Sample records for x-rays absorptiometry bone

  1. Bone age assessment by dual-energy X-ray absorptiometry in children: an alternative for X-ray?

    PubMed

    Heppe, D H M; Taal, H R; Ernst, G D S; Van Den Akker, E L T; Lequin, M M H; Hokken-Koelega, A C S; Geelhoed, J J M; Jaddoe, V W V

    2012-02-01

    The aim of the study was to validate dual-energy X-ray absorptiometry (DXA) as a method to assess bone age in children. Paired dual-energy X-ray absorptiometry (DXA) scans and X-rays of the left hand were performed in 95 children who attended the paediatric endocrinology outpatient clinic of University Hospital Rotterdam, the Netherlands. We compared bone age assessments by DXA scan with those performed by X-ray. Bone age assessment was performed by two blinded observers according to the reference method of Greulich and Pyle. Intra-observer and interobserver reproducibility were investigated using the intraclass correlation coefficient (ICC), and agreement was tested using Bland and Altman plots. The intra-observer ICCs for both observers were 0.997 and 0.991 for X-ray and 0.993 and 0.987 for DXA assessments. The interobserver ICC was 0.993 and 0.991 for X-ray and DXA assessments, respectively. The mean difference between bone age assessed by X-ray and DXA was 0.11 years. The limits of agreement ranged from -0.82 to 1.05 years, which means that 95% of all differences between the methods were covered by this range. Results of bone age assessment by DXA scan are similar to those obtained by X-ray. The DXA method seems to be an alternative for assessing bone age in a paediatric hospital-based population.

  2. Basic investigation of dual-energy x-ray absorptiometry for bone densitometry using computed radiography

    NASA Astrophysics Data System (ADS)

    Shimura, Kazuo; Nakajima, Nobuyoshi; Tanaka, Hiroshi; Ishida, Masamitsu; Kato, Hisatoyo

    1993-09-01

    Dual-energy X-ray absorptiometry (DXA) is one of the bone densitometry techniques to diagnose osteoporosis, and has been gradually getting popular due to its high degree of precision. However, DXA involves a time-consuming examination because of its pencil-beam scan, and the equipment is expensive. In this study, we examined a new bone densitometry technique (CR-DXA) utilizing an X-ray imaging system and Computed Radiography (CR) used for medical X-ray image diagnosis. High level of measurement precision and accuracy could be achieved by X-ray rube voltage/filter optimization and various nonuniformity corrections based on simulation and experiment. The phantom study using a bone mineral block showed precision of 0.83% c.v. (coefficient of variation), and accuracy of 0.01 g/cm2, suggesting that a practically equivalent degree of measurement precision and accuracy to that of the DXA approach is achieved. CR-DXA is considered to provide bone mineral densitometry to facilitate simple, quick and precise bone mineral density measurement.

  3. Bone mineral density level by dual energy X-ray absorptiometry in rheumatoid arthritis.

    PubMed

    Makhdoom, Asadullah; Rahopoto, Muhammad Qasim; Awan, Shazia; Tahir, Syed Muhammad; Memon, Shazia; Siddiqui, Khaleeque Ahmed

    2017-01-01

    To observe the level of bone mineral density by Dual Energy X-ray Absorptiometry in rheumatoid arthritis patients. The observational study was conducted at Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan, from January 2011 to December 2014. Bone mineral density was measured from the femoral neck, ward's triangle and lumbar spine, in patients 25-55 years of age, who were diagnosed with rheumatoid arthritis. All the cases were assessed for bone mineral density from appendicular as well as axial skeleton. Data was collected through a designed proforma and analysis was performed using SPSS 21. Of the 229 rheumatoid arthritis patients, 33(14.4%) were males. Five (15.1%) males had normal bone density, 14(42.4%) had osteopenia and 14(42.4%) had osteoporosis. Of the 196(85.5%) females, 45(29.9%) had normal bone density, 72 (37.7%) had osteopenia and 79(40.30%) had osteoporosis. Of the 123(53.7%) patients aged 30-50 years, 38(30.9%) had normal bone density, 59(48.0%) had osteopenia, and 26(21.1%) had osteoporosis. Of the 106(46.3%) patients over 50 years, 12(11.3%) had normal bone density, 27 (25.5%) had osteopenia and 67(63.2%) had osteoporosis. Osteoporosis and osteopenia were most common among rheumatoid arthritis patients. Assessment of bone mineral density by Dual Energy X-ray Absorptiometry can lead to quick relief in the clinical symptoms with timely therapy.

  4. Bone geometry, structure and mineral distribution using Dual energy X ray Absorptiometry (DXA)

    NASA Technical Reports Server (NTRS)

    Whalen, Robert; Cleek, Tammy

    1993-01-01

    Dual energy x-ray absorptiometry (DXA) is currently the most widely used method of analyzing regional and whole body changes in bone mineral content (BMC) and areal (g/sq cm) bone mineral density (BMD). However, BMC and BMD do not provide direct measures of long bone geometry, structure, or strength nor do regional measurements detect localized changes in other regions of the same bone. The capabilities of DXA can be enhanced significantly by special processing of pixel BMC data which yields cross-sectional geometric and structural information. We have extended this method of analysis in order to develop non-uniform structural beam models of long bones.

  5. Is bone mineral density measurement using dual-energy X-ray absorptiometry affected by gamma rays?

    PubMed

    Xie, Liang-Jun; Li, Jian-Fang; Zeng, Feng-Wei; Jiang, Hang; Cheng, Mu-Hua; Chen, Yi

    2013-01-01

    The objective of this study was to determine whether the gamma rays emitted from the radionuclide effect bone mineral density (BMD) measurement. Nine subjects (mean age: 56 ± 17.96 yr) scheduled for bone scanning underwent BMD measurement using dual-energy X-ray absorptiometry (DXA) (Hologic/Discovery A) before and 1, 2, and 4 h after injection of technetium-99m-methylene diphosphonate (99mTc-MDP). Ten subjects (mean age: 41 ± 15.47 yr) scheduled for therapy of differentiated thyroid carcinoma with iodine-131 underwent BMD measurement before and 2 h after therapeutic radionuclide administration. All patients were given whole body BMD measurement, including head, arm, ribs, lumbar spine, pelvis, and leg sites. Besides, patients who referred to radioiodine therapy were given total hip and femoral neck BMD measurement as well. No statistically significant changes in BMD values were detected after 99mTc-MDP and iodine-131 administration for all measurement sites (p > 0.05), and individual difference of BMD before and after radionuclide imaging or therapy was less than the least significant change in lumbar spine, total hip, and femoral neck. In conclusion, BMD measurements are not influenced by the gamma rays emitted from technetium-99m and iodine-131. DXA bone densitometry may be performed simultaneously with bone scanning and radioiodine therapy. Copyright © 2013 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  6. Techniques for deriving tissue structure from multiple projection dual-energy x-ray absorptiometry

    NASA Technical Reports Server (NTRS)

    Feldmesser, Howard S. (Inventor); Charles, Jr., Harry K. (Inventor); Beck, Thomas J. (Inventor); Magee, Thomas C. (Inventor)

    2004-01-01

    Techniques for deriving bone properties from images generated by a dual-energy x-ray absorptiometry apparatus include receiving first image data having pixels indicating bone mineral density projected at a first angle of a plurality of projection angles. Second image data and third image data are also received. The second image data indicates bone mineral density projected at a different second angle. The third image data indicates bone mineral density projected at a third angle. The third angle is different from the first angle and the second angle. Principal moments of inertia for a bone in the subject are computed based on the first image data, the second image data and the third image data. The techniques allow high-precision, high-resolution dual-energy x-ray attenuation images to be used for computing principal moments of inertia and strength moduli of individual bones, plus risk of injury and changes in risk of injury to a patient.

  7. Method and apparatus for multiple-projection, dual-energy x-ray absorptiometry scanning

    NASA Technical Reports Server (NTRS)

    Feldmesser, Howard S. (Inventor); Magee, Thomas C. (Inventor); Charles, Jr., Harry K. (Inventor); Beck, Thomas J. (Inventor)

    2007-01-01

    Methods and apparatuses for advanced, multiple-projection, dual-energy X-ray absorptiometry scanning systems include combinations of a conical collimator; a high-resolution two-dimensional detector; a portable, power-capped, variable-exposure-time power supply; an exposure-time control element; calibration monitoring; a three-dimensional anti-scatter-grid; and a gantry-gantry base assembly that permits up to seven projection angles for overlapping beams. Such systems are capable of high precision bone structure measurements that can support three dimensional bone modeling and derivations of bone strength, risk of injury, and efficacy of countermeasures among other properties.

  8. Miniature X-Ray Bone Densitometer

    NASA Technical Reports Server (NTRS)

    Charles, Harry K., Jr.

    1999-01-01

    The purpose of the Dual Energy X-ray Absorptiometry (DEXA) project is to design, build, and test an advanced X-ray absorptiometry scanner capable of being used to monitor the deleterious effects of weightlessness on the human musculoskeletal system during prolonged spaceflight. The instrument is based on the principles of dual energy x-ray absorptiometry and is designed not only to measure bone, muscle, and fat masses but also to generate structural information about these tissues so that the effects on mechanical integrity may be assessed using biomechanical principles. A skeletal strength assessment could be particularly important for an astronaut embarking on a remote planet where the consequences of a fragility fracture may be catastrophic. The scanner will employ multiple projection images about the long axis of the scanned subject to provide geometric properties in three dimensions, suitable for a three-dimensional structural analysis of the scanned region. The instrument will employ advanced fabrication techniques to minimize volume and mass (100 kg current target with a long-term goal of 60 kg) of the scanner as appropriate for the space environment, while maintaining the required mechanical stability for high precision measurement. The unit will have the precision required to detect changes in bone mass and geometry as small as 1% and changes in muscle mass as small as 5%. As the system evolves, advanced electronic fabrication technologies such as chip-on-board and multichip modules will be combined with commercial (off-the-shelf) parts to produce a reliable, integrated system which not only minimizes size and weight, but, because of its simplicity, is also cost effective to build and maintain. Additionally, the system is being designed to minimize power consumption. Methods of heat dissipation and mechanical stowage (for the unit when not in use) are being optimized for the space environment.

  9. Single x-ray transmission system for bone mineral density determination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jimenez-Mendoza, Daniel; Vargas-Vazquez, Damian; Espinosa-Arbelaez, Diego G.

    2011-12-15

    Bones are the support of the body. They are composed of many inorganic compounds and other organic materials that all together can be used to determine the mineral density of the bones. The bone mineral density is a measure index that is widely used as an indicator of the health of the bone. A typical manner to evaluate the quality of the bone is a densitometry study; a dual x-ray absorptiometry system based study that has been widely used to assess the mineral density of some animals' bones. However, despite the success stories of utilizing these systems in many differentmore » applications, it is a very expensive method that requires frequent calibration processes to work properly. Moreover, its usage in small species applications (e.g., rodents) has not been quite demonstrated yet. Following this argument, it is suggested that there is a need for an instrument that would perform such a task in a more reliable and economical manner. Therefore, in this paper we explore the possibility to develop a new, affordable, and reliable single x-ray absorptiometry system. The method consists of utilizing a single x-ray source, an x-ray image sensor, and a computer platform that all together, as a whole, will allow us to calculate the mineral density of the bone. Utilizing an x-ray transmission theory modified through a version of the Lambert-Beer law equation, a law that expresses the relationship among the energy absorbed, the thickness, and the absorption coefficient of the sample at the x-rays wavelength to calculate the mineral density of the bone can be advantageous. Having determined the parameter equation that defines the ratio of the pixels in radiographies and the bone mineral density [measured in mass per unit of area (g/cm{sup 2})], we demonstrated the utility of our novel methodology by calculating the mineral density of Wistar rats' femur bones.« less

  10. Single x-ray transmission system for bone mineral density determination

    NASA Astrophysics Data System (ADS)

    Jimenez-Mendoza, Daniel; Espinosa-Arbelaez, Diego G.; Giraldo-Betancur, Astrid L.; Hernandez-Urbiola, Margarita I.; Vargas-Vazquez, Damian; Rodriguez-Garcia, Mario E.

    2011-12-01

    Bones are the support of the body. They are composed of many inorganic compounds and other organic materials that all together can be used to determine the mineral density of the bones. The bone mineral density is a measure index that is widely used as an indicator of the health of the bone. A typical manner to evaluate the quality of the bone is a densitometry study; a dual x-ray absorptiometry system based study that has been widely used to assess the mineral density of some animals' bones. However, despite the success stories of utilizing these systems in many different applications, it is a very expensive method that requires frequent calibration processes to work properly. Moreover, its usage in small species applications (e.g., rodents) has not been quite demonstrated yet. Following this argument, it is suggested that there is a need for an instrument that would perform such a task in a more reliable and economical manner. Therefore, in this paper we explore the possibility to develop a new, affordable, and reliable single x-ray absorptiometry system. The method consists of utilizing a single x-ray source, an x-ray image sensor, and a computer platform that all together, as a whole, will allow us to calculate the mineral density of the bone. Utilizing an x-ray transmission theory modified through a version of the Lambert-Beer law equation, a law that expresses the relationship among the energy absorbed, the thickness, and the absorption coefficient of the sample at the x-rays wavelength to calculate the mineral density of the bone can be advantageous. Having determined the parameter equation that defines the ratio of the pixels in radiographies and the bone mineral density [measured in mass per unit of area (g/cm2)], we demonstrated the utility of our novel methodology by calculating the mineral density of Wistar rats' femur bones.

  11. Reliability of analysis of the bone mineral density of the second and fifth metatarsals using dual-energy x-ray absorptiometry (DXA).

    PubMed

    Pritchard, N Stewart; Smoliga, James M; Nguyen, Anh-Dung; Branscomb, Micah C; Sinacore, David R; Taylor, Jeffrey B; Ford, Kevin R

    2017-01-01

    Metatarsal fractures, especially of the fifth metatarsal, are common injuries of the foot in a young athletic population, but the risk factors for this injury are not well understood. Dual-energy x-ray absorptiometry (DXA) provides reliable measures of regional bone mineral density to predict fracture risk in the hip and lumbar spine. Recently, sub-regional metatarsal reliability was established in fresh cadaveric specimens and associated with ultimate fracture force. The purpose of this study was to assess the reliability of DXA bone mineral density measurements of sub-regions of the second and fifth metatarsals in a young, active population. Thirty two recreationally active individuals participated in the study, and the bone density of the second (2MT) and fifth (5MT) metatarsals of each subject was measured using a Hologic QDR x-ray bone densitometer. Scans were analyzed separately by two raters, and regional bone mineral density, bone mineral content, and area measurements were calculated for the proximal, shaft, and distal regions of the bone. Intra-rater, inter-rater, and scan-rescan reliability were then determined for each region. Proximal and shaft bone mineral density measurements of the second and fifth metatarsal were reliable. ICC's were variable across regions and metatarsals, with the distal region being the poorest. Bone mineral density measurements of the metatarsals may be a better indicator of fracture risk of the metatarsals than whole body measurements. A reliable method for measuring the regional bone mineral densities of the metatarsals was found. However, inter-rater reliability and scan-rescan reliability for the distal regions were poor. Future research should examine the relationship between DXA bone mineral density measurements and fracture risk at the metatarsals.

  12. Accuracy and precision of computer-assisted analysis of bone density via conventional and digital radiography in relation to dual-energy x-ray absorptiometry.

    PubMed

    Vaccaro, Calogero; Busetto, Roberto; Bernardini, Daniele; Anselmi, Carlo; Zotti, Alessandro

    2012-03-01

    To evaluate the precision and accuracy of assessing bone mineral density (BMD) by use of mean gray value (MGV) on digitalized and digital images of conventional and digital radiographs, respectively, of ex vivo bovine and equine bone specimens in relation to the gold-standard technique of dual-energy x-ray absorptiometry (DEXA). Left and right metatarsal bones from 11 beef cattle and right femurs from 2 horses. Bovine specimens were imaged by use of conventional radiography, whereas equine specimens were imaged by use of computed radiography (digital radiography). Each specimen was subsequently scanned by use of the same DEXA equipment. The BMD values resulting from each DEXA scan were paired with the MGVs obtained by use of software on the corresponding digitalized or digital radiographic image. The MGV analysis of digitalized and digital x-ray images was a precise (coefficient of variation, 0.1 and 0.09, respectively) and highly accurate method for assessing BMD, compared with DEXA (correlation coefficient, 0.910 and 0.937 for conventional and digital radiography, respectively). The high correlation between MGV and BMD indicated that MGV analysis may be a reliable alternative to DEXA in assessing radiographic bone density. This may provide a new, inexpensive, and readily available estimate of BMD.

  13. Effect of endodontic cement on bone mineral density using serial dual-energy x-ray absorptiometry.

    PubMed

    Saghiri, Mohammad Ali; Orangi, Jafar; Tanideh, Nader; Janghorban, Kamal; Sheibani, Nader

    2014-05-01

    Materials with new compositions were tested in order to develop dental materials with better properties. Calcium silicate-based cements, including white mineral trioxide aggregate (WMTA), may improve osteopromotion because of their composition. Nano-modified cements may help researchers produce ideal root-end filling materials. Serial dual-energy x-ray absorptiometry measurement was used to evaluate the effects of particle size and the addition of tricalcium aluminate (C3A) to a type of mineral trioxide aggregate-based cement on bone mineral density and the surrounding tissues in the mandible of rabbits. Forty mature male rabbits (N = 40) were anesthetized, and a bone defect measuring 7 × 1 × 1 mm was created on the semimandible. The rabbits were divided into 2 groups, which were subdivided into 5 subgroups with 4 animals each based on the defect filled by the following: Nano-WMTA (patent application #13/211.880), WMTA (as standard), WMTA without C3A, Nano-WMTA + 2% Nano-C3A (Fujindonjnan Industrial Co, Ltd, Fujindonjnan Xiamen, China), and a control group. Twenty and forty days postoperatively, the animals were sacrificed, and the semimandibles were removed for DXA measurement. The Kruskal-Wallis test followed by the Mann-Whitney U test showed significant differences between the groups at a significance level of P < .05. P values calculated by the Kruskal-Wallis test were .002 for bone mineral density at both intervals and P20 day = .004 and P40 day = .005 for bone mineral content. This study showed that bone regeneration was enhanced by reducing the particle size (nano-modified) and C3A mixture. This may relate to the existence of an external supply of minerals and a larger surface area of nano-modified material, which may lead to faster release rate of Ca(2+), inducing bone formation. Adding Nano-C3A to Nano-WMTA may improve bone regeneration properties. Copyright © 2014 American Association of Endodontists. All rights reserved.

  14. Bone mineral measurement using dual energy x ray densitometry

    NASA Technical Reports Server (NTRS)

    Smith, Steven W.

    1989-01-01

    Bone mineral measurements before and after space missions have shown that weightlessness greatly accelerates bone demineralization. Bone mineral losses as high as 1 to 3 percent per month were reported. Highly precise instrumentation is required to monitor this loss and thereby test the efficacy of treatment. During the last year, a significant improvement was made in Dual-Photon Absorptiometry by replacing the radioactive source with an x ray tube. Advantages of this system include: better precision, lower patient dose, better spacial resolution, and shorter scan times. The high precision and low radiation dose of this technique will allow detection of bone mineral changes of less than 1 percent with measurements conducted directly at the sites of interest. This will allow the required bone mineral studies to be completed in a shorter time with greater confidence.

  15. Correlation between bone mineral density of jaws and skeletal sites in an Iranian population using dual X-ray energy absorptiometry.

    PubMed

    Esfahanizadeh, Nasrin; Davaie, Sotoudeh; Rokn, A R; Daneshparvar, Hamid Reza; Bayat, Noushin; Khondi, Nasrin; Ajvadi, Sara; Ghandi, Mostafa

    2013-07-01

    The aim of the present study was to evaluate the relationship between the bone density of various regions of jaws and skeletal bones. A total of 110 patients with a mean age of 55.01 ± 10.77 years were selected for the purpose of the present descriptive study. Dual X-ray Energy Absorptiometry (DXA) was carried out to determine bone mineral density (BMD) of the femur and lumbar vertebrae. Then all the subjects underwent DXA of the jaw bones and BMD values were determined at four jaw regions. Data were analyzed by SPSS 16 statistical software, and the correlation between the various BMD values was determined by Pearson's correlation coefficient. The results showed that 42.7% of females had normal BMD values in the femur, and in vertebrae, 20% were osteopenic and 37.3% suffered from osteoporosis, with statistically significant differences in the BMD values of the jaws between the three above-mentioned groups (P < 0.001). There was an increasing tendency toward osteopenia and osteoporosis with age. There was a positive correlation between BMD values of the femur and lumbar vertebrae and those of all the jaw regions under study (P < 0.005). There was a negative correlation (P < 0.01) between age and the BMD values of the femur, lumbar vertebrae and anterior maxilla. The bone density of the maxilla and mandible and presence of osteoporosis or osteopenia in these bones might reflect the same problem in skeletal bones.

  16. Impact of hemodialysis on dual X-ray absorptiometry, bioelectrical impedance measurements, and anthropometry.

    PubMed

    Abrahamsen, B; Hansen, T B; Høgsberg, I M; Pedersen, F B; Beck-Nielsen, H

    1996-01-01

    Dual X-ray absorptiometry (DXA) performs noninvasive assessment of bone and soft tissue with high precision. However, soft tissue algorithms assume that 73.2% of the lean body mass is water, a potential source of error in fluid retention. We evaluated DXA (model QDR-2000; Hologic Inc, Waltham, MA), bioelectrical impedance analysis (BIA), and simple anthropometry in 19 patients (9 women and 10 men, mean age 46 y) before and after hemodialysis, removing 0.9-4.3 L (x: 2.8L) of ultrafiltrate. The reduction in fat-free mass (FFM) measured by DXA was highly correlated with the ultrafiltrate, as determined by the reduction in gravimetric weight (r = 0.975, P < 0.0001; SEE: 233 g), whereas BIA was considerably less accurate in assessing FFM reductions (r = 0.66, P < 0.01; SEE: 757 g). Lumbar bone mineral density (BMD) was unaffected by dialysis, as were whole-body fat and BMD. Whole-body bone mineral content, however, was estimated to be 0.6% lower after dialysis. None of the simple anthropometric measurements correlated significantly with the reduction in FFM. In an unmodified clinical setting, DXA appears to be superior to other simple noninvasive methods for determining body composition, particularly when the emphasis is on repeated measurements.

  17. Correlation between bone mineral density of jaws and skeletal sites in an Iranian population using dual X-ray energy absorptiometry

    PubMed Central

    Esfahanizadeh, Nasrin; Davaie, Sotoudeh; Rokn, A. R.; Daneshparvar, Hamid Reza; Bayat, Noushin; Khondi, Nasrin; Ajvadi, Sara; Ghandi, Mostafa

    2013-01-01

    Background: The aim of the present study was to evaluate the relationship between the bone density of various regions of jaws and skeletal bones. Materials and Methods: A total of 110 patients with a mean age of 55.01 ± 10.77 years were selected for the purpose of the present descriptive study. Dual X-ray Energy Absorptiometry (DXA) was carried out to determine bone mineral density (BMD) of the femur and lumbar vertebrae. Then all the subjects underwent DXA of the jaw bones and BMD values were determined at four jaw regions. Data were analyzed by SPSS 16 statistical software, and the correlation between the various BMD values was determined by Pearson's correlation coefficient. Results: The results showed that 42.7% of females had normal BMD values in the femur, and in vertebrae, 20% were osteopenic and 37.3% suffered from osteoporosis, with statistically significant differences in the BMD values of the jaws between the three above-mentioned groups (P < 0.001). There was an increasing tendency toward osteopenia and osteoporosis with age. There was a positive correlation between BMD values of the femur and lumbar vertebrae and those of all the jaw regions under study (P < 0.005). There was a negative correlation (P < 0.01) between age and the BMD values of the femur, lumbar vertebrae and anterior maxilla. Conclusion: The bone density of the maxilla and mandible and presence of osteoporosis or osteopenia in these bones might reflect the same problem in skeletal bones. PMID:24130580

  18. Does Quantitative Tibial Ultrasound Predict Low Bone Mineral Density Defined by Dual Energy X-Ray Absorptiometry?

    PubMed Central

    Birtane, Murat; Ekuklu, Galip; Cermik, Fikret; Tuna, Filiz; Kokino, Siranus

    2008-01-01

    Purpose Efforts for the early detection of bone loss and subsequent fracture risk by quantitative ultrasound (QUS), which is a non-invasive, radiation free, and cheaper method, seem rational to reduce the management costs. We aimed in this study to assess the probable correlation of speed of sound (SOS) values obtained by QUS with bone mineral density (BMD) as measured by the gold standard method, dual energy X-ray absorptiometry (DEXA), and to investigate the diagnostic value of QUS to define low BMD. Materials and Methods One hundred twenty-two postmenopausal women having prior standard DEXA measurements were included in the study. Spine and proximal femur (neck, trochanter and Ward's triangle) BMD were assessed in a standard protocol by DEXA. The middle point of the right tibia was chosen for SOS measurement by tibial QUS. Results The SOS values were observed to be significantly higher in the normal BMD (t score > - 1) group at all measurement sites except for the lumbar region, when compared with the low BMD group (t score < - 1). SOS was negatively correlated with age (r = - 0.66) and month since menopause (r = - 0.57). The sensitivity, specificity, and positive and negative predictive values for QUS t score to diagnose low BMD did not seem to be satisfactory at either of the measurement sites. Conclusion Tibial SOS was correlated weakly with BMD values of femur and lumbar spine as measured by DEXA and its diagnostic value did not seem to be high for discriminating between normal and low BMD, at these sites. PMID:18581594

  19. Height adjustment in assessing dual energy x-ray absorptiometry measurements of bone mass and density in children.

    PubMed

    Zemel, Babette S; Leonard, Mary B; Kelly, Andrea; Lappe, Joan M; Gilsanz, Vicente; Oberfield, Sharon; Mahboubi, Soroosh; Shepherd, John A; Hangartner, Thomas N; Frederick, Margaret M; Winer, Karen K; Kalkwarf, Heidi J

    2010-03-01

    In children, bone mineral content (BMC) and bone mineral density (BMD) measurements by dual-energy x-ray absorptiometry (DXA) are affected by height status. No consensus exists on how to adjust BMC or BMD (BMC/BMD) measurements for short or tall stature. The aim of this study was to compare various methods to adjust BMC/BMD for height in healthy children. Data from the Bone Mineral Density in Childhood Study (BMDCS) were used to develop adjustment methods that were validated using an independent cross-sectional sample of healthy children from the Reference Data Project (RDP). We conducted the study in five clinical centers in the United States. We included 1546 BMDCS and 650 RDP participants (7 to 17 yr of age, 50% female). No interventions were used. We measured spine and whole body (WB) BMC and BMD Z-scores for age (BMC/BMD(age)), height age (BMC/BMD(height age)), height (BMC(height)), bone mineral apparent density (BMAD(age)), and height-for-age Z-score (HAZ) (BMC/BMD(haz)). Spine and WB BMC/BMD(age)Z and BMAD(age)Z were positively (P < 0.005; r = 0.11 to 0.64) associated with HAZ. Spine BMD(haz) and BMC(haz)Z were not associated with HAZ; WB BMC(haz)Z was modestly associated with HAZ (r = 0.14; P = 0.0003). All other adjustment methods were negatively associated with HAZ (P < 0.005; r = -0.20 to -0.34). The deviation between adjusted and BMC/BMD(age) Z-scores was associated with age for most measures (P < 0.005) except for BMC/BMD(haz). Most methods to adjust BMC/BMD Z-scores for height were biased by age and/or HAZ. Adjustments using HAZ were least biased relative to HAZ and age and can be used to evaluate the effect of short or tall stature on BMC/BMD Z-scores.

  20. Relationships among diet, physical activity, and dual plane dual-energy X-ray absorptiometry bone outcomes in pre-pubertalgirls.

    PubMed

    Ren, Jie; Brann, Lynn S; Bruening, Kay S; Scerpella, Tamara A; Dowthwaite, Jodi N

    2017-12-01

    In pre-pubertal girls, nutrient intakes and non-aquatic organized activity were evaluated as factors in vertebral body bone mass, structure, and strength. Activity, vitamin B 12 , and dietary fiber predicted bone outcomes most consistently. Exercise and vitamin B 12 appear beneficial, whereas high fiber intake appears to be adverse for vertebral body development. Childhood development sets the baseline for adult fracture risk. Most studies evaluate development using postero-anterior (PA) dual-energy X-ray absorptiometry (DXA) areal bone mineral density, bone mineral content, and bone mineral apparent density. In a prior analysis, we demonstrated that PA DXA reflects posterior element properties, rather than vertebral body fracture sites, such that loading is associated with subtle differences in vertebral body geometry, not 3D density. The current analysis is restricted to pre-pubertal girls, for a focused exploration of key nutrient intakes and physical activity as factors in dual plane indices of vertebral body geometry, density, and strength. This cross-sectional analysis used paired PA and supine lateral (LAT) lumbar spine DXA scans to assess "3D" vertebral body bone mineral apparent density (PALATBMAD), "3D" index of structural strength in axial compression (PALATIBS), and fracture risk index (PALATFRI). Diet data were collected using the Youth/Adolescent Questionnaire (YAQ, 1995); organized physical activity was recorded via calendar-based form. Pearson correlations and backward stepwise multiple linear regression analyzed associations among key nutrients, physical activity, and bone outcomes. After accounting for activity and key covariates, fiber, unsupplemented vitamin B 12 , zinc, carbohydrate, vitamin C, unsupplemented magnesium, and unsupplemented calcium intake explained significant variance for one or more bone outcomes (p < 0.05). After adjustment for influential key nutrients and covariates, activity exposure was associated with postero

  1. Age-related proximal femur bone mineral loss in South Indian women: a dual energy X-ray absorptiometry study.

    PubMed

    Anburajan, M; Rethinasabapathi, C; Korath, M P; Ponnappa, B G; Kumar, K S; Panicker, T M; Govindan, A; Jagadeesan, G N

    2001-04-01

    i) To collect normative data for proximal femur bone mineral density (BMD) in South Indian women using dual energy X-ray absorptiometry (DXA) and ii) to study the rate and significance of hip bone mineral loss with advancing age in this population. Forty five women, whose age ranged from 16 to 84 years were studied. This sample was drawn randomly from general medical practice at KJ Hospital, Chennai, South India during November, 1997 to April, 1998. Of these 45 cases, 21 were pre-menopausal (mean +/- SD age = 30.9+/-8.8 years) and 24 post-menopausal (mean +/- SD age = 62.1+/-11.0 years). Subjects with secondary bone diseases were excluded. Also excluded were those taking any drugs known to affect calcium metabolism e.g., thiazide diuretics, oestrogen and calcium. Subjects were divided into seven decadal age groups from 15-24 years to 75-84 years. BMD of the right proximal femur was evaluated using a QDR-1000 DXA bone densitometer (Hologic Inc., Waltham, Massachusetts, USA). Data analysis was done with SPSS/PC statistical software package. Linear regression analysis showed significant (p < 0.001) negative correlations between all hip BMD variables at different regions of interest and patient's age. Relative to that at 30 years of age, rates of BMD loss in the neck of femur, trochanter, intertrochanter, total hip and Ward's triangle were 0.68%, 0.65%, 0.58%, 0.61% and 1.05% per annum respectively. Over the age of 65 years, the above mentioned regions BMD decreased by 0.91%, 0.84%, 0.72%, 0.78% and 1.66% per annum respectively. Normative data for proximal femur BMD in South India women have been evaluated and it may prove useful for diagnosing osteoporosis in the women of South India.

  2. [Particle size determination by radioisotope x-ray absorptiometry with sedimentation method].

    PubMed

    Matsui, Y; Furuta, T; Miyagawa, S

    1976-09-01

    The possibility of radioisotope X-ray absorptiometry to determine the particle size of powder in conjunction with sedimentation was investigated. The experimental accuracy was primarily determined by Cow and X-ray intensity. where Co'=weight concentration of the particle in the suspension w'=(micron/rho)l/(mu/rho)s-rhol/rhos rho; density micron/rho; mass absorption coefficient, suffix l and s indicate dispersion and particle, respectively. The radiosiotopes, Fe-55, Pu-238 and Cd-109 have high w-values over the wide range of the atomic number. However, a source of high micron value such as Fe-55 is not suitable because the optimal X-ray transmission length, Lopt is decided by the expression, micronlLopt approximately 2/(1+C'ow') by using Cd-109 AgKX-ray source, the weight size distribution of particles from the heavy elements such as PbO2 to light elements such as Al2O3 or flyash was determined.

  3. Are adult patients with Laron syndrome osteopenic? A comparison between dual-energy X-ray absorptiometry and volumetric bone densities.

    PubMed

    Benbassat, Carlos A; Eshed, Varda; Kamjin, Moshe; Laron, Zvi

    2003-10-01

    Severe short stature resulting from a deficiency in IGF-I is a prominent feature of Laron syndrome (LS). Although low bone mineral density (BMD) has been noted in LS patients examined by dual energy x-ray absorptiometry (DEXA), this technique does not take volume into account and may therefore underestimate the true bone density in patients with small bones. The aim of the present study was to evaluate the BMD yielded by DEXA in our LS patients using estimated volumetric values. Volumetric density was calculated with the following formulas: bone mineral apparent density (BMAD) = bone mineral content (BMC)/(area)(3/2) for the lumbar spine and BMAD = BMC/area(2) for the femoral neck. The study sample included 12 patients (mean age, 43.9 yr; mean height, 123.7 cm). Findings were compared with 10 osteopenic subjects without developmental abnormalities (mean age, 56 yr; mean height, 164.8 cm) and 10 healthy control subjects matched for sex and age to the LS patients (mean height, 165.5 cm). BMAD in the LS group was 0.201 +/- 0.02 g/cm(3) at the lumbar spine and 0.201 +/- 0.04 g/cm(3) at the femoral neck; corresponding values for the osteopenic group were 0.130 +/- 0.01 and 0.140 +/- 0.01 g/cm(3), and for the controls, 0.178 +/- 0.03 and 0.192 +/- 0.02 g/cm(3). Although areal BMD was significantly lower in the LS and osteopenic subjects compared with controls (P < 0.02) at both the lumbar spine and femoral neck, BMAD was low (P < 0.01) in the osteopenic group only. In conclusion, DEXA does not seem to be a reliable measure of osteoporosis in patients with LS.

  4. Low Bone Mineral Content and Challenges in Interpretation of Dual-Energy X-Ray Absorptiometry in Children With Mucopolysaccharidosis Types I, II, and VI

    PubMed Central

    Polgreen, Lynda E.; Thomas, William; Fung, Ellen; Viskochil, David; Stevenson, David A.; Steinberger, Julia; Orchard, Paul; Whitley, Chester B.; Ensrud, Kristine E.

    2013-01-01

    Osteoporosis has been described in animal models of mucopolysaccharidosis (MPS). Whether clinically significant osteoporosis is common among children with MPS is unknown. Therefore, cross-sectional data from whole body (WB; excluding head) and lumbar spine (LS) bone mineral density (BMD) compared with sex-, chronologic age–, and ethnicity-matched healthy individuals (Zage), height-for-age (HAZ) Z-score (ZHAZ) and bone mineral content (BMC) measured by dual-energy X-ray absorptiometry (DXA) in 40 children with MPS were analyzed. A subset of these children (n = 24) was matched 1:3 by age and sex to a group of healthy children (n = 72) for comparison of BMC adjusted for Tanner stage, race, lean body mass, height, and bone area. Low BMD Z-score was defined as Z-score of −2 or less. In children with MPS, 15% had low WB Zage and 48% had low LS Zage; 0% and 6% had low WB ZHAZ and low LS ZHAZ, respectively. Adjusted WB BMC was lower in MPS participants (p = 0.009). In conclusion, children with MPS had deficits in WB BMC after adjustments for stature and bone area. HAZ adjustment underestimated bone deficits (i.e., overestimated WB BMD Z-scores) in children with MPS likely owing to their abnormal bone shape. The influence of severe short stature and bone geometry on DXA measurements must be considered in children with MPS to avoid unnecessary exposure to antiresorptive treatments. PMID:23562131

  5. Validation of a New Skinfold Prediction Equation Based on Dual-Energy X-Ray Absorptiometry

    ERIC Educational Resources Information Center

    Ball, Stephen; Cowan, Celsi; Thyfault, John; LaFontaine, Tom

    2014-01-01

    Skinfold prediction equations recommended by the American College of Sports Medicine underestimate body fat percentage. The purpose of this research was to validate an alternative equation for men created from dual energy x-ray absorptiometry. Two hundred ninety-seven males, aged 18-65, completed a skinfold assessment and dual energy x-ray…

  6. Bone x-ray

    MedlinePlus

    ... different views of the bone may be uncomfortable. Why the Test is Performed A bone x-ray ... neoplasia (MEN) II Multiple myeloma Osgood-Schlatter disease Osteogenesis imperfecta Osteomalacia Paget's disease Primary hyperparathyroidism Rickets Risks There ...

  7. The reliability of dual-energy X-ray absorptiometry measurements of bone mineral density in the metatarsals.

    PubMed

    Fuller, Joel T; Archer, Jane; Buckley, Jonathan D; Tsiros, Margarita D; Thewlis, Dominic

    2016-01-01

    To investigate the reliability of a simple, efficient technique for measuring bone mineral density (BMD) in the metatarsals using dual-energy X-ray absorptiometry (DXA). BMD of the right foot of 32 trained male distance runners was measured using a DXA scanner with the foot in the plantar position. Separate regions of interest (ROI) were used to assess the BMD of each metatarsal shaft (1st-5th) for each participant. ROI analysis was repeated by the same investigator to determine within-scan intra-rater reliability and by a different investigator to determine within-scan inter-rater reliability. Repeat DXA scans were undertaken for ten participants to assess between-scan intra-rater reliability. Assessment of BMD was consistently most reliable for the first metatarsal across all domains of reliability assessed (intra-class correlation coefficient [ICC] ≥0.97; coefficient of variation [CV] ≤1.5%; limits of agreement [LOA] ≤4.2%). Reasonable levels of intra-rater reliability were also achieved for the second and fifth metatarsals (ICC ≥0.90; CV ≤4.2%; LOA ≤11.9%). Poorer levels of reliability were demonstrated for the third (ICC ≥0.64; CV ≤8.2%; LOA ≤23.6%) and fourth metatarsals (ICC ≥0.67; CV ≤9.6%; LOA ≤27.5%). BMD was greatest in the first and second metatarsals (P < 0.01). Reliable measurements of BMD were achieved for the first, second and fifth metatarsals.

  8. Correspondence between theoretical models and dual energy x-ray absorptiometry measurements of femoral cross-sectional growth during adolescence

    NASA Technical Reports Server (NTRS)

    van der Meulen, M. C.; Marcus, R.; Bachrach, L. K.; Carter, D. R.

    1997-01-01

    We have developed an analytical model of long bone cross-sectional ontogeny in which appositional growth of the diaphysis is primarily driven by mechanical stimuli associated with increasing body mass during growth and development. In this study, our goal was to compare theoretical predictions of femoral diaphyseal structure from this model with measurements of femoral bone mineral and geometry by dual energy x-ray absorptiometry. Measurements of mid-diaphyseal femoral geometry and structure were made previously in 101 Caucasian adolescents and young adults 9-26 years of age. The data on measured bone mineral content and calculated section modulus were compared with the results of our analytical model of cross-sectional development of the human femur over the same age range. Both bone mineral content and section modulus showed good correspondence with experimental measurements when the relationships with age and body mass were examined. Strong linear relationships were evident for both parameters when examined as a function of body mass.

  9. Bone remodelling around the Metha short stem in total hip arthroplasty: a prospective dual-energy X-ray absorptiometry study.

    PubMed

    Lerch, Matthias; von der Haar-Tran, Annelene; Windhagen, Henning; Behrens, Bernd A; Wefstaedt, Patrick; Stukenborg-Colsman, Christina M

    2012-03-01

    On the basis of positive clinical results with mid- and long-term follow-up using the Mayo short stem, the Metha neck-preserving stem (BBraun, Aesculap, Tuttlingen, Germany) was introduced. The purpose of this study was to validate the implant design by direct acquisition of bone remodelling data from total hip arthroplasty (THA) recipients using dual-energy X-ray absorptiometry (DEXA). After power analysis, 25 patients were included in this prospective study. Patients were examined clinically and underwent DEXA examinations preoperatively and postoperatively at one week, six months and one and two years after THA. Gruen zones were adapted to the short stem design (R1-R7). The Harris Hip Score (HHS) increased significantly by 31 points. No stem had to be revised. Bone mineral density (BMD) in the greater trochanter decreased significantly from 0.78 g/cm(2) postoperatively to 0.72 g/cm(2) two years after surgery. Marginal changes were seen in the lateral distal regions (R4-R5). In the minor trochanter region, BMD increased significantly after two years by 12.9%. In the calcar region, BMD exceeded the baseline value by 6.1% two years after implantation. Stress shielding seems to occur at the greater trochanter due to the vast cross-section of the implant. However, the aim of proximal load transfer of the Metha stem seems to be partially achieved. DEXA analysis revealed a concentrated load distribution on the medial portion of the femur, which is an important region to guarantee long-term implant survival.

  10. Bone mineral density test

    MedlinePlus

    ... density test; Bone densitometry; DEXA scan; DXA; Dual-energy x-ray absorptiometry; p-DEXA; Osteoporosis - BMD ... most common and accurate way uses a dual-energy x-ray absorptiometry (DEXA) scan. DEXA uses low- ...

  11. Estimates of volumetric bone density from projectional measurements improve the discriminatory capability of dual X-ray absorptiometry

    NASA Technical Reports Server (NTRS)

    Jergas, M.; Breitenseher, M.; Gluer, C. C.; Yu, W.; Genant, H. K.

    1995-01-01

    To determine whether estimates of volumetric bone density from projectional scans of the lumbar spine have weaker associations with height and weight and stronger associations with prevalent vertebral fractures than standard projectional bone mineral density (BMD) and bone mineral content (BMC), we obtained posteroanterior (PA) dual X-ray absorptiometry (DXA), lateral supine DXA (Hologic QDR 2000), and quantitative computed tomography (QCT, GE 9800 scanner) in 260 postmenopausal women enrolled in two trials of treatment for osteoporosis. In 223 women, all vertebral levels, i.e., L2-L4 in the DXA scan and L1-L3 in the QCT scan, could be evaluated. Fifty-five women were diagnosed as having at least one mild fracture (age 67.9 +/- 6.5 years) and 168 women did not have any fractures (age 62.3 +/- 6.9 years). We derived three estimates of "volumetric bone density" from PA DXA (BMAD, BMAD*, and BMD*) and three from paired PA and lateral DXA (WA BMD, WA BMDHol, and eVBMD). While PA BMC and PA BMD were significantly correlated with height (r = 0.49 and r = 0.28) or weight (r = 0.38 and r = 0.37), QCT and the volumetric bone density estimates from paired PA and lateral scans were not (r = -0.083 to r = 0.050). BMAD, BMAD*, and BMD* correlated with weight but not height. The associations with vertebral fracture were stronger for QCT (odds ratio [QR] = 3.17; 95% confidence interval [CI] = 1.90-5.27), eVBMD (OR = 2.87; CI 1.80-4.57), WA BMDHol (OR = 2.86; CI 1.80-4.55) and WA-BMD (OR = 2.77; CI 1.75-4.39) than for BMAD*/BMD* (OR = 2.03; CI 1.32-3.12), BMAD (OR = 1.68; CI 1.14-2.48), lateral BMD (OR = 1.88; CI 1.28-2.77), standard PA BMD (OR = 1.47; CI 1.02-2.13) or PA BMC (OR = 1.22; CI 0.86-1.74). The areas under the receiver operating characteristic (ROC) curves for QCT and all estimates of volumetric BMD were significantly higher compared with standard PA BMD and PA BMC. We conclude that, like QCT, estimates of volumetric bone density from paired PA and lateral scans are

  12. Body Composition Comparison: Bioelectric Impedance Analysis with Dual-Energy X-Ray Absorptiometry in Adult Athletes

    ERIC Educational Resources Information Center

    Company, Joe; Ball, Stephen

    2010-01-01

    The primary purpose of this study was to investigate the accuracy of the DF50 (ImpediMed Ltd, Eight Mile Plains, Queensland, Australia) bioelectrical impedance analysis device using dual-energy x-ray absorptiometry as the criterion in two groups: endurance athletes and power athletes. The secondary purpose was to develop accurate body fat…

  13. Bone cartilage imaging with x-ray interferometry using a practical x-ray tube

    NASA Astrophysics Data System (ADS)

    Kido, Kazuhiro; Makifuchi, Chiho; Kiyohara, Junko; Itou, Tsukasa; Honda, Chika; Momose, Atsushi

    2010-04-01

    The purpose of this study was to design an X-ray Talbot-Lau interferometer for the imaging of bone cartilage using a practical X-ray tube and to develop that imaging system for clinical use. Wave-optics simulation was performed to design the interferometer with a practical X-ray tube, a source grating, two X-ray gratings, and an X-ray detector. An imaging system was created based on the results of the simulation. The specifications were as follows: the focal spot size was 0.3 mm of an X-ray tube with a tungsten anode (Toshiba, Tokyo, Japan). The tube voltage was set at 40 kVp with an additive aluminum filter, and the mean energy was 31 keV. The pixel size of the X-ray detector, a Condor 486 (Fairchild Imaging, California, USA), was 15 μm. The second grating was a Ronchi-type grating whose pitch was 5.3 μm. Imaging performance of the system was examined with X-ray doses of 0.5, 3 and 9 mGy so that the bone cartilage of a chicken wing was clearly depicted with X-ray doses of 3 and 9 mGy. This was consistent with the simulation's predictions. The results suggest that X-ray Talbot-Lau interferometry would be a promising tool in detecting soft tissues in the human body such as bone cartilage for the X-ray image diagnosis of rheumatoid arthritis. Further optimization of the system will follow to reduce the X-ray dose for clinical use.

  14. Comparison of Anthropometry to Dual Energy X-Ray Absorptiometry: A New Prediction Equation for Women

    ERIC Educational Resources Information Center

    Ball, Stephen; Swan, Pamela D.; DeSimone, Rosemarie

    2004-01-01

    The purpose of this study was to assess the accuracy of three recommended anthropometric equations for women and then develop an updated prediction equation using dual energy x-ray absorptiometry (DXA). The percentage of body fat (%BF) by anthropometry was significantly correlated (r = .896-. 929; p [is less than] .01) with DXA, but each equation…

  15. Agreement between bioelectrical impedance and dual energy X-ray absorptiometry in assessing fat, lean and bone mass changes in adults after a lifestyle intervention.

    PubMed

    Macfarlane, Duncan J; Chan, Natalie T-Y; Tse, Michael A; Joe, Glen M

    2016-01-01

    We aimed to assess the agreement of a commercially available bioelectrical impedance analysis (BIA) device in measuring changes in fat, lean and bone mass over a 10-week lifestyle intervention, with dual energy X-ray absorptiometry (DXA) as reference. A sample of 136 volunteers (18-66 years) underwent a physical activity intervention to enhance lean mass and reduce fat mass. BIA (Tanita BC545) and DXA (Hologic Explorer) measures of whole-body composition were taken at baseline and at the end of the intervention. After an average of 74 ± 18 days intervention, DXA showed significant changes in 2 of 3 outcome variables: reduced fat mass of 0.802 ± 1.092 kg (P < 0.001), increased lean mass of 0.477 ± 0.966 kg (P < 0.001); minor non-significant increase of 0.007 ± 0.041 kg of bone mass (P = 0.052). The respective changes in BIA measures were a significant reduction of 0.486 ± 1.539 kg fat (P < 0.001), but non-significant increases of 0.084 ± 1.201 kg lean mass (P = 0.425), and 0.014 ± 0.091 kg bone (P = 0.074). Significant, but moderately weak, correlations were seen in absolute mass changes between DXA and BIA: 0.511 (fat), 0.362 (lean) and 0.172 (bone). Compared to DXA, BIA demonstrated mediocre agreement to changes in fat mass, but poor agreement to lean mass changes. BIA significantly underestimated the magnitude of changes in fat and lean mass compared to DXA.

  16. Measurement of bone mineral density in the tunnel regions for anterior cruciate ligament reconstruction by dual-energy X-ray absorptiometry, computed tomography scan, and the immersion technique based on Archimedes' principle.

    PubMed

    Tie, Kai; Wang, Hua; Wang, Xin; Chen, Liaobin

    2012-10-01

    To determine, for anterior cruciate ligament (ACL) reconstruction, whether the bone mineral density (BMD) of the femoral tunnel was higher than that of the tibial tunnel, to provide objective evidence for choosing the appropriate diameter of interference screws. Two groups were enrolled. One group comprised 30 normal volunteers, and the other comprised 9 patients with ACL rupture. Dual-energy X-ray absorptiometry was used to measure the BMD of the femoral and tibial tunnel regions of the volunteers' right knees by choosing a circular area covering the screw fixation region. The knees were also scanned by spiral computed tomography (CT), and the 3-dimensional reconstruction technique was used to determine the circular sections passing through the longitudinal axis of the femoral and tibial tunnels. Grayscale CT values of the cross-sectional area were measured. Cylindrical cancellous bone blocks were removed from the femoral and tibial tunnels during the ACL reconstruction for the patients. The volumetric BMD of the bone blocks was measured using a standardized immersion technique according to Archimedes' principle. As measured by dual-energy X-ray absorptiometry, the BMD of the femoral and tibial tunnel regions was 1.162 ± 0.034 g/cm(2) and 0.814 ± 0.038 g/cm(2), respectively (P < .01). The CT value of the femoral tunnel region was 211.7 ± 11.5 Hounsfield units, and the value of the tibial tunnel region was 104.9 ± 7.4 Hounsfield units (P < .01). The volumetric BMD of the bone block from the femoral tunnel (2.80 ± 0.88 g/cm(3)) was higher than the value from the tibial tunnel (1.88 ± 0.59 g/cm(3)) (P < .01). Comparing the data between male and female patients, we found no significant difference in both femoral and tibial tunnel regions. For ACL reconstruction, the BMD of the femoral tunnel is higher than that of the tibial tunnel. This implies that a proportionally larger-diameter interference screw should be used for fixation in the proximal tibia than that

  17. Point-of-Care Phalangeal Bone Mineral Density Measurement Can Reduce the Need of Dual-Energy X-Ray Absorptiometry Scanning in Danish Women at Risk of Fracture.

    PubMed

    Holmberg, Teresa; Bech, Mickael; Gram, Jeppe; Hermann, Anne Pernille; Rubin, Katrine Hass; Brixen, Kim

    2016-03-01

    Identifying persons with a high risk of osteoporotic fractures remains a challenge. DXA uptake in women with elevated risk of osteoporosis seems to be depending on distance to scanning facilities. This study aimed to investigate the ability of a small portable scanner in identifying women with reduced bone mineral density (BMD), and to define triage thresholds for pre-selection. Total hip and lumbar spine BMD was measured by dual-energy X-ray absorptiometry and phalangeal BMD by radiographic absorptiometry in 121 Danish women with intermediate or high 10-year fracture probability (aged 61-81 years). Correlation between the two methods was estimated using correlation coefficient (r) and Bland-Altman plots. A moderate correlation between phalangeal BMD versus total hip (r = 0.47) and lumbar spine (r = 0.51), and an AUC on 0.80 was found. The mean difference between phalangeal T score and total hip T score/lumbar spine T score was low, and ranged from -0.26 SD to -0.31 SD depending on site and reference database used for calculation of T scores, but, large variation was seen at an individual level. When applying a triage approach approx. one-third of all DXA scan could be avoided and only 6 % of women in the low-risk group would be false negatives.

  18. X-Ray Exam: Bone Age Study (For Parents)

    MedlinePlus

    ... for Educators Search English Español X-Ray Exam: Bone Age Study KidsHealth / For Parents / X-Ray Exam: Bone Age Study What's in this article? What It ... de la edad ósea What It Is A bone age study helps doctors estimate the maturity of ...

  19. The cementless Bicontact stem in a prospective dual-energy X-ray absorptiometry study.

    PubMed

    Lerch, Matthias; Kurtz, Agnes; Windhagen, Henning; Bouguecha, Anas; Behrens, Bernd A; Wefstaedt, Patrick; Stukenborg-Colsman, Christina M

    2012-11-01

    The cementless Bicontact total hip arthroplasty (THA) system (AESCULAP AG, Tuttlingen, Germany) was introduced in 1986/1987 and has been in successful clinical use in an unaltered form up to today. Although good long-term results with the Bicontact stem have been published, it is questionable whether the implant provides the criteria for a state-of-the-art stem regarding proximal bone stock preservation. The purpose of the study was to monitor the periprosthetic bone mineral density (BMD) in a prospective two-year follow-up dual-energy X-ray absorptiometry (DEXA) study. After power analysis, a consecutive series of 25 patients with unilateral Bicontact stem implantation was examined clinically and underwent DEXA examinations. Scans of seven regions of interest were taken preoperatively and at one week, six months, and one and two years. One patient required stem revision due to a deep infection. The Harris Hip Score increased significantly by 44 points. The most significant bone loss was observed in the calcar region (R7) in the first six months (-19.2 %). It recovered in the following 18 months to -8.5 %. The BMD in the greater trochanter dropped significantly after six months and remained stable at this level. BMD exceeded baseline values in distal regions and even more in the lesser trochanter region after two years. We conclude that the Bicontact stem provides adequate proximal bone stock preservation. We observed some signs of stress shielding at the tip of the stem, which is inevitable to some degree in THA with cementless straight stems. However, in this prospective DEXA investigation, we showed that proximal off-loading does not occur after THA with the Bicontact system. Thus, we believe that this stem is still a state-of-the-art implant.

  20. Assessing Body Composition of Children and Adolescents Using Dual-Energy X-Ray Absorptiometry, Skinfolds, and Electrical Impedance

    ERIC Educational Resources Information Center

    Mooney, Angela; Kelsey, Laurel; Fellingham, Gilbert W.; George, James D.; Hager, Ron L.; Myrer, J. William; Vehrs, Pat R.

    2011-01-01

    To determine the validity and reliability of percent body fat estimates in 177 boys and 154 girls between 12-17 years of age, percent body fat was assessed once using dual-energy X-ray absorptiometry and twice using the sum of two skinfolds and three bioelectrical impedance analysis devices. The assessments were repeated on 79 participants on a…

  1. In situ femoral dual-energy X-ray absorptiometry related to ash weight, bone size and density, and its relationship with mechanical failure loads of the proximal femur.

    PubMed

    Lochmüller, E M; Miller, P; Bürklein, D; Wehr, U; Rambeck, W; Eckstein, F

    2000-01-01

    The objective of this study was to directly compare in situ femoral dual-energy X-ray absorptiometry (DXA) and in vitro chemical analysis (ash weight and calcium) with mechanical failure loads of the proximal femur, and to determine the influence of bone size (volume) and density on mechanical failure and DXA-derived areal bone mineral density (BMD, in g/cm2). We performed femoral DXA in 52 fixed cadavers (age 82.1 +/- 9.7 years; 30 male, 22 female) with intact skin and soft tissues. The femora were then excised, mechanically loaded to failure in a stance phase configuration, their volume measured with a water displacement method (proximal neck to lesser trochanter), and the ash weight and calcium content of this region determined by chemical analysis. The correlation coefficient between the bone mineral content (measured in situ with DXA) and the ash weight was r = 0.87 (standard error of the estimate = 16%), the ash weight allowing for a better prediction of femoral failure loads (r = 0.78; p < 0.01) than DXA (r = 0.67; p < 0.01). The femoral volume (r = 0.61; p < 0.01), but not the volumetric bone density (r = 0.26), was significantly associated with the failure load. The femoral bone volume had a significant impact (r = 0.35; p < 0.01) on the areal BMD (DXA), and only 63% of the variability of bone volume could be predicted (based on the basis of body height, weight and femoral projectional bone area. The results suggest that accuracy errors of femoral DXA limit the prediction of mechanical failure loads, and that the influence of bone size on areal BMD cannot be fully corrected by accounting for body height, weight and projected femoral area.

  2. The use of dual-energy X-ray absorptiometry to estimate the dissected composition of lamb carcasses.

    PubMed

    Mercier, J; Pomar, C; Marcoux, M; Goulet, F; Thériault, M; Castonguay, F W

    2006-06-01

    A total of 140 male and female Dorset and Suffolk lambs were slaughtered according to four live weight classes (36-39kg, 41-44kg, 46-49kg and 51-54kg). Total tissue, fat and lean masses, and bone mineral content measured by dual-energy X-ray absorptiometry (DXA) were used to predict dissected tissue weights. The DXA total weights accurately predict half-carcasses and primal cuts weights (shoulder, leg, loin and flank) (R(2)>0.99, CVe<1.3%). The prediction of the half-carcass dissected fat percentage is weaker (R(2)=0.77, CVe=10.4%). Fatness prediction accuracy is equivalent for the shoulder, leg and loin (R(2) between 0.68 and 0.78, CVe between 10% and 13%). The R(2) obtained when predicting dissected lean content from DXA variables is 0.93 for the half-carcass and higher than 0.83 for all cuts other than flank (CVe are between 3.5% and 6.5%, except for the flank, which is 9.1%). The prediction of bone weight using the bone mineral content is not very accurate for the half-carcass, shoulder and leg (R(2): 0.48, 0.47 and 0.43; CVe: 10.2%, 12.0% and 11.6%, respectively). The situation improves, however, for the loin (R(2)=0.70, CVe=10.7%). In conclusion, DXA is an effective technology for predicting total weight and the amount of lean and fat in lamb carcasses and their primal cuts.

  3. Vertebral fractures assessed with dual-energy X-ray absorptiometry in patients with Addison's disease on glucocorticoid and mineralocorticoid replacement therapy.

    PubMed

    Camozzi, Valentina; Betterle, Corrado; Frigo, Anna Chiara; Zaccariotto, Veronica; Zaninotto, Martina; De Caneva, Erica; Lucato, Paola; Gomiero, Walter; Garelli, Silvia; Sabbadin, Chiara; Salvà, Monica; Costa, Miriam Dalla; Boscaro, Marco; Luisetto, Giovanni

    2018-02-01

    to assess bone damage and metabolic abnormalities in patients with Addison's disease given replacement doses of glucocorticoids and mineralocorticoids. A total of 87 patients and 81 age-matched and sex-matched healthy controls were studied. The following parameters were measured: urinary cortisol, serum calcium, phosphorus, creatinine, 24-h urinary calcium excretion, bone alkaline phosphatase, parathyroid hormone, serum CrossLaps, 25 hydroxyvitamin D, and 1,25 dihydroxyvitamin D. Clear vertebral images were obtained with dual-energy X-ray absorptiometry in 61 Addison's disease patients and 47 controls and assessed using Genant's classification. Nineteen Addison's disease patients (31.1%) had at least one morphometric vertebral fracture, as opposed to six controls (12.8%, odds ratio 3.09, 95% confidence interval 1.12-8.52). There were no significant differences in bone mineral density parameters at any site between patients and controls. In Addison's disease patients, there was a positive correlation between urinary cortisol and urinary calcium excretion. Patients with fractures had a longer history of disease than those without fractures. Patients taking fludrocortisone had a higher bone mineral density than untreated patients at all sites except the lumbar spine. Addison's disease patients have more fragile bones irrespective of any decrease in bone mineral density. Supra-physiological doses of glucocorticoids and longer-standing disease (with a consequently higher glucocorticoid intake) might be the main causes behind patients' increased bone fragility. Associated mineralocorticoid treatment seems to have a protective effect on bone mineral density.

  4. Assessment of Body Composition Using Dual Energy X-Ray Absorptiometry in Patients with Liver Cirrhosis: Comparison with Anthropometry

    PubMed Central

    Jeong, Seong Han; Lee, Jeong A; Kim, Jin A; Lee, Mun Woo; Chae, Hee Bok; Choi, Won Jun; Shin, Hyoung Shik; Lee, Ki Hyeong; Youn, Sei Jin; Koong, Sung Soo; Park, Seon Mee

    1999-01-01

    Objectives The aim of this study was to evaluate changes of body composition in cirrhotic patients. Dual energy x-ray absorptiometry (DEXA) and anthropometry were used, and the values obtained were compared. Methods Mid-arm fat and muscle areas were calculated by anthropometry in 66 cirrhotic patients and 94 healthy controls. In 37 of the cirrhotic patients and 39 of the controls, fat mass, lean soft tissue mass and bone mineral contents were measured with DEXA. Results The number of cirrhotic patients with measured values below the fifth percentile of normal controls was 21 (31.8%) by mid-arm fat area, six (9.1%) by mid-arm muscle area, 15 (40.5%) by fat mass and 0 (0%) by lean soft tissue mass. The fat mass in cirrhotic patients was less than in controls, whereas lean soft tissue mass and bone mineral content were not different. Fat depletion was severe in Child-class C patients and with severe ascites. Mid-arm fat area and fat mass showed close correlation (r = 0.85, p<0.01), but mid-arm muscle area and lean soft tissue mass showed poor correlation (r = 0.32, p<0.05). Conclusion Cirrhotic patients showed lower fat component, with preserved lean soft tissue mass and bone mineral content. In clinical practice, the measurement of mid-arm fat area was useful for the assessment of fat mass. PMID:10461427

  5. Fundamental Movement Skill Proficiency and Body Composition Measured by Dual Energy X-Ray Absorptiometry in Eight-Year-Old Children

    ERIC Educational Resources Information Center

    Slotte, Sari; Sääkslahti, Arja; Metsämuuronen, Jari; Rintala, Pauli

    2015-01-01

    Objective: The main aim was to examine the association between fundamental movement skills (FMS) and objectively measured body composition using dual energy X-ray absorptiometry (DXA). Methods: A study of 304 eight-year-old children in Finland. FMS were assessed with the "Test of gross motor development," 2nd ed. Total body fat…

  6. Relationship between Weight, Body Mass Index, and Bone Mineral Density in Men Referred for Dual-Energy X-Ray Absorptiometry Scan in Isfahan, Iran.

    PubMed

    Salamat, Mohammad Reza; Salamat, Amir Hossein; Abedi, Iraj; Janghorbani, Mohsen

    2013-01-01

    Objective. Although several studies have investigated the association between body mass index (BMI) and bone mineral density (BMD), the results are inconsistent. The aim of this study was to further investigate the relation between BMI, weight and BMD in an Iranian men population. Methods. A total of 230 men 50-79 years old were examined. All men underwent a standard BMD scans of hip (total hip, femoral neck, trochanter, and femoral shaft) and lumbar vertebrae (L2-L4) using a Dual-Energy X-ray Absorptiometry (DXA) scan and examination of body size. Participants were categorised in two BMI group: normal weight <25.0 kg/m(2) and overweight and obese, BMI ≥ 25 kg/m(2). Results. Compared to men with BMI ≥ 25, the age-adjusted odds ratio of osteopenia was 2.2 (95% CI 0.85, 5.93) and for osteoporosis was 4.4 (1.51, 12.87) for men with BMI < 25. It was noted that BMI and weight was associated with a high BMD, compatible with a diagnosis of osteoporosis. Conclusions. These data indicate that both BMI and weight are associated with BMD of hip and vertebrae and overweight and obesity decreased the risk for osteoporosis. The results of this study highlight the need for osteoporosis prevention strategies in elderly men as well as postmenopausal women.

  7. [Study of bone mass with dual energy x-ray absorptiometry in a population of 99 lower limb amputees].

    PubMed

    Leclercq, M M; Bonidan, O; Haaby, E; Pierrejean, C; Sengler, J

    2003-02-01

    Osteopenia in lower extremity amputation is described with an increased risk of fracture and it seems to be interesting to study bone mass in a population of 99 amputees of limb. We studied the bone mass with Dual Energy Xray Absorptiometry in patients with limb amputation, above and under knee and who have been treated in the rehabilitation department of Mulhouse's hospital and more specifically the percentage of the difference of the mesure between amputed and non amputed side and the influence on this mesure of several factors like sexe; age; diabetes mellitus; delay of amputation; aetiology and use of prosthesis. For all the population, we find lower values of BMD (Bone mineral density) for femoral neck -10.4% +/- 12.2 (P < 0,001) and trochanter -14.9% +/- 14.5 (P < 0,001) between amputated and non amputated side, and also comparing with normal population -19.9% +/- 18.8 (P < 0,001) for femoral neck and -8.8% +/- 22 (P < 0,001) for trochanter.There is no influence of sexe, age, and time since amputation on BMD. The study of sub-groupes shows that the loss of bone mass is depending on traumatic amputation, the level of amputation (above knee) and when prothetis doesn't fit. Arteritis or diabetis are not pejoratif factors. This work confirms the mechanical factors as an important parameter of bone loss in the limb amputation.

  8. [Dual x-ray absorptiometry assessment of bone density of the proximal tibia in advanced-stage degenerative disease of the knee].

    PubMed

    Hulet, C; Sabatier, J P; Schiltz, D; Locker, B; Marcelli, C; Vielpeau, C

    2001-02-01

    Axial deformity secondary to degenerative joint disease of the knee can modify stress forces. Certain studies have reported an inversely proportional relationship between degenerative disease and osteoporosis. The aim of this prospective study was to quantify the horizontal linear distribution of bone density using dual x-ray absorptiometry (DXA) of the proximal tibia as a function of the femoral neck bone density in patients with knee osteoarthritis. Between September 1996 and March 1998, 90 cases of primary degenerative joint disease of the knee were programmed for total knee arthroplasty. Prior to the procedure, the patients were assessed clinically and radiologically according to the International Knee Society (IKS) criteria. The mechanical femorotibial angle was measured in all patients and the varus angles were recorded. Most of the patients were women (65 p. 100) with a mean age of 70 +/- 5 years. Valgus knees were excluded from this series. The mean mechanical femorotibial angle was 172 +/- 5 degrees. Fifteen patients had a normal axis (16 p. 100), 32 had a varus measuring 4 degrees to 10 degrees (35 p. 100) and 43 had a varus measuring 10 degrees or more (48 p. 100). The overall varus distance was 6.4 +/- 2 cm. All patients had two DXA explorations: femoral neck to determine the bone status according to the WHO criteria (normal, osteopenia, osteoporosis), knee to determine the linear distribution of bone density of the proximal tibia. A 7 mm high band including 7 regions of interest covering the width of the tibia were explored in the area where the tibial cut was to be made. These 7 regions of interest were: R1, R2 under the lateral compartment, R6, R7 under the medial compartment, and R3, R4, R5 on either side of the tibial spines. The level of significance was set at 5 p. 100. The mean Z score (0.54 +/- 1) in the 90 patients showed a symmetrical distribution. These patients were representative of their age range. Their T score was - 1.40 +/- 1 (m +/- SD

  9. Total and regional body volumes derived from dual-energy X-ray absorptiometry output.

    PubMed

    Wilson, Joseph P; Fan, Bo; Shepherd, John A

    2013-01-01

    Total body volume is an important health metric used to measure body density, shape, and multicompartmental body composition but is currently only available through underwater weighing or air displacement plethysmography (ADP). The objective of this investigation was to derive an accurate body volume from dual-energy X-ray absorptiometry (DXA)-reported measures for advanced body composition models. Volunteers received a whole body DXA scan and an ADP measure at baseline (N = 25) and 6 mo (N = 22). Baseline measures were used to calibrate body volume from the reported DXA masses of fat, lean, and bone mineral content. A second population (N = 385) from the National Health and Nutrition Examination Survey was used to estimate the test-retest precision of regional (arms, legs, head, and trunk) and total body volumes. Overall, we found that DXA-volume was highly correlated to ADP-volume (R² = 0.99). The 6-mo change in total DXA-volume was highly correlated to change in ADP-volume (R² = 0.98). The root mean square percent coefficient of variation precision of DXA-volume measures ranged from 1.1% (total) to 3.2% (head). We conclude that the DXA-volume method can measure body volume accurately and precisely, can be used in body composition models, could be an independent health indicator, and is useful as a prospective or retrospective biomarker of body composition. Copyright © 2013 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  10. In vivo short-term precision of hip structure analysis variables in comparison with bone mineral density using paired dual-energy X-ray absorptiometry scans from multi-center clinical trials.

    PubMed

    Khoo, Benjamin C C; Beck, Thomas J; Qiao, Qi-Hong; Parakh, Pallav; Semanick, Lisa; Prince, Richard L; Singer, Kevin P; Price, Roger I

    2005-07-01

    Hip structural analysis (HSA) is a technique for extracting strength-related structural dimensions of bone cross-sections from two-dimensional hip scan images acquired by dual energy X-ray absorptiometry (DXA) scanners. Heretofore the precision of the method has not been thoroughly tested in the clinical setting. Using paired scans from two large clinical trials involving a range of different DXA machines, this study reports the first precision analysis of HSA variables, in comparison with that of conventional bone mineral density (BMD) on the same scans. A key HSA variable, section modulus (Z), biomechanically indicative of bone strength during bending, had a short-term precision percentage coefficient of variation (CV%) in the femoral neck of 3.4-10.1%, depending on the manufacturer or model of the DXA equipment. Cross-sectional area (CSA), a determinant of bone strength during axial loading and closely aligned with conventional DXA bone mineral content, had a range of CV% from 2.8% to 7.9%. Poorer precision was associated with inadequate inclusion of the femoral shaft or femoral head in the DXA-scanned hip region. Precision of HSA-derived BMD varied between 2.4% and 6.4%. Precision of DXA manufacturer-derived BMD varied between 1.9% and 3.4%, arising from the larger analysis region of interest (ROI). The precision of HSA variables was not generally dependent on magnitude, subject height, weight, or conventional femoral neck densitometric variables. The generally poorer precision of key HSA variables in comparison with conventional DXA-derived BMD highlights the critical roles played by correct limb repositioning and choice of an adequate and appropriately positioned ROI.

  11. Comparison of DXA Scans and Conventional X-rays for Spine Morphometry and Bone Age Determination in Children.

    PubMed

    Hoyer-Kuhn, Heike; Knoop, Kai; Semler, Oliver; Kuhr, Kathrin; Hellmich, Martin; Schoenau, Eckhard; Koerber, Friederike

    2016-01-01

    Conventional lateral spine and hand radiographs are the standard tools to evaluate vertebral morphometry and bone age in children. Beside bone mineral density analyses, dual-energy X-ray absorptiometry (DXA) measurements with lower radiation exposure provide high-resolution scans which are not approved for diagnostic purposes. Data about the comparability of conventional radiographs and DXA in children are missing yet. The purpose of the trial was to evaluate whether conventional hand and spine radiographs can be replaced by DXA scans to diminish radiation exposure. Thirty-eight children with osteogenesis imperfecta or secondary osteoporosis or short stature (male, n=20; age, 5.0-17.0 yr) were included and assessed once by additional DXA (GE iDXA) of the spine or the left hand. Intraclass correlation coefficients (ICCs) were used to express agreement between X-ray and iDXA assessment. Evaluation of the spine morphometry showed reasonable agreement between iDXA and radiography (ICC for fish-shape, 0.75; for wedge-shape, 0.65; and for compression fractures, 0.70). Bone age determination showed excellent agreement between iDXA and radiography (ICC, 0.97). IDXA-scans of the spine in a pediatric population should be used not only to assess bone mineral density but also to evaluate anatomic structures and vertebral morphometry. Therefore, iDXA can replace some radiographs in children with skeletal diseases. Copyright © 2016 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  12. Magnetic resonance imaging and dual energy X-ray absorptiometry of the lumbar spine in professional wrestlers and untrained men.

    PubMed

    Hu, M; Sheng, J; Kang, Z; Zou, L; Guo, J; Sun, P

    2014-08-01

    The aim of this study was to examine the relation between bone marrow adipose tissue (BMAT) and bone mineral density (BMD) of lumbar spine in male professional wrestlers and healthy untrained men. A total of 14 wrestlers (22.9±3.4 years) and 11 controls (24.4±1.6 years) were studied cross-sectionally. Body composition and BMD were measured by dual-energy X-ray absorptiometry. Magnetic resonance imaging of the lumbar spine was examined in a sagittal T1-weighted (T1-w) spin-echo (SE) sequence. The averaged bone marrow signal intensity (SI) of L2-L4 was related to the signal of an adjacent nondegenerative disk. Mean SI of T1-w SE in wrestlers was lower than controls (P=0.001), indicating L2-L4 BMAT in wrestlers was lower compared to controls. L2-L4 BMD in wrestlers was higher than controls (P<0.001). In the total subject population, L2-L4 BMD was inversely correlated with mean SI of T1-w SE (r=-0.62, P=0.001). This association remained strong after adjusting for body mass and whole lean mass, but became weaker after adjusting for whole body or trunk fat percentage. The inverse relationship between BMAT and BMD was confirmed in this relatively small subject sample with narrow age range, which implies that exercise training is an important determinant of this association.

  13. Proteomics in bone research

    PubMed Central

    Zhang, Hengwei; Recker, Robert; Lee, Wai-Nang Paul; Xiao, Gary Guishan

    2010-01-01

    Osteoporosis is prevalent among the elderly and is a major cause of bone fracture in this population. Bone integrity is maintained by the dynamic processes of bone resorption and bone formation (bone remodeling). Osteoporosis results when there is an imbalance of the two counteracting processes. Bone mineral density, measured by dual-energy x-ray absorptiometry has been the primary method to assess fracture risk for decades. Recent studies demonstrated that measurement of bone turnover markers allows for a dynamic assessment of bone remodeling, while imaging techniques, such as dual-energy x-ray absorptiometry, do not. The application of proteomics has permitted discoveries of new, sensitive, bone turnover markers, which provide unique information for clinical diagnosis and treatment of patients with bone diseases. This review summarizes the recent findings of proteomic studies on bone diseases, properties of mesenchymal stem cells with high expansion rates and osteoblast and osteoclast differentiation, with emphasis on the role of quantitative proteomics in the study of signaling dynamics, biomarkers and discovery of therapeutic targets. PMID:20121480

  14. Assessment of adiposity in psoriatic patients by dual energy X-ray absorptiometry compared to conventional methods*

    PubMed Central

    Diniz, Michelle dos Santos; Bavoso, Nádia Couto; Kakehasi, Adriana Maria; Lauria, Márcio Weissheimer; Soares, Maria Marta Sarquis; Machado-Pinto, Jackson

    2016-01-01

    BACKGROUND Obesity is considered a chronic low-grade inflammatory disease that shares mediators of inflammation with psoriasis, such as TNF-α and IL-6. The relationship between these two conditions involves factors such as predisposition and response to therapy, in addition to an association with cardiovascular disease. OBJECTIVES The aim of the present study was to investigate the prevalence of adiposity as determined by body mass index (BMI), waist circumference (WC), and dual energy X-ray absorptiometry (DXA) evaluation in patients with psoriasis. METHODS BMI, WC and body composition by DXA were measured in 42 psoriatic patients without joint complaints and in 41 control patients using standard procedures. In the comparison between cases and controls, we used Pearson’s Χ2 test or Fisher’s exact test, and the nonparametric Mann-Whitney test. The difference between the diverse classification methods for obesity was evaluated using McNemar’s test. To test the level of agreement between those variables, we used the weighted kappa coefficient. RESULTS There was no difference in the prevalence of obesity among cases and controls. Both BMI and WC had low agreement with measures of body fat evaluated by DXA. With the use of DXA scanning, prevalence of overweight and obesity in patients with psoriasis was 83.3%, which constitutes a strong evidence of the need for intervention on this metabolic parameter. CONCLUSION Dual energy X-ray absorptiometry was more capable of identifying obesity compared with BMI and WC both in psoriatic and control patients. PMID:27192512

  15. A structural study of bone changes in knee osteoarthritis by synchrotron-based X-ray fluorescence and X-ray absorption spectroscopy techniques

    NASA Astrophysics Data System (ADS)

    Sindhupakorn, Bura; Thienpratharn, Suwittaya; Kidkhunthod, Pinit

    2017-10-01

    Osteoarthritis (OA) is characterized by degeneration of articular cartilage and thickening of subchondral bone. The present study investigated the changing of biochemical components of cartilage and bone compared between normal and OA people. Using Synchrotron-based X-ray fluorescence (SR-XRF) and X-ray absorption spectroscopy (XAS) techniquesincluding X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) were employed for the bone changes in kneeosteoarthritisstudies. The bone samples were collected from various osteoarthritis patients with both male and female in the ages range between 20 and 74 years old. SR-XRF results excited at 4240 eV for Ca elements show a majority three main groups, based on their XRF intensities, 20-36 years, 40-60 years and over 70 years, respectively. By employing XAS techniques, XANES features can be used to clearly explain in term of electronic transitions occurring in bone samples which are affected from osteoarthritis symptoms. Moreover, a structural change around Ca ions in bone samples is obviously obtained by EXAFS results indicating an increase of Ca-amorphous phase when the ages increase.

  16. Evaluation of mandibular bone mineral density using the dual-energy X-ray absorptiometry technique in edentulous subjects living in an endemic fluorosis region.

    PubMed

    Buyukkaplan, U S; Guldag, M U

    2012-07-01

    Fluoride is one of the biological trace elements with a strong affinity for osseous, cartilaginous and dental tissue. The dental and skeletal effects of high fluoride intake have already been studied in the literature, but little is known about the effects of high fluoride intake on edentulous mandibles. The purpose of this study was to evaluate the effects of high fluoride intake on mandibular bone mineral density (BMD) measured by the dual-energy X-ray absorptiometry (DXA) technique in edentulous individuals with systemic fluorosis. 32 people who were living in an endemic fluorosis area since birth and 31 people who were living in a non-endemic fluorosis area since birth (control group) participated in this study. Systemic fluorosis was diagnosed in the patients using the sialic acid (NANA)/glycosaminoglycan (GAG) ratio. The BMDs of the mandibles were determined by the DXA technique. The serum NANA/GAG ratios in the fluorosis group were significantly lower than those in the control group (p < 0.001). There was also a statistically significant difference in mandibular BMD measurements (p < 0.05) between the systemic fluorosis and control groups, as measured by the DXA technique. Mandibular body BMD measurements were higher in the fluorosis group (1.25 ± 0.24 g cm(-2)) than in the control group (1.01 ± 0.31 g cm(-2)). The results of the study showed that fluoride intake higher than the optimum level causes increased mandibular BMD in edentulous individuals. Further dose-related studies are needed to determine the effects of high fluoride intake on bony structures of the stomatognathic system.

  17. The role of carboxy-terminal cross-linking telopeptide of type I collagen, dual x-ray absorptiometry bone strain and Romberg test in a new osteoporotic fracture risk evaluation: A proposal from an observational study.

    PubMed

    Ulivieri, Fabio M; Piodi, Luca P; Grossi, Enzo; Rinaudo, Luca; Messina, Carmelo; Tassi, Anna P; Filopanti, Marcello; Tirelli, Anna; Sardanelli, Francesco

    2018-01-01

    The consolidated way of diagnosing and treating osteoporosis in order to prevent fragility fractures has recently been questioned by some papers, which complained of overdiagnosis and consequent overtreatment of this pathology with underestimating other causes of the fragility fractures, like falls. A new clinical approach is proposed for identifying the subgroup of patients prone to fragility fractures. This retrospective observational study was conducted from January to June 2015 at the Nuclear Medicine-Bone Metabolic Unit of the of the Fondazione IRCCS Ca' Granda, Milan, Italy. An Italian population of 125 consecutive postmenopausal women was investigated for bone quantity and bone quality. Patients with neurological diseases regarding balance and vestibular dysfunction, sarcopenia, past or current history of diseases and use of drugs known to affect bone metabolism were excluded. Dual X-ray absorptiometry was used to assess bone quantity (bone mineral density) and bone quality (trabecular bone score and bone strain). Biochemical markers of bone turnover (type I collagen carboxy-terminal telopeptide, alkaline phosphatase, vitamin D) have been measured. Morphometric fractures have been searched by spine radiography. Balance was evaluated by the Romberg test. The data were evaluated with the neural network analysis using the Auto Contractive Map algorithm. The resulting semantic map shows the Minimal Spanning Tree and the Maximally Regular Graph of the interrelations between bone status parameters, balance conditions and fractures of the studied population. A low fracture risk seems to be related to a low carboxy-terminal cross-linking telopeptide of type I collagen level, whereas a positive Romberg test, together with compromised bone trabecular microarchitecture DXA parameters, appears to be strictly connected with fragility fractures. A simple assessment of the risk of fragility fracture is proposed in order to identify those frail patients at risk for

  18. Dual-energy X-ray absorptiometry derived structural geometry for stress fracture prediction in male U.S. Marine Corps recruits.

    PubMed

    Beck, T J; Ruff, C B; Mourtada, F A; Shaffer, R A; Maxwell-Williams, K; Kao, G L; Sartoris, D J; Brodine, S

    1996-05-01

    A total of 626 U.S. male Marine Corps recruits underwent anthropometric measurements and dual-energy X-ray absorptiometry (DXA) scans of the femoral midshaft and the distal third of the tibia prior to a 12 week physical training program. Conventionally obtained frontal plane DXA scan data were used to measure the bone mineral density (BMD) as well as to derive the cross-sectional area, moment of inertia, section modulus, and bone width in the femur, tibia, and fibula. During training, 23 recruits (3.7%) presented with a total of 27 radiologically confirmed stress fractures in various locations in the lower extremity. After excluding 16 cases of shin splints, periostitis, and other stress reactions that did not meet fracture definition criteria, we compared anthropometric and bone structural geometry measurements between fracture cases and the remaining 587 normals. There was no significant difference in age (p = 0.8), femur length (p = 0.2), pelvic width (p = 0.08), and knee width at the femoral condyles (p = 0.06), but fracture cases were shorter (p = 0.01), lighter (p = 0.0006), and smaller in most anthropometric girth dimensions (p < 0.04). Fracture case bone cross-sectional areas (p < 0.001), moments of inertia (p < 0.001), section moduli (p < 0.001), and widths (p < 0.001) as well as BMD (p < 0.03) were significantly smaller in the tibia and femur. After correcting for body weight differences, the tibia cross-sectional area (p = 0.03), section modulus (p = 0.05), and width (p = 0.03) remained significantly smaller in fracture subjects. We conclude that both small body weight and small diaphyseal dimensions relative to body weight are factors predisposing to the development of stress fractures in this population. These results suggest that bone structural geometry measurements derived from DXA data may provide a simple noninvasive methodology for assessing the risk of stress fracture.

  19. Precision of dual-energy X-ray absorptiometry of the knee and heel: methodology and implications for research to reduce bone mineral loss after spinal cord injury.

    PubMed

    Peppler, W T; Kim, W J; Ethans, K; Cowley, K C

    2017-05-01

    Methodological validation of dual-energy x-ray absorptiometry (DXA)-based measures of leg bone mineral density (BMD) based on the guidelines of the International Society for Clinical Densitometry. The primary objective of this study was to determine the precision of BMD estimates at the knee and heel using the manufacturer provided DXA acquisition algorithm. The secondary objective was to determine the smallest change in DXA-based measurement of BMD that should be surpassed (least significant change (LSC)) before suggesting that a biological change has occurred in the distal femur, proximal tibia and calcaneus. Academic Research Centre, Canada. Ten people with motor-complete SCI of at least 2 years duration and 10 people from the general population volunteered to have four DXA-based measurements taken of their femur, tibia and calcaneus. BMDs for seven regions of interest (RIs) were calculated, as were short-term precision (root-mean-square (RMS) standard deviation (g cm -2 ), RMS-coefficient of variation (RMS-CV, %)) and LSC. Overall, RMS-CV values were similar between SCI (3.63-10.20%, mean=5.3%) and able-bodied (1.85-5.73%, mean=4%) cohorts, despite lower absolute BMD values at each RIs in those with SCI (35%, heel to 54%, knee; P<0.0001). Precision was highest at the calcaneus and lowest at the femur. Except at the femur, RMS-CV values were under 6%. For DXA-based estimates of BMD at the distal femur, proximal tibia and calcaneus, these precision values suggest that LSC values >10% are needed to detect differences between treated and untreated groups in studies aimed at reducing bone mineral loss after SCI.

  20. Agreement Between Bioelectrical Impedance and Dual-Energy X-Ray Absorptiometry to Track Changes in Fat-Free Mass After Resistance Training in Older Women.

    PubMed

    Nascimento, Matheus A; Silva, Danilo R P; Ribeiro, Alex S; Pina, Fábio L C; Gerage, Aline M; Gobbo, Luís A; Mayhew, Jerry L; Cyrino, Edilson S

    2018-05-23

    Nascimento, MA, Silva, DRP, Ribeiro, AS, Pina, FLC, Gerage, AM, Gobbo, LA, Mayhew, JL, and Cyrino, ES. Agreement between bioelectrical impedance and dual-energy x-ray absorptiometry to track changes in fat-free mass after resistance training in older women. J Strength Cond Res XX(X): 000-000, 2018-The aim of our study was to compare the agreement between bioelectrical impedance (BIA) and dual-energy X-ray absorptiometry (DXA) to track changes on fat-free mass (FFM) after a resistance training (RT) program in older women. Forty-three older women (65.2 ± 4.6 years, 59.5 ± 9.2 kg, 156.4 ± 6.0 cm, 24.3 ± 3.3 kg·m) participated in a RT intervention (12 weeks, 8 exercises, 2 sets, 10-15 repetitions, 3 nonconsecutive days per week). Fat-free mass changes were determined by a single-frequency BIA device (EQ1), 6 BIA prediction equations for older women (EQ2, EQ3, EQ4, EQ5, EQ6, and EQ7), and DXA. At pretraining, 3 equations overpredicted, and 3 underpredicted DXA FFM (F = 244.63, p < 0.001), although all equations had high correlations with DXA (r = 0.78-0.83). After training, 4 equations overpredicted and one underpredicted DXA FFM (F = 176.25, p < 0.001). Dual-energy X-ray absorptiometry detected significant gains in FFM (0.65 ± 0.82 kg; p < 0.05), as did EQ3 (0.55 ± 1.69 kg; p < 0.05), and EQ4 (0.61 ± 1.88 kg; p < 0.05), whereas the remaining equations did not indicate significant changes in FFM. Low correlations between FFM and equation change values suggest that single-frequency BIA-derived equations may not provide sufficient accuracy to track changes in FFM after 12 weeks of RT in older women.

  1. Spine Trabecular Bone Score as an Indicator of Bone Microarchitecture at the Peripheral Skeleton in Kidney Transplant Recipients.

    PubMed

    Luckman, Matthew; Hans, Didier; Cortez, Natalia; Nishiyama, Kyle K; Agarawal, Sanchita; Zhang, Chengchen; Nikkel, Lucas; Iyer, Sapna; Fusaro, Maria; Guo, Edward X; McMahon, Donald J; Shane, Elizabeth; Nickolas, Thomas L

    2017-04-03

    Studies using high-resolution peripheral quantitative computed tomography showed progressive abnormalities in cortical and trabecular microarchitecture and biomechanical competence over the first year after kidney transplantation. However, high-resolution peripheral computed tomography is a research tool lacking wide availability. In contrast, the trabecular bone score is a novel and widely available tool that uses gray-scale variograms of the spine image from dual-energy x-ray absorptiometry to assess trabecular quality. There are no studies assessing whether trabecular bone score characterizes bone quality in kidney transplant recipients. Between 2009 and 2010, we conducted a study to assess changes in peripheral skeletal microarchitecture, measured by high-resolution peripheral computed tomography, during the first year after transplantation in 47 patients managed with early corticosteroid-withdrawal immunosuppression. All adult first-time transplant candidates were eligible. Patients underwent imaging with high-resolution peripheral computed tomography and dual-energy x-ray absorptiometry pretransplantation and 3, 6, and 12 months post-transplantation. We now test if, during the first year after transplantation, trabecular bone score assesses the evolution of bone microarchitecture and biomechanical competence as determined by high-resolution peripheral computed tomography. At baseline and follow-up, among the 72% and 78%, respectively, of patients having normal bone mineral density by dual-energy x-ray absorptiometry, 53% and 50%, respectively, were classified by trabecular bone score as having high fracture risk. At baseline, trabecular bone score correlated with spine, hip, and ultradistal radius bone mineral density by dual-energy x-ray absorptiometry and cortical area, density, thickness, and porosity; trabecular density, thickness, separation, and heterogeneity; and stiffness and failure load by high-resolution peripheral computed tomography

  2. Spine Trabecular Bone Score as an Indicator of Bone Microarchitecture at the Peripheral Skeleton in Kidney Transplant Recipients

    PubMed Central

    Luckman, Matthew; Hans, Didier; Cortez, Natalia; Nishiyama, Kyle K.; Agarawal, Sanchita; Zhang, Chengchen; Nikkel, Lucas; Iyer, Sapna; Fusaro, Maria; Guo, Edward X.; McMahon, Donald J.; Shane, Elizabeth

    2017-01-01

    Background and objectives Studies using high-resolution peripheral quantitative computed tomography showed progressive abnormalities in cortical and trabecular microarchitecture and biomechanical competence over the first year after kidney transplantation. However, high-resolution peripheral computed tomography is a research tool lacking wide availability. In contrast, the trabecular bone score is a novel and widely available tool that uses gray-scale variograms of the spine image from dual-energy x-ray absorptiometry to assess trabecular quality. There are no studies assessing whether trabecular bone score characterizes bone quality in kidney transplant recipients. Design, settings, participants, & measurements Between 2009 and 2010, we conducted a study to assess changes in peripheral skeletal microarchitecture, measured by high-resolution peripheral computed tomography, during the first year after transplantation in 47 patients managed with early corticosteroid–withdrawal immunosuppression. All adult first-time transplant candidates were eligible. Patients underwent imaging with high-resolution peripheral computed tomography and dual-energy x-ray absorptiometry pretransplantation and 3, 6, and 12 months post-transplantation. We now test if, during the first year after transplantation, trabecular bone score assesses the evolution of bone microarchitecture and biomechanical competence as determined by high-resolution peripheral computed tomography. Results At baseline and follow-up, among the 72% and 78%, respectively, of patients having normal bone mineral density by dual-energy x-ray absorptiometry, 53% and 50%, respectively, were classified by trabecular bone score as having high fracture risk. At baseline, trabecular bone score correlated with spine, hip, and ultradistal radius bone mineral density by dual-energy x-ray absorptiometry and cortical area, density, thickness, and porosity; trabecular density, thickness, separation, and heterogeneity; and

  3. Small animal bone density and morphometry analysis with a dual energy x-ray absorptiometry bone densitometer using a 2D digital radiographic detector

    NASA Astrophysics Data System (ADS)

    Boudousq, V.; Bordy, T.; Gonon, G.; Dinten, J. M.

    2005-04-01

    The LEXXOS (DMS, Montpellier, France) is the first axial and total body cone beam bone densitometer using a 2D digital radiographic detector. Technical principles and performances for BMD measurements have been presented in previous papers. Bone densitometers are also used on small animals for drug development. In this paper, we show how the LEXXOS system can be adapted to small animals examinations, and its performances are evaluated. At first, in order to take advantage of the whole area of the digital flat panel X-ray detector, the geometrical configuration has been adapted. Secondly, as small animals present low BMD, a specific dual energy calibration has been defined. This adapted system has then been evaluated on two sets of mice: six reference mice and six ovariectomized mice. Each month, these two populations have been examined and the total body BMD has been measured. This evaluation has shown that the right order of BMD magnitude has been obtained and, as expected, BMD increases on the two sets until age of puberty and after this period, decreases significantly for the ovariectomized set. Moreover, the bone image obtained by dual energy processing on LEXXOS presents a radiographic image quality providing with useful complementary information on bone morphometry and architecture.

  4. X-Rays

    MedlinePlus

    X-rays are a type of radiation called electromagnetic waves. X-ray imaging creates pictures of the inside of ... different amounts of radiation. Calcium in bones absorbs x-rays the most, so bones look white. Fat ...

  5. Trunk density profile estimates from dual X-ray absorptiometry.

    PubMed

    Wicke, Jason; Dumas, Geneviève A; Costigan, Patrick A

    2008-01-01

    Accurate body segment parameters are necessary to estimate joint loads when using biomechanical models. Geometric methods can provide individualized data for these models but the accuracy of the geometric methods depends on accurate segment density estimates. The trunk, which is important in many biomechanical models, has the largest variability in density along its length. Therefore, the objectives of this study were to: (1) develop a new method for modeling trunk density profiles based on dual X-ray absorptiometry (DXA) and (2) develop a trunk density function for college-aged females and males that can be used in geometric methods. To this end, the density profiles of 25 females and 24 males were determined by combining the measurements from a photogrammetric method and DXA readings. A discrete Fourier transformation was then used to develop the density functions for each sex. The individual density and average density profiles compare well with the literature. There were distinct differences between the profiles of two of participants (one female and one male), and the average for their sex. It is believed that the variations in these two participants' density profiles were a result of the amount and distribution of fat they possessed. Further studies are needed to support this possibility. The new density functions eliminate the uniform density assumption associated with some geometric models thus providing more accurate trunk segment parameter estimates. In turn, more accurate moments and forces can be estimated for the kinetic analyses of certain human movements.

  6. Air displacement plethysmography versus dual-energy x-ray absorptiometry in underweight, normal-weight, and overweight/obese individuals.

    PubMed

    Lowry, David W; Tomiyama, A Janet

    2015-01-01

    Accurately estimating fat percentage is important for assessing health and determining treatment course. Methods of estimating body composition such as hydrostatic weighing or dual-energy x-ray absorptiometry (DXA), however, can be expensive, require extensive operator training, and, in the case of hydrostatic weighing, be highly burdensome for patients. Our objective was to evaluate air displacement plethysmography via the Bod Pod, a less burdensome method of estimating body fat percentage. In particular, we filled a gap in the literature by testing the Bod Pod at the lower extreme of the Body Mass Index (BMI) distribution. Three BMI groups were recruited and underwent both air displacement plethysmography and dual-energy x-ray absorptiometry. We recruited 30 healthy adults at the lower BMI distribution from the Calorie Restriction (CR) Society and followers of the CR Way. We also recruited 15 normal weight and 19 overweight/obese healthy adults from the general population. Both Siri and Brozek equations derived body fat percentage from the Bod Pod, and Bland-Altman analyses assessed agreement between the Bod Pod and DXA. Compared to DXA, the Bod Pod overestimated body fat percentage in thinner participants and underestimated body fat percentage in heavier participants, and the magnitude of difference was larger for underweight BMI participants, reaching 13% in some. The Bod Pod and DXA had smaller discrepancies in normal weight and overweight/obese participants. While less burdensome, clinicians should be aware that Bod Pod estimates may deviate from DXA estimates particularly at the lower end of the BMI distribution.

  7. Air Displacement Plethysmography versus Dual-Energy X-Ray Absorptiometry in Underweight, Normal-Weight, and Overweight/Obese Individuals

    PubMed Central

    Lowry, David W.; Tomiyama, A. Janet

    2015-01-01

    Background Accurately estimating fat percentage is important for assessing health and determining treatment course. Methods of estimating body composition such as hydrostatic weighing or dual-energy x-ray absorptiometry (DXA), however, can be expensive, require extensive operator training, and, in the case of hydrostatic weighing, be highly burdensome for patients. Our objective was to evaluate air displacement plethysmography via the Bod Pod, a less burdensome method of estimating body fat percentage. In particular, we filled a gap in the literature by testing the Bod Pod at the lower extreme of the Body Mass Index (BMI) distribution. Findings Three BMI groups were recruited and underwent both air displacement plethysmography and dual-energy x-ray absorptiometry. We recruited 30 healthy adults at the lower BMI distribution from the Calorie Restriction (CR) Society and followers of the CR Way. We also recruited 15 normal weight and 19 overweight/obese healthy adults from the general population. Both Siri and Brozek equations derived body fat percentage from the Bod Pod, and Bland-Altman analyses assessed agreement between the Bod Pod and DXA. Compared to DXA, the Bod Pod overestimated body fat percentage in thinner participants and underestimated body fat percentage in heavier participants, and the magnitude of difference was larger for underweight BMI participants, reaching 13% in some. The Bod Pod and DXA had smaller discrepancies in normal weight and overweight/obese participants. Conclusions While less burdensome, clinicians should be aware that Bod Pod estimates may deviate from DXA estimates particularly at the lower end of the BMI distribution. PMID:25607661

  8. Radiation exposure in X-ray-based imaging techniques used in osteoporosis

    PubMed Central

    Adams, Judith E.; Guglielmi, Giuseppe; Link, Thomas M.

    2010-01-01

    Recent advances in medical X-ray imaging have enabled the development of new techniques capable of assessing not only bone quantity but also structure. This article provides (a) a brief review of the current X-ray methods used for quantitative assessment of the skeleton, (b) data on the levels of radiation exposure associated with these methods and (c) information about radiation safety issues. Radiation doses associated with dual-energy X-ray absorptiometry are very low. However, as with any X-ray imaging technique, each particular examination must always be clinically justified. When an examination is justified, the emphasis must be on dose optimisation of imaging protocols. Dose optimisation is more important for paediatric examinations because children are more vulnerable to radiation than adults. Methods based on multi-detector CT (MDCT) are associated with higher radiation doses. New 3D volumetric hip and spine quantitative computed tomography (QCT) techniques and high-resolution MDCT for evaluation of bone structure deliver doses to patients from 1 to 3 mSv. Low-dose protocols are needed to reduce radiation exposure from these methods and minimise associated health risks. PMID:20559834

  9. Feasibility of cone beam computed tomography radiomorphometric analysis and fractal dimension in assessment of postmenopausal osteoporosis in correlation with dual X-ray absorptiometry.

    PubMed

    Mostafa, Raghdaa A; Arnout, Eman A; Abo El-Fotouh, Mona M

    The aim of the present study was to assess the feasibility of using mandibular CBCT radiomorphometric indices and box-counting fractal dimension (FD) to detect osteoporosis in post-menopausal females, compare them with the healthy control group and to correlate the findings with the bone mineral density measured by dual X-ray absorptiometry (DXA). This study consisted of 50 post-menopausal females, with age ranging from 55 to 70 years. Based on their DXA results, they were classified into osteoporotic and control groups. Mandibular CBCT radiomorphomertic indices and FD analysis were measured. Significant differences were found for the CT cortical index scores (CTCI), CT mental index (CTMI) and CT mandibular index (CTI) between the control and osteoporotic groups. The control group showed higher mean values than the osteoporotic group. For FD values, no significant differences were found between the two groups. CBCT radiomorphometric indices could be used as an adjuvant tool to refer patients at risk of osteoporosis for further assessment.

  10. Disorders of bone and bone mineral metabolism.

    PubMed

    Komoroski, Monica; Azad, Nasrin; Camacho, Pauline

    2014-01-01

    Metabolic bone disorders are very common in the general population and untreated, they can cause a variety of neurologic symptoms. These diseases include osteoporosis, vitamin D deficiency, Paget's disease, and alterations in calcium, phosphorus, and magnesium metabolism. Diagnosis is made through analysis of metabolic bone blood chemistries as well as radiologic studies such as dual energy X-ray absorptiometry (DXA) scans, bone scans, and X-rays. Treatment options have advanced significantly in the past decade for osteoporosis and Paget's disease and mainly include antiresorptive therapy. New recommendations for treatment of primary hyperparathyroidism are discussed as well as therapy for calcium, phosphorus, and mineral disorders. © 2014 Elsevier B.V. All rights reserved.

  11. Prediction of percent body fat in adult males using dual energy x-ray absorptiometry, skinfolds, and hydrostatic weighing.

    PubMed

    Clark, R R; Kuta, J M; Sullivan, J C

    1993-04-01

    The purpose of this study was to compare the prediction of percent body fat (%FAT) by dual energy x-ray absorptiometry (DXA), skinfolds (SF), and hydrostatic weighing (HW) in adult males. Subjects were 35 adult male Caucasians (mean +/- SD; age: 39.1 +/- 14.0 yr, height: 180.6 +/- 5.3 cm, weight: 81.0 +/- 11.1 kg). %FAT, determined by HW with residual volume determined via O2 dilution, served as the criterion. DXA %FAT was determined by the Norland XR-26 (XR-26) bone densitometer and by the SF equations of Jackson and Pollock (JP) (1978), and Lohman (LOH) (1981). Criterion referenced validation included analyzing mean (+/- SD) %FAT values using a one-way ANOVA for significance, comparison of mean differences (MD), correlations (r), standard error of estimates (SEE), and total errors (TE). Significant differences were found between means of each method. The r (0.91) and SEE (3.0 %FAT) for DXA compare favorably with the established SF methods of JP and LOH for predicting %FAT; however, DXA demonstrated the largest MD (3.9 %FAT) and TE (5.2 %FAT). Regression analysis yields HW = 0.79* DXA + 0.56. The results do not support earlier research that found no significant difference between HW and DXA %FAT in males. The study suggests the density of the fat-free body (DFFB) is not constant, and that the variation in bone mineral content affects the DFFB, which contributes to the differences between DXA and HW %FAT. We recommend further research to identify inconsistencies between manufacturers of DXA equipment in prediction of %FAT in males.

  12. Body composition in males with adolescent idiopathic scoliosis: a case-control study with dual-energy X-ray absorptiometry.

    PubMed

    Wang, Weijun; Wang, Zhiwei; Zhu, Zezhang; Zhu, Feng; Qiu, Yong

    2016-02-29

    In contrast to the well-characterized body growth and development of females with adolescent idiopathic scoliosis (AIS), the pubertal growth pattern of male patients has not been well-documented. Recently, significantly lower body weight (BW) and body mass index (BMI) were reported in males with AIS, and were thought to be related to curve progression. A case-control study was carried out to characterize the body composition and bone status of males with AIS, with the aim of gaining a better understanding of lower BW among these patients. Forty-seven males with AIS and forty age- and gender-matched healthy controls were recruited. Standing height (SH) and BW were measured. The SH of the males who had AIS was corrected using Bjure's equation, and then the BMI was calculated. Body composition, including subcranial fat mass (FM), lean mass (LM), and bone mineral content (BMC), and bone mineral density (BMD) were analyzed using dual-energy X-ray absorptiometry. The LM index (LMi) and the FM index (FMi) were calculated by dividing the FM and LM by the square of the SH. Logistic regression analysis was employed for comparison between AIS and controls. The AIS patients had comparable age and Tanner staging for pubic hair as the controls. After adjustment for age, the AIS patients showed comparable SH but significantly lower BW and BMI than that of the controls. The LM, LMi, BMC and BMD were also significantly lower in the AIS patients than in the controls. However, the difference in BMC between two groups was not significant by adjusting for age, FM and LM. The male AIS patients showed abnormal body composition, presenting as significantly lower LM than the controls. The lower BMC observed in the patients might due to the abnormal body composition.

  13. Body composition measured by dual-energy X-ray absorptiometry in patients who have undergone small-intestinal resection.

    PubMed

    Haderslev, Kent Valentin; Jeppesen, Paller Bekker; Sorensen, Henrik Ancher; Mortensen, Per Brobech; Staun, Michael

    2003-07-01

    Patients who have undergone resection of the small intestine have lower body weight than do healthy persons. It remains unclear whether it is the body fat mass or the lean tissue mass that is reduced. We compared body-composition values in patients who had undergone small-intestinal resection with reference values obtained in healthy volunteers, and we studied the relation between body-composition estimates and the net intestinal absorption of energy. In a cross-sectional study, we included 20 men and 24 women who had undergone small-intestinal resection and had malabsorption of energy > 2000 kJ/d. Diagnoses were Crohn disease (n = 37) and other conditions (n = 7). Body composition was estimated by dual-energy X-ray absorptiometry, and data were compared with those from a reference group of 173 healthy volunteers. Energy absorption was measured during 48-h balance studies by using bomb calorimetry, and individual values were expressed relative to the basal metabolic rate. Body weight and body mass index in patients were significantly (P < 0.05) lower than the reference values. Fat mass was 6.4 kg (30%) lower (95% CI: -8.8, -3.9 kg), but lean tissue mass was only slightly and insignificantly lower (1.5 kg, or 3.3%; 95% CI: -3.7, 0.60 kg). Weight, body mass index, and body-composition estimates by dual-energy X-ray absorptiometry did not correlate significantly with the net energy absorption relative to the basal metabolic rate, expressed as a percentage. Patients who had undergone small-intestinal resection had significantly lower body weights and body mass indexes than did healthy persons, and they had significant changes in body composition, mainly decreased body fat mass.

  14. Bone structure studies with holographic interferometric nondestructive testing and x-ray methods

    NASA Astrophysics Data System (ADS)

    Silvennoinen, Raimo; Nygren, Kaarlo; Rouvinen, Juha; Petrova, Valentina V.

    1994-02-01

    Changes in the biomechanics and in the molecular texture and structure of isolated radioulnar bones of subadult European moose (Alces alces L.) collected in various environmentally polluted areas of Finland were investigated by means of holographic interferometric non- destructive testing (HNDT), radiological, morphometrical, and x-ray diffraction methods. By means of small caudal-cranial bending forces, the surface movements of the lower end (distal epiphysis) of the radial bone were recorded with the HNDT method. To study bone molecular texture and structure changes under external compressing forces, the samples for x-ray diffraction analysis were taken from the upper end of the ulnar bone (olecranon tip). Results showed that the bones obtained from the Harjavalta area and those of North Karelian moose showing malnutrition and healing femoral fractures produced different HNDT pictures compared with the four normally developed North Karelian moose. In the x-ray diffraction, the Harjavalta samples showed changes in molecular texture and structure compared with the samples from the apparently normal North Karelian animals.

  15. Assessment of bone health in children with disabilities.

    PubMed

    Kecskemethy, Heidi H; Harcke, H Theodore

    2014-01-01

    Evaluating the bone health of children with disabilities is challenging and requires consideration of many factors in clinical decision-making. Feeding problems and growth deficits, immobility/inability to bear weight, effect of medications, and the nature of his or her disease can all directly affect a child's overall picture of bone health. Familiarity with the tools available to assess bone health is important for practitioners. The most commonly used method to assess bone density, dual energy x-ray absorptiometry, can be performed effectively when one appreciates the techniques that make scanning patients with disabilities possible. There are specific techniques that are especially useful for measuring bone density in children with disabilities; standard body sites are not always obtainable. Consideration of clinical condition and treatment must be considered when interpreting dual energy x-ray absorptiometry scans. Serial measurements have been shown to be effective in monitoring change in bone content and in providing information on which to base decisions regarding medical treatment.

  16. Skeletal outcomes by peripheral quantitative computed tomography and dual-energy X-ray absorptiometry in adolescent girls with anorexia nervosa

    PubMed Central

    DiVasta, A. D.; Feldman, H. A.; O’Donnell, J. M.; Long, J.; Leonard, M. B.; Gordon, C. M.

    2018-01-01

    Summary We conducted the first comparison of dual-energy X-ray absorptiometry (DXA) and peripheral quantitative computed tomography (pQCT) outcomes in adolescent girls with anorexia nervosa. We observed deficits in bone density by both tools. pQCT assessments were associated with many of the same clinical parameters as have been previously established for DXA. Introduction Adolescents with anorexia nervosa (AN) commonly exhibit bone loss, but effects on bone geometry are less clear. We compared measures obtained by DXA and pQCT in girls with AN. Methods Seventy females (age 15.5 ± 1.9 years ) with AN and 132 normal-weighted controls underwent tibial measures by pQCT including trabecular volumetric bone mineral density (vBMD) at the 3 % site, cortical vBMD and dimensions at the 38 % site, and muscle cross-sectional area (CSA) at the 66 % site. Participants with AN also underwent standard DXA measures. Independent t tests compared the pQCT results, while Pearson coefficient assessed correlations among DXA and pQCT measures. Results Trabecular vBMD Z-scores were lower in AN compared to controls (AN −0.31 ± 1.42 vs +0.11 ± 1.01, p = 0.01) and cortical vBMD Z-scores were higher (AN +0.18 ± 0.92 vs −0.50 ± 0.88, p < 0.001). Trabecular vBMD and cortical CSA Z-scores positively correlated with DXA BMD Z-scores (r range 0.57–0.82, p < 0.001). Markers of nutritional status positively correlated with Z-scores for trabecular vBMD, cortical CSA, section modulus, and muscle CSA (p < 0.04 for all). Conclusions This study is the first to compare DXA and pQCT measurements in adolescent girls with AN. We observed deficits in BMD by both DXA and pQCT. pQCT assessments correlated well with DXA bone and body composition measures and were associated with many of the same clinical parameters and disease severity markers as have been previously established for DXA. The differences in cortical vBMD merit further study. PMID:27392467

  17. Impact of beverage consumption, age, and site dependency on dual energy X-ray absorptiometry (DEXA) measurements in perimenopausal women: a prospective study.

    PubMed

    Lo, Huan-Chu; Kuo, Duen-Pang; Chen, Yen-Lin

    2017-08-01

    The aim of this study was to determine the best site for bone mineral density (BMD) measurements based on T -scores, age, and beverage consumption. In this prospective study, 271 women stratified by age (average age: 61.9 years) underwent dual energy X-ray absorptiometry (DEXA) scanning of their lumbar spine, hips, and forearms. Osteoporosis was defined as a BMD of 2.5 standard deviations or more below the mean peak bone mass based on a reference population of adult women (translated as a T -score ≤ -2.5), as measured by DEXA. Participants were also evaluated regarding alcohol and caffeine consumption by a semiquantitative questionnaire. A significant discrepancy was observed in the classification of osteoporosis at different locations, with hip and forearm showing the best correlation (Pearson's r = 0.627, p < 0.001). In addition, for participants over 50 years of age, hip and forearm showed the best correlation. Significant correlations were also noted between forearm T -scores and caffeine consumed and, to a lesser extent, the level of alcohol consumption. In the group ≤ 50 years of age, lumbar spine and forearm T -scores were only associated with alcohol consumption. In the group over 50 years of age, hip and forearm T -scores were only associated with caffeine consumption. Bone mineral density measurements at the hip and forearm correlated with caffeine consumption in elderly Taiwanese women. This is an important finding since age and caffeine consumption are known risk factors for osteoporosis.

  18. Combination of BMP-2-releasing gelatin/β-TCP sponges with autologous bone marrow for bone regeneration of X-ray-irradiated rabbit ulnar defects.

    PubMed

    Yamamoto, Masaya; Hokugo, Akishige; Takahashi, Yoshitake; Nakano, Takayoshi; Hiraoka, Masahiro; Tabata, Yasuhiko

    2015-07-01

    The objective of this study is to evaluate the feasibility of gelatin sponges incorporating β-tricalcium phosphate (β-TCP) granules (gelatin/β-TCP sponges) to enhance bone regeneration at a segmental ulnar defect of rabbits with X-ray irradiation. After X-ray irradiation of the ulnar bone, segmental critical-sized defects of 20-mm length were created, and bone morphogenetic protein-2 (BMP-2)-releasing gelatin/β-TCP sponges with or without autologous bone marrow were applied to the defects to evaluate bone regeneration. Both gelatin/β-TCP sponges containing autologous bone marrow and BMP-2-releasing sponges enhanced bone regeneration at the ulna defect to a significantly greater extent than the empty sponges (control). However, in the X-ray-irradiated bone, the bone regeneration either by autologous bone marrow or BMP-2 was inhibited. When combined with autologous bone marrow, the BMP-2 exhibited significantly high osteoinductivity, irrespective of the X-ray irradiation. The bone mineral content at the ulna defect was similar to that of the intact bone. It is concluded that the combination of bone marrow with the BMP-2-releasing gelatin/β-TCP sponge is a promising technique to induce bone regeneration at segmental bone defects after X-ray irradiation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Radiographic absorptiometry method in measurement of localized alveolar bone density changes.

    PubMed

    Kuhl, E D; Nummikoski, P V

    2000-03-01

    The objective of this study was to measure the accuracy and precision of a radiographic absorptiometry method by using an occlusal density reference wedge in quantification of localized alveolar bone density changes. Twenty-two volunteer subjects had baseline and follow-up radiographs taken of mandibular premolar-molar regions with an occlusal density reference wedge in both films and added bone chips in the baseline films. The absolute bone equivalent densities were calculated in the areas that contained bone chips from the baseline and follow-up radiographs. The differences in densities described the masses of the added bone chips that were then compared with the true masses by using regression analysis. The correlation between the estimated and true bone-chip masses ranged from R = 0.82 to 0.94, depending on the background bone density. There was an average 22% overestimation of the mass of the bone chips when they were in low-density background, and up to 69% overestimation when in high-density background. The precision error of the method, which was calculated from duplicate bone density measurements of non-changing areas in both films, was 4.5%. The accuracy of the intraoral radiographic absorptiometry method is low when used for absolute quantification of bone density. However, the precision of the method is good and the correlation is linear, indicating that the method can be used for serial assessment of bone density changes at individual sites.

  20. Cortical thickness estimation of the proximal femur from multi-view dual-energy X-ray absorptiometry (DXA)

    NASA Astrophysics Data System (ADS)

    Tsaousis, N.; Gee, A. H.; Treece, G. M.; Poole, K. E. S.

    2013-02-01

    Hip fracture is the leading cause of acute orthopaedic hospital admission amongst the elderly, with around a third of patients not surviving one year post-fracture. Although various preventative therapies are available, patient selection is difficult. The current state-of-the-art risk assessment tool (FRAX) ignores focal structural defects, such as cortical bone thinning, a critical component in characterizing hip fragility. Cortical thickness can be measured using CT, but this is expensive and involves a significant radiation dose. Instead, Dual-Energy X-ray Absorptiometry (DXA) is currently the preferred imaging modality for assessing hip fracture risk and is used routinely in clinical practice. Our ambition is to develop a tool to measure cortical thickness using multi-view DXA instead of CT. In this initial study, we work with digitally reconstructed radiographs (DRRs) derived from CT data as a surrogate for DXA scans: this enables us to compare directly the thickness estimates with the gold standard CT results. Our approach involves a model-based femoral shape reconstruction followed by a data-driven algorithm to extract numerous cortical thickness point estimates. In a series of experiments on the shaft and trochanteric regions of 48 proximal femurs, we validated our algorithm and established its performance limits using 20 views in the range 0°-171°: estimation errors were 0:19 +/- 0:53mm (mean +/- one standard deviation). In a more clinically viable protocol using four views in the range 0°-51°, where no other bony structures obstruct the projection of the femur, measurement errors were -0:07 +/- 0:79 mm.

  1. Bone Mass in Boys with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Calarge, Chadi A.; Schlechte, Janet A.

    2017-01-01

    To examine bone mass in children and adolescents with autism spectrum disorders (ASD). Risperidone-treated 5 to 17 year-old males underwent anthropometric and bone measurements, using dual-energy X-ray absorptiometry and peripheral quantitative computed tomography. Multivariable linear regression analysis models examined whether skeletal outcomes…

  2. Skeletal outcomes by peripheral quantitative computed tomography and dual-energy X-ray absorptiometry in adolescent girls with anorexia nervosa.

    PubMed

    DiVasta, A D; Feldman, H A; O'Donnell, J M; Long, J; Leonard, M B; Gordon, C M

    2016-12-01

    We conducted the first comparison of dual-energy X-ray absorptiometry (DXA) and peripheral quantitative computed tomography (pQCT) outcomes in adolescent girls with anorexia nervosa. We observed deficits in bone density by both tools. pQCT assessments were associated with many of the same clinical parameters as have been previously established for DXA. Adolescents with anorexia nervosa (AN) commonly exhibit bone loss, but effects on bone geometry are less clear. We compared measures obtained by DXA and pQCT in girls with AN. Seventy females (age 15.5 ± 1.9 years ) with AN and 132 normal-weighted controls underwent tibial measures by pQCT including trabecular volumetric bone mineral density (vBMD) at the 3 % site, cortical vBMD and dimensions at the 38 % site, and muscle cross-sectional area (CSA) at the 66 % site. Participants with AN also underwent standard DXA measures. Independent t tests compared the pQCT results, while Pearson coefficient assessed correlations among DXA and pQCT measures. Trabecular vBMD Z-scores were lower in AN compared to controls (AN -0.31 ± 1.42 vs +0.11 ± 1.01, p = 0.01) and cortical vBMD Z-scores were higher (AN +0.18 ± 0.92 vs -0.50 ± 0.88, p < 0.001). Trabecular vBMD and cortical CSA Z-scores positively correlated with DXA BMD Z-scores (r range 0.57-0.82, p < 0.001). Markers of nutritional status positively correlated with Z-scores for trabecular vBMD, cortical CSA, section modulus, and muscle CSA (p < 0.04 for all). This study is the first to compare DXA and pQCT measurements in adolescent girls with AN. We observed deficits in BMD by both DXA and pQCT. pQCT assessments correlated well with DXA bone and body composition measures and were associated with many of the same clinical parameters and disease severity markers as have been previously established for DXA. The differences in cortical vBMD merit further study.

  3. 3D X-ray ultra-microscopy of bone tissue.

    PubMed

    Langer, M; Peyrin, F

    2016-02-01

    We review the current X-ray techniques with 3D imaging capability at the nano-scale: transmission X-ray microscopy, ptychography and in-line phase nano-tomography. We further review the different ultra-structural features that have so far been resolved: the lacuno-canalicular network, collagen orientation, nano-scale mineralization and their use as basis for mechanical simulations. X-ray computed tomography at the micro-metric scale is increasingly considered as the reference technique in imaging of bone micro-structure. The trend has been to push towards increasingly higher resolution. Due to the difficulty of realizing optics in the hard X-ray regime, the magnification has mainly been due to the use of visible light optics and indirect detection of the X-rays, which limits the attainable resolution with respect to the wavelength of the visible light used in detection. Recent developments in X-ray optics and instrumentation have allowed to implement several types of methods that achieve imaging that is limited in resolution by the X-ray wavelength, thus enabling computed tomography at the nano-scale. We review here the X-ray techniques with 3D imaging capability at the nano-scale: transmission X-ray microscopy, ptychography and in-line phase nano-tomography. Further, we review the different ultra-structural features that have so far been resolved and the applications that have been reported: imaging of the lacuno-canalicular network, direct analysis of collagen orientation, analysis of mineralization on the nano-scale and use of 3D images at the nano-scale to drive mechanical simulations. Finally, we discuss the issue of going beyond qualitative description to quantification of ultra-structural features.

  4. Automatic detection of bone fragments in poultry using multi-energy x-rays

    DOEpatents

    Gleason, Shaun S [Knoxville, TN; Paulus, Michael J [Knoxville, TN; Mullens, James A [Knoxville, TN

    2002-04-09

    At least two linear arrays of x-ray detectors are placed below a conveyor belt in a poultry processing plant. Multiple-energy x-ray sources illuminate the poultry and are detected by the detectors. Laser profilometry is used to measure the poultry thickness as the x-ray data is acquired. The detector readout is processed in real time to detect the presence of small highly attenuating fragments in the poultry, i.e., bone, metal, and cartilage.

  5. HDL subclasses are heterogeneous in their associations with body fat, as measured by dual-energy X-ray absorptiometry: the Kitakata Kids Health Study.

    PubMed

    Kouda, Katsuyasu; Nakamura, Harunobu; Fujita, Yuki; Hamada, Masami; Kajita, Etsuko; Nakatani, Yoshimi; Sato, Yuho; Uenishi, Kazuhiro; Iki, Masayuki

    2015-04-15

    Obesity, defined as the excessive accumulation of body fat, is frequently associated with low concentrations of high-density lipoprotein (HDL) cholesterol. However, HDL particles are heterogeneous in size and composition. HDL subclasses may be differentially associated with body fat. This study investigated associations between the cholesterol concentrations of HDL subclasses, as determined by high-performance liquid chromatography, and body fat variables, as measured by dual-energy X-ray absorptiometry. The source population was all ninth grade students who attended Shiokawa Junior High School in Japan. Cross-sectional data on body fat and serum HDL subclasses were obtained for 87 students (72.5% of the source population). The cholesterol concentration of the large HDL subclass showed a significant (P<0.05) inverse relationship with whole body fat and trunk fat (r=-0.24 and -0.30), whereas the concentration of the small HDL subclass showed a significant positive relationship with these body fat variables (r=0.25 and 0.31). After adjusting for potential confounding factors, the mean concentration of small HDL significantly increased from the lowest to highest tertiles of trunk fat mass index. These results indicate that HDL subclasses are heterogeneous in their associations with body fat variables that were accurately measured by dual-energy X-ray absorptiometry among Japanese students. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Non-invasive methods for the determination of body and carcass composition in livestock: dual-energy X-ray absorptiometry, computed tomography, magnetic resonance imaging and ultrasound: invited review.

    PubMed

    Scholz, A M; Bünger, L; Kongsro, J; Baulain, U; Mitchell, A D

    2015-07-01

    The ability to accurately measure body or carcass composition is important for performance testing, grading and finally selection or payment of meat-producing animals. Advances especially in non-invasive techniques are mainly based on the development of electronic and computer-driven methods in order to provide objective phenotypic data. The preference for a specific technique depends on the target animal species or carcass, combined with technical and practical aspects such as accuracy, reliability, cost, portability, speed, ease of use, safety and for in vivo measurements the need for fixation or sedation. The techniques rely on specific device-driven signals, which interact with tissues in the body or carcass at the atomic or molecular level, resulting in secondary or attenuated signals detected by the instruments and analyzed quantitatively. The electromagnetic signal produced by the instrument may originate from mechanical energy such as sound waves (ultrasound - US), 'photon' radiation (X-ray-computed tomography - CT, dual-energy X-ray absorptiometry - DXA) or radio frequency waves (magnetic resonance imaging - MRI). The signals detected by the corresponding instruments are processed to measure, for example, tissue depths, areas, volumes or distributions of fat, muscle (water, protein) and partly bone or bone mineral. Among the above techniques, CT is the most accurate one followed by MRI and DXA, whereas US can be used for all sizes of farm animal species even under field conditions. CT, MRI and US can provide volume data, whereas only DXA delivers immediate whole-body composition results without (2D) image manipulation. A combination of simple US and more expensive CT, MRI or DXA might be applied for farm animal selection programs in a stepwise approach.

  7. Elemental investigation on Spanish dinosaur bones by x-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Brunetti, Antonio; Piga, Giampaolo; Lasio, Barbara; Golosio, Bruno; Oliva, Piernicola; Stegel, Giovanni; Enzo, Stefano

    2013-07-01

    In this paper we examine the chemical composition results obtained on a collection of 18 dinosaur fossil bones from Spain studied using a portable x-ray fluorescence spectrometer together with a reverse Monte Carlo numerical technique of data analysis. This approach is applied to the hypothesis of arbitrarily rough surfaces in order to account for the influence of the surface state of specimens on the chemical content evaluation. It is confirmed that the chemical content of elements is essential for understanding the changes brought about by diagenetic and taphonomic processes. However, for precise knowledge of what changes fossil bones have undergone after animal life and burial, it is necessary to use a multi-technique approach making use of other instruments like x-ray diffraction in order to describe accurately the transformations undergone by the mineralogical and bioinorganic phases and the properties of specific molecular groups.

  8. High resolution magnetic resonance imaging of the calcaneus: age-related changes in trabecular structure and comparison with dual X-ray absorptiometry measurements

    NASA Technical Reports Server (NTRS)

    Ouyang, X.; Selby, K.; Lang, P.; Engelke, K.; Klifa, C.; Fan, B.; Zucconi, F.; Hottya, G.; Chen, M.; Majumdar, S.; hide

    1997-01-01

    A high-resolution magnetic resonance imaging (MRI) protocol, together with specialized image processing techniques, was applied to the quantitative measurement of age-related changes in calcaneal trabecular structure. The reproducibility of the technique was assessed and the annual rates of change for several trabecular structure parameters were measured. The MR-derived trabecular parameters were compared with calcaneal bone mineral density (BMD), measured by dual X-ray absorptiometry (DXA) in the same subjects. Sagittal MR images were acquired at 1.5 T in 23 healthy women (mean age: 49.3 +/- 16.6 [SD]), using a three-dimensional gradient echo sequence. Image analysis procedures included internal gray-scale calibration, bone and marrow segmentation, and run-length methods. Three trabecular structure parameters, apparent bone volume (ABV/TV), intercept thickness (I.Th), and intercept separation (I.Sp) were calculated from the MR images. The short- and long-term precision errors (mean %CV) of these measured parameters were in the ranges 1-2% and 3-6%, respectively. Linear regression of the trabecular structure parameters vs. age showed significant correlation: ABV/TV (r2 = 33.7%, P < 0.0037), I.Th (r2 = 26.6%, P < 0.0118), I.Sp (r2 = 28.9%, P < 0.0081). These trends with age were also expressed as annual rates of change: ABV/TV (-0.52%/year), I.Th (-0.33%/year), and I.Sp (0.59%/year). Linear regression analysis also showed significant correlation between the MR-derived trabecular structure parameters and calcaneal BMD values. Although a larger group of subjects is needed to better define the age-related changes in trabecular structure parameters and their relation to BMD, these preliminary results demonstrate that high-resolution MRI may potentially be useful for the quantitative assessment of trabecular structure.

  9. In vivo X-ray fluorescence of lead in bone: review and current issues.

    PubMed Central

    Todd, A C; Chettle, D R

    1994-01-01

    Bone lead measurements can assess long-term lead dosimetry because the residence time of lead in bone is long. Bone lead measurements thus complement blood and plasma lead measurements, which reflect more short-term exposure. Although the noninvasive, in vivo measurement of lead in bone by X-ray fluorescence (XRF) has been under development since the 1970s, its use is still largely confined to research institutions. There are three principal methods used that vary both in the how lead X-rays are fluoresced and in which lead X-rays are fluoresced. Several groups have reported the independent development of in vivo measurement systems, the majority adopting the 109Cd K XRF method because of its advantages: a robust measurement, a lower detection limit (compared to 57Co K XRF), and a lower effective (radiation) dose (compared to L XRF) when calculated according to the most recent guidelines. These advantages, and the subsequent widespread adoption of the 109Cd method, are primarily consequences of the physics principles of the technique. This paper presents an explanation of the principles of XRF, a description of the practical measurement systems, a review of the human bone lead studies performed to date; and a discussion of some issues surrounding future application of the methods. Images p172-a PMID:8033846

  10. Preliminary research on dual-energy X-ray phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Han, Hua-Jie; Wang, Sheng-Hao; Gao, Kun; Wang, Zhi-Li; Zhang, Can; Yang, Meng; Zhang, Kai; Zhu, Pei-Ping

    2016-04-01

    Dual-energy X-ray absorptiometry (DEXA) has been widely applied to measure the bone mineral density (BMD) and soft-tissue composition of the human body. However, the use of DEXA is greatly limited for low-Z materials such as soft tissues due to their weak absorption, while X-ray phase-contrast imaging (XPCI) shows significantly improved contrast in comparison with the conventional standard absorption-based X-ray imaging for soft tissues. In this paper, we propose a novel X-ray phase-contrast method to measure the area density of low-Z materials, including a single-energy method and a dual-energy method. The single-energy method is for the area density calculation of one low-Z material, while the dual-energy method aims to calculate the area densities of two low-Z materials simultaneously. Comparing the experimental and simulation results with the theoretical ones, the new method proves to have the potential to replace DEXA in area density measurement. The new method sets the prerequisites for a future precise and low-dose area density calculation method for low-Z materials. Supported by Major State Basic Research Development Program (2012CB825800), Science Fund for Creative Research Groups (11321503) and National Natural Science Foundation of China (11179004, 10979055, 11205189, 11205157)

  11. An update on childhood bone health: mineral accrual, assessment and treatment.

    PubMed

    Sopher, Aviva B; Fennoy, Ilene; Oberfield, Sharon E

    2015-02-01

    To update the reader's knowledge about the factors that influence bone mineral accrual and to review the advances in the assessment of bone health and treatment of bone disorders. Maternal vitamin D status influences neonatal calcium levels, bone mineral density (BMD) and bone size. In turn, BMD z-score tends to track in childhood. These factors highlight the importance of bone health as early as fetal life. Dual-energy x-ray absorptiometry is the mainstay of clinical bone health assessment in this population because of the availability of appropriate reference data. Recently, more information has become available about the assessment and treatment of bone disease in chronically ill pediatric patients. Bone health must become a health focus starting prenatally in order to maximize peak bone mass and to prevent osteoporosis-related bone disease in adulthood. Vitamin D, calcium and weight-bearing activity are the factors of key importance throughout childhood in achieving optimal bone health as BMD z-score tracks through childhood and into adulthood. Recent updates of the International Society for Clinical Densitometry focus on the appropriate use of dual-energy x-ray absorptiometry in children of all ages, including children with chronic disease, and on the treatment of pediatric bone disease.

  12. X-Ray Crystal Structure of Bone Marrow Kinase in the X Chromosome: A Tec Family Kinase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muckelbauer, Jodi; Sack, John S.; Ahmed, Nazia

    Bone marrow kinase in the X chromosome, a member of the Tec family of tyrosine kinases, plays a role in both monocyte/macrophage trafficking as well as cytokine secretion. Although the structures of Tec family kinases Bruton's tyrosine kinase and IL-2-inducible T-cell kinase are known, the crystal structures of other Tec family kinases have remained elusive. We report the X-ray crystal structures of bone marrow kinase in the X chromosome in complex with dasatinib at 2.4 {angstrom} resolution and PP2 at 1.9 {angstrom} resolution. The bone marrow kinase in the X chromosome structures reveal a typical kinase protein fold; with well-orderedmore » protein conformation that includes an open/extended activation loop and a stabilized DFG-motif rendering the kinase in an inactive conformation. Dasatinib and PP2 bind to bone marrow kinase in the X chromosome in the ATP binding pocket and display similar binding modes to that observed in other Tec and Src protein kinases. The bone marrow kinase in the X chromosome structures identify conformational elements of the DFG-motif that could potentially be utilized to design potent and/or selective bone marrow kinase in the X chromosome inhibitors.« less

  13. Trabecular bone analysis in CT and X-ray images of the proximal femur for the assessment of local bone quality.

    PubMed

    Fritscher, Karl; Grunerbl, Agnes; Hanni, Markus; Suhm, Norbert; Hengg, Clemens; Schubert, Rainer

    2009-10-01

    Currently, conventional X-ray and CT images as well as invasive methods performed during the surgical intervention are used to judge the local quality of a fractured proximal femur. However, these approaches are either dependent on the surgeon's experience or cannot assist diagnostic and planning tasks preoperatively. Therefore, in this work a method for the individual analysis of local bone quality in the proximal femur based on model-based analysis of CT- and X-ray images of femur specimen will be proposed. A combined representation of shape and spatial intensity distribution of an object and different statistical approaches for dimensionality reduction are used to create a statistical appearance model in order to assess the local bone quality in CT and X-ray images. The developed algorithms are tested and evaluated on 28 femur specimen. It will be shown that the tools and algorithms presented herein are highly adequate to automatically and objectively predict bone mineral density values as well as a biomechanical parameter of the bone that can be measured intraoperatively.

  14. Quantitative ultrasound and dual-energy X-ray absorptiometry in the prediction of fragility fracture in men.

    PubMed

    Gonnelli, Stefano; Cepollaro, Chiara; Gennari, Luigi; Montagnani, Andrea; Caffarelli, Carla; Merlotti, Daniela; Rossi, Stefania; Cadirni, Alice; Nuti, Ranuccio

    2005-08-01

    Fragility fractures in men represent a major health problem, and this prompts a necessity for reliable tools for the identification of men at risk of fracture. In order to assess the ability of dual-energy X-ray absorptiometry (DXA) and quantitative ultrasound (QUS) in the prediction of fracture risk in men and whether their combination might be useful in a clinical setting, we studied 401 men (age range 45-82 years, mean 60.3+/-12.5), of whom 133 had osteoporotic fractures and 268 did not. In all subjects we measured bone mineral density at the lumbar spine (BMD-LS) and at the femur, calculating thereafter the standard femoral subregions: neck (BMD-FN), total hip (BMD-T), trochanter (BMD-TR), intertrochanter (BMD-ITR), and Ward's triangle (BMD-W), by DXA. We also performed ultrasound parameters at the calcaneus: speed of sound (SOS), broadband ultrasound attenuation (BUA) and Stiffness, by Achilles plus, and at the phalanxes: amplitude dependent speed of sound (AD-SoS) and the parameters of the graphic trace: bone transmission time (BTT), fast wave amplitude (FWA), signal dynamic (SDy) and ultrasound bone profile index (UBPI), by Bone Profiler. All DXA and QUS parameters, apart from FWA, were significantly (P<0.001) lower in patients with a history of fracture. BMD at the proximal femur showed the best ability in discriminating men with or without fractures. QUS at the heel showed discriminatory ability significantly better than QUS at the fingers. By logistic regression analysis, adjusted for age and BMI, BMD-T showed the best association with fragility fracture [odds ratio (OR)=3.43, 95% confidence interval (CI)=2.47-4.77]. Among QUS parameters, the highest value of the OR was shown by stiffness (OR=3.18, CI=2.27-4.48). FWA and SDy were not associated with fragility fractures in men. If DXA and QUS were combined, the prediction of the OR of fragility fracture events in men increases; in fact Stiffness was able to increase the OR when added to BMD-LS (OR=5.44, CI

  15. Feasibility of a portable X-ray fluorescence device for bone lead measurements of condor bones.

    PubMed

    Specht, Aaron J; Parish, Chris N; Wallens, Emma K; Watson, Rick T; Nie, Linda H; Weisskopf, Marc G

    2018-02-15

    Lead based ammunition is a primary source of lead exposure, especially for scavenging wildlife. Lead poisoning remains the leading cause of diagnosed death for the critically endangered California condors, which are annually monitored via blood tests for lead exposure. The results of these tests are helpful in determining recent exposure in condors and in defining the potential for exposure to other species including humans. Since condors are victim to acute and chronic lead exposure, being able to measure both would lend valuable information on the rates of exposure and accumulation through time. A commercial portable X-ray fluorescence (XRF) device has been optimized to measure bone lead in vivo in humans, but this device could also be valuable for field measurements of bone lead in avian species. In this study, we performed measurements of bone Pb in excised, bare condor bones using inductively coupled plasma mass spectrometry (ICP-MS), a cadmium 109 (Cd-109) K-shell X-ray fluorescence (KXRF) system, and a portable XRF system. Both KXRF and portable XRF bone Pb measurement techniques demonstrated good correlations with ICP-MS results (r=0.93 and r=0.92 respectively), even with increasing skin thickness (r=0.86 between ICP-MS and portable XRF at 1.54mm of soft tissue). In conclusion, our results suggest that a portable XRF could be a useful option for measurement of bone Pb in avian species in the field. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Determination of Corrosion Rate of Artificial Bone Made of Metal at Different pH Conditions using X-Ray Radiography

    NASA Astrophysics Data System (ADS)

    Sutikno; Handayani, L.; Edi, S. S.; Susilo; Elvira

    2018-03-01

    The purpose of this research is to observe the mechanism and the rate of corrosion of artificial bone made of metal by using x-ray radiography technique. Artificial bones can be made of metallic materials and composites which are biomaterials. The most commonly used metal for bone graft is stainless steel. The interaction between artificial bone and human tissue will have important medical impacts that need to be observed and examined. This interaction can be a mechanical or chemical interaction. X-ray radiography technique is selected because it uses non-destructive method. This method is done by x-ray radiation exposure on the observed body part. The bone density and bone fracture can be seen on the resulted radiographic film or image on the monitor screen.

  17. Comparison between the air displacement method and dual energy x-ray absorptiometry for estimation of body fat.

    PubMed

    Koda, M; Ando, F; Niino, N; Tsuzuku, S; Shimokata, H

    2000-04-01

    Air displacement plethysmography (ADP) is a method for the determining percent body fat (%BF) using the two-compartment model, in which the body is partitioned into body-fat mass and fat-free mass (FFM). Although this model assumes a constant density of FFM as 1.10 g/ml, its density may depend upon the bone mineral content (BMC) and total body water (TBW) which vary with age, gender, and race/ethnicity. This study compared %BF determined from ADP (ADP%BF) with %BF obtained by dual-energy x-ray absorptiometry (DXA%BF), and also investigated the effects of BMC, TBW, and other factors on its value. The subjects were 721 female and male Japanese aged 40 to 79 years. Body density was measured by ADP and %BF was calculated using Brozek et al's equation. BMC and body-fat volume were measured using DXA, and TBW was measured by multifrequency bioelectrical impedance. A series of anthropometric measurements was taken. Although ADP%BF was highly correlated with DXA%BF (female: r = 0.89, male: r = 0.90) (p < 0.001), ADP%BF differed significantly from DXA%BF (female: -1.30 +/- 0.14% (mean +/- s.e.m.), male: 1.22 +/- 0.13%) (p < 0.001). The difference in %BF (ADP%BF-DXA%BF) was negatively associated with BMC/FFM but not with TBW/FFM in both genders. The difference in %BF was also positively correlated with waist circumference. Considering previous studies, this result may be explained by the underestimation of DXA%BF, rather than by the overestimation of ADP%BF. In conclusion, ADP may be a useful method to measure %BF. However, BMC should be taken into consideration. Furthermore, DXA%BF may be underestimated in people with large waists.

  18. The effect of hydration status on the measurement of lean tissue mass by dual-energy X-ray absorptiometry.

    PubMed

    Toomey, Clodagh M; McCormack, William G; Jakeman, Phil

    2017-03-01

    Athletes cycle between exercise and recovery. Exercise invokes changes in total body water from thermal sweating, muscle and hepatic glycogen depletion and metabolic water loss. Recovery from exercise results in rehydration, substrate repletion, and possible glycogen supercompensation. Such changes may corrupt the measurement of hydrated tissues, such as lean tissue mass (LTM), by dual-energy X-ray absorptiometry (DXA). The purpose of this study was to determine the effect of exercise and thermal dehydration and subsequent glycogen supercompensation on DXA-based measurement of body composition. Twelve active adult (18-29 years) males exercised at 70% VO 2max on a cycle ergometer in a thermal environment (30 °C) to induce a 2.5% reduction in body mass. Participants subsequently underwent a glycogen supercompensation phase, whereby a high carbohydrate diet (8-12 g/kg body mass/day) was consumed for a 48-h period. Whole-body DXA measurement was performed at baseline, following exercise and supercompensation. Following exercise, mean body mass decreased by -1.93 kg (95% CI -2.3, -1.5), while total LTM decreased by -1.69 kg (-2.4, -1.0). Supercompensation induced a mean body mass increase of 2.53 kg (2.0, 3.1) and a total LTM increase of 2.36 kg (1.8, 2.9). No change in total fat mass or bone mineral content was observed at any timepoint. Training regimens that typically induce dehydration and nutrition regimens that involve carbohydrate loading can result in apparent changes to LTM measurement by DXA. Accurate measurement of LTM in athletes requires strict observation of hydration and glycogen status to prevent manipulation of results.

  19. Measuring body composition in dogs using multifrequency bioelectrical impedance analysis and dual energy X-ray absorptiometry.

    PubMed

    Rae, L S; Vankan, D M; Rand, J S; Flickinger, E A; Ward, L C

    2016-06-01

    Thirty-five healthy, neutered, mixed breed dogs were used to determine the ability of multifrequency bioelectrical impedance analysis (MFBIA) to predict accurately fat-free mass (FFM) in dogs using dual energy X-ray absorptiometry (DXA)-measured FFM as reference. A second aim was to compare MFBIA predictions with morphometric predictions. MFBIA-based predictors provided an accurate measure of FFM, within 1.5% when compared to DXA-derived FFM, in normal weight dogs. FFM estimates were most highly correlated with DXA-measured FFM when the prediction equation included resistance quotient, bodyweight, and body condition score. At the population level, the inclusion of impedance as a predictor variable did not add substantially to the predictive power achieved with morphometric variables alone; in individual dogs, impedance predictors were more valuable than morphometric predictors. These results indicate that, following further validation, MFBIA could provide a useful tool in clinical practice to objectively measure FFM in canine patients and help improve compliance with prevention and treatment programs for obesity in dogs. Copyright © 2016. Published by Elsevier Ltd.

  20. Theoretical modeling of a portable x-ray tube based KXRF system to measure lead in bone.

    PubMed

    Specht, Aaron J; Weisskopf, Marc G; Nie, Linda Huiling

    2017-03-01

    K-shell x-ray fluorescence (KXRF) techniques have been used to identify health effects resulting from exposure to metals for decades, but the equipment is bulky and requires significant maintenance and licensing procedures. A portable x-ray fluorescence (XRF) device was developed to overcome these disadvantages, but introduced a measurement dependency on soft tissue thickness. With recent advances to detector technology, an XRF device utilizing the advantages of both systems should be feasible. In this study, we used Monte Carlo simulations to test the feasibility of an XRF device with a high-energy x-ray tube and detector operable at room temperature. We first validated the use of Monte Carlo N-particle transport code (MCNP) for x-ray tube simulations, and found good agreement between experimental and simulated results. Then, we optimized x-ray tube settings and found the detection limit of the high-energy x-ray tube based XRF device for bone lead measurements to be 6.91 µg g -1 bone mineral using a cadmium zinc telluride detector. In conclusion, this study validated the use of MCNP in simulations of x-ray tube physics and XRF applications, and demonstrated the feasibility of a high-energy x-ray tube based XRF for metal exposure assessment.

  1. Theoretical modeling of a portable x-ray tube based KXRF system to measure lead in bone

    PubMed Central

    Specht, Aaron J; Weisskopf, Marc G; Nie, Linda Huiling

    2017-01-01

    Objective K-shell x-ray fluorescence (KXRF) techniques have been used to identify health effects resulting from exposure to metals for decades, but the equipment is bulky and requires significant maintenance and licensing procedures. A portable x-ray fluorescence (XRF) device was developed to overcome these disadvantages, but introduced a measurement dependency on soft tissue thickness. With recent advances to detector technology, an XRF device utilizing the advantages of both systems should be feasible. Approach In this study, we used Monte Carlo simulations to test the feasibility of an XRF device with a high-energy x-ray tube and detector operable at room temperature. Main Results We first validated the use of Monte Carlo N-particle transport code (MCNP) for x-ray tube simulations, and found good agreement between experimental and simulated results. Then, we optimized x-ray tube settings and found the detection limit of the high-energy x-ray tube based XRF device for bone lead measurements to be 6.91 μg g−1 bone mineral using a cadmium zinc telluride detector. Significance In conclusion, this study validated the use of MCNP in simulations of x-ray tube physics and XRF applications, and demonstrated the feasibility of a high-energy x-ray tube based XRF for metal exposure assessment. PMID:28169835

  2. A Normal Reference of Bone Mineral Density (BMD) Measured by Dual Energy X-Ray Absorptiometry in Healthy Thai Children and Adolescents Aged 5–18 Years: A New Reference for Southeast Asian Populations

    PubMed Central

    Nakavachara, Pairunyar; Pooliam, Julaporn; Weerakulwattana, Linda; Kiattisakthavee, Pornpimol; Chaichanwattanakul, Katharee; Manorompatarasarn, Racahnee; Chokephaibulkit, Kulkanya; Viprakasit, Vip

    2014-01-01

    Ethnic-specific normative data of bone mineral density (BMD) is essential for the accurate interpretation of BMD measurement. There have been previous reports of normative BMD data for Caucasian and Asian children including Japanese, Chinese, Korean and Indian. However, the normative BMD data for Southeast Asian including Thai children and adolescents are not currently available. The goals of our study were 1) to establish normative data of BMD, bone mineral content (BMC), bone area (BA) and lean body mass (LBM) for healthy Thai children and adolescents; aged 5–18 years measured by dual energy X-ray absorptiometry (DXA, Lunar Prodigy) and 2) to evaluate the relationships between BMD vs. age, sex, puberty, weight, height, calcium intake and the age of menarche in our population. Gender and age-specific BMD (L2-4; LS and total body; TB), BMADLS (apparent BMD of the lumbar spine), BMC (L2-4 and total body), BA (L2-4 and total body) and LBM were evaluated in 367 children (174 boys and 193 girls). All parameters increased progressively with age. A rapid increase in BMD, BMC and BMADLS was observed at earlier ages in girls. Gender and Tanner stage-specific BMD normative data were also generated. The dynamic changes of BMD values from childhood to early and late puberty of Thai children appeared to be consistent with those of Caucasian and Asian populations. Using a multiple-regression, weight and Tanner stage significantly affected BMDLS, BMDTB and BMADLS in both genders. Only in girls, height was found to have significant influence on BMDTB and BMADLS. The positive correlation between BMD and several demographic parameters, except the calcium intake, was observed. In summary, we established a normal BMD reference for Thai children and adolescents and this will be of useful for clinicians and researchers to appropriately assess BMD in Thais and other Southeast Asian children. PMID:24847716

  3. Application of the World Health Organization Fracture Risk Assessment Tool to predict need for dual-energy X-ray absorptiometry scanning in postmenopausal women.

    PubMed

    Chao, An-Shine; Chen, Fang-Ping; Lin, Yu-Ching; Huang, Ting-Shuo; Fan, Chih-Ming; Yu, Yu-Wei

    2015-12-01

    To evaluate the efficacy of the World Health Organization Fracture Risk Assessment Tool, excluding bone mineral density (pre-BMD FRAX), in identifying Taiwanese postmenopausal women needing dual-energy X-ray absorptiometry (DXA) examination for further treatment. The pre-BMD FRAX score was calculated for 231 postmenopausal women who participated in public health education workshops in the local Keelung community, Taiwan. DXA scanning and vertebral fracture assessment (VFA) were arranged for women classified as intermediate or high risk for fracture using the pre-BMD FRAX fracture probability. Pre-BMD FRAX classified 26 women as intermediate risk and 37 as having high risk for fracture. Subsequent DXA scans for these 63 women showed that 36 were osteoporotic, 19 were osteopenic, and eight had normal bone density. Concurrent VFA revealed 25 spine factures in which 14 were osteoporotic, seven were osteopenic, and four had normal bone density. The efficacy of the pre-BMD FRAX score to identify those patients with low bone mass by DXA was 87.3% (55/63). When VFA was combined with BMD to identify those patients with high risk (osteopenia, osteoporosis, or spinal fracture), the efficacy of the pre-BMD score increased to 93.7% (59/63). According to the National Osteoporosis Foundation, the overall concordance between pre-BMD FRAX and BMD, expressed through the kappa index, was 0.967. Compared with the evaluation when BMD was used alone, there was a significant increase in efficacy in identifying women who need treatment using BMD plus VFA or FRAX plus BMD. Furthermore, the highest efficacy was achieved when FRAX with BMD and VFA was used. The pre-BMD FRAX score not only efficiently predicts postmenopausal patients who are potentially at risk and might require treatment but also reduces unnecessary DXA use. Concurrent VFA during DXA use increases spine fracture detection. This improvement in diagnostic efficacy allows clinicians to provide the most appropriate therapeutic

  4. X-ray (image)

    MedlinePlus

    X-rays are a form of electromagnetic radiation, just like visible light. Structures that are dense (such as bone) will block most of the x-ray particles, and will appear white. Metal and contrast media ( ...

  5. Bone mineral density referral for dual-energy X-ray absorptiometry using quantitative ultrasound as a prescreening tool in postmenopausal women from the general population: a cost-effectiveness analysis.

    PubMed

    Marín, F; López-Bastida, J; Díez-Pérez, A; Sacristán, J A

    2004-03-01

    The aim of our study was to assess, from the perspective of the National Health Services in Spain, the cost-effectiveness of quantitative ultrasound (QUS) as a prescreen referral method for bone mineral density (BMD) assessment by dual-energy X-ray absorptiometry (DXA) in postmenopausal women of the general population. Using femoral neck DXA and heel QUS. We evaluated 267 consecutive postmenopausal women 65 years and older and attending primary care physician offices for any medical reason. Subjects were classified as osteoporotic or nonosteoporotic (normal or osteopenic) using the WHO definition for DXA. Effectiveness was assessed in terms of the sensitivity and specificity of the referral decisions based on the QUS measurement. Local costs were estimated from health services and actual resource used. Cost-effectiveness was evaluated in terms of the expected cost per true positive osteoporotic case detected. Baseline prevalence of osteoporosis evaluated by DXA was 55.8%. The sensitivity and specificity for the diagnosis of osteoporosis by QUS using the optimal cutoff thresholds for the estimated heel BMD T-score were 97% and 94%, respectively. The average cost per osteoporotic case detected based on DXA measurement alone was 23.85 euros. The average cost per osteoporotic case detected using QUS as a prescreen was 22.00 euros. The incremental cost-effectiveness of DXA versus QUS was 114.00 euros per true positive case detected. Our results suggest that screening for osteoporosis with QUS while applying strict cufoff values in postmenopausal women of the general population is not substantially more cost-effective than DXA alone for the diagnosis of osteoporosis. However, the screening strategy with QUS may be an option in those circumstances where the diagnosis of osteoporosis is deficient because of the difficulty in accessing DXA equipment.

  6. Current methods and advances in bone densitometry

    NASA Technical Reports Server (NTRS)

    Guglielmi, G.; Gluer, C. C.; Majumdar, S.; Blunt, B. A.; Genant, H. K.

    1995-01-01

    Bone mass is the primary, although not the only, determinant of fracture. Over the past few years a number of noninvasive techniques have been developed to more sensitively quantitate bone mass. These include single and dual photon absorptiometry (SPA and DPA), single and dual X-ray absorptiometry (SXA and DXA) and quantitative computed tomography (QCT). While differing in anatomic sites measured and in their estimates of precision, accuracy, and fracture discrimination, all of these methods provide clinically useful measurements of skeletal status. It is the intent of this review to discuss the pros and cons of these techniques and to present the new applications of ultrasound (US) and magnetic resonance (MRI) in the detection and management of osteoporosis.

  7. TIBIAL PLATEAU PROXIMAL AND DISTAL BONE BEHAVE SIMILARLY: BOTH ARE ASSOCIATED WITH FEATURES OF KNEE OSTEOARTHRITIS

    USDA-ARS?s Scientific Manuscript database

    There is a growing imperative to understand how changes in peri-articular bone relate to pathological progression of knee osteoarthritis (KOA). Peri-articular bone density can be measured using dual x-ray absorptiometry (DXA). The medial:lateral tibial BMD ratio (M:L BMD) is associated with MRI and...

  8. Comparison of Circumference Measures and Height-Weight Tables With Dual-Energy X-Ray Absorptiometry Assessment of Body Composition in R.O.T.C. Cadets.

    PubMed

    Mitchell, Katherine M; Pritchett, Robert C; Gee, David L; Pritchett, Kelly L

    2017-09-01

    Mitchell, KM, Pritchett, RC, Gee, DL, and Pritchett, KL. Comparison of circumference measures and height-weight tables with dual-energy X-ray absorptiometry assessment of body composition in R.O.T.C. cadets. J Strength Cond Res 31(9): 2552-2556, 2017-Height-weight tables and circumference measures are used by the U.S. Army to predict body composition because they require little equipment or expertise. However, agreement between the Army's new 2002 circumference equation and an established laboratory technique has not been determined. The purpose of this study was to quantify agreement in body fat percentages between the Army's circumference measures (taping) and dual-energy X-ray absorptiometry (DXA); second to determine categorical agreement between height-weight tables and DXA. Male Reserve Officer Training Corps (R.O.T.C.) cadets (N = 23; 20.6 ± 1.6 years, 179.1 ± 6.6 cm; 81.4 ± 10.3 kg) were taped according to Army protocol to predict body fat. The % body fat prediction was compared with DXA through a Bland-Altman Plot with ±2-4% body fat established as a zone of agreement (ZOA). Thirteen out of 23 cadets fell outside the ZOA. No cadet was over the compliance threshold (20-22% fat) using the tape method, however, with DXA, 7 out of 23 cadets were noncompliant. Height-weight tables provided a moderate level of categorical agreement with DXA. The results depict poor agreement between taping and DXA, as taping generally underestimated % body fat. Compared with taping, height-weight tables were better able to identify excess fat weight.

  9. Validation of fan beam dual energy x ray absorptiometry for body composition assessment in adults aged 18–45 years

    PubMed Central

    Norcross, J; Van Loan, M D

    2004-01-01

    Background: Pencil beam dual energy x ray absorptiometry (DXA) has been shown to provide valid estimates of body fat (%BF), but DXA fan beam technology has not been adequately tested to determine its validity. Objective: To compare %BF estimated from fan beam DXA with %BF determined using two and three compartment (2C, 3C) models. Methods: Men (n = 25) and women (n = 31), aged 18–41 years, participated in the study. Body density, from hydrostatic weighing, was used in the 2C estimate of %BF; DXA was used to determine bone mineral content (BMC) for the 3C estimate of %BF calculated using body density and BMC (3CBMC). DXA was also used to determine %BF. Analysis of variance was used to test for significant differences in %BF between sexes and among methods. Results: Women were significantly shorter, weighed less, had less fat free mass, and a higher %BF than men. No significant differences were found among methods (2C, 3CBMC, DXA) for determination of %BF in either sex. Although not significant, Bland-Altman plots showed that DXA gave higher values for %BF than the 2C and 3CBMC methods. Conclusion: DXA determination of %BF was not different from that of the 2C and 3CBMC models in this group of young adults. However, to validate fan beam DXA fully as a method for body composition assessment in a wide range of individuals and populations, comparisons are needed that use a 4C model with a measure of total body water and BMC. PMID:15273189

  10. Estimation of percentage body fat by dual-energy x-ray absorptiometry: evaluation by in vivo human elemental composition

    PubMed Central

    Wang, ZiMian; Heymsfield, Steven B; Chen, Zhao; Zhu, Shankuan; Pierson, Richard N

    2010-01-01

    Dual-energy x-ray absorptiometry (DXA) is widely applied for estimating body fat. The percentage of body mass as fat (%fat) is predicted from a DXA-estimated RST value defined as the ratio of soft tissue attenuation at two photon energies (e.g., 40 keV and 70 keV). Theoretically, the RST concept depends on the mass of each major element in the human body. The DXA RST values, however, have never been fully evaluated by measured human elemental composition. The present investigation evaluated the DXA RST value by the total body mass of 11 major elements and the DXA %fat by the five-component (5C) model, respectively. Six elements (i.e. C, N, Na, P, Cl and Ca) were measured by in vivo neutron activation analysis, and potassium (i.e. K) by whole-body 40K counting in 27 healthy adults. Models were developed for predicting the total body mass of four additional elements (i.e. H, O, Mg and S). The elemental content of soft tissue, after correction for bone mineral elements, was used to predict the RST values. The DXA RST values were strongly associated with the RST values predicted from elemental content (r = 0.976, P < 0.001), although there was a tendency for the elemental-predicted RST to systematically exceed the DXA-measured RST (mean ± SD, 1.389 ± 0.024 versus 1.341 ± 0.024). DXA-estimated %fat was strongly associated with 5C %fat (24.4 ± 12.0% versus 24.9 ± 11.1%, r = 0.983, P < 0.001). DXA RST evaluated by in vivo elemental composition, and the present study supports the underlying physical concept and accuracy of the DXA method for estimating %fat. PMID:20393230

  11. Estimation of percentage body fat by dual-energy x-ray absorptiometry: evaluation by in vivo human elemental composition.

    PubMed

    Wang, ZiMian; Heymsfield, Steven B; Chen, Zhao; Zhu, Shankuan; Pierson, Richard N

    2010-05-07

    Dual-energy x-ray absorptiometry (DXA) is widely applied for estimating body fat. The percentage of body mass as fat (%fat) is predicted from a DXA-estimated R(ST) value defined as the ratio of soft tissue attenuation at two photon energies (e.g., 40 keV and 70 keV). Theoretically, the R(ST) concept depends on the mass of each major element in the human body. The DXA R(ST) values, however, have never been fully evaluated by measured human elemental composition. The present investigation evaluated the DXA R(ST) value by the total body mass of 11 major elements and the DXA %fat by the five-component (5C) model, respectively. Six elements (i.e. C, N, Na, P, Cl and Ca) were measured by in vivo neutron activation analysis, and potassium (i.e. K) by whole-body (40)K counting in 27 healthy adults. Models were developed for predicting the total body mass of four additional elements (i.e. H, O, Mg and S). The elemental content of soft tissue, after correction for bone mineral elements, was used to predict the R(ST) values. The DXA R(ST) values were strongly associated with the R(ST) values predicted from elemental content (r = 0.976, P < 0.001), although there was a tendency for the elemental-predicted R(ST) to systematically exceed the DXA-measured R(ST) (mean +/- SD, 1.389 +/- 0.024 versus 1.341 +/- 0.024). DXA-estimated %fat was strongly associated with 5C %fat (24.4 +/- 12.0% versus 24.9 +/- 11.1%, r = 0.983, P < 0.001). DXA R(ST) is evaluated by in vivo elemental composition, and the present study supports the underlying physical concept and accuracy of the DXA method for estimating %fat.

  12. Evolution of bone disease after kidney transplantation: A prospective histomorphometric analysis of trabecular and cortical bone.

    PubMed

    Carvalho, Catarina; Magalhães, Juliana; Pereira, Luciano; Simões-Silva, Liliana; Castro-Ferreira, Inês; Frazão, João Miguel

    2016-01-01

    Post-transplant bone disease results from multiple factors, including previous bone and mineral metabolism disturbances and effects from transplant-related medications. Bone biopsy remains the gold-standard diagnostic tool. We aimed to prospectively evaluate trabecular and cortical bone by histomorphometry after kidney transplantation. Seven patients, willing to perform follow-up bone biopsy, were included in the study. Dual-X-ray absorptiometry and trans-iliac bone biopsy were performed within the first 2 months after renal transplantation and repeated after 2-5 years of follow-up. Follow-up biopsy revealed a significant decrease in osteoblast surface/bone surface (0.91 ± 0.81 to 0.47 ± 0.12%, P = 0.036), osteoblasts number/bone surface (0.45 (0.23, 0.94) to 0.00/mm(2) , P = 0.018) and erosion surface/bone surface (3.75 ± 2.02 to 2.22 ± 1.38%, P = 0.044). A decrease in trabecular number (3.55 (1.81, 2.89) to 1.55/mm (1.24, 2.06), P = 0.018) and increase in trabecular separation (351.65 ± 135.04 to 541.79 ± 151.91 μm, P = 0.024) in follow-up biopsy suggest loss in bone quantity. We found no significant differences in cortical analysis, except a reduction in external cortical osteonal eroded surface (5.76 (2.94, 13.97) to 3.29% (0.00, 6.67), P = 0.043). Correlations between bone histomorphometric and dual-X-ray absorptiometry parameters gave inconsistent results. The results show a reduction in bone activity, suggesting increased risk of adynamic bone and loss of bone volume. Cortical bone seems less affected by post-transplant biological changes in the first years after kidney transplantation. © 2015 Asian Pacific Society of Nephrology.

  13. Neonatal anthropometrics and body composition in obese children investigated by dual energy X-ray absorptiometry.

    PubMed

    Lausten-Thomsen, Ulrik; Nielsen, Tenna Ruest Haarmark; Thagaard, Ida Näslund; Larsen, Torben; Holm, Jens-Christian

    2014-05-01

    Epidemiological and animal studies have suggested an effect of the intrauterine milieu upon the development of childhood obesity. This study investigates the relationship between body composition measured by dual energy X-ray absorptiometry expressed as body fat percent, body fat mass index (BFMI), and fat free mass index (FFMI) in obese children and the preceding in utero conditions expressed by birth weight, birth length, and birth weight for gestational age. The study cohort consisted of 776 obese Danish children (median age 11.6 years, range 3.6-17.9) with a mean Body Mass Index Standard Deviation Score (BMI SDS) of 2.86 (range 1.64-5.48) treated in our national referral centre. In a linear general regression model adjusted for age, gender, socioeconomic status, and duration of breastfeeding, we found the body fat percent, FFMI, and BFMI at the time of enrolment in childhood obesity treatment to be significantly correlated with both birth weight and birth weight for gestational age. These results indicate a prenatal influence upon childhood obesity. Although there are currently no sufficient data to suggest any recommendations to pregnant women, it is possible that the prenatal period may be considered as a potential window of opportunity for prevention of childhood overweight and obesity.

  14. Body composition in male elite athletes, comparison of bioelectrical impedance spectroscopy with dual energy X-ray absorptiometry

    PubMed Central

    Svantesson, Ulla; Zander, Martina; Klingberg, Sofia; Slinde, Frode

    2008-01-01

    Background The aim of this study was to compare body composition results from bioelectrical spectroscopy (BIS) with results from dual energy X-ray absorptiometry (DXA) in a population of male elite athletes. Body composition was assessed using DXA (Lunar Prodigy, GE Lunar Corp., Madison, USA) and BIS (Hydra 4200, Xitron Technologies Inc, San Diego, California, USA) at the same occasion. Agreement between methods was assessed using paired t-tests and agreement-plots. Results Thirty-three male elite athletes (soccer and ice hockey) were included in the study. The results showed that BIS underestimates the proportion of fat mass by 4.6% points in the ice hockey players. In soccer players the BIS resulted in a lower mean fat mass by 1.1% points. Agreement between the methods at the individual level was highly variable. Conclusion Body composition results assessed by BIS in elite athletes should be interpreted with caution, especially in individual subjects. BIS may present values of fat mass that is either higher or lower than fat mass assessed by DXA, independent of true fat content of the individual. PMID:18211680

  15. Dual-energy X-ray absorptiometry: analysis of pediatric fat estimate errors due to tissue hydration effects.

    PubMed

    Testolin, C G; Gore, R; Rivkin, T; Horlick, M; Arbo, J; Wang, Z; Chiumello, G; Heymsfield, S B

    2000-12-01

    Dual-energy X-ray absorptiometry (DXA) percent (%) fat estimates may be inaccurate in young children, who typically have high tissue hydration levels. This study was designed to provide a comprehensive analysis of pediatric tissue hydration effects on DXA %fat estimates. Phase 1 was experimental and included three in vitro studies to establish the physical basis of DXA %fat-estimation models. Phase 2 extended phase 1 models and consisted of theoretical calculations to estimate the %fat errors emanating from previously reported pediatric hydration effects. Phase 1 experiments supported the two-compartment DXA soft tissue model and established that pixel ratio of low to high energy (R values) are a predictable function of tissue elemental content. In phase 2, modeling of reference body composition values from birth to age 120 mo revealed that %fat errors will arise if a "constant" adult lean soft tissue R value is applied to the pediatric population; the maximum %fat error, approximately 0.8%, would be present at birth. High tissue hydration, as observed in infants and young children, leads to errors in DXA %fat estimates. The magnitude of these errors based on theoretical calculations is small and may not be of clinical or research significance.

  16. Non-destructive elemental analysis of vertebral body trabecular bone using muonic X-rays.

    PubMed

    Hosoi, Y; Watanabe, Y; Sugita, R; Tanaka, Y; Nagamine, K; Ono, T; Sakamoto, K

    1995-12-01

    Non-destructive elemental analysis with muonic X-rays was performed on human vertebral bone and lumbar torso phantoms. It can provide quantitative information on all elements in small deep-seated localized volumes. The experiment was carried out using the superconducting muon channel at TRIUMF in Vancouver, Canada and a lithium drifted germanium detector with an active area of 18.5 cm2. The muon channel produced backward-decayed negative muons with wide kinetic energy range from 0.5 to 54.2 MeV. The muon beam was collimated to a diameter of 18 mm. The number of incoming muons was about 4 x 10(6) approximately 5 x 10(7) per data point. In the measurements with human vertebral bones fixed with neutralized formaldehyde, the correlation coefficient between calcium content measured by muons and by atomic absorption analysis was 0.99 and the level of significance was 0.0003. In the measurements with lumbar torso phantoms, the correlation coefficient between calcium content measured by muons and by atomic absorption analysis was 0.99 and the level of significance was 0.02. The results suggest that elemental analysis in vertebral body trabecular bone using muonic X-rays closely correlates with measurements by atomic absorption analysis.

  17. National Health and Nutrition Examination Survey whole-body dual-energy X-ray absorptiometry reference data for GE Lunar systems.

    PubMed

    Fan, Bo; Shepherd, John A; Levine, Michael A; Steinberg, Dee; Wacker, Wynn; Barden, Howard S; Ergun, David; Wu, Xin P

    2014-01-01

    The National Health and Nutrition Examination Survey (NHANES 1999-2004) includes adult and pediatric comparisons for total body bone and body composition results. Because dual-energy x-ray absorptiometry (DXA) measurements from different manufacturers are not standardized, NHANES reference values currently are applicable only to a single make and model of Hologic DXA system. The purpose of this study was to derive body composition reference curves for GE Healthcare Lunar DXA systems. Published values from the NHANES 1999-2004 survey were acquired from the Centers for Disease Control and Prevention website. Using previously reported cross-calibration equations between Hologic and GE-Lunar, we converted the total body and regional bone and soft-tissue measurements from NHANES 1999-2004 to GE-Lunar values. The LMS (LmsChartMaker Pro Version 3.5) curve fitting method was used to generate GE-Lunar reference curves. Separate curves were generated for each sex and ethnicity. The reference curves were also divided into pediatric (≤20 years old) and adult (>20 years old) groups. Adult reference curves were derived as a function of age. Additional relationships of pediatric DXA values were derived as a function of height, lean mass, and bone area. Robustness was tested between Hologic and GE-Lunar Z-score values. The NHANES 1999-2004 survey included a sample of 20,672 participants' (9630 female) DXA scans. A total of 8056 participants were younger than 20 yr and were included in the pediatric reference data set. Participants enrolled in the study who weighed more than 136 kg (over scanner table limit) were excluded. The average Z-scores comparing the new GE-Lunar reference curves are close to zero, and the standard deviation of the Z-scores are close to one for all variables. As expected, all measurements on the GE-Lunar reference curves for participants younger than 20 yr increase monotonically with age. In the adult population, most of the curves are constant at younger

  18. Pelvis x-ray

    MedlinePlus

    X-ray - pelvis ... Tumors Degenerative conditions of bones in the hips, pelvis, and upper legs ... hip joint Tumors of the bones of the pelvis Sacroiliitis (inflammation of the area where the sacrum ...

  19. Characterisation of mineralisation of bone and cartilage: X-ray diffraction and Ca and Sr K α X-ray fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Bradley, D. A.; Muthuvelu, P.; Ellis, R. E.; Green, E. M.; Attenburrow, D.; Barrett, R.; Arkill, K.; Colridge, D. B.; Winlove, C. P.

    2007-10-01

    Bone is a dynamic structure, constantly remodelling in response to changing mechanical and environmental factors. This is particularly evident in the mineral component encrusting the collagenous framework. The mineral is principally in the form of calcium apatite, but calcium can exchange with strontium, both during the cellular processes of mineralisation and resorption and by passive exchange with the deposited crystals. Mineralisation is generally characterized by densitometry, but because of the differences in absorption cross sections of calcium and strontium it can be misleading in studies of composition. In this work we have used X-ray diffraction to identify calcium and strontium apatite and X-ray fluorescence to quantify strontium and calcium distribution. With the beam characteristics available from synchrotron radiation, this has enabled us to obtain microscopic resolution on thin sections of bone and cartilage from the equine metacarpophalangeal joint. Two issues have been investigated; the first is the distribution of mineral in the bone-cartilage interface and within individual trabeculae. In trabecular bone the ratio of strontium to calcium concentration was typically 0.0035 ± 0.0020, and higher by a factor of ∼3 at the periphery than in the centre of a trabeculum (possibly reflecting the more rapid turnover of mineral in the surface layer). In the dense subchondral bone the ratio was similar, approximately doubling in the calcified cartilage. The second objective was to explore the changes in mineralisation associated with development of osteoarthrosis. We analysed lesions showing cartilage thinning and changes in the trabecular organization and density of the underlying bone. At the centre of the lesion the ratio of strontium to calcium was much lower than that in normal tissue, although the calcified cartilage still showed a higher ratio than the underlying bone. In the superficially normal tissue around the lesion the calcified cartilage

  20. Upper and lower limbs composition: a comparison between anthropometry and dual-energy X-ray absorptiometry in healthy people.

    PubMed

    Diano, Danila; Ponti, Federico; Guerri, Sara; Mercatelli, Daniele; Amadori, Michele; Aparisi Gómez, Maria Pilar; Battista, Giuseppe; Guglielmi, Giuseppe; Bazzocchi, Alberto

    2017-09-18

    The detection of changes in lean mass (LM) distribution can help to prevent disability. This study assessed the degree of association between anthropometric measurements and dual-energy X-ray absorptiometry (DXA) body composition (BC) parameters of the upper and lower limbs in a healthy general population and collected DXA age- and sex-specific values of BC that can be useful to build a reference standard. The primary aim of this study was to investigate the reliability of some widely available anthropometric measurements in the assessment of body composition (BC) at the limbs, especially in terms of muscle mass, in a large sample of healthy subjects of different age bands and sex, using fat mass (FM) and lean mass (LM) parameters derived by dual-energy X-ray absorptiometry (DXA) as the gold standard. The secondary aim was to collect DXA age- and sex-specific values of BC of left and right limbs (upper and lower) in a healthy Italian population to be used as reference standards. Two hundred fifty healthy volunteers were enrolled. Arm circumference (AC) and thigh circumference (ThC) were measured, and total and regional BC parameters were obtained by a whole-body DXA scan (Lunar iDXA, Madison, WI, USA; enCORE™ 2011 software version 13.6). FM/LM showed only fair correlation with AC and ThC in females (r = 0.649 and 0.532, respectively); in males and in the total population, the correlation was low (r = 0.360 or lower, and p non-statistically significant). AC and ThC were not well representative of arms LM in both genders (females r = 0.452, males r = 0.530) independently of age. In general, men of all age groups showed higher values of LM and lean mass index (LMI) in both total and segmental upper and lower limbs. In males, the maximum LM and LMI were achieved in the fifth decade in both upper and lower limbs and then started to decrease with aging. In females, no significant modification with aging was identified in LM and LMI. According to our results

  1. [Body composition by dual-energy x-ray absorptiometry in women with fibromyalgia].

    PubMed

    Lobo, Márcia Maria Marques Teles; Paiva, Eduardo dos Santos; Andretta, Aline; Schieferdecker, Maria Eliana Madalozzo

    2014-01-01

    To assess body composition in women with fibromyalgia (FM) comparing to the reference value for healthy women. Cross-sectional observational analytical study, with 52 women selected with Fibromyalgia, according American College of Rheumatology (ACR, 1990) criteria. The patients were selected in Hospital de Clínicas da Universidade Federal do Paraná (HC-UFPR) and divided into two groups, 28 patients with a BMI (Body Mass Index) equal or higher (≥) than 25kg/m2 and 24 patients with BMI less or equal (≤) 24.99 kg/m2, subjected to physical examination for the count of tender points (TP) and completing the fibromyalgia impact questionnaire (FIQ). The assessment of body composition was performed by the Dual-Energy X-Ray Absorptiometry (DXA). The values of the fat mass percentage (MG %) found in the two groups were compared to the average percentage of MG by age and sex, described by Heward (2004). The mean age of the study groups was 47.8 ± 8.6 years, the FIQ score was 70.5 ± 18.6 and TP 16.2 ± 2.0. The mean BMI was 26.4 ± 4.1 kg/m2, and the amount of MG was 25.2 ± 7.8 kg and 39.5 ± 6.8%, and lean mass (LM) was 37 2 ± 3.7 kg and 60.4 ± 7.3%. In the group with BMI ≤ 25 kg/m2, the MG % was 33.8% (21.5 -42.4) and in the group with BMI ≥ 25 kg/m2 of the MG was 44.4% (37.6 -56.2). Both groups women with FM eutrophic as the overweight and obese group, presented higher reference MG% levels comparing with the standard levels for healthy women. Copyright © 2014 Elsevier Editora Ltda. All rights reserved.

  2. Cost-effectiveness of dual-energy X-ray absorptiometry plus antiresorptive treatment in Australian women with breast cancer who receive aromatase inhibitors.

    PubMed

    Sowa, P Marcin; Downes, Martin J; Gordon, Louisa G

    2017-03-01

    Postmenopausal women with breast cancer on aromatase inhibitor (AI) treatment are at increased risk of bone mineral density loss, which may lead to minimal trauma fractures. We examined the cost-effectiveness of dual energy X-ray absorptiometry (DXA) with antiresorptive (AR) therapy compared with fracture risk assessment, lifestyle advice, and vitamin supplementation. We used a hypothetical Markov cohort model of lifetime duration for 60-year-old women with early stage breast cancer receiving AIs. The data to inform the model came from medical literature, epidemiological reports, and costing data sets. Two eligibility scenarios for AR therapy were considered: (A) osteoporosis and (B) osteopenia or osteoporosis. The main outcomes were incremental cost per quality-adjusted life years gained and cumulative fractures per 1000 women, calculated relative to the comparator. Key aspects of the model were explored in sensitivity analyses. Due to relatively low effectiveness gains, the outcomes were primarily driven by the costs. The incremental cost per quality-adjusted life year gained was A$47,556 and A$253,000 for scenarios A and B, respectively. The numbers of fractures avoided were 56 and 77 per 1000 women, respectively. The results were most sensitive to the initial probability of osteoporosis, baseline risk of fracture, and cohort starting age. Compared with risk assessment and lifestyle advice only, a DXA scan followed by an AR treatment is potentially cost-effective for women aged 60 and over undergoing AI therapy for early breast cancer. However, the number of fractures averted through this intervention is small.

  3. A computer-aided system for automatic extraction of femur neck trabecular bone architecture using isotropic volume construction from clinical hip computed tomography images.

    PubMed

    Vivekanandhan, Sapthagirivasan; Subramaniam, Janarthanam; Mariamichael, Anburajan

    2016-10-01

    Hip fractures due to osteoporosis are increasing progressively across the globe. It is also difficult for those fractured patients to undergo dual-energy X-ray absorptiometry scans due to its complicated protocol and its associated cost. The utilisation of computed tomography for the fracture treatment has become common in the clinical practice. It would be helpful for orthopaedic clinicians, if they could get some additional information related to bone strength for better treatment planning. The aim of our study was to develop an automated system to segment the femoral neck region, extract the cortical and trabecular bone parameters, and assess the bone strength using an isotropic volume construction from clinical computed tomography images. The right hip computed tomography and right femur dual-energy X-ray absorptiometry measurements were taken from 50 south-Indian females aged 30-80 years. Each computed tomography image volume was re-constructed to form isotropic volumes. An automated system by incorporating active contour models was used to segment the neck region. A minimum distance boundary method was applied to isolate the cortical and trabecular bone components. The trabecular bone was enhanced and segmented using trabecular enrichment approach. The cortical and trabecular bone features were extracted and statistically compared with dual-energy X-ray absorptiometry measured femur neck bone mineral density. The extracted bone measures demonstrated a significant correlation with neck bone mineral density (r > 0.7, p < 0.001). The inclusion of cortical measures, along with the trabecular measures extracted after isotropic volume construction and trabecular enrichment approach procedures, resulted in better estimation of bone strength. The findings suggest that the proposed system using the clinical computed tomography images scanned with low dose could eventually be helpful in osteoporosis diagnosis and its treatment planning. © IMechE 2016.

  4. Femoral Neck X-Ray Absorptiometry Parameters and Peripheral Quantitative Computer Tomography Tibial Cortical Density Predict Survival in Dialysis Patients.

    PubMed

    Yap, Natalie; Wong, Phillip; McGinn, Stella; Nery, Maria-Liza; Doyle, Jean; Wells, Lynda; Clifton-Bligh, Phillip; Clifton-Bligh, Roderick J

    2017-01-01

    Low bone mineral density (BMD) is a known independent predictor of mortality in the general elderly population. However, studies in patients with end-stage renal disease (ESRD) are limited. The present study evaluated mortality during long-term follow-up in a population of patients having dialysis for ESRD, in whom BMD was also measured. Fifty-eight patients with ESRD were recruited consecutively from a dialysis clinic and followed prospectively for 6 years. Baseline BMD of the lumbar spine and femoral neck (FN) were measured by X-ray absorptiometry and by peripheral quantitative CT at the radius and tibia. Serum calcium, phosphate, parathyroid hormone (PTH), and albumin were measured at baseline. During follow-up, 25 patients died. Univariate analysis showed that mortality was significantly associated with FN-BMD: hazards ratio (HR) per 0.1 g/cm2 decrease 1.50 (95% CI 1.07-2.10), p = 0.019; FN-T score: HR per 1-SD decrease 1.84 (95% CI 1.16-2.92), p = 0.009; and tibial cortical density: HR per 10 mg/cm3 decrease 1.08 (95% CI 1.02-1.14), p = 0.010. In multivariate analysis with stepwise adjustment for age, sex, transplant status, albumin, PTH, phosphate, dialysis duration, diabetes, and smoking, FN-T score remained significantly associated with mortality: HR per 1-SD decrease 1.82 (95% CI 1.02-3.24), p = 0.044, whereas the HR for FN-BMD and tibial cortical density were no longer significant. When 4 patients who had peritoneal dialysis were excluded, the HR relating FN-BMD, FN-T score, and tibial cortical density to mortality remained significant but became insignificant when albumin was included in the multivariate analysis. Reduced FN-BMD, FN-T score, and tibial cortical density were significantly associated with an increased risk of death in patients with ESRD. © 2017 S. Karger AG, Basel.

  5. Measurements of Strontium Levels in Human Bone In Vivo Using Portable X-ray Fluorescence (XRF).

    PubMed

    Specht, Aaron J; Mostafaei, Farshad; Lin, Yanfen; Xu, Jian; Nie, Linda H

    2017-08-01

    Measurement of bone strontium (Sr) is vital to determining the effectiveness of Sr supplementation, which is commonly used for the treatment of osteoporosis. Previous technology uses radioisotope sources and bulky equipment to measure bone Sr. This study demonstrates the effectiveness of portable X-ray fluorescence (XRF) for bone Sr measurement and validates it using data from a population of 238 children. We identified correlations between bone Sr and age in our participants.

  6. Quantitative evaluation of bone-mineral density loss using X-ray coherent scattering

    NASA Astrophysics Data System (ADS)

    Barroso, Regina Cély; Oliveira, Luis Fernando; Castro, Carlos Roberto Ferreira; Lima, João Carlos; Braz, Delson; Lopes, Ricardo Tadeu; Droppa, Roosevel; Tromba, Giuliana; Mancini, Lucia; Zanini, Franco; Rigon, Luigi; Dreossi, Diego

    2007-08-01

    In this work, we intend to relate the mineral to non-mineral bone scattering intensity ratio with the bone-mineral density (BMD) reduction. In this way, EDXRD can be a novel technique to measure BMD loss in function of the mineral and non-mineral scattering intensity. The scattering profiles were obtained at Laboratório Nacional de Luz Síncrotron (LNLS) at the X-ray diffraction beamline XD2. A double-crystal Si(1 1 1) pre-monochromator, upstream of the beamline, was used to select a small energy bandwidth (Δ λ/ λ≈10 -4) at 11 keV. The sample holder has a circle depression in the center to contain a range of bone and fat mixture ratios. The mixture consists of powdered cortical bone and fat, which together simulate in vivo bone. The diffraction patterns were carried out with 0.5 mm slits after and behind of the sample holder. The data were collected in 0.05° increments every 0.5 s. EDXRD results show an indication of different bone densities may be distinguished which suggested that X-ray coherent scattering technique may have a role in monitoring changes in BMD via changes in the related scattering intensity of mineral and non-mineral bone. The main aim of the Synchrotron Radiation for MEdical Physics (SYRMEP) project at the ELETTRA is the investigation and the development of innovative techniques for medical imaging. The beamline provides, at a distance of about 23 m from the source, a monochromatic, laminar section X-ray beam with a maximum area of about 160×5 mm 2 at 20 keV. The monochromator, that covers the entire angular acceptance of the beamline, is based on a double-Si (1 1 1) crystal system working in Bragg configuration. A micrometric vertical and horizontal translation stage allows the positioning and scanning of the sample with respect to the stationary beam. In this case, the detector is kept stationary in front of the beam, while the object is rotated in discrete steps in front of it. At each rotation, a projection is acquired. A goniometric

  7. Provider Distribution Changes in Dual-Energy X-Ray Absorptiometry in the Medicare Population Over the Past Decade.

    PubMed

    Intenzo, Charles M; Parker, Laurence; Levin, David C; Kim, Sung M; Rao, Vijay M

    2016-01-01

    Both radiologists as well as nonimaging physicians perform dual-energy X-ray absorptiometry (DXA) imaging in the United States. This study aims to compare provider distribution between these physician groups on the Medicare population, which is the predominant age group of patients evaluated by this imaging procedure. Using the 2 relevant Current Procedural Terminology, Fourth Edition codes for DXA scans, source data were obtained from the CMS Physician Supplier Procedure Summary Master Files from 2003 through 2013. DXA scan procedure volumes for radiologists and nonradiologists on Medicare patients were tabulated. Utilization rates were calculated. From 2003 to 2013, the total number of DXA scans performed on Medicare patients decreased by 2%. However, over the same period, the number of scans performed by radiologists had increased by 25% over nonimaging specialists, whose utilization had declined by approximately the same amount. From 2003 to 2013, the rate of utilization of DXA scans in the Medicare fee-for-service population declined somewhat. However, radiologists continue to gain market share from other specialists and now predominate in this type of imaging by a substantial margin. Copyright © 2016 International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  8. Evaluation of bone response to titanium-coated polymethyl methacrylate resin (PMMA) implants by X-ray tomography.

    PubMed

    Shalabi, Manal M; Wolke, Johannes G C; Cuijpers, Vincent M J I; Jansen, John A

    2007-10-01

    High-resolution three-dimensional data about the bone response to oral implants can be obtained by using microfocus computer tomography. However, a disadvantage is that metallic implants cause streaking artifacts due to scattering of X-rays, which prevents an accurate evaluation of the interfacial bone-to-implant contact. It has been suggested that the use of thin titanium coatings deposited on polymeric implants can offer an alternative option for analyzing bone contact using micro-CT imaging. Consequently, the aim of the current study was to investigate bone behavior to titanium-coated polymethylmethacrylate (PMMA) implants by micro-CT and histological evaluation. For the experiment titanium-coated PMMA implants were used. The implants had a machined threaded appearance and were provided with a 400-500 nm thick titanium coating. The implants were inserted in the right or left tibia of 10 goats. After an implantation period of 12 weeks the implants were retrieved and prepared for micro-computer tomography (microCT), light microscopy, and X-ray microanalysis. The micro-CT showed that the screw-threads and typical implant configuration were well maintained through the installation procedure. Overall, histological responses showed that the titanium-coated implants were well tolerated and caused no atypical tissue response. In addition, the bone was seen in direct contact with the titanium-coated layer. The X-ray microanalysis results confirmed the light microscopical data. In conclusion, the obtained results proof the final use of titanium-coated PMMA implants for evaluation of the bone-implant response using microCT. However, this study also confirms that for a proper analysis of the bone-implant interface the additional use of microscopical techniques is still required.

  9. Bone Density in Adolescents and Young Adults with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Ekhlaspour, Laya; Baskaran, Charumathi; Campoverde, Karen Joanie; Sokoloff, Natalia Cano; Neumeyer, Ann M.; Misra, Madhusmita

    2016-01-01

    Patients with autism spectrum disorder (ASD) are at increased risk for fracture, and peri-pubertal boys with ASD have lower bone mineral density (BMD) than controls. Data are lacking regarding BMD in older adolescents with ASD. We compared BMD using dual-energy X-ray absorptiometry in 9 adolescents/young adults with ASD against 9 typically…

  10. Bone remodeling and calcium homeostasis in patients with spinal cord injury: a review.

    PubMed

    Maïmoun, Laurent; Fattal, Charles; Sultan, Charles

    2011-12-01

    Patients with spinal cord injury exhibit early and acute bone loss with the major functional consequence being a high incidence of pathological fractures. The bone status of these patients is generally investigated by dual-energy x-ray absorptiometry, but this technique does not reveal the pathophysiological mechanism underlying the bone loss. Bone cell activity can be indirectly evaluated by noninvasive techniques, including measurement of specific biochemical markers of bone formation (such as osteocalcin or bone-alkaline phosphatase) and resorption (such as procollagen type I N- or C-terminal propeptide). The bone loss in spinal cord injury is clearly due to an uncoupling of bone remodeling in favor of bone resorption, which starts just after the injury and peaks at about 1 to 4 months. Beyond 6 months, bone resorption activity decreases progressively but remains elevated for many years after injury. Conversely, bone formation is less affected. Antiresorptive treatment induces an early and acute reduction in bone resorption markers. Level of injury and health-related complications do not seem to be implicated in the intensity of bone resorption. During the acute phase, the hypercalcemic status is associated with the suppression of parathyroid hormone and vitamin D metabolites. The high sensitivity of these markers after treatment suggests that they can be used for monitoring treatment efficacy and patient compliance. The concomitant use of bone markers and dual-energy x-ray absorptiometry may improve the physician's ability to detect patients at risk of severe bone loss and subsequent fractures. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. A Cross-Sectional Study to Assess and Correlate Osteoporosis and Periodontitis among Postmenopausal Women: A Dual Energy X-Ray Absorptiometry Study

    PubMed Central

    Mashalkar, Vaishali Narayan; Suragimath, Girish; Zope, Sameer Anil; Varma, Siddhartha A.

    2018-01-01

    Background: Periodontitis and osteoporosis are two diseases found worldwide and increase in intensity with increasing age of the patients. The severity of osteoporosis and periodontitis are found to be more in women during menopause. The aim of this study was to assess and correlate osteoporosis and periodontal disease among post-menopausal women. Materials and Methods: The study consisted of 94 postmenopausal women in the age range of 45–65 years. All the women underwent dual-energy X-ray absorptiometry (DXA) scan to measure bone mineral density (BMD) and were graded as normal, osteopenic, and osteoporotic based on the T score obtained. Data regarding patient's educational level, socioeconomic status (SES), and body mass index (BMI) was recorded. A detailed periodontal examination was carried out using clinical parameters such as oral hygiene index (OHI), plaque Index (PI), probing pocket depth , and clinical attachment loss to check the level of periodontitis. The level of osteoporosis was correlated with the level of periodontitis. Results: The DXA scan revealed that four women were normal, 44 were osteopenic and 46 were osteoporotic. There was no association found between BMD and OHI, PI, educational status, SES, and BMI. Slight periodontitis was observed in eight women, moderate periodontitis in 62, and severe periodontitis in 24 women. Result suggests that there was a statistical correlation between periodontitis and osteoporosis (P = 0.045). Conclusion: There is a definite correlation found between the severity of periodontitis and osteoporosis among postmenopausal women. A close cooperation between general practitioners and dentists in early diagnosis and treatment of both the diseases will reduce the risk and morbidity among postmenopausal women. PMID:29628721

  12. Hard X-ray Full Field Nano-imaging of Bone and Nanowires at SSRL

    NASA Astrophysics Data System (ADS)

    Andrews, Joy C.; Pianetta, Piero; Meirer, Florian; Chen, Jie; Almeida, Eduardo; van der Meulen, Marjolein C. H.; Alwood, Joshua S.; Lee, Cathy; Zhu, Jia; Cui, Yi

    2010-06-01

    A hard X-ray full field microscope from Xradia Inc. has been installed at SSRL on a 54-pole wiggler end station at beam line 6-2. It has been optimized to operate from 5-14 keV with resolution as high as 30 nm. High quality images are achieved using a vertical beam stabilizer and condenser scanner with high efficiency zone plates with 30 nm outermost zone width. The microscope has been used in Zernike phase contrast, available at 5.4 keV and 8 keV, as well as absorption contrast to image a variety of biological, environmental and materials samples. Calibration of the X-ray attenuation with crystalline apatite enabled quantification of bone density of plate-like and rod-like regions of mouse bone trabecula. 3D tomography of individual lacuna revealed the surrounding cell canaliculi and processes. 3D tomography of chiral branched PbSe nanowires showed orthogonal branches around a central nanowire.

  13. Hard X-ray Full Field Nano-imaging of Bone and Nanowires at SSRL.

    PubMed

    Andrews, Joy C; Pianetta, Piero; Meirer, Florian; Chen, Jie; Almeida, Eduardo; van der Meulen, Marjolein C H; Alwood, Joshua S; Lee, Cathy; Zhu, Jia; Cui, Yi

    2010-06-23

    A hard X-ray full field microscope from Xradia Inc. has been installed at SSRL on a 54-pole wiggler end station at beam line 6-2. It has been optimized to operate from 5-14 keV with resolution as high as 30 nm. High quality images are achieved using a vertical beam stabilizer and condenser scanner with high efficiency zone plates with 30 nm outermost zone width. The microscope has been used in Zernike phase contrast, available at 5.4 keV and 8 keV, as well as absorption contrast to image a variety of biological, environmental and materials samples. Calibration of the X-ray attenuation with crystalline apatite enabled quantification of bone density of plate-like and rod-like regions of mouse bone trabecula. 3D tomography of individual lacuna revealed the surrounding cell canaliculi and processes. 3D tomography of chiral branched PbSe nanowires showed orthogonal branches around a central nanowire.

  14. Bone X-Ray (Radiography)

    MedlinePlus Videos and Cool Tools

    ... the baby. See the Safety page for more information about pregnancy and x-rays. top of page ... procedure varies. See the Safety page for more information about radiation dose. Women should always inform their ...

  15. Liver in the analysis of body composition by dual-energy X-ray absorptiometry

    PubMed Central

    Bazzocchi, A; Diano, D; Albisinni, U; Marchesini, G; Battista, G

    2014-01-01

    Objective: To investigate the predictive value for hepatic steatosis of a new software for the quantification of visceral fat by dual-energy X-ray absorptiometry (DXA) and to design new regions of interest (ROIs). Methods: Adult volunteers were prospectively screened for hepatic steatosis by ultrasonography to obtain a well-balanced population according to the presence/absence of the disease. 90 adult patients without steatosis and 90 with steatosis (mild, 53.3%; moderate, 37.7%; and severe, 10.0%) were recruited. On the same day, all subjects were submitted to blood testing and to anthropometric and whole-body DXA for body composition evaluation. A new software for android visceral fat assessment was employed, and six new “liver-suited” ROIs as well as two modified android ROIs were designed. Their association with steatosis grade was tested by correlation analysis. Results: Fat mass (FM) of the new ROIs showed the highest correlation coefficients with steatosis grade (ρ = 0.610–0.619; p < 0.001), which was also confirmed by multivariate analysis. On the whole population, the new ROIs maintained the highest predictive role for liver steatosis, with areas under the receiver operating characteristic curve up to 0.820 ± 0.032. Inter- and intra-operator agreement for the new ROIs was excellent (k = 0.915–1.000 and k = 0.927–1.000). Conclusion: New ROIs could be designed, standardized and implemented in DXA whole-body scan to provide more specific and predictive values of hepatic lipid content. Advances in knowledge: This is the first study to investigate the predictive value for hepatic steatosis of visceral and regional FM assessed on the hepatic site by DXA in comparison with ultrasonography, anthropometry and surrogate markers derived by previously validated algorithms (fatty liver index). PMID:24919499

  16. The biological effects of tocotrienol on bone: a review on evidence from rodent models.

    PubMed

    Chin, Kok-Yong; Ima-Nirwana, Soelaiman

    2015-01-01

    Osteoporosis causes significant health care and economic burden to society, leading to a relentless search for effective preventive agents. Tocotrienol, a member of the vitamin E family, has demonstrated promising potential as an osteoporosis-preventing agent. This review summarizes evidence on the effects of tocotrienol on bone in animal models. Techniques used to examine the effects of tocotrienol on bone in animals included bone histomorphometry, X-ray microtomography, dual-energy X-ray absorptiometry, bone turnover markers, bone calcium content, and biomechanical strength. Tocotrienol was shown to improve osteoblast number, bone formation, mineral deposition, and bone microarchitecture in osteopenic rats. It also decreased osteoclast number and bone erosion in the rats. Tocotrienol supplementation resulted in an improvement in bone mineral density, although biomechanical strength was not significantly altered in the rats. The beneficial effects of tocotrienol on bone can be attributed to its role as an antioxidant, anti-inflammatory agent, suppressor of the mevalonate pathway, and modulator of genes favorable to bone formation.

  17. The biological effects of tocotrienol on bone: a review on evidence from rodent models

    PubMed Central

    Chin, Kok-Yong; Ima-Nirwana, Soelaiman

    2015-01-01

    Osteoporosis causes significant health care and economic burden to society, leading to a relentless search for effective preventive agents. Tocotrienol, a member of the vitamin E family, has demonstrated promising potential as an osteoporosis-preventing agent. This review summarizes evidence on the effects of tocotrienol on bone in animal models. Techniques used to examine the effects of tocotrienol on bone in animals included bone histomorphometry, X-ray microtomography, dual-energy X-ray absorptiometry, bone turnover markers, bone calcium content, and biomechanical strength. Tocotrienol was shown to improve osteoblast number, bone formation, mineral deposition, and bone microarchitecture in osteopenic rats. It also decreased osteoclast number and bone erosion in the rats. Tocotrienol supplementation resulted in an improvement in bone mineral density, although biomechanical strength was not significantly altered in the rats. The beneficial effects of tocotrienol on bone can be attributed to its role as an antioxidant, anti-inflammatory agent, suppressor of the mevalonate pathway, and modulator of genes favorable to bone formation. PMID:25897211

  18. Magnetic resonance imaging of the calcaneus: preliminary assessment of trabecular bone-dependent regional variations in marrow relaxation time compared with dual X-ray absorptiometry

    NASA Technical Reports Server (NTRS)

    Guglielmi, G.; Selby, K.; Blunt, B. A.; Jergas, M.; Newitt, D. C.; Genant, H. K.; Majumdar, S.

    1996-01-01

    RATIONALE AND OBJECTIVES: Marrow transverse relaxation time (T2*) in magnetic resonance (MR) imaging may be related to the density and structure of the surrounding trabecular network. We investigated regional variations of T2* in the human calcaneus and compared the findings with bone mineral density (BMD), as measured by dual X-ray absorpiometry (DXA). Short- and long-term precisions were evaluated first to determine whether MR imaging would be useful for the clinical assessment of disease status and progression in osteoporosis. METHODS: Gradient-recalled echo MR images of the calcaneus were acquired at 1.5 T from six volunteers. Measurements of T2* were compared with BMD and (for one volunteer) conventional radiography. RESULTS: T2* values showed significant regional variation; they typically were shortest in the superior region of the calcaneus. There was a linear correlation between MR and DXA measurements (r = .66 for 1/T2* versus BMD). Differences in T2* attributable to variations in analysis region-of-interest placement were not significant for five of the six volunteers. Sagittal MR images had short- and long-term precision errors of 4.2% and 3.3%, respectively. For DXA, the precision was 1.3% (coefficient of variation). CONCLUSION: MR imaging may be useful for trabecular bone assessment in the calcaneus. However, given the large regional variations in bone density and structure, the choice of an ROI is likely to play a major role in the accuracy, precision, and overall clinical efficacy of T2* measurements.

  19. Comparison of Multifrequency Bioelectrical Impedance vs. Dual-Energy X-ray Absorptiometry for Assessing Body Composition Changes After Participation in a 10-Week Resistance Training Program.

    PubMed

    Schoenfeld, Brad J; Nickerson, Brett S; Wilborn, Colin D; Urbina, Stacie L; Hayward, Sara B; Krieger, James; Aragon, Alan A; Tinsley, Grant M

    2018-06-20

    Schoenfeld, BJ, Nickerson, BS, Wilborn, CD, Urbina, SL, Hayward, SB, Krieger, J, Aragon, AA, and Tinsley, G. Comparison of multifrequency bioelectrical impedance vs. dual-energy x-ray absorptiometry for assessing body composition changes after participation in a 10-week resistance training program. J Strength Cond Res XX(X): 000-000, 2018-The purpose of this study was to assess the ability of multifrequency bioelectrical impedance analysis (MF-BIA) to determine alterations in total and segmental body composition across a 10-week resistance training (RT) program in comparison with the criterion reference dual-energy X-ray absorptiometry (DXA). Twenty-one young male volunteers (mean ± SD; age = 22.9 ± 3.0 years; height = 175.5 ± 5.9 cm; body mass = 82.9 ± 13.6 kg; body mass index = 26.9 ± 3.6) performed an RT program that included exercises for all major muscle groups. Body composition was assessed using both methods before and after the intervention; change scores were determined by subtracting pre-test values from post-test values for percent body fat ([INCREMENT]%BF), fat mass ([INCREMENT]FM), and fat-free mass ([INCREMENT]FFM). Mean changes were not significantly different when comparing MF-BIA with DXA for [INCREMENT]%BF (-1.05 vs. -1.28%), [INCREMENT]FM (-1.13 vs. -1.19 kg), and FFM (0.10 vs. 0.37 kg, respectively). Both methods showed strong agreement for [INCREMENT]%BF (r = 0.75; standard error of the estimate [SEE] = 1.15%), [INCREMENT]FM (r = 0.84; SEE 1.0 kg), and [INCREMENT]FFM (r = 0.71; SEE of 1.5 kg). The 2 methods were poor predictors of each other in regards to changes in segmental measurements. Our data indicate that MF-BIA is an acceptable alternative for tracking changes in FM and FFM during a combined diet and exercise program in young, athletic men, but segmental lean mass measurements must be interpreted with circumspection.

  20. Electron Microscopy and Analytical X-ray Characterization of Compositional and Nanoscale Structural Changes in Fossil Bone

    NASA Astrophysics Data System (ADS)

    Boatman, Elizabeth Marie

    The nanoscale structure of compact bone contains several features that are direct indicators of bulk tissue mechanical properties. Fossil bone tissues represent unique opportunities to understand the compact bone structure/property relationships from a deep time perspective, offering a possible array of new insights into bone diseases, biomimicry of composite materials, and basic knowledge of bioapatite composition and nanoscale bone structure. To date, most work with fossil bone has employed microscale techniques and has counter-indicated the survival of bioapatite and other nanoscale structural features. The obvious disconnect between the use of microscale techniques and the discernment of nanoscale structure has prompted this work. The goal of this study was to characterize the nanoscale constituents of fossil compact bone by applying a suite of diffraction, microscopy, and spectrometry techniques, representing the highest levels of spatial and energy resolution available today, and capable of complementary structural and compositional characterization from the micro- to the nanoscale. Fossil dinosaur and crocodile long bone specimens, as well as modern ratite and crocodile femurs, were acquired from the UC Museum of Paleontology. Preserved physiological features of significance were documented with scanning electron microscopy back-scattered imaging. Electron microprobe wavelength-dispersive X-ray spectroscopy (WDS) revealed fossil bone compositions enriched in fluorine with a complementary loss of oxygen. X-ray diffraction analyses demonstrated that all specimens were composed of apatite. Transmission electron microscopy (TEM) imaging revealed preserved nanocrystallinity in the fossil bones and electron diffraction studies further identified these nanocrystallites as apatite. Tomographic analyses of nanoscale elements imaged by TEM and small angle X-ray scattering were performed, with the results of each analysis further indicating that nanoscale structure is

  1. Identification of vertebral deformities in the Polish population by morphometric X-ray absorptiometry - results of the EPOLOS study.

    PubMed

    Skowrońska-Jóźwiak, Elzbieta; Płudowski, Paweł; Karczmarewicz, Elzbieta; Lorenc, Roman; Lewiński, Andrzej

    2009-01-01

    The aim of the study was the determination of the prevalence of asymptomatic vertebral deformities in healthy persons of the Polish population, based on morphometric X-ray absorptiometry (MXA), and comparison of the results with data from literature, obtained by other techniques. The study involved 829 persons, including 520 women and 309 men, aged 18-79 years, untreated for osteoporosis before. The Th(4) to L(4) vertebrae were examined. Lateral scans of the thoracic-lumbar spine were made by an Expert-XL densitometer. Six point digitization was used to calculate the anterior (Ha), central (Hc), and posterior (Hp) height of the Th(4)-L(4) vertebral bodies. The vertebrae were defined as having prevalent deformities when at least one ratio value (Ha/Hp, Hc/Hp, Hp/Hp up, or Hp/Hp low) fell 3 SDs below or even more than the reference mean of that ratio at any vertebral level. The analysis was performed on 9629 vertebrae, of which 167 (1.75%), evaluated as deformed and considered as fractures, were observed in 113 patients (13.63 % of the examined patients). In 81 persons (74% of the patients with fractures; 9.7% of the studied population), single fractures were demonstrated, while in 28 persons, multiple deformities prevailed. Fractures occurred in 108 women (20.7% of the examined women) and 42 men (13.5% of the examined men). The highest incidence of deformities was observed in women over 55 years of age. First-degree deformities dominated. Deformities of the Th(8) and Th(6) vertebrae were most frequently observed. 1. Using MXA, it was found that in the Polish population deformities of vertebrae are common, as was demonstrated in X-ray morphometric studies in the European Vertebral Observation Study (EVOS). 2. Densitometric morphometry, as a non-invasive technique, may become a useful tool in the diagnostics of vertebral fractures.

  2. Total and Segmental Body Composition Examination in Collegiate Football Players Using Multifrequency Bioelectrical Impedance Analysis and Dual X-ray Absorptiometry.

    PubMed

    Raymond, Christiana J; Dengel, Donald R; Bosch, Tyler A

    2018-03-01

    Raymond, CJ, Dengel, DR, and Bosch, TA. Total and segmental body composition examination in collegiate football players using multifrequency bioelectrical impedance analysis and dual X-ray absorptiometry. J Strength Cond Res 32(3): 772-782, 2018-The current study examined the influence of player position on the agreement between multifrequency bioelectrical impedance analysis (MfBIA) and dual X-ray absorptiometry (DXA) when assessing total and segmental percent body fat (BF%), fat mass (FM), and fat-free mass (FFM) in National Collegiate Athletic Association Division I collegiate football athletes. Forty-four male collegiate athletes (age = 19 ± 1 year; height = 1.9 ± 1.0 m; and body mass = 106.4 ± 18.8 kg) participated. Player positions included: offensive linemen (OL; n = 7), tight ends (TE; n = 4), wide receivers (WR; n = 9), defensive linemen (DL; n = 6), defensive backs (DB; n = 8), linebackers (LB; n = 6), and running backs (RB; n = 4). Total and segmental body composition measured using MfBIA were compared with values obtained using DXA. Compared with DXA, MfBIA underestimated BF% (3.0 ± 3.8%), total FM (2.5 ± 4.3 kg), arm FM (0.4 ± 0.8 kg), arm FFM (1.4 ± 0.9 kg), leg FM (2.8 ± 2.0 kg), and leg FFM (5.4 ± 2.4 kg) (all p < 0.001; arm FM p = 0.002) and overestimated total FFM (-2.4 ± 4.5 kg) (p < 0.001). Limits of agreement (LOAs) were: ±7.39% (BF%), ±8.50 kg (total FM), ±1.50 kg (arm FM), ±1.83 kg (arm FFM), ±3.83 kg (leg FM), ±4.62 kg (leg FFM), and ±8.83 kg (total FFM). No significant differences were observed between devices for trunk FM (-0.3 ± 3.0 kg; p = 0.565) and trunk FFM (0.4 ± 2.4 kg; p = 0.278), with LOAs of ±5.92 and ±4.69 kg, respectively. Player position significantly affected all between-device mean body composition measurement differences (adjusted p ≤ 0.05), with OL demonstrating the greatest effect on each variable. Therefore, MfBIA does not seem accurate in examining between-player body composition in college

  3. Effects of Amlodipine on Bone Metabolism in Orchidectomised Spontaneously Hypertensive Rats.

    PubMed

    Zivna, Helena; Gradošová, Iveta; Zivny, Pavel; Cermakova, Eva; Palicka, Vladimir

    2018-06-13

    Spontaneously hypertensive rats (SHR) represent a model of essential hypertension. We studied the effect of amlodipine (AML) on bone markers, bone mineral density (BMD), and biomechanical properties of osteopenic bone induced by orchidectomy in male SHR. Rats were allocated to 3 groups and were sacrificed after 12 weeks: sham-operated control; orchidectomised control; and orchidectomised receiving a diet supplemented with AML. Indicators of bone turnover were assessed in bone homogenate, BMD was measured by dual energy X-ray absorptiometry, and the femurs were subjected to biomechanical testing. Long-term AML administration does not have a negative impact on bone metabolism and density in male SHR. © 2018 S. Karger AG, Basel.

  4. Bone Density in Peripubertal Boys with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Neumeyer, Ann M.; Gates, Amy; Ferrone, Christine; Lee, Hang; Misra, Madhusmita

    2013-01-01

    We determined whether bone mineral density (BMD) is lower in boys with autism spectrum disorders (ASD) than controls, and also assessed variables that may affect BMD in ASD. BMD was measured using dual energy X-ray absorptiometry (DXA) in 18 boys with ASD and 19 controls 8-14 years old. Boys with ASD had lower BMD Z-scores at the spine, hip and…

  5. The application of x-ray, computed tomography, and magnetic resonance imaging on 22 pediatric Langerhans cell histiocytosis patients with long bone involvement: A retrospective analysis.

    PubMed

    Zhang, Xiaojun; Zhou, Jing; Chai, Xuee; Chen, Guiling; Guo, Bin; Ni, Lei; Wu, Peng

    2018-04-01

    The studies focusing on x-ray, computed tomography (CT), and magnetic resonance imaging (MRI) in pediatric Langerhans cell histiocytosis (LCH) patients were still rare. Therefore, we aimed to evaluate the application of x-ray, CT, and MRI in pediatric LCH patients with long bone involvement.Total 22 pediatric LCH patients were included in this study. The diagnosis of LCH was confirmed by pathological examination. All patients were followed up for 3 years. X-ray, CT, or MRI was performed and the results were recorded for further analyses.Among 22 pediatric patients, x-ray (n = 20), CT (n = 18), or MRI (n = 12) were used to scan the lesion on long bones affected by LCH. Femurs (n = 13, 38.24%), tibia (n = 11, 32.35%), humerus (n = 5, 14.71%), and radius (n = 4, 11.76%) were the most frequently affected anatomic sites. Ovoid or round radiolucent lesions, aggressive periosteal reaction, and swelling of surrounding soft tissues were characteristic image of long bones on x-ray, CT, and MRI in pediatric LCH.Femurs, tibia, humerus, and radius were the most commonly affected long bones of pediatric LCH. The application of x-ray, CT, and MRI on long bones could help with the diagnosis of pediatric LCH.

  6. Bone Implant Interface Investigation by Synchrotron Radiation X-Ray Microfluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calasans-Maia, M.; Sales, E.; Lopes, R. T.

    2010-04-06

    Zinc is known to play a relevant role in growth and development; it has stimulatory effects on in vitro and in vivo bone formation and an inhibitory effect on in vitro osteoclastic bone resorption. The inorganic component of the bone tissue is nonstoichiometric apatite; changes in the composition of hidroxyapatite are subject of studies in order to improve the tissue response after implantation. The objective of this study was to investigate the effect of 0.5% zinc-containing hydroxyapatite in comparison to hydroxyapatite on osseous repair of rabbit's tibia. Cylinders (2x6 mm) of both materials were produced according to the specification ofmore » the International Organization for Standardization. Ethics Commission on Teaching and Research in Animals approved this project (HUAP-195/06). Fifteen White New Zealand rabbits were submitted to general anesthesia and two perforations (2 mm) were made in each tibia for implantation of zinc-containing hydroxyapatite cylinders (left tibia) and hydroxyapatite cylinders (right tibia). After 1, 2 and 4 weeks, the animals were killed and one fragment of each tibia with the cylinder was collected and embedded in a methacrylate-based resin and cut into slices (approx200 {mu}m thickness), parallel to the implant's long axis with a precision diamond saw for Synchrotron Radiation X-ray Microfluorescence investigation. The accomplishment of the standard procedures helped the planning, execution and the comparative analysis of the results. The chemical and physical properties of the biomaterials were modified after its implantation and the incorporation of zinc. Both materials are biocompatible and promote osteoconduction and favored bone repair.« less

  7. Fat-free mass prediction equations for bioelectric impedance analysis compared to dual energy X-ray absorptiometry in obese adolescents: a validation study.

    PubMed

    Hofsteenge, Geesje H; Chinapaw, Mai J M; Weijs, Peter J M

    2015-10-15

    In clinical practice, patient friendly methods to assess body composition in obese adolescents are needed. Therefore, the bioelectrical impedance analysis (BIA) related fat-free mass (FFM) prediction equations (FFM-BIA) were evaluated in obese adolescents (age 11-18 years) compared to FFM measured by dual-energy x-ray absorptiometry (FFM-DXA) and a new population specific FFM-BIA equation is developed. After an overnight fast, the subjects attended the outpatient clinic. After measuring height and weight, a full body scan by dual-energy x-ray absorptiometry (DXA) and a BIA measurement was performed. Thirteen predictive FFM-BIA equations based on weight, height, age, resistance, reactance and/or impedance were systematically selected and compared to FFM-DXA. Accuracy of FFM-BIA equations was evaluated by the percentage adolescents predicted within 5% of FFM-DXA measured, the mean percentage difference between predicted and measured values (bias) and the Root Mean Squared prediction Error (RMSE). Multiple linear regression was conducted to develop a new BIA equation. Validation was based on 103 adolescents (60% girls), age 14.5 (sd1.7) years, weight 94.1 (sd15.6) kg and FFM-DXA of 56.1 (sd9.8) kg. The percentage accurate estimations varied between equations from 0 to 68%; bias ranged from -29.3 to +36.3% and RMSE ranged from 2.8 to 12.4 kg. An alternative prediction equation was developed: FFM = 0.527 * H(cm)(2)/Imp + 0.306 * weight - 1.862 (R(2) = 0.92, SEE = 2.85 kg). Percentage accurate prediction was 76%. Compared to DXA, the Gray equation underestimated the FFM with 0.4 kg (55.7 ± 8.3), had an RMSE of 3.2 kg, 63% accurate prediction and the smallest bias of (-0.1%). When split by sex, the Gray equation had the narrowest range in accurate predictions, bias, and RMSE. For the assessment of FFM with BIA, the Gray-FFM equation appears to be the most accurate, but 63% is still not at an acceptable accuracy level for obese adolescents. The new equation appears to

  8. A systematic quality assurance study in bone densitometry devices

    NASA Astrophysics Data System (ADS)

    Tuncman, Duygu; Kovan, Hatice; Kovan, Bilal; Demir, Bayram; Turkmen, Cuneyt

    2015-07-01

    Osteoporosis is the most common metabolic bone disease and can result in devastating physical, psychosocial, and economic consequences. It occurs in women after menopause and affects most elderly. Dual-energy x-ray absorptiometry (DXA) is currently the most widely used method for the measurement of areal Bone Mineral Density (BMD) (g/cm2) .DXA is based on the variable absorption of X-ray by the different body components and uses high and low energy X-ray photons. There are two important values in the assessment of the DXA. These values are T-score and Z-score. The T-score is calculated by taking the difference between a patient's measured BMD with the mean BMD of the young normal population, matched for gender and ethnicity, and then by dividing the difference with the standard deviation (SD) of the BMD of the young normal population. T-score and also Z-score are directly depends on the Bone Mineral Density (BMD). BMD measurements should be made periodically in a patient life. But mostly, it is not possible with the same device. Therefore, in this study, for the quality assurance of bone densitometry devices, we evaluated the BMD results measured in the different Bone Densitometry (DXA) devices using a spine phantom.

  9. The conclusiveness of less-invasive imaging techniques (computer tomography, X-ray) with regard to their identification of bone diseases in a primate model (Callithrix jacchus).

    PubMed

    Grohmann, J; Taetzner, S; Theuss, T; Kuehnel, F; Buchwald, U; Einspanier, A

    2012-04-01

    Although common marmosets seem to be appropriate animal models to examine bone diseases, no data about the conclusiveness of less-invasive techniques are available. Therefore, the aim was to combine different techniques to analyse changes in bone metabolism of common marmosets with bone diseases. Five monkeys were examined by X-ray, computer tomography (CT), histology and immunohistochemistry (IHC). Monkeys with lowest bone mineral density (BMD) showed increased bone marrow, decreased cancellous bone and decreased contrast in X-ray. Highest alkaline phosphatase (AP)-levels were detected in bones with low elastic modulus. Expression of osteopontin (OPN), osteocalcin (OC) and runt-related transcriptions factor 2 (RUNX 2) was detected in bones with high modulus. No expression was present in bones with lower modulus. Collagen type I and V were found in every bone. In conclusion, CT, X-ray and AP are useful techniques to detect bone diseases in common marmosets. These observations could be confirmed by IHC. © 2012 John Wiley & Sons A/S.

  10. X-ray vector radiography imaging for biomedical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potdevin, Guillaume; Malecki, Andreas; Biernath, Thomas

    The non-invasive estimation of fracture risk in osteoporosis remains a challenge in the clinical routine and is mainly based on an assessment of bone density by dual X-ray absorption (DXA) although bone micro-architecture is known to play an important role for bone fragility. Here we report on 'X-ray vector Radiography' measurements able to provide a direct bone microstructure diagnostics on human bone samples, which we compare qualitatively and quantitatively with numerical analysis of high resolution radiographs.

  11. Pediatric data for dual X-ray absorptiometric measures of normal lumbar bone mineral density in children under 5 years of age using the lunar prodigy densitometer.

    PubMed

    Manousaki, D; Rauch, F; Chabot, G; Dubois, J; Fiscaletti, M; Alos, N

    2016-09-07

    Knowledge of physiological variations of bone mineral density (BMD) in newborns and infants is necessary to evaluate pathological changes associated with fractures. Limited reference data for children under 5 years old are available. This study provides normative data of lumbar BMD for the Lunar Prodigy in young children under 5 years old. We assessed cross-sectionally 155 healthy children (77 boys, 80% Caucasian), ranging in age from newborn to the age of 5 years. Lumbar bone mineral content (BMC) and areal BMD were measured by dual-energy X-ray absorptiometry using a Lunar Prodigy absorptiometer. Volumetric BMD was calculated using the Kroeger and Carter methods. BMC and areal BMD increased from birth to 5 years (p<0.001). Volumetric BMD did not change with age. BMD and BMC correlated with age, weight and height (R(2)≥0.85 for all), with a maximum gain between the ages of 1 and 4 years, which did not follow the same pattern as height velocity. We did not find significant sex difference for any of the three measured parameters. This study provides normative data for lumbar spine densitometry of infants and young children using the Lunar Prodigy DXA system.

  12. [Is ultrasound equal to X-ray in pediatric fracture diagnosis?].

    PubMed

    Moritz, J D; Hoffmann, B; Meuser, S H; Sehr, D H; Caliebe, A; Heller, M

    2010-08-01

    Ultrasound is currently not established for the diagnosis of fractures. The aim of this study was to compare ultrasound and X-ray beyond their use solely for the identification of fractures, i. e., for the detection of fracture type and dislocation for pediatric fracture diagnosis. Limb bones of dead young pigs served as a model for pediatric bones. The fractured bones were examined with ultrasound, X-ray, and CT, which served as the gold standard. 162 of 248 bones were fractured. 130 fractures were identified using ultrasound, and 148 using X-ray. There were some advantages of X-ray over ultrasound in the detection of fracture type (80 correct results using X-ray, 66 correct results using ultrasound). Ultrasound, however, was superior to X-ray for dislocation identification (41 correct results using X-ray, 51 correct results using ultrasound). Both findings were not statistically significant after adjustment for multiple testing. Ultrasound not only has comparable sensitivity to that of X-ray for the identification of limb fractures but is also equally effective for the diagnosis of fracture type and dislocation. Thus, ultrasound can be used as an adequate alternative method to X-ray for pediatric fracture diagnosis. Georg Thieme Verlag KG Stuttgart, New York.

  13. Differences in responses to X-ray exposure between osteoclast and osteoblast cells

    PubMed Central

    Zhang, Jian; Wang, Ziyang; Wu, Anqing; Nie, Jing; Pei, Hailong; Hu, Wentao; Wang, Bing; Shang, Peng; Li, Bingyan

    2017-01-01

    Abstract Radiation-induced bone loss is a potential health concern for cancer patients undergoing radiotherapy. Enhanced bone resorption by osteoclasts and decreased bone formation by osteoblasts were thought to be the main reasons. In this study, we showed that both pre-differentiating and differentiating osteoclasts were relatively sensitive to X-rays compared with osteoblasts. X-rays decreased cell viability to a greater degree in RAW264.7 cells and in differentiating cells than than in osteoblastic MC3T3-E1 cells. X-rays at up to 8 Gy had little effects on osteoblast mineralization. In contrast, X-rays at 1 Gy induced enhanced osteoclastogenesis by enhanced cell fusion, but had no effects on bone resorption. A higher dose of X-rays at 8 Gy, however, had an inhibitory effect on bone resorption. In addition, actin ring formation was disrupted by 8 Gy of X-rays and reorganized into clusters. An increased activity of Caspase 3 was found after X-ray exposure. Actin disorganization and increased apoptosis may be the potential effects of X-rays at high doses, by inhibiting osteoclast differentiation. Taken together, our data indicate high radiosensitivity of osteoclasts. X-ray irradiation at relatively low doses can activate osteoclastogenesis, but not osteogenic differentiation. The radiosensitive osteoclasts are the potentially responsive cells for X-ray-induced bone loss. PMID:28541506

  14. Revised Reference Curves for Bone Mineral Content and Areal Bone Mineral Density According to Age and Sex for Black and Non-Black Children: Results of the Bone Mineral Density in Childhood Study

    PubMed Central

    Kalkwarf, Heidi J.; Gilsanz, Vicente; Lappe, Joan M.; Oberfield, Sharon; Shepherd, John A.; Frederick, Margaret M.; Huang, Xiangke; Lu, Ming; Mahboubi, Soroosh; Hangartner, Thomas; Winer, Karen K.

    2011-01-01

    Context: Deficits in bone acquisition during growth may increase fracture risk. Assessment of bone health during childhood requires appropriate reference values relative to age, sex, and population ancestry to identify bone deficits. Objective: The objective of this study was to provide revised and extended reference curves for bone mineral content (BMC) and areal bone mineral density (aBMD) in children. Design: The Bone Mineral Density in Childhood Study was a multicenter longitudinal study with annual assessments for up to 7 yr. Setting: The study was conducted at five clinical centers in the United States. Participants: Two thousand fourteen healthy children (992 males, 22% African-Americans) aged 5–23 yr participated in the study. Intervention: There were no interventions. Main Outcome Measures: Reference percentiles for BMC and aBMD of the total body, lumbar spine, hip, and forearm were obtained using dual-energy x-ray absorptiometry for Black and non-Black children. Adjustment factors for height status were also calculated. Results: Extended reference curves for BMC and aBMD of the total body, total body less head, lumbar spine, total hip, femoral neck, and forearm for ages 5–20 yr were constructed relative to sex and age for Black and non-Black children. Curves are similar to those previously published for 7–17 year olds. BMC and aBMD values were greater for Black vs. non-Black children at all measurement sites. Conclusions: We provide here dual-energy x-ray absorptiometry reference data on a well-characterized cohort of 2012 children and adolescents. These reference curves provide the most robust reference values for the assessment and monitoring of bone health in children and adolescents in the literature to date. PMID:21917867

  15. Bone Mineral Density in Boys Diagnosed with Autism Spectrum Disorder: A Case-Control Study

    ERIC Educational Resources Information Center

    Barnhill, Kelly; Ramirez, Lucas; Gutierrez, Alan; Richardson, Wendy; Marti, C. Nathan; Potts, Amy; Shearer, Rebeca; Schutte, Claire; Hewitson, Laura

    2017-01-01

    This study compared bone mineral density (BMD) of the spine obtained by dual-energy X-ray absorptiometry (DEXA), nutritional status, biochemical markers, and gastrointestinal (GI) symptoms in 4-8 year old boys with Autism Spectrum Disorder (ASD) with a group of age-matched, healthy boys without ASD. Boys with ASD had significantly lower spine BMD…

  16. Predicting skeletal muscle mass from dual-energy X-ray absorptiometry in Japanese prepubertal children.

    PubMed

    Midorikawa, T; Ohta, M; Hikihara, Y; Torii, S; Sakamoto, S

    2017-10-01

    We aimed to develop regression-based prediction equations for estimating total and regional skeletal muscle mass (SMM) from measurements of lean soft tissue mass (LSTM) using dual-energy X-ray absorptiometry (DXA) and investigate the validity of these equations. In total, 144 healthy Japanese prepubertal children aged 6-12 years were divided into 2 groups: the model development group (62 boys and 38 girls) and the validation group (26 boys and 18 girls). Contiguous MRI images with a 1-cm slice thickness were obtained from the first cervical vertebra to the ankle joints as reference data. The SMM was calculated from the summation of the digitized cross-sectional areas. Total and regional LSTM was measured using DXA. Strong significant correlations were observed between the site-matched SMM (total, arms, trunk and legs) measured by MRI and the LSTM obtained by DXA in the model development group for both boys and girls (R 2 adj =0.86-0.97, P<0.01, standard error of the estimate (SEE)=0.08-0.44 kg). When these SMM prediction equations were applied to the validation group, the measured total (boys 9.47±2.21 kg; girls 8.18±2.62 kg) and regional SMM were very similar to the predicted values for both boys (total SMM 9.40±2.39 kg) and girls (total SMM 8.17±2.57 kg). The results of the Bland-Altman analysis for the validation group did not indicate any bias for either boys or girls with the exception of the arm region for the girls. These results suggest that the DXA-derived prediction equations are precise and accurate for the estimation of total and regional SMM in Japanese prepubertal boys and girls.

  17. Optimizing Bone Health in Duchenne Muscular Dystrophy.

    PubMed

    Buckner, Jason L; Bowden, Sasigarn A; Mahan, John D

    2015-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder characterized by progressive muscle weakness, with eventual loss of ambulation and premature death. The approved therapy with corticosteroids improves muscle strength, prolongs ambulation, and maintains pulmonary function. However, the osteoporotic impact of chronic corticosteroid use further impairs the underlying reduced bone mass seen in DMD, leading to increased fragility fractures of long bones and vertebrae. These serious sequelae adversely affect quality of life and can impact survival. The current clinical issues relating to bone health and bone health screening methods in DMD are presented in this review. Diagnostic studies, including biochemical markers of bone turnover and bone mineral density by dual energy X-ray absorptiometry (DXA), as well as spinal imaging using densitometric lateral spinal imaging, and treatment to optimize bone health in patients with DMD are discussed. Treatment with bisphosphonates offers a method to increase bone mass in these children; oral and intravenous bisphosphonates have been used successfully although treatment is typically reserved for children with fractures and/or bone pain with low bone mass by DXA.

  18. Fat to muscle ratio measurements with dual energy x-ray absorbtiometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, A.; Luo, J.; Wang, A.

    Accurate measurement of the fat-to-muscle ratio in animal model is important for obesity research. In addition, an efficient way to measure the fat to muscle ratio in animal model using dual-energy absorptiometry is presented in this paper. A radioactive source exciting x-ray fluorescence from a target material is used to provide the two x-ray energies needed. The x-rays, after transmitting through the sample, are measured with an energy-sensitive Ge detector. Phantoms and specimens were measured. The results showed that the method was sensitive to the fat to muscle ratios with good linearity. A standard deviation of a few percent inmore » the fat to muscle ratio could be observed with the x-ray dose of 0.001 mGy.« less

  19. Fat to muscle ratio measurements with dual energy x-ray absorbtiometry

    DOE PAGES

    Chen, A.; Luo, J.; Wang, A.; ...

    2015-03-14

    Accurate measurement of the fat-to-muscle ratio in animal model is important for obesity research. In addition, an efficient way to measure the fat to muscle ratio in animal model using dual-energy absorptiometry is presented in this paper. A radioactive source exciting x-ray fluorescence from a target material is used to provide the two x-ray energies needed. The x-rays, after transmitting through the sample, are measured with an energy-sensitive Ge detector. Phantoms and specimens were measured. The results showed that the method was sensitive to the fat to muscle ratios with good linearity. A standard deviation of a few percent inmore » the fat to muscle ratio could be observed with the x-ray dose of 0.001 mGy.« less

  20. DUAL-ENERGY X-RAY ABSORPTIOMETRY AND CALCULATED FRAX RISK SCORES MAY UNDERESTIMATE OSTEOPOROTIC FRACTURE RISK IN VITAMIN D-DEFICIENT VETERANS WITH HIV INFECTION.

    PubMed

    Stephens, Kelly I; Rubinsztain, Leon; Payan, John; Rentsch, Chris; Rimland, David; Tangpricha, Vin

    2016-04-01

    We evaluated the utility of the World Health Organization (WHO) Fracture Risk Assessment Tool (FRAX) in assessing fracture risk in patients with human immunodeficiency virus (HIV) and vitamin D deficiency. This was a retrospective study of HIV-infected patients with co-existing vitamin D deficiency at the Atlanta Veterans Affairs Medical Center. Bone mineral density (BMD) was assessed by dual-energy X-ray absorptiometry (DEXA), and the 10-year fracture risk was calculated by the WHO FRAX algorithm. Two independent radiologists reviewed lateral chest radiographs for the presence of subclinical vertebral fractures. We identified 232 patients with HIV and vitamin D deficiency. Overall, 15.5% of patients met diagnostic criteria for osteoporosis on DEXA, and 58% had low BMD (T-score between -1 and -2.5). The median risk of any major osteoporotic and hip fracture by FRAX score was 1.45 and 0.10%, respectively. Subclinical vertebral fractures were detected in 46.6% of patients. Compared to those without fractures, those with fractures had similar prevalence of osteoporosis (15.3% versus 15.7%; P>.999), low BMD (53.2% versus 59.3%; P = .419), and similar FRAX hip scores (0.10% versus 0.10%; P = .412). While the FRAX major score was lower in the nonfracture group versus fracture group (1.30% versus 1.60%; P = .025), this was not clinically significant. We found a high prevalence of subclinical vertebral fractures among vitamin D-deficient HIV patients; however, DEXA and FRAX failed to predict those with fractures. Our results suggest that traditional screening tools for fragility fractures may not be applicable to this high-risk patient population.

  1. Application of electron probe X-ray microanalysis to calcification studies of bone and cartilage.

    PubMed

    Landis, W J

    1979-01-01

    The use of electron probe x-ray microanalysis in previous studies of bone and cartilage has been reviewed with emphasis on the results which have contributed to some of the current concepts of the mechanism of mineralization in these tissues. A number of investigations continuing in the author's laboratory utilizing high spatial resolution x-ray microanalysis and anhydrous methods of specimen preparation are described, including aspects concerning the derivation of calibration curves from synthetic calcium phosphate solids, qualitative and quantitative analyses of calcium and phosphorus in bone from embryonic chicks and in growth plate cartilage from rats, and the role of organically-bound phosphorus in mineralizing tissues. The data obtained have helped identify brushite, CaHPO4-2H2O, as the major crystalline solid phase of calcium phosphate in the earliest mineral deposits of bone tissue, brushite and poorly crystalline hydroxyapatite in bone mineral of increasing age, and poorly crystalline hydroxyapatite in the most mature mineral portions of the tissue. Growth plate cartilage examination has revealed calcium and phosphorus in single mitochondrial granules within chondrocytes and in certain extracellular particles distinct from matrix vesicles. These results have provided important information about the possible roles of cells, extracellular components, and the organic matrix in the regulation of mineralization and about the composition, structure, and organization of the mineral phase as a function of progressively increasing age and maturation of the tissues studied.

  2. Correction of metabolic acidosis with potassium citrate in renal transplant patients and its effect on bone quality.

    PubMed

    Starke, Astrid; Corsenca, Alf; Kohler, Thomas; Knubben, Johannes; Kraenzlin, Marius; Uebelhart, Daniel; Wüthrich, Rudolf P; von Rechenberg, Brigitte; Müller, Ralph; Ambühl, Patrice M

    2012-09-01

    Acidosis and transplantation are associated with increased risk of bone disturbances. This study aimed to assess bone morphology and metabolism in acidotic patients with a renal graft, and to ameliorate bone characteristics by restoration of acid/base homeostasis with potassium citrate. This was a 12-month controlled, randomized, interventional trial that included 30 renal transplant patients with metabolic acidosis (S-[HCO(3)(-)] <24 mmol/L) undergoing treatment with either potassium citrate to maintain S-[HCO(3)(-)] >24 mmol/L, or potassium chloride (control group). Iliac crest bone biopsies and dual-energy X-ray absorptiometry were performed at baseline and after 12 months of treatment. Bone biopsies were analyzed by in vitro micro-computed tomography and histomorphometry, including tetracycline double labeling. Serum biomarkers of bone turnover were measured at baseline and study end. Twenty-three healthy participants with normal kidney function comprised the reference group. Administration of potassium citrate resulted in persisting normalization of S-[HCO(3)(-)] versus potassium chloride. At 12 months, bone surface, connectivity density, cortical thickness, and cortical porosity were better preserved with potassium citrate than with potassium chloride, respectively. Serological biomarkers and bone tetracycline labeling indicate higher bone turnover with potassium citrate versus potassium chloride. In contrast, no relevant changes in bone mineral density were detected by dual-energy X-ray absorptiometry. Treatment with potassium citrate in renal transplant patients is efficient and well tolerated for correction of metabolic acidosis and may be associated with improvement in bone quality. This study is limited by the heterogeneity of the investigated population with regard to age, sex, and transplant vintage.

  3. Synchrotron-induced X-ray fluorescence from rat bone and lumber vertebra of different age groups

    NASA Astrophysics Data System (ADS)

    Rao, Donepudi V.; Swapna, Medasani; Cesareo, Roberto; Brunetti, Antonio; Akatsuka, Tako; Yuasa, Tetsuya; Takeda, Tohoru; Tromba, Giuliana; Gigante, Giovanni E.

    2009-02-01

    The fluorescence spectra from rat bones of different age groups (8, 56 and 78 weeks) and lumber vertebra were measured with 8, 10 and 12 keV synchrotron X-rays. We have utilized the new hard X-ray micro-spectroscopy beamline facility, X27A, available at NSLS with a primary beam spot size of the order of ˜10 μm. With this spatial resolution and high flux throughput, X-ray fluorescent intensities for Ca and other trace elements were measured using a liquid-nitrogen-cooled 13-element energy-dispersive high-purity germanium detector. Regarding the lumber vertebra, we acquired the fluorescence spectra from the left, right and middle portions and calcium accumulation was evaluated and compared with the other samples. We have identified the major trace elements of Ca, Ni, Fe and Zn and minor trace elements of Ti, Cr and Mn in the sample. The percentage of scattered radiation and trace element contributions from these samples were highlighted at different energies.

  4. [Comparison BMC assessed by dual-energy X-ray absorptiometry and multi-frequency bioelectrical impedance in Chinese overweight and obesity adults].

    PubMed

    Wang, Zhenghe; Fu, Lianguo; Yang, Yide; Wang, Shuo; Ma, Jun

    2016-05-01

    To compare consistency of Body Mineral Content (BMC, kg) assessed by Multi-frequency Bioelectrical Impedance Analysis ( MF-BIA) and Dual Energy X-ray Absorptiometry (DXA) measurement, providing evidence for MF-BIA accurate application in Chinese overweight/obese adults. A total of 1323 overweight/obesity adults aged 22-55 years were recruited voluntarily. All the subjects received the measurement of BMC both using MF-BIA and DXA. To evaluate the agreement of BMC measured by MF-BIA and DXA using interclass correlation coefficients (ICC), then establish correction prediction models. The mean difference of BMC between two methods was significant different with 0, overweight male subgroup was 0.28 kg, and 0.38 kg for obesity male, 0.24 kg for overweight female and 0.36 kg for obesity female, respectively (P < 0.05). The ICC of BMC between MF-BIA and DXA measurement were statistically significant in all subgroups (P < 0.01). The ICC for overweight male subgroup was 0.787, 0.796 for obesity male, 0.741 for overweight female and 0.788 for obesity female, respectively. Correction prediction model: overweight male population: BMC (DXA method) = -0.297 + 1.005 x BMC (MF-BIA method). Obese male population: BMC (DXA method) =0.302 + 0.799 x BMC (MF-BIA method). Overweight female groups: BMC (DXA method) = 0.780 + 0.598 x BMC (MF-BIA method). Obese female group: BMC (DXA method) = 0.755 + 0.597 x BMC (MF-BIA method). Upon examination, correction prediction models were better. Co The correlation and agreement of BMC measured by BIA and DXA are weak in Chinese overweight/obese adults. Therefore, consideration should be given to BMC measured by BIA method in Chinese overweight/obese adults. It should be corrected or adjusted to reduce errors compared with DXA method.

  5. Replacement of segmental bone defects using porous bioceramic cylinders: a biomechanical and X-ray diffraction study.

    PubMed

    Zhang, C; Wang, J; Feng, H; Lu, B; Song, Z; Zhang, X

    2001-03-05

    A porous ceramic material [hydroxyapatitetricalcium phosphate (HA-TCP)] was implanted in the femora of 30 dogs to investigate the possibility of using this material to repair segmental bone defects. A bone segment, 1.5 cm in length, was removed from the diaphysis of one femur in each dog to create the defect. Cylinders of corresponding size were inserted into the defects. The animals were divided into three groups with recovery times of 2 months, 4 months, and 6 months, respectively. The implants were harvested and subjected to biomechanic tests (bending strength) and X-ray diffraction analysis. The bending strengths of the implant construct increased gradually over time postoperatively. The values of strength for the three different time groups had significant variations (p < 0.05). The X-ray diffraction analysis indicated that the peaks of the TCP included in the cylinders decreased in intensity after implantation and tended to be similar to those of natural bone by 6 months after operation. Conversely, the peaks for the HA had fewer changes compared with preimplantation values. Based on the results of this experiment it was concluded that the porous HA-TCP ceramic cylinders have potential for repair of segmental bone defects if assisted by adequate stabilizing fixtures during the early postoperative period.

  6. Nasal bone length in human fetuses by X-ray.

    PubMed

    Moura, Felipe Nobre; Fernandes, Pablo Lourenco; de Oliveira Silva-Junior, Geraldo; Gomes de Souza, Margareth Maria; Mandarim-de-Lacerda, Carlos Alberto

    2008-07-01

    To construct a normal range for the prenatal nasal bone length (NBL) in Brazilians irrespective to the knowledge of the ethnic genetic background. We studied 35 human fetuses (20 males, 15 females) ranging from 14 to 22 weeks of gestation. Gestational age (GA), crown-rump length (CRL), foot length (FL) and body mass (BM) were measured. The X-ray of the head lateral view was made with the specimens placed directly on the film and the NBL was measured. The NBL was correlated with the GA, the CRL, the FL, and the BM using log-transformed data and the allometric model log y=log a+b log x. Correlations of the NBL growth with GA, CRL, FL, and BM were positive and significant (P<0.05), but NBL vs. BM showed the smallest R indicating this correlation as of little practical use. No sexual dimorphism in the NBL growth in the second trimester fetuses was observed. The NBL grew with positive allometry relative to GA, CRL and BM, but it was allometrically slightly negative relative to the FL in both genders. The NBL be allometrically positive against GA, CRL and BM means the bone grew with growth rates higher than those indices in the period analyzed, but not against FL. NBL could be considered an auxiliary measurement in the assessment of the 2nd trimester fetal development because its strong correlation with GA, CRL and FL, even when nothing is known about the ethnicity of the population.

  7. Synchrotron Radiation and Energy Dispersive X-Ray Fluorescence Applications on Elemental Distribution in Human Hair and Bones

    NASA Astrophysics Data System (ADS)

    Carvalho, M. L.; Marques, A. F.; Brito, J.

    2003-01-01

    This work is an application of synchrotron microprobe X- Ray fluorescence in order to study elemental distribution along human hair samples of contemporary citizens. Furthermore, X-Ray fluorescence spectrometry is also used to analyse human bones of different historical periods: Neolithic and contemporary subjects. The elemental content in the bones allowed us to conclude about environmental contamination, dietary habits and health status influence in the corresponding citizens. All samples were collected post-mortem. Quantitative analysis was performed for Mn, Fe, Co, Ni, Cu, Zn, Br, Rb, Sr and Pb. Mn and Fe concentration were much higher in bones from pre-historic periods. On the contrary, Pb bone concentrations of contemporary subjects are much higher than in pre-historical ones, reaching 100 μg g-1, in some cases. Very low concentrations for Co, Ni, Br and Rb were found in all the analysed samples. Cu concentrations, allows to distinguish Chalcolithic bones from the Neolithic ones. The distribution of trace elements along human hair was studied for Pb and the obtained pattern was consistent with the theoretical model, based on the diffusion of this element from the root and along the hair. Therefore, the higher concentrations in hair for Pb of contemporary individuals were also observed in the bones of citizens of the same sampling sites. All samples were analysed directly without any chemical treatment.

  8. Dual-energy X-ray absorptiometry is a valid tool for assessing skeletal muscle mass in older women.

    PubMed

    Chen, Zhao; Wang, ZiMian; Lohman, Timothy; Heymsfield, Steven B; Outwater, Eric; Nicholas, Jennifer S; Bassford, Tamsen; LaCroix, Andrea; Sherrill, Duane; Punyanitya, Mark; Wu, Guanglin; Going, Scott

    2007-12-01

    Assessing skeletal muscle mass (SMM) is critical in studying and detecting sarcopenia. Direct measurements by MRI or computerized tomography are expensive or high in radiation exposure. Dual-energy X-ray absorptiometry (DXA) is promising for body composition assessments, but the validity of DXA for predicting SMM in the elderly is still under investigation. The objective of this study was to assess the relationship between DXA-derived measurements of lean soft tissue mass (LSTM) and SMM in older women. Study participants were postmenopausal women (n = 101) recruited in southern Arizona. Total and regional body composition was measured using MRI and DXA (QDR4500w). The participants' mean age was 70.7 +/- 6.4 y and their mean BMI was 27.4 +/- 5.1 kg/m2. DXA-derived LSTM was highly correlated with MRI-derived SMM for the whole body (r = 0.94; P < 0.001) and leg region (r = 0.91; P < 0.001). In multivariate models, adjusting for age and DXA-derived percent fat slightly increased the amount of variance in SMM that can be explained by the DXA-derived LSTM assessments for the leg region but not for the total body. In conclusion, although the relationships between DXA measures and MRI-derived SMM vary by region of interest, the overall prediction of SMM by DXA is excellent. We conclude that DXA is a reliable method for cross-sectional assessments of SMM in older women.

  9. Using bone densitometry to monitor therapy in treating osteoporosis: pros and cons.

    PubMed

    Deal, C L

    2001-06-01

    Measurement of bone density is crucial for evaluating fracture risk. Low bone mass is a powerful predictor of fracture and is necessary to assess the need for treatment. Dual energy x-ray absorptiometry is accurate and precise. Use of bone density for monitoring therapy is an important tool for evaluating response to therapy, but an understanding of the limitations of the procedure are important for the practicing physician. Precision error of the technology and what change in density is clinically significant (least significant change) are important concepts to interpret results and make appropriate treatment decisions. This article reviews the use of bone densitometry as a tool for monitoring treatment in patients with low bone mass.

  10. Bone volume fraction and structural parameters for estimation of mechanical stiffness and failure load of human cancellous bone samples; in-vitro comparison of ultrasound transit time spectroscopy and X-ray μCT.

    PubMed

    Alomari, Ali Hamed; Wille, Marie-Luise; Langton, Christian M

    2018-02-01

    Conventional mechanical testing is the 'gold standard' for assessing the stiffness (N mm -1 ) and strength (MPa) of bone, although it is not applicable in-vivo since it is inherently invasive and destructive. The mechanical integrity of a bone is determined by its quantity and quality; being related primarily to bone density and structure respectively. Several non-destructive, non-invasive, in-vivo techniques have been developed and clinically implemented to estimate bone density, both areal (dual-energy X-ray absorptiometry (DXA)) and volumetric (quantitative computed tomography (QCT)). Quantitative ultrasound (QUS) parameters of velocity and attenuation are dependent upon both bone quantity and bone quality, although it has not been possible to date to transpose one particular QUS parameter into separate estimates of quantity and quality. It has recently been shown that ultrasound transit time spectroscopy (UTTS) may provide an accurate estimate of bone density and hence quantity. We hypothesised that UTTS also has the potential to provide an estimate of bone structure and hence quality. In this in-vitro study, 16 human femoral bone samples were tested utilising three techniques; UTTS, micro computed tomography (μCT), and mechanical testing. UTTS was utilised to estimate bone volume fraction (BV/TV) and two novel structural parameters, inter-quartile range of the derived transit time (UTTS-IQR) and the transit time of maximum proportion of sonic-rays (TTMP). μCT was utilised to derive BV/TV along with several bone structure parameters. A destructive mechanical test was utilised to measure the stiffness and strength (failure load) of the bone samples. BV/TV was calculated from the derived transit time spectrum (TTS); the correlation coefficient (R 2 ) with μCT-BV/TV was 0.885. For predicting mechanical stiffness and strength, BV/TV derived by both μCT and UTTS provided the strongest correlation with mechanical stiffness (R 2 =0.567 and 0.618 respectively) and

  11. Reduced vertebral bone density in hypercalciuric nephrolithiasis

    NASA Technical Reports Server (NTRS)

    Pietschmann, F.; Breslau, N. A.; Pak, C. Y.

    1992-01-01

    Dual-energy x-ray absorptiometry and single-photon absorptiometry were used to determine bone density at the lumbar spine and radial shaft in 62 patients with absorptive hypercalciuria, 27 patients with fasting hypercalciuria, and 31 nonhypercalciuric stone formers. Lumbar bone density was significantly lower in patients with absorptive (-10%) as well as in those with fasting hypercalciuria (-12%), with 74 and 92% of patients displaying values below the normal mean, whereas only 48% of the nonhypercalciuric stone formers had bone density values below the normal mean. In contrast, radial bone density was similar in all three groups of renal stone formers investigated. The comparison of urinary chemistry in patients with absorptive hypercalciuria and low normal bone density compared to those with high normal bone density showed a significantly increased 24 h urinary calcium excretion on random diet and a trend toward a higher 24 h urinary uric acid excretion and a higher body mass index in patients with low normal bone density. Moreover, among the patients with absorptive hypercalciuria we found a statistically significant correlation between the spinal bone density and the 24 h sodium and sulfate excretion and the urinary pH. These results gave evidence for an additional role of environmental factors (sodium and animal proteins) in the pathogenesis of bone loss in absorptive hypercalciuria. In conclusion, our data suggest an osteopenia of trabecular-rich bone tissues in patients with fasting and absorptive hypercalciurias.

  12. Mandibular bone structure, bone mineral density, and clinical variables as fracture predictors: a 15-year follow-up of female patients in a dental clinic.

    PubMed

    Jonasson, Grethe; Billhult, Annika

    2013-09-01

    To compare three mandibular trabeculation evaluation methods, clinical variables, and osteoporosis as fracture predictors in women. One hundred and thirty-six female dental patients (35-94 years) answered a questionnaire in 1996 and 2011. Using intra-oral radiographs from 1996, five methods were compared as fracture predictors: (1) mandibular bone structure evaluated with a visual radiographic index, (2) bone texture, (3) size and number of intertrabecular spaces calculated with Jaw-X software, (4) fracture probability calculated with a fracture risk assessment tool (FRAX), and (5) osteoporosis diagnosis based on dual-energy-X-ray absorptiometry. Differences were assessed with the Mann-Whitney test and relative risk calculated. Previous fracture, gluco-corticoid medication, and bone texture were significant indicators of future and total (previous plus future) fracture. Osteoporosis diagnosis, sparse trabeculation, Jaw-X, and FRAX were significant predictors of total but not future fracture. Clinical and oral bone variables may identify individuals at greatest risk of fracture. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Use of dual-energy X-ray absorptiometry (DXA) for diagnosis and fracture risk assessment; WHO-criteria, T- and Z-score, and reference databases.

    PubMed

    Dimai, Hans P

    2017-11-01

    Dual-energy X-ray absorptiometry (DXA) is a two-dimensional imaging technology developed to assess bone mineral density (BMD) of the entire human skeleton and also specifically of skeletal sites known to be most vulnerable to fracture. In order to simplify interpretation of BMD measurement results and allow comparability among different DXA-devices, the T-score concept was introduced. This concept involves an individual's BMD which is then compared with the mean value of a young healthy reference population, with the difference expressed as a standard deviation (SD). Since the early nineties of the past century, the diagnostic categories "normal, osteopenia, and osteoporosis", as recommended by a WHO working Group, are based on this concept. Thus, DXA is still the globally accepted "gold-standard" method for the noninvasive diagnosis of osteoporosis. Another score obtained from DXA measurement, termed Z-score, describes the number of SDs by which the BMD in an individual differs from the mean value expected for age and sex. Although not intended for diagnosis of osteoporosis in adults, it nevertheless provides information about an individual's fracture risk compared to peers. DXA measurement can either be used as a "stand-alone" means in the assessment of an individual's fracture risk, or incorporated into one of the available fracture risk assessment tools such as FRAX® or Garvan, thus improving the predictive power of such tools. The issue which reference databases should be used by DXA-device manufacturers for T-score reference standards has been recently addressed by an expert group, who recommended use National Health and Nutrition Examination Survey III (NHANES III) databases for the hip reference standard but own databases for the lumbar spine. Furthermore, in men it is recommended use female reference databases for calculation of the T-score and use male reference databases for calculation of Z-score. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Manipulation of Muscle Creatine and Glycogen Changes Dual X-ray Absorptiometry Estimates of Body Composition.

    PubMed

    Bone, Julia L; Ross, Megan L; Tomcik, Kristyen A; Jeacocke, Nikki A; Hopkins, Will G; Burke, Louise M

    2017-05-01

    Standardizing a dual x-ray absorptiometry (DXA) protocol is thought to provide a reliable measurement of body composition. We investigated the effects of manipulating muscle glycogen and creatine content independently and additively on DXA estimates of lean mass. Eighteen well-trained male cyclists undertook a parallel group application of creatine loading (n = 9) (20 g·d for 5 d loading; 3 g·d maintenance) or placebo (n = 9) with crossover application of glycogen loading (12 v 6 g·kg BM per day for 48 h) as part of a larger study involving a glycogen-depleting exercise protocol. Body composition, total body water, muscle glycogen and creatine content were assessed via DXA, bioelectrical impedance spectroscopy and standard biopsy techniques. Changes in the mean were assessed using the following effect-size scale: >0.2 small, >0.6, moderate, >1.2 large and compared with the threshold for the smallest worthwhile effect of the treatment. Glycogen loading, both with and without creatine loading, resulted in substantial increases in estimates of lean body mass (mean ± SD; 3.0% ± 0.7% and 2.0% ± 0.9%) and leg lean mass (3.1% ± 1.8% and 2.6% ± 1.0%) respectively. A substantial decrease in leg lean mass was observed after the glycogen depleting condition (-1.4% ± 1.6%). Total body water showed substantial increases after glycogen loading (2.3% ± 2.3%), creatine loading (1.4% ± 1.9%) and the combined treatment (2.3% ± 1.1%). Changes in muscle metabolites and water content alter DXA estimates of lean mass during periods in which minimal change in muscle protein mass is likely. This information needs to be considered in interpreting the results of DXA-derived estimates of body composition in athletes.

  15. Dual energy X-ray absorptiometry spine scans to determine abdominal fat in post-menopausal women

    PubMed Central

    Bea, J. W.; Blew, R. M.; Going, S. B.; Hsu, C-H; Lee, M. C.; Lee, V. R.; Caan, B.J.; Kwan, M.L.; Lohman, T. G.

    2016-01-01

    Body composition may be a better predictor of chronic disease risk than body mass index (BMI) in older populations. Objectives We sought to validate spine fat fraction (%) from dual energy X-ray absorptiometry (DXA) spine scans as a proxy for total abdominal fat. Methods Total body DXA scan abdominal fat regions of interest (ROI) that have been previously validated by magnetic resonance imaging were assessed among healthy, postmenopausal women who also had antero-posterior spine scans (n=103). ROIs were 1) lumbar vertebrae L2-L4 and 2) L2-Iliac Crest (L2-IC), manually selected by two independent raters, and 3) trunk, auto-selected by DXA software. Intra-class correlation coefficients evaluated intra and inter-rater reliability on a random subset (N=25). Linear regression models, validated by bootstrapping, assessed the relationship between spine fat fraction (%) and total abdominal fat (%) ROIs. Results Mean age, BMI and total body fat were: 66.1 ± 4.8y, 25.8 ± 3.8kg/m2 and 40.0 ± 6.6%, respectively. There were no significant differences within or between raters. Linear regression models adjusted for several participant and scan characteristics were equivalent to using only BMI and spine fat fraction. The model predicted L2-L4 (Adj. R2: 0.83) and L2-IC (Adj.R2:0.84) abdominal fat (%) well; the adjusted R2 for trunk fat (%) was 0.78. Model validation demonstrated minimal over-fitting (Adj. R2: 0.82, 0.83, and 0.77 for L2-L4, L2-IC, and trunk fat respectively). Conclusions The strong correlation between spine fat fraction and DXA abdominal fat measures make it suitable for further development in post-menopausal chronic disease risk prediction models. PMID:27416964

  16. Dual Energy X-Ray Densitometry Apparatus and Method Using Single X-Ray Pulse

    DTIC Science & Technology

    1999-10-13

    future bone fracture risk. Bone mineral loss is associated with aging and is more rapid in post-menopausal women. In addition, bone mineral loss is... parameters of the x-ray tube of Figures 1 and 2 illustrating, respectively, the calculated current, voltage and power; and Figures 4(a) and 4(d) are...assumed to be that of water. The bone mineral is hydroxyapatite (Ca5P30i3H) with an assumed density of 0.25 g/cm3 based on the lumbar vertebra metrology

  17. Age-related decrements in bone mineral density in women over 65

    NASA Technical Reports Server (NTRS)

    Steiger, P.; Cummings, S. R.; Black, D. M.; Spencer, N. E.; Genant, H. K.

    1992-01-01

    Age-related changes in bone density contribute to the risk of fractures. To describe the relationship between age and bone mass in elderly women, we studied a large cohort of women over age 65 years who were recruited from population-based lists in four cities in the United States. Bone density in g/cm2 was measured by single-photon absorptiometry (SPA) and dual x-ray absorptiometry (DXA) at the distal and proximal radius, the calcaneus, the lumbar spine, and the proximal femur. Centralized data collection was used to control data quality and consistency. We found a strong inverse relationship between bone density and age for most sites. Decrements in bone density between women aged 65-69 years and women 85 years and older exceeded 16% in all regions except the spine, where the difference between the two age groups was 6%. Ward's triangle and the calcaneus exhibited the largest decrements, with 26 and 21%, respectively. The estimates of annual changes in bone mineral density by linear regression at sites other than the spine ranged from -0.82% at the femoral neck and trochanter to -1.30% at Ward's triangle. Correlations between the different regions ranged from r = 0.51 between the proximal radius and Ward's triangle to r = 0.66 between the distal radius and calcaneus. We conclude that the inverse relationship between age and bone mass measured by absorptiometry techniques in white women continues into the ninth decade of life. The relationship is strongest for bone density of Ward's triangle and the calcaneus and weakest for the spine.

  18. Heel Ultrasound Can Assess Maintenance of Bone Mass in Women with Breast Cancer

    PubMed Central

    Langmann, Gabrielle A.; Vujevich, Karen T.; Medich, Donna; Miller, Megan E.; Perera, Subashan; Greenspan, Susan L.

    2016-01-01

    Postmenopausal women with early-stage breast cancer are at increased risk for bone loss and fractures. Bisphosphonates can prevent bone loss, but little data are available on changes in bone mass assessed by heel quantitative ultrasound (QUS). Our objectives were to determine if (1) heel QUS would provide a reliable and accessible method for evaluation of changes in bone mass in women with breast cancer as compared to the current standard of bone mass measurement, dual-energy x-ray absorptiometry (DXA), and (2) oral risedronate could affect these changes. Eighty-six newly postmenopausal (up to 8 years) women with nonmetastatic breast cancer were randomized to risedronate, 35 mg once weekly or placebo. Outcomes were changes in heel QUS bone mass measurements and conventional dual-energy x-ray absorptiometry (DXA) derived bone mineral density (BMD). Over 2 years, bone mass assessed by heel QUS remained stable in women on risedronate, while women on placebo had a 5.2% decrease (p ≤ 0.05) in heel QUS bone mass. Both total hip BMD and femoral neck BMD assessed by DXA decreased by 1.6% (p ≤ 0.05) in the placebo group and remained stable with risedronate. Spine BMD remained stable in both groups. Heel QUS was moderately associated with BMD measured by DXA at the total hip (r = 0.50), femoral neck (r = 0.40), and spine (r = 0.46) at baseline (all p ≤ 0.001). In conclusion, risedronate helps to maintain skeletal integrity as assessed by heel QUS for women with early-stage breast cancer. Heel QUS is associated with DXA-derived BMD at other major axial sites and may be used to follow skeletal health and bone mass changes in these women. PMID:22425507

  19. X-ray dual energy spectral parameter optimization for bone Calcium/Phosphorus mass ratio estimation

    NASA Astrophysics Data System (ADS)

    Sotiropoulou, P. I.; Fountos, G. P.; Martini, N. D.; Koukou, V. N.; Michail, C. M.; Valais, I. G.; Kandarakis, I. S.; Nikiforidis, G. C.

    2015-09-01

    Calcium (Ca) and Phosphorus (P) bone mass ratio has been identified as an important, yet underutilized, risk factor in osteoporosis diagnosis. The purpose of this simulation study is to investigate the use of effective or mean mass attenuation coefficient in Ca/P mass ratio estimation with the use of a dual-energy method. The investigation was based on the minimization of the accuracy of Ca/P ratio, with respect to the Coefficient of Variation of the ratio. Different set-ups were examined, based on the K-edge filtering technique and single X-ray exposure. The modified X-ray output was attenuated by various Ca/P mass ratios resulting in nine calibration points, while keeping constant the total bone thickness. The simulated data were obtained considering a photon counting energy discriminating detector. The standard deviation of the residuals was used to compare and evaluate the accuracy between the different dual energy set-ups. The optimum mass attenuation coefficient for the Ca/P mass ratio estimation was the effective coefficient in all the examined set-ups. The variation of the residuals between the different set-ups was not significant.

  20. Infrared Radiography: Modeling X-ray Imaging without Harmful Radiation

    ERIC Educational Resources Information Center

    Zietz, Otto; Mylott, Elliot; Widenhorn, Ralf

    2015-01-01

    Planar x-ray imaging is a ubiquitous diagnostic tool and is routinely performed to diagnose conditions as varied as bone fractures and pneumonia. The underlying principle is that the varying attenuation coefficients of air, water, tissue, bone, or metal implants within the body result in non-uniform transmission of x-ray radiation. Through the…

  1. Dual energy X-ray absorptiometry spine scans to determine abdominal fat in postmenopausal women.

    PubMed

    Bea, J W; Blew, R M; Going, S B; Hsu, C-H; Lee, M C; Lee, V R; Caan, B J; Kwan, M L; Lohman, T G

    2016-11-01

    Body composition may be a better predictor of chronic disease risk than body mass index (BMI) in older populations. We sought to validate spine fat fraction (%) from dual energy X-ray absorptiometry (DXA) spine scans as a proxy for total abdominal fat. Total body DXA scan abdominal fat regions of interest (ROI) that have been previously validated by magnetic resonance imaging were assessed among healthy, postmenopausal women who also had antero-posterior spine scans (n = 103). ROIs were (1) lumbar vertebrae L2-L4 and (2) L2-Iliac Crest (L2-IC), manually selected by two independent raters, and (3) trunk, auto-selected by DXA software. Intra-class correlation coefficients evaluated intra and inter-rater reliability on a random subset (N = 25). Linear regression models, validated by bootstrapping, assessed the relationship between spine fat fraction (%) and total abdominal fat (%) ROIs. Mean age, BMI, and total body fat were 66.1 ± 4.8 y, 25.8 ± 3.8 kg/m 2 and 40.0 ± 6.6%, respectively. There were no significant differences within or between raters. Linear regression models adjusted for several participant and scan characteristics were equivalent to using only BMI and spine fat fraction. The model predicted L2-L4 (Adj. R 2 : 0.83) and L2-IC (Adj. R 2 : 0.84) abdominal fat (%) well; the adjusted R 2 for trunk fat (%) was 0.78. Model validation demonstrated minimal over-fitting (Adj. R 2 : 0.82, 0.83, and 0.77 for L2-L4, L2-IC, and trunk fat, respectively). The strong correlation between spine fat fraction and DXA abdominal fat measures make it suitable for further development in postmenopausal chronic disease risk prediction models. Am. J. Hum. Biol. 28:918-926, 2016. © 2016Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Bone Density, Microarchitecture, and Tissue Quality Long-term After Kidney Transplant.

    PubMed

    Pérez-Sáez, María José; Herrera, Sabina; Prieto-Alhambra, Daniel; Nogués, Xavier; Vera, María; Redondo-Pachón, Dolores; Mir, Marisa; Güerri, Roberto; Crespo, Marta; Díez-Pérez, Adolfo; Pascual, Julio

    2017-06-01

    Bone mineral density (BMD) measured by dual-energy x-ray absorptiometry is used to assess bone health in kidney transplant recipients (KTR). Trabecular bone score and in vivo microindentation are novel techniques that directly measure trabecular microarchitecture and mechanical properties of bone at a tissue level and independently predict fracture risk. We tested the bone status of long-term KTR using all 3 techniques. Cross-sectional study including 40 KTR with more than 10 years of follow-up and 94 healthy nontransplanted subjects as controls. Bone mineral density was measured at lumbar spine and the hip. Trabecular bone score was measured by specific software on the dual-energy x-ray absorptiometry scans of lumbar spine in 39 KTR and 77 controls. Microindentation was performed at the anterior tibial face with a reference-point indenter device. Bone measurements were standardized as percentage of a reference value, expressed as bone material strength index (BMSi) units. Multivariable (age, sex, and body mass index-adjusted) linear regression models were fitted to study the association between KTR and BMD/BMSi/trabecular bone score. Bone mineral density was lower at lumbar spine (0.925 ± 0.15 vs 0.982 ± 0.14; P = 0.025), total hip (0.792 ± 0.14 vs 0.902 ± 0.13; P < 0.001), and femoral neck (0.667 ± 0.13 vs 0.775 ± 0.12; P < 0.001) in KTR than in controls. BMSi was also lower in KTR (79.1 ± 7.7 vs 82.9 ± 7.8; P = 0.012) although this difference disappeared after adjusted model (P = 0.145). Trabecular bone score was borderline lower (1.21 ± 0.14 vs 1.3 ± 0.15; adjusted P = 0.072) in KTR. Despite persistent decrease in BMD, trabecular microarchitecture and tissue quality remain normal in long-term KTR, suggesting important recovery of bone health.

  3. Modeling the shape and composition of the human body using dual energy X-ray absorptiometry images

    PubMed Central

    Shepherd, John A.; Fan, Bo; Schwartz, Ann V.; Cawthon, Peggy; Cummings, Steven R.; Kritchevsky, Stephen; Nevitt, Michael; Santanasto, Adam; Cootes, Timothy F.

    2017-01-01

    There is growing evidence that body shape and regional body composition are strong indicators of metabolic health. The purpose of this study was to develop statistical models that accurately describe holistic body shape, thickness, and leanness. We hypothesized that there are unique body shape features that are predictive of mortality beyond standard clinical measures. We developed algorithms to process whole-body dual-energy X-ray absorptiometry (DXA) scans into body thickness and leanness images. We performed statistical appearance modeling (SAM) and principal component analysis (PCA) to efficiently encode the variance of body shape, leanness, and thickness across sample of 400 older Americans from the Health ABC study. The sample included 200 cases and 200 controls based on 6-year mortality status, matched on sex, race and BMI. The final model contained 52 points outlining the torso, upper arms, thighs, and bony landmarks. Correlation analyses were performed on the PCA parameters to identify body shape features that vary across groups and with metabolic risk. Stepwise logistic regression was performed to identify sex and race, and predict mortality risk as a function of body shape parameters. These parameters are novel body composition features that uniquely identify body phenotypes of different groups and predict mortality risk. Three parameters from a SAM of body leanness and thickness accurately identified sex (training AUC = 0.99) and six accurately identified race (training AUC = 0.91) in the sample dataset. Three parameters from a SAM of only body thickness predicted mortality (training AUC = 0.66, validation AUC = 0.62). Further study is warranted to identify specific shape/composition features that predict other health outcomes. PMID:28423041

  4. Bone mineral content in the senescent rat femur: an assessment using single photon absorptiometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiebzak, G.M.; Smith, R.; Howe, J.C.

    1988-06-01

    The single photon absorptiometry technique was evaluated for measuring bone mineral content (BMC) of the excised femurs of the rat, and the system was used to examine the changes in cortical and trabecular bone from young adult (6 mo), mature adult (12 mo), and senescent (24 mo) male and female animals. BMC of the femur midshaft, representing cortical bone, apparently increased progressively with advancing age. The width of the femur at the scan site also increased with age. Normalizing the midshaft BMC by width partially compensated for the age-associated increase. However, when bone mineral values were normalized by the corticalmore » area at the scan site, to take into account the geometric differences in the femurs of different aged animals, maximum bone densities were found in the mature adult and these values decreased slightly in the femurs from senescent rats. In contrast, the BMC of the femur distal metaphysis, representing trabecular bone, decreased markedly in the aged rat. The loss of trabecular bone was also evident from morphological examination of the distal metaphysis. These findings indicated that bone mineral loss with age was site specific in the rat femur. These studies provided additional evidence that the rat might serve as a useful animal model for specific experiments related to the pathogenesis of age-associated osteopenia.« less

  5. Bioabsorbable bone fixation plates for X-ray imaging diagnosis by a radiopaque layer of barium sulfate and poly(lactic-co-glycolic acid).

    PubMed

    Choi, Sung Yoon; Hur, Woojune; Kim, Byeung Kyu; Shasteen, Catherine; Kim, Myung Hun; Choi, La Mee; Lee, Seung Ho; Park, Chun Gwon; Park, Min; Min, Hye Sook; Kim, Sukwha; Choi, Tae Hyun; Choy, Young Bin

    2015-04-01

    Bone fixation systems made of biodegradable polymers are radiolucent, making post-operative diagnosis with X-ray imaging a challenge. In this study, to allow X-ray visibility, we separately prepared a radiopaque layer and attached it to a bioabsorbable bone plate approved for clinical use (Inion, Finland). We employed barium sulfate as a radiopaque material due to the high X-ray attenuation coefficient of barium (2.196 cm(2) /g). The radiopaque layer was composed of a fine powder of barium sulfate bound to a biodegradable material, poly(lactic-co-glycolic acid) (PLGA), to allow layer degradation similar to the original Inion bone plate. In this study, we varied the mass ratio of barium sulfate and PLGA in the layer between 3:1 w/w and 10:1 w/w to modulate the degree and longevity of X-ray visibility. All radiopaque plates herein were visible via X-ray, both in vitro and in vivo, for up to 40 days. For all layer types, the radio-opacity decreased with time due to the swelling and degradation of PLGA, and the change in the layer shape was more apparent for layers with a higher PLGA content. The radiopaque plates released, at most, 0.5 mg of barium sulfate every 2 days in a simulated in vitro environment, which did not appear to affect the cytotoxicity. The radiopaque plates also exhibited good biocompatibility, similar to that of the Inion plate. Therefore, we concluded that the barium sulfate-based, biodegradable plate prepared in this work has the potential to be used as a fixation device with both X-ray visibility and biocompatibility. © 2014 Wiley Periodicals, Inc.

  6. Quantitative analysis on orientation of human bone integrated with midpalatal implant by micro X-ray diffractometer

    NASA Astrophysics Data System (ADS)

    Murata, Masaru; Akazawa, Toshiyuki; Yuasa, Toshihiro; Okayama, Miki; Tazaki, Junichi; Hanawa, Takao; Arisue, Makoto; Mizoguchi, Itaru

    2012-12-01

    A midpalatal implant system has been used as the unmoved anchorage for teeth movement. An 18-year-old male patient presented with reversed occlusion and was diagnosed as malocclusion. A pure titanium fixture (lengths: 4 mm, diameter: 3.3 mm, Orthosystem®, Institute Straumann, Switzerland) was implanted into the palatal bone of the patient as the orthodontic anchorage. The implant anchorage was connected with the upper left and right first molars, and had been used for 3 years. After dynamic treatments, the titanium fixture connected with bone was removed surgically, fixed in formalin solution, and embedded in resin. Specimens were cut along the frontal section of face and the direction of longitudinal axis of the implant, stained, and observed histologically. The titanium fixture was integrated directly with compact bone showing cortical bone-like structure such as lamella and osteon. In addition, to qualitatively characterize the implant-supported human bone, the crystallinity and orientation of hydroxyapatite (HAp) phase were evaluated by the microbeam X-ray diffraction analysis. Preferential alignment of c-axis of HAp crystals was represented by the relative intensity ratio of (0 0 2)-face diffraction peak to (3 1 0)-face one. The values decreased monotonously along the direction of the lateral stress from the site near the implant thread to the distant site in all horizontal lines of the map. These results indicated that the X-ray images for the intensity of c-face in HAp revealed functionally graded distribution of cortical bone quality. The micro-scale measurements of HAp structure could be a useful method for evaluating the mechanical stress distribution in human hard tissues.

  7. Incorporation of Trace Elements in Ancient and Modern Human Bone: An X-Ray Absorption Spectroscopy Study

    NASA Astrophysics Data System (ADS)

    Pingitore, N. E.; Cruz-Jimenez, G.; Price, T. D.

    2001-12-01

    X-ray absorption spectroscopy (XAS) affords the opportunity to probe the atomic environment of trace elements in human bone. We are using XAS to investigate the mode(s) of incorporation of Sr, Zn, Pb, and Ba in both modern and ancient (and thus possibly altered) human and animal bone. Because burial and diagenesis may add trace elements to bone, we performed XAS analysis on samples of pristine contemporary and ancient, buried human and animal bone. We assume that deposition of these elements during burial occurs by processes distinct from those in vivo, and this will be reflected in their atomic environments. Archaeologists measure strontium in human and animal bone as a guide to diet. Carnivores show lower Sr/Ca ratios than their herbivore prey due to discrimination against Sr relative to Ca up the food chain. In an initial sample suite no difference was observed between modern and buried bone. Analysis of additional buried samples, using a more sensitive detector, revealed significant differences in the distance to the second and third neighbors of the Sr in some of the buried samples. Distances to the first neighbor, oxygen, were similar in all samples. Zinc is also used in paleo-diet studies. Initial x-ray absorption spectroscopy of a limited suite of bones did not reveal any differences between modern and buried samples. This may reflect the limited number of samples examined or the low levels of Zn in typical aqueous solutions in soils. Signals from barium and lead were too low to record useful XAS spectra. Additional samples will be studied for Zn, Ba, and Pb. We conducted our XAS experiments on beam lines 4-1 and 4-3 at the Stanford Synchrotron Radiation Laboratory. Data were collected in the fluorescence mode, using a Lytle detector and appropriate filter, and a solid state, 13-element Ge-detector.

  8. Rietveld Refinement on X-Ray Diffraction Patterns of Bioapatite in Human Fetal Bones

    PubMed Central

    Meneghini, Carlo; Dalconi, Maria Chiara; Nuzzo, Stefania; Mobilio, Settimio; Wenk, Rudy H.

    2003-01-01

    Bioapatite, the main constituent of mineralized tissue in mammalian bones, is a calcium-phosphate-based mineral that is similar in structure and composition to hydroxyapatite. In this work, the crystallographic structure of bioapatite in human fetuses was investigated by synchrotron radiation x-ray diffraction (XRD) and microdiffraction (μ-XRD) techniques. Rietveld refinement analyses of XRD and μ-XRD data allow for quantitative probing of the structural modifications of bioapatite as functions of the mineralization process and gestational age. PMID:12609904

  9. Investigation of methods for estimating hand bone dimensions using X-ray hand anthropometric data.

    PubMed

    Kong, Yong-Ku; Freivalds, Andris; Kim, Dae-Min; Chang, Joonho

    2017-06-01

    This study examined two conversion methods, M1 and M2, to predict finger/phalange bone lengths based on finger/phalange surface lengths. Forty-one Korean college students (25 males and 16 females) were recruited and their finger/phalange surface lengths, bone lengths and grip strengths were measured using a vernier caliper, an X-ray generator and a double-handle force measurement system, respectively. M1 and M2 were defined as formulas able to estimate finger/phalange bone lengths based on one dimension (i.e., surface hand length) and four finger dimensions (surface finger lengths), respectively. As a result of conversion, the estimation errors by M1 presented mean 1.22 mm, which was smaller than those (1.29 mm) by M2. The bone lengths estimated by M1 (mean r = 0.81) presented higher correlations with the measured bone lengths than those estimated by M2 (0.79). Thus, the M1 method was recommended in the present study, based on conversion simplicity and accuracy.

  10. MR-based trabecular bone microstructure is not altered in subjects with indolent systemic mastocytosis.

    PubMed

    Baum, Thomas; Karampinos, Dimitrios C; Brockow, Knut; Seifert-Klauss, Vanadin; Jungmann, Pia M; Biedermann, Tilo; Rummeny, Ernst J; Bauer, Jan S; Müller, Dirk

    2015-01-01

    Subjects with indolent systemic mastocytosis (ISM) have an increased risk for osteoporosis. It has been demonstrated that trabecular bone microstructure analysis improves the prediction of bone strength beyond dual-energy X-ray absorptiometry-based bone mineral density. The purpose of this study was to obtain Magnetic Resonance (MR)-based trabecular bone microstructure parameters as advanced imaging biomarkers in subjects with ISM (n=18) and compare them with those of normal controls (n=18). Trabecular bone microstructure parameters were not significantly (P>.05) different between subjects with ISM and controls. These findings revealed important pathophysiological information about ISM-associated osteoporosis and may limit the use of trabecular bone microstructure analysis in this clinical setting. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Dual-energy x-ray absorptiometry to measure the effects of a thirteen-week moderate to vigorous aquatic exercise and nutritional education intervention on percent body fat in adults with intellectual disabilities from group home settings.

    PubMed

    Casey, Amanda; Boyd, Colin; Mackenzie, Sasho; Rasmussen, Roy

    2012-05-01

    People with intellectual disability are more likely to be obese and extremely obese than people without intellectual disability with rates remaining elevated among adults, women and individuals living in community settings. Dual-energy X-ray absorptiometry measured the effects of a 13-week aquatic exercise and nutrition intervention on percent body fat in eight adults with intellectual disabilities (aged 41.0 ± 13.7 yrs) of varying fat levels (15%-39%) from two group homes. A moderate to vigorous aquatic exercise program lasted for the duration of 13 weeks with three, one-hour sessions held at a 25m pool each week. Nutritional assistants educated participants as to the importance of food choice and portion size. A two-tailed Wilcoxon matched-pairs signed-ranks test determined the impact of the combined intervention on body fat percentage and BMI at pre and post test. Median body fat percentage (0.8 %) and BMI (0.3 kg/m(2)) decreased following the exercise intervention, but neither were statistically significant, p = .11 and p = .55, respectively. The combined intervention was ineffective at reducing percent body fat in adults with intellectual disability according to dual-energy X-ray absorptiometry. These results are in agreement with findings from exercise alone interventions and suggest that more stringent nutritional guidelines are needed for this population and especially for individuals living in group home settings. The study did show that adults with intellectual disability may participate in moderate to vigorous physical activity when given the opportunity.

  12. Assessment of EchoMRI-AH versus dual-energy X-ray absorptiometry to measure human body composition.

    PubMed

    Galgani, J E; Smith, S R; Ravussin, E

    2011-09-01

    The sensitivity to detect small changes in body composition (fat mass and fat-free mass) largely depends on the precision of the instrument. We compared EchoMRI-AH and dual-energy X-ray absorptiometry (DXA) (Hologic QDR-4500A) for estimating fat mass in 301 volunteers. Body composition was evaluated in 136 males and 165 females with a large range of body mass index (BMI) (19-49 kg m(-2)) and age (19-91 years old) using DXA and EchoMRI-AH. In a subsample of 13 lean (BMI=19-25 kg m(-2)) and 21 overweight/obese (BMI>25 kg m(-2)) individuals, within-subject precision was evaluated from repeated measurements taken within 1 h (n=3) and 1 week apart (mean of three measurements taken on each day). Using Bland-Altman analysis, we compared the mean of the fat mass measurements versus the difference in fat mass measured by both instruments. We found that EchoMRI-AH quantified larger amount of fat versus DXA in non-obese (BMI<30 kg m(-2) (1.1 kg, 95% confidence interval (CI(95)):-3.7 to 6.0)) and obese (BMI ≥ 30 kg m(-2) (4.2 kg, CI(95):-1.4 to 9.8)) participants. Within-subject precision (coefficient of variation, %) in fat mass measured within 1 h was remarkably better when measured by EchoMRI-AH than DXA (<0.5 versus <1.5%, respectively; P<0.001). However, 1-week apart within-subject variability showed similar values for both instruments (<2.2%; P=0.15). EchoMRI-AH yielded greater fat mass values when compared with DXA (Hologic QDR-4500A), particularly in fatter subjects. EchoMRI-AH and DXA showed similar 1-week apart precision when fat mass was measured both in lean and overweight/obese individuals.

  13. Reference standards for lean mass measures using GE dual energy x-ray absorptiometry in Caucasian adults

    PubMed Central

    Imboden, Mary T.; Swartz, Ann M.; Finch, Holmes W.; Harber, Matthew P.; Kaminsky, Leonard A.

    2017-01-01

    Body composition assessments commonly focus predominantly on fat mass, however lean mass (LM) measurements also provide useful information regarding clinical and nutritional status. LM measurements help predict health outcomes and diagnose sarcopenia, which has been associated with frailty. Dual energy x-ray absorptiometry (DXA) is an established technique used in clinical and research settings to assess body composition including total and regional LM. Currently, there are no reference values available that were derived from GE-Healthcare DXA systems directly for US adults for LM, LM index (LMI), percent LM (%LM), and appendicular lean mass index (ALMI) and it is known that whole-body and regional LM measures differ by DXA manufacturer. Objective To develop reference values by age and sex for LM measures using GE-Healthcare DXA systems. Methods A de-identified sample was obtained from Ball State University’s Clinical Exercise Physiology Laboratory and University of Wisconsin-Milwaukee’s Physical Activity & Health Research Laboratory. DXA scans of 2,076 women and 1,251 men were completed using a GE Lunar Prodigy or iDXA. Percentiles (%ile) were calculated for all variables of interest (LM, LMI, %LM, and ALMI) and a factorial ANOVA was used to assess differences for each variable between 10-year age groups and sex, as well as the interaction between age and sex. Results Men had higher mean total LM, %LM, LMI, and ALMI than women (p<0.01), across all age groups. All LM variables decreased significantly over the 5 decades in men, however in women only total LM, %LM, and ALMI decreased from the youngest to oldest age groups (p<0.01). Conclusion These reference values provide for a more accurate interpretation of GE-Healthcare DXA-derived LM measurements offering clinicians and researchers with an initial resource to aid in the early detection and assessment of LM deficits. PMID:28426779

  14. Reference standards for body fat measures using GE dual energy x-ray absorptiometry in Caucasian adults.

    PubMed

    Imboden, Mary T; Welch, Whitney A; Swartz, Ann M; Montoye, Alexander H K; Finch, Holmes W; Harber, Matthew P; Kaminsky, Leonard A

    2017-01-01

    Dual energy x-ray absorptiometry (DXA) is an established technique for the measurement of body composition. Reference values for these variables, particularly those related to fat mass, are necessary for interpretation and accurate classification of those at risk for obesity-related health complications and in need of lifestyle modifications (diet, physical activity, etc.). Currently, there are no reference values available for GE-Healthcare DXA systems and it is known that whole-body and regional fat mass measures differ by DXA manufacturer. To develop reference values by age and sex for DXA-derived fat mass measurements with GE-Healthcare systems. A de-identified sample of 3,327 participants (2,076 women, 1,251 men) was obtained from Ball State University's Clinical Exercise Physiology Laboratory and University of Wisconsin-Milwaukee's Physical Activity & Health Research Laboratory. All scans were completed using a GE Lunar Prodigy or iDXA and data reported included percent body fat (%BF), fat mass index (FMI), and ratios of android-to-gynoid (A/G), trunk/limb, and trunk/leg fat measurements. Percentiles were calculated and a factorial ANOVA was used to determine differences in the mean values for each variable between age and sex. Normative reference values for fat mass variables from DXA measurements obtained from GE-Healthcare DXA systems are presented as percentiles for both women and men in 10-year age groups. Women had higher (p<0.01) mean %BF and FMI than men, whereas men had higher (p<0.01) mean ratios of A/G, trunk/limb, and trunk/leg fat measurements than women. These reference values provide clinicians and researchers with a resource for interpretation of DXA-derived fat mass measurements specific to use with GE-Healthcare DXA systems.

  15. Bone mineral content measurement in small infants by single-photon absorptiometry: current methodologic issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steichen, J.J.; Asch, P.A.; Tsang, R.C.

    1988-07-01

    Single-photon absorptiometry (SPA), developed in 1963 and adapted for infants by Steichen et al. in 1976, is an important tool to quantitate bone mineralization in infants. Studies of infants in which SPA was used include studies of fetal bone mineralization and postnatal bone mineralization in very low birth weight infants. The SPA technique has also been used as a research tool to investigate longitudinal bone mineralization and to study the effect of nutrition and disease processes such as rickets or osteopenia of prematurity. At present, it has little direct clinical application for diagnosing bone disease in single patients. The bonesmore » most often used to measure bone mineral content (BMC) are the radius, the ulna, and, less often, the humerus. The radius appears to be preferred as a suitable bone to measure BMC in infants. It is easily accessible; anatomic reference points are easily palpated and have a constant relationship to the radial mid-shaft site; soft tissue does not affect either palpation of anatomic reference points or BMC quantitation in vivo. The peripheral location of the radius minimizes body radiation exposure. Trabecular and cortical bone can be measured separately. Extensive background studies exist on radial BMC in small infants. Most important, the radius has a relatively long zone of constant BMC. Finally, SPA for BMC in the radius has a high degree of precision and accuracy. 61 references.« less

  16. Monochromatic computed microtomography using laboratory and synchrotron sources and X-ray fluorescence analysis for comprehensive analysis of structural changes in bones.

    PubMed

    Buzmakov, Alexey; Chukalina, Marina; Nikolaev, Dmitry; Gulimova, Victoriya; Saveliev, Sergey; Tereschenko, Elena; Seregin, Alexey; Senin, Roman; Zolotov, Denis; Prun, Victor; Shaefer, Gerald; Asadchikov, Victor

    2015-06-01

    A combination of X-ray tomography at different wavelengths and X-ray fluorescence analysis was applied in the study of two types of bone tissue changes: prolonged presence in microgravity conditions and age-related bone growth. The proximal tail vertebrae of geckos were selected for investigation because they do not bear the supporting load in locomotion, which allows them to be considered as an independent indicator of gravitational influence. For the vertebrae of geckos no significant differences were revealed in the elemental composition of the flight samples and the synchronous control samples. In addition, the gecko bone tissue samples from the jaw apparatus, spine and shoulder girdle were measured. The dynamics of structural changes in the bone tissue growth was studied using samples of a human fetal hand. The hands of human fetuses of 11-15 weeks were studied. Autonomous zones of calcium accumulation were found not only in individual fingers but in each of the investigated phalanges. The results obtained are discussed.

  17. The supramolecular structure of bone: X-ray scattering analysis and lateral structure modeling

    PubMed Central

    Zhou, Hong-Wen; Burger, Christian; Wang, Hao; Hsiao, Benjamin S.; Chu, Benjamin; Graham, Lila

    2016-01-01

    The evolution of vertebrates required a key development in supramolecular evolution: internally mineralized collagen fibrils. In bone, collagen molecules and mineral crystals form a nanocomposite material comparable to cast iron in tensile strength, but several times lighter and more flexible. Current understanding of the internal nanoscale structure of collagen fibrils, derived from studies of rat tail tendon (RTT), does not explain how nucleation and growth of mineral crystals can occur inside a collagen fibril. Experimental obstacles encountered in studying bone have prevented a solution to this problem for several decades. This report presents a lateral packing model for collagen molecules in bone fibrils, based on the unprecedented observation of multiple resolved equatorial reflections for bone tissue using synchrotron small-angle X-ray scattering (SAXS; ∼1 nm resolution). The deduced structure for pre-mineralized bone fibrils includes features that are not present in RTT: spatially discrete microfibrils. The data are consistent with bone microfibrils similar to pentagonal Smith microfibrils, but are not consistent with the (nondiscrete) quasi-hexagonal microfibrils reported for RTT. These results indicate that collagen fibrils in bone and tendon differ in their internal structure in a manner that allows bone fibrils, but not tendon fibrils, to internally mineralize. In addition, the unique pattern of collagen cross-link types and quantities in mineralized tissues can be can be accounted for, in structural/functional terms, based on a discrete microfibril model. PMID:27599731

  18. Full-Field Calcium K-Edge X-ray Absorption Near-Edge Structure Spectroscopy on Cortical Bone at the Micron-Scale: Polarization Effects Reveal Mineral Orientation.

    PubMed

    Hesse, Bernhard; Salome, Murielle; Castillo-Michel, Hiram; Cotte, Marine; Fayard, Barbara; Sahle, Christoph J; De Nolf, Wout; Hradilova, Jana; Masic, Admir; Kanngießer, Birgit; Bohner, Marc; Varga, Peter; Raum, Kay; Schrof, Susanne

    2016-04-05

    Here, we show results on X-ray absorption near edge structure spectroscopy in both transmission and X-ray fluorescence full-field mode (FF-XANES) at the calcium K-edge on human bone tissue in healthy and diseased conditions and for different tissue maturation stages. We observe that the dominating spectral differences originating from different tissue regions, which are well pronounced in the white line and postedge structures are associated with polarization effects. These polarization effects dominate the spectral variance and must be well understood and modeled before analyzing the very subtle spectral variations related to the bone tissue variations itself. However, these modulations in the fine structure of the spectra can potentially be of high interest to quantify orientations of the apatite crystals in highly structured tissue matrices such as bone. Due to the extremely short wavelengths of X-rays, FF-XANES overcomes the limited spatial resolution of other optical and spectroscopic techniques exploiting visible light. Since the field of view in FF-XANES is rather large the acquisition times for analyzing the same region are short compared to, for example, X-ray diffraction techniques. Our results on the angular absorption dependence were verified by both site-matched polarized Raman spectroscopy, which has been shown to be sensitive to the orientation of bone building blocks and by mathematical simulations of the angular absorbance dependence. As an outlook we further demonstrate the polarization based assessment of calcium-containing crystal orientation and specification of calcium in a beta-tricalcium phosphate (β-Ca3(PO4)2 scaffold implanted into ovine bone. Regarding the use of XANES to assess chemical properties of Ca in human bone tissue our data suggest that neither the anatomical site (tibia vs jaw) nor pathology (healthy vs necrotic jaw bone tissue) affected the averaged spectral shape of the XANES spectra.

  19. Distribution of trace levels of therapeutic gallium in bone as mapped by synchrotron x-ray microscopy.

    PubMed Central

    Bockman, R S; Repo, M A; Warrell, R P; Pounds, J G; Schidlovsky, G; Gordon, B M; Jones, K W

    1990-01-01

    Gallium nitrate, a drug that inhibits calcium release from bone, has been proven a safe and effective treatment for the accelerated bone resorption associated with cancer. Though bone is a target organ for gallium, the kinetics, sites, and effects of gallium accumulation in bone are not known. We have used synchrotron x-ray microscopy to map the distribution of trace levels of gallium in bone. After short-term in vivo administration of gallium nitrate to rats, trace (nanogram) amounts of gallium preferentially localized to the metabolically active regions in the metaphysis as well as the endosteal and periosteal surfaces of diaphyseal bone, regions where new bone formation and modeling were occurring. The amounts measured were well below the levels known to be cytotoxic. Iron and zinc, trace elements normally found in bone, were decreased in amount after in vivo administration of gallium. These studies represent a first step toward understanding the mechanism(s) of action of gallium in bone by suggesting the possible cellular, structural, and elemental "targets" of gallium. Images PMID:2349224

  20. Assessment of bone mineral density by DXA and the trabecular microarchitecture of the calcaneum by texture analysis in pre- and postmenopausal women in the evaluation of osteoporosis.

    PubMed

    Karunanithi, R; Ganesan, S; Panicker, T M R; Korath, M Paul; Jagadeesan, K

    2007-10-01

    The in vivo evaluation of trabecular bone structure could be useful in the diagnosis of osteoporosis for the characterization of therapeutic response and understanding the role of parameters other than bone mineral density (BMD) in defining skeletal status. This study was made to evaluate changes taking place in the trabecular architecture of bone with age and menopausal status in women. The findings are compared with the femoral neck bone as well as the trochantar bone mineral density determined by dual energy X-ray absorptiometry (DXA), which is a standard reference test for evaluation of osteoporosis. Seventy females were recruited for the study, 25 premenopausal (mean age ± SD: 39.4 ± 3.8) and 45 postmenopausal (mean age ± SD: 57.9 ± 7.9) women. The right femoral neck bone mineral density was measured for them by dual energy X-ray absorptiometry (DXA). For the same individuals, lateral view radiographs of the right calcaneum were taken as well. The radiographs were digitized and the region of interest (ROI) of 256 × 256 pixels was selected, the run length matrix was computed for calculating seven parameters [Table 1] and the two dimensional fast Fourier transform of the image was calculated. Using the FFT, the power spectral density (PSD) was derived and the root mean square (RMS) value was determined. Our results confirm that age has a significant influence on the texture of the trabecular bone and bone mineral density.

  1. Effects of a short-term whole body vibration intervention on bone mass and structure in elderly people.

    PubMed

    Gómez-Cabello, Alba; González-Agüero, Alejandro; Morales, Silvia; Ara, Ignacio; Casajús, José A; Vicente-Rodríguez, Germán

    2014-03-01

    We aimed to clarify whether a short-term whole body vibration training has a beneficial effect on bone mass and structure in elderly men and women. Randomised controlled trial. A total of 49 non-institutionalised elderly (20 men and 29 women) volunteered to participate in the study. Participants who met the inclusion criteria were randomly assigned to one of the study groups (whole body vibration or control). A total of 24 elderly trained squat positioned on a vibration platform 3 times per week for 11 weeks. Bone-related variables were assessed by dual-energy X-ray absorptiometry and peripheral quantitative computed tomography. Two-way repeated measures one-way analysis of variance (group by time) was used to determine the effects of the intervention on the bone-related variables and also to determinate the changes within group throughout the intervention period. Analysis of covariance was used to test the differences between groups for bone-related variables in pre- and post-training assessments and in the percentage of change between groups. All analysis were carried out including age, height, subtotal lean mass and daily calcium intake as covariates. 11 weeks of whole body vibration training led to no changes in none of the bone mineral content and bone mineral density parameters measured by dual-energy X-ray absorptiometry through the skeleton. At the tibia, total, trabecular and cortical volumetric bone mineral density decreased significantly in the whole body vibration group (all P<0.05). A short-term whole body vibration therapy is not enough to cause any changes on bone mineral content or bone mineral density and it only produces a slight variation on bone structure among elderly people. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  2. Adiposity assessments: agreement between dual-energy X-ray absorptiometry and anthropometric measures in US children12-3

    PubMed Central

    Tuan, Nguyen T; Wang, Youfa

    2014-01-01

    Objectives To evaluate performance of anthropometric measures relative to percentage body fat (%BF) measured by dual-energy X-ray absorptiometry (DXA) in children. Design and Methods We used data from 8-19-y-old US children enrolled in a nationally representative cross-sectional survey in 2001-2004 (n=5,355) with measured %BF, body mass index (BMI), waist circumference (WC), waist-to-height ratio (WHtR) and triceps skinfold thickness (TSF). Agreement and prediction were evaluated based on standardized regression coefficients (β), kappa, and the area under the receiver-operating characteristic curves (AUC). Results The association between Z scores for %BF and anthropometric measures was strong (β of ~0.75-0.90, kappa of ~0.60-0.75, and AUC of ~0.87-0.98; P<0.001 for all), with only some variations by race-ethnicity, mostly in girls. In boys, TSF and WHtR Z-scores had stronger agreement with %BF than BMI (β of 0.91 and 0.86 vs. 0.79, kappa of 0.75 and 0.71 vs. 0.59, and AUC of 0.97 and 0.97 vs. 0.91; P<0.05 for all). In boys with BMI < median but %BF ≥ median, β value of TSF Z score was higher than those from BMI. In girls, TSF also provided a higher agreement than BMI, but was only statistically higher for kappa. Conclusions High agreement and small racial-ethnic variations in the association between percentage body fat and anthropometric measures support the use of anthropometric measures, especially waist-to-height ratio and triceps skinfold thickness, as proxy indicators for adiposity. PMID:24415710

  3. Reciprocal Relation between Marrow Adiposity and the Amount of Bone in the Axial and Appendicular Skeleton of Young Adults

    PubMed Central

    Di Iorgi, Natascia; Rosol, Michael; Mittelman, Steven D.; Gilsanz, Vicente

    2008-01-01

    Background: Studies in the elderly suggest a reciprocal relation between increased marrow adiposity and bone loss, supporting basic research data indicating that osteoblasts and adipocytes share a common progenitor cell. However, whether this relation represents a preferential differentiation of stromal cells from osteoblasts to adipocytes or whether a passive accumulation of fat as bone is lost and marrow space increases with aging is unknown. To address this question and avoid the confounding effect of bone loss, we examined teenagers and young adults. Methods: Using computed tomography, we obtained measurements of bone density and cross-sectional area of the lumbar vertebral bodies and cortical bone area, cross-sectional area, marrow canal area, and fat density in the marrow of the femurs in 255 sexually mature subjects (126 females, 129 males; 15–24.9 yr of age). Additionally, values for total body fat were obtained with dual-energy x-ray absorptiometry. Results: Regardless of gender, reciprocal relations were found between fat density and measures of vertebral bone density and femoral cortical bone area (r = 0.19–0.39; all P values ≤ .03). In contrast, there was no relation between marrow canal area and cortical bone area in the femurs, neither between fat density and the cross-sectional dimensions of the bones. We also found no relation between anthropometric or dual-energy x-ray absorptiometry fat values and measures for marrow fat density. Conclusions: Our results indicate an inverse relation between bone marrow adiposity and the amount of bone in the axial and appendicular skeleton and support the notion of a common progenitor cell capable of mutually exclusive differentiation into the cell lineages responsible for bone and fat formation. PMID:18381577

  4. Correlative Light and Scanning X-Ray Scattering Microscopy of Healthy and Pathologic Human Bone Sections

    PubMed Central

    Giannini, C.; Siliqi, D.; Bunk, O.; Beraudi, A.; Ladisa, M.; Altamura, D.; Stea, S.; Baruffaldi, F.

    2012-01-01

    Scanning small and wide angle X-ray scattering (scanning SWAXS) experiments were performed on healthy and pathologic human bone sections. Via crystallographic tools the data were transformed into quantitative images and as such compared with circularly polarized light (CPL) microscopy images. SWAXS and CPL images allowed extracting information of the mineral nanocrystalline phase embedded, with and without preferred orientation, in the collagen fibrils, mapping local changes at sub-osteon resolution. This favorable combination has been applied for the first time to biopsies of dwarfism syndrome and Paget's disease to shed light onto the cortical structure of natural bone in healthy and pathologic sections. PMID:22666538

  5. The utility of dual-energy X-ray absorptiometry, calcaneal quantitative ultrasound, and fracture risk indices (FRAX® and Osteoporosis Risk Assessment Instrument) for the identification of women with distal forearm or hip fractures: A pilot study.

    PubMed

    Esmaeilzadeh, Sina; Cesme, Fatih; Oral, Aydan; Yaliman, Ayse; Sindel, Dilsad

    2016-08-01

    Dual-energy X-ray absorptiometry (DXA) is considered the "gold standard" in predicting osteoporotic fractures. Calcaneal quantitative ultrasound (QUS) variables are also known to predict fractures. Fracture risk assessment tools may also guide us for the detection of individuals at high risk for fractures. The aim of this case-control study was to evaluate the utility of DXA bone mineral density (BMD), calcaneal QUS parameters, FRAX® (Fracture Risk Assessment Tool), and Osteoporosis Risk Assessment Instrument (ORAI) for the discrimination of women with distal forearm or hip fractures. This case-control study included 20 women with a distal forearm fracture and 18 women with a hip fracture as cases and 76 age-matched women served as controls. BMD at the spine, proximal femur, and radius was measured using DXA and acoustic parameters of bone were obtained using a calcaneal QUS device. FRAX® 10-year probability of fracture and ORAI scores were also calculated in all participants. Receiver operating characteristic (ROC) analysis was used to assess fracture discriminatory power of all the tools. While all DXA BMD, and QUS variables and FRAX® fracture probabilities demonstrated significant areas under the ROC curves for the discrimination of hip-fractured women and those without, only 33% radius BMD, broadband ultrasound attenuation (BUA), and FRAX® major osteoporotic fracture probability calculated without BMD showed significant discriminatory power for distal forearm fractures. It can be concluded that QUS variables, particularly BUA, and FRAX® major osteoporotic fracture probability without BMD are good candidates for the identification of both hip and distal forearm fractures.

  6. Prediction of appendicular skeletal and fat mass in children: excellent concordance of dual-energy X-ray absorptiometry and magnetic resonance imaging.

    PubMed

    Bridge, Pascale; Pocock, Nicholas A; Nguyen, Tuan; Munns, Craig; Cowell, Christopher T; Thompson, Martin W

    2009-09-01

    Body composition studies in children have great potential to help understand the aetiology and evolution of acute and chronic. diseases. To validate appendicular lean soft tissue mass (LSTM) and fat mass (FM) measured using dual energy X-ray absorptiometry (DXA), with magnetic resonance imaging (MRI) as the reference standard, in healthy peri-pubertal adolescents. Peri-pubertal Caucasian children (n = 74) aged 11-14 years were evaluated. DXA LSTM and FM of the mid third femur were measured and skeletal muscle mass (SM) and FM of the same region were measured on the same day by MRI. There was a strong correlation between MRI SM and DXA LSTM (r2 = 0.98, index of concordance [C] = 0.91). DXA estimation of LSTM exceeded MRI SM by a mean of 189 g, from 6-371 g (p < 0.0001). The discordance between DXA and MRI significantly increased with the absolute value (r = 0.27; p = 0.024). FM was highly correlated (r = 0.98) with a high index of concordance (C = 0.97). This study validates the use of DXA in LSTM measurement in children, confirming its potential in clinical and research roles in paediatric diseases affecting and related to body composition.

  7. Aberrant Bone Density in Aging Mice Lacking the Adenosine Transporter ENT1

    PubMed Central

    Hinton, David J.; McGee-Lawrence, Meghan E.; Lee, Moonnoh R.; Kwong, Hoi K.; Westendorf, Jennifer J.; Choi, Doo-Sup

    2014-01-01

    Adenosine is known to regulate bone production and resorption in humans and mice. Type 1 equilibrative nucleoside transporter (ENT1) is responsible for the majority of adenosine transport across the plasma membrane and is ubiquitously expressed in both humans and mice. However, the contribution of ENT1-mediated adenosine levels has not been studied in bone remodeling. With the recent identification of the importance of adenosine signaling in bone homeostasis, it is essential to understand the role of ENT1 to develop novel therapeutic compounds for bone disorders. Here we examined the effect of ENT1 deletion on bone density using X-ray, dual energy X-ray absorptiometry and micro-computerized tomography analysis. Our results show that bone density and bone mineral density is reduced in the lower thoracic and lumbar spine as well as the femur of old ENT1 null mice (>7 months) compared to wild-type littermates. Furthermore, we found increased mRNA expression of tartrate-resistant acid phosphatase (TRAP), an osteoclast marker, in isolated long bones from 10 month old ENT1 null mice compared to wild-type mice. In addition, aged ENT1 null mice displayed severe deficit in motor coordination and locomotor activity, which might be attributed to dysregulated bone density. Overall, our study suggests that ENT1-regulated adenosine signaling plays an essential role in lumbar spine and femur bone density. PMID:24586402

  8. Comparison of Muscle Mass Indices Using Computed Tomography or Dual X-Ray Absorptiometry for Predicting Physical Performance in Hemodialysis Patients.

    PubMed

    Kang, Seok Hui; Lee, Hyun Seok; Lee, Sukyung; Cho, Ji-Hyung; Kim, Jun Chul

    2017-01-01

    Our study aims to evaluate the association between thigh muscle cross-sectional area (TMA) using computed tomography (CT), or appendicular skeletal muscle mass (ASM) using dual energy X-ray absorptiometry (DEXA), and physical performance levels in hemodialysis (HD) patients. Patients were included if they were on HD for ≥6 months (n = 84). ASM and TMA were adjusted to body weight (BW, kg) or height2 (Ht2, m2). Each participant performed a short physical performance battery test (SPPB), a sit-to-stand for 30 second test (STS30), a 6-minute walk test (6-MWT), a timed up and go test (TUG), and hand grip strength (HGS) test. Correlation coefficients for SPPB, GS, 5STS, STS30, 6-MWT, and TUG were highest in TMA/BW. Results from partial correlation or linear regression analyses displayed similar trends to those derived from Pearson's correlation analyses. An increase in TMA/BW or TMA/Ht2 was associated with a decreased odds ratio of low SPPB, GS, or HGS in multivariate analyses. Indices using DEXA were associated with a decreased odds ratio of a low HGS only in multivariate analysis. TMA indices using CT may be more valuable in predicting physical performance or strength in HD patients. © 2017 The Author(s). Published by S. Karger AG, Basel.

  9. Pure hydroxyapatite phantoms for the calibration of in vivo X-ray fluorescence systems of bone lead and strontium quantification.

    PubMed

    Da Silva, Eric; Kirkham, Brian; Heyd, Darrick V; Pejović-Milić, Ana

    2013-10-01

    Plaster of Paris [poP, CaSO4·(1)/(2) H2O] is the standard phantom material used for the calibration of in vivo X-ray fluorescence (IVXRF)-based systems of bone metal quantification (i.e bone strontium and lead). Calibration of IVXRF systems of bone metal quantification employs the use of a coherent normalization procedure which requires the application of a coherent correction factor (CCF) to the data, calculated as the ratio of the relativistic form factors of the phantom material and bone mineral. Various issues have been raised as to the suitability of poP for the calibration of IVXRF systems of bone metal quantification which include its chemical purity and its chemical difference from bone mineral (a calcium phosphate). This work describes the preparation of a chemically pure hydroxyapatite phantom material, of known composition and stoichiometry, proposed for the purpose of calibrating IVXRF systems of bone strontium and lead quantification as a replacement for poP. The issue with contamination by the analyte was resolved by preparing pure Ca(OH)2 by hydroxide precipitation, which was found to bring strontium and lead levels to <0.7 and <0.3 μg/g Ca, respectively. HAp phantoms were prepared from known quantities of chemically pure Ca(OH)2, CaHPO4·2H2O prepared from pure Ca(OH)2, the analyte, and a HPO4(2-) containing setting solution. The final crystal structure of the material was found to be similar to that of the bone mineral component of NIST SRM 1486 (bone meal), as determined by powder X-ray diffraction spectrometry.

  10. Comparison of total-body calcium with radiographic and photon absorptiometry measurement of appendicular bone mineral content. [Comparison of findings in patients with primary osteoporosis and healthy marathon runners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zanzi, I; Colbert, C; Bachtell, R

    1978-01-01

    Two groups of investigators utilized three techniques for evaluating bone mineral mass. In one institution, total-body calcium by total body neutron activation analysis, and bone mineral content of the radius by photon absorptiometry were measured concomitantly. In the other institution, the mean bone mineral content of the three inner phalanges of the left hand was measured by radiographic absorptiometry. These techniques were applied to two groups of subjects: 16 patients with primary osteoporosis and 14 healthy marathon runners. The higher correlation found in osteoporotic patients may be related to the diffuse nature of this condition and to differences in themore » distribution of skeletal mass in the marathon runners.« less

  11. Bone density in patients with chondromalacia patella.

    PubMed

    Salehi, Iraj; Khazaeli, Shabnam; Hatami, Parta; Malekpour, Mahdi

    2010-06-01

    Chondromalacia of the patella is the most common cause of anterior knee pain in young women. The etiology of the disease is not well-understood but the initial lesion is a disorganization of collagenous structures. Since the disease is proposed to be due to generalized constitutional disturbance, we postulated that bony structures could also be involved. To investigate this hypothesis we measured the bone density of 286 patients with the diagnosis of chondromalacia of the patella during a 4-year period using dual energy X-ray absorptiometry (DXA) method. We found a significant number of patients having low bone densities. This problem was more pronounced in men and in younger age groups. We suggest base-line bone density evaluation in all patients, treatment of osteopenia or osteoporosis in select patients and regular follow-ups using DXA.

  12. Monochromatic computed microtomography using laboratory and synchrotron sources and X-ray fluorescence analysis for comprehensive analysis of structural changes in bones1

    PubMed Central

    Buzmakov, Alexey; Chukalina, Marina; Nikolaev, Dmitry; Gulimova, Victoriya; Saveliev, Sergey; Tereschenko, Elena; Seregin, Alexey; Senin, Roman; Zolotov, Denis; Prun, Victor; Shaefer, Gerald; Asadchikov, Victor

    2015-01-01

    A combination of X-ray tomography at different wavelengths and X-ray fluorescence analysis was applied in the study of two types of bone tissue changes: prolonged presence in microgravity conditions and age-related bone growth. The proximal tail vertebrae of geckos were selected for investigation because they do not bear the supporting load in locomotion, which allows them to be considered as an independent indicator of gravitational influence. For the vertebrae of geckos no significant differences were revealed in the elemental composition of the flight samples and the synchronous control samples. In addition, the gecko bone tissue samples from the jaw apparatus, spine and shoulder girdle were measured. The dynamics of structural changes in the bone tissue growth was studied using samples of a human fetal hand. The hands of human fetuses of 11–15 weeks were studied. Autonomous zones of calcium accumulation were found not only in individual fingers but in each of the investigated phalanges. The results obtained are discussed. PMID:26089762

  13. Precision bone and muscle loss measurements by advanced, multiple projection DEXA (AMPDXA) techniques for spaceflight applications

    NASA Technical Reports Server (NTRS)

    Charles, H. K. Jr; Beck, T. J.; Feldmesser, H. S.; Magee, T. C.; Spisz, T. S.; Pisacane, V. L.

    2001-01-01

    An advanced, multiple projection, dual energy x-ray absorptiometry (AMPDXA) scanner system is under development. The AMPDXA is designed to make precision bone and muscle loss measurements necessary to determine the deleterious effects of microgravity on astronauts as well as develop countermeasures to stem their bone and muscle loss. To date, a full size test system has been developed to verify principles and the results of computer simulations. Results indicate that accurate predictions of bone mechanical properties can be determined from as few as three projections, while more projections are needed for a complete, three-dimensional reconstruction. c 2001. Elsevier Science Ltd. All rights reserved.

  14. Duodenal histopathology and laboratory deficiencies related to bone metabolism in coeliac disease.

    PubMed

    Posthumus, Lotte; Al-Toma, Abdul

    2017-08-01

    Coeliac disease (CD) is a chronic immune-mediated small intestine enteropathy precipitated by gluten in genetically predisposed individuals. Adult presentation is often atypical and malabsorption of vitamins and minerals is common, with a consequent disturbance of bone metabolism. We aim to evaluate laboratory deficiencies related to bone metabolism and the relationship between severity of histological damage and degree of bone mass loss at diagnosis of CD. A retrospective cross-sectional study of 176 adult coeliac patients was carried out. All patients fulfilled the histopathological criteria for CD. Biochemical data were analysed (calcium/phosphate/alkaline-phosphatase/vitamin D/parathormone). Duodenal histology was classified according to the Marsh classification. Bone mass density (BMD) at the lumbar and femoral regions measured by dual X-ray absorptiometry. A P-value of less than 0.05 was considered significant. No correlation was found between the presence of gastrointestinal symptoms and the Marsh histopathological stage (P>0.05). Vitamin D deficiency was most common (44.5%), whereas only 5.7% had hypocalcaemia. Calcium was lower (P<0.05) and parathormone was higher (P=0.01) in patients with Marsh III. These patients had lower lumbar T-score (P<0.05). Although low BMD occurred in all age groups, most osteoporotic patients were aged 45-49 years (81.8%). A multiple regression analysis showed that the Marsh histopathological stage could be a predictor of lower lumbar BMD (r=0.322, B=-1.146, P<0.05). Laboratory deficiencies and decreased BMD could be severe and unrelated to the presence of gastrointestinal symptoms. At diagnosis, the Marsh histopathological stage could predict the occurrence of low BMD, which carries a risk of developing into osteoporosis. In coeliac patients older than 30 years, evaluation of bone biomarkers and dual X-ray absorptiometry examination should be considered.

  15. Recovery of decreased bone mineral mass after lower-limb fractures in adolescents.

    PubMed

    Ceroni, Dimitri; Martin, Xavier E; Delhumeau, Cécile; Farpour-Lambert, Nathalie J; De Coulon, Geraldo; Dubois-Ferrière, Victor; Rizzoli, René

    2013-06-05

    Loss of bone mineral mass, muscle atrophy, and functional limitations are predictable consequences of immobilization and subsequent weight-bearing restriction due to leg or ankle fractures. The aim of this study was to prospectively determine whether decreased bone mineral mass following lower-limb fractures recovers at follow-up durations of six and eighteen months in adolescents. In the present study, we included fifty adolescents who underwent cast immobilization for a leg or ankle fracture. Dual x-ray absorptiometry scans of four different sites (total hip, femoral neck, entire lower limb, and calcaneus) were performed at the time of the fracture, at cast removal, and at follow-ups of six and eighteen months. Patients with fractures were paired with healthy controls according to sex, age, and ethnicity. Dual x-ray absorptiometry values were compared between groups and between injured and non-injured legs in adolescents with fractures. Among those with fractures, lower-limb bone mineral variables were significantly lower at the injured side compared with the non-injured side at cast removal, with differences ranging from 6.2% to 31.7% (p < 0.0001). Similarly, injured adolescents had significantly lower bone mineral values at the level of the injured lower limb compared with healthy controls (p < 0.0001). At the six-month follow-up, there were still significant residual differences between injured and non-injured legs in adolescents with fractures (p < 0.0001). However, a significant residual difference between healthy controls and injured adolescents was present only for femoral neck bone mineral density (p = 0.011). At the eighteen-month follow-up, no significant difference was observed at any lower-limb site. Bone mineral loss following a fracture of the lower limb in adolescents is highly significant and affects the lower limb both proximal to and distal to the fracture site. In contrast to observations in adults, a rapid bone mass reversal occurs

  16. Evaluating Bone Loss in ISS Astronauts.

    PubMed

    Sibonga, Jean D; Spector, Elisabeth R; Johnston, Smith L; Tarver, William J

    2015-12-01

    The measurement of bone mineral density (BMD) by dual-energy X-ray absorptiometry (DXA) is the Medical Assessment Test used at the NASA Johnson Space Center to evaluate whether prolonged exposure to spaceflight increases the risk for premature osteoporosis in International Space Station (ISS) astronauts. The DXA scans of crewmembers' BMD during the first decade of the ISS existence showed precipitous declines in BMD for the hip and spine after the typical 6-mo missions. However, a concern exists that skeletal integrity cannot be sufficiently assessed solely by DXA measurement of BMD. Consequently, use of relatively new research technologies is being proposed to NASA for risk surveillance and to enhance long-term management of skeletal health in long-duration astronauts. Sibonga JD, Spector ER, Johnston SL, Tarver WJ. Evaluating bone loss in ISS astronauts.

  17. Errors in quantitative backscattered electron analysis of bone standardized by energy-dispersive x-ray spectrometry.

    PubMed

    Vajda, E G; Skedros, J G; Bloebaum, R D

    1998-10-01

    Backscattered electron (BSE) imaging has proven to be a useful method for analyzing the mineral distribution in microscopic regions of bone. However, an accepted method of standardization has not been developed, limiting the utility of BSE imaging for truly quantitative analysis. Previous work has suggested that BSE images can be standardized by energy-dispersive x-ray spectrometry (EDX). Unfortunately, EDX-standardized BSE images tend to underestimate the mineral content of bone when compared with traditional ash measurements. The goal of this study is to investigate the nature of the deficit between EDX-standardized BSE images and ash measurements. A series of analytical standards, ashed bone specimens, and unembedded bone specimens were investigated to determine the source of the deficit previously reported. The primary source of error was found to be inaccurate ZAF corrections to account for the organic phase of the bone matrix. Conductive coatings, methylmethacrylate embedding media, and minor elemental constituents in bone mineral introduced negligible errors. It is suggested that the errors would remain constant and an empirical correction could be used to account for the deficit. However, extensive preliminary testing of the analysis equipment is essential.

  18. Assessment of bone in Ehlers Danlos syndrome by ultrasound and densitometry.

    PubMed

    Dolan, A L; Arden, N K; Grahame, R; Spector, T D

    1998-10-01

    Ehlers Danlos syndrome (EDS) is an inherited disorder of connective tissue characterised by hyperextensible skin, joint laxity, and easy bruising. There are phenotypic similarities with osteogenesis imperfecta, but in EDS a tendency to fracture or altered bone mass has not previously been considered to be a cardinal feature. This case-control design study investigates whether 23 patients with EDS had differences in fracture rates, bone mass, and calcaneal ultrasound parameters compared with age and sex matched controls. 23 cases of EDS (mean (SD) age 38.5 (15.5)) were compared with 23 controls (mean age 37.8 (14.5)). A significant reduction in bone density measured by dual energy x ray absorptiometry was found at the neck of femur by 0.9 SD, p = 0.05, and lumbar spine by 0.74 SD, p = 0.02. At the calcaneum, broad band ultrasound attenuation and speed of sound were significantly reduced compared with controls by 0.95 SD (p = 0.004) and 0.49 SD (p = 0.004) for broad band ultrasound attenuation and speed of sound respectively. Broad band ultrasound attenuation and speed of sound remained significantly reduced after adjusting for bone mineral density (BMD). After adjusting for functional status (HAQ), age and sex, hypermobility was inversely correlated with broad band ultrasound attenuation and SOS, but not BMD at hip or spine. Previous fracture was 10 times more common in EDS (p < 0.001), with 86.9% of patients reporting a total of 47 low impact fractures, compared with 8.7% of controls. This study has identified a tendency of EDS patients to fracture, have low bone mass and abnormal bone structure. The aetiology is likely to be multifactorial, with an inherited structural element, accentuated by immobility or reduced exercise. This is one of the first clinical studies to suggest ultrasound can detect structural differences in bone, independent of dual energy x ray absorptiometry.

  19. Estrogens are essential for male pubertal periosteal bone expansion.

    PubMed

    Bouillon, Roger; Bex, Marie; Vanderschueren, Dirk; Boonen, Steven

    2004-12-01

    The skeletal response to estrogen therapy was studied in a 17-yr-old boy with congenital aromatase deficiency. As expected, estrogen therapy (1 mg estradiol valeriate/d from age 17 until 20 yr) normalized total and free testosterone and reduced the rate of bone remodeling. Dual-energy x-ray absorptiometry-assessed areal bone mineral density (BMD) of the lumbar spine and femoral neck increased significantly (by 23% and 14%, respectively), but peripheral quantitative computed tomography at the ultradistal radius revealed no gain of either trabecular or cortical volumetric BMD. The increase in areal BMD was thus driven by an increase in bone size. Indeed, longitudinal bone growth (height, +8.5%) and especially cross-sectional area of the radius (+46%) and cortical thickness (+12%), as measured by peripheral quantitative computed tomography, increased markedly during estrogen treatment. These findings demonstrate that androgens alone are insufficient, whereas estrogens are essential for the process of pubertal periosteal bone expansion typically associated with the male bone phenotype.

  20. Clinical Imaging of Bone Microarchitecture with HR-pQCT

    PubMed Central

    Nishiyama, Kyle K.; Shane, Elizabeth

    2014-01-01

    Osteoporosis, a disease characterized by loss of bone mass and structural deterioration, is currently diagnosed by dual-energy x-ray absorptiometry (DXA). However, DXA does not provide information about bone microstructure, which is a key determinant of bone strength. Recent advances in imaging permit the assessment of bone microstructure in vivo using high-resolution peripheral quantitative computed tomography (HR-pQCT). From these data, novel image processing techniques can be applied to characterize bone quality and strength. To date, most HR-pQCT studies are cross-sectional comparing subjects with and without fracture. These studies have shown that HR-pQCT is capable of discriminating fracture status independent of DXA. Recent longitudinal studies present new challenges in terms of analyzing the same region of interest and multisite calibrations. Careful application of analysis techniques and educated clinical interpretation of HR-pQCT results have improved our understanding of various bone-related diseases and will no doubt continue to do so in the future. PMID:23504496

  1. Lower Lean Mass Measured by Dual-Energy X-ray Absorptiometry (DXA) is Not Associated with Increased Risk of Hip Fracture in Women: The Framingham Osteoporosis Study.

    PubMed

    McLean, Robert R; Kiel, Douglas P; Berry, Sarah D; Broe, Kerry E; Zhang, Xiaochun; Cupples, L Adrienne; Hannan, Marian T

    2018-01-05

    Although muscle mass influences strength in older adults, it is unclear whether low lean mass measured by dual-energy X-ray absorptiometry (DXA) is an independent risk factor for hip fracture. Our objective was to determine the association between DXA lean mass and incident hip fracture risk among 1978 women aged 50 years and older participating in the Framingham Study Original and Offspring cohorts. Leg and total body lean mass (kg) were assessed from whole-body DXA scans collected in 1992-2001. Hip fracture follow-up extended from DXA assessment to the occurrence of fracture, death, drop-out, or end of follow-up in 2007. Cox proportional hazards regression was used to calculate hazard ratios (HR) and 95% confidence intervals (CI) estimating the relative risk of hip fracture associated with a 1-kg increase in baseline lean mass. Mean age was 66 years (range 50-93). Over a median of 8 years of follow-up, 99 hip fractures occurred. In models adjusted for age, height, study cohort, and percent total body fat, neither leg (HR 1.11; 95% CI 0.94, 1.31) nor total body (HR 1.06; 95% CI 0.99, 1.13) lean mass were associated with hip fracture. After further adjustment for femoral neck bone mineral density, leg lean mass results were similar (HR 1.10; 95% CI 0.93, 1.30). In contrast, 1 kg greater total body lean mass was associated with 9% higher hip fracture risk (HR 1.09; 95% CI 1.02, 1.18). Our findings suggest that in women, lower lean mass measured by DXA is not associated with increased risk of hip fracture.

  2. Standards and measurements for assessing bone health-workshop report co-sponsored by the International Society for Clinical Densitometry (ISCD) and the National Institute of Standards and Technology (NIST).

    PubMed

    Bennett, Herbert S; Dienstfrey, Andrew; Hudson, Lawrence T; Oreskovic, Tammy; Fuerst, Thomas; Shepherd, John

    2006-01-01

    This article reports and discusses the results of the recent ISCD-NIST Workshop on Standards and Measurements for Assessing Bone Health. The purpose of the workshop was to assess the status of efforts to standardize and compare results from dual-energy X-ray absorptiometry (DXA) scans, and then to identify and prioritize ongoing measurement and standards needs.

  3. Influence of a two-year steroid treatment on body composition as measured by dual X-ray absorptiometry in boys with Duchenne muscular dystrophy.

    PubMed

    Vuillerot, Carole; Braillon, Pierre; Fontaine-Carbonnel, Stephanie; Rippert, Pascal; André, Elisabeth; Iwaz, Jean; Poirot, Isabelle; Bérard, Carole

    2014-06-01

    Steroids are nowadays routinely used as a long-term treatment in Duchenne muscular dystrophy (DMD). Their effects on body composition were assessed using dual X-ray absorptiometry. The study followed over 2 years 29 genetically confirmed DMD patients: 21 in the steroid-treated group and 8 in the steroid-naïve group. After 2 years of steroid treatment, the lean tissue mass values increased significantly (p<0.0001), the percentage of body fat mass remained practically constant (p=0.94) in comparison with the initial visit. In the steroid-naïve patients, there were no significant increases in the lean tissue mass but deterioration in body composition confirmed by a significant increase in the percentage of body fat mass. Besides, significant negative correlations were found between the percentage of body fat mass and the MFM total score (R=-0.79, n=76, p<0.0001). A 2-year steroid treatment improves significantly body composition of boys with DMD through a significant increase in lean tissue mass. We suggest that a thorough check of body composition should be carried out before steroid treatment discontinuation in case of overweight gain. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Reducing bone lead content by chelation treatment in chronic lead poisoning: an in vivo X-ray fluorescence and bone biopsy study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batuman, V.; Wedeen, R.P.; Bogden, J.D.

    1989-02-01

    A stained-glass artist with longstanding exposure to lead presented with neuropsychiatric symptoms. He was evaluated before and after chelation treatment by the CaNa2 EDTA lead mobilization test, iliac crest bone lead measurement, and in vivo tibial X-ray fluorescence (XRF). The three methods showed a progressive fall in body lead stores during chelation therapy in association with improvement in symptoms and a fall in blood lead and zinc protoporphyrin levels. In vivo tibial XRF is a safe, rapid, and noninvasive technique for detecting excessive body lead burdens. XRF measurement of bone lead content is a practical method for monitoring the efficacymore » of therapy as well as for establishing the diagnosis.« less

  5. Quantitative trait locus on chromosome X affects bone loss after maturation in mice.

    PubMed

    Okudaira, Shuzo; Shimizu, Motoyuki; Otsuki, Bungo; Nakanishi, Rika; Ohta, Akira; Higuchi, Keiichi; Hosokawa, Masanori; Tsuboyama, Tadao; Nakamura, Takashi

    2010-09-01

    Genetic programming is known to affect the peak bone mass and bone loss after maturation. However, little is known about how polymorphic genes on chromosome X (Chr X) modulate bone loss after maturation. We previously reported a quantitative trait locus (QTL) on Chr X, designated Pbd3, which had a suggestive linkage to bone mass, in male SAMP2 and SAMP6 mice. In this study, we aimed to clarify the effects of Pbd3 on the skeletal phenotype. We generated a congenic strain, P2.P6-X, carrying a 45.6-cM SAMP6-derived Chr X interval on a SAMP2 genetic background. The effects of Pbd3 on the bone phenotype were determined by microcomputed tomography (microCT), whole-body dual-energy X-ray absorptiometry (DXA), serum bone turnover markers, and histomorphometric parameters. Both the bone area fraction (BA/TA) on microCT and whole-body DXA revealed reduced bone loss in P2.P6-X compared with that in SAMP2. The serum concentrations of bone turnover markers at 4 months of age were significantly lower in P2.P6-X than in SAMP2, but did not differ at 8 months of age. These results were observed in female mice, but not in male mice. In conclusion, a QTL within a segregated 45.6-cM interval on Chr X is sex-specifically related to the rate of bone loss after maturation.

  6. Application of X-ray synchrotron microscopy instrumentation in biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gasperini, F. M.; Pereira, G. R.; Granjeiro, J. M.

    2011-07-01

    X-ray micro-fluorescence imaging technique has been used as a significant tool in order to investigate minerals contents in some kinds of materials. The aim of this study was to evaluate the elemental distribution of calcium and zinc in bone substitute materials (nano-hydroxyapatite spheres) and cortical bones through X-Ray Micro-fluorescence analysis with the increment of Synchrotron Radiation in order to evaluate the characteristics of the newly formed bone and its interface, the preexisting bone and biomaterials by the arrangement of collagen fibers and its birefringence. The elemental mapping was carried out at Brazilian Synchrotron Light Laboratory, Campinas - Sao Paulo, Brazilmore » working at D09-XRF beam line. Based on this study, the results suggest that hydroxyapatite-based biomaterials are biocompatible, promote osteo-conduction and favored bone repair. (authors)« less

  7. Trabecular Bone Mechanical Properties and Fractal Dimension

    NASA Technical Reports Server (NTRS)

    Hogan, Harry A.

    1996-01-01

    Countermeasures for reducing bone loss and muscle atrophy due to extended exposure to the microgravity environment of space are continuing to be developed and improved. An important component of this effort is finite element modeling of the lower extremity and spinal column. These models will permit analysis and evaluation specific to each individual and thereby provide more efficient and effective exercise protocols. Inflight countermeasures and post-flight rehabilitation can then be customized and targeted on a case-by-case basis. Recent Summer Faculty Fellowship participants have focused upon finite element mesh generation, muscle force estimation, and fractal calculations of trabecular bone microstructure. Methods have been developed for generating the three-dimensional geometry of the femur from serial section magnetic resonance images (MRI). The use of MRI as an imaging modality avoids excessive exposure to radiation associated with X-ray based methods. These images can also detect trabecular bone microstructure and architecture. The goal of the current research is to determine the degree to which the fractal dimension of trabecular architecture can be used to predict the mechanical properties of trabecular bone tissue. The elastic modulus and the ultimate strength (or strain) can then be estimated from non-invasive, non-radiating imaging and incorporated into the finite element models to more accurately represent the bone tissue of each individual of interest. Trabecular bone specimens from the proximal tibia are being studied in this first phase of the work. Detailed protocols and procedures have been developed for carrying test specimens through all of the steps of a multi-faceted test program. The test program begins with MRI and X-ray imaging of the whole bones before excising a smaller workpiece from the proximal tibia region. High resolution MRI scans are then made and the piece further cut into slabs (roughly 1 cm thick). The slabs are X-rayed again

  8. Effects of adolescence-onset hypogonadism on metabolism, bone mineral density and quality of life in adulthood.

    PubMed

    Tam, Friederike I W; Huebner, Angela; Hofbauer, Lorenz C; Rohayem, Julia

    2015-09-01

    In a cross-sectional study of 54 patients with adolescence-onset hypogonadism (33 females, 21 males; age range: 19-40 years), medical care, quality of life, and health status were assessed. Most patients had received adequate medical care with short cumulative periods of interruption of hormone replacement. The prevalence of the metabolic syndrome was 27% in females and 19% in males. In comparison to the general population, females had both a lower bone mineral density (dual-energy X-ray absorptiometry, Z-score=-0.8, p<0.001) and a higher prevalence of obesity (age 19-29 years: study population 35%, general population 4%). The body fat percentage (dual-energy X-ray absorptiometry) was significantly elevated (age 19-29 years: females Z-score=+1.8, p<0.001, males Z-score=+2.4, p=0.001). Quality of life (SF-36) was normal. Despite adequate treatment, patients with early-onset hypogonadism are prone to develop signs and symptoms consistent with inadequate hormone replacement. A successful transition from pediatric to adult medicine seems important to optimize treatment outcomes.

  9. Proposed equations and reference values for calculating bone health in children and adolescent based on age and sex

    PubMed Central

    Gómez-Campos, Rossana; Andruske, Cynthia Lee; de Arruda, Miguel; Urra Albornoz, Camilo; Cossio-Bolaños, Marco

    2017-01-01

    Background The Dual Energy X-Ray Absorptiometry (DXA) is the gold standard for measuring BMD and bone mineral content (BMC). In general, DXA is ideal for pediatric use. However, the development of specific standards for particular geographic regions limits its use and application for certain socio-cultural contexts. Additionally, the anthropometry may be a low cost and easy to use alternative method in epidemiological contexts. The goal of our study was to develop regression equations for predicting bone health of children and adolescents based on anthropometric indicators to propose reference values based on age and sex. Methods 3020 students (1567 males and 1453 females) ranging in ages 4.0 to 18.9 were studied from the Maule Region (Chile). Anthropometric variables evaluated included: weight, standing height, sitting height, forearm length, and femur diameter. A total body scan (without the head) was conducted by means of the Dual Energy X-Ray Absorptiometry. Bone mineral density (BMD) and the bone mineral content (BMC) were also determined. Calcium consumption was controlled for by recording the intake of the three last days prior to the evaluation. Body Mass Index (BMI) was calculated, and somatic maturation was determined by using the years of peak growth rate (APHV). Results Four regression models were generated to calculate bone health: for males BMD = (R2 = 0.79) and BMC = (R2 = 0.84) and for the females BMD = (R2 = 0.76) and BMC = (R2 = 0.83). Percentiles were developed by using the LMS method (p3, p5, p15, p25, p50, p75, p85, p95 and p97). Conclusions Regression equations and reference curves were developed to assess the bone health of Chilean children and adolescents. These instruments help identify children with potential underlying problems in bone mineralization during the growth stage and biological maturation. PMID:28759569

  10. Proposed equations and reference values for calculating bone health in children and adolescent based on age and sex.

    PubMed

    Gómez-Campos, Rossana; Andruske, Cynthia Lee; Arruda, Miguel de; Urra Albornoz, Camilo; Cossio-Bolaños, Marco

    2017-01-01

    The Dual Energy X-Ray Absorptiometry (DXA) is the gold standard for measuring BMD and bone mineral content (BMC). In general, DXA is ideal for pediatric use. However, the development of specific standards for particular geographic regions limits its use and application for certain socio-cultural contexts. Additionally, the anthropometry may be a low cost and easy to use alternative method in epidemiological contexts. The goal of our study was to develop regression equations for predicting bone health of children and adolescents based on anthropometric indicators to propose reference values based on age and sex. 3020 students (1567 males and 1453 females) ranging in ages 4.0 to 18.9 were studied from the Maule Region (Chile). Anthropometric variables evaluated included: weight, standing height, sitting height, forearm length, and femur diameter. A total body scan (without the head) was conducted by means of the Dual Energy X-Ray Absorptiometry. Bone mineral density (BMD) and the bone mineral content (BMC) were also determined. Calcium consumption was controlled for by recording the intake of the three last days prior to the evaluation. Body Mass Index (BMI) was calculated, and somatic maturation was determined by using the years of peak growth rate (APHV). Four regression models were generated to calculate bone health: for males BMD = (R2 = 0.79) and BMC = (R2 = 0.84) and for the females BMD = (R2 = 0.76) and BMC = (R2 = 0.83). Percentiles were developed by using the LMS method (p3, p5, p15, p25, p50, p75, p85, p95 and p97). Regression equations and reference curves were developed to assess the bone health of Chilean children and adolescents. These instruments help identify children with potential underlying problems in bone mineralization during the growth stage and biological maturation.

  11. Laser-wakefield accelerators as hard x-ray sources for 3D medical imaging of human bone

    PubMed Central

    Cole, J. M.; Wood, J. C.; Lopes, N. C.; Poder, K.; Abel, R. L.; Alatabi, S.; Bryant, J. S. J.; Jin, A.; Kneip, S.; Mecseki, K.; Symes, D. R.; Mangles, S. P. D.; Najmudin, Z.

    2015-01-01

    A bright μm-sized source of hard synchrotron x-rays (critical energy Ecrit > 30 keV) based on the betatron oscillations of laser wakefield accelerated electrons has been developed. The potential of this source for medical imaging was demonstrated by performing micro-computed tomography of a human femoral trabecular bone sample, allowing full 3D reconstruction to a resolution below 50 μm. The use of a 1 cm long wakefield accelerator means that the length of the beamline (excluding the laser) is dominated by the x-ray imaging distances rather than the electron acceleration distances. The source possesses high peak brightness, which allows each image to be recorded with a single exposure and reduces the time required for a full tomographic scan. These properties make this an interesting laboratory source for many tomographic imaging applications. PMID:26283308

  12. Adiposity and TV viewing are related to less bone accrual in young children.

    PubMed

    Wosje, Karen S; Khoury, Philip R; Claytor, Randal P; Copeland, Kristen A; Kalkwarf, Heidi J; Daniels, Stephen R

    2009-01-01

    To examine the relation between baseline fat mass and gain in bone area and bone mass in preschoolers studied prospectively for 4 years, with a focus on the role of physical activity and TV viewing. Children were part of a longitudinal study in which measures of fat, lean and bone mass, height, weight, activity, and diet were taken every 4 months from ages 3 to 7 years. Activity was measured by accelerometer and TV viewing by parent checklist. We included 214 children with total body dual energy x-ray absorptiometry (Hologic 4500A) scans at ages 3.5 and 7 years. Higher baseline fat mass was associated with smaller increases in bone area and bone mass over the next 3.5 years (P < .001). More TV viewing was related to smaller gains in bone area and bone mass accounting for race, sex, and height. Activity by accelerometer was not associated with bone gains. Adiposity and TV viewing are related to less bone accrual in preschoolers.

  13. [Low bone mineral density in juvenile idiopathic arthritis: Prevalence and related factors].

    PubMed

    Galindo Zavala, Rocío; Núñez Cuadros, Esmeralda; Martín Pedraz, Laura; Díaz-Cordovés Rego, Gisela; Sierra Salinas, Carlos; Urda Cardona, Antonio

    2017-10-01

    Height adjustment is currently recommended for Z-score bone mineral density (BMD) assessed by dual energy X-ray absorptiometry. At present there are no studies that evaluate the prevalence of low BMD in paediatric patients with Juvenile Idiopathic Arthritis (JIA) in Spain following current recommendations. To evaluate low BMD in JIA in paediatric patients with JIA in Spain following the latest recommendations, as well as to assess associated factors. Observational cross-sectional study of Spanish JIA patients from 5 to 16 years-old, followed-up in a Paediatric Rheumatology Unit between July 2014 and July 2015. Anthropometric, clinical and treatment data were recorded. Dual energy X-ray absorptiometry, and bone metabolism parameters were collected, and a completed diet and exercise questionnaire was obtained. A total of 92 children participated. The population prevalence estimation of low BMD was less than 5% (95% CI). A significant positive correlation was found in the multiple linear regression analysis between the body mass index percentile (B: 0.021; P<.001) and lean mass index (B: 0.0002; P=.012), and BMD Z-score adjusted for height (Z-SAH). A significant negative correlation was found between fat mass index (B: -0.0001; P=.018) and serum type I collagen N-propeptide (B: -0,0006; P=.036) and Z-SAH. Low BMD prevalence in JIA patients in our population is low. An adequate nutritional status and the prevalence of lean over fat mass seem to promote the acquisition of bone mass. Those JIA patients with lower BMD could be subjected to an increase of bone turnover. Copyright © 2016 Asociación Española de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. Dual photon absorptiometry using a gadolinium-153 source applied to measure equine bone mineral content

    NASA Astrophysics Data System (ADS)

    Moure, Alessandro; Reichmann, Peter; Remigio Gamba, Humberto

    2003-12-01

    The application of the dual photon absorptiometry (DPA) technique, using gadolinium-153 as the photon source, to evaluate the bone mineral density (BMD) of the third metacarpal bone of horses is presented. The radiation detector was implemented with a NaI(TI) scintillator coupled to a 14 stage photomultiplier. A modular mechanical system allows the position of the prototype to be adjusted in relation to the animal. A moveable carrier makes it possible to scan the third metacarpal with a velocity adjustable between 1 and 12 mm s-1, in steps of 1 mm s-1, for a total distance of 250 mm. The prototype was evaluated with a phantom of the third metacarpal bone made of perspex and aluminium, and in vitro with a transverse slice of the third metacarpal bone of a horse. The tests showed that the prototype has an accuracy and precision of, approximately, 10% and 6%, respectively, for a 6 s acquisition time. Preliminary studies carried out in three foals from birth to one year of age indicated that the prototype is well suited to in vivo and in situ analysis of the BMD of the third metacarpal bones of horses, making it possible to evaluate the changes of BMD levels on a monthly basis. Also, results indicated an exponential behaviour of the BMD curve during the first year of life of the studied horses.

  15. X-ray micro-beam techniques and phase contrast tomography applied to biomaterials

    NASA Astrophysics Data System (ADS)

    Fratini, Michela; Campi, Gaetano; Bukreeva, Inna; Pelliccia, Daniele; Burghammer, Manfred; Tromba, Giuliana; Cancedda, Ranieri; Mastrogiacomo, Maddalena; Cedola, Alessia

    2015-12-01

    A deeper comprehension of the biomineralization (BM) process is at the basis of tissue engineering and regenerative medicine developments. Several in-vivo and in-vitro studies were dedicated to this purpose via the application of 2D and 3D diagnostic techniques. Here, we develop a new methodology, based on different complementary experimental techniques (X-ray phase contrast tomography, micro-X-ray diffraction and micro-X-ray fluorescence scanning technique) coupled to new analytical tools. A qualitative and quantitative structural investigation, from the atomic to the micrometric length scale, is obtained for engineered bone tissues. The high spatial resolution achieved by X-ray scanning techniques allows us to monitor the bone formation at the first-formed mineral deposit at the organic-mineral interface within a porous scaffold. This work aims at providing a full comprehension of the morphology and functionality of the biomineralization process, which is of key importance for developing new drugs for preventing and healing bone diseases and for the development of bio-inspired materials.

  16. X-ray tube voltage and image quality in adult and pediatric CT

    NASA Astrophysics Data System (ADS)

    Huda, W.; Ogden, K. M.; Scalzetti, E. M.; Lavallee, R. L.; Samei, E.

    2006-03-01

    The purpose of this study was to investigate how tissue x-ray attenuation coefficients, and their uncertainties, vary with x-ray tube voltage in different sized patients. Anthropomorphic phantoms (newborn, 10 year old, adult) were scanned a GE LightSpeed scanner at four x-ray tube voltages. Measurements were made of tissue attenuation in the head, chest and abdomen regions, as well as the corresponding noise values. Tissue signal to noise ratios (SNR) were obtained by dividing the average attenuation coefficient by the corresponding standard deviation. Soft tissue attenuation coefficients, relative to water, showed little variation with patient location or x-ray voltage (< 0.5%), but increasing the x-ray tube voltage from 80 to 140 kV reduced bone x-ray attenuation by ~14%. All tissues except adult bone showed a reduction of noise with increasing x-ray tube voltage (kV); the noise was found to be proportional to kV n and the average value of n for all tissues was -1.19 +/- 0.57. In pediatric patients at a constant x-ray tube voltage, SNR values were approximately independent of the body region, but the adult abdomen soft tissue SNR values were ~40% lower than the adult head. SNR values in the newborn were more than double the corresponding SNR soft tissue values in adults. SNR values for lung and bone were generally lower than those for soft tissues. For soft tissues, increasing the x-ray tube voltage from 80 to 140 kV increased the SNR by an average of ~90%. Data in this paper can be used to help design CT imaging protocols that take into account patient size and diagnostic imaging task.

  17. Measurement of Bone: Diagnosis of SCI-Induced Osteoporosis and Fracture Risk Prediction.

    PubMed

    Troy, Karen L; Morse, Leslie R

    2015-01-01

    Spinal cord injury (SCI) is associated with a rapid loss of bone mass, resulting in severe osteoporosis and a 5- to 23-fold increase in fracture risk. Despite the seriousness of fractures in SCI, there are multiple barriers to osteoporosis diagnosis and wide variations in treatment practices for SCI-induced osteoporosis. We review the biological and structural changes that are known to occur in bone after SCI in the context of promoting future research to prevent or reduce risk of fracture in this population. We also review the most commonly used methods for assessing bone after SCI and discuss the strengths, limitations, and clinical applications of each method. Although dual-energy x-ray absorptiometry assessments of bone mineral density may be used clinically to detect changes in bone after SCI, 3-dimensional methods such as quantitative CT analysis are recommended for research applications and are explained in detail.

  18. Sex- and age-specific percentiles of body composition indices for Chinese adults using dual-energy X-ray absorptiometry.

    PubMed

    Xiao, Zeyu; Guo, Bin; Gong, Jian; Tang, Yongjin; Shang, Jingjie; Cheng, Yong; Xu, Hao

    2017-10-01

    The aims of the study were to develop sex- and age-specific percentiles for lean mass index (LMI), appendicular LMI (aLMI), fat mass index (FMI), and body fat distribution indices in Chinese adults using dual-energy X-ray absorptiometry (DXA), and to compare those indices with those of other ethnicities using the US NHANES data. Whole-body and regional lean mass and fat mass (FM) were measured using DXA in 5688 healthy males (n = 1693) and females (n = 3995) aged 20-90 years. Body fat distribution indices were expressed as % fat trunk/% fat legs, trunk/appendicular FM ratio (FMR), and android/gynoid FMR. Percentile curves of LMI, aLMI, FMI, and body fat distribution indices were obtained by the Lambda-Mu-Sigma method. The aLMI and LMI were negatively associated with age, decreasing from the fifth decade for males, but were not associated with age in females. Females had more total FM than males, whereas males had greater central adiposity (% fat trunk/% fat legs ratio, trunk/appendicular FMR, and android/gynoid FMR) than females. Moreover, FMI and body fat distribution indices consistently increased with age in both sexes, especially in women. In comparison with white, black, and Mexican populations in the USA, Chinese adults had lower total FM, but had greater central adiposity (% fat trunk/% fat legs ratio and trunk/appendicular FMR). Additionally, older white and Mexican populations showed greater decreases for aLMI and LMI than their Chinese counterparts. We present the sex- and age-specific percentiles for aLMI, LMI, FMI, and body fat distribution indices by DXA in Chinese adults, which may refine the individual assessment of the nutritional status of Chinese adults.

  19. Predictive Validity of the Body Adiposity Index in Overweight and Obese Adults Using Dual-Energy X-ray Absorptiometry

    PubMed Central

    Ramírez-Vélez, Robinson; Correa-Bautista, Jorge Enrique; González-Ruíz, Katherine; Vivas, Andrés; García-Hermoso, Antonio; Triana-Reina, Hector Reynaldo

    2016-01-01

    The body adiposity index (BAI) is a recent anthropometric measure proven to be valid in predicting body fat percentage (BF%) in some populations. However, the results have been inconsistent across populations. This study was designed to verify the validity of BAI in predicting BF% in a sample of overweight/obese adults, using dual-energy X-ray absorptiometry (DEXA) as the reference method. A cross-sectional study was conducted in 48 participants (54% women, mean age 41.0 ± 7.3 years old). DEXA was used as the “gold standard” to determine BF%. Pearson’s correlation coefficient was used to evaluate the association between BAI and BF%, as assessed by DEXA. A paired sample t-test was used to test differences in mean BF% obtained with BAI and DEXA methods. To evaluate the concordance between BF% as measured by DEXA and as estimated by BAI, we used Lin’s concordance correlation coefficient and Bland–Altman agreement analysis. The correlation between BF% obtained by DEXA and that estimated by BAI was r = 0.844, p < 0.001. Paired t-test showed a significant mean difference in BF% between methods (BAI = 33.3 ± 6.2 vs. DEXA 39.0 ± 6.1; p < 0.001). The bias of the BAI was −6.0 ± 3.0 BF% (95% CI = −12.0 to 1.0), indicating that the BAI method significantly underestimated the BF% compared to the reference method. Lin’s concordance correlation coefficient was considered stronger (ρc = 0.923, 95% CI = 0.862 to 0.957). In obese adults, BAI presented low agreement with BF% measured by DEXA; therefore, BAI is not recommended for BF% prediction in this overweight/obese sample studied. PMID:27916871

  20. Infrared Radiography: Modeling X-ray Imaging Without Harmful Radiation

    NASA Astrophysics Data System (ADS)

    Zietz, Otto; Mylott, Elliot; Widenhorn, Ralf

    2015-01-01

    Planar x-ray imaging is a ubiquitous diagnostic tool and is routinely performed to diagnose conditions as varied as bone fractures and pneumonia. The underlying principle is that the varying attenuation coefficients of air, water, tissue, bone, or metal implants within the body result in non-uniform transmission of x-ray radiation. Through the detection of transmitted radiation, the spatial organization and composition of materials in the body can be ascertained. In this paper, we describe an original apparatus that teaches these concepts by utilizing near infrared radiation and an up-converting phosphorescent screen to safely probe the contents of an opaque enclosure.

  1. Bone Mineral Changes in Epilepsy Patients During Initial Years of Antiepileptic Drug Therapy.

    PubMed

    Shiek Ahmad, Baemisla; O'Brien, Terence John; Gorelik, Alexandra; Hill, Keith David; Wark, John Dennis

    2016-10-01

    Antiepileptic drug (AED) therapy is associated with decreased bone mineral density; however, the time course for this development is unclear. The aim of this study was to evaluate bone mineral changes during the initial years of AED therapy in AED-naive, newly diagnosed epilepsy patients compared with non-AED users. In 49 epilepsy patients newly started on AEDs and in 53 non-AED users of both genders, bone mineral density (BMD) and bone mineral content were measured using dual-energy X-ray absorptiometry at baseline (within the first year of therapy) and at least 1 yr later. Bone changes between the 2 assessments, adjusted for age, height, and weight, were calculated as the annual rate of change. The median duration of AED therapy was 3.5 mo at baseline and 27.6 mo at follow-up. No overall difference was found in mean BMD and bone mineral content measures between user and nonuser cohorts in both cross-sectional baseline and the annual rate of change (p > 0.05). However, users on carbamazepine monotherapy (n = 11) had an increased annual rate of total hip (-2.1% vs -0.8%, p = 0.020) and femoral neck BMD loss (-2.1% vs -0.6%, p = 0.032) compared to nonusers. They also had a marginally higher rate of femoral neck BMD loss (-2.1%, p = 0.049) compared with valproate (-0.1%, n = 13) and levetiracetam users (+0.6%, n = 13). During the initial years of AED treatment for epilepsy, no difference was found in bone measures between AED users as a group and nonuser cohorts. However, the data suggested that carbamazepine monotherapy was associated with increased bone loss at the hip regions, compared to users of levetiracetam or valproate and nonusers. Larger studies of longer duration are warranted to better delineate the bone effects of specific AEDs, with further consideration of the role of early dual-energy X-ray absorptiometry scanning and careful AED selection in potentially minimizing the impact on bone health in these patients

  2. How to improve x-ray scattering techniques to quantify bone mineral density using spectroscopy

    PubMed Central

    Krmar, M.; Ganezer, K.

    2012-01-01

    Purpose: The purpose of this study was to develop a new diagnostic technique for measuring bone mineral density (BMD) for the assessment of osteoporosis, which improves upon the coherent to Compton scattering ratio (CCSR) method, which was first developed in the 1980s. To help the authors achieve these goals, they have identified and studied two new indices for CCSR, the forward scattered to backward scattered (FS-BS) and the forward scattered to transmitted (FS-T) ratios. They believe that, at small angles, these two parameters can offer a practical in vivo determination of BMD that can be used to overcome the limitations of past CCSR systems, including high radiation dosages, costs, and examination durations. Methods: In previous CCSR studies, a high-activity radioactive source with a long half-live (usually 241Am) and an expensive and bulky cryogenic HPGe detector were applied to both in vivo and in vitro measurements. To make this technique more suitable for clinical applications, the possibility of using a standard diagnostic x-ray tube generating a continuous spectrum was investigated in this paper. Scattered radiation from trabecular bone-simulating phantoms containing various mineral densities that span the normal range of in vivo BMD was collected in this study using relatively inexpensive noncryogenic CdTe or NaI detectors. Results: The initial results demonstrate that a modified version of CCSR can be successfully applied to trabecular bone assessment using a diagnostic x-ray tube with a continuous spectrum in two variations, the FS-BS and the FS-T ratio. When FS-BS is measured, intensity spectra in the forward and backward directions must be collected while FS-T requires only the integral intensity of the scattered and transmitted (T) spectra in the energy region above 40 keV. For both of these methods, forward scattering angles less than or equal to 15° and backward scattering angles greater than or equal to (165°= 180° − 15°) are needed

  3. Superior spatial resolution in confocal X-ray techniques using collimating channel array optics: elemental mapping and speciation in archaeological human bone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhury, S.; Agyeman-Budu, D. N.; Woll, A. R.

    Confocal X-ray fluorescence imaging (CXFI) and confocal X-ray absorption spectroscopy (CXAS) respectively enable the study of three dimensionally resolved localization and speciation of elements. Applied to a thick sample, essentially any volume element of interest within the X-ray fluorescence escape depth can be examined without the need for physical thin sectioning. To date, X-ray confocal detection generally has employed a polycapillary optic in front of the detector to collect fluorescence from the probe volume formed at the intersection of its focus with the incident microfocus beam. This work demonstrates the capability of a novel Collimating Channel Array (CCA) optic inmore » providing an improved and essentially energy independent depth resolution approaching 2 μm. By presenting a comparison of elemental maps of archaeological bone collected without confocal detection, and with polycapillary- and CCA-based confocal detection, this study highlights the strengths and limitations of each mode. Unlike the polycapillary, the CCA shows similar spatial resolution in maps for both low (Ca) and high (Pb and Sr) energy X-ray fluorescence, thus illustrating the energy independent nature of the CCA optic resolution. While superior spatial resolution is demonstrated for all of these elements, the most significant improvement is observed for Ca, demonstrating the advantage of employing the CCA optic in examining light elements. In addition to CXFI, this configuration also enables the collection of Pb L3 CXAS data from micro-volumes with dimensions comparable to bone microstructures of interest. Our CXAS result, which represents the first CCA-based biological CXAS, demonstrates the ability of CCA optics to collect site specific spectroscopic information. The demonstrated combination of site-specific elemental localization and speciation data will be useful in diverse fields.« less

  4. Assessment of volume measurement of breast cancer-related lymphedema by three methods: circumference measurement, water displacement, and dual energy X-ray absorptiometry.

    PubMed

    Gjorup, Caroline; Zerahn, Bo; Hendel, Helle W

    2010-06-01

    Following treatment for breast cancer 12%-60% develop breast cancer-related lymphedema (BCRL). There are several ways of assessing BCRL. Circumference measurement (CM) and water displacement (WD) for volume measurements (VM) are frequently used methods in practice and research, respectively. The aim of this study was to evaluate CM and WD for VM of the BCRL arm and the contralateral arm, comparing the results with regional dual energy X-ray absorptiometry (DXA). Twenty-four women with unilateral BCRL were included in the study. Blinded duplicate VM were obtained from both arms using the three methods mentioned above. CM and DXA were performed by two observers. WD was performed by a group of observers. Mean differences (d) in duplicated volumes, limits of agreement (LOA), and 95% confidence intervals (CI) were calculated for each method. The repeatability expressed as d (95% CI) between the duplicated VM of the BCRL arm and the contralateral arm was for DXA 3 ml (-6-11) and 3 ml (1-7), respectively. For CM and WD, the d (95% CI) of the BCRL arm were 107 ml (86-127) and 26 ml (-26-79), respectively and in the contralateral arm 100 ml (78-122) and -6 ml (-29-17), respectively. DXA is superior in repeatability when compared to CM and WD for VM, especially for the BCRL arm but also the contralateral arm.

  5. Comparison of Body Composition Assessed by Dual-Energy X-Ray Absorptiometry and BMI in Current and Former U.S. Navy Service Members.

    PubMed

    Gasier, Heath G; Hughes, Linda M; Young, Colin R; Richardson, Annely M

    2015-01-01

    Little is known of the diagnostic accuracy of BMI in classifying obesity in active duty military personnel and those that previously served. Thus, the primary objectives were to determine the relationship between lean and fat mass, and body fat percentage (BF%) with BMI, and assess the agreement between BMI and BF% in defining obesity. Body composition was measured by dual-energy X-ray absorptiometry in 462 males (20-91 years old) who currently or previously served in the U.S. Navy. A BMI of ≥ 30 kg/m2 and a BF% ≥ 25% were used for obesity classification. The mean BMI (± SD) and BF% were 28.8 ± 4.1 and 28.9 ± 6.6%, respectively, with BF% increasing with age. Lean mass, fat mass, and BF% were significantly correlated with BMI for all age groups. The exact agreement of obesity defined by BMI and BF% was fair (61%), however, 38% were misclassified by a BMI cut-off of 30 when obesity was defined by BF%. From this data we determined that there is a good correlation between body composition and BMI, and fair agreement between BMI and BF% in classifying obesity in a group of current and former U.S. Navy service members. However, as observed in the general population, a significant proportion of individuals with excess fat are misclassified by BMI cutoffs.

  6. Bone disorders associated with the human immunodeficiency virus: pathogenesis and management.

    PubMed

    Qaqish, Roula B; Sims, Keri A

    2004-10-01

    Bone disorders such as osteopenia, osteoporosis, and osteonecrosis have been reported in patients infected with the human immunodeficiency virus (HIV), but the etiology and mechanism of these disorders are unknown. The prevalence estimates vary widely among studies and may be influenced by the presence or absence of antiretroviral therapy and lipodystrophy, severity of HIV disease, and overlapping bone loss risk factors. Addressing potential underlying bone disease risk factors (e.g., smoking and alcohol intake), evaluating calcium and vitamin D intake, and performing dual x-ray absorptiometry in patients with HIV who have risks for bone disease are important strategies in preventing osteopenia and osteoporosis in HIV-infected patients. Management of osteopenia and osteoporosis is still being evaluated. Administration of bisphosphonates (e.g., alendronate), with calcium and vitamin D supplementation, may be reasonable in treating osteoporosis; however, surgical intervention is the only method for treating symptomatic osteonecrosis.

  7. Changes in Body Fat Distribution on Dual-Energy X-Ray Absorptiometry in Black South Africans Starting First-Line Antiretroviral Therapy.

    PubMed

    Abrahams, Zulfa; Levitt, Naomi; Lesosky, Maia; Maartens, Gary; Dave, Joel

    2016-10-01

    Long-term use of antiretroviral therapy (ART) increases the risk of developing lipodystrophy. Few studies from Africa have used longitudinal data to assess the development of lipoatrophy and lipohypertrophy. We use clinical anthropometry and dual-energy X-ray absorptiometry (DEXA) to describe changes in body fat distribution over a 24-month period in individuals initiated on ART. A convenience sample of black South Africans (55 men and 132 women) were recruited and followed for 24 months after commencing ART. Body fat distribution was assessed using anthropometric measurements and DEXA scans at baseline and then at 3, 6, 12, 18, and 24 months after commencing ART. DEXA was also used to estimate abdominal visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT). Women gained more overall weight and more regional fat in all areas analyzed on DEXA scans. Women, not men, experienced a significant increasing trend in trunk fat and a significant decreasing trend in limb fat, when expressed as a percentage of total body fat. In men, the risk of developing lipoatrophy was more than two times greater than that of women, after adjusting for age, baseline body mass index, and ART regimen. Lipohypertrophy occurred similarly in men and women. VAT and SAT increased significantly in men and women, with women gaining considerably more than men. These findings are of great concern as an increased waist circumference is associated with increased mortality in HIV-infected populations. Further investigation is required to understand the mechanisms underlying the sex differences in changes in body fat distribution and its effects on cardiovascular risk.

  8. A Phase II Trial on the Effect of Low-Dose versus High-Dose Vitamin D Supplementation on Bone Mass in Adults with Neurofibromatosis 1 (NF1)

    DTIC Science & Technology

    2017-10-01

    Cincinnati enrollment center CGRP = Clinical Genetics Research Program DEXA = dual energy x-ray absorptiometry Ddrops = formulation of...cholecalciferol (vitamin D3) DXA = dual energy x-ray absorptiometry FDA= Federal Drug Administration HAM = University of Hamburg enrollment center IRB

  9. Protection of trabecular bone in ovariectomized rats by turmeric (Curcuma longa L.) is dependent on extract composition.

    PubMed

    Wright, Laura E; Frye, Jennifer B; Timmermann, Barbara N; Funk, Janet L

    2010-09-08

    Extracts prepared from turmeric (Curcuma longa L., [Zingiberaceae]) containing bioactive phenolic curcuminoids were evaluated for bone-protective effects in a hypogonadal rat model of postmenopausal osteoporosis. Three-month female Sprague-Dawley rats were ovariectomized (OVX) and treated with a chemically complex turmeric fraction (41% curcuminoids by weight) or a curcuminoid-enriched turmeric fraction (94% curcuminoids by weight), both dosed at 60 mg/kg 3x per week, or vehicle alone. Effects of two months of treatment on OVX-induced bone loss were followed prospectively by serial assessment of bone mineral density (BMD) of the distal femur using dual-energy X-ray absorptiometry (DXA), while treatment effects on trabecular bone microarchitecture were assessed at two months by microcomputerized tomography (microCT). Chemically complex turmeric did not prevent bone loss, however, the curcuminoid-enriched turmeric prevented up to 50% of OVX-induced loss of trabecular bone and also preserved the number and connectedness of the strut-like trabeculae. These results suggest that turmeric may have bone-protective effects but that extract composition is a critical factor.

  10. Protection of Trabecular Bone in Ovariectomized Rats by Turmeric (Curcuma longa L.) is Dependent on Extract Composition

    PubMed Central

    Wright, Laura E.; Frye, Jennifer B.; Timmermann, Barbara N.; Funk, Janet L.

    2010-01-01

    Extracts prepared from turmeric (Curcuma longa L., [Zingiberaceae]) containing bioactive phenolic curcuminoids were evaluated for bone-protective effects in a hypogonadal rat model of postmenopausal osteoporosis. Three-month female Sprague Dawley rats were ovariectomized (OVX) and treated with a chemically complex turmeric fraction (41% curcuminoids by weight) or a curcuminoid-enriched turmeric fraction (94% curcuminoids by weight), both dosed at 60mg/kg 3x per week, or vehicle alone. Effects of two months of treatment on OVX-induced bone loss were followed prospectively by serial assessment of bone mineral density (BMD) of the distal femur using dual-energy x-ray absorptiometry (DXA), while treatment effects on trabecular bone microarchitecture were assessed at two months by micro-computerized tomography (μCT). Chemically complex turmeric did not prevent bone loss, however, the curcuminoid-enriched turmeric prevented up to 50% of OVX-induced loss of trabecular bone and also preserved the number and connectedness of the strut-like trabeculae. These results suggest that turmeric may have bone-protective effects but that extract composition is a critical factor. PMID:20695490

  11. Relationship between serum leptin concentrations and bone mineral density as well as biochemical markers of bone turnover in women with postmenopausal osteoporosis.

    PubMed

    Shaarawy, Mohamed; Abassi, Asmaa Farid; Hassan, Hany; Salem, Mahmoud E

    2003-04-01

    To determine whether leptin is involved in bone remodeling in patients with postmenopausal osteoporosis. Cross-sectional study. Department of Obstetrics and Gynecology, Faculty of Medicine, Cairo University. Ninety postmenopausal osteoporotic women (37 obese and 53 nonobese) and 30 healthy premenopausal women from the same clinic served as controls. Lumbar spine bone mineral density (LS-BMD) of osteoporotic patients was more than 2.5 SD below the normal mean of healthy premenopausal women. Serum levels of leptin, osteocalcin (OC), bone alkaline phosphatase (B-ALP), urinary deoxypyridinoline (DPyr), and N-telopeptide of type 1 collagen (NTX) as well as LS-BMD using dual energy X-ray absorptiometry (DEXA). The serum leptin level in obese postmenopausal osteoporotic patients was significantly increased compared with nonobese osteoporotic patients. There were no significant differences of bone formation markers (B-ALP, OC), bone resorption markers (DPyr, NTX), or LS-BMD between the obese and nonobese groups. There were no significant correlations between serum leptin and any biomarkers of bone turnover and BMD. In postmenopausal osteoporotic patients with increased bone turnover, serum leptin concentration is not correlated with BMD or with the biomarkers of bone formation or bone resorption.

  12. Relevance of 2D radiographic texture analysis for the assessment of 3D bone micro-architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apostol, Lian; Boudousq, Vincent; Basset, Oliver

    Although the diagnosis of osteoporosis is mainly based on dual x-ray absorptiometry, it has been shown that trabecular bone micro-architecture is also an important factor in regard to fracture risk. In vivo, techniques based on high-resolution x-ray radiography associated to texture analysis have been proposed to investigate bone micro-architecture, but their relevance for giving pertinent 3D information is unclear. Thirty-three calcaneus and femoral neck bone samples including the cortical shells (diameter: 14 mm, height: 30-40 mm) were imaged using 3D-synchrotron x-ray micro-CT at the ESRF. The 3D reconstructed images with a cubic voxel size of 15 {mu}m were further usedmore » for two purposes: (1) quantification of three-dimensional trabecular bone micro-architecture (2) simulation of realistic x-ray radiographs under different acquisition conditions. The simulated x-ray radiographs were then analyzed using a large variety of texture analysis methods (co-occurrence, spectral density, fractal, morphology, etc.). The range of micro-architecture parameters was in agreement with previous studies and rather large, suggesting that the population was representative. More than 350 texture parameters were tested. A small number of them were selected based on their correlation to micro-architectural morphometric parameters. Using this subset of texture parameters, multiple regression allowed one to predict up to 93% of the variance of micro-architecture parameters using three texture features. 2D texture features predicting 3D micro-architecture parameters other than BV/TV were identified. The methodology proposed for evaluating the relationships between 3D micro-architecture and 2D texture parameters may also be used for optimizing the conditions for radiographic imaging. Further work will include the application of the method to physical radiographs. In the future, this approach could be used in combination with DXA to refine osteoporosis diagnosis.« less

  13. Transmission X-ray microscopy for full-field nano-imaging of biomaterials

    PubMed Central

    ANDREWS, JOY C; MEIRER, FLORIAN; LIU, YIJIN; MESTER, ZOLTAN; PIANETTA, PIERO

    2010-01-01

    Imaging of cellular structure and extended tissue in biological materials requires nanometer resolution and good sample penetration, which can be provided by current full-field transmission X-ray microscopic techniques in the soft and hard X-ray regions. The various capabilities of full-field transmission X-ray microscopy (TXM) include 3D tomography, Zernike phase contrast, quantification of absorption, and chemical identification via X-ray fluorescence and X-ray absorption near edge structure (XANES) imaging. These techniques are discussed and compared in light of results from imaging of biological materials including microorganisms, bone and mineralized tissue and plants, with a focus on hard X-ray TXM at ≤ 40 nm resolution. PMID:20734414

  14. Transmission X-ray microscopy for full-field nano imaging of biomaterials.

    PubMed

    Andrews, Joy C; Meirer, Florian; Liu, Yijin; Mester, Zoltan; Pianetta, Piero

    2011-07-01

    Imaging of cellular structure and extended tissue in biological materials requires nanometer resolution and good sample penetration, which can be provided by current full-field transmission X-ray microscopic techniques in the soft and hard X-ray regions. The various capabilities of full-field transmission X-ray microscopy (TXM) include 3D tomography, Zernike phase contrast, quantification of absorption, and chemical identification via X-ray fluorescence and X-ray absorption near edge structure imaging. These techniques are discussed and compared in light of results from the imaging of biological materials including microorganisms, bone and mineralized tissue, and plants, with a focus on hard X-ray TXM at ≤ 40-nm resolution. Copyright © 2010 Wiley-Liss, Inc.

  15. Combining coherent hard X-ray tomographies with phase retrieval to generate three-dimensional models of forming bone

    NASA Astrophysics Data System (ADS)

    Bortel, Emely L.; Langer, Max; Rack, Alexander; Forien, Jean-Baptiste; Duda, Georg N.; Fratzl, Peter; Zaslansky, Paul

    2017-11-01

    Holotomography, a phase sensitive synchrotron-based μCT modality, is a quantitative 3D imaging method. By exploiting partial spatial X-ray coherence, bones can be imaged volumetrically with high resolution coupled with impressive density sensitivity. This tomographic method reveals the main characteristics of the important tissue compartments in forming bones, including the rapidly-changing soft tissue and the partially or fully mineralized bone regions, while revealing subtle density differences in 3D. Here we show typical results observed within the growing femur bone midshafts of healthy mice that are 1, 3, 7, 10 and 14 days old (postpartum). Our results make use of partially-coherent synchrotron radiation employing inline Fresnel-propagation in multiple tomographic datasets obtained in the imaging beamline ID19 of the ESRF. The exquisite detail creates maps of the juxtaposed soft, partially mineralized and highly mineralized bone revealing the environment in which bone cells create and shape the matrix. This high resolution 3D data is a step towards creating realistic computational models that may be used to study the dynamic processes involved in bone tissue formation and adaptation. Such data will enhance our understanding of the important biomechanical interactions directing maturation and shaping of the bone micro- and macro-geometries.

  16. Weight loss and bone mineral density.

    PubMed

    Hunter, Gary R; Plaisance, Eric P; Fisher, Gordon

    2014-10-01

    Despite evidence that energy deficit produces multiple physiological and metabolic benefits, clinicians are often reluctant to prescribe weight loss in older individuals or those with low bone mineral density (BMD), fearing BMD will be decreased. Confusion exists concerning the effects that weight loss has on bone health. Bone density is more closely associated with lean mass than total body mass and fat mass. Although rapid or large weight loss is often associated with loss of bone density, slower or smaller weight loss is much less apt to adversely affect BMD, especially when it is accompanied with high intensity resistance and/or impact loading training. Maintenance of calcium and vitamin D intake seems to positively affect BMD during weight loss. Although dual energy X-ray absorptiometry is normally used to evaluate bone density, it may overestimate BMD loss following massive weight loss. Volumetric quantitative computed tomography may be more accurate for tracking bone density changes following large weight loss. Moderate weight loss does not necessarily compromise bone health, especially when exercise training is involved. Training strategies that include heavy resistance training and high impact loading that occur with jump training may be especially productive in maintaining, or even increasing bone density with weight loss.

  17. Challenges of Estimating Fracture Risk with DXA: Changing Concepts About Bone Strength and Bone Density.

    PubMed

    Licata, Angelo A

    2015-07-01

    Bone loss due to weightlessness is a significant concern for astronauts' mission safety and health upon return to Earth. This problem is monitored with bone densitometry (DXA), the clinical tool used to assess skeletal strength. DXA has served clinicians well in assessing fracture risk and has been particularly useful in diagnosing osteoporosis in the elderly postmenopausal population for which it was originally developed. Over the past 1-2 decades, however, paradoxical and contradictory findings have emerged when this technology was widely employed in caring for diverse populations unlike those for which it was developed. Although DXA was originally considered the surrogate marker for bone strength, it is now considered one part of a constellation of factors-described collectively as bone quality-that makes bone strong and resists fracturing, independent of bone density. These characteristics are beyond the capability of routine DXA to identify, and as a result, DXA can be a poor prognosticator of bone health in many clinical scenarios. New clinical tools are emerging to make measurement of bone strength more accurate. This article reviews the historical timeline of bone density measurement (dual X-ray absorptiometry), expands upon the clinical observations that modified the relationship of DXA and bone strength, discusses some of the new clinical tools to predict fracture risk, and highlights the challenges DXA poses in the assessment of fracture risk in astronauts.

  18. Preterm birth and adolescent bone mineral content.

    PubMed

    Erlandson, Marta C; Sherar, Lauren B; Baxter-Jones, Adam D G; Jackowski, Stefan A; Ludwig-Auser, Heidi; Arnold, Chris; Sankaran, Koravangattu

    2011-02-01

    The purpose of this study was to determine the influence of preterm low birth weight on bone mineral content in adolescence. In 2007 to 2008, data on adolescents were obtained for study, including 16 females and 25 males who were born preterm (≤37 weeks' gestation) between October 1, 1989, and December 31, 1995, with a birth weight of less than 1850 g. Preterm low-birth-weight individuals were age- and sex-matched to full-term (>37 weeks) normal-birth-weight (>2500 g) controls. Total body, hip, and spine bone mineral content (BMC) was assessed using dual energy X-ray absorptiometry. Male preterm individuals had less BMC at the proximal femur in adolescence compared with controls ( p < 0.05). However, once adjusted for age, maturity, height, weight, physical activity, and diet, there were no differences between groups ( p < 0.05) in any bone parameters. These findings suggest that preterm birth and low birth weight did not influence bone accrual in these individuals at adolescence. © Thieme Medical Publishers.

  19. What Are the Treatments for Other Symptoms of Menopause?

    MedlinePlus

    ... vaginal dryness Treatment of sleep problems Treatment for Osteoporosis and Bone Loss Related to Menopause Because bone ... X-ray absorptiometry (DEXA) scan . If you have osteoporosis or are at risk for it, your health ...

  20. Effects of whole body vibration exercises on bone mineral density of women with postmenopausal osteoporosis without medications: novel findings and literature review

    PubMed Central

    Dionello, C.F.; Sá-Caputo, D.; Pereira, H.V.F.S.; Sousa-Gonçalves, C.R.; Maiworm, A.I.; Morel, D.S.; Moreira-Marconi, E.; Paineiras-Domingos, L.L.; Bemben, D.; Bernardo-Filho, M.

    2016-01-01

    Objectives: The aim of this study was to review the literature about the effect of whole body vibration exercise in the BMD in patients with postmenopausal osteoporosis without medications. Methods: A systematic review was performed. Results: The frequency of the mechanical vibration used in the protocols has varied from 12 to 90 Hz. The time used in the protocols varied from 2 up to 22 months. Techniques with X-rays were used in nine of the twelve publications analyzed, the Dual energy X-ray absorptiometry (DEXA) in eight studies and the High resolution peripheral quantitative computed tomography (HR-pQCT) in one publication. The concentration of some biomarkers was determined, as the sclerostin, the bone alkaline phosphatase, N-telopeptide X and 25-hydroxyvitamin D. Among the twelve articles analyzed, seven of them have shown an improvement of the BMD of some bone of postmenopausal women exposed to whole body vibration exercises not associated to medications; as well as modifications in biomarkers. PMID:27609034

  1. Measurement of Bone: Diagnosis of SCI-Induced Osteoporosis and Fracture Risk Prediction

    PubMed Central

    Morse, Leslie R.

    2015-01-01

    Background: Spinal cord injury (SCI) is associated with a rapid loss of bone mass, resulting in severe osteoporosis and a 5- to 23-fold increase in fracture risk. Despite the seriousness of fractures in SCI, there are multiple barriers to osteoporosis diagnosis and wide variations in treatment practices for SCI-induced osteoporosis. Methods: We review the biological and structural changes that are known to occur in bone after SCI in the context of promoting future research to prevent or reduce risk of fracture in this population. We also review the most commonly used methods for assessing bone after SCI and discuss the strengths, limitations, and clinical applications of each method. Conclusions: Although dual-energy x-ray absorptiometry assessments of bone mineral density may be used clinically to detect changes in bone after SCI, 3-dimensional methods such as quantitative CT analysis are recommended for research applications and are explained in detail. PMID:26689691

  2. The Assessment of Bone Regulatory Pathways, Bone Turnover, and Bone Mineral Density in Vegetarian and Omnivorous Children

    PubMed Central

    Ambroszkiewicz, Jadwiga; Chełchowska, Magdalena; Szamotulska, Katarzyna; Rowicka, Grażyna; Klemarczyk, Witold; Strucińska, Małgorzata

    2018-01-01

    Vegetarian diets contain many beneficial properties as well as carry a risk of inadequate intakes of several nutrients important to bone health. The aim of the study was to evaluate serum levels of bone metabolism markers and to analyze the relationships between biochemical bone markers and anthropometric parameters in children on vegetarian and omnivorous diets. The study included 70 prepubertal children on a lacto-ovo-vegetarian diet and 60 omnivorous children. Body composition, bone mineral content (BMC), and bone mineral density (BMD) were assessed by dual-energy X-ray absorptiometry. Biochemical markers—bone alkaline phosphatase (BALP), C-terminal telopeptide of type I collagen (CTX-I), osteoprotegerin (OPG), nuclear factor κB ligand (RANKL), sclerostin, and Dickkopf-related protein 1 (Dkk-1)—were measured using immunoenzymatic assays. In vegetarians, we observed a significantly higher level of BALP (p = 0.002) and CTX-I (p = 0.027), and slightly lower spine BMC (p = 0.067) and BMD (p = 0.060) than in omnivores. Concentrations of OPG, RANKL, sclerostin, and Dkk-1 were comparable in both groups of children. We found that CTX-I was positively correlated with BMC, total BMD, and lumbar spine BMD in vegetarians, but not in omnivores. A well-planned vegetarian diet with proper dairy and egg intake does not lead to significantly lower bone mass; however, children following a lacto-ovo-vegetarian diet had a higher rate of bone turnover and subtle changes in bone regulatory markers. CTX-I might be an important marker for the protection of vegetarians from bone abnormalities. PMID:29414859

  3. The Assessment of Bone Regulatory Pathways, Bone Turnover, and Bone Mineral Density in Vegetarian and Omnivorous Children.

    PubMed

    Ambroszkiewicz, Jadwiga; Chełchowska, Magdalena; Szamotulska, Katarzyna; Rowicka, Grażyna; Klemarczyk, Witold; Strucińska, Małgorzata; Gajewska, Joanna

    2018-02-07

    Vegetarian diets contain many beneficial properties as well as carry a risk of inadequate intakes of several nutrients important to bone health. The aim of the study was to evaluate serum levels of bone metabolism markers and to analyze the relationships between biochemical bone markers and anthropometric parameters in children on vegetarian and omnivorous diets. The study included 70 prepubertal children on a lacto-ovo-vegetarian diet and 60 omnivorous children. Body composition, bone mineral content (BMC), and bone mineral density (BMD) were assessed by dual-energy X-ray absorptiometry. Biochemical markers-bone alkaline phosphatase (BALP), C-terminal telopeptide of type I collagen (CTX-I), osteoprotegerin (OPG), nuclear factor κB ligand (RANKL), sclerostin, and Dickkopf-related protein 1 (Dkk-1)-were measured using immunoenzymatic assays. In vegetarians, we observed a significantly higher level of BALP ( p = 0.002) and CTX-I ( p = 0.027), and slightly lower spine BMC ( p = 0.067) and BMD ( p = 0.060) than in omnivores. Concentrations of OPG, RANKL, sclerostin, and Dkk-1 were comparable in both groups of children. We found that CTX-I was positively correlated with BMC, total BMD, and lumbar spine BMD in vegetarians, but not in omnivores. A well-planned vegetarian diet with proper dairy and egg intake does not lead to significantly lower bone mass; however, children following a lacto-ovo-vegetarian diet had a higher rate of bone turnover and subtle changes in bone regulatory markers. CTX-I might be an important marker for the protection of vegetarians from bone abnormalities.

  4. Monitoring X-Ray Emission from X-Ray Bursters

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Kaaret, Philip

    1999-01-01

    The scientific goal of this project was to monitor a selected sample of x-ray bursters using data from the All-Sky Monitor (ASM) on the Rossi X-Ray Timing Explorer together with data from the Burst and Transient Source Experiment (BATSE) on the Compton Gamma-Ray Observatory to study the long-term temporal evolution of these sources in the x-ray and hard x-ray bands. The project was closely related to "Long-Term Hard X-Ray Monitoring of X-Ray Bursters", NASA project NAG5-3891, and and "Hard x-ray emission of x-ray bursters", NASA project NAG5-4633, and shares publications in common with both of these. The project involved preparation of software for use in monitoring and then the actual monitoring itself. These efforts have lead to results directly from the ASM data and also from Target of Opportunity Observations (TOO) made with the Rossi X-Ray Timing Explorer based on detection of transient hard x-ray outbursts with the ASM and BATSE.

  5. First cosmic-ray images of bone and soft tissue

    NASA Astrophysics Data System (ADS)

    Mrdja, Dusan; Bikit, Istvan; Bikit, Kristina; Slivka, Jaroslav; Hansman, Jan; Oláh, László; Varga, Dezső

    2016-11-01

    More than 120 years after Roentgen's first X-ray image, the first cosmic-ray muon images of bone and soft tissue are created. The pictures, shown in the present paper, represent the first radiographies of structures of organic origin ever recorded by cosmic rays. This result is achieved by a uniquely designed, simple and versatile cosmic-ray muon-imaging system, which consists of four plastic scintillation detectors and a muon tracker. This system does not use scattering or absorption of muons in order to deduct image information, but takes advantage of the production rate of secondaries in the target materials, detected in coincidence with muons. The 2D image slices of cow femur bone are obtained at several depths along the bone axis, together with the corresponding 3D image. Real organic soft tissue, polymethyl methacrylate and water, never seen before by any other muon imaging techniques, are also registered in the images. Thus, similar imaging systems, placed around structures of organic or inorganic origin, can be used for tomographic imaging using only the omnipresent cosmic radiation.

  6. Concurrent agreement between an anthropometric model to predict thigh volume and dual-energy X-Ray absorptiometry assessment in female volleyball players aged 14-18 years.

    PubMed

    Tavares, Óscar M; Valente-Dos-Santos, João; Duarte, João P; Póvoas, Susana C; Gobbo, Luís A; Fernandes, Rômulo A; Marinho, Daniel A; Casanova, José M; Sherar, Lauren B; Courteix, Daniel; Coelho-E-Silva, Manuel J

    2016-11-24

    A variety of performance outputs are strongly determined by lower limbs volume and composition in children and adolescents. The current study aimed to examine the validity of thigh volume (TV) estimated by anthropometry in late adolescent female volleyball players. Dual-energy X-ray absorptiometry (DXA) measures were used as the reference method. Total and regional body composition was assessed with a Lunar DPX NT/Pro/MD+/Duo/Bravo scanner in a cross-sectional sample of 42 Portuguese female volleyball players aged 14-18 years (165.2 ± 0.9 cm; 61.1 ± 1.4 kg). TV was estimated with the reference method (TV-DXA) and with the anthropometric method (TV-ANTH). Agreement between procedures was assessed with Deming regression. The analysis also considered a calibration of the anthropometric approach. The equation that best predicted TV-DXA was: -0.899 + 0.876 × log 10 (body mass) + 0.113 × log 10 (TV-ANTH). This new model (NM) was validated using the predicted residual sum of squares (PRESS) method (R 2 PRESS  = 0.838). Correlation between the reference method and the NM was 0.934 (95%CI: 0.880-0.964, S y∙x  = 0.325 L). A new and accurate anthropometric method to estimate TV in adolescent female volleyball players was obtained from the equation of Jones and Pearson alongside with adjustments for body mass.

  7. Comparison of two bioelectrical impedance devices and dual-energy X-ray absorptiometry to evaluate body composition in heart failure.

    PubMed

    Alves, F D; Souza, G C; Biolo, A; Clausell, N

    2014-12-01

    The utilisation of bioelectrical impedance analysis (BIA) in heart failure can be affected by many factors and its applicability remains controversial. The present study aimed to verify the adequacy of single-frequency BIA (SF-BIA) and multifrequency BIA (MF-BIA) compared to dual-energy x-ray absorptiometry (DEXA) for evaluating body composition in outpatients with heart failure. In this cross-sectional study, 55 patients with stable heart failure and left ventricle ejection fraction ≤45% were evaluated for fat mass percentage, fat mass and fat-free mass by DEXA and compared with the results obtained by SF-BIA (single frequency of 50 kHz) and MF-BIA (frequencies of 20 and 100 kHz). MF-BIA and DEXA gave similar mean values for fat mass percentage, fat mass and fat-free mass, whereas values from SF-BIA were significantly different from DEXA. Both SF-BIA and MF-BIA measures of body composition correlated strongly with DEXA (r > 0.8; P < 0.001), except for fat mass assessed by SF-BIA, which showed a moderate correlation (r = 0.760; P < 0.001). MF-BIA also showed a better agreement with DEXA by Bland-Altman analysis in all measurements. However, both types of equipment showed wide limits of agreement and a significant relationship between variance and bias (Pitmans's test P > 0.05), except MF-BIA for fat-free mass. Compared with DEXA, MF-BIA showed better accuracy than SF-BIA, although both types of equipment showed wide limits of agreement. The BIA technique should be used with caution, and regression equations might be useful for correcting the observed variations, mainly in extreme values of body composition. © 2014 The British Dietetic Association Ltd.

  8. Adiposity and TV viewing are related to less bone accrual in young children

    PubMed Central

    Wosje, Karen S.; Khoury, Philip R.; Claytor, Randal P.; Copeland, Kristen A.; Kalkwarf, Heidi J.; Daniels, Stephen R.

    2008-01-01

    Objective To examine the relation between baseline fat mass and gain in bone area and bone mass in preschoolers studied prospectively for 4 y, with a focus on the role of physical activity and TV viewing. Study design Children were part of a longitudinal study in which measures of fat, lean and bone mass, height, weight, activity, and diet were taken every 4 months from ages 3 to 7 y. Activity was measured by accelerometer, and TV viewing by parent checklist. We included 214 children with total body dual energy x-ray absorptiometry (Hologic 4500A) scans at ages 3.5 and 7 y. Results Higher baseline fat mass was associated with smaller increases in bone area and bone mass over the next 3.5 y (p<0.001). More TV viewing was related to smaller gains in bone area and bone mass accounting for race, sex, and height. Activity by accelerometer was not associated with bone gains. Conclusions Adiposity and TV viewing are related to less bone accrual in preschoolers. PMID:18692201

  9. Detection of bone disease by hybrid SST-watershed x-ray image segmentation

    NASA Astrophysics Data System (ADS)

    Sanei, Saeid; Azron, Mohammad; Heng, Ong Sim

    2001-07-01

    Detection of diagnostic features from X-ray images is favorable due to the low cost of these images. Accurate detection of the bone metastasis region greatly assists physicians to monitor the treatment and to remove the cancerous tissue by surgery. A hybrid SST-watershed algorithm, here, efficiently detects the boundary of the diseased regions. Shortest Spanning Tree (SST), based on graph theory, is one of the most powerful tools in grey level image segmentation. The method converts the images into arbitrary-shape closed segments of distinct grey levels. To do that, the image is initially mapped to a tree. Then using RSST algorithm the image is segmented to a certain number of arbitrary-shaped regions. However, in fine segmentation, over-segmentation causes loss of objects of interest. In coarse segmentation, on the other hand, SST-based method suffers from merging the regions belonged to different objects. By applying watershed algorithm, the large segments are divided into the smaller regions based on the number of catchment's basins for each segment. The process exploits bi-level watershed concept to separate each multi-lobe region into a number of areas each corresponding to an object (in our case a cancerous region of the bone,) disregarding their homogeneity in grey level.

  10. TH-AB-209-07: High Resolution X-Ray-Induced Acoustic Computed Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, L; Tang, S; Ahmad, M

    Purpose: X-ray radiographic absorption imaging is an invaluable tool in medical diagnostics, biology and materials science. However, the use of conventional CT is limited by two factors: the detection sensitivity to weak absorption material and the radiation dose from CT scanning. The purpose of this study is to explore X-ray induced acoustic computed tomography (XACT), a new imaging modality, which combines X-ray absorption contrast and high ultrasonic resolution to address these challenges. Methods: First, theoretical models was built to analyze the XACT sensitivity to X-ray absorption and calculate the minimal radiation dose in XACT imaging. Then, an XACT system comprisedmore » of an ultrashort X-ray pulse, a low noise ultrasound detector and a signal acquisition system was built to evaluate the X-ray induced acoustic signal generation. A piece of chicken bone and a phantom with two golden fiducial markers were exposed to 270 kVp X-ray source with 60 ns exposure time, and the X-ray induced acoustic signal was received by a 2.25MHz ultrasound transducer in 200 positions. XACT images were reconstructed by a filtered back-projection algorithm. Results: The theoretical analysis shows that X-ray induced acoustic signals have 100% relative sensitivity to X-ray absorption, but not to X-ray scattering. Applying this innovative technology to breast imaging, we can reduce radiation dose by a factor of 50 compared with newly FDA approved breast CT. The reconstructed images of chicken bone and golden fiducial marker phantom reveal that the spatial resolution of the built XACT system is 350µm. Conclusion: In XACT, the imaging sensitivity to X-ray absorption is improved and the imaging dose is dramatically reduced by using ultrashort pulsed X-ray. Taking advantage of the high ultrasonic resolution, we can also perform 3D imaging with a single X-ray pulse. This new modality has the potential to revolutionize x-ray imaging applications in medicine and biology.« less

  11. Comparison of Body Composition Assessed by Dual-Energy X-Ray Absorptiometry and BMI in Current and Former U.S. Navy Service Members

    PubMed Central

    Gasier, Heath G.; Hughes, Linda M.; Young, Colin R.; Richardson, Annely M.

    2015-01-01

    Background Little is known of the diagnostic accuracy of BMI in classifying obesity in active duty military personnel and those that previously served. Thus, the primary objectives were to determine the relationship between lean and fat mass, and body fat percentage (BF%) with BMI, and assess the agreement between BMI and BF% in defining obesity. Methods Body composition was measured by dual-energy X-ray absorptiometry in 462 males (20–91 years old) who currently or previously served in the U.S. Navy. A BMI of ≥ 30 kg/m2 and a BF% ≥ 25% were used for obesity classification. Results The mean BMI (± SD) and BF% were 28.8 ± 4.1 and 28.9 ± 6.6%, respectively, with BF% increasing with age. Lean mass, fat mass, and BF% were significantly correlated with BMI for all age groups. The exact agreement of obesity defined by BMI and BF% was fair (61%), however, 38% were misclassified by a BMI cut-off of 30 when obesity was defined by BF%. Conclusions From this data we determined that there is a good correlation between body composition and BMI, and fair agreement between BMI and BF% in classifying obesity in a group of current and former U.S. Navy service members. However, as observed in the general population, a significant proportion of individuals with excess fat are misclassified by BMI cutoffs. PMID:26197480

  12. Preliminary study report: topological texture features extracted from standard radiographs of the heel bone are correlated with femoral bone mineral density

    NASA Astrophysics Data System (ADS)

    Boehm, H. F.; Lutz, J.; Koerner, M.; Notohamiprodjo, M.; Reiser, M.

    2009-02-01

    With the growing number of eldery patients in industrialized nations the incidence of geriatric, i.e. osteoporotic fractures is steadily on the rise. It is of great importance to understand the characteristics of hip fractures and to provide diagnostic tests for the assessment of an individual's fracture-risk that allow to take preventive action and give therapeutic advice. At present, bone-mineral-density (BMD) obtained from DXA (dual-energy x-ray-absorptiometry) is the clinical standard of reference for diagnosis and follow-up of osteoporosis. Since availability of DXA - other than that of clinical X-ray imaging - is usually restricted to specialized medical centers it is worth trying to implement alternative methods to estimate an individual's BMD. Radiographs of the peripheral skeleton, e.g. the ankle, range among the most ordered diagnostic procedures in surgery for exclusion or confirmation of fracture. It would be highly beneficial if - as a by-product of conventional imaging - one could obtain a quantitative parameter that is closely correlated with femoral BMD in addition to the original diagnostic information, e.g. fracture status at the peripheral site. Previous studies could demonstrate a correlation between calcaneal BMD and osteoporosis. The objective of our study was to test the hypothesis that topological analysis of calcaneal bone texture depicted by a lateral x-ray projection of the ankle allows to estimate femoral BMD. Our analysis on 34 post-menopausal patients indicate that texture properties based on graylevel topology in calcaneal x-ray-films are closely correlated with BMD at the hip and may qualify as a substitute indicator of femoral fracture risk.

  13. Clinical review: Ethnic differences in bone mass--clinical implications.

    PubMed

    Leslie, William D

    2012-12-01

    Differences in bone mineral density (BMD) as assessed with dual-energy x-ray absorptiometry are observed between geographic and ethnic groups, with important implications in clinical practice. PubMed was employed to identify relevant studies. A review of the literature was conducted, and data were summarized and integrated. The available data highlight the complex ethnic variations in BMD, which only partially account for observed variations in fracture rates. Factors contributing to ethnic differences include genetics, skeletal size, body size and composition, lifestyle, and social determinants. Despite BMD differences, the gradient of risk for fracture from BMD and other clinical risk factors appears to be similar across ethnic groups. Furthermore, BMD variation is greater within an ethnic population than between ethnic populations. New imaging technologies have identified ethnic differences in bone geometry, volumetric density, microarchitecture, and estimated bone strength that may contribute to a better understanding of ethnic differences in fracture risk. Factors associated with ethnicity affect BMD and fracture risk through direct and indirect mechanisms.

  14. X-ray filter for x-ray powder diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinsheimer, John Jay; Conley, Raymond P.; Bouet, Nathalie C. D.

    Technologies are described for apparatus, methods and systems effective for filtering. The filters may comprise a first plate. The first plate may include an x-ray absorbing material and walls defining first slits. The first slits may include arc shaped openings through the first plate. The walls of the first plate may be configured to absorb at least some of first x-rays when the first x-rays are incident on the x-ray absorbing material, and to output second x-rays. The filters may comprise a second plate spaced from the first plate. The second plate may include the x-ray absorbing material and wallsmore » defining second slits. The second slits may include arc shaped openings through the second plate. The walls of the second plate may be configured to absorb at least some of second x-rays and to output third x-rays.« less

  15. X-ray vector radiography of a human hand

    NASA Astrophysics Data System (ADS)

    Jud, Christoph; Braig, Eva; Dierolf, Martin; Eggl, Elena; Günther, Benedikt; Achterhold, Klaus; Gleich, Bernhard; Rummeny, Ernst; Noël, Peter; Pfeiffer, Franz; Münzel, Daniela

    2017-03-01

    Grating based x-ray phase-contrast reveals differential phase-contrast (DPC) and dark-field contrast (DFC) on top of the conventional absorption image. X-ray vector radiography (XVR) exploits the directional dependence of the DFC and yields the mean scattering strength, the degree of anisotropy and the orientation of scattering structures by combining several DFC-projections. Here, we perform an XVR of an ex vivo human hand specimen. Conventional attenuation images have a good contrast between the bones and the surrounding soft tissue. Within the bones, trabecular structures are visible. However, XVR detects subtler differences within the trabecular structure: there is isotropic scattering in the extremities of the phalanx in contrast to anisotropic scattering in its body. The orientation changes as well from relatively random in the extremities to an alignment along the longitudinal trabecular orientation in the body. In the other bones measured, a similar behavior was found. These findings indicate a deeper insight into the anatomical configuration using XVR compared to conventional radiography. Since microfractures cause a discontinuous trabecular structure, XVR could help to detect so-called radiographically occult fractures of the trabecular bones.

  16. Muscular Maximal Strength Indices and Bone Variables in a Group of Elderly Women.

    PubMed

    Nasr, Riad; Al Rassy, Nathalie; Watelain, Eric; Matta, Joseph; Frenn, Fabienne; Rizkallah, Maroun; Maalouf, Ghassan; El Khoury, César; Berro, Abdel-Jalil; El Hage, Rawad

    2018-03-22

    The aim of the present study was to explore the relations between muscular maximal strength indices and bone parameters (bone mineral density [BMD], hip geometry indices, and trabecular bone score [TBS]) in a group of elderly women. This study included 35 healthy elderly women whose ages range between 65 and 75 yr (68.1 ± 3.1 yr). BMD (in gram per square centimeter) was determined for each individual by dual-energy X-ray absorptiometry at the whole body, lumbar spine (L1-L4), total hip (TH), and femoral neck (FN). L1-L4 TBS and hip geometry indices were also evaluated by dual-energy X-ray absorptiometry. Maximal muscle strength of bench press (1-repetition maximum [RM] bench press), maximal muscle strength of leg press (1-RM leg press), and handgrip were measured using validated methods. 1-RM bench press was positively correlated to TH BMD (r = 0.40; p < 0.05), FN BMD (r = 0.41; p < 0.05), FN section modulus (r = 0.33; p < 0.05), and FN cross-sectional moment of inertia (r = 0.35; p < 0.05). 1-RM leg press was positively correlated to TH BMD (r = 0.50; p < 0.01), FN BMD (r = 0.35; p < 0.05), FN cross-sectional area (r = 0.38; p < 0.05), and TBS (r = 0.37; p < 0.05). Handgrip was correlated only to FN cross-sectional moment of inertia (r = 0.43; p < 0.01). This study suggests that 1-RM bench press and 1-RM leg press are positive determinants of BMD in elderly women. Copyright © 2018 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  17. Decreased bone density in carriers and patients of an Israeli family with the osteoporosis-pseudoglioma syndrome.

    PubMed

    Lev, Dorit; Binson, Inga; Foldes, A Joseph; Watemberg, Nathan; Lerman-Sagie, Tally

    2003-06-01

    The osteoporosis-pseudoglioma syndrome is a rare autosomal recessive disorder characterized by severe juvenile-onset osteoporosis and congenital or early-onset blindness. Other manifestations include muscular hypotonia, ligamentous laxity, mild mental retardation and seizures. The gene responsible was recently identified to be the low density lipoprotein receptor-related family member LRP5 on chromosome 11q11-12. To measure bone density in two siblings with the OPPG syndrome as well as in their family members (parents and siblings). Bone mineral density was determined in the lumbar spine (antero-posterior), femoral neck, two-thirds distal forearm (> 95% cortical bone) and ultradistal forearm (predominantly trabecular bone) by dual-energy X-ray absorptiometry. The studies revealed osteoporotic changes both in the patients and the carriers. The findings demonstrate that OPPG carriers have reduced bone mass, which is a risk factor for development of early osteoporotic changes.

  18. Effect of alendronate on bone mineral density in adult patients with Laron syndrome (primary growth hormone insensitivity).

    PubMed

    Eshed, Varda; Benbassat, Carlos A; Laron, Zvi

    2006-04-01

    Severe short stature resulting from a deficiency in insulin-like growth factor-I (IGF-I) is a prominent feature of Laron syndrome (LS). Whether patients with LS are osteopenic or not, and whether they need treatment with bisphosphonates, remains uncertain. The aim of this study was to investigate the action of alendronate on the IGF-I-deficient bones of adult patients with LS and osteoporosis, as determined by dual X-ray absorptiometry . Seven patients (5 women and 2 men) of mean age 40.8+/-7.6 years and mean bone mass density (BMD) 0.843+/-0.06 g/cm2 (T score -2.9+/-0.5) at the lumbar spine and 0.734+/-0.11 g/cm2 (T score -2.2+/-0.9) at the femoral neck were treated with alendronate 70 mg once/weekly over a 12-month period. Treatment led to an increase of 5.3% in BMD (p=0.038) at the femoral neck. There was a similar trend at the lumbar spine, but the difference was not statistically significant (2.3%, p=0.34). Mean total alkaline phosphatase decreased by 14% from normal range at baseline (p=0.007). Urinary deoxypyridinoline levels, which were elevated at baseline (10+/-2.3 nM/mMcre), showed a nonsignificant change during treatment. Our study suggests that treatment with alendronate may have positive effects in patients with LS and low BMD on dual X-ray absorptiometry.

  19. Association between physical activity and bone in children with Prader-Willi syndrome.

    PubMed

    Duran, Andrea T; Wilson, Kathleen S; Castner, Diobel M; Tucker, Jared M; Rubin, Daniela A

    2016-07-01

    The aim of the study was to determine if physical activity (PA) is associated with bone health in children with Prader-Willi syndrome (PWS). Participants included 23 children with PWS (age: 11.0±2.0 years). PA, measured by accelerometry, was categorized into light, moderate, vigorous and moderate plus vigorous intensities. Hip, total body minus the head (body), bone mineral content (BMC), bone mineral density (BMD) and BMD z-score (BMDz) were measured by dual X-ray absorptiometry. Separate hierarchical regression models were completed for all bone parameters, PA intensity and select covariates. Moderate PA and select covariates explained the most variance in hip BMC (84.0%), BMD (61.3%) and BMDz (34.9%; p<0.05 for all). Likewise, for each body parameter, moderate PA and select covariates explained the most variance in body BMC (75.8%), BMD (74.4%) and BMDz (31.8%; p<0.05 for all). PA of at least moderate intensity appears important for BMC and BMD in children with PWS.

  20. Bones of contention: bone mineral density recovery in celiac disease--a systematic review.

    PubMed

    Grace-Farfaglia, Patricia

    2015-05-07

    Metabolic bone disease is a frequent co-morbidity in newly diagnosed adults with celiac disease (CD), an autoimmune disorder triggered by the ingestion of dietary gluten. This systematic review of studies looked at the efficacy of the gluten-free diet, physical activity, nutrient supplementation, and bisphosphonates for low bone density treatment. Case control and cohort designs were identified from PubMed and other academic databases (from 1996 to 2015) that observed newly diagnosed adults with CD for at least one year after diet treatment using the dual-energy x-ray absorptiometry (DXA) scan. Only 20 out of 207 studies met the inclusion criteria. Methodological quality was assessed using the Strengthening of the Reporting of Observational Studies in Epidemiology (STROBE) statement checklist. Gluten-free diet adherence resulted in partial recovery of bone density by one year in all studies, and full recovery by the fifth year. No treatment differences were observed between the gluten-free diet alone and diet plus bisphosphonates in one study. For malnourished patients, supplementation with vitamin D and calcium resulted in significant improvement. Evidence for the impact of physical activity on bone density was limited. Therapeutic strategies aimed at modifying lifestyle factors throughout the lifespan should be studied.

  1. Associations Between Sedentary Time, Physical Activity, and Dual-Energy X-ray Absorptiometry Measures of Total Body, Android, and Gynoid Fat Mass in Children.

    PubMed

    McCormack, Lacey; Meendering, Jessica; Specker, Bonny; Binkley, Teresa

    2016-01-01

    Negative health outcomes are associated with excess body fat, low levels of physical activity (PA), and high sedentary time (ST). Relationships between PA, ST, and body fat distribution, including android and gynoid fat, assessed using dual-energy X-ray absorptiometry (DXA) have not been measured in children. The purpose of this study was to test associations between levels of activity and body composition in children and to evaluate if levels of activity predict body composition by DXA and by body mass index percentile in a similar manner. PA, ST, and body composition from 87 children (8.8-11.8 yr, grades 3-5, 44 boys) were used to test the association among study variables. Accelerometers measured PA and ST. Body composition measured by DXA included bone mineral content (BMC) and fat and lean mass of the total body (TB, less head), android, and gynoid regions. ST (range: 409-685 min/wk) was positively associated with TB percent fat (0.03, 95% confidence interval [CI]: 0.00-0.05) and android fat mass (1.5 g, 95% CI: 0.4-3.0), and inversely associated with the lean mass of the TB (-10.7 g, 95% CI: -20.8 to -0.63) and gynoid regions (-2.2 g, 95% CI: -4.3 to -0.2), and with BMC (-0.43 g, 95% CI: 0.77-0.09). Moderate-to-vigorous PA was associated with lower TB (-53 g, 95% CI: -87 to -18), android (-5 g, 95% CI: -8 to -2]), and gynoid fat (-6 g, 95% CI: -11 to -0.5). Vigorous activity results were similar. Light PA was associated with increased TB (17.1 g, 95% CI: 3.0-31.3) and gynoid lean mass (3.9 g, 95% CI: 1.0-6.8) and BMC (0.59 g, 95% CI: 0.10-1.07). In boys, there were significant associations between activity and DXA percent body fat measures that were not found with the body mass index percentile. Objective measures of PA were inversely associated with TB, android, and gynoid fat, whereas ST was directly associated with TB percent fat and, in particular, android fat. Activity levels predict body composition measures by DXA and, in

  2. Relation between body composition and bone mineral density in young undregraduate students with different nutritional status

    PubMed Central

    Rodrigues, Edil de Albuquerque; dos Santos, Marcos André Moura; da Silva, Amanda Tabosa Pereira; Farah, Breno Quintella; Costa, Manoel da Cunha; Campos, Florisbela de Arruda Camara e Siqueira; Falcão, Ana Patrícia Siqueira Tavares

    2016-01-01

    ABSTRACT Objective To investigate the relationship between total and segmental body fat, bone mineral density and bone mineral content in undergraduate students stratified according to nutritional status. Methods The study included 45 male undergraduate students aged between 20 and 30 years. Total and segmental body composition, bone mineral density and bone mineral content assessments were performed using dual energy X-ray absorptiometry. Subjects were allocated into three groups (eutrophic, overweight and obese). Results With the exception of upper limb bone mineral content, significantly higher (p<0.05) mean bone mineral density, bone mineral content, and relative body fat values were documented in the obese group. Total body and segmental relative body fat (lower limbs and trunk) were positively correlated (p<0.05) with bone mineral density in the overweight group. Upper limb fat was negatively correlated (p<0.05) with bone mineral content in the normal and eutrophic groups. Conclusion Total body and segmental body fat were correlated with bone mineral density and bone mineral content in male undergraduate students, particularly in overweight individuals. PMID:27074228

  3. Greater association of peak neuromuscular performance with cortical bone geometry, bone mass and bone strength than bone density: A study in 417 older women.

    PubMed

    Belavý, Daniel L; Armbrecht, Gabriele; Blenk, Tilo; Bock, Oliver; Börst, Hendrikje; Kocakaya, Emine; Luhn, Franziska; Rantalainen, Timo; Rawer, Rainer; Tomasius, Frederike; Willnecker, Johannes; Felsenberg, Dieter

    2016-02-01

    We evaluated which aspects of neuromuscular performance are associated with bone mass, density, strength and geometry. 417 women aged 60-94years were examined. Countermovement jump, sit-to-stand test, grip strength, forearm and calf muscle cross-sectional area, areal bone mineral content and density (aBMC and aBMD) at the hip and lumbar spine via dual X-ray absorptiometry, and measures of volumetric vBMC and vBMD, bone geometry and section modulus at 4% and 66% of radius length and 4%, 38% and 66% of tibia length via peripheral quantitative computed tomography were performed. The first principal component of the neuromuscular variables was calculated to generate a summary neuromuscular variable. Percentage of total variance in bone parameters explained by the neuromuscular parameters was calculated. Step-wise regression was also performed. At all pQCT bone sites (radius, ulna, tibia, fibula), a greater percentage of total variance in measures of bone mass, cortical geometry and/or bone strength was explained by peak neuromuscular performance than for vBMD. Sit-to-stand performance did not relate strongly to bone parameters. No obvious differential in the explanatory power of neuromuscular performance was seen for DXA aBMC versus aBMD. In step-wise regression, bone mass, cortical morphology, and/or strength remained significant in relation to the first principal component of the neuromuscular variables. In no case was vBMD positively related to neuromuscular performance in the final step-wise regression models. Peak neuromuscular performance has a stronger relationship with leg and forearm bone mass and cortical geometry as well as proximal forearm section modulus than with vBMD. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Effects of losartan treatment on the physicochemical properties of diabetic rat bone.

    PubMed

    Donmez, Baris Ozgur; Unal, Mustafa; Ozdemir, Semir; Ozturk, Nihal; Oguz, Nurettin; Akkus, Ozan

    2017-03-01

    Inhibitors of the renin-angiotensin system used to treat several diseases have also been shown to be effective on bone tissue, suggesting that angiotensin-converting enzyme inhibitors and angiotensin receptor blockers may reduce fracture risk. The present study investigated the effects of losartan on the physicochemical and biomechanical properties of diabetic rat bone. Losartan (5 mg/kg/day) was administered via oral gavage for 12 weeks. Bone mineral density (BMD) was measured using dual-energy X-ray absorptiometry. Whole femurs were tested under tension to evaluate the biomechanical properties of bone. The physicochemical properties of bone were analyzed by Fourier transform infrared spectroscopy. Although losartan did not recover decreases in the BMD of diabetic bone, it recovered the physicochemical (mineral and collagen matrix) properties of diabetic rat bone. Furthermore, losartan also recovered ultimate tensile strength of diabetic rat femurs. Losartan, an angiotensin II type 1 receptor blocker, has a therapeutic effect on the physicochemical properties of diabetic bone resulting in improvement of bone strength at the material level. Therefore, specific inhibition of this pathway at the receptor level shows potential as a therapeutic target for diabetic patients suffering from bone diseases such as osteopenia.

  5. Bone mineral density, muscle strength and physical activity. A population-based study of 332 subjects aged 15-42 years.

    PubMed

    Düppe, H; Gärdsell, P; Johnell, O; Nilsson, B E; Ringsberg, K

    1997-04-01

    The aim of this population-based study was to find out whether differences in levels of physical activity have an influence on bone mass quantity and whether quadriceps muscle strength is a reliable determinant of bone mass. Included were 175 men and 157 women, aged 15-42 years. Bone mineral density (BMD) was measured at various sites by dual X-ray absorptiometry (DXA) and single photon absorptiometry (SPA). Muscle strength was assessed using an isokinetic muscle force meter. A questionnaire was used to estimate the level of physical activity. We found a positive correlation between physical activity and BMD for boys at the distal forearm and for girls at the trochanter (age group 15-16 years). Active men (age group 21-42 years) had up to 9% higher BMD levels at the hip than those who were less active. Quadriceps muscle torque was not an independent predictor of BMD. Our data suggest that a higher level of physical activity-within the limits of a "normal life style"-may have a positive effect on BMD in the proximal femur of young adults, which in turn may lessen the subsequent risk of fracture.

  6. Measurement of spine and total body mineral by dual-photon absorptiometry

    NASA Technical Reports Server (NTRS)

    Mazess, R. B.; Young, D.

    1983-01-01

    The use of Gd-153 dual-photon absorptiometry at 43 and 100 keV to measure individual-bone and total-body bone minerals is discussed in a survey of recent studies on humans, phantoms, and monkeys. Precision errors of as low as 1 percent have been achieved in vivo, suggesting the use of sequential measurements in studies of immobilization and space-flight effects.

  7. Advances in functional X-ray imaging techniques and contrast agents

    PubMed Central

    Chen, Hongyu; Rogalski, Melissa M.

    2012-01-01

    X-rays have been used for non-invasive high-resolution imaging of thick biological specimens since their discovery in 1895. They are widely used for structural imaging of bone, metal implants, and cavities in soft tissue. Recently, a number of new contrast methodologies have emerged which are expanding X-ray’s biomedical applications to functional as well as structural imaging. These techniques are promising to dramatically improve our ability to study in situ biochemistry and disease pathology. In this review, we discuss how X-ray absorption, X-ray fluorescence, and X-ray excited optical luminescence can be used for physiological, elemental, and molecular imaging of vasculature, tumours, pharmaceutical distribution, and the surface of implants. Imaging of endogenous elements, exogenous labels, and analytes detected with optical indicators will be discussed. PMID:22962667

  8. Bone volume-to-total volume ratio measured in trabecular bone by single-sided NMR devices.

    PubMed

    Brizi, Leonardo; Barbieri, Marco; Baruffaldi, Fabio; Bortolotti, Villiam; Fersini, Chiara; Liu, Huabing; Nogueira d'Eurydice, Marcel; Obruchkov, Sergei; Zong, Fangrong; Galvosas, Petrik; Fantazzini, Paola

    2018-01-01

    Reduced bone strength is associated with a loss of bone mass, usually evaluated by dual-energy X-ray absorptiometry, although it is known that the bone microstructure also affects the bone strength. Here, a method is proposed to measure (in laboratory) the bone volume-to-total volume ratio by single-sided NMR scanners, which is related to the microstructure of the trabecular bone. Three single-sided scanners were used on animal bone samples. These low-field, mobile, low-cost devices are able to detect the NMR signal, regardless of the sample sizes, without the use of ionizing radiations, with the further advantage of signal localization offered by their intrinsic magnetic field gradients. The performance of the different single-sided scanners have been discussed. The results have been compared with bone volume-to-total volume ratio by micro CT and MRI, obtaining consistent values. Our results demonstrate the feasibility of the method for laboratory analyses, which are useful for measurements like porosity on bone specimens. This can be considered as the first step to develop an NMR method based on the use of a mobile single-sided device, for the diagnosis of osteoporosis, through the acquisition of the signal from the appendicular skeleton, allowing for low-cost, wide screening campaigns. Magn Reson Med 79:501-510, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  9. Bone mineral density and body composition of the United States Olympic women's field hockey team

    PubMed Central

    Sparling, P. B.; Snow, T. K.; Rosskopf, L. B.; O'Donnell, E. M.; Freedson, P. S.; Byrnes, W. C.

    1998-01-01

    OBJECTIVE: To evaluate total bone mineral density (BMD) and body composition (% fat) in world class women field hockey players, members of the 1996 United States Olympic team. METHODS: Whole body BMD (g/cm2) and relative body fatness (% fat) were assessed by dual energy x ray absorptiometry using a Lunar DPX-L unit with software version 1.3z. Body composition was also estimated by hydrostatic weighing and the sum of seven skinfolds. Results: Mean (SD) BMD was 1.253 (0.048) g/cm2 which is 113.2 (4.0)% of age and weight adjusted norms. Estimates of body composition from the three methods were similar (statistically non- significant): 16.1 (4.4)% fat from dual energy x ray absorptiometry, 17.6 (3.2)% from hydrostatic weighing, and 16.9 (2.6)% from the sum of seven skinfolds. Mean fat free mass was approximately 50 kg. CONCLUSIONS: The mean whole body BMD value for members of the 1996 United States Olympic women's field hockey team is one of the highest reported for any women's sports team. Moreover, the mean fat free mass per unit height was quite high and % fat was low. In this group of world class sportswomen, low % fat was not associated with low BMD. 




 PMID:9865404

  10. Air displacement plethysmography, dual-energy X-ray absorptiometry, and total body water to evaluate body composition in preschool-age children.

    PubMed

    Crook, Tina A; Armbya, Narain; Cleves, Mario A; Badger, Thomas M; Andres, Aline

    2012-12-01

    Anthropometrics and body mass index are only proxies in the evaluation of adiposity in the pediatric population. Air displacement plethysmography technology was not available for children aged 6 months to 9 years until recently. Our study was designed to test the precision of air displacement plethysmography (ADP) in measuring body fat mass in children at ages 3 to 5 years compared with a criterion method, deuterium oxide dilution (D(2)O), which estimates total body water and a commonly used methodology, dual-energy x-ray absorptiometry (DXA). A prospective, cross-sectional cohort of 66 healthy children (35 girls) was recruited in the central Arkansas region between 2007 and 2009. Weight and height were obtained using standardized procedures. Fat mass (%) was measured using ADP, DXA, and D(2)O. Concordance correlation coefficient and Bland-Altman plots were used to investigate the precision of the ADP techniques against D(2)O and DXA in children at ages 3 to 5 years. ADP concordance correlation coefficient for fat mass was weak (0.179) when compared with D(2)O. Bland-Altman plots revealed a low accuracy and large scatter of ADP fat mass (%) results (mean=-2.5, 95% CI -20.3 to 15.4) compared with D(2)O. DXA fat mass (%) results were more consistent although DXA systematically overestimated fat mass by 4% to 5% compared with D(2)O. Compared with D(2)O, ADP does not accurately assess percent fat mass in children aged 3 to 5 years. Thus, D(2)O, DXA, or quantitative nuclear magnetic resonance may be considered better options for assessing fat mass in young children. Copyright © 2012 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  11. Imaging cochlear soft tissue displacement with coherent x-rays

    NASA Astrophysics Data System (ADS)

    Rau, Christoph; Richter, Claus-Peter

    2015-10-01

    At present, imaging of cochlear mechanics at mid-cochlear turns has not been accomplished. Although challenging, this appears possible with partially coherent hard x-rays. The present study shows results from stroboscopic x-ray imaging of a test object at audio frequencies. The vibration amplitudes were quantified. In a different set of experiments, an intact and calcified gerbil temporal bone was used to determine displacements of the reticular lamina, tectorial membrane, and Reissner’s membrane with the Lucas and Kanade video flow algorithm. The experiments validated high frequency x-ray imaging and imaging in a calcified cochlea. The present work is key for future imaging of cochlear micromechanics at a high spatial resolution.

  12. Prospective assessment of bone turnover and clinical bone diseases after allogeneic hematopoietic stem-cell transplantation.

    PubMed

    Petropoulou, Anna D; Porcher, Raphael; Herr, Andrée-Laure; Devergie, Agnès; Brentano, Thomas Funck; Ribaud, Patricia; Pinto, Fernando O; Rocha, Vanderson; Peffault de Latour, Régis; Orcel, Philippe; Socié, Gérard; Robin, Marie

    2010-06-15

    Bone complications after hematopoietic stem-cell transplantation (HSCT) are relatively frequent. Evaluation of biomarkers of bone turnover and dual energy x-ray absorptiometry (DEXA) are not known in this context. We prospectively evaluated bone mineral density, biomarkers of bone turnover, and the cumulative incidence of bone complications after allogeneic HSCT. One hundred forty-six patients were included. Bone mineral density was measured by DEXA 2-month and 1-year post-HSCT. The markers of bone turnover were serum C-telopeptide (C-TP), 5 tartrate-resistant acid phosphatase (bone resorption), and osteocalcin (bone formation) determined pre-HSCT and 2 months and 1 year thereafter. Potential association between osteoporosis at 2 months, osteoporotic fracture or avascular necrosis and, individual patient's characteristics and biologic markers were tested. C-TP was high before and 2 months after transplant. At 2 months, DEXA detected osteoporosis in more than half the patients tested. Male sex, median age less than or equal to 15 years, and abnormal C-TP before HSCT were risk factors significantly associated with osteoporosis. Three-year cumulative incidences of fractures and avascular necrosis were 8% and 11%, respectively. Children were at higher risk of fracture, whereas corticosteroid treatment duration was a significant risk factor for developing a clinical bone complication post-HSCT. Bone complications and osteoporosis are frequent after HSCT. Bone biologic markers and DEXA showed that subclinical bone abnormalities appeared early post-HSCT. The risk factors, age, gender, and C-TP easily available at the time of transplantation were identified. Biphosphonates should probably be given to patients with those risk factors.

  13. Monte Carlo investigation of backscatter point spread function for x-ray imaging examinations

    NASA Astrophysics Data System (ADS)

    Xiong, Zhenyu; Vijayan, Sarath; Rudin, Stephen; Bednarek, Daniel R.

    2017-03-01

    X-ray imaging examinations, especially complex interventions, may result in relatively high doses to the patient's skin inducing skin injuries. A method was developed to determine the skin-dose distribution for non-uniform x-ray beams by convolving the backscatter point-spread-function (PSF) with the primary-dose distribution to generate the backscatter distribution that, when added to the primary dose, gives the total-dose distribution. This technique was incorporated in the dose-tracking system (DTS), which provides a real-time color-coded 3D-mapping of skin dose during fluoroscopic procedures. The aim of this work is to investigate the variation of the backscatter PSF with different parameters. A backscatter PSF of a 1-mm x-ray beam was generated by EGSnrc Monte-Carlo code for different x-ray beam energies, different soft-tissue thickness above bone, different bone thickness and different entrance-beam angles, as well as for different locations on the SK-150 anthropomorphic head phantom. The results show a reduction of the peak scatter to primary dose ratio of 48% when X-ray beam voltage is increased from 40 keV to 120 keV. The backscatter dose was reduced when bone was beneath the soft tissue layer and this reduction increased with thinner soft tissue and thicker bone layers. The backscatter factor increased about 21% as the angle of incidence of the beam with the entrance surface decreased from 90° (perpendicular) to 30°. The backscatter PSF differed for different locations on the SK-150 phantom by up to 15%. The results of this study can be used to improve the accuracy of dose calculation when using PSF convolution in the DTS.

  14. Visual detection of particulates in x-ray images of processed meat products

    NASA Astrophysics Data System (ADS)

    Schatzki, Thomas F.; Young, Richard; Haff, Ron P.; Eye, J.; Wright, G.

    1996-08-01

    A study was conducted to test the efficacy of detecting particulate contaminants in processed meat samples by visual observation of line-scanned x-ray images. Six hundred field- collected processed-product samples were scanned at 230 cm2/s using 0.5 X 0.5-mm resolution and 50 kV, 13 mA excitation. The x-ray images were image corrected, digitally stored, and inspected off-line, using interactive image enhancement. Forty percent of the samples were spiked with added contaminants to establish the visual recognition of contaminants as a function of sample thickness (1 to 10 cm), texture of the x-ray image (smooth/textured), spike composition (wood/bone/glass), size (0.1 to 0.4 cm), and shape (splinter/round). The results were analyzed using a maximum likelihood logistic regression method. In packages less than 6 cm thick, 0.2-cm-thick bone chips were easily recognized, 0.1-cm glass splinters were recognized with some difficulty, while 0.4-cm-thick wood was generally missed. Operational feasibility in a time-constrained setting was confirmed. One half percent of the samples arriving from the field contained bone slivers > 1 cm long, 1/2% contained metallic material, while 4% contained particulates exceeding 0.3 cm in size. All of the latter appeared to be bone fragments.

  15. An Approach for Determining Quantitative Measures for Bone Volume and Bone Mass in the Pediatric Spina Bifida Population

    PubMed Central

    Horenstein, Rachel E.; Shefelbine, Sandra J.; Mueske, Nicole M.; Fisher, Carissa L.; Wren, Tishya A.L.

    2015-01-01

    Background The pediatric spina bifida population suffers from decreased mobility and recurrent fractures. This study aimed to develop a method for quantifying bone mass along the entire tibia in youth with spina bifida. This will provide information about all potential sites of bone deficiencies. Methods Computed tomography images of the tibia for 257 children (n=80 ambulatory spina bifida, n=10 non-ambulatory spina bifida, n=167 typically developing) were analyzed. Bone area was calculated at regular intervals along the entire tibia length and then weighted by calibrated pixel intensity for density weighted bone area. Integrals of density weighted bone area were used to quantify bone mass in the proximal and distal epiphyses and diaphysis. Group differences were evaluated using analysis of variance. Findings Non-ambulatory children suffer from decreased bone mass in the diaphysis and proximal and distal epiphyses compared to ambulatory and control children (P≤0.001). Ambulatory children with spina bifida showed statistically insignificant differences in bone mass in comparison to typically developing children at these sites (P>0.5). Interpretation This method provides insight into tibial bone mass distribution in the pediatric spina bifida population by incorporating information along the whole length of the bone, thereby providing more information than dual-energy x-ray absorptiometry and peripheral quantitative computed tomography. This method can be applied to any population to assess bone mass distribution across the length of any long bone. PMID:26002057

  16. The Macular Carotenoids Lutein and Zeaxanthin Are Related to Increased Bone Density in Young Healthy Adults

    PubMed Central

    Bovier, Emily R.; Hammond, Billy R.

    2017-01-01

    Lutein (L) and zeaxanthin (Z) status can be quantified by measuring their concentrations both in serum and, non-invasively, in retinal tissue. This has resulted in a unique ability to assess their role in a number of tissues ranging from cardiovascular to central nervous system tissue. Recent reports using animal models have suggested yet another role, a developmental increase in bone mass. To test this, we assessed L and Z status in 63 young healthy adults. LZ status was determined by measuring LZ in serum (using HPLC) and retina tissue (measuring macular pigment optical density, MPOD, using customized heterochromatic flicker photometry). Bone density was measured using dual-energy X-ray absorptiometry (DXA). Although serum LZ was generally not related to bone mass, MPOD was significantly related to bone density in the proximal femur and lumbar spine. In general, our results are consistent with carotenoids, specifically LZ, playing a role in optimal bone health. PMID:28880221

  17. Computed microtomography and X-ray fluorescence analysis for comprehensive analysis of structural changes in bone.

    PubMed

    Buzmakov, Alexey; Chukalina, Marina; Nikolaev, Dmitry; Schaefer, Gerald; Gulimova, Victoria; Saveliev, Sergey; Tereschenko, Elena; Seregin, Alexey; Senin, Roman; Prun, Victor; Zolotov, Denis; Asadchikov, Victor

    2013-01-01

    This paper presents the results of a comprehensive analysis of structural changes in the caudal vertebrae of Turner's thick-toed geckos by computer microtomography and X-ray fluorescence analysis. We present algorithms used for the reconstruction of tomographic images which allow to work with high noise level projections that represent typical conditions dictated by the nature of the samples. Reptiles, due to their ruggedness, small size, belonging to the amniote and a number of other valuable features, are an attractive model object for long-orbital experiments on unmanned spacecraft. Issues of possible changes in their bone tissue under the influence of spaceflight are the subject of discussions between biologists from different laboratories around the world.

  18. Axial and appendicular bone density predict fractures in older women

    NASA Technical Reports Server (NTRS)

    Black, D. M.; Cummings, S. R.; Genant, H. K.; Nevitt, M. C.; Palermo, L.; Browner, W.

    1992-01-01

    To determine whether measurement of hip and spine bone mass by dual-energy x-ray absorptiometry (DEXA) predicts fractures in women and to compare the predictive value of DEXA with that of single-photon absorptiometry (SPA) of appendicular sites, we prospectively studied 8134 nonblack women age 65 years and older who had both DEXA and SPA measurements of bone mass. A total of 208 nonspine fractures, including 37 wrist fractures, occurred during the follow-up period, which averaged 0.7 years. The risk of fracture was inversely related to bone density at all measurement sites. After adjusting for age, the relative risks per decrease of 1 standard deviation in bone density for the occurrence of any fracture was 1.40 for measurement at the proximal femur (95% confidence interval 1.20-1.63) and 1.35 (1.15-1.58) for measurement at the spine. Results were similar for all regions of the proximal femur as well as SPA measurements at the calcaneus, distal radius, and proximal radius. None of these measurements was a significantly better predictor of fractures than the others. Furthermore, measurement of the distal radius was not a better predictor of wrist fracture (relative risk 1.64: 95% CI 1.13-2.37) than other sites, such as the lumbar spine (RR 1.56; CI 1.07-2.26), the femoral neck (RR 1.65; CI 1.12-2.41), or the calcaneus (RR 1.83; CI 1.26-2.64). We conclude that the inverse relationship between bone mass and risk of fracture in older women is similar for absorptiometric measurements made at the hip, spine, and appendicular sites.

  19. Evaluation of the uncertainties associated with in vivo X-ray fluorescence bone lead calibrations

    NASA Astrophysics Data System (ADS)

    Lodwick, Jeffrey C.

    An anthropometric leg phantom developed at the University of Cincinnati (UC) was used to evaluate the effects that changes in leg position and variation between subjects has on in vivo x-ray fluorescence (XRF) measurements of stable lead in bone. The changes in leg position that were evaluated include changes in source-phantom distance ranging between 0.0 mm and 30.0 mm and phantom rotation over 40 degrees. Source-phantom distance was determined to have a significant effect on XRF measurement results particularly at source-phantom distances greater than 10.0 mm. Rotation of the leg phantom through 40 degrees was determined to have no significant effect on XRF measurement results. Between subject factors that were evaluated include bone calcium content and overlying tissue thickness. Bone calcium content was determined to have a significant effect on XRF measurements when measuring lead in micrograms per gram bone material. However, if measurement results of micrograms of lead per gram calcium (or per gram bone mineral) is used the normalization method makes the change in calcium content not significant. Overlying tissue thickness was determined to have no significant effect on XRF measurement results with tissue thickness ranging between 5.7 and 11.62 mm. The UC leg phantom was modified to include a fibula bone phantom so that the effect that the fibula has on XRF measurement results could be evaluated. The fibula was determined to have no significant effect on XRF measurement results and in the future need not be incorporated into in vivo XRF calibration phantoms. A knee phantom was also developed for purposes of calibrations of in vivo XRF measurement of lead in the patella. XRF measurement results using this phantom were compared to results of XRF measurements made using the plaster-of-Paris (POP) phantoms. A significant difference was observed between the normalized count rates of the two phantom types when either micrograms of lead per gram of bone material or

  20. Coupling multiscale X-ray physics and micromechanics for bone tissue composition and elasticity determination from micro-CT data, by example of femora from OVX and sham rats

    NASA Astrophysics Data System (ADS)

    Hasslinger, Patricia; Vass, Viktoria; Dejaco, Alexander; Blanchard, Romane; Örlygsson, Gissur; Gargiulo, Paolo; Hellmich, Christian

    2016-05-01

    Due to its high resolution, micro-CT (Computed Tomograph) scanning is the key to assess bone quality of sham and OVX (ovariectomized) rats. Combination of basic X-ray physics, such as the energy- and chemistry-dependence of attenuation coefficients, with results from ashing tests on rat bones, delivers mineral, organic, and water volume fractions within the voxels. Additional use of a microelastic model for bone provides voxel-specific elastic properties. The new method delivers realistic bone mass densities, and reveals that OVX protocols may indeed induce some bone mass loss, while the average composition of the bone tissue remains largely unaltered.

  1. Low bone mineral mass is associated with decreased bone formation and diet in girls with Rett syndrome.

    PubMed

    Motil, Kathleen J; Barrish, Judy O; Neul, Jeffrey L; Glaze, Daniel G

    2014-09-01

    The aim of the present study was to characterize biomarkers of bone turnover and their relation with bone mineral mass in a cross-sectional cohort of girls with Rett syndrome (RTT) and to examine the role of dietary, biochemical, hormonal, and inflammatory factors on bone mineral mass and bone biomarkers in this disorder. Total body bone mineral content (BMC) and bone mineral density (BMD) were determined by dual-energy x-ray absorptiometry. Dietary nutrient intakes were determined from 3-day food records. Biomarkers of bone turnover, bone metabolites, vitamin D metabolites, hormones, and inflammatory markers were measured by standard clinical laboratory methods. Serum osteocalcin, bone alkaline phosphatase, and C-telopeptide showed significant inverse relations with age in the RTT cohort. Mean osteocalcin concentrations were significantly lower and mean bone alkaline phosphatase concentrations were significantly higher for individual age groups in the RTT cohort than mean values for their respective age ranges in the reference population. Significant inverse associations were identified between urinary calcium losses, expressed as calcium:creatinine ratios, and total body BMC and BMD z scores. Dietary protein, calcium, and phosphorus intakes, expressed as a proportion of Dietary Reference Intakes for age and sex, showed significant positive associations with total body BMD z scores. The present study suggests decreased bone formation instead of increased bone resorption may explain in part the deficits in bone mineral mass in RTT and that attention to the adequacy of dietary protein, calcium, and phosphorus intakes may offer an opportunity to improve bone health in RTT.

  2. Reduced bone mass in Dutch adolescents fed a macrobiotic diet in early life.

    PubMed

    Parsons, T J; van Dusseldorp, M; van der Vliet, M; van de Werken, K; Schaafsma, G; van Staveren, W A

    1997-09-01

    This study investigated the effect of a macrobiotic (vegan-type) diet, low in calcium and vitamin D, consumed in early life, on bone mineral during adolescence. Bone mineral content (BMC) and bone area were measured in 195 adolescents (103 girls, 92 boys) aged 9-15 years, using dual-energy X-ray absorptiometry. Ninety-three adolescents (43 girls, 50 boys) had followed a macrobiotic diet in childhood, and 102 (60 girls, 42 boys) were control subjects. After adjustment for bone area, weight, height, percent body lean, age, and puberty, BMC was significantly lower in macrobiotic subjects, in boys and girls, respectively, at the whole body, -3.4% and -2.5%, spine, -8.5% and -5.0%, femoral neck, -8.0% and -8.2%, midshaft radius, -6.8% and -5.6%, and also in girls, at the trochanter, -5.8% (p < 0.05). No group differences were observed at the wrist. Group differences were not explained by current calcium adjusted bone mass at age 9-15 years, observations which may hold important implications for fracture risk in later life.

  3. Oral treatment with retinoic acid decreases bone mass in rats.

    PubMed

    Hotchkiss, Charlotte E; Latendresse, John; Ferguson, Sherry A

    2006-12-01

    13-cis-retinoic acid (13-cis-RA, isotretinoin) is used to treat severe recalcitrant acne. Other retinoids have adverse effects on bone. Recent studies of human patients treated with 13-cis-RA have had varying results, perhaps because of variability among patients and the lack of control groups. The effects of retinoids have been studied in rodents, but little information is available regarding the effects of clinically relevant retinoid doses as evaluated by use of bone densitometric techniques. We treated rats for 15 or 20 wk with 13-cis-RA, all-trans-RA, or soybean oil (control) by gavage. We used dual-energy X-ray absorptiometry, histomorphometry, and histologic evaluation to evaluate effects on bone. Spontaneous long bone fractures occurred in some rats treated with 15 mg/kg all-trans-RA daily. Bone mineral density, bone mineral content, bone diameter, and cortical thickness of the femur were reduced in rats treated daily with 10 or 15 mg/kg all-trans-RA or 30 mg/kg 13-cis-RA. The lumbar spine was not affected. Although the effects of 13-cis-RA were not as dramatic as those of all-trans-RA, further study of the effects of 13-cis-RA on long bones is warranted.

  4. [The relationship between the parameters of mineral density of bone tissue and somatotype in women residing in the Republic of Karelia].

    PubMed

    Pashkova, I G; Gaivoronskiy, I V; Aleksina, L A; Kornev, M A

    2014-01-01

    Comprehensive anthropometric and densitometric study using the dual x-ray absorptiometry was conducted to determine the relationship between the mineral density of bone tissue and somatotype in 360 women aged 20 to 87 years, permanently residing in the Republic of Karelia. Significant direct correlation was detected between the somatotype and the amount of mineral substances in the vertebrae, bone mineral density and the area of the lumbar vertebrae. Bone mineral density level of the lumbar vertebrae was higher in women with europlastic and athletic somatotypes, which were characterized by high values of body mass and length, body muscle and fat mass. Low values of bone mineral density of vertebrae were identified in women belonging to subathletic, mesoplastic and stenoplastic somatotypes. The risk of developing osteopenia and osteoporosis is increased in women with low body muscle mass.

  5. Low Bone Mineral Mass Is Associated with Decreased Bone Formation and Diet in Females with Rett Syndrome

    PubMed Central

    Motil, Kathleen J.; Barrish, Judy O.; Neul, Jeffrey L.; Glaze, Daniel G.

    2014-01-01

    Objective To characterize biomarkers of bone turnover and their relation with bone mineral mass in a cross-sectional cohort of females with Rett syndrome (RTT) and to examine the role of dietary, biochemical, hormonal, and inflammatory factors on bone mineral mass and bone biomarkers in this disorder. Methods Total body bone mineral content (BMC) and density (BMD) were determined by dual-energy x-ray absorptiometry. Dietary nutrient intakes were determined from 3-day food records. Biomarkers of bone turnover, bone metabolites, vitamin D metabolites, hormones, and inflammatory markers were measured by standard clinical laboratory methods. Results Serum osteocalcin, bone alkaline phosphatase, and C-telopeptide showed significant inverse relations with age in the RTT cohort. Mean osteocalcin concentrations were significantly lower and mean bone alkaline phosphatase concentrations were significantly higher for individual age groups in the RTT cohort than mean values for their respective age ranges in the reference population. Significant inverse associations were identified between urinary calcium losses, expressed as calcium:creatinine ratios, and total body BMC and BMD z-scores. Dietary protein, calcium, and phosphorus intakes, expressed as a proportion of Dietary Reference Intakes for age and gender, showed significant positive associations with total body BMD z-scores. Conclusion This study suggests decreased bone formation rather than increased bone resorption may explain in part the deficits in bone mineral mass in RTT and that attention to the adequacy of dietary protein, calcium and phosphorus intakes may offer an opportunity to improve bone health in RTT. PMID:25144778

  6. Longitudinal study of bone loss in pre- and perimenopausal women: evidence for bone loss in perimenopausal women.

    PubMed

    Chapurlat, R D; Garnero, P; Sornay-Rendu, E; Arlot, M E; Claustrat, B; Delmas, P D

    2000-01-01

    Bone loss before and around the time of menopause is not well characterized by longitudinal studies. We measured bone mineral density at various skeletal sites--total body, femoral neck, trochanter, anteroposterior (AP) and lateral spine, and forearm--with dual-energy X-ray absorptiometry in a large prospective cohort of 272 untreated pre- and perimenopausal women aged 31-59 years, at 1 year intervals for 3 years. Sex steroids and the following markers of bone remodeling were measured: serum osteocalcin (OC), procollagen I carboxyterminal extension peptide, bone alkaline phosphatase (BAP) and urinary crosslinks (CTX and NTX). Seventy-six women were classified as perimenopausal and 196 as premenopausal. Over the 3 years, premenopausal women had no significant bone loss at any site and a small but significant increase in bone mineral density at the trochanter, total hip, AP spine and radius. Perimenopausal women significantly lost bone from cancellous and cortical sites, i.e., the femoral neck, trochanter and lumbar spine. In perimenopausal women with increased follicle stimulating hormone, the rate of bone loss at the femoral neck correlated negatively with OC and BAP. In perimenopausal women, serum estradiol levels decreased during the 3 years of follow-up and bone loss from the trochanter and the AP spine was correlated with serum estradiol after 3 years. In conclusion, among premenopausal women there is no bone loss. In contrast, there is a rapid and diffuse bone loss in perimenopausal women, related to decreased estrogen secretion. Bone markers may be useful to identify these women losing bone.

  7. Characterization of microgravity effects on bone structure and strength using fractal analysis

    NASA Technical Reports Server (NTRS)

    Acharya, Raj S.; Shackelford, Linda

    1995-01-01

    The effect of micro-gravity on the musculoskeletal system has been well studied. Significant changes in bone and muscle have been shown after long term space flight. Similar changes have been demonstrated due to bed rest. Bone demineralization is particularly profound in weight bearing bones. Much of the current techniques to monitor bone condition use bone mass measurements. However, bone mass measurements are not reliable to distinguish Osteoporotic and Normal subjects. It has been shown that the overlap between normals and osteoporosis is found for all of the bone mass measurement technologies: single and dual photon absorptiometry, quantitative computed tomography and direct measurement of bone area/volume on biopsy as well as radiogrammetry. A similar discordance is noted in the fact that it has not been regularly possible to find the expected correlation between severity of osteoporosis and degree of bone loss. Structural parameters such as trabecular connectivity have been proposed as features for assessing bone conditions. In this report, we use fractal analysis to characterize bone structure. We show that the fractal dimension computed with MRI images and X-Ray images of the patella are the same. Preliminary experimental results show that the fractal dimension computed from MRI images of vertebrae of human subjects before bedrest is higher than during bedrest.

  8. A new anthropometric phantom for calibrating in vivo measurements of stable lead in the human leg using X-ray fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spitz, H.; Jenkins, M.; Lodwick, J.

    2000-02-01

    A new anthropometric phantom has been developed for calibrating in vivo measurements of stable lead deposited in bone using x-ray fluorescence. The phantom reproduces the shape of the mid shaft of the adult human leg and is fabricated using polyurethanes and calcium carbonate to produce materials that exhibit the same density, energy transmission, and calcium content as cortical bone, bone marrow, and muscle. The phantom includes a removable tibia fabricated using simulants for cortical bone and bone marrow to which a precise amount of stable lead has been added to cortical bone. The formulations used in fabricating the new anthropometricmore » phantom are much more uniform in density and composition than the conventional phantom made from Plexiglas cylinders filled with plaster-of-Paris. The energy spectrum from an x-ray fluorescence measurement of the phantom using a {sup 109}Cd source is indistinguishable from an in vivo x-ray fluorescence measurement of the human leg, demonstrating that the materials used in the phantom exhibit the same radiological properties as human tissue. Likewise, results from x-ray fluorescence measurements of the phantom exhibit the same positional dependency as the human leg and vary by approximately 36% when, for example, the phantom containing 54 ppm of stable lead in the tibia was rotated by only 15 degrees. The detection limit for a 30 min {sup 109}Cd K shell x-ray fluorescence in vivo measurement is approximately 20 ppm determined from a background measurement using the new phantom containing no added lead in the muscle, bone, or bone marrow. The new anthropometric phantom significantly improves in vivo x-ray fluorescence calibration measurements by (1) faithfully reproducing the anatomy of the human leg, (2) having components that exhibit radiological properties similar to that of human tissue, and (3) providing a realistic calibration standard that can be used for in vivo x-ray fluorescence intercomparison measurements.« less

  9. Comparison of resting and total energy expenditure in peritoneal dialysis patients and body composition measured by dual-energy X-ray absorptiometry.

    PubMed

    El-Kateb, S; Sridharan, S; Farrington, K; Davenport, A

    2016-11-01

    Under basal resting conditions muscle metabolism is reduced, whereas metabolism increases with physical activity. We wished to determine whether there was an association between resting energy expenditure (REE) and total energy expenditure (TEE) in peritoneal dialysis (PD) patients and lean body mass (LBM). We determined REE and TEE by recently validated equations, using doubly labelled isotopic water, and LBM by dual-energy X-ray absorptiometry (DXA) scanning. We studied 87 patients, 50 male (57.4%), 25 diabetic (28.7%), mean age 60.3±17.6 years, with a median PD treatment of 11.4 (4.7-29.5) months. The mean weight was 70.1±17.7 kg with a REE of 1509±245 kcal/day and TEE 1947±378 kcal/day. REE was associated with body size (weight r=0.78 and body mass index (BMI) r=0.72) and body composition (LBM r=0.77, lean body mass index (LBMI) r=0.76, r=0.62), all P<0.001). For TEE, there was an association with weight r=0.58, BMI r=0.49 and body composition (LBM r=0.64, LBMI (r=0.54), all P<0.001). We compared LBMI measured by DXA and that estimated by the Boer equation using anthropomorphic measurements, which overestimated and underestimated LBM for smaller patients and heavier patients, respectively. Muscle metabolism is reduced at rest and increases with physical activity. Whereas previous reports based on REE did not show any association with LBM, we found an association between both REE and TEE, using a recently validated equation derived from dialysis patients, and LBM measured by DXA scanning. Estimation of muscle mass from anthropomorphic measurements systematically overestimated LBM for small patients and conversely underestimated for heavier patients.

  10. Comparison of gross body fat-water magnetic resonance imaging at 3 Tesla to dual-energy X-ray absorptiometry in obese women.

    PubMed

    Silver, Heidi J; Niswender, Kevin D; Kullberg, Joel; Berglund, Johan; Johansson, Lars; Bruvold, Morten; Avison, Malcolm J; Welch, E Brian

    2013-04-01

    Improved understanding of how depot-specific adipose tissue mass predisposes to obesity-related comorbidities could yield new insights into the pathogenesis and treatment of obesity as well as metabolic benefits of weight loss. We hypothesized that three-dimensional (3D) contiguous "fat-water" MR imaging (FWMRI) covering the majority of a whole-body field of view (FOV) acquired at 3 Tesla (3T) and coupled with automated segmentation and quantification of amount, type, and distribution of adipose and lean soft tissue would show great promise in body composition methodology. Precision of adipose and lean soft tissue measurements in body and trunk regions were assessed for 3T FWMRI and compared to dual-energy X-ray absorptiometry (DXA). Anthropometric, FWMRI, and DXA measurements were obtained in 12 women with BMI 30-39.9 kg/m(2) . Test-retest results found coefficients of variation (CV) for FWMRI that were all under 3%: gross body adipose tissue (GBAT) 0.80%, total trunk adipose tissue (TTAT) 2.08%, visceral adipose tissue (VAT) 2.62%, subcutaneous adipose tissue (SAT) 2.11%, gross body lean soft tissue (GBLST) 0.60%, and total trunk lean soft tissue (TTLST) 2.43%. Concordance correlation coefficients between FWMRI and DXA were 0.978, 0.802, 0.629, and 0.400 for GBAT, TTAT, GBLST, and TTLST, respectively. While Bland-Altman plots demonstrated agreement between FWMRI and DXA for GBAT and TTAT, a negative bias existed for GBLST and TTLST measurements. Differences may be explained by the FWMRI FOV length and potential for DXA to overestimate lean soft tissue. While more development is necessary, the described 3T FWMRI method combined with fully-automated segmentation is fast (<30-min total scan and post-processing time), noninvasive, repeatable, and cost-effective. Copyright © 2012 The Obesity Society.

  11. Comparison of dual-energy X-ray absorptiometry and magnetic resonance imaging-measured adipose tissue depots in HIV-infected and control subjects.

    PubMed

    Scherzer, Rebecca; Shen, Wei; Bacchetti, Peter; Kotler, Donald; Lewis, Cora E; Shlipak, Michael G; Punyanitya, Mark; Heymsfield, Steven B; Grunfeld, Carl

    2008-10-01

    Studies in persons without HIV infection have compared adipose tissue measured by dual-energy X-ray absorptiometry (DXA) and magnetic resonance imaging (MRI), but no such study has been conducted in HIV-infected (HIV+) subjects, who have a high prevalence of regional fat loss. We compared DXA- with MRI-measured trunk, leg, arm, and total fat in HIV+ and control subjects. A cross-sectional analysis was conducted in 877 HIV+ subjects and 260 control subjects in FRAM (Study of Fat Redistribution and Metabolic Change in HIV Infection), stratified by sex and HIV status. Univariate associations of DXA with MRI were strongest for total and trunk fat (r > or = 0.92) and slightly weaker for leg (r > or = 0.87) and arm (r > or = 0.71) fat. The average estimated limb fat was substantially greater for DXA than for MRI for HIV+ and control men and women (all P < 0.0001). Less of a difference was observed in trunk fat measured by DXA and MRI, but the difference was still statistically significant (P < 0.0001). Bland-Altman plots showed increasing differences and variability. Greater average limb fat in control and HIV+ subjects (both P < 0.0001) was associated with greater differences between DXA and MRI measurements. Because the control subjects had more limb fat than did the HIV+ subjects, greater amounts of fat were measured by DXA than by MRI when control subjects were compared with HIV+ subjects. More HIV+ subjects had leg fat in the bottom decile of the control subjects by DXA than by MRI (P < 0.0001). Although DXA- and MRI-measured adipose tissue depots correlate strongly in HIV+ and control subjects, differences increase as average fat increases, particularly for limb fat. DXA may estimate a higher prevalence of peripheral lipoatrophy than does MRI in HIV+ subjects.

  12. Prediction of android and gynoid body adiposity via a three-dimensional stereovision body imaging system and dual-energy x-ray absorptiometry

    PubMed Central

    Lee, Jane J.; Freeland-Graves, Jeanne H.; Pepper, M. Reese; Stanforth, Philip R.; Xu, Bugao

    2017-01-01

    Objective Current methods for measuring regional body fat are expensive and inconvenient compared to the relative cost-effectiveness and ease-of-use of a stereovision body imaging (SBI) system. The primary goal of this research is to develop prediction models for android and gynoid fat by body measurements assessed via SBI and dual-energy x-ray absorptiometry (DXA). Subsequently, mathematical equations for prediction of total and regional (trunk, leg) body adiposity were established via parameters measured by SBI and DXA. Methods A total of 121 participants were randomly assigned into primary and cross-validation groups. Body measurements were obtained via traditional anthropometrics, SBI, and DXA. Multiple regression analysis was conducted to develop mathematical equations by demographics and SBI assessed body measurements as independent variables and body adiposity (fat mass and percent fat) as dependent variables. The validity of the prediction models was evaluated by a split sample method and Bland-Altman analysis. Results The R2 of the prediction equations for fat mass and percent body fat were 93.2% and 76.4% for android, and 91.4% and 66.5% for gynoid, respectively. The limits of agreement for the fat mass and percent fat were − 0.06 ± 0.87 kg and − 0.11 ± 1.97 % for android and − 0.04 ± 1.58 kg and − 0.19 ± 4.27 % for gynoid. Prediction values for fat mass and percent fat were 94.6% and 88.9% for total body, 93.9% and 71.0% for trunk, and 92.4% and 64.1% for leg, respectively. Conclusions The three-dimensional (3D) SBI produces reliable parameters that can predict android and gynoid, as well as total and regional (trunk, leg) fat mass. PMID:25915106

  13. Prediction of Android and Gynoid Body Adiposity via a Three-dimensional Stereovision Body Imaging System and Dual-Energy X-ray Absorptiometry.

    PubMed

    Lee, Jane J; Freeland-Graves, Jeanne H; Pepper, M Reese; Stanforth, Philip R; Xu, Bugao

    2015-01-01

    Current methods for measuring regional body fat are expensive and inconvenient compared to the relative cost-effectiveness and ease of use of a stereovision body imaging (SBI) system. The primary goal of this research is to develop prediction models for android and gynoid fat by body measurements assessed via SBI and dual-energy x-ray absorptiometry (DXA). Subsequently, mathematical equations for prediction of total and regional (trunk, leg) body adiposity were established via parameters measured by SBI and DXA. A total of 121 participants were randomly assigned into primary and cross-validation groups. Body measurements were obtained via traditional anthropometrics, SBI, and DXA. Multiple regression analysis was conducted to develop mathematical equations by demographics and SBI assessed body measurements as independent variables and body adiposity (fat mass and percentage fat) as dependent variables. The validity of the prediction models was evaluated by a split sample method and Bland-Altman analysis. The R(2) of the prediction equations for fat mass and percentage body fat were 93.2% and 76.4% for android and 91.4% and 66.5% for gynoid, respectively. The limits of agreement for the fat mass and percentage fat were -0.06 ± 0.87 kg and -0.11% ± 1.97% for android and -0.04 ± 1.58 kg and -0.19% ± 4.27% for gynoid. Prediction values for fat mass and percentage fat were 94.6% and 88.9% for total body, 93.9% and 71.0% for trunk, and 92.4% and 64.1% for leg, respectively. The three-dimensional (3D) SBI produces reliable parameters that can predict android and gynoid as well as total and regional (trunk, leg) fat mass.

  14. Dimensionality and noise in energy selective x-ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alvarez, Robert E.

    Purpose: To develop and test a method to quantify the effect of dimensionality on the noise in energy selective x-ray imaging.Methods: The Cramèr-Rao lower bound (CRLB), a universal lower limit of the covariance of any unbiased estimator, is used to quantify the noise. It is shown that increasing dimensionality always increases, or at best leaves the same, the variance. An analytic formula for the increase in variance in an energy selective x-ray system is derived. The formula is used to gain insight into the dependence of the increase in variance on the properties of the additional basis functions, the measurementmore » noise covariance, and the source spectrum. The formula is also used with computer simulations to quantify the dependence of the additional variance on these factors. Simulated images of an object with three materials are used to demonstrate the trade-off of increased information with dimensionality and noise. The images are computed from energy selective data with a maximum likelihood estimator.Results: The increase in variance depends most importantly on the dimension and on the properties of the additional basis functions. With the attenuation coefficients of cortical bone, soft tissue, and adipose tissue as the basis functions, the increase in variance of the bone component from two to three dimensions is 1.4 × 10{sup 3}. With the soft tissue component, it is 2.7 × 10{sup 4}. If the attenuation coefficient of a high atomic number contrast agent is used as the third basis function, there is only a slight increase in the variance from two to three basis functions, 1.03 and 7.4 for the bone and soft tissue components, respectively. The changes in spectrum shape with beam hardening also have a substantial effect. They increase the variance by a factor of approximately 200 for the bone component and 220 for the soft tissue component as the soft tissue object thickness increases from 1 to 30 cm. Decreasing the energy resolution of the detectors

  15. Dimensionality and noise in energy selective x-ray imaging

    PubMed Central

    Alvarez, Robert E.

    2013-01-01

    Purpose: To develop and test a method to quantify the effect of dimensionality on the noise in energy selective x-ray imaging. Methods: The Cramèr-Rao lower bound (CRLB), a universal lower limit of the covariance of any unbiased estimator, is used to quantify the noise. It is shown that increasing dimensionality always increases, or at best leaves the same, the variance. An analytic formula for the increase in variance in an energy selective x-ray system is derived. The formula is used to gain insight into the dependence of the increase in variance on the properties of the additional basis functions, the measurement noise covariance, and the source spectrum. The formula is also used with computer simulations to quantify the dependence of the additional variance on these factors. Simulated images of an object with three materials are used to demonstrate the trade-off of increased information with dimensionality and noise. The images are computed from energy selective data with a maximum likelihood estimator. Results: The increase in variance depends most importantly on the dimension and on the properties of the additional basis functions. With the attenuation coefficients of cortical bone, soft tissue, and adipose tissue as the basis functions, the increase in variance of the bone component from two to three dimensions is 1.4 × 103. With the soft tissue component, it is 2.7 × 104. If the attenuation coefficient of a high atomic number contrast agent is used as the third basis function, there is only a slight increase in the variance from two to three basis functions, 1.03 and 7.4 for the bone and soft tissue components, respectively. The changes in spectrum shape with beam hardening also have a substantial effect. They increase the variance by a factor of approximately 200 for the bone component and 220 for the soft tissue component as the soft tissue object thickness increases from 1 to 30 cm. Decreasing the energy resolution of the detectors increases the

  16. Congenital Bone Fractures in Spinal Muscular Atrophy: Functional Role for SMN Protein in Bone Remodeling

    PubMed Central

    Shanmugarajan, Srinivasan; Swoboda, Kathryn J.; Iannaccone, Susan T.; Ries, William L.; Maria, Bernard L.; Reddy, Sakamuri V.

    2009-01-01

    Spinal muscular atrophy is the second most common fatal childhood disorder. Core clinical features include muscle weakness caused by degenerating lower motor neurons and a high incidence of bone fractures and hypercalcemia. Fractures further compromise quality of life by progression of joint contractures or additional loss of motor function. Recent observations suggest that bone disease in spinal muscular atrophy may not be attributed entirely to lower motor neuron degeneration. The presence of the spinal muscular atrophy disease-determining survival motor neuron gene (SMN), SMN expression, and differential splicing in bone-resorbing osteoclasts was recently discovered. Its ubiquitous expression and the differential expression of splice variants suggest that SMN has specific roles in bone cell function. SMN protein also interacts with osteoclast stimulatory factor. Mouse models of human spinal muscular atrophy disease suggest a potential role of SMN protein in skeletal development. Dual energy x-ray absorptiometry analysis demonstrated a substantial decrease in total bone area and poorly developed caudal vertebra in the mouse model. These mice also had pelvic bone fractures. Studies delineating SMN signaling mechanisms and gene transcription in a cell-specific manner will provide important molecular insights into the pathogenesis of bone disease in children with spinal muscular atrophy. Moreover, understanding bone remodeling in spinal muscular atrophy may lead to novel therapeutic approaches to enhance skeletal health and quality of life. This article reviews the skeletal complications associated with spinal muscular atrophy and describes a functional role for SMN protein in osteoclast development and bone resorption activity. PMID:17761651

  17. Pilot study of bone mineral density in breast cancer patients treated with adjuvant chemotherapy

    NASA Technical Reports Server (NTRS)

    Headley, J. A.; Theriault, R. L.; LeBlanc, A. D.; Vassilopoulou-Sellin, R.; Hortobagyi, G. N.

    1998-01-01

    The objective of this cross-sectional study was to determine lumbar spine bone mineral density (BMD) in breast cancer patients previously treated with adjuvant chemotherapy. Sixteen of 27 patients who received adjuvant chemotherapy became permanently amenorrheic as a result of chemotherapy. BMD was measured at the lumbar spine using dual energy X-ray absorptiometry (DEXA). Chemotherapy drugs and dosages along with a history of risk factors for reduced bone density including activity level, tobacco and/or alcohol use, metabolic bone disease, family history, and hormone exposure were identified. Results showed that women who became permanently amenorrheic as a result of chemotherapy had BMD 14% lower than women who maintained menses after chemotherapy. Chemotherapy-treated women who maintained ovarian function had normal BMD. This study suggests that women who have premature menopause as a result of chemotherapy for breast cancer are at increased risk of bone loss and may be at risk for early development of osteoporosis. Women who maintain menses do not appear to be at risk for accelerated trabecular bone loss.

  18. Middle ear bones of a mid-gestation ruminant foetus extracted from x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Costeur, Loic; Mennecart, Bastien; Müller, Bert; Schulz, Georg

    2016-10-01

    The timing of ossification of middle ear ossicles has been extensively studied in humans. This is an exception since it is vastly unknown in the +5000 extant species of placentals. As a preliminary approach, a cow foetus (around 115 days of gestation) was visualized using X-ray microtomography (μCT) and the ossicles including stapes, incus, and malleus could be extracted from the data set. All three bones have already undergone substantial ossification, which allow comparison to adult middle ear bones. Their ossification at this stage parallels ossification in humans at a comparable stage of gestation. While full ossification is not yet achieved almost all the morphological characters of the ossicles are observed. Bone tissue is still very porous, the stapes does not have the characteristic plate-like footplate, the lenticular process of the incus is missing and the manubrium of the malleus is very thin and not yet complete. Despite all this, the ossicles are articulate with each other and perfectly with the bony labyrinth. The stapes footplate is positioned on the oval window but is smaller than the latter while it should perfectly fit to transmit sound vibrations to the cochlea. All ossicles, especially the stapes, have not yet reached adult size, while the bony labyrinth already has. This is the first detailed description of a set of middle ear bones in a placental at mid-gestation based on high-resolution μCT. Similarities in ossification timing with humans encourage more work to be done on foetuses to understand if a general rule for placental mammals exists.

  19. The application of k-shell x-ray fluorescence to determine bone lead burden and its correlation with hypertension among African Americans in Gadsden County, Florida

    NASA Astrophysics Data System (ADS)

    Jackson-Edwards, Patrice

    Photons from k shell x-ray fluorescence illuminates lead atoms by measuring the characteristic x-rays which indicate the abundance of 210Pb present in a sample. The measurement utilizes a 109Cd source and a low-energy germanium detector, which has emerged as the best available technique for estimating cumulative exposure to lead in adults and for predicting lead-associated risks for adult chronic disease outcomes such as hypertension. The main focus of this study, was to show the correlation between bone lead concentration at the tibia (mean +/- standard deviation of 7+/-1 ppm) and patella (mean +/- standard deviation of 6+/-1 ppm) bone sites and hypertension (mean +/- standard deviation of the systolic standing 143+/-18mmHg, systolic sitting 140+/-17mmHg, diastolic standing 88+/-14 mmHg, and diastolic sitting 81+/-9 mmHg), among the 67 Gadsden County subjects that participated in this study. This was accomplished using FAMU's setup for the detector. The gamma rays emitted by the 109Cd source are scattered by atomic electrons in the k-shell. Excited electrons in the k-shell then spontaneously fluoresce at 88 keV as a signature of lead in the bone. The 88 keV photons are then detected at an angle of 180 degrees with respect to the incident x-ray direction and are detected by the Canberra Germanium solid-state detector bathed in liquid nitrogen. Results show that in this population all lead biomarkers (tibia lead, patella lead, and blood lead) were not significant contributors to the occurrence of hypertension. In the final logistic regression analysis, age and gender were predictors for the occurrence of hypertension at the p<0.05 level in the overall population. This study will help contribute to the understanding of the body's management of lead toxicity and to KXRF techniques currently used in physics research.

  20. THE MEASUREMENT OF BONE QUALITY USING GRAY LEVEL CO-OCCURRENCE MATRIX TEXTURAL FEATURES.

    PubMed

    Shirvaikar, Mukul; Huang, Ning; Dong, Xuanliang Neil

    2016-10-01

    In this paper, statistical methods for the estimation of bone quality to predict the risk of fracture are reported. Bone mineral density and bone architecture properties are the main contributors of bone quality. Dual-energy X-ray Absorptiometry (DXA) is the traditional clinical measurement technique for bone mineral density, but does not include architectural information to enhance the prediction of bone fragility. Other modalities are not practical due to cost and access considerations. This study investigates statistical parameters based on the Gray Level Co-occurrence Matrix (GLCM) extracted from two-dimensional projection images and explores links with architectural properties and bone mechanics. Data analysis was conducted on Micro-CT images of 13 trabecular bones (with an in-plane spatial resolution of about 50μm). Ground truth data for bone volume fraction (BV/TV), bone strength and modulus were available based on complex 3D analysis and mechanical tests. Correlation between the statistical parameters and biomechanical test results was studied using regression analysis. The results showed Cluster-Shade was strongly correlated with the microarchitecture of the trabecular bone and related to mechanical properties. Once the principle thesis of utilizing second-order statistics is established, it can be extended to other modalities, providing cost and convenience advantages for patients and doctors.

  1. THE MEASUREMENT OF BONE QUALITY USING GRAY LEVEL CO-OCCURRENCE MATRIX TEXTURAL FEATURES

    PubMed Central

    Shirvaikar, Mukul; Huang, Ning; Dong, Xuanliang Neil

    2016-01-01

    In this paper, statistical methods for the estimation of bone quality to predict the risk of fracture are reported. Bone mineral density and bone architecture properties are the main contributors of bone quality. Dual-energy X-ray Absorptiometry (DXA) is the traditional clinical measurement technique for bone mineral density, but does not include architectural information to enhance the prediction of bone fragility. Other modalities are not practical due to cost and access considerations. This study investigates statistical parameters based on the Gray Level Co-occurrence Matrix (GLCM) extracted from two-dimensional projection images and explores links with architectural properties and bone mechanics. Data analysis was conducted on Micro-CT images of 13 trabecular bones (with an in-plane spatial resolution of about 50μm). Ground truth data for bone volume fraction (BV/TV), bone strength and modulus were available based on complex 3D analysis and mechanical tests. Correlation between the statistical parameters and biomechanical test results was studied using regression analysis. The results showed Cluster-Shade was strongly correlated with the microarchitecture of the trabecular bone and related to mechanical properties. Once the principle thesis of utilizing second-order statistics is established, it can be extended to other modalities, providing cost and convenience advantages for patients and doctors. PMID:28042512

  2. Computation of bone remodelling after Duracon knee arthroplasty using a thermodynamic-based model.

    PubMed

    Bougherara, H; Nazgooei, S; Sayyidmousavi, A; Marsik, F; Marík, I A

    2011-07-01

    The present study utilizes a recently developed literature model for the bone remodelling process to predict the evolution of bone density following Duracon total knee arthroplasty (TKA). In this model, which is based on chemical kinetics and irreversible thermodynamics, bone is treated as a self-organizing system capable of exchanging matter, energy, and entropy with its surroundings. Unlike previous models in which mechanical loading is regarded as the only stimulus for bone remodelling, the present model establishes a unique coupling between mechanical loading and the chemical reactions involved in the process of bone remodelling. This model was incorporated into the finite element software ANSYS by means of a macro to compute density distribution in distal femoral bone both before and after TKA. Consistent with dual-energy X-ray absorptiometry (DEXA) scans reported in the literature, the results showed that the most severe bone loss occurs in the anterior region of the distal femur and that there is more bone resorption in the lateral than the medial condyle following TKA. Furthermore, the bone density distribution predicted using the present model showed a gradual and uniform pattern and thus a more realistic bone evolution contrary to the strain energy density model, where there is no gradual bone density evolution.

  3. Directed Research in Bone Discipline: Refining Previous Research Observations for Space Medicine

    NASA Technical Reports Server (NTRS)

    Sibonga, Jean D.

    2015-01-01

    Dual-energy X-ray absorptiometry bone mass density, as a sole index, is an insufficient surrogate for fracture; Clinical Practice Guidelines using bone mass density (both World Health Organization and FRAX) are not specific for complicated subjects such as young, healthy persons following prolonged exposure to skeletal unloading (i.e. an attribute of spaceflight); Research data suggest that spaceflight induces changes to astronaut bones that could be profound, possibly irreversible and unlike age-related bone loss on Earth.; There is a need to objectively assess factors across human physiology that are also influenced by spaceflight (e.g., muscle) that contribute to fracture risk. Some of these objective assessments may require innovative technologies, analyses and modeling.; Astronauts are also exposed to novel situations that may overload their bones highlighting a need integrate biomechanics of physical activities into risk assessments.; As we accumulate data, which reflects the biomechanical competence of bone under specific mechanically-loaded scenarios (even activities of daily living), BONE expects Bone Fracture Module to be more sensitive and/or have less uncertainty in its assessments of fracture probability.; Fracture probability drives the requirement for countermeasures. Level of evidence will unlikely be obtained; hence, the Bone Research and Clinical Advisory Panel (like a Data Safety Monitoring Board) will provide the recommendations.

  4. Bone mineral loss in young women with amenorrhoea.

    PubMed Central

    Davies, M C; Hall, M L; Jacobs, H S

    1990-01-01

    OBJECTIVE--To examine the impact of amenorrhoea on bone mineral density in women of reproductive age. DESIGN--Cross sectional study of 200 amenorrhoeic women compared with normally menstruating controls. SETTING--Teaching hospital outpatient clinic specialising in reproductive medicine. SUBJECTS--200 Women aged 16-40 with a past or current history of amenorrhoea from various causes and of a median duration of three years, and a control group of 57 age matched normal volunteers with no history of menstrual disorder. MAIN OUTCOME MEASURE--Bone mineral density in the lumbar spine (L1-L4) as measured by dual energy x ray absorptiometry. RESULTS--The amenorrhoeic group showed a mean reduction in bone mineral density of 15% (95% confidence interval 12% to 18%) as compared with controls (mean bone mineral density 0.89 (SD 0.12) g/cm2 v 1.05 (0.09) g/cm2 in controls). Bone loss was related to the duration of amenorrhoea and the severity of oestrogen deficiency rather than to the underlying diagnosis. Patients with a history of fracture had significantly lower bone density than those without a history of fracture. Ten patients had suffered an apparently atraumatic fracture. CONCLUSIONS--Amenorrhoea in young women should be investigated and treated to prevent bone mineral loss. Menopausal women with a past history of amenorrhoea should be considered to be at high risk of osteoporosis. PMID:2224267

  5. Effect of two forms of alendronate administration upon bone mass after two years of treatment.

    PubMed

    Sosa, M; Hernández, D; Segarra, M C; Gómez, A; de la Peña, E; Betancor, P

    2002-01-01

    The efficacy of alendronate in slowing the loss of bone mass, or even in increasing it, in osteoporotic patients and thus reducing the risk of new fractures has been described. Nevertheless, the way of taking this drug, together with its side effects, sometimes produces withdrawals. In this study, we analyzed if an alternative way of taking the alendronate improves the follow-up of the treatment and if it had the same effect on bone mineral metabolism than the traditional way of prescription. An open, intention-to-treat study, with follow-up of 2 yr was conducted. Eighty women suffering from postmenopausal osteoporosis were included in the study. They were classified in a random manner into two groups, each one of them received 10 mg/d alendronate, together with 1.2 g of calcium and 800 IU of Vitamin D3. Group I received the drug fasting, before breakfast, as usually prescribed and group II received the alendronate fasting, at noon, before lunch. Biochemical markers of bone remodeling were determined. Total alkaline phosphatase, osteocalcin, tartrate-resistant acid phosphatase, urine calcium/creatinine ratio, crosslinked N-telopeptides of type I collagen/creatinine ratio, serum calcium, and parathyroid hormone were also determined, and a lateral dorsolumbar radiography of the spine was performed. Bone mineral density was determined in the lumbar spine by dual-energy X-ray absorptiometry and quantitative computed tomography and by dual-energy X-ray absorptiometry in the proximal femur. Both groups showed an increase in bone mineral density in the lumbar spine and in the proximal femur, which was statistically significant after 1 yr of treatment in the range between 1.5% and 4.3%, depending on the anatomical localization where bone mineral density was measured. There was also an important decrease in the biochemical markers of bone remodeling, between 5.6% and 42.5%, depending on the biochemical marker; the decrease of amino-terminal telopetide during the first year

  6. Trabecular bone score (TBS): Method and applications.

    PubMed

    Martineau, P; Leslie, W D

    2017-11-01

    Trabecular bone score (TBS) is a texture index derived from standard lumbar spine dual energy X-ray absorptiometry (DXA) images and provides information about the underlying bone independent of the bone mineral density (BMD). Several salient observations have emerged. Numerous studies have examined the relationship between TBS and fracture risk and have shown that lower TBS values are associated with increased risk for major osteoporotic fracture in postmenopausal women and older men, with this result being independent of BMD values and other clinical risk factors. Therefore, despite being derived from standard DXA images, the information contained in TBS is independent and complementary to the information provided by BMD and the FRAX® tool. A procedure to generate TBS-adjusted FRAX probabilities has become available with the resultant predicted fracture risks shown to be more accurate than the standard FRAX tool. With these developments, TBS has emerged as a clinical tool for improved fracture risk prediction and guiding decisions regarding treatment initiation, particularly for patients with FRAX probabilities around an intervention threshold. In this article, we review the development, validation, clinical application, and limitations of TBS. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. In vivo quantification of lead in bone with a portable x-ray fluorescence system--methodology and feasibility.

    PubMed

    Nie, L H; Sanchez, S; Newton, K; Grodzins, L; Cleveland, R O; Weisskopf, M G

    2011-02-07

    This study was conducted to investigate the methodology and feasibility of developing a portable x-ray fluorescence (XRF) technology to quantify lead (Pb) in bone in vivo. A portable XRF device was set up and optimal settings of voltage, current, and filter combination for bone lead quantification were selected to achieve the lowest detection limit. The minimum radiation dose delivered to the subject was calculated by Monte Carlo simulations. An ultrasound device was used to measure soft tissue thickness to account for signal attenuation, and an alternative method to obtain soft tissue thickness from the XRF spectrum was developed and shown to be equivalent to the ultrasound measurements (intraclass correlation coefficient, ICC = 0.82). We tested the correlation of in vivo bone lead concentrations between the standard KXRF technology and the portable XRF technology. There was a significant correlation between the bone lead concentrations obtained from the standard KXRF technology and those obtained from the portable XRF technology (ICC = 0.65). The detection limit for the portable XRF device was about 8.4 ppm with 2 mm soft tissue thickness. The entrance skin dose delivered to the human subject was about 13 mSv and the total body effective dose was about 1.5 µSv and should pose minimal radiation risk. In conclusion, portable XRF technology can be used for in vivo bone lead measurement with sensitivity comparable to the KXRF technology and good correlation with KXRF measurements.

  8. Protecting Bone Health in Pediatric Rheumatic Diseases: Pharmacological Considerations.

    PubMed

    Zhang, Yujuan; Milojevic, Diana

    2017-06-01

    Bone health in children with rheumatic conditions may be compromised due to several factors related to the inflammatory disease state, delayed puberty, altered life style, including decreased physical activities, sun avoidance, suboptimal calcium and vitamin D intake, and medical treatments, mainly glucocorticoids and possibly some disease-modifying anti-rheumatic drugs. Low bone density or even fragility fractures could be asymptomatic; therefore, children with diseases of high inflammatory load, such as systemic onset juvenile idiopathic arthritis, juvenile dermatomyositis, systemic lupus erythematosus, and those requiring chronic glucocorticoids may benefit from routine screening of bone health. Most commonly used assessment tools are laboratory testing including serum 25-OH-vitamin D measurement and bone mineral density measurement by a variety of methods, dual-energy X-ray absorptiometry as the most widely used. Early disease control, use of steroid-sparing medications such as disease-modifying anti-rheumatic drugs and biologics, supplemental vitamin D and calcium, and promotion of weight-bearing physical activities can help optimize bone health. Additional treatment options for osteoporosis such as bisphosphonates are still controversial in children with chronic rheumatic diseases, especially those with decreased bone density without fragility fractures. This article reviews common risk factors leading to compromised bone health in children with chronic rheumatic diseases and discusses the general approach to prevention and treatment of bone fragility.

  9. X-ray beamsplitter

    DOEpatents

    Ceglio, Natale M.; Stearns, Daniel S.; Hawryluk, Andrew M.; Barbee, Jr., Troy W.

    1989-01-01

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5-50 pairs of alternate Mo/Si layers with a period of 20-250 A. The support membrane is 10-200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window.

  10. Preoperative and postoperative agreement in fat free mass (FFM) between bioelectrical impedance spectroscopy (BIS) and dual-energy X-ray absorptiometry (DXA) in patients undergoing cardiac surgery.

    PubMed

    van Venrooij, Lenny M W; Verberne, Hein J; de Vos, Rien; Borgmeijer-Hoelen, Mieke M M J; van Leeuwen, Paul A M; de Mol, Bas A J M

    2010-12-01

    To measure undernutrition in terms of fat free mass (FFM), there are several options. The aim of this study was to assess agreement in FFM between the portable, bedside bioelectrical impedance spectrometry (BIS) and relatively expensive, non-portable dual-energy X-ray absorptiometry (DXA) in patients undergoing cardiac surgery. In a prospective study, body composition measurements by BIS and DXA were performed two weeks prior and two months after cardiac surgery. Preoperative and postoperative agreement in FFM between BIS and DXA were analyzed with Bland and Altman plots. Twenty-six patients were analyzed. BIS overestimated preoperative and postoperative FFM by 2 kg compared to DXA (2.3 kg (95%CI: -3.5-8.1 kg) and 2.1 kg (95%CI: -4.5-8.7 kg), respectively). BIS underestimated FFM change by -0.5% (95%CI: -8.4-7.5%). There is a large inter-individual variation between BIS and DXA. This hinders the interchange-ability of BIS and DXA in routine clinical practice and may lead to misclassifications and thereby inappropriate nutritional treatment and possible postoperative complications. To evaluate nutritional therapy in patients undergoing cardiac surgery, we advocate the use of DXA assessed FFM in parallel to BIS assessed extracellular and intracellular water and FFM. Copyright © 2010 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  11. Search for Hard X-Ray Emission from the Soft X-Ray Transient Aquila X-1

    NASA Astrophysics Data System (ADS)

    Harmon, B. A.; Zhang, S. N.; Paciesas, W. S.; Tavani, M.; Kaaret, P.; Ford, E.

    1994-12-01

    We are investigating the possibility of hard x-ray emission from the recurrent soft x-ray transient and x-ray burst source Aquila X-1 (Aql X-1). Outbursts of this source are relatively frequent with a spacing of ~ 4-10 months (Kitamoto, S. et al. 1993, ApJ, 403, 315). The recent detections of hard tails (\\(>\\)20 keV) in low luminosity x-ray bursters (Barret, D. & Vedrenne, G. 1994, ApJ Supp. S. 92, 505) suggest that neutron star transient systems such as Aql X-1 can produce hard x-ray emission which is detectable by BATSE. We are correlating reported optical and soft x-ray observations since 1991 of Aql X-1 with BATSE observations in order to search for hard x-ray emission episodes, and to study their temporal and spectral evolution. We will present preliminary results of this search in the 20-1000 keV band using the Earth occultation technique applied to the large area detectors. If this work is successful, we hope to alert the astronomical community for the next Aql X-1 outburst expected in 1995. Simultaneous x-ray/hard x-ray and optical observations of Aql X-1 during outburst would be of great importance for the modeling of soft x-ray transients and related systems.

  12. Effects of different loading patterns on the trabecular bone morphology of the proximal femur using adaptive bone remodeling.

    PubMed

    Banijamali, S Mohammad Ali; Oftadeh, Ramin; Nazarian, Ara; Goebel, Ruben; Vaziri, Ashkan; Nayeb-Hashemi, Hamid

    2015-01-01

    In this study, the changes in the bone density of human femur model as a result of different loadings were investigated. The model initially consisted of a solid shell representing cortical bone encompassing a cubical network of interconnected rods representing trabecular bone. A computationally efficient program was developed that iteratively changed the structure of trabecular bone by keeping the local stress in the structure within a defined stress range. The stress was controlled by either enhancing existing beam elements or removing beams from the initial trabecular frame structure. Analyses were performed for two cases of homogenous isotropic and transversely isotropic beams.Trabecular bone structure was obtained for three load cases: walking, stair climbing and stumbling without falling. The results indicate that trabecular bone tissue material properties do not have a significant effect on the converged structure of trabecular bone. In addition, as the magnitude of the loads increase, the internal structure becomes denser in critical zones. Loading associated with the stumbling results in the highest density;whereas walking, considered as a routine daily activity, results in the least internal density in different regions. Furthermore, bone volume fraction at the critical regions of the converged structure is in good agreement with previously measured data obtained from combinations of dual X-ray absorptiometry (DXA) and computed tomography (CT). The results indicate that the converged bone architecture consisting of rods and plates are consistent with the natural bone morphology of the femur. The proposed model shows a promising means to understand the effects of different individual loading patterns on the bone density.

  13. Effects of infrared laser on the bone repair assessed by x-ray microtomography (μct) and histomorphometry

    NASA Astrophysics Data System (ADS)

    Paolillo, Alessandra Rossi; Paolillo, Fernanda Rossi; da Silva, Alessandro M. Hakme; Reiff, Rodrigo Bezerra de Menezes; Bagnato, Vanderlei Salvador; Alves, José Marcos

    2015-06-01

    The bone fracture is important public health problems. The lasertherapy is used to accelerate tissue healing. Regarding diagnosis, few methods are validated to follow the evolution of bone microarchitecture. The aim of this study was to evaluate the effects of lasertherapy on bone repair with x-ray microtomography (μCT) and histomorphometry. A transverse rat tibia osteotomy with a Kirchner wire and a 2mm width polymeric spacer beads were used to produce a delayed bone union. Twelve rats were divided into two groups: (i) Control Group: untreated fracture and; (ii) Laser Group: fracture treated with laser. Twelve sessions of treatment (808nm laser, 100mW, 125J/cm2, 50seconds) were performed. The μCT scanner parameters were: 100kV, 100μA, Al+Cu filter and 9.92μm resolution. A volume of interest (VOI) was chosen with 300 sections above and below the central region of the fracture, totaling 601sections with a 5.96mm. The softwares CT-Analyzer, NRecon and Mimics were used for 2D and 3D analysis. A histomorphometry analysis was also performed. The connectivity (Conn) showed significant increase for Laser Group than Control Group (32371+/-20689 vs 17216+/-9467, p<0.05). There was no significant difference for bone volume (59+/-19mm3 vs 47+/- 8mm3) and histomorfometric data [Laser and Control Groups showed greater amount of cartilaginous (0.19+/-0.05% vs 0.11+/-0.09%) and fibrotic (0.21+/-0.12% vs 0.09+/-0.11%) tissues]. The negative effect was presence of the cartilaginous and fibrotic tissues which may be related to the Kirchner wire and the non-absorption of the polymeric that may have influenced negatively the light distribution through the bone. However, the positive effect was greater bone connectivity, indicating improvement in bone microarchitecture.

  14. Dual-energy x-ray image decomposition by independent component analysis

    NASA Astrophysics Data System (ADS)

    Jiang, Yifeng; Jiang, Dazong; Zhang, Feng; Zhang, Dengfu; Lin, Gang

    2001-09-01

    The spatial distributions of bone and soft tissue in human body are separated by independent component analysis (ICA) of dual-energy x-ray images. It is because of the dual energy imaging modelí-s conformity to the ICA model that we can apply this method: (1) the absorption in body is mainly caused by photoelectric absorption and Compton scattering; (2) they take place simultaneously but are mutually independent; and (3) for monochromatic x-ray sources the total attenuation is achieved by linear combination of these two absorption. Compared with the conventional method, the proposed one needs no priori information about the accurate x-ray energy magnitude for imaging, while the results of the separation agree well with the conventional one.

  15. Optimizing abdominal CT dose and image quality with respect to x-ray tube voltage

    NASA Astrophysics Data System (ADS)

    Huda, Walter; Ogden, Kent M.

    2004-05-01

    The objective of this study was to identify the x-ray tube voltage that results in optimum performance for abdominal CT imaging for a range of imaging tasks and patient sizes. Theoretical calculations were performed of the contrast to noise ratio (CNR) for disk shaped lesions of muscle, fat, bone and iodine embedded in a uniform water background. Lesion contrast was the mean Hounsfield Unit value at the effective photon energy, and image noise was determined from the total radiation intensity incident on the CT x-ray detector. Patient size ranging from young infants (10 kg) to oversized adults (120 kg), with CNR values obtained for x-ray tube voltages ranging from 80 to 140 kV. Patients of varying sizes were modeled as an equivalent cylinder of water, and the mean section dose (D) was determined for each selected x-ray tube kV value at a constant mAs. For each patient size and lesion type, we identified an optimal kV as the x-ray tube voltage that yields a maximum value of the figure of merit (CNR2/D). Increasing the x-ray tube voltage from 80 to 140 kV reduced lesion contrast by 11% for muscle, 21% for fat, 35% for bone and 52% for iodine, and these reductions were approximately independent of patient size. Increasing the x-ray tube voltage from 80 to 140 kV increased a muscle lesion CNR relative to a uniform water background by a factor of 2.6, with similar trends observed for fat (2.3), bone (1.9) and iodine (1.4). The improvement in lesion CNR with increasing x-ray tube voltage was highest for the largest sized patients. Increasing the x-ray tube voltage from 80 to 140 kV increased the patient dose by a factor of between 5.0 and 6.2 depending on the patient size. For small sized patients (10 and 30 kg) and muscle lesions, best performance is obtained at 80 kV; however, for adults (70 kg) and oversized adults (120 kg), the best performance would be obtained at 140 kV. Imaging fat lesions was best performed at 80 kV for all patients except for oversized adults

  16. X-ray beamsplitter

    DOEpatents

    Ceglio, N.M.; Stearns, D.G.; Hawryluk, A.M.; Barbee, T.W. Jr.

    1987-08-07

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5--50 pairs of alternate Mo/Si layers with a period of 20--250 A. The support membrane is 10--200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window. 6 figs.

  17. Effect of calcium supplementation in pregnancy on maternal bone outcomes in women with a low calcium intake123

    PubMed Central

    Jarjou, Landing MA; Laskey, M Ann; Sawo, Yankuba; Goldberg, Gail R; Cole, Timothy J

    2010-01-01

    Background: Mobilization of maternal bone mineral partly supplies calcium for fetal and neonatal bone growth and development. Objective: We investigated whether pregnant women with low calcium intakes may have a more extensive skeletal response postpartum that may compromise their short- or long-term bone health. Design: In a subset of participants (n = 125) in a double-blind, randomized, placebo-controlled trial (International Trial Registry: ISRCTN96502494) in pregnant women in The Gambia, West Africa, with low calcium intakes (≈350 mg Ca/d), we measured bone mineral status of the whole body, lumbar spine, and hip by using dual-energy X-ray absorptiometry and measured bone mineral status of the forearm by using single-photon absorptiometry at 2, 13, and 52 wk lactation. We collected blood and urine from the subjects at 20 wk gestation and at 13 wk postpartum. Participants received calcium carbonate (1500 mg Ca/d) or a matching placebo from 20 wk gestation to parturition; participants did not consume supplements during lactation. Results: Women who received the calcium supplement in pregnancy had significantly lower bone mineral content (BMC), bone area (BA), and bone mineral density (BMD) at the hip throughout 12 mo lactation (mean ± SE difference: BMC = −10.7 ± 3.7%, P = 0.005; BA = −3.8 ± 1.9%, P = 0.05; BMD = −6.9 ± 2.6%, P = 0.01). The women also experienced greater decreases in bone mineral during lactation at the lumbar spine and distal radius and had biochemical changes consistent with greater bone mineral mobilization. Conclusions: Calcium supplementation in pregnant women with low calcium intakes may disrupt metabolic adaptation and may not benefit maternal bone health. Further study is required to determine if such effects persist long term or elicit compensatory changes in bone structure. PMID:20554790

  18. Deletion of Adseverin in Osteoclasts Affects Cell Structure But Not Bone Metabolism.

    PubMed

    Cao, Yixuan; Wang, Yongqiang; Sprangers, Sara; Picavet, Daisy I; Glogauer, Michael; McCulloch, Christopher A; Everts, Vincent

    2017-08-01

    Adseverin is an actin-severing/capping protein that may contribute to osteoclast differentiation in vitro but its role in bone remodeling of healthy animals is not defined. We analyzed bone and osteoclast structure in adseverin conditional null mice at alveolar and long bone sites. In wild-type and adseverin null mice, as measured by dual-energy X-ray absorptiometry, there were no differences of bone mineral content or bone mineral density, indicating no change of bone metabolism. In tibiae, TRAcP + osteoclasts were formed in comparable numbers in adseverin null and wild-type mice. Ultrastructural analysis showed normal and similar abundance of ruffled borders, sealing zones, and mitochondria, and with no difference of osteoclast nuclear numbers. In contrast, analyses of long bone showed that in the absence of adseverin osteoclasts were smaller (120 ± 13 vs. 274 ± 19 µm 2 ; p < 0.05), as were nuclear size and the surface area of cytoplasm. The nuclei of adseverin null osteoclasts exhibited more heterochromatin (31 ± 3%) than wild-type cells (8 ± 1%), suggesting that adseverin affects cell differentiation. The data indicate that in healthy, developing tissues, adseverin contributes to the regulation of osteoclast structure but not to bone metabolism in vivo.

  19. Dual Energy X-Ray Absorptiometry Compared with Anthropometry in Relation to Cardio-Metabolic Risk Factors in a Young Adult Population: Is the 'Gold Standard' Tarnished?

    PubMed

    Demmer, Denise L; Beilin, Lawrence J; Hands, Beth; Burrows, Sally; Pennell, Craig E; Lye, Stephen J; Mountain, Jennifer A; Mori, Trevor A

    2016-01-01

    Assessment of adiposity using dual energy x-ray absorptiometry (DXA) has been considered more advantageous in comparison to anthropometry for predicting cardio-metabolic risk in the older population, by virtue of its ability to distinguish total and regional fat. Nonetheless, there is increasing uncertainty regarding the relative superiority of DXA and little comparative data exist in young adults. This study aimed to identify which measure of adiposity determined by either DXA or anthropometry is optimal within a range of cardio-metabolic risk factors in young adults. 1138 adults aged 20 years were assessed by DXA and standard anthropometry from the Western Australian Pregnancy Cohort (Raine) Study. Cross-sectional linear regression analyses were performed. Waist to height ratio was superior to any DXA measure with HDL-C. BMI was the superior model in relation to blood pressure than any DXA measure. Midriff fat mass (DXA) and waist circumference were comparable in relation to glucose. For all the other cardio-metabolic variables, anthropometric and DXA measures were comparable. DXA midriff fat mass compared with BMI or waist hip ratio was the superior measure for triglycerides, insulin and HOMA-IR. Although midriff fat mass (measured by DXA) was the superior measure with insulin sensitivity and triglycerides, the anthropometric measures were better or equal with various DXA measures for majority of the cardio-metabolic risk factors. Our findings suggest, clinical anthropometry is generally as useful as DXA in the evaluation of the individual cardio-metabolic risk factors in young adults.

  20. The Performance of Five Bioelectrical Impedance Analysis Prediction Equations against Dual X-ray Absorptiometry in Estimating Appendicular Skeletal Muscle Mass in an Adult Australian Population

    PubMed Central

    Yu, Solomon C. Y.; Powell, Alice; Khow, Kareeann S. F.; Visvanathan, Renuka

    2016-01-01

    Appendicular skeletal muscle mass (ASM) is a diagnostic criterion for sarcopenia. Bioelectrical impedance analysis (BIA) offers a bedside approach to measure ASM but the performance of BIA prediction equations (PE) varies with ethnicities and body composition. We aim to validate the performance of five PEs in estimating ASM against estimation by dual-energy X-ray absorptiometry (DXA). We recruited 195 healthy adult Australians and ASM was measured using single-frequency BIA. Bland-Altman analysis was used to assess the predictive accuracy of ASM as determined by BIA against DXA. Precision (root mean square error (RMSE)) and bias (mean error (ME)) were calculated according to the method of Sheiner and Beal. Four PEs (except that by Kim) showed ASM values that correlated strongly with ASMDXA (r ranging from 0.96 to 0.97, p < 0.001). The Sergi equation performed the best with the lowest ME of −1.09 kg (CI: −0.84–−1.34, p < 0.001) and the RMSE was 2.09 kg (CI: 1.72–2.47). In men, the Kyle equation performed better with the lowest ME (−0.32 kg (CI: −0.66–0.02) and RMSE (1.54 kg (CI: 1.14–1.93)). The Sergi equation is applicable in adult Australians (Caucasian) whereas the Kyle equation can be considered in males. The need remains to validate PEs in other ethnicities and to develop equations suitable for multi-frequency BIA. PMID:27043617

  1. Impact of skeletal maturation on bone metabolism biomarkers and bone mineral density in healthy Brazilian male adolescents.

    PubMed

    Silva, Carla C; Goldberg, Tamara B L; Nga, Hong S; Kurokawa, Cilmery S; Capela, Renata C; Teixeira, Altamir S; Dalmas, José C

    2011-01-01

    To evaluate the behavior of biomarkers of bone formation and resorption in healthy male Brazilian adolescents according to their biological maturation. Eighty-seven volunteers were divided into age groups according to bone age (BA): 10-12 years (n = 25), 13-15 years (n = 36), and 16-18 years (n = 26). Weight (kg), height (m), body mass index (kg/m(2)), calcium intake from 3 days assessed by 24-h food recall (mg/day), pubertal event evaluation by Tanner criteria, and serum biomarker levels (osteocalcin [OC] [ng/mL], bone alkaline phosphatase [BAP] [U/L], and serum carboxyterminal telopeptide [S-CTx] [ng/mL]) were recorded and correlated to bone mineral density (BMD) (g/cm(2)) measured by dual energy X-ray absorptiometry of the lumbar spine, proximal femur, and whole body. Biomarkers showed similar behaviors, presenting higher median values in the 13-15 year group (BAP = 154.71 U/L, OC = 43.0 ng/mL, S-CTx = 2.09 ng/mL; p < 0.01) and when adolescents were in the pubertal stage G4. Median biomarker values decreased with advancing BA and sexual maturation. Biomarker values showed parallelism with peak height velocity, and, interestingly, bone formation biomarkers indicated significant negative correlation with BMD in the different evaluated locations, i.e., higher BMD values correlated with lower bone biomarker values. This is the first study of healthy Brazilian adolescents with rigid and careful inclusion and exclusion criteria to assess the correlation of bone markers and BMD with biological maturation indicators. Our results can help understand bone turnover and monitor bone metabolism.

  2. Finasteride therapy does not alter bone turnover in men with benign prostatic hyperplasia--a Clinical Research Center study.

    PubMed

    Tollin, S R; Rosen, H N; Zurowski, K; Saltzman, B; Zeind, A J; Berg, S; Greenspan, S L

    1996-03-01

    Benign prostatic hyperplasia is often treated with finasteride, which inhibits the conversion of testosterone to dihydrotestosterone (DHT). Aside from the prostate, other androgen-dependent tissues seem to be unaffected by selective DHT deficiency, but the effect on bone density in humans has not yet been defined. To study this question, we compared indices of bone turnover and bone mineral density in 35 men treated with finasteride with controls. Bone resorption was assessed by measuring urinary excretion of N-telopeptide cross-links of type I collagen and hydroxyproline, and bone formation was assessed by measuring serum osteoncalcin and bone-specific alkaline phosphatase. Bone density of the spine and hip were assessed by dual energy x-ray absorptiometry. We found that finasteride-treated patients had mean DHT levels 81% lower than controls (P < 0.0001). There were no significant differences between the two groups in any of the markers of bone turnover or measures of bone density. These results suggest that testosterone can maintain bone density in men even in the absence of DHT. Although long term studies are needed, our results suggest that men who take finasteride are not at increased risk for bone loss.

  3. Temporary implementation and testing of a confocal SR- μXRF system for bone analysis at the X-ray Fluorescence beamline at Elettra

    NASA Astrophysics Data System (ADS)

    Perneczky, L.; Rauwolf, M.; Ingerle, D.; Eichert, D.; Brigidi, F.; Jark, W.; Bjeoumikhova, S.; Pepponi, G.; Wobrauschek, P.; Streli, C.; Turyanskaya, A.

    2018-07-01

    The confocal μXRF spectrometer of Atominstitut (ATI) was transported and set up at the X-ray Fluorescence beamline at Elettra - Sincrotrone Trieste. It was successfully adjusted to the incoming beam (9.2 keV). Test measurements on a free-standing Cu wire were performed to determine the size of the focused micro-beam (non-confocal mode, 56 × 35 μm2) and the size of the confocal volume (confocal mode, 41 × 24 × 34 μm2) for the Cu-K α emission. In order to test the setup's capabilities, two areas on different human bone samples were measured in confocal scanning mode. For one of the samples the comparison with a previous μ XRF measurement, obtained with a low power X-ray tube in the lab, is presented.

  4. X-ray fluorescence for quantification of lead and strontium in vivo

    NASA Astrophysics Data System (ADS)

    Specht, Aaron James

    Lead (Pb) is a toxicant well known for its effects on almost every organ system in the body. Pb use in industry has declined since removal of Pb from gasoline, but many developing countries still have significant use of Pb. Exposure to Pb has been linked with diseases causing neurodegeneration and thus have lasting effects long after the initial exposure. Another metal, strontium (Sr), has been linked with bone disease in particular situations and shown to have uses in treating osteoporosis as a supplement. However, there are no studies of the effects of Sr using a meaningful biomarker. The most commonly used biomarkers for Pb and Sr exposures are blood Pb and Sr; however, blood tests are unable to identify long-term exposure levels due to the short half-life of these metals in blood. Bone stores of Pb and Sr have a half-life of years to decades and serve as a biomarker of long-term exposure. X-ray fluorescence has been used to measure bone Pb and Sr. However, current systems have limitations with radioisotope sources, bulky equipment, and long measurement times. A portable XRF device capable of measurement of bone Pb and Sr, overcomes the limitation of the current systems and has been developed in this work. The detection limit of the portable XRF for bone Pb and Sr was found to be 11 ppm and 5 ppm respectively at 5 mm of skin thickness. The portable XRF will have limitations of measurement based on an individual's skin thickness. The device was calibrated using standard phantoms and validated with in-lab samples, which demonstrated good agreement between KXRF and portable XRF measurements with strong correlations between goat bone, cadaver bone, and phantom measurements. In a population study of Pb poisoned children the portable XRF was further validated and a significant correlation between KXRF measured bone Pb and portable XRF measured bone Pb was identified; however, the device had limitations based on anatomical differences unaccounted for in children from

  5. X-Ray Polarization from High Mass X-Ray Binaries

    NASA Technical Reports Server (NTRS)

    Kallman, T.; Dorodnitsyn, A.; Blondin, J.

    2015-01-01

    X-ray astronomy allows study of objects which may be associated with compact objects, i.e. neutron stars or black holes, and also may contain strong magnetic fields. Such objects are categorically non-spherical, and likely non-circular when projected on the sky. Polarization allows study of such geometric effects, and X-ray polarimetry is likely to become feasible for a significant number of sources in the future. A class of potential targets for future X-ray polarization observations is the high mass X-ray binaries (HMXBs), which consist of a compact object in orbit with an early type star. In this paper we show that X-ray polarization from HMXBs has a distinct signature which depends on the source inclination and orbital phase. The presence of the X-ray source displaced from the star creates linear polarization even if the primary wind is spherically symmetric whenever the system is viewed away from conjunction. Direct X-rays dilute this polarization whenever the X-ray source is not eclipsed; at mid-eclipse the net polarization is expected to be small or zero if the wind is circularly symmetric around the line of centers. Resonance line scattering increases the scattering fraction, often by large factors, over the energy band spanned by resonance lines. Real winds are not expected to be spherically symmetric, or circularly symmetric around the line of centers, owing to the combined effects of the compact object gravity and ionization on the wind hydrodynamics. A sample calculation shows that this creates polarization fractions ranging up to tens of percent at mid-eclipse.

  6. Reference Values of Total Lean Mass, Appendicular Lean Mass, and Fat Mass Measured with Dual-Energy X-ray Absorptiometry in a Healthy Mexican Population.

    PubMed

    Clark, Patricia; Denova-Gutiérrez, Edgar; Ambrosi, Regina; Szulc, Pawel; Rivas-Ruiz, Rodolfo; Salmerón, Jorge

    2016-11-01

    The aim of this study was to develop age- and gender-specific reference values of total lean body mass (LBM), appendicular lean body mass (ALBM), and fat mass (FM) by dual-energy X-ray absorptiometry (DXA) data in a healthy Mexican population. A cross-sectional analysis was conducted on 9518 healthy subjects 7-89 years of age participating in the baseline measurement of the Health Workers Cohort Study. Using DXA, LBM, ALBM, and FM were measured. Using these data, LBM index (LBMI), ALBM index (ALBMI), and fat mass index (FMI) were calculated. LMI, ALMI, and FMI were calculated as the LBM, ALBM, and FM kg divided by the height in meters squared. Males and females were analyzed separately; sex-specific means and standard deviations for LBM, ALBM, FM, LBMI, ALBMI, and FMI were calculated. A total of 2829 males and 6694 females were included in the final analysis. Strong sex gaps were observed after 12 years in LBM, ALBM, LBMI, and ALBMI (P < 0.01). LBM and ALBM values continue to increase for males up to age 20; females plateaued approximately after age 15. Significant sex differences were also observed for FM and FMI. Significant sex- and age-related differences exist in LBM, ALBM, and FM in the Mexican population. In addition, given the null data available in this area, these reference values may be useful in the evaluation of a variety of childhood and adult abnormalities involving lean body mass deficits, mainly in the assessment of muscle wasting, with important medical and epidemiological uses.

  7. Selective reduction in cortical bone mineral density in turner syndrome independent of ovarian hormone deficiency.

    PubMed

    Bakalov, Vladimir K; Axelrod, Lauren; Baron, Jeffrey; Hanton, Lori; Nelson, Lawrence M; Reynolds, James C; Hill, Suvimol; Troendle, James; Bondy, Carolyn A

    2003-12-01

    Women with Turner syndrome (TS) are at risk for osteoporosis from ovarian failure and possibly from haploinsufficiency for bone-related X-chromosome genes. To establish whether cortical or trabecular bone is predominantly affected, and to control for the ovarian failure, we studied forearm bone mineral density (BMD) in 41 women with TS ages 18-45 yr and in 35 age-matched women with karyotypically normal premature ovarian failure (POF). We measured BMD at the 1/3 distal radius (D-Rad(1/3); predominantly cortical bone) and at the ultradistal radius (UD-Rad; predominantly trabecular bone) by dual x-ray absorptiometry. Women with TS had lower cortical BMD compared with POF (D-Rad(1/3) Z-score = -1.5 +/- 0.8 for TS and 0.08 +/- 0.7 for POF; P < 0.0001). In contrast, the primarily trabecular UD-Rad BMD was normal in TS and not significantly different from POF (Z-score = -0.62 +/- 1.1 for TS and -0.34 +/- 1.0 for POF; P = 0.26). The difference in cortical BMD remained after adjustment for height, age of puberty, lifetime estrogen exposure, and serum 25-hydroxyvitamin D (P = 0.0013). Cortical BMD was independent of serum IGF-I and -II, PTH, and testosterone in TS. We conclude that there is a selective deficiency in forearm cortical bone in TS that appears independent of ovarian hormone exposure and is probably related to X-chromosome gene(s) haploinsufficiency.

  8. Bone mass density estimation: Archimede’s principle versus automatic X-ray histogram and edge detection technique in ovariectomized rats treated with germinated brown rice bioactives

    PubMed Central

    Muhammad, Sani Ismaila; Maznah, Ismail; Mahmud, Rozi Binti; Esmaile, Maher Faik; Zuki, Abu Bakar Zakaria

    2013-01-01

    Background Bone mass density is an important parameter used in the estimation of the severity and depth of lesions in osteoporosis. Estimation of bone density using existing methods in experimental models has its advantages as well as drawbacks. Materials and methods In this study, the X-ray histogram edge detection technique was used to estimate the bone mass density in ovariectomized rats treated orally with germinated brown rice (GBR) bioactives, and the results were compared with estimated results obtained using Archimede’s principle. New bone cell proliferation was assessed by histology and immunohistochemical reaction using polyclonal nuclear antigen. Additionally, serum alkaline phosphatase activity, serum and bone calcium and zinc concentrations were detected using a chemistry analyzer and atomic absorption spectroscopy. Rats were divided into groups of six as follows: sham (nonovariectomized, nontreated); ovariectomized, nontreated; and ovariectomized and treated with estrogen, or Remifemin®, GBR-phenolics, acylated steryl glucosides, gamma oryzanol, and gamma amino-butyric acid extracted from GBR at different doses. Results Our results indicate a significant increase in alkaline phosphatase activity, serum and bone calcium, and zinc and ash content in the treated groups compared with the ovariectomized nontreated group (P < 0.05). Bone density increased significantly (P < 0.05) in groups treated with estrogen, GBR, Remifemin®, and gamma oryzanol compared to the ovariectomized nontreated group. Histological sections revealed more osteoblasts in the treated groups when compared with the untreated groups. A polyclonal nuclear antigen reaction showing proliferating new cells was observed in groups treated with estrogen, Remifemin®, GBR, acylated steryl glucosides, and gamma oryzanol. There was a good correlation between bone mass densities estimated using Archimede’s principle and the edge detection technique between the treated groups (r2 = 0.737, P

  9. Be/X-ray Binary Science for Future X-ray Timing Missions

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2011-01-01

    For future missions, the Be/X-ray binary community needs to clearly define our science priorities for the future to advocate for their inclusion in future missions. In this talk, I will describe current designs for two potential future missions and Be X-ray binary science enabled by these designs. The Large Observatory For X-ray Timing (LOFT) is an X-ray timing mission selected in February 2011 for the assessment phase from the 2010 ESA M3 call for proposals. The Advanced X-ray Timing ARray (AXTAR) is a NASA explorer concept X-ray timing mission. This talk is intended to initiate discussions of our science priorities for the future.

  10. Comparison of two bioelectrical impedance analysis devices with dual energy X-ray absorptiometry and magnetic resonance imaging in the estimation of body composition.

    PubMed

    Wang, Ji-Guang; Zhang, Yi; Chen, Han-E; Li, Yan; Cheng, Xiao-Guang; Xu, Li; Guo, Zhe; Zhao, Xing-Shan; Sato, Tetsuya; Cao, Qi-Yun; Chen, Ke-Min; Li, Biao

    2013-01-01

    We compared a 4-limb bioelectrical impedance analysis (BIA) system, HBF 359 (Omron), and a 2-limb foot-to-foot device, BC 532 (Tanita), with the standard dual energy X-ray absorptiometry (DXA) and magnetic resonance imaging (MRI) methods for the measurement of body fat percentage (BF), skeletal muscle mass percentage (SMM, or fat-free mass [FFM] for BC 532), and visceral fat level (VF). Body composition was measured in 200 healthy volunteers (100 men and 100 women, mean age 48 years) by HBF 359 and BC 532 and by DXA and MRI. The agreement was assessed by correlation analysis and paired t-test. The correlation coefficients between BIA and DXA or MRI ranged from 0.71 to 0.89 for BF, SMM, and VF by HBF 359 and from 0.77 to 0.90 for BF, FFM, and VF by BC 532 in all subjects and in men and women separately (p < 0.001 for all). Compared with DXA, HBF 359 significantly (p < 0.001) underestimated BF by -5.8% in men and -9.6% in women. Compared with MRI, the corresponding underestimatons (negative) or overestimations (positive) by HBF 359 in men and women were, respectively, +1.9% (p = 0.02) and +1.7% (p = 0.10) for SMM, and +13.3% (p < 0.001) and -8.5% (p = 0.006), for VF. The corresponding values by BC 532 in men and women were -10.7 and -6.2% for BF, -1.4 and -2.5% for FFM, and +20.4 and -18.0% for VF. The BIA devices are accurate in the estimation of body composition, especially skeletal muscle mass or FFM.

  11. Abdomen X-Ray (Radiography)

    MedlinePlus

    ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Abdomen Abdominal x-ray uses a ... of an abdominal x-ray? What is abdominal x-ray? An x-ray (radiograph) is a noninvasive ...

  12. Assessment of Bone Quality in Osteoporosis Treatment with Bone Anabolic Agents: Really Something New?

    PubMed

    Ulivieri, Fabio M; Caudarella, Renata; Camisasca, Marzia; Cabrini, Daniela M; Merli, Ilaria; Messina, Carmelo; Piodi, Luca P

    2018-04-20

    Osteoporosis is a chronic pathologic condition, particularly of the elderly, in which a reduction of bone mineral density (BMD) weakens bone, leading to the so-called fragility fractures, most often of spine and femur. The gold standard exam for the quantitative measurement of BMD is the dual X-ray photon absorptiometry (DXA), a radiological method. However, a relevant number of fragility fractures occurs in the range of normal BMD values, meaning that also qualitative aspects of bone play a role, namely bone architecture and bone geometry. Bone structure is investigated by microCT and histomorphometry, which necessitate an invasive approach with a biopsy, usually taken at the iliac crest, not the typical site of fragility fractures. New tools, trabecular bone score (TBS) and hip structural analysis (HSA), obtained during DXA, can supply informations about bone structure of spine and femur, respectively, in a not invasive way. Therapy of osteoporosis is based on two types of drugs leading to an increase of BMD: antiresorptive and anabolic treatments. The antiresorptive drugs inhibit the osteoclasts, whereas teriparatide and, in part, strontium ranelate ameliorate bone structure. The present review deals with the relation between the anabolic drugs for osteoporosis and the cited new tools which investigate bone architecture and geometry, in order to clarify if they represent a real advantage in monitoring efficacy of osteoporosis' treatment. Data from the studies show that increases of TBS and HSA values after anabolic therapy are small and very close to their least significant change at the end of the usual period of treatment. Therefore, it is questionable if TBS and HSA are really helpful in monitoring bone quality and in defining reduction of individual fragility fracture risk during osteoporosis treatment with bone anabolic agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. A prospective dual-energy X-ray absorptiometry study of bone remodeling after implantation of the Nanos short-stemmed prosthesis.

    PubMed

    Zeh, Alexander; Pankow, Franziska; Röllinhoff, Marc; Delank, Stefan; Wohlrab, David

    2013-04-01

    The aim of this study was to analyze the bone remodeling around the Nanos stem (Smith & Nephew, Marl, Germany) after primary total hip arthroplasty for coxarthrosis. In 25 patients (15 male, 10 female, mean age 59.9 years) with the diagnosis of coxarthrosis, a DEXA scan was performed immediately after surgery, 97 days (SD 6.1 days) and 368 days (SD 6.2 days) after implantation of a Nanos prosthesis. Plain radiographs were analyzed digitally for radiolucent lines, varus-valgus femoral stem alignment, measurement of stem migration and changes in varus-valgus femoral stem alignment. The position of the center of rotation (COR) and the offset were assessed pre- and postoperatively. Harris Hip Score was used to evaluate the clinical outcome. The DEXA scan showed a significant and relevant increase in BMD (Bone Mineral Density) in Gruen-Zone 6 (12%) and a decrease in Zone 1 (15%), 2 (5%) and 7 (12%), which was interpreted as reflecting a distal load transfer in the metaphysis of the femur. There was no clinically relevant migration or tilting of the Nanos stem. Radiolucent lines were noted in 12 cases, mainly at the polished tip area of the prosthesis; this was not regarded as a sign of impaired osseointegration. There was no significant difference between the position of the COR and the pre- and postoperative offset. The absence of stem migration, angulation, or relevant radiolucent lines is seen as evidence for an unimpaired osseointegration of the Nanos stem approximately 12 months after implantation. It is concluded that the Nanos prosthesis can reduce loss of BMD of the proximal femur composed with conventional stems or other short-stemmed implants.

  14. Effect of cisplatin on bone transport osteogenesis in dogs.

    PubMed

    Ehrhart, Nicole; Eurell, Jo Ann C; Tommasini, Matteo; Constable, Peter D; Johnson, Ann L; Feretti, Antonio

    2002-05-01

    To document effects of cisplatin on regenerate bone formation during the distraction and consolidation phases of bone transport osteogenesis. 10 skeletally mature hounds. Bone transport osteogenesis was performed to reconstruct a 3-cm defect in the radius of each dog. Five dogs were randomly selected to receive cisplatin (70 mg/m2, IV, q 21 d for 4 cycles), and 5 were administered saline (0.9% NaCl) solution. Bone mineral density was measured by use of dual-energy x-ray absorptiometry (DEXA) on days 24, 55, and 90 after surgery. Dogs were euthanatized 90 days after surgery. Histomorphometry was performed on nondecalcified sections of regenerate bone. Bone mineral density and histomorphometric indices of newly formed bone were compared between groups. Densitometric differences in regenerate bone mineral density were not detected between groups at any time period. Cisplatin-treated dogs had decreased mineralized bone volume, decreased percentage of woven bone volume, decreased percentage of osteoblast-covered bone, increased porosity, and increased percentage of osteoblast-covered surfaces, compared with values for control dogs. Lamellar bone volume and osteoid volume did not differ significantly between groups. Regenerate bone will form and remodel during administration of cisplatin. Results of histomorphometric analysis suggest that bone formation and resorption may be uncoupled in cisplatin-treated regenerate bone as a result of increased osteoclast activity or delayed secondary bone formation during remodeling. These histomorphometric differences were modest in magnitude and did not result in clinically observable complications or decreased bone mineral density as measured by use of DEXA.

  15. A search for X-ray polarization in cosmic X-ray sources. [binary X-ray sources and supernovae remnants

    NASA Technical Reports Server (NTRS)

    Hughes, J. P.; Long, K. S.; Novick, R.

    1983-01-01

    Fifteen strong X-ray sources were observed by the X-ray polarimeters on board the OSO-8 satellite from 1975 to 1978. The final results of this search for X-ray polarization in cosmic sources are presented in the form of upper limits for the ten sources which are discussed elsewhere. These limits in all cases are consistent with a thermal origin for the X-ray emission.

  16. X-Ray Emission from the Soft X-Ray Transient Aquila X-1

    NASA Technical Reports Server (NTRS)

    Tavani, Marco

    1998-01-01

    Aquila X-1 is the most prolific of soft X-ray transients. It is believed to contain a rapidly spinning neutron star sporadically accreting near the Eddington limit from a low-mass companion star. The interest in studying the repeated X-ray outbursts from Aquila X-1 is twofold: (1) studying the relation between optical, soft and hard X-ray emission during the outburst onset, development and decay; (2) relating the spectral component to thermal and non-thermal processes occurring near the magnetosphere and in the boundary layer of a time-variable accretion disk. Our investigation is based on the BATSE monitoring of Aquila X-1 performed by our group. We observed Aquila X-1 in 1997 and re-analyzed archival information obtained in April 1994 during a period of extraordinary outbursting activity of the source in the hard X-ray range. Our results allow, for the first time for this important source, to obtain simultaneous spectral information from 2 keV to 200 keV. A black body (T = 0.8 keV) plus a broken power-law spectrum describe accurately the 1994 spectrum. Substantial hard X-ray emission is evident in the data, confirming that the accretion phase during sub-Eddington limit episodes is capable of producing energetic hard emission near 5 x 10(exp 35) ergs(exp -1). A preliminary paper summarizes our results, and a more comprehensive account is being written. We performed a theoretical analysis of possible emission mechanisms, and confirmed that a non-thermal emission mechanism triggered in a highly sheared magnetosphere at the accretion disk inner boundary can explain the hard X-ray emission. An anticorrelation between soft and hard X-ray emission is indeed prominently observed as predicted by this model.

  17. Relationship between bone mineral density, weight, and estrogen levels in pre and postmenopausal women.

    PubMed

    Corina, Morcov; Vulpoi, Carmen; Brănişteanu, D

    2012-01-01

    Bone loss in postmenopausal women is mainly due to estrogen deficiency affecting the balance between osteoclast resorption and bone formation controlled by osteoblasts. To determine the relationship between bone mineral density (BMD) in pre and postmenopausal Caucasian women, and estrogen levels. Cross-sectional study including six groups of 8 to 15 pre- and postmenopausal healthy volunteers with different weights, body mass index (BMI) (normal or underweight < 25 kg/m2, overweight 25-30 kg/m2, and obese > 30 kg/m2), not exposed to antiosteoporotic therapy. Lumbar bone mineral density (BMD) and body composition (BC) were evaluated by dual X ray absorptiometry (DXA, Hologic), while serum estradiol and estrone were measured by ELISA. BMD in postmenopausal women is lower than in premenopausal women irrespective of body weight (p<0.05). Estradiol and estrone are positively correlate with bone mass in premenopausal women, but not in postmenopausal women (R2 0.3209, R2 0.2579, respectively). It is very important to identify the risk factors for osteoporosis, especially in postmenopausal women, as we will show that aromatization of androgens into estrogens in adipose tissue appears not to have a significant role in postmenopausal women bone protection. Key-

  18. "X-Ray Transients in Star-Forming Regions" and "Hard X-Ray Emission from X-Ray Bursters"

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Kaaret, Philip

    1999-01-01

    This grant funded work on the analysis of data obtained with the Burst and Transient Experiment (BATSE) on the Compton Gamma-Ray Observatory. The goal of the work was to search for hard x-ray transients in star forming regions using the all-sky hard x-ray monitoring capability of BATSE. Our initial work lead to the discovery of a hard x-ray transient, GRO J1849-03. Follow-up observations of this source made with the Wide Field Camera on BeppoSAX showed that the source should be identified with the previously known x-ray pulsar GS 1843-02 which itself is identified with the x-ray source X1845-024 originally discovered with the SAS-3 satellite. Our identification of the source and measurement of the outburst recurrence time, lead to the identification of the source as a Be/X-ray binary with a spin period of 94.8 s and an orbital period of 241 days. The funding was used primarily for partial salary and travel support for John Tomsick, then a graduate student at Columbia University. John Tomsick, now Dr. Tomsick, received his Ph.D. from Columbia University in July 1999, based partially on results obtained under this investigation. He is now a postdoctoral research scientist at the University of California, San Diego.

  19. Sex differences in parameters of bone strength in new recruits: beyond bone density.

    PubMed

    Evans, Rachel K; Negus, Charles; Antczak, Amanda J; Yanovich, Ran; Israeli, Eran; Moran, Daniel S

    2008-11-01

    Stress fracture (SF) injuries in new recruits have long been attributed to low bone mineral density (BMD). Low areal BMD assessed using two-dimensional dual-energy x-ray absorptiometry imaging, however, reflects structural density and is affected by smaller measures of bone geometry. Recent studies support a relationship between bone size and SF and indicate that slender bones are more susceptible to damage under identical loading conditions. Peripheral quantitative computed tomography (pQCT) is a three-dimensional imaging tool that provides measures of tissue density and geometry parameters of the tibia, a common site of SF. To evaluate sex differences in parameters of volumetric BMD (vBMD), geometry, and strength of the tibia in new recruits using a novel pQCT image analysis procedure. pQCT images were obtained from 128 healthy men and women (20 male, 108 female, aged 18-21 yr) entering a 4-month gender-integrated combat training program in the Israeli Defense Forces. Tibial scans taken at sites 4% (trabecular bone), 38%, and 66% (cortical bone) from the distal end plate were analyzed using MATLAB to assess whole-bone and regional parameters. Measures included vBMD, geometry (diameter, area, cortical thickness, and canal radius), and strength (moments of inertia and bone strength and slenderness indices). With the exception of normalized canal radius, which did not differ between sexes, all measures of bone geometry (P < 0.0001) and strength (P < 0.0001 to P = 0.07) were greater in men. Women exhibited 2.7% to 3.0% greater cortical vBMD than men, whereas trabecular vBMD was 8.4% lower in women (P < 0.001). These differences remained significant after adjusting for body size. Sex differences in bone geometry and mineralization of the tibia may contribute to a decreased ability to withstand the demands imposed by novel, repetitive exercise in untrained individuals entering recruit training.

  20. Lumbosacral spine x-ray

    MedlinePlus

    X-ray - lumbosacral spine; X-ray - lower spine ... The test is done in a hospital x-ray department or your health care provider's office by an x-ray technician. You will be asked to lie on the x-ray ...

  1. Relation of adrenal-derived steroids with bone maturation, mineral density and geometry in healthy prepubertal and early pubertal boys.

    PubMed

    Vandewalle, S; Taes, Y; Fiers, T; Toye, K; Van Caenegem, E; Kaufman, J-M; De Schepper, J

    2014-12-01

    Little is known about the effects of adrenal steroids on skeletal maturation and bone mass acquisition in healthy prepubertal boys. To study whether adrenal-derived steroids within the physiological range are associated with skeletal maturation, areal and volumetric bone mineral density (aBMD and vBMD) and bone geometry in healthy prepubertal and early pubertal boys. 98 healthy prepubertal and early pubertal boys (aged 6-14 y) were studied cross-sectionally. Androstenedione (A) and estrone (E1) were determined by liquid chromatography tandem mass spectrometry and DHEAS was determined by immunoassay. Whole body and lumbar spine aBMD and bone area were determined by dual-energy X-ray absorptiometry. Trabecular (distal site) and cortical (proximal site) vBMD and bone geometry were assessed at the non-dominant forearm and leg using peripheral QCT. Skeletal age was determined by X-ray of the left hand. Adrenal-derived steroids (DHEAS, A and E1) are positively associated with bone age in prepubertal and early pubertal children, independently of age. There are no associations between the adrenal-derived steroids and the studied parameters of bone size (lumbar spine and whole body bone area, trabecular or cortical area at the radius or tibia, periosteal circumference and cortical thickness at the radius or tibia) or BMD (aBMD or vBMD). In healthy prepubertal and early pubertal boys, serum adrenal-derived steroid levels, are associated with skeletal maturation, independently of age, but not with bone size or (v)BMD. Our data suggest that adrenal derived steroids are not implicated in the accretion of bone mass before puberty in boys. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. X-ray ptychography

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Franz

    2018-01-01

    X-ray ptychographic microscopy combines the advantages of raster scanning X-ray microscopy with the more recently developed techniques of coherent diffraction imaging. It is limited neither by the fabricational challenges associated with X-ray optics nor by the requirements of isolated specimen preparation, and offers in principle wavelength-limited resolution, as well as stable access and solution to the phase problem. In this Review, we discuss the basic principles of X-ray ptychography and summarize the main milestones in the evolution of X-ray ptychographic microscopy and tomography over the past ten years, since its first demonstration with X-rays. We also highlight the potential for applications in the life and materials sciences, and discuss the latest advanced concepts and probable future developments.

  3. Phase contrast imaging using a micro focus x-ray source

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Majidi, Keivan; Brankov, Jovan G.

    2014-09-01

    Phase contrast x-ray imaging, a new technique to increase the imaging contrast for the tissues with close attenuation coefficients, has been studied since mid 1990s. This technique reveals the possibility to show the clear details of the soft tissues and tumors in small scale resolution. A compact and low cost phase contrast imaging system using a conventional x-ray source is described in this paper. Using the conventional x-ray source is of great importance, because it provides the possibility to use the method in hospitals and clinical offices. Simple materials and components are used in the setup to keep the cost in a reasonable and affordable range.Tungsten Kα1 line with the photon energy 59.3 keV was used for imaging. Some of the system design details are discussed. The method that was used to stabilize the system is introduced. A chicken thigh bone tissue sample was used for imaging followed by the image quality, image acquisition time and the potential clinical application discussion. High energy x-ray beam can be used in phase contrast imaging. Therefore the radiation dose to the patients can be greatly decreased compared to the traditional x-ray radiography.

  4. Visual detection of particulates in processed meat products by x ray

    NASA Astrophysics Data System (ADS)

    Schatzki, Thomas F.; Young, Richard; Haff, Ron P.; Eye, J.; Wright, G.

    1995-01-01

    A test has been run to study the efficacy of detecting particulate contaminants in processed meat samples by manual observation of line-scanned x-ray images. Six hundred processed product samples arriving over a 3 month period at a national USDA-FSIS laboratory were scanned at 230 cm2sec with 0.5 X 0.5 mm resolution, using 50 KV, 13 ma excitation, with digital interfacing and image correction. Images were inspected off-line, using interactive image enhancement. Forty percent of the samples were spiked, blind to the analyst, in order to establish the manual recognition rate as a function of sample thickness [1 - 10 cm] and texture of the x-ray image [smooth/textured], as well as spike composition [wood/bone/glass], size [1 - 4 mm] and shape [splinter/round]. The results have been analyzed using maximum likelihood logistic regression. In meat packages less than 6 cm thick, 2 mm bone chips are easily recognized, 1 mm glass splinters with some difficulty, while wood is generally missed even at 4 mm. Operational feasibility in a time-constrained setting has bee confirmed. One half percent of the samples arriving from the field contained bone slivers > 1 cm long, one half percent contained metallic material, while 4% contained particulates exceeding 3.2 mm in size. All of the latter appeared to be bone fragments.

  5. The influence of vegan diet on bone mineral density and biochemical bone turnover markers.

    PubMed

    Ambroszkiewicz, Jadwiga; Klemarczyk, Witold; Gajewska, Joanna; Chełchowska, Magdalena; Franek, Edward; Laskowska-Klita, Teresa

    2010-01-01

    Vegetarian diets can be healthy when they are well balanced and if a variety of foods is consumed. However, elimination of animal products from the diet (vegan diets) decreases the intake of some essential nutrients and may influence the bone metabolism. This is especially important in childhood and adolescence, when growth and bone turnover are most intensive. The aim of the study was to assess the effect of vegan diet on bone density (BMD) density and serum concentrations of bone metabolism markers. We examined a family on vegan diet which consisted of parents and two children. Dietary constituents were analysed using a nutritional program. Total and regional BMD were measured by dual-energy X-ray absorptiometry. Concentrations of calcium and phosphate in serum obtained from fasting patients were determined by colorimetric methods, 25-hydroxyvitamin D by the chemiluminescence method and bone turnover markers by specific enzyme immunoassays. In studied vegans, the dietary intake of phosphate was adequate while calcium and vitamin D were below the recommended range. Concentrations of calcium, phosphate and bone turnover markers in the serum of all subjects were within the physiological range, but 25-hydroxyvitamin D level was low. Age-matched Z-score total BMD was between -0.6 and 0.3 in adults, however in children it was lower (-0.9 and -1.0). Z-score BMD lumbar spine (L2-L4) was between -0.9 to -1.9 in parents and -1.5 to -1.7 in children. Our results suggest that an inadequate dietary intake of calcium and vitamin D may impair the bone turnover rate and cause a decrease in bone mineral density in vegans. The parameters of bone density and bone metabolism should be monitored in vegans, especially children, in order to prevent bone abnormalities.

  6. Increased fracture risk and low bone mineral density in patients with loeys-dietz syndrome.

    PubMed

    Tan, Eric W; Offoha, Roosevelt U; Oswald, Gretchen L; Skolasky, Richard L; Dewan, Ashvin K; Zhen, Gehua; Shapiro, Jay R; Dietz, Harry C; Cao, Xu; Sponseller, Paul D

    2013-08-01

    Loeys-Dietz syndrome is a recently recognized connective tissue disorder with widespread systemic involvement. Little is known about its skeletal phenotype. Our goal was to investigate the risk of fracture and incidence of low bone mineral density in patients with Loeys-Dietz syndrome. We performed a cross-sectional, descriptive, survey-based study with subsequent chart review from July 2011 to April 2012. Fifty-seven patients (26 men, 31 women) with Loeys-Dietz syndrome confirmed by genetic testing completed the survey (average age, 25.3 years; range, 0.9-79.6 years). There were a total of 51 fractures (33 patients): 35 fractures in the upper extremities, 14 in the lower extremities, and two in the spine. Fourteen patients (24.6%) reported two or more fractures. There was a 50% risk of fracture by age 14 years. The incidence of any fracture in this cohort was 3.86 per 100 person-years. Seventeen patients had dual-energy X-ray absorptiometry scans available for review, 11 (64.7%) of whom had at least one fracture. Thirteen included lumbar spine absorptiometry reports; eight (61.5%) indicated low or very low bone mineral density. In the left hip, ten of 14 participants (71.4%) had low or very low bone mineral density. In the left femoral neck, nine of 13 participants (69.2%) had low or very low bone mineral density. The lowest Z- and T-scores were not associated with an increased number of fractures. Patients with Loeys-Dietz syndrome have a high risk of fracture and a high incidence of low bone mineral density. Copyright © 2013 Wiley Periodicals, Inc.

  7. UNDERSTANDING X-RAY STARS:. The Discovery of Binary X-ray Sources

    NASA Astrophysics Data System (ADS)

    Schreier, E. J.; Tananbaum, H.

    2000-09-01

    The discovery of binary X-ray sources with UHURU introduced many new concepts to astronomy. It provided the canonical model which explained X-ray emission from a large class of galactic X-ray sources: it confirmed the existence of collapsed objects as the source of intense X-ray emission; showed that such collapsed objects existed in binary systems, with mass accretion as the energy source for the X-ray emission; and provided compelling evidence for the existence of black holes. This model also provided the basis for explaining the power source of AGNs and QSOs. The process of discovery and interpretation also established X-ray astronomy as an essential sub-discipline of astronomy, beginning its incorporation into the mainstream of astronomy.

  8. Thoracic spine x-ray

    MedlinePlus

    Vertebral radiography; X-ray - spine; Thoracic x-ray; Spine x-ray; Thoracic spine films; Back films ... The test is done in a hospital radiology department or in the health care provider's office. You will lie on the x-ray table in different positions. If the x-ray ...

  9. Discriminatory ability of quantitative ultrasound parameters and bone mineral density in a population-based sample of postmenopausal women with vertebral fractures: results of the Basel Osteoporosis Study.

    PubMed

    Hartl, F; Tyndall, A; Kraenzlin, M; Bachmeier, C; Gückel, C; Senn, U; Hans, D; Theiler, R

    2002-02-01

    The discriminatory potential to classify subjects with or without vertebral fractures was tested cross-sectionally with different methods for the measurement of bone status in a population-based sample of postmenopausal women. Quantitative ultrasound (QUS) measurement at the calcaneus (Lunar Achilles, Hologic Sahara), the proximal phalanges (Igea Bone Profiler), and measurement of bone mineral density (BMD) with dual-energy X-ray absorptiometry (DXA; Lunar Expert) at several anatomic sites was performed in 500 postmenopausal women (aged 65-75 years) randomly selected from the population. In addition, 50 young female subjects (20-40 years old) had QUS measurements and served as controls to express QUS results as T-score values. Radiographs of the lumbar and thoracic spine were performed in the elderly women. Two independent radiologists reviewed the X-rays for the presence of vertebral fractures. Of 486 eligible study participants, no fracture was seen in 396 participants. Single vertebral fractures were observed in 71 subjects; 19 individuals presented multiple fractures. The overall prevalence of vertebral fractures was 18.5%. Participants without vertebral fractures were compared with subjects with vertebral fractures. Normal statistical distributions were found for all bone measurement results. Risk of vertebral fracture in subjects with no and multiple vertebral fracture was estimated using age adjusted odds ratios (ORs) for QUS and dual-energy X-ray absorptiometry (DXA) values. Each SD decrease in bone measurement increased the risk of multiple vertebral fracture by 3.0 (95% CI, 1.6-5.6) for the Achilles stiffness, by 3.8 (95% CI, 1.8-8.2) for the Sahara QUI, 2.1 (95% CI, 1.3-3.4) for the Bone Profiler amplitude-dependent speed of sound (AD-SOS), and 2.1 (95% CI, 1.2-3.9) and 2.4 (95% CI, 1.3-4.3) for DXA lumbar spine and for DXA total hip, respectively. Results of a discriminant analysis showed sensitivities between 84% and 58% and specificities between 72

  10. X-ray binaries

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Satellite X-ray experiments and ground-based programs aimed at observation of X-ray binaries are discussed. Experiments aboard OAO-3, OSO-8, Ariel 5, Uhuru, and Skylab are included along with rocket and ground-based observations. Major topics covered are: Her X-1, Cyg X-3, Cen X-3, Cyg X-1, the transient source A0620-00, other possible X-ray binaries, and plans and prospects for future observational programs.

  11. Bone metabolism in galactosemia.

    PubMed

    Panis, B; Forget, P Ph; van Kroonenburgh, M J P G; Vermeer, C; Menheere, P P; Nieman, F H; Rubio-Gozalbo, M E

    2004-10-01

    Classical galactosemia is an autosomal recessively inherited disorder of galactose metabolism. Treatment consists of life-long dietary restriction of galactose. Despite treatment, long-term complications occur such as a decreased bone mineral density (BMD). A decreased BMD might be the result of either dietary deficiencies secondary to the galactose-restricted diet or unknown intrinsic factors. In this study, 40 children with classical galactosemia (13 males and 27 females, aged 3-17 years) on dietary treatment were included to gain insight in the bone metabolism of galactosemics. We found weight and height Z scores significantly decreased in galactosemics. Mean areal BMD Z scores of lumbar spine and of femoral neck as measured by Dual energy X-ray Absorptiometry (DXA) were -0.6 (P < 0.001) and -0.3 (P = 0.066), respectively. Mean volumetric BMD of the femoral neck was significant lower in galactosemics (P < 0.001). The recommended dietary allowances (RDA) for calcium, magnesium, zinc, vitamin D, and protein were met in all patients. Mean serum levels of calcium, phosphate, magnesium, zinc, 1,25-dihydroxy vitamin D (1,25OHD), parathormone (PTH), 17-beta estradiol, bone alkaline phosphatase (BAP), and under-carboxylated osteocalcin (ucOC) were normal. Serum levels of IGF-1 Z score, carboxylated osteocalcin (cOC), N-terminal telopeptide (NTX), and C-terminal telopeptide (CTX) were significantly lower in galactosemics than in control subjects. The different bone markers were strongly correlated. The low levels of IGF-1 Z score, formation marker cOC, and resorption markers NTX and CTX suggest a decreased bone metabolism in galactosemics.

  12. Data Collection and Recording on the Wisconsin/GSFC X-ray Quantum Calorimeter

    NASA Astrophysics Data System (ADS)

    O'Neill, Laura; X-ray Astrophysics Group at the University of Wisconsin-Madison

    2016-01-01

    The Wisconsin/GSFC X-ray Quantum Calorimeter (XQC) is an astronomical X-ray sounding rocket payload which uses a micro-calorimeter array to detect low (less than1keV) X-rays. Three different devices were evaluated to upgrade XQC's data collection and recording system. The system takes incoming data from XQC's pixel sensors and stores it to a memory card. The upgrade is a much smaller board and much more compact storage device. The Terasic DE0-Nano, Terasic DE0-Nano SoC, and the BeagleBone Black were tested to determine which would suit the needs of XQC best. The device needed to take incoming data, store it to an SD card, and be able to output it through a USB connection. The Terasic DE0-Nano is a simple FPGA, but needed some peripheral additions for an SD card slot and USB readout. The Terasic DE0-Nano SoC was a powerful FPGA and hard processor running Linux combined. It was able to do what was needed, but pulled too much power in the process. The BeagleBone Black had a microcontroller and also ran Linux. This last device ended up being the best choice, as it did not require too much power and had a very easy system already in place for USB readout. The only difficulty to deal with was programming the microcontroller in assembly language. This device is necessary due to the telemetry on XQC not being able to send all of the data down during the flight. It records valuable data about low energy X-rays so that the X-ray Astrophysics Groups at the University of Wisconsin-Madison and Goddard Space Flight Center can analyze and resolve the spectrum of the soft X-ray background.Later, using the digital logic on a Terasic DE0-Nano FPGA, a data simulator for the BeagleBone Black data collection and recording device was created. Programmed with Quartus II, the simulator uses basic digital logic components to fabricate trackable data signals and related timing signals to send to the data management device, as well as other timing signals that are asynchronous to the rest of

  13. Prediction of low bone mass using a combinational approach of cortical and trabecular bone measures from dental panoramic radiographs.

    PubMed

    Kathirvelu, D; Anburajan, M

    2014-09-01

    The aim of this study is to extract cortical and trabecular features of the mandible and to develop a novel combinational model of mandibular cortical thickness, trabecular bone area and age in order to predict low bone mineral density or osteoporosis from a dental panoramic radiograph. The study involved 64 south Indian women (age = 52.5 ± 12.7 years) categorised into two groups (normal and low bone mineral density) based on total femur bone mineral density. The dental panoramic radiographs were obtained by a digital scanner, and measurement of total bone mineral density at the right femur was performed by a dual-energy X-ray absorptiometry scanner. The mandibular cortical thickness and panoramic mandibular index were measured bilaterally, and the mean values were considered. The region of interest of 128 × 128 pixels around the mental foramen region was manually cropped and subjected to pre-processing, normalisation and average threshold-based segmentation to determine trabecular bone area. Multiple linear regression analyses of cortical and trabecular measures along with age were performed to develop a combinational model to classify subjects as normal and low bone mineral density. The proposed approach demonstrated strong correlation (r = 0.76; p < 0.01) against the total bone mineral density and resulted in accuracy, sensitivity and positive predictive values of 0.84, 0.92 and 0.85, respectively; the receiver operating characteristic outcomes disclosed that the area under the curve was 0.89.Our results suggest that the proposed combinational model could be useful to diagnose subjects with low bone mineral density. © IMechE 2014.

  14. Metabolic bone disease in the preterm infant: Current state and future directions

    PubMed Central

    Rehman, Moghis Ur; Narchi, Hassib

    2015-01-01

    Neonatal osteopenia is an important area of interest for neonatologists due to continuing increased survival of preterm infants. It can occur in high-risk infants such as preterm infants, infants on long-term diuretics or corticosteroids, and those with neuromuscular disorders. Complications such as rickets, pathological fractures, impaired respiratory function and poor growth in childhood can develop and may be the first clinical evidence of the condition. It is important for neonatologists managing such high-risk patients to regularly monitor biochemical markers for evidence of abnormal bone turnover and inadequate mineral intake in order to detect the early phases of impaired bone mineralization. Dual-energy X-ray absorptiometry has become an increasingly used research tool for assessing bone mineral density in children and neonates, but more studies are still needed before it can be used as a useful clinical tool. Prevention and early detection of osteopenia are key to the successful management of this condition and oral phosphate supplements should be started as soon as is feasible. PMID:26413483

  15. Skull x-ray

    MedlinePlus

    X-ray - head; X-ray - skull; Skull radiography; Head x-ray ... Chernecky CC, Berger BJ. Radiography of skull, chest, and cervical spine - diagnostic. In: Chernecky CC, Berger BJ, eds. Laboratory Tests and Diagnostic Procedures . 6th ed. ...

  16. Full-field transmission x-ray imaging with confocal polycapillary x-ray optics

    PubMed Central

    Sun, Tianxi; MacDonald, C. A.

    2013-01-01

    A transmission x-ray imaging setup based on a confocal combination of a polycapillary focusing x-ray optic followed by a polycapillary collimating x-ray optic was designed and demonstrated to have good resolution, better than the unmagnified pixel size and unlimited by the x-ray tube spot size. This imaging setup has potential application in x-ray imaging for small samples, for example, for histology specimens. PMID:23460760

  17. X-ray generator

    DOEpatents

    Dawson, John M.

    1976-01-01

    Apparatus and method for producing coherent secondary x-rays that are controlled as to direction by illuminating a mixture of high z and low z gases with an intense burst of primary x-rays. The primary x-rays are produced with a laser activated plasma, and these x-rays strip off the electrons of the high z atoms in the lasing medium, while the low z atoms retain their electrons. The neutral atoms transfer electrons to highly excited states of the highly striped high z ions giving an inverted population which produces the desired coherent x-rays. In one embodiment, a laser, light beam provides a laser spark that produces the intense burst of coherent x-rays that illuminates the mixture of high z and low z gases, whereby the high z atoms are stripped while the low z ones are not, giving the desired mixture of highly ionized and neutral atoms. To this end, the laser spark is produced by injecting a laser light beam, or a plurality of beams, into a first gas in a cylindrical container having an adjacent second gas layer co-axial therewith, the laser producing a plasma and the intense primary x-rays in the first gas, and the second gas containing the high and low atomic number elements for receiving the primary x-rays, whereupon the secondary x-rays are produced therein by stripping desired ions in a neutral gas and transfer of electrons to highly excited states of the stripped ions from the unionized atoms. Means for magnetically confining and stabilizing the plasma are disclosed for controlling the direction of the x-rays.

  18. Effects of fluoridated drinking water on bone mass and fractures: the study of osteoporotic fractures.

    PubMed

    Cauley, J A; Murphy, P A; Riley, T J; Buhari, A M

    1995-07-01

    To determine if optimal fluoridation of public water supplies influences bone mass and fractures, we studied 2076 non-black women, all aged > or = 65 years recruited into the Study of Osteoporotic Fractures at the Pittsburgh clinic. Information on fluoride exposure was limited to community water supplies. The variable used in the analysis was years of exposure to fluoridated water in community drinking water supplies. Bone mineral density (BMD) was measured at the spine and hip using dual energy X-ray absorptiometry and at the midpoint and ultradistal radius and calcaneus using single photon absorptiometry. Prevalent and incident vertebral fractures were determined by morphometry. Incident nonspine fractures were ascertained every 4 months and confirmed by radiographic report. Exposure to residential fluoridated water had no effect on bone mass. Women exposed to fluoride for > 20 years had similar axial and appendicular bone mass to women not exposed or women exposed for < or = 20 years. There was some suggestion that women exposed to fluoride for > 20 years had a lower relative risk of nonspine fractures (relative risk, RR, = 0.73; 95% confidence interval [CI] 0.48-1.12), osteoporotic fractures, RR = 0.74 (CI 0.46-1.19), and hip fractures, RR = 0.44 (CI 0.10-1.86), compared with women not exposed, but none of these relative risks was statistically significant. There was no association with wrist or spinal fractures. Our results do not support the findings from recent ecological studies which showed an increased risk of hip fracture among individuals exposed to fluoridated public water.

  19. Comparison of bone histomorphometry and μCT for evaluating bone quality in tail-suspended rats

    NASA Astrophysics Data System (ADS)

    Sun, Lian-Wen; Huang, Yun-Fei; Wang, Ying; Luan, Hui-Qin; Fan, Yu-Bo

    2014-10-01

    Astronauts often suffer from microgravity-induced osteoporosis due to their time in space. Bone histomorphometry, the 'gold standard' technique for detecting bone quality, is widely used in the evaluation of osteoporosis. This study investigates whether μCT has the same application value as histomorphometry in the evaluation of weightlessness-induced bone loss. A total of 24 SD rats were distributed into three groups (n = 8, each): tail-suspension (TS), TS plus active exercise (TSA), and control (CON). After 21 days, bone mineral density (BMD) was measured by dual energy X-ray absorptiometry (DXA) and μCT, and microstructure was measured by μCT and histomorphometry. BMD was found to have decreased significantly in TS and TSA compared with the CON group. The results of the μCT measurements showed that a change in BMD mainly occurred in the trabecular bone, and the trabecular BMD increased significantly in the TSA compared with the TS group. The comparison of μCT and histomorphometry showed that TS led to a significant decrease in bone volume (BV/TV), trabecular thickness (Tb.Th) and trabecular number (Tb.N), and it led to an increase in trabecular separation (Tb.Sp). However, active exercise can prevent these changes. Significant differences in most parameters between TSA and CON were found by μCT but not by histomorphometry. Additionally, the parameters of these two methods are highly correlated. Therefore, the application value of μCT is as good as histomorphometry and DXA in the diagnosis of weightlessness-induced osteoporosis and is even better in evaluating the efficacy of exercise.

  20. The role of bone shape in determining gender differences in vertebral bone mass.

    PubMed

    Barlow, Tricia; Carlino, Will; Blades, Heather Z; Crook, Jon; Harrison, Rachel; Arundel, Paul; Bishop, Nick J

    2011-01-01

    Dual-energy X-ray absorptiometry (DXA) measures of bone mineral density (BMD) in children fail to account for growth because bone depth is unmeasured. While multiple adjustment methods have been proposed using body or bone size, the effect of vertebral shape is relatively unknown. Our study aimed to determine gender differences in vertebral shape and their impact on areal BMD (aBMD). We recruited 189 children, including 107 boys, aged 4-17 years, who attended the emergency department due to trauma. None had fractured. Height, weight, Tanner stage, and DXA measurements of the lumbar spine (LS) and total body were obtained. Cylindrical models were used to predict relationships between vertebral width (VW) and areal density for a given vertebral area assuming uniform volumetric density. The actual relationships between VW, bone area, and aBMD for the LS in the children were then determined. The theoretical models predicted a positive relationship between width and areal density for a constant vertebral area. Actual vertebral measurements demonstrated that boys had greater VW for a given vertebral area but lower aBMD for a given VW than girls at any age. The most likely explanation for the apparent paradox was that vertebral cortical thickness relative to width was greater in girls. This difference remained after adjusting for lean mass, suggesting that bone's response to mechanical stimulation may vary between the sexes during growth with consequent evolutionary advantage for girls approaching reproductive age. Copyright © 2011 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  1. X-ray lithography masking

    NASA Technical Reports Server (NTRS)

    Smith, Henry I. (Inventor); Lim, Michael (Inventor); Carter, James (Inventor); Schattenburg, Mark (Inventor)

    1998-01-01

    X-ray masking apparatus includes a frame having a supporting rim surrounding an x-ray transparent region, a thin membrane of hard inorganic x-ray transparent material attached at its periphery to the supporting rim covering the x-ray transparent region and a layer of x-ray opaque material on the thin membrane inside the x-ray transparent region arranged in a pattern to selectively transmit x-ray energy entering the x-ray transparent region through the membrane to a predetermined image plane separated from the layer by the thin membrane. A method of making the masking apparatus includes depositing back and front layers of hard inorganic x-ray transparent material on front and back surfaces of a substrate, depositing back and front layers of reinforcing material on the back and front layers, respectively, of the hard inorganic x-ray transparent material, removing the material including at least a portion of the substrate and the back layers of an inside region adjacent to the front layer of hard inorganic x-ray transparent material, removing a portion of the front layer of reinforcing material opposite the inside region to expose the surface of the front layer of hard inorganic x-ray transparent material separated from the inside region by the latter front layer, and depositing a layer of x-ray opaque material on the surface of the latter front layer adjacent to the inside region.

  2. A hospital based study of biochemical markers of bone turnovers & bone mineral density in north Indian women

    PubMed Central

    Kumar, Ashok; Devi, Salam Gyaneshwori; Mittal, Soniya; Shukla, Deepak Kumar; Sharma, Shashi

    2013-01-01

    Background & objectives: The osteoporotic risk for women increases soon after menopause. Bone turnover markers are known to be associated with bone loss and fracture risk. This study was aimed to assess bone turnover using bone markers and their correlation with bone mineral density (BMD) in pre- and post-menopausal women. Methods: A total of 255 healthy women (160 pre- and 95 post-menopausal) were enrolled. Serum bone alkaline phosphatase (sBAP) and serum N-terminal telopeptide of type I collagen (NTX) were measured to evaluate the bone formation and resorption, respectively. Bone mineral density was determined at lumbar spine (L2-L4) anteroposteriorly, femoral neck and Ward's triangle using Prodigy dual-energy X-ray absorptiometry (DXA) system. The comparison of years since menopause with respect to BMD and bone markers was also evaluated. Results: NTX and sBAP showed significant negative correlation with BMD of femur neck and Ward's triangle in postmenopausal women. BMD of all three sides were significant variables for NTX and BMD of femur neck and Ward's triangle for sBAP in postmenopausal women. BMD lumbar spine was a significant variable for sBAP in premenopausal women. The mean values of NTX increased significantly with increase in the duration of years since menopause. The BMD of all three sides decreased significantly with increase in the duration of years since menopause. Interpretation & conclusions: Serum NTX and sBAP were inversely correlated to BMD of femur neck and Ward's triangle in post-menopausal women. Simultaneous measurements of NTX and BMD in the north Indian women, suggest that bone resorption in women with low BMD remains high after menopause. PMID:23481051

  3. Cross-mode bioelectrical impedance analysis in a standing position for estimating fat-free mass validated against dual-energy x-ray absorptiometry.

    PubMed

    Huang, Ai-Chun; Chen, Yu-Yawn; Chuang, Chih-Lin; Chiang, Li-Ming; Lu, Hsueh-Kuan; Lin, Hung-Chi; Chen, Kuen-Tsann; Hsiao, An-Chi; Hsieh, Kuen-Chang

    2015-11-01

    Bioelectrical impedance analysis (BIA) is commonly used to assess body composition. Cross-mode (left hand to right foot, Z(CR)) BIA presumably uses the longest current path in the human body, which may generate better results when estimating fat-free mass (FFM). We compared the cross-mode with the hand-to-foot mode (right hand to right foot, Z(HF)) using dual-energy x-ray absorptiometry (DXA) as the reference. We hypothesized that when comparing anthropometric parameters using stepwise regression analysis, the impedance value from the cross-mode analysis would have better prediction accuracy than that from the hand-to-foot mode analysis. We studied 264 men and 232 women (mean ages, 32.19 ± 14.95 and 34.51 ± 14.96 years, respectively; mean body mass indexes, 24.54 ± 3.74 and 23.44 ± 4.61 kg/m2, respectively). The DXA-measured FFMs in men and women were 58.85 ± 8.15 and 40.48 ± 5.64 kg, respectively. Multiple stepwise linear regression analyses were performed to construct sex-specific FFM equations. The correlations of FFM measured by DXA vs. FFM from hand-to-foot mode and estimated FFM by cross-mode were 0.85 and 0.86 in women, with standard errors of estimate of 2.96 and 2.92 kg, respectively. In men, they were 0.91 and 0.91, with standard errors of the estimates of 3.34 and 3.48 kg, respectively. Bland-Altman plots showed limits of agreement of -6.78 to 6.78 kg for FFM from hand-to-foot mode and -7.06 to 7.06 kg for estimated FFM by cross-mode for men, and -5.91 to 5.91 and -5.84 to 5.84 kg, respectively, for women. Paired t tests showed no significant differences between the 2 modes (P > .05). Hence, cross-mode BIA appears to represent a reasonable and practical application for assessing FFM in Chinese populations. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Sinus x-ray

    MedlinePlus

    Paranasal sinus radiography; X-ray - sinuses ... sinus x-ray is taken in a hospital radiology department. Or the x-ray may be taken ... Brown J, Rout J. ENT, neck, and dental radiology. In: Adam A, Dixon AK, Gillard JH, Schaefer- ...

  5. X-Ray Data Booklet

    Science.gov Websites

    X-RAY DATA BOOKLET Center for X-ray Optics and Advanced Light Source Lawrence Berkeley National Laboratory Introduction X-Ray Properties of Elements Electron Binding Energies X-Ray Energy Emission Energies Table of X-Ray Properties Synchrotron Radiation Characteristics of Synchrotron Radiation History of X

  6. Hypericum perforatum L. treatment restored bone mass changes in swimming stressed rats.

    PubMed

    Seferos, Nikos; Petrokokkinos, Loukas; Kotsiou, Antonia; Rallis, George; Tesseromatis, Christine

    2016-01-01

    Stress, via corticosteroids release, influences bone mass density. Hypericum perforatum (Hp) a traditional remedy possess antidepressive activity (serotonin reuptake inhibitor) and wound healing properties. Hp preparation contains mainly hypericin, hyperforin, hyperoside and flavonoids exerting oestrogen-mimetic effect. Cold swimming represents an experimental model of stress associating mental strain and corporal exhaustion. This study investigates the Hp effect on femur and mandible bone mass changes in rats under cold forced swimming procedure. 30 male Wistar rats were randomized into three groups. Group A was treated with Methanolic extract of Hp (Jarsin®) via gastroesophageal catheter, and was submitted to cold swimming stress for 10 min/daily. Group B was submitted to cold stress, since group C served as control. Experiment duration was 10 days. Haematocrite and serum free fatty acids (FFA) were estimated. Furthermore volume and specific weight of each bone as well as bone mass density via dual energy X-Ray absorptiometry (DEXA) were measured. Statistic analysis by t-test. Hp treatment restores the stress injuries. Adrenals and bone mass density regain their normal values. Injuries occurring by forced swimming stress in the rats are significantly improved by Hp treatment. Estrogen-like effects of Hp flavonoids eventually may act favorable in bone remodeling.

  7. Elemental Analysis of Bone, Teeth, Horn and Antler in Different Animal Species Using Non-Invasive Handheld X-Ray Fluorescence.

    PubMed

    Buddhachat, Kittisak; Klinhom, Sarisa; Siengdee, Puntita; Brown, Janine L; Nomsiri, Raksiri; Kaewmong, Patcharaporn; Thitaram, Chatchote; Mahakkanukrauh, Pasuk; Nganvongpanit, Korakot

    2016-01-01

    Mineralized tissues accumulate elements that play crucial roles in animal health. Although elemental content of bone, blood and teeth of human and some animal species have been characterized, data for many others are lacking, as well as species comparisons. Here we describe the distribution of elements in horn (Bovidae), antler (Cervidae), teeth and bone (humerus) across a number of species determined by handheld X-ray fluorescence (XRF) to better understand differences and potential biological relevance. A difference in elemental profiles between horns and antlers was observed, possibly due to the outer layer of horns being comprised of keratin, whereas antlers are true bone. Species differences in tissue elemental content may be intrinsic, but also related to feeding habits that contribute to mineral accumulation, particularly for toxic heavy metals. One significant finding was a higher level of iron (Fe) in the humerus bone of elephants compared to other species. This may be an adaptation of the hematopoietic system by distributing Fe throughout the bone rather than the marrow, as elephant humerus lacks a marrow cavity. We also conducted discriminant analysis and found XRF was capable of distinguishing samples from different species, with humerus bone being the best source for species discrimination. For example, we found a 79.2% correct prediction and success rate of 80% for classification between human and non-human humerus bone. These findings show that handheld XRF can serve as an effective tool for the biological study of elemental composition in mineralized tissue samples and may have a forensic application.

  8. Elemental Analysis of Bone, Teeth, Horn and Antler in Different Animal Species Using Non-Invasive Handheld X-Ray Fluorescence

    PubMed Central

    Buddhachat, Kittisak; Klinhom, Sarisa; Siengdee, Puntita; Brown, Janine L.; Nomsiri, Raksiri; Kaewmong, Patcharaporn; Thitaram, Chatchote; Mahakkanukrauh, Pasuk; Nganvongpanit, Korakot

    2016-01-01

    Mineralized tissues accumulate elements that play crucial roles in animal health. Although elemental content of bone, blood and teeth of human and some animal species have been characterized, data for many others are lacking, as well as species comparisons. Here we describe the distribution of elements in horn (Bovidae), antler (Cervidae), teeth and bone (humerus) across a number of species determined by handheld X-ray fluorescence (XRF) to better understand differences and potential biological relevance. A difference in elemental profiles between horns and antlers was observed, possibly due to the outer layer of horns being comprised of keratin, whereas antlers are true bone. Species differences in tissue elemental content may be intrinsic, but also related to feeding habits that contribute to mineral accumulation, particularly for toxic heavy metals. One significant finding was a higher level of iron (Fe) in the humerus bone of elephants compared to other species. This may be an adaptation of the hematopoietic system by distributing Fe throughout the bone rather than the marrow, as elephant humerus lacks a marrow cavity. We also conducted discriminant analysis and found XRF was capable of distinguishing samples from different species, with humerus bone being the best source for species discrimination. For example, we found a 79.2% correct prediction and success rate of 80% for classification between human and non-human humerus bone. These findings show that handheld XRF can serve as an effective tool for the biological study of elemental composition in mineralized tissue samples and may have a forensic application. PMID:27196603

  9. Implications of combined Ovariectomy/Multi-Deficiency Diet on rat bone with age-related variation in Bone Parameters and Bone Loss at Multiple Skeletal Sites by DEXA

    PubMed Central

    Govindarajan, Parameswari; Schlewitz, Gudrun; Schliefke, Nathalie; Weisweiler, David; Alt, Volker; Thormann, Ulrich; Lips, Katrin Susanne; Wenisch, Sabine; Langheinrich, Alexander C.; Zahner, Daniel; Hemdan, Nasr Y.; Böcker, Wolfgang; Schnettler, Reinhard; Heiss, Christian

    2013-01-01

    Background Osteoporosis is a multi-factorial, chronic, skeletal disease highly prevalent in post-menopausal women and is influenced by hormonal and dietary factors. Because animal models are imperative for disease diagnostics, the present study establishes and evaluates enhanced osteoporosis obtained through combined ovariectomy and deficient diet by DEXA (dual-energy X-ray absorptiometry) for a prolonged time period. Material/Methods Sprague-Dawley rats were randomly divided into sham (laparotomized) and OVX-diet (ovariectomized and fed with deficient diet) groups. Different skeletal sites were scanned by DEXA at the following time points: M0 (baseline), M12 (12 months post-surgery), and M14 (14 months post-surgery). Parameters analyzed included BMD (bone mineral density), BMC (bone mineral content), bone area, and fat (%). Regression analysis was performed to determine the interrelationships between BMC, BMD, and bone area from M0 to M14. Results BMD and BMC were significantly lower in OVX-diet rats at M12 and M14 compared to sham rats. The Z-scores were below −5 in OVX-diet rats at M12, but still decreased at M14 in OVX-diet rats. Bone area and percent fat were significantly lower in OVX-diet rats at M14 compared to sham rats. The regression coefficients for BMD vs. bone area, BMC vs. bone area, and BMC vs. BMD of OVX-diet rats increased with time. This is explained by differential percent change in BMD, BMC, and bone area with respect to time and disease progression. Conclusions Combined ovariectomy and deficient diet in rats caused significant reduction of BMD, BMC, and bone area, with nearly 40% bone loss after 14 months, indicating the development of severe osteoporosis. An increasing regression coefficient of BMD vs. bone area with disease progression emphasizes bone area as an important parameter, along with BMD and BMC, for prediction of fracture risk. PMID:23446183

  10. Implications of combined ovariectomy/multi-deficiency diet on rat bone with age-related variation in bone parameters and bone loss at multiple skeletal sites by DEXA.

    PubMed

    Govindarajan, Parameswari; Schlewitz, Gudrun; Schliefke, Nathalie; Weisweiler, David; Alt, Volker; Thormann, Ulrich; Lips, Katrin Susanne; Wenisch, Sabine; Langheinrich, Alexander C; Zahner, Daniel; Hemdan, Nasr Y; Böcker, Wolfgang; Schnettler, Reinhard; Heiss, Christian

    2013-02-28

    Osteoporosis is a multi-factorial, chronic, skeletal disease highly prevalent in post-menopausal women and is influenced by hormonal and dietary factors. Because animal models are imperative for disease diagnostics, the present study establishes and evaluates enhanced osteoporosis obtained through combined ovariectomy and deficient diet by DEXA (dual-energy X-ray absorptiometry) for a prolonged time period. Sprague-Dawley rats were randomly divided into sham (laparotomized) and OVX-diet (ovariectomized and fed with deficient diet) groups. Different skeletal sites were scanned by DEXA at the following time points: M0 (baseline), M12 (12 months post-surgery), and M14 (14 months post-surgery). Parameters analyzed included BMD (bone mineral density), BMC (bone mineral content), bone area, and fat (%). Regression analysis was performed to determine the interrelationships between BMC, BMD, and bone area from M0 to M14. BMD and BMC were significantly lower in OVX-diet rats at M12 and M14 compared to sham rats. The Z-scores were below -5 in OVX-diet rats at M12, but still decreased at M14 in OVX-diet rats. Bone area and percent fat were significantly lower in OVX-diet rats at M14 compared to sham rats. The regression coefficients for BMD vs. bone area, BMC vs. bone area, and BMC vs. BMD of OVX-diet rats increased with time. This is explained by differential percent change in BMD, BMC, and bone area with respect to time and disease progression. Combined ovariectomy and deficient diet in rats caused significant reduction of BMD, BMC, and bone area, with nearly 40% bone loss after 14 months, indicating the development of severe osteoporosis. An increasing regression coefficient of BMD vs. bone area with disease progression emphasizes bone area as an important parameter, along with BMD and BMC, for prediction of fracture risk.

  11. Scattered image artifacts from cone beam computed tomography and its clinical potential in bone mineral density estimation.

    PubMed

    Ko, Hoon; Jeong, Kwanmoon; Lee, Chang-Hoon; Jun, Hong Young; Jeong, Changwon; Lee, Myeung Su; Nam, Yunyoung; Yoon, Kwon-Ha; Lee, Jinseok

    2016-01-01

    Image artifacts affect the quality of medical images and may obscure anatomic structure and pathology. Numerous methods for suppression and correction of scattered image artifacts have been suggested in the past three decades. In this paper, we assessed the feasibility of use of information on scattered artifacts for estimation of bone mineral density (BMD) without dual-energy X-ray absorptiometry (DXA) or quantitative computed tomographic imaging (QCT). To investigate the relationship between scattered image artifacts and BMD, we first used a forearm phantom and cone-beam computed tomography. In the phantom, we considered two regions of interest-bone-equivalent solid material containing 50 mg HA per cm(-3) and water-to represent low- and high-density trabecular bone, respectively. We compared the scattered image artifacts in the high-density material with those in the low-density material. The technique was then applied to osteoporosis patients and healthy subjects to assess its feasibility for BMD estimation. The high-density material produced a greater number of scattered image artifacts than the low-density material. Moreover, the radius and ulna of healthy subjects produced a greater number of scattered image artifacts than those from osteoporosis patients. Although other parameters, such as bone thickness and X-ray incidence, should be considered, our technique facilitated BMD estimation directly without DXA or QCT. We believe that BMD estimation based on assessment of scattered image artifacts may benefit the prevention, early treatment and management of osteoporosis.

  12. Recent X-ray Variability of Eta Car Approaching The X-ray Eclipse

    NASA Technical Reports Server (NTRS)

    Corcoran, M.; Swank, J. H.; Ishibashi, K.; Gull, T.; Humphreys, R.; Damineli, A.; Walborn, N.; Hillier, D. J.; Davidson, K.; White, S. M.

    2002-01-01

    We discuss recent X-ray spectral variability of the supermassive star Eta Car in the interval since the last X-ray eclipse in 1998. We concentrate on the interval just prior to the next X-ray eclipse which is expected to occur in June 2003. We compare the X-ray behavior during the 2001-2003 cycle with the previous cycle (1996-1998) and note similarities and differences in the temporal X-ray behavior. We also compare a recent X-ray observation of Eta Car obtained with the Chandra high energy transmission grating in October 2002 with an earlier observation from Nov 2002, and interpret these results in terms of the proposed colliding wind binary model for the star. In addition we discuss planned observations for the upcoming X-ray eclipse.

  13. Large area soft x-ray collimator to facilitate x-ray optics testing

    NASA Technical Reports Server (NTRS)

    Espy, Samuel L.

    1994-01-01

    The first objective of this program is to design a nested conical foil x-ray optic which will collimate x-rays diverging from a point source. The collimator could then be employed in a small, inexpensive x-ray test stand which would be used to test various x-ray optics and detector systems. The second objective is to demonstrate the fabrication of the x-ray reflectors for this optic using lacquer-smoothing and zero-stress electroforming techniques.

  14. Development of x-ray laminography under an x-ray microscopic condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoshino, Masato; Uesugi, Kentaro; Takeuchi, Akihisa

    2011-07-15

    An x-ray laminography system under an x-ray microscopic condition was developed to obtain a three-dimensional structure of laterally-extended planar objects which were difficult to observe by x-ray tomography. An x-ray laminography technique was introduced to an x-ray transmission microscope with zone plate optics. Three prototype sample holders were evaluated for x-ray imaging laminography. Layered copper grid sheets were imaged as a laminated sample. Diatomite powder on a silicon nitride membrane was measured to confirm the applicability of this method to non-planar micro-specimens placed on the membrane. The three-dimensional information of diatom shells on the membrane was obtained at a spatialmore » resolution of sub-micron. Images of biological cells on the membrane were also obtained by using a Zernike phase contrast technique.« less

  15. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    DOE PAGES

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; ...

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~10 6 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >10 7 laser pulses, wemore » also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.« less

  16. Comparison of the relationship between bone marrow adipose tissue and volumetric bone mineral density in children and adults.

    PubMed

    Shen, Wei; Velasquez, Gilbert; Chen, Jun; Jin, Ye; Heymsfield, Steven B; Gallagher, Dympna; Pi-Sunyer, F Xavier

    2014-01-01

    Several large-scale studies have reported the presence of an inverse relationship between bone mineral density (BMD) and bone marrow adipose tissue (BMAT) in adults. We aim to determine if there is an inverse relationship between pelvic volumetric BMD (vBMD) and pelvic BMAT in children and to compare this relationship in children and adults. Pelvic BMAT and bone volume (BV) was evaluated in 181 healthy children (5-17yr) and 495 healthy adults (≥18yr) with whole-body magnetic resonance imaging (MRI). Pelvic vBMD was calculated using whole-body dual-energy X-ray absorptiometry to measure pelvic bone mineral content and MRI-measured BV. An inverse correlation was found between pelvic BMAT and pelvic vBMD in both children (r=-0.374, p<0.001) and adults (r=-0.650, p<0.001). In regression analysis with pelvic vBMD as the dependent variable and BMAT as the independent variable, being a child or adult neither significantly contribute to the pelvic BMD (p=0.995) nor did its interaction with pelvic BMAT (p=0.415). The inverse relationship observed between pelvic vBMD and pelvic BMAT in children extends previous findings that found the inverse relationship to exist in adults and provides further support for a reciprocal relationship between adipocytes and osteoblasts. Copyright © 2014 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  17. Risk factors for osteoporosis and bone status in postmenopausal women with psoriasis treated with UVB therapy.

    PubMed

    Osmancevic, Amra; Landin-Wilhelmsen, Kerstin; Larkö, Olle; Mellström, Dan; Wennberg, Ann-Marie; Hulthén, Lena; Krogstad, Anne-Lene

    2008-01-01

    The aims of this study were to examine whether postmenopausal women with psoriasis who were exposed to regular ultraviolet light B (UVB) therapy had greater bone mineral density than women of similar age from the same region, and to estimate the influence of risk factors on bone status. A total of 35 randomly selected women, age (mean +/- SD) 69.3 +/- 6.29 years (age range 60-82 years), with active psoriasis, mean onset at 37.0 years (+/- 23.5 SD) were studied. The patients had been previously exposed to broadband or narrowband UVB. Age-matched, women (n = 2448) from Göteborg, examined at the Geriatric out-patient clinic during the years 2001 and 2002, were used as controls. Bone mineral density was examined by Dual-Energy X-ray Absorptiometry (Hologic Delphi A) at the hip and the lumbar spine. Medical history and lifestyle factors were assessed with a questionnaire. Postmenopausal women with psoriasis were found to have higher bone mineral density than age-matched controls. Higher body weight, physical activity and UVB exposure could explain this finding.

  18. Development Of A Flash X-Ray Scanner For Stereoradiography And CT

    NASA Astrophysics Data System (ADS)

    Endorf, Robert J.; DiBianca, Frank A.; Fritsch, Daniel S.; Liu, Wen-Ching; Burns, Charles B.

    1989-05-01

    We are developing a flash x-ray scanner for stereoradiography and CT which will be able to produce a stereoradiograph in 30 to 70 ns and a complete CT scan in one microsecond. This type of imaging device will be valuable in studying high speed processes, high acceleration, and traumatic events. We have built a two channel flash x-ray system capable of producing stereo radiographs with stereo angles of from 15 to 165 degrees. The dynamic and static Miff 's for the flash x-ray system were measured and compared with similar MIT's measured for a conventional medical x-ray system. We have written and tested a stereo reconstruction algorithm to determine three dimensional space points from corresponding points in the two stereo images. To demonstrate the ability of the system to image traumatic events, a radiograph was obtained of a bone undergoing a fracture. The effects of accelerations of up to 600 g were examined on radiographs taken of human kidney tissue samples in a rapidly rotating centrifuge. Feasibility studies of CT reconstruction have been performed by making simulated Cr images of various phantoms for larger flash x-ray systems of from 8 to 29 flash x-ray tubes.

  19. [Calcium and bone metabolism across women's life stages. Pathophysiology, adiagnosis and treatment of post-pregnancy osteoporosis.

    PubMed

    Kurabayashi, Takumi

    Post-pregnancy osteoporosis is a rare condition with little known pathophysiology. Most cases are diagnosed in the late stage of pregnancy or in the post-partum while breastfeeding, particularly in first pregnancy. Vertebral fractures are most commonly observed and characterized by prolonged severe pain and functional limitations. Measurements of bone mineral density(BMD)of the lumbar spine and proximal femur with dual energy X-ray absorptiometry(DXA)are the clinical methods most commonly used for no fracture women. Conventional radiography will confirm the fracture in most cases, and magnetic resonance(MR), which can be safely used during pregnancy, is effective in detecting vertebral fractures and bone marrow edema. Although the bone resorption increased at the end of pregnancy and lactation, the bone formation increases and the bone structure is almost recovered after cessation of lactating in postpartum. There is much uncertainty about whether pharmacological treatments should be used for osteoporosis that presents during pregnancy and lactation. This is partly because of the lack of a firm evidence base for treatment and also because there is a spontaneous recovery of bone mass and strength after pregnancy or weaning.

  20. Panoramic Dental X-Ray

    MedlinePlus

    ... Physician Resources Professions Site Index A-Z Panoramic Dental X-ray Panoramic dental x-ray uses a very small dose of ... x-ray , is a two-dimensional (2-D) dental x-ray examination that captures the entire mouth ...

  1. Identifying Low Muscle Mass in Patients with Hip Fracture: Validation of Biolectrical Impedance Analysis and Anthropometry Compared to Dual Energy X-ray Absorptiometry.

    PubMed

    Steihaug, O M; Gjesdal, C G; Bogen, B; Ranhoff, A H

    2016-01-01

    Older hip fracture patients often have reduced muscle mass, which is associated with adverse outcomes. Dual energy X-ray absorptiometry (DXA) can determine muscle mass, but is not practical in the acute phase. We investigated bioelectrical impedance analysis (BIA) and anthropometry compared against DXA for detecting low muscle mass in hip fracture patients. This was a cross-sectional validation study at two Norwegian hospitals on 162 hip fracture patients aged ≥ 65 years. Appendicular lean mass (ALM) was determined by DXA, BIA and anthropometry 3 months after hip fracture. ALM by BIA was calculated by the Kyle, Janssen, Tengvall and Sergi equations, and ALM by anthropometry by the Heymsfield and Villani equations. The area under the receiver operating characteristic curve (AUC) was used to compare BIA and anthropometry for determining low ALM (≤5.67 kg/m2 for women and ≤7.25kg/m2 for men). Mean age was 79 years (SD 7.9), 74% were female. Mean ALM by DXA was 14.8 kg (SD 2.3) for women and 20.8 kg (SD 4.2) for men and 45% of women and 60% of men had low ALM. BIA (Kyle) in women (AUC 0.81, 95% confidence interval 0.72-0.89) and BIA (Sergi) in men (AUC 0.89, 95% CI 0.80-0.98) were best able to discriminate between low and normal ALM. Anthropometry (Heymsfield) was less accurate than BIA in women (AUC 0.64, 95% CI 0.54-0.75), and equal to BIA in men (AUC 0.72, 95% CI 0.72 0.56-0.87). BIA (Sergi, Kyle and Tengvall) and anthropometry (Heymsfield) can identify low muscle mass in hip fracture patients.

  2. Validation of multi-frequency bioelectrical impedance analysis versus dual-energy X-ray absorptiometry to measure body fat percentage in overweight/obese Colombian adults.

    PubMed

    Ramírez-Vélez, Robinson; Tordecilla-Sanders, Alejandra; Correa-Bautista, Jorge Enrique; González-Ruíz, Katherine; González-Jiménez, Emilio; Triana-Reina, Hector Reynaldo; García-Hermoso, Antonio; Schmidt-RioValle, Jacqueline

    2018-01-01

    To verify the validity of multi-frequency bioelectrical impedance analysis (mBCA) for predicting body fat percentage (BF%) in overweight/obese adults using dual-energy X-ray absorptiometry (DXA) as the reference method. Forty-eight adults participated (54% women, mean age = 41.0 ± 7.3 years old). The Pearson's correlation coefficient was used to evaluate the correlation between BIA and BF% assessed by DXA. The concordance between BF% measured by both methods was obtained with Lin's concordance correlation coefficient and Bland-Altman difference plots. Measures of BF% were estimated as 39.0 (SD = 6.1) and 38.3 (SD = 6.5) using DXA and mBCA, respectively. The Pearson's correlation coefficient reflected a strong correlation (r =.921, P = .001). The paired t-test showed a significant mean difference between these methods for obese men BF% of -0.6 [(SD 1.95; 95% CI = -4.0 to 3.0), P =.037]. Overall, the bias of the mBCA was -0.6 [(SD 2.2; 95% CI = -5.0 to 3.7), P =.041], which indicated that the mBCA method significantly underestimated BF% in comparison to the reference method. Finally, in both genders, Lin's concordance correlation coefficient showed a strong agreement. More specifically the DXA value was ρc = 0.943 (95% CI = 0.775 to 0.950) and the mBCA value was ρc = 0.948 (95% CI = 0.778 to 0.978). Our analysis showed a strong agreement between the two methods as reflected in the range of BF%. These results show that mBCA and DXA are comparable methods for measuring body composition with higher body fat percentages. However, due to broad limits of agreement, we can only recommend mBCA for groups of populations. © 2017 Wiley Periodicals, Inc.

  3. Trabecular Bone Score (TBS)—A Novel Method to Evaluate Bone Microarchitectural Texture in Patients With Primary Hyperparathyroidism

    PubMed Central

    Boutroy, Stephanie; Zhang, Chiyuan; McMahon, Donald Jay; Zhou, Bin; Wang, Ji; Udesky, Julia; Cremers, Serge; Sarquis, Marta; Guo, Xiang-Dong Edward; Hans, Didier

    2013-01-01

    Context: In the milder form of primary hyperparathyroidism (PHPT), cancellous bone, represented by areal bone mineral density at the lumbar spine by dual-energy x-ray absorptiometry (DXA), is preserved. This finding is in contrast to high-resolution peripheral quantitative computed tomography (HRpQCT) results of abnormal trabecular microstructure and epidemiological evidence for increased overall fracture risk in PHPT. Because DXA does not directly measure trabecular bone and HRpQCT is not widely available, we used trabecular bone score (TBS), a novel gray-level textural analysis applied to spine DXA images, to estimate indirectly trabecular microarchitecture. Objective: The purpose of this study was to assess TBS from spine DXA images in relation to HRpQCT indices and bone stiffness in radius and tibia in PHPT. Design and Setting: This was a cross-sectional study conducted in a referral center. Patients: Participants were 22 postmenopausal women with PHPT. Main Outcome Measures: Outcomes measured were areal bone mineral density by DXA, TBS indices derived from DXA images, HRpQCT standard measures, and bone stiffness assessed by finite element analysis at distal radius and tibia. Results: TBS in PHPT was low at 1.24, representing abnormal trabecular microstructure (normal ≥1.35). TBS was correlated with whole bone stiffness and all HRpQCT indices, except for trabecular thickness and trabecular stiffness at the radius. At the tibia, correlations were observed between TBS and volumetric densities, cortical thickness, trabecular bone volume, and whole bone stiffness. TBS correlated with all indices of trabecular microarchitecture, except trabecular thickness, after adjustment for body weight. Conclusion: TBS, a measurement technology readily available by DXA, shows promise in the clinical assessment of trabecular microstructure in PHPT. PMID:23526463

  4. Primary Hyperparathyroidism: The Influence of Bone Marrow Adipose Tissue on Bone Loss and of Osteocalcin on Insulin Resistance

    PubMed Central

    Mendonça, Maira L.; Batista, Sérgio L.; Nogueira-Barbosa, Marcello H.; Salmon, Carlos E.G.; de Paula, Francisco J.A.

    2016-01-01

    OBJECTIVES: Bone marrow adipose tissue has been associated with low bone mineral density. However, no data exist regarding marrow adipose tissue in primary hyperparathyroidism, a disorder associated with bone loss in conditions of high bone turnover. The objective of the present study was to investigate the relationship between marrow adipose tissue, bone mass and parathyroid hormone. The influence of osteocalcin on the homeostasis model assessment of insulin resistance was also evaluated. METHODS: This was a cross-sectional study conducted at a university hospital, involving 18 patients with primary hyperparathyroidism (PHPT) and 21 controls (CG). Bone mass was assessed by dual-energy x-ray absorptiometry and marrow adipose tissue was assessed by 1H magnetic resonance spectroscopy. The biochemical evaluation included the determination of parathyroid hormone, osteocalcin, glucose and insulin levels. RESULTS: A negative association was found between the bone mass at the 1/3 radius and parathyroid hormone levels (r = -0.69; p<0.01). Marrow adipose tissue was not significantly increased in patients (CG = 32.8±11.2% vs PHPT = 38.6±12%). The serum levels of osteocalcin were higher in patients (CG = 8.6±3.6 ng/mL vs PHPT = 36.5±38.4 ng/mL; p<0.005), but no associations were observed between osteocalcin and insulin or between insulin and both marrow adipose tissue and bone mass. CONCLUSION: These results suggest that the increment of adipogenesis in the bone marrow microenvironment under conditions of high bone turnover due to primary hyperparathyroidism is limited. Despite the increased serum levels of osteocalcin due to primary hyperparathyroidism, these patients tend to have impaired insulin sensitivity. PMID:27626477

  5. Muscle strength and soft tissue composition as measured by dual energy x-ray absorptiometry in women aged 18-87 years.

    PubMed

    Madsen, O R; Lauridsen, U B; Hartkopp, A; Sørensen, O H

    1997-01-01

    Dual energy x-ray absorptiometry (DEXA) offers the possibility of assessing regional soft tissue composition, i.e. lean mass (LM) and fat mass: LM may be considered a measure of muscle mass. We examined age-related differences in LM, percentage fat (%fat) and muscle strength in 100 healthy non-athletic women aged 18-87 years. Relationships between muscle strength and leg LM in 20 elite female weight lifters and in 18 inactive women with previous hip fractures were also studied. The LM and %fat of the whole body, trunk, arms and legs were derived from a whole body DEXA scan. Isokinetic knee extensor strength (KES) and flexor strength (KFS) at 30 degrees.s-1 were assessed using an isokinetic dynamometer. The women aged 71-87 years had 35% lower KES and KFS than the women aged 18-40 years (P < 0.0001). Differences in LM were less pronounced. The LM of the legs, for instance, was 15% lower in the old than in the young women (P < 0.0001). In a multiple regression analysis with age, body mass, height and leg LM or KES as independent variables and KES or leg LM as the dependent variable, age was the most important predictor of KES (r(partial) = -0.74, P < 0.0001). The same applied to KFS. Body mass, not age, was the most important predictor of leg LM (r(partial) = 0.65, P < 0.0001) and of LM at all other measurement sites. The LM measured at different regions decreased equally with increasing age. The KES:leg LM ratio was negatively correlated with age (r = -0.70, P < 0.0001). The weight lifters had significantly higher KES:leg LM ratios than age-matched controls (+ 12%, P < 0.0001) and vice versa for the women with previous hip fractures (-36%, P < 0.0001). In conclusion, from our study it would seem that in healthy nonathletic women, age is a more important determinant of muscle strength than is LM as measured by DEXA. Muscle strengthening exercises and inactivity seem to have a considerably stronger influence on muscle strength than on LM.

  6. Negative effect of serotonin-norepinephrine reuptake inhibitor therapy on rat bone tissue after orchidectomy.

    PubMed

    Fekete, Sona; Simko, Julius; Mzik, Martin; Karesova, Iva; Zivna, Helena; Zivny, Pavel; Pavliková, Ladislava; Palicka, Vladimir

    2015-08-15

    Our goal was to determine if venlafaxine has a negative effect on bone metabolism. Rats were divided into three groups. The sham-operated control group (SHAM), the control group after orchidectomy (ORX), and the experimental group after orchidectomy received venlafaxine (VEN ORX) in standard laboratory diet (SLD) for 12 weeks. Bone mineral content (BMC) was measured by dual energy X-ray absorptiometry (DXA). Bone marker concentrations of carboxy-terminal cross-linking telopeptide of type I collagen (CTX-I), osteoprotegerin (OPG), amino-terminal propeptide of procollagen type I (P1NP), bone alkaline phosphatase (BALP), sclerostin and bone morphogenetic protein 2 (BMP-2) were examined in bone homogenate. The femurs were used for biomechanical testing. Compared to the ORX group we found lower BMD in the diaphysis area of the femur in the VEN ORX group, suggesting a preferential effect on cortical bone. Of the bone metabolism markers, there was significant decrease (ORX control group versus VEN ORX experimental group) in BALP levels and increase in sclerostin and CTX-I levels, suggesting a decrease in osteoid synthesis and increased bone resorption. The results suggest that the prolonged use of venlafaxine may have a negative effect on bone metabolism. Further studies are warranted to establish whether venlafaxine may have a clinically significant adverse effect on bone. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Sex-related differences of bone properties of pelvic limb and bone metabolism indices in 14-month-old ostriches (Struthio camelus).

    PubMed

    Krupski, W; Tatara, M R; Charuta, A; Brodzki, A; Szpetnar, M; Jóźwik, A; Strzałkowska, N; Poławska, E; Łuszczewska-Sierakowska, I

    2018-06-01

    1. Sex-related differences of long pelvic limb bones and serum bone metabolism indices were evaluated in 14-month-old female (N = 7) and male (N = 7) ostriches of similar body weights. 2. Densitometric parameters of femur, tibia and tarsometatarsus were determined using quantitative computed tomography (volumetric bone mineral density, calcium hydroxyapatite density and mean volumetric bone mineral density) and dual energy X-ray absorptiometry (bone mineral density and bone mineral content) methods. Geometrical parameters such as cortical bone area, cross-sectional area, second moment of inertia, mean relative wall thickness and cortical index were determined in the midshaft of bones. Mechanical properties of bones (maximum elastic strength and ultimate strength) were evaluated using three-point bending test. Serum concentrations of free amino acids, osteocalcin, N-terminal propeptide of type I procollagen, C-terminal telopeptides of type II collagen and total antioxidative capacity were also determined. 3. Bone weight and relative bone weight of all bones were significantly higher in males than in females. Significantly lower values of trabecular bone mineral density and calcium hydroxyapatite density were found in the trabecular bone of tibia in males. The highest number of the sex-related differences was observed in the tarsometatarsus where bone length, bone mineral content, cortical bone area, cross-sectional area and ultimate strength were higher in males. Serum concentrations of taurine, hydroxyproline, valine and isoleucine were significantly higher in males. 4. Higher loading of the tarsometatarsus in comparison to femur and tibia may be an important factor interacting with sex hormones in regulation of bone formation and mineralisation processes. Sex-related differences of bone properties were associated with increased serum concentration of selected amino acids in males.

  8. X-ray Spectral Formation In High-mass X-ray Binaries: The Case Of Vela X-1

    NASA Astrophysics Data System (ADS)

    Akiyama, Shizuka; Mauche, C. W.; Liedahl, D. A.; Plewa, T.

    2007-05-01

    We are working to develop improved models of radiatively-driven mass flows in the presence of an X-ray source -- such as in X-ray binaries, cataclysmic variables, and active galactic nuclei -- in order to infer the physical properties that determine the X-ray spectra of such systems. The models integrate a three-dimensional time-dependent hydrodynamics capability (FLASH); a comprehensive and uniform set of atomic data, improved calculations of the line force multiplier that account for X-ray photoionization and non-LTE population kinetics, and X-ray emission-line models appropriate to X-ray photoionized plasmas (HULLAC); and a Monte Carlo radiation transport code that simulates Compton scattering and recombination cascades following photoionization. As a test bed, we have simulated a high-mass X-ray binary with parameters appropriate to Vela X-1. While the orbital and stellar parameters of this system are well constrained, the physics of X-ray spectral formation is less well understood because the canonical analytical wind velocity profile of OB stars does not account for the dynamical and radiative feedback effects due to the rotation of the system and to the irradiation of the stellar wind by X-rays from the neutron star. We discuss the dynamical wind structure of Vela X-1 as determined by the FLASH simulation, where in the binary the X-ray emission features originate, and how the spatial and spectral properties of the X-ray emission features are modified by Compton scattering, photoabsorption, and fluorescent emission. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

  9. Mushroom Extracts Decrease Bone Resorption and Improve Bone Formation.

    PubMed

    Erjavec, Igor; Brkljacic, Jelena; Vukicevic, Slobodan; Jakopovic, Boris; Jakopovich, Ivan

    2016-01-01

    Mushroom extracts have shown promising effects in the treatment of cancer and various chronic diseases. Osteoporosis is considered one of the most widespread chronic diseases, for which currently available therapies show mixed results. In this research we investigated the in vitro effects of water extracts of the culinary-medicinal mushrooms Trametes versicolor, Grifola frondosa, Lentinus edodes, and Pleurotus ostreatus on a MC3T3-E1 mouse osteoblast-like cell line, primary rat osteoblasts, and primary rat osteoclasts. In an animal osteoporosis model, rats were ovariectomized and then fed 2 mushroom blends of G. frondosa and L. edodes for 42 days. Bone loss was monitored using densitometry (dual-energy X-ray absorptiometry) and micro computed tomography. In the concentration test, mushroom extracts showed no toxic effect on MC3T3-E1 cells; a dose of 24 µg/mL showed the most proliferative effect. Mushroom extracts of T. versicolor, G. frondosa, and L. edodes inhibited osteoclast activity, whereas the extract of L. edodes increased osteoblast mineralization and the production of osteocalcin, a specific osteoblastic marker. In animals, mushroom extracts did not prevent trabecular bone loss in the long bones. However, we show for the first time that the treatment with a combination of extracts from L. edodes and G. frondosa significantly reduced trabecular bone loss at the lumbar spine. Inhibitory properties of extracts from L. edodes on osteoclasts and the promotion of osteoblasts in vitro, together with the potential to decrease lumbar spine bone loss in an animal osteoporosis model, indicate that medicinal mushroom extracts can be considered as a preventive treatment and/or a supplement to pharmacotherapy to enhance its effectiveness and ameliorate its harmful side effects.

  10. Dual-energy x-ray absorptiometry to measure the influence of a 16-week community-based swim training program on body fat in children and adolescents with intellectual disabilities.

    PubMed

    Casey, Amanda Faith; Rasmussen, Roy; Mackenzie, Sasho J; Glenn, Jillian

    2010-07-01

    To use dual-energy x-ray absorptiometry (DXA) to measure the effects of a 16-week community-based swim training program on percent body fat in children and adolescents with intellectual disability (ID). Convenience sample. University sport complex and exercise science laboratory. Children and adolescents (n=8; mean age +/- SD, 13.1 +/- 3.4 y), 2 girls and 6 boys with ID, of varying fat levels (11%-35%). A swim training program lasting for the duration of 16 weeks with three 1-hour sessions held at a 25-m pool each week. Assessing percent body fat at pretest and posttest through the use of DXA. After the 16-week exercise training program, we observed a 1.2% median increase in body fat percentage with a range from -0.3% to 4.5%. Wilcoxon matched-pairs signed-ranks tests suggest that these results are statistically significant (P=.039; exact). Exercise training alone proved ineffectual in reducing percent body fat in 8 children and adolescents with ID. Further research should consider implementing a combined diet and exercise program. To gauge the effectiveness of intervention programs, valid methods and complex measurement tools such as DXA should be used to assess changes in percent body fat in such a heterogeneous population. Copyright 2010 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  11. Bone health in persons with haemophilia.

    PubMed

    Kempton, C L; Antoniucci, D M; Rodriguez-Merchan, E C

    2015-09-01

    As the population of patients with haemophilia (PWH) ages, healthcare providers are required to direct greater attention to age-related co-morbidities. Low bone mineral density (BMD) is one such co-morbidity where the incidence not only increases with age, but also occurs with greater frequency in PWH. To review risk factors for low BMD, and strategies to promote bone health and identify patients who would benefit from screening for osteoporosis and subsequent treatment. A narrative review of the literature was performed in MEDLINE with keywords haemophilia, bone density, osteoporosis and fracture. Reference lists of retrieved articles were also reviewed. Low BMD occurs more commonly in PWH than the general population and is most likely the result of a combination of risk factors.  Steps to promote bone health include preventing haemarthrosis, encouraging regular exercise, adequate vitamin D and calcium intake, and avoiding tobacco and excessive alcohol intake. Adults 50 years of age and older with haemophilia and those younger than 50 years with a fragility fracture or increased fracture risk based on FRAX (The Fracture Risk Assessment Tool), regardless of haemophilia severity, should be screened for low BMD using dual x-ray absorptiometry (DXA). Once osteoporosis is diagnosed based on DXA, fracture risk should guide treatment. Currently, treatment is similar to those without haemophilia and most commonly includes bisphosphonates. Haemophilia care providers should promote adequate bone formation during childhood and reduce bone loss during adulthood as well as identify patients with low BMD that would benefit from therapy. © 2015 John Wiley & Sons Ltd.

  12. X-ray beam finder

    DOEpatents

    Gilbert, H.W.

    1983-06-16

    An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

  13. Total body composition by dual-photon (153Gd) absorptiometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazess, R.B.; Peppler, W.W.; Gibbons, M.

    1984-10-01

    The lean-fat composition (%FATR) of soft tissue and the mineral mass of the skeleton were determined in vivo using dual-photon (153Gd) absorptiometry (dose under 2 mrem). A rectilinear raster scan was made over the entire body in 18 subjects (14 female, 4 male). Single-photon absorptiometry (125I) measured bone mineral content on the radius. Percentage fat (%FATD) was determined in the same subjects using body density (from underwater weighing with correction for residual lung volume). Lean body mass (LBM) was determined using both %FATR and %FATD. Percentage fat from absorptiometry and from underwater density were correlated (r . 0.87). The deviationmore » of %FATD from %FATR was due to the amount of skeletal mineral as a percentage of the LBM (r . 0.90). Therefore, skeletal variability, even in normal subjects, where mineral ranges only from 4 to 8% of the LBM, essentially precludes use of body density as a composition indicator unless skeletal mass is measured. Anthropometry (fatfolds and weight) predicted %FATR and LBM at least as well as did underwater density. The predictive error of %FATR from fatfolds was 5% while the predictive error in predicting LBM from anthropometry was 2 to 3 kg (3%).« less

  14. X-ray and gamma ray astronomy detectors

    NASA Technical Reports Server (NTRS)

    Decher, Rudolf; Ramsey, Brian D.; Austin, Robert

    1994-01-01

    X-ray and gamma ray astronomy was made possible by the advent of space flight. Discovery and early observations of celestial x-rays and gamma rays, dating back almost 40 years, were first done with high altitude rockets, followed by Earth-orbiting satellites> once it became possible to carry detectors above the Earth's atmosphere, a new view of the universe in the high-energy part of the electromagnetic spectrum evolved. Many of the detector concepts used for x-ray and gamma ray astronomy were derived from radiation measuring instruments used in atomic physics, nuclear physics, and other fields. However, these instruments, when used in x-ray and gamma ray astronomy, have to meet unique and demanding requirements related to their operation in space and the need to detect and measure extremely weak radiation fluxes from celestial x-ray and gamma ray sources. Their design for x-ray and gamma ray astronomy has, therefore, become a rather specialized and rapidly advancing field in which improved sensitivity, higher energy and spatial resolution, wider spectral coverage, and enhanced imaging capabilities are all sought. This text is intended as an introduction to x-ray and gamma ray astronomy instruments. It provides an overview of detector design and technology and is aimed at scientists, engineers, and technical personnel and managers associated with this field. The discussion is limited to basic principles and design concepts and provides examples of applications in past, present, and future space flight missions.

  15. X-ray imaging crystal spectrometer for extended X-ray sources

    DOEpatents

    Bitter, Manfred L.; Fraenkel, Ben; Gorman, James L.; Hill, Kenneth W.; Roquemore, A. Lane; Stodiek, Wolfgang; von Goeler, Schweickhard E.

    2001-01-01

    Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokomak fusion experiment to provide spatially and temporally resolved data on plasma parameters using the imaging properties for Bragg angles near 45. For a Bragg angle of 45.degree., the spherical crystal focuses a bundle of near parallel X-rays (the cross section of which is determined by the cross section of the crystal) from the plasma to a point on a detector, with parallel rays inclined to the main plain of diffraction focused to different points on the detector. Thus, it is possible to radially image the plasma X-ray emission in different wavelengths simultaneously with a single crystal.

  16. X-ray lithography source

    DOEpatents

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.

    1991-12-31

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.

  17. X-ray lithography source

    DOEpatents

    Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary

    1991-01-01

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

  18. Body mass index is not a good predictor of bone density: results from WHI, CHS, and EPIDOS.

    PubMed

    Robbins, John; Schott, Anne-Marie; Azari, Rahman; Kronmal, Richard

    2006-01-01

    Body mass index (BMI) is often used to predict bone mineral density (BMD). This may be flawed. Large epidemiologic studies with BMI and BMD data were analyzed. Weight alone is a better predictor of BMD than BMI. Thus, when selecting individuals for dual-energy X-ray absorptiometry, weight should be used instead of BMI. Low body mass index (BMI) is frequently suggested as one of the factors that indicates the need for bone mineral density (BMD) screening for osteoporosis. The inclusion of the height-squared term in the denominator of this predictive factor is taken on faith or from other data, but it may not be reasonable in this case. We used data from three large epidemiologic studies to test the BMI, height, and weight as predictors of BMD: (1) the Women's Health Initiative (WHI) with 11,390 women; (2) the Cardiovascular Health Study (CHS) with 1,578 men and women; (3) and EPIDOS with 7,598 women. Dual-energy X-ray absorptiometry data on one or more BMD sites, the total hip, the femoral neck, and the lumbar spine from the three studies, as well as height and weight were examined. Correlation coefficients for BMI and weight with BMD were compared. Log transformed models were evaluated to compare the strengths of the models. The result of weight alone was a much better predictor of BMD for all sites in the three studies than BMI. Taller participants had larger BMDs than would have been predicted by BMI. In conclusion, BMIs should not be used to select individuals for BMD screening. A regression model using weight alone or weight and height is a better predictor of BMD in all three populations.

  19. Genetic Expression in Cystic Fibrosis Related Bone Disease. An Observational, Transversal, Cross-Sectional Study.

    PubMed

    Ciuca, Ioana M; Pop, Liviu L; Rogobete, Alexandru F; Onet, Dan I; Guta-Almajan, Bogdan; Popa, Zoran; Horhat, Florin G

    2016-09-01

    Cystic fibrosis (CF) is the most frequent monogenic genetic disease with autosomal recessive transmission and characterized by important clinical polymorphism and significant lethal prospective. CF related bone disease occurs frequently in adults with CF. Childhood is the period of bone formation, and therefore, children are more susceptible to low bone density. Several factors like pancreatic insufficiency, hormone imbalance, and physical inactivity contribute to CF bone disease development. Revealing this would be important for prophylactic treatment against bone disease occurrence. The study was observational, transversal, with a cross-sectional design. The study included 68 children with cystic fibrosis, genotyped and monitored in the National CF Centre. At the annual assessment, besides clinical examination, biochemical evaluation for pancreatic insufficiency, and diabetes, they were evaluated for bone mineral density using dual energy X-ray absorptiometry (DXA). Twenty-six patients, aged over 10 years were diagnosed with CF bone disease, without significant gender gap. Bone disease was frequent in patients aged over 10 years with exocrine pancreatic insufficiency, carriers of severe mutations, and CF liver disease. CF carriers of a severe genotype which associates pancreatic insufficiency and CF liver disease, are more likely predisposed to low bone mineral density. Further studies should discover other significant influences in order to prevent the development of CF bone disease and an improved quality of life in cystic fibrosis children.

  20. Bandpass x-ray diode and x-ray multiplier detector

    DOEpatents

    Wang, C.L.

    1982-09-27

    An absorption-edge of an x-ray absorption filter and a quantum jump of a photocathode determine the bandpass characteristics of an x-ray diode detector. An anode, which collects the photoelectrons emitted by the photocathode, has enhanced amplification provided by photoelectron-multiplying means which include dynodes or a microchannel-plate electron-multiplier. Suppression of undesired high frequency response for a bandpass x-ray diode is provided by subtracting a signal representative of energies above the passband from a signal representative of the overall response of the bandpass diode.

  1. X-ray astronomical spectroscopy

    NASA Technical Reports Server (NTRS)

    Holt, Stephen S.

    1987-01-01

    The contributions of the Goddard group to the history of X-ray astronomy are numerous and varied. One role that the group has continued to play involves the pursuit of techniques for the measurement and interpretation of the X-ray spectra of cosmic sources. The latest development is the selection of the X-ray microcalorimeter for the Advanced X-ray Astrophysics Facility (AXAF) study payload. This technology is likely to revolutionize the study of cosmic X-ray spectra.

  2. X-Ray

    MedlinePlus

    ... of gray. For some types of X-ray tests, a contrast medium — such as iodine or barium — is introduced into your body to provide greater detail on the images. Why it's done X-ray technology is used to examine many parts of the ...

  3. X-ray luminescence computed tomography using a focused x-ray beam.

    PubMed

    Zhang, Wei; Lun, Michael C; Nguyen, Alex Anh-Tu; Li, Changqing

    2017-11-01

    Due to the low x-ray photon utilization efficiency and low measurement sensitivity of the electron multiplying charge coupled device camera setup, the collimator-based narrow beam x-ray luminescence computed tomography (XLCT) usually requires a long measurement time. We, for the first time, report a focused x-ray beam-based XLCT imaging system with measurements by a single optical fiber bundle and a photomultiplier tube (PMT). An x-ray tube with a polycapillary lens was used to generate a focused x-ray beam whose x-ray photon density is 1200 times larger than a collimated x-ray beam. An optical fiber bundle was employed to collect and deliver the emitted photons on the phantom surface to the PMT. The total measurement time was reduced to 12.5 min. For numerical simulations of both single and six fiber bundle cases, we were able to reconstruct six targets successfully. For the phantom experiment, two targets with an edge-to-edge distance of 0.4 mm and a center-to-center distance of 0.8 mm were successfully reconstructed by the measurement setup with a single fiber bundle and a PMT. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  4. Nanoscale X-Ray Microscopic Imaging of Mammalian Mineralized Tissue

    PubMed Central

    Andrews, Joy C.; Almeida, Eduardo; van der Meulen, Marjolein C.H.; Alwood, Joshua S.; Lee, Chialing; Liu, Yijin; Chen, Jie; Meirer, Florian; Feser, Michael; Gelb, Jeff; Rudati, Juana; Tkachuk, Andrei; Yun, Wenbing; Pianetta, Piero

    2010-01-01

    A novel hard transmission X-ray microscope (TXM) at the Stanford Synchrotron Radiation Light-source operating from 5 to 15 keV X-ray energy with 14 to 30 µm2 field of view has been used for high-resolution (30–40 nm) imaging and density quantification of mineralized tissue. TXM is uniquely suited for imaging of internal cellular structures and networks in mammalian mineralized tissues using relatively thick (50 µm), untreated samples that preserve tissue micro- and nanostructure. To test this method we performed Zernike phase contrast and absorption contrast imaging of mouse cancellous bone prepared under different conditions of in vivo loading, fixation, and contrast agents. In addition, the three-dimensional structure was examined using tomography. Individual osteocytic lacunae were observed embedded within trabeculae in cancellous bone. Extensive canalicular networks were evident and included processes with diameters near the 30–40 nm instrument resolution that have not been reported previously. Trabecular density was quantified relative to rod-like crystalline apatite, and rod-like trabecular struts were found to have 51–54% of pure crystal density and plate-like areas had 44–53% of crystal density. The nanometer resolution of TXM enables future studies for visualization and quantification of ultrastructural changes in bone tissue resulting from osteoporosis, dental disease, and other pathologies. PMID:20374681

  5. X-ray Observations of Cosmic Ray Acceleration

    NASA Technical Reports Server (NTRS)

    Petre, Robert

    2012-01-01

    Since the discovery of cosmic rays, detection of their sources has remained elusive. A major breakthrough has come through the identification of synchrotron X-rays from the shocks of supernova remnants through imaging and spectroscopic observations by the most recent generation of X-ray observatories. This radiation is most likely produced by electrons accelerated to relativistic energy, and thus has offered the first, albeit indirect, observational evidence that diffusive shock acceleration in supernova remnants produces cosmic rays to TeV energies, possibly as high as the "knee" in the cosmic ray spectrum. X-ray observations have provided information about the maximum energy to which these shOCks accelerate electrons, as well as indirect evidence of proton acceleration. Shock morphologies measured in X-rays have indicated that a substantial fraction of the shock energy can be diverted into particle acceleration. This presentation will summarize what we have learned about cosmic ray acceleration from X-ray observations of supernova remnants over the past two decades.

  6. Trapezium Bone Density-A Comparison of Measurements by DXA and CT.

    PubMed

    Breddam Mosegaard, Sebastian; Breddam Mosegaard, Kamille; Bouteldja, Nadia; Bæk Hansen, Torben; Stilling, Maiken

    2018-01-18

    Bone density may influence the primary fixation of cementless implants, and poor bone density may increase the risk of implant failure. Before deciding on using total joint replacement as treatment in osteoarthritis of the trapeziometacarpal joint, it is valuable to determine the trapezium bone density. The aim of this study was to: (1) determine the correlation between measurements of bone mineral density of the trapezium obtained by dual-energy X-ray absorptiometry (DXA) scans by a circumference method and a new inner-ellipse method; and (2) to compare those to measurements of bone density obtained by computerized tomography (CT)-scans in Hounsfield units (HU). We included 71 hands from 59 patients with a mean age of 59 years (43-77). All patients had Eaton-Glickel stage II-IV trapeziometacarpal (TM) joint osteoarthritis, were under evaluation for trapeziometacarpal total joint replacement, and underwent DXA and CT wrist scans. There was an excellent correlation (r = 0.94) between DXA bone mineral density measures using the circumference and the inner-ellipse method. There was a moderate correlation between bone density measures obtained by DXA- and CT-scans with (r = 0.49) for the circumference method, and (r = 0.55) for the inner-ellipse method. DXA may be used in pre-operative evaluation of the trapezium bone quality, and the simpler DXA inner-ellipse measurement method can replace the DXA circumference method in estimation of bone density of the trapezium.

  7. Effect of high dietary sodium on bone turnover markers and urinary calcium excretion in Korean postmenopausal women with low bone mass.

    PubMed

    Park, S M; Joung, J Y; Cho, Y Y; Sohn, S Y; Hur, K Y; Kim, J H; Kim, S W; Chung, J H; Lee, M K; Min, Y-K

    2015-03-01

    High salt intake is a well-recognized risk factor of osteoporosis for its modulating effect on calcium metabolism. To understand the effect of dietary sodium on bone turnover, we evaluated the association between urinary sodium excretion and bone turnover markers in Korean postmenopausal women with low bone mass. A retrospective review of medical records at a single institution identified 537 postmenopausal women who were first diagnosed with osteopenia or osteoporosis between 2008 and 2013. Subjects were stratified by low (<2 g/day, n=77), moderate (2-4.4 g/day, n=354) and high (⩾4.4 g/day, n=106) sodium excretion. A 24-h urine was collected to estimate sodium, calcium and creatinine. Bone turnover markers and calciotropic hormones were measured in serum. Bone mineral density (BMD) was assessed using dual-energy X-ray absorptiometry. Sodium intake was positively associated with urinary sodium excretion (P=0.006, r=0.29). Bone turnover markers were significantly higher in the moderate-to-high urinary sodium excretion group (⩾2 g/day) than in the low urinary sodium excretion group (<2 g/day); CTX-I (C-telopeptides of type I collagen) was 21.3% higher (P=0.001) and osteocalcin (OC) was 15.7% higher (P=0.004). Calciotropic hormones and BMD were not significantly different across the sodium excretion groups. High urinary sodium excretion (⩾2 g/day) increased bone turnover markers in Korean postmenopausal women, suggesting that excessive sodium intake might accelerate bone turnover.

  8. Low bone mineral density and fragility fractures in permanent vegetative state patients.

    PubMed

    Oppl, Bastian; Michitsch, Gabriele; Misof, Barbara; Kudlacek, Stefan; Donis, Johann; Klaushofer, Klaus; Zwerina, Jochen; Zwettler, Elisabeth

    2014-01-01

    Disuse of the musculoskeletal system causes bone loss. Whether patients in vegetative state, a dramatic example of immobilization after severe brain injury, suffer from bone loss and fractures is currently unknown. Serum markers of bone turnover, bone mineral density (BMD) measurements, and clinical data were cross-sectionally analyzed in 30 consecutive vegetative state patients of a dedicated apallic care unit between 2003 and 2007 and compared with age- and sex-matched healthy individuals. Vegetative state patients showed low calcium levels and vitamin D deficiency compared with healthy controls. Serum bone turnover markers revealed high turnover as evidenced by markedly elevated carboxy-terminal telopeptide of type I collagen (β-crosslaps) and increased levels of alkaline phosphatase. BMD measured by dual-energy X-ray absorptiometry (DXA) scanning showed strongly decreased T- and Z-scores for hip and spine. Over a period of 5 years, 8 fragility fractures occurred at peripheral sites in 6 of 30 patients (n = 3 femur, n = 2 tibia, n = 2 fibula, n = 1 humerus). In conclusion, high bone turnover and low BMD is highly prevalent in vegetative state patients, translating into a clinically relevant problem as shown by fragility fractures in 20% of patients over a time period of 5 years. . © 2014 American Society for Bone and Mineral Research.

  9. Method for spatially modulating X-ray pulses using MEMS-based X-ray optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin

    A method and apparatus are provided for spatially modulating X-rays or X-ray pulses using microelectromechanical systems (MEMS) based X-ray optics. A torsionally-oscillating MEMS micromirror and a method of leveraging the grazing-angle reflection property are provided to modulate X-ray pulses with a high-degree of controllability.

  10. X-ray monitoring optical elements

    DOEpatents

    Stoupin, Stanislav; Shvydko, Yury; Katsoudas, John; Blank, Vladimir D.; Terentyev, Sergey A.

    2016-12-27

    An X-ray article and method for analyzing hard X-rays which have interacted with a test system. The X-ray article is operative to diffract or otherwise process X-rays from an input X-ray beam which have interacted with the test system and at the same time provide an electrical circuit adapted to collect photoelectrons emitted from an X-ray optical element of the X-ray article to analyze features of the test system.

  11. Optical and X-ray studies of Compact X-ray Binaries in NGC 5904

    NASA Astrophysics Data System (ADS)

    Bhalotia, Vanshree; Beck-Winchatz, Bernhard

    2018-06-01

    Due to their high stellar densities, globular cluster systems trigger various dynamical interactions, such as the formation of compact X-ray binaries. Stellar collisional frequencies have been correlated to the number of X-ray sources detected in various clusters and we hope to measure this correlation for NGC 5904. Optical fluxes of sources from archival HST images of NGC 5904 have been measured using a DOLPHOT PSF photometry in the UV, optical and near-infrared. We developed a data analysis pipeline to process the fluxes of tens of thousands of objects using awk, python and DOLPHOT. We plot color magnitude diagrams in different photometric bands in order to identify outliers that could be X-ray binaries, since they do not evolve the same way as singular stars. Aligning previously measured astrometric data for X-ray sources in NGC 5904 from Chandra with archival astrometric data from HST will filter out the outlier objects that are not X-ray producing, and provide a sample of compact binary systems that are responsible for X-ray emission in NGC 5904. Furthermore, previously measured X-ray fluxes of NGC 5904 from Chandra have also been used to measure the X-ray to optical flux ratio and identify the types of compact X-ray binaries responsible for the X-ray emissions in NGC 5904. We gratefully acknowledge the support from the Illinois Space Grant Consortium.

  12. Changes in bone macro- and microstructure in diabetic obese mice revealed by high resolution microfocus X-ray computed tomography

    PubMed Central

    Kerckhofs, G.; Durand, M.; Vangoitsenhoven, R.; Marin, C.; Van der Schueren, B.; Carmeliet, G.; Luyten, F. P.; Geris, L.; Vandamme, K.

    2016-01-01

    High resolution microfocus X-ray computed tomography (HR-microCT) was employed to characterize the structural alterations of the cortical and trabecular bone in a mouse model of obesity-driven type 2 diabetes (T2DM). C57Bl/6J mice were randomly assigned for 14 weeks to either a control diet-fed (CTRL) or a high fat diet (HFD)-fed group developing obesity, hyperglycaemia and insulin resistance. The HFD group showed an increased trabecular thickness and a decreased trabecular number compared to CTRL animals. Midshaft tibia intracortical porosity was assessed at two spatial image resolutions. At 2 μm scale, no change was observed in the intracortical structure. At 1 μm scale, a decrease in the cortical vascular porosity of the HFD bone was evidenced. The study of a group of 8 week old animals corresponding to animals at the start of the diet challenge revealed that the decreased vascular porosity was T2DM-dependant and not related to the ageing process. Our results offer an unprecedented ultra-characterization of the T2DM compromised skeletal micro-architecture and highlight an unrevealed T2DM-related decrease in the cortical vascular porosity, potentially affecting the bone health and fragility. Additionally, it provides some insights into the technical challenge facing the assessment of the rodent bone structure using HR-microCT imaging. PMID:27759061

  13. Changes in bone macro- and microstructure in diabetic obese mice revealed by high resolution microfocus X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Kerckhofs, G.; Durand, M.; Vangoitsenhoven, R.; Marin, C.; van der Schueren, B.; Carmeliet, G.; Luyten, F. P.; Geris, L.; Vandamme, K.

    2016-10-01

    High resolution microfocus X-ray computed tomography (HR-microCT) was employed to characterize the structural alterations of the cortical and trabecular bone in a mouse model of obesity-driven type 2 diabetes (T2DM). C57Bl/6J mice were randomly assigned for 14 weeks to either a control diet-fed (CTRL) or a high fat diet (HFD)-fed group developing obesity, hyperglycaemia and insulin resistance. The HFD group showed an increased trabecular thickness and a decreased trabecular number compared to CTRL animals. Midshaft tibia intracortical porosity was assessed at two spatial image resolutions. At 2 μm scale, no change was observed in the intracortical structure. At 1 μm scale, a decrease in the cortical vascular porosity of the HFD bone was evidenced. The study of a group of 8 week old animals corresponding to animals at the start of the diet challenge revealed that the decreased vascular porosity was T2DM-dependant and not related to the ageing process. Our results offer an unprecedented ultra-characterization of the T2DM compromised skeletal micro-architecture and highlight an unrevealed T2DM-related decrease in the cortical vascular porosity, potentially affecting the bone health and fragility. Additionally, it provides some insights into the technical challenge facing the assessment of the rodent bone structure using HR-microCT imaging.

  14. One year soy protein supplementation has positive effects on bone formation markers but not bone density in postmenopausal women.

    PubMed

    Arjmandi, Bahram H; Lucas, Edralin A; Khalil, Dania A; Devareddy, Latha; Smith, Brenda J; McDonald, Jennifer; Arquitt, Andrea B; Payton, Mark E; Mason, Claudia

    2005-02-23

    Although soy protein and its isoflavones have been reported to reduce the risk of osteoporosis in peri- and post-menopausal women, most of these studies are of short duration (i.e. six months). The objective of this study was to examine if one year consumption of soy-containing foods (providing 25 g protein and 60 mg isoflavones) exerts beneficial effects on bone in postmenopausal women. Eighty-seven eligible postmenopausal women were randomly assigned to consume soy or control foods daily for one year. Bone mineral density (BMD) and bone mineral content (BMC) of the whole body, lumbar (L1-L4), and total hip were measured using dual energy x-ray absorptiometry at baseline and after one year. Blood and urine markers of bone metabolism were also assessed. Sixty-two subjects completed the one-year long study. Whole body and lumbar BMD and BMC were significantly decreased in both the soy and control groups. However, there were no significant changes in total hip BMD and BMC irrespective of treatment. Both treatments positively affected markers of bone formation as indicated by increased serum bone-specific alkaline phosphatase (BSAP) activity, insulin-like growth factor-I (IGF-I), and osteocalcin (BSAP: 27.8 and 25.8%, IGF-I: 12.8 and 26.3%, osteocalcin: 95.2 and 103.4% for control and soy groups, respectively). Neither of the protein supplements had any effect on urinary deoxypyridinoline excretion, a marker of bone resorption. Our findings suggest that although one year supplementation of 25 g protein per se positively modulated markers of bone formation, this amount of protein was unable to prevent lumbar and whole body bone loss in postmenopausal women.

  15. Insulin Resistance Is Associated With Smaller Cortical Bone Size in Nondiabetic Men at the Age of Peak Bone Mass.

    PubMed

    Verroken, Charlotte; Zmierczak, Hans-Georg; Goemaere, Stefan; Kaufman, Jean-Marc; Lapauw, Bruno

    2017-06-01

    In type 2 diabetes mellitus, fracture risk is increased despite preserved areal bone mineral density. Although this apparent paradox may in part be explained by insulin resistance affecting bone structure and/or material properties, few studies have investigated the association between insulin resistance and bone geometry. We aimed to explore this association in a cohort of nondiabetic men at the age of peak bone mass. Nine hundred ninety-six nondiabetic men aged 25 to 45 years were recruited in a cross-sectional, population-based sibling pair study at a university research center. Insulin resistance was evaluated using the homeostasis model assessment of insulin resistance (HOMA-IR), with insulin and glucose measured from fasting serum samples. Bone geometry was assessed using peripheral quantitative computed tomography at the distal radius and the radial and tibial shafts. In age-, height-, and weight-adjusted analyses, HOMA-IR was inversely associated with trabecular area at the distal radius and with cortical area, periosteal and endosteal circumference, and polar strength strain index at the radial and tibial shafts (β ≤ -0.13, P < 0.001). These associations remained essentially unchanged after additional adjustment for dual-energy X-ray absorptiometry-derived body composition, bone turnover markers, muscle size or function measurements, or adiponectin, leptin, insulin-like growth factor 1, or sex steroid levels. In this cohort of nondiabetic men at the age of peak bone mass, insulin resistance is inversely associated with trabecular and cortical bone size. These associations persist after adjustment for body composition, muscle size or function, or sex steroid levels, suggesting an independent effect of insulin resistance on bone geometry. Copyright © 2017 Endocrine Society

  16. Quantification of trunk and android lean mass using dual energy x-ray absorptiometry compared to magnetic resonance imaging after spinal cord injury.

    PubMed

    Rankin, Kathleen C; O'Brien, Laura C; Gorgey, Ashraf S

    2018-02-20

    To determine whether dual energy x-ray absorptiometry (DXA) compared to magnetic resonance imaging (MRI) may accurately quantify trunk lean mass (LM) after chronic spinal cord injury (SCI) and to investigate the relationships between trunk LM, visceral adiposity, trunk fat mass and basal metabolic rate (BMR). Cross-sectional design and correlational analysis. Research setting in a medical center. Twenty-two men with motor complete paraplegia (n = 14; T4-T11) and tetraplegia (n = 8; C5-C7) were recruited as part of a clinical trial. Not applicable. Trunk and android LM were measured using DXA. The volume of six trunk muscle groups were then measured using MRI to quantify trunk LM-MRI. Subcutaneous and visceral adipose tissue (VAT) cross-sectional areas were also measured using MRI. After overnight fast, BMR was evaluated using indirect calorimetry. Trunk LM-DXA (24 ± 3.3 kg) and android LM-DXA (3.6 ± 0.7 kg) overestimated (P < 0.0001) trunk LM-MRI (1.7 ± 0.5 kg). Trunk LM-MRI = 0.088* log (trunk LM-DXA)-0.415; r 2 =0.29, SEE= 0.44 kg, P = 0.007. Trunk LM-MRI = 1.53* android LM-DXA + 0.126; r 2 =0.26, SEE= 0.21 kg, P = 0.018. Percentage trunk LM-MRI was inversely related to VAT (r=-0.79, P < 0.0001) and trunk fat mass (r=-0.83, P < 0.001). Only trunk LM-DXA was related to BMR (r = 0.61, P = 0.002). Persons with tetraplegia have 13% smaller trunk muscle cross-sectional areas (P = 0.036) compared to those with paraplegia. Trunk LM-DXA and android LM-DXA overestimated trunk LM-MRI. Percentage trunk LM-MRI, but not LM-DXA, was inversely related to trunk central adiposity. The findings highlight the importance of exercising trunk LM to attenuate cardio-metabolic disorders after SCI.

  17. THE EFFECT OF X-RAY IRRADIATION ON THE GROWTH, AND THE MICROSCOPIC AND SUB- MICROSCOPIC STRUCTURE OF BONE SARCOMAS INDUCED BY RADIOACTIVE STRONTIUM (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khomutovskii, O.A.

    1963-01-01

    Bone sarcomas were induced in rats by the intraperitoneal injection of two doses of Sr/sup 90/ at monthly intervals using a dosage of 0.32 mu C of Sr/ sup 90/ per gram of body weight. The sarcomas appeared in 15 out of 60 rats on the 170th to 200th day after injection of the injection of the Sr/sup 90/. Induced sarcom as were given a local x-ray dose of 9 kr and 18 kr. With an irradiation dose of 18 kr, growth of the sarcoma is retarded, and the parts of the tumor where formation of osteoid material occurs aremore » almost completely destroyed. With a dose of 9 kr, the tumor continues to grow, and the destruction is less marked. Cancer cells from the irradiated sarcoma can be transplanted. However, in the transplanted tumor, the cells lose their ability to metastasize to other sites, to lyse osseous tissue, and to form osteoid materiai. Changes in the size and form of the mitochrondria snd the shell nucleus of the cells were observed after x-ray irradiation of the bone sarcoma. (TTT)« less

  18. TH-AB-209-02: Gadolinium Measurements in Human Bone Using in Vivo K X-Ray Fluorescence (KXRF) Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mostafaei, F; Nie, L

    Purpose: Improvement in an in vivo K x-ray fluorescence system, based on 109Cd source, for the detection of gadolinium (Gd) in bone has been investigated. Series of improvements to the method is described. Gd is of interest because of the extensive use of Gd-based contrast agents in MR imaging and the potential toxicity of Gd exposure. Methods: A set of seven bone equivalent phantoms with different amount of Gd concentrations (from 0–100 ppm) has been developed. Soft tissue equivalent plastic plates were used to simulate the soft tissue overlaying the tibia bone in an in vivo measurement. A new 5more » GBq 109Cd source was used to improve the source activity in comparison to the previous study (0.17 GBq). An improved spectral fitting program was utilized for data analysis. Results: The previous published minimum detection limit (MDL) for Gd doped phantom measurements using KXRF system was 3.3 ppm. In this study the MDL for bare bone phantoms was found to be 0.8 ppm. Our previous study used only three layers of plastic (0.32, 0.64 and 0.96 mm) as soft tissue equivalent materials and obtained the MDL of 4–4.8 ppm. In this study the plastic plates with more realistic thicknesses to simulate the soft tissue covering tibia bone (nine thicknesses ranging from 0.61–6.13 mm) were used. The MDLs for phantoms were determined to be 1.8–3.5 ppm. Conclusion: With the improvements made to the technology (stronger source, improved data analysis algorithm, realistic soft tissue thicknesses), the MDL of the KXRF system to measure Gd in bare bone was improved by a factor of 4.1. The MDL is at the level of the bone Gd concentration reported in literature. Hence, the system is ready to be tested on human subjects to investigate the use of bone Gd as a biomarker for Gd toxicity.« less

  19. Physical activity benefits bone density and bone-related hormones in adult men with cervical spinal cord injury.

    PubMed

    Chain, Amina; Koury, Josely C; Bezerra, Flávia Fioruci

    2012-09-01

    Severe bone loss is a recognized complication of chronic spinal cord injury (SCI). Physical exercise contributes to bone health; however, its influence on bone mass of cervical SCI individuals has not been investigated. The aim of this study was to investigate the influence of physical activity on bone mass, bone metabolism, and vitamin D status in quadriplegics. Total, lumbar spine (L1-L4), femur and radius bone mineral density (BMD) were assessed in active (n = 15) and sedentary (n = 10) quadriplegic men by dual energy X-ray absorptiometry. Concentrations of 25-hydroxyvitamin D [25(OH)D], PTH, IGF1, osteocalcin and NTx were measured in serum. After adjustments for duration of injury, total body mass, and habitual calcium intake, bone indices were similar between groups, except for L1-L4 BMD Z score that was higher in the sedentary group (P < 0.05). Hours of physical exercise per week correlated positively with 25(OH)D (r = 0.59; P < 0.05) and negatively with PTH (r = -0.50; P < 0.05). Femur BMD was negatively associated with the number of months elapsed between the injury and the onset of physical activity (r = -0.60; P < 0.05). Moreover, in the active subjects, both L1-L4 BMD Z score (r = 0.72; P < 0.01) and radius BMD (r = 0.59; P < 0.05) were positively associated with calcium intake. In this cross-sectional study, both the onset of physical activity after injury and the number of hours dedicated to exercise were able to influence bone density and bone-related hormones in quadriplegic men. Our results also suggest a positive combined effect of exercise and calcium intake on bone health of quadriplegic individuals.

  20. Dual Energy X-Ray Absorptiometry Compared with Anthropometry in Relation to Cardio-Metabolic Risk Factors in a Young Adult Population: Is the ‘Gold Standard’ Tarnished?

    PubMed Central

    Hands, Beth; Pennell, Craig E.; Lye, Stephen J.; Mountain, Jennifer A.

    2016-01-01

    Background and Aims Assessment of adiposity using dual energy x-ray absorptiometry (DXA) has been considered more advantageous in comparison to anthropometry for predicting cardio-metabolic risk in the older population, by virtue of its ability to distinguish total and regional fat. Nonetheless, there is increasing uncertainty regarding the relative superiority of DXA and little comparative data exist in young adults. This study aimed to identify which measure of adiposity determined by either DXA or anthropometry is optimal within a range of cardio-metabolic risk factors in young adults. Methods and Results 1138 adults aged 20 years were assessed by DXA and standard anthropometry from the Western Australian Pregnancy Cohort (Raine) Study. Cross-sectional linear regression analyses were performed. Waist to height ratio was superior to any DXA measure with HDL-C. BMI was the superior model in relation to blood pressure than any DXA measure. Midriff fat mass (DXA) and waist circumference were comparable in relation to glucose. For all the other cardio-metabolic variables, anthropometric and DXA measures were comparable. DXA midriff fat mass compared with BMI or waist hip ratio was the superior measure for triglycerides, insulin and HOMA-IR. Conclusion Although midriff fat mass (measured by DXA) was the superior measure with insulin sensitivity and triglycerides, the anthropometric measures were better or equal with various DXA measures for majority of the cardio-metabolic risk factors. Our findings suggest, clinical anthropometry is generally as useful as DXA in the evaluation of the individual cardio-metabolic risk factors in young adults. PMID:27622523

  1. A Novel Two-Compartment Model for Calculating Bone Volume Fractions and Bone Mineral Densities From Computed Tomography Images.

    PubMed

    Lin, Hsin-Hon; Peng, Shin-Lei; Wu, Jay; Shih, Tian-Yu; Chuang, Keh-Shih; Shih, Cheng-Ting

    2017-05-01

    Osteoporosis is a disease characterized by a degradation of bone structures. Various methods have been developed to diagnose osteoporosis by measuring bone mineral density (BMD) of patients. However, BMDs from these methods were not equivalent and were incomparable. In addition, partial volume effect introduces errors in estimating bone volume from computed tomography (CT) images using image segmentation. In this study, a two-compartment model (TCM) was proposed to calculate bone volume fraction (BV/TV) and BMD from CT images. The TCM considers bones to be composed of two sub-materials. Various equivalent BV/TV and BMD can be calculated by applying corresponding sub-material pairs in the TCM. In contrast to image segmentation, the TCM prevented the influence of the partial volume effect by calculating the volume percentage of sub-material in each image voxel. Validations of the TCM were performed using bone-equivalent uniform phantoms, a 3D-printed trabecular-structural phantom, a temporal bone flap, and abdominal CT images. By using the TCM, the calculated BV/TVs of the uniform phantoms were within percent errors of ±2%; the percent errors of the structural volumes with various CT slice thickness were below 9%; the volume of the temporal bone flap was close to that from micro-CT images with a percent error of 4.1%. No significant difference (p >0.01) was found between the areal BMD of lumbar vertebrae calculated using the TCM and measured using dual-energy X-ray absorptiometry. In conclusion, the proposed TCM could be applied to diagnose osteoporosis, while providing a basis for comparing various measurement methods.

  2. The Cambridge-Cambridge X-ray Serendipity Survey: I X-ray luminous galaxies

    NASA Technical Reports Server (NTRS)

    Boyle, B. J.; Mcmahon, R. G.; Wilkes, B. J.; Elvis, M.

    1994-01-01

    We report on the first results obtained from a new optical identification program of 123 faint X-ray sources with S(0.5-2 keV) greater than 2 x 10(exp -14) erg/s/sq cm serendipitously detected in ROSAT PSPC pointed observations. We have spectroscopically identified the optical counterparts to more than 100 sources in this survey. Although the majority of the sample (68 objects) are QSO's, we have also identified 12 narrow emission line galaxies which have extreme X-ray luminosities (10(exp 42) less than L(sub X) less than 10(exp 43.5) erg/s). Subsequent spectroscopy reveals them to be a mixture of star-burst galaxies and Seyfert 2 galaxies in approximately equal numbers. Combined with potentially similar objects identified in the Einstein Extended Medium Sensitivity Survey, these X-ray luminous galaxies exhibit a rate of cosmological evolution, L(sub X) varies as (1 + z)(exp 2.5 +/- 1.0), consistent with that derived for X-ray QSO's. This evolution, coupled with the steep slope determined for the faint end of the X-ray luminosity function (Phi(L(sub X)) varies as L(sub X)(exp -1.9)), implies that such objects could comprise 15-35% of the soft (1-2 keV) X-ray background.

  3. Compact X-ray sources: X-rays from self-reflection

    NASA Astrophysics Data System (ADS)

    Mangles, Stuart P. D.

    2012-05-01

    Laser-based particle acceleration offers a way to reduce the size of hard-X-ray sources. Scientists have now developed a simple scheme that produces a bright flash of hard X-rays by using a single laser pulse both to generate and to scatter an electron beam.

  4. Understanding the X-ray spectrum of anomalous X-ray pulsars and soft gamma-ray repeaters

    NASA Astrophysics Data System (ADS)

    Guo, Yan-Jun; Dai, Shi; Li, Zhao-Sheng; Liu, Yuan; Tong, Hao; Xu, Ren-Xin

    2015-04-01

    Hard X-rays above 10 keV are detected from several anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs), and different models have been proposed to explain the physical origin within the frame of either a magnetar model or a fallback disk system. Using data from Suzaku and INTEGRAL, we study the soft and hard X-ray spectra of four AXPs/SGRs: 1RXS J170849-400910, 1E 1547.0-5408, SGR 1806-20 and SGR 0501+4516. It is found that the spectra could be well reproduced by the bulk-motion Comptonization (BMC) process as was first suggested by Trümper et al., showing that the accretion scenario could be compatible with X-ray emission from AXPs/SGRs. Simulated results from the Hard X-ray Modulation Telescope using the BMC model show that the spectra would have discrepancies from the power-law, especially the cutoff at ˜200 keV. Thus future observations will allow researchers to distinguish different models of the hard X-ray emission and will help us understand the nature of AXPs/SGRs. Supported by the National Natural Science Foundation of China.

  5. Differences in Prevalence of Muscle Wasting in Patients Receiving Peritoneal Dialysis per Dual-Energy X-Ray Absorptiometry Due to Variation in Guideline Definitions of Sarcopenia.

    PubMed

    Hung, Rachel; Wong, Bethany; Goldet, Gabrielle; Davenport, Andrew

    2017-08-01

    Muscle wasting is associated with increased risk for mortality. There is no agreed universal definition for muscle wasting (sarcopenia), and we wished to determine whether using different criteria altered the prevalence in patients treated by peritoneal dialysis. We measured lean body and appendicular lean mass indices in 325 outpatients by dual-energy x-ray absorptiometry, comparing muscle mass with that used to define muscle wasting (sarcopenia) by various clinical guideline publications. Lean body and appendicular lean mass indices did not differ by sex: female, 17.7 ± 4.6 kg/m 2 ; male, 17.4 ± 4.3; female, 6.9 (5.6-8.5) kg/m 2 ; male, 6.7 (5.3-8.3), respectively. Depending on the criteria, the prevalence of muscle wasting varied from 2.2%-31.3% for women and 25.1%-75.6% for men. Male patients were older (58.3 ± 16 vs 53.4 ± 15.7 years). Criteria based on cutoffs derived from young healthy patients gave the higher prevalence rates. The prevalence of muscle wasting was not associated with dialysis adequacy, estimated protein intake, duration of dialysis treatment, comorbidity, diabetes, or ethnicity. The prevalence of sarcopenic obesity was low (<5% females, 7% males). We found that the prevalence varied markedly depending on the cutoff criteria used to define muscle wasting. Very few patients had sarcopenic obesity. The higher prevalence for males requires further study but was not associated with dialysis treatment. Our study highlights the need for agreed criteria to define pathologic muscle wasting from that which is age associated to allow for interventional screening programs.

  6. Effects of exemestane, anastrozole and tamoxifen on bone mineral density and bone turnover markers in postmenopausal early breast cancer patients: results of N-SAS BC 04, the TEAM Japan substudy.

    PubMed

    Aihara, T; Suemasu, K; Takei, H; Hozumi, Y; Takehara, M; Saito, T; Ohsumi, S; Masuda, N; Ohashi, Y

    2010-01-01

    Use of aromatase inhibitors in women with postmenopausal breast cancer accompanies risks of bone loss. We evaluated changes in bone mineral density (BMD) and bone turnover markers in patients treated with exemestane, anastrozole or tamoxifen for hormone-sensitive postmenopausal early breast cancer. Sixty-eight patients enrolled in the Tamoxifen Exemestane Adjuvant Multinational Japan bone substudy were randomly assigned to receive tamoxifen, exemestane or anastrozole. During a 2-year study period, lumbar spine BMD was measured using dual-energy X-ray absorptiometry, and urinary type I collagen cross-linked N-telopeptide (NTX) and serum bone-specific alkaline phosphatase (BAP) were also measured. BMD at 2 years of treatment was higher in tamoxifen patients compared with exemestane and anastrozole patients; however, the intergroup difference was not significant (p = 0.2521 and p = 0.0753, respectively). BMD was higher in exemestane patients compared with anastrozole patients; however, the intergroup difference was not significant (p = 0.7059 and p = 0.8134, respectively). NTX and BAP were significantly lower in tamoxifen patients compared with exemestane and anastrozole patients at 1 and 2 years of treatment (p < 0.05). Tamoxifen may provide better bone protection compared with exemestane or anastrozole. The effect of exemestane and anastrozole on bone loss may be comparable in Japanese postmenopausal women. Copyright © 2011 S. Karger AG, Basel.

  7. Skeletal health in long-duration astronauts: nature, assessment, and management recommendations from the NASA Bone Summit.

    PubMed

    Orwoll, Eric S; Adler, Robert A; Amin, Shreyasee; Binkley, Neil; Lewiecki, E Michael; Petak, Steven M; Shapses, Sue A; Sinaki, Mehrsheed; Watts, Nelson B; Sibonga, Jean D

    2013-06-01

    Concern about the risk of bone loss in astronauts as a result of prolonged exposure to microgravity prompted the National Aeronautics and Space Administration to convene a Bone Summit with a panel of experts at the Johnson Space Center to review the medical data and research evidence from astronauts who have had prolonged exposure to spaceflight. Data were reviewed from 35 astronauts who had served on spaceflight missions lasting between 120 and 180 days with attention focused on astronauts who (1) were repeat fliers on long-duration missions, (2) were users of an advanced resistive exercise device (ARED), (3) were scanned by quantitative computed tomography (QCT) at the hip, (4) had hip bone strength estimated by finite element modeling, or (5) had lost >10% of areal bone mineral density (aBMD) at the hip or lumbar spine as measured by dual-energy X-ray absorptiometry (DXA). Because of the limitations of DXA in describing the effects of spaceflight on bone strength, the panel recommended that the U.S. space program use QCT and finite element modeling to further study the unique effects of spaceflight (and recovery) on bone health in order to better inform clinical decisions. Copyright © 2013 American Society for Bone and Mineral Research.

  8. Bone microarchitecture is more severely affected in patients on hemodialysis than in those receiving peritoneal dialysis.

    PubMed

    Pelletier, Solenne; Vilayphiou, Nicolas; Boutroy, Stéphanie; Bacchetta, Justine; Sornay-Rendu, Elisabeth; Szulc, Pawel; Arkouche, Walid; Guebre-Egziabher, Fitsum; Fouque, Denis; Chapurlat, Roland

    2012-09-01

    We used high-resolution quantitative computed tomography to study the microarchitecture of bone in patients with chronic kidney disease on dialysis. We compared bone characteristics in 56 maintenance hemodialysis (21 women, 14 post-menopausal) and 23 peritoneal dialysis patients (9 women, 6 post-menopausal) to 79 healthy men and women from two cohorts matched for age, body mass index, gender, and menopausal status. All underwent dual-energy X-ray absorptiometry of the spine and hip to measure areal bone mineral density, and high-resolution peripheral quantitative computed tomography of the radius and tibia to measure volumetric bone mineral density and microarchitecture. When compared to their matched healthy controls, patients receiving hemodialysis and peritoneal dialysis had a significantly lower areal bone mineral density in the hip. Hemodialysis patients had significantly lower total, cortical, and trabecular volumetric bone mineral density at both sites. Hemodialysis patients had significantly lower trabecular volumetric bone mineral density and microarchitecture at the tibia than the peritoneal dialysis patients. Overall, peritoneal dialysis patients were less affected, their cortical thickness at the distal tibia being the only significant difference versus controls. Thus, we found more severe trabecular damage at the weight-bearing tibia in hemodialysis compared to peritoneal dialysis patients, but this latter finding needs confirmation in larger cohorts.

  9. X-ray crystallography

    NASA Technical Reports Server (NTRS)

    2001-01-01

    X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.

  10. Liver Enzymes and Bone Mineral Density in the General Population.

    PubMed

    Breitling, Lutz Philipp

    2015-10-01

    Liver enzyme serum levels within and just above the normal range are strong predictors of incident morbidity and mortality in the general population. However, despite the close links between hepatic pathology and impaired bone health, the association of liver enzymes with osteoporosis has hardly been investigated. The aim of the present study was to clarify whether serum liver enzyme levels in the general population are associated with bone mineral density. This was an observational, cross-sectional study. Participants and Main Outcome: Data on 13 849 adult participants of the Third National Health and Nutrition Examination Survey were used to quantify the independent associations of γ-glutamyltransferase, alanine transaminase, and aspartate transaminase with femoral neck bone mineral density assessed by dual-energy x-ray absorptiometry. In multiple regression models adjusting for numerous confounding variables, γ-glutamyltransferase showed a weak inverse association with bone mineral density (P = .0063). There also was limited evidence of a nonmonotonous relationship with alanine transaminase, with peak bone mineral density in the second quartile of enzyme activity (P = .0039). No association was found for aspartate transaminase. Although mechanistically plausible associations were found in the present study, the rather weak nature of these patterns renders it unlikely that liver enzyme levels could be of substantial use for osteoporosis risk stratification in the general population.

  11. Human immunodeficiency virus-associated lipodystrophy: an objective definition based on dual-energy x-ray absorptiometry-derived regional fat ratios in a South Asian population.

    PubMed

    Asha, Hesarghatta Shyamasunder; Seshadri, Mandalam Subramaniam; Paul, Thomas Vizhalil; Abraham, Ooriapadickal Cherian; Rupali, Priscilla; Thomas, Nihal

    2012-01-01

    To develop an objective definition of human immunodeficiency virus (HIV)-associated lipodystrophy by using regional fat mass ratios and to assess the utility of anthropometric and skinfold measurements in the initial screening for lipodystrophy. Male patients between 25 and 50 years old with proven HIV infection (highly active antiretroviral therapy [HAART]-naïve subjects and those receiving successful HAART) were studied and compared with body mass index (BMI)-matched HIV-negative control subjects. Anthropometric variables, body composition, dual-energy x-ray absorptiometry findings, and metabolic variables were compared among the 3 study groups and between those patients with and those without lipodystrophy. Trunk fat/lower limb fat mass ratio >2.28 identified 54.3% of patients with HIV receiving HAART as having lipodystrophy and had the highest odds ratio for predicting metabolic syndrome. The "clinical diagnosis of lipodystrophy" and the "clinical scoring system" had too many false-positive and false-negative results. Triceps skinfold thickness (SFT)/BMI ratio ≤0.49 and abdominal SFT/triceps SFT ratio >1.385 have good sensitivity but poor specificity in identifying lipodystrophy. In comparison with HAART-naïve patients with HIV, those receiving HAART had significantly higher insulin resistance, and a significantly greater proportion had impaired glucose tolerance and dyslipidemia. Among patients receiving HAART, those with lipodystrophy had a greater degree of insulin resistance, higher triglyceride levels, and lower levels of high-density lipoprotein cholesterol. The trunk fat/lower limb fat mass ratio in BMI-matched normal subjects can be used to derive cutoff values to define lipodystrophy objectively in HIV-infected patients. Defining lipodystrophy in this way is better than other methods of identifying those patients with increased cardiovascular risk. Triceps SFT/BMI and abdominal SFT/triceps SFT ratios may be useful as screening tools in resource

  12. Bone structure in two adult subjects with impaired minor spliceosome function resulting from RNU4ATAC mutations causing microcephalic osteodysplastic primordial dwarfism type 1 (MOPD1).

    PubMed

    Krøigård, Anne Bruun; Frost, Morten; Larsen, Martin Jakob; Ousager, Lilian Bomme; Frederiksen, Anja Lisbeth

    2016-11-01

    Microcephalic osteodysplastic primordial dwarfism type 1 (MOPD1), or Taybi-Linder syndrome is characterized by distinctive skeletal dysplasia, severe intrauterine and postnatal growth retardation, microcephaly, dysmorphic features, and neurological malformations. It is an autosomal recessive disorder caused by homozygous or compound heterozygous mutations in the RNU4ATAC gene resulting in impaired function of the minor spliceosome. Here, we present the first report on bone morphology, bone density and bone microstructure in two adult MOPD1 patients and applied radiographs, dual energy X-ray absorptiometry, high-resolution peripheral quantitative computed tomography and biochemical evaluation. The MOPD1 patients presented with short stature, low BMI but normal macroscopic bone configuration. Bone mineral density was low. Compared to Danish reference data, total bone area, cortical bone area, cortical thickness, total bone density, cortical bone density, trabecular bone density and trabecular bone volume per tissue volume (BV/TV) were all low. These findings may correlate to the short stature and low body weight of the MOPD1 patients. Our findings suggest that minor spliceosome malfunction may be associated with altered bone modelling. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Evaluation of the medical exposure doses regarding dental examinations with different X-ray instruments

    NASA Astrophysics Data System (ADS)

    Liu, Yi-Chi; Chuang, Keh-Shih; Yu, Cheng-Ching; Chao, Jiunn-Hsing; Hsu, Fang-Yuh

    2015-11-01

    Modern dental X-ray examination that consists of traditional form, panorama, and cone-beamed 3D technologies is one of the most frequent diagnostic applications nowadays. This study used the Rando Phantom and thermoluminescence dosimeters (TLD) to measure the absorbed doses of radiosensitive organs recommended by International Commission on Radiological Protection (ICRP), and whole body effective doses which were delivered due to dental X-ray examination performed with different types of X-ray instrument. Besides, enamel samples which performed reading with Electronic Paramagnetic Resonance (EPR) procedure were also used to estimate the tooth doses. EPR is a dose reconstruction method of measuring free radicals induced by radiation exposure to the calcified tissue (mainly in the tooth enamel or bone) to evaluate the accepted high dose. The tooth doses estimated by TLD and EPR methods were compared. Relationships between the tooth doses and effective doses by dental X-ray examinations with different types of X-ray equipment were investigated in this work.

  14. The Advanced X-Ray Astrophysics Facility. Observing the Universe in X-Rays

    NASA Technical Reports Server (NTRS)

    Neal, V.

    1984-01-01

    An overview of the Advanced X ray Astronophysics Facility (AXAF) program is presented. Beginning with a brief introduction to X ray astrophysics, the AXAF observatory is described including the onboard instrumentation and system capabilities. Possible X ray sources suitable for AXAF observation are identified and defined.

  15. The Mapping X-ray Fluorescence Spectrometer (MapX)

    NASA Astrophysics Data System (ADS)

    Sarrazin, P.; Blake, D. F.; Marchis, F.; Bristow, T.; Thompson, K.

    2017-12-01

    Many planetary surface processes leave traces of their actions as features in the size range 10s to 100s of microns. The Mapping X-ray Fluorescence Spectrometer (MapX) will provide elemental imaging at 100 micron spatial resolution, yielding elemental chemistry at a scale where many relict physical, chemical, or biological features can be imaged and interpreted in ancient rocks on planetary bodies and planetesimals. MapX is an arm-based instrument positioned on a rock or regolith with touch sensors. During an analysis, an X-ray source (tube or radioisotope) bombards the sample with X-rays or alpha-particles / gamma-rays, resulting in sample X-ray Fluorescence (XRF). X-rays emitted in the direction of an X-ray sensitive CCD imager pass through a 1:1 focusing lens (X-ray micro-pore Optic (MPO)) that projects a spatially resolved image of the X-rays onto the CCD. The CCD is operated in single photon counting mode so that the energies and positions of individual X-ray photons are recorded. In a single analysis, several thousand frames are both stored and processed in real-time. Higher level data products include single-element maps with a lateral spatial resolution of 100 microns and quantitative XRF spectra from ground- or instrument- selected Regions of Interest (ROI). XRF spectra from ROI are compared with known rock and mineral compositions to extrapolate the data to rock types and putative mineralogies. When applied to airless bodies and implemented with an appropriate radioisotope source for alpha-particle excitation, MapX will be able to analyze biogenic elements C, N, O, P, S, in addition to the cations of the rock-forming elements >Na, accessible with either X-ray or gamma-ray excitation. The MapX concept has been demonstrated with a series of lab-based prototypes and is currently under refinement and TRL maturation.

  16. rhIGF-1 Treatment Increases Bone Mineral Density and Trabecular Bone Structure in Children with PAPP-A2 Deficiency.

    PubMed

    Hawkins-Carranza, Federico G; Muñoz-Calvo, María T; Martos-Moreno, Gabriel Á; Allo-Miguel, Gonzalo; Del Río, Luis; Pozo, Jesús; Chowen, Julie A; Pérez-Jurado, Luis A; Argente, Jesús

    2018-01-01

    Our objective was to determine changes in bone mineral density (BMD), trabecular bone score (TBS), and body composition after 2 years of therapy with recombinant human insulin-like growth factor-1 (rhIGF-1) in 2 prepubertal children with a complete lack of circulating PAPP-A2 due to a homozygous mutation in PAPP-A2 (p.D643fs25*) resulting in a premature stop codon. Body composition, BMD, and bone structure were determined by dual-energy X-ray absorptiometry at baseline and after 1 and 2 years of rhIGF-1 treatment. Height increased from 132 to 145.5 cm (patient 1) and from 111.5 to 124.5 cm (patient 2). Bone mineral content increased from 933.40 to 1,057.97 and 1,152.77 g in patient 1, and from 696.12 to 773.26 and 911.51 g in patient 2, after 1 and 2 years, respectively. Whole-body BMD also increased after 2 years of rhIGF-1 from baseline 0.788 to 0.869 g/cm2 in patient 1 and from 0.763 to 0.829 g/cm2 in patient 2. After 2 years of treatment, both children had an improvement in TBS. During therapy, a slight increase in body fat mass was seen, with a concomitant increase in lean mass. No adverse effects were reported. Two years of rhIGF-1 improved growth, with a tendency to improve bone mass and bone microstructure and to modulate body composition. © 2018 S. Karger AG, Basel.

  17. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1990-01-01

    The annual progress report on Cosmic X Ray Physics is presented. Topics studied include: the soft x ray background, proportional counter and filter calibrations, the new sounding rocket payload: X Ray Calorimeter, and theoretical studies.

  18. Focusing X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen; Brissenden, Roger; Davis, William; Elsner, Ronald; Elvis, Martin; Freeman, Mark; Gaetz, Terrance; Gorenstein, Paul; Gubarev, Mikhall; Jerlus, Diab; hide

    2010-01-01

    During the half-century history of x-ray astronomy, focusing x-ray telescopes, through increased effective area and finer angular resolution, have improved sensitivity by 8 orders of magnitude. Here, we review previous and current x-ray-telescope missions. Next, we describe the planned next-generation x-ray-astronomy facility, the International X-ray Observatory (IXO). We conclude with an overview of a concept for the next next-generation facility, Generation X. Its scientific objectives will require very large areas (about 10,000 sq m) of highly-nested, lightweight grazing-incidence mirrors, with exceptional (about 0.1-arcsec) resolution. Achieving this angular resolution with lightweight mirrors will likely require on-orbit adjustment of alignment and figure.

  19. Changes in bone density and bone markers in rhythmic gymnasts and ballet dancers: implications for puberty and leptin levels.

    PubMed

    Muñoz, María Teresa; de la Piedra, Concepción; Barrios, Vicente; Garrido, Guadalupe; Argente, Jesús

    2004-10-01

    Our aim was to compare physical activity and biochemical markers with bone mineral acquisition in rhythmic gymnasts and ballet dancers. Weight, height, body mass index, nutritional intake, bone age and menstrual histories were analyzed in nine rhythmic gymnasts, twelve ballet dancers and fourteen controls. Bone mineral density (BMD) was assessed by X-ray absorptiometry at the lumbar spine, hip and radius. Bone alkaline phosphatase (bAP) and amino-terminal propeptide of procollagen I (PNIP) in serum and urinary alpha-isomer of the carboxy-terminal telopeptide of collagen I (alpha-CTX) were measured. Bone age was delayed 2 years and mean age at menarche was 15+/-0.9 years in rhythmic gymnasts and 13.7+/-1 years in ballet dancers, compared with 12.5+/-1 years in controls. Trocanteric and femoral neck BMD was significantly higher in rhythmic gymnasts compared with ballet dancers and controls. Right forearm (non-loaded zone) BMD was significantly decreased in rhythmic gymnasts and ballet dancers compared with controls. All subjects had normal bAP and PNIP levels, but the alpha-CTX/creatinine (Cr) ratio was increased in rhythmic gymnasts (P<0.001) with an inverse correlation between right forearm BMD and the alpha-CTX/Cr ratio (r=-0.74, P<0.001). Serum leptin levels were decreased in rhythmic gymnasts and ballet dancers. Rhythmic gymnasts had a positive correlation between right forearm BMD and leptin levels (r=0.85, P<0.001). Decreased bone mass in rhythmic gymnasts could be partially explained by an increase in bone resorption. Serum leptin levels could be implicated in the pubertal delay and be a good marker of bone mass in these subjects.

  20. Bone density and depressive disorder: a meta-analysis.

    PubMed

    Schweiger, Julietta Ursula; Schweiger, Ulrich; Hüppe, Michael; Kahl, Kai G; Greggersen, Wiebke; Fassbinder, Eva

    2016-08-01

    The aim of this study was to evaluate the evidence of low bone mineral density (BMD) in depression. Low BMD is a major risk factor for osteoporotic fractures and frailty. The searched database was Pubmed, Meta-analysis included human studies in men and women fulfilling the following criteria: (1) assessment of BMD in the lumbar spine, the femur or the total hip; (2) comparison of BMD between depressed individuals and the healthy control group; (3) measurement of BMD using dual-energy X-ray absorptiometry (DEXA); and (4) data on the mean, standard deviation, or standard error of BMD. Twenty-one studies were identified, encompassing 1842 depressed and 17,401 nondepressed individuals. Significant negative composite weighted mean effect sizes were identified for the lumbar spine (d = -0.15, 95%CL -0.22 to -0.08), femur (d = -0.34, 95%CL -0.64 to -0.05), and total hip (d = -0.14, 95%CL -0.23 to -0.05) indicating low BMD in depression. Examining men and women shows low bone density in the lumbar spine and femur in women and low bone density in the hip in men. The differences between men and women with MDD and the comparison group tended to be higher when examined by expert interviewers. Low bone density was found in all age groups. Bone mineral density is reduced in patients with depressive disorders. The studies provide little evidence for potential relevant mediating factors.

  1. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1991-01-01

    The annual progress report on Cosmic X Ray Physics for the period 1 Jan. to 31 Dec. 1990 is presented. Topics studied include: soft x ray background, new sounding rocket payload: x ray calorimeter, and theoretical studies.

  2. X-ray lasers

    NASA Astrophysics Data System (ADS)

    Elton, Raymond C.

    Theoretical and practical aspects of X-ray lasers are discussed in an introduction emphasizing recent advances. Chapters are devoted to the unique optical properties of the X-ray spectral region, the principles of short-wavelength lasers, pumping by exciting plasma ions, pumping by electron capture into excited ionic states, pumping by ionization of atoms and ions, and alternative approaches. The potential scientific, technical, biological, and medical applications of X-ray lasers are briefly characterized.

  3. The superslow pulsation X-ray pulsars in high mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    2013-03-01

    There exists a special class of X-ray pulsars that exhibit very slow pulsation of P spin > 1000 s in the high mass X-ray binaries (HMXBs). We have studied the temporal and spectral properties of these superslow pulsation neutron star binaries in hard X-ray bands with INTEGRAL observations. Long-term monitoring observations find spin period evolution of two sources: spin-down trend for 4U 2206+54 (P spin ~ 5560 s with Ṗ spin ~ 4.9 × 10-7 s s-1) and long-term spin-up trend for 2S 0114+65 (P spin ~ 9600 s with Ṗ spin ~ -1 × 10-6 s s-1) in the last 20 years. A Be X-ray transient, SXP 1062 (P spin ~ 1062 s), also showed a fast spin-down rate of Ṗ spin ~ 3 × 10-6 s s-1 during an outburst. These superslow pulsation neutron stars cannot be produced in the standard X-ray binary evolution model unless the neutron star has a much stronger surface magnetic field (B > 1014 G). The physical origin of the superslow spin period is still unclear. The possible origin and evolution channels of the superslow pulsation X-ray pulsars are discussed. Superslow pulsation X-ray pulsars could be younger X-ray binary systems, still in the fast evolution phase preceding the final equilibrium state. Alternatively, they could be a new class of neutron star system - accreting magnetars.

  4. Male Osteoporosis Awareness in the Elderly: an Analysis of Dual-Energy X-Ray Absorptiometry Use in Australia Between 1995 and 2015.

    PubMed

    Chen, Weiwen; Pocock, Nicholas

    Osteoporosis is commonly perceived to be a disease confined to aging females, despite ongoing educational interventions. There are few data on the temporal change of dual-energy X-ray absorptiometry (DXA) use in aging males compared to females. Australian Medicare DXA claims between 1995 and 2015 were analyzed to investigate gender differences and temporal change of DXA use in males and females aged 45-85 yr. In females aged 45-54 and 55-64 yr, there was a progressive increase in DXA claims per capita between 1995 until 2002, with little subsequent change from 2002 to 2015 in the younger group, but a slow subsequent increase in females aged 55-64 yr. In males aged 45-54 and 55-64 yr, there was a progressive increase in DXA claims per capita between 1995 and 2002 with an ongoing slow increase from 2002 to 2015. In older females and males aged 65-74, 75-84, or ≥85 yr, there was a progressive increase in DXA claims per capita between 1995 and 2002, with a slow increase thereafter until 2007. After 2007, following the introduction of Medicare eligibility for age over 70, claims per capita increased sharply in all 3 age groups, with a subsequent ongoing increase. The male : female claim ratio in all groups demonstrates low relative male DXA use, with the ratio consistently below 1.0. Following the 2007 Medicare change, the male : female ratio improved in the 65-74, 75-84, and ≥85 age groups. The rate of increase in the male : female ratio in subjects ≥85 yr was significantly greater than that in the 65-74 (p < 0.001) and 75-84 (p < 0.001) age groups. DXA use in males is consistently lower than that in females. Government funding intervention appears to have been most effective in relation to very elderly males over 85 yr but less so in relation to the age group 65-84. There is a need for improved education of health professionals about the risk of osteoporosis in males aged 65-84 yr. Copyright © 2016 International Society for

  5. Miniature x-ray source

    DOEpatents

    Trebes, James E.; Stone, Gary F.; Bell, Perry M.; Robinson, Ronald B.; Chornenky, Victor I.

    2002-01-01

    A miniature x-ray source capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature x-ray source comprises a compact vacuum tube assembly containing a cathode, an anode, a high voltage feedthru for delivering high voltage to the anode, a getter for maintaining high vacuum, a connection for an initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is highly x-ray transparent and made, for example, from boron nitride. The compact size and potential for remote operation allows the x-ray source, for example, to be placed adjacent to a material sample undergoing analysis or in proximity to the region to be treated for medical applications.

  6. Vegetarianism, bone loss, fracture and vitamin D: a longitudinal study in Asian vegans and non-vegans.

    PubMed

    Ho-Pham, L T; Vu, B Q; Lai, T Q; Nguyen, N D; Nguyen, T V

    2012-01-01

    The effect of vegan diet on bone loss has not been studied. The aim of this study was to examine the association between veganism and bone loss in postmenopausal women. The study was designed as a prospective longitudinal investigation with 210 women, including 105 vegans and 105 omnivores. Femoral neck (FN) bone mineral density (BMD) was measured in 2008 and 2010 by dual-energy X-ray absorptiometry (Hologic QDR4500). The incidence of vertebral fracture was ascertained by X-ray report. Serum levels of C-terminal telopeptide of type I collagen (βCTX) and N-terminal propeptide of type I procollagen (PINP) were measured by Roche Elecsys assays. Serum concentration of 25-hydroxyvitamin D and parathyroid hormone were measured by electrochemiluminescence. Among the 210 women who initially participated in the study in 2008, 181 women had completed the study and 29 women were lost to follow-up. The rate of loss in FN BMD was -1.91±3.45%/year in omnivores and -0.86±3.81%/year (P=0.08) in vegans. Lower body weight, higher intakes of animal protein and lipid, and corticosteroid use were associated with greater rate of bone loss. The 2-year incidence of fracture was 5.7% (n=5/88) in vegans, which was not significantly different from omnivores (5.4%, n=6/93). There were no significant differences in βCTX and PINP between vegans and omnivores. The prevalence of vitamin D insufficiency in vegans was higher than in omnivores (73% versus 46%; P=0.0003). Vegan diet did not have adverse effect on bone loss and fracture. Corticosteroid use and high intakes of animal protein and animal lipid were negatively associated with bone loss.

  7. Effect of mirtazapine on rat bone tissue after orchidectomy.

    PubMed

    Fekete, Sona; Simko, Julius; Mzik, Martin; Karesova, Iva; Zivna, Helena; Pavlíková, Ladislava; Palicka, Vladimir

    2015-01-01

    Our study aimed to investigate the effect of mirtazapine on bone metabolism in the orchidectomized rat model. Rats were divided into three groups. A sham-operated control group (SHAM group) and a control group after orchidectomy (ORX group) received the standard laboratory diet (SLD). An experimental group after orchidectomy (ORX MIRTA group) received SLD enriched with mirtazapine for 12 weeks. Bone mineral density (BMD) was measured by dual-energy X-ray absorptiometry. Bone marker concentrations of osteoprotegerin (OPG), amino-terminal propeptide of procollagen type I, bone alkaline phosphatase (BALP), sclerostin and bone morphogenetic protein 2 were examined in bone homogenate. The femurs were used for biomechanical testing. Compared with the control ORX group, we found a lower BMD in the ORX MIRTA group. The differences were statistically significant, although not in the lumbar vertebrae. BMD was lower in the MIRTA group, suggesting a preferential effect on cortical bone. However, although the thickness of the diaphyseal cortical bone was not different, the fragility in the femoral neck area was statistically significantly different between the groups in biomechanical testing. Regarding the bone metabolism markers, there was a significant decrease in OPG and BALP levels, suggesting a reduction in osteoid synthesis. The results suggest that prolonged use of mirtazapine may have a negative effect on the synthesis of bone and on its mechanical strength, especially in the femoral neck. Further studies are warranted to establish whether mirtazapine may have a clinically significant adverse effect on bone exclusively in the model of gonadectomized rats, or whether the effect occurs also in the model of gonadally intact animals and in respective human models. © 2015 S. Karger AG, Basel

  8. Imaging of cochlear tissue with a grating interferometer and hard X-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richter, Claus-Peter; Shintani-Smith, Stephanie; Fishman, Andrew

    This article addresses an important current development in medical and biological imaging: the possibility of imaging soft tissue at resolutions in the micron range using hard X-rays. Challenging environments, including the cochlea, require the imaging of soft tissue structure surrounded by bone. We demonstrate that cochlear soft tissue structures can be imaged with hard X-ray phase contrast. Furthermore, we show that only a thin slice of the tissue is required to introduce a large phase shift. It is likely that the phase contrast image of the soft tissue structures is sufficient to image the structures even if surrounded by bone.more » For the present set of experiments, structures with low-absorption contrast have been visualized using in-line phase contrast imaging and a grating interferometer. The experiments have been performed at the Advanced Photon Source at Argonne National Laboratories, a third generation source of synchrotron radiation. The source provides highly coherent X-ray radiation with high-photon flux (>10{sup 12} photons/s) at high-photon energies (5-70 keV). Radiographic and light microscopy images of the gerbil cochlear slice samples were compared. It has been determined that a 20-{micro}m thick tissue slice induces a phase shift between 1/3{pi} and 2/3{pi}.« less

  9. Segmentation of blurred objects using wavelet transform: application to x-ray images

    NASA Astrophysics Data System (ADS)

    Barat, Cecile S.; Ducottet, Christophe; Bilgot, Anne; Desbat, Laurent

    2004-02-01

    First, we present a wavelet-based algorithm for edge detection and characterization, which is an adaptation of Mallat and Hwang"s method. This algorithm relies on a modelization of contours as smoothed singularities of three particular types (transitions, peaks and lines). On the one hand, it allows to detect and locate edges at an adapted scale. On the other hand, it is able to identify the type of each detected edge point and to measure its amplitude and smoothing size. The latter parameters represent respectively the contrast and the smoothness level of the edge point. Second, we explain that this method has been integrated in a 3D bone surface reconstruction algorithm designed for computer-assisted and minimal invasive orthopaedic surgery. In order to decrease the dose to the patient and to obtain rapidly a 3D image, we propose to identify a bone shape from few X-ray projections by using statistical shape models registered to segmented X-ray projections. We apply this approach to pedicle screw insertion (scoliosis, fractures...) where ten to forty percent of the screws are known to be misplaced. In this context, the proposed edge detection algorithm allows to overcome the major problem of vertebrae segmentation in the X-ray images.

  10. Interconnected porosity analysis by 3D X-ray microtomography and mechanical behavior of biomimetic organic-inorganic composite materials.

    PubMed

    Alonso-Sierra, S; Velázquez-Castillo, R; Millán-Malo, B; Nava, R; Bucio, L; Manzano-Ramírez, A; Cid-Luna, H; Rivera-Muñoz, E M

    2017-11-01

    Hydroxyapatite-based materials have been used for dental and biomedical applications. They are commonly studied due to their favorable response presented when used for replacement of bone tissue. Those materials should be porous enough to allow cell penetration, internal tissue growth, vascular incursion and nutrient supply. Furthermore, their morphology should be designed to guide the growth of new bone tissue in anatomically applicable ways. In this work, the mechanical performance and 3D X-ray microtomography (X-ray μCT) study of a biomimetic, organic-inorganic composite material, based on hydroxyapatite, with physicochemical, structural, morphological and mechanical properties very similar to those of natural bone tissue is reported. Ceramic pieces in different shapes and several porous sizes were produced using a Modified Gel Casting Method. Pieces with a controlled and 3D hierarchical interconnected porous structure were molded by adding polymethylmethacrylate microspheres. Subsequently, they were subject to a thermal treatment to remove polymers and to promote a sinterization of the ceramic particles, obtaining a HAp scaffold with controlled porosity. Then, two different organic phases were used to generate an organic-inorganic composite material, so gelatin and collagen, which was extracted from bovine tail, were used. The biomimetic organic-inorganic composite material was characterized by Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, X-ray Diffraction, Fourier Transform Infrared Spectroscopy and 3D X-ray microtomography techniques. Mechanical properties were characterized in compression tests, obtaining a dramatic and synergic increment in the mechanical properties due to the chemical and physical interactions between the two phases and to the open-cell cellular behavior of the final composite material; the maximum compressive strength obtained corresponds to about 3 times higher than that reported for natural cancellous bone. The

  11. Wide-area phase-contrast X-ray imaging using large X-ray interferometers

    NASA Astrophysics Data System (ADS)

    Momose, Atsushi; Takeda, Tohoru; Yoneyama, Akio; Koyama, Ichiro; Itai, Yuji

    2001-07-01

    Large X-ray interferometers are developed for phase-contrast X-ray imaging aiming at medical applications. A monolithic X-ray interferometer and a separate one are studied, and currently a 25 mm×20 mm view area can be generated. This paper describes the strategy of our research program and some recent developments.

  12. Comparison between X-rays spectra and their effective energies in small animal CT tomographic imaging and dosimetry.

    PubMed

    Hamdi, Mahdjoub; Mimi, Malika; Bentourkia, M'hamed

    2017-03-01

    Small animal CT imaging and dosimetry usually rely on X-ray radiation produced by X-ray tubes. These X-rays typically cover a large energy range. In this study, we compared poly-energetic X-ray spectra against estimated equivalent (effective) mono-energetic beams with the same number of simulated photons for small animal CT imaging and dosimetry applications. Two poly-energetic X-ray spectra were generated from a tungsten anode at 50 and 120 kVp. The corresponding effective mono-energetic beams were established as 36 keV for the 50 kVp spectrum and 49.5 keV for the 120 kVp spectrum. To assess imaging applications, we investigated the spatial resolution by a tungsten wire, and the contrast-to-noise ratio in a reference phantom and in a realistic mouse phantom. For dosimetry investigation, we calculated the absorbed dose in a segmented digital mouse atlas in the skin, fat, heart and bone tissues. Differences of 2.1 and 2.6% in spatial resolution were respectively obtained between the 50 and 120 kVp poly-energetic spectra and their respective 36 and 49.5 keV mono-energetic beams. The differences in contrast-to-noise ratio between the poly-energetic 50 kVp spectrum and its corresponding mono-energetic 36 keV beam for air, fat, brain and bone were respectively -2.9, -0.2, 11.2 and -4.8%, and similarly between the 120 kVp and its effective energy 49.5 keV: -11.3, -20.2, -4.2 and -13.5%. Concerning the absorbed dose, for the lower X-ray beam energies, 50 kVp against 36 keV, the poly-energetic radiation doses were higher than the mono-energetic doses. Instead, for the higher X-ray beam energies, 120 kVp and 49.5 keV, the absorbed dose to the bones and lungs were higher for the mono-energetic 49.5 keV. The intensity and energy of the X-ray beam spectrum have an impact on both imaging and dosimetry in small animal studies. Simulations with mono-energetic beams should take into account these differences in order to study biological effects or to be compared to

  13. Which is the best cutoff of body mass index to identify obesity in female patients with rheumatoid arthritis? A study using dual energy X-ray absorptiometry body composition.

    PubMed

    Guimarães, Maria Fernanda B Resende; Pinto, Maria Raquel da Costa; Raid, Renata G Santos Couto; Andrade, Marcus Vinícius Melo de; Kakehasi, Adriana Maria

    Standard anthropometric measures used to diagnose obesity in the general population may not have the same performance in patients with rheumatoid arthritis. To determine cutoff points for body mass index (BMI) and waist circumference (WC) for detecting obesity in women with rheumatoid arthritis (RA) by comparing these standard anthropometric measures to a dual-energy X-ray absorptiometry (DXA)-based obesity criterion. Adult female patients with more than six months of diagnosis of RA underwent clinical evaluation, with anthropometric measures and body composition with DXA. Eighty two patients were included, mean age 55±10.7 years. The diagnosis of obesity in the sample was about 31.7% by BMI, 86.6% by WC and 59.8% by DXA. Considering DXA as golden standard, cutoff points were identified for anthropometric measures to better approximate DXA estimates of percent body fat: for BMI value≥25kg/m 2 was the best for definition of obesity in female patients with RA, with sensitivity of 80% and specificity of 60%. For WC, with 80% of sensitivity and 35% of specificity, the best value to detect obesity was 86cm. A large percentage of patients were obese. The traditional cutoff points used for obesity were not suitable for our sample. For this female population with established RA, BMI cutoff point of 25kg/m 2 and WC cutoff point of 86cm were the most appropriate to detect obesity. Copyright © 2016 Elsevier Editora Ltda. All rights reserved.

  14. Which is the best cutoff of body mass index to identify obesity in female patients with rheumatoid arthritis? A study using dual energy X-ray absorptiometry body composition.

    PubMed

    Guimarães, Maria Fernanda B Resende; da Costa Pinto, Maria Raquel; Raid, Renata G Santos Couto; Andrade, Marcus Vinícius Melo de; Kakehasi, Adriana Maria

    2016-02-11

    Standard anthropometric measures used to diagnose obesity in the general population may not have the same performance in patients with rheumatoid arthritis. To determine cutoff points for body mass index (BMI) and waist circumference (WC) for detecting obesity in women with rheumatoid arthritis (RA) by comparing these standard anthropometric measures to a dual-energy x-ray absorptiometry (DXA)-based obesity criterion. Adult female patients with more than six months of diagnosis of RA underwent clinical evaluation, with anthropometric measures and body composition with DXA. Eighty two patients were included, mean age 55±10.7 years. The diagnosis of obesity in the sample was about 31.7% by BMI, 86.6% by WC and 59.8% by DXA. Considering DXA as golden standard, Cutoff points were identified for anthropometric measures to better approximate DXA estimates of percent body fat: for BMI value ≥ 25kg/m 2 was the best for definition of obesity in female patients with RA, with sensitivity of 80% and specificity of 60%. For WC, with 80% of sensitivity and 35% of specificity, the best value to detect obesity was 86cm. A large percentage of patients were obese. The traditional cutoff points used for obesity were not suitable for our sample. For this female population with established RA, BMI cutoff point of 25kg/m 2 and WC cutoff point of 86cm were the most appropriate to detect obesity. Copyright © 2016 Elsevier Editora Ltda. All rights reserved.

  15. Bone mineral density in children with idiopathic nephrotic syndrome.

    PubMed

    El-Mashad, Ghada Mohamed; El-Hawy, Mahmoud Ahmed; El-Hefnawy, Sally Mohamed; Mohamed, Sanaa Mansour

    To assess bone mineral density (BMD) in children with idiopathic nephrotic syndrome (NS) and normal glomerular filtration rate (GFR). Cross-sectional case-control study carried out on 50 children: 25 cases of NS (16 steroid-sensitive [SSNS] and nine steroid-resistant [SRNS] under follow up in the pediatric nephrology unit of Menoufia University Hospital, which is tertiary care center, were compared to 25 healthy controls with matched age and sex. All of the participants were subjected to complete history taking, thorough clinical examination, laboratory investigations (serum creatinine, blood urea nitrogen [BUN], phosphorus [P], total and ionized calcium [Ca], parathyroid hormone [PTH], and alkaline phosphatase [ALP]). Bone mineral density was measured at the lumbar spinal region (L2-L4) in patients group using dual-energy X-ray absorptiometry (DXA). Total and ionized Ca were significantly lower while, serum P, ALP, and PTH were higher in SSNS and SRNS cases than the controls. Osteopenia was documented by DXA scan in 11 patients (44%) and osteoporosis in two patients (8%). Fracture risk was mild in six (24%), moderate in two (8%), and marked in three (12%) of patients. Bone mineralization was negatively affected by steroid treatment in children with NS. Copyright © 2016 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  16. Molecular Genetic and Gene Therapy Studies of the Musculoskeletal System

    DTIC Science & Technology

    2005-10-01

    00 A AA 0 A (C) (D) \\ " 5- Ŕ -.- o 0 AA .0 0 *A 000 L 0 000 SPearson r -0.6401 UW 2 ,_.p=0.0032, n=18 Pearsonr-72 p<O.01, n18 625 650 675 700 72 750...measured by dual-energy X-ray absorptiometry (DEXA) using a reached in the group with PIXImus soft-X-ray densitometer (Lunar, Madison WI) and analysis...dietary and lifestyle factors and their I 1q12-13 with low bone mineral density at the lumbar spine in the association with bone mass in men and women

  17. Exceptional case of bone resorption in an osteo-odonto-keratoprosthesis. A scanning electron microscopy and X-ray microanalysis study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caiazza, S.; Falcinelli, G.; Pintucci, S.

    1990-01-01

    This article reports the findings of investigations on an osteo-odonto-keratoprosthesis in an eye that was enucleated owing to severe complications 12 years after implantation. Scanning electron microscopy and electron probe X-ray microanalysis showed extensive resorption of the bone that was used as a supporting element in the kind of transcorneal prosthesis developed by Strampelli. The destructive process, in addition to surgical trauma, has been associated with the early and recurrent bacterial infections relating to the presence of Staphylococcus epidermidis. The need to control the occurrence of primary bacterial infections in traumatized tissues during operations as well as further infectious situations,more » given the enhanced antibiotic-resistence of bacteria, is emphasized.« less

  18. X-Pinch And Its Applications In X-ray Radiograph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou Xiaobing; Wang Xinxin; Liu Rui

    2009-07-07

    An X-pinch device and the related diagnostics of x-ray emission from X-pinch were briefly described. The time-resolved x-ray measurements with photoconducting diodes show that the x-ray pulse usually consists of two subnanosecond peaks with a time interval of about 0.5 ns. Being consistent with these two peaks of the x-ray pulse, two point x-ray sources of size ranging from 100 mum to 5 mum and depending on cut-off x-ray photon energy were usually observed on the pinhole pictures. The x-pinch was used as x-ray source for backlighting of the electrical explosion of single wire and the evolution of X-pinch, andmore » for phase-contrast imaging of soft biological objects such as a small shrimp and a mosquito.« less

  19. Evolution of X-ray astronomy

    NASA Technical Reports Server (NTRS)

    Rossj, B.

    1981-01-01

    The evolution of X-ray astronomy up to the launching of the Einstein observatory is presented. The evaluation proceeded through the following major steps: (1) discovery of an extrasolar X-ray source, Sco X-1, orders of magnitude stronger than astronomers believed might exist; (2) identification of a strong X-ray source with the Crab Nebula; (3) identification of Sco X-1 with a faint, peculiar optical object; (4) demonstration that X-ray stars are binary systems, each consisting of a collapsed object accreting matter from an ordinary star; (5) discovery of X-ray bursts; (6) discovery of exceedingly strong X-ray emission from active galaxies, quasars and clusters of galaxies; (7) demonstration that the principal X-ray source is a hot gas filling the space between galaxies.

  20. Active x-ray optics for Generation-X, the next high resolution x-ray observatory

    NASA Astrophysics Data System (ADS)

    Elvis, Martin; Brissenden, R. J.; Fabbiano, G.; Schwartz, D. A.; Reid, P.; Podgorski, W.; Eisenhower, M.; Juda, M.; Phillips, J.; Cohen, L.; Wolk, S.

    2006-06-01

    X-rays provide one of the few bands through which we can study the epoch of reionization, when the first galaxies, black holes and stars were born. To reach the sensitivity required to image these first discrete objects in the universe needs a major advance in X-ray optics. Generation-X (Gen-X) is currently the only X-ray astronomy mission concept that addresses this goal. Gen-X aims to improve substantially on the Chandra angular resolution and to do so with substantially larger effective area. These two goals can only be met if a mirror technology can be developed that yields high angular resolution at much lower mass/unit area than the Chandra optics, matching that of Constellation-X (Con-X). We describe an approach to this goal based on active X-ray optics that correct the mid-frequency departures from an ideal Wolter optic on-orbit. We concentrate on the problems of sensing figure errors, calculating the corrections required, and applying those corrections. The time needed to make this in-flight calibration is reasonable. A laboratory version of these optics has already been developed by others and is successfully operating at synchrotron light sources. With only a moderate investment in these optics the goals of Gen-X resolution can be realized.

  1. Development of X-ray CCD camera based X-ray micro-CT system

    NASA Astrophysics Data System (ADS)

    Sarkar, Partha S.; Ray, N. K.; Pal, Manoj K.; Baribaddala, Ravi; Agrawal, Ashish; Kashyap, Y.; Sinha, A.; Gadkari, S. C.

    2017-02-01

    Availability of microfocus X-ray sources and high resolution X-ray area detectors has made it possible for high resolution microtomography studies to be performed outside the purview of synchrotron. In this paper, we present the work towards the use of an external shutter on a high resolution microtomography system using X-ray CCD camera as a detector. During micro computed tomography experiments, the X-ray source is continuously ON and owing to the readout mechanism of the CCD detector electronics, the detector registers photons reaching it during the read-out period too. This introduces a shadow like pattern in the image known as smear whose direction is defined by the vertical shift register. To resolve this issue, the developed system has been incorporated with a synchronized shutter just in front of the X-ray source. This is positioned in the X-ray beam path during the image readout period and out of the beam path during the image acquisition period. This technique has resulted in improved data quality and hence the same is reflected in the reconstructed images.

  2. Bone mineral density and correlation factor analysis in normal Taiwanese children.

    PubMed

    Shu, San-Ging

    2007-01-01

    Our aim was to establish reference data and linear regression equations for lumbar bone mineral density (BMD) in normal Taiwanese children. Several influencing factors of lumbar BMD were investigated. Two hundred fifty-seven healthy children were recruited from schools, 136 boys and 121 girls, aged 4-18 years were enrolled on a voluntary basis with written consent. Their height, weight, blood pressure, puberty stage, bone age and lumbar BMD (L2-4) by dual energy x-ray absorptiometry (DEXA) were measured. Data were analyzed using Pearson correlation and stepwise regression tests. All measurements increased with age. Prior to age 8, there was no gender difference. Parameters such as height, weight, and bone age (BA) in girls surpassed boys between ages 8-13 without statistical significance (p> or =0.05). This was reversed subsequently after age 14 in height (p<0.05). BMD difference had the same trend but was not statistically significant either. The influencing power of puberty stage and bone age over BMD was almost equal to or higher than that of height and weight. All the other factors correlated with BMD to variable powers. Multiple linear regression equations for boys and girls were formulated. BMD reference data is provided and can be used to monitor childhood pathological conditions. However, BMD in those with abnormal bone age or pubertal development could need modifications to ensure accuracy.

  3. Chandra X-ray Observatory - NASA's flagship X-ray telescope

    Science.gov Websites

    astronomy, taking its place in the fleet of "Great Observatories." Who we are NASA's Chandra X-ray astronomy, distances are measured in units of light years, where one light year is the distance that light gravity? The answer is still out there. By studying clusters of galaxies, X-ray astronomy is tackling this

  4. Diffraction leveraged modulation of X-ray pulses using MEMS-based X-ray optics

    DOEpatents

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin; Walko, Donald A.; Jung, Il-Woong; Mukhopadhyay, Deepkishore

    2016-08-09

    A method and apparatus are provided for implementing Bragg-diffraction leveraged modulation of X-ray pulses using MicroElectroMechanical systems (MEMS) based diffractive optics. An oscillating crystalline MEMS device generates a controllable time-window for diffraction of the incident X-ray radiation. The Bragg-diffraction leveraged modulation of X-ray pulses includes isolating a particular pulse, spatially separating individual pulses, and spreading a single pulse from an X-ray pulse-train.

  5. Comparisons of bone mineral density and bone quality in adult rock climbers, resistance-trained men, and untrained men.

    PubMed

    Sherk, Vanessa D; Bemben, Michael G; Bemben, Debra A

    2010-09-01

    The nature of muscular contractions and episodes of impact loading during technical rock climbing are often varied and complex, and the resulting effects on bone health are unclear. The purpose of this study was to compare total body, lumbar spine, proximal femur, and forearm areal bone mineral density (aBMD) and tibia and forearm bone quality in male rock climbers (RC) (n = 15), resistance trained men (RT) (n = 16), and untrained male controls (CTR) (n = 16). Total body, anteroposterior (AP) lumbar spine, proximal femur, and forearm aBMD and body composition were measured using dual-energy X-ray absorptiometry (DXA) (Lunar Prodigy, v. 10.50.086; GE Healthcare, Waukesha, Wisconsin, U.S.A.). Volumetric BMD (vBMD), bone content, bone area, and muscle cross-sectional area (MCSA) of the tibia and forearm were measured using pQCT (peripheral quantitative computed tomography; Stratec XCT 3000, Pforzheim, Germany). No significant group differences were seen in bone-free lean body mass. CTR had significantly (p < 0.05) greater body fat % than RC and RT and significantly (p < 0.05) greater fat mass than RC. Lumbar spine and femoral neck aBMD were significantly (p < 0.05) greater in RT compared to both RC and CTR. RC had significantly (p < 0.05) lower aBMD at the 33% radius site than CTR. Forearm MCSA was significantly (p < 0.05) lower in CTR than in the other groups. No significant differences were seen between groups for vBMD or bone area of the tibia and forearm. In conclusion, resistance-trained men had higher bone density at the central skeletal sites than rock climbers; however, bone quality variables of the peripheral limbs were similar in rock climber and resistance-trained groups.

  6. [Bone metabolism, biochemical markers of bone resorption and formation processes and interleukine 6 cytokin level during coeliac disease].

    PubMed

    Fekih, Monia; Sahli, Hela; Ben Mustapha, Nadia; Mestiri, Imen; Fekih, Moncef; Boubaker, Jalel; Kaabachi, Naziha; Sellami, Mohamed; Kallel, Lamia; Filali, Azza

    2013-01-01

    Celiac disease (CD) is characterized by a malabsorption syndrom. The bone anomalies are one of the principal complications of this disease. The osteoporosis frequency is high: 3.4% among patients having with CD versus 0.2% in the general population. To study the bone mineral density during the CD, to compare it to a control group and to determine the anomalies of biochemical markers of bone turn over and level of interleukin 6 cytokin (IL6) in these patients. All patients with CD have a measurement of bone mineral density by dual-energy x-ray absorptiometry (DXA), a biological exam with dosing calcemia, vitamin D, parathormone (PTH), the osteoblastic bone formation markers (serum osteocalcin, ALP phosphates alkaline), bone osteoclastic activity (C Télopeptide: CTX) and of the IL6. 42 patients were included, with a median age of 33.6 years. 52. 8% of the patients had a low level of D vitamine associated to a high level of PTH. An osteoporosis was noted in 21.5% of patients. No case of osteoporosis was detected in the control group. The mean level of the CTX, ostéocalcine and the IL6 was higher among patients having an osteoporosis or ostéopenia compared to patients with normal bone (p = 0,017). The factors associated with an bone loss (osteopenia or osteoporosis) were: an age > 30 years, a weight <50 kg, a level of ALP phosphates alkaline > 90 UI/ml, an hypo albuminemia < 40 g/l and a level of CTX higher than 1.2. Our study confirms the impact of the CD on the bone mineral statute. The relative risk to have an osteopenia or an osteoporosis was 5 in our series. The measurement of the osseous mineral density would be indicated among patients having a CD.

  7. 13.1 micrometers hard X-ray focusing by a new type monocapillary X-ray optic designed for common laboratory X-ray source

    NASA Astrophysics Data System (ADS)

    Sun, Xuepeng; zhang, Xiaoyun; Zhu, Yu; Wang, Yabing; Shang, Hongzhong; Zhang, Fengshou; Liu, Zhiguo; Sun, Tianxi

    2018-04-01

    A new type of monocapillary X-ray optic, called 'two bounces monocapillary X-ray optics' (TBMXO), is proposed for generating a small focal spot with high power-density gain for micro X-ray analysis, using a common laboratory X-ray source. TBMXO is consists of two parts: an ellipsoidal part and a tapered part. Before experimental testing, the TBMXO was simulated by the ray tracing method in MATLAB. The simulated results predicted that the proposed TBMXO would produce a smaller focal spot with higher power-density gain than the ellipsoidal monocapillary X-ray optic (EMXO). In the experiment, the TBMXO performance was tested by both an optical device and a Cu target X-ray tube with focal spot of 100 μm. The results indicated that the TBMXO had a slope error of 57.6 μrad and a 13.1 μm focal spot and a 1360 gain in power density were obtained.

  8. Denosumab is effective in the treatment of bone marrow oedema syndrome.

    PubMed

    Rolvien, Tim; Schmidt, Tobias; Butscheidt, Sebastian; Amling, Michael; Barvencik, Florian

    2017-04-01

    Bone marrow oedema (BMO) syndrome describes a painful condition with increase of interstitial fluid within bone and is often lately diagnosed due to unspecific symptoms. The underlying causes are diverse while it is widely assumed that in cases of BMO local bone resorption is increased. Denosumab, a human monoclonal antibody that binds to the receptor activator of nuclear factor kappa-B ligand (RANKL) inhibits osteoclastic bone resorption and is commonly administered in the treatment of osteoporosis. Besides one previous case report, its clinical effectiveness in the treatment of bone marrow oedema has not been elucidated. We treated 14 patients with primary (idiopathic) bone marrow oedema of the lower extremity with single dose denosumab application. Mean time between onset of pain and therapy was 155days. MRI scans were performed for initial diagnosis, and 6-12 weeks after denosumab injection. Vitamin D and calcium homeostasis were strived to be balanced before initiation of therapy. Furthermore bone status was analysed using Dual-energy X-ray absorptiometry (DXA) and extended bone turnover serum markers. After 6-12 weeks, BMO dissolved partly or completely in 93%, while a complete recovery was observed in 50% of the individuals. Visual analogue scale (VAS) evaluation revealed a significant decrease in pain level. Furthermore, bone turnover decreased significantly after treatment. No adverse reactions were reported. In conclusion, our retrospective analysis shows that denosumab is highly effective in the treatment of bone marrow oedema and therefore represents an alternative treatment option. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. X-Ray Exam: Hip

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Hip KidsHealth / For Parents / X-Ray Exam: Hip What's in this article? What ... Have Questions Print What It Is A hip X-ray is a safe and painless test that ...

  10. X-Ray Exam: Forearm

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Forearm KidsHealth / For Parents / X-Ray Exam: Forearm What's in this article? What ... Have Questions Print What It Is A forearm X-ray is a safe and painless test that ...

  11. X-Ray Exam: Ankle

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Ankle KidsHealth / For Parents / X-Ray Exam: Ankle What's in this article? What ... Have Questions Print What It Is An ankle X-ray is a safe and painless test that ...

  12. X-Ray Exam: Foot

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Foot KidsHealth / For Parents / X-Ray Exam: Foot What's in this article? What ... Have Questions Print What It Is A foot X-ray is a safe and painless test that ...

  13. X-Ray Exam: Wrist

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Wrist KidsHealth / For Parents / X-Ray Exam: Wrist What's in this article? What ... Have Questions Print What It Is A wrist X-ray is a safe and painless test that ...

  14. X-Ray Exam: Finger

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Finger KidsHealth / For Parents / X-Ray Exam: Finger What's in this article? What ... Have Questions Print What It Is A finger X-ray is a safe and painless test that ...

  15. X-Ray Exam: Pelvis

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Pelvis KidsHealth / For Parents / X-Ray Exam: Pelvis What's in this article? What ... Have Questions Print What It Is A pelvis X-ray is a safe and painless test that ...

  16. X-ray based extensometry

    NASA Technical Reports Server (NTRS)

    Jordan, E. H.; Pease, D. M.

    1988-01-01

    A totally new method of extensometry using an X-ray beam was proposed. The intent of the method is to provide a non-contacting technique that is immune to problems associated with density variations in gaseous environments that plague optical methods. X-rays are virtually unrefractable even by solids. The new method utilizes X-ray induced X-ray fluorescence or X-ray induced optical fluorescence of targets that have melting temperatures of over 3000 F. Many different variations of the basic approaches are possible. In the year completed, preliminary experiments were completed which strongly suggest that the method is feasible. The X-ray induced optical fluorescence method appears to be limited to temperatures below roughly 1600 F because of the overwhelming thermal optical radiation. The X-ray induced X-ray fluorescence scheme appears feasible up to very high temperatures. In this system there will be an unknown tradeoff between frequency response, cost, and accuracy. The exact tradeoff can only be estimated. It appears that for thermomechanical tests with cycle times on the order of minutes a very reasonable system may be feasible. The intended applications involve very high temperatures in both materials testing and monitoring component testing. Gas turbine engines, rocket engines, and hypersonic vehicles (NASP) all involve measurement needs that could partially be met by the proposed technology.

  17. Body Fat Analysis in Predialysis Chronic Kidney Disease: Multifrequency Bioimpedance Assay and Anthropometry Compared With Dual-Energy X-Ray Absorptiometry.

    PubMed

    Ravindranath, Jayasurya; Pillai, Priyamvada P Sivan; Parameswaran, Sreejith; Kamalanathan, Sadish Kumar; Pal, Gopal Krushna

    2016-09-01

    Body composition analysis is required for accurate assessment of nutritional status in patients with predialysis chronic kidney disease (CKD). The reference method for assessing body fat is dual-energy X-ray absorptiometry (DXA), but it is relatively expensive and often not available for widespread clinical use. There is only limited data on the utility of less expensive and easily available alternatives such as multifrequency bioimpedance assay (BIA) and skinfold thickness (SFT) measurements for assessing body fat in predialysis CKD. The study intends to assess the utility of BIA and SFT in measuring body fat compared to the reference method DXA in subjects with predialysis CKD. Body composition analysis was done in 50 subjects with predialysis CKD using multifrequency BIA, SFT, and DXA. The agreement between the body fat percentages measured by reference method DXA and BIA/SFT was assessed by paired t-test, intraclass correlation coefficients (ICCs), regression, and Bland-Altman plots. Percentage of body fat measured by BIA was higher compared to the measurements by DXA, but the difference was not significant (30.44 ± 9.34 vs. 28.62 ± 9.00; P = .071). The ICC between DXA and BIA was 0.822 (confidence interval: 0.688, 0.899; P = .000). The mean values of body fat percentages measured by anthropometry (SFT) was considerably lower when compared to DXA (23.62 ± 8.18 vs. 28.62 ± 9.00; P = .000). The ICC between DXA and SFT was .851 (confidence interval: 0.739, 0.915; P = .000). Bland-Altman plots showed that BIA overestimated body fat by a mean of 1.8% (standard deviation, 6.98), whereas SFT underestimated body fat by 5% (standard deviation, 4.01). Regression plots showed a better agreement between SFT and DXA (R(2) = .79) than BIA (R(2) = .50). Overall, SFT showed better agreement with the DXA. Body mass index (BMI) showed a moderate positive correlation with body fat measured by DXA whereas serum albumin failed to show good correlation. SFT

  18. Prenatal pesticide exposure and PON1 genotype associated with adolescent body fat distribution evaluated by dual X-ray absorptiometry (DXA).

    PubMed

    Tinggaard, J; Wohlfahrt-Veje, C; Husby, S; Christiansen, L; Skakkebaek, N E; Jensen, T K; Grandjean, P; Main, K M; Andersen, H R

    2016-07-01

    Many modern pesticides have endocrine disrupting abilities and early-life exposure may affect growth and disease risk later in life. Previously, we reported associations between prenatal pesticide exposure and higher childhood body fat content measured by anthropometry. The associations were affected by child PON1 Q192R genotype. We aimed to study whether prenatal pesticide exposure was still associated with body fat content and distribution in the children at puberty and the potential impact of both maternal and child PON1 Q192R genotype. In this prospective cohort study of 247 children born by occupationally exposed or unexposed women (greenhouse workers and controls) two follow-up examinations (age 10-15 and 11-16 years) including simple anthropometry, skinfold measurements, pubertal staging and blood sampling were performed. Total and regional fat% was determined by dual X-ray absorptiometry (DXA) at age 10-15. Prenatal pesticide exposure was associated with increased total, android, and gynoid fat percentage (DXA) at age 10-15 years after adjustment for sex, socioeconomic status, and puberty (all β = 0.5 standard deviation score (SDS) p < 0.05). Stratified by sex, the associations were significant in girls (total fat: β = 0.7 SDS, android-gynoid ratio: β = 0.1, both p < 0.05), but not in boys. Carrying the R-allele (child or mother, separately, or both) augmented the differences between exposed and unexposed children (total fat: β = 1.0 SDS, β = 0.8 SDS, p < 0.05, respectively, and β = 1.2 SDS, p < 0.01). No exposure-related differences were found if either the child or mother had the QQ wild-type. At age 11-16, exposed children tended to have a higher total fat% estimated by skinfolds than unexposed children (p = 0.06). No significant associations between prenatal exposure and body mass index or waist circumference were found. Prenatal pesticide exposure was associated with higher adolescent body fat content, including android

  19. Applications of phase-contrast x-ray imaging to medicine using an x-ray interferometer

    NASA Astrophysics Data System (ADS)

    Momose, Atsushi; Yoneyama, Akio; Takeda, Tohoru; Itai, Yuji; Tu, Jinhong; Hirano, Keiichi

    1999-10-01

    We are investigating possible medical applications of phase- contrast X-ray imaging using an X-ray interferometer. This paper introduces the strategy of the research project and the present status. The main subject is to broaden the observation area to enable in vivo observation. For this purpose, large X-ray interferometers were developed, and 2.5 cm X 1.5 cm interference patterns were generated using synchrotron X-rays. An improvement of the spatial resolution is also included in the project, and an X-ray interferometer designed for high-resolution phase-contrast X-ray imaging was fabricated and tested. In parallel with the instrumental developments, various soft tissues are observed by phase- contrast X-ray CT to find correspondence between the generated contrast and our histological knowledge. The observation done so far suggests that cancerous tissues are differentiated from normal tissues and that blood can produce phase contrast. Furthermore, this project includes exploring materials that modulate phase contrast for selective imaging.

  20. Ethnic and sex differences in bone marrow adipose tissue and bone mineral density relationship.

    PubMed

    Shen, W; Chen, J; Gantz, M; Punyanitya, M; Heymsfield, S B; Gallagher, D; Albu, J; Engelson, E; Kotler, D; Pi-Sunyer, X; Shapses, S

    2012-09-01

    The relationship between bone marrow adipose tissue and bone mineral density is different between African Americans and Caucasians as well as between men and women. This suggests that the mechanisms that regulate the differentiation and proliferation of bone marrow stromal cells may differ in these populations. It has long been established that there are ethnic and sex differences in bone mineral density (BMD) and fracture risk. Recent studies suggest that bone marrow adipose tissue (BMAT) may play a role in the pathogenesis of osteoporosis. It is unknown whether ethnic and sex differences exist in the relationship between BMAT and BMD. Pelvic BMAT was evaluated in 455 healthy African American and Caucasian men and women (age 18-88 years) using whole-body T1-weighted magnetic resonance imaging. BMD was measured using whole-body dual-energy X-ray absorptiometry. A negative correlation was observed between pelvic BMAT and total body BMD or pelvic BMD (r = -0.533, -0.576, respectively; P < 0.001). In multiple regression analyses with BMD as the dependent variable, ethnicity significantly entered the regression models as either an individual term or an interaction with BMAT. Menopausal status significantly entered the regression model with total body BMD as the dependent variable. African Americans had higher total body BMD than Caucasians for the same amount of BMAT, and the ethnic difference for pelvic BMD was greater in those participants with a higher BMAT. Men and premenopausal women had higher total body BMD levels than postmenopausal women for the same amount of BMAT. An inverse relationship exists between BMAT and BMD in African American and Caucasian men and women. The observed ethnic and sex differences between BMAT and BMD in the present study suggest the possibility that the mechanisms regulating the differentiation and proliferation of bone marrow stromal cells may differ in these populations.