Sample records for x-ray talbot interferometry

  1. Spherical grating based x-ray Talbot interferometry.

    PubMed

    Cong, Wenxiang; Xi, Yan; Wang, Ge

    2015-11-01

    Grating interferometry is a state-of-the-art x-ray imaging approach, which can acquire information on x-ray attenuation, phase shift, and small-angle scattering simultaneously. Phase-contrast imaging and dark-field imaging are very sensitive to microstructural variation and offers superior contrast resolution for biological soft tissues. However, a common x-ray tube is a point-like source. As a result, the popular planar grating imaging configuration seriously restricts the flux of photons and decreases the visibility of signals, yielding a limited field of view. The purpose of this study is to extend the planar x-ray grating imaging theory and methods to a spherical grating scheme for a wider range of preclinical and clinical applications. A spherical grating matches the wave front of a point x-ray source very well, allowing the perpendicular incidence of x-rays on the grating to achieve a higher visibility over a larger field of view than the planer grating counterpart. A theoretical analysis of the Talbot effect for spherical grating imaging is proposed to establish a basic foundation for x-ray spherical gratings interferometry. An efficient method of spherical grating imaging is also presented to extract attenuation, differential phase, and dark-field images in the x-ray spherical grating interferometer. Talbot self-imaging with spherical gratings is analyzed based on the Rayleigh-Sommerfeld diffraction formula, featuring a periodic angular distribution in a polar coordinate system. The Talbot distance is derived to reveal the Talbot self-imaging pattern. Numerical simulation results show the self-imaging phenomenon of a spherical grating interferometer, which is in agreement with the theoretical prediction. X-ray Talbot interferometry with spherical gratings has a significant practical promise. Relative to planar grating imaging, spherical grating based x-ray Talbot interferometry has a larger field of view and improves both signal visibility and dose utilization for pre-clinical and clinical applications.

  2. Spherical grating based x-ray Talbot interferometry

    PubMed Central

    Cong, Wenxiang; Xi, Yan; Wang, Ge

    2015-01-01

    Purpose: Grating interferometry is a state-of-the-art x-ray imaging approach, which can acquire information on x-ray attenuation, phase shift, and small-angle scattering simultaneously. Phase-contrast imaging and dark-field imaging are very sensitive to microstructural variation and offers superior contrast resolution for biological soft tissues. However, a common x-ray tube is a point-like source. As a result, the popular planar grating imaging configuration seriously restricts the flux of photons and decreases the visibility of signals, yielding a limited field of view. The purpose of this study is to extend the planar x-ray grating imaging theory and methods to a spherical grating scheme for a wider range of preclinical and clinical applications. Methods: A spherical grating matches the wave front of a point x-ray source very well, allowing the perpendicular incidence of x-rays on the grating to achieve a higher visibility over a larger field of view than the planer grating counterpart. A theoretical analysis of the Talbot effect for spherical grating imaging is proposed to establish a basic foundation for x-ray spherical gratings interferometry. An efficient method of spherical grating imaging is also presented to extract attenuation, differential phase, and dark-field images in the x-ray spherical grating interferometer. Results: Talbot self-imaging with spherical gratings is analyzed based on the Rayleigh–Sommerfeld diffraction formula, featuring a periodic angular distribution in a polar coordinate system. The Talbot distance is derived to reveal the Talbot self-imaging pattern. Numerical simulation results show the self-imaging phenomenon of a spherical grating interferometer, which is in agreement with the theoretical prediction. Conclusions: X-ray Talbot interferometry with spherical gratings has a significant practical promise. Relative to planar grating imaging, spherical grating based x-ray Talbot interferometry has a larger field of view and improves both signal visibility and dose utilization for pre-clinical and clinical applications. PMID:26520741

  3. Spherical grating based x-ray Talbot interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cong, Wenxiang, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu; Xi, Yan, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu; Wang, Ge, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu

    2015-11-15

    Purpose: Grating interferometry is a state-of-the-art x-ray imaging approach, which can acquire information on x-ray attenuation, phase shift, and small-angle scattering simultaneously. Phase-contrast imaging and dark-field imaging are very sensitive to microstructural variation and offers superior contrast resolution for biological soft tissues. However, a common x-ray tube is a point-like source. As a result, the popular planar grating imaging configuration seriously restricts the flux of photons and decreases the visibility of signals, yielding a limited field of view. The purpose of this study is to extend the planar x-ray grating imaging theory and methods to a spherical grating scheme formore » a wider range of preclinical and clinical applications. Methods: A spherical grating matches the wave front of a point x-ray source very well, allowing the perpendicular incidence of x-rays on the grating to achieve a higher visibility over a larger field of view than the planer grating counterpart. A theoretical analysis of the Talbot effect for spherical grating imaging is proposed to establish a basic foundation for x-ray spherical gratings interferometry. An efficient method of spherical grating imaging is also presented to extract attenuation, differential phase, and dark-field images in the x-ray spherical grating interferometer. Results: Talbot self-imaging with spherical gratings is analyzed based on the Rayleigh–Sommerfeld diffraction formula, featuring a periodic angular distribution in a polar coordinate system. The Talbot distance is derived to reveal the Talbot self-imaging pattern. Numerical simulation results show the self-imaging phenomenon of a spherical grating interferometer, which is in agreement with the theoretical prediction. Conclusions: X-ray Talbot interferometry with spherical gratings has a significant practical promise. Relative to planar grating imaging, spherical grating based x-ray Talbot interferometry has a larger field of view and improves both signal visibility and dose utilization for pre-clinical and clinical applications.« less

  4. Cadaveric and in vivo human joint imaging based on differential phase contrast by X-ray Talbot-Lau interferometry.

    PubMed

    Tanaka, Junji; Nagashima, Masabumi; Kido, Kazuhiro; Hoshino, Yoshihide; Kiyohara, Junko; Makifuchi, Chiho; Nishino, Satoshi; Nagatsuka, Sumiya; Momose, Atsushi

    2013-09-01

    We developed an X-ray phase imaging system based on Talbot-Lau interferometry and studied its feasibility for clinical diagnoses of joint diseases. The system consists of three X-ray gratings, a conventional X-ray tube, an object holder, an X-ray image sensor, and a computer for image processing. The joints of human cadavers and healthy volunteers were imaged, and the results indicated sufficient sensitivity to cartilage, suggesting medical significance. Copyright © 2012. Published by Elsevier GmbH.

  5. Development of grating-based x-ray Talbot interferometry at the advanced photon source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marathe, Shashidhara; Xiao Xianghui; Wojcik, Michael J.

    2012-07-31

    We report on the ongoing effort to develop hard x-ray Talbot interferometry at the Advanced Photon Source (APS), Argonne National Laboratory, USA. We describe the design of the interferometer and preliminary results obtained at 25 keV using a feather and a phantom sample lithographically fabricated of gold. We mention the future developmental goals and applications of this technique as a metrology tool for x-ray optics and beam wavefront characterization.

  6. A general theory of interference fringes in x-ray phase grating imaging.

    PubMed

    Yan, Aimin; Wu, Xizeng; Liu, Hong

    2015-06-01

    The authors note that the concept of the Talbot self-image distance in x-ray phase grating interferometry is indeed not well defined for polychromatic x-rays, because both the grating phase shift and the fractional Talbot distances are all x-ray wavelength-dependent. For x-ray interferometry optimization, there is a need for a quantitative theory that is able to predict if a good intensity modulation is attainable at a given grating-to-detector distance. In this work, the authors set out to meet this need. In order to apply Fourier analysis directly to the intensity fringe patterns of two-dimensional and one-dimensional phase grating interferometers, the authors start their derivation from a general phase space theory of x-ray phase-contrast imaging. Unlike previous Fourier analyses, the authors evolved the Wigner distribution to obtain closed-form expressions of the Fourier coefficients of the intensity fringes for any grating-to-detector distance, even if it is not a fractional Talbot distance. The developed theory determines the visibility of any diffraction order as a function of the grating-to-detector distance, the phase shift of the grating, and the x-ray spectrum. The authors demonstrate that the visibilities of diffraction orders can serve as the indicators of the underlying interference intensity modulation. Applying the theory to the conventional and inverse geometry configurations of single-grating interferometers, the authors demonstrated that the proposed theory provides a quantitative tool for the grating interferometer optimization with or without the Talbot-distance constraints. In this work, the authors developed a novel theory of the interference intensity fringes in phase grating x-ray interferometry. This theory provides a quantitative tool in design optimization of phase grating x-ray interferometers.

  7. Talbot-Lau x-ray interferometry for high energy density plasma diagnostic.

    PubMed

    Stutman, D; Finkenthal, M

    2011-11-01

    High resolution density diagnostics are difficult in high energy density laboratory plasmas (HEDLP) experiments due to the scarcity of probes that can penetrate above solid density plasmas. Hard x-rays are one possible probe for such dense plasmas. We study the possibility of applying an x-ray method recently developed for medical imaging, differential phase-contrast with Talbot-Lau interferometers, for the diagnostic of electron density and small-scale hydrodynamic instabilities in HEDLP experiments. The Talbot method uses micro-periodic gratings to measure the refraction and ultra-small angle scatter of x-rays through an object and is attractive for HEDLP diagnostic due to its capability to work with incoherent and polychromatic x-ray sources such as the laser driven backlighters used for HEDLP radiography. Our paper studies the potential of the Talbot method for HEDLP diagnostic, its adaptation to the HEDLP environment, and its extension of high x-ray energy using micro-periodic mirrors. The analysis is illustrated with experimental results obtained using a laboratory Talbot interferometer. © 2011 American Institute of Physics

  8. Complex dark-field contrast and its retrieval in x-ray phase contrast imaging implemented with Talbot interferometry.

    PubMed

    Yang, Yi; Tang, Xiangyang

    2014-10-01

    Under the existing theoretical framework of x-ray phase contrast imaging methods implemented with Talbot interferometry, the dark-field contrast refers to the reduction in interference fringe visibility due to small-angle x-ray scattering of the subpixel microstructures of an object to be imaged. This study investigates how an object's subpixel microstructures can also affect the phase of the intensity oscillations. Instead of assuming that the object's subpixel microstructures distribute in space randomly, the authors' theoretical derivation starts by assuming that an object's attenuation projection and phase shift vary at a characteristic size that is not smaller than the period of analyzer grating G₂ and a characteristic length dc. Based on the paraxial Fresnel-Kirchhoff theory, the analytic formulae to characterize the zeroth- and first-order Fourier coefficients of the x-ray irradiance recorded at each detector cell are derived. Then the concept of complex dark-field contrast is introduced to quantify the influence of the object's microstructures on both the interference fringe visibility and the phase of intensity oscillations. A method based on the phase-attenuation duality that holds for soft tissues and high x-ray energies is proposed to retrieve the imaginary part of the complex dark-field contrast for imaging. Through computer simulation study with a specially designed numerical phantom, they evaluate and validate the derived analytic formulae and the proposed retrieval method. Both theoretical analysis and computer simulation study show that the effect of an object's subpixel microstructures on x-ray phase contrast imaging method implemented with Talbot interferometry can be fully characterized by a complex dark-field contrast. The imaginary part of complex dark-field contrast quantifies the influence of the object's subpixel microstructures on the phase of intensity oscillations. Furthermore, at relatively high energies, for soft tissues it can be retrieved for imaging with a method based on the phase-attenuation duality. The analytic formulae derived in this work to characterize the complex dark-field contrast in x-ray phase contrast imaging method implemented with Talbot interferometry are of significance, which may initiate more activities in the research and development of x-ray differential phase contrast imaging for extensive biomedical applications.

  9. The second-order differential phase contrast and its retrieval for imaging with x-ray Talbot interferometry.

    PubMed

    Yang, Yi; Tang, Xiangyang

    2012-12-01

    The x-ray differential phase contrast imaging implemented with the Talbot interferometry has recently been reported to be capable of providing tomographic images corresponding to attenuation-contrast, phase-contrast, and dark-field contrast, simultaneously, from a single set of projection data. The authors believe that, along with small-angle x-ray scattering, the second-order phase derivative Φ(") (s)(x) plays a role in the generation of dark-field contrast. In this paper, the authors derive the analytic formulae to characterize the contribution made by the second-order phase derivative to the dark-field contrast (namely, second-order differential phase contrast) and validate them via computer simulation study. By proposing a practical retrieval method, the authors investigate the potential of second-order differential phase contrast imaging for extensive applications. The theoretical derivation starts at assuming that the refractive index decrement of an object can be decomposed into δ = δ(s) + δ(f), where δ(f) corresponds to the object's fine structures and manifests itself in the dark-field contrast via small-angle scattering. Based on the paraxial Fresnel-Kirchhoff theory, the analytic formulae to characterize the contribution made by δ(s), which corresponds to the object's smooth structures, to the dark-field contrast are derived. Through computer simulation with specially designed numerical phantoms, an x-ray differential phase contrast imaging system implemented with the Talbot interferometry is utilized to evaluate and validate the derived formulae. The same imaging system is also utilized to evaluate and verify the capability of the proposed method to retrieve the second-order differential phase contrast for imaging, as well as its robustness over the dimension of detector cell and the number of steps in grating shifting. Both analytic formulae and computer simulations show that, in addition to small-angle scattering, the contrast generated by the second-order derivative is magnified substantially by the ratio of detector cell dimension over grating period, which plays a significant role in dark-field imaging implemented with the Talbot interferometry. The analytic formulae derived in this work to characterize the second-order differential phase contrast in the dark-field imaging implemented with the Talbot interferometry are of significance, which may initiate more activities in the research and development of x-ray differential phase contrast imaging for extensive preclinical and eventually clinical applications.

  10. Bone cartilage imaging with x-ray interferometry using a practical x-ray tube

    NASA Astrophysics Data System (ADS)

    Kido, Kazuhiro; Makifuchi, Chiho; Kiyohara, Junko; Itou, Tsukasa; Honda, Chika; Momose, Atsushi

    2010-04-01

    The purpose of this study was to design an X-ray Talbot-Lau interferometer for the imaging of bone cartilage using a practical X-ray tube and to develop that imaging system for clinical use. Wave-optics simulation was performed to design the interferometer with a practical X-ray tube, a source grating, two X-ray gratings, and an X-ray detector. An imaging system was created based on the results of the simulation. The specifications were as follows: the focal spot size was 0.3 mm of an X-ray tube with a tungsten anode (Toshiba, Tokyo, Japan). The tube voltage was set at 40 kVp with an additive aluminum filter, and the mean energy was 31 keV. The pixel size of the X-ray detector, a Condor 486 (Fairchild Imaging, California, USA), was 15 μm. The second grating was a Ronchi-type grating whose pitch was 5.3 μm. Imaging performance of the system was examined with X-ray doses of 0.5, 3 and 9 mGy so that the bone cartilage of a chicken wing was clearly depicted with X-ray doses of 3 and 9 mGy. This was consistent with the simulation's predictions. The results suggest that X-ray Talbot-Lau interferometry would be a promising tool in detecting soft tissues in the human body such as bone cartilage for the X-ray image diagnosis of rheumatoid arthritis. Further optimization of the system will follow to reduce the X-ray dose for clinical use.

  11. X-ray phase scanning setup for non-destructive testing using Talbot-Lau interferometer

    NASA Astrophysics Data System (ADS)

    Bachche, S.; Nonoguchi, M.; Kato, K.; Kageyama, M.; Koike, T.; Kuribayashi, M.; Momose, A.

    2016-09-01

    X-ray grating interferometry has a great potential for X-ray phase imaging over conventional X-ray absorption imaging which does not provide significant contrast for weakly absorbing objects and soft biological tissues. X-ray Talbot and Talbot-Lau interferometers which are composed of transmission gratings and measure the differential X-ray phase shifts have gained popularity because they operate with polychromatic beams. In X-ray radiography, especially for nondestructive testing in industrial applications, the feasibility of continuous sample scanning is not yet completely revealed. A scanning setup is frequently advantageous when compared to a direct 2D static image acquisition in terms of field of view, exposure time, illuminating radiation, etc. This paper demonstrates an efficient scanning setup for grating-based Xray phase imaging using laboratory-based X-ray source. An apparatus consisting of an X-ray source that emits X-rays vertically, optical gratings and a photon-counting detector was used with which continuously moving objects across the field of view as that of conveyor belt system can be imaged. The imaging performance of phase scanner was tested by scanning a long continuous moving sample at a speed of 5 mm/s and absorption, differential-phase and visibility images were generated by processing non-uniform moire movie with our specially designed phase measurement algorithm. A brief discussion on the feasibility of phase scanner with scanning setup approach including X-ray phase imaging performance is reported. The successful results suggest a breakthrough for scanning objects those are moving continuously on conveyor belt system non-destructively using the scheme of X-ray phase imaging.

  12. A preclinical Talbot-Lau prototype for x-ray dark-field imaging of human-sized objects.

    PubMed

    Hauke, C; Bartl, P; Leghissa, M; Ritschl, L; Sutter, S M; Weber, T; Zeidler, J; Freudenberger, J; Mertelmeier, T; Radicke, M; Michel, T; Anton, G; Meinel, F G; Baehr, A; Auweter, S; Bondesson, D; Gaass, T; Dinkel, J; Reiser, M; Hellbach, K

    2018-06-01

    Talbot-Lau x-ray interferometry provides information about the scattering and refractive properties of an object - in addition to the object's attenuation features. Until recently, this method was ineligible for imaging human-sized objects as it is challenging to adapt Talbot-Lau interferometers (TLIs) to the relevant x-ray energy ranges. In this work, we present a preclinical Talbot-Lau prototype capable of imaging human-sized objects with proper image quality at clinically acceptable dose levels. The TLI is designed to match a setup of clinical relevance as closely as possible. The system provides a scan range of 120 × 30 cm 2 by using a scanning beam geometry. Its ultimate load is 100 kg. High aspect ratios and fine grid periods of the gratings ensure a reasonable setup length and clinically relevant image quality. The system is installed in a university hospital and is, therefore, exposed to the external influences of a clinical environment. To demonstrate the system's capabilities, a full-body scan of a euthanized pig was performed. In addition, freshly excised porcine lungs with an extrinsically provoked pneumothorax were mounted into a human thorax phantom and examined with the prototype. Both examination sequences resulted in clinically relevant image quality - even in the case of a skin entrance air kerma of only 0.3 mGy which is in the range of human thoracic imaging. The presented case of a pneumothorax and a reader study showed that the prototype's dark-field images provide added value for pulmonary diagnosis. We demonstrated that a dedicated design of a Talbot-Lau interferometer can be applied to medical imaging by constructing a preclinical Talbot-Lau prototype. We experienced that the system is feasible for imaging human-sized objects and the phase-stepping approach is suitable for clinical practice. Hence, we conclude that Talbot-Lau x-ray imaging has potential for clinical use and enhances the diagnostic power of medical x-ray imaging. © 2018 American Association of Physicists in Medicine.

  13. Large-angle x-ray scatter in Talbot-Lau interferometry for breast imaging

    PubMed Central

    Vedantham, Srinivasan; Shi, Linxi; Karellas, Andrew

    2014-01-01

    Monte Carlo simulations were used to investigate large-angle x-ray scatter at design energy of 25 keV during small field of view (9.6 cm × 5 cm) differential phase contrast imaging of the breast using Talbot-Lau interferometry. Homogenous, adipose and fibroglandular breasts of uniform thickness ranging from 2 to 8 cm encompassing the field of view were modeled. Theoretically determined transmission efficiencies of the gratings were used to validate the Monte Carlo simulations, followed by simulations to determine the x-ray scatter reaching the detector. The recorded x-ray scatter was classified into x-ray photons that underwent at least one Compton interaction (incoherent scatter) and Rayleigh interaction alone (coherent scatter) for further analysis. Monte Carlo based estimates of transmission efficiencies showed good correspondence (r2 > 0.99) with theoretical estimates. Scatter-to-primary ratio increased with increasing breast thickness, ranging from 0.11 to 0.22 for 2 to 8 cm thick adipose breasts and from 0.12 to 0.28 for 2 to 8 cm thick fibroglandular breasts. The analyzer grating reduced incoherent scatter by ~18% for 2 cm thick adipose breast and by ~35% for 8 cm thick fibroglandular breast. Coherent scatter was the dominant contributor to the total scatter. Coherent-to-incoherent scatter ratio ranged from 2.2 to 3.1 for 2 to 8 cm thick adipose breasts and from 2.7 to 3.4 for 2 to 8 cm thick fibroglandular breasts. PMID:25295630

  14. A new method for fusion, denoising and enhancement of x-ray images retrieved from Talbot-Lau grating interferometry.

    PubMed

    Scholkmann, Felix; Revol, Vincent; Kaufmann, Rolf; Baronowski, Heidrun; Kottler, Christian

    2014-03-21

    This paper introduces a new image denoising, fusion and enhancement framework for combining and optimal visualization of x-ray attenuation contrast (AC), differential phase contrast (DPC) and dark-field contrast (DFC) images retrieved from x-ray Talbot-Lau grating interferometry. The new image fusion framework comprises three steps: (i) denoising each input image (AC, DPC and DFC) through adaptive Wiener filtering, (ii) performing a two-step image fusion process based on the shift-invariant wavelet transform, i.e. first fusing the AC with the DPC image and then fusing the resulting image with the DFC image, and finally (iii) enhancing the fused image to obtain a final image using adaptive histogram equalization, adaptive sharpening and contrast optimization. Application examples are presented for two biological objects (a human tooth and a cherry) and the proposed method is compared to two recently published AC/DPC/DFC image processing techniques. In conclusion, the new framework for the processing of AC, DPC and DFC allows the most relevant features of all three images to be combined in one image while reducing the noise and enhancing adaptively the relevant image features. The newly developed framework may be used in technical and medical applications.

  15. X-ray Optics Testing Beamline 1-BM at the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macrander, Albert; Erdmann, Mark; Kujala, Naresh

    2016-07-27

    Beamline 1-BM at the APS has been reconfigured in part for testing of synchrotron optics with both monochromatic and white beams. Operational since 2013, it was reconfigured to accommodate users of the APS as well as users from other DOE facilities. Energies between 6 and 28 keV are available. The beamline was reconfigured to remove two large mirrors and to provide a 100 mm wide monochromatics beam at 54 m from the source. In addition a custom white beam shutter was implemented for topography exposures as short as 65 millisec over the full available horizontal width. Primary agendas include bothmore » white beam and monochromatic beam topography, Talbot grating interferometry, and tests of focusing optics. K-B mirrors, MLLs, and FZPs have been characterized. Measurements of the spatial coherence lengths on the beamline were obtained with Talbot interferometry. Topography data has been reported.« less

  16. X-ray optics testing beamline 1-BM at the advanced photon source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macrander, Albert, E-mail: atm@anl.gov; Erdmann, Mark; Kujala, Naresh

    2016-07-27

    Beamline 1-BM at the APS has been reconfigured in part for testing of synchrotron optics with both monochromatic and white beams. Operational since 2013, it was reconfigured to accommodate users of the APS as well as users from other DOE facilities. Energies between 6 and 28 keV are available. The beamline was reconfigured to remove two large mirrors and to provide a 100 mm wide monochromatic beam at 54 m from the source. In addition a custom white beam shutter was implemented for topography exposures as short as 65 millisec over the full available horizontal width. Primary agendas include bothmore » white beam and monochromatic beam topography, Talbot grating interferometry, and tests of focusing optics. K-B mirrors, MLLs, and FZPs have been characterized. Measurements of the spatial coherence lengths on the beamline were obtained with Talbot interferometry. Topography data has been reported.« less

  17. Enhancing Tabletop X-Ray Phase Contrast Imaging with Nano-Fabrication

    PubMed Central

    Miao, Houxun; Gomella, Andrew A.; Harmon, Katherine J.; Bennett, Eric E.; Chedid, Nicholas; Znati, Sami; Panna, Alireza; Foster, Barbara A.; Bhandarkar, Priya; Wen, Han

    2015-01-01

    X-ray phase-contrast imaging is a promising approach for improving soft-tissue contrast and lowering radiation dose in biomedical applications. While current tabletop imaging systems adapt to common x-ray tubes and large-area detectors by employing absorptive elements such as absorption gratings or monolithic crystals to filter the beam, we developed nanometric phase gratings which enable tabletop x-ray far-field interferometry with only phase-shifting elements, leading to a substantial enhancement in the performance of phase contrast imaging. In a general sense the method transfers the demands on the spatial coherence of the x-ray source and the detector resolution to the feature size of x-ray phase masks. We demonstrate its capabilities in hard x-ray imaging experiments at a fraction of clinical dose levels and present comparisons with the existing Talbot-Lau interferometer and with conventional digital radiography. PMID:26315891

  18. Talbot-Lau x-ray deflectometry phase-retrieval methods for electron density diagnostics in high-energy density experiments.

    PubMed

    Valdivia, Maria Pia; Stutman, Dan; Stoeckl, Christian; Mileham, Chad; Begishev, Ildar A; Bromage, Jake; Regan, Sean P

    2018-01-10

    Talbot-Lau x-ray interferometry uses incoherent x-ray sources to measure refraction index changes in matter. These measurements can provide accurate electron density mapping through phase retrieval. An adaptation of the interferometer has been developed in order to meet the specific requirements of high-energy density experiments. This adaptation is known as a moiré deflectometer, which allows for single-shot capabilities in the form of interferometric fringe patterns. The moiré x-ray deflectometry technique requires a set of object and reference images in order to provide electron density maps, which can be costly in the high-energy density environment. In particular, synthetic reference phase images obtained ex situ through a phase-scan procedure, can provide a feasible solution. To test this procedure, an object phase map was retrieved from a single-shot moiré image obtained from a plasma-produced x-ray source. A reference phase map was then obtained from phase-stepping measurements using a continuous x-ray tube source in a small laboratory setting. The two phase maps were used to retrieve an electron density map. A comparison of the moiré and phase-stepping phase-retrieval methods was performed to evaluate single-exposure plasma electron density mapping for high-energy density and other transient plasma experiments. It was found that a combination of phase-retrieval methods can deliver accurate refraction angle mapping. Once x-ray backlighter quality is optimized, the ex situ method is expected to deliver electron density mapping with improved resolution. The steps necessary for improved diagnostic performance are discussed.

  19. Grating-based x-ray differential phase contrast imaging with twin peaks in phase-stepping curves—phase retrieval and dewrapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yi; Xie, Huiqiao; Tang, Xiangyang, E-mail: xiangyang.tang@emory.edu

    Purpose: X-ray differential phase contrast CT implemented with Talbot interferometry employs phase-stepping to extract information of x-ray attenuation, phase shift, and small-angle scattering. Since inaccuracy may exist in the absorption grating G{sub 2} due to an imperfect fabrication, the effective period of G{sub 2} can be as large as twice the nominal period, leading to a phenomenon of twin peaks that differ remarkably in their heights. In this work, the authors investigate how to retrieve and dewrap the phase signal from the phase-stepping curve (PSC) with the feature of twin peaks for x-ray phase contrast imaging. Methods: Based on themore » paraxial Fresnel–Kirchhoff theory, the analytical formulae to characterize the phenomenon of twin peaks in the PSC are derived. Then an approach to dewrap the retrieved phase signal by jointly using the phases of the first- and second-order Fourier components is proposed. Through an experimental investigation using a prototype x-ray phase contrast imaging system implemented with Talbot interferometry, the authors evaluate and verify the derived analytic formulae and the proposed approach for phase retrieval and dewrapping. Results: According to theoretical analysis, the twin-peak phenomenon in PSC is a consequence of combined effects, including the inaccuracy in absorption grating G{sub 2}, mismatch between phase grating and x-ray source spectrum, and finite size of x-ray tube’s focal spot. The proposed approach is experimentally evaluated by scanning a phantom consisting of organic materials and a lab mouse. The preliminary data show that compared to scanning G{sub 2} over only one single nominal period and correcting the measured phase signal with an intuitive phase dewrapping method that is being used in the field, stepping G{sub 2} over twice its nominal period and dewrapping the measured phase signal with the proposed approach can significantly improve the quality of x-ray differential phase contrast imaging in both radiograph and CT. Conclusions: Using the phase retrieval and dewrapping methods proposed to deal with the phenomenon of twin peaks in PSCs and phase wrapping, the performance of grating-based x-ray differential phase contrast radiography and CT can be significantly improved.« less

  20. X-ray phase-contrast imaging at 100 keV on a conventional source

    PubMed Central

    Thüring, T.; Abis, M.; Wang, Z.; David, C.; Stampanoni, M.

    2014-01-01

    X-ray grating interferometry is a promising imaging technique sensitive to attenuation, refraction and scattering of the radiation. Applications of this technique in the energy range between 80 and 150 keV pose severe technical challenges, and are still mostly unexplored. Phase-contrast X-ray imaging at such high energies is of relevant scientific and industrial interest, in particular for the investigation of strongly absorbing or thick materials as well as for medical imaging. Here we show the successful implementation of a Talbot-Lau interferometer operated at 100 keV using a conventional X-ray tube and a compact geometry, with a total length of 54 cm. We present the edge-on illumination of the gratings in order to overcome the current fabrication limits. Finally, the curved structures match the beam divergence and allow a large field of view on a short and efficient setup. PMID:24903579

  1. Experimental research on the feature of an x-ray Talbot-Lau interferometer versus tube accelerating voltage

    NASA Astrophysics Data System (ADS)

    Wang, Sheng-Hao; Margie, P. Olbinado; Atsushi, Momose; Hua-Jie, Han; Hu, Ren-Fang; Wang, Zhi-Li; Gao, Kun; Zhang, Kai; Zhu, Pei-Ping; Wu, Zi-Yu

    2015-06-01

    X-ray Talbot-Lau interferometer has been used most widely to perform x-ray phase-contrast imaging with a conventional low-brilliance x-ray source, and it yields high-sensitivity phase and dark-field images of samples producing low absorption contrast, thus bearing tremendous potential for future clinical diagnosis. In this work, by changing the accelerating voltage of the x-ray tube from 35 kV to 45 kV, x-ray phase-contrast imaging of a test sample is performed at each integer value of the accelerating voltage to investigate the characteristic of an x-ray Talbot-Lau interferometer (located in the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Japan) versus tube voltage. Experimental results and data analysis show that within a range this x-ray Talbot-Lau interferometer is not sensitive to the accelerating voltage of the tube with a constant fringe visibility of ˜ 44%. This x-ray Talbot-Lau interferometer research demonstrates the feasibility of a new dual energy phase-contrast x-ray imaging strategy and the possibility to collect a refraction spectrum. Project supported by the Major State Basic Research Development Program of China (Grant No. 2012CB825800), the Science Fund for Creative Research Groups, China (Grant No. 11321503), the National Natural Science Foundation of China (Grant Nos. 11179004, 10979055, 11205189, and 11205157), and the Japan-Asia Youth Exchange Program in Science (SAKURA Exchange Program in Science) Administered by the Japan Science and Technology Agency.

  2. Investigating biofilm structure using x-ray microtomography and gratings-based phase contrast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Erin A.; Xiao, Xianghui; Miller, Micah D.

    2012-10-17

    Direct examination of natural and engineered environments has revealed that the majority of microorganisms in these systems live in structured communities termed biofilms. To gain a better understanding for how biofilms function and interact with their local environment, fundamental capabilities for enhanced visualization, compositional analysis, and functional characterization of biofilms are needed. For pore-scale and community-scale analysis (100’s of nm to 10’s of microns), a variety of surface tools are available. However, understanding biofilm structure in complex three-dimensional (3-D) environments is considerably more difficult. X-ray microtomography can reveal a biofilm’s internal structure, but the obtaining sufficient contrast to image low-Zmore » biological material against a higher-Z substrate makes detecting biofilms difficult. Here we present results imaging Shewanella oneidensis biofilms on a Hollow-fiber Membrane Biofilm Reactor (HfMBR), using the x-ray microtomography system at sector 2-BM of the Advanced Photon Source (APS), at energies ranging from 13-15.4 keV and pixel sizes of 0.7 and 1.3 μm/pixel. We examine the use of osmium (Os) as a contrast agent to enhance biofilm visibility and demonstrate that staining improves imaging of hydrated biofilms. We also present results using a Talbot interferometer to provide phase and scatter contrast information in addition to absorption. Talbot interferometry allows imaging of unstained hydrated biofilms with phase contrast, while absorption contrast primarily highlights edges and scatter contrast provides little information. However, the gratings used here limit the spatial resolution to no finer than 2 μm, which hinders the ability to detect small features. Future studies at higher resolution or higher Talbot order for greater sensitivity to density variations may improve imaging.« less

  3. X-ray simulations method for the large field of view

    NASA Astrophysics Data System (ADS)

    Schelokov, I. A.; Grigoriev, M. V.; Chukalina, M. V.; Asadchikov, V. E.

    2018-03-01

    In the standard approach, X-ray simulation is usually limited to the step of spatial sampling to calculate the convolution of integrals of the Fresnel type. Explicitly the sampling step is determined by the size of the last Fresnel zone in the beam aperture. In other words, the spatial sampling is determined by the precision of integral convolution calculations and is not connected with the space resolution of an optical scheme. In the developed approach the convolution in the normal space is replaced by computations of the shear strain of ambiguity function in the phase space. The spatial sampling is then determined by the space resolution of an optical scheme. The sampling step can differ in various directions because of the source anisotropy. The approach was used to simulate original images in the X-ray Talbot interferometry and showed that the simulation can be applied to optimize the methods of postprocessing.

  4. Talbot-Lau x-ray deflectometer electron density diagnostic for laser and pulsed power high energy density plasma experiments (invited).

    PubMed

    Valdivia, M P; Stutman, D; Stoeckl, C; Mileham, C; Begishev, I A; Theobald, W; Bromage, J; Regan, S P; Klein, S R; Muñoz-Cordovez, G; Vescovi, M; Valenzuela-Villaseca, V; Veloso, F

    2016-11-01

    Talbot-Lau X-ray deflectometry (TXD) has been developed as an electron density diagnostic for High Energy Density (HED) plasmas. The technique can deliver x-ray refraction, attenuation, elemental composition, and scatter information from a single Moiré image. An 8 keV Talbot-Lau interferometer was deployed using laser and x-pinch backlighters. Grating survival and electron density mapping were demonstrated for 25-29 J, 8-30 ps laser pulses using copper foil targets. Moiré pattern formation and grating survival were also observed using a copper x-pinch driven at 400 kA, ∼1 kA/ns. These results demonstrate the potential of TXD as an electron density diagnostic for HED plasmas.

  5. Talbot-Lau X-ray Deflectometer electron density diagnostic for laser and pulsed power high energy density plasma experiments

    DOE PAGES

    Valdivia, M. P.; Stutman, D.; Stoeckl, C.; ...

    2016-04-21

    Talbot-Lau X-ray Deflectometry has been developed as an electron density diagnostic for High Energy Density plasmas. The technique can deliver x-ray refraction, attenuation, elemental composition, and scatter information from a single Moiré image. An 8 keV Talbot-Lau interferometer was deployed using laser and x-pinch backlighters. Grating survival and electron density mapping was demonstrated for 25-29 J, 8-30 ps laser pulses using copper foil targets. Moire pattern formation and grating survival was also observed using a copper x-pinch driven at 400 kA, ~1 kA/ns. Lastly, these results demonstrate the potential of TXD as an electron density diagnostic for HED plasmas.

  6. Talbot-Lau x-ray deflectometer electron density diagnostic for laser and pulsed power high energy density plasma experiments (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valdivia, M. P., E-mail: mpvaldivia@pha.jhu.edu; Stutman, D.; Stoeckl, C.

    2016-11-15

    Talbot-Lau X-ray deflectometry (TXD) has been developed as an electron density diagnostic for High Energy Density (HED) plasmas. The technique can deliver x-ray refraction, attenuation, elemental composition, and scatter information from a single Moiré image. An 8 keV Talbot-Lau interferometer was deployed using laser and x-pinch backlighters. Grating survival and electron density mapping were demonstrated for 25–29 J, 8–30 ps laser pulses using copper foil targets. Moiré pattern formation and grating survival were also observed using a copper x-pinch driven at 400 kA, ∼1 kA/ns. These results demonstrate the potential of TXD as an electron density diagnostic for HED plasmas.

  7. Ideal-observer detectability in photon-counting differential phase-contrast imaging using a linear-systems approach

    PubMed Central

    Fredenberg, Erik; Danielsson, Mats; Stayman, J. Webster; Siewerdsen, Jeffrey H.; Åslund, Magnus

    2012-01-01

    Purpose: To provide a cascaded-systems framework based on the noise-power spectrum (NPS), modulation transfer function (MTF), and noise-equivalent number of quanta (NEQ) for quantitative evaluation of differential phase-contrast imaging (Talbot interferometry) in relation to conventional absorption contrast under equal-dose, equal-geometry, and, to some extent, equal-photon-economy constraints. The focus is a geometry for photon-counting mammography. Methods: Phase-contrast imaging is a promising technology that may emerge as an alternative or adjunct to conventional absorption contrast. In particular, phase contrast may increase the signal-difference-to-noise ratio compared to absorption contrast because the difference in phase shift between soft-tissue structures is often substantially larger than the absorption difference. We have developed a comprehensive cascaded-systems framework to investigate Talbot interferometry, which is a technique for differential phase-contrast imaging. Analytical expressions for the MTF and NPS were derived to calculate the NEQ and a task-specific ideal-observer detectability index under assumptions of linearity and shift invariance. Talbot interferometry was compared to absorption contrast at equal dose, and using either a plane wave or a spherical wave in a conceivable mammography geometry. The impact of source size and spectrum bandwidth was included in the framework, and the trade-off with photon economy was investigated in some detail. Wave-propagation simulations were used to verify the analytical expressions and to generate example images. Results: Talbot interferometry inherently detects the differential of the phase, which led to a maximum in NEQ at high spatial frequencies, whereas the absorption-contrast NEQ decreased monotonically with frequency. Further, phase contrast detects differences in density rather than atomic number, and the optimal imaging energy was found to be a factor of 1.7 higher than for absorption contrast. Talbot interferometry with a plane wave increased detectability for 0.1-mm tumor and glandular structures by a factor of 3–4 at equal dose, whereas absorption contrast was the preferred method for structures larger than ∼0.5 mm. Microcalcifications are small, but differ from soft tissue in atomic number more than density, which is favored by absorption contrast, and Talbot interferometry was barely beneficial at all within the resolution limit of the system. Further, Talbot interferometry favored detection of “sharp” as opposed to “smooth” structures, and discrimination tasks by about 50% compared to detection tasks. The technique was relatively insensitive to spectrum bandwidth, whereas the projected source size was more important. If equal photon economy was added as a restriction, phase-contrast efficiency was reduced so that the benefit for detection tasks almost vanished compared to absorption contrast, but discrimination tasks were still improved close to a factor of 2 at the resolution limit. Conclusions: Cascaded-systems analysis enables comprehensive and intuitive evaluation of phase-contrast efficiency in relation to absorption contrast under requirements of equal dose, equal geometry, and equal photon economy. The benefit of Talbot interferometry was highly dependent on task, in particular detection versus discrimination tasks, and target size, shape, and material. Requiring equal photon economy weakened the benefit of Talbot interferometry in mammography. PMID:22957600

  8. Moiré deflectometry using the Talbot-Lau interferometer as refraction diagnostic for High Energy Density plasmas at energies below 10 keV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valdivia, M. P.; Stutman, D.; Finkenthal, M.

    2014-07-15

    The highly localized density gradients expected in High Energy Density (HED) plasma experiments can be characterized by x-ray phase-contrast imaging in addition to conventional attenuation radiography. Moiré deflectometry using the Talbot-Lau grating interferometer setup is an attractive HED diagnostic due to its high sensitivity to refraction induced phase shifts. We report on the adaptation of such a system for operation in the sub-10 keV range by using a combination of free standing and ultrathin Talbot gratings. This new x-ray energy explored matches well the current x-ray backlighters used for HED experiments, while also enhancing phase effects at lower electron densities.more » We studied the performance of the high magnification, low energy Talbot-Lau interferometer, for single image phase retrieval using Moiré fringe deflectometry. Our laboratory and simulation studies indicate that such a device is able to retrieve object electron densities from phase shift measurements. Using laboratory x-ray sources from 7 to 15 μm size we obtained accurate simultaneous measurements of refraction and attenuation for both sharp and mild electron density gradients.« less

  9. Moiré deflectometry using the Talbot-Lau interferometer as refraction diagnostic for high energy density plasmas at energies below 10 keV.

    PubMed

    Valdivia, M P; Stutman, D; Finkenthal, M

    2014-07-01

    The highly localized density gradients expected in High Energy Density (HED) plasma experiments can be characterized by x-ray phase-contrast imaging in addition to conventional attenuation radiography. Moiré deflectometry using the Talbot-Lau grating interferometer setup is an attractive HED diagnostic due to its high sensitivity to refraction induced phase shifts. We report on the adaptation of such a system for operation in the sub-10 keV range by using a combination of free standing and ultrathin Talbot gratings. This new x-ray energy explored matches well the current x-ray backlighters used for HED experiments, while also enhancing phase effects at lower electron densities. We studied the performance of the high magnification, low energy Talbot-Lau interferometer, for single image phase retrieval using Moiré fringe deflectometry. Our laboratory and simulation studies indicate that such a device is able to retrieve object electron densities from phase shift measurements. Using laboratory x-ray sources from 7 to 15 μm size we obtained accurate simultaneous measurements of refraction and attenuation for both sharp and mild electron density gradients.

  10. Correction of data truncation artifacts in differential phase contrast (DPC) tomosynthesis imaging

    NASA Astrophysics Data System (ADS)

    Garrett, John; Ge, Yongshuai; Li, Ke; Chen, Guang-Hong

    2015-10-01

    The use of grating based Talbot-Lau interferometry permits the acquisition of differential phase contrast (DPC) imaging with a conventional medical x-ray source and detector. However, due to the limited area of the gratings, limited area of the detector, or both, data truncation image artifacts are often observed in tomographic DPC acquisitions and reconstructions, such as tomosynthesis (limited-angle tomography). When data are truncated in the conventional x-ray absorption tomosynthesis imaging, a variety of methods have been developed to mitigate the truncation artifacts. However, the same strategies used to mitigate absorption truncation artifacts do not yield satisfactory reconstruction results in DPC tomosynthesis reconstruction. In this work, several new methods have been proposed to mitigate data truncation artifacts in a DPC tomosynthesis system. The proposed methods have been validated using experimental data of a mammography accreditation phantom, a bovine udder, as well as several human cadaver breast specimens using a bench-top DPC imaging system at our facility.

  11. Phase-space evolution of x-ray coherence in phase-sensitive imaging.

    PubMed

    Wu, Xizeng; Liu, Hong

    2008-08-01

    X-ray coherence evolution in the imaging process plays a key role for x-ray phase-sensitive imaging. In this work we present a phase-space formulation for the phase-sensitive imaging. The theory is reformulated in terms of the cross-spectral density and associated Wigner distribution. The phase-space formulation enables an explicit and quantitative account of partial coherence effects on phase-sensitive imaging. The presented formulas for x-ray spectral density at the detector can be used for performing accurate phase retrieval and optimizing the phase-contrast visibility. The concept of phase-space shearing length derived from this phase-space formulation clarifies the spatial coherence requirement for phase-sensitive imaging with incoherent sources. The theory has been applied to x-ray Talbot interferometric imaging as well. The peak coherence condition derived reveals new insights into three-grating-based Talbot-interferometric imaging and gratings-based x-ray dark-field imaging.

  12. High-energy x-ray grating-based phase-contrast radiography of human anatomy

    NASA Astrophysics Data System (ADS)

    Horn, Florian; Hauke, Christian; Lachner, Sebastian; Ludwig, Veronika; Pelzer, Georg; Rieger, Jens; Schuster, Max; Seifert, Maria; Wandner, Johannes; Wolf, Andreas; Michel, Thilo; Anton, Gisela

    2016-03-01

    X-ray grating-based phase-contrast Talbot-Lau interferometry is a promising imaging technology that has the potential to raise soft tissue contrast in comparison to conventional attenuation-based imaging. Additionally, it is sensitive to attenuation, refraction and scattering of the radiation and thus provides complementary and otherwise inaccessible information due to the dark-field image, which shows the sub-pixel size granularity of the measured object. Until recent progress the method has been mainly limited to photon energies below 40 keV. Scaling the method to photon energies that are sufficient to pass large and spacious objects represents a challenging task. This is caused by increasing demands regarding the fabrication process of the gratings and the broad spectra that come along with the use of polychromatic X-ray sources operated at high acceleration voltages. We designed a setup that is capable to reach high visibilities in the range from 50 to 120 kV. Therefore, spacious and dense parts of the human body with high attenuation can be measured, such as a human knee. The authors will show investigations on the resulting attenuation, differential phase-contrast and dark-field images. The images experimentally show that X-ray grating-based phase-contrast radiography is feasible with highly absorbing parts of the human body containing massive bones.

  13. Single-Grating Talbot Imaging for Wavefront Sensing and X-Ray Metrology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grizolli, Walan; Shi, Xianbo; Kolodziej, Tomasz

    2017-01-01

    Single-grating Talbot imaging relies on high-spatial-resolution detectors to perform accurate measurements of X-ray beam wavefronts. The wavefront can be retrieved with a single image, and a typical measurement and data analysis can be performed in few seconds. These qualities make it an ideal tool for synchrotron beamline diagnostics and in-situ metrology. The wavefront measurement can be used both to obtain a phase contrast image of an object and to characterize an X-ray beam. In this work, we explore the concept in two cases: at-wavelength metrology of 2D parabolic beryllium lenses and a wavefront sensor using a diamond crystal beam splitter.

  14. 30-lens interferometer for high energy x-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyubomirskiy, M., E-mail: lyubomir@esrf.fr; Snigireva, I., E-mail: irina@esrf.fr; Vaughan, G.

    2016-07-27

    We report a hard X-ray multilens interferometer consisting of 30 parallel compound refractive lenses. Under coherent illumination each CRL creates a diffraction limited focal spot - secondary source. An overlapping of coherent beams from these sources resulting in the interference pattern which has a rich longitudinal structure in accordance with the Talbot imaging formalism. The proposed interferometer was experimentally tested at ID11 ESRF beamline for the photon energies 32 keV and 65 keV. The fundamental and fractional Talbot images were recorded with the high resolution CCD camera. An effective source size in the order of 15 µm was determined frommore » the first Talbot image proving that the multilens interferometer can be used as a high resolution beam diagnostic tool.« less

  15. Single-shot Z(eff) dense plasma diagnostic through simultaneous refraction and attenuation measurements with a Talbot-Lau x-ray moiré deflectometer.

    PubMed

    Valdivia, M P; Stutman, D; Finkenthal, M

    2015-04-01

    The Talbot-Lau x-ray moiré deflectometer is a powerful plasma diagnostic capable of delivering simultaneous refraction and attenuation information through the accurate detection of x-ray phase shift and intensity. The diagnostic can provide the index of refraction n=1-δ+iβ of an object (dense plasma, for example) placed in the x-ray beam by independently measuring both δ and β, which are directly related to the electron density n(e) and the attenuation coefficient μ, respectively. Since δ and β depend on the effective atomic number Z(eff), a map can be obtained from the ratio between phase and absorption images acquired in a single shot. The Talbot-Lau x-ray moiré deflectometer and its corresponding data acquisition and processing are briefly described to illustrate how the above is achieved; Z(eff) values of test objects within the 4-12 range were obtained experimentally through simultaneous refraction and attenuation measurements. We show that Z(eff) mapping of objects does not require previous knowledge of sample length or shape. The determination of Z(eff) from refraction and attenuation measurements with moiré deflectometry could be of high interest to various domains of high energy density research, such as shocked materials and inertial confinement fusion experiments, as well as material science and nondestructive testing.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kagias, M.; Cartier, S.; Wang, Z.

    X-ray phase contrast imaging enables the measurement of the electron density of a sample with high sensitivity compared to the conventional absorption contrast. This is advantageous for the study of dose-sensitive samples, in particular, for biological and medical investigations. Recent developments relaxed the requirement for the beam coherence, such that conventional X-ray sources can be used for phase contrast imaging and thus clinical applications become possible. One of the prominent phase contrast imaging methods, Talbot-Lau grating interferometry, is limited by the manufacturing, alignment, and photon absorption of the analyzer grating, which is placed in the beam path in front ofmore » the detector. We propose an alternative improved method based on direct conversion charge integrating detectors, which enables a grating interferometer to be operated without an analyzer grating. Algorithms are introduced, which resolve interference fringes with a periodicity of 4.7 μm recorded with a 25 μm pitch Si microstrip detector (GOTTHARD). The feasibility of the proposed approach is demonstrated by an experiment at the TOMCAT beamline of the Swiss Light Source on a polyethylene sample.« less

  17. Glancing angle Talbot-Lau grating interferometers for phase contrast imaging at high x-ray energy

    NASA Astrophysics Data System (ADS)

    Stutman, D.; Finkenthal, M.

    2012-08-01

    A Talbot-Lau interferometer is demonstrated using micro-periodic gratings inclined at a glancing angle along the light propagation direction. Due to the increase in the effective thickness of the absorption gratings, the device enables differential phase contrast imaging at high x-ray energy, with improved fringe visibility (contrast). For instance, at 28° glancing angle, we obtain up to ˜35% overall interferometer contrast with a spectrum having ˜43 keV mean energy, suitable for medical applications. In addition, glancing angle interferometers could provide high contrast at energies above 100 keV, enabling industrial and security applications of phase contrast imaging.

  18. An x-ray backlit Talbot-Lau deflectometer for high-energy-density electron density diagnostics.

    PubMed

    Valdivia, M P; Stutman, D; Stoeckl, C; Theobald, W; Mileham, C; Begishev, I A; Bromage, J; Regan, S P

    2016-02-01

    X-ray phase-contrast techniques can measure electron density gradients in high-energy-density plasmas through refraction induced phase shifts. An 8 keV Talbot-Lau interferometer consisting of free standing ultrathin gratings was deployed at an ultra-short, high-intensity laser system using K-shell emission from a 1-30 J, 8 ps laser pulse focused on thin Cu foil targets. Grating survival was demonstrated for 30 J, 8 ps laser pulses. The first x-ray deflectometry images obtained under laser backlighting showed up to 25% image contrast and thus enabled detection of electron areal density gradients with a maximum value of 8.1 ± 0.5 × 10(23) cm(-3) in a low-Z millimeter sized sample. An electron density profile was obtained from refraction measurements with an error of <8%. The 50 ± 15 μm spatial resolution achieved across the full field of view was found to be limited by the x-ray source-size, similar to conventional radiography.

  19. A review of recent work in sub-nanometre displacement measurement using optical and X-ray interferometry.

    PubMed

    Peggs, G N; Yacoot, A

    2002-05-15

    This paper reviews recent work in the field of displacement measurement using optical and X-ray interferometry at the sub-nanometre level of accuracy. The major sources of uncertainty in optical interferometry are discussed and a selection of recent designs of ultra-precise, optical-interferometer-based, displacement measuring transducers presented. The use of X-ray interferometry and its combination with optical interferometry is discussed.

  20. High-energy x-ray Talbot-Lau radiography of a human knee

    NASA Astrophysics Data System (ADS)

    Horn, F.; Gelse, K.; Jabari, S.; Hauke, C.; Kaeppler, S.; Ludwig, V.; Meyer, P.; Michel, T.; Mohr, J.; Pelzer, G.; Rieger, J.; Riess, C.; Seifert, M.; Anton, G.

    2017-08-01

    We report on a radiographic measurement of an ex vivo human knee using a grating-based phase-contrast imaging setup and a medical x-ray tube at a tube voltage of 70 kV. The measurement has been carried out using a Talbot-Lau setup that is suitable to achieve a high visibility in the energy regime of medical imaging. In a medical reading by an experienced trauma surgeon signatures of chondrocalcinosis in the medial meniscus have been identified more evidently using the dark-field image in comparison to the conventional attenuation image. The analysis has been carried out at various dose levels down to 0.14 mGy measured as air kerma, which is a dose comparable to clinically used radiographic devices. The diagnosis has been confirmed by a histological analysis of the meniscus tissue. In the introduced high-frequency filtered phase-contrast image the anterior and posterior horn of the medial meniscus and the posterior cruciate ligament have also been visible. Furthermore, atherosclerotic plaque is visible in both imaging modalities, attenuation and dark-field, despite the presence of overlaying bone. This measurement, for the first time, proves the feasibility of Talbot-Lau x-ray imaging at high-energy spectra above 40 kVp and reasonable dose levels with regard to spacious and dense objects.

  1. An x-ray backlit Talbot-Lau deflectometer for high-energy-density electron density diagnostics

    DOE PAGES

    Valdivia, M. P.; Stutman, D.; Stoeckl, C.; ...

    2016-02-10

    X-ray phase-contrast techniques can measure electron density gradients in high-energy-density plasmas through refraction induced phase shifts. An 8 keV Talbot-Lau interferometer consisting of free standing ultrathin gratings was deployed at an ultra-short, high-intensity laser system using K-shell emission from a 1-30 J, 8 ps laser pulse focused on thin Cu foil targets. Grating survival was demonstrated for 30 J, 8 ps laser pulses. The first x-ray deflectometry images obtained under laser backlighting showed up to 25% image contrast and thus enabled detection of electron areal density gradients with a maximum value of 8.1 ± 0.5 × 10 23 cm ₋3more » in a low-Z millimeter sized sample. An electron density profile was obtained from refraction measurements with an error of <8%. We found the 50 ± 15 μm spatial resolution achieved across the full field of view was limited by the x-ray source-size, similar to conventional radiography.« less

  2. Fabrication of high aspect grating using bonded substrate for X-ray refraction imaging by Talbot-Lau interferometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tada, Takuji; Murakoshi, Dai; Ishii, Hiroyasu

    2012-07-31

    In order to improve the image quality of X-ray refraction images using a Talbot-Lau interferometer, we have been attempting to fabricate gratings with high aspect ratio. In our attempt, deep grooves of grating structure were channeled on a Si substrate bonded by Au diffusion bonding method, and the grooves were filled with Au where the Au layer used for the bonding Si substrate was acting as a seed layer of Au electroplating. From the results of a visibility measurement and a cross sectional SEM image, it was confirmed that the grooves with a pitch of 5.8 {mu}m and a depthmore » of 100 {mu}m could be successfully filled with Au over a large area of 72 Multiplication-Sign 80 mm{sup 2}. Using this grating, the X-ray refraction images for the cartilage of a knee joint of a livestock pig could be obtained where SPS method was employed for the single-shot image acquisition.« less

  3. Spatial resolution characterization of differential phase contrast CT systems via modulation transfer function (MTF) measurements

    NASA Astrophysics Data System (ADS)

    Li, Ke; Zambelli, Joseph; Bevins, Nicholas; Ge, Yongshuai; Chen, Guang-Hong

    2013-06-01

    By adding a Talbot-Lau interferometer to a conventional x-ray absorption computed tomography (CT) imaging system, both differential phase contrast (DPC) signal and absorption contrast signal can be simultaneously measured from the same set of CT measurements. The imaging performance of such multi-contrast x-ray CT imaging systems can be characterized with standard metrics such as noise variance, noise power spectrum, contrast-to-noise ratio, modulation transfer function (MTF), and task-based detectability index. Among these metrics, the measurement of the MTF can be challenging in DPC-CT systems due to several confounding factors such as phase wrapping and the difficulty of using fine wires as probes. To address these technical challenges, this paper discusses a viable and reliable method to experimentally measure the MTF of DPC-CT. It has been found that the spatial resolution of DPC-CT is degraded, when compared to that of the corresponding absorption CT, due to the presence of a source grating G0 in the Talbot-Lau interferometer. An effective MTF was introduced and experimentally estimated to describe the impact of the Talbot-Lau interferometer on the system MTF.

  4. Measuring finite-range phase coherence in an optical lattice using Talbot interferometry

    PubMed Central

    Santra, Bodhaditya; Baals, Christian; Labouvie, Ralf; Bhattacherjee, Aranya B.; Pelster, Axel; Ott, Herwig

    2017-01-01

    One of the important goals of present research is to control and manipulate coherence in a broad variety of systems, such as semiconductor spintronics, biological photosynthetic systems, superconducting qubits and complex atomic networks. Over the past decades, interferometry of atoms and molecules has proven to be a powerful tool to explore coherence. Here we demonstrate a near-field interferometer based on the Talbot effect, which allows us to measure finite-range phase coherence of ultracold atoms in an optical lattice. We apply this interferometer to study the build-up of phase coherence after a quantum quench of a Bose–Einstein condensate residing in a one-dimensional optical lattice. Our technique of measuring finite-range phase coherence is generic, easy to adopt and can be applied in practically all lattice experiments without further modifications. PMID:28580941

  5. Single-shot digital holography by use of the fractional Talbot effect.

    PubMed

    Martínez-León, Lluís; Araiza-E, María; Javidi, Bahram; Andrés, Pedro; Climent, Vicent; Lancis, Jesús; Tajahuerce, Enrique

    2009-07-20

    We present a method for recording in-line single-shot digital holograms based on the fractional Talbot effect. In our system, an image sensor records the interference between the light field scattered by the object and a properly codified parallel reference beam. A simple binary two-dimensional periodic grating is used to codify the reference beam generating a periodic three-step phase distribution over the sensor plane by fractional Talbot effect. This provides a method to perform single-shot phase-shifting interferometry at frame rates only limited by the sensor capabilities. Our technique is well adapted for dynamic wavefront sensing applications. Images of the object are digitally reconstructed from the digital hologram. Both computer simulations and experimental results are presented.

  6. X-ray phase-contrast computed tomography visualizes the microstructure and degradation profile of implanted biodegradable scaffolds after spinal cord injury

    PubMed Central

    Takashima, Kenta; Hoshino, Masato; Uesugi, Kentaro; Yagi, Naoto; Matsuda, Shojiro; Nakahira, Atsushi; Osumi, Noriko; Kohzuki, Masahiro; Onodera, Hiroshi

    2015-01-01

    Tissue engineering strategies for spinal cord repair are a primary focus of translational medicine after spinal cord injury (SCI). Many tissue engineering strategies employ three-dimensional scaffolds, which are made of biodegradable materials and have microstructure incorporated with viable cells and bioactive molecules to promote new tissue generation and functional recovery after SCI. It is therefore important to develop an imaging system that visualizes both the microstructure of three-dimensional scaffolds and their degradation process after SCI. Here, X-ray phase-contrast computed tomography imaging based on the Talbot grating interferometer is described and it is shown how it can visualize the polyglycolic acid scaffold, including its microfibres, after implantation into the injured spinal cord. Furthermore, X-ray phase-contrast computed tomography images revealed that degradation occurred from the end to the centre of the braided scaffold in the 28 days after implantation into the injured spinal cord. The present report provides the first demonstration of an imaging technique that visualizes both the microstructure and degradation of biodegradable scaffolds in SCI research. X-ray phase-contrast imaging based on the Talbot grating interferometer is a versatile technique that can be used for a broad range of preclinical applications in tissue engineering strategies. PMID:25537600

  7. Quantitative X-ray Differential Interference Contrast Microscopy

    NASA Astrophysics Data System (ADS)

    Nakamura, Takashi

    Full-field soft x-ray microscopes are widely used in many fields of sciences. Advances in nanofabrication technology enabled short wavelength focusing elements with significantly improved spatial resolution. In the soft x-ray spectral region, samples as small as 12 nm can be resolved using micro zone-plates as the objective lens. In addition to conventional x-ray microscopy in which x-ray absorption difference provides the image contrast, phase contrast mechanisms such as differential phase contrast (DIC) and Zernike phase contrast have also been demonstrated These phase contrast imaging mechanisms are especially attractive at the x-ray wavelengths where phase contrast of most materials is typically 10 times stronger than the absorption contrast. With recent progresses in plasma-based x- ray sources and increasing accessibility to synchrotron user facilities, x-ray microscopes are quickly becoming standard measurement equipment in the laboratory. To further the usefulness of x-ray DIC microscopy this thesis explicitly addresses three known issues with this imaging modality by introducing new techniques and devices First, as opposed to its visible-light counterpart, no quantitative phase imaging technique exists for x-ray DIC microscopy. To address this issue, two nanoscale x-ray quantitative phase imaging techniques, using exclusive OR (XOR) patterns and zone-plate doublets, respectively, are proposed. Unlike existing x-ray quantitative phase imaging techniques such as Talbot interferometry and ptychography, no dedicated experimental setups or stringent illumination coherence are needed for quantitative phase retrieval. Second, to the best of our knowledge, no quantitative performance characterization of DIC microscopy exists to date. Therefore the imaging system's response to sample's spatial frequency is not known In order to gain in-depth understanding of this imaging modality, performance of x-ray DIC microscopy is quantified using modulation transfer function. A new illumination apparatus required for the transfer function analysis under partially coherent illumination is also proposed. Such a characterization is essential for a proper selection of DIC optics for various transparent samples under study. Finally, optical elements used for x-ray DIC microscopy are highly absorptive and high brilliance x-ray sources such as synchrotrons are generally needed for image contrast. To extend the use of x-ray DIC microscopy to a wider variety of applications, a high efficiency large numerical aperture optical element consisting of high reflective Bragg reflectors is proposed. Using Bragg reflectors, which have 70% ˜99% reflectivity at extreme ultraviolet and soft x-rays for all angles of glancing incidence, the first order focusing efficiency is expected to increase by ˜ 8 times compared to that of a typical Fresnel zone-plate. This thesis contributes to current nanoscale x-ray phase contrast imaging research and provides new insights for biological, material, and magnetic sciences

  8. Analysis of field of view limited by a multi-line X-ray source and its improvement for grating interferometry.

    PubMed

    Du, Yang; Huang, Jianheng; Lin, Danying; Niu, Hanben

    2012-08-01

    X-ray phase-contrast imaging based on grating interferometry is a technique with the potential to provide absorption, differential phase contrast, and dark-field signals simultaneously. The multi-line X-ray source used recently in grating interferometry has the advantage of high-energy X-rays for imaging of thick samples for most clinical and industrial investigations. However, it has a drawback of limited field of view (FOV), because of the axial extension of the X-ray emission area. In this paper, we analyze the effects of axial extension of the multi-line X-ray source on the FOV and its improvement in terms of Fresnel diffraction theory. Computer simulation results show that the FOV limitation can be overcome by use of an alternative X-ray tube with a specially designed multi-step anode. The FOV of this newly designed X-ray source can be approximately four times larger than that of the multi-line X-ray source in the same emission area. This might be beneficial for the applications of X-ray phase contrast imaging in materials science, biology, medicine, and industry.

  9. Evaluation of Defects inside Beryllium Foils using X-ray Computed Tomography and Shearing Interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakurai, Tatsuyuki; Kohmura, Yoshiki; Takeuchi, Akihisa

    2007-01-19

    When beryllium is used in transmission X-ray optical elements for spatially coherent beams, speckles are usually observed in the transmission images. These speckles seem to be caused by defects either inside or on the surface of beryllium foil. We measured highly polished beryllium foil using two methods, X-ray computed tomography and X-ray shearing interferometry. The results indicate that observed speckle pattern is caused by many voids inside beryllium or inner low-density regions.

  10. From a structural average to the conformational ensemble of a DNA bulge

    PubMed Central

    Shi, Xuesong; Beauchamp, Kyle A.; Harbury, Pehr B.; Herschlag, Daniel

    2014-01-01

    Direct experimental measurements of conformational ensembles are critical for understanding macromolecular function, but traditional biophysical methods do not directly report the solution ensemble of a macromolecule. Small-angle X-ray scattering interferometry has the potential to overcome this limitation by providing the instantaneous distance distribution between pairs of gold-nanocrystal probes conjugated to a macromolecule in solution. Our X-ray interferometry experiments reveal an increasing bend angle of DNA duplexes with bulges of one, three, and five adenosine residues, consistent with previous FRET measurements, and further reveal an increasingly broad conformational ensemble with increasing bulge length. The distance distributions for the AAA bulge duplex (3A-DNA) with six different Au-Au pairs provide strong evidence against a simple elastic model in which fluctuations occur about a single conformational state. Instead, the measured distance distributions suggest a 3A-DNA ensemble with multiple conformational states predominantly across a region of conformational space with bend angles between 24 and 85 degrees and characteristic bend directions and helical twists and displacements. Additional X-ray interferometry experiments revealed perturbations to the ensemble from changes in ionic conditions and the bulge sequence, effects that can be understood in terms of electrostatic and stacking contributions to the ensemble and that demonstrate the sensitivity of X-ray interferometry. Combining X-ray interferometry ensemble data with molecular dynamics simulations gave atomic-level models of representative conformational states and of the molecular interactions that may shape the ensemble, and fluorescence measurements with 2-aminopurine-substituted 3A-DNA provided initial tests of these atomistic models. More generally, X-ray interferometry will provide powerful benchmarks for testing and developing computational methods. PMID:24706812

  11. Hot and dense plasma probing by soft X-ray lasers

    NASA Astrophysics Data System (ADS)

    Krůs, M.; Kozlová, M.; Nejdl, J.; Rus, B.

    2018-01-01

    Soft X-ray lasers, due to their short wavelength, its brightness, and good spatial coherence, are excellent sources for the diagnostics of dense plasmas (up to 1025 cm-3) which are relevant to e.g. inertial fusion. Several techniques and experimental results, which are obtained at the quasi-steady state scheme being collisionally pumped 21.2 nm neon-like zinc laser installed at PALS Research Center, are presented here; among them the plasma density measurement by a double Lloyd mirror interferometer, deflectometer based on Talbot effect measuring plasma density gradients itself, with a following ray tracing postprocessing. Moreover, the high spatial resolution (nm scale) plasma images can be obtained when soft X-ray lasers are used.

  12. Energy weighted x-ray dark-field imaging.

    PubMed

    Pelzer, Georg; Zang, Andrea; Anton, Gisela; Bayer, Florian; Horn, Florian; Kraus, Manuel; Rieger, Jens; Ritter, Andre; Wandner, Johannes; Weber, Thomas; Fauler, Alex; Fiederle, Michael; Wong, Winnie S; Campbell, Michael; Meiser, Jan; Meyer, Pascal; Mohr, Jürgen; Michel, Thilo

    2014-10-06

    The dark-field image obtained in grating-based x-ray phase-contrast imaging can provide information about the objects' microstructures on a scale smaller than the pixel size even with low geometric magnification. In this publication we demonstrate that the dark-field image quality can be enhanced with an energy-resolving pixel detector. Energy-resolved x-ray dark-field images were acquired with a 16-energy-channel photon-counting pixel detector with a 1 mm thick CdTe sensor in a Talbot-Lau x-ray interferometer. A method for contrast-noise-ratio (CNR) enhancement is proposed and validated experimentally. In measurements, a CNR improvement by a factor of 1.14 was obtained. This is equivalent to a possible radiation dose reduction of 23%.

  13. A three-image algorithm for hard x-ray grating interferometry.

    PubMed

    Pelliccia, Daniele; Rigon, Luigi; Arfelli, Fulvia; Menk, Ralf-Hendrik; Bukreeva, Inna; Cedola, Alessia

    2013-08-12

    A three-image method to extract absorption, refraction and scattering information for hard x-ray grating interferometry is presented. The method comprises a post-processing approach alternative to the conventional phase stepping procedure and is inspired by a similar three-image technique developed for analyzer-based x-ray imaging. Results obtained with this algorithm are quantitatively comparable with phase-stepping. This method can be further extended to samples with negligible scattering, where only two images are needed to separate absorption and refraction signal. Thanks to the limited number of images required, this technique is a viable route to bio-compatible imaging with x-ray grating interferometer. In addition our method elucidates and strengthens the formal and practical analogies between grating interferometry and the (non-interferometric) diffraction enhanced imaging technique.

  14. Sub-atomic dimensional metrology: developments in the control of x-ray interferometers

    NASA Astrophysics Data System (ADS)

    Yacoot, Andrew; Kuetgens, Ulrich

    2012-07-01

    Within the European Metrology Research Programme funded project NANOTRACE, the nonlinearity of the next generation of optical interferometers has been measured using x-ray interferometry. The x-ray interferometer can be regarded as a ruler or translation stage whose graduations or displacement steps are based on the lattice spacing of the crystallographic planes from which the x-rays are diffracted: in this case the graduations are every 192 pm corresponding to the spacing between the (2 2 0) planes in silicon. Precise displacement of the x-ray interferometer's monolithic translation stage in steps corresponding to discrete numbers of x-ray fringes requires servo positioning capability at the picometre level. To achieve this very fine control, a digital control system has been developed which has opened up the potential for advances in metrology using x-ray interferometry that include quadrature counting of x-ray fringes.

  15. X-ray grating interferometry at photon energies over 180 keV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruiz-Yaniz, M., E-mail: maite.ruiz-yaniz@esrf.fr; Lehrstuhl für Biomedizinische Physik, Physik-Department and Institut für Medizintechnik, Technische Universität München, James-Franck-Str. 1, 85748 Garching; Koch, F.

    2015-04-13

    We report on the implementation and characterization of grating interferometry operating at an x-ray energy of 183 keV. With the possibility to use this technique at high x-ray energies, bigger specimens could be studied in a quantitative way. Also, imaging strongly absorbing specimens will benefit from the advantages of the phase and dark-field signals provided by grating interferometry. However, especially at these high photon energies the performance of the absorption grating becomes a key point on the quality of the system, because the grating lines need to keep their small width of a couple of micrometers and exhibit a greater heightmore » of hundreds of micrometers. The performance of high aspect ratio absorption gratings fabricated with different techniques is discussed. Further, a dark-field image of an alkaline multicell battery highlights the potential of high energy x-ray grating based imaging.« less

  16. Linear information retrieval method in X-ray grating-based phase contrast imaging and its interchangeability with tomographic reconstruction

    NASA Astrophysics Data System (ADS)

    Wu, Z.; Gao, K.; Wang, Z. L.; Shao, Q. G.; Hu, R. F.; Wei, C. X.; Zan, G. B.; Wali, F.; Luo, R. H.; Zhu, P. P.; Tian, Y. C.

    2017-06-01

    In X-ray grating-based phase contrast imaging, information retrieval is necessary for quantitative research, especially for phase tomography. However, numerous and repetitive processes have to be performed for tomographic reconstruction. In this paper, we report a novel information retrieval method, which enables retrieving phase and absorption information by means of a linear combination of two mutually conjugate images. Thanks to the distributive law of the multiplication as well as the commutative law and associative law of the addition, the information retrieval can be performed after tomographic reconstruction, thus simplifying the information retrieval procedure dramatically. The theoretical model of this method is established in both parallel beam geometry for Talbot interferometer and fan beam geometry for Talbot-Lau interferometer. Numerical experiments are also performed to confirm the feasibility and validity of the proposed method. In addition, we discuss its possibility in cone beam geometry and its advantages compared with other methods. Moreover, this method can also be employed in other differential phase contrast imaging methods, such as diffraction enhanced imaging, non-interferometric imaging, and edge illumination.

  17. Talbot phase-contrast X-ray imaging for the small joints of the hand

    PubMed Central

    Stutman, Dan; Beck, Thomas J; Carrino, John A; Bingham, Clifton O

    2011-01-01

    A high resolution radiographic method for soft tissues in the small joints of the hand would aid in the study and treatment of Rheumatoid Arthritis (RA) and Osteoarthritis (OA), which often attacks these joints. Of particular interest would be imaging with <100 μm resolution the joint cartilage, whose integrity is a main indicator of disease. Differential phase-contrast or refraction based X-ray imaging (DPC) with Talbot grating interferometers could provide such a method, since it enhances soft tissue contrast and it can be implemented with conventional X-ray tubes. A numerical joint phantom was first developed to assess the angular sensitivity and spectrum needed for a hand DPC system. The model predicts that due to quite similar refraction indexes for joint soft tissues, the refraction effects are very small, requiring high angular resolution. To compare our model to experiment we built a high resolution bench-top interferometer using 10 μm period gratings, a W anode tube and a CCD based detector. Imaging experiments on animal cartilage and on a human finger support the model predictions. For instance, the estimated difference between the index of refraction of cartilage and water is of only several percent at ~25 keV mean energy, comparable to that between the linear attenuation coefficients. The potential advantage of DPC imaging comes thus mainly from the edge enhancement at the soft tissue interfaces. Experiments using a cadaveric human finger are also qualitatively consistent with the joint model, showing that refraction contrast is dominated by tendon embedded in muscle, with the cartilage layer difficult to observe in our conditions. Nevertheless, the model predicts that a DPC radiographic system for the small hand joints of the hand could be feasible using a low energy quasi-monochromatic source, such as a K-edge filtered Rh or Mo tube, in conjunction with a ~2 m long ‘symmetric’ interferometer operated in a high Talbot order. PMID:21841214

  18. Talbot phase-contrast x-ray imaging for the small joints of the hand

    NASA Astrophysics Data System (ADS)

    Stutman, Dan; Beck, Thomas J.; Carrino, John A.; Bingham, Clifton O.

    2011-09-01

    A high-resolution radiographic method for soft tissues in the small joints of the hand would aid in the study and treatment of rheumatoid arthritis (RA) and osteoarthritis (OA), which often attacks these joints. Of particular interest would be imaging with <100 µm resolution the joint cartilage, whose integrity is a main indicator of disease. Differential phase-contrast (DPC) or refraction-based x-ray imaging with Talbot grating interferometers could provide such a method, since it enhances soft tissue contrast and can be implemented with conventional x-ray tubes. A numerical joint phantom was first developed to assess the angular sensitivity and spectrum needed for a hand DPC system. The model predicts that, due to quite similar refraction indexes for joint soft tissues, the refraction effects are very small, requiring high angular resolution. To compare our model to experiment we built a high-resolution bench-top interferometer using 10 µm period gratings, a W anode tube and a CCD-based detector. Imaging experiments on animal cartilage and on a human finger support the model predictions. For instance, the estimated difference between the index of refraction of cartilage and water is of only several percent at ~25 keV mean energy, comparable to that between the linear attenuation coefficients. The potential advantage of DPC imaging thus comes mainly from the edge enhancement at the soft tissue interfaces. Experiments using a cadaveric human finger are also qualitatively consistent with the joint model, showing that refraction contrast is dominated by tendon embedded in muscle, with the cartilage layer difficult to observe in our conditions. Nevertheless, the model predicts that a DPC radiographic system for the small hand joints of the hand could be feasible using a low energy quasi-monochromatic source, such as a K-edge filtered Rh or Mo tube, in conjunction with a ~2 m long 'symmetric' interferometer operated in a high Talbot order.

  19. Grazing Incidence Optics for X-rays Interferometry

    NASA Technical Reports Server (NTRS)

    Shipley, Ann; Zissa, David; Cash, Webster; Joy, Marshall

    1999-01-01

    Grazing incidence mirror parameters and constraints for x-ray interferometry are described. We present interferometer system tolerances and ray trace results used to define mirror surface accuracy requirements. Mirror material, surface figure, roughness, and geometry are evaluated based on analysis results. We also discuss mirror mount design constraints, finite element analysis, environmental issues, and solutions. Challenges associated with quantifying high accuracy mirror surface quality are addressed and test results are compared with theoretical predictions.

  20. Measurement of picometre non-linearity in an optical grating encoder using x-ray interferometry

    NASA Astrophysics Data System (ADS)

    Yacoot, Andrew; Cross, Nigel

    2003-01-01

    X-ray interferometry has been used to characterize the non-linearity in an optical encoder displacement measuring system. Traceable measurements of the non-linearity have been made and an estimation of the uncertainty associated with the measurements is given. Cyclic errors with a magnitude of up to 50 pm and periodicity of the encoder system (128 nm) have been recorded.

  1. Phase-sensitive X-ray imager

    DOEpatents

    Baker, Kevin Louis

    2013-01-08

    X-ray phase sensitive wave-front sensor techniques are detailed that are capable of measuring the entire two-dimensional x-ray electric field, both the amplitude and phase, with a single measurement. These Hartmann sensing and 2-D Shear interferometry wave-front sensors do not require a temporally coherent source and are therefore compatible with x-ray tubes and also with laser-produced or x-pinch x-ray sources.

  2. An Investigation into the Creation, Stability, and X-Ray Fluorescence Analysis of Early Photographic Processes: An Upper-Level Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Rogge, Corina E.; Bezur, Aniko

    2012-01-01

    Photography is one of the few fine art forms that were initially developed by scientists such as Herschel and Talbot; however, in the modern chemistry curriculum, photography has become divorced from its scientific beginnings and resides in the studio arts department of most universities. An upper-level undergraduate experiment is described in…

  3. Novel methods for matter interferometry with nanosized objects

    NASA Astrophysics Data System (ADS)

    Arndt, Markus

    2005-05-01

    We discuss the current status and prospects for novel experimental methods for coherence^1,2 and decoherence^3 experiments with large molecules. Quantum interferometry with nanosized objects is interesting for the exploration of the quantum-classical transition. The same experimental setup is also promising for metrology applications and molecular nanolithography. Our coherence experiments with macromolecules employ a Talbot-Lau interferometer. We discuss some modifications to this scheme, which are required to extend it to particles with masses in excess of several thousand mass units. In particular, the detection in all previous interference experiments with large clusters and molecules, was based on either laser ionization^1 (e.g. Fullerenes) or electron impact ionization^2 (e.g. Porphyrins etc.). However, most ionization schemes run into efficiency limits when the mass and complexity of the target particle increases. Here we present experimental results for an interference detector which is truly scalable, i.e. one which will even improve with increasing particle size and complexity. ``Mechanically magnified fluorescence imaging'' (MMFI), combines the high spatial resolution, which is intrinsic to Talbot Lau interferometry with the high detection efficiency of fluorophores adsorbed onto a substrate. In the Talbot Lau setup a molecular interference pattern is revealed by scanning the 3^rd grating across the molecular beam^1. The number of transmitted molecules is a function of the relative position between the mask and the molecular density pattern. Both the particle interference pattern and the mechanical mask structure may be far smaller than any optical resolution limit. After mechanical magnification by an arbitrary factor, in our case a factor 5000, the interference pattern can still be inspected in fluorescence microscopy. The fluorescent molecules are collected on a surface which is scanned collinearly and synchronously behind the 3rd grating. The resulting image of the interference pattern is by far large enough to be easily seen by the unaided eye. High contrast interference fringes could be recorded with dyes molecules. ^1B. Brezger et al. , Phys. Rev. Lett. 88, 100404 (2002). ^2L. Hackermüller et al. Phys. Rev. Lett 91, 90408 (2003). ^3L. Hackermüller et al. Nature 427, 711 (2004).

  4. Electron density and effective atomic number (Zeff) determination through x-ray Moiré deflectometry

    NASA Astrophysics Data System (ADS)

    Valdivia Leiva, Maria Pia; Stutman, Dan; Finkenthal, Michael

    2014-10-01

    Talbot-Lau based Moiré deflectometry is a powerful density diagnostic capable of delivering refraction information and attenuation from a single image, through the accurate detection of X-ray phase-shift and intensity. The technique is able to accurately measure both the real part of the index of refraction δ (directly related to electron density) and the attenuation coefficient μ of an object placed in the x-ray beam. Since the atomic number Z (or Zeff for a composite sample) is proportional to these quantities, an elemental map of the effective atomic number can be obtained with the ratio of the phase and the absorption image. The determination of Zeff from refraction and attenuation measurements with Moiré deflectometry could be of high interest in various fields of HED research such as shocked materials and ICF experiments as Zeff is linked, by definition, to the x-ray absorption properties of a specific material. This work is supported by U.S. DoE/NNSA Grant No. 435 DENA0001835.

  5. Comparison of different phase retrieval algorithms

    NASA Astrophysics Data System (ADS)

    Kaufmann, Rolf; Plamondon, Mathieu; Hofmann, Jürgen; Neels, Antonia

    2017-09-01

    X-ray phase contrast imaging is attracting more and more interest. Since the phase cannot be measured directly an indirect method using e.g. a grating interferometer has to be applied. This contribution compares three different approaches to calculate the phase from Talbot-Lau interferometer measurements using a phase-stepping approach. Besides the usually applied Fourier coefficient method also a linear fitting technique and Taylor series expansion method are applied and compared.

  6. Study of ablation and implosion stages in wire arrays using coupled ultraviolet and X-ray probing diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, A. A.; Ivanov, V. V.; Astanovitskiy, A. L.

    2015-11-15

    Star and cylindrical wire arrays were studied using laser probing and X-ray radiography at the 1-MA Zebra pulse power generator at the University of Nevada, Reno. The Leopard laser provided backlighting, producing a laser plasma from a Si target which emitted an X-ray probing pulse at the wavelength of 6.65 Å. A spherically bent quartz crystal imaged the backlit wires onto X-ray film. Laser probing diagnostics at the wavelength of 266 nm included a 3-channel polarimeter for Faraday rotation diagnostic and two-frame laser interferometry with two shearing interferometers to study the evolution of the plasma electron density at the ablation and implosionmore » stages. Dynamics of the plasma density profile in Al wire arrays at the ablation stage were directly studied with interferometry, and expansion of wire cores was measured with X-ray radiography. The magnetic field in the imploding plasma was measured with the Faraday rotation diagnostic, and current was reconstructed.« less

  7. Effectiveness of X-ray grating interferometry for non-destructive inspection of packaged devices

    NASA Astrophysics Data System (ADS)

    Uehara, Masato; Yashiro, Wataru; Momose, Atsushi

    2013-10-01

    It is difficult to inspect packaged devices such as IC packages and power modules because the devices contain various components, such as semiconductors, metals, ceramics, and resin. In this paper, we demonstrated the effectiveness of X-ray grating interferometry (XGI) using a laboratory X-ray tube for the industrial inspection of packaged devices. The obtained conventional absorption image showed heavy-elemental components such as metal wires and electrodes, but the image did not reveal the defects in the light-elemental components. On the other hand, the differential phase-contrast image obtained by XGI revealed microvoids and scars in the encapsulant of the samples. The visibility contrast image also obtained by XGI showed some cracks in the ceramic insulator of power module sample. In addition, the image showed the silicon plate surrounded by the encapsulant having the same X-ray absorption coefficient. While these defects and components are invisible in the conventional industrial X-ray imaging, XGI thus has an attractive potential for the industrial inspection of the packaged devices.

  8. Diffraction based Hanbury Brown and Twiss interferometry at a hard x-ray free-electron laser

    DOE PAGES

    Gorobtsov, O. Yu.; Mukharamova, N.; Lazarev, S.; ...

    2018-02-02

    X-ray free-electron lasers (XFELs) provide extremely bright and highly spatially coherent x-ray radiation with femtosecond pulse duration. Currently, they are widely used in biology and material science. Knowledge of the XFEL statistical properties during an experiment may be vitally important for the accurate interpretation of the results. Here, for the first time, we demonstrate Hanbury Brown and Twiss (HBT) interferometry performed in diffraction mode at an XFEL source. It allowed us to determine the XFEL statistical properties directly from the Bragg peaks originating from colloidal crystals. This approach is different from the traditional one when HBT interferometry is performed inmore » the direct beam without a sample. Our analysis has demonstrated nearly full (80%) global spatial coherence of the XFEL pulses and an average pulse duration on the order of ten femtoseconds for the monochromatized beam, which is significantly shorter than expected from the electron bunch measurements.« less

  9. Diffraction based Hanbury Brown and Twiss interferometry at a hard x-ray free-electron laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorobtsov, O. Yu.; Mukharamova, N.; Lazarev, S.

    X-ray free-electron lasers (XFELs) provide extremely bright and highly spatially coherent x-ray radiation with femtosecond pulse duration. Currently, they are widely used in biology and material science. Knowledge of the XFEL statistical properties during an experiment may be vitally important for the accurate interpretation of the results. Here, for the first time, we demonstrate Hanbury Brown and Twiss (HBT) interferometry performed in diffraction mode at an XFEL source. It allowed us to determine the XFEL statistical properties directly from the Bragg peaks originating from colloidal crystals. This approach is different from the traditional one when HBT interferometry is performed inmore » the direct beam without a sample. Our analysis has demonstrated nearly full (80%) global spatial coherence of the XFEL pulses and an average pulse duration on the order of ten femtoseconds for the monochromatized beam, which is significantly shorter than expected from the electron bunch measurements.« less

  10. Correlation of scanning microwave interferometry and digital X-ray images for damage detection in ceramic composite armor

    NASA Astrophysics Data System (ADS)

    Schmidt, Karl F.; Goitia, Ryan M.; Ellingson, William A.; Green, William

    2012-05-01

    Application of non-contact, scanning, microwave interferometry for inspection of ceramic-based composite armor facilitates detection of defects which may occur in manufacturing or in service. Non-contact, one-side access permits inspection of panels while on the vehicle. The method was applied as a base line inspection and post-damage inspection of composite ceramic armor containing artificial defects, fiduciaries, and actual damage. Detection, sizing, and depth location capabilities were compared using microwave interferometry system and micro-focus digital x-ray imaging. The data demonstrates corroboration of microwave interference scanning detection of cracks and laminar features. The authors present details of the system operation, descriptions of the test samples used, and recent results obtained.

  11. Arcsecond and Sub-arcsedond Imaging with X-ray Multi-Image Interferometer and Imager for (very) small sattelites

    NASA Astrophysics Data System (ADS)

    Hayashida, K.; Kawabata, T.; Nakajima, H.; Inoue, S.; Tsunemi, H.

    2017-10-01

    The best angular resolution of 0.5 arcsec is realized with the X-ray mirror onborad the Chandra satellite. Nevertheless, further better or comparable resolution is anticipated to be difficult in near future. In fact, the goal of ATHENA telescope is 5 arcsec in the angular resolution. We propose a new type of X-ray interferometer consisting simply of an X-ray absorption grating and an X-ray spectral imaging detector, such as X-ray CCDs or new generation CMOS detectors, by stacking the multi images created with the Talbot interferenece (Hayashida et al. 2016). This system, now we call Multi Image X-ray Interferometer Module (MIXIM) enables arcseconds resolution with very small satellites of 50cm size, and sub-arcseconds resolution with small sattellites. We have performed ground experiments, in which a micro-focus X-ray source, grating with pitch of 4.8μm, and 30 μm pixel detector placed about 1m from the source. We obtained the self-image (interferometirc fringe) of the grating for wide band pass around 10keV. This result corresponds to about 2 arcsec resolution for parrallel beam incidence. The MIXIM is usefull for high angular resolution imaging of relatively bright sources. Search for super massive black holes and resolving AGN torus would be the targets of this system.

  12. Dual-CGH interferometry test for x-ray mirror mandrels

    NASA Astrophysics Data System (ADS)

    Gao, Guangjun; Lehan, John P.; Griesmann, Ulf

    2009-06-01

    We describe a glancing-incidence interferometric double-pass test, based on a pair of computer-generated holograms (CGHs), for mandrels used to fabricate x-ray mirrors for space-based x-ray telescopes. The design of the test and its realization are described. The application illustrates the advantage of dual-CGH tests for the complete metrology of precise optical surfaces.

  13. Advances in indirect detector systems for ultra high-speed hard X-ray imaging with synchrotron light

    NASA Astrophysics Data System (ADS)

    Olbinado, M. P.; Grenzer, J.; Pradel, P.; De Resseguier, T.; Vagovic, P.; Zdora, M.-C.; Guzenko, V. A.; David, C.; Rack, A.

    2018-04-01

    We report on indirect X-ray detector systems for various full-field, ultra high-speed X-ray imaging methodologies, such as X-ray phase-contrast radiography, diffraction topography, grating interferometry and speckle-based imaging performed at the hard X-ray imaging beamline ID19 of the European Synchrotron—ESRF. Our work highlights the versatility of indirect X-ray detectors to multiple goals such as single synchrotron pulse isolation, multiple-frame recording up to millions frames per second, high efficiency, and high spatial resolution. Besides the technical advancements, potential applications are briefly introduced and discussed.

  14. Improved In vivo Assessment of Pulmonary Fibrosis in Mice using X-Ray Dark-Field Radiography

    NASA Astrophysics Data System (ADS)

    Yaroshenko, Andre; Hellbach, Katharina; Yildirim, Ali Önder; Conlon, Thomas M.; Fernandez, Isis Enlil; Bech, Martin; Velroyen, Astrid; Meinel, Felix G.; Auweter, Sigrid; Reiser, Maximilian; Eickelberg, Oliver; Pfeiffer, Franz

    2015-12-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease with a median life expectancy of 4-5 years after initial diagnosis. Early diagnosis and accurate monitoring of IPF are limited by a lack of sensitive imaging techniques that are able to visualize early fibrotic changes at the epithelial-mesenchymal interface. Here, we report a new x-ray imaging approach that directly visualizes the air-tissue interfaces in mice in vivo. This imaging method is based on the detection of small-angle x-ray scattering that occurs at the air-tissue interfaces in the lung. Small-angle scattering is detected with a Talbot-Lau interferometer, which provides the so-called x-ray dark-field signal. Using this imaging modality, we demonstrate-for the first time-the quantification of early pathogenic changes and their correlation with histological changes, as assessed by stereological morphometry. The presented radiography method is significantly more sensitive in detecting morphological changes compared with conventional x-ray imaging, and exhibits a significantly lower radiation dose than conventional x-ray CT. As a result of the improved imaging sensitivity, this new imaging modality could be used in future to reduce the number of animals required for pulmonary research studies.

  15. Near-field interferometry of a free-falling nanoparticle from a point-like source

    NASA Astrophysics Data System (ADS)

    Bateman, James; Nimmrichter, Stefan; Hornberger, Klaus; Ulbricht, Hendrik

    2014-09-01

    Matter-wave interferometry performed with massive objects elucidates their wave nature and thus tests the quantum superposition principle at large scales. Whereas standard quantum theory places no limit on particle size, alternative, yet untested theories—conceived to explain the apparent quantum to classical transition—forbid macroscopic superpositions. Here we propose an interferometer with a levitated, optically cooled and then free-falling silicon nanoparticle in the mass range of one million atomic mass units, delocalized over >150 nm. The scheme employs the near-field Talbot effect with a single standing-wave laser pulse as a phase grating. Our analysis, which accounts for all relevant sources of decoherence, indicates that this is a viable route towards macroscopic high-mass superpositions using available technology.

  16. Determination of the conformational ensemble of the TAR RNA by X-ray scattering interferometry

    PubMed Central

    Walker, Peter

    2017-01-01

    Abstract The conformational ensembles of structured RNA's are crucial for biological function, but they remain difficult to elucidate experimentally. We demonstrate with HIV-1 TAR RNA that X-ray scattering interferometry (XSI) can be used to determine RNA conformational ensembles. X-ray scattering interferometry (XSI) is based on site-specifically labeling RNA with pairs of heavy atom probes, and precisely measuring the distribution of inter-probe distances that arise from a heterogeneous mixture of RNA solution structures. We show that the XSI-based model of the TAR RNA ensemble closely resembles an independent model derived from NMR-RDC data. Further, we show how the TAR RNA ensemble changes shape at different salt concentrations. Finally, we demonstrate that a single hybrid model of the TAR RNA ensemble simultaneously fits both the XSI and NMR-RDC data set and show that XSI can be combined with NMR-RDC to further improve the quality of the determined ensemble. The results suggest that XSI-RNA will be a powerful approach for characterizing the solution conformational ensembles of RNAs and RNA-protein complexes under diverse solution conditions. PMID:28108663

  17. Sub-10-ms X-ray tomography using a grating interferometer

    NASA Astrophysics Data System (ADS)

    Yashiro, Wataru; Noda, Daiji; Kajiwara, Kentaro

    2017-05-01

    An X-ray phase tomogram was successfully obtained with an exposure time of less than 10 ms by X-ray grating interferometry, an X-ray phase imaging technique that enables high-sensitivity X-ray imaging even of materials consisting of light elements. This high-speed X-ray imaging experiment was performed at BL28B2, SPring-8, where a white X-ray beam is available, and the tomogram was reconstructed from projection images recorded at a frame rate of 100,000 fps. The setup of the experiment will make it possible to realize three-dimensional observation of unrepeatable high-speed phenomena with a time resolution of less than 10 ms.

  18. Determination of the conformational ensemble of the TAR RNA by X-ray scattering interferometry.

    PubMed

    Shi, Xuesong; Walker, Peter; Harbury, Pehr B; Herschlag, Daniel

    2017-05-05

    The conformational ensembles of structured RNA's are crucial for biological function, but they remain difficult to elucidate experimentally. We demonstrate with HIV-1 TAR RNA that X-ray scattering interferometry (XSI) can be used to determine RNA conformational ensembles. X-ray scattering interferometry (XSI) is based on site-specifically labeling RNA with pairs of heavy atom probes, and precisely measuring the distribution of inter-probe distances that arise from a heterogeneous mixture of RNA solution structures. We show that the XSI-based model of the TAR RNA ensemble closely resembles an independent model derived from NMR-RDC data. Further, we show how the TAR RNA ensemble changes shape at different salt concentrations. Finally, we demonstrate that a single hybrid model of the TAR RNA ensemble simultaneously fits both the XSI and NMR-RDC data set and show that XSI can be combined with NMR-RDC to further improve the quality of the determined ensemble. The results suggest that XSI-RNA will be a powerful approach for characterizing the solution conformational ensembles of RNAs and RNA-protein complexes under diverse solution conditions. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Intact Imaging of Human Heart Structure Using X-ray Phase-Contrast Tomography.

    PubMed

    Kaneko, Yukihiro; Shinohara, Gen; Hoshino, Masato; Morishita, Hiroyuki; Morita, Kiyozo; Oshima, Yoshihiro; Takahashi, Masashi; Yagi, Naoto; Okita, Yutaka; Tsukube, Takuro

    2017-02-01

    Structural examination of human heart specimens at the microscopic level is a prerequisite for understanding congenital heart diseases. It is desirable not to destroy or alter the properties of such specimens because of their scarcity. However, many of the currently available imaging techniques either destroy the specimen through sectioning or alter the chemical and mechanical properties of the specimen through staining and contrast agent injection. As a result, subsequent studies may not be possible. X-ray phase-contrast tomography is an imaging modality for biological soft tissues that does not destroy or alter the properties of the specimen. The feasibility of X-ray phase-contrast tomography for the structural examination of heart specimens was tested using infantile and fetal heart specimens without congenital diseases. X-ray phase-contrast tomography was carried out at the SPring-8 synchrotron radiation facility using the Talbot grating interferometer at the bending magnet beamline BL20B2 to visualize the structure of five non-pretreated whole heart specimens obtained by autopsy. High-resolution, three-dimensional images were obtained for all specimens. The images clearly showed the myocardial structure, coronary vessels, and conduction bundle. X-ray phase-contrast tomography allows high-resolution, three-dimensional imaging of human heart specimens. Intact imaging using X-ray phase-contrast tomography can contribute to further structural investigation of heart specimens with congenital heart diseases.

  20. High speed photography, videography, and photonics III; Proceedings of the Meeting, San Diego, CA, August 22, 23, 1985

    NASA Technical Reports Server (NTRS)

    Ponseggi, B. G. (Editor); Johnson, H. C. (Editor)

    1985-01-01

    Papers are presented on the picosecond electronic framing camera, photogrammetric techniques using high-speed cineradiography, picosecond semiconductor lasers for characterizing high-speed image shutters, the measurement of dynamic strain by high-speed moire photography, the fast framing camera with independent frame adjustments, design considerations for a data recording system, and nanosecond optical shutters. Consideration is given to boundary-layer transition detectors, holographic imaging, laser holographic interferometry in wind tunnels, heterodyne holographic interferometry, a multispectral video imaging and analysis system, a gated intensified camera, a charge-injection-device profile camera, a gated silicon-intensified-target streak tube and nanosecond-gated photoemissive shutter tubes. Topics discussed include high time-space resolved photography of lasers, time-resolved X-ray spectrographic instrumentation for laser studies, a time-resolving X-ray spectrometer, a femtosecond streak camera, streak tubes and cameras, and a short pulse X-ray diagnostic development facility.

  1. Multilayer and grazing incidence X-ray/EUV optics; Proceedings of the Meeting, San Diego, CA, July 22-24, 1991

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Editor)

    1992-01-01

    The present conference discusses the Advanced X-ray Astrophysics Facility (AXAF) calibration by means of synchrotron radiation and its X-ray reflectivity, X-ray scattering measurements from thin-foil X-ray mirrors, lobster-eye X-ray optics using microchannel plates, space-based interferometry at EUV and soft X-ray wavelengths, a water-window imaging X-ray telescope, a graded d-spacing multilayer telescope for high energy X-ray astronomy, photographic films for the multispectral solar telescope array, a soft X-ray ion chamber, and the development of hard X-ray optics. Also discussed are X-ray spectroscopy with multilayered optics, a slit aperture for monitoring X-ray experiments, an objective double-crystal spectrometer, a Ly-alpha coronagraph/polarimeter, tungsten/boron nitride multilayers for XUV optical applications, the evaluation of reflectors for soft X-ray optics, the manufacture of elastically bent crystals and multilayer mirrors, and selective photodevices for the VUV.

  2. X-ray beamsplitter

    DOEpatents

    Ceglio, N.M.; Stearns, D.G.; Hawryluk, A.M.; Barbee, T.W. Jr.

    1987-08-07

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5--50 pairs of alternate Mo/Si layers with a period of 20--250 A. The support membrane is 10--200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window. 6 figs.

  3. X-ray beamsplitter

    DOEpatents

    Ceglio, Natale M.; Stearns, Daniel S.; Hawryluk, Andrew M.; Barbee, Jr., Troy W.

    1989-01-01

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5-50 pairs of alternate Mo/Si layers with a period of 20-250 A. The support membrane is 10-200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window.

  4. Combining Monte Carlo methods with coherent wave optics for the simulation of phase-sensitive X-ray imaging

    PubMed Central

    Peter, Silvia; Modregger, Peter; Fix, Michael K.; Volken, Werner; Frei, Daniel; Manser, Peter; Stampanoni, Marco

    2014-01-01

    Phase-sensitive X-ray imaging shows a high sensitivity towards electron density variations, making it well suited for imaging of soft tissue matter. However, there are still open questions about the details of the image formation process. Here, a framework for numerical simulations of phase-sensitive X-ray imaging is presented, which takes both particle- and wave-like properties of X-rays into consideration. A split approach is presented where we combine a Monte Carlo method (MC) based sample part with a wave optics simulation based propagation part, leading to a framework that takes both particle- and wave-like properties into account. The framework can be adapted to different phase-sensitive imaging methods and has been validated through comparisons with experiments for grating interferometry and propagation-based imaging. The validation of the framework shows that the combination of wave optics and MC has been successfully implemented and yields good agreement between measurements and simulations. This demonstrates that the physical processes relevant for developing a deeper understanding of scattering in the context of phase-sensitive imaging are modelled in a sufficiently accurate manner. The framework can be used for the simulation of phase-sensitive X-ray imaging, for instance for the simulation of grating interferometry or propagation-based imaging. PMID:24763652

  5. Null Lens Assembly for X-Ray Mirror Segments

    NASA Technical Reports Server (NTRS)

    Robinson, David W.

    2011-01-01

    A document discusses a null lens assembly that allows laser interferometry of 60 deg. slumped glass mirror segments used in x-ray mirrors. The assembly consists of four lenses in precise alignment to each other, with incorporated piezoelectric nanometer stepping actuators to position the lenses in six degrees of freedom for positioning relative to each other.

  6. Research in space science and technology. [including X-ray astronomy and interplanetary plasma physics

    NASA Technical Reports Server (NTRS)

    Beckley, L. E.

    1977-01-01

    Progress in various space flight research programs is reported. Emphasis is placed on X-ray astronomy and interplanetary plasma physics. Topics covered include: infrared astronomy, long base line interferometry, geological spectroscopy, space life science experiments, atmospheric physics, and space based materials and structures research. Analysis of galactic and extra-galactic X-ray data from the Small Astronomy Satellite (SAS-3) and HEAO-A and interplanetary plasma data for Mariner 10, Explorers 47 and 50, and Solrad is discussed.

  7. Noise in x-ray grating-based phase-contrast imaging.

    PubMed

    Weber, Thomas; Bartl, Peter; Bayer, Florian; Durst, Jürgen; Haas, Wilhelm; Michel, Thilo; Ritter, André; Anton, Gisela

    2011-07-01

    Grating-based x-ray phase-contrast imaging is a fast developing new modality not only for medical imaging, but as well for other fields such as material sciences. While these many possible applications arise, the knowledge of the noise behavior is essential. In this work, the authors used a least squares fitting algorithm to calculate the noise behavior of the three quantities absorption, differential phase, and dark-field image. Further, the calculated error formula of the differential phase image was verified by measurements. Therefore, a Talbot interferometer was setup, using a microfocus x-ray tube as source and a Timepix detector for photon counting. Additionally, simulations regarding this topic were performed. It turned out that the variance of the reconstructed phase is only dependent of the total number of photons used to generate the phase image and the visibility of the experimental setup. These results could be evaluated in measurements as well as in simulations. Furthermore, the correlation between absorption and dark-field image was calculated. These results provide the understanding of the noise characteristics of grating-based phase-contrast imaging and will help to improve image quality.

  8. Methods to mitigate data truncation artifacts in multi-contrast tomosynthesis image reconstructions

    NASA Astrophysics Data System (ADS)

    Garrett, John; Ge, Yongshuai; Li, Ke; Chen, Guang-Hong

    2015-03-01

    Differential phase contrast imaging is a promising new image modality that utilizes the refraction rather than the absorption of x-rays to image an object. A Talbot-Lau interferometer may be used to permit differential phase contrast imaging with a conventional medical x-ray source and detector. However, the current size of the gratings fabricated for these interferometers are often relatively small. As a result, data truncation image artifacts are often observed in a tomographic acquisition and reconstruction. When data are truncated in x-ray absorption imaging, the methods have been introduced to mitigate the truncation artifacts. However, the same strategy to mitigate absorption truncation artifacts may not be appropriate for differential phase contrast or dark field tomographic imaging. In this work, several new methods to mitigate data truncation artifacts in a multi-contrast imaging system have been proposed and evaluated for tomosynthesis data acquisitions. The proposed methods were validated using experimental data acquired for a bovine udder as well as several cadaver breast specimens using a benchtop system at our facility.

  9. Preclinical x-ray dark-field imaging: foreign body detection

    NASA Astrophysics Data System (ADS)

    Braig, Eva-Maria; Muenzel, Daniela; Fingerle, Alexander; Herzen, Julia; Rummeny, Ernst; Pfeiffer, Franz; Noel, Peter

    2017-03-01

    The purpose of this study was to evaluate the performance of X-ray dark-field imaging for detection of retained foreign bodies in ex-vivo hands and feet. X-ray dark-field imaging, acquired with a three-grating Talbot-Lau interferometer, has proven to provide access to sub-resolution structures due to small-angle scattering. The study was institutional review board (IRB) approved. Foreign body parts included pieces of wood and metal which were placed in a formalin fixated human ex-vivo hand. The samples were imaged with a grating-based interferometer consisting of a standard microfocus X-ray tube (60 kVp, 100 W) and a Varian 2520-DX detector (pixel size: 127 μm). The attenuation and the dark-field signals provide complementary diagnostic information for this clinical task. With regard to detecting of wooden objects, which are clinically the most relevant, only the dark-field image revealed the locations. The signal is especially strong for dry wood which in comparison is poorly to non-visible in computed tomography. The detection of high atomic-number or dense material and wood-like or porous materials in a single X-ray scan is enabled by the simultaneous acquisition of the conventional attenuation and dark-field signal. Our results reveal that with this approach one can reach a significantly improved sensitivity for detection of foreign bodies, while an easy implementation into the clinical arena is becoming feasible.

  10. Peptides and proteins in matter wave interferometry: Challenges and prospects

    NASA Astrophysics Data System (ADS)

    Sezer, Ugur; Geyer, Philipp; Mairhofer, Lukas; Brand, Christian; Doerre, Nadine; Rodewald, Jonas; Schaetti, Jonas; Koehler, Valentin; Mayor, Marcel; Arndt, Markus

    2016-05-01

    Recent developments in matter wave physics suggest that quantum interferometry with biologically relevant nanomaterials is becoming feasible for amino acids, peptides, proteins and RNA/DNA strands. Quantum interference of biomolecules is interesting as it can mimic Schrödinger's cat states with molecules of high mass, elevated temperature and biological functionality. Additionally, the high internal complexity can give rise to a rich variety of couplings to the environment and new handles for quantitative tests of quantum decoherence. Finally, matter wave interferometers are highly sensitive force sensors and pave the way for quantum-assisted measurements of biomolecular properties in interaction with tailored or biomimetic environments. Recent interferometer concepts such as the Kapitza-Dirac-Talbot-Lau interferometer (KDTLI) or the Optical Time-domain Matter Wave interferometer (OTIMA) have already proven their potential for quantum optics in the mass range beyond 10000 amu and for metrology. Here we show our advances in quantum interferometry with vitamins and peptides and discuss methods of realizing cold, intense and sufficiently slow beams of synthetically tailored or hydrated polypeptides with promising properties for a new generation of quantum optics.

  11. A low cost method for hard x-ray grating interferometry.

    PubMed

    Du, Yang; Lei, Yaohu; Liu, Xin; Huang, Jianheng; Zhao, Zhigang; Guo, Jinchuan; Li, Ji; Niu, Hanben

    2016-12-07

    Grating interferometry is advantageous over conventional x-ray absorption imaging because it enables the detection of samples constituted by low atomic number elements (low-Z materials). Therefore, it has a potential application in biological science and medical diagnostics. The grating interferometry has some critical optics components such as absorption gratings which are conventionally manufactured by the lithography, electroplating, and molding (LIGA) technique and employing gold as the absorbent material in it. However, great challenge lies in its implementations for practical applications because of the cost and difficulty to achieve high aspect ratio absorbing grating devices. In this paper, we present a low-cost approach that involves using the micro-casting technique with bismuth (Bi) as the absorber in source grating and as well as filling cesium iodide thallium(CsI:Tl) in a periodically structured scintillator. No costly facilities as synchrotron radiation are required and cheap material is used in our approach. Our experiment using these components shows high quality complementary images can be obtained with contrast of absorption, phase and visibility. This alternative method conquers the limitation of costly grating devices for a long time and stands an important step towards the further practical application of grating interferometry.

  12. Isotropic scalar image visualization of vector differential image data using the inverse Riesz transform.

    PubMed

    Larkin, Kieran G; Fletcher, Peter A

    2014-03-01

    X-ray Talbot moiré interferometers can now simultaneously generate two differential phase images of a specimen. The conventional approach to integrating differential phase is unstable and often leads to images with loss of visible detail. We propose a new reconstruction method based on the inverse Riesz transform. The Riesz approach is stable and the final image retains visibility of high resolution detail without directional bias. The outline Riesz theory is developed and an experimentally acquired X-ray differential phase data set is presented for qualitative visual appraisal. The inverse Riesz phase image is compared with two alternatives: the integrated (quantitative) phase and the modulus of the gradient of the phase. The inverse Riesz transform has the computational advantages of a unitary linear operator, and is implemented directly as a complex multiplication in the Fourier domain also known as the spiral phase transform.

  13. Isotropic scalar image visualization of vector differential image data using the inverse Riesz transform

    PubMed Central

    Larkin, Kieran G.; Fletcher, Peter A.

    2014-01-01

    X-ray Talbot moiré interferometers can now simultaneously generate two differential phase images of a specimen. The conventional approach to integrating differential phase is unstable and often leads to images with loss of visible detail. We propose a new reconstruction method based on the inverse Riesz transform. The Riesz approach is stable and the final image retains visibility of high resolution detail without directional bias. The outline Riesz theory is developed and an experimentally acquired X-ray differential phase data set is presented for qualitative visual appraisal. The inverse Riesz phase image is compared with two alternatives: the integrated (quantitative) phase and the modulus of the gradient of the phase. The inverse Riesz transform has the computational advantages of a unitary linear operator, and is implemented directly as a complex multiplication in the Fourier domain also known as the spiral phase transform. PMID:24688823

  14. Resolving microstructures in Z pinches with intensity interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apruzese, J. P.; Kroupp, E.; Maron, Y.

    2014-03-15

    Nearly 60 years ago, Hanbury Brown and Twiss [R. Hanbury Brown and R. Q. Twiss, Nature 178, 1046 (1956)] succeeded in measuring the 30 nrad angular diameter of Sirius using a new type of interferometry that exploited the interference of photons independently emitted from different regions of the stellar disk. Its basis was the measurement of intensity correlations as a function of detector spacing, with no beam splitting or preservation of phase information needed. Applied to Z pinches, X pinches, or laser-produced plasmas, this method could potentially provide spatial resolution under one micron. A quantitative analysis based on the workmore » of Purcell [E. M. Purcell, Nature 178, 1449 (1956)] reveals that obtaining adequate statistics from x-ray interferometry of a Z-pinch microstructure would require using the highest-current generators available. However, using visible light interferometry would reduce the needed photon count and could enable its use on sub-MA machines.« less

  15. Innovation and fusion of x-ray and optical tomography for mouse studies of breast cancer

    NASA Astrophysics Data System (ADS)

    Wang, Ge; Cong, Wenxiang; Yang, Qingsong; Pian, Qi; Zhu, Shouping; Liang, Jimin; Barroso, Margarida; Intes, Xavier

    2016-10-01

    For early detection and targeted therapy, receptor expression profiling is instrumental to classifying breast cancer into sub-groups. In particular, human epidermal growth factor receptor 2 (HER2) expression has been shown to have both prognostic and predictive values. Recently, an increasingly more complex view of HER2 in breast cancer has emerged from genome sequencing that highlights the role of inter- and intra-tumor heterogeneity in therapy resistance. Studies on such heterogeneity demand high-content, high-resolution functional and molecular imaging in vivo, which cannot be achieved using any single imaging tool. Clearly, there is a critical need to develop a multimodality approach for breast cancer imaging. Since 2006, grating-based x-ray imaging has been developed for much-improved x-ray images. In 2014, the demonstration of fluorescence molecular tomography (FMT) guided by x-ray grating-based micro-CT was reported with encouraging results and major drawbacks. In this paper, we propose to integrate grating-based x-ray tomography (GXT) and high-dimensional optical tomography (HOT) into the first-of-its-kind truly-fused GXT-HOT (pronounced as "Get Hot") system for imaging of breast tumor heterogeneity, HER2 expression and dimerization, and therapeutic response. The primary innovation lies in developing a brand-new high-content, high-throughput x-ray optical imager based on several contemporary techniques to have MRI-type soft tissue contrast, PET-like sensitivity and specificity, and micro-CT-equivalent resolution. This system consists of two orthogonal x-ray Talbot-Lau interferometric imaging chains and a hyperspectral time-resolved single-pixel optical imager. Both the system design and pilot results will be reported in this paper, along with relevant issues under further investigation.

  16. X-ray phase imaging-From static observation to dynamic observation-

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Momose, A.; Yashiro, W.; Olbinado, M. P.

    2012-07-31

    We are attempting to expand the technology of X-ray grating phase imaging/tomography to enable dynamic observation. X-ray phase imaging has been performed mainly for static cases, and this challenge is significant since properties of materials (and hopefully their functions) would be understood by observing their dynamics in addition to their structure, which is an inherent advantage of X-ray imaging. Our recent activities in combination with white synchrotron radiation for this purpose are described. Taking advantage of the fact that an X-ray grating interferometer functions with X-rays of a broad energy bandwidth (and therefore high flux), movies of differential phase imagesmore » and visibility images are obtained with a time resolution of a millisecond. The time resolution of X-ray phase tomography can therefore be a second. This study is performed as a part of a project to explore X-ray grating interferometry, and our other current activities are also briefly outlined.« less

  17. Tomographic image reconstruction using x-ray phase information

    NASA Astrophysics Data System (ADS)

    Momose, Atsushi; Takeda, Tohoru; Itai, Yuji; Hirano, Keiichi

    1996-04-01

    We have been developing phase-contrast x-ray computed tomography (CT) to make possible the observation of biological soft tissues without contrast enhancement. Phase-contrast x-ray CT requires for its input data the x-ray phase-shift distributions or phase-mapping images caused by an object. These were measured with newly developed fringe-scanning x-ray interferometry. Phase-mapping images at different projection directions were obtained by rotating the object in an x-ray interferometer, and were processed with a standard CT algorithm. A phase-contrast x-ray CT image of a nonstained cancerous tissue was obtained using 17.7 keV synchrotron x rays with 12 micrometer voxel size, although the size of the observation area was at most 5 mm. The cancerous lesions were readily distinguishable from normal tissues. Moreover, fine structures corresponding to cancerous degeneration and fibrous tissues were clearly depicted. It is estimated that the present system is sensitive down to a density deviation of 4 mg/cm3.

  18. Tunable X-ray speckle-based phase-contrast and dark-field imaging using the unified modulated pattern analysis approach

    NASA Astrophysics Data System (ADS)

    Zdora, M.-C.; Thibault, P.; Deyhle, H.; Vila-Comamala, J.; Rau, C.; Zanette, I.

    2018-05-01

    X-ray phase-contrast and dark-field imaging provides valuable, complementary information about the specimen under study. Among the multimodal X-ray imaging methods, X-ray grating interferometry and speckle-based imaging have drawn particular attention, which, however, in their common implementations incur certain limitations that can restrict their range of applications. Recently, the unified modulated pattern analysis (UMPA) approach was proposed to overcome these limitations and combine grating- and speckle-based imaging in a single approach. Here, we demonstrate the multimodal imaging capabilities of UMPA and highlight its tunable character regarding spatial resolution, signal sensitivity and scan time by using different reconstruction parameters.

  19. X-ray Interferometry with Transmissive Beam Combiners for Ultra-High Angular Resolution Astronomy

    NASA Technical Reports Server (NTRS)

    Skinner, G. K.; Krismanic, John F.

    2009-01-01

    Abstract Interferometry provides one of the possible routes to ultra-high angular resolution for X-ray and gamma-ray astronomy. Sub-micro-arc-second angular resolution, necessary to achieve objectives such as imaging the regions around the event horizon of a super-massive black hole at the center of an active galaxy, can be achieved if beams from parts of the incoming wavefront separated by 100s of meters can be stably and accurately brought together at small angles. One way of achieving this is by using grazing incidence mirrors. We here investigate an alternative approach in which the beams are recombined by optical elements working in transmission. It is shown that the use of diffractive elements is a particularly attractive option. We report experimental results from a simple 2-beam interferometer using a low-cost commercially available profiled film as the diffractive elements. A rotationally symmetric filled (or mostly filled) aperture variant of such an interferometer, equivalent to an X-ray axicon, is shown to offer a much wider bandpass than either a Phase Fresnel Lens (PFL) or a PFL with a refractive lens in an achromatic pair. Simulations of an example system are presented.

  20. Efficiency and coherence preservation studies of Be refractive lenses for XFELO application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolodziej, Tomasz; Stoupin, Stanislav; Grizolli, Walan

    2018-02-14

    Performance tests of parabolic beryllium refractive lenses, considered as X-ray focusing elements in the future X-ray free-electron laser oscillator (XFELO), are reported. Single and double refractive lenses were subject to X-ray tests, which included: surface profile, transmissivity measurements, imaging capabilities and wavefront distortion with grating interferometry. Optical metrology revealed that surface profiles were close to the design specification in terms of the figure and roughness. The transmissivity of the lenses is >94% at 8 keV and >98% at 14.4 and 18 keV. These values are close to the theoretical values of ideal lenses. Images of the bending-magnet source obtained withmore » the lenses were close to the expected ones and did not show any significant distortion. Grating interferometry revealed that the possible wavefront distortions produced by surface and bulk lens imperfections were on the level of ~λ/60 for 8 keV photons. Thus the Be lenses can be succesfully used as focusing and beam collimating elements in the XFELO.« less

  1. The eye lens: age-related trends and individual variations in refractive index and shape parameters.

    PubMed

    Pierscionek, Barbara; Bahrami, Mehdi; Hoshino, Masato; Uesugi, Kentaro; Regini, Justyn; Yagi, Naoto

    2015-10-13

    The eye lens grows throughout life by cell accrual on its surface and can change shape to adjust the focussing power of the eye. Varying concentrations of proteins in successive cell layers create a refractive index gradient. The continued growth of the lens and age-related changes in proteins render it less able to alter shape with loss of capacity by the end of the sixth decade of life. Growth and protein ageing alter the refractive index but as accurate measurement of this parameter is difficult, the nature of such alterations remains uncertain. The most accurate method to date for measuring refractive index in intact lenses has been developed at the SPring-8 synchrotron. The technique, based on Talbot interferometry, has an X-ray source and was used to measure refractive index in sixty-six human lenses, aged from 16 to 91 years. Height and width were measured for forty-five lenses. Refractive index contours show decentration in some older lenses but individual variations mask age-related trends. Refractive index profiles along the optic axis have relatively flat central sections with distinct micro-fluctuations and a steep gradient in the cortex but do not exhibit an age-related trend. The refractive index profiles in the equatorial aspect show statistical significance with age, particularly for lenses below the age of sixty that had capacity to alter shape in vivo. The maximum refractive index in the lens centre decreases slightly with age with considerable scatter in the data and there are age-related variations in sagittal thickness and equatorial height.

  2. The eye lens: age-related trends and individual variations in refractive index and shape parameters

    PubMed Central

    Pierscionek, Barbara; Bahrami, Mehdi; Hoshino, Masato; Uesugi, Kentaro; Regini, Justyn; Yagi, Naoto

    2015-01-01

    The eye lens grows throughout life by cell accrual on its surface and can change shape to adjust the focussing power of the eye. Varying concentrations of proteins in successive cell layers create a refractive index gradient. The continued growth of the lens and age-related changes in proteins render it less able to alter shape with loss of capacity by the end of the sixth decade of life. Growth and protein ageing alter the refractive index but as accurate measurement of this parameter is difficult, the nature of such alterations remains uncertain. The most accurate method to date for measuring refractive index in intact lenses has been developed at the SPring-8 synchrotron. The technique, based on Talbot interferometry, has an X-ray source and was used to measure refractive index in sixty-six human lenses, aged from 16 to 91 years. Height and width were measured for forty-five lenses. Refractive index contours show decentration in some older lenses but individual variations mask age-related trends. Refractive index profiles along the optic axis have relatively flat central sections with distinct micro-fluctuations and a steep gradient in the cortex but do not exhibit an age-related trend. The refractive index profiles in the equatorial aspect show statistical significance with age, particularly for lenses below the age of sixty that had capacity to alter shape in vivo. The maximum refractive index in the lens centre decreases slightly with age with considerable scatter in the data and there are age-related variations in sagittal thickness and equatorial height. PMID:26416418

  3. Interferometric analysis of laboratory photoionized plasmas utilizing supersonic gas jet targets.

    NASA Astrophysics Data System (ADS)

    Swanson, Kyle James; Ivanov, Vladimir; Mancini, Roberto; Mayes, Daniel C.

    2018-06-01

    Photoionized plasmas are an important component of active galactic nuclei, x-ray binary systems and other astrophysical objects. Laboratory produced photoionized plasmas have mainly been studied at large scale facilities, due to the need for high intensity broadband x-ray flux. Using supersonic gas jets as targets has allowed university scale pulsed power generators to begin similar research. The two main advantages of this approach with supersonic gas jets include: possibility of a closer location to the x-ray source and no attenuation related to material used for containment and or tamping. Due to these factors, this experimental platform creates a laboratory environment that more closely resembles astrophysical environments. This system was developed at the Nevada Terawatt Facility using the 1 MA pulsed power generator Zebra. Neon, argon, and nitrogen supersonic gas jets are produced approximately 7-8mm from the z-pinch axis. The high intensity broadband x-ray flux produced by the collapse of the z-pinch wire array implosion irradiates the gas jet. Cylindrical wire arrays are made with 4 and 8 gold 10µm thick wire. The z-pinch radiates approximately 12-16kj of x-ray energy, with x-ray photons under 1Kev in energy. The photoionized plasma is measured via x-ray absorption spectroscopy and interferometry. A Mach-Zehnder interferometer is used to the measure neutral density of the jet prior to the zebra shot at a wavelength of 266 nm. A dual channel air-wedge shearing interferometer is used to measure electron density of the ionized gas jet during the shot, at wavelengths of 532nm and 266nm. Using a newly developed interferometric analysis tool, average ionization state maps of the plasma can be calculated. Interferometry for nitrogen and argon show an average ionization state in the range of 3-8. Preliminary x-ray absorption spectroscopy collected show neon absorption lines. This work was sponsored in part by DOE Office of Science Grant DE-SC0014451.

  4. Noise in x-ray grating-based phase-contrast imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Thomas; Bartl, Peter; Bayer, Florian

    Purpose: Grating-based x-ray phase-contrast imaging is a fast developing new modality not only for medical imaging, but as well for other fields such as material sciences. While these many possible applications arise, the knowledge of the noise behavior is essential. Methods: In this work, the authors used a least squares fitting algorithm to calculate the noise behavior of the three quantities absorption, differential phase, and dark-field image. Further, the calculated error formula of the differential phase image was verified by measurements. Therefore, a Talbot interferometer was setup, using a microfocus x-ray tube as source and a Timepix detector for photonmore » counting. Additionally, simulations regarding this topic were performed. Results: It turned out that the variance of the reconstructed phase is only dependent of the total number of photons used to generate the phase image and the visibility of the experimental setup. These results could be evaluated in measurements as well as in simulations. Furthermore, the correlation between absorption and dark-field image was calculated. Conclusions: These results provide the understanding of the noise characteristics of grating-based phase-contrast imaging and will help to improve image quality.« less

  5. Explicit Filtering Based Low-Dose Differential Phase Reconstruction Algorithm with the Grating Interferometry.

    PubMed

    Jiang, Xiaolei; Zhang, Li; Zhang, Ran; Yin, Hongxia; Wang, Zhenchang

    2015-01-01

    X-ray grating interferometry offers a novel framework for the study of weakly absorbing samples. Three kinds of information, that is, the attenuation, differential phase contrast (DPC), and dark-field images, can be obtained after a single scanning, providing additional and complementary information to the conventional attenuation image. Phase shifts of X-rays are measured by the DPC method; hence, DPC-CT reconstructs refraction indexes rather than attenuation coefficients. In this work, we propose an explicit filtering based low-dose differential phase reconstruction algorithm, which enables reconstruction from reduced scanning without artifacts. The algorithm adopts a differential algebraic reconstruction technique (DART) with the explicit filtering based sparse regularization rather than the commonly used total variation (TV) method. Both the numerical simulation and the biological sample experiment demonstrate the feasibility of the proposed algorithm.

  6. Explicit Filtering Based Low-Dose Differential Phase Reconstruction Algorithm with the Grating Interferometry

    PubMed Central

    Zhang, Li; Zhang, Ran; Yin, Hongxia; Wang, Zhenchang

    2015-01-01

    X-ray grating interferometry offers a novel framework for the study of weakly absorbing samples. Three kinds of information, that is, the attenuation, differential phase contrast (DPC), and dark-field images, can be obtained after a single scanning, providing additional and complementary information to the conventional attenuation image. Phase shifts of X-rays are measured by the DPC method; hence, DPC-CT reconstructs refraction indexes rather than attenuation coefficients. In this work, we propose an explicit filtering based low-dose differential phase reconstruction algorithm, which enables reconstruction from reduced scanning without artifacts. The algorithm adopts a differential algebraic reconstruction technique (DART) with the explicit filtering based sparse regularization rather than the commonly used total variation (TV) method. Both the numerical simulation and the biological sample experiment demonstrate the feasibility of the proposed algorithm. PMID:26089971

  7. Progress in coherent lithography using table-top extreme ultraviolet lasers

    NASA Astrophysics Data System (ADS)

    Li, Wei

    Nanotechnology has drawn a wide variety of attention as interesting phenomena occurs when the dimension of the structures is in the nanometer scale. The particular characteristics of nanoscale structures had enabled new applications in different fields in science and technology. Our capability to fabricate these nanostructures routinely for sure will impact the advancement of nanoscience. Apart from the high volume manufacturing in semiconductor industry, a small-scale but reliable nanofabrication tool can dramatically help the research in the field of nanotechnology. This dissertation describes alternative extreme ultraviolet (EUV) lithography techniques which combine table-top EUV laser and various cost-effective imaging strategies. For each technique, numerical simulations, system design, experiment result and its analysis will be presented. In chapter II, a brief review of the main characteristics of table-top EUV lasers will be addressed concentrating on its high power and large coherence radius that enable the lithography application described herein. The development of a Talbot EUV lithography system which is capable of printing 50nm half pitch nanopatterns will be illustrated in chapter III. A detailed discussion of its resolution limit will be presented followed by the development of X-Y-Z positioning stage, the fabrication protocol for diffractive EUV mask, and the pattern transfer using self- developed ion beam etching, and the dose control unit. In addition, this dissertation demonstrated the capability to fabricate functional periodic nanostructures using Talbot EUV lithography. After that, resolution enhancement techniques like multiple exposure, displacement Talbot EUV lithography, fractional Talbot EUV lithography, and Talbot lithography using 18.9nm amplified spontaneous emission laser will be demonstrated. Chapter IV will describe a hybrid EUV lithography which combines the Talbot imaging and interference lithography rendering a high resolution interference pattern whose lattice is modified by a custom designed Talbot mask. In other words, this method enables filling the arbitrary Talbot cell with ultra-fine interference nanofeatures. Detailed optics modeling, system design and experiment results using He-Ne laser and table top EUV laser are included. The last part of chapter IV will analyze its exclusive advantages over traditional Talbot or interference lithography.

  8. Self-Focusing and the Talbot Effect in Conformal Transformation Optics.

    PubMed

    Wang, Xiangyang; Chen, Huanyang; Liu, Hui; Xu, Lin; Sheng, Chong; Zhu, Shining

    2017-07-21

    Transformation optics has been used to propose various novel optical devices. With the help of metamaterials, several intriguing designs, such as invisibility cloaks, have been implemented. However, as the basic units should be much smaller than the working wavelengths to achieve the effective material parameters, and the sizes of devices should be much larger than the wavelengths of illumination to work within the light-ray approximation, it is a big challenge to implement an experimental system that works simultaneously for both geometric optics and wave optics. In this Letter, by using a gradient-index microstructured optical waveguide, we realize a device of conformal transformation optics (CTO) and demonstrate its self-focusing property for geometry optics and the Talbot effect for wave optics. In addition, the Talbot effect in such a system has a potential application to transfer digital information without diffraction. Our findings demonstrate the photon controlling ability of CTO in a feasible experiment system.

  9. Self-Focusing and the Talbot Effect in Conformal Transformation Optics

    NASA Astrophysics Data System (ADS)

    Wang, Xiangyang; Chen, Huanyang; Liu, Hui; Xu, Lin; Sheng, Chong; Zhu, Shining

    2017-07-01

    Transformation optics has been used to propose various novel optical devices. With the help of metamaterials, several intriguing designs, such as invisibility cloaks, have been implemented. However, as the basic units should be much smaller than the working wavelengths to achieve the effective material parameters, and the sizes of devices should be much larger than the wavelengths of illumination to work within the light-ray approximation, it is a big challenge to implement an experimental system that works simultaneously for both geometric optics and wave optics. In this Letter, by using a gradient-index microstructured optical waveguide, we realize a device of conformal transformation optics (CTO) and demonstrate its self-focusing property for geometry optics and the Talbot effect for wave optics. In addition, the Talbot effect in such a system has a potential application to transfer digital information without diffraction. Our findings demonstrate the photon controlling ability of CTO in a feasible experiment system.

  10. Design and Fabrication of Aspheric Microlens Array for Optical Read-Only-Memory Card System

    NASA Astrophysics Data System (ADS)

    Kim, Hongmin; Jeong, Gibong; Kim, Young‑Joo; Kang, Shinill

    2006-08-01

    An optical head based on the Talbot effect with an aspheric microlens array for an optical read-only-memory (ROM) card system was designed and fabricated. The mathematical expression for the wavefield diffracted by a periodic microlens array showed that the amplitude distribution at the Talbot plane from the focal plane of the microlens array was identically equal to that at the focal plane. To use a reflow microlens array as a master pattern of an ultraviolet-imprinted (UV-imprinted) microlens array, the reflow microlens was defined as having an aspheric shape. To obtain optical probes with good optical qualities, a microlens array with the minimum spherical aberration was designed by ray tracing. The reflow condition was optimized to realize the master pattern of a microlens with a designed aspheric shape. The intensity distribution of the optical probes at the Talbot plane from the focal plane showed a diffraction-limited shape.

  11. High-sensitivity x-ray mask damage studies employing holographic gratings and phase-shifting interferometry

    NASA Astrophysics Data System (ADS)

    Hansen, Matthew E.; Cerrina, Franco

    1994-05-01

    A high-sensitivity holographic and interferometric metrology developed at the Center for X- ray Lithography (CXrL) has been employed to investigate in-plane distortions (IPD) produced in x-ray mask materials. This metrology has been applied to characterize damage to x-ray mask materials exposed to synchrotron radiation. X-ray mask damage and accelerated mask damage studies on silicon nitride and silicon carbide were conducted on the Aladdin ES-1 and ES-2 beamline exposure stations, respectively. Accumulated in-plane distortions due to x-ray irradiation were extracted from the incremental interferometric phase maps to yield IPD vs. dose curves for silicon nitride mask blanks. Silicon carbide mask blanks were subjected to accelerated mask damage in the high flux 2 mm X 2 mm beam of the ES-2 exposure station. An accelerated damage study of silicon carbide has shown no in-plane distortion for an accumulated dose of 800 kJ/cm2 with a measurement sensitivity of less than 5 nm.

  12. Picometre displacement measurements using a differential Fabry-Perot optical interferometer and an x-ray interferometer

    NASA Astrophysics Data System (ADS)

    Çelik, Mehmet; Hamid, Ramiz; Kuetgens, Ulrich; Yacoot, Andrew

    2012-08-01

    X-ray interferometry is emerging as an important tool for dimensional nanometrology both for sub-nanometre measurement and displacement. It has been used to verify the performance of the next generation of displacement measuring optical interferometers within the European Metrology Research Programme project NANOTRACE. Within this project a more detailed set of comparison measurements between the x-ray interferometer and a dual channel Fabry-Perot optical interferometer (DFPI) have been made to demonstrate the capabilities of both instruments for picometre displacement metrology. The results show good agreement between the two instruments, although some minor differences of less than 5 pm have been observed.

  13. Prediction and observation of tin and silver plasmas with index of refraction greater than one in the soft x-ray range.

    PubMed

    Filevich, Jorge; Grava, Jonathan; Purvis, Mike; Marconi, Mario C; Rocca, Jorge J; Nilsen, Joseph; Dunn, James; Johnson, Walter R

    2006-07-01

    We present the calculated prediction and the experimental confirmation that doubly ionized Ag and Sn plasmas can have an index of refraction greater than one for soft x-ray wavelengths. Interferometry experiments conducted using a capillary discharge soft x-ray laser operating at a wavelength of confirm that in few times ionized laser-created plasmas of these elements the anomalous dispersion from bound electrons can dominate the free electron contribution, making the index of refraction greater than one. The results confirm that bound electrons can strongly influence the index of refraction of numerous plasmas over a broad range of soft x-ray wavelengths confirming recent observations. The understanding of index of refraction at short wavelengths will become even more essential during the next decade as x-ray free electron lasers will become available to probe a wider variety of plasmas at higher densities and shorter wavelengths.

  14. An instrument for 3D x-ray nano-imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holler, M.; Raabe, J.; Diaz, A.

    We present an instrument dedicated to 3D scanning x-ray microscopy, allowing a sample to be precisely scanned through a beam while the angle of x-ray incidence can be changed. The position of the sample is controlled with respect to the beam-defining optics by laser interferometry. The instrument achieves a position stability better than 10 nm standard deviation. The instrument performance is assessed using scanning x-ray diffraction microscopy and we demonstrate a resolution of 18 nm in 2D imaging of a lithographic test pattern while the beam was defined by a pinhole of 3 {mu}m in diameter. In 3D on amore » test object of copper interconnects of a microprocessor, a resolution of 53 nm is achieved.« less

  15. Micrometer-resolution imaging using MÖNCH: towards G2-less grating interferometry

    PubMed Central

    Cartier, Sebastian; Kagias, Matias; Bergamaschi, Anna; Wang, Zhentian; Dinapoli, Roberto; Mozzanica, Aldo; Ramilli, Marco; Schmitt, Bernd; Brückner, Martin; Fröjdh, Erik; Greiffenberg, Dominic; Mayilyan, Davit; Mezza, Davide; Redford, Sophie; Ruder, Christian; Schädler, Lukas; Shi, Xintian; Thattil, Dhanya; Tinti, Gemma; Zhang, Jiaguo; Stampanoni, Marco

    2016-01-01

    MÖNCH is a 25 µm-pitch charge-integrating detector aimed at exploring the limits of current hybrid silicon detector technology. The small pixel size makes it ideal for high-resolution imaging. With an electronic noise of about 110 eV r.m.s., it opens new perspectives for many synchrotron applications where currently the detector is the limiting factor, e.g. inelastic X-ray scattering, Laue diffraction and soft X-ray or high-resolution color imaging. Due to the small pixel pitch, the charge cloud generated by absorbed X-rays is shared between neighboring pixels for most of the photons. Therefore, at low photon fluxes, interpolation algorithms can be applied to determine the absorption position of each photon with a resolution of the order of 1 µm. In this work, the characterization results of one of the MÖNCH prototypes are presented under low-flux conditions. A custom interpolation algorithm is described and applied to the data to obtain high-resolution images. Images obtained in grating interferometry experiments without the use of the absorption grating G2 are shown and discussed. Perspectives for the future developments of the MÖNCH detector are also presented. PMID:27787252

  16. DESIGN NOTE: From nanometre to millimetre: a feasibility study of the combination of scanning probe microscopy and combined optical and x-ray interferometry

    NASA Astrophysics Data System (ADS)

    Yacoot, Andrew; Koenders, Ludger

    2003-09-01

    This feasibility study investigates the potential combination of an x-ray interferometer and optical interferometer as a one-dimensional long range high resolution scanning stage for an atomic force microscope (AFM) in order to overcome the problems of non-linearity associated with conventional AFMs and interferometers. Preliminary results of measurements of the uniformity of the period of a grating used as a transfer standards show variations in period at the nanometre level.

  17. Non-invasive Differentiation of Kidney Stone Types using X-ray Dark-Field Radiography

    PubMed Central

    Scherer, Kai; Braig, Eva; Willer, Konstantin; Willner, Marian; Fingerle, Alexander A.; Chabior, Michael; Herzen, Julia; Eiber, Matthias; Haller, Bernhard; Straub, Michael; Schneider, Heike; Rummeny, Ernst J.; Noël, Peter B.; Pfeiffer, Franz

    2015-01-01

    Treatment of renal calculi is highly dependent on the chemical composition of the stone in question, which is difficult to determine using standard imaging techniques. The objective of this study is to evaluate the potential of scatter-sensitive X-ray dark-field radiography to differentiate between the most common types of kidney stones in clinical practice. Here, we examine the absorption-to-scattering ratio of 118 extracted kidney stones with a laboratory Talbot-Lau Interferometer. Depending on their chemical composition, microscopic growth structure and morphology the various types of kidney stones show strongly varying, partially opposite contrasts in absorption and dark-field imaging. By assessing the microscopic calculi morphology with high resolution micro-computed tomography measurements, we illustrate the dependence of dark-field signal strength on the respective stone type. Finally, we utilize X-ray dark-field radiography as a non-invasive, highly sensitive (100%) and specific (97%) tool for the differentiation of calcium oxalate, uric acid and mixed types of stones, while additionally improving the detectability of radio-lucent calculi. We prove clinical feasibility of the here proposed method by accurately classifying renal stones, embedded within a fresh pig kidney, using dose-compatible measurements and a quick and simple visual inspection. PMID:25873414

  18. Improved visualization of breast cancer features in multifocal carcinoma using phase-contrast and dark-field mammography: an ex vivo study.

    PubMed

    Grandl, Susanne; Scherer, Kai; Sztrókay-Gaul, Anikó; Birnbacher, Lorenz; Willer, Konstantin; Chabior, Michael; Herzen, Julia; Mayr, Doris; Auweter, Sigrid D; Pfeiffer, Franz; Bamberg, Fabian; Hellerhoff, Karin

    2015-12-01

    Conventional X-ray attenuation-based contrast is inherently low for the soft-tissue components of the female breast. To overcome this limitation, we investigate the diagnostic merits arising from dark-field mammography by means of certain tumour structures enclosed within freshly dissected mastectomy samples. We performed grating-based absorption, absolute phase and dark-field mammography of three freshly dissected mastectomy samples containing bi- and multifocal carcinoma using a compact, laboratory Talbot-Lau interferometer. Preoperative in vivo imaging (digital mammography, ultrasound, MRI), postoperative histopathological analysis and ex vivo digital mammograms of all samples were acquired for the diagnostic verification of our results. In the diagnosis of multifocal tumour growth, dark-field mammography seems superior to standard breast imaging modalities, providing a better resolution of small, calcified tumour nodules, demarcation of tumour boundaries with desmoplastic stromal response and spiculated soft-tissue strands extending from an invasive ductal breast cancer. On the basis of selected cases, we demonstrate that dark-field mammography is capable of outperforming conventional mammographic imaging of tumour features in both calcified and non-calcified tumours. Presuming dose optimization, our results encourage further studies on larger patient cohorts to identify those patients that will benefit the most from this promising additional imaging modality. • X-ray dark-field mammography provides significantly improved visualization of tumour features • X-ray dark-field mammography is capable of outperforming conventional mammographic imaging • X-ray dark-field mammography provides imaging sensitivity towards highly dispersed calcium grains.

  19. X-ray Reverberation Mapping of Ci Cam

    NASA Astrophysics Data System (ADS)

    Bartlett, Elizabeth; Garcia, M.

    2009-01-01

    We have analyzed the X-ray lightcurve of the star CI Cam, the optical counterpart of the X-ray transient XTE J0421+56 using data from XMM-Newton. Our motivation is based on evidence from ground based optical interferometry from the Keck and IOTA observatories which suggests that the dust surrounding CI CAM has a taurus morphology rather than a spherical distribution as previously hypothesized. By using a technique known as reverberation mapping we have constrained the time delay between the continuum of CI Cam and the Fe-K fluorescence line, corresponding to the reflection of the continuum off the dusty taurus. The time delay yields information on the size of the taurus.

  20. Plasmas with an index of refraction greater than 1.

    PubMed

    Nilsen, Joseph; Scofield, James H

    2004-11-15

    Over the past decade, x-ray lasers in the wavelength range 14-47 nm have been used for interferometry of plasmas. As in optical interferometry of plasmas, the experimental analysis assumed that the index of refraction is due only to free electrons. This makes the index of refraction less than 1. Recent experiments in A1 plasmas have shown fringe lines bending the wrong way as though the electron density were negative. We show how the bound electrons can dominate the index of refraction in many plasmas and make the index greater than 1 or enhance the index such that one would greatly overestimate the density of the plasma using interferometry.

  1. Second metrology round-robin of APS, ESRF and SPring-8 laboratories of elliptical and spherical hard-x-ray mirrors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rommeveaux, A.; Assoufid, L.; Ohashi, H.

    2007-01-01

    The first series of metrology round-robin measurements carried out in 2005 at the APS, ESRF and SPring-8 metrology laboratories involving two flat x-ray mirrors and a cylindrical x-ray mirror has shown excellent agreement among the three facilities Long Trace Profilers (LTP) despite their architectural differences. Because of the growing interest in diffraction-limited hard x-ray K-B focusing mirrors, it was decided to extend the round robin measurements to spherical and aspheric x-ray mirrors. The strong surface slope variation of these mirrors presents a real challenge to LTP. As a result, new LTP measurement protocol has to be developed and implemented tomore » ensure measurement accuracy and consistency. In this paper, different measurement techniques and procedures will be described, the results will be discussed, and comparison will be extended to micro-stitching interferometry measurements performed at Osaka University, Japan.« less

  2. Development of optics for x-ray phase-contrast imaging of high energy density plasmas.

    PubMed

    Stutman, D; Finkenthal, M; Moldovan, N

    2010-10-01

    Phase-contrast or refraction-enhanced x-ray radiography can be useful for the diagnostic of low-Z high energy density plasmas, such as imploding inertial confinement fusion (ICF) pellets, due to its sensitivity to density gradients. To separate and quantify the absorption and refraction contributions to x-ray images, methods based on microperiodic optics, such as shearing interferometry, can be used. To enable applying such methods with the energetic x rays needed for ICF radiography, we investigate a new type of optics consisting of grazing incidence microperiodic mirrors. Using such mirrors, efficient phase-contrast imaging systems could be built for energies up to ∼100 keV. In addition, a simple lithographic method is proposed for the production of the microperiodic x-ray mirrors based on the difference in the total reflection between a low-Z substrate and a high-Z film. Prototype mirrors fabricated with this method show promising characteristics in laboratory tests.

  3. Electron acceleration in pulsed-power driven magnetic-reconnection experiments

    NASA Astrophysics Data System (ADS)

    Halliday, Jonathan; Hare, Jack; Lebedev, Sergey; Suttle, Lee; Bland, Simon; Clayson, Thomas; Tubman, Eleanor; Pikuz, Sergei; Shelkovenko, Tanya

    2017-10-01

    We present recent results from pulsed-power driven magnetic reconnection experiments, fielded on the MAGPIE generator (1.2 MA, 250 ns). The setup used in these experiments produces plasma inflows which are intrinsically magnetised; persist for many hydrodynamic time-scales; and are supersonic. Previous work has focussed on characterising the dynamics of bulk plasma flows, using a suite of diagnostics including laser interferometry, (imaging) Faraday rotation, and Thompson scattering. Measurements show the formation of a well defined, long lasting reconnection layer and demonstrate a power balance between the power into and out of the reconnection region. The work presented here focuses on diagnosing non-thermal electron acceleration by the reconnecting electric field. To achieve this, metal foils were placed in the path of accelerated electrons. Atomic transitions in the foil were collisionally exited by the electron beam, producing a characteristic X-Ray spectrum. This X-Ray emission was diagnosed using spherically bent crystal X-Ray spectrometry, filtered X-Ray pinhole imaging, and X-Ray sensitive PIN diodes.

  4. A phase-contrast X-ray imaging system—with a 60×30 mm field of view—based on a skew-symmetric two-crystal X-ray interferometer

    NASA Astrophysics Data System (ADS)

    Yoneyama, Akio; Takeda, Tohoru; Tsuchiya, Yoshinori; Wu, Jin; Thet-Thet-Lwin; Koizumi, Aritaka; Hyodo, Kazuyuki; Itai, Yuji

    2004-05-01

    A phase-contrast X-ray imaging system—with a 60×30 mm field of view—for biomedical observations was developed. To extend the observation field of view, the system is fitted with a skew-symmetric two-crystal X-ray interferometer. To attain the required sub-nanoradian mechanical stability between the crystal blocks for precise operation, the interferometer was mounted on two extremely rigid positioning tables (one with a sleeve bearings) and was controlled by a feedback positioning system using phase-lock interferometry. The imaging system produced a 60×30 mm interference pattern with 60% visibility using 17.7 keV monochromatic synchrotron X-rays at the Photon Factory. It was then used to perform radiographic observation (i.e., phase mapping) of rat liver vessels. These results indicate that this imaging system can be used to perform observations of large and in vivo biological samples.

  5. High-accuracy Aspheric X-ray Mirror Metrology Using Software Configurable Optical Test System/deflectometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Run; Su, Peng; Burge, James H.

    The Software Configurable Optical Test System (SCOTS) uses deflectometry to measure surface slopes of general optical shapes without the need for additional null optics. Careful alignment of test geometry and calibration of inherent system error improve the accuracy of SCOTS to a level where it competes with interferometry. We report a SCOTS surface measurement of an off-axis superpolished elliptical x-ray mirror that achieves <1 nm<1 nm root-mean-square accuracy for the surface measurement with low-order term included.

  6. Forward scattering in two-beam laser interferometry

    NASA Astrophysics Data System (ADS)

    Mana, G.; Massa, E.; Sasso, C. P.

    2018-04-01

    A fractional error as large as 25 pm mm-1 at the zero optical-path difference has been observed in an optical interferometer measuring the displacement of an x-ray interferometer used to determine the lattice parameter of silicon. Detailed investigations have brought to light that the error was caused by light forward-scattered from the beam feeding the interferometer. This paper reports on the impact of forward-scattered light on the accuracy of two-beam optical interferometry applied to length metrology, and supplies a model capable of explaining the observed error.

  7. Mouse blood vessel imaging by in-line x-ray phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Liu, Xiao-Song; Yang, Xin-Rong; Chen, Shao-Liang; Zhu, Pei-Ping; Yuan, Qing-Xi

    2008-10-01

    It is virtually impossible to observe blood vessels by conventional x-ray imaging techniques without using contrast agents. In addition, such x-ray systems are typically incapable of detecting vessels with diameters less than 200 µm. Here we show that vessels as small as 30 µm could be detected using in-line phase-contrast x-ray imaging without the use of contrast agents. Image quality was greatly improved by replacing resident blood with physiological saline. Furthermore, an entire branch of the portal vein from the main axial portal vein to the eighth generation of branching could be captured in a single phase-contrast image. Prior to our work, detection of 30 µm diameter blood vessels could only be achieved using x-ray interferometry, which requires sophisticated x-ray optics. Our results thus demonstrate that in-line phase-contrast x-ray imaging, using physiological saline as a contrast agent, provides an alternative to the interferometric method that can be much more easily implemented and also offers the advantage of a larger field of view. A possible application of this methodology is in animal tumor models, where it can be used to observe tumor angiogenesis and the treatment effects of antineoplastic agents.

  8. Laser interferometry of radiation driven gas jets

    NASA Astrophysics Data System (ADS)

    Swanson, Kyle James; Ivanov, Vladimir; Mancini, Roberto; Mayes, Daniel C.

    2017-06-01

    In a series of experiments performed at the 1MA Zebra pulsed power accelerator of the Nevada Terawatt Facility nitrogen gas jets were driven with the broadband x-ray flux produced during the collapse of a wire-array z-pinch implosion. The wire arrays were comprised of 4 and 8, 10μm-thick gold wires and 17μm-thick nickel wires, 2cm and 3cm tall, and 0.3cm in diameter. They radiated 12kJ to 16kJ of x-ray energy, most of it in soft x-ray photons of less than 1keV of energy, in a time interval of 30ns. This x-ray flux was used to drive a nitrogen gas jet located at 0.8cm from the axis of the z-pinch radiation source and produced with a supersonic nozzle. The x-ray flux ionizes the nitrogen gas thus turning it into a photoionized plasma. We used laser interferometry to probe the ionization of the plasma. To this end, a Mach-Zehnder interferometer at the wavelength of 266 nm was set up to extract the atom number density profile of the gas jet just before the Zebra shot, and air-wedge interferometers at 266 and 532 nm were used to determine the electron number density of the plasma right during the Zebra shot. The ratio of electron to atom number densities gives the distribution of average ionization state of the plasma. A python code was developed to perform the image data processing, extract phase shift spatial maps, and obtain the atom and electron number densities via Abel inversion. Preliminary results from the experiment are promising and do show that a plasma has been created in the gas jet driven by the x-ray flux, thus demonstrating the feasibility of a new experimental platform to study photoionized plasmas in the laboratory. These plasmas are found in astrophysical scenarios including x-ray binaries, active galactic nuclei, and the accretion disks surrounding black holes1. This work was sponsored in part by DOE Office of Science Grant DE-SC0014451.1R. C. Mancini et al, Phys. Plasmas 16, 041001 (2009)

  9. Focal Spot and Wavefront Sensing of an X-Ray Free Electron laser using Ronchi shearing interferometry

    DOE PAGES

    Nagler, Bob; Aquila, Andrew; Boutet, Sebastien; ...

    2017-10-20

    The Linac Coherent Light Source (LCLS) is an X-ray source of unmatched brilliance, that is advancing many scientific fields at a rapid pace. The highest peak intensities that are routinely produced at LCLS take place at the Coherent X-ray Imaging (CXI) instrument, which can produce spotsize at the order of 100 nm, and such spotsizes and intensities are crucial for experiments ranging from coherent diffractive imaging, non-linear x-ray optics and high field physics, and single molecule imaging. Nevertheless, a full characterisation of this beam has up to now not been performed. In this paper we for the first time characterisemore » this nanofocused beam in both phase and intensity using a Ronchi Shearing Interferometric technique. The method is fast, in-situ, uses a straightforward optimization algoritm, and is insensitive to spatial jitter.« less

  10. Two-dimensional linear and nonlinear Talbot effect from rogue waves.

    PubMed

    Zhang, Yiqi; Belić, Milivoj R; Petrović, Milan S; Zheng, Huaibin; Chen, Haixia; Li, Changbiao; Lu, Keqing; Zhang, Yanpeng

    2015-03-01

    We introduce two-dimensional (2D) linear and nonlinear Talbot effects. They are produced by propagating periodic 2D diffraction patterns and can be visualized as 3D stacks of Talbot carpets. The nonlinear Talbot effect originates from 2D rogue waves and forms in a bulk 3D nonlinear medium. The recurrences of an input rogue wave are observed at the Talbot length and at the half-Talbot length, with a π phase shift; no other recurrences are observed. Differing from the nonlinear Talbot effect, the linear effect displays the usual fractional Talbot images as well. We also find that the smaller the period of incident rogue waves, the shorter the Talbot length. Increasing the beam intensity increases the Talbot length, but above a threshold this leads to a catastrophic self-focusing phenomenon which destroys the effect. We also find that the Talbot recurrence can be viewed as a self-Fourier transform of the initial periodic beam that is automatically performed during propagation. In particular, linear Talbot effect can be viewed as a fractional self-Fourier transform, whereas the nonlinear Talbot effect can be viewed as the regular self-Fourier transform. Numerical simulations demonstrate that the rogue-wave initial condition is sufficient but not necessary for the observation of the effect. It may also be observed from other periodic inputs, provided they are set on a finite background. The 2D effect may find utility in the production of 3D photonic crystals.

  11. Low energy X-ray grating interferometry at the Brazilian Synchrotron

    NASA Astrophysics Data System (ADS)

    Koch, F. J.; O'Dowd, F. P.; Cardoso, M. B.; Da Silva, R. R.; Cavicchioli, M.; Ribeiro, S. J. L.; Schröter, T. J.; Faisal, A.; Meyer, P.; Kunka, D.; Mohr, J.

    2017-06-01

    Grating based X-ray differential phase contrast imaging has found a large variety of applications in the last decade. Different types of samples call for different imaging energies, and efforts have been made to establish the technique all over the spectrum used for conventional X-ray imaging. Here we present a two-grating interferometer working at 8.3 keV, implemented at the bending magnet source of the IMX beamline of the Brazilian Synchrotron Light Laboratory. The low design energy is made possible by gratings fabricated on polymer substrates, and makes the interferometer mainly suited to the investigation of light and thin samples. We investigate polymer microspheres filled with Fe2O3 nanoparticles, and find that these particles give rise to a significant visibility reduction due to small angle scattering.

  12. Lasers, extreme UV and soft X-ray

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nilsen, Joseph

    2015-09-20

    Three decades ago, large ICF lasers that occupied entire buildings were used as the energy sources to drive the first X-ray lasers. Today X-ray lasers are tabletop, spatially coherent, high-repetition rate lasers that enable many of the standard optical techniques such as interferometry to be extended to the soft X-ray regime between wavelengths of 10 and 50 nm. Over the last decade X-ray laser performance has been improved by the use of the grazing incidence geometry, diode-pumped solid-state lasers, and seeding techniques. The dominant X-ray laser schemes are the monopole collisional excitation lasers either driven by chirped pulse amplification (CPA)more » laser systems or capillary discharge. The CPA systems drive lasing in neon-like or nickel-like ions, typically in the 10 – 30 nm range, while the capillary system works best for neon-like argon at 46.9 nm. Most researchers use nickel-like ion lasers near 14 nm because they are well matched to the Mo:Si multilayer mirrors that have peak reflectivity near 13 nm and are used in many applications. As a result, the last decade has seen the birth of the X-ray free electron laser (XFEL) that can reach wavelengths down to 0.15 nm and the inner-shell Ne laser at 1.46 nm.« less

  13. X-ray Thomson scattering measurement of temperature in warm dense carbon

    DOE PAGES

    Falk, Katerina; Fryer, C. L.; Gamboa, E. J.; ...

    2016-11-22

    Here, a novel platform to measure the equation of state using a combination of diagnostics, where the spectrally resolved x-ray Thomson scattering (XRTS) is used to obtain accurate temperature measurements of warm dense matter (WDM) was developed for the OMEGA laser facility. OMEGA laser beams have been used to drive strong shocks in carbon targets creating WDM and generating the Ni He-alpha x-ray probe used for XRTS. Additional diagnostics including x-ray radiography, velocity interferometry and streaked optical pyrometry provided complementary measurements of density and pressure. The WDM regime of near solid density and moderate temperatures (1–100 eV) is a challengingmore » yet important area of research in inertial confinement fusion and astrophysics. This platform has been used to study off-Hugoniot states of shock-released diamond and graphite at pressures between 1 and 10 Mbar and temperatures between 5 and 15 eV as well as first x-ray Thomson scattering data from shocked low density CH foams reaching five times compression and temperatures of 20–30 eV.« less

  14. Analysis of Flame Retardancy in Polymer Blends by Synchrotron X-ray K-edge Tomography and Interferometric Phase Contrast Movies.

    PubMed

    Olatinwo, Mutairu B; Ham, Kyungmin; McCarney, Jonathan; Marathe, Shashidhara; Ge, Jinghua; Knapp, Gerry; Butler, Leslie G

    2016-03-10

    Underwriters Laboratories 94 test bars have been imaged with X-ray K-edge tomography between 12 and 32 keV to assess the bromine and antimony concentration gradient across char layers of partially burnt samples. Phase contrast tomography on partially burnt samples showed gas bubbles and dark-field scattering ascribed to residual blend inhomogeneity. In addition, single-shot grating interferometry was used to record X-ray movies of test samples during heating (IR and flame) intended to mimic the UL 94 plastics flammability test. The UL 94 test bars were formulated with varying concentrations of a brominated flame retardant, Saytex 8010, and a synergist, Sb2O3, blended into high-impact polystyrene (HIPS). Depending on the sample composition, samples will pass or fail the UL 94 plastics flammability test. Tomography and interferometry imaging show differences that correlate with UL 94 performance. Key features such as char layer, gas bubble formation, microcracks, and dissolution of the flame retardant in the char layer regions are used in understanding the efficiency of the flame retardant and synergist. The samples that pass the UL 94 test have a thick, highly visible char layer as well as an interior rich in gas bubbles. Growth of gas bubbles from flame-retardant thermal decomposition is noted in the X-ray phase contrast movies. Also noteworthy is an absence of bubbles near the burning surface of the polymer; dark-field images after burning suggest a microcrack structure between interior bubbles and the surface. The accepted mechanism for flame retardant activity includes free radical quenching in the flame by bromine and antimony species. The imaging supports this as well as provides a fast inspection of other parameters, such as viscosity and surface tension.

  15. A final report to the Laboratory Directed Research and Development committee on Project 93-ERP-075: ``X-ray laser propagation and coherence: Diagnosing fast-evolving, high-density laser plasmas using X-ray lasers``

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, A.S.; Cauble, R.; Da Silva, L.B.

    1996-02-01

    This report summarizes the major accomplishments of this three-year Laboratory Directed Research and Development (LDRD) Exploratory Research Project (ERP) entitled ``X-ray Laser Propagation and Coherence: Diagnosing Fast-evolving, High-density Laser Plasmas Using X-ray Lasers,`` tracking code 93-ERP-075. The most significant accomplishment of this project is the demonstration of a new laser plasma diagnostic: a soft x-ray Mach-Zehnder interferometer using a neonlike yttrium x-ray laser at 155 {angstrom} as the probe source. Detailed comparisons of absolute two-dimensional electron density profiles obtained from soft x-ray laser interferograms and profiles obtained from radiation hydrodynamics codes, such as LASNEX, will allow us to validate andmore » benchmark complex numerical models used to study the physics of laser-plasma interactions. Thus the development of soft x-ray interferometry technique provides a mechanism to probe the deficiencies of the numerical models and is an important tool for, the high-energy density physics and science-based stockpile stewardship programs. The authors have used the soft x-ray interferometer to study a number of high-density, fast evolving, laser-produced plasmas, such as the dynamics of exploding foils and colliding plasmas. They are pursuing the application of the soft x-ray interferometer to study ICF-relevant plasmas, such as capsules and hohlraums, on the Nova 10-beam facility. They have also studied the development of enhanced-coherence, shorter-pulse-duration, and high-brightness x-ray lasers. The utilization of improved x-ray laser sources can ultimately enable them to obtain three-dimensional holographic images of laser-produced plasmas.« less

  16. Physical conditions, dynamics and mass distribution in the center of the galaxy

    NASA Technical Reports Server (NTRS)

    Genzel, R.; Townes, C. H.

    1987-01-01

    Investigations of the central 10 pc of the Galaxy, and conclusions on energetics, dynamics, and mass distribution derived from X and gamma ray measurements and from infrared and microwave studies, especially from spectroscopy, high resolution imaging, and interferometry are reviewed. Evidence for and against a massive black hole is analyzed.

  17. Nondestructive X-ray diffraction measurement of warpage in silicon dies embedded in integrated circuit packages.

    PubMed

    Tanner, B K; Danilewsky, A N; Vijayaraghavan, R K; Cowley, A; McNally, P J

    2017-04-01

    Transmission X-ray diffraction imaging in both monochromatic and white beam section mode has been used to measure quantitatively the displacement and warpage stress in encapsulated silicon devices. The displacement dependence with position on the die was found to agree well with that predicted from a simple model of warpage stress. For uQFN microcontrollers, glued only at the corners, the measured misorientation contours are consistent with those predicted using finite element analysis. The absolute displacement, measured along a line through the die centre, was comparable to that reported independently by high-resolution X-ray diffraction and optical interferometry of similar samples. It is demonstrated that the precision is greater than the spread of values found in randomly selected batches of commercial devices, making the techniques viable for industrial inspection purposes.

  18. Effect of Injector Geometry on Atomization of a Liquid-Liquid Double Swirl Coaxial Injector Using Non-invasive Laser, Optical and X-ray Techniques

    NASA Technical Reports Server (NTRS)

    Radke, C. R.; Meyer, T. R.

    2014-01-01

    The spray characteristics of a liquid-liquid double swirl coaxial injector were studied using non-invasive optical, laser, and X-ray diagnostics. A parametric study of injector exit geometry demonstrated that spray breakup time, breakup type and sheet stability could be controlled with exit geometry. Phase Doppler interferometry was used to characterize droplet statistics and non-dimensional droplet parameters over a range of inlet conditions and for various fluids allowing for a study on the role of specific fluid properties in atomization. Further, X-ray radiography allowed for investigation of sheet thickness and breakup length to be quantified for different recess exit diameters and inlet pressures. Finally, computed tomography scans revealed that the spray cone was distinctively non-uniform and comprised of several pockets of increased mass flux.

  19. Si Lattice, Avogadro Constant, and X- and Gamma-Ray Measurements: Contributions by R.D. Deslattes

    NASA Astrophysics Data System (ADS)

    Kessler, Jr.

    2002-04-01

    The achievement of x-ray interferometry in 1965 opened the possibility of more accurately measuring the lattice spacing of a diffraction crystal on a scale directly tied to the SI system of units. The road from the possible to reality required moving objects and measuring translations with sub-atomic accuracy. The improved crystal lattice spacing determinations had a significant impact on two fundamental measurement areas: 1) the amount of substance (the mole and the associated Avogadro Constant), and 2) short wavelengths (the x- and gamma-ray regions). Progress in both areas required additional metrological advances: density and isotopic abundance measurements are needed for the Avogadro constant and small angle measurements are required for the determination of short wavelengths. The x- and gamma-ray measurements have led to more accurate wavelength standards and neutron binding energy measurements that connect gamma-ray measurements to precision atomic mass measurements, particularly the neutron mass. Richard D. Deslattes devoted much of his scientific career to this measurement program. His outstanding contributions and insights will be reviewed.

  20. Measurements and simulations analysing the noise behaviour of grating-based X-ray phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Weber, T.; Bartl, P.; Durst, J.; Haas, W.; Michel, T.; Ritter, A.; Anton, G.

    2011-08-01

    In the last decades, phase-contrast imaging using a Talbot-Lau grating interferometer is possible even with a low-brilliance X-ray source. With the potential of increasing the soft-tissue contrast, this method is on its way into medical imaging. For this purpose, the knowledge of the underlying physics of this technique is necessary.With this paper, we would like to contribute to the understanding of grating-based phase-contrast imaging by presenting results on measurements and simulations regarding the noise behaviour of the differential phases.These measurements were done using a microfocus X-ray tube with a hybrid, photon-counting, semiconductor Medipix2 detector. The additional simulations were performed by our in-house developed phase-contrast simulation tool “SPHINX”, combining both wave and particle contributions of the simulated photons.The results obtained by both of these methods show the same behaviour. Increasing the number of photons leads to a linear decrease of the standard deviation of the phase. The number of used phase steps has no influence on the standard deviation, if the total number of photons is held constant.Furthermore, the probability density function (pdf) of the reconstructed differential phases was analysed. It turned out that the so-called von Mises distribution is the physically correct pdf, which was also confirmed by measurements.This information advances the understanding of grating-based phase-contrast imaging and can be used to improve image quality.

  1. Robert R. Wilson Prize: The Quest for Bright, Coherent X-Rays: A Personal Story

    NASA Astrophysics Data System (ADS)

    Kim, Kwang Je

    2014-03-01

    Stories associated with the advances in x-ray source techniques during the last several decades will be told from a personal viewpoint. I will start from the ``third-generation'' x-ray sources based on storage-ring-based undulators and a struggle to find a proper way to quantify the radiation strength. I will then discuss how the initially incoherent undulator radiation evolves into an intense-quasi-coherent radiation via free-electron laser (FEL) interaction. This so-called self-amplified spontaneous emission (SASE) in the x-ray region could be realized with the advent of laser-induced electron guns and forms the basis of the linac-driven ``fourth generation'' x-ray facilities. An x-ray FEL oscillator (XFELO) will also be feasible if Bragg reflectors, such as diamond crystals, are used as cavity mirrors. An XFELO driven by a CW superconducting linac would be a ``real x-ray laser,'' producing a steady stream of fully coherent, spectrally pure x-ray pulses. An XFELO can be mode-locked, thus producing x-ray spectral comb, if the cavity length can be fixed to a fraction of the x-ray wavelength by referencing to a narrow nuclear resonance. A mode-locked XFELO will enable x-ray quantum optics experiments, such as matter-wave interferometry, for fundamental physics. Alongside these main themes, stories for novel and ``cute'' schemes, such as a crossed undulator for polarization switching and an emittance exchanger for swapping the transverse and longitudinal phase space, will also be presented. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357.

  2. An extreme ultraviolet Michelson interferometer for experiments at free-electron lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hilbert, Vinzenz; Fuchs, Silvio; Paulus, Gerhard G.

    2013-09-15

    We present a Michelson interferometer for 13.5 nm soft x-ray radiation. It is characterized in a proof-of-principle experiment using synchrotron radiation, where the temporal coherence is measured to be 13 fs. The curvature of the thin-film beam splitter membrane is derived from the observed fringe pattern. The applicability of this Michelson interferometer at intense free-electron lasers is investigated, particularly with respect to radiation damage. This study highlights the potential role of such Michelson interferometers in solid density plasma investigations using, for instance, extreme soft x-ray free-electron lasers. A setup using the Michelson interferometer for pseudo-Nomarski-interferometry is proposed.

  3. Neural networks for calibration tomography

    NASA Technical Reports Server (NTRS)

    Decker, Arthur

    1993-01-01

    Artificial neural networks are suitable for performing pattern-to-pattern calibrations. These calibrations are potentially useful for facilities operations in aeronautics, the control of optical alignment, and the like. Computed tomography is compared with neural net calibration tomography for estimating density from its x-ray transform. X-ray transforms are measured, for example, in diffuse-illumination, holographic interferometry of fluids. Computed tomography and neural net calibration tomography are shown to have comparable performance for a 10 degree viewing cone and 29 interferograms within that cone. The system of tomography discussed is proposed as a relevant test of neural networks and other parallel processors intended for using flow visualization data.

  4. Evaporative Cooling in a Holographic Atom Trap

    NASA Technical Reports Server (NTRS)

    Newell, Raymond

    2003-01-01

    We present progress on evaporative cooling of Rb-87 atoms in our Holographic Atom Trap (HAT). The HAT is formed by the interference of five intersecting YAG laser beams: atoms are loaded from a vapor-cell MOT into the bright fringes of the interference pattern through the dipole force. The interference pattern is composed of Talbot fringes along the direction of propagation of the YAG beams, prior to evaporative cooling each Talbot fringe contains 300,000 atoms at 50 micro-K and peak densities of 2 x 10(exp 14)/cu cm. Evaporative cooling is achieved through adiabatically decreasing the intensity of the YAG laser. We present data and calculations covering a range of HAT geometries and cooling procedures.

  5. Solar Flares and the High Energy Solar Spectroscopic Imager (HESSI)

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Solar flares are the biggest explosions in the solar system. They are important both for understanding explosive events in the Universe and for their impact on human technology and communications. The satellite-based HESSI is designed to study the explosive release of energy and the acceleration of electrons, protons, and other charged particles to high energies in solar flares. HESSI produces "color" movies of the Sun in high-energy X rays and gamma rays radiated by these energetic particles. HESSI's X-ray and gamma-ray images of flares are obtained using techniques similar to those used in radio interferometry. Ground-based radio observations of the Sun provide an important complement to the HESSI observations of solar flares. I will describe the HESSI Project and the high-energy aspects of solar flares, and how these relate to radio astronomy techniques and observations.

  6. Prospect of space-based interferometry at EUV and soft X-ray wavelengths

    NASA Technical Reports Server (NTRS)

    Welsh, Barry Y.; Chakrabarti, Supriya

    1992-01-01

    We review the current capabilities of high-resolution, spectroscopic, space-borne instrumentation available for both solar and stellar observations in the EUV and soft X-ray wavelength regimes, and describe the basic design of a compact, all-reflection interferometer based on the spatial heterodyne technique; this is capable of producing a resolving power (lambda/Delta-lambda) of about 20,000 in the 100-200 A region using presently available multilayer optical components. Such an instrument can be readily constructed with existing technology. Due to its small size and lack of moving parts, it is ideally suited to spaceborne applications. Based on best estimates of the efficiency of this instrument at soft X-ray wavelengths, we review the possible use of this high-resolution interferometer in obtaining high-resolution full-disk spectroscopy of the sun. We also discuss its possible use for observations of diffuse sources such as the EUV interstellar background radiation.

  7. Coupling of jet and accretion activity in the active galaxy NGC 1052

    NASA Astrophysics Data System (ADS)

    Boeck, Moritz; Kadler, Matthias; Ros, Eduardo; Weaver, Kimberly; Wilms, Joern; Brenneman, Laura; Angelakis, Emmanouil

    The radio loud galaxy NGC 1052 has been monitored for the past fifteen years with Very Long Baseline Interferometry (VLBI) observations and has been the target of an intense multiwave-length monitoring campaign since 2005. This provides an excellent dataset for analyzing the relationship between properties of the relativistic jet and the accretion disk in active galactic nuclei. Components in the jet are tracked and the ejection times of new components are deter-mined. The analysis of the radio variability is complemented by the study of X-ray observations allowing us to draw conclusions on the accretion activity. The X-ray variability on weekly and monthly time scales is monitored with the Rossi X-ray Timing Explorer, whereas deep XMM-Newton and Suzaku observations provide spectra showing a broad Fe Kα line, whose variability can provide a particularly valuable probe of the inner accretion flow.

  8. Nonlinear Talbot Effect and Its Applications

    NASA Astrophysics Data System (ADS)

    Yang, Zhening

    2018-03-01

    Talbot effect, a lenless self-imaging phenomenon, was first discovered in 1836 by H.F. Talbot. The conventional Talbott effect has been studied for over a hundred years. Recently, the rapid development of optical superlattices has brought a great breakthrough in Talbot effect research. A nonlinear self-imaging phenomenon was found in the periodically poled LiTaO3 (PPLT) crystals. [1][2][3] This nonlinear Talbot effect has applications not only in optics but also in many other fields. For example, the phenomenon is realized by frequency-doubled beams, which offers people a new way to enhance the spatial resolution of the self-images of periodic objects. And by observing the self-image of the second harmonic (SH) field on the sample surface, people can detect the domain structure in the crystal without damaging the sample. Throughout this review paper, an overview of nonlinear Talbot effect and two applications of this phenomenon is presented. Breakthroughs like achieving a super-focused spot and realizing an acousto-optic tunable SH Talbot illuminator will be introduced as well.

  9. In-phased second harmonic wave array generation with intra-Talbot-cavity frequency-doubling.

    PubMed

    Hirosawa, Kenichi; Shohda, Fumio; Yanagisawa, Takayuki; Kannari, Fumihiko

    2015-03-23

    The Talbot cavity is one promising method to synchronize the phase of a laser array. However, it does not achieve the lowest array mode with the same phase but the highest array mode with the anti-phase between every two adjacent lasers, which is called out-phase locking. Consequently, their far-field images exhibit 2-peak profiles. We propose intra-Talbot-cavity frequency-doubling. By placing a nonlinear crystal in a Talbot cavity, the Talbot cavity generates an out-phased fundamental wave array, which is converted into an in-phase-locked second harmonic wave array at the nonlinear crystal. We demonstrate numerical calculations and experiments on intra-Talbot-cavity frequency-doubling and obtain an in-phase-locked second harmonic wave array for a Nd:YVO₄ array laser.

  10. The use of x-ray interferometry to investigate the linearity of the NPL Differential Plane Mirror Optical Interferometer

    NASA Astrophysics Data System (ADS)

    Yacoot, Andrew; Downs, Michael J.

    2000-08-01

    The x-ray interferometer from the combined optical and x-ray interferometer (COXI) facility at NPL has been used to investigate the performance of the NPL Jamin Differential Plane Mirror Interferometer when it is fitted with stabilized and unstabilized lasers. This Jamin interferometer employs a common path design using a double pass configuration and one fringe is realized by a displacement of 158 nm between its two plane mirror retroreflectors. Displacements over ranges of several optical fringes were measured simultaneously using the COXI x-ray interferometer and the Jamin interferometer and the results were compared. In order to realize the highest measurement accuracy from the Jamin interferometer, the air paths were shielded to prevent effects from air turbulence and electrical signals generated by the photodetectors were analysed and corrected using an optimizing routine in order to subdivide the optical fringes accurately. When an unstabilized laser was used the maximum peak-to-peak difference between the two interferometers was 80 pm, compared with 20 pm when the stabilized laser was used.

  11. Interferometry On Grazing Incidence Optics

    NASA Astrophysics Data System (ADS)

    Geary, Joseph; Maeda, Riki

    1988-08-01

    A preliminary interferometric procedure is described showing potential for obtaining surface figure error maps of grazing incidence optics at normal incidence. The latter are found in some laser resonator configurations, and in Wolter type X-ray optics. The procedure makes use of cylindrical wavefronts and error subtraction techniques over subapertures. The surface error maps obtained will provide critical information to opticians in the fabrication process.

  12. Interferometry on grazing incidence optics

    NASA Astrophysics Data System (ADS)

    Geary, Joseph M.; Maeda, Riki

    1987-12-01

    An interfeormetric procedure is described that shows potential for obtaining surface figure error maps of grazing incidence optics at normal incidence. Such optics are found in some laser resonator configurations and in Wolter-type X-ray optics. The procedure makes use of cylindrical wavefronts and error subtraction techniques over subapertures. The surface error maps obtained will provide critical information to opticians for the fabrication process.

  13. Quantifying Nucleic Acid Ensembles with X-ray Scattering Interferometry.

    PubMed

    Shi, Xuesong; Bonilla, Steve; Herschlag, Daniel; Harbury, Pehr

    2015-01-01

    The conformational ensemble of a macromolecule is the complete description of the macromolecule's solution structures and can reveal important aspects of macromolecular folding, recognition, and function. However, most experimental approaches determine an average or predominant structure, or follow transitions between states that each can only be described by an average structure. Ensembles have been extremely difficult to experimentally characterize. We present the unique advantages and capabilities of a new biophysical technique, X-ray scattering interferometry (XSI), for probing and quantifying structural ensembles. XSI measures the interference of scattered waves from two heavy metal probes attached site specifically to a macromolecule. A Fourier transform of the interference pattern gives the fractional abundance of different probe separations directly representing the multiple conformation states populated by the macromolecule. These probe-probe distance distributions can then be used to define the structural ensemble of the macromolecule. XSI provides accurate, calibrated distance in a model-independent fashion with angstrom scale sensitivity in distances. XSI data can be compared in a straightforward manner to atomic coordinates determined experimentally or predicted by molecular dynamics simulations. We describe the conceptual framework for XSI and provide a detailed protocol for carrying out an XSI experiment. © 2015 Elsevier Inc. All rights reserved.

  14. 2. View of Pope & Talbot office and general store, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View of Pope & Talbot office and general store, facing southeast across Rainier Avenue. Walker-Ames house in right background. - Pope & Talbot Office & General Store, Rainier Avenue, Port Gamble, Kitsap County, WA

  15. Slit-scanning differential x-ray phase-contrast mammography: proof-of-concept experimental studies.

    PubMed

    Koehler, Thomas; Daerr, Heiner; Martens, Gerhard; Kuhn, Norbert; Löscher, Stefan; van Stevendaal, Udo; Roessl, Ewald

    2015-04-01

    The purpose of this work is to investigate the feasibility of grating-based, differential phase-contrast, full-field digital mammography (FFDM) in terms of the requirements for field-of-view (FOV), mechanical stability, and scan time. A rigid, actuator-free Talbot interferometric unit was designed and integrated into a state-of-the-art x-ray slit-scanning mammography system, namely, the Philips MicroDose L30 FFDM system. A dedicated phase-acquisition and phase retrieval method was developed and implemented that exploits the redundancy of the data acquisition inherent to the slit-scanning approach to image generation of the system. No modifications to the scan arm motion control were implemented. The authors achieve a FOV of 160 × 196 mm consisting of two disjoint areas measuring 77 × 196 mm with a gap of 6 mm between them. Typical scanning times vary between 10 and 15 s and dose levels are lower than typical FFDM doses for conventional scans with identical acquisition parameters due to the presence of the source-grating G0. Only minor to moderate artifacts are observed in the three reconstructed images, indicating that mechanical vibrations induced by other system components do not prevent the use of the platform for phase contrast imaging. To the best of our knowledge, this is the first attempt to integrate x-ray gratings hardware into a clinical mammography unit. The results demonstrate that a scanning differential phase contrast FFDM system that meets the requirements of FOV, stability, scan time, and dose can be build.

  16. Grating interferometry-based phase microtomography of atherosclerotic human arteries

    NASA Astrophysics Data System (ADS)

    Buscema, Marzia; Holme, Margaret N.; Deyhle, Hans; Schulz, Georg; Schmitz, Rüdiger; Thalmann, Peter; Hieber, Simone E.; Chicherova, Natalia; Cattin, Philippe C.; Beckmann, Felix; Herzen, Julia; Weitkamp, Timm; Saxer, Till; Müller, Bert

    2014-09-01

    Cardiovascular diseases are the number one cause of death and morbidity in the world. Understanding disease development in terms of lumen morphology and tissue composition of constricted arteries is essential to improve treatment and patient outcome. X-ray tomography provides non-destructive three-dimensional data with micrometer-resolution. However, a common problem is simultaneous visualization of soft and hard tissue-containing specimens, such as atherosclerotic human coronary arteries. Unlike absorption based techniques, where X-ray absorption strongly depends on atomic number and tissue density, phase contrast methods such as grating interferometry have significant advantages as the phase shift is only a linear function of the atomic number. We demonstrate that grating interferometry-based phase tomography is a powerful method to three-dimensionally visualize a variety of anatomical features in atherosclerotic human coronary arteries, including plaque, muscle, fat, and connective tissue. Three formalin-fixed, human coronary arteries were measured using advanced laboratory μCT. While this technique gives information about plaque morphology, it is impossible to extract the lumen morphology. Therefore, selected regions were measured using grating based phase tomography, sinograms were treated with a wavelet-Fourier filter to remove ring artifacts, and reconstructed data were processed to allow extraction of vessel lumen morphology. Phase tomography data in combination with conventional laboratory μCT data of the same specimen shows potential, through use of a joint histogram, to identify more tissue types than either technique alone. Such phase tomography data was also rigidly registered to subsequently decalcified arteries that were histologically sectioned, although the quality of registration was insufficient for joint histogram analysis.

  17. Optically Levitated Targets as a Source for High Brightness X-rays and a Platform for Mass-Limited Laser-interaction Experiments

    NASA Astrophysics Data System (ADS)

    Giltrap, Samuel; Stuart, Nick; Robinson, Tim; Armstrong, Chris; Hicks, George; Eardley, Sam; Gumbrell, Ed; Smith, Roland

    2016-10-01

    Here we report on the development of an optical levitation based x-ray and proton source, motivated by the requirement for a debris free, high spatial resolution, and low EMP source for x-ray radiography and proton production. Research at Imperial College has led to the development of a feedback controlled optical levitation trap which is capable of holding both solid (Glass beads) and liquid (silicon based oil) micro-targets ( 3-10um). The optical levitation trap has been successfully fielded in a high-intensity laser interaction experiment at Imperial College London and at the Vulcan Petawatt Laser system at the Rutherford Appleton Laboratory (RAL). Here we report on the results from that RAL run including; an x-ray source size of 10-15um with very good spherical symmetry when compared to wire targets, secondly very low EMP signal from isolated levitated targets (9 times less RF signal than a comparable wire target). At Imperial College we were also able to record an x-ray energy spectrum which produced an electron temperature of 0.48KeV, and performed interferometry of a shock evolving into a blast wave off an optically levitated droplet which allowed us to infer the electron density within the shock front.

  18. Bounds on quantum collapse models from matter-wave interferometry: calculational details

    NASA Astrophysics Data System (ADS)

    Toroš, Marko; Bassi, Angelo

    2018-03-01

    We present a simple derivation of the interference pattern in matter-wave interferometry predicted by a class of quantum master equations. We apply the obtained formulae to the following collapse models: the Ghirardi-Rimini-Weber (GRW) model, the continuous spontaneous localization (CSL) model together with its dissipative (dCSL) and non-Markovian generalizations (cCSL), the quantum mechanics with universal position localization (QMUPL), and the Diósi-Penrose (DP) model. We discuss the separability of the dynamics of the collapse models along the three spatial directions, the validity of the paraxial approximation, and the amplification mechanism. We obtain analytical expressions both in the far field and near field limits. These results agree with those already derived in the Wigner function formalism. We compare the theoretical predictions with the experimental data from two recent matter-wave experiments: the 2012 far-field experiment of Juffmann T et al (2012 Nat. Nanotechnol. 7 297-300) and the 2013 Kapitza-Dirac-Talbot-Lau (KDTL) near-field experiment of Eibenberger et al (2013 Phys. Chem. Chem. Phys. 15 14696-700). We show the region of the parameter space for each collapse model that is excluded by these experiments. We show that matter-wave experiments provide model-insensitive bounds that are valid for a wide family of dissipative and non-Markovian generalizations.

  19. 3. View of Pope & Talbot office and general store, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. View of Pope & Talbot office and general store, facing southwest, rear of mill office in right foreground, rear of store in left foreground. Walker-Ames house in left background. - Pope & Talbot Office & General Store, Rainier Avenue, Port Gamble, Kitsap County, WA

  20. Grating-based phase contrast tomosynthesis imaging: Proof-of-concept experimental studies

    PubMed Central

    Li, Ke; Ge, Yongshuai; Garrett, John; Bevins, Nicholas; Zambelli, Joseph; Chen, Guang-Hong

    2014-01-01

    Purpose: This paper concerns the feasibility of x-ray differential phase contrast (DPC) tomosynthesis imaging using a grating-based DPC benchtop experimental system, which is equipped with a commercial digital flat-panel detector and a medical-grade rotating-anode x-ray tube. An extensive system characterization was performed to quantify its imaging performance. Methods: The major components of the benchtop system include a diagnostic x-ray tube with a 1.0 mm nominal focal spot size, a flat-panel detector with 96 μm pixel pitch, a sample stage that rotates within a limited angular span of ±30°, and a Talbot-Lau interferometer with three x-ray gratings. A total of 21 projection views acquired with 3° increments were used to reconstruct three sets of tomosynthetic image volumes, including the conventional absorption contrast tomosynthesis image volume (AC-tomo) reconstructed using the filtered-backprojection (FBP) algorithm with the ramp kernel, the phase contrast tomosynthesis image volume (PC-tomo) reconstructed using FBP with a Hilbert kernel, and the differential phase contrast tomosynthesis image volume (DPC-tomo) reconstructed using the shift-and-add algorithm. Three inhouse physical phantoms containing tissue-surrogate materials were used to characterize the signal linearity, the signal difference-to-noise ratio (SDNR), the three-dimensional noise power spectrum (3D NPS), and the through-plane artifact spread function (ASF). Results: While DPC-tomo highlights edges and interfaces in the image object, PC-tomo removes the differential nature of the DPC projection data and its pixel values are linearly related to the decrement of the real part of the x-ray refractive index. The SDNR values of polyoxymethylene in water and polystyrene in oil are 1.5 and 1.0, respectively, in AC-tomo, and the values were improved to 3.0 and 2.0, respectively, in PC-tomo. PC-tomo and AC-tomo demonstrate equivalent ASF, but their noise characteristics quantified by the 3D NPS were found to be different due to the difference in the tomosynthesis image reconstruction algorithms. Conclusions: It is feasible to simultaneously generate x-ray differential phase contrast, phase contrast, and absorption contrast tomosynthesis images using a grating-based data acquisition setup. The method shows promise in improving the visibility of several low-density materials and therefore merits further investigation. PMID:24387511

  1. DISCOVERY OF A WANDERING RADIO JET BASE AFTER A LARGE X-RAY FLARE IN THE BLAZAR MARKARIAN 421

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niinuma, K.; Kino, M.; Doi, A.

    2015-07-01

    We investigate the location of the radio jet bases (“radio cores”) of blazars in radio images and their stationarity by means of dense very long baseline interferometry (VLBI) observations. In order to measure the position of a radio core, we conducted a 12 epoch astrometric observation of the blazar Markarian 421 with the VLBI Exploration of Radio Astrometry at 22 GHz immediately after a large X-ray flare, which occurred in the middle of 2011 September. For the first time,we find that the radio core is not stationary but rather changes its location toward 0.5 mas downstream. This angular scale correspondsmore » to the de-projected length of a scale of 10{sup 5} Schwarzschild radii (R{sub s}) at the distance of Markarian 421. This radio-core wandering may be a new type of manifestation associated with the phenomena of large X-ray flares.« less

  2. Comparison of the Morphology Development of Polymer-Fullerene and Polymer-Polymer Solar Cells during Solution-Shearing Blade Coating

    DOE PAGES

    Gu, Xiaodan; Yan, Hongping; Kurosawa, Tadanori; ...

    2016-08-22

    Here in this work, the detailed morphology studies of polymer poly(3-hexylthiophene-2,5-diyl) (P3HT):fullerene(PCBM) and polymer(P3HT):polymer naphthalene diimide thiophene (PNDIT) solar cell are presented to understand the challenge for getting high performance all-polymer solar cells. The in situ X-ray scattering and optical interferometry and ex situ hard and soft X-ray scattering and imaging techniques are used to characterize the bulk heterojunction (BHJ) ink during drying and in dried state. The crystallization of P3HT polymers in P3HT:PCBM bulk heterojunction shows very different behavior compared to that of P3HT:PNDIT BHJ due to different mobilities of P3HT in the donor:acceptor glass. Supplemented by the exmore » situ grazing incidence X-ray diffraction and soft X-ray scattering, PNDIT has a lower tendency to form a mixed phase with P3HT than PCBM, which may be the key to inhibit the donor polymer crystallization process, thus creating preferred small phase separation between the donor and acceptor polymer.« less

  3. Influence of Xe and Kr impurities on x-ray yield from debris-free plasma x-ray sources with an Ar supersonic gas jet irradiated by femtosecond near-infrared-wavelength laser pulses

    NASA Astrophysics Data System (ADS)

    Kantsyrev, V. L.; Schultz, K. A.; Shlyaptseva, V. V.; Petrov, G. M.; Safronova, A. S.; Petkov, E. E.; Moschella, J. J.; Shrestha, I.; Cline, W.; Wiewior, P.; Chalyy, O.

    2016-11-01

    Many aspects of physical phenomena occurring when an intense laser pulse with subpicosecond duration and an intensity of 1018-1019W /cm2 heats an underdense plasma in a supersonic clustered gas jet are studied to determine the relative contribution of thermal and nonthermal processes to soft- and hard-x-ray emission from debris-free plasmas. Experiments were performed at the University of Nevada, Reno (UNR) Leopard laser operated with a 15-J, 350-fs pulse and different pulse contrasts (107 or 105). The supersonic linear (elongated) nozzle generated Xe cluster-monomer gas jets as well as jets with Kr-Ar or Xe-Kr-Ar mixtures with densities of 1018-1019cm-3 . Prior to laser heating experiments, all jets were probed with optical interferometry and Rayleigh scattering to measure jet density and cluster distribution parameters. The supersonic linear jet provides the capability to study the anisotropy of x-ray yield from laser plasma and also laser beam self-focusing in plasma, which leads to efficient x-ray generation. Plasma diagnostics included x-ray diodes, pinhole cameras, and spectrometers. Jet signatures of x-ray emission from pure Xe gas, as well as from a mixture with Ar and Kr, was found to be very different. The most intense x-ray emission in the 1-9 KeV spectral region was observed from gas mixtures rather than pure Xe. Also, this x-ray emission was strongly anisotropic with respect to the direction of laser beam polarization. Non-local thermodynamic equilibrium (Non-LTE) models have been implemented to analyze the x-ray spectra to determine the plasma temperature and election density. Evidence of electron beam generation in the supersonic jet plasma was found. The influence of the subpicosecond laser pulse contrast (a ratio between the laser peak intensity and pedestal pulse intensity) on the jets' x-ray emission characteristics is discussed. Surprisingly, it was found that the x-ray yield was not sensitive to the prepulse contrast ratio.

  4. Optical fabrication and testing; Proceedings of the Meeting, Singapore, Oct. 22-27, 1990

    NASA Astrophysics Data System (ADS)

    Lorenzen, Manfred; Campbell, Duncan R.; Johnson, Craig W.

    1991-03-01

    Various papers on optical fabrication and testing are presented. Individual topics addressed include: interferometry with laser diodes, new methods for economic production of prisms and lenses, interferometer accuracy and precision, optical testing with wavelength scanning interferometer, digital Talbot interferometer, high-sensitivity interferometric technique for strain measurements, absolute interferometric testing of spherical surfaces, contouring using gratings created on an LCD panel, three-dimensional inspection using laser-based dynamic fringe projection, noncontact optical microtopography, laser scan microscope and infrared laser scan microscope, photon scanning tunneling microscopy. Also discussed are: combination-matching problems in the layout design of minilaser rangefinder, design and testing of a cube-corner array for laser ranging, mode and far-field pattern of diode laser-phased arrays, new glasses for optics and optoelectronics, optical properties of Li-doped ZnO films, application and machining of Zerodur for optical purposes, finish machining of optical components in mass production.

  5. Optical fabrication and testing; Proceedings of the Meeting, Singapore, Oct. 22-27, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenzen, M.; Campbell, D.R.; Johnson, C.W.

    1991-01-01

    Various papers on optical fabrication and testing are presented. Individual topics addressed include: interferometry with laser diodes, new methods for economic production of prisms and lenses, interferometer accuracy and precision, optical testing with wavelength scanning interferometer, digital Talbot interferometer, high-sensitivity interferometric technique for strain measurements, absolute interferometric testing of spherical surfaces, contouring using gratings created on an LCD panel, three-dimensional inspection using laser-based dynamic fringe projection, noncontact optical microtopography, laser scan microscope and infrared laser scan microscope, photon scanning tunneling microscopy. Also discussed are: combination-matching problems in the layout design of minilaser rangefinder, design and testing of a cube-corner arraymore » for laser ranging, mode and far-field pattern of diode laser-phased arrays, new glasses for optics and optoelectronics, optical properties of Li-doped ZnO films, application and machining of Zerodur for optical purposes, finish machining of optical components in mass production.« less

  6. Direct Evidence of Conformational Changes Associated with Voltage Gating in a Voltage Sensor Protein by Time-Resolved X-ray/Neutron Interferometry

    PubMed Central

    2015-01-01

    The voltage sensor domain (VSD) of voltage-gated cation (e.g., Na+, K+) channels central to neurological signal transmission can function as a distinct module. When linked to an otherwise voltage-insensitive, ion-selective membrane pore, the VSD imparts voltage sensitivity to the channel. Proteins homologous with the VSD have recently been found to function themselves as voltage-gated proton channels or to impart voltage sensitivity to enzymes. Determining the conformational changes associated with voltage gating in the VSD itself in the absence of a pore domain thereby gains importance. We report the direct measurement of changes in the scattering-length density (SLD) profile of the VSD protein, vectorially oriented within a reconstituted phospholipid bilayer membrane, as a function of the transmembrane electric potential by time-resolved X-ray and neutron interferometry. The changes in the experimental SLD profiles for both polarizing and depolarizing potentials with respect to zero potential were found to extend over the entire length of the isolated VSD’s profile structure. The characteristics of the changes observed were in qualitative agreement with molecular dynamics simulations of a related membrane system, suggesting an initial interpretation of these changes in terms of the VSD’s atomic-level 3-D structure. PMID:24697545

  7. Phase contrast imaging with coherent high energy X-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snigireva, I.

    X-ray imaging concern high energy domain (>6 keV) like a contact radiography, projection microscopy and tomography is used for many years to discern the features of the internal structure non destructively in material science, medicine and biology. In so doing the main contrast formation is absorption that makes some limitations for imaging of the light density materials and what is more the resolution of these techniques is not better than 10-100 {mu}m. It was turned out that there is now way in which to overcome 1{mu}m or even sub-{mu}m resolution limit except phase contrast imaging. It is well known inmore » optics that the phase contrast is realised when interference between reference wave front and transmitted through the sample take place. Examples of this imaging are: phase contrast microscopy suggested by Zernike and Gabor (in-line) holography. Both of this techniques: phase contrast x-ray microscopy and holography are successfully progressing now in soft x-ray region. For imaging in the hard X-rays to enhance the contrast and to be able to resolve phase variations across the beam the high degree of the time and more importantly spatial coherence is needed. Because of this it was reasonable that the perfect crystal optics was involved like Bonse-Hart interferometry, double-crystal and even triple-crystal set-up using Laue and Bragg geometry with asymmetrically cut crystals.« less

  8. Bendable Focusing X-Ray Optics for the ALS and the LCLS/FEL: Design, Metrology, and Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yashchuk, V. V.; Yuan, S.; Baker, S.

    2010-06-02

    We review the recent development of bendable x-ray optics used for focusing of beams of soft and hard x-rays at the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory and at the Linac Coherent Light Source (LCLS) x-ray free electron laser (FEL) at the Stanford Linear Accelerator Center (SLAC) National Accelerator Laboratory. For simultaneous focusing in the tangential and sagittal directions, two elliptically cylindrical reflecting elements, a Kirkpatrick-Baez (KB) pair, are used. Because fabrication of elliptical surfaces is complicated, the cost of directly fabricated tangential elliptical cylinders is often prohibitive. Moreover, such optics cannot be easily readjusted for usemore » in multiple, different experimental arrangements, e.g. at different focal distances. This is in contrast to flat optics that are simpler to manufacture and easier to measure by conventional interferometry. The tangential figure of a flat substrate is changed by placing torques (couples) at each end. Depending on the applied couples, one can tune the shape close to a desired tangential cylinder, ellipse or parabola. We review the nature of the bending, requirements and approaches to the mechanical design, describe original optical and at-wavelength techniques for optimal tuning of bendable optics and alignment on the beamline, and provide beamline performance of the bendable optics used for sub-micro and nano focusing of soft x-rays.« less

  9. Interferogram conditioning for improved Fourier analysis and application to X-ray phase imaging by grating interferometry.

    PubMed

    Montaux-Lambert, Antoine; Mercère, Pascal; Primot, Jérôme

    2015-11-02

    An interferogram conditioning procedure, for subsequent phase retrieval by Fourier demodulation, is presented here as a fast iterative approach aiming at fulfilling the classical boundary conditions imposed by Fourier transform techniques. Interference fringe patterns with typical edge discontinuities were simulated in order to reveal the edge artifacts that classically appear in traditional Fourier analysis, and were consecutively used to demonstrate the correction efficiency of the proposed conditioning technique. Optimization of the algorithm parameters is also presented and discussed. Finally, the procedure was applied to grating-based interferometric measurements performed in the hard X-ray regime. The proposed algorithm enables nearly edge-artifact-free retrieval of the phase derivatives. A similar enhancement of the retrieved absorption and fringe visibility images is also achieved.

  10. Understanding Photography as Applied Chemistry: Using Talbot's Calotype Process to Introduce Chemistry to Design Students

    ERIC Educational Resources Information Center

    Ro¨sch, Esther S.; Helmerdig, Silke

    2017-01-01

    Early photography processes were predestined to combine chemistry and art. William Henry Fox Talbot is one of the early photography pioneers. In 2-3 day workshops, design students without a major background in chemistry are able to define a reproducible protocol for Talbot's gallic acid containing calotype process. With the experimental concept…

  11. Submicron Structures and Various Technology

    DTIC Science & Technology

    1990-06-01

    Replication in PMMA of a 30 nm-wide gold focused-ion-beam lithography alone. We are absorber line with (a) CK (A = 4.5 nm), ( b ) developing a new generation of...into soft x-ray spectroscopy and atom beam contact with the substrate b electrostatic interferometry, and to fabricate new classes means. A variety of...Professor Dimitri A. Antonaidis, Stuart B . Field, drain resistances and gate-source overlaps. Professor Marc A. Kastner, Udi Meirav, Samuel L. This will

  12. Phase-locked array of quantum cascade lasers with an integrated Talbot cavity.

    PubMed

    Wang, Lei; Zhang, Jinchuan; Jia, Zhiwei; Zhao, Yue; Liu, Chuanwei; Liu, Yinghui; Zhai, Shenqiang; Ning, Zhuo; Xu, Xiangang; Liu, Fengqi

    2016-12-26

    We show a phase-locked array of three quantum cascade lasers with an integrated Talbot cavity at one side of the laser array. The coupling scheme is called diffraction coupling. By controlling the length of Talbot to be a quarter of Talbot distance (Zt/4), in-phase mode operation can be selected. The in-phase operation shows great modal stability under different injection currents, from the threshold current to the full power current. The far-field radiation pattern of the in-phase operation contains three lobes, one central maximum lobe and two side lobes. The interval between adjacent lobes is about 10.5°. The output power is about 1.5 times that of a single-ridge laser. Further studies should be taken to achieve better beam performance and reduce optical losses brought by the integrated Talbot cavity.

  13. Goddard's Astrophysics Science Division Annual Report 2011

    NASA Technical Reports Server (NTRS)

    Centrella, Joan; Reddy, Francis; Tyler, Pat

    2012-01-01

    The Astrophysics Science Division(ASD) at Goddard Space Flight Center(GSFC)is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radiowavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contract imaging techniques to serch for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, and provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and suppport the astronomical community, and enable future missions by conceiving new conepts and inventing new technologies.

  14. The Astrophysics Science Division Annual Report 2009

    NASA Technical Reports Server (NTRS)

    Oegerle, William (Editor); Reddy, Francis (Editor); Tyler, Pat (Editor)

    2010-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum - from gamma rays to radio wavelengths - as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions - WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contrast imaging techniques to search for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and support the astronomical community, and enable future missions by conceiving new concepts and inventing new technologies.

  15. Goddard's Astrophysics Science Division Annual Report 2013

    NASA Technical Reports Server (NTRS)

    Weaver, Kimberly A. (Editor); Reddy, Francis J. (Editor); Tyler, Patricia A. (Editor)

    2014-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radio wavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for two orbiting astrophysics missions Fermi Gamma-ray Space Telescope and Swift as well as the Science Support Center for Fermi. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contrast imaging techniques to search for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and support the astronomical community, and enable future missions by conceiving new concepts and inventing new technologies.

  16. Comparison of different numerical treatments for x-ray phase tomography of soft tissue from differential phase projections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelliccia, Daniele; Vaz, Raquel; Svalbe, Imants

    X-ray imaging of soft tissue is made difficult by their low absorbance. The use of x-ray phase imaging and tomography can significantly enhance the detection of these tissues and several approaches have been proposed to this end. Methods such as analyzer-based imaging or grating interferometry produce differential phase projections that can be used to reconstruct the 3D distribution of the sample refractive index. We report on the quantitative comparison of three different methods to obtain x-ray phase tomography with filtered back-projection from differential phase projections in the presence of noise. The three procedures represent different numerical approaches to solve themore » same mathematical problem, namely phase retrieval and filtered back-projection. It is found that obtaining individual phase projections and subsequently applying a conventional filtered back-projection algorithm produces the best results for noisy experimental data, when compared with other procedures based on the Hilbert transform. The algorithms are tested on simulated phantom data with added noise and the predictions are confirmed by experimental data acquired using a grating interferometer. The experiment is performed on unstained adult zebrafish, an important model organism for biomedical studies. The method optimization described here allows resolution of weak soft tissue features, such as muscle fibers.« less

  17. Imaging a Black Hole - Maxim

    NASA Astrophysics Data System (ADS)

    Cash, W.

    With the general acceptance of black holes as real entities the astrophysics community has turned its attention to studying their behavior and properties. Because of the great distance and compact size of the central engine, astronomers are currently limited to spectroscopic analysis. But to take a picture, or better yet a movie, of the black hole in silhouette against its accretion disk would be a triumph of exploration and scientific inquiry. Probing to the event horizon is best accomplished in the x-ray band, where material primarily radiates in the last orbits before its final plunge. Not only will the signal be bright and minimally confused in the x-ray, but the size of the required interferometer drops dramatically. We describe MAXIM, the Micro-Arcsecond X-ray Imaging Mission, which is now being studied and developed by NASA. We will explain the preliminary mission concept which will use currently existing technology to achieve spatial resolution one million times higher than that of the Hubble Space Telescope and capture the image of an event horizon in a nearby Active Galactic Nucleus. We will also describe the Maxim Pathfinder. Designed as a stepping stone at resolution of 100 microarcseconds, it will demonstrate the techniques of x-ray interferometry and perform groundbreaking science like resolving the coronae of the nearby stars.

  18. Imaging a black hole: MAXIM

    NASA Astrophysics Data System (ADS)

    Cash, W.

    With the general acceptance of black holes as real entities the astrophysics community has turned its attention to studying their behavior and properties. Because of the great distance and compact size of the central engine, astronomers are limited to spectroscopic analysis. But to take a picture, or better yet a movie, of the black hole in silhouette against its accretion disk would be a triumph of exploration and scientific inquiry. Probing to the event horizon is best accomplished in the X-ray band, where material primarily radiates in the last orbits before its final plunge. Not only will the signal be bright and minimally confused in the X-ray, but the size of the required interferometer drops dramatically. We describe MAXIM, the Micro-Arcsecond X-ray Imaging Mission, which is now being studied and developed by NASA. We will explain the preliminary mission concept which will use currently existing technology to achieve spatial resolution one million times higher than that of the Hubble Space Telescope and capture the image of an event horizon in a nearby Active Galactic Nucleus. We will also describe the MAXIM Pathfinder. Designed as a stepping stone at resolution of 100 micro-arcseconds, it will demonstrate the techniques of X-ray interferometry and perform groundbreaking science like resolving the coronae of the nearby stars.

  19. Trochoidal X-ray Vector Radiography: Directional dark-field without grating stepping

    NASA Astrophysics Data System (ADS)

    Sharma, Y.; Bachche, S.; Kageyama, M.; Kuribayashi, M.; Pfeiffer, F.; Lasser, T.; Momose, A.

    2018-03-01

    X-ray Vector Radiography (XVR) is an imaging technique that reveals the orientations of sub-pixel sized structures within a sample. Several dark-field radiographs are acquired by rotating the sample around the beam propagation direction and stepping one of the gratings to several positions for every pose of the sample in an X-ray grating interferometry setup. In this letter, we present a method of performing XVR of a continuously moving sample without the need of any grating motion. We reconstruct the orientations within a sample by analyzing the change in the background moire fringes caused by the sample moving and simultaneously rotating in plane (trochoidal trajectory) across the detector field-of-view. Avoiding the motion of gratings provides significant advantages in terms of stability and repeatability, while the continuous motion of the sample makes this kind of system adaptable for industrial applications such as the scanning of samples on a conveyor belt. Being the first step in the direction of utilizing advanced sample trajectories to replace grating motion, this work also lays the foundations for a full three dimensional reconstruction of scattering function without grating motion.

  20. Soft x-ray spectroscopy of high pressure liquid.

    PubMed

    Qiao, Ruimin; Xia, Yujian; Feng, Xuefei; Macdougall, James; Pepper, John; Armitage, Kevin; Borsos, Jason; Knauss, Kevin G; Lee, Namhey; Allézy, Arnaud; Gilbert, Benjamin; MacDowell, Alastair A; Liu, Yi-Sheng; Glans, Per-Anders; Sun, Xuhui; Chao, Weilun; Guo, Jinghua

    2018-01-01

    We describe a new experimental technique that allows for soft x-ray spectroscopy studies (∼100-1000 eV) of high pressure liquid (∼100 bars). We achieve this through a liquid cell with a 100 nm-thick Si 3 N 4 membrane window, which is sandwiched by two identical O-rings for vacuum sealing. The thin Si 3 N 4 membrane allows soft x-rays to penetrate, while separating the high-pressure liquid under investigation from the vacuum required for soft x-ray transmission and detection. The burst pressure of the Si 3 N 4 membrane increases with decreasing size and more specifically is inversely proportional to the side length of the square window. It also increases proportionally with the membrane thickness. Pressures > 60 bars could be achieved for 100 nm-thick square Si 3 N 4 windows that are smaller than 65 μm. However, above a certain pressure, the failure of the Si wafer becomes the limiting factor. The failure pressure of the Si wafer is sensitive to the wafer thickness. Moreover, the deformation of the Si 3 N 4 membrane is quantified using vertical scanning interferometry. As an example of the performance of the high-pressure liquid cell optimized for total-fluorescence detected soft x-ray absorption spectroscopy (sXAS), the sXAS spectra at the Ca L edge (∼350 eV) of a CaCl 2 aqueous solution are collected under different pressures up to 41 bars.

  1. Soft x-ray spectroscopy of high pressure liquid

    DOE PAGES

    Qiao, Ruimin; Xia, Yujian; Feng, Xuefei; ...

    2018-01-01

    Here, we describe a new experimental technique that allows for soft x-ray spectroscopy studies (~100-1000 eV) of high pressure liquid (~100 bars). We achieve this through a liquid cell with a 100 nm-thick Si 3N 4 membrane window, which is sandwiched by two identical O-rings for vacuum sealing. The thin Si 3N 4 membrane allows soft x-rays to penetrate, while separating the high-pressure liquid under investigation from the vacuum required for soft x-ray transmission and detection. The burst pressure of the Si 3N 4 membrane increases with decreasing size and more specifically is inversely proportional to the side length ofmore » the square window. It also increases proportionally with the membrane thickness. Pressures > 60 bars could be achieved for 100 nm-thick square Si 3N 4 windows that are smaller than 65 μm. However, above a certain pressure, the failure of the Si wafer becomes the limiting factor. The failure pressure of the Si wafer is sensitive to the wafer thickness. Moreover, the deformation of the Si 3N 4 membrane is quantified using vertical scanning interferometry. As an example of the performance of the high-pressure liquid cell optimized for total-fluorescence detected soft x-ray absorption spectroscopy (sXAS), the sXAS spectra at the Ca L edge (~350 eV) of a CaCl 2 aqueous solution are collected under different pressures up to 41 bars.« less

  2. Soft x-ray spectroscopy of high pressure liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, Ruimin; Xia, Yujian; Feng, Xuefei

    Here, we describe a new experimental technique that allows for soft x-ray spectroscopy studies (~100-1000 eV) of high pressure liquid (~100 bars). We achieve this through a liquid cell with a 100 nm-thick Si 3N 4 membrane window, which is sandwiched by two identical O-rings for vacuum sealing. The thin Si 3N 4 membrane allows soft x-rays to penetrate, while separating the high-pressure liquid under investigation from the vacuum required for soft x-ray transmission and detection. The burst pressure of the Si 3N 4 membrane increases with decreasing size and more specifically is inversely proportional to the side length ofmore » the square window. It also increases proportionally with the membrane thickness. Pressures > 60 bars could be achieved for 100 nm-thick square Si 3N 4 windows that are smaller than 65 μm. However, above a certain pressure, the failure of the Si wafer becomes the limiting factor. The failure pressure of the Si wafer is sensitive to the wafer thickness. Moreover, the deformation of the Si 3N 4 membrane is quantified using vertical scanning interferometry. As an example of the performance of the high-pressure liquid cell optimized for total-fluorescence detected soft x-ray absorption spectroscopy (sXAS), the sXAS spectra at the Ca L edge (~350 eV) of a CaCl 2 aqueous solution are collected under different pressures up to 41 bars.« less

  3. Dimensional nanometrology at the National Physical Laboratory

    NASA Astrophysics Data System (ADS)

    Yacoot, Andrew; Leach, Richard; Hughes, Ben; Giusca, Claudiu; Jones, Christopher; Wilson, Alan

    2008-10-01

    The growth in nanotechnology has led to an increased requirement for traceable dimensional measurements of nanometre-sized objects and micrometre-sized objects with nanometre tolerances. To meet this challenge NPL has developed both purpose built instrumentation and added metrology to commercially available equipment. This paper describes the development and use of a selection of these instruments that include: atomic force microscopy, x-ray interferometry, a low force balance, a micro coordinate measuring machine and an areal surface texture measuring instrument.

  4. Phase retrieval with the reverse projection method in the presence of object's scattering

    NASA Astrophysics Data System (ADS)

    Wang, Zhili; Gao, Kun; Wang, Dajiang

    2017-08-01

    X-ray grating interferometry can provide substantially increased contrast over traditional attenuation-based techniques in biomedical applications, and therefore novel and complementary information. Recently, special attention has been paid to quantitative phase retrieval in X-ray grating interferometry, which is mandatory to perform phase tomography, to achieve material identification, etc. An innovative approach, dubbed ;Reverse Projection; (RP), has been developed for quantitative phase retrieval. The RP method abandons grating scanning completely, and is thus advantageous in terms of higher efficiency and reduced radiation damage. Therefore, it is expected that this novel method would find its potential in preclinical and clinical implementations. Strictly speaking, the reverse projection method is applicable for objects exhibiting only absorption and refraction. In this contribution, we discuss the phase retrieval with the reverse projection method for general objects with absorption, refraction and scattering simultaneously. Especially, we investigate the influence of the object's scattering on the retrieved refraction signal. Both theoretical analysis and numerical experiments are performed. The results show that the retrieved refraction signal is the product of object's refraction and scattering signals for small values. In the case of a strong scattering, the reverse projection method cannot provide reliable phase retrieval. Those presented results will guide the use of the reverse projection method for future practical applications, and help to explain some possible artifacts in the retrieved images and/or reconstructed slices.

  5. OMNY—A tOMography Nano crYo stage

    NASA Astrophysics Data System (ADS)

    Holler, M.; Raabe, J.; Diaz, A.; Guizar-Sicairos, M.; Wepf, R.; Odstrcil, M.; Shaik, F. R.; Panneels, V.; Menzel, A.; Sarafimov, B.; Maag, S.; Wang, X.; Thominet, V.; Walther, H.; Lachat, T.; Vitins, M.; Bunk, O.

    2018-04-01

    For many scientific questions gaining three-dimensional insight into a specimen can provide valuable information. We here present an instrument called "tOMography Nano crYo (OMNY)," dedicated to high resolution 3D scanning x-ray microscopy at cryogenic conditions via hard X-ray ptychography. Ptychography is a lens-less imaging method requiring accurate sample positioning. In OMNY, this in achieved via dedicated laser interferometry and closed-loop position control reaching sub-10 nm positioning accuracy. Cryogenic sample conditions are maintained via conductive cooling. 90 K can be reached when using liquid nitrogen as coolant, and 10 K is possible with liquid helium. A cryogenic sample-change mechanism permits measurements of cryogenically fixed specimens. We compare images obtained with OMNY with older measurements performed using a nitrogen gas cryo-jet of stained, epoxy-embedded retina tissue and of frozen-hydrated Chlamydomonas cells.

  6. Soft X-ray multilayers produced by sputtering and molecular beam epitaxy (MBE) - Substrate and interfacial roughness

    NASA Astrophysics Data System (ADS)

    Kearney, Patrick A.; Slaughter, J. M.; Powers, K. D.; Falco, Charles M.

    1988-01-01

    Roughness measurements were made on uncoated silicon wafers and float glass using a WYKO TOPO-3D phase shifting interferometry, and the results are reported. The wafers are found to be slightly smoother than the flat glass. The effects of different cleaning methods and of the deposition of silicon 'buffer layers' on substrate roughness are examined. An acid cleaning method is described which gives more consistent results than detergent cleaning. Healing of the roughness due to sputtered silicon buffer layers was not observed on the length scale probed by the WYKO. Sputtered multilayers are characterized using both the WYKO interferometer and low-angle X-ray diffraction in order to yield information about the roughness of the top surface and of the multilayer interfaces. Preliminary results on film growth using molecular beam epitaxy are also presented.

  7. View from the East: Arab Perceptions of United States Presence and Policy

    DTIC Science & Technology

    2003-02-01

    View from the East: Arab Perceptions of United States Presence and Policy Brent J . Talbot and Michael B. Meyer INSS...IMPLICATIONS FOR US POLICY IN THE MIDDLE EAST, Brent J . Talbot Introduction 1 The Perception Problem 3 The Consensus Issue 11...THE ARAB PERCEPTION AND CONSENSUS PROBLEMS: IMPLICATIONS FOR US POLICY IN THE MIDDLE EAST, Brent J . Talbot EXECUTIVE SUMMARY This paper is a

  8. Investigating source confusion in PMN J1603-4904

    NASA Astrophysics Data System (ADS)

    Krauß, F.; Kreter, M.; Müller, C.; Markowitz, A.; Böck, M.; Burnett, T.; Dauser, T.; Kadler, M.; Kreikenbohm, A.; Ojha, R.; Wilms, J.

    2018-02-01

    PMN J1603-4904 is a likely member of the rare class of γ-ray emitting young radio galaxies. Only one other source, PKS 1718-649, has been confirmed so far. These objects, which may transition into larger radio galaxies, are a stepping stone to understanding AGN evolution. It is not completely clear how these young galaxies, seen edge-on, can produce high-energy γ rays. PMN J1603-4904 has been detected by TANAMI Very Long Baseline Interferometry (VLBI) observations and has been followed-up with multiwavelength observations. A Fermi Gamma-ray Space Telescope Large Area Telescope (Fermi-LAT) γ-ray source has been associated with this young galaxy in the LAT catalogs. We have obtained Chandra observations of the source to consider the possibility of source confusion due to the relatively large positional uncertainty of Fermi-LAT. The goal was to investigate the possibility of other X-ray bright sources in the vicinity of PMN J1603-4904 that could be counterparts to the γ-ray emission. With Chandra/ACIS, we find no other sources in the uncertainty ellipse of Fermi-LAT data, which includes an improved localization analysis of eight years of data. We further study the X-ray fluxes and spectra. We conclude that PMN J1603-4904 is indeed the second confirmed γ-ray bright young radio galaxy.

  9. Study of the Earth's interior using measurements of sound velocities in minerals by ultrasonic interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Baosheng; Liebermann, Robert C.

    2014-07-29

    This paper reviews the progress of the technology of ultrasonic interferometry from the early 1950s to the present day. During this period of more than 60 years, sound wave velocity measurements have been increased from at pressures less than 1 GPa and temperatures less than 800 K to conditions above 25 GPa and temperatures of 1800 K. This is complimentary to other direct methods to measure sound velocities (such as Brillouin and impulsive stimulated scattering) as well as indirect methods (e.g., resonance ultrasound spectroscopy, static or shock compression, inelastic X-ray scattering). Newly-developed pressure calibration methods and data analysis procedures usingmore » a finite strain approach are described and applied to data for the major mantle minerals. The implications for the composition of the Earth’s mantle are discussed. The state-of-the-art ultrasonic experiments performed in conjunction with synchrotron X-radiation can provide simultaneous measurements of the elastic bulk and shear moduli and their pressure and temperature derivatives with direct determination of pressure. The current status and outlook/challenges for future experiments are summarized.« less

  10. Microstructure and dielectric properties of piezoelectric magnetron sputtered w-Sc{sub x}Al{sub 1-x}N thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zukauskaite, Agne; Wingqvist, Gunilla; Palisaitis, Justinas

    2012-05-01

    Piezoelectric wurtzite Sc{sub x}Al{sub 1-x}N (x = 0, 0.1, 0.2, 0.3) thin films were epitaxially grown by reactive magnetron co-sputtering from elemental Sc and Al targets. Al{sub 2}O{sub 3}(0001) wafers with TiN(111) seed and electrode layers were used as substrates. X-ray diffraction shows that an increase in the Sc content results in the degradation of the crystalline quality. Samples grown at 400 deg. C possess true dielectric behavior with quite low dielectric losses and the leakage current is negligible. For ScAlN samples grown at 800 deg. C, the crystal structure is poor and leakage current is high. Transmission electron microscopymore » with energy dispersive x-ray spectroscopy mapping shows a mass separation into ScN-rich and AlN-rich domains for x {>=} 0.2 when substrate temperature is increased from 400 to 800 deg. C. The piezoelectric response of epitaxial Sc{sub x}Al{sub 1-x}N films measured by piezoresponse force microscopy and double beam interferometry shows up to 180% increase by the addition of Sc up to x = 0.2 independent of substrate temperature, in good agreement with previous theoretical predictions based on density-functional theory.« less

  11. 46 CFR 7.85 - St. Simons Island, GA to Little Talbot Island, FL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false St. Simons Island, GA to Little Talbot Island, FL. 7.85... BOUNDARY LINES Atlantic Coast § 7.85 St. Simons Island, GA to Little Talbot Island, FL. (a) A line drawn from latitude 31°04.1′ N. longitude 81°16.7′ W. (St. Simons Lighted Whistle Buoy “ST S”) to latitude 30...

  12. Summary of NASA Advanced Telescope and Observatory Capability Roadmap

    NASA Technical Reports Server (NTRS)

    Stahl, H. Phil; Feinberg, Lee

    2006-01-01

    The NASA Advanced Telescope and Observatory (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories operating in all electromagnetic bands, from x-rays to millimeter waves, and including gravity-waves. It lists capability priorities derived from current and developing Space Missions Directorate (SMD) strategic roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.

  13. Summary of NASA Advanced Telescope and Observatory Capability Roadmap

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Feinberg, Lee

    2007-01-01

    The NASA Advanced Telescope and Observatory (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories operating in all electromagnetic bands, from x-rays to millimeter waves, and including gravity-waves. It lists capability priorities derived from current and developing Space Missions Directorate (SMD) strategic roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.

  14. Ocean Remote Sensing Using Ambient Noise

    DTIC Science & Technology

    2015-09-30

    and other adaptive array processing methods. OBJECTIVES Work on this project has focused on noise interferometry – the process by which an...measured at xA and xB. In that context, our objective is to investigate and identify the limitations of noise interferometry for remote sensing...and 6 is ongoing. 1. Demonstration of noise interferometry at 10 km range in a shallow water environment Recently conducted experiments in the

  15. System alignment using the Talbot effect

    NASA Astrophysics Data System (ADS)

    Chevallier, Raymond; Le Falher, Eric; Heggarty, Kevin

    1990-08-01

    The Talbot effect is utilized to correct an alignment problem related to a neural network used for image recognition, which required the alignment of a spatial light modulator (SLM) with the input module. A mathematical model which employs the Fresnel diffraction theory is presented to describe the method. The calculation of the diffracted amplitude describes the wavefront sphericity and the original object transmittance function in order to qualify the lateral shift of the Talbot image. Another explanation is set forth in terms of plane-wave illumination in the neural network. Using a Fourier series and by describing planes where all the harmonics are in phase, the reconstruction of Talbot images is explained. The alignment is effective when the lenslet array is aligned on the even Talbot images of the SLM pixels and the incident wave is a plane wave. The alignment is evaluated in terms of source and periodicity errors, tilt of the incident plane waves, and finite object dimensions. The effects of the error sources are concluded to be negligible, the lenslet array is shown to be successfully aligned with the SLM, and other alignment applications are shown to be possible.

  16. Non-destructive phase contrast hard x-ray imaging to reveal the three-dimensional microstructure of soft and hard tissues

    NASA Astrophysics Data System (ADS)

    Khimchenko, Anna; Schulz, Georg; Deyhle, Hans; Hieber, Simone E.; Hasan, Samiul; Bikis, Christos; Schulz, Joachim; Costeur, Loïc.; Müller, Bert

    2016-04-01

    X-ray imaging in the absorption contrast mode is an established method of visualising calcified tissues such as bone and teeth. Physically soft tissues such as brain or muscle are often imaged using magnetic resonance imaging (MRI). However, the spatial resolution of MRI is insufficient for identifying individual biological cells within three-dimensional tissue. X-ray grating interferometry (XGI) has advantages for the investigation of soft tissues or the simultaneous three-dimensional visualisation of soft and hard tissues. Since laboratory microtomography (μCT) systems have better accessibility than tomography set-ups at synchrotron radiation facilities, a great deal of effort has been invested in optimising XGI set-ups for conventional μCT systems. In this conference proceeding, we present how a two-grating interferometer is incorporated into a commercially available nanotom m (GE Sensing and Inspection Technologies GmbH) μCT system to extend its capabilities toward phase contrast. We intend to demonstrate superior contrast in spiders (Hogna radiata (Fam. Lycosidae) and Xysticus erraticus (Fam. Thomisidae)), as well as the simultaneous visualisation of hard and soft tissues. XGI is an imaging modality that provides quantitative data, and visualisation is an important part of biomimetics; consequently, hard X-ray imaging provides a sound basis for bioinspiration, bioreplication and biomimetics and allows for the quantitative comparison of biofabricated products with their natural counterparts.

  17. High Resolution X-ray Imaging

    NASA Technical Reports Server (NTRS)

    Cash, Webster

    2002-01-01

    NAG5-5020 covered a period of 7.5 years during which a great deal of progress was made in x-ray optical techniques under this grant. We survived peer review numerous times during the effort to keep the grant going. In 1994, when the grant started we were actively pursuing the application of spherical mirrors to improving x-ray telescopes. We had found that x-ray detectors were becoming rapidly more sophisticated and affordable, but that x-ray telescopes were only being improved through the intense application of money within the AXAF program. Clearly new techniques for the future were needed. We were successful in developing and testing at the HELSTF facility in New Mexico a four reflection coma-corrected telescope made from spheres. We were able to demonstrate 0.3 arcsecond resolution, almost to the diffraction limit of the system. The community as a whole was, at that time, not particularly interested in looking past AXAF (Chandra) and the effort needed to evolve. Since we had reached the diffraction limit using non-Wolter optics we then decided to see if we could build an x-ray interferometer in the laboratory. In the lab the potential for improved resolution was substantial. If synthetic aperture telescopes could be built in space, then orders of magnitude improvement would become feasible. In 1998 NASA, under the direction of Dr. Nick White of Goddard, started a study to assess the potential and feasibility of x-ray interferometry in space. My work became of central interest to the committee because it indicated that such was possible. In early 1999 we had the breakthrough that allowed us build a practical interferometer. By using flats and hooking up with the Marshall Space Flight Center facilities we were able to demonstrate fringes at 1.25keV on a one millimeter baseline. This actual laboratory demonstration provided the solid proof of concept that NASA needed.

  18. Laser Surface Microstructuring of Biocompatible Materials Using a Microlens Array and the Talbot Effect: Evaluation of the Cell Adhesion.

    PubMed

    Aymerich, María; Nieto, Daniel; Álvarez, Ezequiel; Flores-Arias, María T

    2017-02-22

    A laser based technique for microstructuring titanium and tantalum substrates using the Talbot effect and an array of microlenses is presented. By using this hybrid technique; we are able to generate different patterns and geometries on the top surfaces of the biomaterials. The Talbot effect allows us to rapidly make microstructuring, solving the common problems of using microlenses for multipatterning; where the material expelled during the ablation of biomaterials damages the microlens. The Talbot effect permits us to increase the working distance and reduce the period of the patterns. We also demonstrate that the geometries and patterns act as anchor points for cells; affecting the cell adhesion to the metallic substrates and guiding how they spread over the material.

  19. Laser Surface Microstructuring of Biocompatible Materials Using a Microlens Array and the Talbot Effect: Evaluation of the Cell Adhesion

    PubMed Central

    Aymerich, María; Nieto, Daniel; Álvarez, Ezequiel; Flores-Arias, María T.

    2017-01-01

    A laser based technique for microstructuring titanium and tantalum substrates using the Talbot effect and an array of microlenses is presented. By using this hybrid technique; we are able to generate different patterns and geometries on the top surfaces of the biomaterials. The Talbot effect allows us to rapidly make microstructuring, solving the common problems of using microlenses for multipatterning; where the material expelled during the ablation of biomaterials damages the microlens. The Talbot effect permits us to increase the working distance and reduce the period of the patterns. We also demonstrate that the geometries and patterns act as anchor points for cells; affecting the cell adhesion to the metallic substrates and guiding how they spread over the material. PMID:28772574

  20. Quasi-Talbot effect of orbital angular momentum beams for generation of optical vortex arrays by multiplexing metasurface design.

    PubMed

    Gao, Hui; Li, Yang; Chen, Lianwei; Jin, Jinjin; Pu, Mingbo; Li, Xiong; Gao, Ping; Wang, Changtao; Luo, Xiangang; Hong, Minghui

    2018-01-03

    The quasi-Talbot effect of orbital angular momentum (OAM) beams, in which the centers are placed in a rotationally symmetric position, is demonstrated both numerically and experimentally for the first time. Since its multiplication factor is much higher than the conventional fractional Talbot effect, the quasi-Talbot effect can be used in the generation of vortex beam arrays. A metasurface based on this theory was designed and fabricated to test the validity of this assumption. The agreement between the numerical and measured results suggests the practicability of this method to realize vortex beam arrays with high integrated levels, which can open a new door to achieve various potential uses related to optical vortex arrays in integrated optical systems for wide-ranging applications.

  1. Holographic Interferometry (HI), Infrared Vision and X-Ray Fluorescence (XRF) spectroscopy for the assessment of painted wooden statues: a new integrated approach

    NASA Astrophysics Data System (ADS)

    Sfarra, Stefano; Ibarra-Castanedo, Clemente; Ridolfi, Stefano; Cerichelli, Giorgio; Ambrosini, Dario; Paoletti, Domenica; Maldague, Xavier

    2014-06-01

    Wood has been routinely employed in decorative arts, as well as in sculptures and paintings (support) during the Middle Ages, because of its unique aesthetic virtues. It may safely be assumed that wood, as a material for monumental sculpture, was much more commonly employed in the mediaeval period than existing examples would seem to indicate (Bulletin of the metropolitan Museum of Art, 2013). Wood is easily obtainable; it could be carved and put in place with less difficulty than stone, it is chemically stable when dry, and its surface offers a compatible substrate for paint application. However, the use of wood is not without pitfalls, and requires an understanding of its anisotropic and hygroscopic nature. It is also dimensionally unstable and subject to deterioration by fungi and insects. Moisture-related dimensional changes are certainly among the most challenging problems in painting conservation. With the purpose of preventing important damages, the use of non-or microdestructive testing (NDT) techniques is undoubtedly of paramount interest for painted wooden statues of great value. This work has a threefold purpose: (1) to validate the effectiveness of an integrated approach using near-infrared (NIR) reflectography, square pulse thermography (SPT), and holographic interferometry (HI) techniques for discovering old repairs and/or inclusions of foreign materials in a wooden structure, (2) to confirm and approximately date the restoration carried out by x-ray fluorescence (XRF) spectroscopy and energy-dispersive x-ray spectroscopy (EDS) (that is assembled with a scanning electron microscopy—SEM) techniques, and (3) to combine into a multidisciplinary approach two quantitative NDT results coming from optical and thermographic methods. The subject of the present study was a statue named "Virgin with her Child" (XIV century), whose origins are mysterious and not properly documented.

  2. Measurement of Preheat Due to Nonlocal Electron Transport in Warm Dense Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Falk, K.; Holec, M.; Fontes, C. J.

    This work presents a novel approach to study electron transport in warm dense matter. It also includes the first x-ray Thomson scattering (XRTS) measurement from low-density CH foams compressed by a strong laser-driven shock at the OMEGA laser facility. The XRTS measurement is combined with velocity interferometry (VISAR) and optical pyrometry (SOP) providing a robust measurement of thermodynamic conditions in the shock. Evidence of significant preheat contributing to elevated temperatures reaching 17.5–35 eV in shocked CH foam is measured by XRTS. These measurements are complemented by abnormally high shock velocities observed by VISAR and early emission seen by SOP. Thesemore » results are compared to radiation hydrodynamics simulations that include first-principles treatment of nonlocal electron transport in warm dense matter with excellent agreement. Additional simulations confirm that the x-ray contribution to this preheat is negligible.« less

  3. Measurement of Preheat Due to Nonlocal Electron Transport in Warm Dense Matter

    DOE PAGES

    Falk, K.; Holec, M.; Fontes, C. J.; ...

    2018-01-10

    This work presents a novel approach to study electron transport in warm dense matter. It also includes the first x-ray Thomson scattering (XRTS) measurement from low-density CH foams compressed by a strong laser-driven shock at the OMEGA laser facility. The XRTS measurement is combined with velocity interferometry (VISAR) and optical pyrometry (SOP) providing a robust measurement of thermodynamic conditions in the shock. Evidence of significant preheat contributing to elevated temperatures reaching 17.5–35 eV in shocked CH foam is measured by XRTS. These measurements are complemented by abnormally high shock velocities observed by VISAR and early emission seen by SOP. Thesemore » results are compared to radiation hydrodynamics simulations that include first-principles treatment of nonlocal electron transport in warm dense matter with excellent agreement. Additional simulations confirm that the x-ray contribution to this preheat is negligible.« less

  4. Measurement of Preheat Due to Nonlocal Electron Transport in Warm Dense Matter

    NASA Astrophysics Data System (ADS)

    Falk, K.; Holec, M.; Fontes, C. J.; Fryer, C. L.; Greeff, C. W.; Johns, H. M.; Montgomery, D. S.; Schmidt, D. W.; Šmíd, M.

    2018-01-01

    This Letter presents a novel approach to study electron transport in warm dense matter. It also includes the first x-ray Thomson scattering (XRTS) measurement from low-density CH foams compressed by a strong laser-driven shock at the OMEGA laser facility. The XRTS measurement is combined with velocity interferometry (VISAR) and optical pyrometry (SOP) providing a robust measurement of thermodynamic conditions in the shock. Evidence of significant preheat contributing to elevated temperatures reaching 17.5-35 eV in shocked CH foam is measured by XRTS. These measurements are complemented by abnormally high shock velocities observed by VISAR and early emission seen by SOP. These results are compared to radiation hydrodynamics simulations that include first-principles treatment of nonlocal electron transport in warm dense matter with excellent agreement. Additional simulations confirm that the x-ray contribution to this preheat is negligible.

  5. Fractional Talbot field and of finite gratings: compact analytical formulation.

    PubMed

    Arrizón, V; Rojo-Velázquez, G

    2001-06-01

    We present a compact analytical formulation for the fractional Talbot effect at the paraxial domain of a finite grating. Our results show that laterally shifted distorted images of the grating basic cell form the Fresnel field at a fractional Talbot plane of the grating. Our formulas give the positions of those images and show that they are given by the convolution of the nondistorted cells (modulated by a quadratic phase factor) with the Fourier transform of the finite-grating pupil.

  6. Protein Crystal Movements and Fluid Flows During Microgravity Growth

    NASA Technical Reports Server (NTRS)

    Boggon, Titus J.; Chayen, Naomi E.; Snell, Edward H.; Dong, Jun; Lautenschlager, Peter; Potthast, Lothar; Siddons, D. Peter; Stojanoff, Vivian; Gordon, Elspeth; Thompson, Andrew W.; hide

    1998-01-01

    The growth of protein crystals suitable for x-ray crystal structure analysis is an important topic. The quality (perfection) of protein crystals is now being evaluated by mosaicity analysis (rocking curves) and x-ray topographic images as well as the diffraction resolution limit and overall data quality. In yet another study, use of hanging drop vapour diffusion geometry on the IML-2 shuttle mission showed, again via CCD video monitoring, growing apocrustacyanin C(sub 1) protein crystal executing near cyclic movement, reminiscent of Marangoni convection flow of fluid, the crystals serving as "markers" of the fluid flow. A review is given here of existing results and experience over several microgravity missions. Some comment is given on gel protein crystal growth in attempts to 'mimic' the benefits of microgravity on Earth. Finally, the recent new results from our experiments on the shuttle mission LMS are described. These results include CCD video as well as interferometry during the mission, followed, on return to Earth, by reciprocal space mapping at the NSLS, Brookhaven, and full X-ray data collection on LMS and Earth control lysozyme crystals. Diffraction data recorded from LMS and ground control apocrustacyanin C(sub 1) crystals are also described.

  7. Microstructure and dielectric properties of piezoelectric magnetron sputtered w-ScxAl1-xN thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zukauskaite, Agne; Wingqvist, Gunilla; Palisaitis, Justinas

    2012-01-01

    Piezoelectric wurtzite ScxAl1 xN (x = 0, 0.1, 0.2, 0.3) thin films were epitaxially grown by reactive magnetron co-sputtering from elemental Sc and Al targets. Al2O3(0001) wafers with TiN(111) seed and electrode layers were used as substrates. X-ray diffraction shows that an increase in the Sc content results in the degradation of the crystalline quality. Samples grown at 400 C possess true dielectric behavior with quite low dielectric losses and the leakage current is negligible. For ScAlN samples grown at 800 C, the crystal structure is poor and leakage current is high. Transmission electron microscopy with energy dispersive x-ray spectroscopymore » mapping shows a mass separation into ScN-rich and AlN-rich domains for x 0.2 when substrate temperature is increased from 400 to 800 C. The piezoelectric response of epitaxial ScxAl1 xN films measured by piezoresponse force microscopy and double beam interferometry shows up to 180% increase by the addition of Sc up to x = 0.2 independent of substrate temperature, in good agreement with previous theoretical predictions based on density-functional theory.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cseh, David; Corbel, Stephane; Kaaret, Philip

    We present new radio, optical, and X-ray observations of three ultraluminous X-ray sources (ULXs) that are associated with large-scale nebulae. We report the discovery of a radio nebula associated with the ULX IC 342 X-1 using the Very Large Array (VLA). Complementary VLA observations of the nebula around Holmberg II X-1, and high-frequency Australia Telescope Compact Array and Very Large Telescope spectroscopic observations of NGC 5408 X-1 are also presented. We study the morphology, ionization processes, and the energetics of the optical/radio nebulae of IC 342 X-1, Holmberg II X-1, and NGC 5408 X-1. The energetics of the optical nebulamore » of IC 342 X-1 is discussed in the framework of standard bubble theory. The total energy content of the optical nebula is 6 Multiplication-Sign 10{sup 52} erg. The minimum energy needed to supply the associated radio nebula is 9.2 Multiplication-Sign 10{sup 50} erg. In addition, we detected an unresolved radio source at the location of IC 342 X-1 at the VLA scales. However, our Very Long Baseline Interferometry (VLBI) observations using the European VLBI Network likely rule out the presence of any compact radio source at milliarcsecond (mas) scales. Using a simultaneous Swift X-ray Telescope measurement, we estimate an upper limit on the mass of the black hole in IC 342 X-1 using the 'fundamental plane' of accreting black holes and obtain M{sub BH} {<=} (1.0 {+-} 0.3) Multiplication-Sign 10{sup 3} M{sub Sun }. Arguing that the nebula of IC 342 X-1 is possibly inflated by a jet, we estimate accretion rates and efficiencies for the jet of IC 342 X-1 and compare with sources like S26, SS433, and IC 10 X-1.« less

  9. High resolution Talbot self-imaging applied to structural characterization of self-assembled monolayers of microspheres.

    PubMed

    Garcia-Sucerquia, J; Alvarez-Palacio, D C; Kreuzer, H J

    2008-09-10

    We report the observation of the Talbot self-imaging effect in high resolution digital in-line holographic microscopy (DIHM) and its application to structural characterization of periodic samples. Holograms of self-assembled monolayers of micron-sized polystyrene spheres are reconstructed at different image planes. The point-source method of DIHM and the consequent high lateral resolution allows the true image (object) plane to be identified. The Talbot effect is then exploited to improve the evaluation of the pitch of the assembly and to examine defects in its periodicity.

  10. Large Observatory for x-ray Timing (LOFT-P): a Probe-class mission concept study

    NASA Astrophysics Data System (ADS)

    Wilson-Hodge, Colleen A.; Ray, Paul S.; Chakrabarty, Deepto; Feroci, Marco; Alvarez, Laura; Baysinger, Michael; Becker, Chris; Bozzo, Enrico; Brandt, Soren; Carson, Billy; Chapman, Jack; Dominguez, Alexandra; Fabisinski, Leo; Gangl, Bert; Garcia, Jay; Griffith, Christopher; Hernanz, Margarita; Hickman, Robert; Hopkins, Randall; Hui, Michelle; Ingram, Luster; Jenke, Peter; Korpela, Seppo; Maccarone, Tom; Michalska, Malgorzata; Pohl, Martin; Santangelo, Andrea; Schanne, Stephane; Schnell, Andrew; Stella, Luigi; van der Klis, Michiel; Watts, Anna; Winter, Berend; Zane, Silvia

    2016-07-01

    LOFT-P is a mission concept for a NASA Astrophysics Probe-Class (<$1B) X-ray timing mission, based on the LOFT M-class concept originally proposed to ESAs M3 and M4 calls. LOFT-P requires very large collecting area, high time resolution, good spectral resolution, broad-band spectral coverage (2-30 keV), highly flexible scheduling, and an ability to detect and respond promptly to time-critical targets of opportunity. It addresses science questions such as: What is the equation of state of ultra dense matter? What are the effects of strong gravity on matter spiraling into black holes? It would be optimized for sub-millisecond timing of bright Galactic X-ray sources including X-ray bursters, black hole binaries, and magnetars to study phenomena at the natural timescales of neutron star surfaces and black hole event horizons and to measure mass and spin of black holes. These measurements are synergistic to imaging and high-resolution spectroscopy instruments, addressing much smaller distance scales than are possible without very long baseline X-ray interferometry, and using complementary techniques to address the geometry and dynamics of emission regions. LOFT-P would have an effective area of >6 m2, > 10x that of the highly successful Rossi X-ray Timing Explorer (RXTE). A sky monitor (2-50 keV) acts as a trigger for pointed observations, providing high duty cycle, high time resolution monitoring of the X-ray sky with 20 times the sensitivity of the RXTE All-Sky Monitor, enabling multi-wavelength and multimessenger studies. A probe-class mission concept would employ lightweight collimator technology and large-area solid-state detectors, segmented into pixels or strips, technologies which have been recently greatly advanced during the ESA M3 Phase A study of LOFT. Given the large community interested in LOFT (>800 supporters*, the scientific productivity of this mission is expected to be very high, similar to or greater than RXTE ( 2000 refereed publications). We describe the results of a study, recently completed by the MSFC Advanced Concepts Office, that demonstrates that such a mission is feasible within a NASA probe-class mission budget.

  11. High density plasmas and new diagnostics: An overview (invited).

    PubMed

    Celona, L; Gammino, S; Mascali, D

    2016-02-01

    One of the limiting factors for the full understanding of Electron Cyclotron Resonance Ion Sources (ECRISs) fundamental mechanisms consists of few types of diagnostic tools so far available for such compact machines. Microwave-to-plasma coupling optimisation, new methods of density overboost provided by plasma wave generation, and magnetostatic field tailoring for generating a proper electron energy distribution function, suitable for optimal ion beams formation, require diagnostic tools spanning across the entire electromagnetic spectrum from microwave interferometry to X-ray spectroscopy; these methods are going to be implemented including high resolution and spatially resolved X-ray spectroscopy made by quasi-optical methods (pin-hole cameras). The ion confinement optimisation also requires a complete control of cold electrons displacement, which can be performed by optical emission spectroscopy. Several diagnostic tools have been recently developed at INFN-LNS, including "volume-integrated" X-ray spectroscopy in low energy domain (2-30 keV, by using silicon drift detectors) or high energy regime (>30 keV, by using high purity germanium detectors). For the direct detection of the spatially resolved spectral distribution of X-rays produced by the electronic motion, a "pin-hole camera" has been developed also taking profit from previous experiences in the ECRIS field. The paper will give an overview of INFN-LNS strategy in terms of new microwave-to-plasma coupling schemes and advanced diagnostics supporting the design of new ion sources and for optimizing the performances of the existing ones, with the goal of a microwave-absorption oriented design of future machines.

  12. Experimental study and analytical model of deformation of magnetostrictive films as applied to mirrors for x-ray space telescopes.

    PubMed

    Wang, Xiaoli; Knapp, Peter; Vaynman, S; Graham, M E; Cao, Jian; Ulmer, M P

    2014-09-20

    The desire for continuously gaining new knowledge in astronomy has pushed the frontier of engineering methods to deliver lighter, thinner, higher quality mirrors at an affordable cost for use in an x-ray observatory. To address these needs, we have been investigating the application of magnetic smart materials (MSMs) deposited as a thin film on mirror substrates. MSMs have some interesting properties that make the application of MSMs to mirror substrates a promising solution for making the next generation of x-ray telescopes. Due to the ability to hold a shape with an impressed permanent magnetic field, MSMs have the potential to be the method used to make light weight, affordable x-ray telescope mirrors. This paper presents the experimental setup for measuring the deformation of the magnetostrictive bimorph specimens under an applied magnetic field, and the analytical and numerical analysis of the deformation. As a first step in the development of tools to predict deflections, we deposited Terfenol-D on the glass substrates. We then made measurements that were compared with the results from the analytical and numerical analysis. The surface profiles of thin-film specimens were measured under an external magnetic field with white light interferometry (WLI). The analytical model provides good predictions of film deformation behavior under various magnetic field strengths. This work establishes a solid foundation for further research to analyze the full three-dimensional deformation behavior of magnetostrictive thin films.

  13. Tomography using monochromatic thermal neutrons with attenuation and phase contrast

    NASA Astrophysics Data System (ADS)

    Dubus, Francois; Bonse, Ulrich; Biermann, Theodor; Baron, Matthias; Beckmann, Felix; Zawisky, Michael

    2002-01-01

    Attenuation-contrast tomography with monochromatic thermal neutrons was developed and operated at guide station S18 of the institute Laue-Langevin in Grenoble. From the S18 spectrum the neutron wavelength (lambda) equals 0.18 nm was selected by employing a fore crystal with the silicon 220 reflection at a Bragg angle (Theta) equals 30 degrees. Projections were registered by a position sensitive detector (PSD) consisting of a neutron-to-visible-light converter coupled to a CCD detector. Neutron tomography and its comparison with X-ray tomography is studied. This is of special interest since the cross section for neutron attenuation ((sigma) atom) and the cross section for neutron phase shift (bc) are isotope specific and, in addition, by no means mostly monotonous functions of atomic number Z as are attenuation coefficient ((mu) x) and atomic scattering amplitude (f) in the case of X-rays. Results obtained with n-attenuation tomography will be presented. Possibilities and the setup of an instrument for neutron phase-contrast tomography based on single-crystal neutron interferometry will be described.

  14. Bottlenecks of the wavefront sensor based on the Talbot effect.

    PubMed

    Podanchuk, Dmytro; Kovalenko, Andrey; Kurashov, Vitalij; Kotov, Myhaylo; Goloborodko, Andrey; Danko, Volodymyr

    2014-04-01

    Physical constraints and peculiarities of the wavefront sensing technique, based on the Talbot effect, are discussed. The limitation on the curvature of the measurable wavefront is derived. The requirements to the Fourier spectrum of the periodic mask are formulated. Two kinds of masks are studied for their performance in the wavefront sensor. It is shown that the boundary part of the mask aperture does not contribute to the initial data for wavefront restoration. It is verified by experiment and computer simulation that the performance of the Talbot sensor, which meets established conditions, is similar to that of the Shack-Hartmann sensor.

  15. Survival resonances in an atom-optics system driven by temporally and spatially periodic dissipation

    NASA Astrophysics Data System (ADS)

    Chai, Shijie; Fekete, Julia; McDowall, Peter; Coop, Simon; Lindballe, Thue; Andersen, Mikkel F.

    2018-03-01

    We investigate laser-cooled atoms periodically driven by pulsed standing waves of light tuned close to an open atomic transition. This nonunitary system displays survival resonances for certain driving frequencies. The survival resonances emerge as a result of the matter-wave Talbot-Lau effect, similar to the Talbot effect causing quantum resonances in the atom optics δ -kicked rotor. Since the Talbot-Lau effect occurs for incoherent waves, the survival resonances can be observed using thermal atoms. A microlensing effect can enhance the height and incisiveness of the resonances. This may find applications in precision measurements.

  16. Correlation methods in optical metrology with state-of-the-art x-ray mirrors

    NASA Astrophysics Data System (ADS)

    Yashchuk, Valeriy V.; Centers, Gary; Gevorkyan, Gevork S.; Lacey, Ian; Smith, Brian V.

    2018-01-01

    The development of fully coherent free electron lasers and diffraction limited storage ring x-ray sources has brought to focus the need for higher performing x-ray optics with unprecedented tolerances for surface slope and height errors and roughness. For example, the proposed beamlines for the future upgraded Advance Light Source, ALS-U, require optical elements characterized by a residual slope error of <100 nrad (root-mean-square) and height error of <1-2 nm (peak-tovalley). These are for optics with a length of up to one meter. However, the current performance of x-ray optical fabrication and metrology generally falls short of these requirements. The major limitation comes from the lack of reliable and efficient surface metrology with required accuracy and with reasonably high measurement rate, suitable for integration into the modern deterministic surface figuring processes. The major problems of current surface metrology relate to the inherent instrumental temporal drifts, systematic errors, and/or an unacceptably high cost, as in the case of interferometry with computer-generated holograms as a reference. In this paper, we discuss the experimental methods and approaches based on correlation analysis to the acquisition and processing of metrology data developed at the ALS X-Ray Optical Laboratory (XROL). Using an example of surface topography measurements of a state-of-the-art x-ray mirror performed at the XROL, we demonstrate the efficiency of combining the developed experimental correlation methods to the advanced optimal scanning strategy (AOSS) technique. This allows a significant improvement in the accuracy and capacity of the measurements via suppression of the instrumental low frequency noise, temporal drift, and systematic error in a single measurement run. Practically speaking, implementation of the AOSS technique leads to an increase of the measurement accuracy, as well as the capacity of ex situ metrology by a factor of about four. The developed method is general and applicable to a broad spectrum of high accuracy measurements.

  17. The Experimental Study of Characterized Noble Gas Puffs Irradiated by Ultra-Short Laser Pulses Compared with X-Pinches as an X-Ray Source

    NASA Astrophysics Data System (ADS)

    Schultz, Kimberly Ann

    The goal of this dissertation is to study the basic physics and X-ray emission (1-10 keV) of two X-ray sources: X-pinch plasmas and a clustered gas-puff irradiated by an ultrashort laser pulse. X-pinches and other typical X-ray sources using solid targets create hot debris that can damage sensitive equipment. Therefore, to perform sensitive backlighting or X-ray effects testing, debris-free sources of radiation must be investigated. In this work, the author presents a broad study of clustered noble gas puffs including characterization measurements and laser heating experiments using several gas nozzles and multiple gases. Ultimately, the goal is to compare the laser-irradiated gas-puff and X-pinch plasmas as X-ray sources. Characterization of the gas puffs is performed at the Radiation Physics Laboratory at the University of Nevada, Reno (UNR) Physics Department using optical interferometry and Rayleigh scattering to determine density and cluster radius. By changing the gas-puff variables control of both the density and cluster size of the gas jets is obtained. Two laser systems provide the high intensities desired for the laser-irradiated gas puff experiments: the UNR Leopard Laser (1-2x1019 W/cm2) and the Lawrence Livermore National Laboratory's Titan Laser (7x1019 W/cm2). X-ray emission is studied as a function of laser pulse parameters, gas target type, gas puff density, and the gas-delay timing between puff initiation and laser interaction with the puff. The tested gases are Ar, Kr, Xe, and four mixtures of the noble gases. Time-resolved X-ray measurements are captured with Silicon diodes and photoconducting diamond detectors. Electron beam detectors include Faraday cups and a high-energy (> 1 MeV) electron spectrometer. Modeling of spectra from X-ray crystal spectrometers provides plasma density and temperature measurement and a molecular dynamics (MD) code describes cluster interactions with the laser pulse. The conversion of laser energy into X rays is also measured. Laser beam transmission through and absorption by the gas puff reveal the complexity of using laser-irradiated gas puffs as X-ray sources. A strong anisotropy of X-ray and electron emissions were observed at both laser facilities. X-pinch plasmas can provide intense hard X rays and strong electron beams originating from small sources with many applications. Recent research has been conducted into four-wire X-pinches at the UNR Zebra machine, a 1-MA pulsed power generator. Two different wire materials are considered in this study, Ag and Mo. We observe a relatively linear correlation between load mass and implosion time for Mo X-pinches; in fact, this relationship also extends to include Ag. Interestingly, X-ray burst features drastically change in shape when the load mass is varied. Advantages of laser-irradiated gas puffs include a lack of damaging debris, high repetition rate, and ease of control. Its disadvantages include its inefficiency at converting electrical energy to X-rays, which is mostly limited by laser efficiency, and relatively low total energy yield. X-pinches, on the other hand, produced kJ of energy in a broad spectral region. However, they create a large amount of debris, have a low repetition rate, and, at 1-MA, have hard-to-predict implosion times.

  18. Contrast-to-noise ratio optimization for a prototype phase-contrast computed tomography scanner.

    PubMed

    Müller, Mark; Yaroshenko, Andre; Velroyen, Astrid; Bech, Martin; Tapfer, Arne; Pauwels, Bart; Bruyndonckx, Peter; Sasov, Alexander; Pfeiffer, Franz

    2015-12-01

    In the field of biomedical X-ray imaging, novel techniques, such as phase-contrast and dark-field imaging, have the potential to enhance the contrast and provide complementary structural information about a specimen. In this paper, a first prototype of a preclinical X-ray phase-contrast CT scanner based on a Talbot-Lau interferometer is characterized. We present a study of the contrast-to-noise ratios for attenuation and phase-contrast images acquired with the prototype scanner. The shown results are based on a series of projection images and tomographic data sets of a plastic phantom in phase and attenuation-contrast recorded with varying acquisition settings. Subsequently, the signal and noise distribution of different regions in the phantom were determined. We present a novel method for estimation of contrast-to-noise ratios for projection images based on the cylindrical geometry of the phantom. Analytical functions, representing the expected signal in phase and attenuation-contrast for a circular object, are fitted to individual line profiles of the projection data. The free parameter of the fit function is used to estimate the contrast and the goodness of the fit is determined to assess the noise in the respective signal. The results depict the dependence of the contrast-to-noise ratios on the applied source voltages, the number of steps of the phase stepping routine, and the exposure times for an individual step. Moreover, the influence of the number of projection angles on the image quality of CT slices is investigated. Finally, the implications for future imaging purposes with the scanner are discussed.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Müller, Mark, E-mail: mark-mueller@ph.tum.de; Yaroshenko, Andre; Velroyen, Astrid

    In the field of biomedical X-ray imaging, novel techniques, such as phase-contrast and dark-field imaging, have the potential to enhance the contrast and provide complementary structural information about a specimen. In this paper, a first prototype of a preclinical X-ray phase-contrast CT scanner based on a Talbot-Lau interferometer is characterized. We present a study of the contrast-to-noise ratios for attenuation and phase-contrast images acquired with the prototype scanner. The shown results are based on a series of projection images and tomographic data sets of a plastic phantom in phase and attenuation-contrast recorded with varying acquisition settings. Subsequently, the signal andmore » noise distribution of different regions in the phantom were determined. We present a novel method for estimation of contrast-to-noise ratios for projection images based on the cylindrical geometry of the phantom. Analytical functions, representing the expected signal in phase and attenuation-contrast for a circular object, are fitted to individual line profiles of the projection data. The free parameter of the fit function is used to estimate the contrast and the goodness of the fit is determined to assess the noise in the respective signal. The results depict the dependence of the contrast-to-noise ratios on the applied source voltages, the number of steps of the phase stepping routine, and the exposure times for an individual step. Moreover, the influence of the number of projection angles on the image quality of CT slices is investigated. Finally, the implications for future imaging purposes with the scanner are discussed.« less

  20. Features of Talbot effect on phase diffraction grating

    NASA Astrophysics Data System (ADS)

    Brazhnikov, Denis G.; Danko, Volodymyr P.; Kotov, Myhaylo M.; Kovalenko, Andriy V.

    2018-01-01

    The features of the Talbot effect using the phase diffraction gratings have been considered. A phase grating, unlike an amplitude grating, gives a constant light intensity in the observation plane at a distance multiple to half of the Talbot length ZT. In this case, the subject of interest consists in so-called fractional Talbot effect with the periodic intensity distribution observed in planes shifted from the position nZT/2 (the so-called Fresnel images). Binary phase diffraction gratings with varying phase steps have been investigated. Gratings were made photographically on holographic plates PFG-01. The phase shift was obtained by modulating the emulsion refraction index of the plates. Two types of gratings were used: a square grating with a fill factor of 0.5 and a checkerwise grating (square areas with a bigger and lower refractive index alternate in a checkerboard pattern). By the example of these gratings, the possibility of obtaining in the observation plane an image of a set of equidistant spots with a size smaller than the size of the phase-shifting elements of the grating (the so-called Talbot focusing) has been shown. Clear images of spots with a sufficient signal-to-noise ratio have been obtained for a square grating. Their period was equal to the period of the grating. For a grating with a checkerwise distribution of the refractive index, the spots have been located in positions corresponding to the centres of cells. In addition, the quality of the resulting pattern strongly depended on the magnitude of a grating phase step. As a result of the work, the possibility to obtain Talbot focusing has been shown and the use of this effect to wavefront investigation with a gradient sensor has been demonstrated.

  1. Imaging a black hole - Maxim

    NASA Astrophysics Data System (ADS)

    Cash, W.

    With the general acceptance of black holes as real entities the astrophysics community has turned its attention to studying their behavior and properties. Because of the great distance and compact size of the central engine, astronomers are currently limited to spectroscopic analysis. But to take a picture, or better yet a movie, of the black hole in silhouette against its accretion disk would be a triumph of exploration and scientific inquiry. Probing to the event horizon is best accomplished in the x-ray band, where material primarily radiates in the last orbits before its final plunge. Not only will the signal be bright and minimally confused in the x-ray, but the size of the required interferometer drops dramatically. We describe MAXIM, the Micro-Arcsecond X-ray Imaging Mission, which is now being studied and developed by NASA. We will explain the preliminary mission concept which will use currently existing technology to achieve spatial resolution one million times higher than that of the Hubble Space Telescope and capture the image of an event horizon in a nearby Active Galactic Nucleus. We will also describe the Maxim Pathfinder. Designed as a stepping stone at resolution of 100 microarcseconds, it will demonstrate the techniques of xray- interferometry and perform groundbreaking science like resolving the coronae of the nearby stars.

  2. Super Talbot effect in indefinite metamaterial.

    PubMed

    Zhao, Wangshi; Huang, Xiaoyue; Lu, Zhaolin

    2011-08-01

    The Talbot effect (or the self-imaging effect) can be observed for a periodic object with a pitch larger than the diffraction limit of an imaging system, where the paraxial approximation is applied. In this paper, we show that the super Talbot effect can be achieved in an indefinite metamaterial even when the period is much smaller than the diffraction limit in both two-dimensional and three-dimensional numerical simulations, where the paraxial approximation is not applied. This is attributed to the evanescent waves, which carry the information about subwavelength features of the object, can be converted into propagating waves and then conveyed to far field by the metamaterial, where the permittivity in the propagation direction is negative while the transverse ones are positive. The indefinite metamaterial can be approximated by a system of thin, alternating multilayer metal and insulator (MMI) stack. As long as the loss of the metamaterial is small enough, deep subwavelength image size can be obtained in the super Talbot effect.

  3. Australian Red Dune Sand: A Potential Martian Regolith Analog

    NASA Technical Reports Server (NTRS)

    Kuhlman, K. R.; Marshall, J.; Evans, N. D.; Luttge, A.

    2001-01-01

    To demonstrate the potential scientific and technical merits of in situ microscopy on Mars, we analyzed a possible Martian regolith analog - an acolian red dune sand from the central Australian desert (near Mt. Olga). This sand was chosen for its ubiquitous red coating and the desert environment in which is it found. Grains of this sand were analyzed using a variety of microanalytical techniques. A database of detailed studies of such terrestrial analogs would assist the study of geological and astrobiological specimens in future missions to Mars. Potential instrument concepts for in situ deployment on Mars include local electrode atom probe nanoanalysis (LEAP), vertical scanning white light interferometry (VSWLI), scanning electron microscopies, energy dispersive x-ray microanalysis (EDX), atomic force microscopy (AFM) and X-ray diffraction (XRD). While in situ deployment of these techniques is many years away, ground-based studies using these analytical techniques extend our understanding of the data obtained from instruments to be flown in the near future.

  4. X-ray scattering measurements of dissociation-induced metallization of dynamically compressed deuterium

    DOE PAGES

    Davis, P.; Döppner, T.; Rygg, J. R.; ...

    2016-04-18

    Hydrogen, the simplest element in the universe, has a surprisingly complex phase diagram. Because of applications to planetary science, inertial confinement fusion and fundamental physics, its high-pressure properties have been the subject of intense study over the past two decades. While sophisticated static experiments have probed hydrogen’s structure at ever higher pressures, studies examining the higher-temperature regime using dynamic compression have mostly been limited to optical measurement techniques. Here we present spectrally resolved x-ray scattering measurements from plasmons in dynamically compressed deuterium. Combined with Compton scattering, and velocity interferometry to determine shock pressure and mass density, this allows us tomore » extract ionization state as a function of compression. Furthermore, the onset of ionization occurs close in pressure to where density functional theory-molecular dynamics (DFT-MD) simulations show molecular dissociation, suggesting hydrogen transitions from a molecular and insulating fluid to a conducting state without passing through an intermediate atomic phase.« less

  5. Experimental investigations of elastohydrodynamic lubrication

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Dowson, D.

    1983-01-01

    Various experimental studies of elastohydrodynamic lubrication have been reviewed. The various types of machines used in these investigations, such as the disc, two and four ball, crossed-cylinders, and crossed-axes rolling disc machine, are described. The measurement of the most important parameters, such as film shape, film thickness, pressure, temperature, and traction, is considered. Determination of the film thickness is generally the most important of these effects since it dictates the extent to which the asperities on opposing surfaces can come into contact and thus has a direct bearing on wear and fatigue failure of the contacting surfaces. Several different techniques for measuring film thickness have been described, including electrical resistance, capacitance, X-ray, optical interferometry, laser beam diffraction, strain gage, and spring dynamometer methods. An attempt has been made to describe the basic concepts and limitations of each of these techniques. These various methods have been used by individual researchers, but there is no universally acceptable technique for measuring elastohydrodynamic film thickness. Capacitance methods have provided most of the reliable data for nominal line or rectangular conjunctions, but optical interferometry has proved to be the most effective procedure for elliptical contacts. Optical interferometry has the great advantage that it reveals not only the film thickness, but also details of the film shape over the complete area of the conjunction.

  6. The Talbot effect in a metamaterial

    NASA Astrophysics Data System (ADS)

    Nikkhah, H.; Hasan, M.; Hall, T. J.

    2018-02-01

    The effect of anisotropy and spatial dispersion of a metamaterial on the Talbot effect may be engineered in principle. This has profound implications for applications of the Talbot effect such as the design of a multimode interference coupler (MMI). The paper describes how a metamaterial can suppress the modal phase error which otherwise limits the scaling of MMI port dimension. A binary multilayer dielectric material described by the Kronig-Penney model is shown to provide a close approximation to the required dispersion relation. Results of simulations of a multi-slotted waveguide MMI engineered to provide a polarising beam splitter function are given as an example of the method.

  7. Far-field interference of a neutron white beam and the applications to noninvasive phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Pushin, D. A.; Sarenac, D.; Hussey, D. S.; Miao, H.; Arif, M.; Cory, D. G.; Huber, M. G.; Jacobson, D. L.; LaManna, J. M.; Parker, J. D.; Shinohara, T.; Ueno, W.; Wen, H.

    2017-04-01

    The phenomenon of interference plays a crucial role in the field of precision measurement science. Wave-particle duality has expanded the well-known interference effects of electromagnetic waves to massive particles. The majority of the wave-particle interference experiments require a near monochromatic beam which limits its applications due to the resulting low intensity. Here we demonstrate white beam interference in the far-field regime using a two-phase-grating neutron interferometer and its application to phase-contrast imaging. The functionality of this interferometer is based on the universal moiré effect that allows us to improve upon the standard Lau setup. Interference fringes were observed with monochromatic and polychromatic neutron beams for both continuous and pulsed beams. Far-field neutron interferometry allows for the full utilization of intense neutron sources for precision measurements of gradient fields. It also overcomes the alignment, stability, and fabrication challenges associated with the more familiar perfect-crystal neutron interferometer, as well as avoids the loss of intensity due to the absorption analyzer grating requirement in Talbot-Lau interferometer.

  8. The Milky Way's Supermassive Black Hole: How Good a Case Is It?

    NASA Astrophysics Data System (ADS)

    Eckart, Andreas; Hüttemann, Andreas; Kiefer, Claus; Britzen, Silke; Zajaček, Michal; Lämmerzahl, Claus; Stöckler, Manfred; Valencia-S, Monica; Karas, Vladimir; García-Marín, Macarena

    2017-05-01

    The compact and, with {˜ }4.3± 0.3× 10^6 M_{\\odot }, very massive object located at the center of the Milky Way is currently the very best candidate for a supermassive black hole (SMBH) in our immediate vicinity. The strongest evidence for this is provided by measurements of stellar orbits, variable X-ray emission, and strongly variable polarized near-infrared emission from the location of the radio source Sagittarius A* (SgrA*) in the middle of the central stellar cluster. Simultaneous near-infrared and X-ray observations of SgrA* have revealed insights into the emission mechanisms responsible for the powerful near-infrared and X-ray flares from within a few tens to one hundred Schwarzschild radii of such a putative SMBH. If SgrA* is indeed a SMBH it will, in projection onto the sky, have the largest event horizon and will certainly be the first and most important target for very long baseline interferometry observations currently being prepared by the event horizon telescope (EHT). These observations in combination with the infrared interferometry experiment GRAVITY at the very large telescope interferometer and other experiments across the electromagnetic spectrum might yield proof for the presence of a black hole at the center of the Milky Way. The large body of evidence continues to discriminate the identification of SgrA* as a SMBH from alternative possibilities. It is, however, unclear when the ever mounting evidence for SgrA* being associated with a SMBH will suffice as a convincing proof. Additional compelling evidence may come from future gravitational wave observatories. This manuscript reviews the observational facts, theoretical grounds and conceptual aspects for the case of SgrA* being a black hole. We treat theory and observations in the framework of the philosophical discussions about "(anti)realism and underdetermination", as this line of arguments allows us to describe the situation in observational astrophysics with respect to supermassive black holes. Questions concerning the existence of supermassive black holes and in particular SgrA* are discussed using causation as an indispensable element. We show that the results of our investigation are convincingly mapped out by this combination of concepts.

  9. NASA capabilities roadmap: advanced telescopes and observatories

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee D.

    2005-01-01

    The NASA Advanced Telescopes and Observatories (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories collecting all electromagnetic bands, ranging from x-rays to millimeter waves, and including gravity-waves. It has derived capability priorities from current and developing Space Missions Directorate (SMD) strategic roadmaps and, where appropriate, has ensured their consistency with other NASA Strategic and Capability Roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.

  10. Development of at-wavelength metrology for x-ray optics at the ALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yashchuk, Valeriy V.; Goldberg, Kenneth A.; Yuan, Sheng

    2010-07-09

    The comprehensive realization of the exciting advantages of new third- and forth-generation synchrotron radiation light sources requires concomitant development of reflecting and diffractive x-ray optics capable of micro- and nano-focusing, brightness preservation, and super high resolution. The fabrication, tuning, and alignment of the optics are impossible without adequate metrology instrumentation, methods, and techniques. While the accuracy of ex situ optical metrology at the Advanced Light Source (ALS) has reached a state-of-the-art level, wavefront control on beamlines is often limited by environmental and systematic alignment factors, and inadequate in situ feedback. At ALS beamline 5.3.1, we are developing broadly applicable, high-accuracy,more » in situ, at-wavelength wavefront measurement techniques to surpass 100-nrad slope measurement accuracy for Kirkpatrick-Baez (KB) mirrors. The at-wavelength methodology we are developing relies on a series of tests with increasing accuracy and sensitivity. Geometric Hartmann tests, performed with a scanning illuminated sub-aperture determine the wavefront slope across the full mirror aperture. Shearing interferometry techniques use coherent illumination and provide higher sensitivity wavefront measurements. Combining these techniques with high precision optical metrology and experimental methods will enable us to provide in situ setting and alignment of bendable x-ray optics to realize diffraction-limited, sub 50 nm focusing at beamlines. We describe here details of the metrology beamline endstation, the x-ray beam diagnostic system, and original experimental techniques that have already allowed us to precisely set a bendable KB mirror to achieve a focused spot size of 150 nm.« less

  11. Coherent addition of high power broad-area laser diodes with a compact VBG V-shaped external Talbot cavity

    DOE PAGES

    Liu, Bo; Braiman, Yehuda

    2018-02-06

    In this paper, we introduced a compact V-shaped external Talbot cavity for phase locking of high power broad-area laser diodes. The length of compact cavity is ~25 mm. Near diffraction-limit coherent addition of 10 broad-area laser diodes indicated that high quality phase locking was achieved. We measured the near-field emission mode of each individual broad-area laser diode with different feedback, such as a volume Bragg grating and a high reflection mirror. Finally, we found out that the best result of phase locking broad-area laser diodes was achieved by the compact V-shaped external Talbot cavity with volume Bragg grating feedback.

  12. Coherent addition of high power broad-area laser diodes with a compact VBG V-shaped external Talbot cavity

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Braiman, Yehuda

    2018-05-01

    We introduced a compact V-shaped external Talbot cavity for phase locking of high power broad-area laser diodes. The length of compact cavity is ∼25 mm. Near diffraction-limit coherent addition of 10 broad-area laser diodes indicated that high quality phase locking was achieved. We measured the near-field emission mode of each individual broad-area laser diode with different feedback, such as a volume Bragg grating and a high reflection mirror. We found out that the best result of phase locking broad-area laser diodes was achieved by the compact V-shaped external Talbot cavity with volume Bragg grating feedback.

  13. Experimental quantum information processing with the Talbot effect

    NASA Astrophysics Data System (ADS)

    Sawada, K.; Walborn, S. P.

    2018-07-01

    We report a proof of concept experiment illustrating the implementation of several simple quantum logic gates on D-level quantum systems (quDits) using the Talbot effect. A number of QuDit states are encoded into the transverse profile of a paraxial laser beam using a spatial light modulator. These states are transformed through a diagonal phase element and then free-propagation via the fractional Talbot effect, demonstrating the realization of some well-known single quDit gates in quantum computation. Our classical optics experiment allows us to identify several important technical details, and serves as a first experimental step in performing D-dimensional quantum operations with single photons or other quantum systems using this scheme.

  14. Observation of electromagnetically induced Talbot effect in an atomic system

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaoyang; Liu, Xing; Zhang, Dan; Sheng, Jiteng; Zhang, Yiqi; Zhang, Yanpeng; Xiao, Min

    2018-01-01

    The electromagnetically induced Talbot effect (EITE) resulting from the repeated self-reconstruction of a spatially intensity-modulated probe field is experimentally demonstrated in a three-level atomic configuration. The probe beam is launched into an optically induced lattice (established by the interference of two coupling fields) inside a rubidium vapor cell and is diffracted by the electromagnetically induced grating that was formed. The diffraction pattern repeats itself at the planes of integer multiple Talbot lengths. In addition, a fractional EITE is also investigated. The experimental observations agree well with the theoretical predictions. This investigation may potentially pave the way for studying the nonlinear and quantum dynamical features that have been predicted for established periodic optical systems.

  15. Coherent addition of high power broad-area laser diodes with a compact VBG V-shaped external Talbot cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Bo; Braiman, Yehuda

    In this paper, we introduced a compact V-shaped external Talbot cavity for phase locking of high power broad-area laser diodes. The length of compact cavity is ~25 mm. Near diffraction-limit coherent addition of 10 broad-area laser diodes indicated that high quality phase locking was achieved. We measured the near-field emission mode of each individual broad-area laser diode with different feedback, such as a volume Bragg grating and a high reflection mirror. Finally, we found out that the best result of phase locking broad-area laser diodes was achieved by the compact V-shaped external Talbot cavity with volume Bragg grating feedback.

  16. Automated collimation testing by determining the statistical correlation coefficient of Talbot self-images.

    PubMed

    Rana, Santosh; Dhanotia, Jitendra; Bhatia, Vimal; Prakash, Shashi

    2018-04-01

    In this paper, we propose a simple, fast, and accurate technique for detection of collimation position of an optical beam using the self-imaging phenomenon and correlation analysis. Herrera-Fernandez et al. [J. Opt.18, 075608 (2016)JOOPDB0150-536X10.1088/2040-8978/18/7/075608] proposed an experimental arrangement for collimation testing by comparing the period of two different self-images produced by a single diffraction grating. Following their approach, we propose a testing procedure based on correlation coefficient (CC) for efficient detection of variation in the size and fringe width of the Talbot self-images and thereby the collimation position. When the beam is collimated, the physical properties of the self-images of the grating, such as its size and fringe width, do not vary from one Talbot plane to the other and are identical; the CC is maximum in such a situation. For the de-collimated position, the size and fringe width of the self-images vary, and correspondingly the CC decreases. Hence, the magnitude of CC is a measure of degree of collimation. Using the method, we could set the collimation position to a resolution of 1 μm, which relates to ±0.25   μ    radians in terms of collimation angle (for testing a collimating lens of diameter 46 mm and focal length 300 mm). In contrast to most collimation techniques reported to date, the proposed technique does not require a translation/rotation of the grating, use of complicated phase evaluation algorithms, or an intricate method for determination of period of the grating or its self-images. The technique is fully automated and provides high resolution and precision.

  17. Proceedings from the 2nd International Symposium on Formation Flying Missions and Technologies

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Topics discussed include: The Stellar Imager (SI) "Vision Mission"; First Formation Flying Demonstration Mission Including on Flight Nulling; Formation Flying X-ray Telescope in L2 Orbit; SPECS: The Kilometer-baseline Far-IR Interferometer in NASA's Space Science Roadmap Presentation; A Tight Formation for Along-track SAR Interferometry; Realization of the Solar Power Satellite using the Formation Flying Solar Reflector; SIMBOL-X : Formation Flying for High-Energy Astrophysics; High Precision Optical Metrology for DARWIN; Close Formation Flight of Micro-Satellites for SAR Interferometry; Station-Keeping Requirements for Astronomical Imaging with Constellations of Free-Flying Collectors; Closed-Loop Control of Formation Flying Satellites; Formation Control for the MAXIM Mission; Precision Formation Keeping at L2 Using the Autonomous Formation Flying Sensor; Robust Control of Multiple Spacecraft Formation Flying; Virtual Rigid Body (VRB) Satellite Formation Control: Stable Mode-Switching and Cross-Coupling; Electromagnetic Formation Flight (EMFF) System Design, Mission Capabilities, and Testbed Development; Navigation Algorithms for Formation Flying Missions; Use of Formation Flying Small Satellites Incorporating OISL's in a Tandem Cluster Mission; Semimajor Axis Estimation Strategies; Relative Attitude Determination of Earth Orbiting Formations Using GPS Receivers; Analysis of Formation Flying in Eccentric Orbits Using Linearized Equations of Relative Motion; Conservative Analytical Collision Probabilities for Orbital Formation Flying; Equations of Motion and Stability of Two Spacecraft in Formation at the Earth/Moon Triangular Libration Points; Formations Near the Libration Points: Design Strategies Using Natural and Non-Natural Ares; An Overview of the Formation and Attitude Control System for the Terrestrial Planet Finder Formation Flying Interferometer; GVE-Based Dynamics and Control for Formation Flying Spacecraft; GNC System Design for a New Concept of X-Ray Distributed Telescope; GNC System for the Deployment and Fine Control of the DARWIN Free-Flying Interferometer; Formation Algorithm and Simulation Testbed; and PLATFORM: A Formation Flying, RvD and Robotic Validation Test-bench.

  18. Coherent emission from integrated Talbot-cavity quantum cascade lasers.

    PubMed

    Meng, Bo; Qiang, Bo; Rodriguez, Etienne; Hu, Xiao Nan; Liang, Guozhen; Wang, Qi Jie

    2017-02-20

    We report experimental realization of phase-locked quantum cascade laser (QCL) array using a monolithically integrated Talbot cavity. An array with six laser elements at a wavelength of ~4.8 μm shows a maximum peak power of ~4 W which is more than 5 times higher than that of a single ridge laser element and a slope efficiency of 1 W/A at room temperature. Operation of in-phase coherent supermode has been achieved over the whole dynamic range of the Talbot-cavity QCL. The structure was analysed using a straightforward theoretical model, showing quantitatively good agreement with the experimental results. The reduced thermal resistance makes the structure an attractive approach to achieve high beam quality continuous wave QCLs.

  19. Talbot effect of quasi-periodic grating.

    PubMed

    Zhang, Chong; Zhang, Wei; Li, Furui; Wang, Junhong; Teng, Shuyun

    2013-07-20

    Theoretic and experimental studies of the Talbot effect of quasi-periodic gratings are performed in this paper. The diffractions of periodic and quasi-periodic square aperture arrays in Fresnel fields are analyzed according to the scalar diffraction theory. The expressions of the diffraction intensities of two types of quasi-periodic gratings are deduced. Talbot images of the quasi-periodic gratings are predicted to appear at multiple certain distances. The quasi-periodic square aperture arrays are produced with the aid of a liquid crystal light modulator, and the self-images of the quasi-periodic gratings are measured successfully in the experiment. This study indicates that even a structure in short-range disorder may take on the self-imaging effect in a Fresnel field.

  20. Opening Address

    NASA Astrophysics Data System (ADS)

    Crovini, L.

    1994-01-01

    Ladies and Gentlemen To quote Mr Jean Terrien: "Physics must be one step ahead of metrology". A long-serving Director of the BIPM, he said these words when visiting the IMGC in 1970 as a member of the scientific board of our Institute. At that time it was still an open question whether the IMGC should start research work on the absolute measurement of silicon lattice spacing. Mr Terrien underlined the revolutionary character of x-ray interferometry and, eventually, he caused the balance needle to lean towards the ... right direction. Mr Terrien correctly foresaw that, like Michelson's interferometer of 1880, x-ray interferometry could have a prominent place in today's science and technology. And while, in the first case, after more than a century we can see instruments based on electromagnetic wave interaction within every one's reach in laboratories and, sometimes, in workshops, in the second case, twenty-five years since the first development of an x-ray interferometer we can witness its role in nanometrology. Today and tomorrow we meet to discuss how to go beyond the sixth decimal place in the value of the Avogadro constant. We are aware that the quest for this achievement requires the cooperation of scientists with complementary capabilities. I am sure that the present workshop is a very good opportunity to present and discuss results and to improve and extend existing cooperation. The new adjustment of fundamental constants envisaged by the CODATA Task Group is redoubling scientists' efforts to produce competitive values of NA. The results of the measurements of the silicon lattice spacing in terms of an optical wavelength, which were available for the 1986 adjustment, combined with the determination of silicon molar volume, demonstrate how such an NA determination produces a consistent set of other constants and opens the way to a possible redefinition of the kilogram. We shall see in these two days how far we have progressed along this road. For us at the IMGC this is an extremely valuable opportunity to compare our results with others using combined x-ray and optical interferometry to measure Si lattice spacing and dimensional and mass metrology to determine Si density. The initial impetus for the organization of this workshop was given by several colleagues, and with special emphasis and competence by the late Prof. Peter Seyfried of the PTB. We all mourn the loss of such a distinguished scientist to whom very important achievements in NA determination have to be credited. Prof. Seyfried was well known at the IMGC, some of our scientists having very profitably cooperated with him and his co-workers—a cooperation that is being steadily carried on. I wish to acknowledge the endorsements of the Regione Piemonte, of the CNR, of Turin University, and of the Commission of the European Communities, in terms of grants and other resources without which the workshop could not have been realized. I also wish to very warmly thank my colleagues on the Organizing Committee who have worked so well for this event. Lastly, I am pleased to acknowledge the fruitful cooperation between the IMGC and the Istituto di Fisica Generale "A Avogadro"—not the first case of its kind and, I am convinced, not the last. To conclude, let me draw your attention to an enlargement of an Italian stamp commemorating A Avogadro. The statement reads: "Equal volumes of gas in the same temperature and pressure conditions contain the same number of molecules". He simply stated the existence of such a number, leaving us with the pleasure of measuring it.

  1. Free space and waveguide Talbot effect: phase relations and planar light circuit applications

    NASA Astrophysics Data System (ADS)

    Nikkhah, H.; Zheng, Q.; Hasan, I.; Abdul-Majid, S.; Hall, T. J.

    2012-10-01

    Optical fields that are periodic in the transverse plane self-image periodically as they propagate along the optical axis: a phenomenon known as the Talbot effect. A transfer matrix may be defined that relates the amplitude and phase of point sources placed on a particular grid at the input to their respective multiple images at an image plane. The free-space Talbot effect may be mapped to the waveguide Talbot effect. Applying this mapping to the transfer matrix enables the prediction of the phase and amplitude relations between the ports of a Multimode Interference (MMI) coupler- a planar waveguide device. The transfer matrix approach has not previously been applied to the free-space case and its mapping to the waveguide case provides greater clarity and physical insight into the phase relationships than previous treatments. The paper first introduces the underlying physics of the Talbot effect in free space with emphasis on the positions along the optical axis at which images occur; their multiplicity; and their relative phase relations determined by the Gauss Quadratic Sum of number theory. The analysis is then adapted to predict the phase relationships between the ports of an MMI. These phase relationships are critical to planar light circuit (PLC) applications such as 90° optical hybrids for coherent optical receiver front-ends, external optical I-Q modulators for coherent optical transmitters; and optical phased array switches. These applications are illustrated by results obtained from devices that have been fabricated and tested by the PTLab in Si micro-photonic integration platforms.

  2. Stitching interferometry for ellipsoidal x-ray mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yumoto, Hirokatsu, E-mail: yumoto@spring8.or.jp; Koyama, Takahisa; Matsuyama, Satoshi

    2016-05-15

    Ellipsoidal mirrors, which can efficiently produce a two-dimensional focusing beam with a single mirror, are superior x-ray focusing optics, especially when compared to elliptical-cylinder mirrors in the Kirkpatrick–Baez geometry. However, nano-focusing ellipsoidal mirrors are not commonly used for x-ray optics because achieving the accuracy required for the surface metrology of nano-focusing ellipsoidal mirrors is difficult due to their small radius of curvature along the short ellipsoidal axis. Here, we developed a surface metrology system for nano-focusing ellipsoidal mirrors using stitching interferometric techniques. The developed system simultaneously measures sub-aperture shapes with a microscopic interferometer and the tilt angles of the sub-aperturemore » shapes with a large Fizeau interferometer. After correcting the systematic errors included in the sub-aperture shapes, the entire mirror shape is calculated by stitching the sub-aperture shapes based on the obtained relative angles between partially overlapped sub-apertures. In this study, we developed correction methods for systematic errors in sub-aperture shapes that originated from off-axis aberrations produced in the optics of the microscopic interferometer. The systematic errors on an ellipsoidal mirror were estimated by measuring a series of tilted plane substrates and the ellipsoidal substrate. From measurements of an ellipsoidal mirror with a 3.6-mm radius of curvature at the mirror center, we obtained a measurement repeatability of 0.51 nm (root-mean-square) in an assessment area of 0.5 mm × 99.18 mm. This value satisfies the requirements for surface metrology of nano-focusing x-ray mirrors. Thus, the developed metrology system should be applicable for fabricating nano-focusing ellipsoidal mirrors.« less

  3. Free-space entangled quantum carpets

    NASA Astrophysics Data System (ADS)

    Barros, Mariana R.; Ketterer, Andreas; Farías, Osvaldo Jiménez; Walborn, Stephen P.

    2017-04-01

    The Talbot effect in quantum physics is known to produce intricate patterns in the probability distribution of a particle, known as "quantum carpets," corresponding to the revival and replication of the initial wave function. Recently, it was shown that one can encode a D -level qudit in such a way that the Talbot effect can be used to process the D -dimensional quantum information [Farías et al., Phys. Rev. A 91, 062328 (2015), 10.1103/PhysRevA.91.062328]. Here we introduce a scheme to produce free-propagating "entangled quantum carpets" with pairs of photons produced by spontaneous parametric down-conversion. First we introduce an optical device that can be used to synthesize arbitrary superposition states of Talbot qudits. Sending spatially entangled photon pairs through a pair of these devices produces an entangled pair of qudits. As an application, we show how the Talbot effect can be used to test a D -dimensional Bell inequality. Numerical simulations show that violation of the Bell inequality depends strongly on the amount of spatial correlation in the initial two-photon state. We briefly discuss how our optical scheme might be adapted to matter wave experiments.

  4. Large field-of-view tiled grating structures for X-ray phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Schröter, Tobias J.; Koch, Frieder J.; Meyer, Pascal; Kunka, Danays; Meiser, Jan; Willer, Konstantin; Gromann, Lukas; Marco, Fabio D.; Herzen, Julia; Noel, Peter; Yaroshenko, Andre; Hofmann, Andreas; Pfeiffer, Franz; Mohr, Jürgen

    2017-01-01

    X-ray grating-based interferometry promises unique new diagnostic possibilities in medical imaging and materials analysis. To transfer this method from scientific laboratories or small-animal applications to clinical radiography applications, compact setups with a large field of view (FoV) are required. Currently the FoV is limited by the grating area, which is restricted due to the complex manufacturing process. One possibility to increase the FoV is tiling individual grating tiles to create one large area grating mounted on a carrier substrate. We investigate theoretically the accuracy needed for a tiling process in all degrees of freedom by applying a simulation approach. We show how the resulting precision requirements can be met using a custom-built frame for exact positioning. Precise alignment is achieved by comparing the fringe patterns of two neighboring grating tiles in a grating interferometer. With this method, the FoV can be extended to practically any desired length in one dimension. First results of a phase-contrast scanning setup with a full FoV of 384 mm × 24 mm show the suitability of this method.

  5. Wavefront sensor based on the Talbot effect with the precorrected holographic grating.

    PubMed

    Podanchuk, Dmytro; Kurashov, Vitalij; Goloborodko, Andrey; Dan'ko, Volodymyr; Kotov, Myhaylo; Goloborodko, Natalya

    2012-04-01

    A holographic wavefront sensor based on the Talbot effect is proposed. Optical wavefronts are measured by sampling the light amplitude distribution with a two-dimensional (2D) precorrected holographic grating. The factors that allow changing an angular measurement range and a spatial resolution of the sensor are discussed. A comparative analysis with the Shack-Hartmann sensor is illustrated with some experimental results.

  6. High contrast laser beam collimation testing using two proximately placed holographic optical elements

    NASA Astrophysics Data System (ADS)

    Rajkumar; Dubey, Rajiv; Debnath, Sanjit K.; Chhachhia, D. P.

    2018-05-01

    Accuracy in laser beam collimation is very important in systems used for precision measurements. The present work reports a technique for collimation testing of laser beams using two proximately placed holographic optical elements (HOEs). The required HOEs are designed and fabricated such that upon illumination with the test beam, they release two laterally sheared wavefronts, at desired angles from the directly transmitted beam, that superimpose each other to generate straight interference fringes. Deviation from the collimation of the test beam results in orientation of these otherwise horizontal fringes. The novelty of this setup comes from the fact that HOEs are lightweight, as well as easy to fabricate as compared to conventional wedge plates used for collimation testing, and generate high contrast fringes compared to other interferometry, holography, Talbot and Moiré based techniques in a compact manner. The proposed technique is experimentally validated by measuring the orientation of fringes by an angle of 16.4° when a collimating lens of focal length 200 mm is defocused by 600 μm. The accuracy in the setting of this collimation position is obtained to be 10 μm.

  7. Profile structures of the voltage-sensor domain and the voltage-gated K+-channel vectorially oriented in a single phospholipid bilayer membrane at the solid-vapor and solid-liquid interfaces determined by x-ray interferometry

    PubMed Central

    Gupta, S.; Liu, J.; Strzalka, J.; Blasie, J. K.

    2011-01-01

    One subunit of the prokaryotic voltage-gated potassium ion channel from Aeropyrum pernix (KvAP) is comprised of six transmembrane α helices, of which S1–S4 form the voltage-sensor domain (VSD) and S5 and S6 contribute to the pore domain (PD) of the functional homotetramer. However, the mechanism of electromechanical coupling interconverting the closed-to-open (i.e., nonconducting-to-K+-conducting) states remains undetermined. Here, we have vectorially oriented the detergent (OG)-solubilized VSD in single monolayers by two independent approaches, namely “directed-assembly” and “self-assembly,” to achieve a high in-plane density. Both utilize Ni coordination chemistry to tether the protein to an alkylated inorganic surface via its C-terminal His6 tag. Subsequently, the detergent is replaced by phospholipid (POPC) via exchange, intended to reconstitute a phospholipid bilayer environment for the protein. X-ray interferometry, in which interference with a multilayer reference structure is used to both enhance and phase the specular x-ray reflectivity from the tethered single membrane, was used to determine directly the electron density profile structures of the VSD protein solvated by detergent versus phospholipid, and with either a moist He (moderate hydration) or bulk aqueous buffer (high hydration) environment to preserve a native structure conformation. Difference electron density profiles, with respect to the multilayer substrate itself, for the VSD-OG monolayer and VSD-POPC membranes at both the solid-vapor and solid-liquid interfaces, reveal the profile structures of the VSD protein dominating these profiles and further indicate a successful reconstitution of a lipid bilayer environment. The self-assembly approach was similarly extended to the intact full-length KvAP channel for comparison. The spatial extent and asymmetry in the profile structures of both proteins confirm their unidirectional vectorial orientation within the reconstituted membrane and indicate retention of the protein’s folded three-dimensional tertiary structure upon completion of membrane bilayer reconstitution. Moreover, the resulting high in-plane density of vectorially oriented protein within a fully hydrated single phospholipid bilayer membrane at the solid-liquid interface will enable investigation of their conformational states as a function of the transmembrane electric potential. PMID:22060407

  8. Extracting DEM from airborne X-band data based on PolInSAR

    NASA Astrophysics Data System (ADS)

    Hou, X. X.; Huang, G. M.; Zhao, Z.

    2015-06-01

    Polarimetric Interferometric Synthetic Aperture Radar (PolInSAR) is a new trend of SAR remote sensing technology which combined polarized multichannel information and Interferometric information. It is of great significance for extracting DEM in some regions with low precision of DEM such as vegetation coverage area and building concentrated area. In this paper we describe our experiments with high-resolution X-band full Polarimetric SAR data acquired by a dual-baseline interferometric airborne SAR system over an area of Danling in southern China. Pauli algorithm is used to generate the double polarimetric interferometry data, Singular Value Decomposition (SVD), Numerical Radius (NR) and Phase diversity (PD) methods are used to generate the full polarimetric interferometry data. Then we can make use of the polarimetric interferometric information to extract DEM with processing of pre filtering , image registration, image resampling, coherence optimization, multilook processing, flat-earth removal, interferogram filtering, phase unwrapping, parameter calibration, height derivation and geo-coding. The processing system named SARPlore has been exploited based on VC++ led by Chinese Academy of Surveying and Mapping. Finally compared optimization results with the single polarimetric interferometry, it has been observed that optimization ways can reduce the interferometric noise and the phase unwrapping residuals, and improve the precision of DEM. The result of full polarimetric interferometry is better than double polarimetric interferometry. Meanwhile, in different terrain, the result of full polarimetric interferometry will have a different degree of increase.

  9. NASA astrophysics - Optical systems to explore the universe

    NASA Technical Reports Server (NTRS)

    Pellerin, C. J., Jr.; Stencel, R. E.

    1983-01-01

    Major and minor NASA astrophysical research efforts in the near-term are outlined, together with projections of direction for future projects. The Space Telescope is being readied for a 1986 launch and will feature an f/24, 2.4 m aperture, an MgF2 mirror with better than 1/60 wavelength accuracy and will be diffraction-limited in the UV. Pointing accuracy is designed to be 0.007 arcsec for 24 hr. Optical, spectrometric, and photometric equipment will be included. Around 1990, Shuttle-based missions will include an IR telescope and a subarcsec solar surface imaging device. A free-flying X-ray observatory (AXAF) is planned and will include a sensitivity that exceeds that of the HEAO-2 spacecraft by two orders of magnitude. Instruments are under development for higher resolution UV, gamma-ray, and IR studies. In-orbit interferometry is being studied and will depend on in-orbit assembly and servicing of stable structures with segmented optics.

  10. Large Observatory for X-ray Timing (LOFT-P): A Probe-Class Mission Concept Study

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Ray, P. S.; Chakrabarty, D.; Feroci, M.; Jenke, Peter; Griffith, C.; Zane, S.; Winter, B.; Brandt, S.; Hernamdez, M.; hide

    2016-01-01

    LOFT-P is a mission concept for a NASA Astrophysics Probe-Class (less than $1B) X-ray timing mission, based on the LOFT M-class concept originally proposed to ESA's M3 and M4 calls. LOFT-P requires very large collecting area, high time resolution, good spectral resolution, broadband spectral coverage (2-30 keV), highly flexible scheduling, and an ability to detect and respond promptly to time-critical targets of opportunity. Many of LOFTP's targets are bright, rapidly varying sources, so these measurements are synergistic to imaging and high-resolution spectroscopy instruments, addressing much smaller distance scales than are possible without very long baseline X-ray interferometry, and using complementary techniques to address the geometry and dynamics of emission regions. LOFT-P was presented as an example mission to the head of NASA's Astrophysics Division, to demonstrate the strong community support for creation of a probe-class, for missions costing between $500M and $1B. We submitted a white paper4 in response to NASA PhysPAG's call for white papers: Probe-class Mission Concepts, describing LOFT-P science and a simple extrapolation from the ESA study costs. The next step for probe-class missions will be input into the NASA Astrophysics Decadal Survey to encourage the creation of a probe-class opportunity. We report on a 2016 study by MSFC's Advanced Concepts Office of LOFT-P, a US-led probe-class LOFT concept.

  11. Use of Holographic Fringe Linearization Interferometry (FLI) for Detection of Defects.

    DTIC Science & Technology

    1985-11-01

    ei FINAL REPORT on Contract F49620-82-C-0001 USE OF HOLOGRAPHIC FRINGE LINEARIZATION INTERFEROMETRY (FLI) FOR DETECTION OF DEFECTS...TECHNICAL RESULTS OF RESEARCH EFFORT ADDITIONAL TO THOSE IN APPENDIXES A THROUGH EI , •5.1 FINITE ELEMENT ANALYSIS OF FLI EXPERIMENTS Throughout this...between exposures in holographic F1.1 appear to and f(x’,t) = ei k,1(x") in Eq. (4). The revised image of Eq. (5) be localized in the space on and about

  12. High Resolution X-ray Imaging

    NASA Technical Reports Server (NTRS)

    Cash, Webster

    2002-01-01

    NAG5-5020 covered a period of 7.5 years during which a great deal of progress was made in x-ray optical techniques under this grant. We survived peer review numerous times during the effort to keep the grant going. In 1994, when the grant started we were actively pursuing the application of spherical mirrors to improving x-ray telescopes. We had found that x-ray detectors were becoming rapidly more sophisticated and affordable, but that x-ray telescopes were only being improved through the intense application of money within the AXAF program. Clearly new techniques for the future were needed. We were successful in developing and testing at the HELSTF facility in New Mexico a four reflection coma-corrected telescope made from spheres. We were able to demonstrate 0.3 arcsecond resolution, almost to the diffraction limit of the system. The community as a whole was, at that time, not particularly interested in looking past AXAF (Chandra) and the effort needed to evolve. Since we had reached the diffraction limit using non-Wolter optics we then decided to see if we could build an x-ray interferometer in the laboratory. In the lab the potential for improved resolution was substantial. If synthetic aperture telescopes could be built in space, then orders of magnitude improvement would become feasible. In 1998 NASA, under the direction of Dr Nick White of Goddard, started a study to assess the potential and feasibility of x-ray interferometry in space. My work became of central interest to the committee because it indicated that such was possible. In early 1999 we had the breakthrough that allowed us build a practical interferometer. By using flats and hooking up with the Marshall Space Flight Center facilities we were able to demonstrate fringes at 1.25keV on a one millimeter baseline. This actual laboratory demonstration provided the solid proof of concept that NASA needed. As the year progressed the future of x-ray astronomy jelled around the Maxim program. Maxim is a set of two major x-ray astronomy missions based on the concepts I developed and demonstrated under this SR&T grant. The first Maxim is to image the sky at 100 micro-arcsecond resolution. That is one thousand times higher resolution than Hubble. The full Maxim has the ultimate goal of imaging the event horizon of a black hole in an active galactic nucleus (ALAN). This will require 0.1 micro-arcsecond resolution - one million times higher than Hubble! Nonetheless, using the techniques developed under this grant, it has become possible. Maxim Pathfinder is now in the NASA planning for a new start in approximately 20 10. The full Maxim is carried as a vision mission for the post 2015 timeframe. Finally, this grant is the evolved version of the SR&T grant we carried during the 1980s and up to 1994. At that point in time this grant was also working on x-ray optics, but concentrating on x-ray spectroscopy. The techniques developed by 1990 were not chosen for use on Chandra or XMM-Newton because they were too new. During the last year, however, the Constellation-X mission recognized the need for better spectroscopy techniques and tapped our expertise. We were able to support the initial work on Con-X through this program. It now appears that the off-plane mount will be used in Con-X, increasing performance and decreasing cost and risk.

  13. Infrared Speckle Interferometry with 2-D Arrays

    NASA Technical Reports Server (NTRS)

    Harvey, P. M.; Balkum, S. L.; Monin, J. L.

    1994-01-01

    We describe results from a program of speckle interferometry with two-dimensional infrared array detectors. Analysis of observations of eta Carinae made with 58 x 62 InSb detector are discussed. The data have been analyzed with both the Labeyrie autocorrelation, a deconvolution of shift-and-add data, and a phase restoration process. Development of a new camera based on a much lower noise HgCdTe detector will lead to a significant improvement i limiting magnitude for IR speckle interferometry.

  14. Exploring the Connection between Parsec-scale Jet Activity and Broadband Outbursts in 3C 279

    NASA Astrophysics Data System (ADS)

    Rani, B.; Jorstad, S. G.; Marscher, A. P.; Agudo, I.; Sokolovsky, K. V.; Larionov, V. M.; Smith, P.; Mosunova, D. A.; Borman, G. A.; Grishina, T. S.; Kopatskaya, E. N.; Mokrushina, A. A.; Morozova, D. A.; Savchenko, S. S.; Troitskaya, Yu. V.; Troitsky, I. S.; Thum, C.; Molina, S. N.; Casadio, C.

    2018-05-01

    We use a combination of high-resolution very long baseline interferometry (VLBI) radio and multiwavelength flux density and polarization observations to constrain the physics of the dissipation mechanism powering the broadband flares in 3C 279 during an episode of extreme flaring activity in 2013–2014. Six bright flares superimposed on a long-term outburst are detected at γ-ray energies. Four of the flares have optical and radio counterparts. The two modes of flaring activity (faster flares sitting on top of a long-term outburst) present at radio, optical, and γ-ray frequencies are missing in X-rays. X-ray counterparts are only observed for two flares. The first three flares are accompanied by ejection of a new VLBI component (NC2), suggesting the 43 GHz VLBI core as the site of energy dissipation. Another new component, NC3, is ejected after the last three flares, which suggests that the emission is produced upstream from the core (closer to the black hole). The study therefore indicates multiple sites of energy dissipation in the source. An anticorrelation is detected between the optical percentage polarization (PP) and optical/γ-ray flux variations, while the PP has a positive correlation with optical/γ-ray spectral indices. Given that the mean polarization is inversely proportional to the number of cells in the emission region, the PP versus optical/γ-ray anticorrelation could be due to more active cells during the outburst than at other times. In addition to the turbulent component, our analysis suggests the presence of a combined turbulent and ordered magnetic field, with the ordered component transverse to the jet axis.

  15. Measurement of volume resistivity/conductivity of metallic alloy in inhibited seawater by optical interferometry techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habib, K.

    2011-03-15

    Optical interferometry techniques were used for the first time to measure the volume resistivity/conductivity of carbon steel samples in seawater with different concentrations of a corrosion inhibitor. In this investigation, the real-time holographic interferometry was carried out to measure the thickness of anodic dissolved layer or the total thickness, U{sub total}, of formed oxide layer of carbon steel samples during the alternating current (ac) impedance of the samples in blank seawater and in 5-20 ppm TROS C-70 inhibited seawater, respectively. In addition, a mathematical model was derived in order to correlate between the ac impedance (resistance) and the surface (orthogonal)more » displacement of the surface of the samples in solutions. In other words, a proportionality constant [resistivity ({rho}) or conductivity ({sigma})= 1/{rho}] between the determined ac impedance [by electrochemical impedance spectroscopy (EIS) technique] and the orthogonal displacement (by the optical interferometry techniques) was obtained. The value of the resistivity of the carbon steel sample in the blank seawater was found similar to the value of the resistivity of the carbon steel sample air, around 1 x 10{sup -5}{Omega} cm. On the contrary, the measured values of the resistivity of the carbon steel samples were 1.85 x 10{sup 7}, 3.35 x 10{sup 7}, and 1.7 x 10{sup 7}{Omega} cm in 5, 10, and 20 ppm TROS C-70 inhibited seawater solutions, respectively. Furthermore, the determined value range of {rho} of the formed oxide layers, from 1.7 x 10{sup 7} to 3.35 x 10{sup 7}{Omega} cm, is found in a reasonable agreement with the one found in literature for the Fe oxide-hydroxides, i.e., goethite ({alpha}-FeOOH) and for the lepidocrocite ({gamma}-FeOOH), 1 x 10{sup 9}{Omega} cm. The {rho} value of the Fe oxide-hydroxides, 1 x 10{sup 9}{Omega} cm, was found slightly higher than the {rho} value range of the formed oxide layer of the present study. This is because the former value was determined by a dc method rather than by an electromagnetic method, i.e., holographic interferometry with applications of EIS, i.e., ac method. As a result, erroneous measurements were recorded due to the introduction of heat to Fe oxide-hydroxides.« less

  16. X-ray absorption of a warm dense aluminum plasma created by an ultra-short laser pulse

    NASA Astrophysics Data System (ADS)

    Lecherbourg, L.; Renaudin, P.; Bastiani-Ceccotti, S.; Geindre, J.-P.; Blancard, C.; Cossé, P.; Faussurier, G.; Shepherd, R.; Audebert, P.

    2007-05-01

    Point-projection K-shell absorption spectroscopy has been used to measure absorption spectra of transient aluminum plasma created by an ultra-short laser pulse. The 1s-2p and 1s-3p absorption lines of weakly ionized aluminum were measured for an extended range of densities in a low-temperature regime. Independent plasma characterization was obtained using frequency domain interferometry diagnostic (FDI) that allows the interpretation of the absorption spectra in terms of spectral opacities. A detailed opacity code using the density and temperature inferred from the FDI reproduce the measured absorption spectra except in the last stage of the recombination phase.

  17. Influence of the active nucleus on the multiphase interstellar medium in NGC 1068

    NASA Technical Reports Server (NTRS)

    Bland-Hawthorn, Jonathan; Weisheit, Jon; Cecil, Gerald; Sokolowski, James

    1993-01-01

    The luminous spiral NGC 1068 has now been imaged from x-ray to radio wavelengths at comparably high resolution (approximately less than 5 in. FWHM). The bolometric luminosity of this well-known Seyfert is shared almost equally between the active nucleus and an extended 'starburst' disk. In an ongoing study, we are investigating the relative importance of the nucleus and the disk in powering the wide range of energetic activity observed throughout the galaxy. Our detailed analysis brings together a wealth of data: ROSAT HRI observations, VLA lambda lambda 6-20 cu cm and OVRO interferometry, lambda lambda 0.4-10.8 micron imaging, and Fabry-Perot spectrophotometry.

  18. Taxonomic changes of some neotropical species of Arctiini Leach (Lepidoptera: Erebidae: Arctiinae).

    PubMed

    Beccacece, Hernán Mario; Zapata, Adriana Inés

    2017-05-30

    Arctiini (Lepidoptera, Erebidae, Arctiinae) is the most speciose tribe of tiger moths. In this study, the taxonomy of some Neotropical species of this tribe is reviewed based on habitus and, in some cases, genitalia of type specimens. Lectotypes are designated for two names. Four new combinations are proposed: Agaraea sericeum (Zerny, 1931) comb. n., Biturix nigrostriata (Rothschild, 1909) comb. n., Carales fasciatus (Rothschild, 1909) comb. n. and Opharus pallida (Dognin, 1910) comb. n. Six new synonymies are proposed: Agaraea nigrotuberculata Bryk, 1953 (=Agaraea klagesi (Rothschild, 1909)), Opharus ochracea Joicey & Talbot, 1918 and Pelochyta fergusoni Watson & Goodger, 1986 (=Opharus pallida (Dognin, 1910)), Melese flavescens Joicey & Talbot, 1918 (=Melese paranensis Dognin, 1911), Leucanopsis infucata (Berg, 1882) (=Pareuchaetes aurata aurata (Butler, 1875)) and Tessellota pura Breyer, 1957 (=Tessellota cancellata (Burmeister, 1878)). Moreover, Opharus ochracea Joicey & Talbot, 1918 comb. rev. is returned to the original genus. For each rearrangement, both remarks and information about type specimens are provided.

  19. Multisite study of particle number concentrations in urban air.

    PubMed

    Harrison, Roy M; Jones, Alan M

    2005-08-15

    Particle number concentration data are reported from a total of eight urban site locations in the United Kingdom. Of these, six are central urban background sites, while one is an urban street canyon (Marylebone Road) and another is influenced by both a motorway and a steelworks (Port Talbot). The concentrations are generally of a similar order to those reported in the literature, although higher than those in some of the other studies. Highest concentrations are at the Marylebone Road site and lowest are at the Port Talbot site. The central urban background locations lie somewhere between with concentrations typically around 20 000 cm(-3). A seasonal pattern affects all sites, with highest concentrations in the winter months and lowest concentrations in the summer. Data from all sites show a diurnal variation with a morning rush hour peak typical of an anthropogenic pollutant. When the dilution effects of windspeed are accounted for, the data show little directionality at the central urban background sites indicating the influence of sources from all directions as might be expected if the major source were road traffic. At the London Marylebone Road site there is high directionality driven by the air circulation in the street canyon, and at the Port Talbot site different diurnal patterns are seen for particle number count and PM10 influenced by emissions from road traffic (particle number count) and the steelworks (PM10) and local meteorological factors. Hourly particle number concentrations are generally only weakly correlated to NO(x) and PM10, with the former showing a slightly closer relationship. Correlations between daily average particle number count and PM10 were also weak. Episodes of high PM10 concentration in summer typically show low particle number concentrations consistent with transport of accumulation mode secondary aerosol, while winter episodes are frequently associated with high PM10 and particle number count arising from poor dispersion of local primary emissions.

  20. TANAMI: Tracking Active Galactic Nuclei with Austral Milliarcsecond Interferometry. II. Additional sources

    NASA Astrophysics Data System (ADS)

    Müller, C.; Kadler, M.; Ojha, R.; Schulz, R.; Trüstedt, J.; Edwards, P. G.; Ros, E.; Carpenter, B.; Angioni, R.; Blanchard, J.; Böck, M.; Burd, P. R.; Dörr, M.; Dutka, M. S.; Eberl, T.; Gulyaev, S.; Hase, H.; Horiuchi, S.; Katz, U.; Krauß, F.; Lovell, J. E. J.; Natusch, T.; Nesci, R.; Phillips, C.; Plötz, C.; Pursimo, T.; Quick, J. F. H.; Stevens, J.; Thompson, D. J.; Tingay, S. J.; Tzioumis, A. K.; Weston, S.; Wilms, J.; Zensus, J. A.

    2018-02-01

    Context. TANAMI is a multiwavelength program monitoring active galactic nuclei (AGN) south of - 30° declination including high-resolution very long baseline interferometry (VLBI) imaging, radio, optical/UV, X-ray, and γ-ray studies. We have previously published first-epoch8.4 GHz VLBI images of the parsec-scale structure of the initial sample. In this paper, we present images of 39 additional sources. The full sample comprises most of the radio- and γ-ray brightest AGN in the southern quarter of the sky, overlapping with the region from which high-energy (> 100 TeV) neutrino events have been found. Aims: We characterize the parsec-scale radio properties of the jets and compare them with the quasi-simultaneous Fermi/LAT γ-ray data. Furthermore, we study the jet properties of sources which are in positional coincidence with high-energy neutrino events compared to the full sample. We test the positional agreement of high-energy neutrino events with various AGN samples. Methods: TANAMI VLBI observations at 8.4 GHz are made with southern hemisphere radio telescopes located in Australia, Antarctica, Chile, New Zealand, and South Africa. Results: Our observations yield the first images of many jets below - 30° declination at milliarcsecond resolution. We find that γ-ray loud TANAMI sources tend to be more compact on parsec-scales and have higher core brightness temperatures than γ-ray faint jets, indicating higher Doppler factors. No significant structural difference is found between sources in positional coincidence with high-energy neutrino events and other TANAMI jets. The 22 γ-ray brightest AGN in the TANAMI sky show only a weak positional agreement with high-energy neutrinos demonstrating that the > 100 TeV IceCube signal is not simply dominated by a small number of the γ-ray brightest blazars. Instead, a larger number of sources have to contribute to the signal with each individual source having only a small Poisson probability for producing an event in multi-year integrations of current neutrino detectors. The cleaned VLBI images displayed in Figs. 1, 2 and A.1 (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A1

  1. High energy x-ray phase contrast CT using glancing-angle grating interferometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarapata, A., E-mail: adrian.sarapata@tum.de; Stayman, J. W.; Siewerdsen, J. H.

    Purpose: The authors present initial progress toward a clinically compatible x-ray phase contrast CT system, using glancing-angle x-ray grating interferometry to provide high contrast soft tissue images at estimated by computer simulation dose levels comparable to conventional absorption based CT. Methods: DPC-CT scans of a joint phantom and of soft tissues were performed in order to answer several important questions from a clinical setup point of view. A comparison between high and low fringe visibility systems is presented. The standard phase stepping method was compared with sliding window interlaced scanning. Using estimated dose values obtained with a Monte-Carlo code themore » authors studied the dependence of the phase image contrast on exposure time and dose. Results: Using a glancing angle interferometer at high x-ray energy (∼45 keV mean value) in combination with a conventional x-ray tube the authors achieved fringe visibility values of nearly 50%, never reported before. High fringe visibility is shown to be an indispensable parameter for a potential clinical scanner. Sliding window interlaced scanning proved to have higher SNRs and CNRs in a region of interest and to also be a crucial part of a low dose CT system. DPC-CT images of a soft tissue phantom at exposures in the range typical for absorption based CT of musculoskeletal extremities were obtained. Assuming a human knee as the CT target, good soft tissue phase contrast could be obtained at an estimated absorbed dose level around 8 mGy, similar to conventional CT. Conclusions: DPC-CT with glancing-angle interferometers provides improved soft tissue contrast over absorption CT even at clinically compatible dose levels (estimated by a Monte-Carlo computer simulation). Further steps in image processing, data reconstruction, and spectral matching could make the technique fully clinically compatible. Nevertheless, due to its increased scan time and complexity the technique should be thought of not as replacing, but as complimentary to conventional CT, to be used in specific applications.« less

  2. Investigations of structural defects, crystalline perfection, metallic impurity concentration and optical quality of flat-top KDP crystal

    NASA Astrophysics Data System (ADS)

    Sharma, S. K.; Verma, Sunil; Singh, Yeshpal; Bartwal, K. S.; Tiwari, M. K.; Lodha, G. S.; Bhagavannarayana, G.

    2015-08-01

    KDP crystal grown using flat-top technique has been characterized using X-ray and optical techniques with the aim of correlating the defects structure and impurity concentration in the crystal with its optical properties. Crystallographic defects were investigated using X-ray topography revealing linear and arc like chains of dislocations and to conclude that defects do not originate from the flat-top part of the crystal. Etching was performed to quantify dislocation defects density. The crystalline perfection of the crystal was found to be high as the FWHM of the rocking curves measured at several locations was consistently low 6-9 arc s. The concentration of Fe metallic impurity quantified using X-ray fluorescence technique was approximately 5 times lower in the flat-top part which falls in pyramidal growth sector as compared to the region near to the seed which lies in prismatic sector. The spectrophotometric characterization for plates cut normal to different crystallographic directions in the flat-top potassium dihydrogen phosphate (FT-KDP) crystal was performed to understand the influence of metallic impurity distribution and growth sectors on the optical transmittance. The transmittance of the FT-KDP crystal at 1064 nm and its higher harmonics (2nd, 3rd, 4th and 5th) was determined from the measured spectra and the lower transmission in the UV region was attributed to increased absorption by Fe metallic impurity at these wavelengths. The results are in agreement with the results obtained using X-ray fluorescence and X-ray topography. Birefringence and Mach-Zehnder interferometry show that except for the region near to the seed crystal the optical homogeneity of the entire crystal was good. The laser-induced damage threshold (LDT) values are in the range 2.4-3.9 GW/cm2. The LDT of the plate taken from the flat-top region is higher than that from the bottom of the crystal, indicating that the flat-top technique has good optical quality and is comparable to those reported using rapid growth technique. The results indicate that the structural defects, crystalline quality and impurity concentration have a correlation with the optical properties of the FT-KDP crystal.

  3. Infrasonic interferometry applied to synthetic and measured data

    NASA Astrophysics Data System (ADS)

    Fricke, Julius T.; Evers, Läslo G.; Ruigrok, Elmer; Wapenaar, Kees; Simons, Dick G.

    2013-04-01

    The estimation of the traveltime of infrasound through the atmosphere is interesting for several applications. For example, it could be used to determine temperature and wind of the atmosphere, since the traveltime depends on these atmospheric conditions (Haney, 2009). In this work the traveltime is estimated with infrasonic interferometry. In other words, we calculate the crosscorrelations of data of spatially distributed receivers. With this method the traveltime between two receivers is determined without the need for ground truth events. In a first step, we crosscorrelate synthetic data, which are generated by a raytracing model. This model takes into account the traveltime along the rays, the attenuation of the different atmospheric layers, the spreading of the rays and the influence of caustics. In these numerical experiments we show that it is possible to determine the traveltime through infrasonic interferometry. We present the results of infrasonic interferometry applied to measured data. Microbaroms are used in the crosscorrelation approach. Microbaroms are caused by ocean waves and are measured by the 'Large Aperture Infrasound Array' (LAIA). LAIA is being installed by the Royal Netherlands Meteorological Institute (KNMI) in the framework of the radio-astronomical 'Low Frequency Array' (LOFAR) initiative. LAIA consists currently of around twenty receivers (microbarometers) with an aperture of around 100 km, allowing for several inter-station distances. Here, we show the results of crosscorrelations as a function of receivers distance, to assess the signal coherency. This research is made possible by the support of the 'Netherlands Organization for Scientific Research' (NWO). Haney, M., 2009. Infrasonic ambient noise interferometry from correlations of microbaroms, Geophysical Research Letters, 36, L19808

  4. Trimodal low-dose X-ray tomography

    PubMed Central

    Zanette, I.; Bech, M.; Rack, A.; Le Duc, G.; Tafforeau, P.; David, C.; Mohr, J.; Pfeiffer, F.; Weitkamp, T.

    2012-01-01

    X-ray grating interferometry is a coherent imaging technique that bears tremendous potential for three-dimensional tomographic imaging of soft biological tissue and other specimens whose details exhibit very weak absorption contrast. It is intrinsically trimodal, delivering phase contrast, absorption contrast, and scattering (“dark-field”) contrast. Recently reported acquisition strategies for grating-interferometric phase tomography constitute a major improvement of dose efficiency and speed. In particular, some of these techniques eliminate the need for scanning of one of the gratings (“phase stepping”). This advantage, however, comes at the cost of other limitations. These can be a loss in spatial resolution, or the inability to fully separate the three imaging modalities. In the present paper we report a data acquisition and processing method that optimizes dose efficiency but does not share the main limitations of other recently reported methods. Although our method still relies on phase stepping, it effectively uses only down to a single detector frame per projection angle and yields images corresponding to all three contrast modalities. In particular, this means that dark-field imaging remains accessible. The method is also compliant with data acquisition over an angular range of only 180° and with a continuous rotation of the specimen. PMID:22699500

  5. Advances in engineering nanometrology at the National Physical Laboratory

    NASA Astrophysics Data System (ADS)

    Leach, Richard K.; Claverley, James; Giusca, Claudiu; Jones, Christopher W.; Nimishakavi, Lakshmi; Sun, Wenjuan; Tedaldi, Matthew; Yacoot, Andrew

    2012-07-01

    The National Physical Laboratory, UK, has been active in the field of engineering nanometrology for a number of years. A summary of progress over the last five years is presented in this paper and the following research projects discussed in detail. (1) Development of an infrastructure for the calibration of instruments for measuring areal surface topography, along with the development of areal software measurement standards. This work comprises the use of the optical transfer function and a technique for the simultaneous measurement of topography and the phase change on reflection, allowing composite materials to be measured. (2) Development of a vibrating micro-CMM probe with isotropic probing reaction and the ability to operate in a non-contact mode. (3) A review of x-ray computed tomography and its use in dimensional metrology. (4) The further development of a metrology infrastructure for atomic force microscopy and the development of an instrument for the measurement of the effect of the probe-surface interaction. (5) Traceable measurement of displacement using optical and x-ray interferometry to picometre accuracy. (6) Development of an infrastructure for low-force metrology, including the development of appropriate transfer artefacts.

  6. The equation of state of 5-nitro-2,4-dihydro-1,2,4,-triazol-3-one determined via in-situ optical microscopy and interferometry measurements

    DOE PAGES

    Stavrou, Elissaios; Zaug, Joseph M.; Bastea, Sorin; ...

    2016-04-07

    Quasi-hydrostatic high-pressure equations of state (EOS) are typically determined, for crystalline solids, by measuring unit-cell volumes using x-ray diffraction (XRD) techniques. However, when characterizing low-symmetry materials with large unit cells, conventional XRD approaches may become problematic. To overcome this issue, we examined the utility of a "direct" approach toward determining high pressure material volume by measuring surface area and sample thickness using optical microscopy and interferometry (OMI) respectively. We have validated this experimental approach by comparing results obtained for TATB (2,4,6-triamino-1,3,5-trinitrobenzene) with an EOS determined from synchrotron XRD measurements; and, a good match is observed. We have measured the highmore » pressure EOS of 5-nitro-2,4-dihydro-1,2,4-triazol-3-one (α-NTO) up to 33 GPa. No high-pressure XRD EOS data have been published on α-NTO, probably due to its complex crystal structure. Furthermore, the results of this study suggest that OMI is a reliable and versatile alternative for determining EOSs, especially when conventional methodologies are impractical.« less

  7. The equation of state of 5-nitro-2,4-dihydro-1,2,4,-triazol-3-one determined via in-situ optical microscopy and interferometry measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stavrou, Elissaios, E-mail: stavrou1@llnl.gov; Zaug, Joseph M., E-mail: zaug1@llnl.gov; Bastea, Sorin

    2016-04-07

    Quasi-hydrostatic high-pressure equations of state (EOS) are typically determined, for crystalline solids, by measuring unit-cell volumes using x-ray diffraction (XRD) techniques. However, when characterizing low-symmetry materials with large unit cells, conventional XRD approaches may become problematic. To overcome this issue, we examined the utility of a “direct” approach toward determining high pressure material volume by measuring surface area and sample thickness using optical microscopy and interferometry (OMI), respectively. We have validated this experimental approach by comparing results obtained for 2,4,6-triamino-1,3,5-trinitrobenzene TATB with an EOS determined from synchrotron XRD measurements; and, a good match is observed. We have measured the high pressure EOS of 5-nitro-2,4-dihydro-1,2,4,-triazol-3-one (α-NTO) upmore » to 28 GPa. No high-pressure XRD EOS data have been published on α-NTO, probably due to its complex crystal structure. The results of this study suggest that OMI is a reliable and versatile alternative for determining EOSs, especially when conventional methodologies are impractical.« less

  8. Ultrafast Radiation Detection by Modulation of an Optical Probe Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vernon, S P; Lowry, M E

    2006-02-22

    We describe a new class of radiation sensor that utilizes optical interferometry to measure radiation-induced changes in the optical refractive index of a semiconductor sensor medium. Radiation absorption in the sensor material produces a transient, non-equilibrium, electron-hole pair distribution that locally modifies the complex, optical refractive index of the sensor medium. Changes in the real (imaginary) part of the local refractive index produce a differential phase shift (absorption) of an optical probe used to interrogate the sensor material. In contrast to conventional radiation detectors where signal levels are proportional to the incident energy, signal levels in these optical sensors aremore » proportional to the incident radiation energy flux. This allows for reduction of the sensor form factor with no degradation in detection sensitivity. Furthermore, since the radiation induced, non-equilibrium electron-hole pair distribution is effectively measured ''in place'' there is no requirement to spatially separate and collect the generated charges; consequently, the sensor risetime is of the order of the hot-electron thermalization time {le} 10 fs and the duration of the index perturbation is determined by the carrier recombination time which is of order {approx} 600 fs in, direct-bandgap semiconductors, with a high density of recombination defects; consequently, the optical sensors can be engineered with sub-ps temporal response. A series of detectors were designed, and incorporated into Mach Zehnder and Fabry-Perot interferometer-based detection systems: proof of concept, lower detection sensitivity, Mach-Zehnder detectors were characterized at beamline 6.3 at SSRL; three generations of high sensitivity single element and imaging Fabry-Perot detectors were measured at the LLNL Europa facility. Our results indicate that this technology can be used to provide x-ray detectors and x-ray imaging systems with single x-ray sensitivity and S/N {approx} 30 at x-ray energies {approx} 10 keV.« less

  9. Investigation of the Effect of Residual Stress Gradient on the Wear Behavior of PVD Thin Films

    NASA Astrophysics Data System (ADS)

    Tlili, B.; Nouveau, C.; Guillemot, G.; Besnard, A.; Barkaoui, A.

    2018-02-01

    The control of residual stresses has been seldom investigated in multilayer coatings dedicated to improvement of wear behavior. Here, we report the preparation and characterization of superposed structures composed of Cr, CrN and CrAlN layers. Nano-multilayers CrN/CrAlN and Cr/CrN/CrAlN were deposited by Physical Vapor Deposition (PVD) onto Si (100) and AISI4140 steel substrates. The Cr, CrN and CrAlN monolayers were developed with an innovative approach in PVD coatings technologies corresponding to deposition with different residual stresses levels. Composition and wear tracks morphologies of the coatings were characterized by scanning electron microscopy, high-resolution transmission electron microscopy, atomic force microscopy, x-ray photoelectron spectroscopy, energy-dispersive x-ray spectroscopy, x-ray diffraction and 3D-surface analyzer. The mechanical properties (hardness, residual stresses and wear) were investigated by nanoindentation, interferometry and micro-tribometry (fretting-wear tests). Observations suggest that multilayer coatings are composed mostly of nanocrystalline. The residual stresses level in the films has practically affected all the physicochemical and mechanical properties as well as the wear behavior. Consequently, it is demonstrated that the coating containing moderate stresses has a better wear behavior compared to the coating developed with higher residual stresses. The friction contact between coated samples and alumina balls shows also a large variety of wear mechanisms. In particular, the abrasive wear of the coatings was a combination of plastic deformation, fine microcracking and microspallation. The application of these multilayers will be wood machining of green wood.

  10. First light for GRAVITY: Phase referencing optical interferometry for the Very Large Telescope Interferometer

    NASA Astrophysics Data System (ADS)

    Gravity Collaboration; Abuter, R.; Accardo, M.; Amorim, A.; Anugu, N.; Ávila, G.; Azouaoui, N.; Benisty, M.; Berger, J. P.; Blind, N.; Bonnet, H.; Bourget, P.; Brandner, W.; Brast, R.; Buron, A.; Burtscher, L.; Cassaing, F.; Chapron, F.; Choquet, É.; Clénet, Y.; Collin, C.; Coudé Du Foresto, V.; de Wit, W.; de Zeeuw, P. T.; Deen, C.; Delplancke-Ströbele, F.; Dembet, R.; Derie, F.; Dexter, J.; Duvert, G.; Ebert, M.; Eckart, A.; Eisenhauer, F.; Esselborn, M.; Fédou, P.; Finger, G.; Garcia, P.; Garcia Dabo, C. E.; Garcia Lopez, R.; Gendron, E.; Genzel, R.; Gillessen, S.; Gonte, F.; Gordo, P.; Grould, M.; Grözinger, U.; Guieu, S.; Haguenauer, P.; Hans, O.; Haubois, X.; Haug, M.; Haussmann, F.; Henning, Th.; Hippler, S.; Horrobin, M.; Huber, A.; Hubert, Z.; Hubin, N.; Hummel, C. A.; Jakob, G.; Janssen, A.; Jochum, L.; Jocou, L.; Kaufer, A.; Kellner, S.; Kendrew, S.; Kern, L.; Kervella, P.; Kiekebusch, M.; Klein, R.; Kok, Y.; Kolb, J.; Kulas, M.; Lacour, S.; Lapeyrère, V.; Lazareff, B.; Le Bouquin, J.-B.; Lèna, P.; Lenzen, R.; Lévêque, S.; Lippa, M.; Magnard, Y.; Mehrgan, L.; Mellein, M.; Mérand, A.; Moreno-Ventas, J.; Moulin, T.; Müller, E.; Müller, F.; Neumann, U.; Oberti, S.; Ott, T.; Pallanca, L.; Panduro, J.; Pasquini, L.; Paumard, T.; Percheron, I.; Perraut, K.; Perrin, G.; Pflüger, A.; Pfuhl, O.; Phan Duc, T.; Plewa, P. M.; Popovic, D.; Rabien, S.; Ramírez, A.; Ramos, J.; Rau, C.; Riquelme, M.; Rohloff, R.-R.; Rousset, G.; Sanchez-Bermudez, J.; Scheithauer, S.; Schöller, M.; Schuhler, N.; Spyromilio, J.; Straubmeier, C.; Sturm, E.; Suarez, M.; Tristram, K. R. W.; Ventura, N.; Vincent, F.; Waisberg, I.; Wank, I.; Weber, J.; Wieprecht, E.; Wiest, M.; Wiezorrek, E.; Wittkowski, M.; Woillez, J.; Wolff, B.; Yazici, S.; Ziegler, D.; Zins, G.

    2017-06-01

    GRAVITY is a new instrument to coherently combine the light of the European Southern Observatory Very Large Telescope Interferometer to form a telescope with an equivalent 130 m diameter angular resolution and a collecting area of 200 m2. The instrument comprises fiber fed integrated optics beam combination, high resolution spectroscopy, built-in beam analysis and control, near-infrared wavefront sensing, phase-tracking, dual-beam operation, and laser metrology. GRAVITY opens up to optical/infrared interferometry the techniques of phase referenced imaging and narrow angle astrometry, in many aspects following the concepts of radio interferometry. This article gives an overview of GRAVITY and reports on the performance and the first astronomical observations during commissioning in 2015/16. We demonstrate phase-tracking on stars as faint as mK ≈ 10 mag, phase-referenced interferometry of objects fainter than mK ≈ 15 mag with a limiting magnitude of mK ≈ 17 mag, minute long coherent integrations, a visibility accuracy of better than 0.25%, and spectro-differential phase and closure phase accuracy better than 0.5°, corresponding to a differential astrometric precision of better than ten microarcseconds (μas). The dual-beam astrometry, measuring the phase difference of two objects with laser metrology, is still under commissioning. First observations show residuals as low as 50 μas when following objects over several months. We illustrate the instrument performance with the observations of archetypical objects for the different instrument modes. Examples include the Galactic center supermassive black hole and its fast orbiting star S2 for phase referenced dual-beam observations and infrared wavefront sensing, the high mass X-ray binary BP Cru and the active galactic nucleus of PDS 456 for a few μas spectro-differential astrometry, the T Tauri star S CrA for a spectro-differential visibility analysis, ξ Tel and 24 Cap for high accuracy visibility observations, and η Car for interferometric imaging with GRAVITY.

  11. Theory of Talbot lasers

    NASA Astrophysics Data System (ADS)

    Guillet de Chatellus, H.; Lacot, E.; Glastre, W.; Jacquin, O.; Hugon, O.

    2013-09-01

    We provide a theoretical study of frequency-shifted feedback (FSF) lasers, i.e., lasers with an internal frequency shifter, seeded with a monochromatic wave. The resulting spectrum consists in a set of equidistant modes, labeled by n, whose phases vary quadratically with n. We prove the emergence of a temporal fractional Talbot effect, leading to generation of Fourier-transform-limited pulses at a repetition rate tunable by the parameters of the FSF cavity (cavity length and frequency shift per round trip), and limited by the spectral bandwidth of the laser. We characterize in detail the output field of this so-called “Talbot laser” and emphasize its specific intensity fluctuations. We evidence connections with some aspects of number theory by the appearance of Gauss sums and theta series in the expression of the laser field. Our predictions are in full agreement with the experimental results published in Guillet de Chatellus [Opt. ExpressOPEXFF1094-408710.1364/OE.21.015065 21, 15065 (2013)]. Practical applications and limitations are discussed.

  12. Fabrication and Characterization of Thermoresponsive Films Deposited by an RF Plasma Reactor

    PubMed Central

    Lucero, Adrianne E.; Reed, Jamie A.; Wu, Xiaomei; Canavan, Heather E.

    2014-01-01

    Summary Poly(N-isopropyl acrylamide) (pNIPAM) undergoes a sharp property change in response to a moderate thermal stimulus at physiological temperatures. In this work, we constructed a radio frequency (RF) plasma reactor for the plasma polymerization of pNIPAM. RF deposition is a method that coats surfaces of any geometry producing surfaces that are sterile and uniform, making this technique useful for forming biocompatible films. The films generated are characterized using X-ray photoelectron spectroscopy (XPS), contact angles, cell culture, and interferometry. We find that a plasma with a decreasing series of power settings (i.e., from 100W to 1W) at a pressure of 140 millitorr yields the most favorable results. PMID:24634643

  13. Strain sensing technology for high temperature applications

    NASA Technical Reports Server (NTRS)

    Williams, W. Dan

    1993-01-01

    This review discusses the status of strain sensing technology for high temperature applications. Technologies covered are those supported by NASA such as required for applications in hypersonic vehicles and engines, advanced subsonic engines, as well as material and structure development. The applications may be at temperatures of 540 C (1000 F) to temperatures in excess of 1400 C (2500 F). The most promising technologies at present are the resistance strain gage and remote sensing schemes. Resistance strain gages discussed include the BCL gage, the LaRC compensated gage, and the PdCr gage. Remote sensing schemes such as laser based speckle strain measurement, phase-shifling interferometry, and x-ray extensometry are discussed. Present status and limitations of these technologies are presented.

  14. Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Brebrick, R. F.; Burger, A.; Dudley, M.; Matyi, R.; Ramachandran, N.; Sha, Yi-Gao; Volz, M.; Shih, Hung-Dah

    1999-01-01

    Complete and systematic ground-based experimental and theoretical analyses on the Physical Vapor Transport (PVT) of ZnSe and related ternary compound semiconductors have been performed. The analyses included thermodynamics, mass flux, heat treatment of starting material, crystal growth, partial pressure measurements, optical interferometry, chemical analyses, photoluminescence, microscopy, x-ray diffraction and topography as well as theoretical, analytical and numerical analyses. The experimental results showed the influence of gravity orientation on the characteristics of: (1) the morphology of the as-grown crystals as well as the as-grown surface morphology of ZnSe and Cr doped ZnSe crystals; (2) the distribution of impurities and defects in ZnSe grown crystals; and (3) the axial segregation in ZnSeTe grown crystals.

  15. Roughness measurement and ion-beam polishing of super-smooth optical surfaces of fused quartz and optical ceramics.

    PubMed

    Chkhalo, N I; Churin, S A; Pestov, A E; Salashchenko, N N; Vainer, Yu A; Zorina, M V

    2014-08-25

    The main problems and the approach used by the authors for roughness metrology of super-smooth surfaces designed for diffraction-quality X-ray mirrors are discussed. The limitations of white light interferometry and the adequacy of the method of atomic force microscopy for surface roughness measurements in a wide range of spatial frequencies are shown and the results of the studies of the effect of etching by argon and xenon ions on the surface roughness of fused quartz and optical ceramics, Zerodur, ULE and Sitall, are given. Substrates of fused quartz and ULE with the roughness, satisfying the requirements of diffraction-quality optics intended for working in the spectral range below 10 nm, are made.

  16. Structural characterization of the voltage sensor domain and voltage-gated K+- channel proteins vectorially-oriented within a single bilayer membrane at the solid/vapor and solid/liquid interfaces via neutron interferometry

    PubMed Central

    Gupta, S.; Dura, J.A.; Freites, J.A.; Tobias, D.J.; Blasie, J. K.

    2012-01-01

    The voltage-sensor domain (VSD) is a modular 4-helix bundle component that confers voltage sensitivity to voltage-gated cation channels in biological membranes. Despite extensive biophysical studies and the recent availability of x-ray crystal structures for a few voltage-gated potassium (Kv-) channels and a voltage-gate sodium (Nav-) channel, a complete understanding of the cooperative mechanism of electromechanical coupling, interconverting the closed-to-open states (i.e. non-conducting to cation conducting) remains undetermined. Moreover, the function of these domains is highly dependent on the physical-chemical properties of the surrounding lipid membrane environment. The basis for this work was provided by a recent structural study of the VSD from a prokaryotic Kv-channel vectorially-oriented within a single phospholipid (POPC; 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) membrane investigated by x-ray interferometry at the solid/moist He (or solid/vapor) and solid/liquid interfaces thus achieving partial to full hydration, respectively (Gupta et. al. Phys. Rev E. 2011, 84). Here, we utilize neutron interferometry to characterize this system in substantially greater structural detail at the sub-molecular level, due to its inherent advantages arising from solvent contrast variation coupled with the deuteration of selected sub-molecular membrane components, especially important for the membrane at the solid/liquid interface. We demonstrate the unique vectorial orientation of the VSD and the retention of its molecular conformation manifest in the asymmetric profile structure of the protein within the profile structure of this single bilayer membrane system. We definitively characterize the asymmetric phospholipid bilayer solvating the lateral surfaces of the VSD protein within the membrane. The profile structures of both the VSD protein and phospholipid bilayer depend upon the hydration state of the membrane. We also determine the distribution of water and exchangeable hydrogen throughout the profile structure of both the VSD itself and the VSD:POPC membrane. These two experimentally-determined water and exchangeable hydrogen distribution profiles are in good agreement with molecular dynamics simulations of the VSD protein vectorially-oriented within a fully hydrated POPC bilayer membrane, supporting the existence of the VSD’s water pore. This approach was extended to the full-length Kv-channel (KvAP) at solid/liquid interface, providing the separate profile structures of the KvAP protein and the POPC bilayer within the reconstituted KvAP:POPC membrane. PMID:22686684

  17. Onion cell imaging by using Talbot/self-imaging effect

    NASA Astrophysics Data System (ADS)

    Agarwal, Shilpi; Kumar, Varun; Shakher, Chandra

    2017-08-01

    This paper presents the amplitude and phase imaging of onion epidermis cell using the self-imaging capabilities of a grating (Talbot effect) in visible light region. In proposed method, the Fresnel diffraction pattern from the first grating and object is recorded at self-image plane. Fast Fourier Transform (FFT) is used for extracting the 3D amplitude and phase image of onion epidermis cell. The stability of the proposed system, from environmental perturbation as well as its compactness and portability give the proposed system a high potential for several clinical applications.

  18. Nanometer Scale Titanium Surface Texturing Are Detected by Signaling Pathways Involving Transient FAK and Src Activations

    PubMed Central

    Zambuzzi, Willian F.; Bonfante, Estevam A.; Jimbo, Ryo; Hayashi, Mariko; Andersson, Martin; Alves, Gutemberg; Takamori, Esther R.; Beltrão, Paulo J.; Coelho, Paulo G.; Granjeiro, José M.

    2014-01-01

    Background It is known that physico/chemical alterations on biomaterial surfaces have the capability to modulate cellular behavior, affecting early tissue repair. Such surface modifications are aimed to improve early healing response and, clinically, offer the possibility to shorten the time from implant placement to functional loading. Since FAK and Src are intracellular proteins able to predict the quality of osteoblast adhesion, this study evaluated the osteoblast behavior in response to nanometer scale titanium surface texturing by monitoring FAK and Src phosphorylations. Methodology Four engineered titanium surfaces were used for the study: machined (M), dual acid-etched (DAA), resorbable media microblasted and acid-etched (MBAA), and acid-etch microblasted (AAMB). Surfaces were characterized by scanning electron microscopy, interferometry, atomic force microscopy, x-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy. Thereafter, those 4 samples were used to evaluate their cytotoxicity and interference on FAK and Src phosphorylations. Both Src and FAK were investigated by using specific antibody against specific phosphorylation sites. Principal Findings The results showed that both FAK and Src activations were differently modulated as a function of titanium surfaces physico/chemical configuration and protein adsorption. Conclusions It can be suggested that signaling pathways involving both FAK and Src could provide biomarkers to predict osteoblast adhesion onto different surfaces. PMID:24999733

  19. A generalized quantitative interpretation of dark-field contrast for highly concentrated microsphere suspensions

    PubMed Central

    Gkoumas, Spyridon; Villanueva-Perez, Pablo; Wang, Zhentian; Romano, Lucia; Abis, Matteo; Stampanoni, Marco

    2016-01-01

    In X-ray grating interferometry, dark-field contrast arises due to partial extinction of the detected interference fringes. This is also called visibility reduction and is attributed to small-angle scattering from unresolved structures in the imaged object. In recent years, analytical quantitative frameworks of dark-field contrast have been developed for highly diluted monodisperse microsphere suspensions with maximum 6% volume fraction. These frameworks assume that scattering particles are separated by large enough distances, which make any interparticle scattering interference negligible. In this paper, we start from the small-angle scattering intensity equation and, by linking Fourier and real-space, we introduce the structure factor and thus extend the analytical and experimental quantitative interpretation of dark-field contrast, for a range of suspensions with volume fractions reaching 40%. The structure factor accounts for interparticle scattering interference. Without introducing any additional fitting parameters, we successfully predict the experimental values measured at the TOMCAT beamline, Swiss Light Source. Finally, we apply this theoretical framework to an experiment probing a range of system correlation lengths by acquiring dark-field images at different energies. This proposed method has the potential to be applied in single-shot-mode using a polychromatic X-ray tube setup and a single-photon-counting energy-resolving detector. PMID:27734931

  20. Next Generation X-ray Polarimeter

    NASA Astrophysics Data System (ADS)

    Hill-Kittle, Joe

    The emission regions of many types of X-ray sources are small and cannot be spatially resolved without interferometry techniques that haven't yet been developed. In order to understand the emission mechanisms and emission geometry, alternate measurement techniques are required. Most microphysical processes that affect X-rays, including scattering and magnetic emission processes are imprinted as polarization signatures. X-ray polarization also reveals exotic physical processes occurring in regions of very strong gravitational and magnetic fields. Observations of X-ray polarization will provide a measurement of the geometrical distribution of gas and magnetic fields without foreground depolarization that affects longer wavelengths (e.g. Faraday rotation in the radio). Emission from accretion disks has an inclination-dependent polarization. The polarization signature is modified by extreme gravitational forces, which bend light, essentially changing the contribution of each part of the disk to the integrated total intensity seen by distant observers. Because gravity has the largest effect on the innermost parts of the disk (which are the hottest, and thus contributes to more high energy photons), the energy dependent polarization is diagnostic of disk inclination, black hole mass and spin. Increasing the sensitive energy band will make these measurements possible. X-ray polarimetry will also enable the study of the origin of cosmic rays in the universe, the nature of black holes, the role of black holes in the evolution of galaxies, and the interaction of matter with the highest physically possible magnetic fields. These objectives address NASA's strategic interest in the origin, structure, and evolution of the universe. We propose a two-year effort to develop the Next Generation X-ray Polarimeter (NGXP) that will have more than ten times the sensitivity of the current state of the art. NGXP will make possible game changing measurements of classes of astrophysical sources that were previously unobtainable within realistic observation times e.g. Active Galactic Nuclei (AGN). Standard photoelectric X-ray polarimeter designs are both quantum efficiency (QE) limited and challenging to calibrate due to diffusion of electron signal as it drifts through the gas. Drifting negative ions decreases diffusion to the thermal limit thereby decoupling sensitivity from drift distance and enabling larger detector areas that can be at the focus of larger diameter mirrors and single reflection concentrator optics. NITPCs also allow the selection of constituent gasses and pressures to be based on the optimization of modulation and QE rather than diffusion properties. This versatility enables a large improvement in sensitivity without driving cost and with only moderate increase to mass and power of the detector and/or instrument. Furthermore, the energy band of NGXP will be tunable to maximize the science return. Following the efforts of this proposal NGXP will be proposed as sounding rocket experiment and as a candidate instrument for future opportunities. The GSFC polarimeter group has demonstrated NITPCs for several detector concepts. This proposal leverages the previous effort and team expertise with goals to establish the NITPC as the baseline for narrow field observations of faint persistent sources and to improve the technology readiness of associated technologies such as stainless steel gas electron multipliers and finer readout pitch.

  1. AN HST PROPER-MOTION STUDY OF THE LARGE-SCALE JET OF 3C273

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Eileen T.; Georganopoulos, Markos; Sparks, William B.

    The radio galaxy 3C 273 hosts one of the nearest and best-studied powerful quasar jets. Having been imaged repeatedly by the Hubble Space Telescope (HST) over the past twenty years, it was chosen for an HST program to measure proper motions in the kiloparsec-scale resolved jets of nearby radio-loud active galaxies. The jet in 3C 273 is highly relativistic on sub-parsec scales, with apparent proper motions up to 15c observed by very long baseline interferometry. In contrast, we find that the kiloparsec-scale knots are compatible with being stationary, with a mean speed of −0.2 ± 0.5c over the whole jet. Assuming themore » knots are packets of moving plasma, an upper limit of 1c implies a bulk Lorentz factor Γ < 2.9. This suggests that the jet has either decelerated significantly by the time it reaches the kiloparsec scale, or that the knots in the jet are standing shock features. The second scenario is incompatible with the inverse Compton off the Cosmic Microwave Background (IC/CMB) model for the X-ray emission of these knots, which requires the knots to be in motion, but IC/CMB is also disfavored in the first scenario due to energetic considerations, in agreement with the recent finding of Meyer and Georganopoulos which ruled out the IC/CMB model for the X-ray emission of 3C 273 via gamma-ray upper limits.« less

  2. A microstructural study of fault rocks from the SAFOD: Implications for the deformation mechanisms and strength of the creeping segment of the San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Hadizadeh, Jafar; Mittempergher, Silvia; Gratier, Jean-Pierre; Renard, Francois; Di Toro, Giulio; Richard, Julie; Babaie, Hassan A.

    2012-09-01

    The San Andreas Fault zone in central California accommodates tectonic strain by stable slip and microseismic activity. We study microstructural controls of strength and deformation in the fault using core samples provided by the San Andreas Fault Observatory at Depth (SAFOD) including gouge corresponding to presently active shearing intervals in the main borehole. The methods of study include high-resolution optical and electron microscopy, X-ray fluorescence mapping, X-ray powder diffraction, energy dispersive X-ray spectroscopy, white light interferometry, and image processing. The fault zone at the SAFOD site consists of a strongly deformed and foliated core zone that includes 2-3 m thick active shear zones, surrounded by less deformed rocks. Results suggest deformation and foliation of the core zone outside the active shear zones by alternating cataclasis and pressure solution mechanisms. The active shear zones, considered zones of large-scale shear localization, appear to be associated with an abundance of weak phases including smectite clays, serpentinite alteration products, and amorphous material. We suggest that deformation along the active shear zones is by a granular-type flow mechanism that involves frictional sliding of microlithons along phyllosilicate-rich Riedel shear surfaces as well as stress-driven diffusive mass transfer. The microstructural data may be interpreted to suggest that deformation in the active shear zones is strongly displacement-weakening. The fault creeps because the velocity strengthening weak gouge in the active shear zones is being sheared without strong restrengthening mechanisms such as cementation or fracture sealing. Possible mechanisms for the observed microseismicity in the creeping segment of the SAF include local high fluid pressure build-ups, hard asperity development by fracture-and-seal cycles, and stress build-up due to slip zone undulations.

  3. Feasibility evaluation of a neutron grating interferometer with an analyzer grating based on a structured scintillator.

    PubMed

    Kim, Youngju; Kim, Jongyul; Kim, Daeseung; Hussey, Daniel S; Lee, Seung Wook

    2018-03-01

    We introduce an analyzer grating based on a structured scintillator fabricated by a gadolinium oxysulfide powder filling method for a symmetric Talbot-Lau neutron grating interferometer. This is an alternative way to analyze the Talbot self-image of a grating interferometer without using an absorption grating to block neutrons. Since the structured scintillator analyzer grating itself generates the signal for neutron detection, we do not need an additional scintillator screen as an absorption analyzer grating. We have developed and tested an analyzer grating based on a structured scintillator in our symmetric Talbot-Lau neutron grating interferometer to produce high fidelity absorption, differential phase, and dark-field contrast images. The acquired images have been compared to results of a grating interferometer utilizing a typical absorption analyzer grating with two commercial scintillation screens. The analyzer grating based on the structured scintillator enhances interference fringe visibility and shows a great potential for economical fabrication, compact system design, and so on. We report the performance of the analyzer grating based on a structured scintillator and evaluate its feasibility for the neutron grating interferometer.

  4. Feasibility evaluation of a neutron grating interferometer with an analyzer grating based on a structured scintillator

    NASA Astrophysics Data System (ADS)

    Kim, Youngju; Kim, Jongyul; Kim, Daeseung; Hussey, Daniel. S.; Lee, Seung Wook

    2018-03-01

    We introduce an analyzer grating based on a structured scintillator fabricated by a gadolinium oxysulfide powder filling method for a symmetric Talbot-Lau neutron grating interferometer. This is an alternative way to analyze the Talbot self-image of a grating interferometer without using an absorption grating to block neutrons. Since the structured scintillator analyzer grating itself generates the signal for neutron detection, we do not need an additional scintillator screen as an absorption analyzer grating. We have developed and tested an analyzer grating based on a structured scintillator in our symmetric Talbot-Lau neutron grating interferometer to produce high fidelity absorption, differential phase, and dark-field contrast images. The acquired images have been compared to results of a grating interferometer utilizing a typical absorption analyzer grating with two commercial scintillation screens. The analyzer grating based on the structured scintillator enhances interference fringe visibility and shows a great potential for economical fabrication, compact system design, and so on. We report the performance of the analyzer grating based on a structured scintillator and evaluate its feasibility for the neutron grating interferometer.

  5. Quantum information processing by weaving quantum Talbot carpets

    NASA Astrophysics Data System (ADS)

    Farías, Osvaldo Jiménez; de Melo, Fernando; Milman, Pérola; Walborn, Stephen P.

    2015-06-01

    Single-photon interference due to passage through a periodic grating is considered in a novel proposal for processing D -dimensional quantum systems (quDits) encoded in the spatial degrees of freedom of light. We show that free-space propagation naturally implements basic single-quDit gates by means of the Talbot effect: an intricate time-space carpet of light in the near-field diffraction regime. By adding a diagonal phase gate, we show that a complete set of single-quDit gates can be implemented. We then introduce a spatially dependent beam splitter that allows for projective measurements in the computational basis and can be used for the implementation of controlled operations between two quDits. Universal quantum information processing can then be implemented with linear optics and ancilla photons via postselection and feed-forward following the original proposal of Knill-Laflamme and Milburn. Although we consider photons, our scheme should be directly applicable to a number of other physical systems. Interpretation of the Talbot effect as a quantum logic operation provides a beautiful and interesting way to visualize quantum computation through wave propagation and interference.

  6. Counterpropagating Radiative Shock Experiments on the Orion Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki-Vidal, F.; Clayson, T.; Stehlé, C.

    We present new experiments to study the formation of radiative shocks and the interaction between two counterpropagating radiative shocks. The experiments are performed at the Orion laser facility, which is used to drive shocks in xenon inside large aspect ratio gas cells. The collision between the two shocks and their respective radiative precursors, combined with the formation of inherently three-dimensional shocks, provides a novel platform particularly suited for the benchmarking of numerical codes. The dynamics of the shocks before and after the collision are investigated using point-projection x-ray backlighting while, simultaneously, the electron density in the radiative precursor was measuredmore » via optical laser interferometry. Modeling of the experiments using the 2D radiation hydrodynamic codes nym and petra shows very good agreement with the experimental results.« less

  7. Counterpropagating Radiative Shock Experiments on the Orion Laser.

    PubMed

    Suzuki-Vidal, F; Clayson, T; Stehlé, C; Swadling, G F; Foster, J M; Skidmore, J; Graham, P; Burdiak, G C; Lebedev, S V; Chaulagain, U; Singh, R L; Gumbrell, E T; Patankar, S; Spindloe, C; Larour, J; Kozlova, M; Rodriguez, R; Gil, J M; Espinosa, G; Velarde, P; Danson, C

    2017-08-04

    We present new experiments to study the formation of radiative shocks and the interaction between two counterpropagating radiative shocks. The experiments are performed at the Orion laser facility, which is used to drive shocks in xenon inside large aspect ratio gas cells. The collision between the two shocks and their respective radiative precursors, combined with the formation of inherently three-dimensional shocks, provides a novel platform particularly suited for the benchmarking of numerical codes. The dynamics of the shocks before and after the collision are investigated using point-projection x-ray backlighting while, simultaneously, the electron density in the radiative precursor was measured via optical laser interferometry. Modeling of the experiments using the 2D radiation hydrodynamic codes nym and petra shows very good agreement with the experimental results.

  8. Counterpropagating Radiative Shock Experiments on the Orion Laser

    DOE PAGES

    Suzuki-Vidal, F.; Clayson, T.; Stehlé, C.; ...

    2017-08-02

    We present new experiments to study the formation of radiative shocks and the interaction between two counterpropagating radiative shocks. The experiments are performed at the Orion laser facility, which is used to drive shocks in xenon inside large aspect ratio gas cells. The collision between the two shocks and their respective radiative precursors, combined with the formation of inherently three-dimensional shocks, provides a novel platform particularly suited for the benchmarking of numerical codes. The dynamics of the shocks before and after the collision are investigated using point-projection x-ray backlighting while, simultaneously, the electron density in the radiative precursor was measuredmore » via optical laser interferometry. Modeling of the experiments using the 2D radiation hydrodynamic codes nym and petra shows very good agreement with the experimental results.« less

  9. Pulse repetition rate multiplication by Talbot effect in a coaxial fiber

    NASA Astrophysics Data System (ADS)

    Dhingra, Nikhil; Saxena, Geetika Jain; Anand, Jyoti; Sharma, Enakshi K.

    2018-03-01

    We use a coaxial fiber, which is a cylindrical coupled waveguide structure consisting of two concentric cores, the inner rod and an outer ring core as a first order dispersive media to achieve temporal Talbot effect for pulse repetition rate multiplication (PRRM) in high bit rate optical fiber communication. It is observed that for an input Gaussian pulse train with pulse width, 2τ0=1ps at a repetition rate of 40 Gbps (repetition period, T=25ps), an output repetition rate of 640 Gbps can be achieved without significant distortion at a length of 40.92 m.

  10. Elastic Properties of Synthetic Pyrope (Mg3Al2Si3O12) to 9 GPa and 1000°C

    NASA Astrophysics Data System (ADS)

    Gwanmesia, G. D.; Zhang, J.; Li, B.; Darling, K.; Kung, J.; Neuville, D.; Raterron, P.; Sullivan, S.; Liebermann, R. C.

    2003-04-01

    We have measured the elastic wave velocities of polycrystalline pyrope (Mg_3Al_2Si_3O12) to 9 GPa and 1000^oC by ultrasonic interferometry, combined with in-situ synchrotron x-ray diffraction and imaging techniques. Fine-grained polycrystalline specimens (99.5% of theoretical density) were hot-pressed from a homogeneous glass starting material in the USSA-2000 apparatus at Stony Brook; the physical properties of the recovered specimens were characterized with density measurements, x-ray diffraction and transmission electron microscopy. Bench-top elastic wave velocities were in excellent agreement with the isotropic averages calculated from single-crystal elastic moduli of Leitner et al. (1980) by the Hashin-Shtrikman method. Travel times of acoustic compressional (P) and shear (S) waves, specimen lengths and PVT equations of state for the specimen and a NaCl standard were measured to 9 GPa and 1000^oC in a DIA-type high pressure apparatus (SAM-85), installed on the superconducting wiggler beamline (X17B) at the National Synchrotron Light Source of the Brookhaven National Laboratory. These data enabled us to determine the pressure and temperature derivatives of the elastic wave velocities and moduli for isotropic pyrope. We compare our new values with those of previous investigators and discuss the implications of these data for interpreting the seismic velocity gradients in the transition zone of the Earth's mantle.

  11. A method for monitoring mass concentration of black carbon particulate matter using photothermal interferometry.

    PubMed

    Li, Baosheng; Wang, Yicheng; Li, Zhengqiang

    2016-03-01

    A method for measurements of mass concentration of black carbon particulate matter (PM) is proposed based on photothermal interferometry (PTI). A folded Jamin photothermal interferometer was used with a laser irradiation of particles deposited on a filter paper. The black carbon PM deposited on the filter paper was regarded as a film while the quartz filter paper was regarded as a substrate to establish a mathematical model for measuring the mass concentration of PM using a photothermal method. The photothermal interferometry system was calibrated and used to measure the atmospheric PM concentration corresponding to different dust-treated filter paper. The measurements were compared to those obtained using β ray method and were found consistent. This method can be particularly relevant to polluted atmospheres where PM is dominated by black carbon.

  12. TYC 8241 2652 1 and the case of the disappearing disk: No smoking gun yet

    NASA Astrophysics Data System (ADS)

    Günther, Hans Moritz; Kraus, Stefan; Melis, Carl; Curé, Michel; Harries, Tim; Ireland, Michael; Kanaan, Samer; Poppenhaeger, Katja; Rizzuto, Aaron; Rodriguez, David; Schneider, Christian P.; Sitko, Michael; Weigelt, Gerd; Willson, Matthew; Wolk, Scott

    2017-02-01

    Context. TYC8241 2652 1 is a young star that showed a strong mid-infrared (mid-IR, 8-25 μm) excess in all observations before 2008, which is consistent with a dusty disk. Between 2008 and 2010 the mid-IR luminosity of this system dropped dramatically by at least a factor of 30 suggesting a loss of dust mass of an order of magnitude or more. Aims: We aim to constrain possible models including the removal of disk material by stellar activity processes, the presence of a binary companion, or other explanations suggested in the literature. Methods: We present new X-ray observations, optical spectroscopy, near-IR interferometry, and mid-IR photometry of this system to constrain its parameters and further explore the cause of the dust mass loss. Results: In X-rays TYC8241 2652 1 has all the properties expected from a young star: Its luminosity is in the saturation regime and the abundance pattern shows enhancement of O/Fe. The photospheric Hα line is filled with a weak emission feature, indicating chromospheric activity that is consistent with the observed level of coronal emission. Interferometry does not detect a companion and sets upper limits on the companion mass of 0.2, 0.35, 0.1, and 0.05 M⊙ at projected physical separations of 0.1-4 AU, 4-5 AU, 5-10 AU, and 10-30 AU, respectively (assuming a distance of 120.9 pc). Our mid-IR measurements, the first of the system since 2012, are consistent with the depleted dust level seen after 2009. Conclusions: The new data confirm that stellar activity is unlikely to destroy the dust in the disk and shows that scenarios, in which either TYC8241 2652 1 heats the disk of a binary companion or a potential companion heats the disk of TYC8241 2652 1, are unlikely. Based on observations made with ESO telescopes at the Paranal Observatory (ESO program IDs 090.C-0697(A), 090.C-0904(A), and 095.C-0438(A)) and on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA.

  13. Validation of a partial coherence interferometry method for estimating retinal shape

    PubMed Central

    Verkicharla, Pavan K.; Suheimat, Marwan; Pope, James M.; Sepehrband, Farshid; Mathur, Ankit; Schmid, Katrina L.; Atchison, David A.

    2015-01-01

    To validate a simple partial coherence interferometry (PCI) based retinal shape method, estimates of retinal shape were determined in 60 young adults using off-axis PCI, with three stages of modeling using variants of the Le Grand model eye, and magnetic resonance imaging (MRI). Stage 1 and 2 involved a basic model eye without and with surface ray deviation, respectively and Stage 3 used model with individual ocular biometry and ray deviation at surfaces. Considering the theoretical uncertainty of MRI (12-14%), the results of the study indicate good agreement between MRI and all three stages of PCI modeling with <4% and <7% differences in retinal shapes along horizontal and vertical meridians, respectively. Stage 2 and Stage 3 gave slightly different retinal co-ordinates than Stage 1 and we recommend the intermediate Stage 2 as providing a simple and valid method of determining retinal shape from PCI data. PMID:26417496

  14. Validation of a partial coherence interferometry method for estimating retinal shape.

    PubMed

    Verkicharla, Pavan K; Suheimat, Marwan; Pope, James M; Sepehrband, Farshid; Mathur, Ankit; Schmid, Katrina L; Atchison, David A

    2015-09-01

    To validate a simple partial coherence interferometry (PCI) based retinal shape method, estimates of retinal shape were determined in 60 young adults using off-axis PCI, with three stages of modeling using variants of the Le Grand model eye, and magnetic resonance imaging (MRI). Stage 1 and 2 involved a basic model eye without and with surface ray deviation, respectively and Stage 3 used model with individual ocular biometry and ray deviation at surfaces. Considering the theoretical uncertainty of MRI (12-14%), the results of the study indicate good agreement between MRI and all three stages of PCI modeling with <4% and <7% differences in retinal shapes along horizontal and vertical meridians, respectively. Stage 2 and Stage 3 gave slightly different retinal co-ordinates than Stage 1 and we recommend the intermediate Stage 2 as providing a simple and valid method of determining retinal shape from PCI data.

  15. Non-null annular subaperture stitching interferometry for aspheric test

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Liu, Dong; Shi, Tu; Yang, Yongying; Chong, Shiyao; Miao, Liang; Huang, Wei; Shen, Yibing; Bai, Jian

    2015-10-01

    A non-null annular subaperture stitching interferometry (NASSI), combining the subaperture stitching idea and non-null test method, is proposed for steep aspheric testing. Compared with standard annular subaperture stitching interferometry (ASSI), a partial null lens (PNL) is employed as an alternative to the transmission sphere, to generate different aspherical wavefronts as the references. The coverage subaperture number would thus be reduced greatly for the better performance of aspherical wavefronts in matching the local slope of aspheric surfaces. Instead of various mathematical stitching algorithms, a simultaneous reverse optimizing reconstruction (SROR) method based on system modeling and ray tracing is proposed for full aperture figure error reconstruction. All the subaperture measurements are simulated simultaneously with a multi-configuration model in a ray-tracing program, including the interferometric system modeling and subaperture misalignments modeling. With the multi-configuration model, full aperture figure error would be extracted in form of Zernike polynomials from subapertures wavefront data by the SROR method. This method concurrently accomplishes subaperture retrace error and misalignment correction, requiring neither complex mathematical algorithms nor subaperture overlaps. A numerical simulation exhibits the comparison of the performance of the NASSI and standard ASSI, which demonstrates the high accuracy of the NASSI in testing steep aspheric. Experimental results of NASSI are shown to be in good agreement with that of Zygo® VerifireTM Asphere interferometer.

  16. Characterization of imaging performance in differential phase contrast CT compared with the conventional CT: Spectrum of noise equivalent quanta NEQ(k)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang Xiangyang; Yang Yi; Tang Shaojie

    Purpose: Differential phase contrast CT (DPC-CT) is emerging as a new technology to improve the contrast sensitivity of conventional attenuation-based CT. The noise equivalent quanta as a function over spatial frequency, i.e., the spectrum of noise equivalent quanta NEQ(k), is a decisive indicator of the signal and noise transfer properties of an imaging system. In this work, we derive the functional form of NEQ(k) in DPC-CT. Via system modeling, analysis, and computer simulation, we evaluate and verify the derived NEQ(k) and compare it with that of the conventional attenuation-based CT. Methods: The DPC-CT is implemented with x-ray tube and gratings.more » The x-ray propagation and data acquisition are modeled and simulated through Fresnel and Fourier analysis. A monochromatic x-ray source (30 keV) is assumed to exclude any system imperfection and interference caused by scatter and beam hardening, while a 360 Degree-Sign full scan is carried out in data acquisition to avoid any weighting scheme that may disrupt noise randomness. Adequate upsampling is implemented to simulate the x-ray beam's propagation through the gratings G{sub 1} and G{sub 2} with periods 8 and 4 {mu}m, respectively, while the intergrating distance is 193.6 mm (1/16 of the Talbot distance). The dimensions of the detector cell for data acquisition are 32 Multiplication-Sign 32, 64 Multiplication-Sign 64, 96 Multiplication-Sign 96, and 128 Multiplication-Sign 128 {mu}m{sup 2}, respectively, corresponding to a 40.96 Multiplication-Sign 40.96 mm{sup 2} field of view in data acquisition. An air phantom is employed to obtain the noise power spectrum NPS(k), spectrum of noise equivalent quanta NEQ(k), and detective quantum efficiency DQE(k). A cylindrical water phantom at 5.1 mm diameter and complex refraction coefficient n= 1 -{delta}+i{beta}= 1 -2.5604 Multiplication-Sign 10{sup -7}+i1.2353 Multiplication-Sign 10{sup -10} is placed in air to measure the edge transfer function, line spread function and then modulation transfer function MTF(k), of both DPC-CT and the conventional attenuation-based CT. The x-ray flux is set at 5 Multiplication-Sign 10{sup 6} photon/cm{sup 2} per projection and observes the Poisson distribution, which is consistent with that of a micro-CT for preclinical applications. Approximately 360 regions, each at 128 Multiplication-Sign 128 matrix, are used to calculate the NPS(k) via 2D Fourier transform, in which adequate zero padding is carried out to avoid aliasing in noise. Results: The preliminary data show that the DPC-CT possesses a signal transfer property [MTF(k)] comparable to that of the conventional attenuation-based CT. Meanwhile, though there exists a radical difference in their noise power spectrum NPS(k) (trait 1/|k| in DPC-CT but |k| in the conventional attenuation-based CT) the NEQ(k) and DQE(k) of DPC-CT and the conventional attenuation-based CT are in principle identical. Conclusions: Under the framework of ideal observer study, the joint signal and noise transfer property NEQ(k) and detective quantum efficiency DQE(k) of DPC-CT are essentially the same as those of the conventional attenuation-based CT. The findings reported in this paper may provide insightful guidelines on the research, development, and performance optimization of DPC-CT for extensive preclinical and clinical applications in the future.« less

  17. Multiwavelength Observations of the Blazar BL Lacertae: A New Fast TeV Gamma-Ray Flare

    NASA Astrophysics Data System (ADS)

    Abeysekara, A. U.; Benbow, W.; Bird, R.; Brantseg, T.; Brose, R.; Buchovecky, M.; Buckley, J. H.; Bugaev, V.; Connolly, M. P.; Cui, W.; Daniel, M. K.; Falcone, A.; Feng, Q.; Finley, J. P.; Fortson, L.; Furniss, A.; Gillanders, G. H.; Gunawardhana, I.; Hütten, M.; Hanna, D.; Hervet, O.; Holder, J.; Hughes, G.; Humensky, T. B.; Johnson, C. A.; Kaaret, P.; Kar, P.; Kertzman, M.; Krennrich, F.; Lang, M. J.; Lin, T. T. Y.; McArthur, S.; Moriarty, P.; Mukherjee, R.; O’Brien, S.; Ong, R. A.; Otte, A. N.; Park, N.; Petrashyk, A.; Pohl, M.; Pueschel, E.; Quinn, J.; Ragan, K.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Rulten, C.; Sadeh, I.; Santander, M.; Sembroski, G. H.; Shahinyan, K.; Wakely, S. P.; Weinstein, A.; Wells, R. M.; Wilcox, P.; Williams, D. A.; Zitzer, B.; The VERITAS Collaboration; Jorstad, S. G.; Marscher, A. P.; Lister, M. L.; Kovalev, Y. Y.; Pushkarev, A. B.; Savolainen, T.; Agudo, I.; Molina, S. N.; Gómez, J. L.; Larionov, V. M.; Borman, G. A.; Mokrushina, A. A.; Tornikoski, M.; Lähteenmäki, A.; Chamani, W.; Enestam, S.; Kiehlmann, S.; Hovatta, T.; Smith, P. S.; Pontrelli, P.

    2018-04-01

    Combined with measurements made by very-long-baseline interferometry, the observations of fast TeV gamma-ray flares probe the structure and emission mechanism of blazar jets. However, only a handful of such flares have been detected to date, and only within the last few years have these flares been observed from lower-frequency-peaked BL Lac objects and flat-spectrum radio quasars. We report on a fast TeV gamma-ray flare from the blazar BL Lacertae observed by the Very Energetic Radiation Imaging Telescope Array System (VERITAS). with a rise time of ∼2.3 hr and a decay time of ∼36 min. The peak flux above 200 GeV is (4.2 ± 0.6) × 10‑6 photon m‑2 s‑1 measured with a 4-minute-binned light curve, corresponding to ∼180% of the flux that is observed from the Crab Nebula above the same energy threshold. Variability contemporaneous with the TeV gamma-ray flare was observed in GeV gamma-ray, X-ray, and optical flux, as well as in optical and radio polarization. Additionally, a possible moving emission feature with superluminal apparent velocity was identified in Very Long Baseline Array observations at 43 GHz, potentially passing the radio core of the jet around the time of the gamma-ray flare. We discuss the constraints on the size, Lorentz factor, and location of the emitting region of the flare, and the interpretations with several theoretical models that invoke relativistic plasma passing stationary shocks.

  18. Stopping time: Henry Fox Talbot and the origins of freeze-frame photography.

    PubMed

    Ramalingam, Chitra

    2008-09-01

    As an image-making tool for scientists studying the transient, instantaneous photography has long been seen as opening up a visual realm previously inaccessible to the inferior testimony of the human eye. But when photographic pioneer Henry Fox Talbot took the first photograph of a moving object by the light of an electric spark in 1851, he was guided by existing visual practices designed to create instantaneous vision in the eye itself. Exploring the background behind the peculiar subject of his experiment - a mechanically spinning disc - reveals a hidden prehistory of spark-illuminated photography: physicists' pre-photographic techniques for stopping time.

  19. Talbot effect of the defective grating in deep Fresnel region

    NASA Astrophysics Data System (ADS)

    Teng, Shuyun; Wang, Junhong; Zhang, Wei; Cui, Yuwei

    2015-02-01

    Talbot effect of the grating with different defect is studied theoretically and experimentally in this paper. The defects of grating include the loss of the diffraction unit, the dislocation of the diffraction unit and the modulation of the unit separation. The exact diffraction distributions of three kinds of defective gratings are obtained according to the finite-difference time-domain (FDTD) method. The calculation results show the image of the missing or dislocating unit appears at the Talbot distance (as mentioned in K. Patorski Prog. Opt., 27, 1989, pp.1-108). This is the so-called self-repair ability of grating imaging. In addition, some more phenomena are discovered. The loss or the dislocation of diffraction unit causes the diffraction distortion within a certain radial angle. The regular modulation of unit separation changes the original diffraction, but the new periodicity of the diffraction distribution rebuilds. The self-imaging of grating with smaller random modulation still keeps the partial self-repair ability, and yet this characteristic depends on the modulation degree of defective grating. These diffraction phenomena of the defective gratings are explained by use of the diffraction theory of grating. The practical experiment is also performed and the experimental results confirm the theoretic predictions.

  20. Combining Gabor and Talbot bands techniques to enhance the sensitivity with depth in Fourier domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Bradu, Adrian; Marques, Manuel J.; Bouchal, Petr; Podoleanu, Adrian Gh.

    2013-03-01

    The purpose of this study was to show how to favorably mix two e_ects to improve the sensitivity with depth in Fourier domain optical coherence tomography (OCT): Talbot bands (TB) and Gabor-based fusion (GF) technique. TB operation is achieved by directing the two beams, from the object arm and from the reference arm in the OCT interferometer, along parallel separate paths towards the spectrometer. By changing the lateral gap between the two beams in their path towards the spectrometer, the position for the maximum sensitivity versus the optical path difference in the interferometer is adjusted. For five values of the focus position, the gap between the two beams is readjusted to reach maximum sensitivity. Then, similar to the procedure employed in the GF technique, a composite image is formed by edging together the parts of the five images that exhibited maximum brightness. The combined procedure, TB/GF is examined for four different values of the beam diameters of the two beams. Also we demonstrate volumetric FD-OCT images with mirror term attenuation and sensitivity profile shifted towards higher OPD values by applying a Talbot bands configuration.

  1. Forest canopy height estimation using double-frequency repeat pass interferometry

    NASA Astrophysics Data System (ADS)

    Karamvasis, Kleanthis; Karathanassi, Vassilia

    2015-06-01

    In recent years, many efforts have been made in order to assess forest stand parameters from remote sensing data, as a mean to estimate the above-ground carbon stock of forests in the context of the Kyoto protocol. Synthetic aperture radar interferometry (InSAR) techniques have gained traction in last decade as a viable technology for vegetation parameter estimation. Many works have shown that forest canopy height, which is a critical parameter for quantifying the terrestrial carbon cycle, can be estimated with InSAR. However, research is still needed to understand further the interaction of SAR signals with forest canopy and to develop an operational method for forestry applications. This work discusses the use of repeat pass interferometry with ALOS PALSAR (L band) HH polarized and COSMO Skymed (X band) HH polarized acquisitions over the Taxiarchis forest (Chalkidiki, Greece), in order to produce accurate digital elevation models (DEMs) and estimate canopy height with interferometric processing. The effect of wavelength-dependent penetration depth into the canopy is known to be strong, and could potentially lead to forest canopy height mapping using dual-wavelength SAR interferometry at X- and L-band. The method is based on scattering phase center separation at different wavelengths. It involves the generation of a terrain elevation model underneath the forest canopy from repeat-pass L-band InSAR data as well as the generation of a canopy surface elevation model from repeat pass X-band InSAR data. The terrain model is then used to remove the terrain component from the repeat pass interferometric X-band elevation model, so as to enable the forest canopy height estimation. The canopy height results were compared to a field survey with 6.9 m root mean square error (RMSE). The effects of vegetation characteristics, SAR incidence angle and view geometry, and terrain slope on the accuracy of the results have also been studied in this work.

  2. Holodiagram: elliptic visualizing interferometry, relativity, and light-in-flight.

    PubMed

    Abramson, Nils H

    2014-04-10

    In holographic interferometry, there is usually a static distance separating the point of illumination and the point of observation. In Special Relativity, this separation is dynamic and is caused by the velocity of the observer. The corrections needed to compensate for these separations are similar in the two fields. We use the ellipsoids of the holodiagram for measurement and in a graphic way to explain and evaluate optical resolution, gated viewing, radar, holography, three-dimensional interferometry, Special Relativity, and light-in-flight recordings. Lorentz contraction together with time dilation is explained as the result of the eccentricity of the measuring ellipsoid, caused by its velocity. The extremely thin ellipsoid of the very first light appears as a beam aimed directly at the observer, which might explain the wave or ray duality of light and entanglement. Finally, we introduce the concept of ellipsoids of observation.

  3. Searching For Low-mass Companions Of Cepheids

    NASA Astrophysics Data System (ADS)

    Remage Evans, Nancy; Bond, H.; Schaefer, G.; Karovska, M.; Mason, B.; DePasquale, J.; Pillitteri, I.; Guinan, E.; Engle, S.

    2011-05-01

    The role played by binary and multiple stars in star formation is receiving a great deal of attention, both theoretically and observationally. Two questions under discussion are how wide physical companions can be and how frequently massive stars have low mass companions. An important new observational tool is the development of high resolution imaging, both from space and from the ground (Adaptive Optics and interferometry). We are conducting a snapshot survey of the nearest Cepheids using the Hubble Space Telescope Wide Field Camera 3 (WFC3). The aim is to discover possible resolved low mass companions. Results from this survey will be discussed, including images of Eta Aql. X-ray luminosity can confirm or refute that putative low mass companions are young enough to be physical companions. This project tests the reality of both wide and low mass companions of these intermediate-mass stars.

  4. Bragg-Fresnel optics: New field of applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snigirev, A.

    Bragg-Fresnel Optics shows excellent compatibility with the third generation synchrotron radiation sources such as ESRF and is capable of obtaining monochromatic submicron focal spots with 10{sup 8}-10{sup 9} photons/sec in an energy bandwidth of 10{sup -4}-10{sup -6} and in a photon energy range between 2-100 keV. New types of Bragg-Fresnel lenses like modified, ion implanted, bent and acoustically modulated were tested. Microprobe techniques like microdiffraction and microfluorescence based on Bragg-Fresnel optics were realised at the ESRF beamlines. Excellent parameters of the X-ray beam at the ESRF in terms of low emittance and quite small angular source size allow for Bragg-Fresnelmore » optics to occupy new fields of applications such as high resolution diffraction, holography, interferometry and phase contrast imaging.« less

  5. Synchrotron radiation-based quasi-elastic scattering using time-domain interferometry with multi-line gamma rays.

    PubMed

    Saito, Makina; Masuda, Ryo; Yoda, Yoshitaka; Seto, Makoto

    2017-10-02

    We developed a multi-line time-domain interferometry (TDI) system using 14.4 keV Mössbauer gamma rays with natural energy widths of 4.66 neV from 57 Fe nuclei excited using synchrotron radiation. Electron density fluctuations can be detected at unique lengths ranging from 0.1 nm to a few nm on time scales from several nanoseconds to the sub-microsecond order by quasi-elastic gamma-ray scattering (QGS) experiments using multi-line TDI. In this report, we generalize the established expression for a time spectrum measured using an identical single-line gamma-ray emitter pair to the case of a nonidentical pair of multi-line gamma-ray emitters by considering the finite energy width of the incident synchrotron radiation. The expression obtained illustrates the unique characteristics of multi-line TDI systems, where the finite incident energy width and use of a nonidentical emitter pair produces further information on faster sub-picosecond-scale dynamics in addition to the nanosecond dynamics; this was demonstrated experimentally. A normalized intermediate scattering function was extracted from the spectrum and its relaxation form was determined for a relaxation time of the order of 1 μs, even for relatively large momentum transfer of ~31 nm -1 . The multi-line TDI method produces a microscopic relaxation picture more rapidly and accurately than conventional single-line TDI.

  6. Grating-based tomography applications in biomedical engineering

    NASA Astrophysics Data System (ADS)

    Schulz, Georg; Thalmann, Peter; Khimchenko, Anna; Müller, Bert

    2017-10-01

    For the investigation of soft tissues or tissues consisting of soft and hard tissues on the microscopic level, hard X-ray phase tomography has become one of the most suitable imaging techniques. Besides other phase contrast methods grating interferometry has the advantage of higher sensitivity than inline methods and the quantitative results. One disadvantage of the conventional double-grating setup (XDGI) compared to inline methods is the limitation of the spatial resolution. This limitation can be overcome by removing the analyser grating resulting in a single-grating setup (XSGI). In order to verify the performance of XSGI concerning contrast and spatial resolution, a quantitative comparison of XSGI and XDGI tomograms of a human nerve was performed. Both techniques provide sufficient contrast to allow for the distinction of tissue types. The spatial resolution of the two-fold binned XSGI data set is improved by a factor of two in comparison to XDGI which underlies its performance in tomography of soft tissues. Another application for grating-based X-ray phase tomography is the simultaneous visualization of soft and hard tissues of a plaque-containing coronary artery. The simultaneous visualization of both tissues is important for the segmentation of the lumen. The segmented data can be used for flow simulations in order to obtain information about the three-dimensional wall shear stress distribution needed for the optimization of mechano-sensitive nanocontainers used for drug delivery.

  7. An experimental apparatus for diffraction-limited soft x-ray nano-focusing

    NASA Astrophysics Data System (ADS)

    Merthe, Daniel J.; Goldberg, Kenneth A.; Yashchuk, Valeriy V.; Yuan, Sheng; McKinney, Wayne R.; Celestre, Richard; Mochi, Iacopo; Macdougall, James; Morrison, Gregory Y.; Rakawa, Senajith B.; Anderson, Erik; Smith, Brian V.; Domning, Edward E.; Warwick, Tony; Padmore, Howard

    2011-09-01

    Realizing the experimental potential of high-brightness, next generation synchrotron and free-electron laser light sources requires the development of reflecting x-ray optics capable of wavefront preservation and high-resolution nano-focusing. At the Advanced Light Source (ALS) beamline 5.3.1, we are developing broadly applicable, high-accuracy, in situ, at-wavelength wavefront measurement techniques to surpass 100-nrad slope measurement accuracy for diffraction-limited Kirkpatrick-Baez (KB) mirrors. The at-wavelength methodology we are developing relies on a series of wavefront-sensing tests with increasing accuracy and sensitivity, including scanning-slit Hartmann tests, grating-based lateral shearing interferometry, and quantitative knife-edge testing. We describe the original experimental techniques and alignment methodology that have enabled us to optimally set a bendable KB mirror to achieve a focused, FWHM spot size of 150 nm, with 1 nm (1.24 keV) photons at 3.7 mrad numerical aperture. The predictions of wavefront measurement are confirmed by the knife-edge testing. The side-profiled elliptically bent mirror used in these one-dimensional focusing experiments was originally designed for a much different glancing angle and conjugate distances. Visible-light long-trace profilometry was used to pre-align the mirror before installation at the beamline. This work demonstrates that high-accuracy, at-wavelength wavefront-slope feedback can be used to optimize the pitch, roll, and mirror-bending forces in situ, using procedures that are deterministic and repeatable.

  8. Silica-sandwiched Au nanoparticle arrays by a soft PE-CVD/RF sputtering approach

    NASA Astrophysics Data System (ADS)

    Barreca, Davide; Gasparotto, Alberto; Maccato, Chiara; Tondello, Eugenio

    2008-06-01

    This work is focused on the development of an innovative synthetic route to SiO2-sandwiched Au nanoparticle arrays. The adopted strategy consists of: (i) the radio frequency sputtering of gold on thermally oxidized Si(100) and silica substrates from Ar plasmas; (ii) the plasma enhanced chemical vapor deposition of a SiO2 overlayer using tetramethoxysilane as precursor from Ar-O2 plasmas. A common feature of both preparative stages is the use of very soft processing conditions at temperatures close to room temperature, in order to tailor the Au nanoparticle morphology and to preserve it upon SiO2 coverage. In situ monitoring of gold deposition was accomplished by means of laser reflection interferometry. Valuable information on the system morphology before and after SiO2 coverage was provided by field emission-scanning electron microscopy for samples with different Au content. Additional important information on the system chemical composition, structure and optical response was gained by the combined use of x-ray photoelectron spectroscopy, glancing incidence x-ray diffraction and UV-visible absorption spectroscopy. The results obtained highlight the formation of high-purity SiO2/Au/SiO2-sandwiched stacks, in which the gold content and distribution, as well as the nanoparticle morphology, could be tailored by the sole variation of the sputtering time, without any further ex situ treatment.

  9. Formation Control for the Maxim Mission.

    NASA Technical Reports Server (NTRS)

    Luquette, Richard J.; Leitner, Jesse; Gendreau, Keith; Sanner, Robert M.

    2004-01-01

    Over the next twenty years, a wave of change is occurring in the spacebased scientific remote sensing community. While the fundamental limits in the spatial and angular resolution achievable in spacecraft have been reached, based on today's technology, an expansive new technology base has appeared over the past decade in the area of Distributed Space Systems (DSS). A key subset of the DSS technology area is that which covers precision formation flying of space vehicles. Through precision formation flying, the baselines, previously defined by the largest monolithic structure which could fit in the largest launch vehicle fairing, are now virtually unlimited. Several missions including the Micro-Arcsecond X-ray Imaging Mission (MAXIM), and the Stellar Imager will drive the formation flying challenges to achieve unprecedented baselines for high resolution, extended-scene, interferometry in the ultraviolet and X-ray regimes. This paper focuses on establishing the feasibility for the formation control of the MAXIM mission. The Stellar Imager mission requirements are on the same order of those for MAXIM. This paper specifically addresses: (1) high-level science requirements for these missions and how they evolve into engineering requirements; (2) the formation control architecture devised for such missions; (3) the design of the formation control laws to maintain very high precision relative positions; and (4) the levels of fuel usage required in the duration of these missions. Specific preliminary results are presented for two spacecraft within the MAXIM mission.

  10. Formation Control for the MAXIM Mission

    NASA Technical Reports Server (NTRS)

    Luquette, Richard J.; Leitner, Jesse; Gendreau, Keith; Sanner, Robert M.

    2004-01-01

    Over the next twenty years, a wave of change is occurring in the space-based scientific remote sensing community. While the fundamental limits in the spatial and angular resolution achievable in spacecraft have been reached, based on today s technology, an expansive new technology base has appeared over the past decade in the area of Distributed Space Systems (DSS). A key subset of the DSS technology area is that which covers precision formation flying of space vehicles. Through precision formation flying, the baselines, previously defined by the largest monolithic structure which could fit in the largest launch vehicle fairing, are now virtually unlimited. Several missions including the Micro-Arcsecond X-ray Imaging Mission (MAXIM), and the Stellar Imager will drive the formation flying challenges to achieve unprecedented baselines for high resolution, extended-scene, interferometry in the ultraviolet and X-ray regimes. This paper focuses on establishing the feasibility for the formation control of the MAXIM mission. MAXIM formation flying requirements are on the order of microns, while Stellar Imager mission requirements are on the order of nanometers. This paper specifically addresses: (1) high-level science requirements for these missions and how they evolve into engineering requirements; and (2) the development of linearized equations of relative motion for a formation operating in an n-body gravitational field. Linearized equations of motion provide the ground work for linear formation control designs.

  11. Quantification of skin wrinkles using low coherence interferometry

    NASA Astrophysics Data System (ADS)

    Oh, Jung-Taek; Kim, Beop-Min; Son, Sang-Ryoon; Lee, Sang-Won; Kim, Dong-Yoon; Kim, Youn-Soo

    2004-07-01

    We measure the skin wrinkle topology by means of low coherence interferometry (LCI), which forms the basis of the optical coherence tomography (OCT). The skin topology obtained using LCI and corresponding 2-D fast Fourier transform allow quantification of skin wrinkles. It took approximately 2 minutes to obtain 2.1 mm x 2.1 mm topological image with 4 um and 16 um resolutions in axial and transverse directions, respectively. Measurement examples show the particular case of skin contour change after-wrinkle cosmeceutical treatments and atopic dermatitis

  12. Adaptive wavefront sensor based on the Talbot phenomenon.

    PubMed

    Podanchuk, Dmytro V; Goloborodko, Andrey A; Kotov, Myhailo M; Kovalenko, Andrey V; Kurashov, Vitalij N; Dan'ko, Volodymyr P

    2016-04-20

    A new adaptive method of wavefront sensing is proposed and demonstrated. The method is based on the Talbot self-imaging effect, which is observed in an illuminating light beam with strong second-order aberration. Compensation of defocus and astigmatism is achieved with an appropriate choice of size of the rectangular unit cell of the diffraction grating, which is performed iteratively. A liquid-crystal spatial light modulator is used for this purpose. Self-imaging of rectangular grating in the astigmatic light beam is demonstrated experimentally. High-order aberrations are detected with respect to the compensated second-order aberration. The comparative results of wavefront sensing with a Shack-Hartmann sensor and the proposed sensor are adduced.

  13. VLBI Monitoring of the Bright Gamma-Ray Blazar PKS 0537-441

    DTIC Science & Technology

    2010-06-01

    active state by Fermi. It is one of the brightest ,),-ray blazars detected in the southern sky so far. The TANAMI (Tracking Active Galactic Nuclei...Active Galactic Nuclei with Austral Milliarcsecond Interferometry (TAN AMI) program (Ojha et a1. (2010» has been monitoring south- ern sky blazars such...Telescope. Studying Active Galactic Nuclei (AGN) at different wavelengths is crucial in order to understand AGN-jets and differentiate between

  14. The Use of Fluoroproline in MUC1 Antigen Enables Efficient Detection of Antibodies in Patients with Prostate Cancer.

    PubMed

    Somovilla, Víctor J; Bermejo, Iris A; Albuquerque, Inês S; Martínez-Sáez, Nuria; Castro-López, Jorge; García-Martín, Fayna; Compañón, Ismael; Hinou, Hiroshi; Nishimura, Shin-Ichiro; Jiménez-Barbero, Jesús; Asensio, Juan L; Avenoza, Alberto; Busto, Jesús H; Hurtado-Guerrero, Ramón; Peregrina, Jesús M; Bernardes, Gonçalo J L; Corzana, Francisco

    2017-12-20

    A structure-based design of a new generation of tumor-associated glycopeptides with improved affinity against two anti-MUC1 antibodies is described. These unique antigens feature a fluorinated proline residue, such as a (4S)-4-fluoro-l-proline or 4,4-difluoro-l-proline, at the most immunogenic domain. Binding assays using biolayer interferometry reveal 3-fold to 10-fold affinity improvement with respect to the natural (glyco)peptides. According to X-ray crystallography and MD simulations, the fluorinated residues stabilize the antigen-antibody complex by enhancing key CH/π interactions. Interestingly, a notable improvement in detection of cancer-associated anti-MUC1 antibodies from serum of patients with prostate cancer is achieved with the non-natural antigens, which proves that these derivatives can be considered better diagnostic tools than the natural antigen for prostate cancer.

  15. Georges Sagnac: A life for optics

    NASA Astrophysics Data System (ADS)

    Darrigol, Olivier

    2014-12-01

    Georges Sagnac is mostly known for the optical effect in rotating frames that he demonstrated in 1913. His scientific interests were quite diverse: they included photography, optical illusions, X-ray physics, radioactivity, the blue of the sky, anomalous wave propagation, interferometry, strioscopy, and acoustics. An optical theme nonetheless pervaded his entire œuvre. Within optics, an original theory of the propagation of light motivated most of his investigations, from an ingenious explanation of the Fresnel drag, through the discovery of the Sagnac effect, to his quixotic defense of an alternative to relativity theory. Optical analogies efficiently guided his work in other domains. Optics indeed was his true passion. He saw himself as carrying the torch of the two great masters of French optics, Augustin Fresnel and Hippolyte Fizeau. In this mission he overcame his poor health and labored against the modernist tide, with much success originally and bitter isolation in the end. xml:lang="fr"

  16. Space-Time Characterization of Laser Plasma Interactions in the Warm Dense Matter Regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, L F; Uschmann, I; Forster, E

    2008-04-30

    Laser plasma interaction experiments have been performed using a fs Titanium Sapphire laser. Plasmas have been generated from planar PMMA targets using single laser pulses with 3.3 mJ pulse energy, 50 fs pulse duration at 800 nm wavelength. The electron density distributions of the plasmas in different delay times have been characterized by means of Nomarski Interferometry. Experimental data were compared with hydrodynamic simulation. First results to characterize the plasma density and temperature as a function of space and time are obtained. This work aims to generate plasmas in the warm dense matter (WDM) regime at near solid-density in anmore » ultra-fast laser target interaction process. Plasmas under these conditions can serve as targets to develop x-ray Thomson scattering as a plasma diagnostic tool, e.g., using the VUV free-electron laser (FLASH) at DESY Hamburg.« less

  17. Advanced Protein Crystallization Facility (APCF)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This section of the Life and Microgravity Spacelab (LMS) publication contains articles entitled: (1) Crystallization of EGFR-EGF; (2) Crystallization of Apocrustacyanin C1; (3) Crystallization and X-ray Analysis of 5S rRNA and the 5S rRNA Domain A; (4) Growth of Lysozyme Crystals at Low Nucleation Density; (5) Comparative Analysis of Aspartyl tRNA-synthetase and Thaumatin Crystals Grown on Earth and In Microgravity; (6) Lysosome Crystal Growth in the Advanced Protein Crystallization Facility Monitored via Mach-Zehnder Interferometry and CCD Video; (7) Analysis of Thaumatin Crystals Grown on Earth and in Microgravity; (8) Crystallization of the Nucleosome Core Particle; (9) Crystallization of Photosystem I; (10) Mechanism of Membrane Protein Crystal Growth: Bacteriorhodopsin-mixed Micelle Packing at the Consolution Boundary, Stabilized in Microgravity; (11) Crystallization in a Microgravity Environment of CcdB, a Protein Involved in the Control of Cell Death; and (12) Crystallization of Sulfolobus Solfataricus

  18. Variations in the source, metal content and bioreactivity of technogenic aerosols: a case study from Port Talbot, Wales, UK.

    PubMed

    Moreno, Teresa; Merolla, Luciano; Gibbons, Wes; Greenwell, Leona; Jones, Tim; Richards, Roy

    2004-10-15

    Atmospheric aerosol samples were collected during different prevailing wind directions from a site located close to a busy motorway, a major steelworks, and the town of Port Talbot (Wales, UK). A high-volume collector was used (1100 l/min), enabling relatively large amounts of particulate matter (PM(10-2.5) and PM(2.5)) samples to be obtained on a polyurethane foam [PUF, H(2)N-C(O)O-CH(2)CH(3)] substrate over periods of 2-7 days. Four samples were chosen to exemplify different particle mixtures: SE- and NE-derived samples for particles moving along and across the motorway, a NW-derived sample from the town, and a mixed SW/SE-derived sample containing a mixture of particles from both steelworks and motorway. The latter sample showed the highest average collection rate (0.9 mg/h, 13 microg/m(3)) and included a prominent pollution episode when rainy winds were blowing from the direction of the steelworks. Both NW and SE samples were collected under dry conditions and show the same collection rate (0.7 mg/h, 10 microg/m(3)), whereas the NE sample was collected during wetter weather and shows the lowest rate (0.3 mg/h, 5 microg/m(3)). Scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis system (EDX) analyses show all samples are dominated by elemental and organic carbon compounds (EOCC) and nitrates, with lesser amounts of sulphates, felsic silicates, chlorides and metals. ICP-MS analyses show the SW/SE sample to be richest in metals, especially Fe, Zn, Ni, and Mn, these being attributed to an origin from the steelworks. The SE sample, blown along the motorway corridor, shows enhanced levels of Pb, V, Ti, As, and Ce, these metals being interpreted as defining a traffic-related chemical fingerprint. The NW sample shows a very low metal content. DNA plasmid assay data on the samples show TM(50) values varying from 66 to 175 microg/ml for the adjusted whole sample and 89 to 203 microg/ml for the soluble fraction. The SW/SE-mixed metalliferous sample is the most bioreactive (both whole and soluble) and the soluble fraction of the metal-depleted NW sample is the least bioreactive. The metal content of the aerosol samples, especially soluble metals such as Zn, is suggested to be the primary component responsible for oxidative damage of the DNA, and therefore most implicated in any health effects arising from the inhalation of these particulate cocktails.

  19. Manipulating the motion of large molecules: Information from the molecular frame

    NASA Astrophysics Data System (ADS)

    Küpper, Jochen

    2011-05-01

    Large molecules have complex potential-energy surfaces with many local minima. They exhibit multiple stereoisomers, even at the low temperatures (~1 K) in a molecular beam, with rich intra- and intermolecular dynamics. Over the last years, we have developed methods to manipulate the motion of large, complex molecules and to select their quantum states. We have exploited this state-selectivity, for example, to spatially separate individual structural isomers of complex molecules and to demonstrate unprecedented degrees of laser alignment and mixed-field orientation of these molecules. Such clean, well-defined samples strongly benefit, or simply allow, novel experiments on the dynamics of complex molecules, for instance, femtosecond pump-probe measurements, X-ray or electron diffraction of molecular ensembles (including diffraction-from-within experiments), or tomographic reconstructions of molecular orbitals. These samples could also be very advantageous for metrology applications, such as, for example, matter-wave interferometry or the search for electroweak interactions in chiral molecules. Moreover, they provide an extreme level of control for stereo-dynamically controlled reaction dynamics. We have recently exploited these state-selected and oriented samples to measure photoelectron angular distributions in the molecular frame (MFPADs) from non-resonant femtosecond-laser photoionization and using the X-ray Free-Electron-Laser LCLS. We have also investigated X-ray diffraction imaging and, using ion momentum imaging, the induced radiation damage of these samples using the LCLS. This work was carried out within a collaboration for which J. Küpper, H. Chapman, and D. Rolles are spokespersons. The collaboration consists of CFEL (DESY, MPG, University Hamburg), Fritz-Haber-Institute Berlin, MPI Nuclear Physics Heidelberg, MPG Semi-conductor Lab, Aarhus University, FOM AMOLF Amsterdam, Lund University, MPI Medical Research Heidelberg, TU Berlin, Max Born Institute Berlin, and SLAC Menlo Park, CA, USA. The experiments were carried out using CAMP (designed and built by the MPG-ASG at CFEL) at the LCLS (operated by Stanford University on behalf of the US DOE).

  20. High-resolution probing of inner core structure with seismic interferometry

    NASA Astrophysics Data System (ADS)

    Huang, Hsin-Hua; Lin, Fan-Chi; Tsai, Victor C.; Koper, Keith D.

    2015-12-01

    Increasing complexity of Earth's inner core has been revealed in recent decades as the global distribution of seismic stations has improved. The uneven distribution of earthquakes, however, still causes a biased geographical sampling of the inner core. Recent developments in seismic interferometry, which allow for the retrieval of core-sensitive body waves propagating between two receivers, can significantly improve ray path coverage of the inner core. In this study, we apply such earthquake coda interferometry to 1846 USArray stations deployed across the U.S. from 2004 through 2013. Clear inner core phases PKIKP2 and PKIIKP2 are observed across the entire array. Spatial analysis of the differential travel time residuals between the two phases reveals significant short-wavelength variation and implies the existence of strong structural variability in the deep Earth. A linear N-S trending anomaly across the middle of the U.S. may reflect an asymmetric quasi-hemispherical structure deep within the inner core with boundaries of 99°W and 88°E.

  1. State-of-the-art Nanofabrication in Catalysis.

    PubMed

    Karim, Waiz; Tschupp, Simon A; Herranz, Juan; Schmidt, Thomas J; Ekinci, Yasin; van Bokhovenac, Jeroen A

    2017-04-26

    We present recent developments in top-down nanofabrication that have found application in catalysis research. To unravel the complexity of catalytic systems, the design and use of models with control of size, morphology, shape and inter-particle distances is a necessity. The study of well-defined and ordered nanoparticles on a support contributes to the understanding of complex phenomena that govern reactions in heterogeneous and electro-catalysis. We review the strengths and limitations of different nanolithography methods such as electron beam lithography (EBL), photolithography, extreme ultraviolet (EUV) lithography and colloidal lithography for the creation of such highly tunable catalytic model systems and their applications in catalysis. Innovative strategies have enabled particle sizes reaching dimensions below 10 nm. It is now possible to create pairs of particles with distance controlled with an extremely high precision in the order of one nanometer. We discuss our approach to study these model systems at the single-particle level using X-ray absorption spectroscopy and show new ways to fabricate arrays of single nanoparticles or nanoparticles in pairs over a large area using EBL and EUV-achromatic Talbot lithography. These advancements have provided new insights into the active sites in metal catalysts and enhanced the understanding of the role of inter-particle interactions and catalyst supports, such as in the phenomenon of hydrogen spillover. We present a perspective on future directions for employing top-down nanofabrication in heterogeneous and electrocatalysis. The rapid development in nanofabrication and characterization methods will continue to have an impact on understanding of complex catalytic processes.

  2. Two-dimensional periodic structures in solid state laser resonator

    NASA Astrophysics Data System (ADS)

    Okulov, Alexey Y.

    1991-07-01

    Transverse effects in nonlinear optical devices are being widely investigated. Recently, synchronization of a laser set by means of the Talbot effect has been demonstrated experimentally. This paper considers a Talbot cavity formed by a solid-state amplifying laser separated from the output mirror by a free space interval. This approach involves the approximation of the nonlinear medium as a thin layer, within which the diffraction is negligible. The other part of a resonator is empty, and the wave field is transformed by the Fresnel-Kirchoff integral. As a result, the dynamics of the transverse (and temporal) structure is computed by a successively iterated nonlinear local map (one- or two-dimensional) and a linear nonlocal map (generally speaking, infinitely dimensional).

  3. Effect of Ceramic Ball and Hybrid Stainless Steel Bearing/Wheel Combinations on the Lifetime of a Precision Translation Stage for the SIM Flight Project

    NASA Technical Reports Server (NTRS)

    Lo, C. John; Klein, Kerry; Jones, William R., Jr.; Jansen, Mark J.; Wemhoner, Jens

    2009-01-01

    A study of hybrid material couples using the Spiral Orbit Tribometer (SOT) was initiated to investigate both lubricated (Pennzane X2000 and Brayco 815Z) and unlubricated Si3N4, 440C SS, Rex 20, Cronidur X30 and X40 plates with Cerbec SN-101-C (Si3N4) and 440C balls. The hybrid wheel/bearing assembly will be used on the Linear Optical Delay Line (LODL) stage as an element of the NASA Space Interferometry Mission (SIM). SIM is an orbiting interferometer linking a pair of telescopes within the spacecraft and, by using an interferometry technique and several precision optical stages, is able to measure the motions of known stars much better than current ground or space based systems. This measurement will provide the data to "infer" the existence of any plants, undetectable by other methods, orbiting these known stars.

  4. 75 FR 28630 - Maryland; Major Disaster and Related Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ..., Howard, Kent, Montgomery, Prince George's, Queen Anne's, Saint Mary's, Talbot, Washington, and Wicomico..., Calvert, Caroline, Carroll, Charles, Dorchester, Frederick, Garrett, Harford, Montgomery, Prince George's...

  5. Shock Wave Response of Iron-based In Situ Metallic Glass Matrix Composites

    PubMed Central

    Khanolkar, Gauri R.; Rauls, Michael B.; Kelly, James P.; Graeve, Olivia A.; Hodge, Andrea M.; Eliasson, Veronica

    2016-01-01

    The response of amorphous steels to shock wave compression has been explored for the first time. Further, the effect of partial devitrification on the shock response of bulk metallic glasses is examined by conducting experiments on two iron-based in situ metallic glass matrix composites, containing varying amounts of crystalline precipitates, both with initial composition Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4. The samples, designated SAM2X5-600 and SAM2X5-630, are X-ray amorphous and partially crystalline, respectively, due to differences in sintering parameters during sample preparation. Shock response is determined by making velocity measurements using interferometry techniques at the rear free surface of the samples, which have been subjected to impact from a high-velocity projectile launched from a powder gun. Experiments have yielded results indicating a Hugoniot Elastic Limit (HEL) to be 8.58 ± 0.53 GPa for SAM2X5-600 and 11.76 ± 1.26 GPa for SAM2X5-630. The latter HEL result is higher than elastic limits for any BMG reported in the literature thus far. SAM2X5-600 catastrophically loses post-yield strength whereas SAM2X5-630, while showing some strain-softening, retains strength beyond the HEL. The presence of crystallinity within the amorphous matrix is thus seen to significantly aid in strengthening the material as well as preserving material strength beyond yielding. PMID:26932846

  6. Shock Wave Response of Iron-based In Situ Metallic Glass Matrix Composites.

    PubMed

    Khanolkar, Gauri R; Rauls, Michael B; Kelly, James P; Graeve, Olivia A; Hodge, Andrea M; Eliasson, Veronica

    2016-03-02

    The response of amorphous steels to shock wave compression has been explored for the first time. Further, the effect of partial devitrification on the shock response of bulk metallic glasses is examined by conducting experiments on two iron-based in situ metallic glass matrix composites, containing varying amounts of crystalline precipitates, both with initial composition Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4. The samples, designated SAM2X5-600 and SAM2X5-630, are X-ray amorphous and partially crystalline, respectively, due to differences in sintering parameters during sample preparation. Shock response is determined by making velocity measurements using interferometry techniques at the rear free surface of the samples, which have been subjected to impact from a high-velocity projectile launched from a powder gun. Experiments have yielded results indicating a Hugoniot Elastic Limit (HEL) to be 8.58 ± 0.53 GPa for SAM2X5-600 and 11.76 ± 1.26 GPa for SAM2X5-630. The latter HEL result is higher than elastic limits for any BMG reported in the literature thus far. SAM2X5-600 catastrophically loses post-yield strength whereas SAM2X5-630, while showing some strain-softening, retains strength beyond the HEL. The presence of crystallinity within the amorphous matrix is thus seen to significantly aid in strengthening the material as well as preserving material strength beyond yielding.

  7. Evaluation of bone loss in antibacterial coated dental implants: An experimental study in dogs.

    PubMed

    Godoy-Gallardo, Maria; Manzanares-Céspedes, Maria Cristina; Sevilla, Pablo; Nart, José; Manzanares, Norberto; Manero, José M; Gil, Francisco Javier; Boyd, Steven K; Rodríguez, Daniel

    2016-12-01

    The aim of this study was to evaluate the in vivo effect of antibacterial modified dental implants in the first stages of peri-implantitis. Thirty dental implants were inserted in the mandibular premolar sites of 5 beagle dogs. Sites were randomly assigned to Ti (untreated implants, 10units), Ti_Ag (silver electrodeposition treatment, 10units), and Ti_TSP (silanization treatment, 10units). Coated implants were characterized by scanning electron microscopy, interferometry and X-ray photoelectron spectroscopy. Two months after implant insertion, experimental peri-implantitis was initiated by ligature placement. Ligatures were removed 2months later, and plaque formation was allowed for 2 additional months. Clinical and radiographic analyses were performed during the study. Implant-tissue samples were prepared for micro computed tomography, backscattered scanning electron microscopy, histomorphometric and histological analyses and ion release measurements. X-ray, SEM and histology images showed that vertical bone resorption in treated implants was lower than in the control group (P<0.05). This effect is likely due to the capacity of the treatments to reduce bacteria colonization on the implant surface. Histological analysis suggested an increase of peri-implant bone formation on silanized implants. However, the short post-ligature period was not enough to detect differences in clinical parameters among implant groups. Within the limits of this study, antibacterial surface treatments have a positive effect against bone resorption induced by peri-implantitis. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Twisting Neutron Waves

    NASA Astrophysics Data System (ADS)

    Pushin, Dmitry

    Most waves encountered in nature can be given a ``twist'', so that their phase winds around an axis parallel to the direction of wave propagation. Such waves are said to possess orbital angular momentum (OAM). For quantum particles such as photons, atoms, and electrons, this corresponds to the particle wavefunction having angular momentum of Lℏ along its propagation axis. Controlled generation and detection of OAM states of photons began in the 1990s, sparking considerable interest in applications of OAM in light and matter waves. OAM states of photons have found diverse applications such as broadband data multiplexing, massive quantum entanglement, optical trapping, microscopy, quantum state determination and teleportation, and interferometry. OAM states of electron beams have been used to rotate nanoparticles, determine the chirality of crystals and for magnetic microscopy. Here I discuss the first demonstration of OAM control of neutrons. Using neutron interferometry with a spatially incoherent input beam, we show the addition and conservation of quantum angular momenta, entanglement between quantum path and OAM degrees of freedom. Neutron-based quantum information science heretofore limited to spin, path, and energy degrees of freedom, now has access to another quantized variable, and OAM modalities of light, x-ray, and electron beams are extended to a massive, penetrating neutral particle. The methods of neutron phase imprinting demonstrated here expand the toolbox available for development of phase-sensitive techniques of neutron imaging. Financial support provided by the NSERC Create and Discovery programs, CERC and the NIST Quantum Information Program is acknowledged.

  9. Speckle interferometry of asteroids. II - 532 Herculina

    NASA Technical Reports Server (NTRS)

    Drummond, J. D.; Hege, E. K.; Cocke, W. J.; Freeman, J. D.; Christou, J. C.; Binzel, R. P.

    1985-01-01

    Speckle interferometry of 532 Herculina performed on January 17 and 18, 1982, yields triaxial ellipsoid dimensions of (263 + or - 14) x (218 + or - 12) x (215 + or - 12) km, and a north pole for the asteroid within 7 deg of RA = 7h47min and DEC = -39 deg (ecliptic coordinates lambda = 132 deg beta = -59 deg). In addition, a 'spot' some 75 percent brighter than the rest of the asteroid is inferred from both speckle observations and Herculina's lightcurve history. This bright complex, centered at asterocentric latitude -35 deg, longitude 145-165 deg, extends over a diameter of 55 deg (115 km) of the asteroid's surface. No evidence for a satellite is found from the speckle observations, which leads to an upper limit of 50 km for the diameter of any satellite with an albedo the same as or higher than Herculina.

  10. Towards simultaneous Talbot bands based optical coherence tomography and scanning laser ophthalmoscopy imaging.

    PubMed

    Marques, Manuel J; Bradu, Adrian; Podoleanu, Adrian Gh

    2014-05-01

    We report a Talbot bands-based optical coherence tomography (OCT) system capable of producing longitudinal B-scan OCT images and en-face scanning laser ophthalmoscopy (SLO) images of the human retina in-vivo. The OCT channel employs a broadband optical source and a spectrometer. A gap is created between the sample and reference beams while on their way towards the spectrometer's dispersive element to create Talbot bands. The spatial separation of the two beams facilitates collection by an SLO channel of optical power originating exclusively from the retina, deprived from any contribution from the reference beam. Three different modes of operation are presented, constrained by the minimum integration time of the camera used in the spectrometer and by the galvo-scanners' scanning rate: (i) a simultaneous acquisition mode over the two channels, useful for small size imaging, that conserves the pixel-to-pixel correspondence between them; (ii) a hybrid sequential mode, where the system switches itself between the two regimes and (iii) a sequential "on-demand" mode, where the system can be used in either OCT or SLO regimes for as long as required. The two sequential modes present varying degrees of trade-off between pixel-to-pixel correspondence and independent full control of parameters within each channel. Images of the optic nerve and fovea regions obtained in the simultaneous (i) and in the hybrid sequential mode (ii) are presented.

  11. Towards simultaneous Talbot bands based optical coherence tomography and scanning laser ophthalmoscopy imaging

    PubMed Central

    Marques, Manuel J.; Bradu, Adrian; Podoleanu, Adrian Gh.

    2014-01-01

    We report a Talbot bands-based optical coherence tomography (OCT) system capable of producing longitudinal B-scan OCT images and en-face scanning laser ophthalmoscopy (SLO) images of the human retina in-vivo. The OCT channel employs a broadband optical source and a spectrometer. A gap is created between the sample and reference beams while on their way towards the spectrometer’s dispersive element to create Talbot bands. The spatial separation of the two beams facilitates collection by an SLO channel of optical power originating exclusively from the retina, deprived from any contribution from the reference beam. Three different modes of operation are presented, constrained by the minimum integration time of the camera used in the spectrometer and by the galvo-scanners’ scanning rate: (i) a simultaneous acquisition mode over the two channels, useful for small size imaging, that conserves the pixel-to-pixel correspondence between them; (ii) a hybrid sequential mode, where the system switches itself between the two regimes and (iii) a sequential “on-demand” mode, where the system can be used in either OCT or SLO regimes for as long as required. The two sequential modes present varying degrees of trade-off between pixel-to-pixel correspondence and independent full control of parameters within each channel. Images of the optic nerve and fovea regions obtained in the simultaneous (i) and in the hybrid sequential mode (ii) are presented. PMID:24877006

  12. Polarization Considerations for the Laser Interferometer Space Antenna

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene; Pedersen, Tracy R.; McNamara, Paul

    2005-01-01

    A polarization ray trace model of the Laser Interferometer Space Antenna s (LISA) optical path is being created. The model will be able to assess the effects of various polarizing elements and the optical coatings on the required, very long path length, picometer level dynamic interferometry. The computational steps are described. This should eliminate any ambiguities associated with polarization ray tracing of interferometers and provide a basis for determining the computer model s limitations and serve as a clearly defined starting point for future work.

  13. Combined Determination of Elastic Properties and Structure of Coesite under Simulated Mantle Conditions

    NASA Astrophysics Data System (ADS)

    Mueller, H. J.; Schilling, F. R.; Lauterjung, J.; Lathe, C.

    2001-12-01

    The high pressure SiO2-polymorph coesite seems to be an important mineral in the subduction process including crustal material (Chopin, 1984; Schreyer, 1995). The quartz to coesite transition is thus of fundamental importance to understand the processes within a subducting crust. Furthermore, the nature of the quartz to coesite transition is discussed controversially, because high pressure XRD-studies suggest an intermediate phase during the transformation process (Zinn et al., 1997). For the combined determination of elastic properties and structure a cubic multi-anvil high pressure apparatus (MAX80) was used. For the maximum sample volume of 20 mm3 the pressure limit is about 7GPa. The pressure is measured by use of NaCl as an internal pressure marker with calibrated PVT-data. The maximum temperature of about 2,000K is generated by an internal graphite heater and controlled by a thermocouple. The synchrotron beam (100x100 microns) is guided by a collimator through the sample between the anvils. For energy-dispersive X-ray diffraction, a Ge-solid state detector analyses the diffracted white beam at a fixed angle. The compressional and shear wave velocities were determined simultaneously by ultrasonic interferometry inside MAX80. Two of the six anvils are equipped with overtone polished lithium niobate transducers at their rear side, outside the volume under pressure, for generation and detection of ultrasonic waves between 10 and 60 MHz. Different buffer - reflector combinations and transducer arrangements were used to optimize the critical interference between both sample echoes. Therefore MAX80 is equipped for asymmetrical and symmetrical interferometric set-ups, i.e. compressional and shear waves are generated from the same or from two anvils, opposite to each other. We used for our transient measurements 3 natural fine-grained quartzites from Turkey and Germany. As a first step the pressure was increased gradually up to 4GPa at ambient temperature. At each pressure Vp and Vs was measured by ultrasonic interferometry. After reaching a given pressure, temperature was increased. At 4.5GPa and 800\\deg C the phase transition to coesite took place in less than 2 minutes. The fast kinetic of transformation was observed by synchrotron radiation. The compressional wave velocity increased by 30% and the shear wave velocity by 10% during the phase transition. The kinetic of the transition was varied by choosing different pressure and temperature conditions. The transformation with lower kinetic was studied in detail by XRD and ultrasonic interferometry. At 4.2 GPa the transformation could not be observed even above 950\\deg C. At 4.5 GPa and 750\\deg C the transition stopped at about 50% transformation, but transforms complete while increasing temperature to 800\\deg C. After the phase transition monitored by X-ray scattering the sample was quenched and Vp and Vs of coesite was measured at ambient temperatures up to the maximum pressure. Small differences in grain size, shape and in minor graphite contents did not change systematically the PT-conditions and kinetics. In addition to the kinetic and change of elastic properties the pressure and temperature derivatives of elastic properties of coesite will be presented.\\Chopin, C., Contr. Min. Petrol., 86 (1984), 107-118\\Schreyer, W., J. Geophys. Res., 100 (1995), 8,353-8,366\\Zinn P., Lauterjung J., Wirth R. & Hinze E. Zeitschrift für Kristallographie, 212 (1997), 691-698.

  14. Diffraction-Induced Bidimensional Talbot Self-Imaging with Full Independent Period Control

    NASA Astrophysics Data System (ADS)

    Guillet de Chatellus, Hugues; Romero Cortés, Luis; Deville, Antonin; Seghilani, Mohamed; Azaña, José

    2017-03-01

    We predict, formulate, and observe experimentally a generalized version of the Talbot effect that allows one to create diffraction-induced self-images of a periodic two-dimensional (2D) waveform with arbitrary control of the image spatial periods. Through the proposed scheme, the periods of the output self-image are multiples of the input ones by any desired integer or fractional factor, and they can be controlled independently across each of the two wave dimensions. The concept involves conditioning the phase profile of the input periodic wave before free-space diffraction. The wave energy is fundamentally preserved through the self-imaging process, enabling, for instance, the possibility of the passive amplification of the periodic patterns in the wave by a purely diffractive effect, without the use of any active gain.

  15. Diffraction-Induced Bidimensional Talbot Self-Imaging with Full Independent Period Control.

    PubMed

    Guillet de Chatellus, Hugues; Romero Cortés, Luis; Deville, Antonin; Seghilani, Mohamed; Azaña, José

    2017-03-31

    We predict, formulate, and observe experimentally a generalized version of the Talbot effect that allows one to create diffraction-induced self-images of a periodic two-dimensional (2D) waveform with arbitrary control of the image spatial periods. Through the proposed scheme, the periods of the output self-image are multiples of the input ones by any desired integer or fractional factor, and they can be controlled independently across each of the two wave dimensions. The concept involves conditioning the phase profile of the input periodic wave before free-space diffraction. The wave energy is fundamentally preserved through the self-imaging process, enabling, for instance, the possibility of the passive amplification of the periodic patterns in the wave by a purely diffractive effect, without the use of any active gain.

  16. Operational Monitoring of Mines by COSMO-SkyMed PSP SAR Interferometry

    NASA Astrophysics Data System (ADS)

    Costantini, Mario; Malvarosa, Fabio; Miniati, Federico; de Assis, Luciano Mozer

    2016-08-01

    Synthetic aperture radar (SAR) interferometry is a powerful technology for detection and monitoring of slow ground surface movements. Monitoring of ground deformations in mining structures is an important application, particularly difficult because the scene changes with time. The persistent scatterer pair (PSP) approach, recently proposed to overcome some limitations of standard persistent scatter interferometry, proved to be effective also for mine monitoring. In this work, after resuming the main ideas of the PSP method, we describe the PSP measurements obtained from high- resolution X-band COSMO-SkyMed data over a large mining area in Minas Gerais state, Brazil. The outcomes demonstrate that dense and accurate ground deformation measurements can be obtained on the mining area and its structures (such as open pits, waste dumps, conveyor belts, water and tailings dams, etc.), achieving a consistent global view including also areas where field instruments are not installed.

  17. Tropical-Forest Structure and Biomass Dynamics from TanDEM-X Radar Interferometry

    Treesearch

    Robert Treuhaft; Yang Lei; Fabio Gonçalves; Michael Keller; João Santos; Maxim Neumann; André Almeida

    2017-01-01

    Changes in tropical-forest structure and aboveground biomass (AGB) contribute directly to atmospheric changes in CO2, which, in turn, bear on global climate. This paper demonstrates the capability of radar-interferometric phase-height time series at X-band (wavelength = 3 cm) to monitor changes in vertical structure and AGB, with sub-hectare and monthly spatial and...

  18. Born’s rule as signature of a superclassical current algebra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fussy, S.; Mesa Pascasio, J.; Institute for Atomic and Subatomic Physics, Vienna University of Technology, Operng. 9, 1040 Vienna

    2014-04-15

    We present a new tool for calculating the interference patterns and particle trajectories of a double-, three- and N-slit system on the basis of an emergent sub-quantum theory developed by our group throughout the last years. The quantum itself is considered as an emergent system representing an off-equilibrium steady state oscillation maintained by a constant throughput of energy provided by a classical zero-point energy field. We introduce the concept of a “relational causality” which allows for evaluating structural interdependences of different systems levels, i.e. in our case of the relations between partial and total probability density currents, respectively. Combined with themore » application of 21st century classical physics like, e.g., modern nonequilibrium thermodynamics, we thus arrive at a “superclassical” theory. Within this framework, the proposed current algebra directly leads to a new formulation of the guiding equation which is equivalent to the original one of the de Broglie–Bohm theory. By proving the absence of third order interferences in three-path systems it is shown that Born’s rule is a natural consequence of our theory. Considering the series of one-, double-, or, generally, of N-slit systems, with the first appearance of an interference term in the double slit case, we can explain the violation of Sorkin’s first order sum rule, just as the validity of all higher order sum rules. Moreover, the Talbot patterns and Talbot distance for an arbitrary N-slit device can be reproduced exactly by our model without any quantum physics tool. -- Highlights: •Calculating the interference patterns and particle trajectories of a double-, three- and N-slit system. •Deriving a new formulation of the guiding equation equivalent to the de Broglie–Bohm one. •Proving the absence of third order interferences and thus explaining Born’s rule. •Explaining the violation of Sorkin’s order sum rules. •Classical simulation of Talbot patterns and exact reproduction of Talbot distance for N slits.« less

  19. Permutational symmetries for coincidence rates in multimode multiphotonic interferometry

    NASA Astrophysics Data System (ADS)

    Khalid, Abdullah; Spivak, Dylan; Sanders, Barry C.; de Guise, Hubert

    2018-06-01

    We obtain coincidence rates for passive optical interferometry by exploiting the permutational symmetries of partially distinguishable input photons, and our approach elucidates qualitative features of multiphoton coincidence landscapes. We treat the interferometer input as a product state of any number of photons in each input mode with photons distinguished by their arrival time. Detectors at the output of the interferometer count photons from each output mode over a long integration time. We generalize and prove the claim of Tillmann et al. [Phys. Rev. X 5, 041015 (2015), 10.1103/PhysRevX.5.041015] that coincidence rates can be elegantly expressed in terms of immanants. Immanants are functions of matrices that exhibit permutational symmetries and the immanants appearing in our coincidence-rate expressions share permutational symmetries with the input state. Our results are obtained by employing representation theory of the symmetric group to analyze systems of an arbitrary number of photons in arbitrarily sized interferometers.

  20. Design of multichannel laser interferometry for W7-X

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kornejew, P.; Hirsch, M.; Bindemann, T.

    2006-10-15

    An eight channel interferometer is developed for density feedback control and the continuous measurement of electron density profiles in the stellarator W7-X. An additional sightline is launched in the geometry of the Thomson scattering for cross calibration. Due to the W7-X coil geometry access is strongly restricted. This motivates the optimization of the sightline geometry and design studies for supplementary chords. In-vessel retroreflectors will be used and inserted in the first wall elements. To cope with associated mechanical vibrations and thermal drifts during the discharges with envisaged duration of 30 min either two-color or second harmonic interferometry techniques must bemore » applied. Optimum wavelengths are found to be about 10 and 5 {mu}m. A CO{sub 2}/CO interferometer (10 {mu}m/5 {mu}m) will be tested and compared with an existing CO{sub 2}/HeNe test interferometer. A special difficulty of remotely operated diagnostics is the need of long transmission lines with a path length of about 60 m required from the diagnostics location to the torus hall and back. Different arrangements will be compared.« less

  1. 19. DECK VIEW LOOKING FORWARD WITH MAST, RIGGING AND BOWSPRIT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. DECK VIEW LOOKING FORWARD WITH MAST, RIGGING AND BOWSPRIT DETAILS - HATCH COVER REMOVED TO SHOW CENTERBOARD TRUNK - KATHRYN-Two-sail Bateau "Skipjack", Dogwood Harbor, Chesapeake Bay, Tilghman, Talbot County, MD

  2. Nonlinear Talbot effect of rogue waves.

    PubMed

    Zhang, Yiqi; Belić, Milivoj R; Zheng, Huaibin; Chen, Haixia; Li, Changbiao; Song, Jianping; Zhang, Yanpeng

    2014-03-01

    Akhmediev and Kuznetsov-Ma breathers are rogue wave solutions of the nonlinear Schrödinger equation (NLSE). Talbot effect (TE) is an image recurrence phenomenon in the diffraction of light waves. We report the nonlinear TE of rogue waves in a cubic medium. It is different from the linear TE, in that the wave propagates in a NL medium and is an eigenmode of NLSE. Periodic rogue waves impinging on a NL medium exhibit recurrent behavior, but only at the TE length and at the half-TE length with a π-phase shift; the fractional TE is absent. The NL TE is the result of the NL interference of the lobes of rogue wave breathers. This interaction is related to the transverse period and intensity of breathers, in that the bigger the period and the higher the intensity, the shorter the TE length.

  3. Compendium of Instrumentation Whitepapers on Frontier Physics Needs for Snowmass 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipton, R.

    2013-01-01

    Contents of collection of whitepapers include: Operation of Collider Experiments at High Luminosity; Level 1 Track Triggers at HL-LHC; Tracking and Vertex Detectors for a Muon Collider; Triggers for hadron colliders at the energy frontier; ATLAS Upgrade Instrumentation; Instrumentation for the Energy Frontier; Particle Flow Calorimetry for CMS; Noble Liquid Calorimeters; Hadronic dual-readout calorimetry for high energy colliders; Another Detector for the International Linear Collider; e+e- Linear Colliders Detector Requirements and Limitations; Electromagnetic Calorimetry in Project X Experiments The Project X Physics Study; Intensity Frontier Instrumentation; Project X Physics Study Calorimetry Report; Project X Physics Study Tracking Report; The LHCbmore » Upgrade; Neutrino Detectors Working Group Summary; Advanced Water Cherenkov R&D for WATCHMAN; Liquid Argon Time Projection Chamber (LArTPC); Liquid Scintillator Instrumentation for Physics Frontiers; A readout architecture for 100,000 pixel Microwave Kinetic In- ductance Detector array; Instrumentation for New Measurements of the Cosmic Microwave Background polarization; Future Atmospheric and Water Cherenkov ?-ray Detectors; Dark Energy; Can Columnar Recombination Provide Directional Sensitivity in WIMP Search?; Instrumentation Needs for Detection of Ultra-high Energy Neu- trinos; Low Background Materials for Direct Detection of Dark Matter; Physics Motivation for WIMP Dark Matter Directional Detection; Solid Xenon R&D at Fermilab; Ultra High Energy Neutrinos; Instrumentation Frontier: Direct Detection of WIMPs; nEXO detector R&D; Large Arrays of Air Cherenkov Detectors; and Applications of Laser Interferometry in Fundamental Physics Experiments.« less

  4. Traceable X,Y self-calibration at single nm level of an optical microscope used for coherence scanning interferometry

    NASA Astrophysics Data System (ADS)

    Ekberg, Peter; Mattsson, Lars

    2018-03-01

    Coherence scanning interferometry used in optical profilers are typically good for Z-calibration at nm-levels, but the X,Y accuracy is often left without further notice than typical resolution limits of the optics, i.e. of the order of ~1 µm. For the calibration of metrology tools we rely on traceable artefacts, e.g. gauge blocks for traditional coordinate measurement machines, and lithographically mask made artefacts for microscope calibrations. In situations where the repeatability and accuracy of the measurement tool is much better than the uncertainty of the traceable artefact, we are bound to specify the uncertainty based on the calibration artefact rather than on the measurement tool. This is a big drawback as the specified uncertainty of a calibrated measurement may shrink the available manufacturing tolerance. To improve the uncertainty in X,Y we can use self-calibration. Then, we do not need to know anything more than that the artefact contains a pattern with some nominal grid. This also gives the opportunity to manufacture the artefact in-house, rather than buying a calibrated and expensive artefact. The self-calibration approach we present here is based on an iteration algorithm, rather than the traditional mathematical inversion, and it leads to much more relaxed constrains on the input measurements. In this paper we show how the X,Y errors, primarily optical distortions, within the field of view (FOV) of an optical coherence scanning interferometry microscope, can be reduced with a large factor. By self-calibration we achieve an X,Y consistency in the 175  ×  175 µm2 FOV of ~2.3 nm (1σ) using the 50×  objective. Besides the calibrated coordinate X,Y system of the microscope we also receive, as a bonus, the absolute positions of the pattern in the artefact with a combined uncertainty of 6 nm (1σ) by relying on a traceable 1D linear measurement of a twin artefact at NIST.

  5. Differences in coastal subsidence in southern Oregon (USA) during at least six prehistoric megathrust earthquakes

    USGS Publications Warehouse

    Milker, Yvonne; Nelson, Alan R.; Horton, Benjamin P.; Engelhart, Simon E.; Bradley, Lee-Ann; Witter, Robert C.

    2016-01-01

    Stratigraphic, sedimentologic (including CT 3D X-ray tomography scans), foraminiferal, and radiocarbon analyses show that at least six of seven abrupt peat-to-mud contacts in cores from a tidal marsh at Talbot Creek (South Slough, Coos Bay), record sudden subsidence (relative sea-level rise) during great megathrust earthquakes at the Cascadia subduction zone. Data for one contact are insufficient to infer whether or not it records a great earthquake—it may also have formed through local, non-seismic, hydrographic processes. To estimate the amount of subsidence marked by each contact, we expanded a previous regional modern foraminiferal dataset to 174 samples from six Oregon estuaries. Using a transfer function derived from the new dataset, estimates of coseismic subsidence across the six earthquake contacts vary from 0.31 m to 0.75 m. Comparison of subsidence estimates for three contacts in adjacent cores shows within-site differences of ≤0.10 m, about half the ±0.22 m error, although some estimates may be minimums due to uncertain ecological preferences for Balticammina pseudomacrescens in brackish environments and almost monospecific assemblages of Miliammina fusca on tidal flats. We also account for the influence of taphonomic processes, such as infiltration of mud with mixed foraminiferal assemblages into peat, on subsidence estimates. Comparisons of our subsidence estimates with values for correlative contacts at other Oregon sites suggest that some of our estimates are minimums and that Cascadia's megathrust earthquake ruptures have been heterogeneous over the past 3500 years.

  6. Refractive index degeneration in older lenses: A potential functional correlate to structural changes that underlie cataract formation.

    PubMed

    Bahrami, Mehdi; Hoshino, Masato; Pierscionek, Barbara; Yagi, Naoto; Regini, Justyn; Uesugi, Kentaro

    2015-11-01

    A major structure/function relationship in the eye lens is that between the constituent proteins, the crystallins and the optical property of refractive index. Structural breakdown that leads to cataract has been investigated in a number of studies; the concomitant changes in the optics, namely increases in light attenuation have also been well documented. Specific changes in the refractive index gradient that cause such attenuation, however, are not well studied because previous methods of measuring refractive index require transparent samples. The X-ray Talbot interferometric method using synchrotron radiation allows for measurement of fine changes in refractive index through lenses with opacities. The findings of this study on older human lenses show disruptions to the refractive index gradient and in the refractive index contours. These disruptions are linked to location in the lens and occur in polar regions, along or close to the equatorial plane or in lamellar-like formations. The disruptions that are seen in the polar regions manifest branching formations that alter with progression through the lens with some similarity to lens sutures. This study shows how the refractive index gradient, which is needed to maintain image quality of the eye, may be disturbed and that this can occur in a number of distinct ways. These findings offer insight into functional changes to a major optical parameter in older lenses. Further studies are needed to elicit how these may be related to structural degenerations reported in the literature. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Measurement of Poisson's ratio of nonmetallic materials by laser holographic interferometry

    NASA Astrophysics Data System (ADS)

    Zhu, Jian T.

    1991-12-01

    By means of the off-axis collimated plane wave coherent light arrangement and a loading device by pure bending, Poisson's ratio values of CFRP (carbon fiber-reinforced plactics plates, lay-up 0 degree(s), 90 degree(s)), GFRP (glass fiber-reinforced plactics plates, radial direction) and PMMA (polymethyl methacrylate, x, y direction) have been measured. In virtue of this study, the ministry standard for the Ministry of Aeronautical Industry (Testing method for the measurement of Poisson's ratio of non-metallic by laser holographic interferometry) has been published. The measurement process is fast and simple. The measuring results are reliable and accurate.

  8. Hierarchical imaging of the human knee

    NASA Astrophysics Data System (ADS)

    Schulz, Georg; Götz, Christian; Deyhle, Hans; Müller-Gerbl, Magdalena; Zanette, Irene; Zdora, Marie-Christine; Khimchenko, Anna; Thalmann, Peter; Rack, Alexander; Müller, Bert

    2016-10-01

    Among the clinically relevant imaging techniques, computed tomography (CT) reaches the best spatial resolution. Sub-millimeter voxel sizes are regularly obtained. For investigations on true micrometer level lab-based μCT has become gold standard. The aim of the present study is the hierarchical investigation of a human knee post mortem using hard X-ray μCT. After the visualization of the entire knee using a clinical CT with a spatial resolution on the sub-millimeter range, a hierarchical imaging study was performed using a laboratory μCT system nanotom m. Due to the size of the whole knee the pixel length could not be reduced below 65 μm. These first two data sets were directly compared after a rigid registration using a cross-correlation algorithm. The μCT data set allowed an investigation of the trabecular structures of the bones. The further reduction of the pixel length down to 25 μm could be achieved by removing the skin and soft tissues and measuring the tibia and the femur separately. True micrometer resolution could be achieved after extracting cylinders of several millimeters diameters from the two bones. The high resolution scans revealed the mineralized cartilage zone including the tide mark line as well as individual calcified chondrocytes. The visualization of soft tissues including cartilage, was arranged by X-ray grating interferometry (XGI) at ESRF and Diamond Light Source. Whereas the high-energy measurements at ESRF allowed the simultaneous visualization of soft and hard tissues, the low-energy results from Diamond Light Source made individual chondrocytes within the cartilage visual.

  9. Comparison of different types of phacoemulsification tips. I. Quantitative analysis of elemental composition and tip surface microroughness.

    PubMed

    Tsaousis, Konstantinos T; Werner, Liliana; Perez, Jesus Paulo; Li, He J; Reiter, Nicholas; Guan, Jia J; Mamalis, Nick

    2016-09-01

    To evaluate the elemental composition of phacoemulsification tips and their surface roughness in the microscale. John A. Moran Eye Center and Utah Nanofab, College of Engineering, University of Utah, Salt Lake City, Utah, USA. Experimental study. Seven types of phacoemulsification tips were studied. The phaco tips were examined through energy-dispersive x-ray spectroscopy (EDS) and x-ray photoelectron spectroscopy (XPS) for elemental composition. In addition, the roughness of the opening in all tips was assessed through 3-dimensional white-light interferometry. Elemental analysis showed considerable differences in the surface layers between manufacturers. Alcon tips had a thinner oxidized titanium (Ti) layer in their surface. Through XPS, vanadium was not detected in the superficial layers of any tip, but only in deeper levels. The microroughness surface analysis showed comparable results regarding their root-mean-square (RMS) metric. Maximum peak valley distance values varied and appeared to be dependent on the quality of material process rather than the material itself. Phacoemulsification tips are made of Ti alloys and showed differences between models, especially regarding their composition in the superficial layers. Their opening end roughness showed an overall appropriate RMS value of less than 1.0 μm in all cases. The existence of small defected areas highlights the importance of adequate quality control of these critical surgical instruments. None of the authors has a financial or proprietary interest in any material or method mentioned. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  10. Silver deposition on titanium surface by electrochemical anodizing process reduces bacterial adhesion of Streptococcus sanguinis and Lactobacillus salivarius.

    PubMed

    Godoy-Gallardo, Maria; Rodríguez-Hernández, Ana G; Delgado, Luis M; Manero, José M; Javier Gil, F; Rodríguez, Daniel

    2015-10-01

    The aim of this study was to determine the antibacterial properties of silver-doped titanium surfaces prepared with a novel electrochemical anodizing process. Titanium samples were anodized with a pulsed process in a solution of silver nitrate and sodium thiosulphate at room temperature with stirring. Samples were processed with different electrolyte concentrations and treatment cycles to improve silver deposition. Physicochemical properties were determined by X-ray photoelectron spectroscopy, contact angle measurements, white-light interferometry, and scanning electron microscopy. Cellular cytotoxicity in human fibroblasts was studied with lactate dehydrogenase assays. The in vitro effect of treated surfaces on two oral bacteria strains (Streptococcus sanguinis and Lactobacillus salivarius) was studied with viable bacterial adhesion measurements and growth curve assays. Nonparametric statistical Kruskal-Wallis and Mann-Whitney U-tests were used for multiple and paired comparisons, respectively. Post hoc Spearman's correlation tests were calculated to check the dependence between bacteria adhesion and surface properties. X-ray photoelectron spectroscopy results confirmed the presence of silver on treated samples and showed that treatments with higher silver nitrate concentration and more cycles increased the silver deposition on titanium surface. No negative effects in fibroblast cell viability were detected and a significant reduction on bacterial adhesion in vitro was achieved in silver-treated samples compared with control titanium. Silver deposition on titanium with a novel electrochemical anodizing process produced surfaces with significant antibacterial properties in vitro without negative effects on cell viability. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Application of Radar Data to Remote Sensing and Geographical Information Systems

    NASA Technical Reports Server (NTRS)

    vanZyl, Jakob J.

    2000-01-01

    The field of synthetic aperture radar changed dramatically over the past decade with the operational introduction of advance radar techniques such as polarimetry and interferometry. Radar polarimetry became an operational research tool with the introduction of the NASA/JPL AIRSAR system in the early 1980's, and reached a climax with the two SIR-C/X-SAR flights on board the space shuttle Endeavour in April and October 1994. Radar interferometry received a tremendous boost when the airborne TOPSAR system was introduced in 1991 by NASA/JPL, and further when data from the European Space Agency ERS-1 radar satellite became routinely available in 1991. Several airborne interferometric SAR systems are either currently operational, or are about to be introduced. Radar interferometry is a technique that allows one to map the topography of an area automatically under all weather conditions, day or night. The real power of radar interferometry is that the images and digital elevation models are automatically geometrically resampled, and could be imported into GIS systems directly after suitable reformatting. When combined with polarimetry, a technique that uses polarization diversity to gather more information about the geophysical properties of the terrain, a very rich multi-layer data set is available to the remote sensing scientist. This talk will discuss the principles of radar interferometry and polarimetry with specific application to the automatic categorization of land cover. Examples will include images acquired with the NASA/JPL AIRSAR/TOPSAR system in Australia and elsewhere.

  12. Initial operation of the Lockheed Martin T4B experiment

    NASA Astrophysics Data System (ADS)

    Garrett, M. L.; Blinzer, A.; Ebersohn, F.; Gucker, S.; Heinrich, J.; Lohff, C.; McGuire, T.; Montecalvo, N.; Raymond, A.; Rhoads, J.; Ross, P.; Sommers, B.; Strandberg, E.; Sullivan, R.; Walker, J.

    2017-10-01

    The T4B experiment is a linear, encapsulated ring cusp confinement device, designed to develop a physics and technology basis for a follow-on high beta (β 1) machine. The experiment consists of 13 magnetic field coils (11 external, 2 internal), to produce a series of on-axis field nulls surrounded by modest magnetic fields of up to 0.3 T. The primary plasma source used on T4B is a lanthanum hexaboride (LaB6) cathode, capable of coupling over 100 kW into the plasma. Initial testing focused on commissioning of components and integration of diagnostics. Diagnostics include both long and short wavelength interferometry, bolometry, visible and X-ray spectroscopy, Langmuir and B-dot probes, Thomson scattering, flux loops, and fast camera imagery. Low energy discharges were used to begin validation of physics models and simulation efforts. Following the initial machine check-out, neutral beam injection (NBI) was integrated onto the device. Detailed results will be presented. 2017 Lockheed Martin Corporation. All Rights Reserved.

  13. Interferometry from Space

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth

    2007-01-01

    Space-based interferometric observatories will be challenging projects, equal at least to that of building the Great Observatories (the Hubble Space Telescope (HST), Spitzer Space Telescope (SST), Chandra X-ray Observatory, and the Gamma Ray Observatory), if not the Pyramids of Eygpt - but they represent the next logical step in examining our Universe at substantially higher angular resolution. Increasing our resolving power by factors of 100 or more (as is needed to make meaningful improvements in this observational arena) over existing facilities such as HST and SST requires mirror diameters (100's to 1000's of meters) much larger than can be supported by single or segmented mirrors - and thus the design and construction of sparse aperture, inteferometric arrays such as those described herein will be required. But just imagine the rewards of being able to see, for the first time, the surfaces of other stars, the location and type of extrasolar planets and even pictures of those same planets, the inner workings of Active Galactic Nuclei, the close-in details of supernovae explosions, black hole event horizons, and the infrared universe at the same resolution of the UV-optical Hubble Deep Fields. As a slight variation on the "Star Trek: Enterprise" theme song might say, it'll be a "long road, getting from here to there", but it will one well-worth taking.

  14. Geodesy by radio interferometry - Effects of atmospheric modeling errors on estimates of baseline length

    NASA Technical Reports Server (NTRS)

    Davis, J. L.; Herring, T. A.; Shapiro, I. I.; Rogers, A. E. E.; Elgered, G.

    1985-01-01

    Analysis of very long baseline interferometry data indicates that systematic errors in prior estimates of baseline length, of order 5 cm for approximately 8000-km baselines, were due primarily to mismodeling of the electrical path length of the troposphere and mesosphere ('atmospheric delay'). Here observational evidence for the existence of such errors in the previously used models for the atmospheric delay is discussed, and a new 'mapping' function for the elevation angle dependence of this delay is developed. The delay predicted by this new mapping function differs from ray trace results by less than approximately 5 mm, at all elevations down to 5 deg elevation, and introduces errors into the estimates of baseline length of less than about 1 cm, for the multistation intercontinental experiment analyzed here.

  15. The LISA benchtop simulator at the University of Florida

    NASA Astrophysics Data System (ADS)

    Thorpe, James; Cruz, Rachel; Guntaka, Sridhar; Mueller, Guido

    2006-11-01

    The Laser Interferometer Space Antenna (LISA) is a joint NASA-ESA mission to detect gravitational radiation in space. The detector is designed to see gravitational waves from various exciting sources in the frequency range of 3x10-5 to 1 Hz. LISA consists of three spacecraft forming a triangle with 5x10^9 m long arms. The spacecraft house proof masses and act to shield the proof masses from external forces so that they act as freely-falling test particles of the gravitational radiation. Laser interferometry is used to monitor the distance between proof masses on different spacecraft and will be designed to see variations on the order of 10 pm. Pre-stabilization, arm-locking, and time delay interferometry (TDI) will be employed to meet this sensitivity. At the University of Florida, we are developing an experimental LISA simulator to test aspects of LISA interferometry. The foundation of the simulator is a pair of cavity-stabilized lasers that provide realistic, LISA-like phase noise for our measurements. The light travel time between spacecraft is recreated in the lab by use of an electronic phase delay technique. Initial tests of the simulator have focused on phasemeter implementation, first-generation TDI, and arm-locking. We will present results from these experiments as well as discuss current and future upgrades in the effort to make the LISA simulator as realistic as possible.

  16. X-radiography, XRD and Ultrasonic Data Transfer Function Technique - Simultaneous Measurements Under Simulated Mantle Conditions in a Multi-Anvil Device

    NASA Astrophysics Data System (ADS)

    Mueller, H. J.; Schilling, F. R.; Lathe, C.

    2004-05-01

    The interpretation of seismic data from the Earth's deep interior requires measurements of the physical properties of Earth materials under experimental simulated mantle conditions. Elastic wave velocity measurement is an important tool for the determination of the elastic properties. Ultrasonic interferometry allows the highly precise travel time measurement at a sample enclosed in a high-pressure multi-anvil device. But the calculation of wave velocities requires the exact sample length under in situ conditions. There are two options - scanning the interfaces of the sample by XRD (Mueller et al., 2003) and X-radiography (Li et al., 2001). The multi-anvil apparatus MAX80 is equipped for both methods. Only the X-radiography is fast enough for transient measurements. Contrary to XRD measurements, imaging the sample by X-rays requires a beam diameter larger than the sample length. Therefore the fixed primary slits of Max80 were exchanged by 4-blade high precision slits of Advanced Design Consulting, Inc. A Ce-YAG-crystal converts the X-ray image to an optical one, redirected by a mirror and captured by a CCD-camera. To derive the sample length, the different brightness of sample, buffer rod and reflector at the electronic image is evaluated. Classical ultrasonic interferometry is very time consuming, because the ultrasonic waves of the frequency range under study are generated and detected one after another with a given step rate. A 60 MHz frequency sweep with 100 kHz steps lasts for more than 30 minutes. This is a serious limitation for all transient measurements, but also limits the data collection at elevated temperatures to prevent the pressure transmitting boron epoxy cubes and the anvils from overheating. The ultrasonic transfer function technique (UTF), first described by Li et al. (2002), generates all the frequencies simultaneously. Related to the results and experiences of Li the UTF-technique was developed independently at GFZ. This version allows to consider the characteristics of the specific transducer-glue-anvil combination (Mueller et al., 2003). To collect the data for the following calculation of Vp and Vs requires just few seconds. The excitation function, applied to the transducer by an arbitrary waveform generator, is the result of the summation of all sinusoidal waves inside the frequency range. The response of the system - transducer - anvil - buffer rod - sample - reflector - for each of the frequencies can be reproduced by convoluting the resulting transfer function with these monochromatic waves step by step. Some recent results on the non-quenchable high-P - low-P clinoenstatite transition and to the quartz-coesite transition will be given to discuss the different interferometric techniques, including the XRD-data and X-radiography results, necessary to detect the phase transitions under in situ conditions and to measure the sample deformation. Li, B.; Vaughan, M.T.; Kung, J.; Weidner, D.J., NSLS Activity Report 2001, 2-103-106, (2001). Li, B.; Chen, K.; Kung, J.; Liebermann, R.C.; Weidner, D.J., J. Phys.: Condens. Matter 14, 11337-11342, (2002). Mueller, H.J.; Schilling, F.R.; Lauterjung, J.; Lathe, C., Eur. J. Mineral., 15, 865-873, (2003). Mueller, H.J.; Wunder, B.; Lathe, C.; Schilling, F.R.; Eur. J. Mineral., submitted, (2004).

  17. A new optical post-equalization based on self-imaging

    NASA Astrophysics Data System (ADS)

    Guizani, S.; Cheriti, A.; Razzak, M.; Boulslimani, Y.; Hamam, H.

    2005-09-01

    Driven by the world's growing need for communication bandwidth, progress is constantly being reported in building newer fibers that are capable of handling the rapid increase in traffic. However, building an optical fiber link is a major investment, one that is very expensive to replace. A major impairment that restricts the achievement of higher bit rates with standard single mode fiber is chromatic dispersion. This is particularly problematic for systems operating in the 1550 nm band, where the chromatic dispersion limit decreases rapidly in inverse proportion to the square of the bit rate. For the first time, to the best of our knowledge, this document illustrates a new optical technique to post compensate optically the chromatic dispersion in fiber using temporal Talbot effect in ranges exceeding the 40G bit/s. We propose a new optical post equalization solutions based on the self imaging of Talbot effect.

  18. Adaptive optics based non-null interferometry for optical free form surfaces test

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Zhou, Sheng; Li, Jingsong; Yu, Benli

    2018-03-01

    An adaptive optics based non-null interferometry (ANI) is proposed for optical free form surfaces testing, in which an open-loop deformable mirror (DM) is employed as a reflective compensator, to compensate various low-order aberrations flexibly. The residual wavefront aberration is treated by the multi-configuration ray tracing (MCRT) algorithm. The MCRT algorithm based on the simultaneous ray tracing for multiple system models, in which each model has different DM surface deformation. With the MCRT algorithm, the final figure error can be extracted together with the surface misalignment aberration correction after the initial system calibration. The flexible test for free form surface is achieved with high accuracy, without auxiliary device for DM deformation monitoring. Experiments proving the feasibility, repeatability and high accuracy of the ANI were carried out to test a bi-conic surface and a paraboloidal surface, with a high stable ALPAOTM DM88. The accuracy of the final test result of the paraboloidal surface was better than 1/20 Μ PV value. It is a successful attempt in research of flexible optical free form surface metrology and would have enormous potential in future application with the development of the DM technology.

  19. Photocopy of postcard (original in Picture Group 800, Connecticut State ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of postcard (original in Picture Group 800, Connecticut State Library, Hartford, Connecticut), C.G. Talbot, publisher, Putnam, Conn., No. 1478. Postmarked 1905. Grammar School, Putnam, Conn. - Israel Putnam School, School & Oak Streets, Putnam, Windham County, CT

  20. 1. Photocopy of photograph (original print located in Pope & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Photocopy of photograph (original print located in Pope & Talbot Archives. Port Gamble, WA.) Unknown Photographer, Unknown Date. View of Walker-Ames House, house no. 1, facing southwest. - Walker-Ames House, Rainier Avenue, Port Gamble, Kitsap County, WA

  1. Investigation of the Capability of Compact Polarimetric SAR Interferometry to Estimate Forest Height

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Xie, Lei; Wang, Chao; Chen, Jiehong

    2013-08-01

    The main objective of this paper is to investigate the capability of compact Polarimetric SAR Interferometry (C-PolInSAR) on forest height estimation. For this, the pseudo fully polarimetric interferomteric (F-PolInSAR) covariance matrix is firstly reconstructed, then the three- stage inversion algorithm, hybrid algorithm, Music and Capon algorithm are applied to both C-PolInSAR covariance matrix and pseudo F-PolInSAR covariance matrix. The availability of forest height estimation is demonstrated using L-band data generated by simulator PolSARProSim and X-band airborne data acquired by East China Research Institute of Electronic Engineering, China Electronics Technology Group Corporation.

  2. Feasibility study of three-dimensional holographic interferometry for aerodynamics

    NASA Technical Reports Server (NTRS)

    Craig, J. E.

    1983-01-01

    Laser holographic interferometry was tried as a nonintrusive diagnostic tool for studying unsteady two dimensional flows. A NACA 0012 airfoil was tested, while undergoing dynamic stall, over a range of Mach numbers of 0.3 to 0.5, Reynolds number of 0.5 x 10 to the 6th power to 2 x 10 to the 6th power, and at reduced frequencies of 0.015 to 0.15. It was found that both quantitative and qualitative data could be obtained by the technique. Surface pressures on the airfoil can be measured to within 1% of those measured with orifices and pressure transducers when the flow is attached. Velocity profiles were measured near the wake region, and they compared very well with laser velocimeter data for attached flows. For separated flows with large scale vortices, densities can be measured, but pressures and velocities cannot be deduced with the assumption of constant pressure gradient in the normal direction. The sensitivity of the interferograms was good at a Mach number of 0.4 and a Reynolds number of 4 x 10 to the 6th power/ft; the sensitivity worsened at smaller Mach numbers and Reynolds numbers, and improved at larger ones.

  3. Development of a Nomarski-type multi-frame interferometer as a time and space resolving diagnostics for the free electron density of laser-generated plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boerner, M.; Frank, A.; Pelka, A.

    2012-04-15

    This article reports on the development and set-up of a Nomarski-type multi-frame interferometer as a time and space resolving diagnostics of the free electron density in laser-generated plasma. The interferometer allows the recording of a series of 4 images within 6 ns of a single laser-plasma interaction. For the setup presented here, the minimal accessible free electron density is 5 x 10{sup 18} cm{sup -3}, the maximal one is 2 x 10{sup 20} cm{sup -3}. Furthermore, it provides a resolution of the electron density in space of 50 {mu}m and in time of 0.5 ns for one image with amore » customizable magnification in space for each of the 4 images. The electron density was evaluated from the interferograms using an Abel inversion algorithm. The functionality of the system was proven during first experiments and the experimental results are presented and discussed. A ray tracing procedure was realized to verify the interferometry pictures taken. In particular, the experimental results are compared to simulations and show excellent agreement, providing a conclusive picture of the evolution of the electron density distribution.« less

  4. Overview and recent results of the Magnetized Shock Experiment (MSX)

    NASA Astrophysics Data System (ADS)

    Weber, T. E.; Smith, R. J.; Hsu, S. C.; Omelchenko, Y.

    2015-11-01

    Recent machine and diagnostics upgrades to the Magnetized Shock Experiment (MSX) at LANL have enabled unprecedented access to the physical processes arising from stagnating magnetized (β ~ 1), collisionless, highly supersonic (M ,MA ~ 10) flows, similar in dimensionless parameters to those found in both space and astrophysical shocks. Hot (100s of eV during translation), dense (1022 - 1023 m-3) Field Reversed Configuration (FRC) plasmoids are accelerated to high velocities (100s of km/s) and subsequently impact against a static target such as a strong parallel or anti-parallel (reconnection-wise) magnetic mirror, a solid obstacle, or neutral gas cloud to recreate the physics of interest with characteristic length and time scales that are both large enough to observe yet small enough to fit within the experiment. Long-lived (>50 μs) stagnated plasmas with density enhancement much greater than predicted by fluid theory (>4x) are observed, accompanied by discontinuous plasma structures indicating shocks and jetting (visible emission and interferometry) and copious >1 keV x-ray emission. An overview of the experimental program will be presented, including machine design and capabilities, diagnostics, and an examination of the physical processes that occur during stagnation against a variety of targets. Supported by the DOE Office of Fusion Energy Sciences under contract DE-AC52-06NA25369.

  5. [Characteristics of specifications of transportable inverter-type X-ray equipment].

    PubMed

    Yamamoto, Keiichi; Miyazaki, Shigeru; Asano, Hiroshi; Shinohara, Fuminori; Ishikawa, Mitsuo; Ide, Toshinori; Abe, Shinji; Negishi, Toru; Miyake, Hiroyuki; Imai, Yoshio; Okuaki, Tomoyuki

    2003-07-01

    Our X-ray systems study group measured and examined the characteristics of four transportable inverter-type X-ray equipments. X-ray tube voltage and X-ray tube current were measured with the X-ray tube voltage and the X-ray tube current measurement terminals provided with the equipment. X-ray tube voltage, irradiation time, and dose were measured with a non-invasive X-ray tube voltage-measuring device, and X-ray output was measured by fluorescence meter. The items investigated were the reproducibility and linearity of X-ray output, error of pre-set X-ray tube voltage and X-ray tube current, and X-ray tube voltage ripple percentage. The waveforms of X-ray tube voltage, the X-ray tube current, and fluorescence intensity draw were analyzed using the oscilloscope gram and a personal computer. All of the equipment had a preset error of X-ray tube voltage and X-ray tube current that met JIS standards. The X-ray tube voltage ripple percentage of each equipment conformed to the tendency to decrease when X-ray tube voltage increased. Although the X-ray output reproducibility of system A exceeded the JIS standard, the other systems were within the JIS standard. Equipment A required 40 ms for X-ray tube current to reach the target value, and there was some X-ray output loss because of a trough in X-ray tube current. Owing to the influence of the ripple in X-ray tube current, the strength of the fluorescence waveform rippled in equipments B and C. Waveform analysis could not be done by aliasing of the recording device in equipment D. The maximum X-ray tube current of transportable inverter-type X-ray equipment is as low as 10-20 mA, and the irradiation time of chest X-ray photography exceeds 0.1 sec. However, improvement of the radiophotographic technique is required for patients who cannot move their bodies or halt respiration. It is necessary to make the irradiation time of the equipments shorter for remote medical treatment.

  6. Visualization of small lesions in rat cartilage by means of laboratory-based x-ray phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Marenzana, Massimo; Hagen, Charlotte K.; Das Neves Borges, Patricia; Endrizzi, Marco; Szafraniec, Magdalena B.; Ignatyev, Konstantin; Olivo, Alessandro

    2012-12-01

    Being able to quantitatively assess articular cartilage in three-dimensions (3D) in small rodent animal models, with a simple laboratory set-up, would prove extremely important for the development of pre-clinical research focusing on cartilage pathologies such as osteoarthritis (OA). These models are becoming essential tools for the development of new drugs for OA, a disease affecting up to 1/3 of the population older than 50 years for which there is no cure except prosthetic surgery. However, due to limitations in imaging technology, high-throughput 3D structural imaging has not been achievable in small rodent models, thereby limiting their translational potential and their efficiency as research tools. We show that a simple laboratory system based on coded-aperture x-ray phase contrast imaging (CAXPCi) can correctly visualize the cartilage layer in slices of an excised rat tibia imaged both in air and in saline solution. Moreover, we show that small, surgically induced lesions are also correctly detected by the CAXPCi system, and we support this finding with histopathology examination. Following these successful proof-of-concept results in rat cartilage, we expect that an upgrade of the system to higher resolutions (currently underway) will enable extending the method to the imaging of mouse cartilage as well. From a technological standpoint, by showing the capability of the system to detect cartilage also in water, we demonstrate phase sensitivity comparable to other lab-based phase methods (e.g. grating interferometry). In conclusion, CAXPCi holds a strong potential for being adopted as a routine laboratory tool for non-destructive, high throughput assessment of 3D structural changes in murine articular cartilage, with a possible impact in the field similar to the revolution that conventional microCT brought into bone research.

  7. Jets, arcs, and shocks: NGC 5195 at radio wavelengths

    NASA Astrophysics Data System (ADS)

    Rampadarath, H.; Soria, R.; Urquhart, R.; Argo, M. K.; Brightman, M.; Lacey, C. K.; Schlegel, E. M.; Beswick, R. J.; Baldi, R. D.; Muxlow, T. W. B.; McHardy, I. M.; Williams, D. R. A.; Dumas, G.

    2018-05-01

    We studied the nearby, interacting galaxy NGC 5195 (M 51b) in the radio, optical and X-ray bands. We mapped the extended, low-surface-brightness features of its radio-continuum emission; determined the energy content of its complex structure of shock-ionized gas; constrained the current activity level of its supermassive nuclear black hole. In particular, we combined data from the European Very Long Baseline Interferometry Network (˜1-pc scale), from our new e-MERLIN observations (˜10-pc scale), and from the Very Large Array (˜100-1000-pc scale), to obtain a global picture of energy injection in this galaxy. We put an upper limit to the luminosity of the (undetected) flat-spectrum radio core. We find steep-spectrum, extended emission within 10 pc of the nuclear position, consistent with optically thin synchrotron emission from nuclear star formation or from an outflow powered by an active galactic nucleus (AGN). A linear spur of radio emission juts out of the nuclear source towards the kpc-scale arcs (detected in radio, Hα and X-ray bands). From the size, shock velocity, and Balmer line luminosity of the kpc-scale bubble, we estimate that it was inflated by a long-term-average mechanical power ˜3-6 × 1041 erg s-1 over the last 3-6 Myr. This is an order of magnitude more power than can be provided by the current level of star formation, and by the current accretion power of the supermassive black hole. We argue that a jet-inflated bubble scenario associated with previous episodes of AGN activity is the most likely explanation for the kpc-scale structures.

  8. Elasticity of stishovite at high pressure

    NASA Astrophysics Data System (ADS)

    Li, Baosheng; Rigden, Sally M.; Liebermann, Robert C.

    1996-08-01

    The elastic-wave velocities of stishovite, the rutile-structured polymorph of SiO 2, were measured to 3 GPa at room temperature in a piston cylinder apparatus using ultrasonic interferometry on polycrystalline samples. These polycrystalline samples (2-3 mm in length and diameter) were hot-pressed at 14 GPa and 1050°C in a 2000 ton uniaxial split-sphere apparatus (USSA-2000) using fused silica rods as starting material. They were characterized as low porosity (less than 1%), single phase, fine grained, free of cracks and preferred orientation, and acoustically isotropic by using density measurement, X-ray diffraction, scanning electron microscopy, and bench-top velocity measurements. On the basis of subsequent in situ X-ray diffraction study at high P and T on peak broadening on similar specimens, it is evident that the single crystal grains within these polycrystalline aggregates are well equilibrated and that these specimens are free of residual strain. P- and S-wave velocities measured at 1 atm are within 1.5% of the Hashin-Shtrikman bounds calculated from single-crystal elastic moduli. Measured pressure derivatives of the bulk and shear moduli, K' 0 = 5.3 ± 0.1 and G' 0 = 1.8 ± 0.1, are not unusual compared with values measured for other transition zone phases such as silicate spinel and majorite garnet. Isothermal compression curves calculated with the measured values of K0 and K' 0 agree well with experimental P-V data to 16 GPa. The experimental value of dG /dP is in excellent agreement with predictions based on elasticity systematics. Theoretical models are not yet able to replicate the measured values of K' 0 and G' 0.

  9. X-ray/EUV optics for astronomy, microscopy, polarimetry, and projection lithography; Proceedings of the Meeting, San Diego, CA, July 9-13, 1990

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Editor); Walker, Arthur B. C., Jr. (Editor)

    1991-01-01

    Topics discussed in this issue include the fabrication of multilayer X-ray/EUV coatings; the design, characterization, and test of multilayer X-ray/EUV coatings; multilayer X-ray/EUV monochromators and imaging microscopes; X-ray/EUV telescopes; the test and calibration performance of X-ray/EUV instruments; XUV/soft X-ray projection lithography; X-ray/EUV space observatories and missions; X-ray/EUV telescopes for solar research; X-ray/EUV polarimetry; X-ray/EUV spectrographs; and X-ray/EUV filters and gratings. Papers are presented on the deposition-controlled uniformity of multilayer mirrors, interfaces in Mo/Si multilayers, the design and analysis of an aspherical multilayer imaging X-ray microscope, recent developments in the production of thin X-ray reflecting foils, and the ultraprecise scanning technology. Consideration is also given to an active sun telescope array, the fabrication and performance at 1.33 nm of a 0.24-micron-period multilayer grating, a cylindrical proportional counter for X-ray polarimetry, and the design and analysis of the reflection grating arrays for the X-Ray Multi-Mirror Mission.

  10. Dual-Frequency VLBI Study of Centaurus A on Sub-Parsec Scales: The Highest-Resolution View of an Extragalactic Jet

    NASA Technical Reports Server (NTRS)

    Mueller, C.; Kadler, M.; Ojha, R.; Wilms, J.; Boeck, M.; Edwards, P.; Fromm, C. M.; Hase, H.; Horiuchi, S.; Katz, U.; hide

    2011-01-01

    Centaurus A is the closest active galactic nucleus. High resolution imaging using Very Long Baseline Interferometry (VLBI) enables us to study the spectral and kinematic behavior of the radio jet-<:ounterjet system on sub-parsec scales, providing essential information for jet emission and formation models. Aims. Our aim is to study the structure and spectral shape of the emission from the central-parsec region of Cen A. Methods. As a target of the Southern Hemisphere VLBI monitoring program TANAMI (Tracking Active Galactic Nuclei with Millliarcsecond Interferometry), VLBI observations of Cen A are made regularly at 8.4 and 22.3 GHz with the Australian Long Baseline Array (LBA) and associated telescopes in Antarctica, Chile, and South Africa. Results. The first dual-frequency images of this source are presented along with the resulting spectral index map. An angular resolution of 0.4 mas x 0.7 mas is achieved at 8.4 GHz, corresponding to a linear scale of less than 0.013 pc. Hence, we obtain the highest resolution VLBI image of Cen A, comparable to previous space-VLBI observations. By combining with the 22.3 GHz image, we present the corresponding dual-frequency spectral index distribution along the sub-parsec scale jet revealing the putative emission regions for recently detected y-rays from the core region by Fermi/LAT. Conclusions. We resolve the innermost structure of the milliarcsecond scale jet and counter jet system of Cen A into discrete components. The simultaneous observations at two frequencies provide the highest resolved spectral index map of an AGN jet allowing us to identify up to four possible sites as the origin of the high energy emission. Key words. galaxies: active galaxies: individual (Centaurus A, NGC 5128) - galaxies: jets - techniques: high angular resolution

  11. 1. Photocopy of photograph (original print #17 located in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Photocopy of photograph (original print #17 - located in Pope & Talbot Archives. Port Gamble, WA). Unknown Photographer, September 1906. View of St. Paul's Episcopal Church, facing southwest from Rainier Avenue. - St. Paul's Episcopal Church, Rainier Avenue, Port Gamble, Kitsap County, WA

  12. 2. Historic American Buildings Survey E.H. Pickering, Photographer December 1936 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Historic American Buildings Survey E.H. Pickering, Photographer December 1936 OLDEST FRAME HOUSE OF WORSHIP IN MARYLAND. LORD AND LADY BALTIMORE ATTENDED SERVICE HERE IN 1700 WHEN WM. PENN PREACHED. - Quaker Meetinghouse, Washington Street, Easton, Talbot County, MD

  13. Instrument and method for X-ray diffraction, fluorescence, and crystal texture analysis without sample preparation

    NASA Technical Reports Server (NTRS)

    Gendreau, Keith (Inventor); Martins, Jose Vanderlei (Inventor); Arzoumanian, Zaven (Inventor)

    2010-01-01

    An X-ray diffraction and X-ray fluorescence instrument for analyzing samples having no sample preparation includes a X-ray source configured to output a collimated X-ray beam comprising a continuum spectrum of X-rays to a predetermined coordinate and a photon-counting X-ray imaging spectrometer disposed to receive X-rays output from an unprepared sample disposed at the predetermined coordinate upon exposure of the unprepared sample to the collimated X-ray beam. The X-ray source and the photon-counting X-ray imaging spectrometer are arranged in a reflection geometry relative to the predetermined coordinate.

  14. Three-dimensional effects in nonlinear fracture explored with interferometry

    NASA Astrophysics Data System (ADS)

    Pfaff, Richard D.

    The prospects for understanding fracture mechanics in terms of a general material constitutive description are explored. The effort consists of three distinct components.First, optical interferometry, in its various forms (Twyman-Green, diffraction moire, etc.), can potentially be used under a wide range of conditions to very accurately measure the displacement and strain fields associated with the deformation surrounding a cracktip. To broaden the range of fracture problems to which interferometry may be applied, certain of the necessary experimental improvements have been developed:1. High speed camera designs capable of extremely high (> 10(9) frames/second) framing rates with large array sizes, (> 4000 x 4000 pixels per frame) so that the application of optical techniques to solid mechanics may be considered without limitation on the rate of deformation.2. An accurate and adaptable device for dynamic loading of fracture specimens to high load levels utilizing electromagnetic (Lorentz force) loading with ultrahigh (> 2,000,000 Amp/cm(2)) current flux densities.3. Implementation of high sensitivity (2 nm), large range (2 nm x 3,200,000) interferometry achieved with wide field array sizes of 50,000 x 50,000 and 8 bit gray scale (error restricted to 1 bit) for surface deformation measurements on fracture specimens.Second, functional descriptions for certain aspects of the displacement fields associated with fracture specimens are developed. It is found that the fully three-dimensional crack tip field surrounding a through-thickness crack in a plate of elastic-plastic material shows a hierarchical structure of organization and that the primary aspects of the deformation field would seem to have a relatively simple form of expression if the deformation is viewed in a properly normalized form.Third, a comparison is made between interferometrically measured surface displacements for a notched 3-point-bend speciemn of a ductile heat treatment of 4340 steel and a numerical simulation of the specimen based on a material constitutive description determined from uniaxial tests performed on the same material. The small but finite notch tip radius (0.15 mm) fabricated by a wire-cutting electrical discharge machine allows one to explore the limits of applicability of standard continuum plasticity theories without involving a process zone model for the very near tip region extent in a cracked specimen geometry.

  15. High resolution, multiple-energy linear sweep detector for x-ray imaging

    DOEpatents

    Perez-Mendez, Victor; Goodman, Claude A.

    1996-01-01

    Apparatus for generating plural electrical signals in a single scan in response to incident X-rays received from an object. Each electrical signal represents an image of the object at a different range of energies of the incident X-rays. The apparatus comprises a first X-ray detector, a second X-ray detector stacked upstream of the first X-ray detector, and an X-ray absorber stacked upstream of the first X-ray detector. The X-ray absorber provides an energy-dependent absorption of the incident X-rays before they are incident at the first X-ray detector, but provides no absorption of the incident X-rays before they are incident at the second X-ray detector. The first X-ray detector includes a linear array of first pixels, each of which produces an electrical output in response to the incident X-rays in a first range of energies. The first X-ray detector also includes a circuit that generates a first electrical signal in response to the electrical output of each of the first pixels. The second X-ray detector includes a linear array of second pixels, each of which produces an electrical output in response to the incident X-rays in a second range of energies, broader than the first range of energies. The second X-ray detector also includes a circuit that generates a second electrical signal in response to the electrical output of each of the second pixels.

  16. High resolution, multiple-energy linear sweep detector for x-ray imaging

    DOEpatents

    Perez-Mendez, V.; Goodman, C.A.

    1996-08-20

    Apparatus is disclosed for generating plural electrical signals in a single scan in response to incident X-rays received from an object. Each electrical signal represents an image of the object at a different range of energies of the incident X-rays. The apparatus comprises a first X-ray detector, a second X-ray detector stacked upstream of the first X-ray detector, and an X-ray absorber stacked upstream of the first X-ray detector. The X-ray absorber provides an energy-dependent absorption of the incident X-rays before they are incident at the first X-ray detector, but provides no absorption of the incident X-rays before they are incident at the second X-ray detector. The first X-ray detector includes a linear array of first pixels, each of which produces an electrical output in response to the incident X-rays in a first range of energies. The first X-ray detector also includes a circuit that generates a first electrical signal in response to the electrical output of each of the first pixels. The second X-ray detector includes a linear array of second pixels, each of which produces an electrical output in response to the incident X-rays in a second range of energies, broader than the first range of energies. The second X-ray detector also includes a circuit that generates a second electrical signal in response to the electrical output of each of the second pixels. 12 figs.

  17. Simultaneous two-wavelength holographic interferometry in a superorbital expansion tube facility.

    PubMed

    McIntyre, T J; Wegener, M J; Bishop, A I; Rubinsztein-Dunlop, H

    1997-11-01

    A new variation of holographic interferometry has been utilized to perform simultaneous two-wavelength measurements, allowing quantitative analysis of the heavy particle and electron densities in a superorbital facility. An air test gas accelerated to 12 km/s was passed over a cylindrical model, simulating reentry conditions encountered by a space vehicle on a superorbital mission. Laser beams with two different wavelengths have been overlapped, passed through the test section, and simultaneously recorded on a single holographic plate. Reconstruction of the hologram generated two separate interferograms at different angles from which the quantitative measurements were made. With this technique, a peak electron concentration of (5.5 +/- 0.5) x 10(23) m(-3) was found behind a bow shock on a cylinder.

  18. Quantum Optics in Phase Space

    NASA Astrophysics Data System (ADS)

    Schleich, Wolfgang P.

    2001-04-01

    Quantum Optics in Phase Space provides a concise introduction to the rapidly moving field of quantum optics from the point of view of phase space. Modern in style and didactically skillful, Quantum Optics in Phase Space prepares students for their own research by presenting detailed derivations, many illustrations and a large set of workable problems at the end of each chapter. Often, the theoretical treatments are accompanied by the corresponding experiments. An exhaustive list of references provides a guide to the literature. Quantum Optics in Phase Space also serves advanced researchers as a comprehensive reference book. Starting with an extensive review of the experiments that define quantum optics and a brief summary of the foundations of quantum mechanics the author Wolfgang P. Schleich illustrates the properties of quantum states with the help of the Wigner phase space distribution function. His description of waves ala WKB connects semi-classical phase space with the Berry phase. These semi-classical techniques provide deeper insight into the timely topics of wave packet dynamics, fractional revivals and the Talbot effect. Whereas the first half of the book deals with mechanical oscillators such as ions in a trap or atoms in a standing wave the second half addresses problems where the quantization of the radiation field is of importance. Such topics extensively discussed include optical interferometry, the atom-field interaction, quantum state preparation and measurement, entanglement, decoherence, the one-atom maser and atom optics in quantized light fields. Quantum Optics in Phase Space presents the subject of quantum optics as transparently as possible. Giving wide-ranging references, it enables students to study and solve problems with modern scientific literature. The result is a remarkably concise yet comprehensive and accessible text- and reference book - an inspiring source of information and insight for students, teachers and researchers alike.

  19. Abdomen X-Ray (Radiography)

    MedlinePlus

    ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Abdomen Abdominal x-ray uses a ... of an abdominal x-ray? What is abdominal x-ray? An x-ray (radiograph) is a noninvasive ...

  20. Intensity Interferometry: Imaging Stars with Kilometer Baselines

    NASA Astrophysics Data System (ADS)

    Dravins, Dainis

    2018-04-01

    Microarcsecond imaging will reveal stellar surfaces but requires kilometer-scale interferometers. Intensity interferometry circumvents atmospheric turbulence by correlating intensity fluctuations between independent telescopes. Telescopes connect only electronically, and the error budget relates to electronic timescales of nanoseconds (light-travel distances on the order of a meter), enabling the use of imperfect optics in a turbulent atmosphere. Once pioneered by Hanbury Brown and Twiss, digital versions have now been demonstrated in the laboratory, reconstructing diffraction-limited images from hundreds of optical baselines. Arrays of Cherenkov telescopes (primarily erected for gamma-ray studies) will extend over a few km, enabling an optical equivalent of radio interferometers. Resolutions in the tens of microarcseconds will resolve rotationally flattened stars with their circumstellar disks and winds, or possibly even the silhouettes of transiting exoplanets. Applying the method to mirror segments in extremely large telescopes (even with an incompletely filled main mirror, poor seeing, no adaptive optics), the diffraction limit in the blue may be reached.

  1. Noiseless intensity amplification of repetitive signals by coherent addition using the temporal Talbot effect

    PubMed Central

    Maram, Reza; Van Howe, James; Li, Ming; Azaña, José

    2014-01-01

    Amplification of signal intensity is essential for initiating physical processes, diagnostics, sensing, communications and measurement. During traditional amplification, the signal is amplified by multiplying the signal carriers through an active gain process, requiring the use of an external power source. In addition, the signal is degraded by noise and distortions that typically accompany active gain processes. We show noiseless intensity amplification of repetitive optical pulse waveforms with gain from 2 to ~20 without using active gain. The proposed method uses a dispersion-induced temporal self-imaging (Talbot) effect to redistribute and coherently accumulate energy of the original repetitive waveforms into fewer replica waveforms. In addition, we show how our passive amplifier performs a real-time average of the wave-train to reduce its original noise fluctuation, as well as enhances the extinction ratio of pulses to stand above the noise floor. Our technique is applicable to repetitive waveforms in any spectral region or wave system. PMID:25319207

  2. High precision locating control system based on VCM for Talbot lithography

    NASA Astrophysics Data System (ADS)

    Yao, Jingwei; Zhao, Lixin; Deng, Qian; Hu, Song

    2016-10-01

    Aiming at the high precision and efficiency requirements of Z-direction locating in Talbot lithography, a control system based on Voice Coil Motor (VCM) was designed. In this paper, we built a math model of VCM and its moving characteristic was analyzed. A double-closed loop control strategy including position loop and current loop were accomplished. The current loop was implemented by driver, in order to achieve the rapid follow of the system current. The position loop was completed by the digital signal processor (DSP) and the position feedback was achieved by high precision linear scales. Feed forward control and position feedback Proportion Integration Differentiation (PID) control were applied in order to compensate for dynamic lag and improve the response speed of the system. And the high precision and efficiency of the system were verified by simulation and experiments. The results demonstrated that the performance of Z-direction gantry was obviously improved, having high precision, quick responses, strong real-time and easily to expend for higher precision.

  3. A mirror for lab-based quasi-monochromatic parallel x-rays

    NASA Astrophysics Data System (ADS)

    Nguyen, Thanhhai; Lu, Xun; Lee, Chang Jun; Jung, Jin-Ho; Jin, Gye-Hwan; Kim, Sung Youb; Jeon, Insu

    2014-09-01

    A multilayered parabolic mirror with six W/Al bilayers was designed and fabricated to generate monochromatic parallel x-rays using a lab-based x-ray source. Using this mirror, curved bright bands were obtained in x-ray images as reflected x-rays. The parallelism of the reflected x-rays was investigated using the shape of the bands. The intensity and monochromatic characteristics of the reflected x-rays were evaluated through measurements of the x-ray spectra in the band. High intensity, nearly monochromatic, and parallel x-rays, which can be used for high resolution x-ray microscopes and local radiation therapy systems, were obtained.

  4. The Gamma-Ray Properties of Radio-Selected Extragalactic Jets

    DTIC Science & Technology

    2010-06-01

    Interferometry (VLBI) techniques. This information is important to understand the broad-band emission mechanism of these sources. In this work we... relativistic speed, thus the emission is Doppler boosted (Blandford & Rees, 1978; Maraschi et a!., 1992). This model is supported by the apparent... superluminal motion which is typically found in the inner radio-jets of blazars (Lister et al., 2009b, , and therein). Since 2008 August 11: the sky

  5. Lumbosacral spine x-ray

    MedlinePlus

    X-ray - lumbosacral spine; X-ray - lower spine ... The test is done in a hospital x-ray department or your health care provider's office by an x-ray technician. You will be asked to lie on the x-ray ...

  6. X-ray monitoring optical elements

    DOEpatents

    Stoupin, Stanislav; Shvydko, Yury; Katsoudas, John; Blank, Vladimir D.; Terentyev, Sergey A.

    2016-12-27

    An X-ray article and method for analyzing hard X-rays which have interacted with a test system. The X-ray article is operative to diffract or otherwise process X-rays from an input X-ray beam which have interacted with the test system and at the same time provide an electrical circuit adapted to collect photoelectrons emitted from an X-ray optical element of the X-ray article to analyze features of the test system.

  7. Wavelength references for interferometry in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, Richard W.; Washburn, Brian R.; Newbury, Nathan R.

    2005-12-20

    Cavity-mode wavelengths in air are determined by measuring a laser's frequency while it is locked to the mode in vacuum during a calibration step and subsequently correcting the mode wavelength for atmospheric pressure compression, temperature difference, and material aging. Using a Zerodur ring cavity, we demonstrate a repeatability of {+-}2x10-8(3{sigma}), with the wavelength accuracy limited to {+-}4x10-8by knowledge of the absolute helium gas temperature during the pressure calibration. Mirror cleaning perturbed the mode frequency by less than {delta} {nu}/{nu}{approx}3x10-9, limited by temperature correction residuals.

  8. Wavelength references for interferometry in air.

    PubMed

    Fox, Richard W; Washburn, Brian R; Newbury, Nathan R; Hollberg, Leo

    2005-12-20

    Cavity-mode wavelengths in air are determined by measuring a laser's frequency while it is locked to the mode in vacuum during a calibration step and subsequently correcting the mode wavelength for atmospheric pressure compression, temperature difference, and material aging. Using a Zerodur ring cavity, we demonstrate a repeatability of +/- 2 x 10(-8) (3sigma), with the wavelength accuracy limited to +/- 4 x 10(-8) by knowledge of the absolute helium gas temperature during the pressure calibration. Mirror cleaning perturbed the mode frequency by less than deltav/v approximately 3 x 10(-9), limited by temperature correction residuals.

  9. Variations of the Blazar AO 0235+164 in 2006-2015

    NASA Astrophysics Data System (ADS)

    Hagen-Thorn, V. A.; Larionov, V. M.; Morozova, D. A.; Arkharov, A. A.; Hagen-Thorn, E. I.; Shablovinskaya, E. S.; Prokop'eva, M. S.; Yakovleva, V. A.

    2018-02-01

    The results of optical, radio, and gamma-ray observations of the blazar AO 0235+16 are presented, including photometric ( BV RIJHK) and polarimetric ( R)monitoring carried out at St. Petersburg State University and the Central (Pulkovo) Astronomical Observatory in 2007-2015, 43 GHz Very Long Baseline Interferometry radio observations processed at Boston University, and a gamma-ray light curve based on observationswith the Fermi space observatory are presented. Two strong outbursts were detected. The relative spectral energy distributions of the variable components responsible for the outbursts are determined; these follow power laws, but with different spectral indices. The degree of polarization was high in both outbursts; only an average relationship between the brightness and polarization can be found. There was no time lag between the variations in the optical and gamma-ray, suggesting that the sources of the radiation in the optical and gamma-ray are located in the same region of the jet.

  10. TerraSAR-X InSAR multipass analysis on Venice, Italy)

    NASA Astrophysics Data System (ADS)

    Nitti, D. O.; Nutricato, R.; Bovenga, F.; Refice, A.; Chiaradia, M. T.; Guerriero, L.

    2009-09-01

    The TerraSAR-X (copyright) mission, launched in 2007, carries a new X-band Synthetic Aperture Radar (SAR) sensor optimally suited for SAR interferometry (InSAR), thus allowing very promising application of InSAR techniques for the risk assessment on areas with hydrogeological instability and especially for multi-temporal analysis, such as Persistent Scatterer Interferometry (PSI) techniques, originally developed at Politecnico di Milano. The SPINUA (Stable Point INterferometry over Unurbanised Areas) technique is a PSI processing methodology which has originally been developed with the aim of detection and monitoring of coherent PS targets in non or scarcely-urbanized areas. The main goal of the present work is to describe successful applications of the SPINUA PSI technique in processing X-band data. Venice has been selected as test site since it is in favorable settings for PSI investigations (urban area containing many potential coherent targets such as buildings) and in view of the availability of a long temporal series of TerraSAR-X stripmap acquisitions (27 scenes in all). The Venice Lagoon is affected by land sinking phenomena, whose origins are both natural and man-induced. The subsidence of Venice has been intensively studied for decades by determining land displacements through traditional monitoring techniques (leveling and GPS) and, recently, by processing stacks of ERS/ENVISAT SAR data. The present work is focused on an independent assessment of application of PSI techniques to TerraSAR-X stripmap data for monitoring the stability of the Venice area. Thanks to its orbital repeat cycle of only 11 days, less than a third of ERS/ENVISAT C-band missions, the maximum displacement rate that can be unambiguously detected along the Line-of-Sight (LOS) with TerraSAR-X SAR data through PSI techniques is expected to be about twice the corresponding value of ESA C-band missions, being directly proportional to the sensor wavelength and inversely proportional to the revisit time. When monitoring displacement phenomena which are known to be within the C-band rate limits, the increased repeat cycle of TerraSAR-X offers the opportunity to decimate the stack of TerraSAR-X data, e.g. by doubling the temporal baseline between subsequent acquisitions. This strategy can be adopted for reducing both economic and computational processing costs. In the present work, the displacement rate maps obtained through SPINUA with and without decimation of the number of Single Look Complex (SLC) acquisitions are compared. In particular, it is shown that with high spatial resolution SAR data, reliable displacement maps could be estimated through PSI techniques with a number of SLCs much lower than in C-band.

  11. Data-Science Analysis of the Macro-scale Features Governing the Corrosion to Crack Transition in AA7050-T7451

    NASA Astrophysics Data System (ADS)

    Co, Noelle Easter C.; Brown, Donald E.; Burns, James T.

    2018-05-01

    This study applies data science approaches (random forest and logistic regression) to determine the extent to which macro-scale corrosion damage features govern the crack formation behavior in AA7050-T7451. Each corrosion morphology has a set of corresponding predictor variables (pit depth, volume, area, diameter, pit density, total fissure length, surface roughness metrics, etc.) describing the shape of the corrosion damage. The values of the predictor variables are obtained from white light interferometry, x-ray tomography, and scanning electron microscope imaging of the corrosion damage. A permutation test is employed to assess the significance of the logistic and random forest model predictions. Results indicate minimal relationship between the macro-scale corrosion feature predictor variables and fatigue crack initiation. These findings suggest that the macro-scale corrosion features and their interactions do not solely govern the crack formation behavior. While these results do not imply that the macro-features have no impact, they do suggest that additional parameters must be considered to rigorously inform the crack formation location.

  12. Electroplating Gold-Silver Alloys for Spherical Capsules for NIF Double-Shell Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhandarkar, N.; Horwood, C.; Bunn, T.

    For Inertial Confinement Fusion (ICF) implosions, a design based on gradients of high and mid Z materials could potentially be more robust than single element capsule systems. To that end, gold and silver alloys were electroplated on 2.0 mm diameter surrogate brass spheres using a new flow–based pulsed plating method specifically designed to minimize surface roughness without reducing plating rates. The coatings were analyzed by scanning electron microscope (SEM) and white light interferometry for surface topography, and by energy dispersive x-ray spectroscopy (EDX) to determine near-surface gold and silver compositions. The alloy range attainable was 15 to 85 weight percentmore » gold using 1:1 and 1:3 silver to gold ratio plating baths at applied potentials of -0.7 volts to -1.8 volts. This range was bounded by the open circuit potential of the system and hydrogen evolution, and in theory could be extended by using ionic liquids or aprotic solutions. Preliminary gradient trials proved constant composition alloy data could be translated to smooth gradient plating, albeit at higher gold compositions.« less

  13. Results from colliding magnetized plasma jet experiments executed at the Trident laser facility

    NASA Astrophysics Data System (ADS)

    Manuel, M. J.-E.; Rasmus, A. M.; Kurnaz, C. C.; Klein, S. R.; Davis, J. S.; Drake, R. P.; Montgomery, D. S.; Hsu, S. C.; Adams, C. S.; Pollock, B. B.

    2015-11-01

    The interaction of high-velocity plasma flows in a background magnetic field has applications in pulsed-power and fusion schemes, as well as astrophysical environments, such as accretion systems and stellar mass ejections into the magnetosphere. Experiments recently executed at the Trident Laser Facility at the Los Alamos National Laboratory investigated the effects of an expanding aluminum plasma flow into a uniform 4.5-Tesla magnetic field created using a solenoid designed and manufactured at the University of Michigan. Opposing-target experiments demonstrate interesting collisional behavior between the two magnetized flows. Preliminary interferometry and Faraday rotation measurements will be presented and discussed. This work is funded by the U.S Department of Energy, through the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-NA0001840. Support for this work was provided by NASA through Einstein Postdoctoral Fellowship grant number PF3-140111 awarded by the Chandra X-ray Center, which is operated by the Astrophysical Observatory for NASA under contract NAS8-03060.

  14. Generating Long Scale-Length Plasma Jets Embedded in a Uniform, Multi-Tesla Magnetic-Field

    NASA Astrophysics Data System (ADS)

    Manuel, Mario; Kuranz, Carolyn; Rasmus, Alex; Klein, Sallee; Fein, Jeff; Belancourt, Patrick; Drake, R. P.; Pollock, Brad; Hazi, Andrew; Park, Jaebum; Williams, Jackson; Chen, Hui

    2013-10-01

    Collimated plasma jets emerge in many classes of astrophysical objects and are of great interest to explore in the laboratory. In many cases, these astrophysical jets exist within a background magnetic field where the magnetic pressure approaches the plasma pressure. Recent experiments performed at the Jupiter Laser Facility utilized a custom-designed solenoid to generate the multi-tesla fields necessary to achieve proper magnetization of the plasma. Time-gated interferometry, Schlieren imaging, and proton radiography were used to characterize jet evolution and collimation under varying degrees of magnetization. Experimental results will be presented and discussed. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-NA0001840, by the National Laser User Facility Program, grant number DE-NA0000850, by the Predictive Sciences Academic Alliances Program in NNSA-ASC, grant number DEFC52-08NA28616, and by NASA through Einstein Postdoctoral Fellowship grant number PF3-140111 awarded by the Chandra X-ray Center, which is operated by the Smithsonian Astrophysical Observatory for NASA under contract NAS8-03060.

  15. PARSEC-SCALE SHOCKS IN THE KILOPARSEC-SCALE JET OF CENTAURUS A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tingay, S. J.; Lenc, E.

    2009-09-15

    High angular resolution very long baseline interferometry (VLBI) observations of Centaurus A have been undertaken that allow access to a wide field of view, encompassing both the well-studied parsec-scale jet and the inner part of the kiloparsec-scale jet. The VLBI observations have detected compact regions of synchrotron emission in the kiloparsec-scale jet that coincide with three stationary features identified from previous VLA monitoring observations. Each of these stationary features is associated with strong localized X-ray emission. The VLBI results strengthen arguments made by previous authors suggesting that the stationary features may be the result of stellar objects or gas cloudsmore » traversing the jet flow, intercepting the jet and causing strong shocks. The VLBI data show that the most strongly shocked regions in these features are resolved but have extents no larger than a few pc, reducing the required mass of the typical intercepting object by a factor of {approx}10 relative to previous estimates, making explanations based on high mass-loss stars or low-density gas clouds more plausible.« less

  16. Topography and nanostructural evaluation of chemically and thermally modified titanium substrates.

    PubMed

    Salemi, Hoda; Behnamghader, Aliasghar; Afshar, Abdollah

    2016-10-01

    In this research, the effects of chemical and thermal treatment on the morphological and compositional aspects of titanium substrates and so, potentially, on development of biomimetic bone like layers formation during simulated body fluid (SBF) soaking was investigated. The HF, HF/HNO3 and NaOH solutions were used for chemical treatment and some of alkali-treated samples followed a heat treatment at 600°C. The treated samples before and after soaking were subjected to material characterization tests using scanning electron microscopy (SEM), X-ray diffraction (XRD) and atomic force microscopy (AFM). White light interferometry (WLI) was used to determine the roughness parameters such as Ra, Rq, RKu and Rsk. The significance of the obtained data was assessed using ANOVA variance analysis between all samples. It was observed that the reaction at grain boundaries and sodium titanate intermediate layers play a great role in the nucleation of calcium phosphate layers. Based on the obtained results in this work, the calcium phosphate microstructure deposited on titanium substrates was more affected by chemical modification than surface topography.

  17. Radial and Azimuthal Velocity Profiles in Gas-Puff Z-Pinches

    NASA Astrophysics Data System (ADS)

    Rocco, Sophia; Engelbrecht, Joseph; Banasek, Jacob; de Grouchy, Philip; Qi, Niansheng; Hammer, David

    2016-10-01

    The dynamics of neon, argon, and krypton (either singly or in combination) gas puff z-pinch plasmas are studied on Cornell's 1MA, 100-200ns rise-time COBRA pulsed power generator. The triple-nozzle gas puff valve, consisting of two annular gas puffs and a central jet, allows radial tailoring of the gas puff mass-density profile and the use of 1, 2 or 3 different gases at different pressures. Interferometry supplies information on sheath thickness and electron density, variously filtered PCDs and silicon diodes measure hard and soft x-ray production, and multi frame visible and extreme UV imaging systems allow tracking of the morphology of the plasma. A 527nm, 10J Thomson scattering diagnostic system is used to determine radial and azimuthal velocities. Implosion velocities of 170km/s (Kr) and 300km/s (Ne/Ar) are observed. We are investigating the correlations between instability growth, plasma density profile, velocity partitioning as a function of radius, and radiation production. Research supported by the NNSA Stewardship Sciences Academic Programs under DOE Cooperative Agreement No. DE-NA0001836.

  18. CONFERENCE NOTE: European Optical Society, Topical Meeting Optical Metrology and Nanotechnology, Engelberg, Switzerland, 27 30 March 1994

    NASA Astrophysics Data System (ADS)

    1993-01-01

    This meeting, organized by the Paul Scherrer Institute's Department of Applied Solid State Physics, will be held from 27 30 March 1994 at the Hotel Regina-Titlis, Engelberg, Switzerland. The aim is to bring together scientists from two important fields of current research and increasing industrial relevance. Optical metrology is a traditional discipline of applied optics which reached the nanometre scale a long time ago. Nanotechnology is setting new limits and represents a major challenge to metrology, as well as offering new opportunities to optics. The meeting is intended to help define a common future for optical metrology and nanotechnology. Topics to be covered include: nanometre position control and measuring techniques ultrahigh precision interferometry scanning probe microscopy (AFM, SNOM, etc.) surface modification by scanning probe methods precision surface fabrication and characterization nanolithography micro-optics, diffractive optics components, including systems and applications subwavelength optical structures synthetic optical materials structures and technologies for X-ray optics. For further information please contact: Jens Gobrecht (Secretary), Paul Scherrer Institute, CH-5232 Villigen-PSI, Switzerland.Tel. (41)56992529; Fax (41) 5698 2635.

  19. Bendable X-ray Optics at the ALS: Design, Tuning, Performance and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Advanced Light Source, Lawrence Berkeley National Laboratory; Yashchuk, Valeriy V.; Church, Matthew N.

    2008-09-08

    We review the development at the Advanced Light Source (ALS) of bendable x-ray optics widely used for focusing of beams of soft and hard x-rays. Typically, the focusing is divided in the tangential and sagittal directions into two elliptically cylindrical reflecting elements, the so-called Kirkpatrick-Baez (KB) pair [1]. Because fabrication of elliptical surfaces is complicated, the cost of directly fabricated tangential elliptical cylinders is often prohibitive. This is in contrast to flat optics, that are simpler to manufacture and easier to measure by conventional interferometry. The figure of a flat substrate can be changed by placing torques (couples) at eachmore » end. Equal couples form a tangential cylinder, and unequal couples can approximate a tangential ellipse or parabola. We review the nature of the bending, requirements and approaches to the mechanical design, and describe a technique developed at the ALS Optical Metrology Laboratory (OML) for optimal tuning of bendable mirrors before installation in the beamline [2]. The tuning technique adapts a method previously used to adjust bendable mirrors on synchrotron radiation beamlines [3]. However, in our case, optimal tuning of a bendable mirror is based on surface slope trace data obtained with a slope measuring instrument--in our case, the long trace profiler (LTP). We show that due to the near linearity of the bending problem, the minimal set of data, necessary for tuning of two benders, consists of only three slope traces measured before and after a single adjustment of each bending couple. We provide an algorithm that was used in dedicated software for finding optimal settings for the mirror benders. The algorithm is based on the method of regression analysis with experimentally found characteristic functions of the benders. The resulting approximation to the functional dependence of the desired slope shape provides nearly final settings for the benders. Moreover, the characteristic functions of the benders found in the course of tuning, can be used for retuning of the optics to a new desired shape without removing it from the beamline and re-measuring with the LTP. The result of practical use of the developed technique to precisely tune a KB mirror used at the ALS for micro-focusing is also presented. We also describe a simple ray trace using the profiler data which shows expected performance in the beamline and compare the simulation with experimental data. In summary, we also discuss the next steps in the systematic improvement of optical performance for the application of KB pairs in synchrotron beamlines at the ALS.« less

  20. Recent observations with phase-contrast x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Momose, Atsushi; Takeda, Tohoru; Itai, Yuji; Tu, Jinhong; Hirano, Keiichi

    1999-09-01

    Recent development in phase-contrast X-ray computed tomography using an X-ray interferometer is reported. To observe larger samples than is possible with our previous X-ray interferometer, a large monolithic X-ray interferometer and a separated-type X-ray interferometer were studied. At the present time, 2.5 cm X 1.5 cm interference patterns have been generated with the X-ray interferometers using synchrotron X-rays. The large monolithic X-ray interferometer has produced interference fringes with 80% visibility, and has been used to measure various tissues. To produce images with higher spatial resolution, we fabricated another X-ray interferometer whose wafer was partially thinned by chemical etching. A preliminary test suggested that the spatial resolution has been improved.

  1. Compact x-ray source and panel

    DOEpatents

    Sampayon, Stephen E [Manteca, CA

    2008-02-12

    A compact, self-contained x-ray source, and a compact x-ray source panel having a plurality of such x-ray sources arranged in a preferably broad-area pixelized array. Each x-ray source includes an electron source for producing an electron beam, an x-ray conversion target, and a multilayer insulator separating the electron source and the x-ray conversion target from each other. The multi-layer insulator preferably has a cylindrical configuration with a plurality of alternating insulator and conductor layers surrounding an acceleration channel leading from the electron source to the x-ray conversion target. A power source is connected to each x-ray source of the array to produce an accelerating gradient between the electron source and x-ray conversion target in any one or more of the x-ray sources independent of other x-ray sources in the array, so as to accelerate an electron beam towards the x-ray conversion target. The multilayer insulator enables relatively short separation distances between the electron source and the x-ray conversion target so that a thin panel is possible for compactness. This is due to the ability of the plurality of alternating insulator and conductor layers of the multilayer insulators to resist surface flashover when sufficiently high acceleration energies necessary for x-ray generation are supplied by the power source to the x-ray sources.

  2. Building a MicroSociety

    ERIC Educational Resources Information Center

    Dunton, Sheryl

    2006-01-01

    Talbot Hill Elementary School in Renton, Washington, uses the MicroSociety model to make learning relevant and engaging for its diverse student population. Three afternoons each week, every student participates in a for-profit business, a governmental agency, or a nonprofit organization. Teachers prepare students to participate in the school's…

  3. Monitoring X-Ray Emission from X-Ray Bursters

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Kaaret, Philip

    1999-01-01

    The scientific goal of this project was to monitor a selected sample of x-ray bursters using data from the All-Sky Monitor (ASM) on the Rossi X-Ray Timing Explorer together with data from the Burst and Transient Source Experiment (BATSE) on the Compton Gamma-Ray Observatory to study the long-term temporal evolution of these sources in the x-ray and hard x-ray bands. The project was closely related to "Long-Term Hard X-Ray Monitoring of X-Ray Bursters", NASA project NAG5-3891, and and "Hard x-ray emission of x-ray bursters", NASA project NAG5-4633, and shares publications in common with both of these. The project involved preparation of software for use in monitoring and then the actual monitoring itself. These efforts have lead to results directly from the ASM data and also from Target of Opportunity Observations (TOO) made with the Rossi X-Ray Timing Explorer based on detection of transient hard x-ray outbursts with the ASM and BATSE.

  4. Hetero-site-specific X-ray pump-probe spectroscopy for femtosecond intramolecular dynamics

    PubMed Central

    Picón, A.; Lehmann, C. S.; Bostedt, C.; Rudenko, A.; Marinelli, A.; Osipov, T.; Rolles, D.; Berrah, N.; Bomme, C.; Bucher, M.; Doumy, G.; Erk, B.; Ferguson, K. R.; Gorkhover, T.; Ho, P. J.; Kanter, E. P.; Krässig, B.; Krzywinski, J.; Lutman, A. A.; March, A. M.; Moonshiram, D.; Ray, D.; Young, L.; Pratt, S. T.; Southworth, S. H.

    2016-01-01

    New capabilities at X-ray free-electron laser facilities allow the generation of two-colour femtosecond X-ray pulses, opening the possibility of performing ultrafast studies of X-ray-induced phenomena. Particularly, the experimental realization of hetero-site-specific X-ray-pump/X-ray-probe spectroscopy is of special interest, in which an X-ray pump pulse is absorbed at one site within a molecule and an X-ray probe pulse follows the X-ray-induced dynamics at another site within the same molecule. Here we show experimental evidence of a hetero-site pump-probe signal. By using two-colour 10-fs X-ray pulses, we are able to observe the femtosecond time dependence for the formation of F ions during the fragmentation of XeF2 molecules following X-ray absorption at the Xe site. PMID:27212390

  5. Hetero-site-specific X-ray pump-probe spectroscopy for femtosecond intramolecular dynamics.

    PubMed

    Picón, A; Lehmann, C S; Bostedt, C; Rudenko, A; Marinelli, A; Osipov, T; Rolles, D; Berrah, N; Bomme, C; Bucher, M; Doumy, G; Erk, B; Ferguson, K R; Gorkhover, T; Ho, P J; Kanter, E P; Krässig, B; Krzywinski, J; Lutman, A A; March, A M; Moonshiram, D; Ray, D; Young, L; Pratt, S T; Southworth, S H

    2016-05-23

    New capabilities at X-ray free-electron laser facilities allow the generation of two-colour femtosecond X-ray pulses, opening the possibility of performing ultrafast studies of X-ray-induced phenomena. Particularly, the experimental realization of hetero-site-specific X-ray-pump/X-ray-probe spectroscopy is of special interest, in which an X-ray pump pulse is absorbed at one site within a molecule and an X-ray probe pulse follows the X-ray-induced dynamics at another site within the same molecule. Here we show experimental evidence of a hetero-site pump-probe signal. By using two-colour 10-fs X-ray pulses, we are able to observe the femtosecond time dependence for the formation of F ions during the fragmentation of XeF2 molecules following X-ray absorption at the Xe site.

  6. Thoracic spine x-ray

    MedlinePlus

    Vertebral radiography; X-ray - spine; Thoracic x-ray; Spine x-ray; Thoracic spine films; Back films ... The test is done in a hospital radiology department or in the health care provider's office. You will lie on the x-ray table in different positions. If the x-ray ...

  7. Design of a normal incidence multilayer imaging X-ray microscope

    NASA Astrophysics Data System (ADS)

    Shealy, David L.; Gabardi, David R.; Hoover, Richard B.; Walker, Arthur B. C., Jr.; Lindblom, Joakim F.

    Normal incidence multilayer Cassegrain X-ray telescopes were flown on the Stanford/MSFC Rocket X-ray Spectroheliograph. These instruments produced high spatial resolution images of the sun and conclusively demonstrated that doubly reflecting multilayer X-ray optical systems are feasible. The images indicated that aplanatic imaging soft X-ray/EUV microscopes should be achievable using multilayer optics technology. A doubly reflecting normal incidence multilayer imaging X-ray microscope based on the Schwarzschild configuration has been designed. The design of the microscope and the results of the optical system ray trace analysis are discussed. High resolution aplanatic imaging X-ray microscopes using normal incidence multilayer X-ray mirrors should have many important applications in advanced X-ray astronomical instrumentation, X-ray lithography, biological, biomedical, metallurgical, and laser fusion research.

  8. Classification of X-ray sources in the direction of M31

    NASA Astrophysics Data System (ADS)

    Vasilopoulos, G.; Hatzidimitriou, D.; Pietsch, W.

    2012-01-01

    M31 is our nearest spiral galaxy, at a distance of 780 kpc. Identification of X-ray sources in nearby galaxies is important for interpreting the properties of more distant ones, mainly because we can classify nearby sources using both X-ray and optical data, while more distant ones via X-rays alone. The XMM-Newton Large Project for M31 has produced an abundant sample of about 1900 X-ray sources in the direction of M31. Most of them remain elusive, giving us little signs of their origin. Our goal is to classify these sources using criteria based on properties of already identified ones. In particular we construct candidate lists of high mass X-ray binaries, low mass X-ray binaries, X-ray binaries correlated with globular clusters and AGN based on their X-ray emission and the properties of their optical counterparts, if any. Our main methodology consists of identifying particular loci of X-ray sources on X-ray hardness ratio diagrams and the color magnitude diagrams of their optical counterparts. Finally, we examined the X-ray luminosity function of the X-ray binaries populations.

  9. Search for Hard X-Ray Emission from the Soft X-Ray Transient Aquila X-1

    NASA Astrophysics Data System (ADS)

    Harmon, B. A.; Zhang, S. N.; Paciesas, W. S.; Tavani, M.; Kaaret, P.; Ford, E.

    1994-12-01

    We are investigating the possibility of hard x-ray emission from the recurrent soft x-ray transient and x-ray burst source Aquila X-1 (Aql X-1). Outbursts of this source are relatively frequent with a spacing of ~ 4-10 months (Kitamoto, S. et al. 1993, ApJ, 403, 315). The recent detections of hard tails (\\(>\\)20 keV) in low luminosity x-ray bursters (Barret, D. & Vedrenne, G. 1994, ApJ Supp. S. 92, 505) suggest that neutron star transient systems such as Aql X-1 can produce hard x-ray emission which is detectable by BATSE. We are correlating reported optical and soft x-ray observations since 1991 of Aql X-1 with BATSE observations in order to search for hard x-ray emission episodes, and to study their temporal and spectral evolution. We will present preliminary results of this search in the 20-1000 keV band using the Earth occultation technique applied to the large area detectors. If this work is successful, we hope to alert the astronomical community for the next Aql X-1 outburst expected in 1995. Simultaneous x-ray/hard x-ray and optical observations of Aql X-1 during outburst would be of great importance for the modeling of soft x-ray transients and related systems.

  10. 21 CFR Appendix B to Subpart B of... - Scope of Product Coverage

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Transducer ITX—Transducer, Ultrasonic, Diagnostic Diagnostic X-Ray Imaging Devices (except mammographic x-ray systems): RA 892.1600 Angiographic X-Ray System IZI—System, X-Ray, Angiographic RA 892.1650 Image-Intensified Fluoroscopic X-Ray System MQB—Solid State X-Ray Imager (Flat Panel/Digital Imager) JAA—System, X...

  11. 21 CFR Appendix B to Subpart B of... - Scope of Product Coverage

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Transducer ITX—Transducer, Ultrasonic, Diagnostic Diagnostic X-Ray Imaging Devices (except mammographic x-ray systems): RA 892.1600 Angiographic X-Ray System IZI—System, X-Ray, Angiographic RA 892.1650 Image-Intensified Fluoroscopic X-Ray System MQB—Solid State X-Ray Imager (Flat Panel/Digital Imager) JAA—System, X...

  12. Chandra-SDSS Normal and Star-Forming Galaxies. I. X-Ray Source Properties of Galaxies Detected by the Chandra X-Ray Observatory in SDSS DR2

    NASA Astrophysics Data System (ADS)

    Hornschemeier, A. E.; Heckman, T. M.; Ptak, A. F.; Tremonti, C. A.; Colbert, E. J. M.

    2005-01-01

    We have cross-correlated X-ray catalogs derived from archival Chandra X-Ray Observatory ACIS observations with a Sloan Digital Sky Survey Data Release 2 (DR2) galaxy catalog to form a sample of 42 serendipitously X-ray-detected galaxies over the redshift interval 0.03

  13. Intensity correlation measurement system by picosecond single shot soft x-ray laser.

    PubMed

    Kishimoto, Maki; Namikawa, Kazumichi; Sukegawa, Kouta; Yamatani, Hiroshi; Hasegawa, Noboru; Tanaka, Momoko

    2010-01-01

    We developed a new soft x-ray speckle intensity correlation spectroscopy system by use of a single shot high brilliant plasma soft x-ray laser. The plasma soft x-ray laser is characterized by several picoseconds in pulse width, more than 90% special coherence, and 10(11) soft x-ray photons within a single pulse. We developed a Michelson type delay pulse generator using a soft x-ray beam splitter to measure the intensity correlation of x-ray speckles from materials and succeeded in generating double coherent x-ray pulses with picosecond delay times. Moreover, we employed a high-speed soft x-ray streak camera for the picosecond time-resolved measurement of x-ray speckles caused by double coherent x-ray pulse illumination. We performed the x-ray speckle intensity correlation measurements for probing the relaxation phenomena of polarizations in polarization clusters in the paraelectric phase of the ferroelectric material BaTiO(3) near its Curie temperature and verified its performance.

  14. Measuring the X-ray luminosities of SDSS DR7 clusters from ROSAT All Sky Survey

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Yang, Xiaohu; Shen, Shiyin; Mo, H. J.; van den Bosch, Frank C.; Luo, Wentao; Wang, Yu; Lau, Erwin T.; Wang, Q. D.; Kang, Xi; Li, Ran

    2014-03-01

    We use ROSAT All Sky Survey broad-band X-ray images and the optical clusters identified from Sloan Digital Sky Survey Data Release 7 to estimate the X-ray luminosities around ˜65 000 candidate clusters with masses ≳ 1013 h- 1 M⊙ based on an optical to X-ray (OTX) code we develop. We obtain a catalogue with X-ray luminosity for each cluster. This catalogue contains 817 clusters (473 at redshift z ≤ 0.12) with signal-to-noise ratio >3 in X-ray detection. We find about 65 per cent of these X-ray clusters have their most massive member located near the X-ray flux peak; for the rest 35 per cent, the most massive galaxy is separated from the X-ray peak, with the separation following a distribution expected from a Navarro-Frenk-White profile. We investigate a number of correlations between the optical and X-ray properties of these X-ray clusters, and find that the cluster X-ray luminosity is correlated with the stellar mass (luminosity) of the clusters, as well as with the stellar mass (luminosity) of the central galaxy and the mass of the halo, but the scatter in these correlations is large. Comparing the properties of X-ray clusters of similar halo masses but having different X-ray luminosities, we find that massive haloes with masses ≳ 1014 h- 1 M⊙ contain a larger fraction of red satellite galaxies when they are brighter in X-ray. An opposite trend is found in central galaxies in relative low-mass haloes with masses ≲ 1014 h- 1 M⊙ where X-ray brighter clusters have smaller fraction of red central galaxies. Clusters with masses ≳ 1014 h- 1 M⊙ that are strong X-ray emitters contain many more low-mass satellite galaxies than weak X-ray emitters. These results are also confirmed by checking X-ray clusters of similar X-ray luminosities but having different characteristic stellar masses. A cluster catalogue containing the optical properties of member galaxies and the X-ray luminosity is available at http://gax.shao.ac.cn/data/Group.html.

  15. Simultaneous Monitoring of X-Ray and Radio Variability in Sagittarius A*

    NASA Astrophysics Data System (ADS)

    Capellupo, Daniel M.; Haggard, Daryl; Choux, Nicolas; Baganoff, Fred; Bower, Geoffrey C.; Cotton, Bill; Degenaar, Nathalie; Dexter, Jason; Falcke, Heino; Fragile, P. Chris; Heinke, Craig O.; Law, Casey J.; Markoff, Sera; Neilsen, Joey; Ponti, Gabriele; Rea, Nanda; Yusef-Zadeh, Farhad

    2017-08-01

    Monitoring of Sagittarius A* from X-ray to radio wavelengths has revealed structured variability—including X-ray flares—but it is challenging to establish correlations between them. Most studies have focused on variability in the X-ray and infrared, where variations are often simultaneous, and because long time series at submillimeter and radio wavelengths are limited. Previous work on submillimeter and radio variability hints at a lag between X-ray flares and their candidate submillimeter or radio counterparts, with the long wavelength data lagging the X-ray. However, there is only one published time lag between an X-ray flare and a possible radio counterpart. Here we report nine contemporaneous X-ray and radio observations of Sgr A*. We detect significant radio variability peaking ≳ 176 minutes after the brightest X-ray flare ever detected from Sgr A*. We also report other potentially associated X-ray and radio variability, with the radio peaks appearing ≲ 80 minutes after these weaker X-ray flares. Taken at face value, these results suggest that stronger X-ray flares lead to longer time lags in the radio. However, we also test the possibility that the variability at X-ray and radio wavelengths is not temporally correlated. We cross-correlate data from mismatched X-ray and radio epochs and obtain comparable correlations to the matched data. Hence, we find no overall statistical evidence that X-ray flares and radio variability are correlated, underscoring a need for more simultaneous, long duration X-ray-radio monitoring of Sgr A*.

  16. Hetero-site-specific X-ray pump-probe spectroscopy for femtosecond intramolecular dynamics

    DOE PAGES

    Picón, A.; Lehmann, C. S.; Bostedt, C.; ...

    2016-05-23

    New capabilities at X-ray free-electron laser facilities allow the generation of two-colour femtosecond X-ray pulses, opening the possibility of performing ultrafast studies of X-ray-induced phenomena. Specifically, the experimental realization of hetero-site-specific X-ray-pump/X-ray-probe spectroscopy is of special interest, in which an X-ray pump pulse is absorbed at one site within a molecule and an X-ray probe pulse follows the X-ray-induced dynamics at another site within the same molecule. In this paper, we show experimental evidence of a hetero-site pump-probe signal. By using two-colour 10-fs X-ray pulses, we are able to observe the femtosecond time dependence for the formation of F ionsmore » during the fragmentation of XeF 2 molecules following X-ray absorption at the Xe site.« less

  17. 78 FR 70027 - Senior Executive Service; Performance Review Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-22

    .... SYKES, MERLE L. SYNAKOWSKI, EDMUND J. TALBOT JR, GERALD L. TAYLOR, CHARLES W. THOMPSON, MICHAEL A..., WILLIAM N. BURROWS, CHARLES W. BUTTRESS, LARRY D. CADIEUX, GENA E. CALBOS, PHILIP T. CALLAHAN, SAMUEL N..., JAMES MELBOURN DURANT, CHARLES K. ECKROADE, WILLIAM A. EDWARDS III, ROBERT E. EHLI, CATHY L. ELKIND...

  18. Dual energy scanning beam laminographic x-radiography

    DOEpatents

    Majewski, Stanislaw; Wojcik, Randolph F.

    1998-01-01

    A multiple x-ray energy level imaging system includes a scanning x-ray beam and two detector design having a first low x-ray energy sensitive detector and a second high x-ray energy sensitive detector. The low x-ray energy detector is placed next to or in front of the high x-ray energy detector. The low energy sensitive detector has small stopping power for x-rays. The lower energy x-rays are absorbed and converted into electrical signals while the majority of the higher energy x-rays pass through undetected. The high energy sensitive detector has a large stopping power for x-rays as well as it having a filter placed between it and the object to absorb the lower energy x-rays. In a second embodiment; a single energy sensitive detector is provided which provides an output signal proportional to the amount of energy in each individual x-ray it absorbed. It can then have an electronic threshold or thresholds set to select two or more energy ranges for the images. By having multiple detectors located at different positions, a dual energy laminography system is possible.

  19. Dual energy scanning beam laminographic x-radiography

    DOEpatents

    Majewski, S.; Wojcik, R.F.

    1998-04-21

    A multiple x-ray energy level imaging system includes a scanning x-ray beam and two detector design having a first low x-ray energy sensitive detector and a second high x-ray energy sensitive detector. The low x-ray energy detector is placed next to or in front of the high x-ray energy detector. The low energy sensitive detector has small stopping power for x-rays. The lower energy x-rays are absorbed and converted into electrical signals while the majority of the higher energy x-rays pass through undetected. The high energy sensitive detector has a large stopping power for x-rays as well as it having a filter placed between it and the object to absorb the lower energy x-rays. In a second embodiment; a single energy sensitive detector is provided which provides an output signal proportional to the amount of energy in each individual x-ray it absorbed. It can then have an electronic threshold or thresholds set to select two or more energy ranges for the images. By having multiple detectors located at different positions, a dual energy laminography system is possible. 6 figs.

  20. X-ray lithography using holographic images

    DOEpatents

    Howells, Malcolm R.; Jacobsen, Chris

    1995-01-01

    A non-contact X-ray projection lithography method for producing a desired X-ray image on a selected surface of an X-ray-sensitive material, such as photoresist material on a wafer, the desired X-ray image having image minimum linewidths as small as 0.063 .mu.m, or even smaller. A hologram and its position are determined that will produce the desired image on the selected surface when the hologram is irradiated with X-rays from a suitably monochromatic X-ray source of a selected wavelength .lambda.. On-axis X-ray transmission through, or off-axis X-ray reflection from, a hologram may be used here, with very different requirements for monochromaticity, flux and brightness of the X-ray source. For reasonable penetration of photoresist materials by X-rays produced by the X-ray source, the wavelength X, is preferably chosen to be no more than 13.5 nm in one embodiment and more preferably is chosen in the range 1-5 nm in the other embodiment. A lower limit on linewidth is set by the linewidth of available microstructure writing devices, such as an electron beam.

  1. Preliminary physical stratigraphy, biostratigraphy, and geophysical data of the USGS South Dover Bridge Core, Talbot County, Maryland

    USGS Publications Warehouse

    Alemán González, Wilma B.; Powars, David S.; Seefelt, Ellen L.; Edwards, Lucy E.; Self-Trail, Jean M.; Durand, Colleen T.; Schultz, Arthur P.; McLaughlin, Peter P.

    2012-01-01

    The South Dover Bridge (SDB) corehole was drilled in October 2007 in Talbot County, Maryland. The main purpose for drilling this corehole was to characterize the Upper Cretaceous and Paleogene lithostratigraphy and biostratigraphy of the aquifers and confining units of this region. The data obtained from this core also will be used as a guide to geologic mapping and to help interpret well data from the eastern part of the Washington East 1:100,000-scale map near the town of Easton, Md. Core drilling was conducted to a depth of 700 feet (ft). The Cretaceous section was not penetrated due to technical problems during drilling. This project was funded by the U.S. Geological Survey’s (USGS) Eastern Geology and Paleoclimate Science Center (EGPSC) as part of the Geology of the Atlantic Watersheds Project; this project was carried out in cooperation with the Maryland Geological Survey (MGS) through partnerships with the Aquifer Characterization Program of the USGS’s Maryland-Delaware-District of Columbia Water Science Center and the National Cooperative Geologic Mapping Program. The SDB corehole was drilled by the USGS drilling crew in the northeastern corner of the Trappe 7.5-minute quadrangle, near the type locality of the Boston Cliffs member of the Choptank Formation. Geophysical logs (gamma ray, single point resistance, and 16-inch and 64-inch normal resistivity) were run to a depth of 527.5 ft; the total depth of 700.0 ft could not be reached because of the collapse of the lower part of the hole. Of the 700.0 ft drilled, 531.8 ft of core were recovered, representing a 76 percent core recovery. The elevation of the top of the corehole is approximately 12 ft above mean sea level; its coordinates are lat 38°44′49.34″N. and long 76°00′25.09″W. (38.74704N., 76.00697W. in decimal degrees). A groundwater monitoring well was not installed at this site. The South Dover Bridge corehole was the first corehole that will be used to better understand the geology and hydrology of the Maryland Eastern Shore.

  2. X-Ray Detector for 1 to 30 keV

    NASA Technical Reports Server (NTRS)

    Alcorn, G.; Jackson, J., Jr; Grant, P.; Marshall, F.

    1983-01-01

    Array of silicon X-ray detecting diodes measures photon energy and provides image of X-ray pattern. Regardless of thickness of new X-ray detector, depletion region extends through it. Impinging X-rays generate electrons in quantities proportional to X-ray energy. X-ray detector is mated to chargecoupled-device array for image generation and processing. Useful in industrial part inspection, pulsed-plasma research and medical application.

  3. The BL LAC phenomenon: X-ray observations of transition objects and determination of the x-ray spectrum of a complete sample of flat-spectrum radio sources

    NASA Technical Reports Server (NTRS)

    Worrall, Diana M.

    1994-01-01

    This report summarizes the activities related to two ROSAT investigations: (1) x-ray properties of radio galaxies thought to contain BL Lac type nuclei; and (2) x-ray spectra of a complete sample of flat-spectrum radio sources. The following papers describing the research are provided as attachments: Multiple X-ray Emission Components in Low Power Radio Galaxies; New X-ray Results on Radio Galaxies; Analysis Techniques for a Multiwavelength Study of Radio Galaxies; Separation of X-ray Emission Components in Radio Galaxies; X-ray Emission in Powerful Radio Galaxies and Quasars; Extended and Compact X-ray Emission in Powerful Radio Galaxies; and X-ray Spectra of a Complete Sample of Extragalactic Core-dominated Radio Sources.

  4. Automatic tool alignment in a backscatter X-ray scanning system

    DOEpatents

    Garretson, Justin; Hobart, Clinton G.; Gladwell, Thomas S.; Monda, Mark J.

    2015-11-17

    Technologies pertaining to backscatter x-ray scanning systems are described herein. The backscatter x-ray scanning system includes an x-ray source, which directs collimated x-rays along a plurality of output vectors towards a target. A detector detects diffusely reflected x-rays subsequent to respective collimated x-rays impacting the target, and outputs signals indicative of parameters of the detected x-rays. An image processing system generates an x-ray image based upon parameters of the detected x-rays, wherein each pixel in the image corresponds to a respective output vector. A user selects a particular portion of the image, and a medical device is positioned such that its directional axis is coincident with the output vector corresponding to at least one pixel in the portion of the image.

  5. Automatic tool alignment in a backscatter x-ray scanning system

    DOEpatents

    Garretson, Justin; Hobart, Clinton G.; Gladwell, Thomas S.; Monda, Mark J.

    2015-06-16

    Technologies pertaining to backscatter x-ray scanning systems are described herein. The backscatter x-ray scanning system includes an x-ray source, which directs collimated x-rays along a plurality of output vectors towards a target. A detector detects diffusely reflected x-rays subsequent to respective collimated x-rays impacting the target, and outputs signals indicative of parameters of the detected x-rays. An image processing system generates an x-ray image based upon parameters of the detected x-rays, wherein each pixel in the image corresponds to a respective output vector. A user selects a particular portion of the image, and a tool is positioned such that its directional axis is coincident with the output vector corresponding to at least one pixel in the portion of the image.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Picón, A.; Lehmann, C. S.; Bostedt, C.

    New capabilities at X-ray free-electron laser facilities allow the generation of two-colour femtosecond X-ray pulses, opening the possibility of performing ultrafast studies of X-ray-induced phenomena. Specifically, the experimental realization of hetero-site-specific X-ray-pump/X-ray-probe spectroscopy is of special interest, in which an X-ray pump pulse is absorbed at one site within a molecule and an X-ray probe pulse follows the X-ray-induced dynamics at another site within the same molecule. In this paper, we show experimental evidence of a hetero-site pump-probe signal. By using two-colour 10-fs X-ray pulses, we are able to observe the femtosecond time dependence for the formation of F ionsmore » during the fragmentation of XeF 2 molecules following X-ray absorption at the Xe site.« less

  7. X-ray Monitoring of eta Carinae: Variations on a Theme

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.

    2004-01-01

    We present monitoring observations by the Rossi X-ray Timing Explorer of the 2-10 keV X-ray emission from the supermassive star eta Carinae from 1996 through late 2003. These data cover more than one of the stellar variability cycles in temporal detail and include especially detailed monitoring through two X-ray minima. We compare the current X-ray minimum which began on June 29, 2003 to the previous X-ray minimum which began on December 15, 1997, and refine the X-ray period to 2024 days. We examine the variations in the X-ray spectrum with phase and with time, and also refine our understanding of the X-ray peaks which have a quasi-period of 84 days, with significant variation. Cycle-to-cycle differences are seen in the level of X-ray intensity and in the detailed variations of the X-ray flux on the rise to maximum just prior to the X-ray minimum. Despite these differences the similarities between the decline to minimum, the duration of the minimum, and correlated variations of the X-ray flux and other measures throughout the electromagnetic spectrum leave little doubt that that the X-ray variation is strictly periodic and produced by orbital motion as the wind from eta Carinae collides with the wind of an otherwise unseen companion.

  8. A Comparative View of X-rays from the Solar System

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Anil; Elsner, Ron; Gladstone, Randy; Cravens, Tom; Waite, Hunter; Branduardi-Raymont, Graziella; Ostgaard, Nikolai; Dennerl, Konrad; Lisse, Carey; Kharchenko, Vasili

    2005-01-01

    With the advent of sophisticated X-ray observatories, viz., Chandra and XMM-Newton, the field of planetary X-ray astronomy is advancing at a faster pace. Several new solar system objects are now know to shine in X-rays at energies generally below 2 keV. Jupiter, Saturn, and Earth, all three magnetized planets, have been observed by Chandra and XMM-Newton. At Jupiter, both auroral and non-auroral disk X-ray emissions have been observed. The first soft X-ray observation of Earth's aurora by Chandra shows that it is highly variable. X-rays have been detected from Saturn's disk, but no convincing evidence of X-ray aurora has been seen. Several comets have been observed in X-rays by Chandra and XMM-Newton. Cometary X-rays are produced due to change exchange of solar wind ions with cold cometary neutrals. Soft X-rays have also been observed from Venus, Mars, Moon, Io, Europa, Io plasma torus, and heliosphere. The non-auroral X-ray emissions from Jupiter, Saturn, and Earth, and those from sunlit disk of Mars, Venus, and Moon are produced due to scattering of solar X-rays. The spectral characteristics of X-ray emission from comets, heliosphere, darkside of Moon, and Martian halo are quite similar, but they appear to be quite different from those of Jovian auroral X-rays. The X- ray aurora on Earth is generated by electron bremsstrahlung and on Jupiter by precipitation of highly-ionized energetic heavy ions. In this paper we will present a comparative overview of X-ray emission from different solar system objects and make an attempt to synthesize a coherent picture.

  9. The cool component and the dichotomy, lateral expansion, and axial rotation of solar X-ray jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Ronald L.; Sterling, Alphonse C.; Falconer, David A.

    2013-06-01

    We present results from a study of 54 polar X-ray jets that were observed in coronal X-ray movies from the X-ray Telescope on Hinode and had simultaneous coverage in movies of the cooler transition region (T ∼ 10{sup 5} K) taken in the He II 304 Å band of the Atmospheric Imaging Assembly (AIA) on Solar Dynamics Observatory. These dual observations verify the standard-jet/blowout-jet dichotomy of polar X-ray jets previously found primarily from XRT movies alone. In accord with models of blowout jets and standard jets, the AIA 304 Å movies show a cool (T ∼ 10{sup 5} K) componentmore » in nearly all blowout X-ray jets and in a small minority of standard X-ray jets, obvious lateral expansion in blowout X-ray jets but none in standard X-ray jets, and obvious axial rotation in both blowout X-ray jets and standard X-ray jets. In our sample, the number of turns of axial rotation in the cool-component standard X-ray jets is typical of that in the blowout X-ray jets, suggesting that the closed bipolar magnetic field in the jet base has substantial twist not only in all blowout X-ray jets but also in many standard X-ray jets. We point out that our results for the dichotomy, lateral expansion, and axial rotation of X-ray jets add credence to published speculation that type-II spicules are miniature analogs of X-ray jets, are generated by granule-size emerging bipoles, and thereby carry enough energy to power the corona and solar wind.« less

  10. Establishing nonlinearity thresholds with ultraintense X-ray pulses

    NASA Astrophysics Data System (ADS)

    Szlachetko, Jakub; Hoszowska, Joanna; Dousse, Jean-Claude; Nachtegaal, Maarten; Błachucki, Wojciech; Kayser, Yves; Sà, Jacinto; Messerschmidt, Marc; Boutet, Sebastien; Williams, Garth J.; David, Christian; Smolentsev, Grigory; van Bokhoven, Jeroen A.; Patterson, Bruce D.; Penfold, Thomas J.; Knopp, Gregor; Pajek, Marek; Abela, Rafael; Milne, Christopher J.

    2016-09-01

    X-ray techniques have evolved over decades to become highly refined tools for a broad range of investigations. Importantly, these approaches rely on X-ray measurements that depend linearly on the number of incident X-ray photons. The advent of X-ray free electron lasers (XFELs) is opening the ability to reach extremely high photon numbers within ultrashort X-ray pulse durations and is leading to a paradigm shift in our ability to explore nonlinear X-ray signals. However, the enormous increase in X-ray peak power is a double-edged sword with new and exciting methods being developed but at the same time well-established techniques proving unreliable. Consequently, accurate knowledge about the threshold for nonlinear X-ray signals is essential. Herein we report an X-ray spectroscopic study that reveals important details on the thresholds for nonlinear X-ray interactions. By varying both the incident X-ray intensity and photon energy, we establish the regimes at which the simplest nonlinear process, two-photon X-ray absorption (TPA), can be observed. From these measurements we can extract the probability of this process as a function of photon energy and confirm both the nature and sub-femtosecond lifetime of the virtual intermediate electronic state.

  11. X-Ray Data Booklet

    Science.gov Websites

    X-RAY DATA BOOKLET Center for X-ray Optics and Advanced Light Source Lawrence Berkeley National Laboratory Introduction X-Ray Properties of Elements Electron Binding Energies X-Ray Energy Emission Energies Table of X-Ray Properties Synchrotron Radiation Characteristics of Synchrotron Radiation History of X

  12. Simulation tools for analyzer-based x-ray phase contrast imaging system with a conventional x-ray source

    NASA Astrophysics Data System (ADS)

    Caudevilla, Oriol; Zhou, Wei; Stoupin, Stanislav; Verman, Boris; Brankov, J. G.

    2016-09-01

    Analyzer-based X-ray phase contrast imaging (ABI) belongs to a broader family of phase-contrast (PC) X-ray imaging modalities. Unlike the conventional X-ray radiography, which measures only X-ray absorption, in PC imaging one can also measures the X-rays deflection induced by the object refractive properties. It has been shown that refraction imaging provides better contrast when imaging the soft tissue, which is of great interest in medical imaging applications. In this paper, we introduce a simulation tool specifically designed to simulate the analyzer-based X-ray phase contrast imaging system with a conventional polychromatic X-ray source. By utilizing ray tracing and basic physical principles of diffraction theory our simulation tool can predicting the X-ray beam profile shape, the energy content, the total throughput (photon count) at the detector. In addition we can evaluate imaging system point-spread function for various system configurations.

  13. Full-field transmission x-ray imaging with confocal polycapillary x-ray optics

    PubMed Central

    Sun, Tianxi; MacDonald, C. A.

    2013-01-01

    A transmission x-ray imaging setup based on a confocal combination of a polycapillary focusing x-ray optic followed by a polycapillary collimating x-ray optic was designed and demonstrated to have good resolution, better than the unmagnified pixel size and unlimited by the x-ray tube spot size. This imaging setup has potential application in x-ray imaging for small samples, for example, for histology specimens. PMID:23460760

  14. Is 4C+29.48 a γ-ray source?

    NASA Astrophysics Data System (ADS)

    Gabányi, K. É.; Frey, S.; An, T.

    2018-05-01

    Context. The Fermi Large Area Telescope revealed that the extragalactic γ-ray sky is dominated by blazars, active galactic nuclei (AGN) whose jet is seen at very small angle to the line of sight. To associate and then classify the γ-ray sources, data have been collected from lower frequency surveys and observations. Since those have superior angular resolution and positional accuracy compared to the γ-ray observations, some associations are not straightforward. Aims: The γ-ray source 3FGL J1323.0+2942 is associated with the radio source 4C+29.48 and classified as a blazar of unknown type, lacking optical spectrum and redshift. The higher-resolution radio data showed that 4C+29.48 comprises three bright radio-emitting features located within a 1'-diameter area. We aim to reveal their nature and pinpoint the origin of the γ-ray emission. Methods: We (re-)analyzed archival Very Large Array (VLA) and unpublished very long baseline interferometry (VLBI) observations conducted by the Very Long Baseline Array (VLBA) and the European VLBI Network of 4C+29.48. We also collected data form optical, infrared and X-ray surveys. Results: According to the VLBI data, the northernmost complex of 4C+29.48 contains a blazar with a high brightness temperature compact core and a steep-spectrum jet feature. The blazar is positionally coincident with an optical source at a redshift of 1.142. Its mid-infrared colors also support its association with a γ-ray emitting blazar. The two other radio complexes have steep radio spectra similar to AGN-related lobes and do not have optical or infrared counterparts in currently available surveys. Based on the radio morphology, they are unlikely to be related to the blazar. There is an optical source between the two radio features, also detected in infrared wavebands. We discuss the possibilities whether the two radio features are lobes of a radio galaxy, or gravitationally lensed images of a background source. Conclusions: We propose to associate the γ-ray source 3FGL J1323.0+2942 in subsequent versions of the Fermi catalog with the blazar residing in northernmost complex. We suggest naming this radio source J1323+2941A to avoid misinterpretation arising from the fact that the coordinates of the currently listed radio counterpart 4C+29.48 is closer to a most probably unrelated radio source.

  15. Review of the applications of x-ray refraction and the x-ray waveguide phenomenon to estimation of film structures.

    PubMed

    Hayashi, Kouichi

    2010-12-01

    Based on our previous work, I review the applications of x-ray refraction and the x-ray waveguide phenomenon to organic and inorganic thin films in the present paper. Under grazing incidence conditions, observations of refracted x-rays and guided x-rays due to the x-ray waveguide phenomenon provide information about thin film structures, and thus have potential as alternative methods to x-ray reflectivity. To date, we have measured the spectra of the refracted x-rays and guided x-rays from end faces of thin films using white incident x-ray beams, and utilized them for the determination of film density and thickness. Some of this work is summarized in the present paper. At the end of this paper, I describe our recent achievement in this field, namely the in situ measurement of guided x-rays during the film degradation process due to strong synchrotron radiation damage. Moreover, I discuss the perspective of the present technique from the viewpoint of micro-characterization and real-time estimation of thin films.

  16. Silicon trench photodiodes on a wafer for efficient X-ray-to-current signal conversion using side-X-ray-irradiation mode

    NASA Astrophysics Data System (ADS)

    Ariyoshi, Tetsuya; Takane, Yuta; Iwasa, Jumpei; Sakamoto, Kenji; Baba, Akiyoshi; Arima, Yutaka

    2018-04-01

    In this paper, we report a direct-conversion-type X-ray sensor composed of trench-structured silicon photodiodes, which achieves a high X-ray-to-current conversion efficiency under side X-ray irradiation. The silicon X-ray sensor with a length of 22.6 mm and a trench depth of 300 µm was fabricated using a single-poly single-metal 0.35 µm process. X-rays with a tube voltage of 80 kV were irradiated along the trench photodiode from the side of the test chip. The theoretical limit of X-ray-to-current conversion efficiency of 83.8% was achieved at a low reverse bias voltage of 25 V. The X-ray-to-electrical signal conversion efficiency of conventional indirect-conversion-type X-ray sensors is about 10%. Therefore, the developed sensor has a conversion efficiency that is about eight times higher than that of conventional sensors. It is expected that the developed X-ray sensor will be able to markedly lower the radiation dose required for X-ray diagnoses.

  17. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    DOE PAGES

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; ...

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~10 6 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >10 7 laser pulses, wemore » also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.« less

  18. Soft X-Ray Emissions from Planets and Moons

    NASA Technical Reports Server (NTRS)

    Bhardwaj, A.; Gladstone, G. R.; Elsner, R. F.; Waite, J. H., Jr.; Grodent, D.; Lewis, W. S.; Crary, F. J.; Weisskopf, M. C.; Howell, R. R.; Johnson, R. E.; hide

    2002-01-01

    The soft x-ray energy band (less than 4 keV) is an important spectral regime for planetary remote sensing, as a wide variety of solar system objects are now known to shine at these wavelengths. These include Earth, Jupiter, comets, moons, Venus, and the Sun. Earth and Jupiter, as magnetic planets, are observed to emanate strong x-ray emissions from their auroral (polar) regions, thus providing vital information on the nature of precipitating particles and their energization processes in planetary magnetospheres. X rays from low latitudes have also been observed on these planets, resulting largely from atmospheric scattering and fluorescence of solar x-rays. Cometary x-rays are now a well established phenomena, more than a dozen comets have been observed at soft x-ray energies, with the accepted production mechanism being charge-exchange between heavy solar wind ions and cometary neutrals. Also, Lunar x-rays have been observed and are thought to be produced by scattering and fluorescence of solar x-rays from the Moon's surface. With the advent of sophisticated x-ray observatories, e.g., Chandra and XMM-Newton, the field of planetary x-ray astronomy is advancing at a much faster pace. The Chandra X-ray Observatory (CXO) has recently captured soft x-rays from Venus. Venusian x-rays are most likely produced through fluorescence of solar x-rays by C and O atoms in the upper atmosphere. Very recently, using CXO we have discovered soft x-rays from the moons of Jupiter-Io, Europa, and probably Ganymede. The plausible source of the x-rays from the Galilean satellites is bombardment of their surfaces by energetic (greater than 10 KeV) ions from the inner magnetosphere of Jupiter. The Io plasma Torus (IPT) is also discovered by CXO to be a source of soft x-rays by CXO have revealed a mysterious pulsating (period approx. 45 minutes) x-ray hot spot is fixed in magnetic latitude and longitude and is magnetically connected to a region in the outer magnetosphere of Jupiter. These surprising results have called into question our understanding of Jovian auroral x-rays. In this paper, we will present a comparative view of the x-ray observations on planets, comets, and moons, with emphasis on recent results from CXO, and discuss the proposed source mechanisms.

  19. Non Destructive 3D X-Ray Imaging of Nano Structures & Composites at Sub-30 NM Resolution, With a Novel Lab Based X-Ray Microscope

    DTIC Science & Technology

    2006-11-01

    NON DESTRUCTIVE 3D X-RAY IMAGING OF NANO STRUCTURES & COMPOSITES AT SUB-30 NM RESOLUTION, WITH A NOVEL LAB BASED X- RAY MICROSCOPE S H Lau...article we describe a 3D x-ray microscope based on a laboratory x-ray source operating at 2.7, 5.4 or 8.0 keV hard x-ray energies. X-ray computed...tomography (XCT) is used to obtain detailed 3D structural information inside optically opaque materials with sub-30 nm resolution. Applications include

  20. Evolution of Cygnus X-3 through its Radio and X-ray States

    NASA Astrophysics Data System (ADS)

    Szostek, A.; Zdziarski, A. A.; McCollough, M. L.

    2009-05-01

    Based on X-ray spectra and studies of the long-term correlated behavior between radio and soft X-ray, we present a detailed evolution of Cyg X-3 through its radio and X-ray states. We comment on the nature of the hard X-ray tail and possible Simbol X contribution in constraining the models.

  1. Low-Energy Microfocus X-Ray Source for Enhanced Testing Capability in the Stray Light Facility

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica; O'Dell, Stephen; Kolodziejczak, Jeff

    2015-01-01

    Research toward high-resolution, soft x-ray optics (mirrors and gratings) necessary for the next generation large x-ray observatories requires x-ray testing using a low-energy x-ray source with fine angular size (<1 arcsecond). To accommodate this somewhat demanding requirement, NASA Marshall Space Flight Center (MSFC) has procured a custom, windowless low-energy microfocus (approximately 0.1 mm spot) x-ray source from TruFocus Corporation that mates directly to the Stray Light Facility (SLF). MSFC X-ray Astronomy team members are internationally recognized for their expertise in the development, fabrication, and testing of grazing-incidence optics for x-ray telescopes. One of the key MSFC facilities for testing novel x-ray instrumentation is the SLF. This facility is an approximately 100-m-long beam line equipped with multiple x-ray sources and detectors. This new source adds to the already robust compliment of instrumentation, allowing MSFC to support additional internal and community x-ray testing needs.

  2. A search for X-ray polarization in cosmic X-ray sources. [binary X-ray sources and supernovae remnants

    NASA Technical Reports Server (NTRS)

    Hughes, J. P.; Long, K. S.; Novick, R.

    1983-01-01

    Fifteen strong X-ray sources were observed by the X-ray polarimeters on board the OSO-8 satellite from 1975 to 1978. The final results of this search for X-ray polarization in cosmic sources are presented in the form of upper limits for the ten sources which are discussed elsewhere. These limits in all cases are consistent with a thermal origin for the X-ray emission.

  3. X-ray lithography masking

    NASA Technical Reports Server (NTRS)

    Smith, Henry I. (Inventor); Lim, Michael (Inventor); Carter, James (Inventor); Schattenburg, Mark (Inventor)

    1998-01-01

    X-ray masking apparatus includes a frame having a supporting rim surrounding an x-ray transparent region, a thin membrane of hard inorganic x-ray transparent material attached at its periphery to the supporting rim covering the x-ray transparent region and a layer of x-ray opaque material on the thin membrane inside the x-ray transparent region arranged in a pattern to selectively transmit x-ray energy entering the x-ray transparent region through the membrane to a predetermined image plane separated from the layer by the thin membrane. A method of making the masking apparatus includes depositing back and front layers of hard inorganic x-ray transparent material on front and back surfaces of a substrate, depositing back and front layers of reinforcing material on the back and front layers, respectively, of the hard inorganic x-ray transparent material, removing the material including at least a portion of the substrate and the back layers of an inside region adjacent to the front layer of hard inorganic x-ray transparent material, removing a portion of the front layer of reinforcing material opposite the inside region to expose the surface of the front layer of hard inorganic x-ray transparent material separated from the inside region by the latter front layer, and depositing a layer of x-ray opaque material on the surface of the latter front layer adjacent to the inside region.

  4. Panoramic Dental X-Ray

    MedlinePlus

    ... Physician Resources Professions Site Index A-Z Panoramic Dental X-ray Panoramic dental x-ray uses a very small dose of ... x-ray , is a two-dimensional (2-D) dental x-ray examination that captures the entire mouth ...

  5. Growth and nonlinear optical characterization of organic single crystal films

    NASA Astrophysics Data System (ADS)

    Zhou, Ligui

    1997-12-01

    Organic single crystal films are important for various future applications in photonics and integrated optics. The conventional method for inorganic crystal growth is not suitable for organic materials, and the high temperature melting method is not good for most organic materials due to decomposition problems. We developed a new method-modified shear method-to grow large area organic single crystal thin films which have exceptional nonlinear optical properties and high quality surfaces. Several organic materials (NPP, PNP and DAST) were synthesized and purified before the thin film crystal growth. Organic single crystal thin films were grown from saturated organic solutions using modified shear method. The area of single crystal films were about 1.5 cm2 for PNP, 1 cm2 for NPP and 5 mm2 for DAST. The thickness of the thin films which could be controlled by the applied pressure ranged from 1μm to 10 μm. The single crystal thin films of organic materials were characterized by polarized microscopy, x-ray diffraction, polarized UV-Visible and polarized micro-FTIR spectroscopy. Polarized microscopy showed uniform birefringence and complete extinction with the rotation of the single crystal thin films under crossed- polarization, which indicated high quality single crystals with no scattering. The surface orientation of single crystal thin films was characterized by x-ray diffraction. The molecular orientation within the crystal was further studied by the polarized UV-Visible and Polarized micro-FTIR techniques combined with the x-ray and polarized microscopy results. A Nd:YAG laser with 35 picosecond pulses at 1064nm wavelength was employed to perform the nonlinear optical characterization of the organic single crystal thin films. Two measurement techniques were used to study the crystal films: second harmonic generation (SHG) and electro-optic (EO) effect. SHG results showed that the nonlinear optical coefficient of NPP was 18 times that of LiNbO3, a standard inorganic crystal material, and the nonlinear optical coefficient of PNP was 11 times that of LiNbO3. Electro-optic measurements showed that r11 = 65 pm/V for NPP and r12 = 350 pm/V for DAST. EO modulation effect was also observed using Fabry-Perot interferometry. Waveguide devices are very important for integrated optics. But the fabrication of waveguide devices on the organic single crystal thin films was difficult due to the solubility of the film in common organic solvents. A modified photolithographic technique was employed to make channel waveguides and poly(vinyl alcohol) (PVA) was used as a protective layer in the fabrication of the waveguides. Waveguides with dimensions about 7/mum x 1μm x 1mm were obtained.

  6. X-Pinch And Its Applications In X-ray Radiograph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou Xiaobing; Wang Xinxin; Liu Rui

    2009-07-07

    An X-pinch device and the related diagnostics of x-ray emission from X-pinch were briefly described. The time-resolved x-ray measurements with photoconducting diodes show that the x-ray pulse usually consists of two subnanosecond peaks with a time interval of about 0.5 ns. Being consistent with these two peaks of the x-ray pulse, two point x-ray sources of size ranging from 100 mum to 5 mum and depending on cut-off x-ray photon energy were usually observed on the pinhole pictures. The x-pinch was used as x-ray source for backlighting of the electrical explosion of single wire and the evolution of X-pinch, andmore » for phase-contrast imaging of soft biological objects such as a small shrimp and a mosquito.« less

  7. Method for spatially modulating X-ray pulses using MEMS-based X-ray optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin

    A method and apparatus are provided for spatially modulating X-rays or X-ray pulses using microelectromechanical systems (MEMS) based X-ray optics. A torsionally-oscillating MEMS micromirror and a method of leveraging the grazing-angle reflection property are provided to modulate X-ray pulses with a high-degree of controllability.

  8. Synchrotron Radiation from Outer Space and the Chandra X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.

    2006-01-01

    The universe provides numerous extremely interesting astrophysical sources of synchrotron X radiation. The Chandra X-ray Observatory and other X-ray missions provide powerful probes of these and other cosmic X-ray sources. Chandra is the X-ray component of NASA's Great Observatory Program which also includes the Hubble Space telescope, the Spitzer Infrared Telescope Facility, and the now defunct Compton Gamma-Ray Observatory. The Chandra X-Ray Observatory provides the best angular resolution (sub-arcsecond) of any previous, current, or planned (for the foreseeable near future) space-based X-ray instrumentation. We present here a brief overview of the technical capability of this X-Ray observatory and some of the remarkable discoveries involving cosmic synchrotron sources.

  9. Chandra reveals a black hole X-ray binary within the ultraluminous supernova remnant MF 16

    NASA Astrophysics Data System (ADS)

    Roberts, T. P.; Colbert, E. J. M.

    2003-06-01

    We present evidence, based on Chandra ACIS-S observations of the nearby spiral galaxy NGC 6946, that the extraordinary X-ray luminosity of the MF 16 supernova remnant actually arises in a black hole X-ray binary. This conclusion is drawn from the point-like nature of the X-ray source, its X-ray spectrum closely resembling the spectrum of other ultraluminous X-ray sources thought to be black hole X-ray binary systems, and the detection of rapid hard X-ray variability from the source. We briefly discuss the nature of the hard X-ray variability, and the origin of the extreme radio and optical luminosity of MF 16 in light of this identification.

  10. X-Rays from Saturn and its Rings

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Anil; Elsner, Ron F.; Waite, J. Hunter; Gladstone, G. Randall; Cravens, Tom E.; Ford, Peter G.

    2005-01-01

    In January 2004 Saturn was observed by Chandra ACIS-S in two exposures, 00:06 to 11:00 UT on 20 January and 14:32 UT on 26 January to 01:13 UT on 27 January. Each continuous observation lasted for about one full Saturn rotation. These observations detected an X-ray flare from the Saturn's disk and indicate that the entire Saturnian X-ray emission is highly variable -- a factor of $\\sim$4 variability in brightness in a week time. The Saturn X-ray flare has a time and magnitude matching feature with the solar X-ray flare, which suggests that the disk X-ray emission of Saturn is governed by processes happening on the Sun. These observations also unambiguously detected X-rays from Saturn's rings. The X-ray emissions from rings are present mainly in the 0.45-0.6 keV band centered on the atomic OK$\\alpha$ fluorescence line at 525 eV: indicating the production of X-rays due to oxygen atoms in the water icy rings. The characteristics of X-rays from Saturn's polar region appear to be statistically consistent with those from its disk X-rays, suggesting that X-ray emission from the polar cap region might be an extension of the Saturn disk X-ray emission.

  11. Establishing nonlinearity thresholds with ultraintense X-ray pulses

    DOE PAGES

    Szlachetko, Jakub; Hoszowska, Joanna; Dousse, Jean-Claude; ...

    2016-09-13

    X-ray techniques have evolved over decades to become highly refined tools for a broad range of investigations. Importantly, these approaches rely on X-ray measurements that depend linearly on the number of incident X-ray photons. The advent of X-ray free electron lasers (XFELs) is opening the ability to reach extremely high photon numbers within ultrashort X-ray pulse durations and is leading to a paradigm shift in our ability to explore nonlinear X-ray signals. However, the enormous increase in X-ray peak power is a double-edged sword with new and exciting methods being developed but at the same time well-established techniques proving unreliable.more » Consequently, accurate knowledge about the threshold for nonlinear X-ray signals is essential. Here in this paper we report an X-ray spectroscopic study that reveals important details on the thresholds for nonlinear X-ray interactions. By varying both the incident X-ray intensity and photon energy, we establish the regimes at which the simplest nonlinear process, two-photon X-ray absorption (TPA), can be observed. From these measurements we can extract the probability of this process as a function of photon energy and confirm both the nature and sub-femtosecond lifetime of the virtual intermediate electronic state.« less

  12. A highly sensitive x-ray imaging modality for hepatocellular carcinoma detection in vitro

    NASA Astrophysics Data System (ADS)

    Rand, Danielle; Walsh, Edward G.; Derdak, Zoltan; Wands, Jack R.; Rose-Petruck, Christoph

    2015-01-01

    Innovations that improve sensitivity and reduce cost are of paramount importance in diagnostic imaging. The novel x-ray imaging modality called spatial frequency heterodyne imaging (SFHI) is based on a linear arrangement of x-ray source, tissue, and x-ray detector, much like that of a conventional x-ray imaging apparatus. However, SFHI rests on a complete paradigm reversal compared to conventional x-ray absorption-based radiology: while scattered x-rays are carefully rejected in absorption-based x-ray radiology to enhance the image contrast, SFHI forms images exclusively from x-rays scattered by the tissue. In this study we use numerical processing to produce x-ray scatter images of hepatocellular carcinoma labeled with a nanoparticle contrast agent. We subsequently compare the sensitivity of SFHI in this application to that of both conventional x-ray imaging and magnetic resonance imaging (MRI). Although SFHI is still in the early stages of its development, our results show that the sensitivity of SFHI is an order of magnitude greater than that of absorption-based x-ray imaging and approximately equal to that of MRI. As x-ray imaging modalities typically have lower installation and service costs compared to MRI, SFHI could become a cost effective alternative to MRI, particularly in areas of the world with inadequate availability of MRI facilities.

  13. Report on the 18th International Conference on X-ray and Inner-Shell Processes (X99).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gemmell, D. S.; Physics

    2000-01-01

    The 18th conference of the series served as a forum for discussing fundamental issues in the field of x-ray and inner-shell processes and their application in various disciplines of science and technology. Special emphasis was given to the opportunities offered by modern synchrotron x-ray sources. The program included plenary talks, progress reports and poster presentations relating to new developments in the field of x-ray and inner-shell processes. The range of topics included: X-ray interactions with atoms, molecules, clusters, surfaces and solids; Decay processes for inner-shell vacancies; X-ray absorption and emission spectroscopy - Photoionization processes; Phenomena associated with highly charged ionsmore » and collisions with energetic particles; Electron-spin and -momentum spectroscopy; X-ray scattering and spectroscopy in the study of magnetic systems; Applications in materials science, biology, geosciences, and other disciplines; Elastic and inelastic x-ray scattering processes in atoms and molecules; Threshold phenomena (post-collision interaction, resonant Raman processes, etc.); Nuclear absorption and scattering of x-rays; 'Fourth-generation' x-ray sources; Processes exploiting the polarization and coherence properties of x-ray beams; Developments in experimental techniques (x-ray optics, temporal techniques, detectors); Microscopy, spectromicroscopy, and various imaging techniques; Non-linear processes and x-ray lasers; Ionization and excitation induced by charged particles and by x-rays; and Exotic atoms (including 'hollow' atoms and atoms that contain 'exotic' particles).« less

  14. X-ray diagnostics of massive star winds

    NASA Astrophysics Data System (ADS)

    Oskinova, L. M.; Ignace, R.; Huenemoerder, D. P.

    2017-11-01

    Observations with powerful X-ray telescopes, such as XMM-Newton and Chandra, significantly advance our understanding of massive stars. Nearly all early-type stars are X-ray sources. Studies of their X-ray emission provide important diagnostics of stellar winds. High-resolution X-ray spectra of O-type stars are well explained when stellar wind clumping is taking into account, providing further support to a modern picture of stellar winds as non-stationary, inhomogeneous outflows. X-ray variability is detected from such winds, on time scales likely associated with stellar rotation. High-resolution X-ray spectroscopy indicates that the winds of late O-type stars are predominantly in a hot phase. Consequently, X-rays provide the best observational window to study these winds. X-ray spectroscopy of evolved, Wolf-Rayet type, stars allows to probe their powerful metal enhanced winds, while the mechanisms responsible for the X-ray emission of these stars are not yet understood.

  15. X-ray filter for x-ray powder diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinsheimer, John Jay; Conley, Raymond P.; Bouet, Nathalie C. D.

    Technologies are described for apparatus, methods and systems effective for filtering. The filters may comprise a first plate. The first plate may include an x-ray absorbing material and walls defining first slits. The first slits may include arc shaped openings through the first plate. The walls of the first plate may be configured to absorb at least some of first x-rays when the first x-rays are incident on the x-ray absorbing material, and to output second x-rays. The filters may comprise a second plate spaced from the first plate. The second plate may include the x-ray absorbing material and wallsmore » defining second slits. The second slits may include arc shaped openings through the second plate. The walls of the second plate may be configured to absorb at least some of second x-rays and to output third x-rays.« less

  16. Large area soft x-ray collimator to facilitate x-ray optics testing

    NASA Technical Reports Server (NTRS)

    Espy, Samuel L.

    1994-01-01

    The first objective of this program is to design a nested conical foil x-ray optic which will collimate x-rays diverging from a point source. The collimator could then be employed in a small, inexpensive x-ray test stand which would be used to test various x-ray optics and detector systems. The second objective is to demonstrate the fabrication of the x-ray reflectors for this optic using lacquer-smoothing and zero-stress electroforming techniques.

  17. Evolution of X-ray astronomy

    NASA Technical Reports Server (NTRS)

    Rossj, B.

    1981-01-01

    The evolution of X-ray astronomy up to the launching of the Einstein observatory is presented. The evaluation proceeded through the following major steps: (1) discovery of an extrasolar X-ray source, Sco X-1, orders of magnitude stronger than astronomers believed might exist; (2) identification of a strong X-ray source with the Crab Nebula; (3) identification of Sco X-1 with a faint, peculiar optical object; (4) demonstration that X-ray stars are binary systems, each consisting of a collapsed object accreting matter from an ordinary star; (5) discovery of X-ray bursts; (6) discovery of exceedingly strong X-ray emission from active galaxies, quasars and clusters of galaxies; (7) demonstration that the principal X-ray source is a hot gas filling the space between galaxies.

  18. Inter-satellites x-ray communication system

    NASA Astrophysics Data System (ADS)

    Mou, Huan; Li, Bao-quan

    2017-02-01

    An inter-satellite X-ray communication system is presented in this paper. X-ray has a strong penetrating power without almost attenuation for transmission in outer space when the energy of X-ray photons is more than 10KeV and the atmospheric pressure is lower than 10-1 Pa, so it is convincing of x-ray communication in inter-satellite communication and deep space exploration. Additionally, using X-ray photons as information carriers can be used in some communication applications that laser communication and radio frequency (RF) communication are not available, such as ionization blackout area communication. The inter-satellites X-ray communication system, including the grid modulated X-ray source, the high-sensitivity X-ray detector and the transmitting and receiving antenna, is described explicitly. As the X-ray transmitter, a vacuum-sealed miniature modulated X-ray source has been fabricated via the single-step brazing process in a vacuum furnace. Pulse modulation of X-rays, by means of controlling the voltage value of the grid electrode, is realized. Three focusing electrodes, meanwhile, are used to make the electron beam converge and finally 150μm focusing spot diameter is obtained. The X-ray detector based on silicon avalanche photodiodes (APDs) is chosen as the communication receiver on account of its high temporal resolution and non-vacuum operating environment. Furthermore, considering x-ray emission characteristic and communication distance of X-rays, the multilayer nested rotary parabolic optics is picked out as transmitting and receiving antenna. And as a new concept of the space communication, there will be more important scientific significance and application prospects, called "Next-Generation Communications".

  19. X-ray stars observed in LAMOST spectral survey

    NASA Astrophysics Data System (ADS)

    Lu, Hong-peng; Zhang, Li-yun; Han, Xianming L.; Shi, Jianrong

    2018-05-01

    X-ray stars have been studied since the beginning of X-ray astronomy. Investigating and studying the chromospheric activity from X-ray stellar optical spectra is highly significant in providing insights into stellar magnetic activity. The big data of LAMOST survey provides an opportunity for researching stellar optical spectroscopic properties of X-ray stars. We inferred the physical properties of X-ray stellar sources from the analysis of LAMOST spectra. First, we cross-matched the X-ray stellar catalogue (12254 X-ray stars) from ARXA with LAMOST data release 3 (DR3), and obtained 984 good spectra from 713 X-ray sources. We then visually inspected and assigned spectral type to each spectrum and calculated the equivalent width (EW) of Hα line using the Hammer spectral typing facility. Based on the EW of Hα line, we found 203 spectra of 145 X-ray sources with Hα emission above the continuum. For these spectra we also measured the EWs of Hβ, Hγ, Hδ and Ca ii IRT lines of these spectra. After removing novae, planetary nebulae and OB-type stars, we found there are 127 X-ray late-type stars with Hα line emission. By using our spectra and results from the literature, we found 53 X-ray stars showing Hα variability; these objects are Classical T Tauri stars (CTTs), cataclysmic variables (CVs) or chromospheric activity stars. We also found 18 X-ray stars showing obvious emissions in the Ca ii IRT lines. Of the 18 X-ray stars, 16 are CTTs and 2 are CVs. Finally, we discussed the relationships between the EW of Hα line and X-ray flux.

  20. FERMI LARGE AREA TELESCOPE VIEW OF THE CORE OF THE RADIO GALAXY CENTAURUS A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdo, A. A.; Ackermann, M.; Ajello, M.

    2010-08-20

    We present {gamma}-ray observations with the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope of the nearby radio galaxy Centaurus A (Cen A). The previous EGRET detection is confirmed, and the localization is improved using data from the first 10 months of Fermi science operation. In previous work, we presented the detection of the lobes by the LAT; in this work, we concentrate on the {gamma}-ray core of Cen A. Flux levels as seen by the LAT are not significantly different from that found by EGRET, nor is the extremely soft LAT spectrum ({Gamma} = 2.67 {+-}more » 0.10{sub stat} {+-} 0.08{sub sys} where the photon flux is {Phi} {proportional_to} E {sup -{Gamma}}). The LAT core spectrum, extrapolated to higher energies, is marginally consistent with the non-simultaneous HESS spectrum of the source. The LAT observations are complemented by simultaneous observations from Suzaku, the Swift Burst Alert Telescope and X-ray Telescope, and radio observations with the Tracking Active Galactic Nuclei with Austral Milliarcsecond Interferometry program, along with a variety of non-simultaneous archival data from a variety of instruments and wavelengths to produce a spectral energy distribution (SED). We fit this broadband data set with a single-zone synchrotron/synchrotron self-Compton model, which describes the radio through GeV emission well, but fails to account for the non-simultaneous higher energy TeV emission observed by HESS from 2004 to 2008. The fit requires a low Doppler factor, in contrast to BL Lac objects which generally require larger values to fit their broadband SEDs. This indicates that the {gamma}-ray emission originates from a slower region than that from BL Lac objects, consistent with previous modeling results from Cen A. This slower region could be a slower moving layer around a fast spine, or a slower region farther out from the black hole in a decelerating flow. The fit parameters are also consistent with Cen A being able to accelerate ultra-high energy cosmic-rays, as hinted at by results from the Auger observatory.« less

  1. Fermi Large Area Telescope View of the Core of the Radio Galaxy Centaurus A

    NASA Astrophysics Data System (ADS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B. M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Brandt, T. J.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Cannon, A.; Caraveo, P. A.; Carrigan, S.; Casandjian, J. M.; Cavazzuti, E.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Colafrancesco, S.; Cominsky, L. R.; Conrad, J.; Costamante, L.; Davis, D. S.; Dermer, C. D.; de Angelis, A.; de Palma, F.; Silva, E. do Couto e.; Drell, P. S.; Dubois, R.; Dumora, D.; Falcone, A.; Farnier, C.; Favuzzi, C.; Fegan, S. J.; Finke, J.; Focke, W. B.; Fortin, P.; Frailis, M.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Georganopoulos, M.; Germani, S.; Giebels, B.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grandi, P.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hadasch, D.; Harding, A. K.; Hase, Hayo; Hayashida, M.; Hays, E.; Horan, D.; Hughes, R. E.; Itoh, R.; Jackson, M. S.; Jóhannesson, G.; Johnson, A. S.; Johnson, T. J.; Johnson, W. N.; Kadler, M.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kawai, N.; Kishishita, T.; Knödlseder, J.; Kuss, M.; Lande, J.; Latronico, L.; Lee, S.-H.; Lemoine-Goumard, M.; Llena Garde, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Makeev, A.; Mazziotta, M. N.; McConville, W.; McEnery, J. E.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Müller, C.; Nakamori, T.; Naumann-Godo, M.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohno, M.; Ohsugi, T.; Ojha, R.; Okumura, A.; Omodei, N.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Pagani, C.; Paneque, D.; Panetta, J. H.; Parent, D.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Piron, F.; Plötz, C.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Reposeur, T.; Ripken, J.; Ritz, S.; Rodriguez, A. Y.; Roth, M.; Ryde, F.; Sadrozinski, H. F.-W.; Sanchez, D.; Sander, A.; Scargle, J. D.; Sgrò, C.; Siskind, E. J.; Smith, P. D.; Spandre, G.; Spinelli, P.; Starck, J.-L.; Stawarz, L.; Strickman, M. S.; Suson, D. J.; Tajima, H.; Takahashi, H.; Takahashi, T.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vilchez, N.; Vitale, V.; Waite, A. P.; Wang, P.; Winer, B. L.; Wood, K. S.; Yang, Z.; Ylinen, T.; Ziegler, M.

    2010-08-01

    We present γ-ray observations with the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope of the nearby radio galaxy Centaurus A (Cen A). The previous EGRET detection is confirmed, and the localization is improved using data from the first 10 months of Fermi science operation. In previous work, we presented the detection of the lobes by the LAT; in this work, we concentrate on the γ-ray core of Cen A. Flux levels as seen by the LAT are not significantly different from that found by EGRET, nor is the extremely soft LAT spectrum (Γ = 2.67 ± 0.10stat ± 0.08sys where the photon flux is Φ vprop E -Γ). The LAT core spectrum, extrapolated to higher energies, is marginally consistent with the non-simultaneous HESS spectrum of the source. The LAT observations are complemented by simultaneous observations from Suzaku, the Swift Burst Alert Telescope and X-ray Telescope, and radio observations with the Tracking Active Galactic Nuclei with Austral Milliarcsecond Interferometry program, along with a variety of non-simultaneous archival data from a variety of instruments and wavelengths to produce a spectral energy distribution (SED). We fit this broadband data set with a single-zone synchrotron/synchrotron self-Compton model, which describes the radio through GeV emission well, but fails to account for the non-simultaneous higher energy TeV emission observed by HESS from 2004 to 2008. The fit requires a low Doppler factor, in contrast to BL Lac objects which generally require larger values to fit their broadband SEDs. This indicates that the γ-ray emission originates from a slower region than that from BL Lac objects, consistent with previous modeling results from Cen A. This slower region could be a slower moving layer around a fast spine, or a slower region farther out from the black hole in a decelerating flow. The fit parameters are also consistent with Cen A being able to accelerate ultra-high energy cosmic-rays, as hinted at by results from the Auger observatory.

  2. FERMI Large Area Telescope View of the 1 Core of the Radio Galaxy Centaurus A

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2010-07-29

    We present γ-ray observations with the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope of the nearby radio galaxy Centaurus A (Cen A). The previous EGRET detection is confirmed, and the localization is improved using data from the first 10 months of Fermi science operation. In previous work, we presented the detection of the lobes by the LAT; in this work, we concentrate on the γ-ray core of Cen A. Flux levels as seen by the LAT are not significantly different from that found by EGRET, nor is the extremely soft LAT spectrum (Γ = 2.67 ±more » 0.10 stat ± 0.08 sys where the photon flux is Φ ∝ E –Γ). The LAT core spectrum, extrapolated to higher energies, is marginally consistent with the non-simultaneous HESS spectrum of the source. The LAT observations are complemented by simultaneous observations from Suzaku, the Swift Burst Alert Telescope and X-ray Telescope, and radio observations with the Tracking Active Galactic Nuclei with Austral Milliarcsecond Interferometry program, along with a variety of non-simultaneous archival data from a variety of instruments and wavelengths to produce a spectral energy distribution (SED). Here, we fit this broadband data set with a single-zone synchrotron/synchrotron self-Compton model, which describes the radio through GeV emission well, but fails to account for the non-simultaneous higher energy TeV emission observed by HESS from 2004 to 2008. The fit requires a low Doppler factor, in contrast to BL Lac objects which generally require larger values to fit their broadband SEDs. This indicates that the γ-ray emission originates from a slower region than that from BL Lac objects, consistent with previous modeling results from Cen A. This slower region could be a slower moving layer around a fast spine, or a slower region farther out from the black hole in a decelerating flow. The fit parameters are also consistent with Cen A being able to accelerate ultra-high energy cosmic-rays, as hinted at by results from the Auger observatory.« less

  3. Single-pulse x-ray diffraction using polycapillary optics for in situ dynamic diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maddox, B. R., E-mail: maddox3@llnl.gov; Akin, M. C., E-mail: akin1@llnl.gov; Teruya, A.

    2016-08-15

    Diagnostic use of single-pulse x-ray diffraction (XRD) at pulsed power facilities can be challenging due to factors such as the high flux and brightness requirements for diffraction and the geometric constraints of experimental platforms. By necessity, the x-ray source is usually positioned very close, within a few inches of the sample. On dynamic compression platforms, this puts the x-ray source in the debris field. We coupled x-ray polycapillary optics to a single-shot needle-and-washer x-ray diode source using a laser-based alignment scheme to obtain high-quality x-ray diffraction using a single 16 ns x-ray pulse with the source >1 m from themore » sample. The system was tested on a Mo sample in reflection geometry using 17 keV x-rays from a Mo anode. We also identified an anode conditioning effect that increased the x-ray intensity by 180%. Quantitative measurements of the x-ray focal spot produced by the polycapillary yielded a total x-ray flux on the sample of 3.3 ± 0.5 × 10{sup 7} molybdenum Kα photons.« less

  4. 120 YEARS SINCE THE DISCOVERY OF X-RAYS.

    PubMed

    Babic, Rade R; Stankovic Babic, Gordana; Babic, Strahinja R; Babic, Nevena R

    2016-09-01

    This paper is intended to celebrate the 120th anniversary of the discovery of X-rays. X-rays (Roentgen-rays) were discovered on the 8th ofNovember, 1895 by the German physicist Wilhelm Conrad Roentgen. Fifty days after the discovery of X-ray, on December 28, 1895. Wilhelm Conrad Roentgen published a paper about the discovery of X-rays - "On a new kind of rays" (Wilhelm Conrad Roentgen: Ober eine neue Art von Strahlen. In: Sitzungsberichte der Wurzburger Physik.-Medic.- Gesellschaft. 1895.). Therefore, the date of 28th ofDecember, 1895 was taken as the date of X-rays discovery. This paper describes the work of Wilhelm Conrad Roentgen, Nikola Tesla, Mihajlo Pupin and Maria Sklodowska-Curie about the nature of X-rays . The fantastic four - Wilhelm Conrad Roentgen, NikolaTesla, Mihajlo ldvorski Pupin and Maria Sklodowska-Curie set the foundation of radiology with their discovery and study of X-rays. Five years after the discovery of X-rays, in 1900, Dr Avram Vinaver had the first X-ray machine installed in abac, in Serbia at the time when many developed countries did not have an X-ray machine and thus set the foundation of radiology in Serbia.

  5. The 2014 X-Ray Minimum of Eta Carinae as Seen by Swift

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.; Liburd, J.; Morris, D.; Russell, C. M. P.; Hamaguchi, K.; Gull, T. R.; Madura, T. I.; Teodoro, M.; Moffat, A. F. J.; Richardson, N. D.

    2017-01-01

    We report on Swift X-ray Telescope observations of Eta Carinae ( Car), an extremely massive, long-period, highly eccentric binary obtained during the 2014.6 X-ray minimumperiastron passage. These observations show that Car may have been particularly bright in X-rays going into the X-ray minimum state, while the duration of the 2014 X-ray minimum was intermediate between the extended minima seen in 1998.0 and 2003.5 by Rossi X-Ray Timing Explorer (RXTE), and the shorter minimum in 2009.0. The hardness ratios derived from the Swift observations showed a relatively smooth increase to a peak value occurring 40.5 days after the start of the X-ray minimum, though these observations cannot reliably measure the X-ray hardness during the deepest part of the X-ray minimum when contamination by the central constant emission component is significant. By comparing the timings of the RXTE and Swift observations near the X-ray minima, we derive an updated X-ray period of P X equals 2023.7 +/- 0.7 days, in good agreement with periods derived from observations at other wavelengths, and we compare the X-ray changes with variations in the He ii lambda 4686 emission. The middle of the Deep Minimum interval, as defined by the Swift column density variations, is in good agreement with the time of periastron passage derived from the He ii 4686 line variations.

  6. X-Ray Temperatures, Luminosities, and Masses from XMM-Newton Follow-up of the First Shear-selected Galaxy Cluster Sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deshpande, Amruta J.; Hughes, John P.; Wittman, David, E-mail: amrejd@physics.rutgers.edu, E-mail: jph@physics.rutgers.edu, E-mail: dwittman@physics.ucdavis.edu

    We continue the study of the first sample of shear-selected clusters from the initial 8.6 square degrees of the Deep Lens Survey (DLS); a sample with well-defined selection criteria corresponding to the highest ranked shear peaks in the survey area. We aim to characterize the weak lensing selection by examining the sample’s X-ray properties. There are multiple X-ray clusters associated with nearly all the shear peaks: 14 X-ray clusters corresponding to seven DLS shear peaks. An additional three X-ray clusters cannot be definitively associated with shear peaks, mainly due to large positional offsets between the X-ray centroid and the shearmore » peak. Here we report on the XMM-Newton properties of the 17 X-ray clusters. The X-ray clusters display a wide range of luminosities and temperatures; the L {sub X} − T {sub X} relation we determine for the shear-associated X-ray clusters is consistent with X-ray cluster samples selected without regard to dynamical state, while it is inconsistent with self-similarity. For a subset of the sample, we measure X-ray masses using temperature as a proxy, and compare to weak lensing masses determined by the DLS team. The resulting mass comparison is consistent with equality. The X-ray and weak lensing masses show considerable intrinsic scatter (∼48%), which is consistent with X-ray selected samples when their X-ray and weak lensing masses are independently determined.« less

  7. New contrasts for x-ray imaging and synergy with optical imaging

    NASA Astrophysics Data System (ADS)

    Wang, Ge

    2017-02-01

    Due to its penetrating power, fine resolution, unique contrast, high-speed, and cost-effectiveness, x-ray imaging is one of the earliest and most popular imaging modalities in biomedical applications. Current x-ray radiographs and CT images are mostly on gray-scale, since they reflect overall energy attenuation. Recent advances in x-ray detection, contrast agent, and image reconstruction technologies have changed our perception and expectation of x-ray imaging capabilities, and generated an increasing interest in imaging biological soft tissues in terms of energy-sensitive material decomposition, phase-contrast, small angle scattering (also referred to as dark-field), x-ray fluorescence and luminescence properties. These are especially relevant to preclinical and mesoscopic studies, and potentially mendable for hybridization with optical molecular tomography. In this article, we review new x-ray imaging techniques as related to optical imaging, suggest some combined x-ray and optical imaging schemes, and discuss our ideas on micro-modulated x-ray luminescence tomography (MXLT) and x-ray modulated opto-genetics (X-Optogenetics).

  8. Recent X-ray Variability of Eta Car Approaching The X-ray Eclipse

    NASA Technical Reports Server (NTRS)

    Corcoran, M.; Swank, J. H.; Ishibashi, K.; Gull, T.; Humphreys, R.; Damineli, A.; Walborn, N.; Hillier, D. J.; Davidson, K.; White, S. M.

    2002-01-01

    We discuss recent X-ray spectral variability of the supermassive star Eta Car in the interval since the last X-ray eclipse in 1998. We concentrate on the interval just prior to the next X-ray eclipse which is expected to occur in June 2003. We compare the X-ray behavior during the 2001-2003 cycle with the previous cycle (1996-1998) and note similarities and differences in the temporal X-ray behavior. We also compare a recent X-ray observation of Eta Car obtained with the Chandra high energy transmission grating in October 2002 with an earlier observation from Nov 2002, and interpret these results in terms of the proposed colliding wind binary model for the star. In addition we discuss planned observations for the upcoming X-ray eclipse.

  9. Development of Compton X-ray spectrometer for high energy resolution single-shot high-flux hard X-ray spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kojima, Sadaoki, E-mail: kojima-s@ile.osaka-u.ac.jp, E-mail: sfujioka@ile.osaka-u.ac.jp; Ikenouchi, Takahito; Arikawa, Yasunobu

    Hard X-ray spectroscopy is an essential diagnostics used to understand physical processes that take place in high energy density plasmas produced by intense laser-plasma interactions. A bundle of hard X-ray detectors, of which the responses have different energy thresholds, is used as a conventional single-shot spectrometer for high-flux (>10{sup 13} photons/shot) hard X-rays. However, high energy resolution (Δhv/hv < 0.1) is not achievable with a differential energy threshold (DET) X-ray spectrometer because its energy resolution is limited by energy differences between the response thresholds. Experimental demonstration of a Compton X-ray spectrometer has already been performed for obtaining higher energy resolutionmore » than that of DET spectrometers. In this paper, we describe design details of the Compton X-ray spectrometer, especially dependence of energy resolution and absolute response on photon-electron converter design and its background reduction scheme, and also its application to the laser-plasma interaction experiment. The developed spectrometer was used for spectroscopy of bremsstrahlung X-rays generated by intense laser-plasma interactions using a 200 μm thickness SiO{sub 2} converter. The X-ray spectrum obtained with the Compton X-ray spectrometer is consistent with that obtained with a DET X-ray spectrometer, furthermore higher certainly of a spectral intensity is obtained with the Compton X-ray spectrometer than that with the DET X-ray spectrometer in the photon energy range above 5 MeV.« less

  10. Effect of X-ray exposure on the pharmaceutical quality of drug tablets using X-ray inspection equipment.

    PubMed

    Uehara, Kazuaki; Tagami, Tatsuaki; Miyazaki, Itaru; Murata, Norikazu; Takahashi, Yoshifumi; Ohkubo, Hiroshi; Ozeki, Tetsuya

    2015-06-01

    X-ray inspection equipment is widely used to detect missing materials and defective goods in opaque containers. Its application has been expanded to the pharmaceutical industry to detect the presence of drug tablets in aluminum foil press-through packaging. However, the effect of X-rays on the pharmaceutical quality of drug tablets is not well known. In this study, the effect of X-rays on the pharmaceutical quality of drug tablets was investigated. Exposure of acetaminophen, loxoprofen and mefenamic acid tablets to X-ray doses of 0.34 mGy (thrice the dose by X-ray scanning) to 300 Gy (maximum dose from our X-ray equipment) was demonstrated, and the samples were evaluated by formulation tests. Exposure to X-rays did not affect the pharmaceutical quality of the drug content. The samples exposed to X-rays exhibited almost the same profile in formulation tests (dissolution test, disintegrating test and hardness test) as control samples (0 Gy). The combination of X-ray exposure with accelerated temperature and humidity tests (six months) also did not affect the pharmaceutical quality. The color change of light-sensitive drugs (nifedipine and furosemide tablets) after X-ray exposure was negligible (< 1.0). In contrast, tablet color was remarkably changed by light from a D65 lamp. The X-ray scanning and X-ray exposure under our experimental conditions did not affect the pharmaceutical quality of drug tablets.

  11. Design of a normal incidence multilayer imaging x-ray microscope.

    PubMed

    Shealy, D L; Gabardi, D R; Hoover, R B; Walker, A B; Lindblom, J F; Barbee, T W

    1989-01-01

    Normal incidence multilayer Cassegrain x-ray telescopes were flown on the Stanford/MSFC Rocket X-Ray Spectroheliograph. These instruments produced high spatial resolution images of the Sun and conclusively demonstrated that doubly reflecting multilayer x-ray optical systems are feasible. The images indicated that aplanatic imaging soft x-ray /EUV microscopes should be achievable using multilayer optics technology. We have designed a doubly reflecting normal incidence multilayer imaging x-ray microscope based on the Schwarzschild configuration. The Schwarzschild microscope utilizes two spherical mirrors with concentric radii of curvature which are chosen such that the third-order spherical aberration and coma are minimized. We discuss the design of the microscope and the results of the optical system ray trace analysis which indicates that diffraction-limited performance with 600 Å spatial resolution should be obtainable over a 1 mm field of view at a wavelength of 100 Å. Fabrication of several imaging soft x-ray microscopes based upon these designs, for use in conjunction with x-ray telescopes and laser fusion research, is now in progress. High resolution aplanatic imaging x-ray microscopes using normal incidence multilayer x-ray mirrors should have many important applications in advanced x-ray astronomical instrumentation, x-ray lithography, biological, biomedical, metallurgical, and laser fusion research.

  12. Sound velocity of 23 Å phase (a new Al-bearing hydrous Mg-silicate) to 14 GPa

    NASA Astrophysics Data System (ADS)

    Cai, N.; Chen, T.; Qi, X.; Inoue, T.; Li, B.

    2016-12-01

    Dense hydrous phases are believed to play an important role in transporting water back into the deep interior of the Earth. Recently, a new Al-bearing hydrous Mg-silicate named 23 Å phase (ideal composition Mg11Al2Si4O16(OH)12) was reported (Cai et al., 2015), which could be a very important hydrous phase in subducting slab. Here for the first time we measured the compressional and shear wave velocities of this new hydrous phase under mantle pressures. The sample was synthesized at 10 GPa and 1000 ºC using the chemical mixture of stoichiometric as starting materials. The recovered sample was then crushed into fine powder and hot pressed at 10 GPa and 900 ºC for 3 hours. X-ray diffraction, density measurement, and SEM characterization indicated that the specimen is nearly a pure phase, 20 µm in grain size, with a bulk density of 3.004 g/cm3. The acoustic measurements were conducted in a 1000-ton uniaxial split-cylinder multi-anvil apparatus using ultrasonic interferometry techniques (Li et al., 1996) up to 14 GPa at room temperature. The pressures were determined in situ by using alumina buffer rod as a pressure marker (Wang et al., 2015). A dual-mode piezoelectric transducer enables us to measure P and S wave travel times simultaneously, which in turn allows for a precise determination of the sound velocities and elastic bulk and shear moduli at high pressures. Preliminary results suggest that the velocities, (especially for S wave) of this 23 Å phase are slower than that of phase A and most of the mantle minerals. These results may have important implications for understanding some localized low velocity zones in subduction zones. Cai, N., T. Inoue, K. Fujino, H. Ohfuji and H. Yurimoto (2015) A Possible New Al-bearing Hydrous Mg-silicate (23 Å phase) in the Deep Upper Mantle. Am Mineral. 100: 2330-2335. Li, B., I. Jackson, T. Gasparik, and R. C. Liebermann (1996), Elastic wave velocity measurement in multianvil apparatus to 10 GPa using ultrasonic interferometry, Phys. Earth Planet. Inter., 98,79-91. Wang, X., T. Chen, X. Qi, Y. Zou, J. Kung, T. Yu, Y. Wang, R. C. Liebermann and B. Li (2015), Acoustic travel time gauges for in-situ determination of pressure and temperature in multi-anvil apparatus, J. Appl. Phys., 118, 065901.

  13. X-ray radiative transfer in protoplanetary disks. The role of dust and X-ray background fields

    NASA Astrophysics Data System (ADS)

    Rab, Ch.; Güdel, M.; Woitke, P.; Kamp, I.; Thi, W.-F.; Min, M.; Aresu, G.; Meijerink, R.

    2018-01-01

    Context. The X-ray luminosities of T Tauri stars are about two to four orders of magnitude higher than the luminosity of the contemporary Sun. As these stars are born in clusters, their disks are not only irradiated by their parent star but also by an X-ray background field produced by the cluster members. Aims: We aim to quantify the impact of X-ray background fields produced by young embedded clusters on the chemical structure of disks. Further, we want to investigate the importance of the dust for X-ray radiative transfer in disks. Methods: We present a new X-ray radiative transfer module for the radiation thermo-chemical disk code PRODIMO (PROtoplanetary DIsk MOdel), which includes X-ray scattering and absorption by both the gas and dust component. The X-ray dust opacities can be calculated for various dust compositions and dust-size distributions. For the X-ray radiative transfer we consider irradiation by the star and by X-ray background fields. To study the impact of X-rays on the chemical structure of disks we use the well established disk ionization tracers N2H+ and HCO+. Results: For evolved dust populations (e.g. grain growth), X-ray opacities are mostly dominated by the gas; only for photon energies E ≳ 5-10 keV do dust opacities become relevant. Consequently the local disk X-ray radiation field is only affected in dense regions close to the disk midplane. X-ray background fields can dominate the local X-ray disk ionization rate for disk radii r ≳ 20 au. However, the N2H+ and HCO+ column densities are only significantly affected in cases of low cosmic-ray ionization rates (≲10-19 s-1), or if the background flux is at least a factor of ten higher than the flux level of ≈10-5 erg cm-2 s-1 expected for clusters typical for the solar vicinity. Conclusions: Observable signatures of X-ray background fields in low-mass star-formation regions, like Taurus, are only expected for cluster members experiencing a strong X-ray background field (e.g. due to their location within the cluster). For the majority of the cluster members, the X-ray background field has relatively little impact on the disk chemical structure.

  14. Control Scheme for Quickly Starting X-ray Tube

    NASA Astrophysics Data System (ADS)

    Nakahama, Masayuki; Nakanishi, Toshiki; Ishitobi, Manabu; Ito, Tuyoshi; Hosoda, Kenichi

    A control scheme for quickly starting a portable X-ray generator used in the livestock industry is proposed in this paper. A portable X-ray generator used to take X-ray images of animals such as horses, sheep and dogs should be capable of starting quickly because it is difficult for veterinarians to take X-ray images of animals at their timing. In order to develop a scheme for starting the X-ray tube quickly, it is necessary to analysis the X-ray tube. However, such an analysis has not been discussed until now. First, the states of an X-ray tube are classified into the temperature-limited state and the space-charge-limited state. Furthermore, existence of “mixed state” that comprises both is newly proposed in this paper. From these analyses, a novel scheme for quickly starting an X-ray generator is proposed; this scheme is considered with the characteristics of the X-ray tube. The proposed X-ray system that is capable of starting quickly is evaluated on the basis of experimental results.

  15. X-ray imaging physics for nuclear medicine technologists. Part 1: Basic principles of x-ray production.

    PubMed

    Seibert, J Anthony

    2004-09-01

    The purpose is to review in a 4-part series: (i) the basic principles of x-ray production, (ii) x-ray interactions and data capture/conversion, (iii) acquisition/creation of the CT image, and (iv) operational details of a modern multislice CT scanner integrated with a PET scanner. Advances in PET technology have lead to widespread applications in diagnostic imaging and oncologic staging of disease. Combined PET/CT scanners provide the high-resolution anatomic imaging capability of CT with the metabolic and physiologic information by PET, to offer a significant increase in information content useful for the diagnostician and radiation oncologist, neurosurgeon, or other physician needing both anatomic detail and knowledge of disease extent. Nuclear medicine technologists at the forefront of PET should therefore have a good understanding of x-ray imaging physics and basic CT scanner operation, as covered by this 4-part series. After reading the first article on x-ray production, the nuclear medicine technologist will be familiar with (a) the physical characteristics of x-rays relative to other electromagnetic radiations, including gamma-rays in terms of energy, wavelength, and frequency; (b) methods of x-ray production and the characteristics of the output x-ray spectrum; (c) components necessary to produce x-rays, including the x-ray tube/x-ray generator and the parameters that control x-ray quality (energy) and quantity; (d) x-ray production limitations caused by heating and the impact on image acquisition and clinical throughput; and (e) a glossary of terms to assist in the understanding of this information.

  16. Thermodynamic reactivity, growth and characterization of mercurous halide crystals

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Gottlieb, M.; Henningsen, T.; Hopkins, R. H.; Mazelsky, R.; Singh, M.; Glicksman, M. E.; Paradies, C.

    1992-01-01

    Thermodynamic calculations were carried out for the Hg-X-O system (X = Cl, Br, I) to identify the potential sources of contamination and relative stability of oxides and oxy-halide phases. The effect of excess mercury vapor pressure on the optical quality of mercurous halide crystal was studied by growing several mercurous chloride crystals from mercury-rich composition. The optical quality of crystals was examined by birefringence interferometry and laser scattering studies. Crystals grown in slightly mercury-rich composition showed improved optical quality relative to stoichiometric crystals.

  17. Static photoelasticity of gallium phosphide crystals

    NASA Astrophysics Data System (ADS)

    Mytsyk, B. G.; Andrushchak, A. S.; Kost', Ya. P.

    2012-01-01

    The piezo-optic effect (POE) in cubic GaP crystals (symmetry class bar 43 m) is studied in detail by interferometry. The relations for determining the absolute piezo-optic coefficients (POCs) π im or their combinations on a sample of X/45° cut at all allowable geometries of the experiment are recorded. The determination of a specific coefficient π im at different experimental geometries on samples of right cuts and a X/45° cut made it possible to find the π im values with a high accuracy and reliability.

  18. Groundwater-Discharge Wetlands in the Tanana Flats, Interior Alaska

    DTIC Science & Technology

    1991-07-01

    Water *Hemlock Duckweed Bladderwort Bcba Cal a Floating Mat Water 9112214 0 1im For conversion of SI metric units to U.S./British customary units of...Utricularia sp.) and duckweed (Lemna sp,.). classified as "fens" (Gabriel and Talbot 1984). There Mosses do not appear to contribute to the structure

  19. Rehabilitation: 25 Years of Concepts, Principles, Perspectives. A Collection of Articles Published in "Rehabilitation Literature," 1959-1984.

    ERIC Educational Resources Information Center

    Regnier, Stephen J., Comp.; Petkovsek, Marian, Comp.

    Twenty-five articles from the bimonthly journal "Rehabilitation Literature" (1959-1984) are presented. The articles were chosen to represent key concepts, principles, and perspectives in rehabilitation. The following authors and titles are represented: "A Concept of Rehabilitation" (H. Talbot); "Rehabilitation: Prospect and Retrospect" (H.…

  20. Instructional Resources. The Significance of Form: The Architecture of Public Buildings.

    ERIC Educational Resources Information Center

    Talbot-Stanaway, Susan; And Others

    1989-01-01

    Presents the architecture of public buildings through a set of four lessons. (S. Talbot-Stanaway and Elizabeth Hornor). The lessons teach about the Oshkosh Grand Opera House in Oshkosh, Wisconsin; the Clayton County Library in Jonesboro, Georgia; the Pennsylvania Academy of the Fine Arts in Philadelphia, Pennsylvania; and the National Gallery of…

  1. Demystifying the Halftoning Process: Conventional, Stochastic, and Hybrid Halftone Dot Structures

    ERIC Educational Resources Information Center

    Oliver, Garth R.; Waite, Jerry J.

    2006-01-01

    For more than 150 years, printers have been faithfully reproducing continuous tone originals using halftoning techniques. For about 120 years, printers could only use the AM halftoning technique invented by Henry Talbot. In recent years, the advent of powerful raster image processors and high-resolution output devices has increased the variety of…

  2. NCI at Frederick's Wye Oak Moves Down the Street | Poster

    Cancer.gov

    One of NCI at Frederick’s two offspring of the Wye Oak tree that lived for nearly 500 years in Talbot County, Maryland, has found a new home on campus. The move was necessitated by upgrades to Chiller Plant #5 and the associated water piping routes on the west side of building 560.

  3. The Effect of Leader Attributes, Situational Context, and Participant Optimism on Trust in Outdoor Leaders

    ERIC Educational Resources Information Center

    Shooter, Wynn; Paisley, Karen; Sibthorp, Jim

    2009-01-01

    Outdoor education researchers have accumulated a notable cache of work documenting the outcomes of participation in outdoor education programs (e.g., Hattie, Marsh, Neill, & Richards, 1997; Kaplan & Talbot, 1983). While continuing this work remains an important task, some researchers are turning their attention toward understanding the process of…

  4. A Highly Sensitive X-ray Imaging Modality for Hepatocellular Carcinoma Detection in Vitro

    PubMed Central

    Rand, Danielle; Walsh, Edward G.; Derdak, Zoltan; Wands, Jack R.; Rose-Petruck, Christoph

    2015-01-01

    Innovations that improve sensitivity and reduce cost are of paramount importance in diagnostic imaging. The novel x-ray imaging modality called Spatial Frequency Heterodyne Imaging (SFHI) is based on a linear arrangement of x-ray source, tissue, and x-ray detector, much like that of a conventional x-ray imaging apparatus. However, SFHI rests on a complete paradigm reversal compared to conventional x-ray absorption-based radiology: while scattered x-rays are carefully rejected in absorption-based x-ray radiology to enhance the image contrast, SFHI forms images exclusively from x-rays scattered by the tissue. In this study we use numerical processing to produce x-ray scatter images of Hepatocellular Carcinoma (HCC) labeled with a nanoparticle contrast agent. We subsequently compare the sensitivity of SFHI in this application to that of both conventional x-ray imaging and Magnetic Resonance Imaging (MRI). Although SFHI is still in the early stages of its development, our results show that the sensitivity of SFHI is an order of magnitude greater than that of absorption-based x-ray imaging and approximately equal to that of MRI. As x-ray imaging modalities typically have lower installation and service costs compared to MRI, SFHI could become a cost effective alternative to MRI, particularly in areas of the world with inadequate availability of MRI facilities. PMID:25559398

  5. A highly sensitive x-ray imaging modality for hepatocellular carcinoma detection in vitro

    DOE PAGES

    Rand, Danielle; Walsh, Edward G.; Derdak, Zoltan; ...

    2015-01-05

    Innovations that improve sensitivity and reduce cost are of paramount importance in diagnostic imaging. The novel x-ray imaging modality called Spatial Frequency Heterodyne Imaging (SFHI) is based on a linear arrangement of x-ray source, tissue, and x-ray detector, much like that of a conventional x-ray imaging apparatus. However, SFHI rests on a complete paradigm reversal compared to conventional x-ray absorption-based radiology: while scattered x-rays are carefully rejected in absorption-based x-ray radiology to enhance the image contrast, SFHI forms images exclusively from x-rays scattered by the tissue. Here in this study we use numerical processing to produce x-ray scatter images ofmore » Hepatocellular Carcinoma (HCC) labeled with a nanoparticle contrast agent. We subsequently compare the sensitivity of SFHI in this application to that of both conventional x-ray imaging and Magnetic Resonance Imaging (MRI). Although SFHI is still in the early stages of its development, our results show that the sensitivity of SFHI is an order of magnitude greater than that of absorption-based x-ray imaging and approximately equal to that of MRI. Lastly, as x-ray imaging modalities typically have lower installation and service costs compared to MRI, SFHI could become a cost effective alternative to MRI, particularly in areas of the world with inadequate availability of MRI facilities.« less

  6. Single and double superimposing interferometer systems

    DOEpatents

    Erskine, David J.

    2000-01-01

    Interferometers which can imprint a coherent delay on a broadband uncollimated beam are described. The delay value can be independent of incident ray angle, allowing interferometry using uncollimated beams from common extended sources such as lamps and fiber bundles, and facilitating Fourier Transform spectroscopy of wide angle sources. Pairs of such interferometers matched in delay and dispersion can measure velocity and communicate using ordinary lamps, wide diameter optical fibers and arbitrary non-imaging paths, and not requiring a laser.

  7. Ray-trace analysis of glancing-incidence X-ray optical systems

    NASA Technical Reports Server (NTRS)

    Foreman, J. W., Jr.; Cardone, J. M.

    1976-01-01

    The results of a ray-trace analysis of several glancing-incidence X-ray optical systems are presented. The object of the study was threefold. First, the vignetting characteristics of the S-056 X-ray telescope were calculated using experimental data to determine mirror reflectivities. Second, a small Wolter Type I X-ray telescope intended for possible use in the Geostationary Operational Environmental Satellite program was designed and ray traced. Finally, a ray-trace program was developed for a Wolter-Schwarzschild X-ray telescope.

  8. Half-value-layer increase owing to tungsten buildup in the x-ray tube: fact or fiction.

    PubMed

    Stears, J G; Felmlee, J P; Gray, J E

    1986-09-01

    The half-value layer (HVL) of an x-ray beam is generally believed to increase with x-ray tube use. This increase in HVL has previously been attributed to the hardening of the x-ray beam as a result of a buildup of tungsten on the x-ray tube glass window. Radiographs and HVL measurements were obtained to determine the effect of tungsten deposited on the x-ray tube windows. This work, along with the HVL data from approximately 200 functioning x-ray tubes used for all applications that were monitored for more than 8 years, indicated there is no significant increase in HVL with diagnostic x-ray tube use.

  9. Be/X-ray Binary Science for Future X-ray Timing Missions

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2011-01-01

    For future missions, the Be/X-ray binary community needs to clearly define our science priorities for the future to advocate for their inclusion in future missions. In this talk, I will describe current designs for two potential future missions and Be X-ray binary science enabled by these designs. The Large Observatory For X-ray Timing (LOFT) is an X-ray timing mission selected in February 2011 for the assessment phase from the 2010 ESA M3 call for proposals. The Advanced X-ray Timing ARray (AXTAR) is a NASA explorer concept X-ray timing mission. This talk is intended to initiate discussions of our science priorities for the future.

  10. Fluorescent scanning x-ray tomography with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Takeda, Tohoru; Maeda, Toshikazu; Yuasa, Tetsuya; Akatsuka, Takao; Ito, Tatsuo; Kishi, Kenichi; Wu, Jin; Kazama, Masahiro; Hyodo, Kazuyuki; Itai, Yuji

    1995-02-01

    Fluorescent scanning (FS) x-ray tomography was developed to detect nonradioactive tracer materials (iodine and gadolinium) in a living object. FS x-ray tomography consists of a silicon (111) channel cut monochromator, an x-ray shutter, an x-ray slit system and a collimator for detection, a scanning table for the target organ, and an x-ray detector with pure germanium. The minimal detectable dose of iodine in this experiment was 100 ng in a volume of 2 mm3 and a linear relationship was shown between the photon counts of a fluorescent x ray and the concentration of iodine contrast material. A FS x-ray tomographic image was clearly obtained with a phantom.

  11. Novel wide-field x-ray optics for space

    NASA Astrophysics Data System (ADS)

    Hudec, René; Pína, Ladislav; Inneman, Adolf

    2017-11-01

    We report on the program of design and development of innovative very wide field X-ray optics for space applications. We describe the idea of wide field X-ray optics of the lobster-eye type of both Angel and Schmidt arrangements. This optics was suggested in 70ies but not yet used in space experiment due to severe manufacturing problems. The lobster-eye X-ray optics may achieve up to 180 degrees (diameter) field of view at angular resolution of order of 1 arcmin. We report on various prototypes of lobster-eye X-ray lenses based on alternative technologies (replicated double sided X-ray reflecting flats, float glass, replicated square channels etc.) as well as on their optical and X-ray tests. We also discuss the importance and performance of lobster-eye X-ray telescopes in future X-ray astronomy projects.

  12. X-Ray Temperatures, Luminosities, and Masses from XMM-Newton Follow-upof the First Shear-selected Galaxy Cluster Sample

    NASA Astrophysics Data System (ADS)

    Deshpande, Amruta J.; Hughes, John P.; Wittman, David

    2017-04-01

    We continue the study of the first sample of shear-selected clusters from the initial 8.6 square degrees of the Deep Lens Survey (DLS); a sample with well-defined selection criteria corresponding to the highest ranked shear peaks in the survey area. We aim to characterize the weak lensing selection by examining the sample’s X-ray properties. There are multiple X-ray clusters associated with nearly all the shear peaks: 14 X-ray clusters corresponding to seven DLS shear peaks. An additional three X-ray clusters cannot be definitively associated with shear peaks, mainly due to large positional offsets between the X-ray centroid and the shear peak. Here we report on the XMM-Newton properties of the 17 X-ray clusters. The X-ray clusters display a wide range of luminosities and temperatures; the L X -T X relation we determine for the shear-associated X-ray clusters is consistent with X-ray cluster samples selected without regard to dynamical state, while it is inconsistent with self-similarity. For a subset of the sample, we measure X-ray masses using temperature as a proxy, and compare to weak lensing masses determined by the DLS team. The resulting mass comparison is consistent with equality. The X-ray and weak lensing masses show considerable intrinsic scatter (˜48%), which is consistent with X-ray selected samples when their X-ray and weak lensing masses are independently determined. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  13. Eclipse and Collapse of the Colliding Wind X-ray Emission from Eta Carinae

    NASA Technical Reports Server (NTRS)

    Hamaguchi, Kenji; Corcoran, Michael F.

    2012-01-01

    X-ray emission from the massive stellar binary system, Eta Carinae, drops strongly around periastron passage; the event is called the X-ray minimum. We launched a focused observing campaign in early 2009 to understand the mechanism of causing the X-ray minimum. During the campaign, hard X-ray emission (<10 keV) from Eta Carinae declined as in the previous minimum, though it recovered a month earlier. Extremely hard X-ray emission between 15-25 keV, closely monitored for the first time with the Suzaku HXD/PIN, decreased similarly to the hard X-rays, but it reached minimum only after hard X-ray emission from the star had already began to recover. This indicates that the X-ray minimum is produced by two composite mechanisms: the thick primary wind first obscured the hard, 2-10 keV thermal X-ray emission from the wind-wind collision (WWC) plasma; the WWC activity then decays as the two stars reach periastron.

  14. Note: application of a pixel-array area detector to simultaneous single crystal X-ray diffraction and X-ray absorption spectroscopy measurements.

    PubMed

    Sun, Cheng-Jun; Zhang, Bangmin; Brewe, Dale L; Chen, Jing-Sheng; Chow, G M; Venkatesan, T; Heald, Steve M

    2014-04-01

    X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorption near edge structure for Pr0.67Sr0.33MnO3 film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam.

  15. X-ray insights into star and planet formation.

    PubMed

    Feigelson, Eric D

    2010-04-20

    Although stars and planets form in cold environments, X-rays are produced in abundance by young stars. This review examines the implications of stellar X-rays for star and planet formation studies, highlighting the contributions of NASA's (National Aeronautics and Space Administration) Chandra X-ray Observatory. Seven topics are covered: X-rays from protostellar outflow shocks, X-rays from the youngest protostars, the stellar initial mass function, the structure of young stellar clusters, the fate of massive stellar winds, X-ray irradiation of protoplanetary disks, and X-ray flare effects on ancient meteorites. Chandra observations of star-forming regions often show dramatic star clusters, powerful magnetic reconnection flares, and parsec-scale diffuse plasma. X-ray selected samples of premain sequence stars significantly advance studies of star cluster formation, the stellar initial mass function, triggered star-formation processes, and protoplanetary disk evolution. Although X-rays themselves may not play a critical role in the physics of star formation, they likely have important effects on protoplanetary disks by heating and ionizing disk gases.

  16. Characterization of X-Ray Diffraction System with a Microfocus X-Ray Source and a Polycapillary Optic

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Marshall, Joy K.; Ciszak, Ewa; Ponomarev, Igor

    2000-01-01

    We present here an optimized microfocus x-ray source and polycapillary optic system designed for diffraction of small protein crystals. The x-ray beam is formed by a 5.5mm focal length capillary collimator coupled with a 40 micron x-ray source operating at 46Watts. Measurements of the x-ray flux, the divergence and the spectral characteristics of the beam are presented, This optimized system provides a seven fold greater flux than our recently reported configuration [M. Gubarev, et al., J. of Applied Crystallography (2000) 33, in press]. We now make a comparison with a 5kWatts rotating anode generator (Rigaku) coupled with confocal multilayer focusing mirrors (Osmic, CMF12- 38Cu6). The microfocus x-ray source and polycapillary collimator system delivers 60% of the x-ray flux from the rotating anode system. Additional ways to improve our microfocus x-ray system, and thus increase the x-ray flux will be discussed.

  17. X-ray insights into star and planet formation

    PubMed Central

    Feigelson, Eric D.

    2010-01-01

    Although stars and planets form in cold environments, X-rays are produced in abundance by young stars. This review examines the implications of stellar X-rays for star and planet formation studies, highlighting the contributions of NASA’s (National Aeronautics and Space Administration) Chandra X-ray Observatory. Seven topics are covered: X-rays from protostellar outflow shocks, X-rays from the youngest protostars, the stellar initial mass function, the structure of young stellar clusters, the fate of massive stellar winds, X-ray irradiation of protoplanetary disks, and X-ray flare effects on ancient meteorites. Chandra observations of star-forming regions often show dramatic star clusters, powerful magnetic reconnection flares, and parsec-scale diffuse plasma. X-ray selected samples of premain sequence stars significantly advance studies of star cluster formation, the stellar initial mass function, triggered star-formation processes, and protoplanetary disk evolution. Although X-rays themselves may not play a critical role in the physics of star formation, they likely have important effects on protoplanetary disks by heating and ionizing disk gases. PMID:20404197

  18. Frontiers of X-Ray Astronomy

    NASA Astrophysics Data System (ADS)

    Fabian, Andrew C.; Pounds, Kenneth A.; Blandford, Roger D.

    2004-07-01

    Preface; 1. Forty years on from Aerobee 150: a personal perspective K. Pounds; 2. X-ray spectroscopy of astrophysical plasmas S. M. Kahn, E. Behar, A. Kinkhabwala and D. W. Savin; 3. X-rays from stars M. Gudel; 4. X-ray observations of accreting white-dwarf systems M. Cropper, G. Ramsay, C. Hellier, K. Mukai, C. Mauche and D. Pandel; 5. Accretion flows in X-ray binaries C. Done; 6. Recent X-ray observations of supernova remnants C. R. Canizares; 7. Luminous X-ray sources in spiral and star-forming galaxies M. Ward; 8. Cosmological constraints from Chandra observations of galaxy clusters S. W. Allen; 9. Clusters of galaxies: a cosmological probe R. Mushotzky; 10. Obscured active galactic nuclei: the hidden side of the X-ray Universe G. Matt; 11. The Chandra Deep Field-North Survey and the cosmic X-ray background W. N. Brandt, D. M. Alexander, F. E. Bauer and A. E. Hornschemeier; 12. Hunting the first black holes G. Hasinger; 13. X-ray astronomy in the new millennium: a summary R. D. Blandford.

  19. X-ray laser microscope apparatus

    DOEpatents

    Suckewer, Szymon; DiCicco, Darrell S.; Hirschberg, Joseph G.; Meixler, Lewis D.; Sathre, Robert; Skinner, Charles H.

    1990-01-01

    A microscope consisting of an x-ray contact microscope and an optical microscope. The optical, phase contrast, microscope is used to align a target with respect to a source of soft x-rays. The source of soft x-rays preferably comprises an x-ray laser but could comprise a synchrotron or other pulse source of x-rays. Transparent resist material is used to support the target. The optical microscope is located on the opposite side of the transparent resist material from the target and is employed to align the target with respect to the anticipated soft x-ray laser beam. After alignment with the use of the optical microscope, the target is exposed to the soft x-ray laser beam. The x-ray sensitive transparent resist material whose chemical bonds are altered by the x-ray beam passing through the target mater GOVERNMENT LICENSE RIGHTS This invention was made with government support under Contract No. De-FG02-86ER13609 awarded by the Department of Energy. The Government has certain rights in this invention.

  20. Compound refractive X-ray lens

    DOEpatents

    Nygren, David R.; Cahn, Robert; Cederstrom, Bjorn; Danielsson, Mats; Vestlund, Jonas

    2000-01-01

    An apparatus and method for focusing X-rays. In one embodiment, his invention is a commercial-grade compound refractive X-ray lens. The commercial-grade compound refractive X-ray lens includes a volume of low-Z material. The volume of low-Z material has a first surface which is adapted to receive X-rays of commercially-applicable power emitted from a commercial-grade X-ray source. The volume of low-Z material also has a second surface from which emerge the X-rays of commercially-applicable power which were received at the first surface. Additionally, the commercial-grade compound refractive X-ray lens includes a plurality of openings which are disposed between the first surface and the second surface. The plurality of openings are oriented such that the X-rays of commercially-applicable power which are received at the first surface, pass through the volume of low-Z material and through the plurality openings. In so doing, the X-rays which emerge from the second surface are refracted to a focal point.

Top