheres In Young Eccentric Stellar Binaries
NASA Astrophysics Data System (ADS)
Getman, Konstantin V.; Broos, Patrick S.; Kóspál, Ágnes; Salter, Demerese M.; Garmire, Gordon P.
2016-12-01
Among young binary stars whose magnetospheres are expected to collide, only two systems have been observed near periastron in the X-ray band: the low-mass DQ Tau and the older and more massive HD 152404. Both exhibit elevated levels of X-ray emission at periastron. Our goal is to determine whether colliding magnetospheres in young high-eccentricity binaries commonly produce elevated average levels of X-ray activity. This work is based on Chandra snapshots of multiple periastron and non-periastron passages in four nearby young eccentric binaries (Parenago 523, RX J1622.7-2325 Nw, UZ Tau E, and HD 152404). We find that for the merged sample of all four binaries the current X-ray data show an increasing average X-ray flux near periastron (at a ˜2.5-sigma level). Further comparison of these data with the X-ray properties of hundreds of young stars in the Orion Nebula Cluster, produced by the Chandra Orion Ultradeep Project (COUP), indicates that the X-ray emission from the merged sample of our binaries cannot be explained within the framework of the COUP-like X-ray activity. However, due to the inhomogeneities of the merged binary sample and the relatively low statistical significance of the detected flux increase, these findings are regarded as tentative only. More data are needed to prove that the flux increase is real and is related to the processes of colliding magnetospheres.
Long-term variability in bright hard X-ray sources: 5+ years of BATSE data
NASA Technical Reports Server (NTRS)
Robinson, C. R.; Harmon, B. A.; McCollough, M. L.; Paciesas, W. S.; Sahi, M.; Scott, D. M.; Wilson, C. A.; Zhang, S. N.; Deal, K. J.
1997-01-01
The operation of the Compton Gamma Ray Observatory (CGRO)/burst and transient source experiment (BATSE) continues to provide data for inclusion into a data base for the analysis of long term variability in bright, hard X-ray sources. The all-sky capability of BATSE provides up to 30 flux measurements/day for each source. The long baseline and the various rising and setting occultation flux measurements allow searches for periodic and quasi-periodic signals with periods of between several hours to hundreds of days to be conducted. The preliminary results from an analysis of the hard X-ray variability in 24 of the brightest BATSE sources are presented. Power density spectra are computed for each source and profiles are presented of the hard X-ray orbital modulations in some X-ray binaries, together with amplitude modulations and variations in outburst durations and intensities in recurrent X-ray transients.
X-ray-bright optically faint active galactic nuclei in the Subaru Hyper Suprime-Cam wide survey
NASA Astrophysics Data System (ADS)
Terashima, Yuichi; Suganuma, Makoto; Akiyama, Masayuki; Greene, Jenny E.; Kawaguchi, Toshihiro; Iwasawa, Kazushi; Nagao, Tohru; Noda, Hirofumi; Toba, Yoshiki; Ueda, Yoshihiro; Yamashita, Takuji
2018-01-01
We construct a sample of X-ray-bright optically faint active galactic nuclei by combining Subaru Hyper Suprime-Cam, XMM-Newton, and infrared source catalogs. Fifty-three X-ray sources satisfying i-band magnitude fainter than 23.5 mag and X-ray counts with the EPIC-PN detector larger than 70 are selected from 9.1 deg2, and their spectral energy distributions (SEDs) and X-ray spectra are analyzed. Forty-four objects with an X-ray to i-band flux ratio FX/Fi > 10 are classified as extreme X-ray-to-optical flux sources. Spectral energy distributions of 48 among 53 are represented by templates of type 2 AGNs or star-forming galaxies and show the optical signature of stellar emission from host galaxies in the source rest frame. Infrared/optical SEDs indicate a significant contribution of emission from dust to the infrared fluxes, and that the central AGN is dust obscured. The photometric redshifts determined from the SEDs are in the range of 0.6-2.5. The X-ray spectra are fitted by an absorbed power-law model, and the intrinsic absorption column densities are modest (best-fit log NH = 20.5-23.5 cm-2 in most cases). The absorption-corrected X-ray luminosities are in the range of 6 × 1042-2 × 1045 erg s-1. Twenty objects are classified as type 2 quasars based on X-ray luminsosity and NH. The optical faintness is explained by a combination of redshifts (mostly z > 1.0), strong dust extinction, and in part a large ratio of dust/gas.
X ray emission from Wolf-Rayet stars with recurrent dust formation
NASA Technical Reports Server (NTRS)
Rawley, Gayle L.
1993-01-01
We were granted a ROSAT observation of the Wolf-Rayet star WR 137 (equals HD 192641) to test a proposed mechanism for producing the infrared variability reported by Williams et al. (1987). These studies showed one clear infrared outburst preceded by what may be the dimming of a previous outburst. The recurrent dust formation model was put forward by Williams et al. (1990) to account for similar variability seen in WR 140, which varies in both the infrared and X-ray bands. The detected X-ray flux from WR 140 was observed to decrease from its normally high (for Wolf-Rayet stars) level as the infrared flux increased. Observation of two apparently-periodic infrared outbursts led to the hypothesis that WR 140 had an O star companion in an eccentric orbit, and that the increase in infrared flux came from a dust formation episode triggered by the compression of the O star and Wolf-Rayet star winds. The absorption of the X-rays by the increased material explained the decrease in flux at those wavelengths. If the infrared variability in WR 137 were caused by a similar interaction of the Wolf-Rayet star with a companion, we might expect that WR 137 would show corresponding X-ray variability and an X-ray luminosity somewhat higher than typical WC stars, as well as a phase-dependent non-thermal X-ray spectrum. Our goals in this study were to obtain luminosity estimates from our counting rates for comparison with previous observations of WR 137 and other WC class stars, especially WR 140; to compare the luminosity with the IR lightcurve; and to characterize the spectral shape of the X-ray emission, including the column density.
Venus Measurements by the MESSENGER Gamma-Ray and X-Ray Spectrometers
NASA Astrophysics Data System (ADS)
Rhodes, E. A.; Starr, R. D.; Goldsten, J. O.; Schlemm, C. E.; Boynton, W. V.
2007-12-01
The Gamma-Ray Spectrometer (GRS), which is a part of the Gamma-Ray and Neutron Spectrometer Instrument, and the X-Ray Spectrometer (XRS) on the MESSENGER spacecraft made calibration measurements during the Venus flyby on June 5, 2007. The purpose of these instruments is to determine elemental abundances on the surface of Mercury. The GRS measures gamma-rays emitted from element interactions with cosmic rays impinging on the surface, while the XRS measures X-ray emissions induced on the surface by the incident solar flux. The GRS sensor is a high-resolution high-purity Ge detector cooled by a Stirling cryocooler, surrounded by a borated-plastic anticoincidence shield. The GRS is sensitive to gamma-rays up to ~10 MeV and can identify most major elements, sampling down to depths of about ten centimeters. Only the shield was powered on for this flyby in order to conserve cooler lifetime. Gamma-rays were observed coming from Venus as well as from the spacecraft. Although the Venus gamma-rays originate from its thick atmosphere rather than its surface, the GRS data from this encounter will provide useful calibration data from a source of known composition. In particular, the data will be useful for determining GRS sensitivity and pointing options for the Mercury flybys, the first of which will be in January 2008. The X-ray spectrum of a planetary surface is dominated by a combination of the fluorescence and scattered solar X-rays. The most prominent fluorescent lines are the Kα lines from the major elements Mg, Al, Si, S, Ca, Ti, and Fe (1-10 keV). The sampling depth is less than 100 u m. The XRS is similar in design to experiments flown on Apollo 15 and 16 and the NEAR-Shoemaker mission. Three large-area gas-proportional counters view the planet, and a small Si-PIN detector mounted on the spacecraft sunshade monitors the Sun. The energy resolution of the gas proportional counters (~850 eV at 5.9 keV) is sufficient to resolve the X-ray lines above 2 keV, but Al and Mg filters on two of the three gas counters are required to differentially separate the lower energy X-ray lines from Al, Mg, and Si. A Be-Cu honeycomb collimator provides a 12° field of view, which is smaller than the planet at apoapsis and reduces the X-ray sky background. The Venus atmosphere is almost entirely composed of carbon and oxygen that fluoresce below the energy range of the XRS, but the flyby still provided valuable experience in planning for the upcoming Mercury flybys.
Observations of blazars with ASCA
NASA Technical Reports Server (NTRS)
Makino, F.; Edelson, R.; Fujimoto, R.; Kii, T.; Idesawa, E.; Makishima, K.; Takahashi, T.; Sasaki, K.; Kamae, T.; Kubo, H.;
1996-01-01
The Advanced Satellite for Cosmology and Astrophysics (ASCA) observations of 3C 279, Mkn 421, PKS 2155-304, BL Lac 0716+714 and OJ 287 blazars are presented. Blazars are a class of active galactic nuclei characterized by high variability, high polarization, flat radio spectrum and featureless spectrum. The X-ray spectra and flux variations of blazars are discussed. The inverse correlation between X-ray flux and index, soft lag, the convex curvature of the spectrum, flat gamma-ray and/or X-ray spectra, fast variability and featureless spectrum are common characteristics of blazars.
SEARCHES FOR MILLISECOND PULSAR CANDIDATES AMONG THE UNIDENTIFIED FERMI OBJECTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hui, C. Y.; Park, S. M.; Hu, C. P.
2015-08-10
Here we report the results of searching millisecond pulsar (MSP) candidates from the Fermi LAT second source catalog (2FGL). Seven unassociated γ-ray sources in this catalog are identified as promising MSP candidates based on their γ-ray properties. Through the X-ray analysis, we have detected possible X-ray counterparts, localized to an arcsecond accuracy. We have systematically estimated their X-ray fluxes and compared them with the corresponding γ-ray fluxes. The X-ray to γ-ray flux ratios for 2FGL J1653.6-0159 and 2FGL J1946.4-5402 are comparable with the typical value for pulsars. For 2FGL J1625.2-0020, 2FGL J1653.6-0159, and 2FGL J1946.4-5402, their candidate X-ray counterparts aremore » bright enough to perform a detailed spectral and temporal analysis to discriminate their thermal/non-thermal nature and search for the periodic signal. We have also searched for possible optical/IR counterparts at the X-ray positions. For the optical/IR source coincident with the brightest X-ray object associated with 2FGL J1120.0-2204, its spectral energy distribution is comparable with a late-type star. Evidence for the variability has also been found by examining its optical light curve. All the aforementioned 2FGL sources resemble a pulsar in one or more aspects, making them promising targets for follow-up investigations.« less
NASA Astrophysics Data System (ADS)
Singh, K. K.; Sahayanathan, S.; Sinha, A.; Bhatt, N.; Tickoo, A. K.; Yadav, K. K.; Rannot, R. C.; Chandra, P.; Venugopal, K.; Marandi, P.; Kumar, N.; Goyal, H. C.; Goyal, A.; Agarwal, N. K.; Kothari, M.; Chanchalani, K.; Dhar, V. K.; Chouhan, N.; Bhat, C. K.; Koul, M. K.; Koul, R.
2017-07-01
Strong X-ray and γ-ray flares have been detected in February 2010 from the high synchrotron peaked blazar Mrk 421 (z = 0.031). With the motivation of understanding the physics involved in this flaring activity, we study the variability of the source in X-ray and γ-ray energy bands during the period February 10-23, 2010 (MJD 55237-55250). We use near simultaneous X-ray data collected by MAXI, Swift-XRT and γ-ray data collected by Fermi-LAT and TACTIC along with the optical V-band observations by SPOLat Steward Observatory. We observe that the variation in the one day averaged flux from the source during the flare is characterized by fast rise and slow decay. Besides, the TeV γ-ray flux shows a strong correlation with the X-ray flux, suggesting the former to be an outcome of synchrotron self Compton emission process. To model the observed X-ray and γ-ray light curves, we numerically solve the kinetic equation describing the evolution of particle distribution in the emission region. The injection of particle distribution into the emission region, from the putative acceleration region, is assumed to be a time dependent power law. The synchrotron and synchrotron self Compton emission from the evolving particle distribution in the emission region are used to reproduce the X-ray and γ-ray flares successfully. Our study suggests that the flaring activity of Mrk 421 can be an outcome of an efficient acceleration process associated with the increase in underlying non-thermal particle distribution.
Two-axis sagittal focusing monochromator
Haas, Edwin G; Stelmach, Christopher; Zhong, Zhong
2014-05-13
An x-ray focusing device and method for adjustably focusing x-rays in two orthogonal directions simultaneously. The device and method can be operated remotely using two pairs of orthogonal benders mounted on a rigid, open frame such that x-rays may pass through the opening in the frame. The added x-ray flux allows significantly higher brightness from the same x-ray source.
Cyclotron emission near stellar mass black holes
NASA Technical Reports Server (NTRS)
Apparao, K. M. V.
1984-01-01
Cyclotron emission in the inner regions of an accretion disk around a matter accreting black hole can be appreciable. In the case of the X-ray source Cyg X-1, cyclotron emission may provide the soft photons needed for 'Comptonization' to produce high energy X-rays. The inverse correlation between the fluxes of high energy and low energy X-rays during the 'high' and 'low' states of Cyg X-1, may be understood as a result of the variation of the rate of accretion and the Compton scattering of the cyclotron photons. In the case of the X-ray source GX 339-4, the observed optical flux during the high states does not seem to be due to cyclotron emission, but probably due to reprocessing of high energy X-rays by the outer regions of the disk.
MAXI/GSC detection of a rapid X-ray brightening from Mrk 421
NASA Astrophysics Data System (ADS)
Tachibana, Y.; Ueda, Y.; Negoro, H.; Ueno, S.; Tomida, H.; Ishikawa, M.; Sugawara, Y.; Isobe, N.; Shimomukai, R.; Mihara, T.; Sugizaki, M.; Nakahira, S.; Iwakiri, W.; Shidatsu, M.; Yatabe, F.; Takao, Y.; Matsuoka, M.; Kawai, N.; Sugita, S.; Yoshii, T.; Harita, S.; Muraki, Y.; Morita, K.; Yoshida, A.; Sakamoto, T.; Serino, M.; Kawakubo, Y.; Kitaoka, Y.; Hashimoto, T.; Tsunemi, H.; Yoneyama, T.; Nakajima, M.; Kawase, T.; Sakamaki, A.; Hori, T.; Tanimoto, A.; Oda, S.; Morita, T.; Yamada, S.; Tsuboi, Y.; Nakamura, Y.; Sasaki, R.; Kawai, H.; Sato, T.; Yamauchi, M.; Hanyu, C.; Hidaka, K.; Kawamuro, T.; Yamaoka, K.
2018-01-01
MAXI/GSC is detecting a bright X-ray flare from the BL Lac object Mrk 421. The MAXI daily fluxes for the last 5 days are following: MJD & emsp; 2-4 keV (mCrab) & emsp; 4-10 keV (mCrab) 58131 & emsp; 53 +- 5 & emsp; 52 +- 6 58132 & emsp; 34 +- 5 & emsp; 29 +- 5 58133 & emsp; 56 +- 5 & emsp; 53 +- 6 58134 & emsp; 91 +- 7 & emsp; 98 +- 7 58135 & emsp; 106 +- 8 & emsp; 124 +- 9 The current flux is comparable with the peak daily flux in the brightest X-ray flare from this object ever since the beginning of the MAXI observation (156 +- 11 mCrab in 1.5-10 keV on 2010 February 16, ATEL #2444; Isobe et al. 2010 PASJ 52, L55), and the X-ray brightening is still ongoing.
Ground-based observation of emission lines from the corona of a red-dwarf star.
Schmitt, J H; Wichmann, R
2001-08-02
All 'solar-like' stars are surrounded by coronae, which contain magnetically confined plasma at temperatures above 106 K. (Until now, only the Sun's corona could be observed in the optical-as a shimmering envelope during a total solar eclipse.) As the underlying stellar 'surfaces'-the photospheres-are much cooler, some non-radiative process must be responsible for heating the coronae. The heating mechanism is generally thought to be magnetic in origin, but is not yet understood even for the case of the Sun. Ultraviolet emission lines first led to the discovery of the enormous temperature of the Sun's corona, but thermal emission from the coronae of other stars has hitherto been detectable only from space, at X-ray wavelengths. Here we report the detection of emission from highly ionized iron (Fe XIII at 3,388.1 A) in the corona of the red-dwarf star CN Leonis, using a ground-based telescope. The X-ray flux inferred from our data is consistent with previously measured X-ray fluxes, and the non-thermal line width of 18.4 km s-1 indicates great similarities between solar and stellar coronal heating mechanisms. The accessibility and spectral resolution (45,000) of the ground-based instrument are much better than those of X-ray satellites, so a new window to the study of stellar coronae has been opened.
Evidence for a Sudden Magnetic Field Reconfiguration in Soft Gamma Repeater 1900+14
NASA Technical Reports Server (NTRS)
Woods, Peter M.; Kouveliotou, Chryssa; Gogus, Ersin; Finger, Mark H.; Swank, Jean; Smith, Don A.; Hurley, Kevin; Thompson, Christopher
2001-01-01
We report the detection of large flux changes in the persistent X-ray flux of soft gamma repeater (SGR) 1900 + 14 during its burst active episode in 1998. Most notably, we find a factor of approx. 700 increase in the nonburst X-ray flux following the August 27 flare, which decayed in time as a power law. Our measurements indicate that the pulse fraction remains constant throughout this decay. This suggests a global flux enhancement as a consequence of the August 27 flare rather than localized heating. While the persistent flux has since recovered to the preoutburst level, the pulse profile has not. The pulse shape changed to a near sinusoidal profile within the tail of the August 27 flare (in gamma-rays), and this effect has persisted for more than 1.5 years (in X-rays). The results presented here suggest that the magnetic field of the neutron star in SGR 1900 + 14 was significantly altered (perhaps globally) during the giant flare of August 27.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szulagyi, Judit; Pascucci, Ilaria; Abraham, Peter
Mid-infrared atomic and ionic line ratios measured in spectra of pre-main-sequence stars are sensitive indicators of the hardness of the radiation field impinging on the disk surface. We present a low-resolution Spitzer IRS search for [Ar II] at 6.98 {mu}m, [Ne II] at 12.81 {mu}m, and [Ne III] 15.55 {mu}m lines in 56 transitional disks. These objects, characterized by reduced near-infrared but strong far-infrared excess emission, are ideal targets to set constraints on the stellar radiation field onto the disk, because their spectra are not contaminated by shock emission from jets/outflows or by molecular emission lines. After demonstrating that wemore » can detect [Ne II] lines and recover their fluxes from the low-resolution spectra, here we report the first detections of [Ar II] lines toward protoplanetary disks. We did not detect [Ne III] emission in any of our sources. Our [Ne II]/[Ne III] line flux ratios combined with literature data suggest that a soft-EUV or X-ray spectrum produces these gas lines. Furthermore, the [Ar II]/[Ne II] line flux ratios point to a soft X-ray and/or soft-EUV stellar spectrum as the ionization source of the [Ar II] and [Ne II] emitting layer of the disk. If the soft X-ray component dominates over the EUV, then we would expect larger photoevaporation rates and, hence, a reduction of the time available to form planets.« less
NASA Technical Reports Server (NTRS)
Halpern, Jules P.
1996-01-01
Extreme Ultraviolet Explorer (EUVE) satellite observations of the Pulsar PSR J0437-4715, the Seyfert Galaxy RX J0437.4-4711, and the Geminga Pulsar are reported on. The main purpose of the PSR J0437-4715 investigation was to examine its soft X-ray flux. The 20 day EUVE observation of RX J0437.4-4711 constitutes a uniformly sampled soft X-ray light curve of a highly variable Seyfert galaxy whose power spectrum can be examined on timescales from 3 hrs. to several days. A unique aspect of the EUVE observation of RX J0437.4-4711 is its long light curve which we have used to measure the power spectrum of soft X-ray variability at low frequencies. Approximately 2100 counts were detected for the Geminga pulsar in a period of 251,000 s by the EUVE Deep Survey instrument. Geminga presents an unusually difficult problem because its multicomponent X-ray spectrum and pulse profile are indicative of a complex distribution of surface emission, and possibly a contribution from nonthermal emission as well.
Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy
Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; ...
2015-03-02
We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~10 6 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >10 7 laser pulses, wemore » also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.« less
A Compact X-Ray System for Macromolecular Crystallography
NASA Technical Reports Server (NTRS)
Gubarev, Mikhail; Ciszak, Ewa; Ponomarev, Igor; Gibson, Walter; Joy, Marshall
2000-01-01
We describe the design and performance of a high flux x-ray system for a macromolecular crystallography that combines a microfocus x-ray generator (40 micrometer full width at half maximum spot size at a power level of 46.5 W) and a collimating polycapillary optic. The Cu Ka lpha x-ray flux produced by this optimized system through a 500,um diam orifice is 7.0 times greater than the x-ray flux previously reported by Gubarev et al. [M. Gubarev et al., J. Appl. Crystallogr. 33, 882 (2000)]. The x-ray flux from the microfocus system is also 2.6 times higher than that produced by a rotating anode generator equipped with a graded multilayer monochromator (green optic, Osmic Inc. CMF24-48-Cu6) and 40% less than that produced by a rotating anode generator with the newest design of graded multilayer monochromator (blue optic, Osmic, Inc. CMF12-38-Cu6). Both rotating anode generators operate at a power level of 5000 W, dissipating more than 100 times the power of our microfocus x-ray system. Diffraction data collected from small test crystals are of high quality. For example, 42 540 reflections collected at ambient temperature from a lysozyme crystal yielded R(sub sym)=5.0% for data extending to 1.70 A, and 4.8% for the complete set of data to 1.85 A. The amplitudes of the observed reflections were used to calculate difference electron density maps that revealed positions of structurally important ions and water molecules in the crystal of lysozyme using the phases calculated from the protein model.
X-Ray Emission from the Millisecond Pulsar J1012+5307
NASA Technical Reports Server (NTRS)
Halpern, Jules P.; Wang, F. Y.-H.; Oliversen, Ronald (Technical Monitor)
2001-01-01
The recently discovered 5.3 ms pulsar J1012+5307 at a distance of 520 pc is in an area of the sky which is particularly deficient in absorbing gas. The column density along the line of sight is less than 7.5 x 10(exp 19)/sq cm, which facilitates soft X-ray observations. Halpern reported a possible ROSAT PSPC detection of the pulsar in a serendipitous, off-axis observation. We have now confirmed the X-ray emission of PSR J1012+5307 in a 23 ksec observation with the ROSAT HRI. A point source is detected within 3 sec. of the radio position. Its count rate of 1.6 +/- 0.3 x 10(exp -3)/s corresponds to an unabsorbed 0.1 - 2.4 keV flux of 6.4 x 10(exp -14) ergs/sq cm s, similar to that reported previously. This counts-to-flux conversion is valid for N(sub H) = 5 x 10(exp 19)/sq cm, and either a power-law spectrum of photon index 2.5 or a blackbody of kT = 0.1 keV. The implied X-ray luminosity of 2.0 x 10(exp 30) ergs/ s is 5 x 10(exp -4) of the pulsar's spin-down power E, and similar to that of the nearest millisecond pulsar J0437-4715, which is nearly a twin of J1012+5307 in P and E. We subjected the 37 photons (and 13 background counts) within the source region to a pulsar search, but no evidence for pulsation was found. The pulsar apparently emits over a large fraction of its rotation cycle, and the absence of sharp modulation can be taken as evidence for surface thermal emission, as favored for PSR J0437-4715, rather than magnetospheric X-ray emission which is apparent in the sharp pulses of the much more energetic millisecond pulsar B1821-24. A further test of of the interpretation will be made with a longer ROSAT observation, which will increase the number of photons collected by a factor of 5, and permit a more sensitive examination of the light curve for modulation due to emission from heated polar caps. If found, such modulation will be further evidence that surface reheating by the impact of particles accelerated along open field lines operates in these approx. 10(exp 9) yr old pulsars.
Bright betatron X-ray radiation from a laser-driven-clustering gas target
Chen, L. M.; Yan, W. C.; Li, D. Z.; Hu, Z. D.; Zhang, L.; Wang, W. M.; Hafz, N.; Mao, J. Y.; Huang, K.; Ma, Y.; Zhao, J. R.; Ma, J. L.; Li, Y. T.; Lu, X.; Sheng, Z. M.; Wei, Z. Y.; Gao, J.; Zhang, J.
2013-01-01
Hard X-ray sources from femtosecond (fs) laser-produced plasmas, including the betatron X-rays from laser wakefield-accelerated electrons, have compact sizes, fs pulse duration and fs pump-probe capability, making it promising for wide use in material and biological sciences. Currently the main problem with such betatron X-ray sources is the limited average flux even with ultra-intense laser pulses. Here, we report ultra-bright betatron X-rays can be generated using a clustering gas jet target irradiated with a small size laser, where a ten-fold enhancement of the X-ray yield is achieved compared to the results obtained using a gas target. We suggest the increased X-ray photon is due to the existence of clusters in the gas, which results in increased total electron charge trapped for acceleration and larger wiggling amplitudes during the acceleration. This observation opens a route to produce high betatron average flux using small but high repetition rate laser facilities for applications. PMID:23715033
Simultaneous multi-wavelength campaign on PKS 2005-489 in a high state
Abramowski, A.
2011-09-01
The high-frequency peaked BL Lac object PKS 2005-489 was the target of amulti-wavelength campaignwith simultaneous observations in the TeV γ-ray (H.E.S.S.), GeV γ-ray (Fermi/LAT), X-ray (RXTE, Swift), UV (Swift) and optical (ATOM, Swift) bands. This campaign was carried out during a high flux state in the synchrotron regime. The flux in the optical and X-ray bands reached the level of the historical maxima. The hard GeV spectrum observed with Fermi/LAT connects well to the very high energy (VHE, E> 100 GeV) spectrum measured with H.E.S.S. with a peak energy between ~ 5 and 500 GeV. Compared to observations with contemporaneousmore » coverage in the VHE and X-ray bands in 2004, the X-ray flux was ~ 50 times higher during the 2009 campaign while the TeV γ-ray flux shows marginal variation over the years. The spectral energy distribution during this multi-wavelength campaign was fit by a one zone synchrotron self-Compton model with a well determined cutoff in X-rays. The parameters of a one zone SSC model are inconsistent with variability time scales. The variability behaviour over years with the large changes in synchrotron emission and small changes in the inverse Compton emission does not warrant an interpretation within a one-zone SSC model despite an apparently satisfying fit to the broadband data in 2009.« less
A High Speed, Radiation Hard X-Ray Imaging Spectroscometer for Planetary Investigations
NASA Technical Reports Server (NTRS)
Kraft, R. P.; Kenter, A. T.; Murray, S. S.; Martindale, A.; Pearson, J.; Gladstone, R.; Branduardi-Raymont, G.; Elsner, R.; Kimura, T.; Ezoe, Y.;
2014-01-01
X-ray observations provide a unique window into fundamental processes in planetary physics, and one that is complementary to observations obtained at other wavelengths. We propose to develop an X-ray imaging spectrometer (0.1-10 keV band) that, on orbital planetary missions, would measure the elemental composition, density, and temperature of the hot plasma in gas giant magnetospheres, the interaction of the Solar wind with the upper atmospheres of terrestrial planets, and map the elemental composition of the surfaces of the Galilean moons and rocky or icy airless systems on spatial scales as small as a few meters. The X-ray emission from gas giants, terrestrial planets and moons with atmospheres, displays diverse characteristics that depend on the Solar wind's interaction with their upper atmospheres and/or magnetospheres. Our imaging spectrometer, as part of a dedicated mission to a gas giant, will be a paradigm changing technology. On a mission to the Jovian system, our baseline instrument would map the elemental composition of the rocky and icy surfaces of the Galilean moons via particle-induced X-ray fluorescence. This instrument would also measure the temperature, density and elemental abundance of the thermal plasma in the magnetosphere and in the Io plasma torus (IPT), explore the interaction of the Solar wind with the magnetosphere, and characterize the spectrum, flux, and temporal variability of X-ray emission from the polar auroras. We will constrain both the mode of energy transport and the effective transport coefficients in the IPT and throughout the Jovian magnetosphere by comparing temporal and spatial variations of the X-ray emitting plasma with those seen from the cooler but energetically dominant 5 eV plasma.
High-energy astrophysics: A theoretical analysis of thermal radiation from neutron stars
NASA Technical Reports Server (NTRS)
Applegate, James H.
1994-01-01
The unambiguous detection of thermal radiation from the surface of a cooling neutron star was one of the most anxiously awaited results in neutron star physics. This particular Holy Grail was found by Halpern and Holt, who used ROSAT to detect pulsed X-rays from the gamma-ray source Geminga and demonstrate that it was a neutron star, probably a radio pulsar beamed away from us. At an age of approximately 3.4 x 10(exp 5) years, Geminga is in the photon cooling era. Its surface temperature of 5.2 x 10(exp 5) K can be explained within the contexts of both the slow and fast cooling scenarios. In the slow cooling scenario, the surface temperature is too high unless the specific heat of the interior is reduced by extensive baryon pairing. In the fast cooling scenario, the surface temperature will be much too low unless the fast neutrino cooling is shut off by baryon pairing. Two other pulsars, PSR 0656+14 and PSR 1055-52, have also been detected in thermal X-rays by ROSAT. They are also in the photon cooling era. All of this research's neutron star cooling models to date have used the unmagnetized effective temperature-interior temperature relation for the outer boundary condition. Models are being improved by using published magnetic envelope calculations and assumed geometried for the surface magnetic field to determine local interior temperature-emitted flux relations for the surface of the star.
Research in Solar Physics: Analysis of Skylab/ATM S-056 X-Ray Data
NASA Technical Reports Server (NTRS)
Henze, W., Jr.
1977-01-01
Data obtained by the X-ray event analyzer are described as well as methods used for film calibration. Topics discussed include analyses of the 15 June 1973 flare, oscillations in the solar soft X-ray flux, and deconvolution of X-ray images of the 5 September 1973 flare.
Byram, E T; Chubb, T A; Friedman, H
1970-07-24
An x-ray survey of Centaurus A has given marginal evidence of its x-ray flux. If taken as an upper limit on inverse Compton x-rays generated by scattering interactions between relativistic electrons and cosmological background photons, the observation implies an upper limit of close to 3 degrees K for the background radiation temperature.
X-Ray Spectroscopy of the Nearby, Classical T Tauri Star TW Hydrae
NASA Astrophysics Data System (ADS)
Kastner, Joel H.; Huenemoerder, David P.; Schulz, Norbert S.; Weintraub, David A.
1999-11-01
We present ASCA and ROSAT X-ray observations of the classical T Tauri star TW Hya, the namesake of a small association that, at a distance of ~50 pc, represents the nearest known region of recent star formation. Analysis of ASCA and ROSAT spectra indicates characteristic temperatures of ~1.7 and ~9.7 MK for the X-ray-emitting region(s) of TW Hya, with emission lines of highly ionized Fe dominating the spectrum at energies of ~1 keV. The X-ray data show variations in X-ray flux on timescales of <~1 hr as well as indications of changes in the X-ray-absorbing column on timescales of several years, suggesting that flares and variable obscuration are responsible for the large-amplitude optical variability of TW Hya on short and long timescales, respectively. Comparison with model calculations suggests that TW Hya produces sufficient hard X-ray flux to produce significant ionization of molecular gas within its circumstellar disk; such X-ray ionization may regulate both protoplanetary accretion and protoplanetary chemistry.
Apollo scientific experiments data handbook
NASA Technical Reports Server (NTRS)
Eichelman, W. F. (Editor); Lauderdale, W. W. (Editor)
1974-01-01
A brief description of each of the Apollo scientific experiments was described, together with its operational history, the data content and formats, and the availability of the data. The lunar surface experiments described are the passive seismic, active seismic, lunar surface magnetometer, solar wind spectrometer, suprathermal ion detector, heat flow, charged particle, cold cathode gage, lunar geology, laser ranging retroreflector, cosmic ray detector, lunar portable magnetometer, traverse gravimeter, soil mechanics, far UV camera (lunar surface), lunar ejecta and meteorites, surface electrical properties, lunar atmospheric composition, lunar surface gravimeter, lunar seismic profiling, neutron flux, and dust detector. The orbital experiments described are the gamma-ray spectrometer, X-ray fluorescence, alpha-particle spectrometer, S-band transponder, mass spectrometer, far UV spectrometer, bistatic radar, IR scanning radiometer, particle shadows, magnetometer, lunar sounder, and laser altimeter. A brief listing of the mapping products available and information on the sample program were also included.
NASA Astrophysics Data System (ADS)
Błażejowski, M.; Blaylock, G.; Bond, I. H.; Bradbury, S. M.; Buckley, J. H.; Carter-Lewis, D. A.; Celik, O.; Cogan, P.; Cui, W.; Daniel, M.; Duke, C.; Falcone, A.; Fegan, D. J.; Fegan, S. J.; Finley, J. P.; Fortson, L.; Gammell, S.; Gibbs, K.; Gillanders, G. G.; Grube, J.; Gutierrez, K.; Hall, J.; Hanna, D.; Holder, J.; Horan, D.; Humensky, B.; Kenny, G.; Kertzman, M.; Kieda, D.; Kildea, J.; Knapp, J.; Kosack, K.; Krawczynski, H.; Krennrich, F.; Lang, M.; LeBohec, S.; Linton, E.; Lloyd-Evans, J.; Maier, G.; Mendoza, D.; Milovanovic, A.; Moriarty, P.; Nagai, T. N.; Ong, R. A.; Power-Mooney, B.; Quinn, J.; Quinn, M.; Ragan, K.; Reynolds, P. T.; Rebillot, P.; Rose, H. J.; Schroedter, M.; Sembroski, G. H.; Swordy, S. P.; Syson, A.; Valcarel, L.; Vassiliev, V. V.; Wakely, S. P.; Walker, G.; Weekes, T. C.; White, R.; Zweerink, J.; VERITAS Collaboration; Mochejska, B.; Smith, B.; Aller, M.; Aller, H.; Teräsranta, H.; Boltwood, P.; Sadun, A.; Stanek, K.; Adams, E.; Foster, J.; Hartman, J.; Lai, K.; Böttcher, M.; Reimer, A.; Jung, I.
2005-09-01
We report results from an intensive multiwavelength monitoring campaign on the TeV blazar Mrk 421 over the period of 2003-2004. The source was observed simultaneously at TeV energies with the Whipple 10 m telescope and at X-ray energies with the Rossi X-Ray Timing Explorer (RXTE) during each clear night within the Whipple observing windows. Supporting observations were also frequently carried out at optical and radio wavelengths to provide simultaneous or contemporaneous coverages. The large amount of simultaneous data has allowed us to examine the variability of Mrk 421 in detail, including cross-band correlation and broadband spectral variability, over a wide range of flux. The variabilities are generally correlated between the X-ray and gamma-ray bands, although the correlation appears to be fairly loose. The light curves show the presence of flares with varying amplitudes on a wide range of timescales at both X-ray and TeV energies. Of particular interest is the presence of TeV flares that have no coincident counterparts at longer wavelengths, because the phenomenon seems difficult to understand in the context of the proposed emission models for TeV blazars. We have also found that the TeV flux reached its peak days before the X-ray flux did during a giant flare (or outburst) in 2004 (with the peak flux reaching ~135 mcrab in X-rays, as seen by the RXTE ASM, and ~3 crab in gamma rays). Such a difference in the development of the flare presents a further challenge to both the leptonic and hadronic emission models. Mrk 421 varied much less at optical and radio wavelengths. Surprisingly, the normalized variability amplitude in the optical seems to be comparable to that in the radio, perhaps suggesting the presence of different populations of emitting electrons in the jet. The spectral energy distribution of Mrk 421 is seen to vary with flux, with the two characteristic peaks moving toward higher energies at higher fluxes. We have failed to fit the measured spectral energy distributions (SEDs) with a one-zone synchrotron self-Compton model; introducing additional zones greatly improves the fits. We have derived constraints on the physical properties of the X-ray/gamma-ray flaring regions from the observed variability (and SED) of the source. The implications of the results are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kojima, Sadaoki, E-mail: kojima-s@ile.osaka-u.ac.jp, E-mail: sfujioka@ile.osaka-u.ac.jp; Ikenouchi, Takahito; Arikawa, Yasunobu
Hard X-ray spectroscopy is an essential diagnostics used to understand physical processes that take place in high energy density plasmas produced by intense laser-plasma interactions. A bundle of hard X-ray detectors, of which the responses have different energy thresholds, is used as a conventional single-shot spectrometer for high-flux (>10{sup 13} photons/shot) hard X-rays. However, high energy resolution (Δhv/hv < 0.1) is not achievable with a differential energy threshold (DET) X-ray spectrometer because its energy resolution is limited by energy differences between the response thresholds. Experimental demonstration of a Compton X-ray spectrometer has already been performed for obtaining higher energy resolutionmore » than that of DET spectrometers. In this paper, we describe design details of the Compton X-ray spectrometer, especially dependence of energy resolution and absolute response on photon-electron converter design and its background reduction scheme, and also its application to the laser-plasma interaction experiment. The developed spectrometer was used for spectroscopy of bremsstrahlung X-rays generated by intense laser-plasma interactions using a 200 μm thickness SiO{sub 2} converter. The X-ray spectrum obtained with the Compton X-ray spectrometer is consistent with that obtained with a DET X-ray spectrometer, furthermore higher certainly of a spectral intensity is obtained with the Compton X-ray spectrometer than that with the DET X-ray spectrometer in the photon energy range above 5 MeV.« less
Discovery of soft X-ray flux from 2A 1102+384 = Markarian 421
NASA Technical Reports Server (NTRS)
Hearn, D. R.; Marshall, F. J.; Jernigan, J. G.
1979-01-01
During April 1976 a soft X-ray flux was detected with SAS 3 from the vicinity of 2A 1102+384. The average flux densities were 4.3 x 10 to the -11th and 14 x 10 to the -11th erg/sq cm per sec in the energy bands 0.1-0.28 keV and 1-6 keV, respectively. There is an indication of variability over about 0.5 day in the lowest energy band. An upper limit of 3 x 10 to the 20th H atoms per sq cm is found for the gas column density to the X-ray source. In May 1978, observations with the modulation collimators of SAS 3 yielded an accurate (40 arcsec error radius) position for the X-ray source (2-6 keV) at right ascension 11 h 1 m 39.7 s, declination + 38 deg 28 min 51 sec (equinox 1950). The earlier tentative identification by Ricketts et al. (1976) with the BL Lacertae object B2 1101+38 = Markarian 421 is thus confirmed.
Energy distribution measurement of narrow-band ultrashort x-ray beams via K-edge filters subtraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardarelli, Paolo; Di Domenico, Giovanni; Marziani, Michele
2012-10-01
The characterization of novel x-ray sources includes the measurement of the photon flux and the energy distribution of the produced beam. The aim of BEATS2 experiment at the SPARC-LAB facility of the INFN National Laboratories of Frascati (Rome, Italy) is to investigate possible medical applications of an x-ray source based on Thomson relativistic back-scattering. This source is expected to produce a pulsed quasi-monochromatic x-ray beam with an instantaneous flux of 10{sup 20} ph/s in pulses 10 ps long and with an average energy of about 20 keV. A direct measurement of energy distribution of this beam is very difficult withmore » traditional detectors because of the extremely high photon flux. In this paper, we present a method for the evaluation of the energy distribution of quasi-monochromatic x-ray beams based on beam filtration with K-edge absorbing foils in the energy range of interest (16-22 keV). The technique was tested measuring the energy distribution of an x-ray beam having a spectrum similar to the expected one (SPARC-LAB Thomson source) by using a tungsten anode x-ray tube properly filtered and powered. The energy distribution obtained has been compared with the one measured with a HPGe detector showing very good agreement.« less
CORRELATION OF CHANDRA PHOTONS WITH THE RADIO GIANT PULSES FROM THE CRAB PULSAR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bilous, A. V.; McLaughlin, M. A.; Kondratiev, V. I.
2012-04-10
No apparent correlation was found between giant pulses (GPs) and X-ray photons from the Crab pulsar during 5.4 hr of simultaneous observations with the Green Bank Telescope at 1.5 GHz and Chandra X-Ray Observatory primarily in the energy range of 1.5-4.5 keV. During the Crab pulsar periods with GPs, the X-ray flux in radio emission phase windows does not change more than by {+-}10% for main pulse (MP) GPs and {+-}30% for interpulse (IP) GPs. During GPs themselves, the X-ray flux does not change by more than two times for MP GPs and five times for IP GPs. All limitsmore » quoted are compatible with 2{sigma} fluctuations of the X-ray flux around the sets of false GPs with random arrival times. The results speak in favor of changes in plasma coherence as the origin of GPs. However, the results do not rule out variations in the rate of particle creation if the particles that emit coherent radio emission are mostly at the lowest Landau level.« less
Computation of the Transmitted and Polarized Scattered Fluxes by the Exoplanet HD 189733b in X-Rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marin, Frédéric; Grosso, Nicolas, E-mail: frederic.marin@astro.unistra.fr
2017-02-01
Thousands of exoplanets have been detected, but only one exoplanetary transit was potentially observed in X-rays from HD 189733A. What makes the detection of exoplanets so difficult in this band? To answer this question, we run Monte-Carlo radiative transfer simulations to estimate the amount of X-ray flux reprocessed by HD 189733b. Despite its extended evaporating atmosphere, we find that the X-ray absorption radius of HD 189733b at 0.7 keV, which is the mean energy of the photons detected in the 0.25–2 keV energy band by XMM-Newton , is ∼1.01 times the planetary radius for an atmosphere of atomic hydrogen andmore » helium (including ions), and produces a maximum depth of ∼2.1% at ∼±46 minutes from the center of the planetary transit on the geometrically thick and optically thin corona. We compute numerically in the 0.25–2 keV energy band that this maximum depth is only of ∼1.6% at ∼±47 minutes from the transit center, and not very sensitive to the metal abundance, assuming that adding metals in the atmosphere would not dramatically change the density–temperature profile. Regarding a direct detection of HD 189733b in X-rays, we find that the amount of flux reprocessed by the exoplanetary atmosphere varies with the orbital phase, spanning between three and five orders of magnitude fainter than the flux of the primary star. Additionally, the degree of linear polarization emerging from HD 189733b is <0.003%, with maximums detected near planetary greatest elongations. This implies that both the modulation of the X-ray flux with the orbital phase and the scatter-induced continuum polarization cannot be observed with current X-ray facilities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lynch, Ryan S.; Archibald, Robert F.; Kaspi, Victoria M.
We present results from eight months of Green Bank Telescope 8.7 GHz observations and nearly 18 months of Swift X-ray telescope observations of the radio magnetar SGR J1745–2900. We tracked the radio and X-ray flux density, polarization properties, profile evolution, rotation, and single-pulse behavior. We identified two main periods of activity. The first is characterized by approximately 5.5 months of relatively stable evolution in radio flux density, rotation, and profile shape, while in the second these properties varied substantially. Specifically, a third profile component emerged and the radio flux also became more variable. The single pulse properties also changed, mostmore » notably with a larger fraction of pulses with pulse widths ∼5–20 ms in the erratic state. Bright single pulses are well described by a log-normal energy distribution at low energies, but with an excess at high energies. The 2–10 keV flux decayed steadily since the initial X-ray outburst, while the radio flux remained stable to within ∼20% during the stable state. A joint pulsar timing analysis of the radio and X-ray data shows a level of timing noise unprecedented in a radio magnetar, though during the time covered by the radio data alone the timing noise was at a level similar to that observed in other radio magnetars. While SGR J1745–2900 is similar to other radio magnetars in many regards, it differs by having experienced a period of relative stability in the radio that now appears to have ended, while the X-ray properties evolved independently.« less
NASA Technical Reports Server (NTRS)
Nitta, Nariaki
1988-01-01
Hard X-ray spectra in solar flares obtained by the broadband spectrometers aboard Hinotori and SMM are compared. Within the uncertainty brought about by assuming the typical energy of the background X-rays, spectra by the Hinotori spectrometer are usually consistent with those by the SMM spectrometer for flares in 1981. On the contrary, flares in 1982 persistently show 20-50-percent higher flux by Hinotori than by SMM. If this discrepancy is entirely attributable to errors in the calibration of energy ranges, the errors would be about 10 percent. Despite such a discrepancy in absolute flux, in the the decay phase of one flare, spectra revealed a hard X-ray component (probably a 'superhot' component) that could be explained neither by emission from a plasma at about 2 x 10 to the 7th K nor by a nonthermal power-law component. Imaging observations during this period show hard X-ray emission nearly cospatial with soft X-ray emission, in contrast with earlier times at which hard and soft X-rays come from different places.
Variable mid-latitude X-ray source 3U 0042+32
NASA Technical Reports Server (NTRS)
Rappaport, S.; Clark, G. W.; Dower, R.; Doxsey, R.; Jernigan, G.; Li, F.
1977-01-01
A celestial location with an error circle of radius one minute is reported for the mid-latitude X-ray source 3U 0042+32; comparison of observations from the Ariel-5 and Uhuru satellites with data obtained from two independent rotation modulation collimators yields the precise position. Studies to detect regular pulsations and energy spectra of the X-ray source are also discussed. Analysis of the peak X-ray flux in the error circle, as well as certain distance constraints, suggests that the source of the flux may be a neutron star in a distant galactic binary system having a companion that undergoes episodes of mass transfer due to eruption or orbital eccentricity.
Satellite Observations of Rapidly Varying Cosmic X-ray Sources. Ph.D. Thesis - Catholic Univ.
NASA Technical Reports Server (NTRS)
Maurer, G. S.
1979-01-01
The X-ray source data obtained with the high energy celestial X-ray detector on the Orbiting Solar Observatory -8 are presented. The results from the 1977 Crab observation show nonstatistical fluctuations in the pulsed emission and in the structure of the integrated pulse profile which cannot be attributed to any known systematic effect. The Hercules observations presented here provide information on three different aspects of the pulsed X-ray emission: the variation of pulsed flux as a function of the time from the beginning of the ON-state, the variation of pulsed flux as a function of binary phase, and the energy spectrum of the pulse emission.
High-energy Neutrino Flares from X-Ray Bright and Dark Tidal Disruption Events
DOE Office of Scientific and Technical Information (OSTI.GOV)
Senno, Nicholas; Murase, Kohta; Mészáros, Peter
X-ray and γ-ray observations by the Swift satellite revealed that a fraction of tidal disruption events (TDEs) have relativistic jets. Jetted TDEs have been considered to be potential sources of very-high-energy cosmic-rays and neutrinos. In this work, using semi-analytical methods, we calculate neutrino spectra of X-ray bright TDEs with powerful jets and dark TDEs with possible choked jets, respectively. We estimate their neutrino fluxes and find that non-detection would give us an upper limit on the baryon loading of the jet luminosity contained in cosmic-rays ξ {sub cr} ≲ 20–50 for Sw J1644+57. We show that X-ray bright TDEs makemore » a sub-dominant (≲5%–10%) contribution to IceCube’s diffuse neutrino flux, and study possible contributions of X-ray dark TDEs given that particles are accelerated in choked jets or disk winds. We discuss future prospects for multi-messenger searches of the brightest TDEs.« less
The X-ray emitting galaxy Cen-A
NASA Technical Reports Server (NTRS)
Mushotzky, R. F.; Sercemitsos, P. J.; Becker, R. H.; Boldt, E. A.; Holt, S. S.
1977-01-01
OSO-8 X-ray observations of Cen-A in 1975 and 1976 are reported. The source spectrum is well fit in both years by a power law of number index 1.62 and absorption due to 1.3 x 10 to the 23rd power at/sq cm. The total flux varied by a factor 2 between 1975 and 1976. In 1976 there were approximately 40% flux variations on a time scale of days. The 6.4 keV Fe fluorescent line and the 7.1 keV absorption edge were measured implying Fe/H approximately equals .000016. Simultaneous radio measurements show variation in phase with X-ray variability. Models considering radio, milimeter, IR and X-ray data show that all the data can be accounted for by a model in which the X-rays are due to a synchrotron self-Compton source embedded in a cold H(2) cloud.
Cluster Masses Derived from X-ray and Sunyaev-Zeldovich Effect Measurements
NASA Technical Reports Server (NTRS)
Laroque, S.; Joy, Marshall; Bonamente, M.; Carlstrom, J.; Dawson, K.
2003-01-01
We infer the gas mass and total gravitational mass of 11 clusters using two different methods; analysis of X-ray data from the Chandra X-ray Observatory and analysis of centimeter-wave Sunyaev-Zel'dovich Effect (SZE) data from the BIMA and OVRO interferometers. This flux-limited sample of clusters from the BCS cluster catalogue was chosen so as to be well above the surface brightness limit of the ROSAT All Sky Survey; this is therefore an orientation unbiased sample. The gas mass fraction, f_g, is calculated for each cluster using both X-ray and SZE data, and the results are compared at a fiducial radius of r_500. Comparison of the X-ray and SZE results for this orientation unbiased sample allows us to constrain cluster systematics, such as clumping of the intracluster medium. We derive an upper limit on Omega_M assuming that the mass composition of clusters within r_500 reflects the universal mass composition Omega_M h_100 is greater than Omega _B / f-g. We also demonstrate how the mean f_g derived from the sample can be used to estimate the masses of clusters discovered by upcoming deep SZE surveys.
RESULTS FROM LONG-TERM OPTICAL MONITORING OF THE SOFT X-RAY TRANSIENT SAX J1810.8-2609
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu Ling; Di Stefano, Rosanne; Wyrzykowski, Lukasz, E-mail: zhul04@mails.tsinghua.edu.cn
2012-12-20
In this paper, we report the long-term optical observation of the faint soft X-ray transient SAX J1810.8-2609 from the Optical Gravitational Lensing Experiment (OGLE) and Microlensing Observations in Astrophysics (MOA). We have focused on the 2007 outburst, and also cross-correlated its optical light curves and quasi-simultaneous X-ray observations from RXTE/Swift. Both the optical and X-ray light curves of the 2007 outburst show multi-peak features. Quasi-simultaneous optical/X-ray luminosity shows that both the X-ray reprocessing and viscously thermal emission can explain the observed optical flux. There is a slight X-ray delay of 0.6 {+-} 0.3 days during the first peak, while themore » X-ray emission lags the optical emission by {approx}2 days during the rebrightening stage, which suggests that X-ray reprocessing emission contributes significantly to the optical flux in the first peak, but the viscously heated disk origin dominates it during rebrightening. This implies variation of the physical environment of the outer disk, with even the source remaining in a low/hard state during the entire outburst. The {approx}2 day X-ray lag indicates a small accretion disk in the system, and its optical counterpart was not detected by OGLE and MOA during quiescence, which constrained it to be fainter than M{sub I} = 7.5 mag. There is a suspected short-time optical flare detected at MJD = 52583.5 with no detected X-ray counterpart; this single flux increase implies a magnetic loop reconnection in the outer disk, as proposed by Zurita et al. The observations cover all stages of the outburst; however, due to the low sensitivity of RXTE/ASM, we cannot conclude whether it is an optical precursor at the initial rise of the outburst.« less
NASA Astrophysics Data System (ADS)
Beniamini, Paz; Nava, Lara; Duran, Rodolfo Barniol; Piran, Tsvi
2015-11-01
We consider a sample of 10 gamma-ray bursts with long-lasting ( ≳ 102 s) emission detected by Fermi/Large Area Telescope and for which X-ray data around 1 d are also available. We assume that both the X-rays and the GeV emission are produced by electrons accelerated at the external forward shock, and show that the X-ray and the GeV fluxes lead to very different estimates of the initial kinetic energy of the blast wave. The energy estimated from GeV is on average ˜50 times larger than the one estimated from X-rays. We model the data (accounting also for optical detections around 1 d, if available) to unveil the reason for this discrepancy and find that good modelling within the forward shock model is always possible and leads to two possibilities: (i) either the X-ray emitting electrons (unlike the GeV emitting electrons) are in the slow-cooling regime or (ii) the X-ray synchrotron flux is strongly suppressed by Compton cooling, whereas, due to the Klein-Nishina suppression, this effect is much smaller at GeV energies. In both cases the X-ray flux is no longer a robust proxy for the blast wave kinetic energy. On average, both cases require weak magnetic fields (10-6 ≲ ɛB ≲ 10-3) and relatively large isotropic kinetic blast wave energies 10^{53} erg<{E}_{0,kin}<10^{55} erg corresponding to large lower limits on the collimated energies, in the range 10^{52} erg<{E}_{θ ,kin}<5× 10^{52} erg for an ISM (interstellar medium) environment with n ˜ 1 cm-3 and 10^{52} erg<{E}_{θ ,kin}<10^{53} erg for a wind environment with A* ˜ 1. These energies are larger than those estimated from the X-ray flux alone, and imply smaller inferred values of the prompt efficiency mechanism, reducing the efficiency requirements on the still uncertain mechanism responsible for prompt emission.
NASA Technical Reports Server (NTRS)
Kundu, M. R.; White, S. M.; Gopalswamy, N.; Lim, J.
1994-01-01
We present comparisons of multiwavelength data for a number of solar flares observed during the major campaign of 1991 June. The different wavelengths are diagnostics of energetic electrons in different energy ranges: soft X-rays are produced by electrons with energies typically below 10 keV, hard X-rays by electrons with energies in the range 10-200 keV, microwaves by electrons in the range 100 keV-1 MeV, and millimeter-wavelength emission by electrons with energies of 0.5 MeV and above. The flares in the 1991 June active period were remarkable in two ways: all have very high turnover frequencies in their microwave spectra, and very soft hard X-ray spectra. The sensitivity of the microwave and millimeter data permit us to study the more energetic (greater than 0.3 MeV) electrons even in small flares, where their high-energy bremsstrahlung is too weak for present detectors. The millimeter data show delays in the onset of emission with respect to the emissions associated with lower energy electrons and differences in time profiles, energy spectral indices incompatible with those implied by the hard X-ray data, and a range of variability of the peak flux in the impulsive phase when compared with the peak hard X-ray flux which is two orders of magnitude larger than the corresponding variability in the peak microwave flux. All these results suggest that the hard X-ray-emitting electrons and those at higher energies which produce millimeter emission must be regarded as separate populations. This has implications for the well-known 'number problem' found previously when comparing the numbers of non thermal electrons required to produce the hard X-ray and radio emissions.
Eta Carinae's Thermal X-Ray Tail Measured with XMM-Newton and NuStar
NASA Technical Reports Server (NTRS)
Hamaguchi, Kenji; Corcoran, Michael F.; Gull, Theodore R.; Takahashi, Hiromitsu; Grefenstette, Brian; Yuasa, Takayuki; Stuhlinger, Martin; Russell, Christopher; Moffat, Anthony F. J.; Madura, Thomas
2016-01-01
The evolved, massive highly eccentric binary system, Car, underwent a periastron passage in the summer of 2014. We obtained two coordinated X-ray observations with XMM-Newton and NuSTAR during the elevated X-ray flux state and just before the X-ray minimum flux state around this passage. These NuSTAR observations clearly detected X-ray emission associated with eta Car extending up to approx. 50 keV for the first time. The NuSTAR spectrum above 10 keV can be fit with the bremsstrahlung tail from a kT approx. 6 keV plasma. This temperature is delta kT 2 keV higher than those measured from the iron K emission line complex, if the shocked gas is in collisional ionization equilibrium. This result may suggest that the companion star's pre-shock wind velocity is underestimated. The NuSTAR observation near the X-ray minimum state showed a gradual decline in the X-ray emission by 40% at energies above 5 keV in a day, the largest rate of change of the X-ray flux yet observed in individual eta Car observations. The column density to the hardest emission component, N(sub H) approx. 10(exp24) H cm(exp-2), marked one of the highest values ever observed for eta Car, strongly suggesting the increased obscuration of the wind-wind colliding X-ray emission by the thick primary stellar wind prior to superior conjunction. Neither observation detected the power-law component in the extremely hard band that INTEGRAL and Suzaku observed prior to 2011. The power-law source might have faded before these observations.
X-ray spectroscopy of the mixed morphology supernova remnant W 28 with XMM-Newton
NASA Astrophysics Data System (ADS)
Nakamura, Ryoko; Bamba, Aya; Ishida, Manabu; Yamazaki, Ryo; Tatematsu, Ken'ichi; Kohri, Kazunori; Pühlhofer, Gerd; Wagner, Stefan J.; Sawada, Makoto
2014-06-01
We report on spatially resolved X-ray spectroscopy of the north-eastern part of the mixed morphology supernova remnant (SNR) W 28 with XMM-Newton. The observed field of view includes a prominent and twisted shell emission forming the edge of this SNR as well as part of the center-filled X-ray emission brightening toward the south-west edge of the field of view. The shell region spectra are in general represented by an optically thin thermal plasma emission in collisional ionization equilibrium with a temperature of ˜ 0.3 keV and a density of ˜ 10 cm-3, which is much higher than the density obtained for inner parts. In contrast, we detected no significant X-ray flux from one of the TeV γ-ray peaks with an upper-limit flux of 2.1 × 10-14 erg cm-2 s-1 in the 2-10 keV band. The large flux ratio of TeV to X-ray, larger than 16, and the spatial coincidence of the molecular cloud and the TeV γ-ray emission site indicate that the TeV γ-ray of W 28 is π0-decay emission originating from collisions between accelerated protons and molecular cloud protons. Comparing the spectrum in the TeV band and the X-ray upper limit, we obtained a weak upper limit on the magnetic field strength B ≲ 1500 μG.
Calculating the X-Ray Fluorescence from the Planet Mercury Due to High-Energy Electrons
NASA Technical Reports Server (NTRS)
Burbine, T. H.; Trombka, J. I.; Bergstrom, P. M., Jr.; Christon, S. P.
2005-01-01
The least-studied terrestrial planet is Mercury due to its proximity to the Sun, which makes telescopic observations and spacecraft encounters difficult. Our lack of knowledge about Mercury should change in the near future due to the recent launching of MESSENGER, a Mercury orbiter. Another mission (BepiColombo) is currently being planned. The x-ray spectrometer on MESSENGER (and planned for BepiColombo) can characterize the elemental composition of a planetary surface by measuring emitted fluorescent x-rays. If electrons are ejected from an atom s inner shell by interaction with energetic particles such as photons, electrons, or ions, electrons from an outer shell can transfer to the inner shell. Characteristic x-rays are then emitted with energies that are the difference between the binding energy of the ion in its excited state and that of the ion in its ground state. Because each element has a unique set of energy levels, each element emits x-rays at a unique set of energies. Electrons and ions usually do not have the needed flux at high energies to cause significant x-ray fluorescence on most planetary bodies. This is not the case for Mercury where high-energy particles were detected during the Mariner 10 flybys. Mercury has an intrinsic magnetic field that deflects the solar wind, resulting in a bow shock in the solar wind and a magnetospheric cavity. Electrons and ions accelerated in the magnetosphere tend to follow its magnetic field lines and can impact the surface on Mercury s dark side Modeling has been done to determine if x-ray fluorescence resulting from the impact of high-energy electrons accelerated in Mercury's magnetosphere can be detected by MESSENGER. Our goal is to understand how much bulk chemical information can be obtained from x-ray fluorescence measurements on the dark side of Mercury.
Swift Observations of SMC X-3 during Its 2016-2017 Super-Eddington Outburst
NASA Astrophysics Data System (ADS)
Weng, Shan-Shan; Ge, Ming-Yu; Zhao, Hai-Hui; Wang, Wei; Zhang, Shuang-Nan; Bian, Wei-Hao; Yuan, Qi-Rong
2017-07-01
The Be X-ray pulsar SMC X-3 underwent a giant outburst from 2016 August to 2017 March, which was monitored with the Swift satellite. During the outburst, its broadband flux increased dramatically, and the unabsorbed X-ray luminosity reached an extreme value of ˜ {10}39 erg s-1 around August 24. Using the Swift/XRT data, we measured the observed pulse frequency of the neutron star to compute the orbital parameters of the binary system. After applying the orbital corrections to Swift observations, we found that the spin frequency increased steadily from 128.02 mHz on August 10 and approached the spin equilibrium of ˜128.74 mHz in 2017 January with an unabsorbed luminosity of {L}{{X}}˜ 2× {10}37 erg s-1, indicating a strong dipolar magnetic field of B˜ 6.8× {10}12 G at the neutron star surface. The spin-up rate is tightly correlated with its X-ray luminosity during the super-Eddington outburst. The pulse profile in the Swift/XRT data is variable, showing double peaks at the early stage of outburst and then merging into a single peak at low luminosity. Additionally, we report that a low-temperature ({kT}˜ 0.2 keV) thermal component emerges in the phase-averaged spectra as the flux decays, and it may be produced from the outer truncated disk or the boundary layer between the exterior flow and the magnetosphere.
Multiwavelength Observations of Markarian 421 During a TeV/X-Ray Flare
NASA Technical Reports Server (NTRS)
Bertsch, D. L.; Bruhweiler, F.; Macomb, D. J.; Cheng, K.-P.; Carter-Lewis, D. A.; Akerlof, C. W.; Aller, H. D.; Aller, M. F.; Buckley, J. H.; Cawley, M. F.
1995-01-01
A TeV flare from the BL Lac object Mrk 421 was detected in May of 1994 by the Whipple Observatory air Cherenkov experiment during which the flux above 250 GeV increased by nearly an order of magnitude over a 2-day period. Contemporaneous observations by ASCA showed the X-ray flux to be in a very high state. We present these results, combined with the first ever simultaneous or nearly simultaneous observations at GeV gamma-ray, UV, IR, mm, and radio energies for this nearest BL Lac object. While the GeV gamma-ray flux increased slightly, there is little evidence for variability comparable to that seen at TeV and X-ray energies. Other wavelengths show even less variability. This provides important constraints on the emission mechanisms at work. We present the multiwavelength spectrum of this gamma-ray blazar for both quiescent and flaring states and discuss the data in terms of current models of blazar emission.
The eclipsing AM Herculis variable H1907 + 690
NASA Technical Reports Server (NTRS)
Remillard, R. A.; Silber, A.; Stroozas, B. A.; Tapia, S.
1991-01-01
The discovery is reported of an eclipsing cataclysmic variable that exhibits up to 10 percent circular polarization at optical wavelengths, securing its classification as an AM Herculis type binary. The object, H1907 + 609, was located with the guidance of X-ray positions from the HEAO 1 survey. Optical CCD photometry exhibits deep eclipses, from which is derived a precise orbital period of 1.743750 hr. The eclipse duration suggests an inclination angle about 80 deg for a main-sequence secondary star. The optical flux has been persistently faint during observations spanning 1987-1990, while the X-ray measurements suggest long-term X-ray variability. The polarization and photometric light curves can be interpreted with a geometric model in which most of the accretion is directed toward a single magnetic pole, with an accretion spot displaced about 17 deg in longitude from the projection of the secondary star on the white dwarf surface.
Performance of Saga-University Beamline with Planer Undulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azuma, J.; Takahashi, K.; Kamada, M.
2010-06-23
A planer undulator consisted of 24 periods of an 85-mm length has been installed in a 2.7-m straight section of the SAGA-LS, in order to provide brilliant soft x-rays for advanced researches on nano-surfaces and interfaces at the Saga-university beamline BL13. The photon flux of 2x10{sup 11} photons/100 mA was obtained at 133 eV, and the available photon energy was beyond 800 eV using higher harmonics. The achieved resolving power of the varied-line-spacing (VLS) monochromator system was 8,670 at 130 eV with slits of 15 um. This agrees very well with the value of 8,790 expected from the ray-tracing calculation.more » The details in the performance tests will be reported, indicating the high performance of the beamline BL13 for photoelectron spectroscopy in the soft x-ray region.« less
Short GRB Prompt and Afterglow Correlations
NASA Technical Reports Server (NTRS)
Gehrels, Neil
2007-01-01
The Swift data set on short GRBs has now grown large enough to study correlations of key parameters. The goal is to compare long and short bursts to better understand similarities and differences in the burst origins. In this study we consider the both prompt and afterglow fluxes. It is found that the optical, X-ray and gamma-ray emissions are linearly correlated - stronger bursts tend to have brighter afterglows, and bursts with brighter X-ray afterglow tend to have brighter optical afterglow. Both the prompt and afterglow fluxes are, on average, lower for short bursts than for long. Although there are short GRBs with undetected optical emission, there is no evidence for "dark" short bursts with anomalously low opt/X ratios. The weakest short bursts have a low X-ray/gamma-ray ratio.
Relationship between hard X-ray and EUV sources in solar flares
NASA Technical Reports Server (NTRS)
Kane, S. R.; Frost, K. J.; Donnelly, R. F.
1979-01-01
The high time resolution hard X-ray (not less than 15 keV) observations of medium and large impulsive solar flares made with the OSO 5 satellite are compared with the simultaneous ground-based observations of 10-1030 A EUV flux made via sudden frequency deviations (SFD) at Boulder. For most flares the agreement between the times of maxima of the impulsive hard X-ray and EUV emissions is found to be consistent with earlier studies (not less than 1 s). The rise and decay times of the EUV emission are larger than the corresponding times for X-rays not less than 30 keV. When OSO 5 hard X-ray measurements are combined with those made by OGO1, OGO 3, OGO 5, and TD 1A satellites, it is found that there is a nearly linear relationship between the energy fluxes of impulsive EUV emission and X-rays not less than 10 keV over a wide range of flare magnitudes. A model involving only a 'partial precipitation' of energetic electrons and consisting of both thick and thin target hard X-ray sources is examined.
A new low-B magnetar: Swift J1822.3-1606
NASA Astrophysics Data System (ADS)
Camero-Arranz, A.; Rea, N.; Israel, G. L.; Esposito, P.; Pons, J. A.; Mignani, R. P.; Turolla, R.; Zane, S.; Burgay, M.; Possenti, A.; Campana, S.; Enoto, T.; Gehrels, N.; Göğüş, E.; Götz, D.; Kouveliotou, C.; Makishima, K.; Mereghetti, S.; Oates, S. R.
2013-03-01
We report on the long term X-ray monitoring with Swift, RXTE, Suzaku, Chandra, and XMM-Newton of the outburst of the newly discovered magnetar Swift J1822.3-1606 (SGR 1822-1606), from the first observations soon after the detection of the short X-ray bursts which led to its discovery (July 2011), through the first stages of its outburst decay (April 2012). Our X-ray timing analysis finds the source rotating with a period of P = 8.43772016(2) s and a period derivative Ṗ = 8.3(2) × 10-14 ss-1, which entails an inferred dipolar surface magnetic field of B ≃ 2.7 × 1013 G at the equator. This measurement makes Swift J1822.3-1606 the second lowest magnetic field magnetar (after SGR 0418+5729; Rea et al. 2010). Following the flux and spectral evolution from the beginning of the outburst, we find that the flux decreased by about an order of magnitude, with a subtle softening of the spectrum, both typical of the outburst decay of magnetars. By modeling the secular thermal evolution of Swift J1822.3-1606, we find that the observed timing properties of the source, as well as its quiescent X-ray luminosity, can be reproduced if it was born with a poloidal and crustal toroidal fields of Bp ~ 1.5 × 1014 G and Btor ~ 7 × 1014 G, respectively, and if its current age is ~550 kyr (Rea et al. 2012).
Ionic charge distributions of energetic particles from solar flares
NASA Technical Reports Server (NTRS)
Mullan, D. J.; Waldron, W. L.
1986-01-01
The effects which solar flare X-rays have on the charge states of solar cosmic rays is determined quantitatively. Rather than to characterize the charge distribution by temperature alone, it is proposed that the X-ray flux at the acceleration site also is used. The effects of flare X-rays are modeled mathematically.
NASA Technical Reports Server (NTRS)
Bamba, Aya; Sawada, Makoto; Nakano, Yuto; Terada, Yukikatsu; Hewitt, John; Petre, Robert; Angelini, Lorella
2015-01-01
We present an X-ray analysis on the Galactic supernova remnant (SNR) G298.6-0.0 observed with Suzaku. The X-ray image shows a center-filled structure inside a radio shell, implying that this SNR can be categorized as a mixed-morphology (MM) SNR. The spectrum is well reproduced by a single-temperature plasma model in ionization equilibrium, with a temperature of 0.78 (0.70-0.87) keV. The total plasma mass of 30M indicates that the plasma has an interstellar medium origin. The association with a GeV gamma-ray source, 3FGL J1214.0-6236, on the shell of the SNR is discussed, in comparison with other MMSNRs with GeV gamma-ray associations. It is found that the flux ratio between absorption-corrected thermal X-rays and GeV gamma-rays decreases as the physical size of MMSNRs becomes larger. The absorption-corrected thermal X-ray flux of G298.6-0.0 and the GeV gamma-ray flux of 3FGL J1214.0-6236 closely follow this trend, implying that 3FGL J1214.0-6236 is likely to be a GeV counterpart of G298.6-0.0.
X-Ray Properties of Low-mass Pre-main Sequence Stars in the Orion Trapezium Cluster
NASA Astrophysics Data System (ADS)
Schulz, Norbert S.; Huenemoerder, David P.; Günther, Moritz; Testa, Paola; Canizares, Claude R.
2015-09-01
The Chandra HETG Orion Legacy Project (HOLP) is the first comprehensive set of observations of a very young massive stellar cluster that provides high-resolution X-ray spectra of very young stars over a wide mass range (0.7-2.3 {M}⊙ ). In this paper, we focus on the six brightest X-ray sources with T Tauri stellar counterparts that are well-characterized at optical and infrared wavelengths. All stars show column densities which are substantially smaller than expected from optical extinction, indicating that the sources are located on the near side of the cluster with respect to the observer as well as that these stars are embedded in more dusty environments. Stellar X-ray luminosities are well above 1031 erg s-1, in some cases exceeding 1032 erg s-1 for a substantial amount of time. The stars during these observations show no flares but are persistently bright. The spectra can be well fit with two temperature plasma components of 10 MK and 40 MK, of which the latter dominates the flux by a ratio 6:1 on average. The total emission measures range between 3-8 × 1054 cm-3 and are comparable to active coronal sources. The fits to the Ne ix He-Like K-shell lines indicate forbidden to inter-combination line ratios consistent with the low-density limit. Observed abundances compare well with active coronal sources underlying the coronal nature of these sources. The surface flux in this sample of 0.6-2.3 {M}⊙ classical T Tauri stars shows that coronal activity increases significantly between ages 0.1 and 10 Myr. The results demonstrate the power of X-ray line diagnostics to study coronal properties of T Tauri stars in young stellar clusters.
The INTEGRAL long monitoring of persistent ultra compact X-ray bursters
NASA Astrophysics Data System (ADS)
Fiocchi, M.; Bazzano, A.; Ubertini, P.; Bird, A. J.; Natalucci, L.; Sguera, V.
2008-12-01
Context: The combination of compact objects, short period variability and peculiar chemical composition of the ultra compact X-ray binaries make up a very interesting laboratory to study accretion processes and thermonuclear burning on the neutron star surface. Improved large optical telescopes and more sensitive X-ray satellites have increased the number of known ultra compact X-ray binaries allowing their study with unprecedented detail. Aims: We analyze the average properties common to all ultra compact bursters observed by INTEGRAL from 0.2 keV to 150 keV. Methods: We have performed a systematic analysis of the INTEGRAL public data and Key-Program proprietary observations of a sample of the ultra compact X-ray binaries. In order to study their average properties in a very broad energy band, we combined INTEGRAL with BeppoSAX and SWIFT data whenever possible. For sources not showing any significant flux variations along the INTEGRAL monitoring, we build the average spectrum by combining all available data; in the case of variable fluxes, we use simultaneous INTEGRAL and SWIFT observations when available. Otherwise we compared IBIS and PDS data to check the variability and combine BeppoSAX with INTEGRAL /IBIS data. Results: All spectra are well represented by a two component model consisting of a disk-blackbody and Comptonised emission. The majority of these compact sources spend most of the time in a canonical low/hard state, with a dominating Comptonised component and accretion rate dot {M} lower than 10-9 {M⊙}/yr, not depending on the model used to fit the data. INTEGRAL is an ESA project with instruments and Science Data Center funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland, Spain), Czech Republic and Poland, and with the participation of Russia and the USA.
NASA Astrophysics Data System (ADS)
Moore, C. S.; Dennis, B. R.; Woods, T. N.
2017-12-01
Detection of soft X-rays from the Sun provides direct information on coronal plasma at temperatures in excess of 1 MK. The Miniature X-ray Solar Spectrometer (MinXSS) CubeSats provides new spectrally resolved measurements from 0.8 -12 keV. The MinXSS spectral resolving power (R 40 at 5.9 keV) allows plasma abundances to be determined for Fe, Mg, Ni, Ca, Si, S, and Ar. Long-term temporal variations during quiet-Sun times allow active region contributions to be extracted from the full solar flux. The MinXSS 10 second time cadence allows short-term variations of the soft X-ray flux, temperature, and abundances to be determined during flares. The MinXSS spectroscopic observations, combined with the imaging spectroscopy from the Hinode X-ray Telescope (XRT) and the Reuven Ramaty Solar Spectroscopic Imager (RHESSI), hold great potential for advancing our understanding of solar dynamics.
A HELIOSEISMIC SURVEY OF NEAR-SURFACE FLOWS AROUND ACTIVE REGIONS AND THEIR ASSOCIATION WITH FLARES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braun, D. C., E-mail: dbraun@cora.nwra.com
We use helioseismic holography to study the association of shallow flows with solar flare activity in about 250 large sunspot groups observed between 2010 and 2014 with the Helioseismic and Magnetic Imager on the Solar Dynamics Observatory. Four basic flow parameters: horizontal speed, horizontal component of divergence, vertical component of vorticity, and a vertical kinetic helicity proxy, are mapped for each active region (AR) during its passage across the solar disk. Flow indices are derived representing the mean and standard deviation of these parameters over magnetic masks and compared with contemporary measures of flare X-ray flux. A correlation exists formore » several of the flow indices, especially those based on the speed and the standard deviation of all flow parameters. However, their correlation with X-ray flux is similar to that observed with the mean unsigned magnetic flux density over the same masks. The temporal variation of the flow indices are studied, and a superposed epoch analysis with respect to the occurrence to 70 M and X-class flares is made. While flows evolve with the passage of the ARs across the disk, no discernible precursors or other temporal changes specifically associated with flares are detected.« less
The Extreme Ultraviolet Flux of Very Low Mass Stars
NASA Astrophysics Data System (ADS)
Drake, Jeremy
2017-09-01
The X-ray and EUV emission of stars is vital for understanding the atmospheres and evolution of their planets. The coronae of dwarf stars later than M6 behave differently to those of earlier spectral types and are more X-ray dim and radio bright. Too faint to have been observed by EUVE, their EUV behavior is currently highly uncertain. We propose to observe a small sample of late M dwarfs using the off-axis HRC-S thin Al" filter that is sensitive to EUV emission in the 50-200 A range. The measured fluxes will be used to understand the amount of cooler coronal plasma present, and extend X-ray-EUV flux relations to the latest stellar types.
Surface Structure as a Foundation of Nanotechnology
NASA Astrophysics Data System (ADS)
Robinson, Ian
2007-03-01
The three generations of synchrotron sources achieved to date, parasitic, dedicated and undulator-based, have each time revolutionized the field of X-ray diffraction. Surface structure determination, demonstrated (but very difficult) already with Coolidge tube sources, benefited from the enormous flux gain in the first generation, such as SSRL. Dedicated 2nd-generation sources, such as NSLS, allowed in-situ surface preparation and reliable steady beams to be available when a surface was ready to measure. Third generation sources, such as APS, enormously improved the brightness, hence coherence, and thus allowed access to the surfaces of nanoparticles. This talk will illustrate how these technological advances led to two significant scientific breakthroughs. The concept of crystal truncation rods (CTR) led to new views of how the surface is a modification of, but still an extension of the bulk crystal structure. The development of lensless coherent x-ray diffraction (CXD) imaging has allowed access to the structure of nanocrystalline materials by three-dimensional phase mapping of the particle interiors. The structural principles of these new nano materials are being investigated at present using these new methods.
Decline of the 2-10 keV Emission from Eta Carinae
NASA Technical Reports Server (NTRS)
Liburd, Jamar; Corcoran, Michael F.; Hamaguchi, Kenji; Gull, Theodore R.; Madura, Thomas; Teodoro, Mairan; Moffat, Anthony; Richardson, Noel; Russell, Chris; Pollock, Andrew;
2014-01-01
Analysis of Eta Car's X-ray spectrum in the 2-10 keV band using processed data from the X-ray Telescope on Swift reveals a peak flux on July 16, 2014 of 0.046 photons s(exp -1) cm(exp -2) (3.37+/-0.15×10(exp -10) ergs s(exp -1) cm(exp -2). This flux is similar to the previous maximum flux seen by the XRT, 3.53+/-0.13×10(exp -10) ergs s(exp -1) cm(exp -2) (0.049 photons s(exp -1) cm(exp -2), ATEL #6298). Since this peak on July 16, the most recent Swift XRT quicklook data show a drop in flux. On July 20, 2014 the XRT flux as seen in the quicklook data was 0.011 photons s(exp -1) cm(exp -2) (8.3+/-0.5×10(exp -11) ergs s(exp -1) cm(exp -2)). This most likely indicates that the 2-10 keV flux is in its declining phase as Eta Car approaches its deep X-ray minimum stage (Hamaguchi et al., 2014, ApJ, 784, 125) associated with periastron passage of the 2024-day binary orbit. The column density derived from analysis of the July 20 XRT quicklook data is 7.2×10(exp 22) cm(exp -2). This is consistent with the column density seen near the same orbital phase in 2003 (7.7×10(exp 22) cm(exp -2), Hamaguchi et al., 2007, ApJ, 663, 522). Eta Car's deep X-ray minimum phase is expected to begin on July 30, 2014. Weekly Swift/XRT observations of Eta Car in the 2-10 keV band are planned throughout the X-ray minimum.
The discovery of an 81 minute modulation of the X-ray flux from 2A0311-227
NASA Technical Reports Server (NTRS)
White, N. E.
1980-01-01
The X-ray flux from 2A0311-227 was modulated at the 81 min orbital period of its optical counterpart. An absorption dip with N sub H equivalent to 5 x 10 to the 22nd power H atoms per square cm was observed at magnetic phase 0.42. It was interpreted as the accretion column of a magnetic white dwarf passing in front of the X-ray source. The spectrum was thermal with a temperature of 18 keV and a 300 eV equivalent width iron line at 6.6 keV.
Accelerated radiation damage testing of x-ray mask membrane materials
NASA Astrophysics Data System (ADS)
Seese, Philip A.; Cummings, Kevin D.; Resnick, Douglas J.; Yanof, Arnold W.; Johnson, William A.; Wells, Gregory M.; Wallace, John P.
1993-06-01
An accelerated test method and resulting metrology data are presented to show the effects of x- ray radiation on various x-ray mask membrane materials. A focused x-ray beam effectively reduces the radiation time to 1/5 of that required by normal exposure beam flux. Absolute image displacement results determined by this method indicate imperceptible movement for boron-doped silicon and silicon carbide membranes at a total incident dose of 500 KJ/cm2, while image displacement for diamond is 50 nm at 150 KJ/cm2 and silicon nitride is 70 nm at 36 KJ/cm2. Studies of temperature rise during the radiation test and effects of the high flux radiation, i.e., reciprocity tests, demonstrate the validity of this test method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaluzny, J.; Rozanska, A.; Rozyczka, M.
2012-05-01
We show that the optical counterpart of the X-ray source CX 1 in M4 is a {approx}20th magnitude star, located in the color-magnitude diagram on (or very close to) the main sequence of the cluster, and exhibiting sinusoidal variations of the flux. We find the X-ray flux to be also periodically variable, with X-ray and optical minima coinciding. Stability of the optical light curve, lack of UV-excess, and unrealistic mean density resulting from period-density relation for semidetached systems speak against the original identification of CX 1 as a cataclysmic variable. We argue that the X-ray active component of this systemmore » is a neutron star (probably a millisecond pulsar).« less
X-ray Emission From Eta Carinae near Periastron in 2009 I: A Two State Solution
NASA Technical Reports Server (NTRS)
Hamaguchi, Kenji; Corcoran, Michael F.; Russell, Christopher; Pollock, Andrew M. T.; Gull, Theodore R.; Teodoro, Mairan; Madura, Thomas I.; Damineli, Augusto; Pittard, Julian M.
2014-01-01
X-ray emission from the supermassive binary system Eta Carinae declines sharply around periastron. This X-ray minimum has two distinct phases the lowest flux phase in the first 3 weeks and a brighter phase thereafter. In 2009, the Chandra X-ray Observatory monitored the first phase five times and found the lowest observed flux at 1.91012 ergs/sq cm/s (38 keV). The spectral shape changed such that the hard band above 4 keV dropped quickly at the beginning and the soft band flux gradually decreased to its lowest observed value in 2 weeks. The hard band spectrum had begun to recover by that time. This spectral variation suggests that the shocked gas producing the hottest X-ray gas near the apex of the wind-wind collision (WWC) is blocked behind the dense inner wind of the primary star, which later occults slightly cooler gas down-stream. Shocked gas previously produced by the system at earlier orbital phases is suggested to produce the faint residual X-ray emission seen when the emission near the apex is completely blocked by the primary wind. The brighter phase is probably caused by the re-appearance of the WWC plasma, whose emissivity significantly declined during the occultation. We interpret this to mean that the X-ray minimum is produced by a hybrid mechanism of an occultation and a decline in emissivity of the WWC shock. We constrain timings of superior conjunction and periastron based on these results.
NASA Astrophysics Data System (ADS)
Caliri, C.; Romano, F. P.; Mascali, D.; Gammino, S.; Musumarra, A.; Castro, G.; Celona, L.; Neri, L.; Altana, C.
2013-10-01
Electron Cyclotron Resonance Ion Sources (ECRIS) are based on ECR heated plasmas emitting high fluxes of X-rays. Here we illustrate a pilot study of the X-ray emission from a compact plasma-trap in which an off-resonance microwave-plasma interaction has been attempted, highlighting a possible Bernstein-Waves based heating mechanism. EBWs-heating is obtained via the inner plasma EM-to-ES wave conversion and enables to reach densities much larger than the cut-off ones. At LNS-INFN, an innovative diagnostic technique based on the design of a Pinhole Camera (PHC) coupled to a CCD device for X-ray Imaging of the plasma (XRI) has been developed, in order to integrate X-ray traditional diagnostics (XRS). The complementary use of electrostatic probes measurements and X-ray diagnostics enabled us to gain knowledge about the high energy electrons density and temperature and about the spatial structure of the source. The combination of the experimental data with appropriate modeling of the plasma-source allowed to estimate the X-ray emission intensity in different energy domains (ranging from EUV up to Hard X-rays). The use of ECRIS as X-ray source for multidisciplinary applications, is now a concrete perspective due to the intense fluxes produced by the new plasma heating mechanism.
Multiwavelength study of the flaring activity of Sagittarius A* in 2014 February-April
NASA Astrophysics Data System (ADS)
Mossoux, E.; Grosso, N.; Bushouse, H.; Eckart, A.; Yusef-Zadeh, F.; Plambeck, D.; Peissker, F.; Valencia-S., M.; Porquet, D.; Roberts, D.
2017-10-01
We studied the flaring activity of the Galactic Center supermassive black hole Sgr A* close to the DSO/G2 pericenter passage with XMM-Newton, HST/WFC3, VLT/SINFONI, VLA and CARMA. We detected 3 and 2 NIR and 2 X-ray flares with HST, VLT and XMM-Newton, respectively. The Mar. 10 X-ray flare has a long rise and a rapid decay. Its NIR counterpart peaked before the X-ray peak implying a variation in the X-ray-to-NIR flux ratio. This flare may be one flare created by the adiabatic compression of a plasmon or 2 close flares with simultaneous X-ray/NIR peaks. The rising radio flux-density observed on Mar. 10 with the VLA could be the delayed emission from a NIR/X-ray flare preceding our observations. On Apr. 2, we observed the start of the NIR counterpart of the X-ray flare and the end of a bright NIR flare without X-ray counterpart. We studied the physical parameters of the flaring region for each NIR flare but none of the radiative processes can be ruled out for the X-ray flares creation. Our X-ray flaring rate is consistent with those observed in the 2012 Chandra/XVP campaign. No increase in the flaring activity was thus triggered close to the DSO/G2 pericenter passage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kataoka, Jun; Stawarz, Łukasz, E-mail: kataoka.jun@waseda.jp
2016-08-10
We report on the detection of excess hard X-ray emission from the TeV BL Lac object Mrk 421 during the historical low-flux state of the source in 2013 January. Nuclear Spectroscopic Telescope Array observations were conducted four times between MJD 56294 and MJD 56312 with a total exposure of 80.9 ks. The source flux in the 3–40 keV range was nearly constant, except for MJD 56307 when the average flux level increased by a factor of three. Throughout the exposure, the X-ray spectra of Mrk 421 were well represented by a steep power-law model with a photon index of Γmore » ≃ 3.1, although a significant excess was noted above 20 keV in the MJD 56302 data when the source was in its faintest state. Moreover, Mrk 421 was detected at more than the 4 σ level in the 40–79 keV count maps for both MJD 56307 and MJD 56302 but not during the remaining two observations. The detected excess hard X-ray emission connects smoothly with the extrapolation of the high-energy γ -ray continuum of the blazar constrained by Fermi -LAT during source quiescence. These findings indicate that while the overall X-ray spectrum of Mrk 421 is dominated by the highest-energy tail of the synchrotron continuum, the variable excess hard X-ray emission above 20 keV (on the timescale of a week) is related to the inverse Compton emission component. We discuss the resulting constraints on the variability and spectral properties of the low-energy segment of the electron energy distribution in the source.« less
IUE and ROSAT monitoring of the bright QSO H1821+643
NASA Technical Reports Server (NTRS)
Halpern, Jules; Kolman, Michiel; Shrader, Chris; Filippenko, Alexei
1991-01-01
The analysis is presented of IUE observations of the bright QSO H1821+643, obtained during the ROSAT All Sky Survey (the RIASS program). The objectives were: (1) to establish whether the UV and soft X ray radiation have the same physical origin; and (2) to determine if this physical origin is an accretion disk. Supporting ground based spectrophotometry was also obtained. The analysis shows that the shape and flux level of the UV continuum did not vary among the seven IUE observation spanning one month, to an upper limit of about 8 percent. So it is of great interest to determine whether the soft X ray flux varied during this period. Since X ray variability in AGNs is often more rapid and of higher amplitude than in the UV, detection of X ray variability in the ROSAT data could severely challenge the accretion disk model for the soft X ray excess.
The X-ray emitting galaxy Centaurus A
NASA Technical Reports Server (NTRS)
Mushotzky, R. F.; Serlemitsos, P. J.; Boldt, E. A.; Holt, S. S.; Becker, R. H.
1978-01-01
OSO-8 X-ray observations of Cen A in 1975 and 1976 are reported. The source spectrum can be well fitted in both years by a power law of number index 1.66 and absorption due to 1.3 by 10 to the 23rd power atoms/sq cm. The total flux varied by a factor of 2 between 1975 and 1976. In 1976 there were flux variations of approximately 40% on a time scale of days. Measurements of the 6.4-keV Fe fluorescent line and the 7.1-keV absorption edge imply Fe/H of approximately 0.000016. Simultaneous radio measurements show variation in phase with X-ray variability. Consideration of radio, millimeter, infrared, and X-ray data shows that all the data can be accounted for by a model in which the X-rays are due to a synchrotron self-Compton source embedded in a cold H2 cloud.
Anti-correlated X-ray and Radio Variability in the Transitional Millisecond Pulsar PSR J1023+0038
NASA Astrophysics Data System (ADS)
Bogdanov, Slavko; Deller, Adam; Miller-Jones, James; Archibald, Anne; Hessels, Jason W. T.; Jaodand, Amruta; Patruno, Alessandro; Bassa, Cees; D'Angelo, Caroline
2018-01-01
The PSR J1023+0038 binary system hosts a 1.69-ms neutron star and a low-mass, main-sequence-like star. The system underwent a transformation from a rotation-powered to a low-luminosity accreting state in 2013 June, in which it has remained since. We present an unprecedented set of strictly simultaneous Chandra X-ray Observatory and Karl G. Jansky Very Large Array observations, which for the first time reveal a highly reproducible, anti-correlated variability pattern. Rapid declines in X-ray flux are always accompanied by a radio brightening with duration that closely matches the low X-ray flux mode intervals. We discuss these findings in the context of accretion and jet outflow physics and their implications for using the radio/X-ray luminosity plane to distinguish low-luminosity candidate black hole binary systems from accreting transitional millisecond pulsars.
Asymetrically driven implosion experiment on the Laser MégaJoule
NASA Astrophysics Data System (ADS)
Philippe, Franck; Seytor, Patricia; Tassin, Veronique; Rosch, Rudolf; Villette, Bruno
2017-10-01
We report on the results of the first implosion experiments performed on the Laser MégaJoule (LMJ) facility. Their main purpose was to study implosion with large polar asymmetries of incident radiative flux on a capsule, while preserving azimuthal symmetry, in the context of ICF. In these experiments, one quad of LMJ is focused axially on a gold shield inside a hohlraum. The shield effectively divides the hohlraum in two compartments, and a capsule placed in the second compartment is indirectly driven by the x-ray flux generated in the first one. The subsequent asymmetric implosion is backlit by an x-ray source generated by another quad of LMJ and imaged with an x-ray microscope coupled to a framing camera. Time-gated x-ray radiographs of the imploding capsule and diode array measurements of the hohlraum x-ray emission are found to be in good agreement with FCI2 radiative hydrodynamics simulations.
Gamma rays, X-rays, and optical light from the cobalt and the neutron star in SN 1987A
NASA Technical Reports Server (NTRS)
Kumagai, Shiomi; Shigeyama, Toshikazu; Nomoto, Ken'ichi; Itoh, Masayuki; Nishimura, Jun
1989-01-01
Recent developments in modeling the X-ray and gamma-ray emission from SN 1987A are discussed by taking into account both the decaying cobalt and the buried neutron star. The light curve and the spectra evolution of X-rays and gamma-rays are well modeled up to day of about 300 if mixing of Co-56 into hydrogen-rich envelope is assumed. However, the 16-28 keV flux observed by Ginga declines very slowly, whereas the spherical mixing model predicts that the flux should have decreased by a large factor at t greater than 300d. It is shown that this problem can be solved if the photoelectric absorption of X-rays is effectively reduced as a result of the formation of chemically inhomogeneous clumps. Based on the adopted hydrodynamical model and the abundance distribution, predictions are offered for future optical, X-ray, and gamma-ray light curves by taking into account other radioactive sources and various types of the central source, e.g., a buried neutron star accreting the reinfalling material or an isolated pulsar.
NASA Astrophysics Data System (ADS)
Ezoe, Y.; Ishisaki, Y.; Ohashi, T.; Ishikawa, K.; Miyoshi, Y.; Fujimoto, R.; Terada, N.; Kasahara, S.; Fujimoto, M.; Mitsuda, K.; Nishijo, K.; Noda, A.
2013-12-01
Soft X-ray observations of solar wind charge exchange (SWCX) emission from the Earth's magnetosphere using the Japanese X-ray astronomy satellite Suzaku are shown, together with our X-ray imaging mission concept to characterize the solar wind interaction with the magnetosphere. In recent years, the SWCX emission from the Earth's magnetosphere, originally discovered as unexplained noise during the soft X-ray all sky survey (Snowden et al. 1994), is receiving increased attention on studying geospace. The SWCX is a reaction between neutrals in exosphere and highly charged ions in the magnetosphere originated from solar wind. Robertson et al. (2005) modeled the SWCX emission as seen from an observation point 50 Re from Earth. In the resulting X-ray intensities, the magnetopause, bow shock and cusp were clearly visible. High sensitivity soft X-ray observation with CCDs onboard recent X-ray astronomy satellites enables us to resolve SWCX emission lines and investigate time correlation with solar wind as observed with ACE and WIND more accurately. Suzaku is the 5th Japanese X-ray astronomy satellite launched in 2005. The line of sight direction through cusp is observable, while constraints on Earth limb avoidance angle of other satellites often limits observable regions. Suzaku firstly detected the SWCX emission while pointing in the direction of the north ecliptic pole (Fujimoto et al. 2007). Using the Tsyganenko 1996 magnetic field model, the distance to the nearest SWCX region was estimated as 2-8 Re, implying that the line of sight direction can be through magnetospheric cusp. Ezoe et al. (2010) reported SWCX events toward the sub-solar side of the magnetosheath. These cusp and sub-solar side magnetosheath regions are predicted to show high SWCX fluxes by Robertson et al. (2005). On the other hand, Ishikawa et al. (2013) discovered a similarly strong SWCX event when the line of sight direction did not transverse these two regions. Motivated by these detections, Ishikawa et al. have conducted the systematic search of the Suzaku's 6 years archival data for the SWCX events. From ~2000 data sets, ~40 showed correlations between the X-ray light curve and solar wind flux. The SWCX emissivity is calculated in each observation by normalizing the observed X-ray flux by the solar wind flux observed as ACE and WIND, and is discussed in the context of the exospheric neutral distribution and magnetospheric structure. These soft X-ray studies with Earth-orbiting satellites are now leading X-ray astronomers and space plasma physicists to propose an X-ray imaging mission of the Earth's magnetosphere. Soft X-ray imaging from high altitude (e.g., the Moon orbit) offers the capability of mapping plasma structures at <0.1 Re scale and time cadence at
Dante Soft X-ray Power Diagnostic for NIF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dewald, E; Campbell, K; Turner, R
2004-04-15
Soft x-ray power diagnostics are essential for measuring spectrally resolved the total x-ray flux, radiation temperature, conversion efficiency and albedo that are important quantities for the energetics of indirect drive hohlraums. At the Nova or Omega Laser Facilities, these measurements are performed mainly with Dante, but also with DMX and photo-conductive detectors (PCD's). The Dante broadband spectrometer is a collection of absolute calibrated vacuum x-ray diodes, thin filters and x-ray mirrors used to measure the soft x-ray emission for photon energies above 50 eV.
NASA Astrophysics Data System (ADS)
Winglee, R. M.
1994-09-01
While magnetohydrodynamics (MHD) can provide a reasonable description of the overall magnetic reconnection that is believed to drive flares, additional, and often separate processes have to be envoked to in order to explain the electron acceleration that is responsible for many of the observed flare emissions. A new model that incorporates the dynamic coronal current sheets, the reconnection site, and possible electron acceleration processes is developed through the use of two-dimensional particle and modified two-fluid simulations. The specific example of an eruptive flare driven by the coalescence of flux tubes supported by prescribed photospheric current elements is evaluated. It is shown that the electrons and ions have differential trajectories through the coronal current sheet which leads to the development of additonal plasma currents that flow around the surface of the current sheet. These surface currents are explicitly neglected in MHD but they are vital to the flare dynamics because they divert current from the coronal current sheet into the chromosphere, producing an effective resistivity that aids the development of fast reconnection. Because the surface currents are in the plane of the magnetic field, electrons in them experience strong acceleration and can account for the observed hard X-ray emissions. Model predictions are compared with observed time profiles of hard X-ray emissions and Doppler shifts seen in soft X-ray line emissions and are able to account for such features as (1) the asymmetry in the rise and decay time of the hard X-rays, (2) the apparent delay between the largest Doppler shifts and the hard X-ray peak, and (3) the relatively low intensity of the blue-shifted component. The use of particle and fluid simulations is important because it provides different, but complementary treatments of the electron acceleration, the global magnetic morphology, and the flare current system.
Relativistic Disk Reflection in the Neutron Star X-Ray BinaryXTE J1709-267 with NuSTAR
NASA Astrophysics Data System (ADS)
Ludlam, R. M.; Miller, J. M.; Cackett, E. M.; Degenaar, N.; Bostrom, A. C.
2017-04-01
We perform the first reflection study of the soft X-ray transient and Type 1 burst source XTE J1709-267 using NuSTAR observations during its 2016 June outburst. There was an increase in flux near the end of the observations, which corresponds to an increase from ˜0.04 L Edd to ˜0.06 L Edd assuming a distance of 8.5 kpc. We have separately examined spectra from the low- and high-flux intervals, which are soft and show evidence of a broad Fe K line. Fits to these intervals with relativistic disk reflection models have revealed an inner-disk radius of {13.8}-1.8+3.0 {R}g (where {R}g={GM}/{c}2) for the low-flux spectrum and {23.4}-5.4+15.6 {R}g for the high-flux spectrum at the 90% confidence level. The disk is likely truncated by a boundary layer surrounding the neutron star (NS) or the magnetosphere. Based on the measured luminosity and the accretion efficiency for a disk around an NS, we estimate that the theoretically expected size for the boundary layer would be ˜ 0.9{--}1.1 {R}g from the NS’s surface, which can be increased by spin or viscosity effects. Another plausible scenario is that the disk could be truncated by the magnetosphere. We place a conservative upper limit on the strength of the magnetic field at the poles (assuming {a}* =0 and {M}{NS}=1.4{M}⊙ ) of B≤slant 0.75-3.70× {10}9 G, though X-ray pulsations have not been detected from this source.
The Relation Between Magnetic Fields and X-ray Emission for Solar Microflares and Active Regions
NASA Astrophysics Data System (ADS)
Kirichenko, A. S.; Bogachev, S. A.
2017-09-01
We present the result of a comparison between magnetic field parameters and the intensity of X-ray emission for solar microflares with Geosynchronous Operational Environmental Satellites (GOES) classes from A0.02 to B5.1. For our study, we used the monochromatic MgXII Imaging Spectroheliometer (MISH), the Full-disk EUV Telescope (FET), and the Solar PHotometer in X-rays (SphinX) instruments onboard the Complex Orbital Observations Near-Earth of Activity of the Sun-Photon CORONAS- Photon spacecraft because of their high sensitivity in soft X-rays. The peak flare flux (PFF) for solar microflares was found to depend on the strength of the magnetic field and on the total unsigned magnetic flux as a power-law function. In the spectral range 2.8 - 36.6 Å, which shows very little increase related to microflares, the power-law index of the relation between the X-ray flux and magnetic flux for active regions is 1.48 ±0.86, which is close to the value obtained previously by Pevtsov et al. ( Astrophys. J. 598, 1387, 2003) for different types of solar and stellar objects. In the spectral range 1 - 8 Å, the power-law indices for PFF(B) and PFF(Φ) for microflares are 3.87 ±2.16 and 3 ±1.6, respectively. We also make suggestions on the heating mechanisms in active regions and microflares under the assumption of loops with constant pressure and heating using the Rosner-Tucker-Vaiana scaling laws.
Digging in the coronal graveyard - A Rosat observation of the red giant Arcturus
NASA Technical Reports Server (NTRS)
Ayres, Thomas R.; Fleming, Thomas A.; Schmitt, Juergen H. M. M.
1991-01-01
A deep exposure of the bright star Arcturus (Alpha Bootis: K1 III) with the Roentgensatellit (Rosat) failed to detect soft X-ray emission from the archetype 'noncoronal' red giant. The 3-sigma upper limit in the energy band 0.1-2.4 keV corresponds to an X-ray luminosity of less than 3 x 10 to the 25th erg/s, equivalent to a coronal surface flux density of less than 0.0001 solar. The nondetection safely eliminates coronal irradiation as a possible mechanism to produce the highly variable He I 10830 feature and emphasizes the sharp decline in solarlike coronal activity that accompanies the evolution of low-mass single stars away from the main sequence. While the most conspicuous object in the Rosat field of view was not visible in X-rays, at least one fainter star is among the about 60 sources recorded: the Sigma Sct variable CN Boo, an A8 giant in the UMa Stream.
First X-ray Observations of the Young Pulsar J1357-6429
NASA Technical Reports Server (NTRS)
Zavlin, Vyacheslav E.
2007-01-01
The first short Chandra and XMM-Newton observations of the young and energetic pulsar J1357-6429 provided strong indications of a tail-like pulsar-wind nebula associated with this object, as well as strong pulsations of its X-ray flux with a pulsed fraction above 40% and a thermal component dominating at lower photon energies (below 2 keV). The elongated nebular is very compact in size. about 1" x 1.5" and might be interpreted as a pulsar jet. The thermal radiation is most plausibly emitted from the entire neutron star surface of an effective temperature about 1 MK covered with a magnetized hydrogen atmosphere At higher energies the pulsar's emission is of a nonthermal (magnetospheric) origin, with a power-law spectrum of a photon index Gamma approx. equals 1.1. This makes the X-ray properties of PSR J1357-6429 very similar to those of the youngest pulsars J1119-6127 and Vela with a detected thermal radiation.
The Origin of the EUV Emission in Her X-1
NASA Technical Reports Server (NTRS)
Leahy, D. A.; Marshall, H.
1999-01-01
Her X-1 exhibits a strong orbital modulation of its EUV flux with a large decrease around time of eclipse of the neutron star, and a significant dip which appears at different orbital phases at different 35-day phases. We consider observations of Her X-1 in the EUVE by the Extreme Ultraviolet Explorer (EUVE), which includes data from 1995 near the end of the Short High state, and date from 1997 at the start of the Short High state. The observed EUV lightcurve has bright and faint phases. The bright phase can be explained as the low energy tail of the soft x-ray pulse. The faint phase emission has been modeled to understand its origin. We find: the x-ray heated surface of HZ Her is too cool to produce enough emission; the accretion disk does not explain the orbital modulation; however, reflection of x-rays off of HZ Her can produce the observed lightcurve with orbital eclipses. The dip can be explained by shadowing of the companion by the accretion disk. We discuss the constraints on the accretion disk geometry derived from the observed shadowing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, A. S.; Bentley, C. D.; Foster, J. M.
2008-10-15
Photoconductive detectors (PCDs) are routinely used alongside vacuum x-ray diodes (XRDs) to provide an alternative x-ray flux measurement at laser facilities such as HELEN at AWE Aldermaston, UK, and Omega at the Laboratory for Laser Energetics. To evaluate diamond PCDs as an alternative to XRD arrays, calibration measurements made at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory are used to accurately calculate the x-ray flux from a laser-heated target. This is compared to a flux measurement using the Dante XRD diagnostic. Estimates indicate that the photoinduced conductivity from measurements made at Omega are too large, and calculationsmore » using the radiometric calibrations made at the NSLS agree with this hypothesis. High-purity, single-crystal, chemical vapor deposited (CVD) diamond samples are compared to natural type-IIa PCDs and show promising high resistivity effects, the corollary of which preliminary results show is a slower response time.« less
An Axisymmetric Hydrodynamical Model for the Torus Wind in AGN. 2; X-ray Excited Funnel Flow
NASA Technical Reports Server (NTRS)
Dorodnitsyn, A.; Kallman, T.; Proga, D.
2008-01-01
We have calculated a series of models of outflows from the obscuring torus in active galactic nuclei (AGN). Our modeling assumes that the inner face of a rotationally supported torus is illuminated and heated by the intense X-rays from the inner accretion disk and black hole. As a result of such heating a strong biconical outflow is observed in our simulations. We calculate 3-dimensional hydrodynamical models, assuming axial symmetry, and including the effects of X-ray heating, ionization, and radiation pressure. We discuss the behavior of a large family of these models, their velocity fields, mass fluxes and temperature, as functions of the torus properties and X-ray flux. Synthetic warm absorber spectra are calculated, assuming pure absorption, for sample models at various inclination angles and observing times. We show that these models have mass fluxes and flow speeds which are comparable to those which have been inferred from observations of Seyfert 1 warm absorbers, and that they can produce rich absorption line spectra.
NASA Astrophysics Data System (ADS)
Escoubet, C. P.; Dimmock, A. P.; Walsh, B.; Sibeck, D. G.; Berchem, J.; Nykyri, K.; Turc, L.; Read, A.; Branduardi-Raymont, G.; Wang, C.; Sembay, S.; Kuntz, K. D.; Dai, L.; Li, L.; Donovan, E.; Spanswick, E.; Laakso, H. E.; Zheng, J.; Rebuffat, D.
2016-12-01
Solar wind Magnetosphere Ionosphere Link Explorer (SMILE) is a novel self-standing mission, in collaboration between ESA and Chinese Academy of Science. Its objective is to observe the solar wind-magnetosphere coupling via simultaneous in situ solar wind/magnetosheath plasma and magnetic field measurements, soft X-Ray images of the magnetosheath and polar cusps, and UV images of global auroral distributions. The observations of the cusps and magnetosheath with the X-ray imager are possible through the relatively recent discovery of solar wind charge exchange (SWCX) X-ray emission, first observed at comets, and subsequently found to occur in the vicinity of the Earth's magnetosphere. In preparation for the mission, we need to determine the cusp's morphology, motion and in situ properties (density, velocity, temperature) that are expected to be observed by the spacecraft. To do so, we have selected a series of cusp crossings by the Cluster spacecraft that can be used to simulate X-ray emissions across the width of the cusp for different IMF orientations. In view of the well-known cusp ion dispersions, we expect that X ray emissions peak near the equatorial boundary of the cusp for southward IMF Bz, but near the poleward boundary of the cusp for northward IMF Bz. We also employ Cluster cusp observations during storms to predict X-ray emissions to be expected for periods of high solar wind fluxes. In addition, we use THEMIS observations from January 2008 to July 2015 for moderate (nsw*vsw < 4.9x10^8 /cm^2s) and high (nsw*vsw > 4.9x10^8 /cm^2s) solar wind fluxes to investigate X-rays emitted by the magnetosheath and to determine their variation as a function of distance from the subsolar point along the Sun-Earth line and along the flanks of the magnetosphere. We will show that high solar wind fluxes greatly enhance soft X-ray emissions, not only because solar wind fluxes increases but also because the emission region moves deeper within the Earth's exosphere.
X-ray Heating and Electron Temperature of Laboratory Photoionized Plasmas
NASA Astrophysics Data System (ADS)
Mancini, Roberto; Lockard, Tom; Mayes, Daniel C.; Loisel, Guillaume; Bailey, James E.; Rochau, Gregory; Abdallah, J.; Golovkin, I.
2018-06-01
In separate experiments performed at the Z facility of Sandia National Laboratories two different samples were employed to produce and characterize photoionized plasmas. One was a gas cell filled with neon, and the other was a thin silicon layer coated with plastic. Both samples were driven by the broadband x-ray flux produced at the collapse of a wire array z-pinch implosion. Transmission spectroscopy of a narrowband portion of the x-ray flux was used to diagnose the charge state distribution, and the electron temperature was extracted from a Li-like ion level population ratio. To interpret the temperature measurement, we performed Boltzmann kinetics and radiation-hydrodynamic simulations. We found that non-equilibrium atomic physics and the coupling of the radiation flux to the atomic level population kinetics play a critical role in modeling the x-ray heating of photoionized plasmas. In spite of being driven by similar x-ray drives, differences of ionization and charged state distributions in the neon and silicon plasmas are reflected in the plasma heating and observed electron temperatures.This work was sponsored in part by DOE Office of Science Grant DE-SC0014451, and the Z Facility Fundamental Science Program of SNL.
The Instruments and Capabilities of the Miniature X-Ray Solar Spectrometer (MinXSS) CubeSats
NASA Astrophysics Data System (ADS)
Moore, Christopher S.; Caspi, Amir; Woods, Thomas N.; Chamberlin, Phillip C.; Dennis, Brian R.; Jones, Andrew R.; Mason, James P.; Schwartz, Richard A.; Tolbert, Anne K.
2018-02-01
The Miniature X-ray Solar Spectrometer (MinXSS) CubeSat is the first solar science oriented CubeSat mission flown for the NASA Science Mission Directorate, with the main objective of measuring the solar soft X-ray (SXR) flux and a science goal of determining its influence on Earth's ionosphere and thermosphere. These observations can also be used to investigate solar quiescent, active region, and flare properties. The MinXSS X-ray instruments consist of a spectrometer, called X123, with a nominal 0.15 keV full-width at half-maximum (FWHM) resolution at 5.9 keV and a broadband X-ray photometer, called XP. Both instruments are designed to obtain measurements from 0.5 - 30 keV at a nominal time cadence of 10 s. A description of the MinXSS instruments, performance capabilities, and relation to the Geostationary Operational Environmental Satellite (GOES) 0.1 - 0.8 nm flux is given in this article. Early MinXSS results demonstrate the capability of measuring variations of the solar spectral soft X-ray (SXR) flux between 0.8 - 12 keV from at least GOES A5-M5 (5 × 10^{-8} - 5 ×10^{-5} W m^{-2}) levels and of inferring physical properties (temperature and emission measure) from the MinXSS data alone. Moreover, coronal elemental abundances can be inferred, specifically for Fe, Ca, Si, Mg, S, Ar, and Ni, when the count rate is sufficiently high at each elemental spectral feature. Additionally, temperature response curves and emission measure loci demonstrate the MinXSS sensitivity to plasma emission at different temperatures. MinXSS observations coupled with those from other solar observatories can help address some of the most compelling questions in solar coronal physics. Finally, simultaneous observations by MinXSS and the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) can provide the most spectrally complete soft X-ray solar flare photon flux measurements to date.
GRB 050117: Simultaneous Gamma-ray and X-ray Observations with the Swift Satellite
NASA Technical Reports Server (NTRS)
Hill, J. E.; Morris, D. C.; Sakamoto, T.; Sato, G.; Burrows, D. N.; Angelini, L.; Pagani, C.; Moretti, A.; Abbey, A. F.; Barthelmy, S.
2005-01-01
The Swift Gamma-Ray Burst Explorer performed its first autonomous, X-ray follow-up to a newly detected GRB on 2005 January 17, within 193 seconds of the burst trigger by the Swift Burst Alert Telescope. While the burst was still in progress, the X-ray Telescope obtained a position and an image for an un-catalogued X-ray source; simultaneous with the gamma-ray observation. The XRT observed flux during the prompt emission was 1.1 x 10(exp -8) ergs/sq cm/s in the 0.5-10 keV energy band. The emission in the X-ray band decreased by three orders of magnitude within 700 seconds, following the prompt emission. This is found to be consistent with the gamma-ray decay when extrapolated into the XRT energy band. During the following 6.3 hours, the XRT observed the afterglow in an automated sequence for an additional 947 seconds, until the burst became fully obscured by the Earth limb. A faint, extremely slowly decaying afterglow, alpha=-0.21, was detected. Finally, a break in the lightcurve occurred and the flux decayed with alpha<-1.2. The X-ray position triggered many follow-up observations: no optical afterglow could be confirmed, although a candidate was identified 3 arcsecs from the XRT position.
Compound refractive X-ray lens
Nygren, David R.; Cahn, Robert; Cederstrom, Bjorn; Danielsson, Mats; Vestlund, Jonas
2000-01-01
An apparatus and method for focusing X-rays. In one embodiment, his invention is a commercial-grade compound refractive X-ray lens. The commercial-grade compound refractive X-ray lens includes a volume of low-Z material. The volume of low-Z material has a first surface which is adapted to receive X-rays of commercially-applicable power emitted from a commercial-grade X-ray source. The volume of low-Z material also has a second surface from which emerge the X-rays of commercially-applicable power which were received at the first surface. Additionally, the commercial-grade compound refractive X-ray lens includes a plurality of openings which are disposed between the first surface and the second surface. The plurality of openings are oriented such that the X-rays of commercially-applicable power which are received at the first surface, pass through the volume of low-Z material and through the plurality openings. In so doing, the X-rays which emerge from the second surface are refracted to a focal point.
Correlation between X-ray flux and rotational acceleration in Vela X-1
NASA Technical Reports Server (NTRS)
Deeter, J. E.; Boynton, P. E.; Shibazaki, N.; Hayakawa, S.; Nagase, F.
1989-01-01
The results of a search for correlations between X-ray flux and angular acceleration for the accreting binary pulsar Vela X-1 are presented. Results are based on data obtained with the Hakucho satellite during the interval 1982 to 1984. In undertaking this correlation analysis, it was necessary to modify the usual statistical method to deal with conditions imposed by generally unavoidable satellite observing constraints, most notably a mismatch in sampling between the two variables. The results are suggestive of a correlation between flux and the absolute value of the angular acceleration, at a significance level of 96 percent. The implications of the methods and results for future observations and analysis are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, X., E-mail: xzm0005@auburn.edu; Maurer, D. A.; Knowlton, S. F.
2015-12-15
Non-axisymmetric free-boundary equilibrium reconstructions of stellarator plasmas are performed for discharges in which the magnetic configuration is strongly modified by ohmically driven plasma current. These studies were performed on the compact toroidal hybrid device using the V3FIT reconstruction code with a set of 50 magnetic diagnostics external to the plasma. With the assumption of closed magnetic flux surfaces, the reconstructions using external magnetic measurements allow accurate estimates of the net toroidal flux within the last closed flux surface, the edge safety factor, and the plasma shape of these highly non-axisymmetric plasmas. The inversion radius of standard sawteeth is used tomore » infer the current profile near the magnetic axis; with external magnetic diagnostics alone, the current density profile is imprecisely reconstructed.« less
NASA Astrophysics Data System (ADS)
Ma, X.; Maurer, D. A.; Knowlton, S. F.; ArchMiller, M. C.; Cianciosa, M. R.; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Hebert, J. D.; Herfindal, J. L.; Pandya, M. D.; Roberds, N. A.; Traverso, P. J.
2015-12-01
Non-axisymmetric free-boundary equilibrium reconstructions of stellarator plasmas are performed for discharges in which the magnetic configuration is strongly modified by ohmically driven plasma current. These studies were performed on the compact toroidal hybrid device using the V3FIT reconstruction code with a set of 50 magnetic diagnostics external to the plasma. With the assumption of closed magnetic flux surfaces, the reconstructions using external magnetic measurements allow accurate estimates of the net toroidal flux within the last closed flux surface, the edge safety factor, and the plasma shape of these highly non-axisymmetric plasmas. The inversion radius of standard sawteeth is used to infer the current profile near the magnetic axis; with external magnetic diagnostics alone, the current density profile is imprecisely reconstructed.
Ma, X.; Maurer, D. A.; Knowlton, Stephen F.; ...
2015-12-22
Non-axisymmetric free-boundary equilibrium reconstructions of stellarator plasmas are performed for discharges in which the magnetic configuration is strongly modified by ohmically driven plasma current. These studies were performed on the compact toroidal hybrid device using the V3FIT reconstruction code with a set of 50 magnetic diagnostics external to the plasma. With the assumption of closed magnetic flux surfaces, the reconstructions using external magnetic measurements allow accurate estimates of the net toroidal flux within the last closed flux surface, the edge safety factor, and the plasma shape of these highly non-axisymmetric plasmas. Lastly, the inversion radius of standard saw-teeth is usedmore » to infer the current profile near the magnetic axis; with external magnetic diagnostics alone, the current density profile is imprecisely reconstructed.« less
Search For Gamma-Ray Emission From X-Ray-Selected Seyfert Galaxies With Fermi -LAT
Ackermann, M.
2012-02-23
We report on a systematic investigation of the γ-ray properties of 120 hard Xray– selected Seyfert galaxies classified as ‘radio-quiet’ objects, utilizing the threeyear accumulation of Fermi–LAT data. Our sample of Seyfert galaxies is selected using the Swift–BAT 58-month catalog, restricting the analysis to the bright sources with average hard X-ray fluxes F14-195 keV ≥ 2.5 × 10 -11 erg cm -2 s -1 at high Galactic latitudes (|b| > 10°). In order to remove ‘radio-loud’ objects from the sample, we use the ‘hard X-ray radio loudness parameter’, RrX , defined as the ratio of the total 1.4 GHz radiomore » to 14 - 195 keV hard X-ray energy fluxes. Among 120 X-ray bright Seyfert galaxies with RrX < 10-4, we did not find a statistically significant γ-ray excess (TS > 25) positionally coincident with any target Seyferts, with possible exceptions of ESO 323–G077 and NGC 6814. The mean value of the 95% confidence level γ-ray upper limit for the integrated photon flux above 100 MeV from the analyzed Seyferts is ≃ 4×10 -9 ph cm -2 s -1 , and the upper limits derived for several objects reach ≃ 1 × 10 -9 ph cm -2 s -1 . Our results indicate that no prominent γ-ray emission component related to active galactic nucleus activity is present in the spectra of Seyferts around GeV energies. The Fermi–LAT upper limits derived for our sample probe the ratio of γ-ray to X-ray luminosities L /LX < 0.1, and even < 0.01 in some cases. The obtained results impose novel constraints on the models for high energy radiation of ‘radio-quiet’ Seyfert galaxies.« less
A phenomenological model of solar flares
NASA Technical Reports Server (NTRS)
Colgate, S. A.
1978-01-01
The energy of solar flares is derived from the magnetic energy of fields convected to the sun's surface and subsequently converted to heat and energetic particles within the chromosphere. The circumstances of this conversion in most current models is magnetic flux annihilation at a neutral sheet. An analysis is conducted of the constraints of flux annihilation. It is shown that the present evidence of solar cosmic rays, X-rays, gamma-rays, and total energy suggests a choice of annihilation not at a neutral point, but by an enhanced dissipation of a field-aligned current. The field configuration is related both to its origin and to the extensive theory and laboratory experiments concerned with this configuration in magnetic fusion. The magnetic field model is applied to the August 4 flare. It is shown how the plasma heating in the annihilation region balanced by thermal conduction leads to a plasma temperature of about 20 million deg K.
INVERSE COMPTON SCATTERING MODEL FOR X-RAY EMISSION OF THE GAMMA-RAY BINARY LS 5039
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamaguchi, M. S.; Takahara, F.
2012-12-20
We propose a model for the gamma-ray binary LS 5039 in which the X-ray emission is due to the inverse Compton (IC) process instead of the synchrotron radiation. Although the synchrotron model has been discussed in previous studies, it requires a strong magnetic field which leads to a severe suppression of the TeV gamma-ray flux in conflict with H.E.S.S. observations. In this paper, we calculate the IC emission by low energy electrons ({gamma}{sub e} {approx}< 10{sup 3}) in the Thomson regime. We find that IC emission of the low energy electrons can explain the X-ray flux and spectrum observed withmore » Suzaku if the minimum Lorentz factor of injected electrons {gamma}{sub min} is around 10{sup 3}. In addition, we show that the Suzaku light curve is well reproduced if {gamma}{sub min} varies in proportion to the Fermi flux when the distribution function of injected electrons at higher energies is fixed. We conclude that the emission from LS 5039 is well explained by the model with the IC emission from electrons whose injection properties are dependent on the orbital phase. Since the X-ray flux is primarily determined by the total number of cooling electrons, this conclusion is rather robust, although some mismatches between the model and observations at the GeV band remain in the present formulation.« less
X-ray Emission from the Millisecond Pulsar J1012+5307
NASA Astrophysics Data System (ADS)
Halpern, J. P.; Wang, F. Y.-H.
1997-12-01
The recently discovered 5.3 ms pulsar J1012+5307 at a distance of 520 pc is in an area of the sky which is particularly deficient in absorbing gas. The column density along the line of sight is less than 7.5 x 10(19) cm(-2) , which facilitates soft X-ray observations. Halpern (1996, ApJ, 459, L9) reported a possible ROSAT PSPC detection of the pulsar in a serendipitous, off-axis observation. We have now confirmed the X-ray emission of PSR J1012+5307 in a 23 ksec observation with the ROSAT HRI. A point source is detected within 3('') of the radio position. Its count rate of 1.6 +/- 0.3 x 10(-3) s(-1) corresponds to an unbsorbed 0.1--2.4 keV flux of 6.4 x 10(-14) ergs cm(-2) s(-1) , similar to that reported previously. This counts-to-flux conversion is valid for N_H = 5 x 10(19) cm(-2) , and either a power-law spectrum of photon index 2.5 or a blackbody of kT = 0.1 keV. The implied X-ray luminosity of 2.0 x 10(30) ergs s(-1) is 5 x 10(-4) of the pulsar's spin-down power dot E, and similar to that of the nearest millisecond pulsar J0437--4715, which is nearly a twin of J1012+5307 in P and dot E. We subjected the 37 photons (and 13 background counts) within the source region to a pulsar search, but no evidence for pulsation was found. The pulsar apparently emits over a large fraction of its rotation cycle, and the absence of sharp modulation can be taken as evidence for surface thermal emission, as is favored for PSR J0437--4715 (Zavlin & Pavlov 1997, A&A, in press), rather than magnetospheric X-ray emission which is apparent in the sharp pulses of the much more energetic millisecond pulsar B1821--24 (Saito et al. 1997, ApJ, 477, L37). A further test of this interpretation will be made with a longer ROSAT observation, which will increase the number of photons collected by a factor of 5, and permit a more sensitive examination of the light curve for modulation due to emission from heated polar caps. If found, such modulation will be further evidence that surface reheating by the impact of particles accelerated along open field lines operates in these ~ 10(9) yr old pulsars.
X-ray studies of quasars with the Einstein Observatory
NASA Technical Reports Server (NTRS)
Tananbaum, H.; Branduardi, G.; Fabbiano, G.; Feigelson, E.; Giacconi, R.; Henry, J. P.; Avni, Y.; Elvis, M.; Pye, J. P.; Soltan, A.
1979-01-01
Results of an investigation of the X-ray properties of quasars conducted using the Einstein Observatory (HEAO 2) are reported. The positions, fluxes and luminosities of 35 known quasars were observed by the Einstein high-resolution imaging detector and the imaging proportional counter. Assuming optical redshifts as valid distance indicators, 0.5-4.5 keV X-ray luminosities ranging from 10 to the 43rd to 10 to the 47 ergs/sec are obtained, with evidence of very little cold gas absorption. Flux variability on a time scale of less than 10,000 sec is observed for the quasar OX 169, which implies a mass between 8 x 10 to the 5th and 2 x 10 to the 8th solar masses for the black hole assumed to be responsible for the emission. Preliminary results of the quasar survey also indicate that quasars contribute significantly to the diffuse X-ray background.
Unusual Black Hole Binary LMC X-3: A Transient High-Mass X-Ray Binary That Is Almost Always On?
NASA Technical Reports Server (NTRS)
Torpin, Trevor J.; Boyd, Patricia T.; Smale, Alan P.; Valencic, Lynne A.
2017-01-01
We have analyzed a rich, multimission, multiwavelength data set from the black hole X-ray binary (BHXB) LMC X-3, covering a new anomalous low state (ALS), during which the source flux falls to an unprecedentedly low and barely detectable level, and a more normal low state. Simultaneous X-ray and UV/optical monitoring data from Swift are combined with pointed observations from the Rossi X-ray Timing Explorer (RXTE) and X-ray Multi- Mirror Mission (XMM-Newton) and light curves from the Monitor of All-Sky X-ray Image (MAXI) instrument to compare the source characteristics during the ALS with those seen during the normal low state. An XMM-Newton spectrum obtained during the ALS can be modeled using an absorbed power law with Gamma = 1.41‚+/- 0.65 and a luminosity of 7.97 x 10(exp 33) erg/s (0.6-5 keV). The Swift X-ray and UV light curves indicate an X-ray lag of approx. 8 days as LMC X-3 abruptly exits the ALS, suggesting that changes in the mass accretion rate from the donor drive the X-ray lag. The normal low state displays an asymmetric profile in which the exit occurs more quickly than the entry, with minimum X-ray flux a factor of approx. 4300 brighter than during the ALS. The UV brightness of LMC X-3 in the ALS is also fainter and less variable than during normal low states. The existence of repeated ALSs in LMC X-3, as well as a comparison with other BHXBs, implies that it is very close to the transient/persistent X-ray source dividing line. We conclude that LMC X-3 is a transient source that is almost always "on."
NASA Technical Reports Server (NTRS)
Nichols, J.; Huenemoerder, D. P.; Corcoran, M. F.; Waldron, W.; Naze, Y.; Pollock, A. M. T.; Moffat, A. F. J.; Lauer, J.; Shenar, T.; Russell, C. M. P.;
2015-01-01
We present time-resolved and phase-resolved variability studies of an extensive X-ray high-resolution spectral data set of the delta Ori Aa binary system. The four observations, obtained with Chandra ACIS (Advanced CCD Imaging Spectrometer) HETGS (High Energy Transmission Grating), have a total exposure time approximately equal to 479 kiloseconds and provide nearly complete binary phase coverage. Variability of the total X-ray flux in the range of 5-25 angstroms is confirmed, with a maximum amplitude of about plus or minus15 percent within a single approximately equal to125 kiloseconds observation. Periods of 4.76 and 2.04 days are found in the total X-ray flux, as well as an apparent overall increase in the flux level throughout the nine-day observational campaign. Using 40 kiloseconds contiguous spectra derived from the original observations, we investigate the variability of emission line parameters and ratios. Several emission lines are shown to be variable, including S (sub XV), Si (sub XIII), and Ne (sub IX). For the first time, variations of the X-ray emission line widths as a function of the binary phase are found in a binary system, with the smallest widths at phi = 0.0 when the secondary delta Ori Aa2 is at the inferior conjunction. Using 3D hydrodynamic modeling of the interacting winds, we relate the emission line width variability to the presence of a wind cavity created by a wind-wind collision, which is effectively void of embedded wind shocks and is carved out of the X-ray-producing primary wind, thus producing phase-locked X-ray variability.
X-ray and optical observations of four polars
NASA Astrophysics Data System (ADS)
Worpel, H.; Schwope, A. D.; Granzer, T.; Reinsch, K.; Schwarz, R.; Traulsen, I.
2016-08-01
Aims: We investigate the temporal and spectral behaviour of four polar cataclysmic variables from the infrared to X-ray regimes, refine our knowledge of the physical parameters of these systems at different accretion rates, and search for a possible excess of soft X-ray photons. Methods: We obtained and analysed four XMM-Newton X-ray observations of three of the sources, two of them discovered with the SDSS and one in the RASS. The X-ray data were complemented by optical photometric and spectroscopic observations and, for two sources, archival Swift observations. Results: SDSSJ032855.00+052254.2 was X-ray bright in two XMM-Newton and two Swift observations, and shows transitions from high and low accretion states on a timescale of a few months. The source shows no significant soft excess. We measured the magnetic field strength at the main accreting pole to be 39 MG and the inclination to be 45° ≤ I ≤ 77°, and we refined the long-term ephemeris. SDSSJ133309.20+143706.9 was X-ray faint. We measured a faint phase X-ray flux and plasma temperature for this source, which seems to spend almost all of its time accreting at a low level. Its inclination is less than about 76°. 1RXSJ173006.4+033813 was X-ray bright in the XMM-Newton observation. Its spectrum contained a modest soft blackbody component, not luminous enough to be considered a significant soft excess. We inferred a magnetic field strength at the main accreting pole of 20 to 25 MG, and that the inclination is less than 77° and probably less than 63°. V808 Aur, also known as CSS081231:J071126+440405, was X-ray faint in the Swift observation, but there is nonetheless strong evidence for bright and faint phases in X-rays and perhaps in UV. Residual X-ray flux from the faint phase is difficult to explain by thermal emission from the white dwarf surface, or by accretion onto the second pole. We present a revised distance estimate of 250 pc. Conclusions: The three systems we were able to study in detail appear to be normal polars with luminosities and magnetic field strengths typical for this class of accreting binary. None of the four systems studied shows the strong soft excess thought commonplace in polars prior to the XMM-Newton era. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA.Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).
SEARCH FOR GAMMA-RAY EMISSION FROM X-RAY-SELECTED SEYFERT GALAXIES WITH FERMI-LAT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackermann, M.; Ajello, M.; Allafort, A.
We report on a systematic investigation of the {gamma}-ray properties of 120 hard X-ray-selected Seyfert galaxies classified as 'radio-quiet' objects, utilizing the three-year accumulation of Fermi Large Area Telescope (LAT) data. Our sample of Seyfert galaxies is selected using the Swift Burst Alert Telescope 58 month catalog, restricting the analysis to the bright sources with average hard X-ray fluxes F{sub 14-195keV} {>=} 2.5 Multiplication-Sign 10{sup -11} erg cm{sup -2} s{sup -1} at high Galactic latitudes (|b| > 10 Degree-Sign ). In order to remove 'radio-loud' objects from the sample, we use the 'hard X-ray radio loudness parameter', R{sub rX}, definedmore » as the ratio of the total 1.4 GHz radio to 14-195 keV hard X-ray energy fluxes. Among 120 X-ray bright Seyfert galaxies with R{sub rX} <10{sup -4}, we did not find a statistically significant {gamma}-ray excess (TS > 25) positionally coincident with any target Seyferts, with possible exceptions of ESO 323-G077 and NGC 6814. The mean value of the 95% confidence level {gamma}-ray upper limit for the integrated photon flux above 100 MeV from the analyzed Seyferts is {approx_equal} 4 Multiplication-Sign 10{sup -9} photons cm{sup -2} s{sup -1} , and the upper limits derived for several objects reach {approx_equal} 1 Multiplication-Sign 10{sup -9} photons cm{sup -2} s{sup -1} . Our results indicate that no prominent {gamma}-ray emission component related to active galactic nucleus activity is present in the spectra of Seyferts around GeV energies. The Fermi-LAT upper limits derived for our sample probe the ratio of {gamma}-ray to X-ray luminosities L{sub {gamma}}/L{sub X} < 0.1, and even <0.01 in some cases. The obtained results impose novel constraints on the models for high-energy radiation of 'radio-quiet' Seyfert galaxies.« less
A search for optical pulsations from GX 1+4 at H-alpha
NASA Technical Reports Server (NTRS)
Krzeminski, W.; Priedhorsky, W. C.
1978-01-01
H-alpha observations of the binary-star candidate for the slowly pulsating hard X-ray source GX 1+4 are reported which were undertaken to search for pulsations in the H-alpha flux that are synchronous with the X-ray period of about 2 min. No significant periodic variation of the candidate star was detected in the frequency band searched. Three-sigma upper limits of 1.7% (sinusoidal pulse shape) and 0.7% (X-ray pulse shape) are set for the pulsed fraction of the H-alpha flux. It is noted that because of possible diffusion from a cloud that is optically thick to Balmer radiation, the observed lack of pulsations in the H-alpha flux need not compromise the identification of GX 1+4 with the candidate star.
Models of the hard X-ray spectrum of AM Herculis and implications for the accretion rate
NASA Technical Reports Server (NTRS)
Swank, J. H.; Fabian, A. C.; Ross, R. R.
1983-01-01
Phenomenological fits to the hard X-ray spectrum of AM Herculis left unexplained the high equivalent width (0.8 + or - 0.1 keV) of Fe K alpha emission. A purely thermal origin implies a much steeper spectrum than was observed. With Monte Carlo calculations, scattering and fluorescent line production in a cold or partially ionized accretion column of hard X-rays emitted at the base were investigated. The strength of the iron emission and the flat spectral continuum can be explained by the effects of fluorescence and absorption within the accretion column and the surface of the white dwarf on a thermal X-ray spectrum. Thomson optical depths across the column in the range 0.2 to 0.7 are acceptable. The accretion rate and gravitational power can be deduced from the optical depth across the column, if the column size is known, and, together with the observed hard X-ray and polarized light luminosities, imply a lower limit for the luminosity in the UV to soft X-ray range, for which the observations give model-dependent values. Estimates of the column size differ by a factor of 40. Small spot sizes and low luminosities would be consistent with the soft component being the expected reprocessed bremsstrahlung and cyclotron radiation, although the constraint of matching the spectrum confines one to solutions with fluxes exceeding 20% the Eddington limits.
Remote X-ray fluorescence experiments for future missions to Mercury
NASA Astrophysics Data System (ADS)
Clark, P. E.; Trombka, J. I.
1997-01-01
To date, the only deep space mission to Mercury, Mariner 10, as well as ground-based observations have failed to provide direct measurements of that planet's composition. Such measurements are fundamental for the understanding of Mercury's origin and the inner solar system's history. The spin-stabilized Mercury Orbiter proposed for launch in the first or second decade of the twenty-first century as part of the ESA's Horizon 2000-plus plan could address this problem by including the X-ray spectrometer proposed here. X-ray spectrometers act as detectors for the X-ray emission induced by the solar flux incident on planetary surfaces. This emission is strongly dependent on the chemical composition of the surface as well as on the solar spectrum. Characteristic fluorescent lines, the most prominent being the K-alpha lines, are of sufficient intensity for major elements (Mg, Al, Si, Ca, Fe) to allow orbital measurement by remote X-ray detectors. The X-ray spectrometers described here will all have established heritage for space missions by 2000. These instruments have previously flown, are being flown as part of the NASA NEAR (Near Earth Asteroid Rendezvous) or Clark SSTI (Small Science and Technology Initiative) missions, or are now under development as part of NASA Facility Instrument Development Program. The instrument package would probably consist of an array of solid state detectors for surface measurements, as well as one which would act as a solar monitor. Calculations of anticipated results have been done for a variety of orbital and instrument configurations, and a variety of lunar soil compositions which could be analogous: anorthositie gabbro bearing soils from lunar highlands (Apollo 16), high-Mg basalt-rich soils from a KREEP-bearing area (Apollo 15), and mare basalt bearing soils (Apollo 12). The mission being considered here should result in maps of abundances of major elements, including Mg, Al, Si, Ca, and Fe, for much of Mercury's surface, with resolutions ranging from tens to hundreds of kilometers depending on the element, the orbital eccentricity and altitude of the spacecraft.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Eileen T.; Breiding, Peter; Georganopoulos, Markos
The Chandra X-ray observatory has discovered several dozen anomalously X-ray-bright jets associated with powerful quasars. A popular explanation for the X-ray flux from the knots in these jets is that relativistic synchrotron-emitting electrons inverse-Compton scatter cosmic microwave background (CMB) photons to X-ray energies (the IC/CMB model). This model predicts a high gamma-ray flux that should be detectable by the Fermi /Large Area Telescope (LAT) for many sources. GeV-band upper limits from Fermi /LAT for the well-known anomalous X-ray jet in PKS 0637−752 were previously shown in Meyer et al. to violate the predictions of the IC/CMB model. Previously, measurements ofmore » the jet synchrotron spectrum, important for accurately predicting the gamma-ray flux level, were lacking between radio and infrared wavelengths. Here, we present new Atacama Large Millimeter/submillimeter Array (ALMA) observations of the large-scale jet at 100, 233, and 319 GHz, which further constrain the synchrotron spectrum, supporting the previously published empirical model. We also present updated limits from the Fermi /LAT using the new “Pass 8” calibration and approximately 30% more time on source. With these deeper limits, we rule out the IC/CMB model at the 8.7 σ level. Finally, we demonstrate that complete knowledge of the synchrotron SED is critical in evaluating the IC/CMB model.« less
Coded-aperture imaging of the Galactic center region at gamma-ray energies
NASA Technical Reports Server (NTRS)
Cook, Walter R.; Grunsfeld, John M.; Heindl, William A.; Palmer, David M.; Prince, Thomas A.
1991-01-01
The first coded-aperture images of the Galactic center region at energies above 30 keV have revealed two strong gamma-ray sources. One source has been identified with the X-ray source IE 1740.7 - 2942, located 0.8 deg away from the nucleus. If this source is at the distance of the Galactic center, it is one of the most luminous objects in the galaxy at energies from 35 to 200 keV. The second source is consistent in location with the X-ray source GX 354 + 0 (MXB 1728-34). In addition, gamma-ray flux from the location of GX 1 + 4 was marginally detected at a level consistent with other post-1980 measurements. No significant hard X-ray or gamma-ray flux was detected from the direction of the Galactic nucleus or from the direction of the recently discovered gamma-ray source GRS 1758-258.
Surface modifications of AISI 420 stainless steel by low energy Yttrium ions
NASA Astrophysics Data System (ADS)
Nassisi, Vincenzo; Delle Side, Domenico; Turco, Vito; Martina, Luigi
2018-01-01
In this work, we study surface modifications of AISI 420 stainless steel specimens in order to improve their surface properties. Oxidation resistance and surface micro-hardness were analyzed. Using an ion beam delivered by a Laser Ion Source (LIS) coupled to an electrostatic accelerator, we performed implantation of low energy yttrium ions on the samples. The ions experienced an acceleration passing through a gap whose ends had a potential difference of 60 kV. The gap was placed immediately before the samples surface. The LIS produced high ions fluxes per laser pulse, up to 3x1011 ions/cm2, resulting in a total implanted flux of 7x1015 ions/cm2. The samples were characterized before and after ion implantation using two analytical techniques. They were also thermally treated to investigate the oxide scale. The crystal phases were identified by an X-ray diffractometer, while the micro-hardness was assayed using the scratch test and a profilometer. The first analysis was applied to blank, implanted and thermally treated sample surface, while the latter was applied only to blank and implanted sample surfaces. We found a slight increase in the hardness values and an increase to oxygen resistance. The implantation technique we used has the advantages, with respect to conventional methods, to modify the samples at low temperature avoiding stray diffusion of ions inside the substrate bulk.
ETA CARINAE’S THERMAL X-RAY TAIL MEASURED WITH XMM-NEWTON AND NuSTAR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamaguchi, Kenji; Corcoran, Michael F.; Gull, Theodore R.
The evolved, massive highly eccentric binary system, η Car, underwent a periastron passage in the summer of 2014. We obtained two coordinated X-ray observations with XMM-Newton and NuSTAR during the elevated X-ray flux state and just before the X-ray minimum flux state around this passage. These NuSTAR observations clearly detected X-ray emission associated with η Car extending up to ∼50 keV for the first time. The NuSTAR spectrum above 10 keV can be fit with the bremsstrahlung tail from a kT ∼ 6 keV plasma. This temperature is ΔkT ∼ 2 keV higher than those measured from the iron K emission line complex, if the shockedmore » gas is in collisional ionization equilibrium. This result may suggest that the companion star's pre-shock wind velocity is underestimated. The NuSTAR observation near the X-ray minimum state showed a gradual decline in the X-ray emission by 40% at energies above 5 keV in a day, the largest rate of change of the X-ray flux yet observed in individual η Car observations. The column density to the hardest emission component, N{sub H} ∼ 10{sup 24} H cm{sup −2}, marked one of the highest values ever observed for η Car, strongly suggesting increased obscuration of the wind–wind colliding X-ray emission by the thick primary stellar wind prior to superior conjunction. Neither observation detected the power-law component in the extremely hard band that INTEGRAL and Suzaku observed prior to 2011. If the non-detection by NuSTAR is caused by absorption, the power-law source must be small and located very near the wind–wind collision apex. Alternatively, it may be that the power-law source is not related to either η Car or the GeV γ-ray source.« less
Unusual Black Hole Binary LMC X-3: A Transient High-mass X-Ray Binary That Is Almost Always On?
NASA Astrophysics Data System (ADS)
Torpin, Trevor J.; Boyd, Patricia T.; Smale, Alan P.; Valencic, Lynne A.
2017-11-01
We have analyzed a rich, multimission, multiwavelength data set from the black hole X-ray binary (BHXB) LMC X-3, covering a new anomalous low state (ALS), during which the source flux falls to an unprecedentedly low and barely detectable level, and a more normal low state. Simultaneous X-ray and UV/optical monitoring data from Swift are combined with pointed observations from the Rossi X-ray Timing Explorer (RXTE) and X-ray Multi-Mirror Mission (XMM-Newton) and light curves from the Monitor of All-Sky X-ray Image (MAXI) instrument to compare the source characteristics during the ALS with those seen during the normal low state. An XMM-Newton spectrum obtained during the ALS can be modeled using an absorbed power law with {{Γ }}=1.41+/- 0.65 and a luminosity of 7.97× {10}33 erg s-1 (0.6-5 keV). The Swift X-ray and UV light curves indicate an X-ray lag of ˜8 days as LMC X-3 abruptly exits the ALS, suggesting that changes in the mass accretion rate from the donor drive the X-ray lag. The normal low state displays an asymmetric profile in which the exit occurs more quickly than the entry, with minimum X-ray flux a factor of ˜4300 brighter than during the ALS. The UV brightness of LMC X-3 in the ALS is also fainter and less variable than during normal low states. The existence of repeated ALSs in LMC X-3, as well as a comparison with other BHXBs, implies that it is very close to the transient/persistent X-ray source dividing line. We conclude that LMC X-3 is a transient source that is almost always “on.”
Observations of the Crab Nebula, NGC 4151, Cyg X1 and Cyg X3 at medium gamma ray energies
NASA Technical Reports Server (NTRS)
Zanrosso, E. M.; Long, J. L.; Zych, A. D.; Gibbons, R.; White, R. S.; Dayton, B.
1980-01-01
The paper analyzes observations of the Crab Nebula, NGC 4151, Cyg X1, and Cyg X3 taken with the UCR gamma ray telescope at a residual atmospheric depth of about 3.5 g/sq cm on a balloon launched from Palestine, Texas, 4.5 GV, 2000 local time LT (0100 UT), on September 29, 1978. The data consists of continuous observations from 0430 LT (0930 UT) on September 30 to 1800 LT (2300 UT) on October 1, 1979. A flux increase is observed at the right ascension of the Crab Nebula within about a 10 min uncertainty of telescope source position determination, eliminating the SAS-2, CG 195+4, and the two COS-B sources in the antigalactic center direction as the origin of the gamma rays. The total flux of gamma rays for the Crab Nebula from 1.2 to 10 MeV is (6.1 + or - 1.5) x 10 to the -3rd photons/sq cm-s, with an upper limit at 10-20 MeV of 7 x 10 to the -5th photons/sq cm-s. Results for the NGC 4151, Cyg X1, and Cyg X3 are also discussed and flux upper limits are given.
NASA Technical Reports Server (NTRS)
Fertig, D.; Mukai, K.; Nelson, T.; Cannizzo, J. K.
2011-01-01
In a dwarf nova, the accretion disk around the white dwarf is a source of ultraviolet, optical, and infrared photons, but is never hot enough to emit X-rays. Observed X-rays instead originate from the boundary layer between the disk and the white dwarf. As the disk switches between quiescence and outburst states, the 2-10 keV X-ray flux is usually seen to be anti-correlated with the optical brightness. Here we present RXTE monitoring observations of two dwarf novae, VW Hyi and WW Cet, confirming the optical/X-ray anti-correlation in these two systems. However, we do not detect any episodes of increased hard X-ray flux on the rise (out of two possible chances for WW Cet) or the decline (two for WW Cet and one for VW Hyi) from outburst, attributes that are clearly established in SS Cyg. The addition of these data to the existing literature establishes the fact that the behavior of SS Cyg is the exception, rather than the archetype as is often assumed. We speculate that only dwarf novae with a massive white dwarf may show these hard X-ray spikes.
Are There Intrinsically X-Ray Quiet Quasars
NASA Technical Reports Server (NTRS)
Gallagher, S. C.; Brandt, W. N.; Laor, A.; Elvis, Martin; Mathur, S.; Wills, Beverly J.; Iyomoto, N.; White, Nicholas (Technical Monitor)
2000-01-01
Recent ROSAT studies have identified a significant population of Active Galactic Nuclei (AGN) that are notably faint in soft X-rays relative to their optical fluxes. Are these AGN intrinsically X-ray weak or are they just highly absorbed? Brandt, Laor & Wills have systematically examined the optical and UV spectral properties of a well-defined sample of these soft X-ray weak (SXW) AGN drawn from the Boroson & Green sample of all the Palomar Green AGN 00 with z < 0.5. We present ASCA observations of three of these SXW AGN: PG 1011-040, PG 1535+547 (Mrk 486), and PG 2112+059. In general, our ASCA observations support the intrinsic absorption scenario for explaining soft X-ray weakness; both PG 1535+547 and PG 2112+059 show significant column densities (NH is approximately 10(exp 22) - 10(exp 23)/sq cm) of absorbing gas. Interestingly, PG 1011-040 shows no spectral evidence for X-ray absorption. The weak X-ray emission may result from very strong absorption of a partially covered source, or this AGN may be intrinsically X-ray weak. PG 2112+059 is a Broad Absorption Line (BAL) QSO, and we find it to have the highest X-ray flux known of this class. It shows a typical power-law X-ray continuum above 3 keV; this is the first direct evidence that BAL QSOs indeed have normal X-ray continua underlying their intrinsic absorption. Finally, marked variability between the ROSAT and ASCA observations of PG 1535+547 and PG 2112+059 suggests that the soft X-ray weak designation may be transient, and multi-epoch 0.1-10.0 KeV X-ray observations are required to constrain variability of the absorber and continuum.
X-ray Counterparts of Infrared Faint Radio Sources
NASA Astrophysics Data System (ADS)
Schartel, Norbert
2011-10-01
Infrared Faint Radio Sources (IFRS) are radio sources with extremely faint or even absent infrared emission in deep Spitzer Surveys. Models of their spectral energy distributions, the ratios of radio to infrared flux densities and their steep radio spectra strongly suggest that IFRS are AGN at high redshifts (2
An hourglass model for the flare of HST-1 in M87
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wen-Po; Zhao, Guang-Yao; Chen, Yong Jun
To explain the multi-wavelength light curves (from radio to X-ray) of HST-1 in the M87 jet, we propose an hourglass model that is a modified two-zone system of Tavecchio and Ghisellini (hereafter TG08): a slow hourglass-shaped or Laval-nozzle-shaped layer connected by two revolving exponential surfaces surrounding a fast spine through which plasma blobs flow. Based on the conservation of magnetic flux, the magnetic field changes along the axis of the hourglass. We adopt the result of TG08—the high-energy emission from GeV to TeV can be produced through inverse Compton by the two-zone system, and the photons from radio to X-raymore » are mainly radiated by the fast inner zone system. Here, we only discuss the light curves of the fast inner blob from radio to X-ray. When a compressible blob travels down the axis of the first bulb in the hourglass, because of magnetic flux conservation, its cross section experiences an adiabatic compression process, which results in particle acceleration and the brightening of HST-1. When the blob moves into the second bulb of the hourglass, because of magnetic flux conservation, the dimming of the knot occurs along with an adiabatic expansion of its cross section. A similar broken exponential function could fit the TeV peaks in M87, which may imply a correlation between the TeV flares of M87 and the light curves from radio to X-ray in HST-1. The Very Large Array (VLA) 22 GHz radio light curve of HST-1 verifies our prediction based on the model fit to the main peak of the VLA 15 GHz radio one.« less
SSM on AstroSat detects neutron star X-ray transient, Aql_X-1 in its outburst
NASA Astrophysics Data System (ADS)
Ramadevi, M. C.; Ravishankar, B. T.; Sarwade, Abhilash R.; Vaishali, S.; Hasan, Mohammed; Agarwal, Vivek Kumar; Baby, Blessy Elizabeth; Bhattacharya, Dipankar; Seetha, S.; Agarwal, Anil
2017-06-01
We report on the X-ray outburst of the neutron star X-ray source Aql X-1 as observed by SSM onboard AstroSat. Flux reported by SSM on its first observation of the source during this outburst on 01 June 2017 at 08:55 UT is about 820 milliCrab (2.24 +/- 0.02 photons/s-cm^2).
NASA Astrophysics Data System (ADS)
Bolton, C.; Murdin, P.
2000-11-01
Cygnus X-1 is one of the strongest x-ray sources. It is the first celestial object for which we had reasonably convincing evidence that it is a BLACK HOLE. Its x-ray properties include an ultra-soft spectrum, compared to massive x-ray binaries containing a neutron star, rapid (˜1 s) flickering, and high/low flux states with different spectral characteristics. In 1971, a RADIO SOURCE appeared at...
The soft x-ray properties of a complete sample of optically selected quasars. 1: First results
NASA Technical Reports Server (NTRS)
Laor, Ari; Fiore, Fabrizio; Elvis, Martin; Wilkes, Belinda J.; Mcdowell, Jonathan C.
1994-01-01
We present the results of ROSAT position sensitive proportional counter (PSPC) observations of 10 quasars. These objects are part of our ROSAT program to observe a complete sample of optically selected quasars. This sample includes all 23 quasars from the bright quasar survey with a redshift z less than or = 0.400 and a Galactic H I column density N(sup Gal sub H I) less than 1.9 x 10(exp 20)/sq cm. These selection criteria, combined with the high sensitivity and improved energy resolution of the PSPC, allow us to determine the soft (approximately 0.2-2 keV) X-ray spectra of quasars with about an order of magnitude higher precision compared with earlier soft X-ray observations. The following main results are obtained: Strong correlations are suggested between the soft X-ray spectral slope alpha(sub x) and the following emission line parameters: H beta Full Width at Half Maximum (FWHM), L(sub O III), and the Fe II/H beta flux ratio. These correlations imply the following: (1) The quasar's environment is likely to be optically thin down to approximately 0.2 keV. (2) In most objects alpha(sub x) varies by less than approximately 10% on timescales shorter than a few years. (3) alpha(sub x) might be a useful absolute luminosity indicator in quasars. (4) The Galactic He I and H I column densities are well correlated. Most spectra are well characterized by a simple power law, with no evidence for either significant absorption excess or emission excess at low energies, to within approximately 30%. We find mean value of alpha(sub x) = -1.50 +/- 0.40, which is consistent with other ROSAT observations of quasars. However, this average is significantly steeper than suggested by earlier soft X-ray observations of the Einstein IPC. The 0.3 keV flux in our sample can be predicted to better than a factor of 2 once the 1.69 micrometer(s) flux is given. This implies that the X-ray variability power spectra of quasars flattens out between f approximately 10(exp -5) and f approximately 10(exp -8) Hz. A steep alpha(sub x) is mostly associated with a weak hard X-ray component, relative to the near-IR and optical emission, rather than a strong soft excess, and the scatter in the normalized 0.3 keV flux is significantly smaller than the scatter in the normalized 2 keV flux. This argues against either thin or thick accretion disks as the origin of the soft X-ray emission. Further possible implications of the results found here are briefly discussed.
Antioxidation performance of poly(vinyl alcohol) modified poly(vinylidene fluoride) membranes
NASA Astrophysics Data System (ADS)
Wang, Daohui; Li, Xianfeng; Li, Qing; Liu, Zhen; Li, Nana; Huang, Qinglin; Zhang, Yufeng; Xiao, Changfa
2018-03-01
Commercial poly(vinylidene fluoride) (PVDF) membranes were modified by dip-coating and crosslinking hydrophilic poly(vinyl alcohol) (PVA) on the membrane surface. The antioxidation performance of the modified PVDF membranes was evaluated via exposing the modified membranes to sodium hypochlorite and potassium permanganate solutions for 5-30 days, respectively. The evaluation was based on the influences of the two oxidants on the permeability, rejection, and hydrophility of the modified membranes, which were characterized by water flux, ink rejection, water contact angle, x-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy, and x-ray diffraction (XRD) measurements. The XPS and water contact angle results show that the hydrophilicity of PVDF membranes was significantly improved when PVA was crosslinked on the surface of PVDF membranes. When the modified membranes had been treated with sodium hypochlorite or potassium permanganate for 30 days, the permeability and hydrophilicity were basically maintained and the rejection was slightly decreased. XPS and XRD indicated that some of PVAs coated on the membrane surface could be oxidized and peeled.
Results of investigation of muon fluxes of superhigh energy cosmic rays with X-ray emulsion chambers
NASA Technical Reports Server (NTRS)
Ivanenko, I. P.; Ivanova, M. A.; Kuzmichev, L. A.; Ilyina, N. P.; Mandritskaya, K. V.; Osipova, E. A.; Rakobolskaya, I. V.; Zatsepin, G. T.
1985-01-01
The overall data from the investigation of the cosmic ray muon flux in the range of zenith angles (0-90) deg within the energy range (3.5 to 5.0) TeV is presented. The exposure of large X-ray emulsion chambers underground was 1200 tons. year. The data were processe using the method which was applied in the experiment Pamir and differred from the earlier applied one. The obtained value of a slope power index of the differential energy spectrum of the global muon flux is =3.7 that corresponds to the slope of the pion generation differential spectrum, gamma sub PI = 2.75 + or - .04. The analysis of the muon zenith-angular distribution showed that the contribution of rapid generation muons in the total muon flux agree the best with the value .2% and less with .7% at a 90% reliability level.
Reflection soft X-ray microscope and method
Suckewer, Szymon; Skinner, Charles H.; Rosser, Roy
1993-01-01
A reflection soft X-ray microscope is provided by generating soft X-ray beams, condensing the X-ray beams to strike a surface of an object at a predetermined angle, and focusing the X-ray beams reflected from the surface onto a detector, for recording an image of the surface or near surface features of the object under observation.
Reflection soft X-ray microscope and method
Suckewer, S.; Skinner, C.H.; Rosser, R.
1993-01-05
A reflection soft X-ray microscope is provided by generating soft X-ray beams, condensing the X-ray beams to strike a surface of an object at a predetermined angle, and focusing the X-ray beams reflected from the surface onto a detector, for recording an image of the surface or near surface features of the object under observation.
Search for TeV Gamma-ray Emission from GRB 100621A, an extremely bright GRB in X-rays, with H.E.S.S.
NASA Astrophysics Data System (ADS)
H.E.S.S. Collaboration; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Angüner, E.; Anton, G.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker Tjus, J.; Bernlöhr, K.; Birsin, E.; Bissaldi, E.; Biteau, J.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Chalme-Calvet, R.; Chaves, R. C. G.; Cheesebrough, A.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; O'C. Drury, L.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giebels, B.; Glicenstein, J. F.; Grondin, M.-H.; Grudzińska, M.; Häffner, S.; Hahn, J.; Harris, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lefaucheur, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Méhault, J.; Menzler, U.; Meyer, M.; Moderski, R.; Mohamed, M.; Moulin, E.; Murach, T.; Naumann, C. L.; de Naurois, M.; Niemiec, J.; Nolan, S. J.; Oakes, L.; O'Brien, P. T.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Raue, M.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Rob, L.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sol, H.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tam, P. H. T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorster, M.; Wagner, S. J.; Wagner, P.; Ward, M.; Weidinger, M.; Weitzel, Q.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.
2014-05-01
The long gamma-ray burst (GRB) 100621A, at the time the brightest X-ray transient ever detected by Swift-XRT in the 0.3-10 keV range, has been observed with the H.E.S.S. imaging air Cherenkov telescope array, sensitive to gamma radiation in the very-high-energy (VHE, >100 GeV) regime. Due to its relatively small redshift of z ~ 0.5, the favourable position in the southern sky and the relatively short follow-up time (<700 s after the satellite trigger) of the H.E.S.S. observations, this GRB could be within the sensitivity reach of the H.E.S.S. instrument. The analysis of the H.E.S.S. data shows no indication of emission and yields an integral flux upper limit above ~380 GeV of 4.2 × 10-12 cm-2 s-1 (95% confidence level), assuming a simple Band function extension model. A comparison to a spectral-temporal model, normalised to the prompt flux at sub-MeV energies, constraints the existence of a temporally extended and strong additional hard power law, as has been observed in the other bright X-ray GRB 130427A. A comparison between the H.E.S.S. upper limit and the contemporaneous energy output in X-rays constrains the ratio between the X-ray and VHE gamma-ray fluxes to be greater than 0.4. This value is an important quantity for modelling the afterglow and can constrain leptonic emission scenarios, where leptons are responsible for the X-ray emission and might produce VHE gamma rays.
Evidence from the Soudan 1 experiment for underground muons associated with Cygnus X-3
NASA Technical Reports Server (NTRS)
Ayres, D. S. E.
1986-01-01
The Soudan 1 experiment has yielded evidence for an average underground muon flux of approximately 7 x 10 to the minus 11th power/sq cm/s which points back to the X-ray binary Cygnus X-3, and which exhibits the 4.8 h periodicity observed for other radiation from this source. Underground muon events which seem to be associated with Cygnus X-3 also show evidence for longer time variability of the flux. Such underground muons cannot be explained by any conventional models of the propagation and interaction of cosmic rays.
Simultaneous X-ray, UV, and Optical Variations in lambda ERI (B2e)
NASA Astrophysics Data System (ADS)
Smith, M. A.; Murakami, T.; Anandarao, B.
1996-12-01
We have carried out a simultaneous observing campaign on the prototypical Be star lambda Eri using ground stations and ROSAT, ASCA, IUE, and Voyager spacecrafts during the week of February-March 1995; a smaller campaign was carried out the following September. In late February lambda Eri showed extraordinary disk-wind activity. ROSAT/HRI monitoring disclosed no large flares such as ROSAT observed in 1991 in lambda Eri. Possible low amplitude fluctuations in the 1995 data occurred at the same time with unusual activity in Hα , HeI lambda 6678, HeII lambda 1640, CIII, and the CIV doublet. The helium line activity suggests that mass ejection occurred at the base of the wind. The strong CIII and CIV lines implies that shock interactions originated in the wind flow. It is not clear that the X-ray fluctuations are directly related to the increases in wind line absorption. Within hours of the mild X-ray flux variations found by ROSAT on February 28, the Voyager UVS observed a ``ringing" that decayed over three 3-hr. cycles. The amplitude of these fluctuations was large (50%) at lambda lambda 950-1100, decreased rapidly with wavelength, and faded to nondetection above lambda 1300. Various considerations indicate that these continuum variations were not due to an instrument pathology in the UVS. Rather, they appear to be due to a time-dependent flux deficit in the lambda lambda 1250 during the minima of these cycles. We outline a scenario in which dense plasma over the star's surface is alternately heated and cooled quasi-periodically to produce the flux changes. Additional examples of this new phenomenon are needed. Amateur astronomers can make a significant contribution to the understanding of flickering in Be star light curves during their outburst phases. We also draw attention to an increase in the emission of the Hα line that occurred at about the same time the FUV ringing started. This increased emission hints that ~ 50,000K plasma near the star's surface can infuence the circumstellar disc some distance away by its increased Lyman continuum flux.
NASA Technical Reports Server (NTRS)
Jefferies, K.
1994-01-01
OFFSET is a ray tracing computer code for optical analysis of a solar collector. The code models the flux distributions within the receiver cavity produced by reflections from the solar collector. It was developed to model the offset solar collector of the solar dynamic electric power system being developed for Space Station Freedom. OFFSET has been used to improve the understanding of the collector-receiver interface and to guide the efforts of NASA contractors also researching the optical components of the power system. The collector for Space Station Freedom consists of 19 hexagonal panels each containing 24 triangular, reflective facets. Current research is geared toward optimizing flux distribution inside the receiver via changes in collector design and receiver orientation. OFFSET offers many options for experimenting with the design of the system. The offset parabolic collector model configuration is determined by an input file of facet corner coordinates. The user may choose other configurations by changing this file, but to simulate collectors that have other than 19 groups of 24 triangular facets would require modification of the FORTRAN code. Each of the roughly 500 facets in the assembled collector may be independently aimed to smooth out, or tailor, the flux distribution on the receiver's wall. OFFSET simulates the effects of design changes such as in receiver aperture location, tilt angle, and collector facet contour. Unique features of OFFSET include: 1) equations developed to pseudo-randomly select ray originating sources on the Sun which appear evenly distributed and include solar limb darkening; 2) Cone-optics technique used to add surface specular error to the ray originating sources to determine the apparent ray sources of the reflected sun; 3) choice of facet reflective surface contour -- spherical, ideal parabolic, or toroidal; 4) Gaussian distributions of radial and tangential components of surface slope error added to the surface normals at the ten nodal points on each facet; and 5) color contour plots of receiver incident flux distribution generated by PATRAN processing of FORTRAN computer code output. OFFSET output includes a file of input data for confirmation, a PATRAN results file containing the values necessary to plot the flux distribution at the receiver surface, a PATRAN results file containing the intensity distribution on a 40 x 40 cm area of the receiver aperture plane, a data file containing calculated information on the system configuration, a file including the X-Y coordinates of the target points of each collector facet on the aperture opening, and twelve P/PLOT input data files to allow X-Y plotting of various results data. OFFSET is written in FORTRAN (70%) for the IBM VM operating system. The code contains PATRAN statements (12%) and P/PLOT statements (18%) for generating plots. Once the program has been run on VM (or an equivalent system), the PATRAN and P/PLOT files may be transferred to a DEC VAX (or equivalent system) with access to PATRAN for PATRAN post processing. OFFSET was written in 1988 and last updated in 1989. PATRAN is a registered trademark of PDA Engineering. IBM is a registered trademark of International Business Machines Corporation. DEC VAX is a registered trademark of Digital Equipment Corporation.
X-Ray Observations of VY Scl-Type Nova-Like Binaries in the High and Low State
NASA Technical Reports Server (NTRS)
Zemko, P.; Orio, M.; Mukai, K.; Shugarov, S.
2014-01-01
Four VY Scl-type nova-like systems were observed in X-rays during both the low- and the high-optical states. We examined Chandra, ROSAT, Swift and Suzaku archival observations of BZ Cam, MV Lyr, TT Ari and V794 Aql. The X-ray flux of BZ Cam is higher during the low state, but there is no supersoft X-ray source (SSS) as hypothesized in previous articles. No SSS was detected in the low state of the any of the other systems, with the X-ray flux decreasing by a factor between 2 and 50. The best fit to the Swift X-ray spectra is obtained with a multicomponent model of plasma in collisional ionization equilibrium. The high-state high-resolution spectra of TT Ari taken with Chandra Advanced CCD Imaging Spectrometer (ACIS-S) and the Chandra High Energy Transmission Grating (HETG) shows a rich emission line spectrum, with prominent lines of Mg, Si, Ne and S. The complexity of this spectrum seems to have origin in more than one region, or more than one single physical mechanism. While several emission lines are consistent with a cooling flow in an accretion stream, there is at least an additional component. We discuss the origin of this component, which is probably arising in a wind from the system. We also examine the possibility that the VY Scl systems may be intermediate polars, and that while the boundary layer of the accretion disc emits only in the extreme ultraviolet, part of the X-ray flux may be due to magnetically driven accretion.
Small-scale filament eruptions as the driver of X-ray jets in solar coronal holes.
Sterling, Alphonse C; Moore, Ronald L; Falconer, David A; Adams, Mitzi
2015-07-23
Solar X-ray jets are thought to be made by a burst of reconnection of closed magnetic field at the base of a jet with ambient open field. In the accepted version of the 'emerging-flux' model, such a reconnection occurs at a plasma current sheet between the open field and the emerging closed field, and also forms a localized X-ray brightening that is usually observed at the edge of the jet's base. Here we report high-resolution X-ray and extreme-ultraviolet observations of 20 randomly selected X-ray jets that form in coronal holes at the Sun's poles. In each jet, contrary to the emerging-flux model, a miniature version of the filament eruptions that initiate coronal mass ejections drives the jet-producing reconnection. The X-ray bright point occurs by reconnection of the 'legs' of the minifilament-carrying erupting closed field, analogous to the formation of solar flares in larger-scale eruptions. Previous observations have found that some jets are driven by base-field eruptions, but only one such study, of only one jet, provisionally questioned the emerging-flux model. Our observations support the view that solar filament eruptions are formed by a fundamental explosive magnetic process that occurs on a vast range of scales, from the biggest mass ejections and flare eruptions down to X-ray jets, and perhaps even down to smaller jets that may power coronal heating. A similar scenario has previously been suggested, but was inferred from different observations and based on a different origin of the erupting minifilament.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jian; Torres, Diego F.; Zhang, Shu
2014-04-10
We present an INTEGRAL spectral analysis in the orbital/superorbital phase space of LS I +61°303. A hard X-ray spectrum with no cutoff is observed at all orbital/superorbital phases. The hard X-ray index is found to be uncorrelated with the radio index (non-simultaneously) measured at the same orbital and superorbital phases. In particular, the absence of an X-ray spectrum softening during periods of negative radio index does not favor a simple interpretation of the radio index variations in terms of a microquasar's changes of state. We uncover hints of superorbital variability in the hard X-ray flux, in phase with the superorbitalmore » modulation in soft X-rays. An orbital phase drift of the radio peak flux and index along the superorbital period is observed in the radio data. We explore its influence on a previously reported double-peak structure of a radio orbital light curve, and present it as a plausible explanation.« less
Spectral properties of x-ray selected narrow emission line galaxies
NASA Astrophysics Data System (ADS)
Romero Colmenero, Encarnacion
This thesis reports a study of the X-ray and optical properties of two samples of X-ray selected Narrow Emission Line Galaxies (NELGs), and their comparison with the properties of broad line Active Galactic Nuclei (AGN). One sample (18 NELGs) is drawn from the ROSAT International X-ray Optical Survey (RIXOS), the other (19 NELGs and 33 AGN) from the ROSAT UK Deep Survey. ROSAT multi-channel X-ray spectra have been extracted and fitted with power-law, bremsstrahlung and black body models for the brighter RIXOS sources. In most cases, power-law and bremsstrahlung models provide the best results. The average spectral energy index, alpha, of the RIXOS NELGs is 0.96 +/- 0.07, similar to that of AGN (alpha ~ 1). For the fainter RIXOS NELGs, as well as for all the UK Deep Survey sources, counts in three spectral bands have been extracted and fitted with a power-law model, assuming the Galactic value for NH. The brighter RIXOS sources demonstrated that the results obtained by these two different extraction and fitting procedures provide consistent results. Two average X-ray spectra, one for the NELGs and another for the AGN, were created from the UK Deep Survey sources. The power-law spectral slope of the average NELG is S = 0.45 +/- 0.09, whilst that of the AGN is S = 0.96 +/- 0.03. ROSAT X-ray surveys have shown that the fractional surface density of NELGs increases with respect to AGN at faint fluxes (< 2 x 10-15erg cm-2 s -1), thus suggesting that NELGs are important contributors to the residual soft (< 2 keV) X-ray background (XRB). Moreover, the spectral slope of this background (S ~ 0.4, 1-10 keV) is harder than that of AGN (S ~ 1), which are known to contribute most of the XRB at higher flux levels. The work presented in this thesis shows unequivocally for the first time that the integrated spectrum of the faintest NELGs (alpha ~ 0.4) is consistent with that of the soft X-ray background, finally reconciling it with the properties of the sources that are thought to constitute it. Furthermore, by combining both samples of NELGs, I find a tendency for sources at lower fluxes to display harder slopes (95% confidence level), further strengthening the case for NELGs to be major contributors to the XRB at the fainter fluxes. The analysis of optical spectroscopy, obtained on La Palma and Hawaii, shows that NELGs form a very heterogeneous group, made up of a mixture of Seyfert 2, LINER and HII-region like galaxies. Seyfert 2 galaxies are found to possess in general the steepest X-ray slopes. Ways to explain this in the context of the unified model of AGN are discussed. The FWHM of some emission lines (H, [NH]) in the NELGs appears to increase with steepening X-ray spectral slope. In the case of the Balmer lines, this at variance with what is observed in broad line AGN. The FWHM of the Balmer lines is also correlated to the FWHM of the forbidden lines, indicating that they must originate in regions of similar velocity fields. Unfortunately, the number of sources uniquely classified is not sufficient to investigate these relationships on a source type basis. The optical emission line ratios of a bright RIXOS source (aka Arp 185, NGC 6217), classified as a starburst galaxy in the literature, indicate that this is in fact a weak-[OI] LINER, powered either by emission from hot O stars or by hot stars together with a non-stellar continuum. Spatially resolved spectroscopic analysis suggests that the Balmer emission lines are concentrated in the inner regions of the nucleus, while the forbidden lines arise from a more extended region. Line ratios do not indicate a change in the ionizing continuum of this source with distance from the centre.
X-Ray Scattering Studies of the Liquid-Vapor Interface of Gallium.
NASA Astrophysics Data System (ADS)
Kawamoto, Eric Hitoshi
A UHV system was developed for performing X-ray scattering studies and in situ analyses of liquid metal surfaces. A nearly ideal choice for this study, gallium has a melting point just above room temperature; is amenable to handling in both air and vacuum; its surface oxides can be removed while its cleanliness is maintained and monitored. Using argon glow-discharge sputtering techniques to remove intervening surface oxides, thin wetting layers of gallium were prepared atop nonreactive substrates, to be used as samples suited for liquid surface scattering experiments. Preliminary measurements of X-ray reflectivity from the liquid-vapor interface of gallium were performed with the X-ray UHV chamber configured for use in conjunction with liquid surface spectrometers at two synchrotron beamlines. A novel technique for carrying out and interpreting scattering measurements from curved liquid surfaces was demonstrated. The energy tunability and intense focused white beam flux from a wiggler source was shown to place within reach the large values of wavevector transfer at which specular reflectivity data yield small length scale information about surface structure. Various theoretical treatments and simulations predict quasi-lamellar ordering of atoms near the free surface of metallic liquids due to energetics particular to metals (electron delocalization, the dependence of system energy on ion and electron densities, surface tension and electrostatic energy). However, the experimental data reported to date is insufficient to distinguish between a monotonic, sigmoidal electron density profile found at the free surfaces of dielectric liquids, and the damped oscillatory layer-like profiles anticipated for metallic liquids. Out to a wavevector transfer of Q = 0.55 A ^{-1}, the reflectivity data measured from a curved Ga surface is not inconsistent with what is expected for a liquid-vapor electron density profile of Gaussian width sigma = 1.3 +/- 0.2 A. Subsequent measurements roughly tripled the range of Q, but an oxidized surface led to poor data and hindered interpretation. The analysis presented is speculative at best, but within the context of the thermally excited capillary wave model of simple liquid surfaces, there seems to be no serious deviation from the simple Gaussian interfacial profile with the aforementioned roughness.
NASA Astrophysics Data System (ADS)
Galloway, Duncan K.; Psaltis, Dimitrios; Chakrabarty, Deepto; Muno, Michael P.
2003-06-01
We investigate the limitations of thermonuclear X-ray bursts as a distance indicator for the weakly magnetized accreting neutron star 4U 1728-34. We measured the unabsorbed peak flux of 81 bursts in public data from the Rossi X-Ray Timing Explorer (RXTE). The distribution of peak fluxes was bimodal: 66 bursts exhibited photospheric radius expansion (presumably reaching the local Eddington limit) and were distributed about a mean bolometric flux of 9.2×10-8ergscm-2s-1, while the remaining (non-radius expansion) bursts reached 4.5×10-8ergscm-2s-1, on average. The peak fluxes of the radius expansion bursts were not constant, exhibiting a standard deviation of 9.4% and a total variation of 46%. These bursts showed significant correlations between their peak flux and the X-ray colors of the persistent emission immediately prior to the burst. We also found evidence for quasi-periodic variation of the peak fluxes of radius expansion bursts, with a timescale of ~=40 days. The persistent flux observed with RXTE/ASM over 5.8 yr exhibited quasi-periodic variability on a similar timescale. We suggest that these variations may have a common origin in reflection from a warped accretion disk. Once the systematic variation of the peak burst fluxes is subtracted, the residual scatter is only ~=3%, roughly consistent with the measurement uncertainties. The narrowness of this distribution strongly suggests that (1) the radiation from the neutron star atmosphere during radius expansion episodes is nearly spherically symmetric and (2) the radius expansion bursts reach a common peak flux that may be interpreted as a standard candle intensity. Adopting the minimum peak flux for the radius expansion bursts as the Eddington flux limit, we derive a distance for the source of 4.4-4.8 kpc (assuming RNS=10 km), with the uncertainty arising from the probable range of the neutron star mass MNS=1.4-2 Msolar.
Einstein observations of three classical Cepheids
NASA Technical Reports Server (NTRS)
Bohm-Vitense, E.; Parsons, S. B.
1983-01-01
We have looked for X-ray emission from the classical Cepheids delta Cep, beta Dor, and zeta Gem during phases when the latter two stars show emission in low excitation chromospheric lines. No X-ray flux was detected except possibly from zeta Gem at phase 0.26. Derived upper limits are in line with emission flux or upper limits obtained for other F and G supergiants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beheshtipour, Banafsheh; Hoormann, Janie K.; Krawczynski, Henric, E-mail: b.beheshtipour@wustl.edu
Observations with RXTE ( Rossi X-ray Timing Explorer ) revealed the presence of high-frequency quasi-periodic oscillations (HFQPOs) of the X-ray flux from several accreting stellar-mass black holes. HFQPOs (and their counterparts at lower frequencies) may allow us to study general relativity in the regime of strong gravity. However, the observational evidence today does not yet allow us to distinguish between different HFQPO models. In this paper we use a general-relativistic ray-tracing code to investigate X-ray timing spectroscopy and polarization properties of HFQPOs in the orbiting Hotspot model. We study observational signatures for the particular case of the 166 Hz quasi-periodicmore » oscillation (QPO) in the galactic binary GRS 1915+105. We conclude with a discussion of the observability of spectral signatures with a timing-spectroscopy experiment such as the LOFT ( Large Observatory for X-ray Timing ) and polarization signatures with space-borne X-ray polarimeters such as IXPE ( Imaging X-ray Polarimetry Explorer ), PolSTAR ( Polarization Spectroscopic Telescope Array ), PRAXyS ( Polarimetry of Relativistic X-ray Sources ), or XIPE ( X-ray Imaging Polarimetry Explorer ). A mission with high count rate such as LOFT would make it possible to get a QPO phase for each photon, enabling the study of the QPO-phase-resolved spectral shape and the correlation between this and the flux level. Owing to the short periods of the HFQPOs, first-generation X-ray polarimeters would not be able to assign a QPO phase to each photon. The study of QPO-phase-resolved polarization energy spectra would thus require simultaneous observations with a first-generation X-ray polarimeter and a LOFT -type mission.« less
Mrk 421 after the Giant X-Ray Outburst in 2013
NASA Astrophysics Data System (ADS)
Kapanadze, B.; Dorner, D.; Romano, P.; Vercellone, S.; Kapanadze, S.; Tabagari, L.
2017-10-01
We present the results of the Swift observations of the nearby BL Lac object Mrk 421 during 2013 November-2015 June. The source exhibited a strong long-term variability in the 0.3-10 keV band, with a maximum-to-minimum flux ratio of 13, and underwent X-ray flares by a factor of 1.8-5.2 on timescales of a few weeks or shorter. The source showed 48 instances of intraday flux variability in this period, which sometimes was observed within the 1 ks observational run. It was characterized by fractional amplitudes of 1.5(0.3)%-38.6(0.4)% and flux doubling/halving times of 2.6-20.1 hr. The X-ray flux showed a lack of correlation with the TeV flux on some occasions (strong TeV flares were not accompanied by comparable X-ray activity and vice versa), indicating that the high-energy emission in Mrk 421 was generated from an emission region more complex than a single zone. The best fits of the 0.3-10 keV spectra were mainly obtained using the log-parabola model, showing a strong spectral variability that generally followed a “harder-when-brighter” trend. The position of the synchrotron spectral energy distribution peak showed an extreme range from a few eV to ˜10 keV that happens rarely in blazars.
Corbel, S.; Dubus, G.; Tomsick, J. A.; ...
2012-04-10
With frequent flaring activity of its relativistic jets, Cygnus X-3 (Cyg X-3) is one of the most active microquasars and is the only Galactic black hole candidate with confirmed high-energy γ-ray emission, thanks to detections by Fermi Large Area Telescope (Fermi/LAT) and AGILE. In 2011, we observed Cyg X-3 in order to transit to a soft X-ray state, which is known to be associated with high-energy γ-ray emission. We present the results of a multiwavelength campaign covering a quenched state, when radio emission from Cyg X-3 is at its weakest and the X-ray spectrum is very soft. A giant (~20more » Jy) optically thin radio flare marks the end of the quenched state, accompanied by rising non-thermal hard X-rays. Fermi/LAT observations (E≥ 100 MeV) reveal renewed γ-ray activity associated with this giant radio flare, suggesting a common origin for all non-thermal components. In addition, current observations unambiguously show that the γ-ray emission is not exclusively related to the rare giant radio flares. A three-week period of γ-ray emission is also detected when Cyg X-3 was weakly flaring in radio, right before transition to the radio quenched state. There were no γ-rays observed during the ~1-month long quenched state, when the radio flux is weakest. These results suggest transitions into and out of the ultrasoft X-ray (radio-quenched) state trigger γ-ray emission, implying a connection to the accretion process, and also that the γ-ray activity is related to the level of radio flux (and possibly shock formation), strengthening the connection to the relativistic jets.« less
NASA Astrophysics Data System (ADS)
Kalyvas, N.; Valais, I.; David, S.; Michail, Ch.; Fountos, G.; Liaparinos, P.; Kandarakis, I.
2014-05-01
Single crystal scintilators are used in various radiation detectors applications. The efficiency of the crystal can be determined by the Detector Optical Gain (DOG) defined as the ratio of the emitted optical photon flux over the incident radiation photons flux. A parameter affecting DOG is the intrinsic conversion efficiency ( n C ) giving the percentage of the X-ray photon power converted to optical photon power. n C is considered a constant value for X-ray energies in the order of keV although a non-proportional behavior has been reported. In this work an analytical model, has been utilized to single crystals scintillators GSO:Ce, LSO:Ce and LYSO:Ce to examine whether the intrinsic conversion efficiency shows non proportional behavior under X-ray excitation. DOG was theoretically calculated as a function of the incident X-ray spectrum, the X-ray absorption efficiency, the energy of the produced optical photons and the light transmission efficiency. The theoretical DOG values were compared with experimental data obtained by irradiating the crystals with X-rays at tube voltages from 50 to 140 kV and by measuring the light energy flux emitted from the irradiated screen. An initial value for n C (calculated from literature data) was assumed for the X-ray tube voltage of 50 kV. For higher X-ray tube voltages the optical photon propagation phenomena was assumed constant and any deviations between experimental and theoretical data were associated with changes in the intrinsic conversion efficiency. The experimental errors were below 7% for each experimental setup. The behavior of n C values for LSO:Ce and LYSO:Ce were found very similar, i.e., ranging with values from 0.089 at 50 kV to 0.015 at 140 kV, while for GSO:Ce, n C demonstrated a peak at 80 kV.
NASA Astrophysics Data System (ADS)
Nichols, J.; Huenemoerder, D. P.; Corcoran, M. F.; Waldron, W.; Nazé, Y.; Pollock, A. M. T.; Moffat, A. F. J.; Lauer, J.; Shenar, T.; Russell, C. M. P.; Richardson, N. D.; Pablo, H.; Evans, N. R.; Hamaguchi, K.; Gull, T.; Hamann, W.-R.; Oskinova, L.; Ignace, R.; Hoffman, Jennifer L.; Hole, K. T.; Lomax, J. R.
2015-08-01
We present time-resolved and phase-resolved variability studies of an extensive X-ray high-resolution spectral data set of the δ Ori Aa binary system. The four observations, obtained with Chandra ACIS HETGS, have a total exposure time of ≈ 479 ks and provide nearly complete binary phase coverage. Variability of the total X-ray flux in the range of 5-25 Å is confirmed, with a maximum amplitude of about ±15% within a single ≈ 125 ks observation. Periods of 4.76 and 2.04 days are found in the total X-ray flux, as well as an apparent overall increase in the flux level throughout the nine-day observational campaign. Using 40 ks contiguous spectra derived from the original observations, we investigate the variability of emission line parameters and ratios. Several emission lines are shown to be variable, including S xv, Si xiii, and Ne ix. For the first time, variations of the X-ray emission line widths as a function of the binary phase are found in a binary system, with the smallest widths at ϕ = 0.0 when the secondary δ Ori Aa2 is at the inferior conjunction. Using 3D hydrodynamic modeling of the interacting winds, we relate the emission line width variability to the presence of a wind cavity created by a wind-wind collision, which is effectively void of embedded wind shocks and is carved out of the X-ray-producing primary wind, thus producing phase-locked X-ray variability. Based on data from the Chandra X-ray Observatory and the MOST satellite, a Canadian Space Agency mission, jointly operated by Dynacon Inc., the University of Toronto Institute of Aerospace Studies, and the University of British Columbia, with the assistance of the University of Vienna.
Low energy gamma ray emission from the Cygnus OB2 association
NASA Technical Reports Server (NTRS)
Chen, Wan; White, Richard L.
1992-01-01
According to our newly developed model of gamma-ray emission from chaotic early-type stellar winds, we predict the combined gamma-ray flux from the circumstellar winds of many very luminous early-type stars in the Cyg OB2 association can be detectable by the Energetic Gamma Ray Experiment Telescope (EGRET) (and maybe also by OSSE) on CGRO. Due to different radiation mechanisms, the gamma-ray spectrum from stellar winds can be quite different from that of CYG X-3; this spectral difference and the time-variation of Cyg X-3 flux will help to distinguish the gamma-ray components from different sources in this small region, which is spatially unresolvable by CGRO.
Definitive X-Ray Detection of the Class 0 Protostar HOPS 383
NASA Astrophysics Data System (ADS)
Grosso, Nicolas
2016-09-01
We have identified in the Chandra archive a possible pre-outburst X-ray counterpart to the protostar HOPS 383, the first and only Class 0 protostar thus far observed to undergo an accretion outburst. We propose ACIS-I and contemporaneous CT-4m near-IR observations to confirm and to identify the source of this X-ray emission and to measure the presumed increase in X-ray flux during the accretion outburst.
Driving extreme variability: the evolving corona and evidence for jet launching in Markarian 335
NASA Astrophysics Data System (ADS)
Wilkins, D. R.; Gallo, L. C.
2015-05-01
Variations in the X-ray emission from the narrow-line Seyfert 1 galaxy, Markarian 335, are studied on both long and short time-scales through observations made between 2006 and 2013 with XMM-Newton, Suzaku and NuSTAR. Changes in the geometry and energetics of the corona that give rise to this variability are inferred through measurements of the relativistically blurred reflection seen from the accretion disc. On long time-scales, we find that during the high-flux epochs the corona has expanded, covering the inner regions of the accretion disc out to a radius of 26_{-7}^{+10} rg. The corona contracts to within 12rg and 5rg in the intermediate- and low-flux epochs, respectively. While the earlier high-flux observation made in 2006 is consistent with a corona extending over the inner part of the accretion disc, a later high-flux observation that year revealed that the X-ray source had become collimated into a vertically extended jet-like corona and suggested relativistic motion of material upwards. On short time-scales, we find that an X-ray flare during a low-flux epoch in 2013 corresponded to a reconfiguration from a slightly extended corona to one much more compact, within just 2 ˜ 3rg of the black hole. There is evidence that during the flare itself, the spectrum softened and the corona became collimated and slightly extended vertically as if a jet-launching event was aborted. Understanding the evolution of the X-ray emitting corona may reveal the underlying mechanism by which the luminous X-ray sources in AGN are powered.
The Variable Hard X-Ray Emission of NGC4945 as Observed by NuSTAR
NASA Technical Reports Server (NTRS)
Puccetti, Simonetta; Comastri, Andrea; Fiore, Fabrizio; Arevalo, Patricia; Risaliti, Guido; Bauer, Franz E.; Brandt, William N.; Stern, Daniel; Harrison, Fiona A.; Alexander, David M.;
2014-01-01
We present a broadband (approx. 0.5 - 79 keV) spectral and temporal analysis of multiple NuSTAR observations combined with archival Suzaku and Chandra data of NGC4945, the brightest extragalactic source at 100 keV. We observe hard X-ray (> 10 keV) flux and spectral variability, with flux variations of a factor 2 on timescales of 20 ksec. A variable primary continuum dominates the high energy spectrum (> 10 keV) in all the states, while the reflected/scattered flux which dominates at E< 10 keV stays approximately constant. From modelling the complex reflection/transmission spectrum we derive a Compton depth along the line of sight of Thomson approx.2.9, and a global covering factor for the circumnuclear gas of approx. 0.15. This agrees with the constraints derived from the high energy variability, which implies that most of the high energy flux is transmitted, rather that Compton-scattered. This demonstrates the effectiveness of spectral analysis in constraining the geometric properties of the circumnuclear gas, and validates similar methods used for analyzing the spectra of other bright, Compton-thick AGN. The lower limits on the e-folding energy are between 200 - 300 keV, consistent with previous BeppoSAX, Suzaku and Swift BAT observations. The accretion rate, estimated from the X-ray luminosity and assuming a bolometric correction typical of type 2 AGN, is in the range approx. 0.1 - 0.3 lambda(sub Edd) depending on the flux state. The substantial observed X-ray luminosity variability of NGC4945 implies that large errors can arise from using single-epoch X-ray data to derive L/L(sub Edd) values for obscured AGNs.
The Variable Hard X-Ray Emission of NGC 4945 as Observed by NUSTAR
Puccetti, Simonetta; Comastri, Andrea; Fiore, Fabrizio; ...
2014-09-02
Here, we present a broadband (~0.5-79 keV) spectral and temporal analysis of multiple NuSTAR observations combined with archival Suzaku and Chandra data of NGC 4945, the brightest extragalactic source at 100 keV. We observe hard X-ray (>10 keV) flux and spectral variability, with flux variations of a factor of two on timescales of 20 ks. A variable primary continuum dominates the high-energy spectrum (>10 keV) in all states, while the reflected/scattered flux that dominates at E <10 keV stays approximately constant. From modeling the complex reflection/transmission spectrum, we derive a Compton depth along the line of sight of τThomson ~more » 2.9, and a global covering factor for the circumnuclear gas of ~0.15. This agrees with the constraints derived from the high-energy variability, which implies that most of the high-energy flux is transmitted rather than Compton-scattered. This demonstrates the effectiveness of spectral analysis at constraining the geometric properties of the circumnuclear gas, and validates similar methods used for analyzing the spectra of other bright, Compton-thick active galactic nuclei (AGNs). The lower limits on the e-folding energy are between 200 and 300 keV, consistent with previous BeppoSAX, Suzaku, and Swift Burst Alert Telescope observations. The accretion rate, estimated from the X-ray luminosity and assuming a bolometric correction typical of type 2 AGN, is in the range ~0.1-0.3 λEdd depending on the flux state. As a result, the substantial observed X-ray luminosity variability of NGC 4945 implies that large errors can arise from using single-epoch X-ray data to derive L/L Edd values for obscured AGNs.« less
NASA Technical Reports Server (NTRS)
Garcia, J.; Dauser, T.; Reynolds, C. S.; Kallman, T. R.; McClintock, J. E.; Wilms, J.; Ekmann, W.
2013-01-01
We present a new and complete library of synthetic spectra for modeling the component of emission that is reflected from an illuminated accretion disk. The spectra were computed using an updated version of our code xillver that incorporates new routines and a richer atomic data base. We offer in the form of a table model an extensive grid of reflection models that cover a wide range of parameters. Each individual model is characterized by the photon index Gamma of the illuminating radiation, the ionization parameter zeta at the surface of the disk (i.e., the ratio of the X-ray flux to the gas density), and the iron abundance A(sub Fe) relative to the solar value. The ranges of the parameters covered are: 1.2 <= Gamma <= 3.4, 1 <= zeta <= 104, and 0.5 <= A(sub Fe) <= 10. These ranges capture the physical conditions typically inferred from observations of active galactic nuclei, and also stellar-mass black holes in the hard state. This library is intended for use when the thermal disk flux is faint compared to the incident power-law flux. The models are expected to provide an accurate description of the Fe K emission line, which is the crucial spectral feature used to measure black hole spin. A total of 720 reflection spectra are provided in a single FITS file suitable for the analysis of X-ray observations via the atable model in xspec. Detailed comparisons with previous reflection models illustrate the improvements incorporated in this version of xillver.
Multiple energetic injections in a strong spike-like solar burst
NASA Technical Reports Server (NTRS)
Kaufmann, P.; Correia, E.; Costa, J. E. R.; Dennis, B. R.; Hurford, G. H.; Brown, J. C.
1983-01-01
An intense and fast spike-like solar burst was built up of short time scale structures superimposed on an underlying gradual emission, the time evolution of which shows remarkable proportionality between hard X-ray and microwave fluxes. The finer time structure were best defined at mm-microwaves. At the peak of the event, the finer structures repeat every 30x60ms. The more slowly varying component with a time scale of about 1 second was identified in microwave hard X-rays throughout the burst duration. It is suggested that X-ray fluxes might also be proportional to the repetition rate of basic units of energy injection (quasi-quantized). The relevant parameters of one primary energy release site are estimated both in the case where hard X-rays are produced primarily by thick-target bremsstrahlung, and when they are purely thermal. The relation of this figure to global energy considerations is discussed.
NASA Astrophysics Data System (ADS)
Pahari, Mayukh; Yadav, J. S.; Verdhan Chauhan, Jai; Rawat, Divya; Misra, Ranjeev; Agrawal, P. C.; Chandra, Sunil; Bagri, Kalyani; Jain, Pankaj; Manchanda, R. K.; Chitnis, Varsha; Bhattacharyya, Sudip
2018-01-01
We present X-ray spectral and timing behavior of Cyg X-3 as observed by AstroSat during the onset of a giant radio flare on 2017 April 1–2. Within a timescale of a few hours, the source shows a transition from the hypersoft state (HPS) to a more luminous state (we termed as the very high state), which coincides with the time of the steep rise in radio flux density by an order of magnitude. Modeling the Soft X-ray Telescope (SXT) and Large Area X-ray Proportional Counter (LAXPC) spectra jointly in 0.5–70.0 keV, we found that the first few hours of the observation is dominated by the HPS with no significant counts above 17 keV. Later, an additional flat power-law component suddenly appeared in the spectra that extends to very high energies with the power-law photon index of {1.49}-0.03+0.04. Such a flat power-law component has never been reported from Cyg X-3. Interestingly the fitted power-law model in 25–70 keV, when extrapolated to the radio frequency, predicts the radio flux density to be consistent with the trend measured from the RATAN-600 telescope at 11.2 GHz. This provides direct evidence of the synchrotron origin of flat X-ray power-law component and the most extensive monitoring of the broadband X-ray behavior at the moment of decoupling the giant radio jet base from the compact object in Cyg X-3. Using SXT and LAXPC observations, we determine the giant flare ejection time as MJD 57845.34 ± 0.08 when 11.2 GHz radio flux density increases from ∼100 to ∼478 mJy.
Outburst of the 2 s Anomalous X-ray Pulsar 1E 1547.0-5408
NASA Technical Reports Server (NTRS)
Halpern, J. P.; Gotthelf, E. V.; Camilo, F.; Reynolds, J.; Ransom, S. M.
2008-01-01
Following our discovery of radio pulsations from the newly recognized anomalous X-ray pulsar (AXP) 1E 1547.0-5408, we initiated X-ray monitoring with the Swift X-ray telescope and obtained a single target-of-opportunity observation with the Newton X-ray Multi-Mirror Mission (XMM-Newton). In comparison with its historic minimum flux of 3 x 10(exp -l3)ergs/sq cm/s, the source was found to be in a record high state, f(sub x)(1-8 keV) = 5 x 10(exp -12)ergs/sq cm/s, or L(sub x) = 1.7 x 10(exp 35)(d/9 kpc )(sup 2)ergs/s, and declining by 25% in 1 month. Extrapolating the decay, we bound the total energy in this outburst to 1042 ergs < E < ergs. The spectra (fitted with a Comptonized blackbody) show that an increase in the temperature and area of a hot region, to 0.5 keV and -16% of the surface area of the neutron star, respectively, are primarily responsible for its increase in luminosity. The energy, spectrum, and timescale of decay are consistent with a deep crustal heating event, similar to an interpretation of the X-ray turn-on of the transient AXP XTE J18 10- 197. Simultaneous with the 4.6 hr ATdA4-Newton observation, we observed at 6.4 GHz with the Parkes telescope, measuring the phase relationship of the radio and X-ray pulse. The X-ray pulsed fraction of 1E 1547.0-5408 is only approx. 7 %, while its radio pulse is relatively broad for such a slow pulsar, which may indicate a nearly aligned rotator. As also inferred from the transient behavior of XTE J18 10-197, the only other AXP known to emit in the radio, the magnetic field rearrangement responsible for this X-ray outburst of 1E 1547.0-5408 is probably the cause of its radio turn-on.
Uncertainty analysis technique for OMEGA Dante measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
May, M. J.; Widmann, K.; Sorce, C.
2010-10-15
The Dante is an 18 channel x-ray filtered diode array which records the spectrally and temporally resolved radiation flux from various targets (e.g., hohlraums, etc.) at x-ray energies between 50 eV and 10 keV. It is a main diagnostic installed on the OMEGA laser facility at the Laboratory for Laser Energetics, University of Rochester. The absolute flux is determined from the photometric calibration of the x-ray diodes, filters and mirrors, and an unfold algorithm. Understanding the errors on this absolute measurement is critical for understanding hohlraum energetic physics. We present a new method for quantifying the uncertainties on the determinedmore » flux using a Monte Carlo parameter variation technique. This technique combines the uncertainties in both the unfold algorithm and the error from the absolute calibration of each channel into a one sigma Gaussian error function. One thousand test voltage sets are created using these error functions and processed by the unfold algorithm to produce individual spectra and fluxes. Statistical methods are applied to the resultant set of fluxes to estimate error bars on the measurements.« less
Uncertainty Analysis Technique for OMEGA Dante Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
May, M J; Widmann, K; Sorce, C
2010-05-07
The Dante is an 18 channel X-ray filtered diode array which records the spectrally and temporally resolved radiation flux from various targets (e.g. hohlraums, etc.) at X-ray energies between 50 eV to 10 keV. It is a main diagnostics installed on the OMEGA laser facility at the Laboratory for Laser Energetics, University of Rochester. The absolute flux is determined from the photometric calibration of the X-ray diodes, filters and mirrors and an unfold algorithm. Understanding the errors on this absolute measurement is critical for understanding hohlraum energetic physics. We present a new method for quantifying the uncertainties on the determinedmore » flux using a Monte-Carlo parameter variation technique. This technique combines the uncertainties in both the unfold algorithm and the error from the absolute calibration of each channel into a one sigma Gaussian error function. One thousand test voltage sets are created using these error functions and processed by the unfold algorithm to produce individual spectra and fluxes. Statistical methods are applied to the resultant set of fluxes to estimate error bars on the measurements.« less
Observation of Markarian 421 in TeV Gamma Rays Over a 14-Year Time Span
NASA Technical Reports Server (NTRS)
Acciari, V. A.; Arlen, T.; Aune, T.; Benbow, W.; Bird, R.; Bouvier, A.; Bradbury, S. M.; Buckley, J. H.; Bugaev, V.; McEnery, Julie E.
2013-01-01
The variability of the blazar Markarian 421 in TeV gamma rays over a 14-year time period has been explored with theWhipple 10 m telescope. It is shown that the dynamic range of its flux variations is large and similar to that in X-rays. A correlation between the X-ray and TeV energy bands is observed during some bright flares and when the complete data sets are binned on long timescales. The main database consists of 878.4 hours of observation with theWhipple telescope, spread over 783 nights. The peak energy response of the telescope was 400 GeV with 20% uncertainty. This is the largest database of any TeV-emitting active galactic nucleus (AGN) and hence was used to explore the variability profile of Markarian 421. The time-averaged flux from Markarian 421 over this period was 0.446+/-0.008 Crab flux units. The flux exceeded 10 Crab flux units on three separate occasions. For the 2000-2001 season the average flux reached 1.86 Crab units, while in the 1996-1997 season the average flux was only 0.23 Crab units.
The 4U 0115+63: Another energetic gamma ray binary pulsar
NASA Technical Reports Server (NTRS)
Chadwick, P. M.; Dipper, N. A.; Dowthwaite, J. C.; Kirkman, I. W.; Mccomb, T. J. L.; Orford, K. J.; Turver, K. E.
1985-01-01
Following the discovery of Her X-1 as a source of pulsed 1000 Gev X-rays, a search for emission from an X-ray binary containing a pulsar with similar values of period, period derivative and luminosity was successful. The sporadic X-ray binary 4U 0115-63 has been observed, with probability 2.5 x 10 to the minus 6 power ergs/s to emit 1000 GeV gamma-rays with a time averaged energy flux of 6 to 10 to the 35th power.
NASA Technical Reports Server (NTRS)
Langer, S. H.; Petrosian, V.
1976-01-01
A Monte Carlo method is described for evaluation of the spectrum, directivity and polarization of X-rays diffusely reflected from stellar photospheres. the accuracy of the technique is evaluated through comparison with analytic results. Using the characteristics of the incident X-rays of the model for solar X-ray flares, the spectrum, directivity and polarization of the reflected and the total X-ray fluxes are evaluated. The results are compared with observations.
Understanding the timing behavior of magnetars during outburst
NASA Astrophysics Data System (ADS)
Tong, Hao
2016-07-01
Magnetars show various kinds of variabilities during their outbursts: (1)decreasing spin-down torque during the decrease of X-ray flux by Swift J1822.3-1606; (2) increasing spin-down torque during the decrease of X-ray flux by the Galactic center magnetar; (3) anti-glitch during an outburst of AXP 1E2259+586, etc. All these timing behaviors of magnetars can be understood uniformly in the wind braking model of magnetars. Furthermore, a possible hard X-ray cutoff at about 130 keV is found. Future spectra observations may help us to distinguish between the magnetar model and fallback disk model for AXPs and SGRs.
The detection of X-ray variability in O stars
NASA Technical Reports Server (NTRS)
Snow, T. P., Jr.; Cash, W.; Grady, C. A.
1981-01-01
Seven O stars known to have strong, and sometimes variable, stellar winds have been observed repeatedly with the Imaging Proportional Counter on the Einstein Observatory, in a program designed to determine whether the X-ray fluxes from these stars are variable. In three cases, definite changes were seen, either on a time scale of a year (Iota Ori and Delta Ori) or five days (15 Mon). In two of these cases, the X-ray spectrum was harder when the overall flux was higher, indicating that some of the fluctuations may take place in a hot (approximately 10 to the 7th K) emitting region at the bottom of the winds.
NASA Astrophysics Data System (ADS)
Dooraghi, Alex A.; Tringe, Joseph W.
2018-04-01
To evaluate conventional munition, we simulated an x-ray computed tomography (CT) system for generating radiographs from nominal x-ray energies of 6 or 9 megaelectron volts (MeV). CT simulations, informed by measured data, allow for optimization of both system design and acquisition techniques necessary to enhance image quality. MCNP6 radiographic simulation tools were used to model ideal detector responses (DR) that assume either (1) a detector response proportional to photon flux (N) or (2) a detector response proportional to energy flux (E). As scatter may become significant with MeV x-ray systems, simulations were performed with and without the inclusion of object scatter. Simulations were compared against measurements of a cylindrical munition component principally composed of HMX, tungsten and aluminum encased in carbon fiber. Simulations and measurements used a 6 MeV peak energy x-ray spectrum filtered with 3.175 mm of tantalum. A detector response proportional to energy which includes object scatter agrees to within 0.6 % of the measured line integral of the linear attenuation coefficient. Exclusion of scatter increases the difference between measurement and simulation to 5 %. A detector response proportional to photon flux agrees to within 20 % when object scatter is included in the simulation and 27 % when object scatter is excluded.
When A Standard Candle Flickers
NASA Technical Reports Server (NTRS)
Wilson-Hodge, Colleen A.; Cherry, Michael L.; Case, Gary L.; Baumgartner, Wayne H.; Beklen Elif; Bhat, P. Narayana; Briggs, Michael S.; Camero-Arranz, Ascension; Chaplin, Vandiver; Connaughton, Valerie;
2011-01-01
The Crab Nebula is the only hard X-ray source in the sky that is both bright enough and steady enough to be easily used as a standard candle. As a result, it has been used as a normalization standard by most X-ray/gamma ray telescopes. Although small-scale variations in the nebula are well-known, since the start of science operations of the Fermi Gamma-ray Burst Monitor (GBM) in August 2008 a 7% (70 mcrab) decline has been observed in the overall Crab Nebula flux in the 15-50 keV band, measured with the Earth occultation technique. This decline is independently confirmed in the 15-50 keV band with three other instruments: the Swift Burst Alert Telescope (Swift/BAT), the Rossi X-ray Timing Explorer Proportional Counter Array (RXTE/PCA), and the INTErnational Gamma-Ray Astrophysics Laboratory Imager on Board INTEGRAL (IBIS). A similar decline is also observed in the 3 - 15 keV data from the RXTE/PCA and in the 50 - 100 keV band with GBM, Swift/BAT, and INTEGRAL/IBIS. The change in the pulsed flux measured with RXTE/PCA since 1999 is consistent with the pulsar spin-down, indicating that the observed changes are nebular. Correlated variations in the Crab Nebula flux on a 3 year timescale are also seen independently with the PCA, BAT, and IBIS from 2005 to 2008, with a flux minimum in April 2007. As of August 2010, the current flux has declined below the 2007 minimum.
Beamline 10.3.2 at ALS: a hard X-ray microprobe for environmental and materials sciences.
Marcus, Matthew A; MacDowell, Alastair A; Celestre, Richard; Manceau, Alain; Miller, Tom; Padmore, Howard A; Sublett, Robert E
2004-05-01
Beamline 10.3.2 at the ALS is a bend-magnet line designed mostly for work on environmental problems involving heavy-metal speciation and location. It offers a unique combination of X-ray fluorescence mapping, X-ray microspectroscopy and micro-X-ray diffraction. The optics allow the user to trade spot size for flux in a size range of 5-17 microm in an energy range of 3-17 keV. The focusing uses a Kirkpatrick-Baez mirror pair to image a variable-size virtual source onto the sample. Thus, the user can reduce the effective size of the source, thereby reducing the spot size on the sample, at the cost of flux. This decoupling from the actual source also allows for some independence from source motion. The X-ray fluorescence mapping is performed with a continuously scanning stage which avoids the time overhead incurred by step-and-repeat mapping schemes. The special features of this beamline are described, and some scientific results shown.
Dissecting the long-term emission behaviour of the BL Lac object Mrk 421
NASA Astrophysics Data System (ADS)
Carnerero, M. I.; Raiteri, C. M.; Villata, M.; Acosta-Pulido, J. A.; Larionov, V. M.; Smith, P. S.; D'Ammando, F.; Agudo, I.; Arévalo, M. J.; Bachev, R.; Barnes, J.; Boeva, S.; Bozhilov, V.; Carosati, D.; Casadio, C.; Chen, W. P.; Damljanovic, G.; Eswaraiah, E.; Forné, E.; Gantchev, G.; Gómez, J. L.; González-Morales, P. A.; Griñón-Marín, A. B.; Grishina, T. S.; Holden, M.; Ibryamov, S.; Joner, M. D.; Jordan, B.; Jorstad, S. G.; Joshi, M.; Kopatskaya, E. N.; Koptelova, E.; Kurtanidze, O. M.; Kurtanidze, S. O.; Larionova, E. G.; Larionova, L. V.; Latev, G.; Lázaro, C.; Ligustri, R.; Lin, H. C.; Marscher, A. P.; Martínez-Lombilla, C.; McBreen, B.; Mihov, B.; Molina, S. N.; Moody, J. W.; Morozova, D. A.; Nikolashvili, M. G.; Nilsson, K.; Ovcharov, E.; Pace, C.; Panwar, N.; Pastor Yabar, A.; Pearson, R. L.; Pinna, F.; Protasio, C.; Rizzi, N.; Redondo-Lorenzo, F. J.; Rodríguez-Coira, G.; Ros, J. A.; Sadun, A. C.; Savchenko, S. S.; Semkov, E.; Slavcheva-Mihova, L.; Smith, N.; Strigachev, A.; Troitskaya, Yu. V.; Troitsky, I. S.; Vasilyev, A. A.; Vince, O.
2017-12-01
We report on long-term multiwavelength monitoring of blazar Mrk 421 by the GLAST-AGILE Support Program of the Whole Earth Blazar Telescope (GASP-WEBT) collaboration and Steward Observatory, and by the Swift and Fermi satellites. We study the source behaviour in the period 2007-2015, characterized by several extreme flares. The ratio between the optical, X-ray and γ-ray fluxes is very variable. The γ-ray flux variations show a fair correlation with the optical ones starting from 2012. We analyse spectropolarimetric data and find wavelength-dependence of the polarization degree (P), which is compatible with the presence of the host galaxy, and no wavelength dependence of the electric vector polarization angle (EVPA). Optical polarimetry shows a lack of simple correlation between P and flux and wide rotations of the EVPA. We build broad-band spectral energy distributions with simultaneous near-infrared and optical data from the GASP-WEBT and ultraviolet and X-ray data from the Swift satellite. They show strong variability in both flux and X-ray spectral shape and suggest a shift of the synchrotron peak up to a factor of ∼50 in frequency. The interpretation of the flux and spectral variability is compatible with jet models including at least two emitting regions that can change their orientation with respect to the line of sight.
Spectral properties of X-ray selected narrow emission line galaxies
NASA Astrophysics Data System (ADS)
Romero-Colmenero, E.
1998-03-01
This thesis reports a study of the X-ray and optical properties of two samples of X-ray selected Narrow Emission Line Galaxies (NELGs), and their comparison with the properties of broad line Active Galactic Nuclei (AGN). One sample (18 NELGs) is drawn from the ROSAT International X-ray Optical Survey (RIXOS), the other (19 NELGs and 33 AGN) from the ROSAT UK Deep Survey. ROSAT multi-channel X-ray spectra have been extracted and fitted with power-law, bremsstrahlung and black body models for the brighter RIXOS sources. In most cases, power-law and bremsstrahlung models provide the best results. The average spectral energy index, alpha, of the RIXOS NELGs is 0.96 +/- 0.07, similar to that of AGN (alpha~1). For the fainter RIXOS NELGs, as well as for all the UK Deep Survey sources, counts in three spectral bands have been extracted and fitted with a power-law model, assuming the Galactic value for N_H. The brighter RIXOS sources demonstrated that the results obtained by these two different extraction and fitting procedures provide consistent results. Two average X-ray spectra, one for the NELGs and another for the AGN, were created from the UK Deep Survey sources. The power-law slope of the average NELG is alpha = 0.45 +/- 0.09, whilst that of the AGN is alpha = 0.96 +/- 0.03. ROSAT X-ray surveys have shown that the fractional surface density of NELGs increases with respect to AGN at faint fluxes (<= 2e-15 ergs cm-2 s-1), thus suggesting that NELGs are important contributors to the residual soft (<2 keV) X-ray background (XRB). Moreover, the spectral slope of this background (alpha~0.4, 1-10 keV) is harder than that of AGN (alpha~1), which are known to contribute most of the XRB at higher flux levels. The work presented in this thesis shows unequivocally for the first time that the integrated spectrum of the faintest NELGs (alpha~0.4) is consistent with that of the soft X-ray background, finally reconciling it with the properties of the sources that are thought to constitute it. Furthermore, by combining both samples of NELGs, I find a tendency for sources at lower fluxes to display harder slopes (95% confidence level), further strengthening the case for NELGs to be major contributors to the XRB at the fainter fluxes. The analysis of optical spectroscopy, obtained on La Palma and Hawaii, shows that NELGs form a very heterogeneous group, made up of a mixture of Seyfert 2, LINER and HII-region like galaxies. Seyfert 2 galaxies are found to possess in general the steepest X-ray slopes. Ways to explain this in the context of the unified model of AGN are discussed. The FWHM of some emission lines (Halpha, Hbeta, [NII]) in the NELGs appears to increase with steepening X-ray spectral slope. In the case of the Balmer lines, this is at variance with what is observed in broad line AGN. The FWHM of the Balmer lines is also correlated to the FWHM of the forbidden lines, indicating that they must originate in regions of similar velocity fields. Unfortunately, the number of sources uniquely classified is not sufficient to investigate these relationships on a source type basis. The optical emission line ratios of a bright RIXOS source (aka Arp 185, NGC 6217), classified as a starburst galaxy in the literature, indicate that this is in fact a weak-[OI] LINER, powered either by emission from hot O stars or by hot stars together with a non-stellar continuum. Spatially resolved spectroscopic analysis suggests that the Balmer emission lines are concentrated in the inner regions of the nucleus, while the forbidden lines arise from a more extended region. Line ratios do not indicate a change in the ionizing continuum of this source with distance from the centre.
NASA Technical Reports Server (NTRS)
Weedman, Daniel W.
1987-01-01
The infrared properties of star-forming galaxies, primarily as determined by the Infrared Astronomy Satellite (IRAS), are compared to X-ray, optical, and radio properties. Luminosity functions are reviewed and combined with those derived from optically discovered samples using 487 Markarian galaxies with redshifts and published IRAS 60 micron fluxes, and 1074 such galaxies in the Center for Astrophysics redshift survey. It is found that the majority of infrared galaxies which could be detected are low luminosity sources already known from the optical samples, but non-infrared surveys have found only a very small fraction of the highest luminosity sources. Distributions of infrared to optical fluxes and available spectra indicate that the majority of IRAS-selected galaxies are starburst galaxies. Having a census of starburst galaxies and associated dust allow severl important global calculations. The source counts are predicted as a function of flux limits for both infrared and radio fluxes. These galaxies are found to be important radio sources at faint flux limits. Taking the integrated flux to z = 3 indicates that such galaxies are a significant component of the diffuse X-ray background, and could be the the dominant component depending on the nature of the X-ray spectra and source evolution.
Numerical modeling of the sensitivity of x-ray driven implosions to low-mode flux asymmetries.
Scott, R H H; Clark, D S; Bradley, D K; Callahan, D A; Edwards, M J; Haan, S W; Jones, O S; Spears, B K; Marinak, M M; Town, R P J; Norreys, P A; Suter, L J
2013-02-15
The sensitivity of inertial confinement fusion implosions, of the type performed on the National Ignition Facility (NIF) [1], to low-mode flux asymmetries is investigated numerically. It is shown that large-amplitude, low-order mode shapes (Legendre polynomial P(4), resulting from low-order flux asymmetries, cause spatial variations in capsule and fuel momentum that prevent the deuterium and tritium (DT) "ice" layer from being decelerated uniformly by the hot spot pressure. This reduces the transfer of implosion kinetic energy to internal energy of the central hot spot, thus reducing the neutron yield. Furthermore, synthetic gated x-ray images of the hot spot self-emission indicate that P(4) shapes may be unquantifiable for DT layered capsules. Instead the positive P(4) asymmetry "aliases" itself as an oblate P(2) in the x-ray images. Correction of this apparent P(2) distortion can further distort the implosion while creating a round x-ray image. Long wavelength asymmetries may be playing a significant role in the observed yield reduction of NIF DT implosions relative to detailed postshot two-dimensional simulations.
Unusual X-ray burst profiles from 4U/MXB 1636-53
NASA Technical Reports Server (NTRS)
Sztajno, M.; Truemper, J.; Pietsch, W.; Van Paradijs, J.; Stollman, G.
1985-01-01
During a one day Exosat observation eight X-ray bursts from 4U/MXB 1636-53 are observed. Four of these were very unusual. Their peak fluxes were relatively low, and they showed a distinct double peak in their bolometric flux profiles. These new double-peaked bursts are unexplained by presently available models of X-ray bursts. It is possible that the energy release in these bursts proceeds in two 'steps'. The burst profiles are not the result of an expansion and subsequent contraction of the photosphere of the neutron star. Thus, they are very different from previously observed bursts which do show a double peak in certain energy ranges but not in their bolometric flux profiles; these are satisfactorily explained in terms of photospheric radius expansion and contraction. The anticorrelation between the apparent blackbody radius and blackbody temperature is discussed in terms of the nonPlanckian character of burst spectra and it is concluded that the model calculations reported by London, Taam, and Howard in 1984 give a reasonable first-order description of the observed apparent radius changes in X-ray bursts.
High-energy properties of the high-redshift flat spectrum radio quasar PKS 2149-306
NASA Astrophysics Data System (ADS)
D'Ammando, F.; Orienti, M.
2016-01-01
We investigate the γ-ray and X-ray properties of the flat spectrum radio quasar PKS 2149-306 at redshift z = 2.345. A strong γ-ray flare from this source was detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope satellite in 2013 January, reaching on January 20 a daily peak flux of (301 ± 36) × 10-8 ph cm-2 s-1 in the 0.1-100 GeV energy range. This flux corresponds to an apparent isotropic luminosity of (1.5 ± 0.2) × 1050 erg s-1, comparable to the highest values observed by a blazar so far. During the flare the increase of flux was accompanied by a significant change of the spectral properties. Moreover significant flux variations on a 6-h time-scale were observed, compatible with the light crossing time of the event horizon of the central black hole. The broad-band X-ray spectra of PKS 2149-306 observed by Swift-XRT and NuSTAR are well described by a broken power-law model, with a very hard spectrum (Γ1 ˜ 1) below the break energy, at E break = 2.5-3.0 keV, and Γ2 ˜ 1.4-1.5 above the break energy. The steepening of the spectrum below ˜3 keV may indicate that the soft X-ray emission is produced by the low-energy relativistic electrons. This is in agreement with the small variability amplitude and the lack of spectral changes in that part of the X-ray spectrum observed between the two NuSTAR and Swift joint observations. As for the other high-redshift FSRQ detected by both Fermi-LAT and Swift-BAT, the photon index of PKS 2149-306 in hard X-ray is 1.6 or lower and the average γ-ray luminosity higher than 2 × 1048 erg s-1.
Chemical processes involved in the initiation of hot corrosion of B-1900 and NASA-TRW VIA
NASA Technical Reports Server (NTRS)
Fryburg, G. C.; Kohl, F. J.; Stearns, C. A.
1979-01-01
Sodium sulfate induced hot corrosion of B-1900 and NASA-TRW VIA at 900 C was studied with special emphasis on the chemical reactions occurring during and immediately after the induction period. Thermogravimetric tests were run for set periods of time after which the samples were washed with water and water soluable metal salts and/or residual sulfates were analyzed chemically. Element distributions within the oxide layer were obtained from electron microprobe X-ray micrographs. A third set of samples were subjected to surface analysis by X-ray photoelectron spectroscopy. Evolution of SO2 was monitored throughout many of the hot corrosion tests. Results are interpreted in terms of acid-base fluxing mechanisms.
A graphite crystal polarimeter for stellar X-ray astronomy.
NASA Technical Reports Server (NTRS)
Weisskopf, M. C.; Berthelsdorf, R.; Epstein, G.; Linke, R.; Mitchell, D.; Novick, R.; Wolff, R. S.
1972-01-01
The first crystal X-ray polarimeter to be used for X-ray astronomy is described. Polarization is measured by modulation of the X rays diffracted at an average 45 deg glancing angle from large, curved graphite crystal panels as these rotate about an axis parallel to the incident X-ray flux. Arrangement of the crystal panels, the design of the detector, and the signal-processing circuitry were optimized to minimize systematic effects produced by off-axis pointing of the rocket and cosmic ray induced events. The in-flight performance of the instrument in relation to the observed background signal is discussed.
On the X-Ray Variability of Magnetar 1RXS J170849.0-400910
NASA Technical Reports Server (NTRS)
Scholz, P.; Archibald, R. F.; Kaspi, V. M.; Ng, C.-Y.; Beardmore, A. P.; Gehrels, C.; Kennea, J. A.
2014-01-01
We present a long-term X-ray flux and spectral analysis for 1RXS J170849.0-400910 using Swift/XRT spanning over 8 years from 2005-2013. We also analyze two observations from Chandra and XMM in the period from 2003-2004. In this 10-yr period, 1RXS J170849.0-400910 displayed several rotational glitches. Previous studies have claimed variations in the X-ray emission associated with some of the glitches. From our analysis we find no evidence for significant X-ray flux variations and evidence for only low-level spectral variations. We also present an updated timing solution for 1RXS J170849.0-400910, from RXTE and Swift observations, which includes a previously unreported glitch at MJD 56019. We discuss the frequency and implications of radiatively quiet glitches in magnetars.
Goddard X-ray astronomy contributions to the IAU/COSPAR (1982)
NASA Technical Reports Server (NTRS)
Holt, S. S.; Petre, R.; Shafer, R. A.; Urry, C. M.; Mushotzky, R. F.
1982-01-01
The relation of X-ray flux to both the continuum flux in the optical and radio bands, and to the line emission properties of these objects were studied. The Einstein Observatory, because of increased sensitivity and improved angular resolution, increased substantially the number of known X-ray emitting active galactic nuclei. The Einstein imaging instruments detected morphology in AGN X-ray emission, in particular from jetlike structures in Cen-A, M87, and 3C273. The improved energy resolution and sensitivity of the spectrometers onboard the Observatory provide information on the geometry and ionization structure of the region responsible for the broad optical emission lines in a few AGN's. This information, combined with theoretical modeling and IUE and optical observations, allows the construction of a moderately detailed picture of the broad line region in these objects.
Relations Between FUV Excess and Coronal Soft X-Ray Emission Among Dwarf Stars
NASA Astrophysics Data System (ADS)
Smith, Graeme H.; Hargrave, Mason; Eckholm, Elliot
2017-11-01
The far-ultraviolet magnitudes of late-F, G and early-K dwarfs with (B - V) ⩾ 0.50 as measured by the GALEX satellite are shown to correlate with soft X-ray luminosity. This result indicates that line and continuum emission from stellar active regions make significant contributions to the flux in the GALEX FUV band for late-F, G and K dwarfs. By contrast, detection of a correlation between FUV brightness and soft X-ray luminosity among early-F dwarfs requires subtraction of the photospheric component from the FUV flux. The range in (B - V) among F and G dwarfs over which a correlation between uncorrected FUV magnitude and X-ray luminosity is detected coincides with the range in colour over which coronal and chromospheric emission correlates with stellar rotation.
An Einstein survey of the 1 keV soft X-ray background in the Galactic plane
NASA Technical Reports Server (NTRS)
Stanford, John M.; Caillault, Jean-Pierre
1994-01-01
We have analyzed 56 Einstein Observatory Imaging Proportional Counter (IPC) observations within +/- 3 deg of the Galactic plane in order to determine the low-latitude soft X-ray background flux in the 0.56-1.73 keV band. Any detected X-ray point source which fell within our regions of study was removed from the image, enabling us to present maps of the background flux as a function of Galactic latitude along 18 meridians. These maps reveal considerable structure to the background in the Galactic plane on an angular scale of approximately 1 deg. Our results are compared with those of an earlier study of the 1 keV X-ray background along l = 25 deg by Kahn & Caillault. The double-peaked structure they found is not discernible in our results, possibly because of the presence of solar backscattered flux in their data. A model which takes into account contributions to the background by extragalactic and stellar sources, the distribution of both atomic and molecular absorbing material with the Galaxy, the energy dependence of the cross section for absorption of X-rays, and the energy dependence of the detector has been constructed and fitted to these new data to derive constraints on the scale height, temperature, and volume emissivity of the unaccounted-for X-ray-emitting material. The results of this model along l = 25 deg are roughly similar to those of the model of Kahn & Caillault along the same meridian.
NASA Technical Reports Server (NTRS)
Nichols, J.; Huenemoerder, D. P.; Corcoran, M. F.; Waldron, W.; Naze, Y; Pollock, A. M. T.; Moffat, A. F. J.; Lauer, J.; Shenar, T.; Russell, C. M. P.;
2015-01-01
We present time-resolved and phase-resolved variability studies of an extensive X-ray high-resolution gratings spectral dataset of the Sigma Ori Aa binary system. The four observations, obtained with Chandra ACIS HETGS, have a total exposure time of approximately 479 kiloseconds and provide nearly complete binary phase coverage. Variability of the total X-ray flux in the range 5-25 angstroms is confirmed, with maximum amplitude of about plus or minus 15 percent within a single approximately 125 kiloseconds observation. Periods of 4.76 days and 2.04 days are found in the total X-ray flux, as well as an apparent overall increase in flux level throughout the 9-day observational campaign. Using 40 kiloseconds contiguous spectra derived from the original observations, we investigate variability of emission line parameters and ratios. Several emission lines are shown to be variable, including S XV, Si XIII, and Ne IX. For the first time, variations of the X-ray emission line widths as a function of the binary phase are found in a binary system, with the smallest widths at phi equals 0.0 when the secondary Aa2 is at inferior conjunction. We use the results of an SPH radiative transfer code model, customized for this project, to relate the presence of a low density cavity in the primary stellar wind embedded shock that is associated with the secondary star to the emission line width variability.
Quasiperiodic oscillations in bright galactic-bulge X-ray sources
NASA Technical Reports Server (NTRS)
Lamb, F. K.; Shibazaki, N.; Alpar, M. A.; Shaham, J.
1985-01-01
Quasiperiodic oscillations with frequencies in the range 5-50 Hz have recently been discovered in X-rays from two bright galactic-bulge sources and Sco X-1. These sources are weakly magnetic neutron stars accreting from disks which the plasma is clumped. The interaction of the magnetosphere with clumps in the inner disk causes oscillations in the X-ray flux with many of the properties observed.
On the Chemistry and Physical Properties of Flux and Floating Zone Grown SmB6 Single Crystals
Phelan, W. A.; Koohpayeh, S. M.; Cottingham, P.; Tutmaher, J. A.; Leiner, J. C.; Lumsden, M. D.; Lavelle, C. M.; Wang, X. P.; Hoffmann, C.; Siegler, M. A.; Haldolaarachchige, N.; Young, D. P.; McQueen, T. M.
2016-01-01
Recent theoretical and experimental findings suggest the long-known but not well understood low temperature resistance plateau of SmB6 may originate from protected surface states arising from a topologically non-trivial bulk band structure having strong Kondo hybridization. Yet others have ascribed this feature to impurities, vacancies, and surface reconstructions. Given the typical methods used to prepare SmB6 single crystals, flux and floating-zone procedures, such ascriptions should not be taken lightly. We demonstrate how compositional variations and/or observable amounts of impurities in SmB6 crystals grown using both procedures affect the physical properties. From X-ray diffraction, neutron diffraction, and X-ray computed tomography experiments we observe that natural isotope containing (SmB6) and doubly isotope enriched (154Sm11B6) crystals prepared using aluminum flux contain co-crystallized, epitaxial aluminum. Further, a large, nearly stoichiometric crystal of SmB6 was successfully grown using the float-zone technique; upon continuing the zone melting, samarium vacancies were introduced. These samarium vacancies drastically alter the resistance and plateauing magnitude of the low temperature resistance compared to stoichiometric SmB6. These results highlight that impurities and compositional variations, even at low concentrations, must be considered when collecting/analyzing physical property data of SmB6. Finally, a more accurate samarium-154 coherent neutron scattering length, 8.9(1) fm, is reported. PMID:26892648
An unbiased X-ray sampling of stars within 25 parsecs of the Sun
NASA Technical Reports Server (NTRS)
Johnson, H. M.
1985-01-01
A search of all of the Einstein Observatory IPC and HRI fields for untargeted stars in the Woolley, et al., Catalogue of the nearby stars is reported. Optical data and IPC coordinates, flux density F sub x, and luminosity L sub x, or upper limits, are tabulated for 126 single or blended systems, and HRI results for a few of them. IPC luminosity functions are derived for the systems, for 193 individual stars in the systems (with L sub x shared equally among blended components), and for 63 individual M dwarfs. These stars have relatively large X-ray flux densities that are free of interstellar extinction, because they are nearby, but they are otherwise unbiased with respect to the X-ray properties that are found in a defined small space around the Sun.
Signatures of cosmic-ray interactions on the solar surface
NASA Technical Reports Server (NTRS)
Seckel, D.; Stanev, Todor; Gaisser, T. K.
1991-01-01
The fluxes of neutrinos, gamma rays, antiprotons, neutrons, and antineutrons that result from collisions of high-energy Galactic cosmic rays with the solar atmosphere are estimated. The results are sensitive to assumptions about cosmic-ray transport in the magnetic fields of the inner solar system. The high-energy photon flux should be observable by the Gamma Ray Observatory. The neutrino flux should produce less than one event per year in the next generation of neutrino telescopes. The antiproton flux is unobservable against the Galactic background. The neutron and antineutron fluxes are detectable only if neutrons produced in terrestrial cosmic-ray events may be discriminated against.
The black hole candidate MAXI J1659-152 in and towards quiescence in X-ray and radio
NASA Astrophysics Data System (ADS)
Jonker, P. G.; Miller-Jones, J. C. A.; Homan, J.; Tomsick, J.; Fender, R. P.; Kaaret, P.; Markoff, S.; Gallo, E.
2012-07-01
In this paper we report on Expanded Very Large Array radio and Chandra and Swift X-ray observations of the outburst decay of the transient black hole candidate MAXI J1659-152 in 2011. We discuss the distance to the source taking the high inclination into account and conclude that the source distance is probably 6 ± 2 kpc. The lowest observed flux corresponds to a luminosity of ? erg s-1. This, together with the orbital period of 2.4 h reported in the literature, suggests that the quiescent X-ray luminosity is higher than predicted on the basis of the orbital period-quiescent X-ray luminosity relationship. It is more in line with that expected for a neutron star, although the outburst spectral and timing properties reported in the literature strongly suggest that MAXI J1659-152 harbours a black hole. This conclusion is subject to confirmation of the lowest observed flux as the quiescent flux. The relation between the accretion and ejection mechanisms can be studied using the observed correlation between the radio and X-ray luminosities as these evolve over an outburst. We determine the behaviour of MAXI J1659-152 in the radio-X-ray diagram at low X-ray luminosities using the observations reported in this paper and at high X-ray luminosities using values reported in the literature. At high X-ray luminosities, the source lies closer to the sources that follow a correlation index steeper than 0.6-0.7. However, when compared to other sources that follow a steeper correlation index, the X-ray luminosity in MAXI J1659-152 is also lower. The latter can potentially be explained by the high inclination of MAXI J1659-152 if the X-ray emission comes from close to the source and the radio emission is originating in a more extended region. However, it is probable that the source was not in the canonical low-hard state during these radio observations and this may affect the behaviour of the source as well. At intermediate X-ray luminosities, the source makes the transition from the radio underluminous sources in the direction of the relation traced by the 'standard' correlation similar to what has been reported for H 1743-322 in the literature. However, MAXI J1659-152 remains underluminous with respect to this 'standard' correlation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Y.; Kataoka, J.; Nakamori, T.
2012-03-01
We report on our second-year campaign of X-ray follow-up observations of unidentified Fermi Large Area Telescope (LAT) {gamma}-ray sources at high Galactic latitudes (|b| > 10 Degree-Sign ) using the X-ray Imaging Spectrometer on board the Suzaku X-ray Observatory. In this second year of the project, seven new targets were selected from the First Fermi-LAT Catalog, and studied with 20-40 ks effective Suzaku exposures. We detected an X-ray point source coincident with the position of the recently discovered millisecond pulsar (MSP) PSR J2302+4442 within the 95% confidence error circle of 1FGL J2302.8+4443. The X-ray spectrum of the detected counterpart wasmore » well fit by a blackbody model with temperature of kT {approx_equal} 0.3 keV, consistent with an origin of the observed X-ray photons from the surface of a rotating magnetized neutron star. For four other targets that were also recently identified with a normal pulsar (1FGL J0106.7+4853) and MSPs (1FGL J1312.6+0048, J1902.0-5110, and J2043.2+1709), only upper limits in the 0.5-10 keV band were obtained at the flux levels of {approx_equal} 10{sup -14} erg cm{sup -2} s{sup -1}. A weak X-ray source was found in the field of 1FGL J1739.4+8717, but its association with the variable {gamma}-ray emitter could not be confirmed with the available Suzaku data alone. For the remaining Fermi-LAT object 1FGL J1743.8-7620 no X-ray source was detected within the LAT 95% error ellipse. We briefly discuss the general properties of the observed high Galactic-latitude Fermi-LAT objects by comparing their multiwavelength properties with those of known blazars and MSPs.« less
All-Sky Monitoring of Variable Sources with Fermi GBM
NASA Technical Reports Server (NTRS)
Wilson-Hodge, Colleen A.; Finger, Mark; Camero-Arranz, Ascension; Becklen, Elif; Jenke, Peter; Cpe. K/ K/; Steele, Iain; Case, Gary; Cherry, Mike; Rodi, James;
2011-01-01
Using the Gamma ray Burst Monitor (GBM) on Fermi, we monitor the transient hard X-ray/soft gamma ray sky. The twelve GBM NaI detectors span 8 keV to 1 MeV, while the two BGO detectors span 150 keV to 40 MeV. We use the Earth occultation technique to monitor a number of sources, including X-ray binaries, AGN, and solar flaring activity. Our monitoring reveals predictable and unpredictable phenomena such as transient outbursts and state changes. With GBM we also track the pulsed flux and spin frequency of accretion powered pulsars using epoch-folding techniques. Searches for quasi-periodic oscillations and X-ray bursts are also possible with GBM all-sky monitoring. Highlights from the Earth Occultation and Pulsar projects will be presented including our recent surprising discovery of variations in the total flux from the Crab. Inclusion of an all-sky monitor is crucial for a successful future X-ray timing mission.
Results from the solar maximum mission
NASA Technical Reports Server (NTRS)
Dennis, B. R.
1986-01-01
The major results from SMM (Solar Max Mission) are presented as they relate to the understanding of the energy release and particle transportation processes that led to the high energy X-ray aspects of solar flares. Evidence is reviewed for a 152- to 158-day periodicity in various aspects of solar activity including the rate of occurrence of hard X-ray and gamma-ray flares. The statistical properties of over 7000 hard X-ray flares detected with the Hard X-Ray Burst Spectrometer are presented including the spectrum of peak rates and the distribution of the photo number spectrum. A flare classification scheme is used to divide flares into three different types. Type A flares have purely thermal, compact sources with very steep hard X-ray spectra. Type B flares are impulsive bursts which show double footpoints in hard X-rays, and soft-hard-soft spectral evolution. Type C flares have gradually varying hard X-ray and microwave fluxes from high altitudes and show hardening of the X-ray spectrum through the peak and on the decay. SSM data are presented for examples of Type B and Type C events. New results are presented showing coincident hard X rays, O V, and UV continuum observations in Type B events with a time resolution of 128 ms. The subsecond variations in the hard X-ray flux during 10% of the stronger events are discussed and the fastest observed variation in a time of 20 ms is presented. The properties of Type C flares are presented as determined primarily from the non-imaged hard X-ray and microwave spectral data. A model based on the association of Type C flares and coronal mass ejections is presented to explain many of the characteristics of these gradual flares.
Superhumps linked to X-ray emission. The superoutbursts of SSS J122221.7-311525 and GW Lib
NASA Astrophysics Data System (ADS)
Neustroev, V. V.; Page, K. L.; Kuulkers, E.; Osborne, J. P.; Beardmore, A. P.; Knigge, C.; Marsh, T.; Suleimanov, V. F.; Zharikov, S. V.
2018-03-01
Context. We present more than 4 years of Swift X-ray observations of the 2013 superoutburst, subsequent decline and quiescence of the WZ Sge-type dwarf nova SSS J122221.7-311525 (SSS J122222) from 6 days after discovery. Aims: Only a handful of WZ Sge-type dwarf novae have been observed in X-rays, and until recently GW Lib was the only binary of this type with complete coverage of an X-ray light curve throughout a superoutburst. We collected extensive X-ray data of a second such system to understand the extent to which the unexpected properties of GW Lib are common to the WZ Sge class. Methods: We collected 60 Swift-XRT observations of SSS J122222 between 2013 January 6 and 2013 July 1. Four follow-up observations were performed in 2014, 2015, 2016 and 2017. The total exposure time of our observations is 86.6 ks. We analysed the X-ray light curve and compared it with the behaviour of superhumps which were detected in the optical light curve. We also performed spectral analysis of the data. The results were compared with the properties of GW Lib, for which new X-ray observations were also obtained. Results: SSS J122222 was variable and around five times brighter in 0.3-10 keV X-rays during the superoutburst than in quiescence, mainly because of a significant strengthening of a high-energy component of the X-ray spectrum. The post-outburst decline of the X-ray flux lasted at least 500 d. The data show no evidence of the expected optically thick boundary layer in the system during the outburst. SSS J122222 also exhibited a sudden X-ray flux change in the middle of the superoutburst, which occurred exactly at the time of the superhump stage transition. A similar X-ray behaviour was also detected in GW Lib. Conclusions: We show that the X-ray flux exhibits changes at the times of changes in the superhump behaviour of both SSS J122222 and GW Lib. This result demonstrates a relationship between the outer disc and the white dwarf boundary layer for the first time, and suggests that models for accretion discs in high mass ratio accreting binaries are currently incomplete. The very long decline to X-ray quiescence is also in strong contrast to the expectation of low viscosity in the disc after outburst.
A giant radio flare from Cygnus X-3 with associated γ-ray emission
NASA Astrophysics Data System (ADS)
Corbel, S.; Dubus, G.; Tomsick, J. A.; Szostek, A.; Corbet, R. H. D.; Miller-Jones, J. C. A.; Richards, J. L.; Pooley, G.; Trushkin, S.; Dubois, R.; Hill, A. B.; Kerr, M.; Max-Moerbeck, W.; Readhead, A. C. S.; Bodaghee, A.; Tudose, V.; Parent, D.; Wilms, J.; Pottschmidt, K.
2012-04-01
With frequent flaring activity of its relativistic jets, Cygnus X-3 (Cyg X-3) is one of the most active microquasars and is the only Galactic black hole candidate with confirmed high-energy γ-ray emission, thanks to detections by Fermi Large Area Telescope (Fermi/LAT) and AGILE. In 2011, Cyg X-3 was observed to transit to a soft X-ray state, which is known to be associated with high-energy γ-ray emission. We present the results of a multiwavelength campaign covering a quenched state, when radio emission from Cyg X-3 is at its weakest and the X-ray spectrum is very soft. A giant (˜20 Jy) optically thin radio flare marks the end of the quenched state, accompanied by rising non-thermal hard X-rays. Fermi/LAT observations (E≥ 100 MeV) reveal renewed γ-ray activity associated with this giant radio flare, suggesting a common origin for all non-thermal components. In addition, current observations unambiguously show that the γ-ray emission is not exclusively related to the rare giant radio flares. A three-week period of γ-ray emission is also detected when Cyg X-3 was weakly flaring in radio, right before transition to the radio quenched state. No γ-rays are observed during the ˜1-month long quenched state, when the radio flux is weakest. Our results suggest transitions into and out of the ultrasoft X-ray (radio-quenched) state trigger γ-ray emission, implying a connection to the accretion process, and also that the γ-ray activity is related to the level of radio flux (and possibly shock formation), strengthening the connection to the relativistic jets.
A Giant Radio Flare from Cygnus X-3 with Associated Gamma-Ray Emission
NASA Technical Reports Server (NTRS)
Corbel, S.; Dubus, G.; Tomsick, J. A.; Szostek, A.; Corbet, R. H. D.; Miller-Jones, J. C. A.; Richards, J. L.; Pooley, G.; Trushkin, S.; Dubois, R.;
2012-01-01
With frequent flaring activity of its relativistic jets, Cygnus X-3 (Cyg X-3) is one of the most active microquasars and is the only Galactic black hole candidate with confirmed high energy gamma-ray emission, thanks to detections by Fermi/LAT and AGILE. In 2011, Cyg X-3 was observed to transit to a soft X-ray state, which is known to be associated with high-energy gamma-ray emission. We present the results of a multiwavelength campaign covering a quenched state, when radio emission from Cyg X-3 is at its weakest and the X-ray spectrum is very soft. A giant (approx 20 Jy) optically thin radio flare marks the end of the quenched state, accompanied by rising non-thermal hard X-rays. Fermi/LAT observations (E greater than or equal 100 MeV) reveal renewed gamma-ray activity associated with this giant radio flare, suggesting a common origin for all non-thermal components. In addition, current observations unambiguously show that the gamma-ray emission is not exclusively related to the rare giant radio flares. A 3-week period of gamma-ray emission is also detected when Cyg X-3 was weakly flaring in radio, right before transition to the radio quenched state. No gamma rays are observed during the one-month long quenched state, when the radio flux is weakest. Our results suggest transitions into and out of the ultrasoft X-ray (radio quenched) state trigger gamma-ray emission, implying a connection to the accretion process, and also that the gamma-ray activity is related to the level of radio flux (and possibly shock formation), strengthening the connection to the relativistic jets.
NASA Astrophysics Data System (ADS)
Younes, George; Kouveliotou, Chryssa; Jaodand, Amruta; Baring, Matthew G.; van der Horst, Alexander J.; Harding, Alice K.; Hessels, Jason W. T.; Gehrels, Neil; Gill, Ramandeep; Huppenkothen, Daniela; Granot, Jonathan; Göğüş, Ersin; Lin, Lin
2017-10-01
We analyzed broadband X-ray and radio data of the magnetar SGR J1935+2154 taken in the aftermath of its 2014, 2015, and 2016 outbursts. The source soft X-ray spectrum <10 keV is well described with a blackbody+power-law (BB+PL) or 2BB model during all three outbursts. Nuclear Spectroscopic Telescope Array observations revealed a hard X-ray tail, with a PL photon index Γ = 0.9, extending up to 50 keV, with flux comparable to the one detected <10 keV. Imaging analysis of Chandra data did not reveal small-scale extended emission around the source. Following the outbursts, the total 0.5-10 keV flux from SGR J1935+2154 increased in concordance to its bursting activity, with the flux at activation onset increasing by a factor of ˜7 following its strongest 2016 June outburst. A Swift/X-Ray Telescope observation taken 1.5 days prior to the onset of this outburst showed a flux level consistent with quiescence. We show that the flux increase is due to the PL or hot BB component, which increased by a factor of 25 compared to quiescence, while the cold BB component kT = 0.47 keV remained more or less constant. The 2014 and 2015 outbursts decayed quasi-exponentially with timescales of ˜40 days, while the stronger 2016 May and June outbursts showed a quick short-term decay with timescales of about four days. Our Arecibo radio observations set the deepest limits on the radio emission from a magnetar, with a maximum flux density limit of 14 μJy for the 4.6 GHz observations and 7 μJy for the 1.4 GHz observations. We discuss these results in the framework of the current magnetar theoretical models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Younes, George; Kouveliotou, Chryssa; Van der Horst, Alexander J.
We analyzed broadband X-ray and radio data of the magnetar SGR J1935+2154 taken in the aftermath of its 2014, 2015, and 2016 outbursts. The source soft X-ray spectrum <10 keV is well described with a blackbody+power-law (BB+PL) or 2BB model during all three outbursts. Nuclear Spectroscopic Telescope Array observations revealed a hard X-ray tail, with a PL photon index Γ = 0.9, extending up to 50 keV, with flux comparable to the one detected <10 keV. Imaging analysis of Chandra data did not reveal small-scale extended emission around the source. Following the outbursts, the total 0.5–10 keV flux from SGRmore » J1935+2154 increased in concordance to its bursting activity, with the flux at activation onset increasing by a factor of ∼7 following its strongest 2016 June outburst. A Swift /X-Ray Telescope observation taken 1.5 days prior to the onset of this outburst showed a flux level consistent with quiescence. We show that the flux increase is due to the PL or hot BB component, which increased by a factor of 25 compared to quiescence, while the cold BB component kT = 0.47 keV remained more or less constant. The 2014 and 2015 outbursts decayed quasi-exponentially with timescales of ∼40 days, while the stronger 2016 May and June outbursts showed a quick short-term decay with timescales of about four days. Our Arecibo radio observations set the deepest limits on the radio emission from a magnetar, with a maximum flux density limit of 14 μ Jy for the 4.6 GHz observations and 7 μ Jy for the 1.4 GHz observations. We discuss these results in the framework of the current magnetar theoretical models.« less
ROSAT PSPC observations of two X-ray-faint early-type galaxies: NGC 4365 and NGC 4382
NASA Technical Reports Server (NTRS)
Fabbiano, G.; Kim, D.-W.; Trinchieri, G.
1994-01-01
We present the results of ROSAT Positive Sensitive Proportional Counter (PSPC) observations of the two early-type galaxies NGC 4365 and NGC 4382. These galaxies are among those observed with Einstein to have the lowest X-ray to optical flux ratios of early-type galaxies. The PSCP data show that for radii r greater than 50 arcsec the radial distributions of the X-ray surface brightness are consistent with the optical distributions of King (1978). We also find that these galaxies have X-ray spectra significantly different from those observed in X-ray-bright ellipticals, with a relative excess of counts detected in the softest spectral channels. This confirms earlier Einstein results. The characteristics of the ROSAT PSPC do not allow us to discriminate between possible spectral models. If we adopt a two-component thermal model on the grounds of physical plausibility, we find that the spectral data can be fitted with a very soft optically thin component, with kT approximately 0.2 keV, and a hard component with kT greater than (1.0-1.5) keV. The hard component has a luminosity consistent with that expected from the integrated emission of a population of low mass-X-ray binaries in these galaxies; the nature of the very soft component is more speculative. Candidates include the coronal emission of late-type stars, supersoft X-ray sources, RS CVn, and perhaps a hot Interstellar Medium (ISM). Alternatively, the spectal data may be fitted with a 0.6-1 keV bremsstrahlung spectrum (expontential plus Gaunt), and may suggest the presence of a totally new population of X-ray sources.
A parabolic mirror x-ray collimator
NASA Astrophysics Data System (ADS)
Franks, A.; Jackson, K.; Yacoot, A.
2000-05-01
A robust and stable x-ray collimator has been developed to produce a parallel beam of x-rays by total external reflection from a parabolic mirror. The width of the gold-coated silica mirror varies along its length, which allows it to be bent from a plane surface into a parabolic form by application of unequal bending forces at its ends. A family of parabolas of near constant focal length can be formed by changing the screw-applied bending force, thus allowing the collimator to cater for a range of wavelengths by the turning of a screw. Even with radiation with a wavelength as short as that as Mo Kicons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> 1 (icons/Journals/Common/lambda" ALT="lambda" ALIGN="TOP"/> = 0.07 nm), a gain in flux by a factor of 5.5 was achieved. The potential gain increases with wavelength, e.g. for Cu Kicons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> 1 radiation this amounts to over a factor of ten.
Frequent bursts from the 11 Hz transient pulsar IGR J17480-2446
NASA Astrophysics Data System (ADS)
Chakraborty, Manoneeta; Mukherjee, Arunava; Bhattacharyya, S.
Accreted matter falling on the surface of the neutron star in a Low Mass X-ray Binary (LMXB) system gives rise to intense X-ray bursts originating from unstable thermonuclear conflagration and these bursts can be used as a tool to constrain the equation of state. A series of such X-ray bursts along with millihertz (mHz) quasi-periodic oscillations (QPOs) at the highest source luminosities were observed during the 2010 outburst of the transient LMXB pulsar IGR J17480--2446. The quite diverse burst properties compared to typical type-I bursts suggested them to be the type-II bursts originating from accretion disc instability. We show that the bursts are indeed of thermonuclear origin and thus confirm the quasi-stable burning model for mHz QPOs. Various properties of the bursts such as, peak flux, fluence, periodicity and duration, were highly dependent on the source spectral states and their variation over a large accretion rate range revealed the evolution of the burning process at different accretion rate regimes.
An X-Ray Imaging Survey of Quasar Jets: The Complete Survey
NASA Astrophysics Data System (ADS)
Marshall, H. L.; Gelbord, J. M.; Worrall, D. M.; Birkinshaw, M.; Schwartz, D. A.; Jauncey, D. L.; Griffiths, G.; Murphy, D. W.; Lovell, J. E. J.; Perlman, E. S.; Godfrey, L.
2018-03-01
We present Chandra X-ray imaging of a flux-limited sample of flat spectrum radio-emitting quasars with jet-like structure. X-rays are detected from 59% of 56 jets. No counter-jets were detected. The core spectra are fitted by power-law spectra with a photon index Γ x , whose distribution is consistent with a normal distribution, with a mean of 1.61+0.04 ‑0.05 and dispersion of 0.15+0.04 ‑0.03. We show that the distribution of α rx , the spectral index between the X-ray and radio band jet fluxes, fits a Gaussian with a mean of 0.974 ± 0.012 and dispersion of 0.077 ± 0.008. We test the model in which kiloparsec-scale X-rays result from inverse Compton scattering of cosmic microwave background photons off the jet’s relativistic electrons (the IC-CMB model). In the IC-CMB model, a quantity Q computed from observed fluxes and the apparent size of the emission region depends on redshift as (1 + z)3+α . We fit Q ∝ (1 + z) a , finding a = 0.88 ± 0.90, and reject at 99.5% confidence the hypothesis that the average α rx depends on redshift in the manner expected in the IC-CMB model. This conclusion is mitigated by a lack of detailed knowledge of the emission region geometry, which requires deeper or higher resolution X-ray observations. Furthermore, if the IC-CMB model is valid for X-ray emission from kiloparsec-scale jets, then the jets must decelerate on average: bulk Lorentz factors should drop from about 15 to 2–3 between parsec and kiloparsec scales. Our results compound the problems that the IC-CMB model has in explaining the X-ray emission of kiloparsec-scale jets.
The 2010 Very High Energy γ-Ray Flare And 10 Years Of Multi-Wavelength Observations Of M 87
Abramowski, A.
2012-02-02
The giant radio galaxy M87 with its proximity (16 Mpc), famous jet, and very massive black hole ((3 - 6) X 10 9M Θ ) provides a unique opportunity to investigate the origin of very high energy (VHE; E>100 GeV) γ-ray emission generated in relativistic outflows and the surroundings of super-massive black holes. M87 has been established as a VHE γ-ray emitter since 2006. The VHE γ-ray emission displays strong variability on timescales as short as a day. In this paper, results from a joint VHE monitoring campaign on M87 by the MAGIC and VERITAS instruments in 2010 are reported.more » During the campaign, a flare at VHE was detected triggering further observations at VHE (H.E.S.S.), X-rays (Chandra), and radio (43 GHz VLBA). The excellent sampling of the VHE -ray light curve enables one to derive a precise temporal characterization of the flare: the single, isolated flare is well described by a two-sided exponential function with significantly different flux rise and decay times of τrise d = (1:69 ± 0:30) days and τdecay d = (0:611 ± 0:080) days, respectively. While the overall variability pattern of the 2010 flare appears somewhat different from that of previous VHE flares in 2005 and 2008, they share very similar timescales (~day), peak fluxes (Φ>0:35 TeV ≃ (1 - 3) X 10 -11 ph cm -2 s -1), and VHE spectra. 43 GHz VLBA radio observations of the inner jet regions indicate no enhanced flux in 2010 in contrast to observations in 2008, where an increase of the radio flux of the innermost core regions coincided with a VHE flare. On the other hand, Chandra X-ray observations taken ~ 3 days after the peak of the VHE γ-ray emission reveal an enhanced flux from the core (flux increased by factor ~ 2; variability timescale < 2 days). The long-term (2001-2010) multi-wavelength (MWL) light curve of M87, spanning from radio to VHE and including data from HST, LT, VLA and EVN, is used to further investigate the origin of the VHE γ-ray emission. No unique, common MWL signature of the three VHE flares has been identified. In the outer kpc jet region, in particular in HST-1, no enhanced MWL activity was detected in 2008 and 2010, disfavoring it as the origin of the VHE flares during these years. Shortly after two of the three flares (2008 and 2010), the X-ray core was observed to be at a higher flux level than its characteristic range (determined from more than 60 monitoring observations: 2002-2009). In 2005, the strong flux dominance of HST-1 could have suppressed the detection of such a feature. Published models for VHE γ-ray emission from M87 are reviewed in the light of the new data.« less
X-RAY FLARING ACTIVITY OF MRK 421 IN THE FIRST HALF OF 2013
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kapanadze, B.; Kapanadze, S.; Tabagari, L.
2016-11-01
We present the results of the Swift and NuSTAR observations of the nearby BL Lac object Mrk 421 during 2013 January–June. The source exhibited a strong long-term variability in the 0.3–10 keV and 3–79 keV bands with the maximum-to-minimum daily-binned flux ratios of 22 and 95, respectively, in about 3 months, mainly due to unprecedented strong X-ray outbursts by more than an order of magnitude in both bands within 2 weeks in 2013 April when the 0.3–10 keV count rate exceeded the level of 200 cts s{sup −1} for the first time, and Mrk 421 became one of the brightestmore » sources in the X-ray sky. The source was also very active on intra-day timescales, and it showed flux doubling and halving timescales of 1.16–7.20 hr and 1.04–3.54 hr, respectively. On some occasions, the flux varied by 4%–23% within 300–840 s. During this period, the source also exhibited some of the most extreme X-ray spectral variability ever reported for BL Lacs—the location of the synchrotron spectral energy distribution peak shifted from a few eV to ∼10 keV, and the photon index at 1 keV and curvature parameter varied on timescales from a few weeks down to intervals shorter than 1 ks. MAGIC and First G-APD Cherenkov Telescope observations also revealed a very strong very high energy (VHE) flare during April 11–17. The UV and HE γ -ray flares were much weaker compared to their X-ray counterparts, and they generally showed significantly stronger correlation with each other than with the X-ray fluxes.« less
X-ray fluorescence beamline at the LNLS: Current instrumentation and future developments (abstract)
NASA Astrophysics Data System (ADS)
Pérez, C. A.; Bueno, M. I. S.; Neuenshwander, R. T.; Sánchez, H. J.; Tolentino, H.
2002-03-01
The x-ray fluorescence (XRF) beamline, constructed at the Brazilian National Synchrotron Radiation Laboratory (LNLS-http://www.lnls.br), has been operating for the external users since August of 1998 (C. A. Pérez et al., Proc. of the European Conference on Energy Dispersive X-Ray Spectrometry, Bologna, Italy, 1998, pp. 125-129). The synchrotron source for this beamline is the D09B (15°) dipole magnet of the LNLS storage ring. Two main experimental setups are mounted at the XRF beamline. One consists of a high vacuum chamber adapted to carry out experiments in grazing excitation conditions. This allows chemical trace and ultratrace element determination on several samples, mainly coming from environmental and biological sciences. Another setup consists of an experimental station, operated in air, in which x-ray fluorescence analysis with spatial resolution can be done. This station is equipped with a fine conical capillary, capable of achieving 20 μm spatial resolution, and with an optical microscope in order to select the region of interest on the sample surface. In this work, the main characteristic of the beamline, experimental stations as well as the description of some new experimental facilities will be given. Future development in the instrumentation focuses on an appropriate x-ray optic to be able to carry out chemical trace analysis of light elements using the total x-ray fluorescence technique. Also, chemical mapping below 10 μm spatial resolution, while keeping high flux of photon on the sample, will be achieved by using the Kirkpatrick-Baez x-ray microfocusing optic.
Complex UV/X-ray variability of 1H 0707-495
NASA Astrophysics Data System (ADS)
Pawar, P. K.; Dewangan, G. C.; Papadakis, I. E.; Patil, M. K.; Pal, Main; Kembhavi, A. K.
2017-12-01
We study the relationship between the UV and X-ray variability of the narrow-line Seyfert 1 galaxy 1H 0707-495. Using a year-long Swift monitoring and four long XMM-Newton observations, we perform cross-correlation analyses of the UV and X-ray light curves, on both long and short time-scales. We also perform time-resolved X-ray spectroscopy on 1-2 ks scale, and study the relationship between the UV emission and the X-ray spectral components - soft X-ray excess and a power law. We find that the UV and X-ray variations anticorrelate on short, and possibly on long time-scales as well. Our results rule out reprocessing as the dominant mechanism for the UV variability, as well as the inward propagating fluctuations in the accretion rate. Absence of a positive correlation between the photon index and the UV flux suggests that the observed UV emission is unlikely to be the seed photons for the thermal Comptonization. We find a strong correlation between the continuum flux and the soft-excess temperature which implies that the soft excess is most likely the reprocessed X-ray emission in the inner accretion disc. Strong X-ray heating of the innermost regions in the disc, due to gravitational light bending, appears to be an important effect in 1H 0707-495, giving rise to a significant fraction of the soft excess as reprocessed thermal emission. We also find indications for a non-static, dynamic X-ray corona, where either the size or height (or both) vary with time.
Fermi-LAT and Suzaku observations of the radio galaxy Centaurus B
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katsuta, J.; Tanaka, Y. T.; Stawarz, Ł.
2013-01-28
Centaurus B is a nearby radio galaxy positioned in the southern hemisphere close to the Galactic plane. Here, in this work, we present a detailed analysis of about 43 months of accumulated Fermi-LAT data of the γ-ray counterpart of the source initially reported in the 2nd Fermi-LAT catalog, and of newly acquired Suzaku X-ray data. We confirm its detection at GeV photon energies and analyze the extension and variability of the γ-ray source in the LAT dataset, in which it appears as a steady γ-ray emitter. The X-ray core of Centaurus B is detected as a bright source of amore » continuum radiation. We do not detect, however, any diffuse X-ray emission from the known radio lobes, with the provided upper limit only marginally consistent with the previously claimed ASCA flux. Two scenarios that connect the X-ray and γ-ray properties are considered. In the first one, we assume that the diffuse non-thermal X-ray emission component is not significantly below the derived Suzaku upper limit. In this case, modeling the inverse-Compton emission shows that the observed γ-ray flux of the source may in principle be produced within the lobes. This association would imply that efficient in-situ acceleration of the radiating electrons is occurring and that the lobes are dominated by the pressure from the relativistic particles. In the second scenario, with the diffuse X-ray emission well below the Suzaku upper limits, the lobes in the system are instead dominated by the magnetic pressure. In this case, the observed γ-ray flux is not likely to be produced within the lobes, but instead within the nuclear parts of the jet. In conclusion, by means of synchrotron self-Compton modeling, we show that this possibility could be consistent with the broad-band data collected for the unresolved core of Centaurus B, including the newly derived Suzaku spectrum.« less
The Peculiar X-ray Transient IGR 16358-4726
NASA Technical Reports Server (NTRS)
Patel, S. K.; Kouveliotou, C.; Tennant, A. F.; Woods, P. M.; King, A.; Ubertini, P.; Winkler, C.; Courvoisier, T.; VanDerKlis, M.; Wachter, S.
2003-01-01
The new transient IGR 16358-4726 was discovered on 2003 March 19 with INTEGRAL. We detected the source serendipitously during our 2003 March 24 observation of SGR 1627 - 4lwith the Chandra X-ray observatory at the 1.7 x 10(exp -l0) ergs/s sq cm flux level ( 2-10 keV) with a very high absorption column (N_H = 3.3 x 10(exp 23)/sq cm and a hard power law spectrum of index 0.5(1). We discovered a very strong flux modulation with a period of 5880(50) s and peak-to-peak pulse fraction of 70(6)% (2-10 keV), clearly visible in the X-ray data. The nature of IGR 16358-4726 remains unresolved. The only neutron star systems known with similar spin periods are low luminosity persistent wind-fed pulsars; if this is a spin period, this transient is a new kind of object. If this is an orbital period, then the system could be a compact Low Mass X-ray Binary (LMXB).
An X-ray survey of variable radio bright quasars
NASA Technical Reports Server (NTRS)
Henriksen, M. J.; Marshall, F. E.; Mushotzky, R. F.
1984-01-01
A sample consisting primarily of radio bright quasars was observed in X-rays with the Einstein Observatory for times ranging from 1500 to 5000 seconds. Detected sources had luminosities ranging from 0.2 to 41.0 x 10 to the 45th power ergs/sec in the 0.5 to 4.5 keV band. Three of the fourteen objects which were reobserved showed flux increases greater than a factor of two on a time scale greater than six months. No variability was detected during the individual observations. The optical and X-ray luminosities are correlated, which suggests a common origin. However, the relationship (L sub x is approximately L sub op to the (.89 + or - .15)) found for historic radio variables may be significantly different than that reported for other radio bright sources. Some of the observed X-ray fluxes were substantially below the predicted self-Compton flux, assuming incoherent synchrotron emission and using VLBI results to constrain the size of the emission region, which suggests relativistic expansion in these sources. Normal CIV emission in two of the sources with an overpredicted Compton component suggests that although they, like BL Lac objects, have highly relativistic material apparently moving at small angle to the line of sight, they have a smaller fraction of the continuum component in the beam.
The hypersoft state of Cygnus X-3. A key to jet quenching in X-ray binaries?
NASA Astrophysics Data System (ADS)
Koljonen, K. I. I.; Maccarone, T.; McCollough, M. L.; Gurwell, M.; Trushkin, S. A.; Pooley, G. G.; Piano, G.; Tavani, M.
2018-04-01
Context. Cygnus X-3 is a unique microquasar in the Galaxy hosting a Wolf-Rayet companion orbiting a compact object that most likely is a low-mass black hole. The unique source properties are likely due to the interaction of the compact object with the heavy stellar wind of the companion. Aim. In this paper, we concentrate on a very specific period of time prior to the massive outbursts observed from the source. During this period, Cygnus X-3 is in a so-called hypersoft state, in which the radio and hard X-ray fluxes are found to be at their lowest values (or non-detected), the soft X-ray flux is at its highest values, and sporadic γ-ray emission is observed. We use multiwavelength observations to study the nature of the hypersoft state. Methods: We observed Cygnus X-3 during the hypersoft state with Swift and NuSTAR in X-rays and SMA, AMI-LA, and RATAN-600 in the radio. We also considered X-ray monitoring data from MAXI and γ-ray monitoring data from AGILE and Fermi. Results: We found that the spectra and timing properties of the multiwavelength observations can be explained by a scenario in which the jet production is turned off or highly diminished in the hypersoft state and the missing jet pressure allows the wind to refill the region close to the black hole. The results provide proof of actual jet quenching in soft states of X-ray binaries.
The 2008 outburst of IGR J17473-2721: evidence for a disk corona?
NASA Astrophysics Data System (ADS)
Chen, Y.-P.; Zhang, S.; Torres, D. F.; Zhang, S.-N.; Li, J.; Kretschmar, P.; Wang, J.-M.
2011-10-01
Context. The 2008 outburst of the atoll source IGR J17473-2721 was observed by INTEGRAL, RXTE and Swift. Tens of type-I X-ray bursts were found in this outburst. Aims: Joint observations by INTEGRAL, RXTE, and Swift provide sufficient data to look into the behavior of IGR J17473-2721 at the rising part of the 2008 outburst. The relation between the duration of the bursts and the accretion rate and the nature of the corona producing the observed power-law component can therefore be studied in detail. Methods: We analyze observational data of IGR J17473-2721, focusing on the spectral evolution during the state transition from quiescent to low hard state (LHS), and on the flux dependence of the type-I X-ray bursts along the outburst. Results: We find that the joint INTEGRAL, RXTE and Swift energy spectrum can be well fitted with a model composed of a blackbody and a cutoff power-law, with a cutoff energy decreasing from ~150 keV to ~40 keV as the source leaves the quiescent state toward the low hard state. This fits into a scenario in which the corona is cooled by the soft X-rays along the outburst evolution, as observed in several other atoll sources. Fifty-seven type-I bursts were reported in the 2008 outburst of IGR J17473-2721. By using the flux measured in the 1.5-30 keV band, we find that the linear relationship between the burst duration and the flux still holds for those bursts that occur at the decaying part of the low hard state, but with a different slope than the overall one that was estimated with the bursts happening in the whole extent of, and for the rest of the low hard state. The significance of such a dichotomy in the type-I X-ray bursts is ~3σ under an F-test. Similar results are hinted at as well with the broader energy-band that was adopted recently. This dichotomy may be understood in a scenario where part of the accreting material forms a corona on the way of falling onto the surface of the neutron star during the decaying part of the low hard state.Based on the accretion rates of the preceding LHS, estimated from type-I X-ray bursts and from persistent emission, at least for IGR J17473-2721, most of the accretion material may fall on the neutron star (NS) surface in the LHS. Considering the burst behavior in the context of the outburst indicates a corona formed on top of the disk rather than on the NS surface. Based on observations with INTEGRAL, an ESA project with instruments and science data centre funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland, Spain), Poland and with the participation of Russia and the USA.
NASA Astrophysics Data System (ADS)
J. Lima, I.; Vilega Rodrigues, C.; Medeiros Gomes Silva, K.; Luna, G.; D Amico, F.; Goulart Coelho, J.
2017-10-01
Intermediate polars are compact binaries in which mass transfer occurs from a low-mass star onto a magnetic white dwarf. A shock structure is formed in the magnetic accretion column nearby the white-dwarf surface. High-energy emission is produced in the post-shock region and the main physical process envolved is bremsstrahlung and line emission. Some systems show optical polarization, which may be also originated in the post-shock region. Our main goal is to study the magnetic structure of intermediate polars by simultaneously modelling optical polarimetry and X-ray data using the CYCLOPS code. This code was developed by our group to peform multi-wavelength fitting of the accretion column flux. It considers cyclotron and free-free emission from a 3D post-shock region, which is non-homogeneous in terms of density, temperature, and magnetic field. In this study, we present our modelling of the optical polarization and X-ray emission of V405 Aurigae, the intermediate polar that has the highest magnetic field. Previous studies of this system were not successful in proposing a geometry that explains both the optical and X-ray emissions.
Computed tomographic images using tube source of x rays: interior properties of the material
NASA Astrophysics Data System (ADS)
Rao, Donepudi V.; Takeda, Tohoru; Itai, Yuji; Seltzer, S. M.; Hubbell, John H.; Zeniya, Tsutomu; Akatsuka, Takao; Cesareo, Roberto; Brunetti, Antonio; Gigante, Giovanni E.
2002-01-01
An image intensifier based computed tomography scanner and a tube source of x-rays are used to obtain the images of small objects, plastics, wood and soft materials in order to know the interior properties of the material. A new method is developed to estimate the degree of monochromacy, total solid angle, efficiency and geometrical effects of the measuring system and the way to produce monoenergetic radiation. The flux emitted by the x-ray tube is filtered using the appropriate filters at the chosen optimum energy and reasonable monochromacy is achieved and the images are acceptably distinct. Much attention has been focused on the imaging of small objects of weakly attenuating materials at optimum value. At optimum value it is possible to calculate the three-dimensional representation of inner and outer surfaces of the object. The image contrast between soft materials could be significantly enhanced by optimal selection of the energy of the x-rays by Monte Carlo methods. The imaging system is compact, reasonably economic, has a good contrast resolution, simple operation and routine availability and explores the use of optimizing tomography for various applications.
Flux and spectral variation characteristics of 3C 454.3 at the GeV band
NASA Astrophysics Data System (ADS)
Zhang, Hai-Ming; Zhang, Jin; Lu, Rui-Jing; Yi, Ting-Feng; Huang, Xiao-Li; Liang, En-Wei
2018-04-01
We analyze the long-term lightcurve of 3C 454.3 observed with Fermi/LAT and investigate its relation to flux in the radio, optical and X-ray bands. By fitting the 1-day binned GeV lightcurve with multiple Gaussian functions (MGF), we propose that the typical variability timescale in the GeV band is 1–10 d. The GeV flux variation is accompanied by the spectral variation characterized as flux-tracking, i.e., “harder when brighter.” The GeV flux is correlated with the optical and X-ray fluxes, and a weak correlation between γ-ray flux and radio flux is also observed. The γ-ray flux is not correlated with the optical linear polarization degree for the global lightcurves, but they show a correlation for the lightcurves before MJD 56000. The power density spectrum of the global lightcurve shows an obvious turnover at ∼ 7.7 d, which may indicate a typical variability timescale of 3C 454.3 in the γ-ray band. This is also consistent with the derived timescales by fitting the global lightcurve with MGF. The spectral evolution and an increase in the optical linear polarization degree along with the increase in γ-ray flux may indicate that the radiation particles are accelerated and the magnetic field is ordered by the shock processes during the outbursts. In addition, the nature of 3C 454.3 may be consistent with a self-organized criticality system, similar to Sagittarius A*, and thus the outbursts could be from plasmoid ejections driven by magnetic reconnection. This may further support the idea that the jet radiation regions are magnetized.
CHANDRA OBSERVATIONS OF SGR 1627-41 NEAR QUIESCENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
An, Hongjun; Kaspi, Victoria M.; Cumming, Andrew
2012-09-20
We report on an observation of SGR 1627-41 made with the Chandra X-Ray Observatory on 2011 June 16. Approximately three years after its outburst activity in 2008, the source's flux has been declining, as it approaches its quiescent state. For an assumed power-law spectrum, we find that the absorbed 2-10 keV flux for the source is 1.0{sup +0.3}{sub -0.2} Multiplication-Sign 10{sup -13} erg cm{sup -2} s{sup -1} with a photon index of 2.9 {+-} 0.8 (N{sub H} = 1.0 Multiplication-Sign 10{sup 23} cm{sup -2}). This flux is approximately consistent with that measured at the same time after the source's outburstmore » in 1998. With measurements spanning three years after the 2008 outburst, we analyze the long-term flux and spectral evolution of the source. The flux evolution is well described by a double exponential with decay times of 0.5 {+-} 0.1 and 59 {+-} 6 days, and a thermal cooling model fit suggests that SGR 1627-41 may have a hot core (T{sub c} {approx} 2 Multiplication-Sign 10{sup 8} K). We find no clear correlation between flux and spectral hardness as found in other magnetars. We consider the quiescent X-ray luminosities of magnetars and the subset of rotation-powered pulsars with high magnetic fields (B {approx}> 10{sup 13} G) in relation to their spin-inferred surface magnetic field strength and find a possible trend between the two quantities.« less
NASA Astrophysics Data System (ADS)
Youngblood, Allison; France, Kevin; Loyd, R. O. Parke; Brown, Alexander; Mason, James P.; Schneider, P. Christian; Tilley, Matt A.; Berta-Thompson, Zachory K.; Buccino, Andrea; Froning, Cynthia S.; Hawley, Suzanne L.; Linsky, Jeffrey; Mauas, Pablo J. D.; Redfield, Seth; Kowalski, Adam; Miguel, Yamila; Newton, Elisabeth R.; Rugheimer, Sarah; Segura, Antígona; Roberge, Aki; Vieytes, Mariela
2017-07-01
Characterizing the UV spectral energy distribution (SED) of an exoplanet host star is critically important for assessing its planet’s potential habitability, particularly for M dwarfs, as they are prime targets for current and near-term exoplanet characterization efforts and atmospheric models predict that their UV radiation can produce photochemistry on habitable zone planets different from that on Earth. To derive ground-based proxies for UV emission for use when Hubble Space Telescope (HST) observations are unavailable, we have assembled a sample of 15 early to mid-M dwarfs observed by HST and compared their nonsimultaneous UV and optical spectra. We find that the equivalent width of the chromospheric Ca II K line at 3933 Å, when corrected for spectral type, can be used to estimate the stellar surface flux in ultraviolet emission lines, including H I Lyα. In addition, we address another potential driver of habitability: energetic particle fluxes associated with flares. We present a new technique for estimating soft X-ray and >10 MeV proton flux during far-UV emission line flares (Si IV and He II) by assuming solar-like energy partitions. We analyze several flares from the M4 dwarf GJ 876 observed with HST and Chandra as part of the MUSCLES Treasury Survey and find that habitable zone planets orbiting GJ 876 are impacted by large Carrington-like flares with peak soft X-ray fluxes ≥10-3 W m-2 and possible proton fluxes ˜102-103 pfu, approximately four orders of magnitude more frequently than modern-day Earth.
Bright X-ray arcs and the emergence of solar magnetic flux
NASA Technical Reports Server (NTRS)
Chapman, G. A.; Broussard, R. M.
1977-01-01
The Skylab S-056 and S-082A experiments and ground-based magnetograms have been used to study the role of bright X-ray arcs and the emergence of solar magnetic flux in the McMath region 12476. The S-056 X-ray images show a system of one or sometimes two bright arcs within a diffuse emitting region. The arcs seem to directly connect regions of opposite magnetic polarity in the photosphere. Magnetograms suggest the possible emergence of a magnetic flux. The width of the main arc is approximately 6 arcsec when most clearly defined, and the length is approximately 30-50 arcsec. Although the arc system is observed to vary in brightness over a period exceeding 24 hours, it remains fixed in orientation. The temperature of the main arc is approximately 3 x 10 to the 6th K. It is suggested that merging magnetic fields may provide the primary energy source, perhaps accompanied by resistive heating from a force-free current.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marcu-Cheatham, Diana M.; Pottschmidt, Katja; Kühnel, Matthias
2015-12-10
We present a timing and spectral analysis of the X-ray pulsar XTE J1946+274 observed with Suzaku during an outburst decline in 2010 October and compare with previous results. XTE J1946+274 is a transient X-ray binary consisting of a Be-type star and a neutron star with a 15.75 s pulse period in a 172 days orbit with 2–3 outbursts per orbit during phases of activity. We improve the orbital solution using data from multiple instruments. The X-ray spectrum can be described by an absorbed Fermi–Dirac cut-off power-law model along with a narrow Fe Kα line at 6.4 keV and a weakmore » Cyclotron Resonance Scattering Feature (CRSF) at ∼35 keV. The Suzaku data are consistent with the previously observed continuum flux versus iron line flux correlation expected from fluorescence emission along the line of sight. However, the observed iron line flux is slightly higher, indicating the possibility of a higher iron abundance or the presence of non-uniform material. We argue that the source most likely has only been observed in the subcritical (non-radiation dominated) state since its pulse profile is stable over all observed luminosities and the energy of the CRSF is approximately the same at the highest (∼5 × 10{sup 37} erg s{sup −1}) and lowest (∼5 × 10{sup 36} erg s{sup −1}) observed 3–60 keV luminosities.« less
Emoto, T; Akimoto, K; Ichimiya, A
1998-05-01
A new X-ray diffraction technique has been developed in order to measure the strain field near a solid surface under ultrahigh vacuum (UHV) conditions. The X-ray optics use an extremely asymmetric Bragg-case bulk reflection. The glancing angle of the X-rays can be set near the critical angle of total reflection by tuning the X-ray energy. Using this technique, rocking curves for Si surfaces with different surface structures, i.e. a native oxide surface, a slightly oxide surface and an Si(111) 7 x 7 surface, were measured. It was found that the widths of the rocking curves depend on the surface structures. This technique is efficient in distinguishing the strain field corresponding to each surface structure.
Mrk 421 after the Giant X-Ray Outburst in 2013
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kapanadze, B.; Kapanadze, S.; Tabagari, L.
2017-10-20
We present the results of the Swift observations of the nearby BL Lac object Mrk 421 during 2013 November–2015 June. The source exhibited a strong long-term variability in the 0.3–10 keV band, with a maximum-to-minimum flux ratio of 13, and underwent X-ray flares by a factor of 1.8–5.2 on timescales of a few weeks or shorter. The source showed 48 instances of intraday flux variability in this period, which sometimes was observed within the 1 ks observational run. It was characterized by fractional amplitudes of 1.5(0.3)%–38.6(0.4)% and flux doubling/halving times of 2.6–20.1 hr. The X-ray flux showed a lack ofmore » correlation with the TeV flux on some occasions (strong TeV flares were not accompanied by comparable X-ray activity and vice versa), indicating that the high-energy emission in Mrk 421 was generated from an emission region more complex than a single zone. The best fits of the 0.3–10 keV spectra were mainly obtained using the log-parabola model, showing a strong spectral variability that generally followed a “harder-when-brighter” trend. The position of the synchrotron spectral energy distribution peak showed an extreme range from a few eV to ∼10 keV that happens rarely in blazars.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bornmann, P.L.
I describe a new property of soft X-ray line fluxes observed during the decay phase of solar flares and a technique for using this property to determine the plasma temperature and emission measure as functions of time. The soft X-ray line fluxes analyzed in this paper were observed during the decay phase of the 1980 November 5 flare by the X-Ray Polychromator (XRP) instrument on board the Solar Maximum Mission (SMM). The resonance, intercombination, and forbidden lines of Ne IX, Mg XI, Si XIII, S XV, Ca XIX, and Fe XXV, as well as the Lyman-..cap alpha.. line of Omore » VIII and the resonance lines of Fe XIX, were observed. The rates at which the observed line fluxes decayed were not constant. For all but the highest temperature lines observed, the rate changed abruptly, causing the fluxes to fall at a more rapid rate later in the flare decay. These changes occurred at earlier times for lines formed at higher temperatures. This behavior is proposed to be due to the decreasing temperature of the flare plasma tracking the rise and subsequent fall of each line emissivity function. This explanation is used to empirically model the observed light curves and to estimate the temperature and the change in emission measure of the plasma as a function of time during the decay phase. Estimates are made of various plasma parameters based on the model results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goeke, R.; Farnsworth, A.V.; Neumann, C.C.
1996-06-01
This report discusses a novel fabrication process to produce nearly perfect optics. The process utilizes vacuum deposition techniques to optimally modify polished optical substrate surfaces. The surface figure, i.e. contour of a polished optical element, is improved by differentially filling in the low spots on the surface using flux from a physical vapor deposition source through an appropriate mask. The process is expected to enable the manufacture of diffraction-limited optical systems for the UV, extreme UV, and soft X-ray spectral regions, which would have great impact on photolithography and astronomy. This same technique may also reduce the fabrication cost ofmore » visible region optics with aspheric surfaces.« less
Chandra Observations of New X-ray Supernovae
NASA Astrophysics Data System (ADS)
Pooley, David
2016-09-01
We propose to continue our X-ray studies of all types of supernovae (SNe). The Swift satellite ushered in a new era of studying SNe in the X-rays, obtaining densely sampled observations for nearby SNe, both core collapse and thermonuclear (although no Type Ia has been conclusively detected in X-rays). However, the Swift XRT spatial resolution is often not good enough to definitively associate X-ray emission in the direction of the SN with the SN itself. We propose short Chandra observations to alleviate this. These observations will assess the X-ray environment of newly discovered X-ray SNe to determine any possible source confusion or contamination of the SN flux. Our strategy makes the best use of the capabilities of each observatory.
Chandra Observations of New X-ray Supernovae
NASA Astrophysics Data System (ADS)
Pooley, David
2017-09-01
We propose to continue our X-ray studies of all types of supernovae (SNe). The Swift satellite ushered in a new era of studying SNe in the X-rays, obtaining densely sampled observations for nearby SNe, both core collapse and thermonuclear (although no Type Ia has been conclusively detected in X-rays). However, the Swift XRT spatial resolution is often not good enough to definitively associate X-ray emission in the direction of the SN with the SN itself. We propose short Chandra observations to alleviate this. These observations will assess the X-ray environment of newly discovered X-ray SNe to determine any possible source confusion or contamination of the SN flux. Our strategy makes the best use of the capabilities of each observatory.
Chandra Observations of New X-ray Supernovae
NASA Astrophysics Data System (ADS)
Pooley, David
2015-09-01
We propose to continue our X-ray studies of all types of supernovae (SNe). The Swift satellite ushered in a new era of studying SNe in the X-rays, obtaining densely sampled observations for nearby SNe, both core collapse and thermonuclear (although no Type Ia has been conclusively detected in X-rays). However, the Swift XRT spatial resolution is often not good enough to definitively associate X-ray emission in the direction of the SN with the SN itself. We propose short Chandra observations to alleviate this. These observations will assess the X-ray environment of newly discovered X-ray SNe to determine any possible source confusion or contamination of the SN flux. Our strategy makes the best use of the capabilities of each observatory.
Optical and radio properties of X-ray selected BL Lacertae objects
NASA Technical Reports Server (NTRS)
Stocke, J. T.; Liebert, J.; Schmidt, G.; Gioia, I. M.; Maccacaro, T.
1985-01-01
The eight BL Lac objects from the HEAO 1 A-2 all-sky survey and from the Einstein medium-sensitivity survey (MSS) form a flux-limited complete X-ray selected sample. The optical and radio properties of the MSS BL Lac objects are presented and compared with those of the HEAO 1 A-2 sample and with those of radio-selected BL Lac objects. The X-ray selected BL Lac objects possess smaller polarized fractions and less violent optical variability than radio-selected BL Lac objects. These properties are consistent with the substantial starlight fraction seen in the optical spectra of a majority of these objects. This starlight allows a determination of definite redshifts for two of four MSS BL Lac objects and a probable redshift for a third. These redshifts are 0.2, 0.3, and 0.6. Despite the differences in characteristics between the X-ray selected and radio-selected samples, it is concluded that these eight objects possess most of the basic qualities of BL Lac objects and should be considered members of that class. Moreover, as a class, these X-ray selected objects have the largest ratio of X-ray to optical flux of any active galactic nuclei yet discovered.
A high time resolution x-ray diagnostic on the Madison Symmetric Torus
NASA Astrophysics Data System (ADS)
DuBois, Ami M.; Lee, John David; Almagri, Abdulgadar F.
2015-07-01
A new high time resolution x-ray detector has been installed on the Madison Symmetric Torus (MST) to make measurements around sawtooth events. The detector system is comprised of a silicon avalanche photodiode, a 20 ns Gaussian shaping amplifier, and a 500 MHz digitizer with 14-bit sampling resolution. The fast shaping time diminishes the need to restrict the amount of x-ray flux reaching the detector, limiting the system dead-time. With a much higher time resolution than systems currently in use in high temperature plasma physics experiments, this new detector has the versatility to be used in a variety of discharges with varying flux and the ability to study dynamics on both slow and fast time scales. This paper discusses the new fast x-ray detector recently installed on MST and the improved time resolution capabilities compared to the existing soft and hard x-ray diagnostics. In addition to the detector hardware, improvements to the detector calibration and x-ray pulse identification software, such as additional fitting parameters and a more sophisticated fitting routine are discussed. Finally, initial data taken in both high confinement and standard reversed-field pinch plasma discharges are compared.
Single crystal CVD diamond membranes as Position Sensitive X-ray Detector
NASA Astrophysics Data System (ADS)
Desjardins, K.; Menneglier, C.; Pomorski, M.
2017-12-01
Transparent X-ray Beam Position Monitor (XBPM) has been specifically developed for low energy X-ray beamlines (1.4 keV < E < 5 keV) allowing to transmit more than 80% of 2 keV energy beam. The detector is based on a free-standing single crystal CVD diamond membrane of 4 μm thickness with position-sensitive DLC (Diamond-Like Carbon) resistive electrodes in duo-lateral configuration. The measured X-ray beam induced current (XBIC) due to the interaction of X-rays with diamond membrane allows precise monitoring of the absolute beam flux and the beam position (by the reconstruction of its center-of-gravity) at beam transmissions reaching 95%. This detector has been installed at SOLEIL synchrotron on the SIRIUS beamline monochromator output and it has shown charge collection efficiency (CCE) reaching 100% with no lag-effects and excellent beam intensity sensitivity monitoring. X-ray beam mapping of the detector showed an XBIC response inhomogeneity of less than 10% across the membrane, corresponding mainly to the measured variation of the diamond plate thickness. The measured beam position resolution is at sub-micron level depending on the beam flux and the readout electronics bandwidth.
Large-Scale Structure Studies with the REFLEX Cluster Survey
NASA Astrophysics Data System (ADS)
Schuecker, P.; Bohringer, H.; Guzzo, L.; Collins, C.; Neumann, D. M.; Schindler, S.; Voges, W.
1998-12-01
First preliminary results of the ROSAT ESO Flux-Limited X-Ray (REFLEX) Cluster Survey are described. The survey covers 13,924 square degrees of the southern hemisphere. The present sample consists of about 470 rich clusters (1/3 non Abell/ACO clusters) with X-ray fluxes S >= 3.0 times 10^{-12} erg s^{-1} cm^{-2} (0.1-2.4 keV) and redshifts z <= 0.3. In contrast to other low-redshift surveys, the cumulative flux-number counts have an almost Euclidean slope. Comoving cluster number densities are found to be almost redshift-independent throughout the total survey volume. The X-ray luminosity function is well described by a Schechter function. The power spectrum of the number density fluctuations could be measured on scales up to 400 h^{-1} Mpc. A deeper survey with about 800 galaxy clusters in the same area is in progress.
Modelling and analysis of flux surface mapping experiments on W7-X
NASA Astrophysics Data System (ADS)
Lazerson, Samuel; Otte, Matthias; Bozhenkov, Sergey; Sunn Pedersen, Thomas; Bräuer, Torsten; Gates, David; Neilson, Hutch; W7-X Team
2015-11-01
The measurement and compensation of error fields in W7-X will be key to the device achieving high beta steady state operations. Flux surface mapping utilizes the vacuum magnetic flux surfaces, a feature unique to stellarators and heliotrons, to allow direct measurement of magnetic topology, and thereby allows a highly accurate determination of remnant magnetic field errors. As will be reported separately at this meeting, the first measurements confirming the existence of nested flux surfaces in W7-X have been made. In this presentation, a synthetic diagnostic for the flux surface mapping diagnostic is presented. It utilizes Poincaré traces to construct an image of the flux surface consistent with the measured camera geometry, fluorescent rod sweep plane, and emitter beam position. Forward modeling of the high-iota configuration will be presented demonstrating an ability to measure the intrinsic error field using the U.S. supplied trim coil system on W7-X, and a first experimental assessment of error fields in W7-X will be presented. This work has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the US Department of Energy.
Long life electrodes for large-area x-ray generators
NASA Technical Reports Server (NTRS)
Rothe, Dietmar E. (Inventor)
1991-01-01
This invention is directed to rugged, reliable, and long-life electrodes for use in large-area, high-current-density electron gun and x-ray generators which are employed as contamination-free preionizers for high-energy pulsed gas lasers. The electron source at the cathode is a corona plasma formed at the interface between a conductor, or semiconductor, and a high-permittivity dielectric. Detailed descriptions are provided of a reliable cold plasma cathode, as well as an efficient liquid-cooled electron beam target (anode) and x-ray generator which concentrates the x-ray flux in the direction of an x-ray window.
A search for a cosmological component of the soft X-ray background in the direction of M31
NASA Technical Reports Server (NTRS)
Margon, B.; Bowyer, S.; Cruddace, R.; Heiles, C.; Lampton, M.; Troland, T.
1974-01-01
Results of an experiment to search for absorption of the soft diffuse X-ray background by M31, the Andromeda Nebula, are presented. Both X-ray and 21-cm observations were obtained with high spatial resolution; the X-ray detector had a 2-degree field of view, and the 21-cm data were taken with 20-minute resolution. The results establish that at least 48 percent of the soft X-ray flux has a local source, but that the remainder may be of distant origin and therefore of cosmological significance.
Identification of a Likely Radio Counterpart to the Rapid Burster (MXB 1730-335)
NASA Astrophysics Data System (ADS)
Rutledge, R.; Moore, C.; Fox, D.; Lewin, W. H. G.; van Paradijs, J.
1997-12-01
We have identified a likely radio counterpart to the X-ray low-mass-X-ray-binary MXB 1730-335 (The Rapid Burster; RB). The counterpart, which is between 4-5.6sigma away from the X-ray position, has during our five observations shown radio on/off behavior correlated with the X-ray on/off behavior as observed by the RXTE/ASM -- the chance probabilty of an unrelated background source duplicating this is 1.6%. If the radio and X-ray flux are correlated on ~ seconds timescales, then observations of radio bursts are well within current instrumentation capability.
High Energy Electron Detectors on Sphinx
NASA Astrophysics Data System (ADS)
Thompson, J. R.; Porte, A.; Zucchini, F.; Calamy, H.; Auriel, G.; Coleman, P. L.; Bayol, F.; Lalle, B.; Krishnan, M.; Wilson, K.
2008-11-01
Z-pinch plasma radiation sources are used to dose test objects with K-shell (˜1-4keV) x-rays. The implosion physics can produce high energy electrons (> 50keV), which could distort interpretation of the soft x-ray effects. We describe the design and implementation of a diagnostic suite to characterize the electron environment of Al wire and Ar gas puff z-pinches on Sphinx. The design used ITS calculations to model detector response to both soft x-rays and electrons and help set upper bounds to the spurious electron flux. Strategies to discriminate between the known soft x-ray emission and the suspected electron flux will be discussed. H.Calamy et al, ``Use of microsecond current prepulse for dramatic improvements of wire array Z-pinch implosion,'' Phys Plasmas 15, 012701 (2008) J.A.Halbleib et al, ``ITS: the integrated TIGER series of electron/photon transport codes-Version 3.0,'' IEEE Trans on Nuclear Sci, 39, 1025 (1992)
NASA Technical Reports Server (NTRS)
Kahler, S. W.; Petrasso, R. D.; Kane, S. R.
1976-01-01
The physical parameters for the kernels of three solar X-ray flare events have been deduced using photographic data from the S-054 X-ray telescope on Skylab as the primary data source and 1-8 and 8-20 A fluxes from Solrad 9 as the secondary data source. The kernels had diameters of about 5-7 seconds of arc and in two cases electron densities at least as high as 0.3 trillion per cu cm. The lifetimes of the kernels were 5-10 min. The presence of thermal conduction during the decay phases is used to argue: (1) that kernels are entire, not small portions of, coronal loop structures, and (2) that flare heating must continue during the decay phase. We suggest a simple geometric model to explain the role of kernels in flares in which kernels are identified with emerging flux regions.
Comparison of the X-Ray and Radio Light Curves of Quasar PKS 1510--089
NASA Technical Reports Server (NTRS)
Aller, M. F.; Marscher, A. P.; Marchenko-Jorstad, S. G.; McHardy, I. M.; Aller, H. D.
1998-01-01
We present results for the X-ray-bright superluminal AGN PKS 1510-089 (z=0.36) monitored weekly with the Rossi X-Ray Timing Explorer for the past four years in order to study the origin of X-ray emission from this extremely variable blazer. These RXTE data are compared with weekly cm-band flux and polarization observations from the Michigan Diameter telescope, to identify correlated activity and associated frequency-dependent time delays for constraining X-ray emission models; and bimonthly 7mm VLBA total and linearly polarized intensity imaging to identify temporal associations between X-ray events and the ejection of superluminal components and disturbances in the magnetic field, to test if the X-ray energy release is related to changes in the inner jet flow. Both the X-ray (2-20 keV) and radio flux are highly variable on timescales of weeks. The VLBA mas structure is dominated by a bright core with a weak jet; both the ejection of very fast superluminal knots and changes in the fractional polarization and EVPA of the core on timescales of one to four months are identified. Two outbursts in 1997 are well-resolved in both the centimeter and X-ray bands. Both the strong temporal association and the similar outburst shape support a causal relation, and a discrete cross-correlation analysis identifies that the X-ray lags the radio by 16 days during the bursts. Starting in 1998 the behavior changes: the correlation is weaker with the X-ray possibly leading the radio by six days. During the full time window there is a correlation between bands as expected if the radio photons are upscattered to X-ray energies. The time correlations and difference between the flat X-ray spectral index (0.0 <= alpha <= 0.5 where F(sub v) is proportional to v(exp -alpha)), and the mm-wave synchrotron spectrum (alpha = 0.8) are discussed within the framework of viable SSC models.
CVD-diamond-based position sensitive photoconductive detector for high-flux x-rays and gamma rays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu, D.
1999-04-19
A position-sensitive photoconductive detector (PSPCD) using insulating-type CVD diamond as its substrate material has been developed at the Advanced Photon Source (APS). Several different configurations, including a quadrant pattern for a x-ray-transmitting beam position monitor (TBPM) and 1-D and 2-D arrays for PSPCD beam profilers, have been developed. Tests on different PSPCD devices with high-heat-flux undulator white x-ray beam, as well as with gamma-ray beams from {sup 60}Co sources have been done at the APS and National Institute of Standards and Technology (NIST). It was proven that the insulating-type CVD diamond can be used to make a hard x-ray andmore » gamma-ray position-sensitive detector that acts as a solid-state ion chamber. These detectors are based on the photoconductivity principle. A total of eleven of these TBPMs have been installed on the APS front ends for commissioning use. The linear array PSPCD beam profiler has been routinely used for direct measurements of the undulator white beam profile. More tests with hard x-rays and gamma rays are planned for the CVD-diamond 2-D imaging PSPCD. Potential applications include a high-dose-rate beam profiler for fourth-generation synchrotrons radiation facilities, such as free-electron lasers.« less
X-Ray and Radio Studies of Black Hole X-Ray Transients During Outburst Decay
NASA Technical Reports Server (NTRS)
Tomsick, John A.
2005-01-01
Black hole (BH) and black hole candidate (BHC) transients are X-ray binary systems that typically undergo bright outbursts that last a couple months with recurrence times of years to decades. For this ADP project, we are studying BH/BHC systems during the decaying phases of their outbursts using the Rossi X-ray Taming Explorer (RXTE), the Chandra X-ray Observatory, and multi-wavelength facilities. These systems usually undergo state transitions as they decay, and our observations are designed to catch the state transitions. The specific goals of this proposal include: 1. To determine the evolution of the characteristic frequencies present in the power spectrum (such as quasi-periodic oscillations, QPOs) during state transitions in order to place constraints on the accretion geometry; 2. To contemporaneously measure X-ray spectral and timing properties along with flux measurements in the radio band to determine the relationship between the accretion disk and radio jets; 3. To extend our studies of X-ray properties of BHCs to very low accretion rates using RXTE and Chandra. The work performed under this proposal has been highly successful, allowing the PI to lead, direct, or assist in the preparation of 7 related publications in refereed journals and 6 other conference presentations or reports. These items are listed below, and the abstracts for the refereed publications have also been included. Especially notable results include our detailed measurements of the characteristic frequencies and spectral parameters of BH/BHCs after the transition to the hard state (see All A3, and A5) and at low flux levels (see A4). Our measurements provide one of the strongest lines of evidence to date that the inner edge of the optically thick accretion disk gradually recedes from the black hole at low flux levels. In addition, we have succeeded in obtaining excellent multi-wavelength coverage of a BH system as its compact jet turned on (see Al). Our results show, somewhat unexpectedly, that the radio jet does not turn on until the hard X-ray emission is well past its peak hard state level, strongly constraining theoretical models for hard X-ray production and the spectrum emitted by the jet. Finally, the X-ray/radio results in A2 led us to propose a general picture about the relationship between jet production and X-ray spectral states .
X-ray radiative transfer in protoplanetary disks. The role of dust and X-ray background fields
NASA Astrophysics Data System (ADS)
Rab, Ch.; Güdel, M.; Woitke, P.; Kamp, I.; Thi, W.-F.; Min, M.; Aresu, G.; Meijerink, R.
2018-01-01
Context. The X-ray luminosities of T Tauri stars are about two to four orders of magnitude higher than the luminosity of the contemporary Sun. As these stars are born in clusters, their disks are not only irradiated by their parent star but also by an X-ray background field produced by the cluster members. Aims: We aim to quantify the impact of X-ray background fields produced by young embedded clusters on the chemical structure of disks. Further, we want to investigate the importance of the dust for X-ray radiative transfer in disks. Methods: We present a new X-ray radiative transfer module for the radiation thermo-chemical disk code PRODIMO (PROtoplanetary DIsk MOdel), which includes X-ray scattering and absorption by both the gas and dust component. The X-ray dust opacities can be calculated for various dust compositions and dust-size distributions. For the X-ray radiative transfer we consider irradiation by the star and by X-ray background fields. To study the impact of X-rays on the chemical structure of disks we use the well established disk ionization tracers N2H+ and HCO+. Results: For evolved dust populations (e.g. grain growth), X-ray opacities are mostly dominated by the gas; only for photon energies E ≳ 5-10 keV do dust opacities become relevant. Consequently the local disk X-ray radiation field is only affected in dense regions close to the disk midplane. X-ray background fields can dominate the local X-ray disk ionization rate for disk radii r ≳ 20 au. However, the N2H+ and HCO+ column densities are only significantly affected in cases of low cosmic-ray ionization rates (≲10-19 s-1), or if the background flux is at least a factor of ten higher than the flux level of ≈10-5 erg cm-2 s-1 expected for clusters typical for the solar vicinity. Conclusions: Observable signatures of X-ray background fields in low-mass star-formation regions, like Taurus, are only expected for cluster members experiencing a strong X-ray background field (e.g. due to their location within the cluster). For the majority of the cluster members, the X-ray background field has relatively little impact on the disk chemical structure.
Efficiency of Synchrotron Radiation from Rotation-powered Pulsars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kisaka, Shota; Tanaka, Shuta J., E-mail: kisaka@phys.aoyama.ac.jp, E-mail: sjtanaka@center.konan-u.ac.jp
2017-03-01
Synchrotron radiation is widely considered to be the origin of the pulsed non-thermal emissions from rotation-powered pulsars in optical and X-ray bands. In this paper, we study the synchrotron radiation emitted by the created electron and positron pairs in the pulsar magnetosphere to constrain the energy conversion efficiency from the Poynting flux to the particle energy flux. We model two pair creation processes, two-photon collision, which efficiently works in young γ -ray pulsars (≲10{sup 6} year), and magnetic pair creation, which is the dominant process to supply pairs in old pulsars (≳10{sup 6} year). Using the analytical model, we derivemore » the maximum synchrotron luminosity as a function of the energy conversion efficiency. From the comparison with observations, we find that the energy conversion efficiency to the accelerated particles should be an order of unity in the magnetosphere, even though we make a number of the optimistic assumptions to enlarge the synchrotron luminosity. In order to explain the luminosity of the non-thermal X-ray/optical emission from pulsars with low spin-down luminosity L {sub sd} ≲ 10{sup 34} erg s{sup −1}, non-dipole magnetic field components should be dominant at the emission region. For the γ -ray pulsars with L {sub sd} ≲ 10{sup 35} erg s{sup −1}, observed γ -ray to X-ray and optical flux ratios are much higher than the flux ratio between curvature and the synchrotron radiations. We discuss some possibilities such as the coexistence of multiple accelerators in the magnetosphere as suggested from the recent numerical simulation results. The obtained maximum luminosity would be useful to select observational targets in X-ray and optical bands.« less
Limits on deeply penetrating particles in the 10(17) eV cosmic ray flux
NASA Technical Reports Server (NTRS)
Baltrusaitis, R. M.; Cassiday, G. L.; Cooper, R.; Elbert, J. W.; Gerhardy, J. W.; Loh, P. R.; Mizumoto, Y.; Sokolsky, P.; Sommers, P.; Steck, D.
1985-01-01
Deeply penetrating particles in the 10 to the 17th power eV cosmic ray flux were investigated. No such events were found in 8.2 x 10 to the 6th power sec of running time. Limits were set on the following: quark-matter in the primary cosmic ray flux; long-lived, weakly interacting particles produced in p-air collisions; the astrophysical neutrino flux. In particular, the neutrino flux limit at 10 to the 17th power eV implies that z, the red shift of maximum activity is 10 in the model of Hill and Schramm.
NASA Astrophysics Data System (ADS)
Nättilä, J.; Miller, M. C.; Steiner, A. W.; Kajava, J. J. E.; Suleimanov, V. F.; Poutanen, J.
2017-12-01
Observations of thermonuclear X-ray bursts from accreting neutron stars (NSs) in low-mass X-ray binary systems can be used to constrain NS masses and radii. Most previous work of this type has set these constraints using Planck function fits as a proxy: the models and the data are both fit with diluted blackbody functions to yield normalizations and temperatures that are then compared with each other. For the first time, we here fit atmosphere models of X-ray bursting NSs directly to the observed spectra. We present a hierarchical Bayesian fitting framework that uses current X-ray bursting NS atmosphere models with realistic opacities and relativistic exact Compton scattering kernels as a model for the surface emission. We test our approach against synthetic data and find that for data that are well described by our model, we can obtain robust radius, mass, distance, and composition measurements. We then apply our technique to Rossi X-ray Timing Explorer observations of five hard-state X-ray bursts from 4U 1702-429. Our joint fit to all five bursts shows that the theoretical atmosphere models describe the data well, but there are still some unmodeled features in the spectrum corresponding to a relative error of 1-5% of the energy flux. After marginalizing over this intrinsic scatter, we find that at 68% credibility, the circumferential radius of the NS in 4U 1702-429 is R = 12.4±0.4 km, the gravitational mass is M = 1.9±0.3 M⊙, the distance is 5.1 < D/ kpc < 6.2, and the hydrogen mass fraction is X < 0.09.
Structural Studies of the Initial Stages of Fluoride Epitaxy on Silicon and GERMANIUM(111)
NASA Astrophysics Data System (ADS)
Denlinger, Jonathan David
The epitaxial growth of ionic insulators on semiconductor substrates is of interest due to fundamental issues of interface bonding and structure as well as to potential technological applications. The initial stages of Group IIa fluoride insulator growth on (111) Si and Ge substrates by molecular beam epitaxy are studied with the in situ combination of X-ray Photoelectron Spectroscopy (XPS) and Diffraction (XPD). While XPS probes the electronic structure, XPD reveals atomic structure. In addition, low energy electron diffraction (LEED) is used to probe surface order and a separate study using X-ray standing wave (XSW) fluorescence reveals interface cation bonding sites. Following the formation of a chemically-reacted interface layer in CaF_2 epitaxy on Si(111), the morphology of the subsequent bulk layers is found to be dependent on substrate temperature and incident flux rate. At temperatures >=600 ^circC a transition from three -dimensional island formation at low flux to laminar growth at higher flux is observed with bulk- and interface-resolved XPD. At lower substrate temperatures, laminar growth is observed at all fluxes, but with different bulk nucleation behavior due to changes in the stoichiometry of the interface layer. This new observation of kinetic effects on the initial nucleation in CaF_2 epitaxy has important ramifications for the formation of thicker heterostructures for scientific or device applications. XPS and XPD are also used to identify for the first time, surface core-level species of Ca and F, and a secondary interface-shifted F Auger component arising from a second-layer site directly above interface-layer Ca atoms. The effects of lattice mismatch (from -3% to 8%) are investigated with various growths of Ca_{rm x}Sr _{rm 1-x}F_2 on Si and Ge (111) substrates. Triangulation of (111) and (220) XSW indicates a predominance of 3-fold hollow Sr bonding sites coexisting with 4-fold top sites for monolayers of SrF_2 on Si. XSW and LEED reveal a lateral discommensuration of the overlayer for lattice mismatches of >5% relative to the substrate. XPD also reveals a transition from single - to mixed-domains of overlayer crystallographic orientation for mismatches >=3.5%.
Discovery of the 198 s X-Ray Pulsar GRO J2058+42
NASA Technical Reports Server (NTRS)
Wilson, Colleen A.; Finger, Mark H.; Harmon, B. Alan; Chakrabarty, Deepto; Strohmayer, Tod
1997-01-01
GRO J2058+42, a transient 198 second x-ray pulsar, was discovered by the Burst and Transient Source Experiment (BATSE) on the Compton Gamma-Ray Observatory (CGRO), during a "giant" outburst in 1995 September-October. The total flux peaked at about 300 mCrab (20-50 keV) as measured by Earth occultation. The pulse period decreased from 198 s to 196 s during the 46-day outburst. The pulse shape evolved over the course of the outburst and exhibited energy dependent variations. BATSE observed five additional weak outbursts from GRO J2058+427 each with two week duration and peak pulsed flux of about 15 mcrab (20-50 keV), that were spaced by about 110 days. An observation of the 1996 November outburst by the Rossi X-ray Timing Explorer (RXTE) Proportional Counter Array (PCA) localized the source to within a 4' radius error circle (90% confidence) centered on R.A. = 20 h 59 m.0, Decl. = 41 deg 43 min (J2000). Additional shorter outbursts with peak pulsed fluxes of about 8 mCrab were detected by BATSE halfway between the first four 15 mCrab outbursts. The RXTE All-Sky Monitor detected 8 weak outbursts with approximately equal durations and intensities. GRO J2058+42 is most likely a Be/X-ray binary that appears to outburst at periastron and apastron. No optical counterpart has been identified to date and no x-ray source was present in the error circle in archival ROSAT observations.
Discovery of the 198 Second X-Ray Pulsar GRO J2058+42
NASA Technical Reports Server (NTRS)
Wilson, Colleen A.; Finger, Mark H.; Harmon, B. Alan; Chakrabarty, Deepto; Strohmayer, Tod
1998-01-01
GRO J2058+42, a transient 198 s X-ray pulsar, was discovered by the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory (CGRO) during a "giant" outburst in 1995 September-October. The total flux peaked at about 300 mcrab (20-50 keV) as measured by Earth occultation. The pulse period decreased from 198 to 196 s during the 46 day outburst. The pulse shape evolved over the course of the outburst and exhibited energy-dependent variations. BATSE observed five additional weak outbursts from GRO J2058 + 42, each with a 2 week duration and a peak-pulsed flux of about 15 mcrab (20-50 keV), that were spaced by about 110 days. An observation of the 1996 November outburst by the Rossi X-Ray Timing Explorer (RXTE) proportional counter array (PCA) localized the source to within a 4 s radius error circle (90% confidence) centered on R.A. = 20h 59m.0, decl. = 41 deg 43 s (J2000). Additional shorter outbursts with peak-pulsed fluxes of about 8 mcrab were detected by BATSE halfway between the first four 15 mcrab outbursts. The RXTE All-Sky Monitor detected all eight weak outbursts with approximately equal durations and intensities. GRO J2058 + 42 is most likely a Be/X-ray binary that appears to outburst at periastron and apastron, No optical counterpart has been identified to date, and no X-ray source was present in the error circle in archival ROSAT observations.
Determination of Differential Emission Measure from Solar Extreme Ultraviolet Images
NASA Astrophysics Data System (ADS)
Su, Yang; Veronig, Astrid M.; Hannah, Iain G.; Cheung, Mark C. M.; Dennis, Brian R.; Holman, Gordon D.; Gan, Weiqun; Li, Youping
2018-03-01
The Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO) has been providing high-cadence, high-resolution, full-disk UV-visible/extreme ultraviolet (EUV) images since 2010, with the best time coverage among all the solar missions. A number of codes have been developed to extract plasma differential emission measures (DEMs) from AIA images. Although widely used, they cannot effectively constrain the DEM at flaring temperatures with AIA data alone. This often results in much higher X-ray fluxes than observed. One way to solve the problem is by adding more constraint from other data sets (such as soft X-ray images and fluxes). However, the spatial information of plasma DEMs are lost in many cases. In this Letter, we present a different approach to constrain the DEMs. We tested the sparse inversion code and show that the default settings reproduce X-ray fluxes that could be too high. Based on the tests with both simulated and observed AIA data, we provided recommended settings of basis functions and tolerances. The new DEM solutions derived from AIA images alone are much more consistent with (thermal) X-ray observations, and provide valuable information by mapping the thermal plasma from ∼0.3 to ∼30 MK. Such improvement is a key step in understanding the nature of individual X-ray sources, and particularly important for studies of flare initiation.
X-ray-induced photo-chemistry and X-ray absorption spectroscopy of biological samples
George, Graham N.; Pickering, Ingrid J.; Pushie, M. Jake; Nienaber, Kurt; Hackett, Mark J.; Ascone, Isabella; Hedman, Britt; Hodgson, Keith O.; Aitken, Jade B.; Levina, Aviva; Glover, Christopher; Lay, Peter A.
2012-01-01
As synchrotron light sources and optics deliver greater photon flux on samples, X-ray-induced photo-chemistry is increasingly encountered in X-ray absorption spectroscopy (XAS) experiments. The resulting problems are particularly pronounced for biological XAS experiments. This is because biological samples are very often quite dilute and therefore require signal averaging to achieve adequate signal-to-noise ratios, with correspondingly greater exposures to the X-ray beam. This paper reviews the origins of photo-reduction and photo-oxidation, the impact that they can have on active site structure, and the methods that can be used to provide relief from X-ray-induced photo-chemical artifacts. PMID:23093745
Note: Measurement of the runaway electrons in the J-TEXT tokamak
NASA Astrophysics Data System (ADS)
Chen, Z. Y.; Zhang, Y.; Zhang, X. Q.; Luo, Y. H.; Jin, W.; Li, J. C.; Chen, Z. P.; Wang, Z. J.; Yang, Z. J.; Zhuang, G.
2012-05-01
The runaway electrons have been measured by hard x-ray detectors and soft x-ray array in the J-TEXT tokamak. The hard x-ray radiations in the energy ranges of 0.5-5 MeV are measured by two NaI detectors. The flux of lost runaway electrons can be obtained routinely. The soft x-ray array diagnostics are used to monitor the runaway beam generated in disruptions since the soft x-ray is dominated by the interaction between runaway electrons and metallic impurities inside the plasma. With the aid of soft x-ray array, runaway electron beam has been detected directly during the formation of runaway current plateau following the disruptions.
Radio emission from an ultraluminous x-ray source.
Kaaret, Philip; Corbel, Stephane; Prestwich, Andrea H; Zezas, Andreas
2003-01-17
The physical nature of ultraluminous x-ray sources is uncertain. Stellar-mass black holes with beamed radiation and intermediate black holes with isotropic radiation are two plausible explanations. We discovered radio emission from an ultraluminous x-ray source in the dwarf irregular galaxy NGC 5408. The x-ray, radio, and optical fluxes as well as the x-ray spectral shape are consistent with beamed relativistic jet emission from an accreting stellar black hole. If confirmed, this would suggest that the ultraluminous x-ray sources may be stellar-mass rather than intermediate-mass black holes. However, interpretation of the source as a jet-producing intermediate-mass black hole cannot be ruled out at this time.
Increased TeV gamma-ray activity from Mrk 421 on January 1-4
NASA Astrophysics Data System (ADS)
Wood, J.; Martinez, I.; Lauer, R.
2017-01-01
The HAWC Observatory measured increased gamma-ray fluxes from the direction of BL Lac Markarian 421 (z=0.031) over four successive nights starting on January 1, 2017: Transit Starting 07:40:55 UTC on Jan 1, 2017 (MJD 57754.32): Flux = (4.8 +/- 1.1) x10^-11 photons/cm2/s [2.5 Crab Units] Transit Starting 07:36:59 UTC on Jan 2, 2017 (MJD 57755.32): Flux = (3.6 +/- 1.0) x10^-11 photons/cm2/s [1.9 Crab Units] Transit Starting 07:33:04 UTC on Jan 3, 2017 (MJD 57756.31): Flux = (4.0 +/- 1.0) x10^-11 photons/cm2/s [2.1 Crab Units] Transit Starting 07:29:08 UTC on Jan 4, 2017 (MJD 57757.31): Flux = (4.1 +/- 1.0) x10^-11 photons/cm2/s [2.2 Crab Units] All fluxes reported here are the integral flux above 1 TeV averaged over the 6 hour source transit obtained from a maximum likelihood fit under the assumption of a fixed spectral shape with power law index of 2.2 and exponential cut-off at 5 TeV. This shape is the current best fit for HAWC data from Markarian 421. The highest flux occurred on Jan 1, 2017.
High-energy neutrino fluxes from AGN populations inferred from X-ray surveys
NASA Astrophysics Data System (ADS)
Jacobsen, Idunn B.; Wu, Kinwah; On, Alvina Y. L.; Saxton, Curtis J.
2015-08-01
High-energy neutrinos and photons are complementary messengers, probing violent astrophysical processes and structural evolution of the Universe. X-ray and neutrino observations jointly constrain conditions in active galactic nuclei (AGN) jets: their baryonic and leptonic contents, and particle production efficiency. Testing two standard neutrino production models for local source Cen A (Koers & Tinyakov and Becker & Biermann), we calculate the high-energy neutrino spectra of single AGN sources and derive the flux of high-energy neutrinos expected for the current epoch. Assuming that accretion determines both X-rays and particle creation, our parametric scaling relations predict neutrino yield in various AGN classes. We derive redshift-dependent number densities of each class, from Chandra and Swift/BAT X-ray luminosity functions (Silverman et al. and Ajello et al.). We integrate the neutrino spectrum expected from the cumulative history of AGN (correcting for cosmological and source effects, e.g. jet orientation and beaming). Both emission scenarios yield neutrino fluxes well above limits set by IceCube (by ˜4-106 × at 1 PeV, depending on the assumed jet models for neutrino production). This implies that: (i) Cen A might not be a typical neutrino source as commonly assumed; (ii) both neutrino production models overestimate the efficiency; (iii) neutrino luminosity scales with accretion power differently among AGN classes and hence does not follow X-ray luminosity universally; (iv) some AGN are neutrino-quiet (e.g. below a power threshold for neutrino production); (v) neutrino and X-ray emission have different duty cycles (e.g. jets alternate between baryonic and leptonic flows); or (vi) some combination of the above.
A New Low Magnetic Field Magnetar: The 2011 Outburst of Swift J1822.3-1606
NASA Astrophysics Data System (ADS)
Rea, N.; Israel, G. L.; Esposito, P.; Pons, J. A.; Camero-Arranz, A.; Mignani, R. P.; Turolla, R.; Zane, S.; Burgay, M.; Possenti, A.; Campana, S.; Enoto, T.; Gehrels, N.; Göǧüş, E.; Götz, D.; Kouveliotou, C.; Makishima, K.; Mereghetti, S.; Oates, S. R.; Palmer, D. M.; Perna, R.; Stella, L.; Tiengo, A.
2012-07-01
We report on the long-term X-ray monitoring with Swift, RXTE, Suzaku, Chandra, and XMM-Newton of the outburst of the newly discovered magnetar Swift J1822.3-1606 (SGR 1822-1606), from the first observations soon after the detection of the short X-ray bursts which led to its discovery, through the first stages of its outburst decay (covering the time span from 2011 July until the end of 2012 April). We also report on archival ROSAT observations which detected the source during its likely quiescent state, and on upper limits on Swift J1822.3-1606's radio-pulsed and optical emission during outburst, with the Green Bank Telescope and the Gran Telescopio Canarias, respectively. Our X-ray timing analysis finds the source rotating with a period of P = 8.43772016(2) s and a period derivative \\dot{P}=8.3(2)\\times 10^{-14} s s-1, which implies an inferred dipolar surface magnetic field of B ~= 2.7 × 1013 G at the equator. This measurement makes Swift J1822.3-1606 the second lowest magnetic field magnetar (after SGR 0418+5729). Following the flux and spectral evolution from the beginning of the outburst, we find that the flux decreased by about an order of magnitude, with a subtle softening of the spectrum, both typical of the outburst decay of magnetars. By modeling the secular thermal evolution of Swift J1822.3-1606, we find that the observed timing properties of the source, as well as its quiescent X-ray luminosity, can be reproduced if it was born with a poloidal and crustal toroidal fields of Bp ~ 1.5 × 1014 G and B tor ~ 7 × 1014 G, respectively, and if its current age is ~550 kyr.
Colloquium: Measuring the neutron star equation of state using x-ray timing
Watts, Anna L.; Andersson, Nils; Chakrabarty, Deepto; ...
2016-04-13
One of the primary science goals of the next generation of hard x-ray timing instruments is to determine the equation of state of matter at supranuclear densities inside neutron stars by measuring the radius of neutron stars with different masses to accuracies of a few percent. Three main techniques can be used to achieve this goal. The first involves waveform modeling. The flux observed from a hotspot on the neutron star surface offset from the rotational pole will be modulated by the star s rotation, and this periodic modulation at the spin frequency is called a pulsation. As the photonsmore » propagate through the curved spacetime of the star, information about mass and radius is encoded into the shape of the waveform (pulse profile) via special and general-relativistic effects. Using pulsations from known sources (which have hotspots that develop either during thermo- nuclear bursts or due to channeled accretion) it is possible to obtain tight constraints on mass and radius. The second technique involves characterizing the spin distribution of accreting neutron stars. A large collecting area enables highly sensitive searches for weak or intermittent pulsations (which yield spin) from the many accreting neutron stars whose spin rates are not yet known. The most rapidly rotating stars provide a clean constraint, since the limiting spin rate where the equatorial surface velocity is comparable to the local orbital velocity, at which mass shedding occurs, is a function of mass and radius. However, the overall spin distribution also provides a guide to the torque mechanisms in operation and the moment of inertia, both of which can depend sensitively on dense matter physics. The third technique is to search for quasiperiodic oscillations in x-ray flux associated with global seismic vibrations of magnetars (the most highly magnetized neutron stars), triggered by magnetic explosions. The vibrational frequencies depend on stellar parameters including the dense matter equation of state, and large-area x-ray timing instruments would provide much improved detection capability. In addition, an illustration is given of how these complementary x-ray timing techniques can be used to constrain the dense matter equation of state and the results that might be expected from a 10 m 2 instrument are discussed. Also discussed are how the results from such a facility would compare to other astronomical investigations of neutron star properties.« less
Colloquium: Measuring the neutron star equation of state using x-ray timing
NASA Astrophysics Data System (ADS)
Watts, Anna L.; Andersson, Nils; Chakrabarty, Deepto; Feroci, Marco; Hebeler, Kai; Israel, Gianluca; Lamb, Frederick K.; Miller, M. Coleman; Morsink, Sharon; Özel, Feryal; Patruno, Alessandro; Poutanen, Juri; Psaltis, Dimitrios; Schwenk, Achim; Steiner, Andrew W.; Stella, Luigi; Tolos, Laura; van der Klis, Michiel
2016-04-01
One of the primary science goals of the next generation of hard x-ray timing instruments is to determine the equation of state of matter at supranuclear densities inside neutron stars by measuring the radius of neutron stars with different masses to accuracies of a few percent. Three main techniques can be used to achieve this goal. The first involves waveform modeling. The flux observed from a hotspot on the neutron star surface offset from the rotational pole will be modulated by the star's rotation, and this periodic modulation at the spin frequency is called a pulsation. As the photons propagate through the curved spacetime of the star, information about mass and radius is encoded into the shape of the waveform (pulse profile) via special and general-relativistic effects. Using pulsations from known sources (which have hotspots that develop either during thermonuclear bursts or due to channeled accretion) it is possible to obtain tight constraints on mass and radius. The second technique involves characterizing the spin distribution of accreting neutron stars. A large collecting area enables highly sensitive searches for weak or intermittent pulsations (which yield spin) from the many accreting neutron stars whose spin rates are not yet known. The most rapidly rotating stars provide a clean constraint, since the limiting spin rate where the equatorial surface velocity is comparable to the local orbital velocity, at which mass shedding occurs, is a function of mass and radius. However, the overall spin distribution also provides a guide to the torque mechanisms in operation and the moment of inertia, both of which can depend sensitively on dense matter physics. The third technique is to search for quasiperiodic oscillations in x-ray flux associated with global seismic vibrations of magnetars (the most highly magnetized neutron stars), triggered by magnetic explosions. The vibrational frequencies depend on stellar parameters including the dense matter equation of state, and large-area x-ray timing instruments would provide much improved detection capability. An illustration is given of how these complementary x-ray timing techniques can be used to constrain the dense matter equation of state and the results that might be expected from a 10 m2 instrument are discussed. Also discussed are how the results from such a facility would compare to other astronomical investigations of neutron star properties.
NASA Technical Reports Server (NTRS)
Stevenson, Thomas R.; Balvin, M. A.; Denis, K. L.; Hsieh, W.-T.; Sadleir, J. E.; Bandler, Simon E.; Busch, Sarah E.; Merrell, W.; Kelly, Daniel P.; Nagler, Peter C.;
2012-01-01
We have made high resolution x-ray microcalorimeters using superconducting MoAu bilayers and Nb meander coils. The temperature sensor is a Magnetic Penetration Thermometer (MPT). Operation is similar to metallic magnetic calorimeters, but instead of the magnetic susceptibility of a paramagnetic alloy, we use the diamagnetic response of the superconducting MoAu to sense temperature changes in an x-ray absorber. Flux-temperature responsivtty can be large for small sensor heat capacity, with enough dynamic range for applications. We find models of observed flux-temperature curves require several effects to explain flux penetration or expulsion in the microscopic devices. The superconductor is non-local, with large coherence length and weak pinning of flux. At lowest temperatures, behavior is dominated by screening currents that vary as a result of the temperature dependence of the magnetic penetration depth, modified by the effect of the nonuniformity of the applied field occurring on a scale comparable to the coherence length. In the temperature regime where responslvity is greatest, spadal variations in the order parameter become important: both local variations as flux enters/leaves the film and an intermediate state is formed, and globally as changing stability of the electrical circuit creates a Meissner transition and flux is expelled/penetrates to minimize free energy.
Powerful Solar Flares in September 2017. Comparison with the Largest Flares in Cycle 24
NASA Astrophysics Data System (ADS)
Bruevich, E. A.; Bruevich, V. V.
2018-06-01
Solar flare activity in cycle 24 is studied. Satellite observations of x-ray fluxes from GOES-15 and UV emission lines from the SDO/EVE experiment are used. The most powerful flares of cycle 24 in classes X9.3 and X8.2 in September 2017 are compared with powerful flares in classes M5-X6.9. The times at which the fluxes in the 30.4 and 9.4 nm lines and in the 0.1-0.8 nm x-ray range begin to increase are compared for 21 of the large flares. The total energies arriving at the earth from flares in the 30.4 and 9.4 nm lines and in the 0.1-0.9 nm x-ray range, E30.4, E9.4, and E0.1-0.8, from 25 flares during 2011 and 2012 are calculated. It is shown that the calculated energies of the flares in the analyzed lines from SDO/EVE and in the x-ray range from GOES-15 are closely interrelated.
On the morphology of outbursts of accreting millisecond X-ray pulsar Aquila X-1
NASA Astrophysics Data System (ADS)
Güngör, C.; Ekşi, K. Y.; Göğüş, E.
2017-10-01
We present the X-ray light curves of the last two outbursts - 2014 & 2016 - of the well known accreting millisecond X-ray pulsar (AMXP) Aquila X-1 using the monitor of all sky X-ray image (MAXI) observations in the 2-20 keV band. After calibrating the MAXI count rates to the all-sky monitor (ASM) level, we report that the 2016 outburst is the most energetic event of Aql X-1, ever observed from this source. We show that 2016 outburst is a member of the long-high class according to the classification presented by Güngör et al. with ˜ 68 cnt/s maximum flux and ˜ 60 days duration time and the previous outburst, 2014, belongs to the short-low class with ˜ 25 cnt/s maximum flux and ˜ 30 days duration time. In order to understand differences between outbursts, we investigate the possible dependence of the peak intensity to the quiescent duration leading to the outburst and find that the outbursts following longer quiescent episodes tend to reach higher peak energetic.
Laser interferometry of radiation driven gas jets
NASA Astrophysics Data System (ADS)
Swanson, Kyle James; Ivanov, Vladimir; Mancini, Roberto; Mayes, Daniel C.
2017-06-01
In a series of experiments performed at the 1MA Zebra pulsed power accelerator of the Nevada Terawatt Facility nitrogen gas jets were driven with the broadband x-ray flux produced during the collapse of a wire-array z-pinch implosion. The wire arrays were comprised of 4 and 8, 10μm-thick gold wires and 17μm-thick nickel wires, 2cm and 3cm tall, and 0.3cm in diameter. They radiated 12kJ to 16kJ of x-ray energy, most of it in soft x-ray photons of less than 1keV of energy, in a time interval of 30ns. This x-ray flux was used to drive a nitrogen gas jet located at 0.8cm from the axis of the z-pinch radiation source and produced with a supersonic nozzle. The x-ray flux ionizes the nitrogen gas thus turning it into a photoionized plasma. We used laser interferometry to probe the ionization of the plasma. To this end, a Mach-Zehnder interferometer at the wavelength of 266 nm was set up to extract the atom number density profile of the gas jet just before the Zebra shot, and air-wedge interferometers at 266 and 532 nm were used to determine the electron number density of the plasma right during the Zebra shot. The ratio of electron to atom number densities gives the distribution of average ionization state of the plasma. A python code was developed to perform the image data processing, extract phase shift spatial maps, and obtain the atom and electron number densities via Abel inversion. Preliminary results from the experiment are promising and do show that a plasma has been created in the gas jet driven by the x-ray flux, thus demonstrating the feasibility of a new experimental platform to study photoionized plasmas in the laboratory. These plasmas are found in astrophysical scenarios including x-ray binaries, active galactic nuclei, and the accretion disks surrounding black holes1. This work was sponsored in part by DOE Office of Science Grant DE-SC0014451.1R. C. Mancini et al, Phys. Plasmas 16, 041001 (2009)
Zürch, M; Jung, R; Späth, C; Tümmler, J; Guggenmos, A; Attwood, D; Kleineberg, U; Stiel, H; Spielmann, C
2017-07-13
Coherent diffraction imaging (CDI) in the extreme ultraviolet has become an important tool for nanoscale investigations. Laser-driven high harmonic generation (HHG) sources allow for lab scale applications such as cancer cell classification and phase-resolved surface studies. HHG sources exhibit excellent coherence but limited photon flux due poor conversion efficiency. In contrast, table-top soft X-ray lasers (SXRL) feature excellent temporal coherence and extraordinary high flux at limited transverse coherence. Here, the performance of a SXRL pumped at moderate pump energies is evaluated for CDI and compared to a HHG source. For CDI, a lower bound for the required mutual coherence factor of |μ 12 | ≥ 0.75 is found by comparing a reconstruction with fixed support to a conventional characterization using double slits. A comparison of the captured diffraction signals suggests that SXRLs have the potential for imaging micron scale objects with sub-20 nm resolution in orders of magnitude shorter integration time compared to a conventional HHG source. Here, the low transverse coherence diameter limits the resolution to approximately 180 nm. The extraordinary high photon flux per laser shot, scalability towards higher repetition rate and capability of seeding with a high harmonic source opens a route for higher performance nanoscale imaging systems based on SXRLs.
Multiple energetic injections in a strong spike-like solar burst
NASA Technical Reports Server (NTRS)
Kaufmann, P.; Correia, E.; Costa, J. E. R.; Dennis, B. R.; Hurford, G. J.; Brown, J. C.
1984-01-01
An intense and fast spike-like solar burst was built up of short time scale structures superimposed on an underlying gradual emission, the time evolution of which shows remarkable proportionality between hard X-ray and microwave fluxes. The finer time structures were best defined at mm-microwaves. At the peak of the event, the finer structures repeat every 30 x 60 ms. The more slowly varying component with a time scale of about 1 second was identified in microwave hard X-rays throughout the burst duration. It is suggested that X-ray fluxes might also be proportional to the repetition rate of basic units of energy injection (quasi-quantized). The relevant parameters of one primary energy release site are estimated both in the case where hard X-rays are produced primarily by thick-target bremsstrahlung, and when they are purely thermal. The relation of this figure to global energy considerations is discussed. Previously announced in STAR as N83-35983
The high-energy view of the broad-line radio galaxy 3C 111
NASA Astrophysics Data System (ADS)
Ballo, L.; Braito, V.; Reeves, J. N.; Sambruna, R. M.; Tombesi, F.
2011-12-01
We present the analysis of Suzaku and XMM-Newton observations of the broad-line radio galaxy (BLRG) 3C 111. Its high-energy emission shows variability, a harder continuum with respect to the radio-quiet active galactic nucleus population, and weak reflection features. Suzaku found the source in a minimum flux level; a comparison with the XMM-Newton data implies an increase of a factor of 2.5 in the 0.5-10 keV flux, in the 6 months separating the two observations. The iron K complex is detected in both data sets, with rather low equivalent width(s). The intensity of the iron K complex does not respond to the change in continuum flux. An ultrafast, high-ionization outflowing gas is clearly detected in the Suzaku/X-ray Imaging Spectrometer data; the absorber is most likely unstable. Indeed, during the XMM-Newton observation, which was 6 months after, the absorber was not detected. No clear rollover in the hard X-ray emission is detected, probably due to the emergence of the jet as a dominant component in the hard X-ray band, as suggested by the detection above ˜100 keV with the GSO onboard Suzaku, although the present data do not allow us to firmly constrain the relative contribution of the different components. The fluxes observed by the γ-ray satellites CGRO and Fermi would be compatible with the putative jet component if peaking at energies E˜ 100 MeV. In the X-ray band, the jet contribution to the continuum starts to be significant only above 10 keV. If the detection of the jet component in 3C 111 is confirmed, then its relative importance in the X-ray energy band could explain the different observed properties in the high-energy emission of BLRGs, which are otherwise similar in their other multiwavelength properties. Comparison between X-ray and γ-ray data taken at different epochs suggests that the strong variability observed for 3C 111 is probably driven by a change in the primary continuum.
Evaluation of alternative cleaners for solder flux and mold release removal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, E.P.; Peebles, D.E.; Reich, J.E.
1991-01-01
As part of a solvent substitution program, an evaluation of selected alternative cleaners for solder flux and mold release removal has been performed. Six cleaners were evaluated for their efficiency in removing a rosin mildly activated flux and a silicone mold release from copper, 17-4PH stainless steel, polyimide quartz glass and tin-lead surfaces. A parallel effort also studied deionized water removal of organic acid fluxes. Auger electron spectroscopy and X-ray photoelectron spectroscopy were used to determine relative elemental cleanliness of the outermost atomic layers. An Omega Meter Test was used to measure residual ionic contamination. Water drop contact angles weremore » used to measure the effectiveness of silicone removal from Cu substrates. In most cases, the cleanliness levels were good to excellent. 10 refs., 8 figs., 19 tabs.« less
NASA Astrophysics Data System (ADS)
Evans, Ian; Primini, Francis A.; Glotfelty, Kenny J.; Anderson, Craig S.; Bonaventura, Nina R.; Chen, Judy C.; Davis, John E.; Doe, Stephen M.; Evans, Janet D.; Fabbiano, Giuseppina; Galle, Elizabeth C.; Gibbs, Danny G., II; Grier, John D.; Hain, Roger; Hall, Diane M.; Harbo, Peter N.; He, Xiang Qun (Helen); Houck, John C.; Karovska, Margarita; Kashyap, Vinay L.; Lauer, Jennifer; McCollough, Michael L.; McDowell, Jonathan C.; Miller, Joseph B.; Mitschang, Arik W.; Morgan, Douglas L.; Mossman, Amy E.; Nichols, Joy S.; Nowak, Michael A.; Plummer, David A.; Refsdal, Brian L.; Rots, Arnold H.; Siemiginowska, Aneta L.; Sundheim, Beth A.; Tibbetts, Michael S.; van Stone, David W.; Winkelman, Sherry L.; Zografou, Panagoula
2009-09-01
The first release of the Chandra Source Catalog (CSC) was published in 2009 March, and includes information about 94,676 X-ray sources detected in a subset of public ACIS imaging observations from roughly the first eight years of the Chandra mission. This release of the catalog includes point and compact sources with observed spatial extents <˜30''.The CSC is a general purpose virtual X-ray astrophysics facility that provides access to a carefully selected set of generally useful quantities for individual X-ray sources, and is designed to satisfy the needs of a broad-based group of scientists, including those who may be less familiar with astronomical data analysis in the X-ray regime.The catalog (1) provides access to the best estimates of the X-ray source properties for detected sources, with good scientific fidelity, and directly supports medium sophistication scientific analysis on using the individual source data; (2) facilitates analysis of a wide range of statistical properties for classes of X-ray sources; (3) provides efficient access to calibrated observational data and ancillary data products for individual X-ray sources, so that users can perform detailed further analysis using existing tools; and (4) includes real X-ray sources detected with flux significance greater than a predefined threshold, while maintaining the number of spurious sources at an acceptable level. For each detected X-ray source, the CSC provides commonly tabulated quantities, including source position, extent, multi-band fluxes, hardness ratios, and variability statistics, derived from the observations in which the source is detected. In addition to these traditional catalog elements, for each X-ray source the CSC includes an extensive set of file-based data products that can be manipulated interactively, including source images, event lists, light curves, and spectra from each observation in which a source is detected.
Low-mass X-ray binary MAXI J1421-613 observed by MAXI GSC and Swift XRT
NASA Astrophysics Data System (ADS)
Serino, Motoko; Shidatsu, Megumi; Ueda, Yoshihiro; Matsuoka, Masaru; Negoro, Hitoshi; Yamaoka, Kazutaka; Kennea, Jamie A.; Fukushima, Kosuke; Nagayama, Takahiro
2015-04-01
Monitor of All sky X-ray Image (MAXI) discovered a new outburst of an X-ray transient source named MAXI J1421-613. Because of the detection of three X-ray bursts from the source, it was identified as a neutron star low-mass X-ray binary. The results of data analyses of the MAXI GSC (Gas Slit Camera) and the Swift XRT (X-Ray Telescope) follow-up observations suggest that the spectral hardness remained unchanged during the first two weeks of the outburst. All the XRT spectra in the 0.5-10 keV band can be well explained by thermal Comptonization of multi-color disk blackbody emission. The photon index of the Comptonized component is ≈ 2, which is typical of low-mass X-ray binaries in the low/hard state. Since X-ray bursts have a maximum peak luminosity, it is possible to estimate the (maximum) distance from its observed peak flux. The peak flux of the second X-ray burst, which was observed by the GSC, is about 5 photons cm-2 s-1. By assuming a blackbody spectrum of 2.5 keV, the maximum distance to the source is estimated as 7 kpc. The position of this source is contained by the large error regions of two bright X-ray sources detected with Orbiting Solar Observatory-7 (OSO-7) in the 1970s. Besides this, no past activities at the XRT position are reported in the literature. If MAXI J1421-613 is the same source as (one of) these, the outburst observed with MAXI may have occurred after a quiescence of 30-40 years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, J.; McClintock, J. E.; Dauser, T.
2013-05-10
We present a new and complete library of synthetic spectra for modeling the component of emission that is reflected from an illuminated accretion disk. The spectra were computed using an updated version of our code XILLVER that incorporates new routines and a richer atomic database. We offer in the form of a table model an extensive grid of reflection models that cover a wide range of parameters. Each individual model is characterized by the photon index {Gamma} of the illuminating radiation, the ionization parameter {xi} at the surface of the disk (i.e., the ratio of the X-ray flux to themore » gas density), and the iron abundance A{sub Fe} relative to the solar value. The ranges of the parameters covered are 1.2 {<=} {Gamma} {<=} 3.4, 1 {<=} {xi} {<=} 10{sup 4}, and 0.5 {<=} A{sub Fe} {<=} 10. These ranges capture the physical conditions typically inferred from observations of active galactic nuclei, and also stellar-mass black holes in the hard state. This library is intended for use when the thermal disk flux is faint compared to the incident power-law flux. The models are expected to provide an accurate description of the Fe K emission line, which is the crucial spectral feature used to measure black hole spin. A total of 720 reflection spectra are provided in a single FITS file (http://hea-www.cfa.harvard.edu/{approx}javier/xillver/) suitable for the analysis of X-ray observations via the atable model in XSPEC. Detailed comparisons with previous reflection models illustrate the improvements incorporated in this version of XILLVER.« less
XMM-Newton Observations of Four Millisecond Pulsars
NASA Technical Reports Server (NTRS)
Zavlin, Vyacheslav E.
2005-01-01
I present an analysis of the XMM-Newton observations of four millisecond pulsars, J0437-4715, J2124-3358, J1024-0719, and J0034-0534. The new data provide strong evidence of thermal emission in the X-ray flux detected from the first three objects. This thermal component is best interpreted as radiation from pulsar polar caps covered with a nonmagnetic hydrogen atmosphere. A nonthermal power-law component, dominating at energies E greater than or equal to 3 keV, can also be present in the detected X-ray emission. For PSR J0437-4715, the timing analysis reveals that the shape and pulsed fraction of the pulsar light curves are energy dependent. This, together with the results obtained from the phase-resolved spectroscopy, supports the two-component (thermal plus nonthermal) interpretation of the pulsar's X-ray radiation. Highly significant pulsations have been found in the X-ray flux of PSRs 52124-3358 and 51024-0719. For PSR 50034-0534, a possible X-ray counterpart of the radio pulsar has been suggested. The inferred properties of the detected thermal emission are compared with predictions of radio pulsar models.
NASA Astrophysics Data System (ADS)
Wiegart, L.; Rakitin, M.; Fluerasu, A.; Chubar, O.
2017-08-01
We present the application of fully- and partially-coherent synchrotron radiation wavefront propagation simulation functions, implemented in the "Synchrotron Radiation Workshop" computer code, to create a `virtual beamline' mimicking the Coherent Hard X-ray scattering beamline at NSLS-II. The beamline simulation includes all optical beamline components, such as the insertion device, mirror with metrology data, slits, double crystal monochromator and refractive focusing elements (compound refractive lenses and kinoform lenses). A feature of this beamline is the exploitation of X-ray beam coherence, boosted by the low-emittance NSLS-II storage-ring, for techniques such as X-ray Photon Correlation Spectroscopy or Coherent Diffraction Imaging. The key performance parameters are the degree of Xray beam coherence and photon flux, and the trade-off between them needs to guide the beamline settings for specific experimental requirements. Simulations of key performance parameters are compared to measurements obtained during beamline commissioning, and include the spectral flux of the undulator source, the degree of transverse coherence as well as focal spot sizes.
High-resolution μCT of a mouse embryo using a compact laser-driven X-ray betatron source.
Cole, Jason M; Symes, Daniel R; Lopes, Nelson C; Wood, Jonathan C; Poder, Kristjan; Alatabi, Saleh; Botchway, Stanley W; Foster, Peta S; Gratton, Sarah; Johnson, Sara; Kamperidis, Christos; Kononenko, Olena; De Lazzari, Michael; Palmer, Charlotte A J; Rusby, Dean; Sanderson, Jeremy; Sandholzer, Michael; Sarri, Gianluca; Szoke-Kovacs, Zsombor; Teboul, Lydia; Thompson, James M; Warwick, Jonathan R; Westerberg, Henrik; Hill, Mark A; Norris, Dominic P; Mangles, Stuart P D; Najmudin, Zulfikar
2018-06-19
In the field of X-ray microcomputed tomography (μCT) there is a growing need to reduce acquisition times at high spatial resolution (approximate micrometers) to facilitate in vivo and high-throughput operations. The state of the art represented by synchrotron light sources is not practical for certain applications, and therefore the development of high-brightness laboratory-scale sources is crucial. We present here imaging of a fixed embryonic mouse sample using a compact laser-plasma-based X-ray light source and compare the results to images obtained using a commercial X-ray μCT scanner. The radiation is generated by the betatron motion of electrons inside a dilute and transient plasma, which circumvents the flux limitations imposed by the solid or liquid anodes used in conventional electron-impact X-ray tubes. This X-ray source is pulsed (duration <30 fs), bright (>10 10 photons per pulse), small (diameter <1 μm), and has a critical energy >15 keV. Stable X-ray performance enabled tomographic imaging of equivalent quality to that of the μCT scanner, an important confirmation of the suitability of the laser-driven source for applications. The X-ray flux achievable with this approach scales with the laser repetition rate without compromising the source size, which will allow the recording of high-resolution μCT scans in minutes. Copyright © 2018 the Author(s). Published by PNAS.
NASA Astrophysics Data System (ADS)
Hamaguchi, Kenji; Corcoran, Michael F.; Takahashi, Hiromitsu; Yuasa, Tadayuki; Groh, Jose H.; Russell, Christopher Michael Post; Pittard, Julian M.; Madura, Thomas; Owocki, Stanley P.; Grefenstette, Brian
2015-01-01
The super massive colliding wind binary system, Eta Carinae, experienced another periastron passage in the summer of 2014. We monitored this event using the multiple X-ray observatories, Chandra, XMM-Newton, NuSTAR, Suzaku and Swift. With a high eccentricity of its 5.5 year orbit, X-ray emission from the wind-wind collision (WWC) increases strongly toward periastron but then drops sharply by more than two orders of magnitude in two weeks around periastron due probably to an eclipse and an intrinsic activity decline of the WWC plasma. In this observing campaign, XMM-Newton and NuSTAR coordinated two simultaneous observations around the X-ray flux maximum on June 6 and just before the flux minimum on July 28. These two observations captured Eta Carinae with X-ray focusing telescopes in the extreme hard X-ray band above 10 keV for the first time.During the first observation, XMM and NuSTAR detected stable X-ray emission from the central binary system between 1 - 40 keV. A fit of a 1-temperature bremsstrahlung model to the high energy slope in the NuSTAR spectrum derives an electron temperature of ~6 keV, which is significantly higher than an ionization temperature at ~4.5 keV, measured from the Fe K emission lines resolved in the XMM spectrum.This result suggests the presence of very hot plasma and/or X-ray reflection at surrounding cold material. During the second observation, the X-ray flux between 5 - 10 keV declined steadily by a factor of ~2 in a day, while the other energy bands were rather stable. This variation may be explained by an increase of the line of sight absorption to emission from the plasma component that dominates above 5 keV. NuSTAR did not detect, in either observation, the very hard non-thermal component that dominated emission above 25 keV seen in earlier INTEGRAL and Suzaku observations. We discuss the plasma condition and the wind structure of Eta Carinae around periastron, and the nature of the non-thermal component.
Coherent x-ray diffraction imaging with nanofocused illumination.
Schroer, C G; Boye, P; Feldkamp, J M; Patommel, J; Schropp, A; Schwab, A; Stephan, S; Burghammer, M; Schöder, S; Riekel, C
2008-08-29
Coherent x-ray diffraction imaging is an x-ray microscopy technique with the potential of reaching spatial resolutions well beyond the diffraction limits of x-ray microscopes based on optics. However, the available coherent dose at modern x-ray sources is limited, setting practical bounds on the spatial resolution of the technique. By focusing the available coherent flux onto the sample, the spatial resolution can be improved for radiation-hard specimens. A small gold particle (size <100 nm) was illuminated with a hard x-ray nanobeam (E=15.25 keV, beam dimensions approximately 100 x 100 nm2) and is reconstructed from its coherent diffraction pattern. A resolution of about 5 nm is achieved in 600 s exposure time.
Fermi Non-detections of Four X-Ray Jet Sources and Implications for the IC/CMB Mechanism
NASA Astrophysics Data System (ADS)
Breiding, Peter; Meyer, Eileen T.; Georganopoulos, Markos; Keenan, M. E.; DeNigris, N. S.; Hewitt, Jennifer
2017-11-01
Since its launch in 1999, the Chandra X-ray observatory has discovered several dozen X-ray jets associated with powerful quasars. In many cases, the X-ray spectrum is hard and appears to come from a second spectral component. The most popular explanation for the kpc-scale X-ray emission in these cases has been inverse-Compton (IC) scattering of Cosmic Microwave Background (CMB) photons by relativistic electrons in the jet (the IC/CMB model). Requiring the IC/CMB emission to reproduce the observed X-ray flux density inevitably predicts a high level of gamma-ray emission, which should be detectable with the Fermi Large Area Telescope (LAT). In previous work, we found that gamma-ray upper limits from the large-scale jets of 3C 273 and PKS 0637-752 violate the predictions of the IC/CMB model. Here, we present Fermi/LAT flux density upper limits for the X-ray jets of four additional sources: PKS 1136-135, PKS 1229-021, PKS 1354+195, and PKS 2209+080. We show that these limits violate the IC/CMB predictions at a very high significance level. We also present new Hubble Space Telescope observations of the quasar PKS 2209+080 showing a newly detected optical jet, and Atacama Large Millimeter/submillimeter Array band 3 and 6 observations of all four sources, which provide key constraints on the spectral shape that enable us to rule out the IC/CMB model.
Abdelkader, Amr M; Vallés, Cristina; Cooper, Adam J; Kinloch, Ian A; Dryfe, Robert A W
2014-11-25
Herein we present a green and facile approach to the successful reduction of graphene oxide (GO) materials using molten halide flux at 370 °C. GO materials have been synthesized using a modified Hummers method and subsequently reduced for periods of up to 8 h. Reduced GO (rGO) flakes have been characterized using X-ray-diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR), all indicating a significantly reduced amount of oxygen-containing functionalities on the rGO materials. Furthermore, impressive electrical conductivities and electrochemical capacitances have been measured for the rGO flakes, which, along with the morphology determined from scanning electron microscopy, highlight the role of surface corrugation in these rGO materials.
NASA Technical Reports Server (NTRS)
Golub, L.; Krieger, A. S.; Vaiana, G. S.
1976-01-01
Observations of X-ray bright points (XBP) over a six-month interval in 1973 show significant variations in both the number density of XBP as a function of heliographic longitude and in the full-sun average number of XBP from one rotation to the next. The observed increases in XBP emergence are estimated to be equivalent to several large active regions emerging per day for several months. The number of XBP emerging at high latitudes varies in phase with the low-latitude variation and reaches a maximum approximately simultaneous with a major outbreak of active regions. The quantity of magnetic flux emerging in the form of XBP at high latitudes alone is estimated to be as large as the contribution from all active regions.
X-RAYING THE DARK SIDE OF VENUS—SCATTER FROM VENUS’ MAGNETOTAIL?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Afshari, M.; Peres, G.; Petralia, A.
We analyze significant X-ray, EUV, and UV emission coming from the dark side of Venus observed with Hinode /XRT and Solar Dynamics Observatory /Atmospheric Imaging Assembly ( SDO /AIA) during a transit across the solar disk that occurred in 2012. As a check we have analyzed an analogous Mercury transit that occurred in 2006. We have used the latest version of the Hinode /XRT point spread function to deconvolve Venus and Mercury X-ray images, to remove instrumental scattering. After deconvolution, the flux from Venus’ shadow remains significant while that of Mercury becomes negligible. Since stray light contamination affects the XRT Ti-poly filtermore » data we use, we performed the same analysis with XRT Al-mesh filter data, not affected by the light leak. Even the latter data show residual flux. We have also found significant EUV (304 Å, 193 Å, 335 Å) and UV (1700 Å) flux in Venus’ shadow, measured with SDO /AIA. The EUV emission from Venus’ dark side is reduced, but still significant, when deconvolution is applied. The light curves of the average flux of the shadow in the X-ray, EUV, and UV bands appear different as Venus crosses the solar disk, but in any of them the flux is, at any time, approximately proportional to the average flux in a ring surrounding Venus, and therefore proportional to that of the solar regions around Venus’ obscuring disk line of sight. The proportionality factor depends on the band. This phenomenon has no clear origin; we suggest that it may be due to scatter occurring in the very long magnetotail of Venus.« less
Partial Accretion in the Propeller Stage of Low-mass X-Ray Binary Aql X-1
NASA Astrophysics Data System (ADS)
Güngör, C.; Ekşi, K. Y.; Göğüş, E.; Güver, T.
2017-10-01
Aql X-1 is one of the most prolific low-mass X-ray binary transients (LMXBTs) showing outbursts almost annually. We present the results of our spectral analyses of Rossi X-Ray Timing Explorer/proportional counter-array observations of the 2000 and 2011 outbursts. We investigate the spectral changes related to the changing disk-magnetosphere interaction modes of Aql X-1. The X-ray light curves of the outbursts of LMXBTs typically show phases of fast rise and exponential decay. The decay phase shows a “knee” where the flux goes from the slow-decay to the rapid-decay stage. We assume that the rapid decay corresponds to a weak propeller stage at which a fraction of the inflowing matter in the disk accretes onto the star. We introduce a novel method for inferring, from the light curve, the fraction of the inflowing matter in the disk that accretes onto the neutron star depending on the fastness parameter. We determine the fastness parameter range within which the transition from the accretion to the partial propeller stage is realized. This fastness parameter range is a measure of the scale height of the disk in units of the inner disk radius. We applied the method to a sample of outbursts of Aql X-1 with different maximum flux and duration times. We show that different outbursts with different maximum luminosity and duration follow a similar path in the parameter space of accreted/inflowing mass flux fraction versus fastness parameter.
Surface layering and melting in an ionic liquid studied by resonant soft X-ray reflectivity
Mezger, Markus; Ocko, Benjamin M.; Reichert, Harald; Deutsch, Moshe
2013-01-01
The molecular-scale structure of the ionic liquid [C18mim]+[FAP]− near its free surface was studied by complementary methods. X-ray absorption spectroscopy and resonant soft X-ray reflectivity revealed a depth-decaying near-surface layering. Element-specific interfacial profiles were extracted with submolecular resolution from energy-dependent soft X-ray reflectivity data. Temperature-dependent hard X-ray reflectivity, small- and wide-angle X-ray scattering, and infrared spectroscopy uncovered an intriguing melting mechanism for the layered region, where alkyl chain melting drove a negative thermal expansion of the surface layer spacing. PMID:23431181
NASA Astrophysics Data System (ADS)
Bobkowski, Romuald; Fedosejevs, Robert; Broughton, James N.
1999-06-01
A process has been developed for the purpose of fabricating 0.1 micron linewidth interdigital electrode patterns based on proximity x-ray lithography using a laser-plasma source. Such patterns are required in the manufacture of surface acoustic wave devices. The x-ray lithography was carried out using emission form a Cu plasma produced by a 15Hz, 248nm KrF excimer laser. A temporally multiplexed 50ps duration seed pulse was used to extract the KrF laser energy producing a train of several 50ps pulses spaced approximately 2ns apart within each output pulse. Each short pulse within the train gave the high focal spot intensity required to achieve high efficiency emission of keV x-rays. The first stage of the overall process involves the fabrication of x-ray mask patterns on 1 micron thick Si3N4 membranes using 3-beam lithography followed by gold electroplating. The second stage involves x-ray exposure of a chemically amplified resist through the mask patterns to produce interdigital electrode patterns with 0.1 micron linewidth. Helium background gas and thin polycarbonate/aluminum filters are employed to prevent debris particles from the laser-plasma source form reaching the exposed sample. A computer control system fires the laser and monitors the x-ray flux from the laser-plasma source to insure the desired x-ray exposure is achieved at the resist. In order to reduce diffusion effects in the chemically amplified resist during the post exposure bake the temperature had to be reduced from that normally used. Good reproduction of 0.1 micron linewidth patterns into the x-ray resist was obtained once the exposure parameters and post exposure bake were optimized. A compact exposure station using flowing helium at atmospheric pressure has also been developed for the process, alleviating the need for a vacuum chamber. The details of the overall process and the compact exposure station will be presented.
Non-Quiescent X-ray Emission from Neutron Stars and Black Holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tournear, Derek M
X-ray astronomy began with the detection of the persistent source Scorpius X-1. Shortly afterwards, sources were detected that were variable. Centaurus X-2, was determined to be an X-ray transient, having a quiescent state, and a state that was much brighter. As X-ray astronomy progressed, classifications of transient sources developed. One class of sources, believed to be neutron stars, undergo extreme luminosity transitions lasting a few seconds. These outbursts are believed to be thermonuclear explosions occurring on the surface of neutron stars (type I X-ray bursts). Other sources undergo luminosity changes that cannot be explained by thermonuclear burning and last formore » days to months. These sources are soft X-ray transients (SXTs) and are believed to be the result of instabilities in the accretion of matter onto either a neutron star or black hole. Type I X-ray bursts provide a tool for probing the surfaces of neutron stars. Requiring a surface for the burning has led authors to use the presence of X-ray bursts to rule out the existence of a black hole (where an event horizon exists not a surface) for systems which exhibit type I X-ray bursts. Distinguishing between neutron stars and black holes has been a problem for decades. Narayan and Heyl have developed a theoretical framework to convert suitable upper limits on type I X-ray bursts from accreting black hole candidates (BHCs) into evidence for an event horizon. We survey 2101.2 ks of data from the USA X-ray timing experiment and 5142 ks of data from the Rossi X-ray Timing Explorer (RXTE) experiment to obtain the first formal constraint of this type. 1122 ks of neutron star data yield a population averaged mean burst rate of 1.7 {+-} 0.4 x 10{sup -5} bursts s{sup -1}, while 6081 ks of BHC data yield a 95% confidence level upper limit of 4.9 x 10{sup -7} bursts s{sup -1}. Applying the framework of Narayan and Heyl we calculate regions of luminosity where the neutron stars are expected to burst and the BHCs would be expected to burst if they had a similar surface. In this luminosity region 464 ks of neutron star data yield an averaged mean burst rate of 4.1 {+-} 0.9 x 10{sup -5} bursts s{sup -1}, and 1512 ks of BHC data yield a 95% confidence level upper limit of 2.0 x 10{sup -6} bursts s{sup -1} and a strong limit that BHCs do not burst with a rate similar to the rate of neutron stars in these regions. This gives evidence that BHCs do not have surfaces. In addition to studying type I X-ray bursts, we analyzed the SXT behavior. In particular, 4U 1630-47, was analyzed throughout its 1999 outburst. This source is one of the oldest known SXTs. This source is assumed to be a BHC in a low-mass X-ray binary system. Despite the length of time devoted to studying this source, there is still little known about it. We report the results of timing and spectral analysis on the 1999 outburst, and compare these results to other outbursts of 4U 1630-47. We found this source progressed from a low-hard state to a high-soft state and then rapidly transitioned back into the low-hard state before returning to quiescence. Timing analysis detected a low frequency quasi-periodic oscillation (LFQPO) during the initial rise of the outburst, which disappeared and did not return. The variability in the X-ray flux in the 0.1-2000 Hz frequency range is low during the high state, but increases as the source progresses into the low-hard state. The next generation Gamma Ray Large Area Space Telescope (GLAST), will measure astrophysical phenomena in the 20 MeV--a few TeV energy range. We describe preliminary design and testing of GLAST. The detector is based on a silicon tracker with similar design characteristics of vertex detectors used in high-energy physics experiments at accelerator based facilities. A beam test engineering model was designed, constructed, and tested at SLAC in 1999-2000. We describe this test, and discuss how the results from this test can improve and demonstrate the viability of the GLAST technology.« less
The Magnetar Nature and the Outburst Mechanism of a Transient Anomalous X-ray Pulsar
NASA Technical Reports Server (NTRS)
Guver, Tolga; Ozel, Feryal; Gogus, Ersin; Kouveliotou, Chryssa
2007-01-01
Anomalous X-ray Pulsars (AXPs) belong to a class of neutron stars believed to harbor the strongest magnetic fields in the universe, as indicated by their energetic bursts and their rapid spindowns. However, a direct measurement of their surface field strengths has not been made to date. It is also not known whether AXP outbursts result from changes in the neutron star magnetic field or crust properties. Here we report the first, spectroscopic measurement of the surface magnetic field strength of an AXP, XTE J1810-197, and solidify its magnetar nature. The field strength obtained from detailed spectral analysis and modeling is remarkably close to the value inferred from the rate of spindown of this source and remains nearly constant during numerous observations spanning over two orders of magnitude in source flux. The surface temperature, on the other hand, declines steadily and dramatically following the 2003 outburst of this source. Our findings demonstrate that heating occurs in the upper neutron star crust during an outburst and sheds light on the transient behaviour of AXPs.
Detailed Physical Modeling Reveals the Magnetar Nature of a Transient Anomalous X-ray Pulsar
NASA Technical Reports Server (NTRS)
Guever, T.; Oezel, F.; Goegues, E.; Kouveliotou, C.
2007-01-01
Anomalous X-ray Pulsars (AXPs) belong to a class of neutron stars believed to harbor the strongest magnetic fields in the universe, as indicated by their energetic bursts and their rapid spindowns. However, a direct measurement of their surface field strengths has not been made to date. It is also not known whether AXP outbursts result from changes in the neutron star magnetic field or crust properties. Here we report the first, spectroscopic measurement of the surface magnetic field strength of an AXP, XTE J1810-197, and solidify its magnetar nature. The field strength obtained from detailed spectral analysis and modeling is remarkably close to the value inferred from the rate of spindown of this source and remains nearly constant during numerous observations spanning over two orders of magnitude in source flux. The surface temperature, on the other hand, declines steadily and dramatically following the 2003 outburst of this source. Our findings demonstrate that heating occurs in the upper neutron star crust during an outburst and sheds light on the transient behaviour of AXPs.
X-ray emission from a complete sample of Abell clusters of galaxies
NASA Astrophysics Data System (ADS)
Briel, Ulrich G.; Henry, J. Patrick
1993-11-01
The ROSAT All-Sky Survey (RASS) is used to investigate the X-ray properties of a complete sample of Abell clusters with measured redshifts and accurate positions. The sample comprises the 145 clusters within a 561 square degree region at high galactic latitude. The mean redshift is 0.17. This sample is especially well suited to be studied within the RASS since the mean exposure time is higher than average and the mean galactic column density is very low. These together produce a flux limit of about 4.2 x 10-13 erg/sq cm/s in the 0.5 to 2.5 keV energy band. Sixty-six (46%) individual clusters are detected at a significance level higher than 99.7% of which 7 could be chance coincidences of background or foreground sources. At redshifts greater than 0.3 six clusters out of seven (86%) are detected at the same significance level. The detected objects show a clear X-ray luminosity -- galaxy count relation with a dispersion consistent with other external estimates of the error in the counts. By analyzing the excess of positive fluctuations of the X-ray flux at the cluster positions, compared with the fluctuations of randomly drawn background fields, it is possible to extend these results below the nominal flux limit. We find 80% of richness R greater than or = 0 and 86% of R greater than or = 1 clusters are X-ray emitters with fluxes above 1 x 10-13 erg/sq cm/s. Nearly 90% of the clusters meeting the requirements to be in Abell's statistical sample emit above the same level. We therefore conclude that almost all Abell clusters are real clusters and the Abell catalog is not strongly contaminated by projection effects. We use the Kaplan-Meier product limit estimator to calculate the cumulative X-ray luminosity function. We show that the shape of the luminosity functions are similiar for different richness classes, but the characteristic luminosities of richness 2 clusters are about twice those of richness 1 clusters which are in turn about twice those of richness 0 clusters. This result is another manifestation of the luminosity -- richness elation for Abell clusters.
Temporal and spectral characteristics of solar flare hard X-ray emission
NASA Technical Reports Server (NTRS)
Dennis, B. R.; Kiplinger, A. L.; Orwig, L. E.; Frost, K. J.
1985-01-01
Solar Maximum Mission observations of three flares that impose stringent constraints on physical models of the hard X-ray production during the impulsive phase are presented. Hard X-ray imaging observations of the flares on 1980 November 5 at 22:33 UT show two patches in the 16 to 30 keV images that are separated by 70,000 km and that brighten simultaneously to within 5 s. Observations to O V from one of the footprints show simultaneity of the brightening in this transition zone line and in the total hard X-ray flux to within a second or two. These results suggest but do not require the existence of electron beams in this flare. The rapid fluctuations of the hard X-ray flux within some flares on the time scales of 1 s also provide evidence for electron beams and limits on the time scale of the energy release mechanism. Observations of a flare on 1980 June 6 at 22:34 UT show variations in the 28 keV X-ray counting rate from one 20 ms interval to the next over a period of 10 s. The hard X-ray spectral variations measured with 128 ms time resolution for one 0.5 s spike during this flare are consistent with the predictions of thick-target non-thermal beam model.
Spectral correction algorithm for multispectral CdTe x-ray detectors
NASA Astrophysics Data System (ADS)
Christensen, Erik D.; Kehres, Jan; Gu, Yun; Feidenhans'l, Robert; Olsen, Ulrik L.
2017-09-01
Compared to the dual energy scintillator detectors widely used today, pixelated multispectral X-ray detectors show the potential to improve material identification in various radiography and tomography applications used for industrial and security purposes. However, detector effects, such as charge sharing and photon pileup, distort the measured spectra in high flux pixelated multispectral detectors. These effects significantly reduce the detectors' capabilities to be used for material identification, which requires accurate spectral measurements. We have developed a semi analytical computational algorithm for multispectral CdTe X-ray detectors which corrects the measured spectra for severe spectral distortions caused by the detector. The algorithm is developed for the Multix ME100 CdTe X-ray detector, but could potentially be adapted for any pixelated multispectral CdTe detector. The calibration of the algorithm is based on simple attenuation measurements of commercially available materials using standard laboratory sources, making the algorithm applicable in any X-ray setup. The validation of the algorithm has been done using experimental data acquired with both standard lab equipment and synchrotron radiation. The experiments show that the algorithm is fast, reliable even at X-ray flux up to 5 Mph/s/mm2, and greatly improves the accuracy of the measured X-ray spectra, making the algorithm very useful for both security and industrial applications where multispectral detectors are used.
The 2010 Very High Energy Gamma-Ray Flare and 10 Years of Multi-Wavelength Observations of M87
NASA Technical Reports Server (NTRS)
Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A G.; Anton, G.; Balzer, A.; Barnacka, A.; Barres de Almeida, U.; Becherini, Y.; Becker, J.;
2011-01-01
The giant radio galaxy M87 with its proximity (16 Mpc), famous jet, and very massive black hole ((3-6) X 10(exp 9) Solar Mass) provides a unique opportunity to investigate the origin of very high energy (VHE; E>100 GeV) gamma-ray emission generated in relativistic outflows and the surroundings of super-massive black holes. M87 has been established as a VHE gamma -ray emitter since 2006. The VHE gamma -ray emission displays strong variability on timescales as short as a day. In this paper, results from a joint VHE monitoring campaign on M87 by the MAGIC and VERITAS instruments in 2010 are reported. During the campaign, a flare at VHE was detected. triggering further observations at VHE (H.E.S.S.), X-rays (Chandra), and radio (43 GHz VLBA). The excellent sampling of the VHE gamma-ray light curve enables one to derive a precise temporal characterization of the flare: the single, isolated flare is well described by a two-sided exponential function with significantly different flux rise and decay times of rise tau ((sup rise sub d) = (1:69 +/- 0:30) days and tau(sup decay sub d = (0:611 +/- 0:080) days, respectively. While the overall variability pattern of the 2010 flare appears somewhat different from that of previous VHE flares in 2005 and 2008, they share very similar timescales (approx day), peak fluxes (Phi (sub > 0:35 TeV) approx. equals (1 - 3) X 10(exp -11) ph / square cm/s), and VHE spectra. 43 GHz VLBA radio observations of the inner jet regions indicate no enhanced flux in 2010 in contrast to observations in 2008, where an increase of the radio flux of the innermost core regions coincided with a VHE flare. On the other hand, Chandra X-ray observations taken approx 3 days after the peak of the VHE gamma -ray emission reveal an enhanced flux from the core (flux increased by factor approx 2; variability timescale < 2 days). The long-term (2001-2010) multi-wavelength (MWL) light curve of M87, spanning from radio to VHE and including data from HST, LT, VLA and EVN, is used to further investigate the origin of the VHE gamma -ray emission. No unique, common MWL signature of the three VHE flares has been identified. In the outer kpc jet region, in particular in HST-1, no enhanced MWL activity was detected in 2008 and 2010, disfavoring it as the origin of the VHE flares during these years. Shortly after two of the three flares (2008 and 2010), the X-ray core was observed to be at a higher flux level than its characteristic range (determined from more than 60 monitoring observations: 2002-2009). In 2005, the strong flux dominance of HST-1 could have suppressed the detection of such a feature. Published models for VHE gamma -ray emission from M87 are reviewed in the light of the new data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semenov, V. A.
2009-06-12
Pulse recirculation has been successfully demonstrated with the interaction laser system of LLNL's Thomson-Radiated Extreme X-ray (T-REX) source. The recirculation increased twenty-eight times the intensity of the light coming out of the laser system, demonstrating the capability of increasing the gamma-ray flux emitted by T-REX. The technical approach demonstrated could conceivably increase the average gamma-ray flux output by up to a hundred times.
The broad-band x ray spectral variability of Mkn 841
NASA Technical Reports Server (NTRS)
George, I. M.; Nandra, K.; Fabian, A. C.; Turner, T. J.; Done, C.; Day, C. S. R.
1992-01-01
The results of a detailed spectral analysis of four X-ray observations of the luminous Seyfert 1.5 galaxy Mkn 841 performed using the EXOSAT and Ginga satellites over the period June 1984 to July 1990 are reported. Preliminary results from a short ROSAT PSPC observation of Mkn 841 in July 1990 are also presented. Variability is apparent in both the soft (0.1-1.0 keV) and medium (1-20 keV) energy bands. Above 1 keV, the spectra are adequately modelled by a power-law with a strong emission line of equivalent width approximately 450 eV. The energy of the line (approximately 6.4 keV) is indicative of K-shell fluorescence from neutral iron, leading to the interpretation that the line arises via X-ray illumination of cold material surrounding the source. In addition to the flux variability, the continuum shape also changes in a dramatic fashion, with variations in the apparent photon index Delta(Gamma) approximately 0.6. The large equivalent width of the emission line clearly indicates a strongly enhanced reflection component in the source, compared to other Seyferts observed with Ginga. The spectral changes are interpreted in terms of a variable power-law continuum superimposed on a flatter reflection component. For one Ginga observation, the reflected flux appears to dominate the medium energy X-ray emission, resulting in an unusually flat slope (Gamma approximately 1.0). The soft X-ray excess is found to be highly variable by a factor approximately 10. These variations are not correlated with the hard flux, but it seems likely that the soft component arises via reprocessing of the hard X-rays. We find no evidence for intrinsic absorption, with the equivalent hydrogen column density constrained to be less than or equal to few x 10(exp 20) cm(exp -2). The implications of these results for physical models for the emission regions in this and other X-ray bright Seyferts are briefly discussed.
Broadband study of blazar 1ES 1959+650 during flaring state in 2016
NASA Astrophysics Data System (ADS)
Patel, S. R.; Shukla, A.; Chitnis, V. R.; Dorner, D.; Mannheim, K.; Acharya, B. S.; Nagare, B. J.
2018-03-01
Aims: The nearby TeV blazar 1ES 1959+650 (z = 0.047) was reported to be in flaring state during June-July 2016 by Fermi-LAT, FACT, MAGIC and VERITAS collaborations. We studied the spectral energy distributions (SEDs) in different states of the flare during MJD 57530-57589 using simultaneous multiwaveband data with the aim of understanding the possible broadband emission scenario during the flare. Methods: The UV-optical and X-ray data from UVOT and XRT respectively on board Swift and high energy γ-ray data from Fermi-LAT were used to generate multiwaveband lightcurves as well as to obtain high flux states and quiescent state SEDs. The correlation and lag between different energy bands was quantified using discrete correlation function. The synchrotron self-Compton (SSC) model was used to reproduce the observed SEDs during flaring and quiescent states of the source. Results: A good correlation is seen between X-ray and high energy γ-ray fluxes. The spectral hardening with increase in the flux is seen in X-ray band. The power law index vs. flux plot in γ-ray band indicates the different emission regions for 0.1-3 GeV and 3-300 GeV energy photons. Two zone SSC model satisfactorily fits the observed broadband SEDs. The inner zone is mainly responsible for producing synchrotron peak and high energy γ-ray part of the SED in all states. The second zone is mainly required to produce less variable optical-UV and low energy γ-ray emission. Conclusions: Conventional single zone SSC model does not satisfactorily explain broadband emission during observation period considered. There is an indication of two emission zones in the jet which are responsible for producing broadband emission from optical to high energy γ-rays.
NASA Technical Reports Server (NTRS)
Elsner, R. F.; Ramsey, B. D.; Waite, J. H.; Rehak, P.; Johnson, R. E.; Cooper, J. F.; Swartz, D. A.
2004-01-01
Remote observations with the Chandra X-ray Observatory and the XMM-Newton Observatory have shown that the Jovian system is a source of x-rays with a rich and complicated structure. The planet's polar auroral zones and its disk are powerful sources of x-ray emission. Chandra observations revealed x-ray emission from the Io Plasma Torus and from the Galilean moons Io, Europa, and possibly Ganymede. The emission from these moons is certainly due to bombardment of their surfaces of highly energetic protons, oxygen and sulfur ions from the region near the Torus exciting atoms in their surfaces and leading to fluorescent x-ray emission lines. Although the x-ray emission from the Galilean moons is faint when observed from Earth orbit, an imaging x-ray spectrometer in orbit around these moons, operating at 200 eV and above with 150 eV energy resolution, would provide a detailed mapping (down to 40 m spatial resolution) of the elemental composition in their surfaces. Such maps would provide important constraints on formation and evolution scenarios for the surfaces of these moons. Here we describe the characteristics of X-MIME, an imaging x-ray spectrometer under going a feasibility study for the JIMO mission, with the ultimate goal of providing unprecedented x-ray studies of the elemental composition of the surfaces of Jupiter's icy moons and Io, as well as of Jupiter's auroral x-ray emission.
X-Ray Spectral Analysis of the Steady States of GRS1915+105
NASA Astrophysics Data System (ADS)
Peris, Charith S.; Remillard, Ronald A.; Steiner, James F.; Vrtilek, Saeqa D.; Varnière, Peggy; Rodriguez, Jerome; Pooley, Guy
2016-05-01
We report on the X-ray spectral behavior within the steady states of GRS1915+105. Our work is based on the full data set of the source obtained using the Proportional Counter Array (PCA) on the Rossi X-ray Timing Explorer (RXTE) and 15 GHz radio data obtained using the Ryle Telescope. The steady observations within the X-ray data set naturally separated into two regions in the color-color diagram and we refer to these regions as steady-soft and steady-hard. GRS1915+105 displays significant curvature in the coronal component in both the soft and hard data within the RXTE/PCA bandpass. A majority of the steady-soft observations displays a roughly constant inner disk radius ({R}{{in}}), while the steady-hard observations display an evolving disk truncation which is correlated to the mass accretion rate through the disk. The disk flux and coronal flux are strongly correlated in steady-hard observations and very weakly correlated in the steady-soft observations. Within the steady-hard observations, we observe two particular circumstances when there are correlations between the coronal X-ray flux and the radio flux with log slopes η ˜ 0.68+/- 0.35 and η ˜ 1.12+/- 0.13. They are consistent with the upper and lower tracks of Gallo et al. (2012), respectively. A comparison of the model parameters to the state definitions shows that almost all of the steady-soft observations match the criteria of either a thermal or steep power-law state, while a large portion of the steady-hard observations match the hard-state criteria when the disk fraction constraint is neglected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schimoia, Jaderson S.; Storchi-Bergmann, Thaisa; Grupe, Dirk
2015-02-10
Recent studies have suggested that the short-timescale (≲ 7 days) variability of the broad (∼10,000 km s{sup –1}) double-peaked Hα profile of the LINER nucleus of NGC 1097 could be driven by a variable X-ray emission from a central radiatively inefficient accretion flow. To test this scenario, we have monitored the NGC 1097 nucleus in X-ray and UV continuum with Swift and the Hα flux and profile in the optical spectrum using SOAR and Gemini-South from 2012 August to 2013 February. During the monitoring campaign, the Hα flux remained at a very low level—three times lower than the maximum flux observed in previousmore » campaigns and showing only limited (∼20%) variability. The X-ray variations were small, only ∼13% throughout the campaign, while the UV did not show significant variations. We concluded that the timescale of the Hα profile variation is close to the sampling interval of the optical observations, which results in only a marginal correlation between the X-ray and Hα fluxes. We have caught the active galaxy nucleus in NGC 1097 in a very low activity state, in which the ionizing source was very weak and capable of ionizing just the innermost part of the gas in the disk. Nonetheless, the data presented here still support the picture in which the gas that emits the broad double-peaked Balmer lines is illuminated/ionized by a source of high-energy photons which is located interior to the inner radius of the line-emitting part of the disk.« less
Measuring the Impact of AGN Outflows via Intensive UV and X-ray Monitoring Campaigns
NASA Astrophysics Data System (ADS)
Kriss, Gerard
2015-08-01
Observations of AGN outflows have progressed from the era of single-object surveys to intensive monitoring campaigns spanning weeks to months. The combination of multiple observations, improved temporal coverage, multi-wavelength monitoring in both the X-ray and UV bands, and the baseline of prior historical observations has enabled determinations of the locations, mass flux, and kinetic luminosities of the outflowing absorbing gas in several AGN, notably Mrk 509, NGC 5548, Mrk 335, and NGC 985. Another intensive campaign is planned for 2015-2016 on NGC 7469. In all cases, the mass flux and kinetic energy is dominated by the higher-ionization X-ray absorbing gas. But the higher-resolution UV observations give a kinematically resolved picture of the overall outflow. In most cases, the outflowing gas is located at parsec to kpc scales, with insufficient kinetic luminosity to have an evolutionary impact on the host galaxy. Typically, the kinetic luminosity is less than a percent of the Eddington luminosity. In some cases, transient, broad UV absorption troughs have appeared (e.g., Mrk 335 and NGC 5548), with variability timescales suggesting locations near the broad-line region of the AGN. Yet these higher-velocity outflows also have low-impact kinetic luminosities. In the best-studied case of NGC 5548, the strength of the broad UV absorption lines varies with the degree of soft X-ray obscuration first revealed by XMM-Newton spectra. The lower-ionization, narrow associated absorption lines in the UV spectrum of NGC 5548 that appeared concurrently with the soft X-ray obscuration vary in response to the changing UV flux on a daily basis. The intensive monitoring allows us to fit time-dependent photoionization models to the UV-absorbing gas, allowing precise determinations of the locations, mass flux, and kinetic luminosities of the absorbers.
X-Ray Flare Characteristics in the B2e Star Lambda Eridani (ROSAT)
NASA Technical Reports Server (NTRS)
Smith, Myron A.
1997-01-01
We document the results of a simultaneous wavelength monitoring on the B2e star (lambda) Eri. This campaign was carried out from ground stations and with the ROSAT, ASCA, IUE, and Voyager 2 space platforms during a week in February-March 1995; a smaller follow-up was conducted in September 1995. During the first of these intervals (lambda) Eri exhibited extraordinary wind and disk-ejection activity. The ROSAT/HRI X-ray light curves showed no large flares such as the one the ROSAT/PSCA observed in 1991. However, possible low level fluctuations in the February-March ROSAT data occurred at the same time as unusual activity in H(alpha) He I (lambda)6678, He II (lambda)1640, and the C IV doublet. For example, the hydrogen and helium lines exhibited an emission in the blue half of their profiles, probably lasting several hours. The C IV lines showed a strong high-velocity Discrete Absorption Component (DAC) accompanied by unusually strong absorption at lower velocities. The helium line activity suggests that a mass ejection occurred at the base of the wind while the strong C III (Voyager) and C IV (IUE) lines implies that shock interactions occurred in the wind flow. It is not clear that the X-ray elevations are directly related to the strong C IV absorptions because the former changed on a much more rapid timescale than absorptions in the C IV lines. Within hours of the mild X-ray flux variations found by ROSAT on February 28, the Voyager UVS observed a "ringing" that decayed over three 3-hr. cycles. The amplitude of these fluctuations was strong (50%) at (lambda)(lambda)950-1100, decreased rapidly with wavelength, and faded to nondetection longward of (lambda)1300. Various considerations indicate that these continuum variations were not due to an instrumental pathology in the UVS. Rather, they appear to be due to a time-dependent flux deficit in the (lambda)(lambda)950-1250 region. We outline a scenario in which a dense plasma structure over the star's surface is heated and cooled quasi-periodically to produce such flux changes. Observations of new examples of this phenomenon are badly needed. Amateur astronomers can make a significant contribution to its understanding by searching for ringing in light curves of Be stars during their outburst phases. Finally we draw attention to an increase in the emission of the H(alpha) line that occurred at about the time the FUV ringing started. This increased emission hints that approximately 50,000K plasma near the star's surface can influence the circumstellar disc at approximately 12R. by its increased Lyman continuum flux.
NASA Astrophysics Data System (ADS)
Smith, Myron A.; Murakami, T.; Ezuka, H.; Anandarao, B. G.; Chakraborty, A.; Corcoran, M. F.; Hirata, R.
1997-05-01
We document the results of simultaneous wavelength monitoring of the B2e star λ Eri. This campaign was carried out from ground stations and with the ROSAT, ASCA, IUE, and Voyager 2 space platforms during a week in 1995 February-March a smaller follow-up was conducted in 1995 September. During the first of these intervals λ Eri exhibited extraordinary wind and disk-ejection activity. The ROSAT/HRI X-ray light curves showed no large flares such as the one the ROSAT/PSPC observed in 1991. However, possible low-level fluctuations in the February-March ROSAT data occurred at the same time as unusual activity in Hα, He I λ6678, He II λ1640, and the C IV doublet. For example, the hydrogen and helium lines exhibited an emission in the blue half of their profiles, probably lasting several hours. The C IV lines showed a strong high-velocity discrete absorption component (DAC) accompanied by unusually strong absorption at lower velocities. The helium line activity suggests that a mass ejection occurred at the base of the wind, while the strong C III (Voyager) and C IV (IUE) lines imply that shock interactions occurred in the wind flow. It is not clear that the X-ray elevations are directly related to the strong C IV absorptions because the former changed on a much more rapid timescale than absorptions in the C IV lines. Within hours of the mild X-ray flux variations found by ROSAT on February 28, the Voyager UV spectrometer (UVS) observed a ``ringing'' that decayed over three 3 hr cycles. The amplitude of these fluctuations was strong (50%) at 950-1100 Å, decreased rapidly with wavelength, and faded to nondetection longward of 1300 Å. Various considerations indicate that these continuum variations were not due to an instrumental pathology in the UVS. Rather, they appear to be due to a time-dependent flux deficit in the 950-1250 Å region. We outline a scenario in which a dense plasma structure over the star's surface is heated and cooled quasi-periodically to produce such flux changes. Observations of new examples of this phenomenon are badly needed. Amateur astronomers can make a significant contribution to its understanding by searching for ringing in light curves of Be stars during their outburst phases. Finally, we draw attention to an increase in the emission of the Hα line that occurred at about the time the far-ultraviolet ringing started. This increased emission hints that ~50,000 K plasma near the star's surface can influence the circumstellar disk at ~12 R* by its increased Lyman continuum flux.
NASA Astrophysics Data System (ADS)
Luna, G. J. M.; Mukai, K.; Orio, M.; Zemko, P.
2018-01-01
In magnetically accreting white dwarfs, the height above the white dwarf surface where the standing shock is formed is intimately related with the accretion rate and the white dwarf mass. However, it is difficult to measure. We obtained new data with NuSTAR and Swift that, together with archival Chandra data, allow us to constrain the height of the shock in the intermediate polar EX Hya. We conclude that the shock has to form at least at a distance of about one white dwarf radius from the surface in order to explain the weak Fe Kα 6.4 keV line, the absence of a reflection hump in the high-energy continuum, and the energy dependence of the white dwarf spin pulsed fraction. Additionally, the NuSTAR data allowed us to measure the true, uncontaminated hard X-ray (12-40 keV) flux, whose measurement was contaminated by the nearby galaxy cluster Abell 3528 in non-imaging X-ray instruments.
MULTIWAVELENGTH OBSERVATIONS AND MODELING OF 1ES 1959+650 IN A LOW FLUX STATE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aliu, E.; Errando, M.; Archambault, S.
We report on the VERITAS observations of the high-frequency peaked BL Lac object 1ES 1959+650 in the period 2007-2011. This source is detected at TeV energies by VERITAS at 16.4 standard deviation ({sigma}) significance in 7.6 hr of observation in a low flux state. A multiwavelength spectral energy distribution (SED) is constructed from contemporaneous data from VERITAS, Fermi-LAT, RXTE PCA, and Swift UVOT. Swift XRT data is not included in the SED due to a lack of simultaneous observations with VERITAS. In contrast to the orphan {gamma}-ray flare exhibited by this source in 2002, the X-ray flux of the sourcemore » is found to vary by an order of magnitude, while other energy regimes exhibit less variable emission. A quasi-equilibrium synchrotron self-Compton model with an additional external radiation field is used to describe three SEDs corresponding to the lowest, highest, and average X-ray states. The variation in the X-ray spectrum is modeled by changing the electron injection spectral index, with minor adjustments of the kinetic luminosity in electrons. This scenario produces small-scale flux variability of the order of {approx}< 2 in the high energy (E > 1 MeV) and very high energy (E > 100 GeV) {gamma}-ray regimes, which is corroborated by the Fermi-LAT, VERITAS, and Whipple 10 m telescope light curves.« less
FERMI GAMMA-RAY SPACE TELESCOPE OBSERVATIONS OF THE GAMMA-RAY OUTBURST FROM 3C454.3 IN NOVEMBER 2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdo, A. A.; Ackermann, M.; Ajello, M.
The flat-spectrum radio quasar 3C454.3 underwent an extraordinary 5 day {gamma}-ray outburst in 2010 November when the daily flux measured with the Fermi Large Area Telescope (LAT) at photon energies E > 100 MeV reached (66 {+-} 2) x 10{sup -6} photons cm{sup -2} s{sup -1}. This is a factor of three higher than its previous maximum flux recorded in 2009 December and {approx}> 5 times brighter than the Vela pulsar, which is normally the brightest source in the {gamma}-ray sky. The 3 hr peak flux was (85 {+-} 5)x10{sup -6} photons cm{sup -2} s{sup -1}, corresponding to an apparentmore » isotropic luminosity of (2.1 {+-} 0.2)x10{sup 50} erg s{sup -1}, the highest ever recorded for a blazar. In this Letter, we investigate the features of this exceptional event in the {gamma}-ray band of the Fermi-LAT. In contrast to previous flares of the same source observed with the Fermi-LAT, clear spectral changes are observed during the flare.« less
The unique, optically-dominated quasar jet of PKS 1421-490
NASA Astrophysics Data System (ADS)
Gelbord, J. M.; Marshall, H. L.; Worrall, D. M.; Birkinshaw, M.; Lovell, J. E. J.; Ojha, R.; Godfrey, L.; Schwartz, D. A.; Perlman, E. S.; Georganopoulos, M.; Murphy, D. W.; Jauncey, D. L.
2004-12-01
The unique, optically-dominated quasar jet of PKS 1421-490 We report the discovery of extremely strong optical and X-ray emission associated with a knot in the radio jet of PKS 1421-490. The SDSS g' = 17.8 magnitude makes this the second-brightest optical jet known. The jet-to-core flux ratio in the X-ray band is unusually large (3.7), and the optical flux ratio ( ˜300) is unprecedented. The broad-band spectrum of the knot is flat from the radio through the optical bands, and has a similar slope with a lower normalization in the X-ray band. This emission is difficult to interpret without resorting to extreme model parameters or physically unlikely scenarios (flat electron distributions, non-equipartition magnetic fields, huge Doppler factors, etc.). We discuss several alternative models for the radio-to-X-ray continuum, including pure synchrotron, synchrotron plus inverse Compton scattering of cosmic microwave background photons, and a decelerating jet. JMG was supported under Chandra grant GO4-5124X to MIT from the CXC. HLM was supported under NASA contract SAO SV1-61010 for the Chandra X-Ray Center (CXC).
Origin of X-Ray and Gamma-Ray Emission from the Galactic Central Region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chernyshov, D. O.; Dogiel, V. A.; Cheng, K.-S.
We study a possible connection between different non-thermal emissions from the inner few parsecs of the Galaxy. We analyze the origin of the gamma-ray source 2FGL J1745.6−2858 (or 3FGL J1745.6−2859c) in the Galactic Center (GC) and the diffuse hard X-ray component recently found by the Nuclear Spectroscopic Telescope Array , as well as the radio emission and processes of hydrogen ionization from this area. We assume that a source in the GC injected energetic particles with power-law spectrum into the surrounding medium in the past or continues to inject until now. The energetic particles may be protons, electrons, or amore » combination of both. These particles diffuse to the surrounding medium and interact with gas, magnetic field, and background photons to produce non-thermal emissions. We study the spectral and spatial features of the hard X-ray emission and gamma-ray emission by the particles from the central source. Our goal is to examine whether the hard X-ray and gamma-ray emissions have a common origin. Our estimations show that, in the case of pure hadronic models, the expected flux of hard X-ray emission is too low. Despite the fact that protons can produce a non-zero contribution in gamma-ray emission, it is unlikely that they and their secondary electrons can make a significant contribution in hard X-ray flux. In the case of pure leptonic models, it is possible to reproduce both X-ray and gamma-ray emissions for both transient and continuous supply models. However, in the case of the continuous supply model, the ionization rate of molecular hydrogen may significantly exceed the observed value.« less
Apollo 15 X-ray fluorescence experiment
NASA Technical Reports Server (NTRS)
Adler, I.; Trombka, J.; Gerard, J.; Schmadebeck, R.; Lowman, P.; Blodgett, H.; Yin, L.; Eller, E.; Lamothe, R.; Gorenstein, P.
1971-01-01
The X-ray fluorescence spectrometer, carried in the SIM bay of the command service module was employed principally for compositional mapping of the lunar surface while in lunar orbit, and secondarily, for X-ray astronomical observations during the trans-earth coast. The lunar surface measurements involved observations of the intensity and characteristics energy distribution of the secondary or fluorescent X-rays produced by the interaction of solar X-rays with the lunar surface. The astronomical observations consisted of relatively long periods of measurements of X-rays from pre-selected galactic sources such as Cyg-X-1 and Sco X-1 as well as from the galactic poles.
Suzaku Detection of Diffuse Hard X-Ray Emission Outside Vela X
NASA Technical Reports Server (NTRS)
Katsuda, Satoru; Mori, Koji; Petre, Robert; Yamaguchi, Hiroya; Tsunemi, Hiroshi; Bocchino, Fabrizio; Bamba, Aya; Miceli, Marco; Hewitt, John W.; Temim, Tea;
2011-01-01
Vela X is a large, 3 deg x 2 deg, radio-emitting pulsar wind nebula (PWN) powered by the Vela pulsar in the Vela supernova remnant. Using four Suzaku/XIS observations pointed just outside Vela X, we find hard X-ray emission extending throughout the fields of view. The hard X-ray spectra are well represented by a power-law. The photon index is measured to be constant at Gamma approximates 2.4, similar to that of the southern outer part of Vela X. The power-law flux decreases with increasing distance from the pulsar. These properties lead us to propose that the hard X-ray emission is associated with the Vela PWN. The larger X-ray extension found in this work strongly suggests that distinct populations relativistic electrons form the X-ray PWN and Vela X, as was recently inferred from multiwavelength spectral modeling of Vela X.
New X-ray bound on density of primordial black holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inoue, Yoshiyuki; Kusenko, Alexander, E-mail: yinoue@astro.isas.jaxa.jp, E-mail: kusenko@ucla.edu
We set a new upper limit on the abundance of primordial black holes (PBH) based on existing X-ray data. PBH interactions with interstellar medium should result in significant fluxes of X-ray photons, which would contribute to the observed number density of compact X-ray objects in galaxies. The data constrain PBH number density in the mass range from a few M {sub ⊙} to 2× 10{sup 7} M {sub ⊙}. PBH density needed to account for the origin of black holes detected by LIGO is marginally allowed.
Observation of X-ray eclipses from LMC X-4
NASA Technical Reports Server (NTRS)
Li, F.; Rappaport, S.; Epstein, A.
1978-01-01
Observations made with the Rotation Modulation Collimator system (RMC) have revealed that X-ray source X-4 in the Large Magellanic Cloud (LMC X-4) is most likely part of a binary system. An analysis of the star's coordinates is presented, with attention given to orbital period and flux intensity variations. Stellar mass and orbital inclination angle are estimated for both X-4 and its companion star.
A year-long AGILE observation of Cygnus X-1 in hard spectral state
NASA Astrophysics Data System (ADS)
Del Monte, E.; Feroci, M.; Evangelista, Y.; Costa, E.; Donnarumma, I.; Lapshov, I.; Lazzarotto, F.; Pacciani, L.; Rapisarda, M.; Soffitta, P.; Argan, A.; Barbiellini, G.; Boffelli, F.; Bulgarelli, A.; Caraveo, P.; Cattaneo, P. W.; Chen, A.; D'Ammando, F.; Di Cocco, G.; Fuschino, F.; Galli, M.; Gianotti, F.; Giuliani, A.; Labanti, C.; Lipari, P.; Longo, F.; Marisaldi, M.; Mereghetti, S.; Moretti, E.; Morselli, A.; Pellizzoni, A.; Perotti, F.; Piano, G.; Picozza, P.; Pilia, M.; Prest, M.; Pucella, G.; Rappoldi, A.; Sabatini, S.; Striani, E.; Tavani, M.; Trifoglio, M.; Trois, A.; Vallazza, E.; Vercellone, S.; Vittorini, V.; Zambra, A.; Antonelli, L. A.; Cutini, S.; Pittori, C.; Preger, B.; Santolamazza, P.; Verrecchia, F.; Giommi, P.; Salotti, L.
2010-09-01
Context. Cygnus X-1 (Cyg X-1) is a high mass X-ray binary system, known to be a black hole candidate and one of the brightest sources in the X-ray sky, which shows both variability on all timescales and frequent flares. The source spends most of the time in a hard spectral state, dominated by a power-law emission, with occasional transitions to the soft and intermediate states, where a strong blackbody component emerges. Aims: We present the observation of Cyg X-1 in a hard spectral state performed during the AGILE science verification phase and observing cycle 1 in hard X-rays (with SuperAGILE) and gamma rays (with the gamma ray imaging detector) and lasting for about 160 days with a live time of ~6 Ms. Methods: We investigated the variability of Cyg X-1 in hard X-rays on different timescales, from ~300 s up to one day, and we applied different tools of timing analysis, such as the autocorrelation function, the first-order structure function, and the Lomb-Scargle periodogram, to our data (from SuperAGILE) and to the simultaneous data in soft X-rays (from RXTE/ASM). We concluded our investigation with a search for emission in the energy range above 100 MeV with the maximum likelihood technique. Results: In the hard X-ray band, the flux of Cyg X-1 shows its typical erratic fluctuations on all timescales with variations of about a factor of two that do not significantly affect the shape of the energy spectrum. From the first-order structure function, we find that the X-ray emission of Cyg X-1 is characterized by antipersistence (anticorrelation in the time series, with an increase in the emission likely followed by a decrease), indicative of a negative feedback mechanism at work. In the gamma ray data a statistically significant point-like source at the position of Cyg X-1 is not found, and the upper limit on the flux is 5 × 10-8 ph cm-2 s-1 over the whole observation (160 days). Finally we compared our upper limit in gamma rays with the expectation of various models of the Cyg X-1 emission, both of hadronic and leptonic origin, in the GeV-TeV band. Conclusions: The time history of Cyg X-1 in the hard X-ray band over 13 months (not continuous) is shown. Different analysis tools do not provide fully converging results of the characteristic timescales in the system, suggesting that the timescales found in the structure function are not intrinsic to the physics of the source. While Cyg X-1 is not detected in gamma rays, our upper limit is a factor of two lower than the EGRET one and is compatible with the extrapolation of the flux measured by COMPTEL in the same spectral state.
The First Simultaneous X-Ray/Radio Detection of the First Be/BH System MWC 656
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ribó, M.; Paredes, J. M.; Marcote, B.
2017-02-01
MWC 656 is the first known Be/black hole (BH) binary system. Be/BH binaries are important in the context of binary system evolution and sources of detectable gravitational waves because they are possible precursors of coalescing neutron star/BH binaries. X-ray observations conducted in 2013 revealed that MWC 656 is a quiescent high-mass X-ray binary (HMXB), opening the possibility to explore X-ray/radio correlations and the accretion/ejection coupling down to low luminosities for BH HMXBs. Here we report on a deep joint Chandra /VLA observation of MWC 656 (and contemporaneous optical data) conducted in 2015 July that has allowed us to unambiguously identifymore » the X-ray counterpart of the source. The X-ray spectrum can be fitted with a power law with Γ ∼ 2, providing a flux of ≃4 × 10{sup −15} erg cm{sup −2} s{sup −1} in the 0.5–8 keV energy range and a luminosity of L {sub X} ≃ 3 × 10{sup 30} erg s{sup −1} at a 2.6 kpc distance. For a 5 M{sub ⊙} BH this translates into ≃5 × 10{sup −9} L {sub Edd}. These results imply that MWC 656 is about 7 times fainter in X-rays than it was two years before and reaches the faintest X-ray luminosities ever detected in stellar-mass BHs. The radio data provide a detection with a peak flux density of 3.5 ± 1.1 μ Jy beam{sup −1}. The obtained X-ray/radio luminosities for this quiescent BH HMXB are fully compatible with those of the X-ray/radio correlations derived from quiescent BH low-mass X-ray binaries. These results show that the accretion/ejection coupling in stellar-mass BHs is independent of the nature of the donor star.« less
A ROSAT high resolution x ray image of NGC 1068
NASA Technical Reports Server (NTRS)
Halpern, J.
1993-01-01
The soft x ray properties of the Seyfert 2 galaxy NGC 1068 are a crucial test of the 'hidden Seyfert 1' model. It is important to determine whether the soft x rays come from the nucleus, or from a number of other possible regions in the circumnuclear starburst disk. We present preliminary results of a ROSAT HRI observation of NGC 1068 obtained during the verification phase. The fraction of x rays that can be attributed to the nucleus is about 70 percent so the 'soft x ray problem' remains. There is also significant diffuse x ray flux on arcminute scales, which may be related to the 'diffuse ionized medium' seen in optical emission lines, and the highly ionized Fe K(alpha) emission seen by BBXRT.
Flux growth of high-quality CoFe 2O 4 single crystals and their characterization
NASA Astrophysics Data System (ADS)
Wang, W. H.; Ren, X.
2006-04-01
We report the growth of high-quality CoFe 2O 4 single crystals using a borax flux method. The crystals were characterized by powder X-ray diffraction, electron probe microanalysis and Raman spectroscopy. We found the crystals are flux-free and highly homogeneous in composition. X-ray rocking curves of the CoFe 2O 4 single crystals showed a full-width at half-maximum of 0.15°. The saturation magnetization of the CoFe 2O 4 single crystals was measured to be 90 emu/g or equivalently 3.65 μ B/f.u. at 5 K.
NASA Astrophysics Data System (ADS)
Dudnik, O. V.; Podgorski, P.; Sylwester, J.; Gburek, S.; Kowalinski, M.; Siarkowski, M.; Plocieniak, S.; Bakala, J.
2012-04-01
A joint analysis is carried out of data obtained with the help of the solar X-ray SphinX spectrophotometer and the electron and proton satellite telescope STEP-F in May 2009 in the course of the scientific space experiment CORONAS-PHOTON. In order to determine the energies and particle types, in the analysis of spectrophotometer records data are used on the intensities of electrons, protons, and secondary γ-radiation, obtained by the STEP-F telescope, which was located in close proximity to the SphinX spectrophotometer. The identical reaction of both instruments is noted at the intersection of regions of the Brazilian magnetic anomaly and the Earth's radiation belts. It is shown that large area photodiodes, serving as sensors of the X-ray spectrometer, reliably record electron fluxes of low and intermediate energies, as well as fluxes of the secondary gamma radiation from construction materials of detector modules, the TESIS instrument complex, and the spacecraft itself. The dynamics of electron fluxes, recorded by the SphinX spectrophotometer in the vicinity of a weak geomagnetic storm, supplements the information about the processes of radial diffusion of electrons, which was studied using the STEP-F telescope.
HESS J1844-030: A New Gamma-Ray Binary?
NASA Astrophysics Data System (ADS)
McCall, Hannah; Errando, Manel
2018-01-01
Gamma-ray binaries are comprised of a massive, main-sequence star orbiting a neutron star or black hole that generates bright gamma-ray emission. Only six of these systems have been discovered. Here we report on a candidate stellar-binary system associated with the unidentified gamma-ray source HESS J1844-030, whose detection was revealed in the H.E.S.S. galactic plane survey. Analysis of 60 ks of archival Chandra data and over 100 ks of XMM-Newton data reveal a spatially associated X-ray counterpart to this TeV-emitting source (E>1012 eV), CXO J1845-031. The X-ray spectra derived from these exposures yields column density absorption in the range nH = (0.4 - 0.7) x 1022 cm-2, which is below the total galactic value for that part of the sky, indicating that the source is galactic. The flux from CXO J1845-031 increases with a factor of up to 2.5 in a 60 day timescale, providing solid evidence for flux variability at a confidence level exceeding 7 standard deviations. The point-like nature of the source, the flux variability of the nearby X-ray counterpart, and the low column density absorption are all indicative of a binary system. Once confirmed, HESS J1844-030 would represent only the seventh known gamma-ray binary, providing valuable data to advance our understanding of the physics of pulsars and stellar winds and testing high-energy astrophysical processes at timescales not present in other classes of objects.
X-ray fractography on fatigue fractured surface of austenitic stainless steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yajima, Zenjiro; Tokuyama, Hideki; Kibayashi, Yasuo
1995-12-31
X-ray diffraction observation of the material internal structure beneath fracture surfaces provide fracture analysis with useful information to investigate the conditions and mechanisms of fracture. X-ray fractography is a generic name given to this technique. In the present study, X-ray fractography was applied to fatigue fracture surfaces of austenitic stainless steel (AISI 304) which consisted of solution treatment. The fatigue tests were carried out on compact tension (CT) specimens. The plastic strain on the fracture surface was estimated from measuring the line broadening of X-ray diffraction profiles. The line broadening of X-ray diffraction profiles was measured on and beneath fatiguemore » fracture surfaces. The depth of the plastic zone left on fracture surfaces was evaluated from the line broadening. The results are discussed on the basis of fracture mechanics.« less
Line focus x-ray tubes—a new concept to produce high brilliance x-rays
NASA Astrophysics Data System (ADS)
Bartzsch, Stefan; Oelfke, Uwe
2017-11-01
Currently hard coherent x-ray radiation at high photon fluxes can only be produced with large and expensive radiation sources, such as 3rd generation synchrotrons. Especially in medicine, this limitation prevents various promising developments in imaging and therapy from being translated into clinical practice. Here we present a new concept of highly brilliant x-ray sources, line focus x-ray tubes (LFXTs), which may serve as a powerful and cheap alternative to synchrotrons and a range of other existing technologies. LFXTs employ an extremely thin focal spot and a rapidly rotating target for the electron beam which causes a change in the physical mechanism of target heating, allowing higher electron beam intensities at the focal spot. Monte Carlo simulations and numeric solutions of the heat equation are used to predict the characteristics of the LFXT. In terms of photon flux and coherence length, the performance of the line focus x-ray tube compares with inverse Compton scattering sources. Dose rates of up to 180 Gy s-1 can be reached in 50 cm distance from the focal spot. The results demonstrate that the line focus tube can serve as a powerful compact source for phase contrast imaging and microbeam radiation therapy. The production of a prototype seems technically feasible.
Connection Between X-Ray Dips and Superluminal Ejections in the Radio Galaxy 3C 120
NASA Technical Reports Server (NTRS)
Aller, Margo F.
2005-01-01
This work represents a part of a long-term study of the X-ray flux variability of 3C 120 and its relation to flux and structural changes in the radio jet of this galaxy. The grant included fiinding for the rediiction and analysis of data obt,ained during the time pwiod of Rossi XTE cycle 8 (March 1, 2003-February 29, 2004). Prior RXTE observations, combined with single dish monitoring at centimeter wavelengths and 43 GHz mapping (monthly until February 1999 and bimonthly thereafter) of the inner jet with the VLBA, had identified the presence of X-ray dips in the light curves and X-ray spectral hardening 4 weeks prior to the ejection of new VLBI components in the radio jet. This suggested a picture in which the radio jet was fed by accretion events near the black hole. The specific goals of the cycle 8 observations were to better define the relation between the X-ray dips and the radio events using higher sampling, to include more events in the correlation and hence improve the statistics, to look for a possible optical X-ray connection, and to search for quasi periodicities on timescales of 1-3 days. In cycle 8 this project was awarded time for 4 pointings weekly with RXTE.
Infrared and X-Ray Evidence for Circumstellar Grain Destruction by the Blast Wave of Supernova 1987A
NASA Technical Reports Server (NTRS)
Dwek, Eliahu; Arendt, Richard G.; Bouchet, Patrice; Burrows, David N.; Challis, Peter; Danziger, John; DeBuizer James M.; Gehrz, Robert D.; Kirshner, Robert P.; McCray, Richard;
2007-01-01
Multiwavelength observations of supernova remnant (SNR) 1987A show that its morphology and luminosity are rapidly changing at X-ray, optical, infrared, and radio wavelengths as the blast wave from the explosion expands into the circumstellar equatorial ring, produced by mass loss from the progenitor star. The observed infrared (IR) radiation arises from the interaction of dust grains that formed in mass outflow with the soft X-ray emitting plasma component of the shocked gas. Spitzer IRS spectra at 5 - 30 microns taken on day 6190 since the explosion show that the emission arises from approx. 1.1 x 10(exp -6) solar mass of silicate grains radiating at a temperature of approx. 180+/-(15-20) K. Subsequent observations on day 7137 show that the IR flux had increased by a factor of 2 while maintaining an almost identical spectral shape. The observed IR-to-X-ray flux ratio (IRX) is consistent with that of a dusty plasma with standard LMC dust abundances. This flux ratio has decreased by a factor of approx. 2 between days 6190 and 7137, providing the first direct observation of the ongoing destruction of dust in an expanding SN blast wave on dynamic time scales. Detailed models consistent with the observed dust temperature, the ionization fluence of the soft X-ray emission component, and the evolution of IRX suggest that the radiating si1icate grains are immersed in a 3.5 x 10(exp 6) K plasma with a density of (0.3 - 1) x 10(exp 4)/cu cm, and have a size distribution that is confined to a narrow range of radii between 0.02 and 0.2 microns. Smaller grains may have been evaporated by the initial UV flash from the supernova.
The cosmic X-ray background. [heao observations
NASA Technical Reports Server (NTRS)
Boldt, E. A.
1980-01-01
The cosmic X-ray experiment carried out with the A2 Instrument on HEAO-1 made systematics-free measurements of the extra-galactic X-ray sky and yielded the broadband spectral characteristics for two extreme aspects of this radiation. For the apparently isotropic radiation of cosmological origin that dominates the extragalactic X-ray flux ( 3 keV), the spectrum over the energy band of maximum intensity is remarkably well described by a thermal model with a temperature of a half-billion degrees. At the other extreme, broadband observations of individual extragalactic X-ray sources with HEAO-1 are restricted to objects within the present epoch. While the non-thermal hard spectral components associated with unevolved X-ray emitting active galaxies could account for most of the gamma-ray background, the contribution of such sources to the X-ray background must be relatively small. In contrast, the 'deep-space' sources detected in soft X-rays with the HEAO-2 telescope probably represent a major portion of the extragalactic soft X-ray ( 3 keV) background.
Soft X-ray variability over the present minimum of solar activity as observed by SphinX
NASA Astrophysics Data System (ADS)
Gburek, S.; Siarkowski, M.; Kepa, A.; Sylwester, J.; Kowalinski, M.; Bakala, J.; Podgorski, P.; Kordylewski, Z.; Plocieniak, S.; Sylwester, B.; Trzebinski, W.; Kuzin, S.
2011-04-01
Solar Photometer in X-rays (SphinX) is an instrument designed to observe the Sun in X-rays in the energy range 0.85-15.00 keV. SphinX is incorporated within the Russian TESIS X and EUV telescope complex aboard the CORONAS-Photon satellite which was launched on January 30, 2009 at 13:30 UT from the Plesetsk Cosmodrome, northern Russia. Since February, 2009 SphinX has been measuring solar X-ray radiation nearly continuously. The principle of SphinX operation and the content of the instrument data archives is studied. Issues related to dissemination of SphinX calibration, data, repository mirrors locations, types of data and metadata are discussed. Variability of soft X-ray solar flux is studied using data collected by SphinX over entire mission duration.
Studies of electrode structures and dynamics using coherent X-ray scattering and imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
You, H.; Liu, Y.; Ulvestad, A.
2017-08-01
Electrochemical systems studied in situ with advanced surface X-ray scattering techniques are reviewed. The electrochemical systems covered include interfaces of single-crystals and nanocrystals with respect to surface modification, aqueous dissolution, surface reconstruction, and electrochemical double layers. An emphasis will be given on recent results by coherent X-ray techniques such as X-ray photon correlation spectroscopy, Bragg coherent diffraction imaging, and surface ptychography.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Youngblood, Allison; France, Kevin; Loyd, R. O. Parke
Characterizing the UV spectral energy distribution (SED) of an exoplanet host star is critically important for assessing its planet’s potential habitability, particularly for M dwarfs, as they are prime targets for current and near-term exoplanet characterization efforts and atmospheric models predict that their UV radiation can produce photochemistry on habitable zone planets different from that on Earth. To derive ground-based proxies for UV emission for use when Hubble Space Telescope ( HST ) observations are unavailable, we have assembled a sample of 15 early to mid-M dwarfs observed by HST and compared their nonsimultaneous UV and optical spectra. We findmore » that the equivalent width of the chromospheric Ca ii K line at 3933 Å, when corrected for spectral type, can be used to estimate the stellar surface flux in ultraviolet emission lines, including H i Ly α . In addition, we address another potential driver of habitability: energetic particle fluxes associated with flares. We present a new technique for estimating soft X-ray and >10 MeV proton flux during far-UV emission line flares (Si iv and He ii) by assuming solar-like energy partitions. We analyze several flares from the M4 dwarf GJ 876 observed with HST and Chandra as part of the MUSCLES Treasury Survey and find that habitable zone planets orbiting GJ 876 are impacted by large Carrington-like flares with peak soft X-ray fluxes ≥10{sup −3} W m{sup −2} and possible proton fluxes ∼10{sup 2}–10{sup 3} pfu, approximately four orders of magnitude more frequently than modern-day Earth.« less
NASA Technical Reports Server (NTRS)
Ghandi, P.; Annuar, A.; Lansbury, G. B.; Stern, D.; Alexander, D. M.; Bauer, F. E.; Bianchi, S.; Boggs, S. E.; Boorman, P. G.; Brandt, W. N.;
2017-01-01
We present NuSTAR X-ray observations of the active galactic nucleus (AGN) in NGC7674.The source shows a flat X-ray spectrum, suggesting that it is obscured by Compton-thick gas columns. Based upon long-term flux dimming, previous work suggested the alternate possibility that the source is a recently switched-off AGN with the observed X-rays being the lagged echo from the torus. Our high-quality data show the source to be reflection-dominated in hard X-rays, but with a relatively weak neutral Fe K(alpha) emission line (equivalent width [EW] of approximately 0.4 keV) and a strong Fe XXVI ionized line (EW approximately 0.2 keV).We construct an updated long-term X-ray light curve of NGC7674 and find that the observed 2-10 keV flux has remained constant for the past approximately 20 yr, following a high-flux state probed by Ginga. Light travel time arguments constrain the minimum radius of the reflector to be approximately 3.2 pc under the switched-off AGN scenario, approximately 30 times larger than the expected dust sublimation radius, rendering this possibility unlikely. A patchy Compton-thick AGN (CTAGN) solution is plausible, requiring a minimum line-of-sight column density (N(sub H)) of 3 x 10(exp 24) cm(exp -2) at present, and yields an intrinsic 2-10 keV luminosity of (3-5) x 10(exp 43) erg s(exp -1). Realistic uncertainties span the range of approximately (1-13) x 10(exp 43) erg s1. The source has one of the weakest fluorescence lines amongst bona fide CTAGN, and is potentially a local analogue of bolometrically luminous systems showing complex neutral and ionized Fe emission. It exemplifies the difficulty of identification and proper characterization of distant CTAGN based on the strength of the neutral Fe K line
The peculiar optical-UV X-ray spectra of the X-ray weak quasar PG 0043+039
NASA Astrophysics Data System (ADS)
Kollatschny, W.; Schartel, N.; Zetzl, M.; Santos-Lleó, M.; Rodríguez-Pascual, P. M.; Ballo, L.; Talavera, A.
2016-01-01
Context. The object PG 0043+039 has been identified as a broad absorption line (BAL) quasar based on its UV spectra. However, this optical luminous quasar has not been detected before in deep X-ray observations, making it the most extreme X-ray weak quasar known today. Aims: This study aims to detect PG 0043+039 in a deep X-ray exposure. The question is what causes the extreme X-ray weakness of PG 0043+039? Does PG 0043+039 show other spectral or continuum peculiarities? Methods: We took simultaneous deep X-ray spectra with XMM-Newton, far-ultraviolet (FUV) spectra with the Hubble Space Telescope (HST), and optical spectra of PG 0043+039 with the Hobby-Eberly Telescope (HET) and Southern African Large Telescope (SALT) in July, 2013. Results: We have detected PG 0043+039 in our X-ray exposure taken in 2013. We presented our first results in a separate paper (Kollatschny et al. 2015). PG 0043+039 shows an extreme αox gradient (αox = -2.37). Furthermore, we were able to verify an X-ray flux of this source in a reanalysis of the X-ray data taken in 2005. At that time, it was fainter by a factor of 3.8 ±0.9 with αox = -2.55. The X-ray spectrum is compatible with a normal quasar power-law spectrum (Γ = 1.70-0.45+0.57) with moderate intrinsic absorption (NH = 5.5-3.9+6.9 × 1021 cm-2) and reflection. The UV/optical flux of PG 0043+039 has increased by a factor of 1.8 compared to spectra taken in the years 1990-1991. The FUV spectrum is highly peculiar and dominated by broad bumps besides Lyα. There is no detectable Lyman edge associated with the BAL absorbing gas seen in the CIV line. PG 0043+039 shows a maximum in the overall continuum flux at around λ ≈ 2500 Å in contrast to most other AGN where the maximum is found at shorter wavelengths. All the above is compatible with an intrinsically X-ray weak quasar, rather than an absorbed X-ray emission. Besides strong FeII multiplets and broad Balmer and HeI lines in the optical band we only detect a narrow [O II]λ3727 emission line and a BAL system in the CaH λ3968, CaK λ3934 lines (blueshifted by 4900 km s-1) and in the He I λ3889 line (blueshifted by 5600 km s-1). Based on observations obtained with XMM-Newton, the Hubble Space Telescope (HST), Southern African Large Telescope (SALT), and Hobby-Eberly Telescope (HET).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eaton, Craig; Brahlek, Matthew; Engel-Herbert, Roman, E-mail: rue2@psu.edu
The authors report the growth of stoichiometric SrVO{sub 3} thin films on (LaAlO{sub 3}){sub 0.3}(Sr{sub 2}AlTaO{sub 6}){sub 0.7} (001) substrates using hybrid molecular beam epitaxy. This growth approach employs a conventional effusion cell to supply elemental A-site Sr and the metalorganic precursor vanadium oxytriisopropoxide (VTIP) to supply vanadium. Oxygen is supplied in its molecular form through a gas inlet. An optimal VTIP:Sr flux ratio has been identified using reflection high-energy electron-diffraction, x-ray diffraction, atomic force microscopy, and scanning transmission electron microscopy, demonstrating stoichiometric SrVO{sub 3} films with atomically flat surface morphology. Away from the optimal VTIP:Sr flux, characteristic changes inmore » the crystalline structure and surface morphology of the films were found, enabling identification of the type of nonstoichiometry. For optimal VTIP:Sr flux ratios, high quality SrVO{sub 3} thin films were obtained with smallest deviation of the lattice parameter from the ideal value and with atomically smooth surfaces, indicative of the good cation stoichiometry achieved by this growth technique.« less
National Synchrotron Light Source annual report 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hulbert, S.L.; Lazarz, N.M.
1992-04-01
This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLSmore » computer system.« less
X-Ray Study of Variable Gamma-Ray Pulsar PSR J2021+4026
NASA Astrophysics Data System (ADS)
Wang, H. H.; Takata, J.; Hu, C.-P.; Lin, L. C. C.; Zhao, J.
2018-04-01
PSR J2021+4026 showed a sudden decrease in the gamma-ray emission at the glitch that occurred around 2011 October 16, and a relaxation of the flux to the pre-glitch state at around 2014 December. We report X-ray analysis results of the data observed by XMM-Newton on 2015 December 20 in the post-relaxation state. To examine any change in the X-ray emission, we compare the properties of the pulse profiles and spectra at the low gamma-ray flux state and at the post-relaxation state. The phase-averaged spectra for both states can be well described by a power-law component plus a blackbody component. The former is dominated by unpulsed emission and probably originated from the pulsar wind nebula as reported by Hui et al. The emission property of the blackbody component is consistent with the emission from the polar cap heated by the back-flow bombardment of the high-energy electrons or positrons that were accelerated in the magnetosphere. We found no significant change in the X-ray emission properties between two states. We suggest that the change of the X-ray luminosity is at an order of ∼4%, which is difficult to measure with the current observations. We model the observed X-ray light curve with the heated polar cap emission, and we speculate that the observed large pulsed fraction is owing to asymmetric magnetospheric structure.
National Institute of Standards and Technology Data Gateway
SRD 100 Database for Simulation of Electron Spectra for Surface Analysis (SESSA)Database for Simulation of Electron Spectra for Surface Analysis (SESSA) (PC database for purchase) This database has been designed to facilitate quantitative interpretation of Auger-electron and X-ray photoelectron spectra and to improve the accuracy of quantitation in routine analysis. The database contains all physical data needed to perform quantitative interpretation of an electron spectrum for a thin-film specimen of given composition. A simulation module provides an estimate of peak intensities as well as the energy and angular distributions of the emitted electron flux.
NASA Technical Reports Server (NTRS)
Woo, Jonathan W.; Clark, George W.; Day, Charles S. R.; Nagase, Fumiaki; Takeshima, Toshiaki
1994-01-01
We have measured the decaying dust-scattered X-ray halo of Cen X-3 during its binary eclipse with the ASCA solid-state imaging spectrometer (SIS). The surface brightness profile (SBP) of the image in the low-energy band (0.5-3 keV) lies substantially above the point-spread function (PSF) of the X-ray telescope, while the SBP in the high-energy band (5-10 keV) exhibits no significant deviation. By contrast, the SBPs of Vela X-1 during its eclipse are consistent with the PSF in both the low- and high-energy bands -- strong evidence that a dust halo is indeed present in Cen X-3. Accordingly, we modeled the SBP of Cen X-3 taken from six consecutive time segments under the principal assumptions that the dust is distributed uniformly along a segment of the line of sight, the grains have a power-law size distribution, and the low-energy source flux was the same function of orbital phase before as during our observation. The best-fit set of parameters included a grain density value of 1.3 g/cu cm, substanially less than the density of 'astronomical silicate.' This result supports the idea that interstellar grains are 'fluffy' aggregates of smaller solid particles. We attribute the failure to detect a halo of Vela X-1 during its eclipse phase to extended strong circumsource absorption that probably occurred before the eclipse and allowed the halo to decay away before the observation began.
NASA Astrophysics Data System (ADS)
Rothschild, R. E.; Lingenfelter, R. E.
2003-01-01
Two long observations of the Cas A supernova remnant were made by the Rossi X-Ray Timing Explorer in 1996 and 1997 to search for hard X-ray line emission at 67.9 and 78.4 keV from the decay of 44Ti formed during the supernova event. Continuum flux was detected up to 100 keV, but the 44Ti lines were not detected. The 90% confidence upper limit to the line flux is 3.6×10-5 photons cm-2 s-1. This is consistent with the recent BeppoSAX detection and with the Compton Gamma Ray Observatory/Imaging Compton Telescope (CGRO/COMPTEL) detection of the companion transition line flux for 44Sc decay. The mean BeppoSAX-COMPTEL flux indicates that 1.5+/-0.3×10-4 Msolar of 44Ti was produced in the supernova explosion. On the basis of recent theoretical calculations and optical observations suggesting a WN Wolf-Rayet progenitor with an initial mass of >=25 Msolar, the observed 44Ti yield implies that the Cas A supernova ejecta energy was ~2×1051 ergs, and as a result a neutron star was formed, rather than a black hole. We suggest that Cas A is possibly in the early stages of the anomalous X-ray pulsar/soft gamma-ray repeater (AXP/SGR) scenario in which the pushback disk has yet to form, and when the disk does form, the accretion will increase the luminosity to that of present-day AXP/SGRs, and pulsed emission will commence.
ACCRETION DISK SIGNATURES IN TYPE I X-RAY BURSTS: PROSPECTS FOR FUTURE MISSIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keek, L.; Wolf, Z.; Ballantyne, D. R., E-mail: laurens.keek@nasa.gov
2016-07-20
Type I X-ray bursts and superbursts from accreting neutron stars illuminate the accretion disk and produce a reflection signal that evolves as the burst fades. Examining the evolution of reflection features in the spectra will provide insight into the burst–disk interaction, a potentially powerful probe of accretion disk physics. At present, reflection has been observed during only two bursts of exceptional duration. We investigate the detectability of reflection signatures with four of the latest well-studied X-ray observatory concepts: Hitomi , Neutron Star Interior Composition Explorer ( NICER ), Athena , and Large Observatory For X-ray Timing ( LOFT ). Burstmore » spectra are modeled for different values for the flux, temperature, and the disk ionization parameter, which are representative for most known bursts and sources. The effective area and throughput of a Hitomi -like telescope are insufficient for characterizing burst reflection features. NICER and Athena will detect reflection signatures in Type I bursts with peak fluxes ≳10{sup 7.5} erg cm{sup 2} s{sup 1} and also effectively constrain the reflection parameters for bright bursts with fluxes of ∼10{sup 7} erg cm{sup 2} s{sup 1} in exposures of several seconds. Thus, these observatories will provide crucial new insight into the interaction of accretion flows and X-ray bursts. For sources with low line-of-sight absorption, the wide bandpass of these instruments allows for the detection of soft X-ray reflection features, which are sensitive to the disk metallicity and density. The large collecting area that is part of the LOFT design would revolutionize the field by tracing the evolution of the accretion geometry in detail throughout short bursts.« less
RXTE Observations of the Seyfert 2 Galaxy MrK 348
NASA Technical Reports Server (NTRS)
Smith, David A.; Georgantopoulos, Ioannis; Warwick, Robert S.
2000-01-01
We present RXTE monitoring observations of the Seyfert 2 galaxy Mrk 348 spanning a 6 month period. The time-averaged spectrum in the 3-20 keV band shows many features characteristic of a Compton-thin Seyfert 2 galaxy, namely a hard underlying power-law continuum (Gamma approximately equal 1.8) with heavy soft X-ray absorption (N(sub H) approximately 10(exp 23)/sq cm) plus measurable iron K.alpha emission (equivalent width approximately 100 eV) and, at high energy, evidence for a reflection component (R approximately < 1). During the first half of the monitoring period the X-ray continuum flux from Mrk 348 remained relatively steady. However this was followed by a significant brightening of the source (by roughly a factor of 4) with the fastest change corresponding to a doubling of its X-ray flux on a timescale of about 20 days. The flux increase was accompanied by a marked softening of X-ray spectrum most likely attributable to a factor approximately 3 decline in the intrinsic line-of-sight column density. In contrast the iron K.alpha line and the reflection components showed no evidence of variability. These observations suggest a scenario in which the central X-ray source is surrounded by a patchy distribution of absorbing material located within about a light-week of the nucleus of Mrk 348. The random movement of individual clouds within the absorbing screen, across our line of sight, produces substantial temporal variations in the measured column density on timescales of weeks to months and gives rise to the observed X-ray spectral variability. However, as viewed from the nucleus the global coverage and typical thickness of the cloud layer remains relatively constant.
A sudden increase in the X-ray flux from Centaurus A
NASA Technical Reports Server (NTRS)
Winkler, P. F., Jr.; White, A. E.
1975-01-01
Observations from OSO-7 show that the X-ray flux from Cen A increased by a factor of at least 1.6 over a six-day period in April 1973. Long-term observations indicate greater increases and a hardening of the spectrum. The maximum flux exceeded that measured by Tucker et al. and Lampton et al. in 1970 and 1971 by factors of 6.7 in the 2- to 10-keV range and 14 in the 10- to 50-keV range. Both rapid variability and a harder spectrum are consistent with a model proposed by Grindlay (1975). At maximum brightness, the best-fit spectrum leads to a luminosity of 1.1 x 10 to the 43rd power ergs/s in the 2- to 10-kev range.
NASA Astrophysics Data System (ADS)
Gallo, L. C.; Blue, D. M.; Grupe, D.; Komossa, S.; Wilkins, D. R.
2018-05-01
The narrow-line Seyfert 1 galaxy (NLS1) Mrk 335 has been continuously monitored with Swift since May 2007 when it fell into a long-lasting, X-ray low-flux interval. Results from the nearly 11 years of monitoring are presented here. Structure functions are used to measure the UV-optical and X-ray power spectra. The X-ray structure function measured between 10 - 100 days is consistent with the flat, low-frequency part of the power spectrum measured previously in Mrk 335. The UV-optical structure functions of Mrk 335 are comparable with those of other Seyfert 1 galaxies and of Mrk 335 itself when it was in a normal bright state. There is no indication that the current X-ray low-flux state is attributed to changes in the accretion disc structure of Mrk 335. The characteristic timescales measured in the structure functions can be attributed to thermal (for the UV) and dynamic (for the optical) timescales in a standard accretion disc. The high-quality UVW2 (˜1800 Å in the source frame) structure function appears to have two breaks and two different slopes between 10 - 160 days. Correlations between the X-ray and other bands are not highly significant when considering the entire 11-year light curves, but more significant behaviour is present when considering segments of the light curves. A correlation between the X-ray and UVW2 in 2014 (Year-8) may be predominately caused by an giant X-ray flare that was interpreted as jet-like emission. In 2008 (Year-2), possible lags between the UVW2 emission and other UV-optical waveband may be consistent with reprocessing of X-ray or UV emission in the accretion disc.
NASA Astrophysics Data System (ADS)
Shappee, B. J.; Prieto, J. L.; Grupe, D.; Kochanek, C. S.; Stanek, K. Z.; De Rosa, G.; Mathur, S.; Zu, Y.; Peterson, B. M.; Pogge, R. W.; Komossa, S.; Im, M.; Jencson, J.; Holoien, T. W.-S.; Basu, U.; Beacom, J. F.; Szczygieł, D. M.; Brimacombe, J.; Adams, S.; Campillay, A.; Choi, C.; Contreras, C.; Dietrich, M.; Dubberley, M.; Elphick, M.; Foale, S.; Giustini, M.; Gonzalez, C.; Hawkins, E.; Howell, D. A.; Hsiao, E. Y.; Koss, M.; Leighly, K. M.; Morrell, N.; Mudd, D.; Mullins, D.; Nugent, J. M.; Parrent, J.; Phillips, M. M.; Pojmanski, G.; Rosing, W.; Ross, R.; Sand, D.; Terndrup, D. M.; Valenti, S.; Walker, Z.; Yoon, Y.
2014-06-01
After the All-Sky Automated Survey for SuperNovae discovered a significant brightening of the inner region of NGC 2617, we began a ~70 day photometric and spectroscopic monitoring campaign from the X-ray through near-infrared (NIR) wavelengths. We report that NGC 2617 went through a dramatic outburst, during which its X-ray flux increased by over an order of magnitude followed by an increase of its optical/ultraviolet (UV) continuum flux by almost an order of magnitude. NGC 2617, classified as a Seyfert 1.8 galaxy in 2003, is now a Seyfert 1 due to the appearance of broad optical emission lines and a continuum blue bump. Such "changing look active galactic nuclei (AGNs)" are rare and provide us with important insights about AGN physics. Based on the Hβ line width and the radius-luminosity relation, we estimate the mass of central black hole (BH) to be (4 ± 1) × 107 M ⊙. When we cross-correlate the light curves, we find that the disk emission lags the X-rays, with the lag becoming longer as we move from the UV (2-3 days) to the NIR (6-9 days). Also, the NIR is more heavily temporally smoothed than the UV. This can largely be explained by a simple model of a thermally emitting thin disk around a BH of the estimated mass that is illuminated by the observed, variable X-ray fluxes.
NASA Astrophysics Data System (ADS)
Ishii, Nobuhisa; Kaneshima, Keisuke; Kanai, Teruto; Watanabe, Shuntaro; Itatani, Jiro
2018-01-01
An optical parametric chirped-pulse amplifier (OPCPA) based on bismuth triborate (BiB3O6, BIBO) crystals has been developed to deliver 1.5 mJ, 10.1 fs optical pulses around 1.6 μm with a repetition rate of 1 kHz and a stable carrier-envelope phase. The seed and pump pulses of the BIBO-based OPCPA are provided from two Ti:sapphire chirped-pulse amplification (CPA) systems. In both CPA systems, transmission gratings are used in the stretchers and compressors that result in a high throughput and robust operation without causing any thermal problem and optical damage. The seed pulses of the OPCPA are generated by intrapulse frequency mixing of a spectrally broadened continuum, temporally stretched to approximately 5 ps then, and amplified to more than 1.5 mJ. The amplified pulses are compressed in a fused silica block down to 10.1 fs. This BIBO-based OPCPA has been applied to high-flux high harmonic generation beyond the carbon K edge at 284 eV. The high-flux soft-x-ray continuum allows measuring the x-ray absorption near-edge structure of the carbon K edge within 2 min, which is shorter than a typical measurement time using synchrotron-based light sources. This laser-based table-top soft-x-ray source is a promising candidate for ultrafast soft x-ray spectroscopy with femtosecond to attosecond time resolution.
Effect of MeV Electron Radiation on Europa’s Surface Ice Analogs
NASA Astrophysics Data System (ADS)
Gudipati, Murthy; Henderson, Bryana; Bateman, Fred
2017-10-01
MeV electrons that impact Europa’s trailing hemisphere and cause both physical and chemical alteration of the surface and near-surface. The trailing hemisphere receives far lower fluxes above 25 MeV as compared with lower energy particles, but can cause significant chemical and physical modifications at these energies. With NASA's planned Europa Clipper mission and a Europa Lander Concept on the horizon, it is critical to understand and quantify the effect of Europa’s radiation environment on the surface and near surface.Electrons penetrate through ice by far the deepest at any given energy compared to protons and ions, making the role of electrons very important to understand. In addition, secondary radiation - Bremsstrahlung, in X-ray wavelengths - is generated during high-energy particle penetration through solids. Secondary X-rays are equally lethal to life and penetrate even deeper than electrons, making the cumulative effect of radiation on damaging organic matter on the near surface of Europa a complex process that could have effects several meters below Europa’s surface. Other physical properties such as coloration could be caused by radiation.In order to quantify this effect under realistic Europa trailing hemisphere conditions, we devised, built, tested, and obtained preliminary results using our ICE-HEART instrument prototype totally funded by JPL’s internal competition funding for Research and Technology Development. Our Ice Chamber for Europa High-Energy Electron And Radiation-Environment Testing (ICE-HEART) operates at ~100 K. We have also implemented a magnet that is used to remove primary electrons subsequent to passing through an ice column, in order to determine the flux of secondary X-radiation and its penetration through ice.Some of the first results from these studies will be presented and their relevance to understand physical and chemical properties of Europa’s trailing hemisphere surface.This work has been carried out at Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration, and funded by JPL’s R&TD Program and NASA Solar System Workings Program.
1ES 1113+432: Luminous, soft X-ray outburst from a nearby cataclysmic variable (AR Ursae Majoris)
NASA Technical Reports Server (NTRS)
Remillard, R. A.; Schachter, J. F.; Silber, A. D.; Slane, P.
1994-01-01
A remarkable X-ray transient from the Einstein Slew Survey, 1 ES 1113+432, is identified with a nearby, short-period cataclysmic variable. Wenzel (1993) has confirmed that the optical counterpart is the variable star, AR UMa (cataloged as 'semiregular'), erroneously reported 5.7 min southeast of the true position. One of the Einstein slew observations recorded a flux of 43 IPC counts/s, which is an order of magnitude above the flux observed from the brightest cataclysmic variables in other X-ray surveys. The outburst spectrum is extremely 'soft,' with an implied blackbody temperature of approximately 22 eV. The optical counterpart (V = 16.5) exhibits a strong UV component, TiO bands from an M star, and broadened Balmer emission lines. Optical states as bright as V approx. 13 were found on photographs from the Harvard Plate Library, confirming outburst behavior in the optical counterpart. The historical photographic record suggests that 1ES 1113+432 remains in a low-accretion state most of the time. Both of the soft X-ray spectrum and the transitions between high and low-accretion states are suggestive of the AM Her (magnetic) subclass. Photometric observations in the I band show 0.18 mag modulations at a period of 0.966 hr. These are interpreted as ellipsiodal variations in the secondary star for a binary period of 1.932 hr, which is near the lower boundary of the 'period gap' in the histogram, of orbital periods of accreting white dwarfs. Thus 1ES 1113+432 provides the rare opportunity to study a secondary star in a cataclysmic binary that has evolved through the period gap. The optical spectral features from the secondary imply a spectral type of approximately M6 and a distance of approximately 88 pc. The peak luminosity in the soft X-ray component (unabsorbed) is then estimated to be 3 X 10(exp 33) ergs/s, assuming emission from a blackbody slab with a temperature of 22 eV. While this luminosity is higher than previous measures of the soft X-ray component, it does not exceed the amount of radiation that could be emitted from the accretion-heated surface of a white dwarf.
Micro X-ray diffraction analysis of thin films using grazing-exit conditions.
Noma, T; Iida, A
1998-05-01
An X-ray diffraction technique using a hard X-ray microbeam for thin-film analysis has been developed. To optimize the spatial resolution and the surface sensitivity, the X-ray microbeam strikes the sample surface at a large glancing angle while the diffracted X-ray signal is detected with a small (grazing) exit angle. Kirkpatrick-Baez optics developed at the Photon Factory were used, in combination with a multilayer monochromator, for focusing X-rays. The focused beam size was about 10 x 10 micro m. X-ray diffraction patterns of Pd, Pt and their layered structure were measured. Using a small exit angle, the signal-to-background ratio was improved due to a shallow escape depth. Under the grazing-exit condition, the refraction effect of diffracted X-rays was observed, indicating the possibility of surface sensitivity.
NASA Astrophysics Data System (ADS)
Jucha, A.; Bonin, D.; Dartyge, E.; Flank, A. M.; Fontaine, A.; Raoux, D.
1984-09-01
Synchrotron radiation provides a high intensity source over a large range of wavelengths. This is the prominent quality that has laid the foundations of the EXAFS development (Extended X-ray Absorption Fine Structure). EXAFS data can be collected in different ways. A full scan requires 5 to 10 min, compared to the one-day data collection of a conventional Bremsstrahlung X-ray tube. Recently, by using the new photodiode array (R 1024 SFX) manufactured by Reticon, it has been possible to reduce the data collection time to less than 100 ms. The key elements of this new EXAFS method are a dispersive optics combined with a position sensitive detector able to work under very high flux conditions. The total aperture of 2500 μm × 25 μm for each pixel is well suited to spectroscopic applications. Besides its high dynamic range (> 10 4) and its linearity, the rapidity of the readout allows a flux of 10 9-10 10 photons/s over the 1024 sensing elements.
Hollow H II regions. II - Mechanism for wind energy dissipation and diffuse X-ray emission
NASA Astrophysics Data System (ADS)
Dorland, H.; Montmerle, T.
1987-05-01
The mechanism by which stellar-wind energy is dissipated near the shock in a hollow H II region (HHR) around a massive star is investigated theoretically, in the context of the HHR model developed by Dorland et al. (1986). The principles of nonlinear thermal conduction (especially the delocalizaton of conductive heat flux postulated for laboratory fusion plasmas) are reviewed; expressions for estimating heat fluxes are derived; a two-temperature approximation is employed to describe coupling between thermal conduction and wind-energy dissipation; and the determination of the flux-limit factor from X-ray observations is explained. The model is then applied to observational data for the Rosette nebula and Eta Car, and the results are presented graphically. The diffuse X-ray temperatures of HHRs are found to be in the range 2-16 keV and to depend uniquely on stellar-wind velocity, the value for an O star with wind velocity 2500 km/s being about 5 keV.
Martin, Elliot; Shreim, Amer; Paczuski, Maya
2010-01-01
We define an activity-dependent branching ratio that allows comparison of different time series X(t). The branching ratio b(x) is defined as b(x)=E[xi(x)/x]. The random variable xi(x) is the value of the next signal given that the previous one is equal to x, so xi(x)=[X(t+1) | X(t)=x]. If b(x)>1, the process is on average supercritical when the signal is equal to x, while if b(x)<1, it is subcritical. For stock prices we find b(x)=1 within statistical uncertainty, for all x, consistent with an "efficient market hypothesis." For stock volumes, solar x-ray flux intensities, and the Bak-Tang-Wiesenfeld (BTW) sandpile model, b(x) is supercritical for small values of activity and subcritical for the largest ones, indicating a tendency to return to a typical value. For stock volumes this tendency has an approximate power-law behavior. For solar x-ray flux and the BTW model, there is a broad regime of activity where b(x) approximately equal 1, which we interpret as an indicator of critical behavior. This is true despite different underlying probability distributions for X(t) and for xi(x). For the BTW model the distribution of xi(x) is Gaussian, for x sufficiently larger than 1, and its variance grows linearly with x. Hence, the activity in the BTW model obeys a central limit theorem when sampling over past histories. The broad region of activity where b(x) is close to one disappears once bulk dissipation is introduced in the BTW model-supporting our hypothesis that it is an indicator of criticality.
HERCULES X-1: USING ECLIPSE TO MEASURE THE X-RAY CORONA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leahy, D. A.
Observations of HZ Her/Her X-1 by the Rossi X-ray Timing Explorer during High State X-ray eclipses are analyzed. After a sharp ingress caused by the neutron star receding behind the companion star HZ Her, X-ray flux smoothly declines to a minimum at mid-eclipse. It then increases smoothly until egress. The mid-eclipse flux implies an extended emission region around the neutron star that is larger than that of HZ Her. The constancy of the X-ray softness ratio is consistent with electron scattering by an ionized corona. The corona is modeled as spherically symmetric with a power-law density profile. We find amore » best fit of ∝r {sup –1.25} with a normalization of ≅ 10{sup 12} cm{sup –3} at r = 2 × 10{sup 10} cm. The corona could either be in hydrostatic equilibrium, with heating by Compton scattering, a fast outflow, with a high mass-loss rate of ∼10{sup 18} gm s{sup –1}, or a hybrid, with an inner hydrostatic region and outer slow flow with a low mass-loss rate. A brightening at orbital phase 0.94 is suggested to be caused by the impact of the accretion stream with the accretion disk.« less