Sample records for x-shaped radio galaxy

  1. THE ABUNDANCE OF X-SHAPED RADIO SOURCES: IMPLICATIONS FOR THE GRAVITATIONAL WAVE BACKGROUND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, David H.; Saripalli, Lakshmi; Subrahmanyan, Ravi, E-mail: roberts@brandeis.edu

    Coalescence of supermassive black holes (SMBHs) in galaxy mergers is potentially the dominant contributor to the low frequency gravitational wave background (GWB). It was proposed by Merritt and Ekers that X-shaped radio galaxies are signposts of such coalescences and that their abundance might be used to predict the magnitude of the GWB. In Roberts et al. we presented radio images of all 52 X-shaped radio source candidates out of the sample of 100 selected by Cheung for which archival VLA data were available. These images indicate that at most 21% of the candidates might be genuine X-shaped radio sources thatmore » were formed by a restarting of beams in a new direction following a major merger. This suggests that fewer than 1.3% of extended radio sources appear to be candidates for genuine axis reorientations (“spin flips”), much smaller than the 7% suggested by Leahy and Parma. Thus, the associated GWB may be substantially smaller than previous estimates. These results can be used to normalize detailed calculations of the SMBH coalescence rate and the GWB.« less

  2. A galactic microquasar mimicking winged radio galaxies.

    PubMed

    Martí, Josep; Luque-Escamilla, Pedro L; Bosch-Ramon, Valentí; Paredes, Josep M

    2017-11-24

    A subclass of extragalactic radio sources known as winged radio galaxies has puzzled astronomers for many years. The wing features are detected at radio wavelengths as low-surface-brightness radio lobes that are clearly misaligned with respect to the main lobe axis. Different models compete to account for these peculiar structures. Here, we report observational evidence that the parsec-scale radio jets in the Galactic microquasar GRS 1758-258 give rise to a Z-shaped radio emission strongly reminiscent of the X and Z-shaped morphologies found in winged radio galaxies. This is the first time that such extended emission features are observed in a microquasar, providing a new analogy for its extragalactic relatives. From our observations, we can clearly favour the hydrodynamic backflow interpretation against other possible wing formation scenarios. Assuming that physical processes are similar, we can extrapolate this conclusion and suggest that this mechanism could also be at work in many extragalactic cases.

  3. The BL LAC phenomenon: X-ray observations of transition objects and determination of the x-ray spectrum of a complete sample of flat-spectrum radio sources

    NASA Technical Reports Server (NTRS)

    Worrall, Diana M.

    1994-01-01

    This report summarizes the activities related to two ROSAT investigations: (1) x-ray properties of radio galaxies thought to contain BL Lac type nuclei; and (2) x-ray spectra of a complete sample of flat-spectrum radio sources. The following papers describing the research are provided as attachments: Multiple X-ray Emission Components in Low Power Radio Galaxies; New X-ray Results on Radio Galaxies; Analysis Techniques for a Multiwavelength Study of Radio Galaxies; Separation of X-ray Emission Components in Radio Galaxies; X-ray Emission in Powerful Radio Galaxies and Quasars; Extended and Compact X-ray Emission in Powerful Radio Galaxies; and X-ray Spectra of a Complete Sample of Extragalactic Core-dominated Radio Sources.

  4. 3D relativistic MHD numerical simulations of X-shaped radio sources

    NASA Astrophysics Data System (ADS)

    Rossi, P.; Bodo, G.; Capetti, A.; Massaglia, S.

    2017-10-01

    Context. A significant fraction of extended radio sources presents a peculiar X-shaped radio morphology: in addition to the classical double lobed structure, radio emission is also observed along a second axis of symmetry in the form of diffuse wings or tails. In a previous investigation we showed the existence of a connection between the radio morphology and the properties of the host galaxies. Motivated by this connection we performed two-dimensional numerical simulations showing that X-shaped radio sources may naturally form as a jet propagates along the major axis a highly elliptical density distribution, because of the fast expansion of the cocoon along the minor axis of the distribution. Aims: We intend to extend our analysis by performing three-dimensional numerical simulations and investigating the role of different parameters in determining the formation of the X-shaped morphology. Methods: The problem is addressed by numerical means, carrying out three-dimensional relativistic magnetohydrodynamic simulations of bidirectional jets propagating in a triaxial density distribution. Results: We show that only jets with power ≲ 1044 erg s-1 can give origin to an X-shaped morphology and that a misalignment of 30° between the jet axis and the major axis of the density distribution is still favourable to the formation of this kind of morphology. In addition we compute synthetic radio emission maps and polarization maps. Conclusions: In our scenario for the formation of X-shaped radio sources only low power FRII can give origin to such kind of morphology. Our synthetic emission maps show that the different observed morphologies of X-shaped sources can be the result of similar structures viewed under different perspectives.

  5. A statistical analysis of the Einstein normal galaxy sample. III - Radio and X-ray properties of elliptical and S0 galaxies

    NASA Technical Reports Server (NTRS)

    Fabbiano, G.; Klein, U.; Trinchieri, G.; Wielebinski, R.

    1987-01-01

    Radioastronomy, optical and X-ray data were used to probe the cause of high X-ray luminosities of 28 radio-quiet elliptical galaxies (RQE) and S0 galaxies previously scanned by the Einstein Observatory. Comparisons were made with similar data on double-lobed 3CR galaxies. Radio luminosities were highly correlated with the X-ray luminosities, agreeing with models of radio nuclear sources in early-type galaxies as accreting compact objects. Additionally, 3CR galaxies seemed to be large-scale versions of normal RQE. The significance of interstellar medium/intracluster medium interactions for high correlations between the core and total radio power from X-ray emitting galaxies is discussed.

  6. A multiparametric analysis of the Einstein sample of early-type galaxies. 1: Luminosity and ISM parameters

    NASA Technical Reports Server (NTRS)

    Eskridge, Paul B.; Fabbiano, Giuseppina; Kim, Dong-Woo

    1995-01-01

    We have conducted bivariate and multivariate statistical analysis of data measuring the luminosity and interstellar medium of the Einstein sample of early-type galaxies (presented by Fabbiano, Kim, & Trinchieri 1992). We find a strong nonlinear correlation between L(sub B) and L(sub X), with a power-law slope of 1.8 +/- 0.1, steepening to 2.0 +/- if we do not consider the Local Group dwarf galaxies M32 and NGC 205. Considering only galaxies with log L(sub X) less than or equal to 40.5, we instead find a slope of 1.0 +/- 0.2 (with or without the Local Group dwarfs). Although E and S0 galaxies have consistent slopes for their L(sub B)-L(sub X) relationships, the mean values of the distribution functions of both L(sub X) and L(sub X)/L(sub B) for the S0 galaxies are lower than those for the E galaxies at the 2.8 sigma and 3.5 sigma levels, respectively. We find clear evidence for a correlation between L(sub X) and the X-ray color C(sub 21), defined by Kim, Fabbiano, & Trinchieri (1992b), which indicates that X-ray luminosity is correlated with the spectral shape below 1 keV in the sense that low-L(sub X) systems have relatively large contributions from a soft component compared with high-L(sub X) systems. We find evidence from our analysis of the 12 micron IRAS data for our sample that our S0 sample has excess 12 micron emission compared with the E sample, scaled by their optical luminosities. This may be due to emission from dust heated in star-forming regions in S0 disks. This interpretation is reinforced by the existence of a strong L(sub 12)-L(sub 100) correlation for our S0 sample that is not found for the E galaxies, and by an analysis of optical-IR colors. We find steep slopes for power-law relationships between radio luminosity and optical, X-ray, and far-IR (FIR) properties. This last point argues that the presence of an FIR-emitting interstellar medium (ISM) in early-type galaxies is coupled to their ability to generate nonthermal radio continuum, as previously argued by, e.g., Walsh et al. (1989). We also find that, for a given L(sub 100), galaxies with larger L(sub X)/L(sub B) tend to be stronger nonthermal radio sources, as originally suggested by Kim & Fabbiano (1990). We note that, while L(sub B) is most strongly correlated with L(sub 6), the total radio luminosity, both L(sub X) and L(sub X)/L(sub B) are more strongly correlated with L(sub 6 CO), the core radio luminosity. These points support the argument (proposed by Fabbiano, Gioia, & Trinchieri 1989) that radio cores in early-type galaxies are fueled by the hot ISM.

  7. Search for inverse Compton x-rays from the lobes of Fornax A x-rays from radio galaxies straddling the Fanaroff-Riley transition

    NASA Technical Reports Server (NTRS)

    Feigelson, Eric D.

    1994-01-01

    Two related studies of radio galaxies are covered in this report. The first is a search for inverse Compton x-rays from the lobes of Fornax A. In this study, a ROSAT position sensitive proportional counter image of Fornax A (NGC 1316) is presented, and after image processing, it was observed that the x-ray emission closely mimicked the radio emission. A second study involved x-rays from radio galaxies straddling the Fanaroff-Riley transition which divides radio galaxies into two broad morphological groups based on whether the lobe radio power is greater or less than a critical value. ROSAT HRI observations were obtained from four bright radio galaxies around the transition to search for x-ray indications of either nuclear engine or ambient medium differences.

  8. Radio emission from an ultraluminous x-ray source.

    PubMed

    Kaaret, Philip; Corbel, Stephane; Prestwich, Andrea H; Zezas, Andreas

    2003-01-17

    The physical nature of ultraluminous x-ray sources is uncertain. Stellar-mass black holes with beamed radiation and intermediate black holes with isotropic radiation are two plausible explanations. We discovered radio emission from an ultraluminous x-ray source in the dwarf irregular galaxy NGC 5408. The x-ray, radio, and optical fluxes as well as the x-ray spectral shape are consistent with beamed relativistic jet emission from an accreting stellar black hole. If confirmed, this would suggest that the ultraluminous x-ray sources may be stellar-mass rather than intermediate-mass black holes. However, interpretation of the source as a jet-producing intermediate-mass black hole cannot be ruled out at this time.

  9. The column density distribution of hard X-ray radio galaxies

    NASA Astrophysics Data System (ADS)

    Panessa, F.; Bassani, L.; Landi, R.; Bazzano, A.; Dallacasa, D.; La Franca, F.; Malizia, A.; Venturi, T.; Ubertini, P.

    2016-09-01

    In order to investigate the role of absorption in active galactic nuclei (AGN) with jets, we have studied the column density distribution of a hard X-ray selected sample of radio galaxies, derived from the INTEGRAL/Imager on Board the Integral Satellite (IBIS) and Swift/The Burst Alert Telescope (BAT) AGN catalogues (˜7-10 per cent of the total AGN population). The 64 radio galaxies have a typical FR II radio morphology and are characterized by high 20-100 keV luminosities (from 1042 to 1046 erg s-1) and high Eddington ratios (log LBol/LEdd typically larger than ˜0.01). The observed fraction of absorbed AGN (NH > 1022 cm-2) is around 40 per cent among the total sample, and ˜75 per cent among type 2 AGN. The majority of obscured AGN are narrow-line objects, while unobscured AGN are broad-line objects, obeying to the zeroth-order predictions of unified models. A significant anti-correlation between the radio core dominance parameter and the X-ray column density is found. The observed fraction of Compton thick AGN is ˜2-3 per cent, in comparison with the 5-7 per cent found in radio-quiet hard X-ray selected AGN. We have estimated the absorption and Compton thick fractions in a hard X-ray sample containing both radio galaxies and non-radio galaxies and therefore affected by the same selection biases. No statistical significant difference was found in the absorption properties of radio galaxies and non-radio galaxies sample. In particular, the Compton thick objects are likely missing in both samples and the fraction of obscured radio galaxies appears to decrease with luminosity as observed in hard X-ray non-radio galaxies.

  10. The Physics of Cooling Flow Clusters with Central Radio Sources

    NASA Technical Reports Server (NTRS)

    Sarazin, Craig L.

    2005-01-01

    Central galaxies in rich clusters are the sites of cluster cooling flows, with large masses of gas cooling through part of the X-ray band. Many of these galaxies host powerful radio sources. These sources can displace and compress the X-ray gas leading to enhanced cooling and star formation. We observed the bright cooling flow Abell 2626 with a strangely distorted central radio source. We wished to understand the interaction of radio and X-ray thermal plasma, and to determine the dynamical nature of this cluster. One aim was to constrain the source of additional pressure in radio "holes" in the X-ray emission needed to support overlying shells of X-ray gas. We also aimed to study the problem of the lack of kT < 1-2 keV gas in cooling flows by searching for abundance inhomogeneities, heating from the radio source, and excess absorption. We also have a Chandra observation of this cluster. There were problems with the pipeline processing of this data due to a telemetry dropout. We are publishing the Chandra and XMM data together. Delays with the Chandra data have slowed up the publication. At the center of the cluster, there is a complex interaction of the odd, Z-shaped radio source, and the X-ray plasma. However, there are no clear radio bubbles. Also, the cluster SO galaxy IC 5337, which is projected 1.5 arcmin west of the cluster center, has unusual tail-like structures in both the radio and X-ray. It appears to be falling into the cluster center. There is a hot, probably shocked region of gas to the southwest, which is apparently due to the merger of a subcluster in this part of the system. There is also a merging subcluster to the northeast. The axes of these two mergers agrees with a supercluster filament structure.

  11. Inverse Compton X-Ray Halos Around High-z Radio Galaxies: A Feedback Mechanism Powered by Far-Infrared Starbursts or the Cosmic Microwave Background?

    NASA Technical Reports Server (NTRS)

    Small, Ian; Blundell, Katherine M.; Lehmer, B. D.; Alexander, D. M.

    2012-01-01

    We report the detection of extended X-ray emission around two powerful radio galaxies at z approx. 3.6 (4C 03.24 and 4C 19.71) and use these to investigate the origin of extended, inverse Compton (IC) powered X-ray halos at high redshifts. The halos have X-ray luminosities of L(sub X) approx. 3 x 10(exp 44) erg/s and sizes of approx.60 kpc. Their morphologies are broadly similar to the approx.60 kpc long radio lobes around these galaxies suggesting they are formed from IC scattering by relativistic electrons in the radio lobes, of either cosmic microwave background (CMB) photons or far-infrared photons from the dust-obscured starbursts in these galaxies. These observations double the number of z > 3 radio galaxies with X-ray-detected IC halos. We compare the IC X-ray-to-radio luminosity ratios for the two new detections to the two previously detected z approx. 3.8 radio galaxies. Given the similar redshifts, we would expect comparable X-ray IC luminosities if millimeter photons from the CMB are the dominant seed field for the IC emission (assuming all four galaxies have similar ages and jet powers). Instead we see that the two z approx. 3.6 radio galaxies, which are 4 fainter in the far-infrared than those at z 3.8, also have approx.4x fainter X-ray IC emission. Including data for a further six z > or approx. 2 radio sources with detected IC X-ray halos from the literature, we suggest that in the more compact, majority of radio sources, those with lobe sizes < or approx.100-200 kpc, the bulk of the IC emission may be driven by scattering of locally produced far-infrared photons from luminous, dust-obscured starbursts within these galaxies, rather than millimeter photons from the CMB. The resulting X-ray emission appears sufficient to ionize the gas on approx.100-200 kpc scales around these systems and thus helps form the extended, kinematically quiescent Ly(alpha) emission line halos found around some of these systems. The starburst and active galactic nucleus activity in these galaxies are thus combining to produce an even more effective and widespread "feedback" process, acting on the long-term gas reservoir for the galaxy, than either individually could achieve. If episodic radio activity and co-eval starbursts are common in massive, high-redshift galaxies, then this IC-feedback mechanism may play a role in affecting the star formation histories of the most massive galaxies at the present day.

  12. X-ray study of a sample of FR0 radio galaxies: unveiling the nature of the central engine

    NASA Astrophysics Data System (ADS)

    Torresi, E.; Grandi, P.; Capetti, A.; Baldi, R. D.; Giovannini, G.

    2018-06-01

    Fanaroff-Riley type 0 radio galaxies (FR0s) are compact radio sources that represent the bulk of the radio-loud active galactic nuclei (AGN) population, but they are still poorly understood. Pilot studies on these sources have been already performed at radio and optical wavelengths: here we present the first X-ray study of a sample of 19 FR0 radio galaxies selected from the Sloan Digital Sky Survey/NRAO VLA Sky Survey/Faint Images of the Radio Sky at Twenty-cm sample of Best & Heckman, with redshift ≤0.15, radio size ≤10 kpc, and optically classified as low-excitation galaxies. The X-ray spectra are modelled with a power-law component absorbed by Galactic column density with, in some cases, a contribution from thermal extended gas. The X-ray photons are likely produced by the jet as attested by the observed correlation between X-ray (2-10 keV) and radio (5 GHz) luminosities, similar to Fanaroff-Riley type I radio galaxies (FRIs). The estimated Eddington-scaled luminosities indicate a low accretion rate. Overall, we find that the X-ray properties of FR0s are indistinguishable from those of FRIs, thus adding another similarity between AGN associated with compact and extended radio sources. A comparison between FR0s and low-luminosity BL Lacs rules out important beaming effects in the X-ray emission of the compact radio galaxies. FR0s have different X-ray properties with respect to young radio sources (e.g. gigahertz-peaked spectrum/compact steep spectrum sources), generally characterized by higher X-ray luminosities and more complex spectra. In conclusion, the paucity of extended radio emission in FR0s is probably related to the intrinsic properties of their jets that prevent the formation of extended structures, and/or to intermittent activity of their engines.

  13. Black Hole Jerked Around Twice

    NASA Astrophysics Data System (ADS)

    2010-07-01

    Scientists have found evidence that a giant black hole has been jerked around twice, causing its spin axis to point in a different direction from before. This discovery, made with new data from NASA's Chandra X-ray Observatory, might explain several mysterious-looking objects found throughout the Universe. The axis of the spinning black hole is thought to have moved, but not the black hole itself, so this result differs from recently published work on recoiling black holes. "We think this is the best evidence ever seen for a black hole having been jerked around like this," said Edmund Hodges-Kluck of the University of Maryland. "We're not exactly sure what caused this behavior, but it was probably triggered by a collision between two galaxies." A team of astronomers used Chandra for a long observation of a galaxy known as 4C+00.58, which is located about 780 million light years from Earth. Like most galaxies, 4C+00.58 contains a supermassive black hole at its center, but this one is actively pulling in copious quantities of gas. Gas swirling toward the black hole forms a disk around the black hole. Twisted magnetic fields in the disk generate strong electromagnetic forces that propel some of the gas away from the disk at high speed, producing radio jets. A radio image of this galaxy shows a bright pair of jets pointing from left to right and a fainter, more distant line of radio emission running in a different direction. More specifically, 4C+00.58 belongs to a class of "X-shaped" galaxies, so called because of the outline of their radio emission. The new Chandra data have allowed astronomers to determine what may be happening in this system, and perhaps in others like it. The X-ray image reveals four different cavities around the black hole. These cavities come in pairs: one in the top-right and bottom-left, and another in the top-left and bottom-right. When combined with the orientation of the radio jets, the complicated geometry revealed in the Chandra image may tell the story of what happened to this supermassive black hole and the galaxy it inhabits. "We think that this black hole has quite a history," said Christopher Reynolds of the University of Maryland in College Park. "Not once, but twice, something has caused this black hole to change its spin axis." According to the scenario presented by Hodges-Kluck and his colleagues, the spin axis of the black hole ran along a diagonal line from top-right to bottom-left. After a collision with a smaller galaxy, a jet powered by the black hole ignited, blowing away gas to form cavities in the hot gas to the top-right and bottom-left. Since the gas falling onto the black hole was not aligned with the spin of the black hole, the spin axis of the black hole rapidly changed direction, and the jets then pointed in a roughly top-left to bottom-right direction, creating cavities in the hot gas and radio emission in this direction. Then, either a merging of the two central black holes from the colliding galaxies, or more gas falling onto the black hole caused the spin axis to jerk around to its present direction in roughly a left to right direction. These types of changes in the angle of the spin of a supermassive black hole have previously been suggested to explain X-shaped radio galaxies, but no convincing case has been made in any individual case. "If we're right, our work shows that jets and cavities are like cosmic fossils that help trace the merger history of an active supermassive black hole and the galaxy it lives in," said Hodges-Kluck. "If even a fraction of X-shaped radio galaxies are produced by such "spin-flips", then their frequency may be important for estimating the detection rates with gravitational radiation missions." These results appeared in a recent issue of The Astrophysical Journal Letters. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass. More information, including images and other multimedia, can be found at: http://chandra.harvard.edu and http://chandra.nasa.gov

  14. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    2000-10-01

    This most distant x-ray cluster of galaxies yet has been found by astronomers using Chandra X-ray Observatory (CXO). Approximately 10 billion light-years from Earth, the cluster 3C294 is 40 percent farther than the next most distant x-ray galaxy cluster. The existence of such a faraway cluster is important for understanding how the universe evolved. CXO's image reveals an hourglass-shaped region of x-ray emissions centered on the previously known central radio source (seen in this image as the blue central object) that extends outward for 60,000 light- years. The vast clouds of hot gas that surround such galaxies in clusters are thought to be heated by collapse toward the center of the cluster. Until CXO, x-ray telescopes have not had the needed sensitivity to identify such distant clusters of galaxies. Galaxy clusters are the largest gravitationally bound structures in the universe. The intensity of the x-rays in this CXO image of 3C294 is shown as red for low energy x-rays, green for intermediate, and blue for the most energetic x-rays. (Photo credit: NASA/loA/A. Fabian et al)

  15. Ghost Remains After Black Hole Eruption

    NASA Astrophysics Data System (ADS)

    2009-05-01

    NASA's Chandra X-ray Observatory has found a cosmic "ghost" lurking around a distant supermassive black hole. This is the first detection of such a high-energy apparition, and scientists think it is evidence of a huge eruption produced by the black hole. This discovery presents astronomers with a valuable opportunity to observe phenomena that occurred when the Universe was very young. The X-ray ghost, so-called because a diffuse X-ray source has remained after other radiation from the outburst has died away, is in the Chandra Deep Field-North, one of the deepest X-ray images ever taken. The source, a.k.a. HDF 130, is over 10 billion light years away and existed at a time 3 billion years after the Big Bang, when galaxies and black holes were forming at a high rate. "We'd seen this fuzzy object a few years ago, but didn't realize until now that we were seeing a ghost", said Andy Fabian of the Cambridge University in the United Kingdom. "It's not out there to haunt us, rather it's telling us something - in this case what was happening in this galaxy billions of year ago." Fabian and colleagues think the X-ray glow from HDF 130 is evidence for a powerful outburst from its central black hole in the form of jets of energetic particles traveling at almost the speed of light. When the eruption was ongoing, it produced prodigious amounts of radio and X-radiation, but after several million years, the radio signal faded from view as the electrons radiated away their energy. HDF 130 Chandra X-ray Image of HDF 130 However, less energetic electrons can still produce X-rays by interacting with the pervasive sea of photons remaining from the Big Bang - the cosmic background radiation. Collisions between these electrons and the background photons can impart enough energy to the photons to boost them into the X-ray energy band. This process produces an extended X-ray source that lasts for another 30 million years or so. "This ghost tells us about the black hole's eruption long after it has died," said co-author Scott Chapman, also of Cambridge University. "This means we don't have to catch the black holes in the act to witness the big impact they have." This is the first X-ray ghost ever seen after the demise of radio-bright jets. Astronomers have observed extensive X-ray emission with a similar origin, but only from galaxies with radio emission on large scales, signifying continued eruptions. In HDF 130, only a point source is detected in radio images, coinciding with the massive elliptical galaxy seen in its optical image. This radio source indicates the presence of a growing supermassive black hole. People Who Read This Also Read... Milky Way's Super-efficient Particle Accelerators Caught in The Act NASA Joins "Around the World in 80 Telescopes" Celebrate the International Year of Astronomy Galaxies Coming of Age in Cosmic Blobs "This result hints that the X-ray sky should be littered with such ghosts," said co-author Caitlin Casey, also of Cambridge, "especially if black hole eruptions are as common as we think they are in the early Universe." The power contained in the black hole eruption was likely to be considerable, equivalent to about a billion supernovas. The energy is dumped into the surroundings and transports and heats the gas. "Even after the ghost disappears, most of the energy from the black hole's eruption remains", said Fabian. "Because they're so powerful, these eruptions can have profound effects lasting for billions of years." The details of Chandra's data of HDF 130 helped secure its true nature. For example, in X-rays, HDF 130 has a cigar-like shape that extends for some 2.2 million light years. The linear shape of the X-ray source is consistent with the shape of radio jets and not with that of a galaxy cluster, which is expected to be circular. The energy distribution of the X-rays is also consistent with the interpretation of an X-ray ghost. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass.

  16. Chandra X-Ray Observatory Image of the Distant Galaxy, 3C294

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This most distant x-ray cluster of galaxies yet has been found by astronomers using Chandra X-ray Observatory (CXO). Approximately 10 billion light-years from Earth, the cluster 3C294 is 40 percent farther than the next most distant x-ray galaxy cluster. The existence of such a faraway cluster is important for understanding how the universe evolved. CXO's image reveals an hourglass-shaped region of x-ray emissions centered on the previously known central radio source (seen in this image as the blue central object) that extends outward for 60,000 light- years. The vast clouds of hot gas that surround such galaxies in clusters are thought to be heated by collapse toward the center of the cluster. Until CXO, x-ray telescopes have not had the needed sensitivity to identify such distant clusters of galaxies. Galaxy clusters are the largest gravitationally bound structures in the universe. The intensity of the x-rays in this CXO image of 3C294 is shown as red for low energy x-rays, green for intermediate, and blue for the most energetic x-rays. (Photo credit: NASA/loA/A. Fabian et al)

  17. Chandra Finds Most Distant X-ray Galaxy Cluster

    NASA Astrophysics Data System (ADS)

    2001-02-01

    The most distant X-ray cluster of galaxies yet has been found by astronomers using NASA’s Chandra X-ray Observatory. Approximately 10 billion light years from Earth, the cluster 3C294 is 40 percent farther than the next most distant X-ray galaxy cluster. The existence of such a distant galaxy cluster is important for understanding how the universe evolved. "Distant objects like 3C294 provide snapshots to how these galaxy clusters looked billions of years ago," said Andrew Fabian of the Institute of Astronomy, Cambridge, England and lead author of the paper accepted for publication in the Monthly Notices of Britain’s Royal Astronomical Society. "These latest results help us better understand what the universe was like when it was only 20 percent of its current age." Chandra’s image reveals an hourglass-shaped region of X-ray emission centered on the previously known central radio source. This X-ray emission extends outward from the central galaxy for at least 300,000 light years and shows that the known radio source is in the central galaxy of a massive cluster. Scientists have long suspected that distant radio-emitting galaxies like 3C294 are part of larger groups of galaxies known as "clusters." However, radio data provides astronomers with only a partial picture of these distant objects. Confirmation of the existence of clusters at great distances - and, hence, at early stages of the universe - requires information from other wavelengths. Optical observations can be used to pinpoint individual galaxies, but X-ray data are needed to detect the hot gas that fills the space within the cluster. "Galaxy clusters are the largest gravitationally bound structures in the universe," said Fabian. "We do not expect to find many massive objects, such as the 3C294 cluster, in early times because structure is thought to grow from small scales to large scales." The vast clouds of hot gas that envelope galaxies in clusters are thought to be heated by collapse toward the center of the cluster. Until Chandra, X-ray telescopes have not had the needed sensitivity to identify and measure hot gas clouds in distant clusters. Carolin Crawford, Stefano Ettori and Jeremy Sanders of the Institute of Astronomy were also members of the team that observed 3C294 for 5.4 hours on October 29, 2000 with the Advanced CCD Imaging Spectrometer (ACIS). The ACIS X-ray camera was developed for NASA by Pennsylvania State University and Massachusetts Institute of Technology. NASA's Marshall Space Flight Center in Huntsville, AL, manages the Chandra program for the Office of Space Science in Washington, DC. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, MA. Images associated with this release are available on the World Wide Web at: http://chandra.harvard.edu AND http://chandra.nasa.gov

  18. How A Black Hole Lights Up Its Surroundings

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-10-01

    How do the supermassive black holes that live at the centers of galaxies influence their environments? New observations of a distant active galaxy offer clues about this interaction.Signs of CoevolutionPlot demonstrating the m-sigma relation, the empirical correlation between the stellar velocity dispersion of a galactic bulge and the mass of the supermassive black hole at its center. [Msigma]We know that the centers of active galaxies host supermassive black holes with masses of millions to billions of suns. One mystery surrounding these beasts is that they are observed to evolve simultaneously with their host galaxies for instance, an empirical relationship is seen between the growth of a black hole and the growth of its host galaxys bulge. This suggests that there must be a feedback mechanism through which the evolution of a black hole is linked to that of its host galaxy.One proposed source of this coupling is the powerful jets emitted from the poles of these supermassive black holes. These jets are thought to be produced as some of the material accreting onto the black hole is flung out, confined by surrounding gas and magnetic fields. Because the jets of hot gas and radiation extend outward through the host galaxy, they provide a means for the black hole to influence the gas and dust of its surroundings.In our current model of a radio-loud active galactic nuclei,a region of hot, ionized gas the narrow-line region lies beyond the sphere of influence of the supermassive black hole. [C.M. Urry and P. Padovani]Clues in the Narrow-Line RegionThe region of gas thought to sit just outside of the black holes sphere of influence (at a distance of perhaps a thousand to a few thousand light-years) is known as the narrow line region so named because we observe narrow emission lines from this gas. Given its hot, ionized state, this gas must somehow be being pummeled with energy. In the canonical picture, radiation from the black hole heats the gas directly in a process called photoionization. But could jets also be involved?In a recent study led by kos Bogdn, a team of scientists at the Harvard-Smithsonian Center for Astrophysics used X-ray observations of a galaxys nucleus to explore the possibility that its narrow-line region is heated and ionized not only by radiation, but also by the shocks produced as radio jets collide with their surrounding environment.Heating from JetsChandra X-ray data for Mrk 3, with radio contours overplotted. Both wavelengths show S-shaped morphology of the jets, with the X-ray emission enveloping the radio emission. A strong shock is present in the west and a weaker shock toward the east. [Bogdn et al. 2017]Bogdn and collaborators analyzed deep Chandra X-ray observations of the center of Mrk 3, an early-type galaxy located roughly 200 million light-years away. Chandras imaging and high-resolution spectroscopy of the galaxys narrow-line region allowed the team to build a detailed picture of the hot gas, demonstrating that it shows similar S-shaped morphology to the gas emitting at radio wavelengths, but its more broadly distributed.The authors demonstrate the presence of shocks in the X-ray gas both toward the west and toward the east of the nucleus. These shocks, combined with the broadening of the X-ray emission and other signs, strongly support the idea that collisions of the jets with the surrounding environment heat the narrow-line-region gas, contributing to its ionization. The authors argue that, given how common small-scale radio jets are in galaxies such as Mrk 3, its likely that collisional ionization plays an important role in how the black holes in these galaxies impart energy to their surrounding environments.Citationkos Bogdn et al 2017 ApJ 848 61. doi:10.3847/1538-4357/aa8c76

  19. Jet-ISM Interaction in the Radio Galaxy 3C 293: Jet-driven Shocks Heat ISM to Power X-Ray and Molecular H2 Emission

    NASA Astrophysics Data System (ADS)

    Lanz, L.; Ogle, P. M.; Evans, D.; Appleton, P. N.; Guillard, P.; Emonts, B.

    2015-03-01

    We present a 70 ks Chandra observation of the radio galaxy 3C 293. This galaxy belongs to the class of molecular hydrogen emission galaxies (MOHEGs) that have very luminous emission from warm molecular hydrogen. In radio galaxies, the molecular gas appears to be heated by jet-driven shocks, but exactly how this mechanism works is still poorly understood. With Chandra, we observe X-ray emission from the jets within the host galaxy and along the 100 kpc radio jets. We model the X-ray spectra of the nucleus, the inner jets, and the X-ray features along the extended radio jets. Both the nucleus and the inner jets show evidence of 107 K shock-heated gas. The kinetic power of the jets is more than sufficient to heat the X-ray emitting gas within the host galaxy. The thermal X-ray and warm H2 luminosities of 3C 293 are similar, indicating similar masses of X-ray hot gas and warm molecular gas. This is consistent with a picture where both derive from a multiphase, shocked interstellar medium (ISM). We find that radio-loud MOHEGs that are not brightest cluster galaxies (BCGs), like 3C 293, typically have LH2/LX˜ 1 and MH2/MX˜ 1, whereas MOHEGs that are BCGs have LH2/LX˜ 0.01 and MH2/MX˜ 0.01. The more massive, virialized, hot atmosphere in BCGs overwhelms any direct X-ray emission from current jet-ISM interaction. On the other hand, LH2/LX˜ 1 in the Spiderweb BCG at z = 2, which resides in an unvirialized protocluster and hosts a powerful radio source. Over time, jet-ISM interaction may contribute to the establishment of a hot atmosphere in BCGs and other massive elliptical galaxies.

  20. VLA Discovers Giant Rings Around Galaxy Cluster

    NASA Astrophysics Data System (ADS)

    2006-11-01

    Astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope have discovered giant, ring-like structures around a cluster of galaxies. The discovery provides tantalizing new information about how such galaxy clusters are assembled, about magnetic fields in the vast spaces between galaxy clusters, and possibly about the origin of cosmic rays. Radio-Optical Image of Cluster Galaxy Cluster Abell 3376 (Radio/Optical) CREDIT: Joydeep Bagchi, IUCAA, NRAO/AUI/NSF Above, a combined radio/optical image shows the galaxy cluster Abell 3376 in visible light (blue) and radio (red) images. The giant radio arcs surrounding the cluster were discovered using the Very Large Array. The visible-light image is from the Digitized Sky survey. Below, an X-ray image of Abell 3376 made using the European Space Agency's XMM-Newton telescope shows a spectacular, bullet-shaped region of X-rays coming from gas heated to 60 million degrees Kelvin. The bullet shape results from the supersonic collision of a smaller smaller galaxy subcluster with the main body of the larger cluster. Click on images for larger version. X-Ray Image of Cluster Galaxy Cluster Abell 3376 (X-Ray) CREDIT: Joydeep Bagchi, IUCAA, ESA "These giant, radio-emitting rings probably are the result of shock waves caused by violent collisions of smaller groups of galaxies within the cluster," said Joydeep Bagchi, of the Inter-University Centre for Astronomy and Astrophysics in Pune, India, who led an international research team. The scientists reported their findings in the November 3 edition of the journal Science. The newly-discovered ring segments, some 6 million light-years across, surround a galaxy cluster called Abell 3376, more than 600 million light-years from Earth. They were revealed because fast-moving electrons emitted radio waves as they spiraled around magnetic field lines in intergalactic space. "Even from this large distance, the feeble radio waves were easily picked up by the VLA, thanks to its very high sensitivity and unique capability to make images of exceedingly faint radio-emitting objects," Bagchi said. The scientists also used the European Space Agency's XMM-Newton, the world's most sensitive X-ray observatory, to observe this extraordinary cluster of galaxies. "The advanced technical capabilities of the orbiting XMM-Newton revealed a spectacular bullet-like region of X-ray emission in this dynamically active cluster," said Gastao B. Lima Neto, of the Institute of Astronomy and Geophysics in Sao Paulo, Brazil, a co-author of the research paper. "Our X-ray observations strongly suggest a recent collision and merger of two or more smaller clusters. Such a phenomenon is among the most energetic events in the Universe after the Big Bang. Only a tiny fraction of the total energy of this collision, if transferred to electrons, would cause them to emit the radio waves observed by the VLA. However, the main question is, how this is achieved," said Florence Durret of the Astrophysical Institute of Paris, France, another of the researchers. The scientists calculated that the total energy of the colliding groups of galaxies would be enough to keep our Sun shining for more than 20 sextillion years (2 followed by 22 zeros)! "We think the shock waves that sped up these electrons came from the collision of a smaller group of galaxies with the main body of the larger cluster. When two such massive objects crash into each other at supersonic speed, gigantic ripple-like shock waves are created in the surrounding gas, which race out to the outer regions of the forming cluster at a speed of thousands of kilometers per second," Bagchi said. "You can imagine that each cluster is like a supersonic aircraft, moving faster than the speed of sound in the surrounding gas, and just as you hear a sonic boom when shock waves from an airplane pass by you, we believe that the situation in the Abell 3376 cluster is similar, with ringlike radio structures tracing out the shock waves," Bagchi explained. Such a scenario also is supported by images of the cluster made with the XMM-Newton and ROSAT X-ray satellites, as well as by computer simulations, Bagchi added. The exact mechanism for producing the shock waves is still open to question, the scientists said. "This is the first observational evidence for this type of shock wave around a massive galaxy cluster," Bagchi said. "This discovery will help us understand more about the thin gas between the galaxies, and also about the magnetic fields in the outskirts of such clusters -- magnetic fields whose origin still is unknown," he said. In addition, the scientists speculate that violent regions like those in Abell 3376 may be sites from which cosmic rays originate. Cosmic rays are protons or atomic nuclei accelerated to nearly the speed of light, and shocks such as those found in the collisions of galaxy groups may be energetic enough to provide the required amount of "kick." "Some of the most energetic cosmic ray particles detected on Earth may contain about 100 million times more energy than the highest energy achieved so far in any man-made particle accelerator. Where do these cosmic rays come from and exactly what process kicks them to such stupendous energy is still a fascinating unsolved problem of physics," said graduate student Surajit Paul of the Institute for Theoretical Physics and Astrophysisc at Wuerzburg University in Germany, who was on the research team. "A cosmic accelerator source containing powerful shock waves and magnetic fields extending over millions of light years in length is capable of accelerating a proton or nucleus to such enormous energies. Although our observations do not conclusively show the evidence for such particles, our VLA radio image does show clearly that such structures are indeed present in this galaxy cluster. Only future cosmic ray observations can tell if Abell 3376 is an ultra-high-energy cosmic ray source. We will continue to explore this fascinating cosmic laboratory in the future, employing some of the world's most sensitive radio, X-ray and gamma-ray telescopes to reveal its mysteries," Bagchi said. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  1. THE ABUNDANCE OF X-SHAPED RADIO SOURCES. I. VLA SURVEY OF 52 SOURCES WITH OFF-AXIS DISTORTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, David H.; Cohen, Jake P.; Lu, Jing

    Cheung identified a sample of 100 candidate X-shaped radio galaxies using the NRAO FIRST survey; these are small-axial-ratio extended radio sources with off-axis emission. Here, we present radio images of 52 of these sources that have been made from archival Very Large Array data with resolution of about 1″. Fifty-one of the 52 were observed at 1.4 GHz, 7 were observed at 1.4 and 5 GHz, and 1 was observed only at 5 GHz. We also present overlays of the Sloan Digital Sky Survey red images for 48 of the sources, and DSS II overlays for the remainder. Optical counterpartsmore » have been identified for most sources, but there remain a few empty fields. Our higher resolution VLA images along with FIRST survey images of the sources in the sample reveal that extended extragalactic radio sources with small axial ratios are largely (60%) cases of double radio sources with twin lobes that have off-axis extensions, usually with inversion-symmetric structure. The available radio images indicate that at most 20% of sources might be genuine X-shaped radio sources that could have formed by a restarting of beams in a new direction following an interruption and axis flip. The remaining 20% are in neither of these categories. The implications of this result for the gravitational wave background are discussed in Roberts et al.« less

  2. On the Interaction of the PKS B1358-113 Radio Galaxy with the A1836 Cluster

    DOE PAGES

    Stawarz, L.; Szostek, A.; Cheung, C. C.; ...

    2014-10-07

    In this study, we present the analysis of multifrequency data gathered for the Fanaroff-Riley type-II (FR II) radio galaxy PKS B1358-113, hosted in the brightest cluster galaxy in the center of A1836. The galaxy harbors one of the most massive black holes known to date, and our analysis of the acquired optical data reveals that this black hole is only weakly active, with a mass accretion ratemore » $$\\dot{M}_{\\rm acc} \\sim 2 \\times 10^{-4} \\, \\dot{M}_{\\rm Edd} \\sim 0.02 \\, M_{\\odot }$$ yr –1. Based on analysis of new Chandra and XMM-Newton X-ray observations and archival radio data, and assuming the well-established model for the evolution of FR II radio galaxies, we derive the preferred range for the jet kinetic luminosity L j ~ (1-6) × 10 –3 L Edd ~ (0.5-3) × 10 45 erg s –1. This is above the values implied by various scaling relations proposed for radio sources in galaxy clusters, being instead very close to the maximum jet power allowed for the given accretion rate. We also constrain the radio source lifetime as τ j ~ 40-70 Myr, meaning the total amount of deposited jet energy E tot ~ (2-8) × 10 60 erg. We argue that approximately half of this energy goes into shock heating of the surrounding thermal gas, and the remaining 50% is deposited into the internal energy of the jet cavity. The detailed analysis of the X-ray data provides indication for the presence of a bow shock driven by the expanding radio lobes into the A1836 cluster environment. We derive the corresponding shock Mach number in the range $$\\mathcal {M}_{\\rm sh} \\sim 2\\hbox{--}4$$, which is one of the highest claimed for clusters or groups of galaxies. This, together with the recently growing evidence that powerful FR II radio galaxies may not be uncommon in the centers of clusters at higher redshifts, supports the idea that jet-induced shock heating may indeed play an important role in shaping the properties of clusters, galaxy groups, and galaxies in formation. In this context, we speculate on a possible bias against detecting stronger jet-driven shocks in poorer environments, resulting from inefficient electron heating at the shock front, combined with a relatively long electron-ion temperature equilibration timescale.« less

  3. The Spectacular Radio-Near-IR-X-Ray Jet of 3C 111: the X-Ray Emission Mechanism and Jet Kinematics

    NASA Technical Reports Server (NTRS)

    Clautice, Devon; Perlman, Eric S.; Georganopoulos, Markos; Lister, Matthew L.; Tombesi, Francesco; Cara, Mihai; Marshall, Herman L.; Hogan, Brandon M.; Kazanas, Demos

    2016-01-01

    Relativistic jets are the most energetic manifestation of the active galactic nucleus (AGN) phenomenon. AGN jets are observed from the radio through gamma-rays and carry copious amounts of matter and energy from the subparsec central regions out to the kiloparsec and often megaparsec scale galaxy and cluster environs. While most spatially resolved jets are seen in the radio, an increasing number have been discovered to emit in the optical/near- IR and/or X-ray bands. Here we discuss a spectacular example of this class, the 3C 111 jet, housed in one of the nearest, double-lobed FR II radio galaxies known. We discuss new, deep Chandra and Hubble Space Telescope (HST) observations that reveal both near-IR and X-ray emission from several components of the 3C 111 jet, as well as both the northern and southern hotspots. Important differences are seen between the morphologies in the radio, X-ray, and near-IR bands. The long (over 100 kpc on each side), straight nature of this jet makes it an excellent prototype for future, deep observations, as it is one of the longest such features seen in the radio, near-IR/optical, and X-ray bands. Several independent lines of evidence, including the X-ray and broadband spectral shape as well as the implied velocity of the approaching hotspot, lead us to strongly disfavor the EC/CMB model and instead favor a two-component synchrotron model to explain the observed X-ray emission for several jet components. Future observations with NuSTAR, HST, and Chandra will allow us to further constrain the emission mechanisms.

  4. THE SPECTACULAR RADIO-NEAR-IR-X-RAY JET OF 3C 111: THE X-RAY EMISSION MECHANISM AND JET KINEMATICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clautice, Devon; Perlman, Eric S.; Georganopoulos, Markos

    2016-08-01

    Relativistic jets are the most energetic manifestation of the active galactic nucleus (AGN) phenomenon. AGN jets are observed from the radio through gamma-rays and carry copious amounts of matter and energy from the sub-parsec central regions out to the kiloparsec and often megaparsec scale galaxy and cluster environs. While most spatially resolved jets are seen in the radio, an increasing number have been discovered to emit in the optical/near-IR and/or X-ray bands. Here we discuss a spectacular example of this class, the 3C 111 jet, housed in one of the nearest, double-lobed FR II radio galaxies known. We discuss new,more » deep Chandra and Hubble Space Telescope ( HST ) observations that reveal both near-IR and X-ray emission from several components of the 3C 111 jet, as well as both the northern and southern hotspots. Important differences are seen between the morphologies in the radio, X-ray, and near-IR bands. The long (over 100 kpc on each side), straight nature of this jet makes it an excellent prototype for future, deep observations, as it is one of the longest such features seen in the radio, near-IR/optical, and X-ray bands. Several independent lines of evidence, including the X-ray and broadband spectral shape as well as the implied velocity of the approaching hotspot, lead us to strongly disfavor the EC/CMB model and instead favor a two-component synchrotron model to explain the observed X-ray emission for several jet components. Future observations with NuSTAR , HST , and Chandra will allow us to further constrain the emission mechanisms.« less

  5. Surprise: Dwarf Galaxy Harbors Supermassive Black Hole

    NASA Astrophysics Data System (ADS)

    2011-01-01

    The surprising discovery of a supermassive black hole in a small nearby galaxy has given astronomers a tantalizing look at how black holes and galaxies may have grown in the early history of the Universe. Finding a black hole a million times more massive than the Sun in a star-forming dwarf galaxy is a strong indication that supermassive black holes formed before the buildup of galaxies, the astronomers said. The galaxy, called Henize 2-10, 30 million light-years from Earth, has been studied for years, and is forming stars very rapidly. Irregularly shaped and about 3,000 light-years across (compared to 100,000 for our own Milky Way), it resembles what scientists think were some of the first galaxies to form in the early Universe. "This galaxy gives us important clues about a very early phase of galaxy evolution that has not been observed before," said Amy Reines, a Ph.D. candidate at the University of Virginia. Supermassive black holes lie at the cores of all "full-sized" galaxies. In the nearby Universe, there is a direct relationship -- a constant ratio -- between the masses of the black holes and that of the central "bulges" of the galaxies, leading them to conclude that the black holes and bulges affected each others' growth. Two years ago, an international team of astronomers found that black holes in young galaxies in the early Universe were more massive than this ratio would indicate. This, they said, was strong evidence that black holes developed before their surrounding galaxies. "Now, we have found a dwarf galaxy with no bulge at all, yet it has a supermassive black hole. This greatly strengthens the case for the black holes developing first, before the galaxy's bulge is formed," Reines said. Reines, along with Gregory Sivakoff and Kelsey Johnson of the University of Virginia and the National Radio Astronomy Observatory (NRAO), and Crystal Brogan of the NRAO, observed Henize 2-10 with the National Science Foundation's Very Large Array radio telescope and with the Hubble Space Telescope. They found a region near the center of the galaxy that strongly emits radio waves with characteristics of those emitted by super-fast "jets" of material spewed outward from areas close to a black hole. They then searched images from the Chandra X-Ray Observatory that showed this same, radio-bright region to be strongly emitting energetic X-rays. This combination, they said, indicates an active, black-hole-powered, galactic nucleus. "Not many dwarf galaxies are known to have massive black holes," Sivakoff said. While central black holes of roughly the same mass as the one in Henize 2-10 have been found in other galaxies, those galaxies all have much more regular shapes. Henize 2-10 differs not only in its irregular shape and small size but also in its furious star formation, concentrated in numerous, very dense "super star clusters." "This galaxy probably resembles those in the very young Universe, when galaxies were just starting to form and were colliding frequently. All its properties, including the supermassive black hole, are giving us important new clues about how these black holes and galaxies formed at that time," Johnson said. The astronomers reported their findings in the January 9 online edition of Nature, and at the American Astronomical Society's meeting in Seattle, WA.

  6. Radio jet refraction in galactic atmospheres with static pressure gradients

    NASA Technical Reports Server (NTRS)

    Henriksen, R. N.; Vallee, J. P.; Bridle, A. H.

    1981-01-01

    A theory based on the refraction of radio jets in the extended atmosphere of an elliptical galaxy, is proposed for double radio sources with a Z or S morphology. The model describes a collimated jet of supersonic material that bends self-consistently under the influence of external static pressure gradients, and may alternatively be seen as a continuous-jet version of the buoyancy model proposed by Gull (1973). Emphasis is placed on (1) S-shaped radio sources identified with isolated galaxies, such as 3C 293, whose radio structures should be free of distortions resulting from motion relative to a cluster medium, and (2) small-scale, galaxy-dominated rather than environment-dominated S-shaped sources such as the inner jet structure of Fornax A.

  7. Powerful Radio Galaxies with Simbol-X: Lobes and Hot Spots

    NASA Astrophysics Data System (ADS)

    Migliori, G.; Grandi, P.; Angelini, L.; Raimondi, L.; Torresi, E.; Palumbo, G. G. C.

    2009-05-01

    We present here the first Simbol-X simulations of the extended components, lobes and hot spots, of the radio galaxies. We use the paradigmatic case of Pictor A to test the capabilities of Simbol-X in this field of studies. Simulations demonstrate that Simbol-X will be able not only to perform spatially resolved studies on the lobes of radio galaxies below 10 keV but also to observe, for the first time, hard X-ray emission from the hot spots. These extremely promising results show the considerable potentiality of Simbol-X in studying interaction phenomena between relativistic plasma and surrounding environment.

  8. Soft X-ray Emission from Large-Scale Galactic Outflows in Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Colbert, E. J. M.; Baum, S.; O'Dea, C.; Veilleux, S.

    1998-01-01

    Kiloparsec-scale soft X-ray nebulae extend along the galaxy minor axes in several Seyfert galaxies, including NGC 2992, NGC 4388 and NGC 5506. In these three galaxies, the extended X-ray emission observed in ROSAT HRI images has 0.2-2.4 keV X-ray luminosities of 0.4-3.5 x 10(40) erg s(-1) . The X-ray nebulae are roughly co-spatial with the large-scale radio emission, suggesting that both are produced by large-scale galactic outflows. Assuming pressure balance between the radio and X-ray plasmas, the X-ray filling factor is >~ 10(4) times as large as the radio plasma filling factor, suggesting that large-scale outflows in Seyfert galaxies are predominantly winds of thermal X-ray emitting gas. We favor an interpretation in which large-scale outflows originate as AGN-driven jets that entrain and heat gas on kpc scales as they make their way out of the galaxy. AGN- and starburst-driven winds are also possible explanations if the winds are oriented along the rotation axis of the galaxy disk. Since large-scale outflows are present in at least 50 percent of Seyfert galaxies, the soft X-ray emission from the outflowing gas may, in many cases, explain the ``soft excess" X-ray feature observed below 2 keV in X-ray spectra of many Seyfert 2 galaxies.

  9. The Mpc-scale radio source associated with the GPS galaxy B1144+352

    NASA Astrophysics Data System (ADS)

    Schoenmakers, A. P.; de Bruyn, A. G.; Röttgering, H. J. A.; van der Laan, H.

    1999-01-01

    We present the results of new observations of the enigmatic radio source B1144+352 with the WSRT at 1.4 GHz. This source is hosted by an m_r = 14.3 +/- 0.1 galaxy at a redshift of z=0.063 +/- 0.002 and is one of the lowest redshift Gigahertz Peaked Spectrum (GPS) sources known. It has been known to show radio structure on pc-scale in the radio core and on 20-60 kpc-scale in two jet-like radio structures. The WENSS and NVSS surveys have now revealed faint extended radio structures on an even much larger scale. We have investiga ted these large-scale radio components with new 1.4-GHz WSRT observations. Our radio data indicate that the eastern radio structure has a leading hotspot and we conclude that this structure is a radio lobe originating in the galaxy hosting the GPS source. The western radio structure contains two separate radio sources which are superposed on the sky. The first is a low-power radio source, hosted by a m_R = 15.3 +/- 0.5 galaxy at a similar redshift (z=0.065+/-0.001) to the GPS host galaxy; the second is an extended radio lobe, which we believe is associated with the GPS host galaxy and which contains an elongated tail. The total projected linear size of the extended radio structure associated with B1144+352 is ~ 1.2 Mpc. The core of B1144+353 is a known variable radio source: its flux density at 1.4 GHz has increased continuously between 1974 and 1994. We have measured the flux density of the core in our WSRT observations (epoch 1997.7) and find a value of 541+/-10 mJy This implies that its flux density has decreased by ~ 70 mJy between 1994 and 1997. Further, we have retrieved unpublished archival ROSAT HRI data of B1144+352. The source has been detected and appears to be slightly extended in X-rays. We find a luminosity of (1.26 +/- 0.15)*E(43) erg s(-1) between 0.1 and 2.4 keV, assumin that the X-ray emission is due to an AGN with a powerlaw spectrum with photon index 1.8, or (0.95 +/- 0.11) *E(43) erg s(-1) if it is due to thermal bremsstrahlung at T=10(7) K. The detection of the X-ray source suggests that the intrinsic Hi column density cannot be much larger than a few times 10(21) cm(-2) . The non-detection of an extended X-ray halo in a radius of 250 kpc around the host galaxy limits the X-ray luminosity of an intra-cluster gas component within this radius to <~2.3 x 10(42) erg s(-1) (1sigma upper limit). This is below the luminosity of an X-ray luminous cluster and is more comparable to that of poor groups of galaxies. Also the optical data show no evidence for a rich cluster around the host galaxy. B1144+352 is the second GPS galaxy known to be associated with a Mpc-sized radio source, the other being B1245+676. We argue that the observed structure in both these GPS radio sources must be the result of an interrupted central jet-activity, and that a such they may well be the progenitors of sources belonging to the class of double-double radio galaxy.

  10. FRESH ACTIVITY IN OLD SYSTEMS: RADIO AGNs IN FOSSIL GROUPS OF GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hess, Kelley M.; Wilcots, Eric M.; Hartwick, Victoria L., E-mail: hess@ast.uct.ac.za, E-mail: ewilcots@astro.wisc.edu, E-mail: vhartwick@wisc.edu

    2012-08-15

    We present the first systematic 1.4 GHz Very Large Array radio continuum survey of fossil galaxy group candidates. These are virialized systems believed to have assembled over a gigayear in the past through the merging of galaxy group members into a single, isolated, massive elliptical galaxy and featuring an extended hot X-ray halo. We use new photometric and spectroscopic data from Sloan Digital Sky Survey Data Release 7 to determine that three of the candidates are clearly not fossil groups. Of the remaining 30 candidates, 67% contain a radio-loud (L{sub 1.4GHz} > 10{sup 23} W Hz{sup -1}) active galactic nucleusmore » (AGN) at the center of their dominant elliptical galaxy. We find a weak correlation between the radio luminosity of the AGN and the X-ray luminosity of the halo suggesting that the AGN contributes to energy deposition into the intragroup medium. We only find a correlation between the radio and optical luminosity of the central elliptical galaxy when we include X-ray-selected, elliptically dominated non-fossil groups, indicating a weak relationship between AGN strength and the mass assembly history of the groups. The dominant elliptical galaxy of fossil groups is on average roughly an order of magnitude more luminous than normal group elliptical galaxies in optical, X-ray, and radio luminosities and our findings are consistent with previous results that the radio-loud fraction in elliptical galaxies is linked to the stellar mass of a population. The current level of activity in fossil groups suggests that AGN fueling continues long after the last major merger. We discuss several possibilities for fueling the AGN at the present epoch.« less

  11. VLA observations of a complete sample of extragalactic X-ray sources. II

    NASA Technical Reports Server (NTRS)

    Schild, R.; Zamorani, G.; Gioia, I. M.; Feigelson, E. D.; Maccacaro, T.

    1983-01-01

    A complete sample of 35 X-ray selected sources found with the Einstein Observatory has been observed with the Very Large Array at 6 cm to investigate the relationship between radio and X-ray emission in extragalactic objects. Detections include three active galactic nuclei (AGNs), two clusters or groups of galaxies, two individual galaxies, and two BL Lac objects. The frequency of radio emission in X-ray selected AGNs is compared with that of optically selected quasars using the integral radio-optical luminosity function. The result suggests that the probability for X-ray selected quasars to be radio sources is higher than for those optically selected. No obvious correlation is found in the sample between the richness of X-ray luminosity of the cluster and the presence of a galaxy with radio luminosity at 5 GHz larger than 10 to the 30th ergs/s/Hz.

  12. Surprise: Dwarf Galaxy Harbors Supermassive Black Hole

    NASA Astrophysics Data System (ADS)

    2011-01-01

    The surprising discovery of a supermassive black hole in a small nearby galaxy has given astronomers a tantalizing look at how black holes and galaxies may have grown in the early history of the Universe. Finding a black hole a million times more massive than the Sun in a star-forming dwarf galaxy is a strong indication that supermassive black holes formed before the buildup of galaxies, the astronomers said. The galaxy, called Henize 2-10, 30 million light-years from Earth, has been studied for years, and is forming stars very rapidly. Irregularly shaped and about 3,000 light-years across (compared to 100,000 for our own Milky Way), it resembles what scientists think were some of the first galaxies to form in the early Universe. "This galaxy gives us important clues about a very early phase of galaxy evolution that has not been observed before," said Amy Reines, a Ph.D. candidate at the University of Virginia. Supermassive black holes lie at the cores of all "full-sized" galaxies. In the nearby Universe, there is a direct relationship -- a constant ratio -- between the masses of the black holes and that of the central "bulges" of the galaxies, leading them to conclude that the black holes and bulges affected each others' growth. Two years ago, an international team of astronomers found that black holes in young galaxies in the early Universe were more massive than this ratio would indicate. This, they said, was strong evidence that black holes developed before their surrounding galaxies. "Now, we have found a dwarf galaxy with no bulge at all, yet it has a supermassive black hole. This greatly strengthens the case for the black holes developing first, before the galaxy's bulge is formed," Reines said. Reines, along with Gregory Sivakoff and Kelsey Johnson of the University of Virginia and the National Radio Astronomy Observatory (NRAO), and Crystal Brogan of the NRAO, observed Henize 2-10 with the National Science Foundation's Very Large Array radio telescope and with the Hubble Space Telescope. They found a region near the center of the galaxy that strongly emits radio waves with characteristics of those emitted by super-fast "jets" of material spewed outward from areas close to a black hole. They then searched images from the Chandra X-Ray Observatory that showed this same, radio-bright region to be strongly emitting energetic X-rays. This combination, they said, indicates an active, black-hole-powered, galactic nucleus. "Not many dwarf galaxies are known to have massive black holes," Sivakoff said. While central black holes of roughly the same mass as the one in Henize 2-10 have been found in other galaxies, those galaxies all have much more regular shapes. Henize 2-10 differs not only in its irregular shape and small size but also in its furious star formation, concentrated in numerous, very dense "super star clusters." "This galaxy probably resembles those in the very young Universe, when galaxies were just starting to form and were colliding frequently. All its properties, including the supermassive black hole, are giving us important new clues about how these black holes and galaxies formed at that time," Johnson said. The astronomers reported their findings in the January 9 online edition of Nature, and at the American Astronomical Society's meeting in Seattle, WA. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. More information, including images and other multimedia, can be found at: http://chandra.harvard.edu and http://chandra.nasa.gov

  13. The Origin of Powerful Radio Sources

    NASA Astrophysics Data System (ADS)

    Wilson, A. S.; Colbert, E. J. M.

    1995-05-01

    Radio-loud active galaxies are associated with elliptical or elliptical-like galaxies, many of which appear to be the result of a recent merger. In contrast, radio-quiet active galaxies prefer spiral hosts. Despite the very large difference in radio luminosities between the two classes, their continua and line spectra from infrared through X-ray frequencies are very similar. In this paper, we describe recent developments of our model (Ap. J. 438, 62 1995) in which the radio-loud phenomenon is the result of a merger of two galaxies, with each galaxy nucleus containing a slowly (or non-) rotating supermassive black hole. It is envisaged that the two black holes eventually coalesce. For the small fraction of mergers in which the two holes are both massive and of comparable mass, a rapidly-spinning, high-mass hole results. The spin energy of a rapidly rotating 10(8-9) solar mass hole suffices to provide the ~ 10(60) ergs in relativistic particles and magnetic fields in the most energetic radio sources. Luminous radio-quiet active galaxies contain high-mass, slowly-rotating holes, with the infrared through X-ray emission of both classes being fuelled by accretion as commonly assumed. We discuss constraints on the model from the luminosity functions of radio-loud and radio-quiet galaxies and from the known cosmological evolution of the radio source population; this evolution is assumed to reflect higher galaxy merger rates in the past.

  14. Multiband observations of Cygnus A: A study of pressure balance in the core of a powerful radio galaxy

    NASA Technical Reports Server (NTRS)

    Carilli, Chris; Conner, Sam; Dreher, John; Perley, Rick

    1990-01-01

    Cygnus A is a powerful double radio source associated with a giant elliptical galaxy at the center of a poor cluster of galaxies. The radio source also sits within the core radius of a dense, cooling flow, x ray emitting cluster gas. Optical spectroscopy and narrow band imaging have revealed copious amounts of narrow line emission from the inner 20 kpc of the associated galaxy. Researchers assume H sub o = 75 km sec (-1) Mpc(-1). Discussed here are the pressures in the three components of the Interstellar Medium (ISM) (i.e., the radio, x ray, and line emitting fluids) within a radius of about 15 kpc of the active nucleus of the Cygnus A galaxy.

  15. X-ray emission associated with radio galaxies in the Perseus cluster

    NASA Technical Reports Server (NTRS)

    Rhee, George; Burns, Jack O.; Kowalski, Michael P.

    1994-01-01

    In this paper, we report on new x-ray observations of the Perseus cluster made using four separate pointings of the Roentgen Satellite (ROSAT) Positron Sensitive Proportional Counter (PSPC). We searched for x-ray emission associated with 16 radio galaxies and detected six above 3 sigma. We made use of the PSPC spectra to determine if the x-ray emission associated with radio galaxies in Perseus is thermal or nonthermal in origin (i.e., hot gas or an active galactic nuclei (AGN)). For the head-tail radio galaxy IC 310, we find that the data are best fit by a power law model with an unusually large spectral index alpha = 2.7. This is consistent with its unresolved spatial structure. On the other hand, a second resolved x-ray source associated with another radio galaxy 2.3 Mpc from the Perseus center (V Zw 331) is best fit by a thermal model. For three sources with insufficient flux for a full spectral analysis, we calculated hardness ratios. On this basis, the x-ray emission associated with the well known head-tail source NGC 1265 is consistent with thermal radiation. The x-ray spectra of UGC 2608 and UGC 2654 probably arise from hot gas, although very steep power-law spectra (alpha greater than 3.2) are also possible. The spectrum of NGC 1275 is quite complex due to the presence of an AGN and the galaxy's location at the center of a cluster cooling flow.

  16. Large-Scale Outflows in Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Colbert, E. J. M.; Baum, S. A.

    1995-12-01

    \\catcode`\\@=11 \\ialign{m @th#1hfil ##hfil \\crcr#2\\crcr\\sim\\crcr}}} \\catcode`\\@=12 Highly collimated outflows extend out to Mpc scales in many radio-loud active galaxies. In Seyfert galaxies, which are radio-quiet, the outflows extend out to kpc scales and do not appear to be as highly collimated. In order to study the nature of large-scale (>~1 kpc) outflows in Seyferts, we have conducted optical, radio and X-ray surveys of a distance-limited sample of 22 edge-on Seyfert galaxies. Results of the optical emission-line imaging and spectroscopic survey imply that large-scale outflows are present in >~{{1} /{4}} of all Seyferts. The radio (VLA) and X-ray (ROSAT) surveys show that large-scale radio and X-ray emission is present at about the same frequency. Kinetic luminosities of the outflows in Seyferts are comparable to those in starburst-driven superwinds. Large-scale radio sources in Seyferts appear diffuse, but do not resemble radio halos found in some edge-on starburst galaxies (e.g. M82). We discuss the feasibility of the outflows being powered by the active nucleus (e.g. a jet) or a circumnuclear starburst.

  17. Probing the Curious Case of a Galaxy Cluster Merger in Abell 115 with High-fidelity Chandra X-Ray Temperature and Radio Maps

    NASA Astrophysics Data System (ADS)

    Hallman, Eric J.; Alden, Brian; Rapetti, David; Datta, Abhirup; Burns, Jack O.

    2018-05-01

    We present results from an X-ray and radio study of the merging galaxy cluster Abell 115. We use the full set of five Chandra observations taken of A115 to date (360 ks total integration) to construct high-fidelity temperature and surface brightness maps. We also examine radio data from the Very Large Array at 1.5 GHz and the Giant Metrewave Radio Telescope at 0.6 GHz. We propose that the high X-ray spectral temperature between the subclusters results from the interaction of the bow shocks driven into the intracluster medium by the motion of the subclusters relative to one another. We have identified morphologically similar scenarios in Enzo numerical N-body/hydrodynamic simulations of galaxy clusters in a cosmological context. In addition, the giant radio relic feature in A115, with an arc-like structure and a relatively flat spectral index, is likely consistent with other shock-associated giant radio relics seen in other massive galaxy clusters. We suggest a dynamical scenario that is consistent with the structure of the X-ray gas, the hot region between the clusters, and the radio relic feature.

  18. Giant Double Radio Source DA 240: Purveyor of Galaxies

    NASA Astrophysics Data System (ADS)

    Chen, Ru-Rong; Strom, Richard; Peng, Bo

    2018-05-01

    Galaxies of stars are building blocks of the baryonic universe. Their composition, structure, and kinematics have been well studied, but details of their origins remain sketchy. The collapse of gas clouds, induced by external forces whereby gravity overcomes internal pressure to form stars, is the likely starting point. Among the perturbing initiators of galaxy formation, radio source beams (jets) are quite effective. Typically, a beam may spawn one galaxy, though instances of several aligned with the radio axis are known. Recently, we found an impressive 14 companions in the lobes of the giant radio galaxy DA 240, which we argue formed as the result of jet instigation. This conclusion is bolstered by the fact that the galaxy groups display Z-shaped symmetry with respect to the radio axis. There is some evidence for star formation among the aligned companions. We also conclude that galaxy alignments at low redshift may derive from line-emitting gas observed in radio components of high-redshift galaxies.

  19. Unifying X-ray winds in radio galaxies with Chandra HETG

    NASA Astrophysics Data System (ADS)

    Tombesi, Francesco

    2013-09-01

    X-ray winds are routinely observed in the spectra of Seyfert galaxies. They can be classified as warm absorbers (WAs), with v~100-1,000km/s, and ultra-fast outflows (UFOs), with v>10,000km/s. In stark contrast, the lack of sensitive enough observations allowed the detection of WAs or UFOs only in very few radio galaxies. Therefore, we propose to observe a small sample of three radio galaxies with the Chandra HETG - 3C111 for 150ks, 3C390.3 for 150ks and 3C120 for 200ks - to detect and study in detail their WAs. We will quantify the importance of mechanical feedback from winds in radio galaxies and compare them to the radio jet power. We will also test whether WAs and UFOs can be unified in a single, multi-phase and multi-scale outflow, as recently reported for Seyferts.

  20. The origin of the X-ray, radio and H I structures in the NGC 5903 galaxy group

    NASA Astrophysics Data System (ADS)

    O'Sullivan, Ewan; Kolokythas, Konstantinos; Kantharia, Nimisha G.; Raychaudhury, Somak; David, Laurence P.; Vrtilek, Jan M.

    2018-02-01

    The NGC 5903 galaxy group is a nearby (∼30 Mpc) system of ∼30 members, dominated by the giant ellipticals NGC 5903 and NGC 5898. The group contains two unusual structures: a ∼110 kpc long H I filament crossing NGC 5903 and a ∼75 kpc wide diffuse, steep-spectrum radio source of unknown origin that overlaps NGC 5903 and appears to be partly enclosed by the H I filament. Using a combination of Chandra, XMM-Newton, Giant Meterwave Radio Telescope (GMRT) and Very Large Array (VLA) observations, we detect a previously unknown ∼0.65 keV intra-group medium filling the volume within 145 kpc of NGC 5903 and find a loop of enhanced X-ray emission extending ∼35 kpc south-west from the galaxy, enclosing the brightest part of the radio source. The northern and eastern parts of this X-ray structure are also strongly correlated with the southern parts of the H I filament. We determine the spectral index of the bright radio emission to be α _{150}^{612} = 1.03 ± 0.08, indicating a radiative age >360 Myr. We discuss the origin of the correlated radio, X-ray and H I structures, either through an interaction-triggered active galactic nucleus (AGN) outburst with enthalpy 1.8 × 1057 erg, or via a high-velocity collision between a galaxy and the H I filament. While neither scenario provides a complete explanation, we find that an AGN outburst is the most likely source of the principal X-ray and radio structures. However, it is clear that galaxy interactions continue to play an important role in the development of this relatively highly evolved galaxy group. We also resolve the question of whether the group member galaxy ESO 514-3 hosts a double-lobed radio source, confirming that the source is a superposed background AGN.

  1. Close entrainment of massive molecular gas flows by radio bubbles in the central galaxy of Abell 1795

    NASA Astrophysics Data System (ADS)

    Russell, H. R.; McNamara, B. R.; Fabian, A. C.; Nulsen, P. E. J.; Combes, F.; Edge, A. C.; Hogan, M. T.; McDonald, M.; Salomé, P.; Tremblay, G.; Vantyghem, A. N.

    2017-12-01

    We present new ALMA observations tracing the morphology and velocity structure of the molecular gas in the central galaxy of the cluster Abell 1795. The molecular gas lies in two filaments that extend 5-7 kpc to the N and S from the nucleus and project exclusively around the outer edges of two inner radio bubbles. Radio jets launched by the central active galactic nucleus have inflated bubbles filled with relativistic plasma into the hot atmosphere surrounding the central galaxy. The N filament has a smoothly increasing velocity gradient along its length from the central galaxy's systemic velocity at the nucleus to -370 km s^{-1}, the average velocity of the surrounding galaxies, at the furthest extent. The S filament has a similarly smooth but shallower velocity gradient and appears to have partially collapsed in a burst of star formation. The close spatial association with the radio lobes, together with the ordered velocity gradients and narrow velocity dispersions, shows that the molecular filaments are gas flows entrained by the expanding radio bubbles. Assuming a Galactic XCO factor, the total molecular gas mass is 3.2 ± 0.2 × 109 M⊙. More than half lies above the N radio bubble. Lifting the molecular clouds appears to require an infeasibly efficient coupling between the molecular gas and the radio bubble. The energy required also exceeds the mechanical power of the N radio bubble by a factor of 2. Stimulated feedback, where the radio bubbles lift low-entropy X-ray gas that becomes thermally unstable and rapidly cools in situ, provides a plausible model. Multiple generations of radio bubbles are required to lift this substantial gas mass. The close morphological association then indicates that the cold gas either moulds the newly expanding bubbles or is itself pushed aside and shaped as they inflate.

  2. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Krause, Marita

    2015-03-01

    The magnetic field structure in edge-on galaxies observed so far shows a plane-parallel magnetic field component in the disk of the galaxy and an X-shaped field in its halo. The plane-parallel field is thought to be the projected axisymmetric (ASS) disk field as observed in face-on galaxies. Some galaxies addionionally exhibit strong vertical magnetic fields in the halo right above and below the central region of the disk. The mean-field dynamo theory in the disk cannot explain these observed fields without the action of a wind, which also probably plays an important role to keep the vertical scale heights constant in galaxies of different Hubble types and star formation activities, as has been observed in the radio continuum: At λ6 cm the vertical scale heights of the thin disk and the thick disk/halo in a sample of five edge-on galaxies are similar with a mean value of 300 +/- 50 pc for the thin disk and 1.8 +/- 0.2 kpc for the thick disk (a table and references are given in Krause 2011) with our sample including the brightest halo observed so far, NGC 253, with strong star formation, as well as one of the weakest halos, NGC 4565, with weak star formation. If synchrotron emission is the dominant loss process of the relativistic electrons the outer shape of the radio emission should be dumbbell-like as has been observed in several edge-on galaxies like e.g. NGC 253 (Heesen et al. 2009) and NGC 4565. As the synchrotron lifetime t syn at a single frequency is proportional to the total magnetic field strength B t -1.5, a cosmic ray bulk speed (velocity of a galactic wind) can be defined as v CR = h CR /t syn = 2 h z /t syn , where h CR and h z are the scale heights of the cosmic rays and the observed radio emission at this freqnency. Similar observed radio scale heights imply a self regulation mechanism between the galactic wind velocity, the total magnetic field strength and the star formation rate SFR in the disk: v CR ~ B t 1.5 ~ SFR ~ 0.5 (Niklas & Beck 1997).

  3. Exploring the Full Range of Properties of Quasar Spectral Distribution

    NASA Technical Reports Server (NTRS)

    Wilkes, B.

    1999-01-01

    The aim of this work is to obtain multi-wavelength supporting data for the sample of quasars and active galaxies observed in the far-infrared (IR) by ISO as part of our Key Project on quasars and active galaxies. This dataset then provides complete spectral energy distributions (radio-X-ray) of the ISO sample in order to fully delineate the continuum shapes and to allow detailed modeling of that continuum. The report is made up of a short project summary, and a bibliography of published papers, proceedings and presentations.

  4. Powerful Radio Galaxies with Simbol-X: the Nuclear Environment

    NASA Astrophysics Data System (ADS)

    Torresi, E.; Grandi, P.; Malaguti, G.; Palumbo, G. G. C.; Bianchin, V.

    2009-05-01

    Fanaroff & Riley type II radio galaxies (FRII) are complex objects. In particular FRII Narrow Line Radio Galaxies (NLRG), optically classified as High Excitation Galaxies (HEG) show X-ray spectra very similar to their radio-quiet counterparts, the Seyfert 2 galaxies. They show 2-10 keV continua heavily obscured (NH~1023-24 cm-2) and intense FeKα lines, typical cold matter reprocessing features. Moreover recent Chandra and XMM-Newton observations suggest that the soft X-ray emission of HEG and Seyfert 2 have a common origin from photoionized gas, reinforcing the idea that not only their nuclear engine but also the circumnuclear gas (at least the warm phase) are similar. On the contrary, our knowledge of NLRG HEG above 10 keV is very poor when compared to brighter Seyfert 2. As a consequence, the physical properties of the cold phase of the circumnuclear gas (possibly linked to a dusty torus) are largely unknown. Thanks to its high sensitivity up to 80 keV, Simbol-X will provide very accurate spectra and will allow a direct comparison between the NLRG and Seyfert 2 cold environments.

  5. Shocking features in the merging galaxy cluster RXJ0334.2-0111

    NASA Astrophysics Data System (ADS)

    Dasadia, Sarthak; Sun, Ming; Morandi, Andrea; Sarazin, Craig; Clarke, Tracy; Nulsen, Paul; Massaro, Francesco; Roediger, Elke; Harris, Dan; Forman, Bill

    2016-05-01

    We present a 66 ks Chandra X-ray observation of the galaxy cluster RXJ0334.2-0111. This deep observation revealed a unique bow shock system associated with a wide angle tail (WAT) radio galaxy and several intriguing substructures. The temperature across the bow shock jumps by a factor of ˜1.5 (from 4.1 to 6.2 keV), and is consistent with the Mach number M = 1.6_{-0.3}^{+0.5}. A second inner surface brightness edge is a cold front that marks the border between infalling subcluster cool core and the intracluster medium of the main cluster. The temperature across the cold front increases from 1.3_{-0.8}^{+0.3} to 6.2_{-0.6}^{+0.6} keV. We find an overpressurized region ˜250 kpc east of the cold front that is named `the eastern extension (EE)'. The EE may be a part of the third subcluster in the ongoing merger. We also find a tail shaped feature that originates near the bow shock and may extend up to a distance of ˜1 Mpc. This feature is also likely overpressurized. The luminous FR-I radio galaxy, 3C89, appears to be the cD galaxy of the infalling subcluster. We estimated 3C89's jet power from jet bending and the possible interaction between the X-ray gas and the radio lobes. A comparison between the shock stand-off distance and the Mach number for all known shock front/cold front combinations suggests that the core is continuously shrinking in size by stripping.

  6. The Formation of Galactic Bulges

    NASA Astrophysics Data System (ADS)

    Carollo, C. Marcella; Ferguson, Henry C.; Wyse, Rosemary F. G.

    2000-03-01

    Part I. Introduction: What are galactic bulges?; Part II. The Epoch of Bulge Formation: Origin of bulges; Deep sub-mm surveys: High-z ULIRGs and the formation of spheroids; Ages and metallicities for stars in the galactic bulge; Integrated stellar populations of bulges: First results; HST-NICMOS observations of galactic bulges: Ages and dust; Inside-out bulge formation and the origin of the Hubble sequence; Part III. The Timescales of Bulge Formation: Constraints on the bulge formation timescale from stellar populations; Bulge building with mergers and winds; Role of winds, starbursts, and activity in bulge formation; Dynamical timescales of bulge formation; Part IV. Physical Processes in Bulge Formation: the role of bars for secular bulge formation; Bars and boxy/peanut-shaped bulges: an observational point of view; Boxy- and peanut-shaped bulges; A new class of bulges; The role of secondary bars in bulge formation; Radial transport of molecular gas to the nuclei of spiral galaxies; Dynamical evolution of bulge shapes; Two-component stellar systems: Phase-space constraints; Central NGC 2146 - a firehose-type bending instability?; Bulge formation: the role of the multi-phase ISM; Global evolution of a self-gravitating multi-phase ISM in the central kpc region of galaxies; Part V. Bulge Phenomenology: Bulge-disk decomposition of spiral galaxies in the near-infrared; The triaxial bulge of NGC 1371; The bulge-disk orthogonal decoupling in galaxies: NGC 4698 and NGC 4672; The kinematics and the origin of the ionized gas in NGC 4036; Optically thin thermal plasma in the galactic bulge; X-ray properties of bulges; The host galaxies of radio-loud AGN; The centers of radio-loud early-type galaxies with HST; Central UV spikes in two galactic spheroids; Conference summary: where do we stand?

  7. The role of Dark Matter sub-halos in the non-thermal emission of galaxy clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchegiani, Paolo; Colafrancesco, Sergio, E-mail: Paolo.Marchegiani@wits.ac.za, E-mail: Sergio.Colafrancesco@wits.ac.za

    2016-11-01

    Annihilation of Dark Matter (DM) particles has been recognized as one of the possible mechanisms for the production of non-thermal particles and radiation in galaxy clusters. Previous studies have shown that, while DM models can reproduce the spectral properties of the radio halo in the Coma cluster, they fail in reproducing the shape of the radio halo surface brightness because they produce a shape that is too concentrated towards the center of the cluster with respect to the observed one. However, in previous studies the DM distribution was modeled as a single spherically symmetric halo, while the DM distribution inmore » Coma is found to have a complex and elongated shape. In this work we calculate a range of non-thermal emissions in the Coma cluster by using the observed distribution of DM sub-halos. We find that, by including the observed sub-halos in the DM model, we obtain a radio surface brightness with a shape similar to the observed one, and that the sub-halos boost the radio emission by a factor between 5 and 20%, thus allowing to reduce the gap between the annihilation cross section required to reproduce the radio halo flux and the upper limits derived from other observations, and that this gap can be explained by realistic values of the boosting factor due to smaller substructures. Models with neutralino mass of 9 GeV and composition τ{sup +} τ{sup −}, and mass of 43 GeV and composition b b-bar can fit the radio halo spectrum using the observed properties of the magnetic field in Coma, and do not predict a gamma-ray emission in excess compared to the recent Fermi-LAT upper limits. These findings make these DM models viable candidate to explain the origin of radio halos in galaxy clusters, avoiding the problems connected to the excessive gamma-ray emission expected from proton acceleration in most of the currently proposed models, where the acceleration of particles is directly or indirectly connected to events related to clusters merging. Therefore, DM models deserve to be better studied both from the theoretical and observational sides; the best spectral bands where it is possible to obtain better information are the radio and the gamma-ray bands, while we do not expect a strong emission in the X-ray band.« less

  8. A Catalog Sample of Low-mass Galaxies Observed in X-Rays with Central Candidate Black Holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nucita, A. A.; Manni, L.; Paolis, F. De

    We present a sample of X-ray-selected candidate black holes in 51 low-mass galaxies with z ≤ 0.055 and masses up to 10{sup 10} M {sub ⊙} obtained by cross-correlating the NASA-SLOAN Atlas with the 3XMM catalog. We have also searched in the available catalogs for radio counterparts of the black hole candidates and find that 19 of the previously selected sources also have a radio counterpart. Our results show that about 37% of the galaxies of our sample host an X-ray source (associated with a radio counterpart) spatially coincident with the galaxy center, in agreement with other recent works. Formore » these nuclear sources, the X-ray/radio fundamental plane relation allows one to estimate the mass of the (central) candidate black holes, which are in the range of 10{sup 4}–2 × 10{sup 8} M {sub ⊙} (with a median value of ≃3 × 10{sup 7} M {sub ⊙} and eight candidates having masses below 10{sup 7} M {sub ⊙}). This result, while suggesting that X-ray emitting black holes in low-mass galaxies may have had a key role in the evolution of such systems, makes it even more urgent to explain how such massive objects formed in galaxies. Of course, dedicated follow-up observations both in the X-ray and radio bands, as well as in the optical, are necessary in order to confirm our results.« less

  9. A multiparametric analysis of the Einstein sample of early-type galaxies. 2: Galaxy formation history and properties of the interstellar medium

    NASA Technical Reports Server (NTRS)

    Eskridge, Paul B.; Fabbiano, Giuseppina; Kim, Dong-Woo

    1995-01-01

    We have conducted bivariate and multivariate statistical analysis of data measuring the integrated luminosity, shape, and potential depth of the Einstein sample of early-type galaxies (presented by Fabbiano et al. 1992). We find significant correlations between the X-ray properties and the axial ratios (a/b) of our sample, such that the roundest systems tend to have the highest L(sub x) and L(sub x)/L(sub B). The most radio-loud objects are also the roundest. We confirm the assertion of Bender et al. (1989) that galaxies with high L(sub x) are boxy (have negative a(sub 4)). Both a/b and a(sub 4) are correlated with L(sub B), but not with IRAS 12 um and 100 um luminosities. There are strong correlations between L(sub x), Mg(sub 2), and sigma(sub nu) in the sense that those systems with the deepest potential wells have the highest L(sub x) and Mg(sub 2). Thus the depth of the potential well appears to govern both the ability to reatin an ISM at the present epoch and to retain the enriched ejecta of early star formation bursts. Both L(sub x)/L(sub B) and L(sub 6) (the 6 cm radio luminosity) show threshold effects with sigma(sub nu) exhibiting sharp increases at log sigma(sub nu) approximately = 2.2. Finally, there is clearly an interrelationship between the various stellar and structural parameters: The scatter in the bivariate relationships between the shape parameters (a/b and a(sub 4)) and the depth parameter sigma(sub nu) is a function of abundance in the sense that, for a given a(sub 4) or a/b, the systems with the highest sigma(sub nu) also have the highest Mg(sub 2). Furthermore, for a constant sigma(sun nu), disky galaxies tend to have higher Mg(sub 2) than boxy ones. Alternatively, for a given abundance, boxy ellipticals tend to be more massive than disky ellipticals. One possibility is that early-type galaxies of a given mass, originating from mergers (boxy ellipticals), have lower abundances than 'primordial' (disky) early-type galaxies. Another is that disky inner isophotes are due not to primordial dissipation collapse, but to either the self-gravitating inner disks of captured spirals or the dissipational collapse of new disk structures from the premerger ISM. The high measured nuclear Mg(sub 2) values would thus be due to enrichment from secondary bursts of star formation triggered by the merging event.

  10. A Case for Radio Galaxies as the Sources of IceCube's Astrophysical Neutrino Flux

    DOE PAGES

    Hooper, Dan

    2016-09-01

    Here, we present an argument that radio galaxies (active galaxies with mis-aligned jets) are likely to be the primary sources of the high-energy astrophysical neutrinos observed by IceCube. In particular, if the gamma-ray emission observed from radio galaxies is generated through the interactions of cosmic-ray protons with gas, these interactions can also produce a population of neutrinos with a flux and spectral shape similar to that measured by IceCube. We present a simple physical model in which high-energy cosmic rays are confined within the volumes of radio galaxies, where they interact with gas to generate the observed diffuse fluxes ofmore » neutrinos and gamma rays. In addition to simultaneously accounting for the observations of Fermi and IceCube, radio galaxies in this model also represent an attractive class of sources for the highest energy cosmic rays.« less

  11. Multi-wavelength Observations of the Dissociative Merger in the Galaxy Cluster CIZA J0107.7+5408

    NASA Astrophysics Data System (ADS)

    Randall, S. W.; Clarke, T. E.; van Weeren, R. J.; Intema, H. T.; Dawson, W. A.; Mroczkowski, T.; Blanton, E. L.; Bulbul, E.; Giacintucci, S.

    2016-06-01

    We present results based on X-ray, optical, and radio observations of the massive galaxy cluster CIZA J0107.7+5408. We find that this system is a post-core-passage, dissociative, binary merger, with the optical galaxy density peaks of each subcluster leading their associated X-ray emission peaks. This separation occurs because the diffuse gas experiences ram pressure forces, while the effectively collisionless galaxies (and presumably their associated dark matter (DM) halos) do not. This system contains double-peaked diffuse radio emission, possibly a double radio relic with the relics lying along the merger axis and also leading the X-ray cores. We find evidence for a temperature peak associated with the SW relic, likely created by the same merger shock that is powering the relic radio emission in this region. Thus, this system is a relatively rare, clean example of a dissociative binary merger, which can in principle be used to place constraints on the self-interaction cross-section of DM. Low-frequency radio observations reveal ultra-steep spectrum diffuse radio emission that is not correlated with the X-ray, optical, or high-frequency radio emission. We suggest that these sources are radio phoenixes, which are preexisting non-thermal particle populations that have been re-energized through adiabatic compression by the same merger shocks that power the radio relics. Finally, we place upper limits on inverse Compton emission from the SW radio relic.

  12. MULTI-WAVELENGTH OBSERVATIONS OF THE DISSOCIATIVE MERGER IN THE GALAXY CLUSTER CIZA J0107.7+5408

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Randall, S. W.; Weeren, R. J. van; Clarke, T. E.

    We present results based on X-ray, optical, and radio observations of the massive galaxy cluster CIZA J0107.7+5408. We find that this system is a post-core-passage, dissociative, binary merger, with the optical galaxy density peaks of each subcluster leading their associated X-ray emission peaks. This separation occurs because the diffuse gas experiences ram pressure forces, while the effectively collisionless galaxies (and presumably their associated dark matter (DM) halos) do not. This system contains double-peaked diffuse radio emission, possibly a double radio relic with the relics lying along the merger axis and also leading the X-ray cores. We find evidence for amore » temperature peak associated with the SW relic, likely created by the same merger shock that is powering the relic radio emission in this region. Thus, this system is a relatively rare, clean example of a dissociative binary merger, which can in principle be used to place constraints on the self-interaction cross-section of DM. Low-frequency radio observations reveal ultra-steep spectrum diffuse radio emission that is not correlated with the X-ray, optical, or high-frequency radio emission. We suggest that these sources are radio phoenixes, which are preexisting non-thermal particle populations that have been re-energized through adiabatic compression by the same merger shocks that power the radio relics. Finally, we place upper limits on inverse Compton emission from the SW radio relic.« less

  13. Multi-wavelength Observations of the Dissociative Merger in the Galaxy Cluster CIZA J0107.7+5408

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Randall, S. W.; Clarke, T. E.; Weeren, R. J. van

    We present results based on X-ray, optical, and radio observations of the massive galaxy cluster CIZA J0107.7+5408. We find that this system is a post-core-passage, dissociative, binary merger, with the optical galaxy density peaks of each subcluster leading their associated X-ray emission peaks. This separation occurs because the diffuse gas experiences ram pressure forces, while the effectively collisionless galaxies (and presumably their associated dark matter (DM) halos) do not. This system contains double-peaked diffuse radio emission, possibly a double radio relic with the relics lying along the merger axis and also leading the X-ray cores. We find evidence for amore » temperature peak associated with the SW relic, likely created by the same merger shock that is powering the relic radio emission in this region. Thus, this system is a relatively rare, clean example of a dissociative binary merger, which can in principle be used to place constraints on the self-interaction cross-section of DM. Low-frequency radio observations reveal ultra-steep spectrum diffuse radio emission that is not correlated with the X-ray, optical, or high-frequency radio emission. Here, we suggest that these sources are radio phoenixes, which are preexisting non-thermal particle populations that have been re-energized through adiabatic compression by the same merger shocks that power the radio relics. Finally, we place upper limits on inverse Compton emission from the SW radio relic.« less

  14. Multi-wavelength Observations of the Dissociative Merger in the Galaxy Cluster CIZA J0107.7+5408

    DOE PAGES

    Randall, S. W.; Clarke, T. E.; Weeren, R. J. van; ...

    2016-05-25

    We present results based on X-ray, optical, and radio observations of the massive galaxy cluster CIZA J0107.7+5408. We find that this system is a post-core-passage, dissociative, binary merger, with the optical galaxy density peaks of each subcluster leading their associated X-ray emission peaks. This separation occurs because the diffuse gas experiences ram pressure forces, while the effectively collisionless galaxies (and presumably their associated dark matter (DM) halos) do not. This system contains double-peaked diffuse radio emission, possibly a double radio relic with the relics lying along the merger axis and also leading the X-ray cores. We find evidence for amore » temperature peak associated with the SW relic, likely created by the same merger shock that is powering the relic radio emission in this region. Thus, this system is a relatively rare, clean example of a dissociative binary merger, which can in principle be used to place constraints on the self-interaction cross-section of DM. Low-frequency radio observations reveal ultra-steep spectrum diffuse radio emission that is not correlated with the X-ray, optical, or high-frequency radio emission. Here, we suggest that these sources are radio phoenixes, which are preexisting non-thermal particle populations that have been re-energized through adiabatic compression by the same merger shocks that power the radio relics. Finally, we place upper limits on inverse Compton emission from the SW radio relic.« less

  15. The host galaxy/AGN connection in nearby early-type galaxies. Is there a miniature radio-galaxy in every "core" galaxy?

    NASA Astrophysics Data System (ADS)

    Balmaverde, B.; Capetti, A.

    2006-02-01

    This is the second of a series of three papers exploring the connection between the multiwavelength properties of AGN in nearby early-type galaxies and the characteristics of their hosts. We selected two samples with 5 GHz VLA radio flux measurements down to 1 mJy, reaching levels of radio luminosity as low as 1036 erg s-1. In Paper I we presented a study of the surface brightness profiles for the 65 objects with available archival HST images out of the 116 radio-detected galaxies. We classified early-type galaxies into "core" and "power-law" galaxies, discriminating on the basis of the slope of their nuclear brightness profiles, following the Nukers scheme. Here we focus on the 29 core galaxies (hereafter CoreG). We used HST and Chandra data to isolate their optical and X-ray nuclear emission. The CoreG invariably host radio-loud nuclei, with an average radio-loudness parameter of Log R = L5 {GHz} / LB ˜ 3.6. The optical and X-ray nuclear luminosities correlate with the radio-core power, smoothly extending the analogous correlations already found for low luminosity radio-galaxies (LLRG) toward even lower power, by a factor of ˜ 1000, covering a combined range of 6 orders of magnitude. This supports the interpretation of a common non-thermal origin of the nuclear emission also for CoreG. The luminosities of the nuclear sources, most likely dominated by jet emission, set firm upper limits, as low as L/L_Edd ˜ 10-9 in both the optical and X-ray band, on any emission from the accretion process. The similarity of CoreG and LLRG when considering the distributions host galaxies luminosities and black hole masses, as well as of the surface brightness profiles, indicates that they are drawn from the same population of early-type galaxies. LLRG represent only the tip of the iceberg associated with (relatively) high activity levels, with CoreG forming the bulk of the population. We do not find any relationship between radio-power and black hole mass. A minimum black hole mass of M_BH = 108 M⊙ is apparently associated with the radio-loud nuclei in both CoreG and LLRG, but this effect must be tested on a sample of less luminous galaxies, likely to host smaller black holes. In the unifying model for BL Lacs and radio-galaxies, CoreG likely represent the counterparts of the large population of low luminosity BL Lac now emerging from the surveys at low radio flux limits. This suggests the presence of relativistic jets also in these quasi-quiescent early-type "core" galaxies.

  16. A long-term space astrophysics research program: An x-ray perspective of the components and structure of galaxies

    NASA Technical Reports Server (NTRS)

    Fabbiano, G.

    1995-01-01

    X-ray studies of galaxies by the Smithsonian Astrophysical Observatory (SAO) and MIT are described. Activities at SAO include ROSAT PSPC x-ray data reduction and analysis pipeline; x-ray sources in nearby Sc galaxies; optical, x-ray, and radio study of ongoing galactic merger; a radio, far infrared, optical, and x-ray study of the Sc galaxy NGC247; and a multiparametric analysis of the Einstein sample of early-type galaxies. Activities at MIT included continued analysis of observations with ROSAT and ASCA, and continued development of new approaches to spectral analysis with ASCA and AXAF. Also, a new method for characterizing structure in galactic clusters was developed and applied to ROSAT images of a large sample of clusters. An appendix contains preprints generated by the research.

  17. Starburst galaxies

    NASA Technical Reports Server (NTRS)

    Weedman, Daniel W.

    1987-01-01

    The infrared properties of star-forming galaxies, primarily as determined by the Infrared Astronomy Satellite (IRAS), are compared to X-ray, optical, and radio properties. Luminosity functions are reviewed and combined with those derived from optically discovered samples using 487 Markarian galaxies with redshifts and published IRAS 60 micron fluxes, and 1074 such galaxies in the Center for Astrophysics redshift survey. It is found that the majority of infrared galaxies which could be detected are low luminosity sources already known from the optical samples, but non-infrared surveys have found only a very small fraction of the highest luminosity sources. Distributions of infrared to optical fluxes and available spectra indicate that the majority of IRAS-selected galaxies are starburst galaxies. Having a census of starburst galaxies and associated dust allow severl important global calculations. The source counts are predicted as a function of flux limits for both infrared and radio fluxes. These galaxies are found to be important radio sources at faint flux limits. Taking the integrated flux to z = 3 indicates that such galaxies are a significant component of the diffuse X-ray background, and could be the the dominant component depending on the nature of the X-ray spectra and source evolution.

  18. DEEP CHANDRA X-RAY IMAGING OF A NEARBY RADIO GALAXY 4C+29.30: X-RAY/RADIO CONNECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siemiginowska, Aneta; Aldcroft, Thomas L.; Burke, D. J.

    2012-05-10

    We report results from our deep Chandra X-ray observations of a nearby radio galaxy, 4C+29.30 (z = 0.0647). The Chandra image resolves structures on sub-arcsec to arcsec scales, revealing complex X-ray morphology and detecting the main radio features: the nucleus, a jet, hotspots, and lobes. The nucleus is absorbed (N{sub H} {approx_equal} 3.95{sup +0.27}{sub -0.33} Multiplication-Sign 10{sup 23} cm{sup -2}) with an unabsorbed luminosity of L{sub 2-10keV} {approx_equal} (5.08 {+-} 0.52) Multiplication-Sign 10{sup 43} erg s{sup -1} characteristic of Type 2 active galactic nuclei. Regions of soft (<2 keV) X-ray emission that trace the hot interstellar medium (ISM) are correlatedmore » with radio structures along the main radio axis, indicating a strong relation between the two. The X-ray emission extends beyond the radio source and correlates with the morphology of optical-line-emitting regions. We measured the ISM temperature in several regions across the galaxy to be kT {approx_equal} 0.5 keV, with slightly higher temperatures (of a few keV) in the center and in the vicinity of the radio hotspots. Assuming that these regions were heated by weak shocks driven by the expanding radio source, we estimated the corresponding Mach number of 1.6 in the southern regions. The thermal pressure of the X-ray-emitting gas in the outermost regions suggests that the hot ISM is slightly underpressured with respect to the cold optical-line-emitting gas and radio-emitting plasma, which both seem to be in a rough pressure equilibrium. We conclude that 4C+29.30 displays a complex view of interactions between the jet-driven radio outflow and host galaxy environment, signaling feedback processes closely associated with the central active nucleus.« less

  19. X-Ray Absorption Toward the Einstein Ring Source PKS 1830-211

    NASA Technical Reports Server (NTRS)

    Mathur, Smita; Nair, Sunita

    1997-01-01

    PKS 1830-211 is an unusually radio-loud gravitationally lensed quasar. In the radio spectrum, the system appears as two compact, dominant features surrounded by relatively extended radio emission that forms an Einstein ring. As the line of sight to it passes close to our Galactic center, PKS 1830-211 has not been detected in wave bands other than the radio and X-ray so far. Here we present X-ray data of PKS 1830-211 observed with ROSAT Position Sensitive Proportional Counter. The X-ray spectrum shows that absorption in excess of the Galactic contribution is highly likely, which at the redshift of the lensing galaxy (z(sub t)=0.886) corresponds to N(sub H)=3.5((sup 0.6)(sub -0.5))x10(exp 22) atoms sq cm. The effective optical extinction is large, A(sub V)(observed) is greater than or approximately 5.8. When corrected for this additional extinction, the two-point optical to X-ray slope alpha(sub ox) of PKS 1830-211 lies just within the observed range of quasars. It is argued here that both compact images must be covered by the X-ray absorber(s) that we infer to be the lensing galaxy (galaxies). The dust-to-gas ratio along the line of sight within the lensing galaxy is likely to be somewhat larger than for our Galaxy.

  20. A new method for finding and characterizing galaxy groups via low-frequency radio surveys

    NASA Astrophysics Data System (ADS)

    Croston, J. H.; Ineson, J.; Hardcastle, M. J.; Mingo, B.

    2017-09-01

    We describe a new method for identifying and characterizing the thermodynamic state of large samples of evolved galaxy groups at high redshifts using high-resolution, low-frequency radio surveys, such as those that will be carried out with LOFAR and the Square Kilometre Array. We identify a sub-population of morphologically regular powerful [Fanaroff-Riley type II (FR II)] radio galaxies and demonstrate that, for this sub-population, the internal pressure of the radio lobes is a reliable tracer of the external intragroup/intracluster medium (ICM) pressure, and that the assumption of a universal pressure profile for relaxed groups enables the total mass and X-ray luminosity to be estimated. Using a sample of well-studied FR II radio galaxies, we demonstrate that our method enables the estimation of group/cluster X-ray luminosities over three orders of magnitude in luminosity to within a factor of ˜2 from low-frequency radio properties alone. Our method could provide a powerful new tool for building samples of thousands of evolved galaxy groups at z > 1 and characterizing their ICM.

  1. The inner radio structure of Centaurus A - Clues to the origin of the jet X-ray emission

    NASA Technical Reports Server (NTRS)

    Burns, J. O.; Feigelson, E. D.; Schreier, E. J.

    1983-01-01

    VLA observations at 1.4 and 4.9 GHz of the jet and inner lobes of the nearby radio galaxy Centaurus A have been used to construct maps of total intensity and polarization at resolutions of 31 x 10 and 3.6 x 1.1 arcsec. Surface brightness and pressure distributions in the jet, combined with the apparent X-ray emission from the ISM of NGC 5128, indicate that it is thermally confined. A comparison of the radio structure and the optical galaxy shows that the jet in Cen A emerges nearly along the major axis of the elliptical stellar component that is parallel to the angular momentum vector of the dust lane. The outer radio structure bends toward the galaxy minor axis. Evidence is found for a common synchrotron radiation origin of the full spectrum jet emission.

  2. Measuring the X-shaped structures in edge-on galaxies

    NASA Astrophysics Data System (ADS)

    Savchenko, S. S.; Sotnikova, N. Ya.; Mosenkov, A. V.; Reshetnikov, V. P.; Bizyaev, D. V.

    2017-11-01

    We present a detailed photometric study of a sample of 22 edge-on galaxies with clearly visible X-shaped structures. We propose a novel method to derive geometrical parameters of these features, along with the parameters of their host galaxies based on the multi-component photometric decomposition of galactic images. To include the X-shaped structure into our photometric model, we use the imfit package, in which we implement a new component describing the X-shaped structure. This method is applied for a sample of galaxies with available Sloan Digital Sky Survey and Spitzer IRAC 3.6 μm observations. In order to explain our results, we perform realistic N-body simulations of a Milky Way-type galaxy and compare the observed and the model X-shaped structures. Our main conclusions are as follows: (1) galaxies with strong X-shaped structures reside in approximately the same local environments as field galaxies; (2) the characteristic size of the X-shaped structures is about 2/3 of the bar size; (3) there is a correlation between the X-shaped structure size and its observed flatness: the larger structures are more flattened; (4) our N-body simulations qualitatively confirm the observational results and support the bar-driven scenario for the X-shaped structure formation.

  3. A Multi-Frequency Study of the Milky Way-Like Spiral Galaxy NGC 6744

    NASA Astrophysics Data System (ADS)

    Yew, Miranda; Filipović, Miroslav D.; Roper, Quentin; Collier, Jordan D.; Crawford, Evan J.; Jarrett, Thomas H.; Tothill, Nicholas F. H.; O'Brien, Andrew N.; Pavlović, Marko Z.; Pannuti, Thomas G.; Galvin, Timothy J.; Kapińska, Anna D.; Cluver, Michelle E.; Banfield, Julie K.; Schlegel, Eric M.; Maxted, Nigel; Grieve, Kevin R.

    2018-03-01

    We present a multi-frequency study of the intermediate spiral SAB(r)bc type galaxy NGC 6744, using available data from the Chandra X-Ray telescope, radio continuum data from the Australia Telescope Compact Array and Murchison Widefield Array, and Wide-field Infrared Survey Explorer infrared observations. We identify 117 X-ray sources and 280 radio sources. Of these, we find nine sources in common between the X-ray and radio catalogues, one of which is a faint central black hole with a bolometric radio luminosity similar to the Milky Way's central black hole. We classify 5 objects as supernova remnant (SNR) candidates, 2 objects as likely SNRs, 17 as H ii regions, 1 source as an AGN; the remaining 255 radio sources are categorised as background objects and one X-ray source is classified as a foreground star. We find the star-formation rate (SFR) of NGC 6744 to be in the range 2.8-4.7 M⊙ yr - 1 signifying the galaxy is still actively forming stars. The specific SFR of NGC 6744 is greater than that of late-type spirals such as the Milky Way, but considerably less that that of a typical starburst galaxy.

  4. The Peculiar Radio-loud Narrow Line Seyfert 1 Galaxy 1H 0323+342

    NASA Astrophysics Data System (ADS)

    Paliya, Vaidehi S.; Sahayanathan, S.; Parker, M. L.; Fabian, A. C.; Stalin, C. S.; Anjum, Ayesha; Pandey, S. B.

    2014-07-01

    We present a multiwavelength study of the radio-loud narrow-line Seyfert 1 galaxy (NLSy1) 1H 0323+342, detected by the Fermi Gamma-Ray Space Telescope. Multiband light curves show many orphan X-ray and optical flares having no corresponding γ-ray counterparts. Such anomalous variability behavior can be due to different locations of the emission region from the central source. During a large flare, a γ-ray flux doubling timescale as small as ~3 hr is noticed. We built spectral energy distributions (SEDs) during different activity states and modeled them using a one-zone leptonic model. The shape of the optical/UV component of the SEDs is dominated by accretion disk emission in all the activity states. In the X-ray band, significant thermal emission from the hot corona is inferred during quiescent and first flaring states; however, during subsequent flares, the nonthermal jet component dominates. The γ-ray emission in all the states can be well explained by inverse-Compton scattering of accretion disk photons reprocessed by the broad-line region. The source showed violent intra-night optical variability, coinciding with one of the high γ-ray activity states. An analysis of the overall X-ray spectrum fitted with an absorbed power-law plus relativistic reflection component hints at the presence of an Fe Kα line and returns a high black hole spin value of a = 0.96 ± 0.14. We argue that 1H 0323+342 possesses dual characteristics, akin to both flat-spectrum radio quasars (FSRQs) and radio-quiet NLSy1 galaxies, though at a low jet power regime compared to powerful FSRQs.

  5. Radio emission in the directions of cD and related galaxies in poor clusters. III. VLA observations at 20 cm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burns, J.O.; White, R.A.; Hough, D.H.

    1981-01-01

    VLA radio maps and optical identifications of a sample of sources in the directions of 21 Yerkes poor cluster fields are presented. The majority of the cluster radio sources are associated with the dominant D or cD galaxies (approx.70%). Our analysis of dominant galaxies in rich and poor clusters indicates that these giant galaxies are much more often radio emitters (approx.25% of cD's are radio active in the poor clusters), have steeper radio spectra, and have simpler radio morphologies (i.e., double or other linear structure) than other less bright ellipticals. A strong continuum of radio properties in cD galaxies ismore » seen from rich to poor clusters. We speculate that the location of these dominant galaxies at the cluster centers (i.e., at the bottom of a deep, isolated gravitational potential well) is the crucial factor in explaining their multifrequency activity. We briefly discuss galaxy cannibalism and gas infall models as fueling mechanisms for the observed radio and x-ray emission.« less

  6. Radio emission in the directions of cD and related galaxies in poor clusters. III - VLA observations at 20 cm

    NASA Technical Reports Server (NTRS)

    Burns, J. O.; White, R. A.; Hough, D. H.

    1981-01-01

    VLA radio maps and optical identifications of a sample of sources in the directions of 21 Yerkes poor cluster fields are presented. The majority of the cluster radio sources are associated with the dominant D or cD galaxies (approximately 70 percent). Our analysis of dominant galaxies in rich and poor clusters indicates that these giant galaxies are much more often radio emitters (approximately 25 percent of cD's are radio active in the poor clusters), have steeper radio spectra, and have simpler radio morphologies (i.e., double or other linear structure) than other less bright ellipticals. A strong continuum of radio properties in cD galaxies is seen from rich to poor clusters. It is speculated that the location of these dominant galaxies at the cluster centers (i.e., at the bottom of a deep, isolated gravitational potential well) is the crucial factor in explaining their multifrequency activity. Galaxy cannibalism and gas infall models as fueling mechanisms for the observed radio and X-ray emission are discussed

  7. Optical identification of radio-loud active galactic nuclei in the ROSAT-Green-Bank sample with SDSS spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, De-Liang; Wang, Jian-Guo; Dong, Xiao-Bo

    2009-10-01

    Results of extended and refined optical identification of 181 radio/X-ray sources in the RASS-Green Bank (RGB) catalog are presented (Brinkmann et al. 1997) which have been spectroscopically observed in the Sloan Digital Sky Survey (SDSS) DR5. The SDSS spectra of the optical counterparts are modeled in a careful and self-consistent way by incorporating the host galaxy's starlight. Optical emission line parameters are presented, which are derived accurately and reliably, along with the radio 1.4-5 GHz spectral indices estimated using (non-simultaneous) archival data. For 72 sources, the identifications are presented for the first time. It is confirmed that the majority of strong radio/X-ray emitters are radio-loud active galactic nuclei (AGNs), particularly blazars. Taking advantage of the high spectral quality and resolution and our refined spectral modeling, we are able to disentangle narrow line radio galaxies (NLRGs), as vaguely termed in most previous identification work, into Seyfert II galaxies and LINERs (low-ionization nuclear emission regions), based on the standard emission line diagnostics. The NLRGs in the RGB sample, mostly belonging to 'weak line radio galaxies', are found to have optical spectra consistent predominantly with LINERs, and only a small fraction with Seyfert II galaxies. A small number of LINERs have radio power as high as 1023 - 1026 W Hz-1 at 5 GHz, being among the strongest radio emitting LINERs known so far. Two sources are identified with radio-loud narrow line Seyfert 1 galaxies (NLS1s), a class of rare objects. The presence is also confirmed of flat-spectrum radio quasars whose radio-optical-X-ray effective spectral indices are similar to those of High-energy peaked BL Lacs (HBLs), as suggested by Padovani et al., although it is still a debate as to whether this is the case for their actual spectral energy distributions.

  8. Centaurus A galaxy, type EO peculiar elliptical, also radio source

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Centaurus A galaxy, type EO peculiar elliptical, also radio source. CTIO 4-meter telescope, 1975. NGC 5128, a Type EO peculiar elliptical galaxy in the constellation Centaurus. This galaxy is one of the most luminous and massive galaxies known and is a strong source of both radio and X-ray radiation. Current theories suggest that the nucleus is experiencing giant explosions involving millions of stars and that the dark band across the galactic disk is material being ejected outward. Cerro Toloto 4-meter telescope photo. Photo credit: National Optical Astronomy Observatories

  9. Radio morphology and parent population of X-ray selected BL Lacertae objects

    NASA Technical Reports Server (NTRS)

    Laurent-Muehleisen, S. A.; Kollgaard, R. I.; Moellenbrock, G. A.; Feigelson, E. D.

    1993-01-01

    High-dynamic range (typically 1700:1) radio maps of 15 X-ray BL Lac (XBL) objects from the HEAO-1 Large Area Sky Survey are presented. Morphological characteristics of these sources are compared with Fanaroff-Riley (FR) class I radio galaxies in the context of unified schemes, with reference to one-sided kiloparsec-scale emission. Evidence that cluster membership of XBLs is significantly higher than previously thought is also presented. It is shown that the extended radio powers, X-ray emission, core-to-lobe ratios, and linear sizes of the radio selected BL Lac (RBL) and XBL populations are consistent with an FR I radio galaxy parent population. A source list and VLA observing log and map parameters are provided.

  10. Cosmic rays and the magnetic field in the nearby starburst galaxy NGC 253

    NASA Astrophysics Data System (ADS)

    Heesen, Volker

    2008-02-01

    The transport of cosmic rays (CR's) in large-scale magnetic fields can be bes t investigated in edge-on galaxies with radio continuum observations including p olarization. I observed the nearby starburst galaxy NGC 253 which hosts one of t he brightest known radio halos with the Effelsberg 100-m telescope and the VLA i nterferometer. The vertical emission profiles follow closely a two-component exp onential distribution where the scaleheight is a linear function of the synchrot ron lifetime of the CR electrons. This requires a convection dominated CR transp ort from the disk into the halo while the CR's lose their energy due to synchrot ron radiation the so-called CR aging. The interaction of the "disk-wind" with th e magnetic field explains the "X"-shaped magnetic field structure centered on th e nucleus where the ordered magnetic field is amplified by compression in the bo undaries of the expanding superbubbles of hot gas.

  11. A representative survey of the dynamics and energetics of FR II radio galaxies

    NASA Astrophysics Data System (ADS)

    Ineson, J.; Croston, J. H.; Hardcastle, M. J.; Mingo, B.

    2017-05-01

    We report the first large, systematic study of the dynamics and energetics of a representative sample of Fanaroff-Riley type II (FR II) radio galaxies with well-characterized group/cluster environments. We used X-ray inverse-Compton and radio synchrotron measurements to determine the internal radio-lobe conditions, and these were compared with external pressures acting on the lobes, determined from measurements of the thermal X-ray emission of the group/cluster. Consistent with previous work, we found that FR II radio lobes are typically electron dominated by a small factor relative to equipartition, and are overpressured relative to the external medium in their outer parts. These results suggest that there is typically no energetically significant proton population in the lobes of FR II radio galaxies (unlike for FR Is), and so for this population, inverse-Compton modelling provides an accurate way of measuring total energy content and estimating jet power. We estimated the distribution of Mach numbers for the population of expanding radio lobes, finding that at least half of the radio galaxies are currently driving strong shocks into their group/cluster environments. Finally, we determined a jet power-radio luminosity relation for FR II radio galaxies based on our estimates of lobe internal energy and Mach number. The slope and normalization of this relation are consistent with theoretical expectations, given the departure from equipartition and environmental distribution for our sample.

  12. Astronomers Discover Spectacular Structure in Distant Galaxy

    NASA Astrophysics Data System (ADS)

    1999-01-01

    Researchers using the National Science Foundation's Very Large Array (VLA) radio telescope have imaged a "spectacular and complex structure" in a galaxy 50 million light-years away. Their work both resolves a decades-old observational mystery and revises current theories about the origin of X-ray emission coming from gas surrounding the galaxy. The new VLA image is of the galaxy M87, which harbors at its core a supermassive black hole spewing out jets of subatomic particles at nearly the speed of light and also is the central galaxy of the Virgo Cluster of galaxies. The VLA image is the first to show detail of a larger structure that originally was detected by radio astronomers more than a half-century ago. Analysis of the new image indicates that astronomers will have to revise their ideas about the physics of what causes X-ray emission in the cores of many galaxy clusters. Frazer Owen of the National Radio Astronomy Observatory (NRAO) in Socorro, NM; Jean Eilek of the New Mexico Institute of Mining and Technology (NM Tech) in Socorro, NM; and Namir Kassim of the Naval Research Laboratory in Washington, DC, announced their discovery at the American Astronomical Society's meeting today in Austin, TX. The new observations show two large, bubble-like lobes, more than 200,000 light-years across, that emit radio waves. These lobes, which are intricately detailed, apparently are powered by gravitational energy released from the black hole at the galaxy's center. "We think that material is flowing outward from the galaxy's core into these large, bright, radio-emitting 'bubbles,'" Owen said. The newly-discovered "bubbles" sit inside a region of the galaxy known to be emitting X-rays. Theorists have speculated that this X-ray emission arises when gas that originally was part of the Virgo Cluster of galaxies, cools and falls inwards onto M87 itself, at the center of the cluster. Such "cooling flows" are commonly thought to be responsible for strong X-ray emission in many galaxy clusters. "The new structures that we found in M87 show that the story is much more complicated," Eilek said. "What we know about radio jets suggests that the energy being pumped into this region from the galaxy's central black hole exceeds the energy being lost in the X-ray emission. This system is more like a heating flow than a cooling flow. We're going to have to revise our ideas about the physics of what's going on in regions like this." M87, discovered by the French astronomer Charles Messier in 1781, is the strongest radio-emitting object in the constellation Virgo. Its jet was described by Lick Observatory astronomer Heber Curtis in 1918 as "a curious straight ray ... apparently connected with the nucleus by a thin line of matter." In 1954, Walter Baade reported that the jet's light is strongly polarized. M87's X-ray emission was discovered in 1966. M87 is the largest of the thousands of galaxies in the Virgo Cluster. The Local Group of galaxies, of which our own Milky Way is one, is part of the Virgo Cluster's outskirts. The galaxy's radio emissions first were observed by Australian astronomers in 1947, but the radio telescopes of that time were unable to discern much detail. They could, however, show that there is a structure more than 100,000 light-years across. Subsequent radio images, particularly those made using the sharp radio "vision" of the VLA, were primarily aimed at studying the inner 10,000 light-years or so, and showed great detail in the galaxy's jet. Astronomers even have followed the motions of concentrations of material within the jet over time. These observations, however, did not show much about the larger structure that was seen by earlier radio astronomers, leaving its details largely a mystery. Radio Images of M87 at Vastly Different Size Scales The mystery was solved by using the VLA to observe at longer radio wavelengths, thus revealing larger-scale structures. The processing speeds of modern computers and recently-developed imaging techniques also were necessary to show the exquisite details seen in the newest VLA image of M87. The result was spectacular. "Not only did we see beautiful details that we hadn't seen before, but we also got a new and more complicated idea of the physics of this region," Owen said. "The theories about cooling flows offered an explanation for the X-ray emission in galaxy clusters, but critics contended that other evidence we should see for this infalling matter, such as new stars forming in the denser parts of the flows, was absent," Owen said. "Now, in this case, we see that the inward flow can be counterbalanced by the energy coming outward from the galaxy's core, so the material may not become dense enough to trigger star formation." The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. This is a VLA image of the galaxy M87, showing details of the large-scale, radio-emitting "bubbles" believed to be powered by the black hole at the galaxy's center. The galaxy's center (and the black hole) lie deep within the bright, reddish region in this image. The structure in this image is approximately 200,000 light-years across. This image was made at a radio wavelength of 90 centimeters. CREDIT: F.N. Owen, J.A. Eliek and N.E. Kassim, National Radio Astronomy Observatory, Associated Universities, Inc.

  13. Detection of radio emission from the jet in Centaurus A

    NASA Technical Reports Server (NTRS)

    Schreier, E. J.; Burns, J. O.; Feigelson, E. D.

    1981-01-01

    The VLA has detected radio emission from the X-ray jet in Centaurus A, at 20 and 6 cm, whose radio morphology is similar to that of the X-ray jet. It is suggested that the same population of relativistic electrons is responsible for both radio and X-ray synchrotron emission, in which case in situ acceleration of electrons in the knots would be mandatory. The relativistic beam may alternatively heat the surrounding gas, resulting in X-ray emission. The static confinement of the knots of the jet seems to be accomplished by the presence of the ambient hot gas in the galaxy. The galaxy's nucleus has an inverted spectrum at radio frequencies, and it is noted that the jet is as bright as the nucleus at low frequencies.

  14. High–frequency cluster radio galaxies: Luminosity functions and implications for SZE–selected cluster samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Nikhel; Saro, A.; Mohr, J. J.

    We study the overdensity of point sources in the direction of X-ray-selected galaxy clusters from the meta-catalogue of X-ray-detected clusters of galaxies (MCXC; < z > = 0.14) at South Pole Telescope (SPT) and Sydney University Molonglo Sky Survey (SUMSS) frequencies. Flux densities at 95, 150 and 220 GHz are extracted from the 2500 deg 2 SPT-SZ survey maps at the locations of SUMSS sources, producing a multifrequency catalogue of radio galaxies. In the direction of massive galaxy clusters, the radio galaxy flux densities at 95 and 150 GHz are biased low by the cluster Sunyaev–Zel’dovich Effect (SZE) signal, whichmore » is negative at these frequencies. We employ a cluster SZE model to remove the expected flux bias and then study these corrected source catalogues. We find that the high-frequency radio galaxies are centrally concentrated within the clusters and that their luminosity functions (LFs) exhibit amplitudes that are characteristically an order of magnitude lower than the cluster LF at 843 MHz. We use the 150 GHz LF to estimate the impact of cluster radio galaxies on an SPT-SZ like survey. The radio galaxy flux typically produces a small bias on the SZE signal and has negligible impact on the observed scatter in the SZE mass–observable relation. If we assume there is no redshift evolution in the radio galaxy LF then 1.8 ± 0.7 per cent of the clusters with detection significance ξ ≥ 4.5 would be lost from the sample. As a result, allowing for redshift evolution of the form (1 + z) 2.5 increases the incompleteness to 5.6 ± 1.0 per cent. Improved constraints on the evolution of the cluster radio galaxy LF require a larger cluster sample extending to higher redshift.« less

  15. High–frequency cluster radio galaxies: Luminosity functions and implications for SZE–selected cluster samples

    DOE PAGES

    Gupta, Nikhel; Saro, A.; Mohr, J. J.; ...

    2017-01-15

    We study the overdensity of point sources in the direction of X-ray-selected galaxy clusters from the meta-catalogue of X-ray-detected clusters of galaxies (MCXC; < z > = 0.14) at South Pole Telescope (SPT) and Sydney University Molonglo Sky Survey (SUMSS) frequencies. Flux densities at 95, 150 and 220 GHz are extracted from the 2500 deg 2 SPT-SZ survey maps at the locations of SUMSS sources, producing a multifrequency catalogue of radio galaxies. In the direction of massive galaxy clusters, the radio galaxy flux densities at 95 and 150 GHz are biased low by the cluster Sunyaev–Zel’dovich Effect (SZE) signal, whichmore » is negative at these frequencies. We employ a cluster SZE model to remove the expected flux bias and then study these corrected source catalogues. We find that the high-frequency radio galaxies are centrally concentrated within the clusters and that their luminosity functions (LFs) exhibit amplitudes that are characteristically an order of magnitude lower than the cluster LF at 843 MHz. We use the 150 GHz LF to estimate the impact of cluster radio galaxies on an SPT-SZ like survey. The radio galaxy flux typically produces a small bias on the SZE signal and has negligible impact on the observed scatter in the SZE mass–observable relation. If we assume there is no redshift evolution in the radio galaxy LF then 1.8 ± 0.7 per cent of the clusters with detection significance ξ ≥ 4.5 would be lost from the sample. As a result, allowing for redshift evolution of the form (1 + z) 2.5 increases the incompleteness to 5.6 ± 1.0 per cent. Improved constraints on the evolution of the cluster radio galaxy LF require a larger cluster sample extending to higher redshift.« less

  16. The Radio Luminosity Function and Galaxy Evolution in the Coma Cluster

    NASA Technical Reports Server (NTRS)

    Miller, Neal A.; Hornschemeier, Ann E.; Mabasher, Bahram; Brudgesm Terrry J.; Hudson, Michael J.; Marzke, Ronald O.; Smith, Russell J.

    2008-01-01

    We investigate the radio luminosity function and radio source population for two fields within the Coma cluster of galaxies, with the fields centered on the cluster core and southwest infall region and each covering about half a square degree. Using VLA data with a typical rms sensitivity of 28 (mu)Jy per 4.4" beam, we identify 249 radio sources with optical counterparts brighter than r = 22 (equivalent to M(sub r) = -13 for cluster member galaxies). Comprehensive optical spectroscopy identifies 38 of these as members of the Coma cluster, evenly split between sources powered by an active nucleus and sources powered by active star formation. The radio-detected star-forming galaxies are restricted to radio luminosities between about 10(exp 21) and 10(exp 22) W/Hz, an interesting result given that star formation dominates field radio luminosity functions below about 10(exp 23) W/Hz. The majority of the radio-detected star-forming galaxies have characteristics of starbursts, including high specific star formation rates and optical spectra with strong emission lines. In conjunction with prior studies on post-starburst galaxies within the Coma cluster, this is consistent with a picture in which late-type galaxies entering Coma undergo a starburst prior to a rapid cessation of star formation. Optically bright elliptical galaxies (Mr less than or equals -20.5) make the largest contribution to the radio luminosity function at both the high (> approx. 3x10(exp 22) W/Hz) and low (< approx. 10(exp 21) W/Hz) ends. Through a stacking analysis of these optically-bright ellipticals we find that they continue to harbor radio sources down to luminosities as faint as 3x10(exp 19) W/Hz. However, contrary to published results for the Virgo cluster we find no evidence for the existence of a population of optically faint (M(sub r) approx. equals -14) dwarf ellipticals hosting strong radio AGN.

  17. Big Bangs in Galaxy Clusters: Using X-ray Temperature Maps to Trace Merger Histories in Clusters with Radio Halos/Relics

    NASA Astrophysics Data System (ADS)

    Burns, Jack O.; Datta, Abhirup; Hallman, Eric J.

    2016-06-01

    Galaxy clusters are assembled through large and small mergers which are the most energetic events ("bangs") since the Big Bang. Cluster mergers "stir" the intracluster medium (ICM) creating shocks and turbulence which are illuminated by ~Mpc-sized radio features called relics and halos. These shocks heat the ICM and are detected in x-rays via thermal emission. Disturbed morphologies in x-ray surface brightness and temperatures are direct evidence for cluster mergers. In the radio, relics (in the outskirts of the clusters) and halos (located near the cluster core) are also clear signposts of recent mergers. Our recent ENZO cosmological simulations suggest that around a merger event, radio emission peaks very sharply (and briefly) while the x-ray emission rises and decays slowly. Hence, a sample of galaxy clusters that shows both luminous x-ray emission and radio relics/halos are good candidates for very recent mergers. We are in the early stages of analyzing a unique sample of 48 galaxy clusters with (i) known radio relics and/or halos and (ii) significant archival x-ray observations (>50 ksec) from Chandra and/or XMM. We have developed a new x-ray data analysis pipeline, implemented on parallel processor supercomputers, to create x-ray surface brightness, high fidelity temperature, and pressure maps of these clusters in order to study merging activity. The temperature maps are made using three different map-making techniques: Weighted Voronoi Tessellation, Adaptive Circular Binning, and Contour Binning. In this talk, we will show preliminary results for several clusters, including Abell 2744 and the Bullet cluster. This work is supported by NASA ADAP grant NNX15AE17G.

  18. A non cool-core 4.6-keV cluster around the bright nearby radio galaxy PKS B1416-493

    NASA Astrophysics Data System (ADS)

    Worrall, D. M.; Birkinshaw, M.

    2017-05-01

    We present new X-ray (Chandra) and radio (ATCA) observations of the z = 0.09 radio galaxy PKS B1416-493, a member of the southern equivalent of the 3CRR sample. We find the source to be embedded in a previously unrecognized bright kT = 4.6-keV non cool-core cluster. The discovery of new clusters of such high temperature and luminosity within z = 0.1 is rare. The radio source was chosen for observation based on its intermediate FR I/II morphology. We identify a cavity coincident with the northeast lobe, and excess counts associated with the southwest lobe that we interpret as inverse-Compton X-ray emission. The jet power, at 5.3 × 1044 erg s-1, when weighted by radio source density, supports suggestions that radio sources of intermediate morphology and radio power may dominate radio-galaxy heating in the local Universe.

  19. On the origin of the Z-shaped narrow-line region in the Seyfert galaxy NGC 3516

    NASA Technical Reports Server (NTRS)

    Veilleux, Sylvain; Tully, R. B.; Bland-Hawthorn, Jonathan

    1993-01-01

    A kinematic study has been carried out of the line-emitting gas in the Seyfert galaxy NGC 3516. The existence of two curved filaments in the central 2.5 kpc of this galaxy, which give Z-shaped appearance to its NLR. A precessing twin-jet model in which the line-emitting material is entrained by a precessing radio jet and kept ionized by the nuclear ionization field can explain the kinematic data of the brightest emission rather well. If this model is valid, this would make NGC 3516 the least luminous known active galaxy with a precessing jet. An alternative scenario assumes that the curved inner filaments represent gas entrained by a radio jet which is deflected by ram pressure from the rotation interstellar medium of the galaxy.

  20. The 3CR Chandra Snapshot Survey: Extragalactic Radio Sources with Redshifts between 1 and 1.5

    NASA Astrophysics Data System (ADS)

    Stuardi, C.; Missaglia, V.; Massaro, F.; Ricci, F.; Liuzzo, E.; Paggi, A.; Kraft, R. P.; Tremblay, G. R.; Baum, S. A.; O’Dea, C. P.; Wilkes, B. J.; Kuraszkiewicz, J.; Forman, W. R.; Harris, D. E.

    2018-04-01

    The aim of this paper is to present an analysis of newly acquired X-ray observations of 16 extragalactic radio sources listed in the Third Cambridge Revised (3CR) catalog and not previously observed by Chandra. Observations were performed during Chandra Cycle 17, extending X-ray coverage for the 3CR extragalactic catalog up to z = 1.5. Among the 16 targets, two lie at z < 0.5 (3CR 27 at z = 0.184 and 3CR 69 at z = 0.458) all of the remaining 14 have redshifts between 1.0 and 1.5. In the current sample, there are three compact steep spectrum (CSS) sources, three quasars, and an FR I radio galaxy, while the other nine are FR II radio galaxies. All radio sources have an X-ray counterpart. We measured nuclear X-ray fluxes as well as X-ray emission associated with radio jet knots, hotspots, or lobes in three energy bands: soft (0.5–1 keV), medium (1–2 keV), and hard (2–7 keV). We also performed standard X-ray spectral analysis for the four brightest nuclei. We discovered X-ray emission associated with the radio lobe of 3CR 124, a hotspot of the quasar 3CR 220.2, another hotspot of the radio galaxy 3CR 238, and the jet knot of 3CR 297. We also detected extended X-ray emission around the nuclear region of 3CR 124 and 3CR 297 on scales of several tens of kiloparsecs. Finally, we present an update on the X-ray observations performed with Chandra and XMM-Newton on the entire 3CR extragalactic catalog.

  1. Non Thermal Emission from Clusters of Galaxies: the Importance of a Joint LOFAR/Simbol-X View

    NASA Astrophysics Data System (ADS)

    Ferrari, C.

    2009-05-01

    Deep radio observations of galaxy clusters have revealed the existence of diffuse radio sources (``halos'' and ``relics'') related to the presence of relativistic electrons and weak magnetic fields in the intracluster volume. I will outline our current knowledge about the presence and properties of this non-thermal cluster component. Despite the recent progress made in observational and theoretical studies of the non-thermal emission in galaxy clusters, a number of open questions about its origin and its effects on the thermo-dynamical evolution of galaxy clusters need to be answered. I will show the importance of combining galaxy cluster observations by new-generation instruments such as LOFAR and Simbol-X. A deeper knowledge of the non-thermal cluster component, together with statistical studies of radio halos and relics, will allow to test the current cluster formation scenario and to better constrain the physics of large scale structure evolution.

  2. The IRAS galaxy 0421+040P06: An active spiral (?) galaxy with extended radio lobes

    NASA Technical Reports Server (NTRS)

    Beichman, C. A.; Wynn-Williams, C. G.; Lonsdale, C. J.; Persson, S. E.; Heasley, J. N.; Miley, G. K.; Soifer, B. T.; Neugebauer, G.; Becklin, E. E.; Houck, J. R.

    1984-01-01

    The infrared bright galaxy 0421+040P06 detected by IRAS at 25 and 60 microns was studied at optical, infrared, and radio wavelength. It is a luminous galaxy with apparent spiral structure emitting 4 x 10 to the 37th power from far-infrared to optical wavelengths. Optical spectroscopy reveals a Seyfert 2 emission line spectrum, making 0421+040P06 the first active galaxy selected from an unbiased infrared survey of galaxies. The fact that this galaxy shows a flatter energy distribution with more 25 micron emission than other galaxies in the infrared sample may be related to the presence of an intense active nucleus. The radio observations reveal the presence of a non-thermal source that, at 6 cm, shows a prominent double lobed structure 20 to 30 kpc in size extending beyond the optical confines of the galaxy. The radio source is three to ten times larger than structures previously seen in spiral galaxies.

  3. Radio and X-ray properties of the source G29.37+0.1 linked to HESS J1844-030

    NASA Astrophysics Data System (ADS)

    Castelletti, G.; Supan, L.; Petriella, A.; Giacani, E.; Joshi, B. C.

    2017-06-01

    Aims: We report on the first detailed multiwavelength study of the radio source G29.37+0.1, which is an as-yet-unclassified object linked to the very-high-energy γ-emitting source HESS J1844-030. The origin of the multiwavelength emission toward G29.37+0.1 has not been clarified so far, leaving open the question about the physical relationship between these sources. Methods: Using observations carried out with the Giant Metrewave Radio Telescope (GMRT), we performed high-quality full-synthesis imaging at 610 MHz of the field containing G29.37+0.1. The obtained data, combined with observations at 1400 MHz from The Multi-Array Galactic Plane Imaging Survey (MAGPIS) were used to investigate in detail the properties of its radio emission. Additionally, we reprocessed archival data obtained with the XMM-Newton and Chandra observatories in order to get a multiwavelength view of this unusual source. Results: The radio source G29.37+0.1 mainly consists of a bright twisted structure, named the S-shaped feature. The high sensitivity of the new GMRT observations allowed the identification of potential lobes, jets, and a nuclear central region in the S-shaped morphology of G29.37+0.1. We also highlight the detection of diffuse and low surface brightness emission enveloping the brightest emitting regions. The brightest emission in G29.37+0.1 has a radio synchrotron spectral index α = 0.59 ± 0.09. Variations in the spectral behaviour are observed across the whole radio source with the flattest spectral features in the central nuclear and jets components (α 0.3). These results lead us to conclude that the brightest radio emission from G29.37+0.1 likely represents a newly recognized radio galaxy. The identification of optical and infrared counterparts to the emission arising from the core of G29.37+0.1 strengthens our interpretation of an extragalactic origin of the radio emission. We performed several tests to explain the physical mechanism responsible for the observed X-ray emission, which appears overlapping the northeastern part of the radio emission. Our spectral analysis demonstrated that a non-thermal origin for the X-ray emission compatible with a pulsar wind nebula is quite possible. The analysis of the spatial distribution of the CO gas revealed the presence of a complex of molecular clouds located in projection adjacent to the radio halo emission and probably interacting with it. We propose that the faint halo represents a composite supernova remnant with a pulsar powered component given by the diffuse X-ray emission superimposed along the line of sight to the radio galaxy. Further broadband observations of HESS J1844-030 are needed to disentangle its origin, although its shape and position suggest an extragalactic origin connected to G29.37+0.1. The reduced GMRT image (FITS file) is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/602/A31

  4. Twin radio relics in the nearby low-mass galaxy cluster Abell 168

    NASA Astrophysics Data System (ADS)

    Dwarakanath, K. S.; Parekh, V.; Kale, R.; George, L. T.

    2018-06-01

    We report the discovery of twin radio relics in the outskirts of the low-mass merging galaxy cluster Abell 168 (redshift=0.045). One of the relics is elongated with a linear extent ˜800 kpc and projected width of ˜80 kpc and is located ˜900 kpc towards the north of the cluster centre, oriented roughly perpendicular to the major axis of the X-ray emission. The second relic is ring-shaped with a size ˜220 kpc and is located near the inner edge of the elongated relic at a distance of ˜600 kpc from the cluster centre. These radio sources were imaged at 323 and 608 MHz with the Giant Meterwave Radio Telescope and at 1520 MHz with the Karl G. Jansky Very Large Array (VLA). The elongated relic was detected at all frequencies, with a radio power of 1.38 ± 0.14 × 1023 W Hz-1 at 1.4 GHz and a power law in the frequency range 70-1500 MHz (S ∝ να, α = -1.1 ± 0.04). This radio power is in good agreement with that expected from the known empirical relation between the radio powers of relics and host cluster masses. This is the lowest mass (M500 = 1.24 × 1014 M⊙) cluster in which relics due to merger shocks are detected. The ring-shaped relic has a steeper spectral index (α) of -1.74 ± 0.29 in the frequency range 100-600 MHz. We propose this relic to be an old plasma, revived due to adiabatic compression by the outgoing shock that produced the elongated relic.

  5. A Search for Low-Luminosity BL Lacertae Objects

    NASA Astrophysics Data System (ADS)

    Rector, Travis A.; Stocke, John T.; Perlman, Eric S.

    1999-05-01

    Many properties of BL Lacs have become explicable in terms of the ``relativistic beaming'' hypothesis, whereby BL Lacs are FR 1 radio galaxies viewed nearly along the jet axis. However, a possible problem with this model is that a transition population between beamed BL Lacs and unbeamed FR 1 galaxies has not been detected. A transition population of ``low-luminosity BL Lacs'' was predicted to exist in abundance in X-ray-selected samples such as the Einstein Extended Medium Sensitivity Survey (EMSS) by Browne & Marcha. However, these BL Lacs may have been misidentified as clusters of galaxies. We have conducted a search for such objects in the EMSS with the ROSAT High-Resolution Imager (HRI) here we present ROSAT HRI images, optical spectra, and VLA radio maps for a small number of BL Lacs that were previously misidentified in the EMSS catalog as clusters of galaxies. While these objects are slightly lower in luminosity than other EMSS BL Lacs, their properties are too similar to the other BL Lacs in the EMSS sample to ``bridge the gap'' between BL Lacs and FR 1 radio galaxies. Also, the number of new BL Lacs found is too low to alter significantly the X-ray luminosity function or value for the X-ray-selected EMSS BL Lac sample. Thus, these observations do not explain fully the discrepancy between the X-ray- and radio-selected BL Lac samples.

  6. Discovery of a Giant Radio Halo in a New Planck Galaxy Cluster PLCKG171.9-40.7

    NASA Technical Reports Server (NTRS)

    Giacintucci, Simona; Kale, Ruta; Wik, Daniel R.; Venturi, Tiziana; Markevitch, Maxim

    2013-01-01

    We report the discovery of a giant radio halo in a new, hot, X-ray luminous galaxy cluster recently found by Planck, PLCKG171.9-40.7. The radio halo was found using Giant Metrewave Radio Telescope observations at 235 MHz and 610 MHz, and in the 1.4 GHz data from a NRAO Very Large Array Sky Survey pointing that we have reanalyzed. The diffuse radio emission is coincident with the cluster X-ray emission, has an extent of approx.1 Mpc and a radio power of approx. 5×10(exp 24)W/Hz at 1.4 GHz. Its integrated radio spectrum has a slope of alpha approx. = 1.8 between 235 MHz and 1.4 GHz, steeper than that of a typical giant halo. The analysis of the archival XMMNewton X-ray data shows that the cluster is hot (approx. 10 keV) and disturbed, consistent with X-ray selected clusters hosting radio halos. This is the first giant radio halo discovered in one of the new clusters found by Planck.

  7. NGC 741—Mergers and AGN Feedback on a Galaxy-group Scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schellenberger, G.; Vrtilek, J. M.; David, L.

    Low-mass galaxy cluster systems and groups will play an essential role in upcoming cosmological studies, such as those to be carried out with eROSITA. Though the effects of active galactic nuclei (AGNs) and merging processes are of special importance to quantify biases like selection effects or deviations from hydrostatic equilibrium, they are poorly understood on the galaxy-group scale. We present an analysis of recent deep Chandra and XMM-Newton integrations of NGC 741 that provides an excellent example of a group with multiple concurrent phenomena: both an old central radio galaxy and a spectacular infalling head-tail source, strongly bent jets, amore » 100-kpc radio trail, intriguing narrow X-ray filaments, and gas-sloshing features. Supported principally by X-ray and radio continuum data, we address the merging history of the group, the nature of the X-ray filaments, the extent of gas-stripping from NGC 742, the character of cavities in the group, and the roles of the central AGN and infalling galaxy in heating the intra-group medium.« less

  8. Average Heating Rate of Hot Atmospheres in Distant Galaxy Clusters by Radio AGN: Evidence for Continuous AGN Heating

    NASA Astrophysics Data System (ADS)

    Ma, Cheng-Jiun; McNamara, B.; Nulsen, P.; Schaffer, R.

    2011-09-01

    X-ray observations of nearby clusters and galaxies have shown that energetic feedback from AGN is heating hot atmospheres and is probably the principal agent that is offsetting cooling flows. Here we examine AGN heating in distant X-ray clusters by cross correlating clusters selected from the 400 Square Degree X-ray Cluster survey with radio sources in the NRAO VLA Sky Survey. The jet power for each radio source was determined using scaling relations between radio power and cavity power determined for nearby clusters, groups, and galaxies with atmospheres containing X-ray cavities. Roughly 30% of the clusters show radio emission above a flux threshold of 3 mJy within the central 250 kpc that is presumably associated with the brightest cluster galaxy. We find no significant correlation between radio power, hence jet power, and the X-ray luminosities of clusters in redshift range 0.1 -- 0.6. The detection frequency of radio AGN is inconsistent with the presence of strong cooling flows in 400SD, but cannot rule out the presence of weak cooling flows. The average jet power of central radio AGN is approximately 2 10^{44} erg/s. The jet power corresponds to an average heating of approximately 0.2 keV/particle for gas within R_500. Assuming the current AGN heating rate remained constant out to redshifts of about 2, these figures would rise by a factor of two. Our results show that the integrated energy injected from radio AGN outbursts in clusters is statistically significant compared to the excess entropy in hot atmospheres that is required for the breaking of self-similarity in cluster scaling relations. It is not clear that central AGN in 400SD clusters are maintained by a self-regulated feedback loop at the base of a cooling flow. However, they may play a significant role in preventing the development of strong cooling flows at early epochs.

  9. LOFAR discovery of radio emission in MACS J0717.5+3745

    NASA Astrophysics Data System (ADS)

    Bonafede, A.; Brüggen, M.; Rafferty, D.; Zhuravleva, I.; Riseley, C. J.; van Weeren, R. J.; Farnes, J. S.; Vazza, F.; Savini, F.; Wilber, A.; Botteon, A.; Brunetti, G.; Cassano, R.; Ferrari, C.; de Gasperin, F.; Orrú, E.; Pizzo, R. F.; Röttgering, H. J. A.; Shimwell, T. W.

    2018-05-01

    We present results from LOFAR and GMRT observations of the galaxy cluster MACS J0717.5+3745. The cluster is undergoing a violent merger involving at least four sub-clusters, and it is known to host a radio halo. LOFAR observations reveal new sources of radio emission in the Intra-Cluster Medium: (i) a radio bridge that connects the cluster to a head-tail radio galaxy located along a filament of galaxies falling into the main cluster, (ii) a 1.9 Mpc radio arc, that is located North West of the main mass component, (iii) radio emission along the X-ray bar, that traces the gas in the X-rays South West of the cluster centre. We use deep GMRT observations at 608 MHz to constrain the spectral indices of these new radio sources, and of the emission that was already studied in the literature at higher frequency. We find that the spectrum of the radio halo and of the relic at LOFAR frequency follows the same power law as observed at higher frequencies. The radio bridge, the radio arc, and the radio bar all have steep spectra, which can be used to constrain the particle acceleration mechanisms. We argue that the radio bridge could be caused by the re-acceleration of electrons by shock waves that are injected along the filament during the cluster mass assembly. Despite the sensitivity reached by our observations, the emission from the radio halo does not trace the emission of the gas revealed by X-ray observations. We argue that this could be due to the difference in the ratio of kinetic over thermal energy of the intra-cluster gas, suggested by X-ray observations.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirkpatrick, C. C.; Cavagnolo, K. W.; McNamara, B. R.

    Using deep Chandra observations of the Hydra A galaxy cluster, we examine the metallicity structure near the central galaxy and along its powerful radio source. We show that the metallicity of the intracluster medium is enhanced by up to 0.2 dex along the radio jets and lobes compared to the metallicity of the undisturbed gas. The enhancements extend from a radius of 20 kpc from the central galaxy to a distance of approx120 kpc. We estimate the total iron mass that has been transported out of the central galaxy to be between 2 x 10{sup 7} M {sub sun} andmore » 7 x 10{sup 7} M {sub sun}, which represents 10%-30% of the iron mass within the central galaxy. The energy required to lift this gas is roughly 1% to 5% of the total energetic output of the active galactic nuclei. Evidently, Hydra A's powerful radio source is able to redistribute metal-enriched, low entropy gas throughout the core of the galaxy cluster. The short re-enrichment timescale <10{sup 9} yr implies that the metals lost from the central galaxy will be quickly replenished.« less

  11. Chandra observations of dying radio sources in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Murgia, M.; Markevitch, M.; Govoni, F.; Parma, P.; Fanti, R.; de Ruiter, H. R.; Mack, K.-H.

    2012-12-01

    Context. The dying radio sources represent a very interesting and largely unexplored stage of the active galactic nucleus (AGN) evolution. They are considered to be very rare, and almost all of the few known ones were found in galaxy clusters. However, considering the small number detected so far, it has not been possible to draw any firm conclusions about their X-ray environment. Aims: We present X-ray observations performed with the Chandra satellite of the three galaxy clusters Abell 2276, ZwCl 1829.3+6912, and RX J1852.1+5711, which harbor at their center a dying radio source with an ultra-steep spectrum that we recently discovered. Methods: We analyzed the physical properties of the X-ray emitting gas surrounding these elusive radio sources. We determined the global X-ray properties of the clusters, derived the azimuthally averaged profiles of metal abundance, gas temperature, density, and pressure. Furthermore, we estimated the total mass profiles. Results: The large-scale X-ray emission is regular and spherical, suggesting a relaxed state for these systems. Indeed, we found that the three clusters are also characterized by significant enhancements in the metal abundance and declining temperature profiles toward the central region. For all these reasons, we classified RX J1852.1+5711, Abell 2276, and ZwCl 1829.3+6912 as cool-core galaxy clusters. Conclusions: We calculated the non-thermal pressure of the radio lobes assuming that the radio sources are in the minimum energy condition. For all dying sources we found that this is on average about one to two orders of magnitude lower than that of the external gas, as found for many other radio sources at the center of galaxy groups and clusters. We found marginal evidence for the presence of X-ray surface brightness depressions coincident with the fossil radio lobes of the dying sources in A2276 and ZwCl 1829.3+691. We estimated the outburst age and energy output for these two dying sources. The energy power from the AGN outburst is significantly higher than the X-ray luminosity in both clusters. Indeed, it is sufficient that a small fraction of this power is dissipated in the intra-cluster medium to reheat the cool cores. Appendix is available in electronic form at http://www.aanda.org

  12. Chandra Observations of Dying Radio Sources in Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    Murgia, M.; Markevitch, M.; Govoni, F.; Parma, P.; Fanti, R.; de Ruiter, H. R.; Mack, K.-H.

    2012-01-01

    Context. The dying radio sources represent a very interesting and largely unexplored stage of the active galactic nucleus (AGN) evolution. They are considered to be very rare, and almost all of the few known ones were found in galaxy clusters. However, considering the small number detected so far, it has not been possible to draw any firm conclusions about their X-ray environment. Aims. We present X-ray observations performed with the Chandra satellite of the three galaxy clusters Abell 2276, ZwCl 1829.3+6912, and RX J1852.1+5711, which harbor at their center a dying radio source with an ultra-steep spectrum that we recently discovered. Methods. We analyzed the physical properties of the X-ray emitting gas surrounding these elusive radio sources. We determined the global X-ray properties of the clusters, derived the azimuthally averaged profiles of metal abundance, gas temperature, density, and pressure. Furthermore, we estimated the total mass profiles. Results. The large-scale X-ray emission is regular and spherical, suggesting a relaxed state for these systems. Indeed, we found that the three clusters are also characterized by significant enhancements in the metal abundance and declining temperature profiles toward the central region. For all these reasons, we classified RX J1852.1+5711, Abell 2276, and ZwCl 1829.3+6912 as cool-core galaxy clusters. Conclusions. We calculated the non-thermal pressure of the radio lobes assuming that the radio sources are in the minimum energy condition. For all dying sources we found that this is on average about one to two orders of magnitude lower than that of the external gas, as found for many other radio sources at the center of galaxy groups and clusters. We found marginal evidence for the presence of X-ray surface brightness depressions coincident with the fossil radio lobes of the dying sources in A2276 and ZwCl 1829.3+691. We estimated the outburst age and energy output for these two dying sources. The energy power from the AGN outburst is significantly higher than the X-ray luminosity in both clusters. Indeed, it is sufficient that a small fraction of this power is dissipated in the intra-cluster medium to reheat the cool cores.

  13. Fermi/LAT Observations of Swift/BAT Seyfert Galaxies: On the Contribution of Radio-Quiet Active Galactic Nuclei to the Extragalactic gamma-Ray Background

    NASA Technical Reports Server (NTRS)

    Teng, Stacy H.; Mushotzky, Richard F.; Sambruna, Rita M.; Davis, David S.; Reynolds, Christopher S.

    2011-01-01

    We present the analysis of 2.1 years of Fermi Large Area Telescope (LAT) data on 491 Seyfert galaxies detected by the Swift Burst Alert Telescope (BAT) survey. Only the two nearest objects, NGC 1068 and NGC 4945, which were identified in the Fermi first year catalog, are detected. Using Swift/BAT and radio 20 cm fluxes, we define a new radio-loudness parameter R(sub X,BAT) where radio-loud objects have logR(sub X,BAT) > -4.7. Based on this parameter, only radio-loud sources are detected by Fermi/LAT. An upper limit to the flux of the undetected sources is derived to be approx.2x10(exp -11) photons/sq cm/s, approximately seven times lower than the observed flux of NGC 1068. Assuming a median redshift of 0.031, this implies an upper limit to the gamma-ray (1-100 GeV) luminosity of < approx.3x10(exp 41) erg/s. In addition, we identified 120 new Fermi/LAT sources near the Swift/BAT Seyfert galaxies with significant Fermi/LAT detections. A majority of these objects do not have Swift/BAT counterparts, but their possible optical counterparts include blazars, flat-spectrum radio quasars, and quasars.

  14. Neutralinos and the Origin of Radio Halos in Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Colafrancesco, S.; Mele, B.

    2001-11-01

    We assume that the supersymmetric lightest neutralino is a good candidate for the cold dark matter in the galaxy halo and explore the possibility to produce extended diffuse radio emission from high-energy electrons arising from the neutralino annihilation in galaxy clusters whose intracluster medium is filled with a large-scale magnetic field. We show that these electrons fit the population of seed relativistic electrons that is postulated in many models for the origin of cluster radio halos. For a uniform magnetic field of ~1-3 μG the population of seed relativistic electrons from neutralino annihilation can fit the radio halo spectra of two well-studied clusters: Coma and 1E 0657-56. In the case of a magnetic field that is radially decreasing from the cluster center, central values ~8 μG (for Coma) and ~50 μG (for 1E 0657-56) are required to fit the data. The radio halo data strongly favor a centrally peaked dark matter density profile (like a Navarro, Frenk, & White [NFW97] density profile). The shape and the frequency extension of the radio halo spectra are connected with the mass and physical composition of the neutralino. A pure gaugino neutralino with mass Mχ>=80 GeV can reasonably fit the radio halo spectra of both Coma and 1E 0657-56. The model we present here provides a number of extra predictions that make it definitely testable. On the one hand, it agrees quite well with the observations that (1) the radio halo is centered on the cluster dynamical center, usually coincident with the center of its X-ray emission; (2) the radio halo surface brightness is similar to the X-ray one; and (3) the monochromatic radio luminosity at 1.4 GHz correlates strongly with the intracluster (IC) gas temperature. On the other hand, the same model predicts that radio halos should be present in every cluster, which is not presently observed, although the predicted radio halo luminosities can change (decrease) by factors of up to ~102-106, depending on the amplitude and the structure of the IC magnetic field. In addition, neutral pions arising from neutralino annihilation should give rise to substantial amounts of diffuse gamma-ray emission, up to energies of order Mχ, that could be tested by the next-generation gamma-ray experiments.

  15. The case for electron re-acceleration at galaxy cluster shocks

    NASA Astrophysics Data System (ADS)

    van Weeren, Reinout J.; Andrade-Santos, Felipe; Dawson, William A.; Golovich, Nathan; Lal, Dharam V.; Kang, Hyesung; Ryu, Dongsu; Brìggen, Marcus; Ogrean, Georgiana A.; Forman, William R.; Jones, Christine; Placco, Vinicius M.; Santucci, Rafael M.; Wittman, David; Jee, M. James; Kraft, Ralph P.; Sobral, David; Stroe, Andra; Fogarty, Kevin

    2017-01-01

    On the largest scales, the Universe consists of voids and filaments making up the cosmic web. Galaxy clusters are located at the knots in this web, at the intersection of filaments. Clusters grow through accretion from these large-scale filaments and by mergers with other clusters and groups. In a growing number of galaxy clusters, elongated Mpc-sized radio sources have been found1,2 . Also known as radio relics, these regions of diffuse radio emission are thought to trace relativistic electrons in the intracluster plasma accelerated by low-Mach-number shocks generated by cluster-cluster merger events 3 . A long-standing problem is how low-Mach-number shocks can accelerate electrons so efficiently to explain the observed radio relics. Here, we report the discovery of a direct connection between a radio relic and a radio galaxy in the merging galaxy cluster Abell 3411-3412 by combining radio, X-ray and optical observations. This discovery indicates that fossil relativistic electrons from active galactic nuclei are re-accelerated at cluster shocks. It also implies that radio galaxies play an important role in governing the non-thermal component of the intracluster medium in merging clusters.

  16. The case for electron re-acceleration at galaxy cluster shocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Weeren, Reinout J.; Andrade-Santos, Felipe; Dawson, William A.

    On the largest scales, the Universe consists of voids and filaments making up the cosmic web. Galaxy clusters are located at the knots in this web, at the intersection of filaments. Clusters grow through accretion from these large-scale filaments and by mergers with other clusters and groups. In a growing number of galaxy clusters, elongated Mpc-sized radio sources have been found. Also known as radio relics, these regions of diffuse radio emission are thought to trace relativistic electrons in the intracluster plasma accelerated by low-Mach-number shocks generated by cluster–cluster merger events. A long-standing problem is how low-Mach-number shocks can acceleratemore » electrons so efficiently to explain the observed radio relics. Here, we report the discovery of a direct connection between a radio relic and a radio galaxy in the merging galaxy cluster Abell 3411–3412 by combining radio, X-ray and optical observations. This discovery indicates that fossil relativistic electrons from active galactic nuclei are re-accelerated at cluster shocks. Lastly, it also implies that radio galaxies play an important role in governing the non-thermal component of the intracluster medium in merging clusters.« less

  17. The case for electron re-acceleration at galaxy cluster shocks

    DOE PAGES

    van Weeren, Reinout J.; Andrade-Santos, Felipe; Dawson, William A.; ...

    2017-01-04

    On the largest scales, the Universe consists of voids and filaments making up the cosmic web. Galaxy clusters are located at the knots in this web, at the intersection of filaments. Clusters grow through accretion from these large-scale filaments and by mergers with other clusters and groups. In a growing number of galaxy clusters, elongated Mpc-sized radio sources have been found. Also known as radio relics, these regions of diffuse radio emission are thought to trace relativistic electrons in the intracluster plasma accelerated by low-Mach-number shocks generated by cluster–cluster merger events. A long-standing problem is how low-Mach-number shocks can acceleratemore » electrons so efficiently to explain the observed radio relics. Here, we report the discovery of a direct connection between a radio relic and a radio galaxy in the merging galaxy cluster Abell 3411–3412 by combining radio, X-ray and optical observations. This discovery indicates that fossil relativistic electrons from active galactic nuclei are re-accelerated at cluster shocks. Lastly, it also implies that radio galaxies play an important role in governing the non-thermal component of the intracluster medium in merging clusters.« less

  18. Einstein observations of active galaxies and quasars

    NASA Technical Reports Server (NTRS)

    Schreier, E. J.

    1979-01-01

    The radio galaxies Centaurus A and Signus B are discussed. In both these sources, a comparison of the radio and imaged X-ray flux is allowed for the measurement of the magnetic fields. Einstein observations of quasars are discussed. The number of known X-ray emitting QSO's was increased from 3 to 22 and the distances where these QSO's were seen to correspond to an age of 15 billion years. It was shown that these quasars contributed significantly to the X-ray background.

  19. Alma Polarization Observations Of The Particle Accelerators In The Peculiar Hot Spot 3C 445 South

    NASA Astrophysics Data System (ADS)

    Orienti, Monica; Brunetti, G.; Mack, K.-H.; Nagai, H.; Paladino, R.; Prieto, M. A.

    2017-10-01

    Radio hot spots are bright and compact regions at the edges of powerful radio galaxies. In these regions the relativistic particles are reaccelerated by shocks produced by the interaction between the supersonic jets and the external environment. The discovery of synchrotron optical emission extending on kpc scale in some hot spots suggests that additional efficient and spatially distributed acceleration mechanisms must take place in order to compensate the severe radiative losses of optical emitting electrons. The key parameter to unveil the mechanism at work is the polarization intensity: high fractional polarization in the case of shocks, whereas low values or absence of polarization are expected in case of turbulence. In this contribution I will present results on full-polarization ALMA observations at 97 GHz of the hot spot 3C 445 South. This arc-shaped hot spot is characterized by two main components enshrouded by extended emission that is visible from radio to X-rays. The ALMA results, complemented by mutiband VLA, VLT, HST and Chandra data, will be used to shed a light on the complex distribution and nature of particle acceleration at the edge of powerful radio galaxies.

  20. Chandra Observation of the WAT Radio Source/ICM Interaction in Abell 623

    NASA Astrophysics Data System (ADS)

    Anand, Gagandeep; Blanton, Elizabeth L.; Randall, Scott W.; Paterno-Mahler, Rachel; Douglass, Edmund

    2017-01-01

    Galaxy clusters are important objects for studying the physics of the intracluster medium (ICM), galaxy formation and evolution, and cosmological parameters. Clusters containing wide-angle tail (WAT) radio sources are particularly valuable for studies of the interaction between these sources and the surrounding ICM. These sources are thought to form when the ram pressure from the ICM caused by the relative motion between the host radio galaxy and the cluster bends the radio lobes into a distinct wide-angle morphology. We present our results from the analysis of a Chandra observation of the nearby WAT hosting galaxy cluster Abell 623. A clear decrement in X-ray emission is coincident with the southern radio lobe, consistent with being a cavity carved out by the radio source. We present profiles of surface brightness, temperature, density, and pressure and find evidence for a possible shock. Based on the X-ray pressure in the vicinity of the radio lobes and assumptions about the content of the lobes, we estimate the relative ICM velocity required to bend the lobes into the observed angle. We also present spectral model fits to the overall diffuse cluster emission and see no strong signature for a cool core. The sum of the evidence indicates that Abell 623 may be undergoing a large scale cluster-cluster merger.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogdán, Ákos; Van Weeren, Reinout J.; Kraft, Ralph P.

    Although the energetic feedback from active galactic nuclei (AGNs) is believed to have a profound effect on the evolution of galaxies and clusters of galaxies, details of AGN heating remain elusive. Here, we study NGC 193—a nearby lenticular galaxy—based on X-ray (Chandra) and radio (Very Large Array and Giant Meter-wave Radio Telescope) observations. These data reveal the complex AGN outburst history of the galaxy: we detect a pair of inner X-ray cavities, an outer X-ray cavity, a shock front, and radio lobes extending beyond the inner cavities. We suggest that the inner cavities were produced ∼78 Myr ago by a weakermore » AGN outburst, while the outer cavity, the radio lobes, and the shock front are due to a younger (13-26 Myr) and 4-8 times more powerful outburst. Combining this with the observed morphology of NGC 193, we conclude that NGC 193 likely represents the first example of a second, more powerful, AGN outburst overrunning an older, weaker outburst. These results help us to understand how the outburst energy is dissipated uniformly in the core of galaxies, and therefore may play a crucial role in resolving how AGN outbursts suppress the formation of large cooling flows at cluster centers.« less

  2. SEARCH FOR GAMMA-RAY EMISSION FROM X-RAY-SELECTED SEYFERT GALAXIES WITH FERMI-LAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.; Ajello, M.; Allafort, A.

    We report on a systematic investigation of the {gamma}-ray properties of 120 hard X-ray-selected Seyfert galaxies classified as 'radio-quiet' objects, utilizing the three-year accumulation of Fermi Large Area Telescope (LAT) data. Our sample of Seyfert galaxies is selected using the Swift Burst Alert Telescope 58 month catalog, restricting the analysis to the bright sources with average hard X-ray fluxes F{sub 14-195keV} {>=} 2.5 Multiplication-Sign 10{sup -11} erg cm{sup -2} s{sup -1} at high Galactic latitudes (|b| > 10 Degree-Sign ). In order to remove 'radio-loud' objects from the sample, we use the 'hard X-ray radio loudness parameter', R{sub rX}, definedmore » as the ratio of the total 1.4 GHz radio to 14-195 keV hard X-ray energy fluxes. Among 120 X-ray bright Seyfert galaxies with R{sub rX} <10{sup -4}, we did not find a statistically significant {gamma}-ray excess (TS > 25) positionally coincident with any target Seyferts, with possible exceptions of ESO 323-G077 and NGC 6814. The mean value of the 95% confidence level {gamma}-ray upper limit for the integrated photon flux above 100 MeV from the analyzed Seyferts is {approx_equal} 4 Multiplication-Sign 10{sup -9} photons cm{sup -2} s{sup -1} , and the upper limits derived for several objects reach {approx_equal} 1 Multiplication-Sign 10{sup -9} photons cm{sup -2} s{sup -1} . Our results indicate that no prominent {gamma}-ray emission component related to active galactic nucleus activity is present in the spectra of Seyferts around GeV energies. The Fermi-LAT upper limits derived for our sample probe the ratio of {gamma}-ray to X-ray luminosities L{sub {gamma}}/L{sub X} < 0.1, and even <0.01 in some cases. The obtained results impose novel constraints on the models for high-energy radiation of 'radio-quiet' Seyfert galaxies.« less

  3. Mpc-scale diffuse radio emission in two massive cool-core clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Sommer, Martin W.; Basu, Kaustuv; Intema, Huib; Pacaud, Florian; Bonafede, Annalisa; Babul, Arif; Bertoldi, Frank

    2017-04-01

    Radio haloes are diffuse synchrotron sources on scales of ˜1 Mpc that are found in merging clusters of galaxies, and are believed to be powered by electrons re-accelerated by merger-driven turbulence. We present measurements of extended radio emission on similarly large scales in two clusters of galaxies hosting cool cores: Abell 2390 and Abell 2261. The analysis is based on interferometric imaging with the Karl G. Jansky Very Large Array, Very Large Array and Giant Metrewave Radio Telescope. We present detailed radio images of the targets, subtract the compact emission components and measure the spectral indices for the diffuse components. The radio emission in A2390 extends beyond a known sloshing-like brightness discontinuity, and has a very steep in-band spectral slope at 1.5 GHz that is similar to some known ultrasteep spectrum radio haloes. The diffuse signal in A2261 is more extended than in A2390 but has lower luminosity. X-ray morphological indicators, derived from XMM-Newton X-ray data, place these clusters in the category of relaxed or regular systems, although some asymmetric features that can indicate past minor mergers are seen in the X-ray brightness images. If these two Mpc-scale radio sources are categorized as giant radio haloes, they question the common assumption of radio haloes occurring exclusively in clusters undergoing violent merging activity, in addition to commonly used criteria for distinguishing between radio haloes and minihaloes.

  4. An Unlikely Radio Halo in the Low X-Ray Luminosity Galaxy Cluster RXCJ1514.9-1523

    NASA Technical Reports Server (NTRS)

    Marketvitch, M.; ZuHone, J. A.; Lee, D.; Giacintucci, S.; Dallacasa, D.; Venturi, T.; Brunetti, G.; Cassano, R.; Markevitch, M.; Athreya, R. M.

    2011-01-01

    Aims: We report the discovery of a giant radio halo in the galaxy cluster RXCJ1514,9-1523 at z=0.22 with a relatively low X-ray luminosity, L(sub X) (0.1-2.4kev) approx. 7 x 10(exp 44) ergs/s. Methods: This faint, diffuse radio source is detected with the Giant Meterwave Radio Telescope at 327 MHz. The source is barely detected at 1.4 GHz in a NVSS pointing that we have reanalyzed. Results: The integrated radio spectrum of the halo is quite steep, with a slope alpha = 1.6 between 327 MHz and 1.4 GHz. While giant radio halos are common in more X-ray luminous cluster mergers, there is a less than 10% probability to detect a halo in systems with L(sub X) < 8 x 10(exp 44) ergs/s. The detection of a new giant halo in this borderline luminosity regime can be particularly useful for discriminating between the competing theories for the origin of ultrarelativistic electrons in clusters. Furthermore, if our steep radio spectral index is confirmed by future deeper radio observations, this cluster would provide another example of the very rare, new class of ultra-steep spectrum radio halos, predicted by the model in which the cluster cosmic ray electrons are produced by turbulent reacceleration.

  5. Radio Sources Associated with Intermediate X-ray Luminosity Objects in Merging Galaxy Systems

    NASA Technical Reports Server (NTRS)

    Neff, S. G.; Ulvestad, J. S.; Oegerle, William R. (Technical Monitor)

    2002-01-01

    We present new, high-resolution 6, 3.6, and 2 cm radio images of a time-ordered sequence of merging galaxy systems. The new data have a resolution of less than 100pc and a sensitivity comparable to a few x Cas A. We detect compact radio sources in all systems, generally embedded in more diffuse radio emission at the longer wavelengths. Several of the compact radio sources are coincident with compact Intermediate-luminosity X-ray Objects (IXOs) in these systems, and many more are within the 3$/sigma$ Chandra position errors for other IXOs. The fraction of radio identifications and the nature of the radio sources changes as a function of merger stage. These data suggest that the IXOs are associated with complexes of supernova remnants, and therefore with star formation that has occurred within the last $/sim$10$circumflex7$ yr, but are not located in HII regions where copious star formation is occurring currently.

  6. A census of radio-selected AGNs on the COSMOS field and of their FIR properties

    NASA Astrophysics Data System (ADS)

    Magliocchetti, M.; Popesso, P.; Brusa, M.; Salvato, M.

    2018-01-01

    We use the new catalogue by Laigle et al. to provide a full census of VLA-COSMOS radio sources. We identify 90 per cent of such sources and sub-divide them into active galactic nuclei (AGNs) and star-forming galaxies on the basis of their radio luminosity. The AGN sample is complete with respect to radio selection at all z ≲ 3.5. Out of 704 AGNs, 272 have a counterpart in the Herschel maps. By exploiting the better statistics of the new sample, we confirm the results of Magliocchetti et al.: the probability for a radio-selected AGN to be detected at far-infrared (FIR) wavelengths is both a function of radio luminosity and redshift, whereby powerful sources are more likely FIR emitters at earlier epochs. Such an emission is due to star-forming processes within the host galaxy. FIR emitters and non-FIR emitters only differentiate in the z ≲ 1 universe. At higher redshifts, they are indistinguishable from each other, as there is no difference between FIR-emitting AGNs and star-forming galaxies. Lastly, we focus on radio AGNs which show AGN emission at other wavelengths. We find that mid-infrared (MIR) emission is mainly associated with ongoing star formation and with sources which are smaller, younger and more radio luminous than the average parent population. X-ray emitters instead preferentially appear in more massive and older galaxies. We can therefore envisage an evolutionary track whereby the first phase of a radio-active AGN and of its host galaxy is associated with MIR emission, while at later stages the source becomes only active at radio wavelengths and possibly also in the X-ray.

  7. Multiwavelength Study of Active Galaxies

    NASA Astrophysics Data System (ADS)

    Singh, Veeresh

    2010-08-01

    Seyfert galaxies are a subclass of active galaxies and are categorized as nearby, low luminosity, radio-quiet Active Galactic Nuclei (AGN) hosted in spiral or lenticular galaxies. Demographically, Seyfert galaxies may account for ~ 10% of the entire population of active galaxies in the nearby universe. Seyfert galaxies are classified mainly into two subclasses named as `type 1' and `type 2' Seyferts, based on the presence and absence of broad permitted emission lines in their optical spectra, respectively. Detection of broad permitted emission lines in some Seyfert type 2s observed in the polarized light laid the foundation of the Seyfert unification scheme, which hypothesizes that Seyfert type 1s and type 2s belong to the same parent population and appear different solely due to the differing orientations of the obscuring material having a torus-like geometry around the AGN (Antonucci and Miller 1985; Antonucci 1993). The primary objective of this thesis work is to examine the validity and limitations of the orientation and obscuration based Seyfert unification scheme using multiwavelength (mainly X-ray and radio) observations. The key issue in testing the Seyfert unification scheme has been acquiring a well defined rigorously selected Seyfert sample. I have argued that the Seyfert samples based on flux limited surveys at optical, IR, UV and X-ray are likely to be biased against obscured and faint sources. In order to test the predictions of Seyfert unification scheme I use a sample based on properties (i.e., cosmological redshift, [OIII] emission line luminosity, absolute bulge magnitude, absolute stellar magnitude of the host galaxy and the Hubble stage of the host galaxy) that are independent to the orientation of the obscuring torus, host galaxy and the AGN axis. Furthermore, two Seyfert subtypes of our sample have matched distributions in the orientation-independent properties and this ensures the intrinsic similarity between two Seyfert subtypes within the framework of the unification scheme. In other words, it is ensured that the two subtypes being compared are not selected from entirely different parts of the evolution function (redshift, luminosity, bulge magnitude, stellar luminosity of the host galaxy and Hubble type of the host galaxy). To study the X-ray spectral properties of two Seyfert subtypes I use the XMM-Newton pn data. The 0.5 - 10 keV X-ray spectra of Seyfert galaxies are generally best fitted with a model consists of: an absorbed power law with exponential cut-off which contains cold absorption from the Galactic hydrogen column density together with absorption from neutral gas at the redshift of the source; a narrow Gaussian line fitted to the Fe K_alpha line at 6.4 keV; a soft excess component characterized by either a steep power law and/or a thermal plasma model with temperature kT and in some cases, reflection component characterized by the reflection from an isotropically illuminated cold slab, (model `pexrav' in XSPEC) is required. Partial covering of the primary AGN power law component is also required for the best fit in some sources. There are several type 2 sources in our sample in which the hard (2.0 - 10.0 keV) part of the X-ray spectrum is best fitted with a reflection component alone (`pexrav' model). The statistical comparisons of the X-ray spectral properties show that in compared to Seyfert type 1s, the type 2s exhibit lower X-ray luminosities in soft (0.5 - 2.0 keV) and hard (2.0 - 10.0) X-ray bands, higher X-ray absorbing column densities, higher equivalent widths of Fe K line, and lower flux ratios of hard X-ray (2.0 - 10.0 keV) to [OIII]. In both the Seyfert subtypes, the X-ray luminosity is moderately correlated with the pc-scale, kpc-scale radio luminosities and [OIII] line luminosity, in a similar fashion. A large fraction ~ 60 - 70% of type 2 Seyferts of our sample are likely to be Compton-thick and as a case study of a Compton-thick AGN, we studied the broad-band 0.5 - 50 keV X-ray spectral properties of NGC 5135 using Suzaku (XIS and HID) data to unveil the nature and geometry of obscuring torus. To test the predictions of the Seyfert unification scheme in the radio regime, I studied the radio properties of Seyfert galaxies using Giant Meterwave Radio Telescope (GMRT) observations carried out at 240 MHz/610 MHz, and NRAO VLA Sky Survey observations at 1.4 GHz and VLA 5 GHz observations from the literature. The four point (240 MHz, 610 MHz, 1.4 GHz, 5.0 GHz) integrated radio spectra of the two Seyfert subtypes are similar and fairly steep (i.e., spectral index ~ -0.7). Radio luminosity distributions at 240 MHz, 610 MHz, 1.4 GHz and 5.0 GHz are also similar for the Seyfert type 1s and type 2s. The study on radio - IR luminosity correlations shows that for both the Seyfert subtypes, the total 610 MHz and 240 MHz radio luminosities are moderately correlated with near-IR, mid-IR luminosities while the correlation becomes poorer with far-IR luminosities. Furthermore, the 12 micron, 25 micron, 60 micron and 100 micron IR luminosity distributions are also statistically simil! ar for the Seyfert type 1s and type 2s. I conclude that the statistical comparisons of the X-ray, radio and IR properties of the two Seyfert subtypes of our sample are consistent with the obscuration and orientation based unification scheme.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nyland, Kristina; Marvil, Josh; Young, Lisa M.

    We present the results of deep, high-resolution, 5 GHz Expanded Very Large Array (EVLA) observations of the nearby, dwarf lenticular galaxy and intermediate-mass black hole candidate (M{sub BH} {approx} 4.5 Multiplication-Sign 10{sup 5} M{sub Sun }), NGC 404. For the first time, radio emission at frequencies above 1.4 GHz has been detected in this galaxy. We found a modestly resolved source in the NGC 404 nucleus with a total radio luminosity of 7.6 {+-} 0.7 Multiplication-Sign 10{sup 17} W Hz{sup -1} at 5 GHz and a spectral index from 5 to 7.45 GHz of {alpha} = -0.88 {+-} 0.30. NGCmore » 404 is only the third central intermediate-mass black hole candidate detected in the radio regime with subarcsecond resolution. The position of the radio source is consistent with the optical center of the galaxy and the location of a known, hard X-ray point source (L{sub X} {approx} 1.2 Multiplication-Sign 10{sup 37} erg s{sup -1}). The faint radio and X-ray emission could conceivably be produced by an X-ray binary, star formation, a supernova remnant, or a low-luminosity active galactic nucleus powered by an intermediate-mass black hole. In light of our new EVLA observations, we find that the most likely scenario is an accreting intermediate-mass black hole, with other explanations being either incompatible with the observed X-ray and/or radio luminosities or statistically unlikely.« less

  9. Revisiting Scaling Relations for Giant Radio Halos in Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    Cassano, R.; Ettori, S.; Brunetti, G.; Giacintucci, S.; Pratt, G. W.; Venturi, T.; Kale, R.; Dolag, K.; Markevitch, Maxim L.

    2013-01-01

    Many galaxy clusters host megaparsec-scale radio halos, generated by ultrarelativistic electrons in the magnetized intracluster medium. Correlations between the synchrotron power of radio halos and the thermal properties of the hosting clusters were established in the last decade, including the connection between the presence of a halo and cluster mergers. The X-ray luminosity and redshift-limited Extended GMRT Radio Halo Survey provides a rich and unique dataset for statistical studies of the halos. We uniformly analyze the radio and X-ray data for the GMRT cluster sample, and use the new Planck Sunyaev-Zel'dovich (SZ) catalog to revisit the correlations between the power of radio halos and the thermal properties of galaxy clusters. We find that the radio power at 1.4 GHz scales with the cluster X-ray (0.1-2.4 keV) luminosity computed within R(sub 500) as P(sub 1.4) approx. L(2.1+/-0.2) - 500). Our bigger and more homogenous sample confirms that the X-ray luminous (L(sub 500) > 5 × 10(exp 44) erg/s)) clusters branch into two populations-radio halos lie on the correlation, while clusters without radio halos have their radio upper limits well below that correlation. This bimodality remains if we excise cool cores from the X-ray luminosities. We also find that P(sub 1.4) scales with the cluster integrated SZ signal within R(sub 500), measured by Planck, as P(sub 1.4) approx. Y(2.05+/-0.28) - 500), in line with previous findings. However, contrary to previous studies that were limited by incompleteness and small sample size, we find that "SZ-luminous" Y(sub 500) > 6×10(exp -5) Mpc(exp 2) clusters show a bimodal behavior for the presence of radio halos, similar to that in the radio-X-ray diagram. Bimodality of both correlations can be traced to clusters dynamics, with radio halos found exclusively in merging clusters. These results confirm the key role of mergers for the origin of giant radio halos, suggesting that they trigger the relativistic particle acceleration.

  10. Non-thermal emission and dynamical state of massive galaxy clusters from CLASH sample

    NASA Astrophysics Data System (ADS)

    Pandey-Pommier, M.; Richard, J.; Combes, F.; Edge, A.; Guiderdoni, B.; Narasimha, D.; Bagchi, J.; Jacob, J.

    2016-12-01

    Massive galaxy clusters are the most violent large scale structures undergoing merger events in the Universe. Based upon their morphological properties in X-rays, they are classified as un-relaxed and relaxed clusters and often host (a fraction of them) different types of non-thermal radio emitting components, viz., 'haloes', 'mini-haloes', 'relics' and 'phoenix' within their Intra Cluster Medium (ICM). The radio haloes show steep (α = -1.2) and ultra steep (α < -1.5) spectral properties at low radio frequencies, giving important insights on the merger (pre or post) state of the cluster. Ultra steep spectrum radio halo emissions are rare and expected to be the dominating population to be discovered via LOFAR and SKA in the future. Further, the distribution of matter (morphological information), alignment of hot X-ray emitting gas from the ICM with the total mass (dark + baryonic matter) and the bright cluster galaxy (BCG) is generally used to study the dynamical state of the cluster. We present here a multi wavelength study on 14 massive clusters from the CLASH survey and show the correlation between the state of their merger in X-ray and spectral properties (1.4 GHz - 150 MHz) at radio wavelengths. Using the optical data we also discuss about the gas-mass alignment, in order to understand the interplay between dark and baryonic matter in massive galaxy clusters.

  11. Radio active galactic nuclei in galaxy clusters: Feedback, merger signatures, and cluster tracers

    NASA Astrophysics Data System (ADS)

    Paterno-Mahler, Rachel Beth

    Galaxy clusters, the largest gravitationally-bound structures in the universe, are composed of 50-1000s of galaxies, hot X-ray emitting gas, and dark matter. They grow in size over time through cluster and group mergers. The merger history of a cluster can be imprinted on the hot gas, known as the intracluster medium (ICM). Merger signatures include shocks, cold fronts, and sloshing of the ICM, which can form spiral structures. Some clusters host double-lobed radio sources driven by active galactic nuclei (AGN). First, I will present a study of the galaxy cluster Abell 2029, which is very relaxed on large scales and has one of the largest continuous sloshing spirals yet observed in the X-ray, extending outward approximately 400 kpc. The sloshing gas interacts with the southern lobe of the radio galaxy, causing it to bend. Energy injection from the AGN is insufficient to offset cooling. The sloshing spiral may be an important additional mechanism in preventing large amounts of gas from cooling to very low temperatures. Next, I will present a study of Abell 98, a triple system currently undergoing a merger. I will discuss the merger history, and show that it is causing a shock. The central subcluster hosts a double-lobed AGN, which is evacuating a cavity in the ICM. Understanding the physical processes that affect the ICM is important for determining the mass of clusters, which in turn affects our calculations of cosmological parameters. To further constrain these parameters, as well as models of galaxy evolution, it is important to use a large sample of galaxy clusters over a range of masses and redshifts. Bent, double-lobed radio sources can potentially act as tracers of galaxy clusters over wide ranges of these parameters. I examine how efficient bent radio sources are at tracing high-redshift (z>0.7) clusters. Out of 646 sources in our high-redshift Clusters Occupied by Bent Radio AGN (COBRA) sample, 282 are candidate new, distant clusters of galaxies based on measurements of excess galaxy counts surrounding the radio sources in Spitzer infrared images.

  12. Diffuse radio emission in the complex merging galaxy cluster Abell2069

    NASA Astrophysics Data System (ADS)

    Drabent, A.; Hoeft, M.; Pizzo, R. F.; Bonafede, A.; van Weeren, R. J.; Klein, U.

    2015-03-01

    Context. Galaxy clusters with signs of a recent merger in many cases show extended diffuse radio features. This emission originates from relativistic electrons that suffer synchrotron losses due to the intracluster magnetic field. The mechanisms of particle acceleration and the properties of the magnetic field are still poorly understood. Aims: We search for diffuse radio emission in galaxy clusters. Here, we study the complex galaxy cluster Abell 2069, for which X-ray observations indicate a recent merger. Methods: We investigate the cluster's radio continuum emission by deep Westerbork Synthesis Radio Telescope (WSRT) observations at 346 MHz and Giant Metrewave Radio Telescope (GMRT) observations at 322 MHz. Results: We find an extended diffuse radio feature roughly coinciding with the main component of the cluster. We classify this emission as a radio halo and estimate its lower limit flux density at 25 ± 9 mJy. Moreover, we find a second extended diffuse source located at the cluster's companion and estimate its flux density at 15 ± 2 mJy. We speculate that this is a small halo or a mini-halo. If true, this cluster is the first example of a double-halo in a single galaxy cluster.

  13. Barlenses and X-shaped features compared: two manifestations of boxy/peanut bulges

    NASA Astrophysics Data System (ADS)

    Laurikainen, E.; Salo, H.

    2017-02-01

    Aims: We study the morphological characteristics of boxy/peanut-shaped bulges. In particular, we are interested to determine whether most of the flux associated with bulges in galaxies with masses similar to those of the Milky Way at redshift z 0 might belong to the vertically thick inner part of the bar, in a similar manner as in the Milky Way itself. At high galaxy inclinations, these structures are observed as boxy/peanut/X-shaped features, and when the view is near to face-on, they are observed as barlenses. We also study the possibility that bulges in some fraction of unbarred galaxies might form in a similar manner as the bulges in barred galaxies. Methods: We used the Spitzer Survey of Stellar Structure in Galaxies (S4G) and the Near-IR S0 galaxy Survey (NIRS0S) to compile complete samples of galaxies with barlenses (N = 85) and X-shaped features (N = 88). A sample of unbarred galaxies (N = 41) is also selected. For all 214 galaxies unsharp mask images were created, used to recognize the X-shaped features and to measure their linear sizes. To detect possible boxy isophotes (using the B4-parameter), we also performed an isophotal analysis for the barlens galaxies. We use recently published N-body simulations: the models that exhibit boxy/peanut/X/barlens morphologies are viewed from isotropically chosen directions that cover the full range of galaxy inclinations in the sky. The synthetic images were analyzed in a similar manner as the observations. Results: This is the first time that the observed properties of barlenses and X-shaped features are directly compared across a wide range of galaxy inclinations. A comparison with the simulation models shows that the differences in their apparent sizes, a/rbar ≳ 0.5 for barlenses and a/rbar ≲ 0.5 for X-shapes, can be explained by projection effects. Observations at various inclinations are consistent with intrinsic abl ≈ aX ≈ 0.5rbar: here intrinsic size means the face-on semimajor axis length for bars and barlenses, and the semilength of the X-shape when the bar is viewed exactly edge-on. While X-shapes are quite common at intermediate galaxy inclinations (for I = 40°-60° their frequency is about half that of barlenses), they are seldom observed at smaller inclinations. This is consistent with our simulation models, which have a small compact classical bulge that produces a steep inner rotation slope, whereas bulgeless shallow rotation curve models predict that X-shapes should be visible even in a face-on geometry. The steep rotation curve models are also consistent with the observed trend that B4 is positive at low inclination and with negative values for I ≳ 40°-60°; this implies boxy isophotes. In total, only about one quarter of the barlenses (with I ≤ 60°) show boxy isophotes. Conclusions: Our analyses are consistent with the idea that barlenses and X-shaped features are physically the same phenomenon. However, the observed nearly round face-on barlens morphology is expected only when at least a few percent of the disk mass is located in a central component, within a region much smaller than the size of the barlens itself. Barlenses contribute to secular evolution of galaxies, and might even act as a transition phase between barred and unbarred galaxies. We also discuss that the wide range of stellar population ages obtained for the photometric bulges in the literature are consistent with our interpretation.

  14. The Cosmic History of Hot Gas Cooling and Radio AGN Activity in Massive Early-Type Galaxies

    NASA Technical Reports Server (NTRS)

    Danielson, A. L. R.; Lehmer, B. D.; Alexander, D. M.; Brandt, W. M.; Luo, B.; Miller, N.; Xue, Y. Q.; Stott, J. P.

    2012-01-01

    We study the X-ray properties of 393 optically selected early-type galaxies (ETGs) over the redshift range of z approx equals 0.0-1.2 in the Chandra Deep Fields. To measure the average X-ray properties of the ETG population, we use X-ray stacking analyses with a subset of 158 passive ETGs (148 of which were individually undetected in X-ray). This ETG subset was constructed to span the redshift ranges of z = 0.1-1.2 in the approx equals 4 Ms CDF-S and approx equals 2 Ms CDF-N and z = 0.1-0.6 in the approx equals 250 ks E-CDF-S where the contribution from individually undetected AGNs is expected to be negligible in our stacking. We find that 55 of the ETGs are detected individually in the X-rays, and 12 of these galaxies have properties consistent with being passive hot-gas dominated systems (i.e., systems not dominated by an X-ray bright Active Galactic Nucleus; AGN). On the basis of our analyses, we find little evolution in the mean 0.5-2 keY to B-band luminosity ratio (L(sub x) /L(sub Beta) varies as [1 +z]) since z approx equals 1.2, implying that some heating mechanism prevents the gas from cooling in these systems. We consider that feedback from radio-mode AGN activity could be responsible for heating the gas. We select radio AGNs in the ETG population using their far-infrared/radio flux ratio. Our radio observations allow us to constrain the duty cycle history of radio AGN activity in our ETG sample. We estimate that if scaling relations between radio and mechanical power hold out to z approx equals 1.2 for the ETG population being studied here, the average mechanical power from AGN activity is a factor of approx equals1.4 -- 2.6 times larger than the average radiative cooling power from hot gas over the redshift range z approx equals 0-1.2. The excess of inferred AGN mechanical power from these ETGs is consistent with that found in the local Universe for similar types of galaxies.

  15. The Highest Resolution Chandra View of Photoionization and Jet-Cloud Interaction in the Nuclear Region of NGC 4151

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng; Fabbiano, G.; Karovska, M.; Elvis, M.; Risaliti, G.; Zezas, A.; Mundell, C. G.

    2009-10-01

    We report high resolution imaging of the nucleus of the Seyfert 1 galaxy NGC 4151 obtained with a 50 ks Chandra High Resolution Camera (HRC) observation. The HRC image resolves the emission on spatial scales of 0farcs5, ~30 pc, showing an extended X-ray morphology overall consistent with the narrow-line region (NLR) seen in optical line emission. Removal of the bright point-like nuclear source and image deconvolution techniques both reveal X-ray enhancements that closely match the substructures seen in the Hubble Space Telescope [O III] image and prominent knots in the radio jet. We find that most of the NLR clouds in NGC 4151 have [O III]/soft X-ray ratio ~10, despite the distance of the clouds from the nucleus. This ratio is consistent with the values observed in NLRs of some Seyfert 2 galaxies, which indicates a uniform ionization parameter even at large radii and a density decreasing as r -2 as expected for a nuclear wind scenario. The [O III]/X-ray ratios at the location of radio knots show an excess of X-ray emission, suggesting shock heating in addition to photoionization. We examine various mechanisms for the X-ray emission and find that, in contrast to jet-related X-ray emission in more powerful active galactic nucleus, the observed jet parameters in NGC 4151 are inconsistent with synchrotron emission, synchrotron self-Compton, inverse Compton of cosmic microwave background photons or galaxy optical light. Instead, our results favor thermal emission from the interaction between radio outflow and NLR gas clouds as the origin for the X-ray emission associated with the jet. This supports previous claims that frequent jet-interstellar medium interaction may explain why jets in Seyfert galaxies appear small, slow, and thermally dominated, distinct from those kpc-scale jets in the radio galaxies.

  16. Search For Gamma-Ray Emission From X-Ray-Selected Seyfert Galaxies With Fermi -LAT

    DOE PAGES

    Ackermann, M.

    2012-02-23

    We report on a systematic investigation of the γ-ray properties of 120 hard Xray– selected Seyfert galaxies classified as ‘radio-quiet’ objects, utilizing the threeyear accumulation of Fermi–LAT data. Our sample of Seyfert galaxies is selected using the Swift–BAT 58-month catalog, restricting the analysis to the bright sources with average hard X-ray fluxes F14-195 keV ≥ 2.5 × 10 -11 erg cm -2 s -1 at high Galactic latitudes (|b| > 10°). In order to remove ‘radio-loud’ objects from the sample, we use the ‘hard X-ray radio loudness parameter’, RrX , defined as the ratio of the total 1.4 GHz radiomore » to 14 - 195 keV hard X-ray energy fluxes. Among 120 X-ray bright Seyfert galaxies with RrX < 10-4, we did not find a statistically significant γ-ray excess (TS > 25) positionally coincident with any target Seyferts, with possible exceptions of ESO 323–G077 and NGC 6814. The mean value of the 95% confidence level γ-ray upper limit for the integrated photon flux above 100 MeV from the analyzed Seyferts is ≃ 4×10 -9 ph cm -2 s -1 , and the upper limits derived for several objects reach ≃ 1 × 10 -9 ph cm -2 s -1 . Our results indicate that no prominent γ-ray emission component related to active galactic nucleus activity is present in the spectra of Seyferts around GeV energies. The Fermi–LAT upper limits derived for our sample probe the ratio of γ-ray to X-ray luminosities L /LX < 0.1, and even < 0.01 in some cases. The obtained results impose novel constraints on the models for high energy radiation of ‘radio-quiet’ Seyfert galaxies.« less

  17. The X-Ray Core of the Low-Luminosity Radio Galaxy 3C346 and ASCA Spectroscopy to Test BL LAC/Radio Galaxy Unification

    NASA Technical Reports Server (NTRS)

    Worrall, Diana

    2000-01-01

    Radio galaxies are relatively faint sources for Advanced Spacecraft for Cosmology Astrophysics (ASCA), and so in order to get the best possible results from the observations two things have been necessary, both of which delayed the fast preparation of papers. Firstly, the best possible data screening and background subtraction were necessary to improve the signal-to-noise, and all our several initial analysis trials were discarded in favor of using FTOOLS versions 4.1 and above. Secondly, we found that the ASCA spectra were statistically too poor to discriminate well between non-thermal and thermal models, never mind the mixture of the two which we expected on the basis of our ROSAT spatial separation of components in radio galaxies. This means that in each case we have needed to combine the ASCA spectroscopy with analysis of data from other X-ray or radio observations in order to exploit the ASCA data to the full. Our analysis for 3C 346 has yielded the cleanest final result. This powerful radio galaxy at a redshift of 0.161, lies in a poor cluster, which we have separated well from the dominant X-ray component of unresolved emission using a spatial analysis of archival ROSAT data. We were then able to fix the thermal component in our ASCA spectral analysis, and have found evidence that the unresolved emission varied by 32 +/- 13% over the 18 months between the ROSAT and ASCA observations. The unresolved X-ray emission does not suffer from intrinsic absorption, and we have related it to radio structures on both milliarcsecond scales and the arcsecond scales which Chandra can resolve. The source is a target of a Chandra AO2 proposal which we have recently submitted to follow up on our ASCA (and ROSAT) work. 3C 346's orientation to the line of sight is uncertain. However, the absence of X-ray absorption, and the radio/optical/X-ray colors, when combined with with previous radio evidence that the source is a foreshortened radio galaxy of the FRII class, suggest that the radio jets are seen at an angle to the line of sight of about 30 deg, intermediate between the radio-galaxy and quasar classes. The relatively hard ASCA response has allowed us to place an upper limit of 5.6 x 10(exp 43) ergs/ s on the 2-10 keV luminosity of any central X-ray component absorbed bN, gas which might be obscuring the broad-line emission region. Attached to this report is an almost final draft of a paper which we have prepared for submission to the Astrophysical Journal. Our combined ASCA and ROSAT results for NGC 6251 rule out our previously preferred flat-spectrum model and inverse-Compton interpretation for the source based on ROSAT data alone, but a softer X-ray spectrum and moderate absorption bring all the available data (including our early VLA HI measurements) into consistency, and we are reasonably confident that we understand the processes responsible for the X-ray emission. We have made some more sensitive HI absorption measurements which are currently being analyzed, and our plans are to publish our ASCA analysis in conjunction with the new HI results. The ASCA data for NGC 4261 have been difficult to interpret. A re-analysis of our ROSAT data with a wider range of physical parameters brings the ROSAT and ASCA results into reasonable agreement only if the emission from hot gas dominates more than suggested by our earlier work, which is itself unexpected since the radio core is bright and a large jet-related X-ray component would bring the source into agreement with results for others of its type. However, we have recently received our Chandra A01 data for this source, with the spatial resolution which allows us to separate thermal and non-thermal emission components. Our ASCA results will be re-interpreted once the analysis of our Chandra data is complete. The interpretation of the ASCA data for BL Lac object 3C 371 is ongoing, in conjunction with analysis of archival multifrequency data. Radio galaxies are complex in their X-ray properties, and hindsight has shown that the spatial resolution of ASCA is too poor for a reliable interpretation of the data without drawing on other observations. However, the ASCA spectra have made a useful contribution to the interpretation of these sources, and the groundwork is now there for more sensitive work using Chandra and XMM-Newton.

  18. The First VLBI Detection of a Spiral DRAGN Core

    NASA Astrophysics Data System (ADS)

    Mao, Minnie Y.; Blanchard, Jay M.; Owen, Frazer; Sjouwerman, Loránt O.; Singh, Vikram; Scaife, Anna; Paragi, Zsolt; Norris, Ray P.; Momjian, Emmanuel; Johnson, Gia; Browne, Ian

    2018-05-01

    We present the first observation of 0313-192, the archetypal spiral DRAGN, at VLBI resolutions. Spiral DRAGNs are Double Radio Sources Associated with Galactic Nuclei (DRAGNs) that are hosted by spiral galaxies. 0313-192 is an edge-on spiral galaxy that appears to host a 360 kpc double-lobed radio source. The core of this galaxy is clearly detected at L, S, and X-bands using the VLBA, signifying an ongoing active nucleus in the galaxy. This rules out the possibility that the spiral DRAGN is merely a chance alignment. The radio core has L1.4 GHz ˜ 3.0 × 1023 W Hz-1. Radio components are detected to the South-West of the core, but there are no detections of a counterjet. Assuming a symmetric, relativistic jet, we estimate an upper limit to the inclination angle of θ ≲ 72 degrees. The VLBI-detected radio jet components are extremely well-aligned with the larger-scale radio source suggested little to no jet disruption or interaction with the ISM of the host galaxy.

  19. The first VLBI detection of a spiral DRAGN core

    NASA Astrophysics Data System (ADS)

    Mao, Minnie Y.; Blanchard, Jay M.; Owen, Frazer; Sjouwerman, Loránt O.; Singh, Vikram; Scaife, Anna; Paragi, Zsolt; Norris, Ray P.; Momjian, Emmanuel; Johnson, Gia; Browne, Ian

    2018-07-01

    We present the first observation of 0313-192, the archetypal spiral DRAGN, at very long baseline interferometry (VLBI) resolutions. Spiral DRAGNs are Double-lobed Radio sources Associated with Galactic Nuclei (DRAGNs) that are hosted by spiral galaxies. 0313-192 is an edge-on spiral galaxy that appears to host a 360 kpc double-lobed radio source. The core of this galaxy is clearly detected at L, S, and X bands using the Very Long Baseline Array, signifying an ongoing active nucleus in the galaxy. This rules out the possibility that the spiral DRAGN is merely a chance alignment. The radio core has L1.4 GHz ˜ 3.0 × 1023 W Hz-1. Radio components are detected to the south-west of the core, but there are no detections of a counterjet. Assuming a symmetric, relativistic jet, we estimate an upper limit to the inclination angle of θ ≲ 72 deg. The VLBI-detected radio jet components are extremely well aligned with the larger scale radio source suggesting little to no jet disruption or interaction with the interstellar medium of the host galaxy.

  20. Deep Chandra Observations of HCG 16. I. Active Nuclei, Star Formation, and Galactic Winds

    NASA Astrophysics Data System (ADS)

    O'Sullivan, E.; Zezas, A.; Vrtilek, J. M.; Giacintucci, S.; Trevisan, M.; David, L. P.; Ponman, T. J.; Mamon, G. A.; Raychaudhury, S.

    2014-10-01

    We present new, deep Chandra X-ray and Giant Metrewave Radio Telescope 610 MHz observations of the spiral-galaxy-rich compact group HCG 16, which we use to examine nuclear activity, star formation, and high-luminosity X-ray binary populations in the major galaxies. We confirm the presence of obscured active nuclei in NGC 833 and NGC 835, and identify a previously unrecognized nuclear source in NGC 838. All three nuclei are variable on timescales of months to years, and for NGC 833 and NGC 835 this is most likely caused by changes in accretion rate. The deep Chandra observations allow us to detect for the first time an Fe Kα emission line in the spectrum of the Seyfert 2 nucleus of NGC 835. We find that NGC 838 and NGC 839 are both starburst-dominated systems, with only weak nuclear activity, in agreement with previous optical studies. We estimate the star formation rates in the two galaxies from their X-ray and radio emission, and compare these results with estimates from the infrared and ultraviolet bands to confirm that star formation in both galaxies is probably declining after galaxy-wide starbursts were triggered ~400-500 Myr ago. We examine the physical properties of their galactic superwinds, and find that both have temperatures of ~0.8 keV. We also examine the X-ray and radio properties of NGC 848, the fifth largest galaxy in the group, and show that it is dominated by emission from its starburst.

  1. Soft X-ray spectrum of BL Lacertae object AO 0235+164 as a tracer of elemental abundances at z approximately 0.5

    NASA Technical Reports Server (NTRS)

    Madejski, Greg

    1994-01-01

    We report the soft X-ray spectrum of BL Lac object AO 0235+164, observed with the Einstein Observatory Imaging Proportional Counter (IPC). This object (z = 0.94) has an intervening galaxy (or a protogalactic disk) at z = 0.524 present in the line of sight, producing both radio and optical absorption lines in the background BL Lac continuum. The X-ray spectrum exhibits a substantial soft X-ray cutoff, corresponding to several times that expected from our own Galaxy; we interpret that excess cutoff as due to the intervening galaxy. The comparison of the hydrogen column density inferred from the 21 cm radio data and the X-ray absorption allows, in principle, the determination of the elemental abundances in the intervening galaxy. However, the uncertainties in both the H I spin temperature and X-ray spectral parameters only loosely restrict these abundances to be 2 +/- 1 solar, which even at the lower limit appears higher than that inferred from studies of samples of optical absoprtion-line systems.

  2. Multiwavelength observations of Active Galactic Nuclei from the radio to the hard X-rays

    NASA Astrophysics Data System (ADS)

    Beuchert, Tobias

    2017-07-01

    Active Galaxies form a peculiar type of galaxies. Their cores, the so-called "Active Galactic Nuclei" (AGN), are the most persistent luminous objects in the universe. Accretion of several solar masses per year onto black holes of Millions to Billions of solar masses drive the immense energy output of these systems, which can exceed that of the entire galaxy. The compact energy source, however, only measures about one over a Billion times that of the entire galaxy. Subject of my thesis are observations of the two main channels of energy release of selected AGN systems, both of which are encompassed by profound and yet unanswered questions. These channels are on the one hand the pronounced X-ray emission of the hot and compact accreting environment in close vicinity of the black hole, and on the other hand the radio synchrotron emission of magnetically collimated jets that are fed by portions of the accreted matter. These jets also function as effective accelerators and drive the injected matter deep into the intergalactic medium. As the circumnuclear environment of AGN is too compact to be spatially resolved in the X-rays, I show how X-ray spectroscopy can be used to: (1) understand the effects of strong gravity to trace the geometry and physics of the X-ray source and (2) more consistently quantify matter that surrounds and dynamically absorbs our direct line of sight towards the X-ray source. Second, I unveil the valuable information contained in the polarized radio light being emitted from magnetized jet outflows. In contrast to the X-ray emitting region, I am able to spatially resolve the inner parts of the jet of a prominent galaxy with help of the Very Long Baseline Array, a large network of radio telescopes. The resulting polarization maps turn out to be exceptionally promising in answering fundamental questions related to jet physics.

  3. Chandra X-ray observations of the hyper-luminous infrared galaxy IRAS F15307+3252

    NASA Astrophysics Data System (ADS)

    Hlavacek-Larrondo, J.; Gandhi, P.; Hogan, M. T.; Gendron-Marsolais, M.-L.; Edge, A. C.; Fabian, A. C.; Russell, H. R.; Iwasawa, K.; Mezcua, M.

    2017-01-01

    Hyper-luminous infrared galaxies (HyLIRGs) lie at the extreme luminosity end of the IR galaxy population with LIR > 1013 L⊙. They are thought to be closer counterparts of the more distant sub-millimeter galaxies, and should therefore be optimal targets to study the most massive systems in formation. We present deep Chandra observations of IRAS F15307+3252 (100 ks), a classical HyLIRG located at z = 0.93 and hosting a radio-loud AGN (L1.4 GHz ˜ 3.5 × 1025 W Hz-1). The Chandra images reveal the presence of extended (r = 160 kpc), asymmetric X-ray emission in the soft 0.3-2.0 keV band that has no radio counterpart. We therefore argue that the emission is of thermal origin originating from a hot intragroup or intracluster medium virializing in the potential. We find that the temperature (˜2 keV) and bolometric X-ray luminosity (˜3 × 1043 erg s-1) of the gas follow the expected LX-ray-T correlation for groups and clusters, and that the gas has a remarkably short cooling time of 1.2 Gyr. In addition, VLA radio observations reveal that the galaxy hosts an unresolved compact steep-spectrum (CSS) source, most likely indicating the presence of a young radio source similar to 3C186. We also confirm that the nucleus is dominated by a redshifted 6.4 keV Fe Kα line, strongly suggesting that the AGN is Compton-thick. Finally, Hubble images reveal an overdensity of galaxies and sub-structure in the galaxy that correlates with soft X-ray emission. This could be a snapshot view of on-going groupings expected in a growing cluster environment. IRAS F15307+3252 might therefore be a rare example of a group in the process of transforming into a cluster.

  4. Discovery of large-scale diffuse radio emission in low-mass galaxy cluster Abell 1931

    NASA Astrophysics Data System (ADS)

    Brüggen, M.; Rafferty, D.; Bonafede, A.; van Weeren, R. J.; Shimwell, T.; Intema, H.; Röttgering, H.; Brunetti, G.; Di Gennaro, G.; Savini, F.; Wilber, A.; O'Sullivan, S.; Ensslin, T. A.; De Gasperin, F.; Hoeft, M.

    2018-04-01

    Extended, steep-spectrum radio synchrotron sources are pre-dominantly found in massive galaxy clusters as opposed to groups. LOFAR Two-Metre Sky Survey images have revealed a diffuse, ultra-steep spectrum radio source in the low-mass cluster Abell 1931. The source has a fairly irregular morphology with a largest linear size of about 550 kpc. The source is only seen in LOFAR observations at 143 MHz and GMRT observations at 325 MHz. The spectral index of the total source between 143 MHz and 325 MHz is α _{143}^{325} = -2.86 ± 0.36. The source remains invisible in Very Large Array (1-2 GHz) observations as expected given the spectral index. Chandra X-ray observations of the cluster revealed a bolometric luminosity of LX = (1.65 ± 0.39) × 1043 erg s-1 and a temperature of 2.92_{-0.87}^{+1.89} keV which implies a mass of around ˜1014M⊙. We conclude that the source is a remnant radio galaxy that has shut off around 200 Myr ago. The brightest cluster galaxy, a radio-loud elliptical galaxy, could be the source for this extinct source. Unlike remnant sources studied in the literature, our source has a steep spectrum at low radio frequencies. Studying such remnant radio galaxies at low radio frequencies is important for understanding the scarcity of such sources and their role in feedback processes.

  5. M87 at 90 Centimeters: A Different Picture

    DTIC Science & Technology

    2000-06-15

    as is envisioned in the cooling Ñow model. Subject headings : cooling Ñows È galaxies : active È galaxies : clusters : individual ( Virgo ) È galaxies...atmosphere of the Virgo Cluster (Fabricant, Lecar, & Gorenstein 1980). The X-ray atmosphere has a simple, apparently undis- turbed, morphology with a central...of a small set of amorphous central radio galaxies in other, similar, cooling-core clusters ? 4. PHYSICAL PICTURE : THE CLUSTER CORE The Virgo X-ray

  6. A High Definition View of AGN Feedback: Chandra Imaging of Nearby Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng; Fabbiano, G.; Risaliti, G.; Elvis, M.; Karovska, M.; Zezas, A.; Mundell, C. G.

    2010-03-01

    To improve the physics of AGN feedback, it is crucial to evaluate the true role of outflows on galaxy evolution observationally. I will present new results from Chandra spectral imaging of nearby Seyfert galaxies, which offer unique opportunities to examine feedback in action in much greater detail than at high redshift. Exploiting Chandra's highest possible resolution, we are able to study structures in NGC 4151 on spatial scales of 0.5 arcsec (30 pc), showing an extended X-ray morphology overall consistent with the optical NLR. We find that most of the NLR clouds in NGC 4151 have [OIII] to soft X-ray ratio consistent with the values observed in NLRs of some Seyfert 2 galaxies, which indicates a uniform ionization parameter even at large radii. We examine various X-ray emission mechanisms of the radio jet and consider thermal emission from interaction between radio outflow and the NLR clouds the most probable origin for the X-ray emission associated with the jet.

  7. Enhanced X-ray Emission from Early Universe Analog Galaxies

    NASA Astrophysics Data System (ADS)

    Brorby, Matthew; Kaaret, Philip; Prestwich, Andrea H.; Mirabel, I. Felix; Feng, Hua

    2016-04-01

    X-rays from binaries containing compact objects may have played an important role in heating the early Universe. Here we discuss our findings from X-ray studies of blue compact dwarf galaxies (BCDs), Lyman break analogs (LBAs), and Green Pea galaxies (GP), all of which are considered local analogs to high redshift galaxies. We find enhanced X-ray emission per unit star-formation rate which strongly correlates with decreasing metallicity. We find evidence for the existence of a L_X-SFR-Metallicity plane for star-forming galaxies. The exact properties of X-ray emission in the early Universe affects the timing and morphology of reionization, both being observable properties of current and future radio observations of the redshifted 21cm signal from neutral hydrogen.

  8. SUZAKU X-RAY IMAGING OF THE EXTENDED LOBE IN THE GIANT RADIO GALAXY NGC 6251 ASSOCIATED WITH THE FERMI-LAT SOURCE 2FGL J1629.4+8236

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeuchi, Y.; Kataoka, J.; Takahashi, Y.

    2012-04-10

    We report the results of a Suzaku X-ray imaging study of NGC 6251, a nearby giant radio galaxy with intermediate FR I/II radio properties. Our pointing direction was centered on the {gamma}-ray emission peak recently discovered with the Fermi Large Area Telescope (LAT) around the position of the northwest (NW) radio lobe 15 arcmin offset from the nucleus. After subtracting two 'off-source' pointings adjacent to the radio lobe and removing possible contaminants in the X-ray Imaging Spectrometer field of view, we found significant residual X-ray emission most likely diffuse in nature. The spectrum of the excess X-ray emission is wellmore » fitted by a power law with a photon index {Gamma} = 1.90 {+-} 0.15 and a 0.5-8 keV flux of 4 Multiplication-Sign 10{sup -13} erg cm{sup -2} s{sup -1}. We interpret this diffuse X-ray emission component as being due to inverse Compton upscattering of the cosmic microwave background photons by ultrarelativistic electrons within the lobe, with only a minor contribution from the beamed emission of the large-scale jet. Utilizing archival radio data for the source, we demonstrate by means of broadband spectral modeling that the {gamma}-ray flux of the Fermi-LAT source 2FGL J1629.4+8236 may well be accounted for by the high-energy tail of the inverse Compton continuum of the lobe. Thus, this claimed association of {gamma}-rays from the NW lobe of NGC 6251, together with the recent Fermi-LAT imaging of the extended lobes of Centaurus A, indicates that particles may be efficiently (re-)accelerated up to ultrarelativistic energies within extended radio lobes of nearby radio galaxies in general.« less

  9. Discovery of large-scale diffuse radio emission in low-mass galaxy cluster Abell 1931

    NASA Astrophysics Data System (ADS)

    Brüggen, M.; Rafferty, D.; Bonafede, A.; van Weeren, R. J.; Shimwell, T.; Intema, H.; Röttgering, H.; Brunetti, G.; Di Gennaro, G.; Savini, F.; Wilber, A.; O'Sullivan, S.; Ensslin, T. A.; De Gasperin, F.; Hoeft, M.

    2018-07-01

    Extended, steep-spectrum radio synchrotron sources are pre-dominantly found in massive galaxy clusters as opposed to groups. LOFAR Two-Metre Sky Survey images have revealed a diffuse, ultra-steep-spectrum radio source in the low-mass cluster Abell 1931. The source has a fairly irregular morphology with the largest linear size of about 550 kpc. The source is only seen in LOFAR observations at 143 MHz and Giant Metre Radio Telescope observations at 325 MHz. The spectral index of the total source between 143 and 325 MHz is α _{143}^{325} = -2.86 ± 0.36. The source remains invisible in Very Large Array (1-2 GHz) observations as expected given the spectral index. Chandra X-ray observations of the cluster revealed a bolometric luminosity of LX = (1.65 ± 0.39) × 1043 erg s-1 and a temperature of 2.92_{-0.87}^{+1.89} keV which implies a mass of around ˜1014 M⊙. We conclude that the source is a remnant radio galaxy that has shut off around 200 Myr ago. The brightest cluster galaxy, a radio-loud elliptical galaxy, could be the source for this extinct source. Unlike remnant sources studied in the literature, our source has a steep spectrum at low radio frequencies. Studying such remnant radio galaxies at low radio frequencies is important for understanding the scarcity of such sources and their role in feedback processes.

  10. Nonthermal Emission from Relativistic Electrons in Clusters of Galaxies: A Merger Shock Acceleration Model

    NASA Astrophysics Data System (ADS)

    Takizawa, Motokazu; Naito, Tsuguya

    2000-06-01

    We have investigated evolution of nonthermal emission from relativistic electrons accelerated around the shock fronts during mergers of clusters of galaxies. We estimate synchrotron radio emission and inverse Compton scattering of cosmic microwave background photons from extreme ultraviolet (EUV) to hard X-ray range. The hard X-ray emission is most luminous in the later stage of a merger. Both hard X-ray and radio emissions are luminous only while signatures of merging events are clearly seen in the thermal intracluster medium (ICM). On the other hand, EUV radiation is still luminous after the system has relaxed. Propagation of shock waves and bulk-flow motion of ICM play crucial roles in extending radio halos. In the contracting phase, radio halos are located at the hot region of ICM or between two substructures. In the expanding phase, on the other hand, radio halos are located between two ICM hot regions and show rather diffuse distribution.

  11. X-rays from the radio halo of Virgo A = M87

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The purpose of this study is to investigate in more detail the associated X-ray and radio emission in the Virgo A halo discovered by SGF. Improved Einstein HRI data and new radio maps obtained with the Very Large Array are described and the relation between the X-ray and radio structures is carefully examined. Several possible explanations are presented for the X-ray emission. The inverse compton model is found to be viable only if the magnetic field is variable and substantially weaker than the equipartition value. The principal alternative is excess thermal X-rays due to compression of the intracluster medium by the radio lobe. In either case, the association of such prominent radio and X-ray structures is unique among known radio galaxies.

  12. The LOFAR window on star-forming galaxies and AGNs - curved radio SEDs and IR-radio correlation at 0

    NASA Astrophysics Data System (ADS)

    Calistro Rivera, G.; Williams, W. L.; Hardcastle, M. J.; Duncan, K.; Röttgering, H. J. A.; Best, P. N.; Brüggen, M.; Chyży, K. T.; Conselice, C. J.; de Gasperin, F.; Engels, D.; Gürkan, G.; Intema, H. T.; Jarvis, M. J.; Mahony, E. K.; Miley, G. K.; Morabito, L. K.; Prandoni, I.; Sabater, J.; Smith, D. J. B.; Tasse, C.; van der Werf, P. P.; White, G. J.

    2017-08-01

    We present a study of the low-frequency radio properties of star-forming (SF) galaxies and active galactic nuclei (AGNs) up to redshift z = 2.5. The new spectral window probed by the Low Frequency Array (LOFAR) allows us to reconstruct the radio continuum emission from 150 MHz to 1.4 GHz to an unprecedented depth for a radio-selected sample of 1542 galaxies in ˜ 7 deg2 of the LOFAR Boötes field. Using the extensive multiwavelength data set available in Boötes and detailed modelling of the far-infrared to ultraviolet spectral energy distribution (SED), we are able to separate the star formation (N = 758) and the AGN (N = 784) dominated populations. We study the shape of the radio SEDs and their evolution across cosmic time and find significant differences in the spectral curvature between the SF galaxy and AGN populations. While the radio spectra of SF galaxies exhibit a weak but statistically significant flattening, AGN SEDs show a clear trend to become steeper towards lower frequencies. No evolution of the spectral curvature as a function of redshift is found for SF galaxies or AGNs. We investigate the redshift evolution of the infrared-radio correlation for SF galaxies and find that the ratio of total infrared to 1.4-GHz radio luminosities decreases with increasing redshift: q1.4 GHz = (2.45 ± 0.04) (1 + z)-0.15 ± 0.03. Similarly, q150 MHz shows a redshift evolution following q150 GHz = (1.72 ± 0.04) (1 + z)-0.22 ± 0.05. Calibration of the 150 MHz radio luminosity as a star formation rate tracer suggests that a single power-law extrapolation from q1.4 GHz is not an accurate approximation at all redshifts.

  13. A CHANDRA-VLA INVESTIGATION OF THE X-RAY CAVITY SYSTEM AND RADIO MINI-HALO IN THE GALAXY CLUSTER RBS 797

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doria, Alberto; Gitti, Myriam; Brighenti, Fabrizio

    2012-07-01

    We present a study of the cavity system in the galaxy cluster RBS 797 based on Chandra and Very Large Array (VLA) data. RBS 797 (z = 0.35) is one of the most distant galaxy clusters in which two pronounced X-ray cavities have been discovered. The Chandra data confirm the presence of a cool core and indicate a higher metallicity along the cavity directions. This is likely due to the active galactic nucleus outburst, which lifts cool metal-rich gas from the center along the cavities, as seen in other systems. We find indications that the cavities are hotter than themore » surrounding gas. Moreover, the new Chandra images show bright rims contrasting with the deep, X-ray deficient cavities. The likely cause is that the expanding 1.4 GHz radio lobes have displaced the gas, compressing it into a shell that appears as bright cool arms. Finally, we show that the large-scale radio emission detected with our VLA observations may be classified as a radio mini-halo, powered by the cooling flow, as it nicely follows the trend P{sub radio} versus P{sub CF} predicted by the reacceleration model.« less

  14. Chandra Detects Halo Of Hot Gas Around Milky Way-Like Galaxy

    NASA Astrophysics Data System (ADS)

    2001-07-01

    The first unambiguous evidence for a giant halo of hot gas around a nearby, spiral galaxy much like our own Milky Way was found by astronomers using NASA's Chandra X-ray Observatory. This discovery may lead to a better understanding of our own Galaxy, as well the structure and evolution of galaxies in general. A team of astronomers, led by Professor Daniel Wang of the University of Massachusetts, Amherst, observed NGC 4631, a spiral galaxy approximately 25 million light years from Earth with both Chandra and NASA's Hubble Space Telescope. While previous X-ray satellites have detected extended X-ray emission from this and other spiral galaxies, because of Chandra's exceptional resolution this is the first time that astronomers were able to separate the individual X-ray sources from the diffuse halo. Chandra found the diffuse halo of X-ray gas to be radiating at a temperature of almost 3 million degrees and extending some 25,000 light years from the galactic plane. "Scientists have debated for over 40 years whether the Milky Way has an extended corona, or halo, of hot gas," said Wang, lead author of the paper which appeared this month in The Astrophysical Journal Letters. "Of course since we are within the Milky Way, we can't get outside and take a picture. However, by studying similar galaxies like NGC 4631, we can get an idea of what's going on within our own Galaxy." The Chandra image reveals a halo of hot gas that extends for approximately 25,000 light years above the disk of the galaxy. One important feature of the X-ray emission from NGC 4631 is that it closely resembles the overall size and shape seen in the radio emission from the galaxy. This indicates that there may be a close connection between the outflows of hot gas, seen in X-rays, and the galaxy's magnetic field, revealed by radio emission. The Hubble image of NGC 4631 shows filamentary, loop-like structures enclosing enhanced X-ray-emitting gas and emanating from regions of recent star formation in the galaxy's disk. These data clearly show the hot gas is heated by clusters of massive stars and is now expanding into the halo of the galaxy. NGC 4631 X-ray: NASA/CXC/UMass/D.Wang et al. UV: NASA/GSFC/UIT "What we see in NGC 4631 can be thought of as the bursting flames of a gigantic cosmic camp fire," said Wang. "Using Chandra and Hubble together, we really get a complete story of what is happening in this galaxy." NGC 4631 is a galaxy that has high amounts of star formation, possibly triggered by interaction with neighboring galaxies. Such star formation might have created the conditions necessary to heat the gas seen by Chandra, as vast amounts of energy are released from supernovas and massive stars in star-forming regions - enough to lift the gas out of the plane of the galaxy. These new results provide important clues about the cycling of energy and mass in a galaxy like our own Milky Way and about the evolutionary history of galaxies, which are thought to be more active in star formation in the past than at the present. Other members of the research team include: Stefan Immler, University of Massachusetts; Rene Walterbos, New Mexico State University; James Lauroesch, Northwestern University, Evanston, IL, and Dieter Breitschwerdt, Max Plank Institute, Germany. Chandra observed NGC 4631 with its Advanced CCD Imaging Spectrometer (ACIS) instrument, which was developed for NASA by Pennsylvania State University, University Park, and Massachusetts Institute of Technology, Cambridge. NASA's Marshall Space Flight Center in Huntsville, AL, manages the Chandra program, and TRW, Inc., Redondo Beach, CA, is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, MA.

  15. X-ray Properties and the Environment of Compact Radio Sources.

    NASA Astrophysics Data System (ADS)

    Siemiginowska, Aneta; Sobolewska, Malgorzata; Guainazzi, Matteo; Hardcastle, Martin; Migliori, Giulia; Ostorero, Luisa; Stawarz, Lukasz

    2018-01-01

    Compact extragalactic radio sources provide important insights into the initial stages of radio source evolution and probe states of a black hole activity at the time of the formation of the relativistic outflow. Such outflows propagate out to hundreds kpc distances from the origin and impact environment on many scales, and thus influence evolution of structures in the universe. These compact sources show radio features typically observed in large-scale radio galaxies (jets, lobes, hot spots), but contained within the central 1 kpc region of the host galaxy. Compact Symmetric Objects (CSOs, a subclass of GigaHertz Peaked spectrum radio sources) are symmetric and not affected by beaming. Their linear radio size can be translated into a source age if one measures the expansion velocity of the radio structures. Such ages has been measured for a small sample of CSOs. Using the Chandra X-ray Observatory and XMM-Newton we observed a pilot samples of 16 CSOs in X-rays (6 for the first time). Our results show heterogeneous nature of the CSOs X-ray emission indicating a range of AGN luminosities and a complex environment. In particular, we identified four Compton Thick sources with a dense medium (equivalent column > 1e24 cm^-2) capable of disturbing/slowing down the jet and confining the jet to a small region. Thus for the first time we gain the observational evidence in X-ray domain in favor of the hypothesis that in a sub-population of CSOs the radio jets may be confined by the dense X-ray obscuring medium. As a consequence, the kinematic ages of these CSOs may be underestimated.. We discuss the implications of our results on the emission models of CSOs, the earliest stages of the radio source evolution, jet interactions with the ISM, diversity of the environments in which the jets expand, and jet-galaxy co-evolution.Partial support for this work was provided by the NASA grants GO1-12145X, GO4-15099X, NNX10AO60G, NNX17AC23G and XMM AO15 project 78461. This work supported in part by NASA under contract NAS 8-03060 to the Smithsonian Astrophysical Observatory for operation of the Chandra X-ray Center.

  16. A search for extended radio emission from selected compact galaxy groups

    NASA Astrophysics Data System (ADS)

    Nikiel-Wroczyński, B.; Urbanik, M.; Soida, M.; Beck, R.; Bomans, D. J.

    2017-07-01

    Context. Studies on compact galaxy groups have led to the conclusion that a plenitude of phenomena take place in between galaxies that form them. However, radio data on these objects are extremely scarce and not much is known concerning the existence and role of the magnetic field in intergalactic space. Aims: We aim to study a small sample of galaxy groups that look promising as possible sources of intergalactic magnetic fields; for example data from radio surveys suggest that most of the radio emission is due to extended, diffuse structures in and out of the galaxies. Methods: We used the Effelsberg 100 m radio telescope at 4.85 GHz and NRAO VLA Sky Survey (NVSS) data at 1.40 GHz. After subtraction of compact sources we analysed the maps searching for diffuse, intergalactic radio emission. Spectral index and magnetic field properties were derived. Results: Intergalactic magnetic fields exist in groups HCG 15 and HCG 60, whereas there are no signs of them in HCG 68. There are also hints of an intergalactic bridge in HCG 44 at 4.85 GHz. Conclusions: Intergalactic magnetic fields exist in galaxy groups and their energy density may be comparable to the thermal (X-ray) density, suggesting an important role of the magnetic field in the intra-group medium, wherever it is detected.

  17. Determination of Cluster Distances from Chandra Imaging Spectroscopy and Sunyaev-Zeldovich Effect Measurements. I; Analysis Methods and Initial Results

    NASA Technical Reports Server (NTRS)

    Bonamente, Massimiliano; Joy, Marshall K.; Carlstrom, John E.; LaRoque, Samuel J.

    2004-01-01

    X-ray and Sunyaev-Zeldovich Effect data ca,n be combined to determine the distance to galaxy clusters. High-resolution X-ray data are now available from the Chandra Observatory, which provides both spatial and spectral information, and interferometric radio measurements of the Sunyam-Zeldovich Effect are available from the BIMA and 0VR.O arrays. We introduce a Monte Carlo Markov chain procedure for the joint analysis of X-ray and Sunyaev-Zeldovich Effect data. The advantages of this method are the high computational efficiency and the ability to measure the full probability distribution of all parameters of interest, such as the spatial and spectral properties of the cluster gas and the cluster distance. We apply this technique to the Chandra X-ray data and the OVRO radio data for the galaxy cluster Abell 611. Comparisons with traditional likelihood-ratio methods reveal the robustness of the method. This method will be used in a follow-up paper to determine the distance of a large sample of galaxy clusters for which high-resolution Chandra X-ray and BIMA/OVRO radio data are available.

  18. Optical Variability of Narrow-line and Broad-line Seyfert 1 Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakshit, Suvendu; Stalin, C. S., E-mail: suvenduat@gmail.com

    We studied the optical variability (OV) of a large sample of narrow-line Seyfert 1 (NLSy1) and broad-line Seyfert 1 (BLSy1) galaxies with z < 0.8 to investigate any differences in their OV properties. Using archival optical V -band light curves from the Catalina Real Time Transient Survey that span 5–9 years and modeling them using damped random walk, we estimated the amplitude of variability. We found that NLSy1 galaxies as a class show lower amplitude of variability than their broad-line counterparts. In the sample of both NLSy1 and BLSy1 galaxies, radio-loud sources are found to have higher variability amplitude thanmore » radio-quiet sources. Considering only sources that are detected in the X-ray band, NLSy1 galaxies are less optically variable than BLSy1 galaxies. The amplitude of variability in the sample of both NLSy1 and BLSy1 galaxies is found to be anti-correlated with Fe ii strength but correlated with the width of the H β line. The well-known anti-correlation of variability–luminosity and the variability–Eddington ratio is present in our data. Among the radio-loud sample, variability amplitude is found to be correlated with radio-loudness and radio-power, suggesting that jets also play an important role in the OV in radio-loud objects, in addition to the Eddington ratio, which is the main driving factor of OV in radio-quiet sources.« less

  19. Optical Variability of Narrow-line and Broad-line Seyfert 1 Galaxies

    NASA Astrophysics Data System (ADS)

    Rakshit, Suvendu; Stalin, C. S.

    2017-06-01

    We studied the optical variability (OV) of a large sample of narrow-line Seyfert 1 (NLSy1) and broad-line Seyfert 1 (BLSy1) galaxies with z < 0.8 to investigate any differences in their OV properties. Using archival optical V-band light curves from the Catalina Real Time Transient Survey that span 5-9 years and modeling them using damped random walk, we estimated the amplitude of variability. We found that NLSy1 galaxies as a class show lower amplitude of variability than their broad-line counterparts. In the sample of both NLSy1 and BLSy1 galaxies, radio-loud sources are found to have higher variability amplitude than radio-quiet sources. Considering only sources that are detected in the X-ray band, NLSy1 galaxies are less optically variable than BLSy1 galaxies. The amplitude of variability in the sample of both NLSy1 and BLSy1 galaxies is found to be anti-correlated with Fe II strength but correlated with the width of the Hβ line. The well-known anti-correlation of variability-luminosity and the variability-Eddington ratio is present in our data. Among the radio-loud sample, variability amplitude is found to be correlated with radio-loudness and radio-power, suggesting that jets also play an important role in the OV in radio-loud objects, in addition to the Eddington ratio, which is the main driving factor of OV in radio-quiet sources.

  20. H I absorption in nearby compact radio galaxies

    NASA Astrophysics Data System (ADS)

    Glowacki, M.; Allison, J. R.; Sadler, E. M.; Moss, V. A.; Curran, S. J.; Musaeva, A.; Deng, C.; Parry, R.; Sligo, M. C.

    2017-05-01

    H I absorption studies yield information on both active galactic nucleus (AGN) feeding and feedback processes. This AGN activity interacts with the neutral gas in compact radio sources, which are believed to represent the young or recently re-triggered AGN population. We present the results of a survey for H I absorption in a sample of 66 compact radio sources at 0.040 < z < 0.096 with the Australia Telescope Compact Array. In total, we obtained seven detections, five of which are new, with a large range of peak optical depths (3-87 per cent). Of the detections, 71 per cent exhibit asymmetric, broad (ΔvFWHM > 100 km s-1) features, indicative of disturbed gas kinematics. Such broad, shallow and offset features are also found within low-excitation radio galaxies which is attributed to disturbed circumnuclear gas, consistent with early-type galaxies typically devoid of a gas-rich disc. Comparing mid-infrared colours of our galaxies with H I detections indicates that narrow and deep absorption features are preferentially found in late-type and high-excitation radio galaxies in our sample. These features are attributed to gas in galactic discs. By combining XMM-Newton archival data with 21-cm data, we find support that absorbed X-ray sources may be good tracers of H I content within the host galaxy. This sample extends previous H I surveys in compact radio galaxies to lower radio luminosities and provides a basis for future work exploring the higher redshift universe.

  1. Deep Chandra observations of HCG 16. I. Active nuclei, star formation, and galactic winds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Sullivan, E.; Zezas, A.; Vrtilek, J. M.

    2014-10-01

    We present new, deep Chandra X-ray and Giant Metrewave Radio Telescope 610 MHz observations of the spiral-galaxy-rich compact group HCG 16, which we use to examine nuclear activity, star formation, and high-luminosity X-ray binary populations in the major galaxies. We confirm the presence of obscured active nuclei in NGC 833 and NGC 835, and identify a previously unrecognized nuclear source in NGC 838. All three nuclei are variable on timescales of months to years, and for NGC 833 and NGC 835 this is most likely caused by changes in accretion rate. The deep Chandra observations allow us to detect formore » the first time an Fe Kα emission line in the spectrum of the Seyfert 2 nucleus of NGC 835. We find that NGC 838 and NGC 839 are both starburst-dominated systems, with only weak nuclear activity, in agreement with previous optical studies. We estimate the star formation rates in the two galaxies from their X-ray and radio emission, and compare these results with estimates from the infrared and ultraviolet bands to confirm that star formation in both galaxies is probably declining after galaxy-wide starbursts were triggered ∼400-500 Myr ago. We examine the physical properties of their galactic superwinds, and find that both have temperatures of ∼0.8 keV. We also examine the X-ray and radio properties of NGC 848, the fifth largest galaxy in the group, and show that it is dominated by emission from its starburst.« less

  2. Particle content, radio-galaxy morphology, and jet power: all radio-loud AGN are not equal

    NASA Astrophysics Data System (ADS)

    Croston, J. H.; Ineson, J.; Hardcastle, M. J.

    2018-05-01

    Ongoing and future radio surveys aim to trace the evolution of black hole growth and feedback from active galactic nuclei (AGNs) throughout cosmic time; however, there remain major uncertainties in translating radio luminosity functions into a reliable assessment of the energy input as a function of galaxy and/or dark matter halo mass. A crucial and long-standing problem is the composition of the radio-lobe plasma that traces AGN jet activity. In this paper, we carry out a systematic comparison of the plasma conditions in Fanaroff & Riley class I and II radio galaxies to demonstrate conclusively that their internal composition is systematically different. This difference is best explained by the presence of an energetically dominant proton population in the FRI, but not the FRII radio galaxies. We show that, as expected from this systematic difference in particle content, radio morphology also affects the jet-power/radio-luminosity relationship, with FRII radio galaxies having a significantly lower ratio of jet power to radio luminosity than the FRI cluster radio sources used to derive jet-power scaling relations via X-ray cavity measurements. Finally, we also demonstrate conclusively that lobe composition is unconnected to accretion mode (optical excitation class): the internal conditions of low- and high-excitation FRII radio lobes are indistinguishable. We conclude that inferences of population-wide AGN impact require careful assessment of the contribution of different jet subclasses, particularly given the increased diversity of jet evolutionary states expected to be present in deep, low-frequency radio surveys such as the LOFAR Two-Metre Sky Survey.

  3. Banging Galaxy Clusters: High Fidelity X-ray Temperature and Radio Maps to Probe the Physics of Merging Clusters

    NASA Astrophysics Data System (ADS)

    Burns, Jack O.; Hallman, Eric J.; Alden, Brian; Datta, Abhirup; Rapetti, David

    2017-06-01

    We present early results from an X-ray/Radio study of a sample of merging galaxy clusters. Using a novel X-ray pipeline, we have generated high-fidelity temperature maps from existing long-integration Chandra data for a set of clusters including Abell 115, A520, and MACSJ0717.5+3745. Our pipeline, written in python and operating on the NASA ARC high performance supercomputer Pleiades, generates temperature maps with minimal user interaction. This code will be released, with full documentation, on GitHub in beta to the community later this year. We have identified a population of observable shocks in the X-ray data that allow us to characterize the merging activity. In addition, we have compared the X-ray emission and properties to the radio data from observations with the JVLA and GMRT. These merging clusters contain radio relics and/or radio halos in each case. These data products illuminate the merger process, and how the energy of the merger is dissipated into thermal and non-thermal forms. This research was supported by NASA ADAP grant NNX15AE17G.

  4. LOFAR discovery of a 700-kpc remnant radio galaxy at low redshift

    NASA Astrophysics Data System (ADS)

    Brienza, M.; Godfrey, L.; Morganti, R.; Vilchez, N.; Maddox, N.; Murgia, M.; Orru, E.; Shulevski, A.; Best, P. N.; Brüggen, M.; Harwood, J. J.; Jamrozy, M.; Jarvis, M. J.; Mahony, E. K.; McKean, J.; Röttgering, H. J. A.

    2016-01-01

    Context. Remnant radio galaxies represent the final dying phase of radio galaxy evolution in which the jets are no longer active. Remnants are rare in flux-limited samples, comprising at most a few percent. As a result of their rarity and because they are difficult to identify, this dying phase remains poorly understood and the luminosity evolution is largely unconstrained. Aims: Here we present the discovery and detailed analysis of a large (700 kpc) remnant radio galaxy with a low surface brightness that has been identified in LOFAR images at 150 MHz. Methods: By combining LOFAR data with new follow-up Westerbork observations and archival data at higher frequencies, we investigated the source morphology and spectral properties from 116 to 4850 MHz. By modelling the radio spectrum, we probed characteristic timescales of the radio activity. Results: The source has a relatively smooth, diffuse, amorphous appearance together with a very weak central compact core that is associated with the host galaxy located at z = 0.051. From our ageing and morphological analysis it is clear that the nuclear engine is currently switched off or, at most, active at a very low power state. We find that the source has remained visible in the remnant phase for about 60 Myr, significantly longer than its active phase of 15 Myr, despite being located outside a cluster. The host galaxy is currently interacting with another galaxy located at a projected separation of 15 kpc and a radial velocity offset of ~ 300 km s-1. This interaction may have played a role in the triggering and/or shut-down of the radio jets. Conclusions: The spectral shape of this remnant radio galaxy differs from most of the previously identified remnant sources, which show steep or curved spectra at low to intermediate frequencies. Our results demonstrate that remnant radio galaxies can show a wide range of evolutionary paths and spectral properties. In light of this finding and in preparation for new-generation deep low-frequency surveys, we discuss the selection criteria to be used to select representative samples of these sources.

  5. Investigation relative to the Roentgen Satellite (ROSAT)

    NASA Technical Reports Server (NTRS)

    Elvis, Martin S.; Primini, Francis A.; Fabbiano, Guiseppina; Harris, Daniel E.; Jones-Foreman, Christine; Trinchieri, Ginevra; Golub, Leon; Bookbinder, Jay; Seward, Frederick D.; Zombeck, Martin V.

    1994-01-01

    Reports include: High Resolution Observations of the Central Region of M31; The X-ray Emission of Low-X-ray-Luminosity Early-Type Galaxies: Gas Versus Compact Sources; Interaction Between Cluster Gas and Radio Features of Cygnus A; Hot Gas and Dark Halos in Early-Type Galaxies; A Gravitational Lens in X-rays - 0957+461; How Massive are Early-Type Galaxies?; Three Crab-Like SNR in the Large Magellanic Cloud; and Soft X-ray Emission from Boundary Layers in Cataclysmic Variables. Papers submitted to the Astrophysical Journal are attached.

  6. Relativistic and Slowing Down: The Flow in the Hotspots of Powerful Radio Galaxies and Quasars

    NASA Technical Reports Server (NTRS)

    Kazanas, D.

    2003-01-01

    The 'hotspots' of powerful radio galaxies (the compact, high brightness regions, where the jet flow collides with the intergalactic medium (IGM)) have been imaged in radio, optical and recently in X-ray frequencies. We propose a scheme that unifies their, at first sight, disparate broad band (radio to X-ray) spectral properties. This scheme involves a relativistic flow upstream of the hotspot that decelerates to the sub-relativistic speed of its inferred advance through the IGM and it is viewed at different angles to its direction of motion, as suggested by two independent orientation estimators (the presence or not of broad emission lines in their optical spectra and the core-to-extended radio luminosity). This scheme, besides providing an account of the hotspot spectral properties with jet orientation, it also suggests that the large-scale jets remain relativistic all the way to the hotspots.

  7. High-Resolution X-Ray Imaging of Colliding Radio-Jet Galaxies

    NASA Technical Reports Server (NTRS)

    Born, Kirk D.; Whitmore, Brad

    1996-01-01

    We received ROSAT data for four program objects:3C31,3C278,3C449,and NGC1044. The first three sources were observed with the ROSAT HRI instrument. Our plan was to use the HRI to image the hot gas distribution in a few pairs of strongly disturbed interacting elliptical galaxies which are also strong radio sources having a bent-jet source morphology. The PSPC was used for NGC1044 in order to obtain a flux measurement to use in planning future High Resolution Imager (HRI) observations of that source. Though we never requested such HRI observations of NGC1044, others have used those archival PSPC data from our project for other research projects and analyses. The goal of the program was to elucidate the detailed distribution of hot gas into which the jets flow. The X-ray data were consequently analyzed in conjunction with existing VLA radio maps, optical broad-band and H-alpha Charge Couple device (CCD) images, and optical kinematic data to constrain models for the propagation of ballistic jets in interacting galaxies. We were able to test and validate the claimed causal connection between tidal interaction, the presence of gas, and the onset of activity in galaxies. The full multi-wavelength multi-observatory analyses described here are still on-going and will be published in the future. Because of the relevance of this research to on-going work in the field of active galaxies, the grant was used to support travel to several scientific meetings where our x-ray analysis, numerical modeling, and related radio results were presented and discussed.

  8. Estimating the weak-lensing rotation signal in radio cosmic shear surveys

    NASA Astrophysics Data System (ADS)

    Thomas, Daniel B.; Whittaker, Lee; Camera, Stefano; Brown, Michael L.

    2017-09-01

    Weak lensing has become an increasingly important tool in cosmology and the use of galaxy shapes to measure cosmic shear has become routine. The weak-lensing distortion tensor contains two other effects in addition to the two components of shear: the convergence and rotation. The rotation mode is not measurable using the standard cosmic shear estimators based on galaxy shapes, as there is no information on the original shapes of the images before they were lensed. Due to this, no estimator has been proposed for the rotation mode in cosmological weak-lensing surveys, and the rotation mode has never been constrained. Here, we derive an estimator for this quantity, which is based on the use of radio polarization measurements of the intrinsic position angles of galaxies. The rotation mode can be sourced by physics beyond Λ cold dark matter (ΛCDM), and also offers the chance to perform consistency checks of ΛCDM and of weak-lensing surveys themselves. We present simulations of this estimator and show that, for the pedagogical example of cosmic string spectra, this estimator could detect a signal that is consistent with the constraints from Planck. We examine the connection between the rotation mode and the shear B modes and thus how this estimator could help control systematics in future radio weak-lensing surveys.

  9. Most Distant Group of Galaxies Known in the Universe

    NASA Astrophysics Data System (ADS)

    2002-04-01

    New VLT Discovery Pushes Back the Beginnings Summary Using the ESO Very Large Telescope (VLT) , a team of astronomers from The Netherlands, Germany, France and the USA [1] have discovered the most distant group of galaxies ever seen , about 13.5 billion light-years away. It has taken the light now recorded by the VLT about nine-tenths of the age of the Universe to cover the huge distance. We therefore observe those galaxies as they were at a time when the Universe was only about 10% of its present age . The astronomers conclude that this group of early galaxies will develop into a rich cluster of galaxies, such as those seen in the nearby Universe. The newly discovered structure provides the best opportunity so far for studying when and how galaxies began to form clusters after the initial Big Bang , one of the greatest puzzles in modern cosmology. PR Photo 11a/02 : Sky field with the distant cluster of galaxies. PR Photo 11b/02 : Spectra of some of the galaxies in the cluster. Radio Galaxies as cosmic signposts A most intriguing question in modern astronomy is how the first groupings or "clusters" of galaxies emerged from the gas produced in the Big Bang. Some theoretical models predict that densely populated galaxy clusters ("rich clusters" in current astronomical terminology) are built up through a step-wise process. Clumps develop in the primeval gas, and stars condense out of these clumps to form small galaxies. Then these small galaxies merge together to form larger units. The peculiar class of "radio galaxies" is particularly important for investigating such scenarios. They are called so because their radio emission - a result of violent processes believed to be related to massive black holes located at the centres of these galaxies - is stronger by 5 - 10 orders of magnitude than that of our own Milky Way galaxy. In fact, this radio emission is often so intense that the galaxies can be spotted at extremely large distances, and thus at the remote epoch when the Universe was very young, just a small fraction of its present age. The radio galaxies are amongst the most massive objects in the early Universe and there has long been circumstantial evidence that they are located at the heart of young clusters of galaxies, still in the process of formation. In this sense, they act as signposts of early cosmic "meeting points" . Radio galaxies are therefore potential beacons for pinpointing regions of the Universe in which large galaxies and clusters of galaxies are being formed. VLT observations of the environment of radio galaxy TN J1338-1942 ESO PR Photo 11a/02 ESO PR Photo 11a/02 [Preview - JPEG: 400 x 493 pix - 336k] [Normal - JPEG: 1250 x 1541 pix - 2.3M] Caption : PR Photo 11a/02 shows the sky region near the powerful radio galaxy TN J1338-1942 at a redshift of 4.1 [2], i.e. at a distance of about 13.5 billion light-years from the Earth (we see it as it was when the Universe was just 1.5 billion years old). The photo is a "negative" rendering (the objects are dark on a bright background) of an image obtained with the FORS2 multi-mode instrument on the 8.2-m VLT KUEYEN telescope (ESO Paranal Observatory, Chile) through a narrow-band optical filter, centered at the wavelength of the redshifted Lyman-alpha line. The 20 galaxies that have been confirmed to be emitting the sharp colours due to glowing hydrogen gas at the distance of the radio galaxy are encircled in blue. The green rectangle marks the radio galaxy, from which a stream of hydrogen gas stretches to the northwest, over a distance of about 300,000 light-years. The size of the sky field corresponds to about 10 million light-years at the distance of these galaxies. North is up and East is left. Technical information about the photo is available below. ESO PR Photo 11b/02 ESO PR Photo 11b/02 [Preview - JPEG: 515 x 400 pix - 136k] [Normal - JPEG: 1000 x 777 pix - 320k] Caption : PR Photo 11b/02 shows the spectra (brightness as a function of wavelength) for ten of the confirmed galaxies in the very distant, young cluster found near the radio galaxy TN J1338-1942 . Each galaxy displays a sharp peak in colour showing the signature of its hydrogen gas - this is the redshifted Lyman-alpha emission line [2]. Technical information about the photo is available below. Following up this conjecture, the Leiden astronomers and their colleagues in the USA and Germany [1] proposed a large observing programme with the ESO VLT at Paranal (Chile) to search for groupings of galaxies in the vicinity of distant radio galaxies that might be the ancestors of rich clusters. For this, they first used the FORS2 multi-mode instrument on the 8.2-m VLT KUEYEN telescope to take very "deep" pictures of sky regions around several radio galaxies, each field measuring about one-fifth of the diameter of the full moon. The most distant of these was an object called TN J1338-1942 , a radio galaxy at a distance of about 13.5 billion light years from the Earth. To search for galaxies at the same distance as the radio galaxy, the pictures were optimised in sensitivity for the sharp colour emitted by glowing hydrogen gas at the distance of the radio galaxy [2]. Images were taken through two red filters, one that is "tuned" to light produced by the hydrogen gas (the redshifted Lyman-alpha line) and the other that is dominated by light from stars (the R-band), cf. PR Photo 11a/02 . An earlier example of this observational technique is described in ESO PR 13/99. These images revealed 28 galaxies that are likely to be at the distance of the radio galaxy. More detailed information was obtained for 23 of these with the FORS2 instrument in the spectrographic mode, now confirming 20 of them to be indeed located at the same distance as the radio galaxy, cf. PR Photo 11b/02 . Earliest known group of galaxies The spectra also showed that the galaxies are moving around with speeds of a few hundred kilometers per second. The observed structure of galaxies is more than 10 million light-years across and its existence means that galaxies must have begun to form groups already at this early epoch, i.e. still within the first 10% of the history of the Universe . From the excess number of detected galaxies and the observed volume of the structure, its combined mass can be estimated. The derived number is 1000 million million (10 15 ) times the mass of the Sun - this is comparable with the masses of nearby rich clusters of galaxies. For the present structure to evolve into a nearby rich cluster, it must contract in volume by an order of magnitude in about one billion years. This newly discovered group of galaxies is the most remote discovered so far and hence the earliest known at this moment - another, less distant one was recently described in ESO PR 03/02. The VLT observations also establish a crucial link between the ancestors of rich galaxy clusters and the bright galaxies whose active nuclei produce the bright radio emission. Based on the 4 radio galaxies surveyed by the VLT so far, the team concludes that every forming cluster may house a bright galaxy that is or has been a powerful radio source . The radio sources are believed to be powered by massive black holes located deep within their nuclei. Next steps The next step in the present project will be to use the VLT to establish the boundaries of the proto-cluster. Also, the colours and shapes of galaxies in the structure will be studied intensively by the Advanced Camera for Surveys (ACS), recently fitted to the Hubble Space Telescope (HST) . George Miley , also a member of the ACS Science Team, is enthusiastic: "We have now scheduled this particular target for one of the deepest observations ever to be made with the HST. Our project is an example of the great possibilities now opening to astronomers by combining the complementary strengths of the wonderful new ground- and space-based observational facilities!" More information The results described in this Press Release are about to appear in print in the research journal Astrophysical Journal ("The Most Distant Structure of Galaxies Known: a Protocluster at z = 4.1" by B.P. Venemans and co-authors), cf. astro-ph/0203249. Notes [1]: The team is led by George Miley (Leiden University, The Netherlands) and the first author of the resulting research paper is Bram Venemans , a graduate student of Miley's. Other members are Jaron Kurk and Huub Röttgering (also Leiden University), Laura Pentericci (MPIA, Heidelberg, Germany), Wil van Breugel (Lawrence Livermore National Laboratory, USA), Chris Carilli (US National Radio Astronomy Observatory, Charlottesville, USA), Carlos De Breuck (Institut d'Astrophysique, Paris, France) Holland Ford and Tim Heckman (Johns Hopkins University, Baltimore, USA) and Pat McCarthy (Carnegie Institute, Pasadena, USA). [2]: The measured redshift of TN J1338-1942 is z = 4.1. In astronomy, the redshift denotes the fraction by which the lines in the spectrum of an object are shifted towards longer wavelengths. The observed redshift of a remote galaxy provides an estimate of its distance. The distances indicated in the present text are based on an age of the Universe of 15 billion years. At the indicated redshift, the Lyman-alpha line of atomic hydrogen (rest wavelength 121.6 nm) is observed at 620 nm, i.e. in the red spectral region. Contact George Miley Leiden University Observatory The Netherlands Tel.: +31-715275849 email: miley@strw.leidenuniv.nl Technical information about the photos PR Photo 11a/02 is reproduced from FORS2-exposures, obtained on March 25 and 26, 2001, using a narrow-band optical filter (peak at 619.5 nm with transmission 80%, FWHM 6.0 nm). The total exposure time was 33300 sec (9 hrs 15 min). The field-of-view of the final image is 6.4 x 6.2 arcmin 2 , corresponding to about 3 Mpc on each side. The frames were obtained in photometric conditions, and the image quality in the combined frame is 0.65 arcsec. The galaxy spectra shown in PR Photo 11b/02 were obtained by FORS2 in the MXU-mode on May 20, 21 and 22, 2001. Exposures of 31500 sec and 35100 sec, respectively, were made through two masks under photometric conditions, with seeing 1.0 arcsec and slit sizes of 1 arcsec. The 600RI grism was used; it has peak efficiency 87%, resolution R = 1011 at 663.0 nm and spectral dispersion of 0.132 nm/pixel, corresponding to 290 km/s at z = 4.1.

  10. Too Fast, Too Furious: A Galaxy's Fatal Plunge

    NASA Astrophysics Data System (ADS)

    2004-01-01

    Trailing 200,000-light-year-long streamers of seething gas, a galaxy that was once like our Milky Way is being shredded as it plunges at 4.5 million miles per hour through the heart of a distant cluster of galaxies. In this unusually violent collision with ambient cluster gas, the galaxy is stripped down to its skeletal spiral arms as it is eviscerated of fresh hydrogen for making new stars. The galaxy's untimely demise is offering new clues to solving the mystery of what happens to spiral galaxies in a violent universe. Views of the early universe show that spiral galaxies were once much more abundant in rich clusters of galaxies. But they seem to have been vanishing over cosmic time. Where have these "missing bodies" gone? Astronomers are using a wide range of telescopes and analysis techniques to conduct a "CSI" or Crime Scene Investigator-style look at what is happening to this galaxy inside its cluster's rough neighborhood. "It's a clear case of galaxy assault and battery," says William Keel of the University of Alabama. "This is the first time we have a full suite of results from such disparate techniques showing the crime being committed, and the modus operandi." Keel and colleagues are laying out the "forensic evidence" of the galaxy's late life, in a series of presentations today in Atlanta, Ga., at the 203rd meeting of the American Astronomical Society. Astronomers have assembled the evidence by combining a variety of diagnostic observations from telescopes analyzing the galaxy's appearance in X-ray, optical, and radio light. Parallel observations at different wavelengths trace how stars, gas, and dust are being tossed around and torn from the fragile galaxy, called C153. Though such "distressed" galaxies have been seen before, this one's demise is unusually swift and violent. The galaxy belongs to a cluster of galaxies that slammed into another cluster about 100 million years ago. This galaxy took the brunt of the beating as it fell along a trajectory straight through the dense core of the colliding cluster. "This helps explain the weird X-ray and radio emissions we see," says Keel. "The galaxy is a laboratory for studying how gas can be stripped away when it flies through the hot cluster gas, shutting down star birth and transforming the galaxy." The first suggestion of galactic mayhem in this cluster came in 1994 when the Very Large Array radio telescope near Socorro, N.M., detected an unusual number of radio galaxies in the cluster, called Abell 2125. Radio sources trace both star formation and the feeding of central black holes in galaxy clusters. The radio observations also showed that C153 stood out from the other galaxies as an exceptionally powerful radio source. Keel's team began an extensive program of further observations to uncover details about the galaxies. "This was designed to see what the connection could possibly be between events on the 10-million-light-year scale of the cluster merger and what happens deep inside individual galaxies," says Keel. X-ray observations from the ROSAT satellite (an acronym for the Roentgen Satellite) demonstrated that the cluster contains vast amounts of 36-million-degree Fahrenheit (20-million-degree Kelvin) gas that envelops the galaxies. The gas is concentrated into two main lumps rather than smoothly distributed across the cluster, as is more commonly the case. This bolstered the suspicion that two galaxy clusters are actually colliding. In the mid-to-late 1990s astronomers turned the Mayall 4-meter telescope and the WIYN 3.5-meter telescope at the Kitt Peak National Observatory on the cluster to analyze the starlight via spectroscopy. They found many star-forming systems and even active galactic black holes fueled by the collision. The disintegrating galaxy C153 stood out dramatically when the KPNO telescopes were used to photomap the cluster in color. Astronomers then trained NASA's Hubble Space Telescope (HST) onto C153 and resolved a bizarre shape. They found that the galaxy looks unusually clumpy with many young star clusters and chaotic dust features. Besides the disrupted features in the galaxy's disk, HST also showed that the light in the tail is mostly attributed to recent star formation, providing a direct link to the stripping of the galaxy as it passed through the cluster core. Gas compressed along the galaxy's leading edge, like snow before a plow, ignited a firestorm of new star birth. Evidence of recent star formation also comes from the optical spectrum obtained at the 10-meter Gemini North telescope in Hawaii. The spectrum allows the researchers to estimate the time since the most recent burst of star formation. This conclusion was further bolstered when the Mosaic camera on Kitt Peak's Mayall telescope found a very long tail of extended gas coming off the galaxy. The tail was apparently generated in part by a hurricane of stellar winds boiling off the new star-birth regions and being blown backwards as the galaxy streaks through the surrounding hot gas of the cluster. Spectroscopic observations with the Gemini telescope allowed astronomers to age-date the starburst. They find that 90 percent of C153's blue light is from a population of stars that are 100 million years old. This age corresponds to the time the galaxy should have gone careening through the densest gas in the cluster core. The Gemini spectroscopic observations show the stars are in a regular pattern of orbital motion around the center, as usual for disk galaxies. However, there are multiple widespread clouds of gas moving independently of the stars. "This is an important clue that something beyond gravitational forces must be at work, since stars and gas respond the same way to purely gravitational forces," says Keel. "In other words, the galaxy's gas doesn't know what the stars are doing." NASA's Chandra X-ray Observatory discovered that the cooler clouds detected with optical telescopes and an associated radio feature are embedded in a much larger multimillion-degree trail of gas. Chandra's data indicate that this hot gas was probably enriched in heavy elements by the starburst and driven out of the galaxy by its supersonic motion through the much larger cloud of gas that pervades the cluster. Collectively, these observations offer evidence that the ram pressure of external gas in the cluster is stripping away the galaxy's own gas. This process has long been hypothesized to account for the forced evolution of cluster galaxies. Its aftermath has been seen in several ways. Some nearby examples, Seyfert's Sextet and Stefan's Quintet, are tight clusters that show the aftermath of high-velocity collisions. The galaxy C153 is destined to lose the last vestiges of its spiral arms and become a bland S0-type galaxy having a central bulge and disk, but no spiral-arm structure. These types of galaxies are common in the dense galaxy clusters seen today. Astronomers plan to make new observations with Gemini again in 2004 to study the dynamics of the gas and stars in the tail. The science team members are William Keel (University of Alabama), Frazer Owen (National Radio Astronomy Observatory), Michael Ledlow (Gemini Observatory), and Daniel Wang (University of Massachusetts). NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the Office of Space Science, NASA Headquarters, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  11. Connection Between X-Ray Dips and Superluminal Ejections in the Radio Galaxy 3C 120

    NASA Technical Reports Server (NTRS)

    Aller, Margo F.

    2005-01-01

    This work represents a part of a long-term study of the X-ray flux variability of 3C 120 and its relation to flux and structural changes in the radio jet of this galaxy. The grant included fiinding for the rediiction and analysis of data obt,ained during the time pwiod of Rossi XTE cycle 8 (March 1, 2003-February 29, 2004). Prior RXTE observations, combined with single dish monitoring at centimeter wavelengths and 43 GHz mapping (monthly until February 1999 and bimonthly thereafter) of the inner jet with the VLBA, had identified the presence of X-ray dips in the light curves and X-ray spectral hardening 4 weeks prior to the ejection of new VLBI components in the radio jet. This suggested a picture in which the radio jet was fed by accretion events near the black hole. The specific goals of the cycle 8 observations were to better define the relation between the X-ray dips and the radio events using higher sampling, to include more events in the correlation and hence improve the statistics, to look for a possible optical X-ray connection, and to search for quasi periodicities on timescales of 1-3 days. In cycle 8 this project was awarded time for 4 pointings weekly with RXTE.

  12. Observations of a nearby filament of galaxy clusters with the Sardinia Radio Telescope

    NASA Astrophysics Data System (ADS)

    Vacca, Valentina; Murgia, M.; Loi, F. Govoni F.; Vazza, F.; Finoguenov, A.; Carretti, E.; Feretti, L.; Giovannini, G.; Concu, R.; Melis, A.; Gheller, C.; Paladino, R.; Poppi, S.; Valente, G.; Bernardi, G.; Boschin, W.; Brienza, M.; Clarke, T. E.; Colafrancesco, S.; Enßlin, T.; Ferrari, C.; de Gasperin, F.; Gastaldello, F.; Girardi, M.; Gregorini, L.; Johnston-Hollitt, M.; Junklewitz, H.; Orrù, E.; Parma, P.; Perley, R.; Taylor, G. B.

    2018-05-01

    We report the detection of diffuse radio emission which might be connected to a large-scale filament of the cosmic web covering a 8° × 8° area in the sky, likely associated with a z≈0.1 over-density traced by nine massive galaxy clusters. In this work, we present radio observations of this region taken with the Sardinia Radio Telescope. Two of the clusters in the field host a powerful radio halo sustained by violent ongoing mergers and provide direct proof of intra-cluster magnetic fields. In order to investigate the presence of large-scale diffuse radio synchrotron emission in and beyond the galaxy clusters in this complex system, we combined the data taken at 1.4 GHz with the Sardinia Radio Telescope with higher resolution data taken with the NRAO VLA Sky Survey. We found 28 candidate new sources with a size larger and X-ray emission fainter than known diffuse large-scale synchrotron cluster sources for a given radio power. This new population is potentially the tip of the iceberg of a class of diffuse large-scale synchrotron sources associated with the filaments of the cosmic web. In addition, we found in the field a candidate new giant radio galaxy.

  13. Low-frequency radio observations of poor clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Hanisch, R. J.; White, R. A.

    1981-01-01

    Observations have been made at the Clark Lake Radio Observatory of 16 poor clusters of galaxies at 34.3 MHz. Four of the poor clusters were detected at flux densities greater than 20 Jy. The spectra of the four detected clusters are all rather steep. Two of the detected clusters, AWM 4 and AWM 5, are also known to be X-ray sources. The possibility that the X-ray-emitting gas is heated by Coulomb interactions with the relativistic electrons responsible for the radio emission is investigated, and it is found that the observed X-ray luminosities can be accounted for if the electron energy spectrum extends to very low energies (gamma approximately 1-10). Collective plasma effects may increase the heating efficiency and eliminate the need to extrapolate the electron energy spectrum to such low values.

  14. The Biggest Bangs Since the Big Bang: Unveiling Mergers of Galaxy Clusters with Radio Halos/Relics Using X-ray Temperature Maps

    NASA Astrophysics Data System (ADS)

    Burns, Jack

    Galaxy clusters are assembled through large and small mergers which are the most energetic events ( bangs ) since the Big Bang. Cluster mergers stir the ICM creating shocks and turbulence which are illuminated by Mpc-sized radio features called relics and halos. These shocks heat the ICM and are detected in x-rays via thermal emission. Disturbed morphologies in x-ray surface brightness and temperatures are direct evidence for cluster mergers. In the radio, relics (in the outskirts of the clusters) and halos (located near the cluster core) are clear signposts of recent mergers. Our recent cosmological simulations suggest that around a merger event, radio emission peaks very sharply (and briefly) while the x-ray emission rises and decays slowly. Hence, a sample of galaxy clusters that shows both luminous x-ray and radio relics/halos are clear candidates for very recent mergers. We propose to analyze a unique sample of 48 galaxy clusters with (i) known radio relics and/or halos and (ii) significant archival x-ray observations (e 50 ksec) from Chandra and/or XMM. We will use a new x-ray data analysis pipeline, implemented on a parallelprocessor supercomputer, to create x-ray surface brightness, high fidelity temperature, and pressure maps of these clusters in order to study merging activity. In addition, we will use a control sample of clusters from the HIFLUGCS catalog which do not show radio relics/halos or any significant x-ray surface brightness substructure, thus devoid of recent mergers. The temperature maps will be made using 3 different map-making techniques: Weighted Voronoi Tessellation, Adaptive Circular Binning, and Contour Binning. We also plan to use archival Suzaku data for 22 clusters in our sample and study the x-ray temperatures at the outskirts of the clusters. All 48 clusters have archival radio data at d1.4 GHz which will be re-analyzed using advanced algorithms in NRAO s CASA software. We also have new radio data on a subset of these clusters and have proposed to observe more of them with the increased sensitivity of the JVLA and GMRT at 0.25-1.4 GHz. Using the systematically analyzed x-ray and radio data, we propose to pursue the detailed link between cluster mergers and the formation of radio relics/halos. (a) How do radio relics form? Radio relics are believed to be created via re-acceleration of cosmic ray electrons through diffusive shock acceleration, a 1st order Fermi mechanism. Hence, there should be a correlation between shocks detected in the x-ray and radio. We plan to use our newly developed 2-D shock-finder using jumps within xray temperature maps, and complement the results with radio Mach numbers derived from radio spectral indices. Shocks detected in our simulations using a 3-D shock-finder will be used to understand the effects of projections in observations. (b) How do radio halos form? It is not clear if the formation of radio halos is due to turbulent acceleration (2nd order Fermi process) or due to more efficient 1st order Fermi mechanism via distributed small-scale shocks. Since radio halos reside in merging clusters, the x-ray temperature structure should show the un-relaxed nature of the cluster. We will study this through temperature asymmetry and power ratios (between two multipoles). We also propose to use pressure maps to derive a 2-D power spectrum of pressure fluctuations and deduce the turbulent velocity field. We will then derive the associated radio power and spectral indices to compare with the radio observations. We will test our results using clusters with and without radio halos. We will make these high fidelity temperature, surface brightness, pressure and entropy maps available to the astronomical community via the National Virtual Observatory. We will also make our x-ray temperature map-making scripts implemented on parallel supercomputers available for community use.

  15. The radio-X-ray relation as a star formation indicator: results from the Very Large Array-Extended Chandra Deep Field-South

    NASA Astrophysics Data System (ADS)

    Vattakunnel, S.; Tozzi, P.; Matteucci, F.; Padovani, P.; Miller, N.; Bonzini, M.; Mainieri, V.; Paolillo, M.; Vincoletto, L.; Brandt, W. N.; Luo, B.; Kellermann, K. I.; Xue, Y. Q.

    2012-03-01

    In order to trace the instantaneous star formation rate (SFR) at high redshift, and thus help in understanding the relation between the different emission mechanisms related to star formation, we combine the recent 4-Ms Chandra X-ray data and the deep Very Large Array radio data in the Extended Chandra Deep Field-South region. We find 268 sources detected both in the X-ray and radio bands. The availability of redshifts for ˜95 per cent of the sources in our sample allows us to derive reliable luminosity estimates and the intrinsic properties from X-ray analysis for the majority of the objects. With the aim of selecting sources powered by star formation in both bands, we adopt classification criteria based on X-ray and radio data, exploiting the X-ray spectral features and time variability, taking advantage of observations scattered across more than 10 years. We identify 43 objects consistent with being powered by star formation. We also add another 111 and 70 star-forming candidates detected only in the radio and X-ray bands, respectively. We find a clear linear correlation between radio and X-ray luminosity in star-forming galaxies over three orders of magnitude and up to z˜ 1.5. We also measure a significant scatter of the order of 0.4 dex, higher than that observed at low redshift, implying an intrinsic scatter component. The correlation is consistent with that measured locally, and no evolution with redshift is observed. Using a locally calibrated relation between the SFR and the radio luminosity, we investigate the LX(2-10 keV)-SFR relation at high redshift. The comparison of the SFR measured in our sample with some theoretical models for the Milky Way and M31, two typical spiral galaxies, indicates that, with current data, we can trace typical spirals only at z≤ 0.2, and strong starburst galaxies with SFRs as high as ˜100 M⊙ yr-1, up to z˜ 1.5.

  16. Radio Galaxies.

    ERIC Educational Resources Information Center

    Downes, Ann

    1986-01-01

    Provides background information on radio galaxies. Topic areas addressed include: what produces the radio emission; radio telescopes; locating radio galaxies; how distances to radio galaxies are found; physics of radio galaxies; computer simulations of radio galaxies; and the evolution of radio galaxies with cosmic time. (JN)

  17. Radio and X-ray structure of Centaurus A

    NASA Technical Reports Server (NTRS)

    Feigelson, E. D.

    1982-01-01

    Recent studies of the nearby radio galaxy Centaurus A with the Very Large Array and the Einstein X-Ray Observatory reveal complex radio and X-ray structures. A prominent one-sided jet comprised of resolved knots located 0.2-6 kpc from the nucleus is seen in both radio and X-rays. The X-ray emission is probably synchrotron, requiring in situ reacceleration up to about ten million. Inverse Compton emission is not a likely explanation though a thermal model in which the nucleus ejects dense 100,000 solar mass clouds cannot be excluded. An elongated X-ray region is also found near the 'middle' radio lobe and optical HII regions about 30 kpc NE of the nucleus. Conditions around the active nucleus, the absence of X-rays from the inner radio lobes, and X-ray evidence for a hot interstellar medium are briefly discussed

  18. Understanding the radio spectral indices of galaxy cluster relics by superdiffusive shock acceleration

    NASA Astrophysics Data System (ADS)

    Zimbardo, Gaetano; Perri, Silvia

    2018-06-01

    Galaxy cluster merger shocks are the likely source of relativistic electrons, but many observations do not fit into the standard acceleration models. In particular, there is a long-standing discrepancy between the radio derived Mach numbers M_radio and the Mach numbers derived from X-ray measurements, M_X. Here, we show how superdiffusive electron transport and superdiffusive shock acceleration (SSA) can help to solve this problem. We present a heuristic derivation of the superlinear time growth of the mean square displacement of particles, ⟨Δx2⟩∝tβ, and of the particle energy spectral index in the framework of SSA. The resulting expression for the radio spectral index α is then used to determine the superdiffusive exponent β from the observed values of α and of the compression ratio for a number of radio relics. Therefore, the fact that M_radio>M_X can be explained by SSA without the need to make assumptions on the energy spectrum of the seed electrons to be re-accelerated. We also consider the acceleration times obtained in the diffusive case, based both on the Bohm diffusion coefficient and on the quasilinear diffusion coefficient. While in the latter case the acceleration time is consistent with the estimated electron energy loss time, the former case it is much shorter.

  19. X-ray inverse Compton emission from the radio halo of M87

    NASA Technical Reports Server (NTRS)

    Feigelson, E. D.

    1984-01-01

    A significant fraction of known galaxies contain an active galactic nucleus (AGN) at their cores, the site of violent activity and non-stellar radiation seen across the entire electromagnetic spectrum. This activity is thought to be due to the accretion of gas onto a massive black hole. A fraction of AGNs also eject collimated beams of energetic material, usually seen by virtue of its synchrotron emission in the radio band. Efforts to study these jets from AGNs in the X-ray band with the Einstein Observatory has led to several detections, most notably the jets in the nearby radio galaxies Centaurus A and Virgo A = M87. In their study of M87, Schreier, Gorenstein and Feigelson (1982) noted that, in addition to the synchrotron jet 10"-20" from the nucleus, X-rays appear to be generated in the diffuse radio halo 2'-5' from the nucleus. This finding may be particularly important as it may constitute the first known case of X-ray inverse Compton emission from AGN ejecta, allowing for the first time direct determination of the magnetic field strengths.

  20. The difference between radio-loud and radio-quiet active galaxies

    NASA Astrophysics Data System (ADS)

    Wilson, A. S.; Colbert, E. J. M.

    1995-01-01

    The recent development of unified theories of active galactic nuclei (AGNs) has indicated that there are two physically distinct classes of these objects--radio-loud and radio-quiet. Despite differences, the (probable) thermal emissions from the AGNs (continua and lines from X-ray to infrared wavelengths) are quite similar to the two classes of object. We argue that this last result suggests that the black hole masses and mass accretion rates in the two classes are not greatly different, and that the difference between the classes is associated with the spin of the black hole. We assume that the normal process of accretion through a disk does not lead to rapidly spinning holes and propose that galaxies (e.g., spirals) which have not suffered a recent major merger event contain nonrotating or only slowly rotating black holes. When two such galaxies merge, the two black holes are known to form a binary and we assume that they eventually coalesce. The ratio of the number of radio-loud to radio-quiet AGNs at a given thermal (e.g., optical) luminosity is determined by the galaxy merger rate. Comparisons between the predicted and observed radio luminosity functions constrain the efficiencies with which jet power is extracted from the spinning hole and radio emission is produced by the jet.

  1. Radio/X-ray monitoring of the broad-line radio galaxy 3C 382. High-energy view with XMM-Newtonand NuSTAR

    NASA Astrophysics Data System (ADS)

    Ursini, F.; Petrucci, P.-O.; Matt, G.; Bianchi, S.; Cappi, M.; Dadina, M.; Grandi, P.; Torresi, E.; Ballantyne, D. R.; De Marco, B.; De Rosa, A.; Giroletti, M.; Malzac, J.; Marinucci, A.; Middei, R.; Ponti, G.; Tortosa, A.

    2018-05-01

    We present the analysis of five joint XMM-Newton/NuSTARobservations, 20 ks each and separated by 12 days, of the broad-line radio galaxy 3C 382. The data were obtained as part of a campaign performed in September-October 2016 simultaneously with VLBA. The radio data and their relation with the X-ray ones will be discussed in a following paper. The source exhibits a moderate flux variability in the UV/X-ray bands, and a limited spectral variability especially in the soft X-ray band. In agreement with past observations, we find the presence of a warm absorber, an iron Kα line with no associated Compton reflection hump, and a variable soft excess well described by a thermal Comptonization component. The data are consistent with a "two-corona" scenario, in which the UV emission and soft excess are produced by a warm (kT ≃ 0.6 keV), optically thick (τ ≃ 20) corona consistent with being a slab fully covering a nearly passive accretion disc, while the hard X-ray emission is due to a hot corona intercepting roughly 10% of the soft emission. These results are remarkably similar to those generally found in radio-quiet Seyferts, thus suggesting a common accretion mechanism.

  2. RADIO AND DEEP CHANDRA OBSERVATIONS OF THE DISTURBED COOL CORE CLUSTER ABELL 133

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Randall, S. W.; Nulsen, P. E. J.; Forman, W. R.

    2010-10-10

    We present results based on new Chandra and multi-frequency radio observations of the disturbed cool core cluster Abell 133. The diffuse gas has a complex bird-like morphology, with a plume of emission extending from two symmetric wing-like features. The plume is capped with a filamentary radio structure that has been previously classified as a radio relic. X-ray spectral fits in the region of the relic indicate the presence of either high-temperature gas or non-thermal emission, although the measured photon index is flatter than would be expected if the non-thermal emission is from inverse Compton scattering of the cosmic microwave backgroundmore » by the radio-emitting particles. We find evidence for a weak elliptical X-ray surface brightness edge surrounding the core, which we show is consistent with a sloshing cold front. The plume is consistent with having formed due to uplift by a buoyantly rising radio bubble, now seen as the radio relic, and has properties consistent with buoyantly lifted plumes seen in other systems (e.g., M87). Alternatively, the plume may be a gas sloshing spiral viewed edge-on. Results from spectral analysis of the wing-like features are inconsistent with the previous suggestion that the wings formed due to the passage of a weak shock through the cool core. We instead conclude that the wings are due to X-ray cavities formed by displacement of X-ray gas by the radio relic. The central cD galaxy contains two small-scale cold gas clumps that are slightly offset from their optical and UV counterparts, suggestive of a galaxy-galaxy merger event. On larger scales, there is evidence for cluster substructure in both optical observations and the X-ray temperature map. We suggest that the Abell 133 cluster has recently undergone a merger event with an interloping subgroup, initialing gas sloshing in the core. The torus of sloshed gas is seen close to edge-on, leading to the somewhat ragged appearance of the elliptical surface brightness edge. We show that the additional buoyant force from a passing subcluster can have a significant effect on the rise trajectories of buoyant bubbles, although this effect alone cannot fully explain the morphology of Abell 133. The radio observations reveal a large-scale double-lobed structure not previously identified in the literature. We conclude that this structure represents a previously unreported background giant radio galaxy at z = 0.293, the northern lobe of which overlies the radio relic in the core of Abell 133. A rough estimate indicates that the contribution of this background lobe to the total radio emission in the region of the relic is modest (<13%).« less

  3. Future constraints on angle-dependent non-Gaussianity from large radio surveys

    NASA Astrophysics Data System (ADS)

    Raccanelli, Alvise; Shiraishi, Maresuke; Bartolo, Nicola; Bertacca, Daniele; Liguori, Michele; Matarrese, Sabino; Norris, Ray P.; Parkinson, David

    2017-03-01

    We investigate how well future large-scale radio surveys could measure different shapes of primordial non-Gaussianity; in particular we focus on angle-dependent non-Gaussianity arising from primordial anisotropic sources, whose bispectrum has an angle dependence between the three wavevectors that is characterized by Legendre polynomials PL and expansion coefficients cL. We provide forecasts for measurements of galaxy power spectrum, finding that Large-Scale Structure (LSS) data could allow measurements of primordial non-Gaussianity that would be competitive with, or improve upon, current constraints set by CMB experiments, for all the shapes considered. We argue that the best constraints will come from the possibility to assign redshift information to radio galaxy surveys, and investigate a few possible scenarios for the EMU and SKA surveys. A realistic (futuristic) modeling could provide constraints of fNLloc ≈ 1(0 . 5) for the local shape, fNL of O(10) (O(1)) for the orthogonal, equilateral and folded shapes, and cL=1 ≈ 80(2) , cL=2 ≈ 400(10) for angle-dependent non-Gaussianity showing that only futuristic galaxy surveys will be able to set strong constraints on these models. Nevertheless, the more futuristic forecasts show the potential of LSS analyses to considerably improve current constraints on non-Gaussianity, and so on models of the primordial Universe. Finally, we find the minimum requirements that would be needed to reach σ(cL=1) = 10, which can be considered as a typical (lower) value predicted by some (inflationary) models.

  4. Studying The Spectral Shape And The X-ray/uv Variability Of Active Galactic Nuclei With Data From Swift And Xmm Archives

    NASA Astrophysics Data System (ADS)

    Turriziani, Sara

    2011-01-01

    Many efforts have been made in understanding the underlying origin of variability in Active Galactic Nuclei (AGN), but at present they could give still no conclusive answers. Since a deeper knowledge of variability will enable to understand better the accretion process onto supermassive black holes, I built the first ensemble struction function analysis of the X-ray variability of samples of quasars with data from Swift and XMM-Newton archives in order to study the average properties of their variability. Moreover, it is known that UV and X-ray luminosities of quasars are correlated and recent studies quantified this relation across 5 orders of magnitude. In this context, I presents results on the X-ray/UV ratio from simultaneous observations in UV and X-ray bands of a sample of quasars with data from XMM-Newton archive. Lastly, I will present a complete sample of Swift/SDSS faint blazars and other non-thermal dominated AGNs. I used this sample to calculate the general statistical properties of faint blazars and radio galaxies and in particular their Radio LogN-LogS with fluxes down to 10 mJy, in order to gain knowledge on the contribution to Cosmic Microwave Background (CMB) and gamma-ray background radiation from the faint tail of the radio population. I acknowledge financial support through Grant ASI I/088/06/0.

  5. Observations of rich clusters of galaxies at metre wavelengths

    NASA Technical Reports Server (NTRS)

    Cane, H. V.; Erickson, W. C.; Hanisch, R. J.; Turner, P. J.

    1981-01-01

    Observations have been made at 10 frequencies between 50 and 120 MHz of 17 rich, X-ray emitting clusters of galaxies with the 78 x 156 m dipole array al Llanherne. The observed flux densities were compared to the flux densities expected on the basis of the known discrete sources in the fields. In no case was a significant flux excess found that might have indicated the presence of a diffuse halo component of radio emission in the cluster. For those clusters in which spectral indices could be determined, the spectra all tend to be much steeper than is normal for extragalactic radio sources, although a strict correlation between the X-ray luminosity and the low-frequency radio luminosity or spectral index is not found. The occurrence of large halo sources such as that which is present in the Coma cluster seems to be quite unusual.

  6. Radio AGN in the local universe: unification, triggering and evolution

    NASA Astrophysics Data System (ADS)

    Tadhunter, Clive

    2016-06-01

    Associated with one of the most important forms of active galactic nucleus (AGN) feedback, and showing a strong preference for giant elliptical host galaxies, radio AGN (L_{1.4 GHz} > 10^{24} W Hz^{-1}) are a key sub-class of the overall AGN population. Recently their study has benefitted dramatically from the availability of high-quality data covering the X-ray to far-IR wavelength range obtained with the current generation of ground- and space-based telescope facilities. Reflecting this progress, here I review our current state of understanding of the population of radio AGN at low and intermediate redshifts (z < 0.7), concentrating on their nuclear AGN and host galaxy properties, and covering three interlocking themes: the classification of radio AGN and its interpretation; the triggering and fuelling of the jet and AGN activity; and the evolution of the host galaxies. I show that much of the observed diversity in the AGN properties of radio AGN can be explained in terms of a combination of orientation/anisotropy, mass accretion rate, and variability effects. The detailed morphologies of the host galaxies are consistent with the triggering of strong-line radio galaxies (SLRG) in galaxy mergers. However, the star formation properties and cool ISM contents suggest that the triggering mergers are relatively minor in terms of their gas masses in most cases, and would not lead to major growth of the supermassive black holes and stellar bulges; therefore, apart from a minority (<20 %) that show evidence for higher star formation rates and more massive cool ISM reservoirs, the SLRG represent late-time re-triggering of activity in mature giant elliptical galaxies. In contrast, the host and environmental properties of weak-line radio galaxies (WLRG) with Fanaroff-Riley class I radio morphologies are consistent with more gradual fuelling of the activity via gas accretion at low rates onto the supermassive black holes.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Gasperin, F.; Ogrean, G. A.; van Weeren, R. J.

    We report that extended steep-spectrum radio emission in a galaxy cluster is usually associated with a recent merger. However, given the complex scenario of galaxy cluster mergers, many of the discovered sources hardly fit into the strict boundaries of a precise taxonomy. This is especially true for radio phoenixes that do not have very well defined observational criteria. Radio phoenixes are aged radio galaxy lobes whose emission is reactivated by compression or other mechanisms. Here in this paper, we present the detection of a radio phoenix close to the moment of its formation. The source is located in Abell 1033,more » a peculiar galaxy cluster which underwent a recent merger. To support our claim, we present unpublished Westerbork Synthesis Radio Telescope and Chandra observations together with archival data from the Very Large Array and the Sloan Digital Sky Survey. We discover the presence of two subclusters displaced along the N–S direction. The two subclusters probably underwent a recent merger which is the cause of a moderately perturbed X-ray brightness distribution. A steep-spectrum extended radio source very close to an active galactic nucleus (AGN) is proposed to be a newly born radio phoenix: the AGN lobes have been displaced/compressed by shocks formed during the merger event. This scenario explains the source location, morphology, spectral index, and brightness. Finally, we show evidence of a density discontinuity close to the radio phoenix and discuss the consequences of its presence.« less

  8. Investigating source confusion in PMN J1603-4904

    NASA Astrophysics Data System (ADS)

    Krauß, F.; Kreter, M.; Müller, C.; Markowitz, A.; Böck, M.; Burnett, T.; Dauser, T.; Kadler, M.; Kreikenbohm, A.; Ojha, R.; Wilms, J.

    2018-02-01

    PMN J1603-4904 is a likely member of the rare class of γ-ray emitting young radio galaxies. Only one other source, PKS 1718-649, has been confirmed so far. These objects, which may transition into larger radio galaxies, are a stepping stone to understanding AGN evolution. It is not completely clear how these young galaxies, seen edge-on, can produce high-energy γ rays. PMN J1603-4904 has been detected by TANAMI Very Long Baseline Interferometry (VLBI) observations and has been followed-up with multiwavelength observations. A Fermi Gamma-ray Space Telescope Large Area Telescope (Fermi-LAT) γ-ray source has been associated with this young galaxy in the LAT catalogs. We have obtained Chandra observations of the source to consider the possibility of source confusion due to the relatively large positional uncertainty of Fermi-LAT. The goal was to investigate the possibility of other X-ray bright sources in the vicinity of PMN J1603-4904 that could be counterparts to the γ-ray emission. With Chandra/ACIS, we find no other sources in the uncertainty ellipse of Fermi-LAT data, which includes an improved localization analysis of eight years of data. We further study the X-ray fluxes and spectra. We conclude that PMN J1603-4904 is indeed the second confirmed γ-ray bright young radio galaxy.

  9. Chandra Observations of the Nuclei of Radio Galaxies: 3C 295 and Hydra A

    NASA Technical Reports Server (NTRS)

    Harris, D. E.; McNamara, B. R.; David, L. P.; Lavoie, Anthony R. (Technical Monitor)

    2000-01-01

    The angular resolution available with Chandra allows us to isolate the X-ray emission from the nucleus of many radio galaxies and obtain their spectra. As expected from unification schemes, spectra so far obtained can best be interpreted as heavily absorbed power laws. We present the spectral parameters so derived for 3C 295 and Hydra A and compare them to data obtained at other wavelengths.

  10. A hot X-ray filament associated with A3017 galaxy cluster

    NASA Astrophysics Data System (ADS)

    Parekh, V.; Durret, F.; Padmanabh, P.; Pandge, M. B.

    2017-09-01

    Recent simulations and observations have shown large-scale filaments in the cosmic web connecting nodes, with accreting materials (baryonic and dark matter) flowing through them. Current high-sensitivity observations also show that the propagation of shocks through filaments can heat them up and make filaments visible between two or more galaxy clusters or around massive clusters, based on optical and/or X-ray observations. We are reporting here the special case of the cluster A3017 associated with a hot filament. The temperature of the filament is 3.4^{-0.77}_{+1.30} keV and its length is ∼1 Mpc. We have analysed its archival Chandra data and report various properties. We also analysed GMRT 235/610 MHz radio data. Radio observations have revealed symmetric two-sided lobes that fill cavities in the A3017 cluster core region, associated with central active galactic nucleus. In the radio map, we also noticed a peculiar linear vertical radio structure in the X-ray filament region which might be associated with a cosmic filament shock. This radio structure could be a radio phoenix or old plasma where an old relativistic population is re-accelerated by shock propagation. Finally, we put an upper limit on the radio luminosity of the filament region.

  11. The Highest Resolution X-ray View of the Nuclear Region of NGC 4151

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng; Fabbiano, G.; Karovska, M.; Elvis, M.; Risaliti, G.; Zezas, A.; Mundell, C. G.

    2009-09-01

    We report high resolution imaging of the nucleus of the Seyfert 1 galaxy NGC 4151 obtained with a 50 ks Chandra HRC observation. The HRC image resolves the emission on spatial scales of 0.5 arcsec (30 pc), showing an extended X-ray morphology overall consistent with the narrow line region seen in optical line emission. Removal of the bright point-like nuclear source and image deconvolution technique both reveal X-ray enhancements that closely match the substructures seen in the HST [OIII] image and prominent knots in the radio jet. We find that most of the NLR clouds in NGC 4151 have [OIII] to soft X-ray ratio consistent with the values observed in NLRs of some Seyfert 2 galaxies, which indicates a uniform ionization parameter even at large radii and a density dependence ∝ r^{-2} as expected in the disk wind scenario. We examine various X-ray emission mechanisms of the radio jet and consider thermal emission from interaction between radio outflow and the NLR clouds the most probable origin for the X-ray emission associated with the jet.

  12. Development of a hot intergalactic medium in spiral-rich galaxy groups: the example of HCG 16

    NASA Astrophysics Data System (ADS)

    Vrtilek, Jan M.; O'Sullivan, Ewan; David, Laurence P.; Giacintucci, Simona; Zezas, Andreas; Mamon, Gary; Ponman, Trevor J; Raychaudhury, Somak

    2014-08-01

    Galaxy groups provide the environment in which the majority of galaxies evolve, with low velocity dispersions and small galaxy separations that are conducive to tidal interactions and mergers between group members. X-ray observations reveal the frequent presence of hot gas in groups, with larger quantities linked to early-type galaxies, whereas cold gas is common in spiral-dominated groups. Clarification of the origin and role of the hot medium is central to the understanding of the evolution of the galaxy population and of all phases of the IGM.We here report on the nuclear activity, star formation and the high luminosity X-ray binary populations of the spiral-dominated, likely not yet virialized, group HCG 16, as well as on its intra-group medium, based principally on deep (150 ks) Chandra X-ray observations of the group, as well as new Giant Metrewave Radio Telescope (GMRT) 610 MHz radio data. We confirm the presence of obscured active nuclei in NGC 833 and NGC 835, and identify what may be a previously unrecognized nuclear source in NGC 838; all are variable. NGC 838 and NGC 839 are both starburst-dominated systems, with galactic superwinds that show X-ray and radio evidence of IGM interaction, but only weak nuclear activity; NGC 848 is also dominated by emission from its starburst.We confirm the existence of a faint, extended low-temperature (0.3 keV) intra-group medium, a subject of some uncertainty in earlier studies. The diffuse emission is strongest in a ridge linking the four principal galaxies, and is at least partly coincident with a large-scale HI tidal filament, indicating that the IGM in the inner part of the group is highly multi-phase. We conclude that starburst winds and shock-heating of stripped HI may play an important role in the early stages of IGM formation, with galactic winds contributing 20-40% of the observed hot gas in the system.

  13. Suzaku observations of γ-ray bright radio galaxies: Origin of the x-ray emission and broadband modeling

    DOE PAGES

    Fukazawa, Yasushi; Finke, Justin; Stawarz, Łukasz; ...

    2014-12-24

    Here, we performed a systematic X-ray study of eight nearby γ-ray bright radio galaxies with Suzaku in order to understand the origins of their X-ray emissions. The Suzaku spectra for five of those have been presented previously, while the remaining three (M87, PKS 0625–354, and 3C 78) are presented here for the first time. Based on the Fe-K line strength, X-ray variability, and X-ray power-law photon indices, and using additional information on the [O III] line emission, we argue for a jet origin of the observed X-ray emission in these three sources. We also analyzed five years of Fermi Largemore » Area Telescope (LAT) GeV gamma-ray data on PKS 0625–354 and 3C 78 to understand these sources within the blazar paradigm. We found significant γ-ray variability in the former object. Overall, we note that the Suzaku spectra for both PKS 0625–354 and 3C 78 are rather soft, while the LAT spectra are unusually hard when compared with other γ-ray detected low-power (FR I) radio galaxies. We demonstrate that the constructed broadband spectral energy distributions of PKS 0625–354 and 3C 78 are well described by a one-zone synchrotron/synchrotron self-Compton model. The results of the modeling indicate lower bulk Lorentz factors compared to those typically found in other BL Lacertae (BL Lac) objects, but consistent with the values inferred from modeling other LAT-detected FR I radio galaxies. Interestingly, the modeling also implies very high peak (~10 16 Hz) synchrotron frequencies in the two analyzed sources, contrary to previously suggested scenarios for Fanaroff-Riley (FR) type I/BL Lac unification. Finally, we discuss the implications of our findings in the context of the FR I/BL Lac unification schemes.« less

  14. The VLA-COSMOS 3 GHz Large Project: The infrared-radio correlation of star-forming galaxies and AGN to z ≲ 6

    NASA Astrophysics Data System (ADS)

    Delhaize, J.; Smolčić, V.; Delvecchio, I.; Novak, M.; Sargent, M.; Baran, N.; Magnelli, B.; Zamorani, G.; Schinnerer, E.; Murphy, E. J.; Aravena, M.; Berta, S.; Bondi, M.; Capak, P.; Carilli, C.; Ciliegi, P.; Civano, F.; Ilbert, O.; Karim, A.; Laigle, C.; Le Fèvre, O.; Marchesi, S.; McCracken, H. J.; Salvato, M.; Seymour, N.; Tasca, L.

    2017-06-01

    We examine the behaviour of the infrared-radio correlation (IRRC) over the range 0

  15. Digging for red nuggets: discovery of hot halos surrounding massive, compact, relic galaxies

    NASA Astrophysics Data System (ADS)

    Werner, N.; Lakhchaura, K.; Canning, R. E. A.; Gaspari, M.; Simionescu, A.

    2018-04-01

    We present the results of Chandra X-ray observations of the isolated, massive, compact, relic galaxies MRK 1216 and PGC 032873. Compact massive galaxies observed at z > 2, also called red nuggets, formed in quick dissipative events and later grew by dry mergers into the local giant ellipticals. Due to the stochastic nature of mergers, a few of the primordial massive galaxies avoided the mergers and remained untouched over cosmic time. We find that the hot atmosphere surrounding MRK 1216 extends far beyond the stellar population and has an 0.5-7 keV X-ray luminosity of LX = (7.0 ± 0.2) × 1041 erg s-1, which is similar to the nearby X-ray bright giant ellipticals. The hot gas has a short central cooling time of ˜50 Myr and the galaxy has a ˜13 Gyr old stellar population. The presence of an X-ray atmosphere with a short nominal cooling time and the lack of young stars indicate the presence of a sustained heating source, which prevented star formation since the dissipative origin of the galaxy 13 Gyrs ago. The central temperature peak and the presence of radio emission in the core of the galaxy indicate that the heating source is radio-mechanical AGN feedback. Given that both MRK 1216 and PGC 032873 appear to have evolved in isolation, the order of magnitude difference in their current X-ray luminosity could be traced back to a difference in the ferocity of the AGN outbursts in these systems. Finally, we discuss the potential connection between the presence of hot halos around such massive galaxies and the growth of super/over-massive black holes via chaotic cold accretion.

  16. Digging for red nuggets: discovery of hot haloes surrounding massive, compact, relic galaxies

    NASA Astrophysics Data System (ADS)

    Werner, N.; Lakhchaura, K.; Canning, R. E. A.; Gaspari, M.; Simionescu, A.

    2018-07-01

    We present the results of Chandra X-ray observations of the isolated, massive, compact, relic galaxies MRK 1216 and PGC 032873. Compact massive galaxies observed at z > 2, also called red nuggets, formed in quick dissipative events and later grew by dry mergers into the local giant ellipticals. Due to the stochastic nature of mergers, a few of the primordial massive galaxies avoided the mergers and remained untouched over cosmic time. We find that the hot atmosphere surrounding MRK 1216 extends far beyond the stellar population and has a 0.5-7 keV X-ray luminosity of LX = (7.0 ± 0.2) × 1041 erg s-1, which is similar to the nearby X-ray bright giant ellipticals. The hot gas has a short central cooling time of ˜50 Myr and the galaxy has an ˜13-Gyr-old stellar population. The presence of an X-ray atmosphere with a short nominal cooling time and the lack of young stars indicate the presence of a sustained heating source, which prevented star formation since the dissipative origin of the galaxy 13 Gyr ago. The central temperature peak and the presence of radio emission in the core of the galaxy indicate that the heating source is radio-mechanical active galactic nucleus (AGN) feedback. Given that both MRK 1216 and PGC 032873 appear to have evolved in isolation, the order of magnitude difference in their current X-ray luminosity could be traced back to a difference in the ferocity of the AGN outbursts in these systems. Finally, we discuss the potential connection between the presence of hot haloes around such massive galaxies and the growth of super-/overmassive black holes via chaotic cold accretion.

  17. The changing source of X-ray reflection in the radio-intermediate Seyfert 1 galaxy III Zw 2

    NASA Astrophysics Data System (ADS)

    Gonzalez, A. G.; Waddell, S. G. H.; Gallo, L. C.

    2018-03-01

    We report on X-ray observations of the radio-intermediate, X-ray bright Seyfert 1 galaxy, III Zw 2, obtained with XMM-Newton, Suzaku, and Swift over the past 17 yr. The source brightness varies significantly over yearly time-scales, but more modestly over periods of days. Pointed observations with XMM-Newton in 2000 and Suzaku in 2011 show spectral differences despite comparable X-ray fluxes. The Suzaku spectra are consistent with a power-law continuum and a narrow Gaussian emission feature at ˜6.4 keV, whereas the earlier XMM-Newton spectrum requires a broader Gaussian profile and soft-excess below ˜2 keV. A potential interpretation is that the primary power-law emission, perhaps from a jet base, preferentially illuminates the inner accretion disc in 2000, but the distant torus in 2011. The interpretation could be consistent with the hypothesized precessing radio jet in III Zw 2 that may have originated from disc instabilities due to an ongoing merging event.

  18. CONNECTION BETWEEN THE ACCRETION DISK AND JET IN THE RADIO GALAXY 3C 111

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Ritaban; Marscher, Alan P.; Jorstad, Svetlana G.

    2011-06-10

    We present the results of extensive multi-frequency monitoring of the radio galaxy 3C 111 between 2004 and 2010 at X-ray (2.4-10 keV), optical (R band), and radio (14.5, 37, and 230 GHz) wave bands, as well as multi-epoch imaging with the Very Long Baseline Array (VLBA) at 43 GHz. Over the six years of observation, significant dips in the X-ray light curve are followed by ejections of bright superluminal knots in the VLBA images. This shows a clear connection between the radiative state near the black hole, where the X-rays are produced, and events in the jet. The X-ray continuummore » flux and Fe line intensity are strongly correlated, with a time lag shorter than 90 days and consistent with zero. This implies that the Fe line is generated within 90 lt-day of the source of the X-ray continuum. The power spectral density function of X-ray variations contains a break, with a steeper slope at shorter timescales. The break timescale of 13{sup +12}{sub -6} days is commensurate with scaling according to the mass of the central black hole based on observations of Seyfert galaxies and black hole X-ray binaries (BHXRBs). The data are consistent with the standard paradigm, in which the X-rays are predominantly produced by inverse Compton scattering of thermal optical/UV seed photons from the accretion disk by a distribution of hot electrons-the corona-situated near the disk. Most of the optical emission is generated in the accretion disk due to reprocessing of the X-ray emission. The relationships that we have uncovered between the accretion disk and the jet in 3C 111, as well as in the Fanaroff-Riley class I radio galaxy 3C 120 in a previous paper, support the paradigm that active galactic nuclei and Galactic BHXRBs are fundamentally similar, with characteristic time and size scales proportional to the mass of the central black hole.« less

  19. The vertical disk structure of the edge-on spiral galaxy NGC 3079

    NASA Technical Reports Server (NTRS)

    Veilleux, S.; Bland-Hawthorn, Jonathan; Cecil, G.; Tully, R. B.

    1993-01-01

    NGC 3079 is an edge-on SB(s)c galaxy at a redshift of 1225 km/s relative to the Local Group. Earlier researchers found a spectacular 'figure-eight' radio structure aligned along the minor axis of the galaxy, centered on the nucleus, and extending 3 kpc above and below the plane. The geometry of this structure and the evidence of unusually high nuclear gas velocities suggest that a wind-type outflow from the nucleus is taking place. The disk of NGC 3079 is also remarkable: it is extremely rich in H 2 regions and is the only unambiguous example of a galaxy outside M31 and our own Galaxy to exhibit 'Heiles-like' shells. Other researchers have also identified a nebulosity with a ragged X-shaped morphology formed by a system of lumpy filaments with individual lengths of 3 - 5 kpc. They suggest that this material is ambient halo gas entrained into the boundary layers of the nuclear outflow. The complex structure of the line emission in NGC 3079 makes this object an ideal target for an imaging spectroscopic study. The present paper reports the preliminary results of such a study.

  20. Cold Fronts in Clusters of Galaxies: Observations and Modeling

    NASA Technical Reports Server (NTRS)

    Markevitch, Maxim

    2012-01-01

    Mergers of galaxy clusters -- some of the most energetic events in the Universe -- produce disturbances in hot intracluster medium, such as shocks and cold fronts, that can be used as tools to study the physics of galaxy clusters. Cold fronts may constrain viscosity and the structure and strength of the cluster magnetic fields. Combined with radio data, these observations also shed light on the production of ultrarelativistic particles that are known to coexist with the cluster thermal plasma. This talk will summarize the current X-ray observations of cluster mergers, as well as some recent radio data and high resolution hydrodynamic simulations.

  1. The most massive black holes on the Fundamental Plane of black hole accretion

    NASA Astrophysics Data System (ADS)

    Mezcua, M.; Hlavacek-Larrondo, J.; Lucey, J. R.; Hogan, M. T.; Edge, A. C.; McNamara, B. R.

    2018-02-01

    We perform a detailed study of the location of brightest cluster galaxies (BCGs) on the Fundamental Plane of black hole (BH) accretion, which is an empirical correlation between a BH X-ray and radio luminosity and mass supported by theoretical models of accretion. The sample comprises 72 BCGs out to z ˜ 0.3 and with reliable nuclear X-ray and radio luminosities. These are found to correlate as L_X ∝ L_R^{0.75 ± 0.08}, favouring an advection-dominated accretion flow as the origin of the X-ray emission. BCGs are found to be on average offset from the Fundamental Plane such that their BH masses seem to be underestimated by the MBH-MK relation a factor ˜10. The offset is not explained by jet synchrotron cooling and is independent of emission process or amount of cluster gas cooling. Those core-dominated BCGs are found to be more significantly offset than those with weak core radio emission. For BCGs to on average follow the Fundamental Plane, a large fraction ( ˜ 40 per cent) should have BH masses >1010 M⊙ and thus host ultramassive BHs. The local BH-galaxy scaling relations would not hold for these extreme objects. The possible explanations for their formation, either via a two-phase process (the BH formed first, the galaxy grows later) or as descendants of high-z seed BHs, challenge the current paradigm of a synchronized galaxy-BH growth.

  2. The Most Distant X-Ray Clusters

    NASA Technical Reports Server (NTRS)

    Dickinson, Mark

    1999-01-01

    In this program we have used ROSAT (Roentgen Satellite Mission) to observe X-ray emission around several high redshift radio galaxies in a search for extended, hot plasma which may indicate the presence of a rich galaxy cluster. When this program was begun, massive, X-ray emitting galaxy clusters were known to exist out to to z=0.8, but no more distant examples had been identified. However, we had identified several apparently rich clusters around 3CR radio galaxies at z greater than 0.8, and hoped to use ROSAT to confirm the nature of these structures as massive, virialized clusters. We have written up our results and submitted them as a paper to the Astrophysical Journal. This paper has been refereed and requires some significant revisions to accommodate the referees comments. We are in the process of doing this, adding some additional analysis as well. We will resubmit the paper early in 2000, and hopefully will meet with the referee's approval. We are including three copies of the submitted paper here, although it has not yet been accepted for publication.

  3. THE {gamma}-RAY EMISSION REGION IN THE FANAROFF-RILEY II RADIO GALAXY 3C 111

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grandi, P.; Torresi, E.; Stanghellini, C., E-mail: grandi@iasfbo.inaf.it, E-mail: torresi@iasfbo.inaf.it, E-mail: cstan@ira.inaf.it

    The broad-line radio galaxy 3C 111, characterized by a Fanaroff-Riley II (FRII) radio morphology, is one of the sources of the misaligned active galactic nucleus sample, consisting of radio galaxies and steep spectrum radio quasars, recently detected by the Fermi Large Area Telescope (LAT). Our analysis of the 24 month {gamma}-ray light curve shows that 3C 111 was only occasionally detected at high energies. It was bright at the end of 2008 and faint, below the Fermi-LAT sensitivity threshold, for the rest of the time. A multifrequency campaign of 3C 111, ongoing in the same period, revealed an increase ofmore » the millimeter, optical, and X-ray fluxes in 2008 September-November, interpreted by Chatterjee et al. as due to the passage of a superluminal knot through the jet core. The temporal coincidence of the millimeter-optical-X-ray outburst with the GeV activity suggests a cospatiality of the events, allowing, for the first time, the localization of the {gamma}-ray dissipative zone in an FRII jet. We argue that the GeV photons of 3C 111 are produced in a compact region confined within 0.1 pc and at a distance of about 0.3 pc from the black hole.« less

  4. FERMI/LAT OBSERVATIONS OF SWIFT/BAT SEYFERT GALAXIES: ON THE CONTRIBUTION OF RADIO-QUIET ACTIVE GALACTIC NUCLEI TO THE EXTRAGALACTIC {gamma}-RAY BACKGROUND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teng, Stacy H.; Mushotzky, Richard F.; Reynolds, Christopher S.

    2011-12-01

    We present the analysis of 2.1 years of Fermi Large Area Telescope (LAT) data on 491 Seyfert galaxies detected by the Swift Burst Alert Telescope (BAT) survey. Only the two nearest objects, NGC 1068 and NGC 4945, which were identified in the Fermi first year catalog, are detected. Using Swift/BAT and radio 20 cm fluxes, we define a new radio-loudness parameter R{sub X,BAT} where radio-loud objects have log R{sub X,BAT} > -4.7. Based on this parameter, only radio-loud sources are detected by Fermi/LAT. An upper limit to the flux of the undetected sources is derived to be {approx}2 Multiplication-Sign 10{supmore » -11} photons cm{sup -2} s{sup -1}, approximately seven times lower than the observed flux of NGC 1068. Assuming a median redshift of 0.031, this implies an upper limit to the {gamma}-ray (1-100 GeV) luminosity of {approx}< 3 Multiplication-Sign 10{sup 41} erg s{sup -1}. In addition, we identified 120 new Fermi/LAT sources near the Swift/BAT Seyfert galaxies with significant Fermi/LAT detections. A majority of these objects do not have Swift/BAT counterparts, but their possible optical counterparts include blazars, flat-spectrum radio quasars, and quasars.« less

  5. Markov Chain Monte Carlo Joint Analysis of Chandra X-Ray Imaging Spectroscopy and Sunyaev-Zel'dovich Effect Data

    NASA Technical Reports Server (NTRS)

    Bonamente, Massimillano; Joy, Marshall K.; Carlstrom, John E.; Reese, Erik D.; LaRoque, Samuel J.

    2004-01-01

    X-ray and Sunyaev-Zel'dovich effect data can be combined to determine the distance to galaxy clusters. High-resolution X-ray data are now available from Chandra, which provides both spatial and spectral information, and Sunyaev-Zel'dovich effect data were obtained from the BIMA and Owens Valley Radio Observatory (OVRO) arrays. We introduce a Markov Chain Monte Carlo procedure for the joint analysis of X-ray and Sunyaev- Zel'dovich effect data. The advantages of this method are the high computational efficiency and the ability to measure simultaneously the probability distribution of all parameters of interest, such as the spatial and spectral properties of the cluster gas and also for derivative quantities such as the distance to the cluster. We demonstrate this technique by applying it to the Chandra X-ray data and the OVRO radio data for the galaxy cluster A611. Comparisons with traditional likelihood ratio methods reveal the robustness of the method. This method will be used in follow-up paper to determine the distances to a large sample of galaxy cluster.

  6. CAVITIES AND SHOCKS IN THE GALAXY GROUP HCG 62 AS REVEALED BY CHANDRA, XMM-NEWTON, AND GIANT METREWAVE RADIO TELESCOPE DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gitti, Myriam; O'Sullivan, Ewan; Giacintucci, Simona

    2010-05-01

    We report on the results of an analysis of Chandra, XMM-Newton, and new Giant Metrewave Radio Telescope (GMRT) data of the X-ray bright compact group of galaxies HCG 62, which is one of the few groups known to possess clear, small X-ray cavities in the inner regions. This is part of an ongoing X-ray/low-frequency radio study of 18 groups, initially chosen for the availability of good-quality X-ray data and evidence for active galactic nucleus/hot gas interaction. At higher frequency (1.4 GHz), the HCG 62 cavity system shows minimal if any radio emission, but the new GMRT observations at 235 MHzmore » and 610 MHz clearly detect extended low-frequency emission from radio lobes corresponding to the cavities. By means of the synergy of X-ray and low-frequency radio observations, we compare and discuss the morphology, luminosity, and pressure of the gas and of the radio source. We find that the radio source is radiatively inefficient, with a ratio of radio luminosity to mechanical cavity power of {approx}10{sup -4}, and that the radio pressure of the lobes is about 1 order of magnitude lower than the X-ray pressure of the surrounding thermal gas. Thanks to the high spatial resolution of the Chandra surface brightness and temperature profiles, we also identify a shock front located at 36 kpc to the southwest of the group center, close to the southern radio lobe, with a Mach number {approx}1.5 and a total power which is about 1 order of magnitude higher than the cavity power. Such a shock may have heated the gas in the southern region, as indicated by the temperature map. The shock may also explain the arc-like region of enriched gas seen in the iron abundance map, as this may be produced by a non-Maxwellian electron distribution near its front.« less

  7. Abell 1033: birth of a radio phoenix

    DOE PAGES

    de Gasperin, F.; Ogrean, G. A.; van Weeren, R. J.; ...

    2015-02-26

    We report that extended steep-spectrum radio emission in a galaxy cluster is usually associated with a recent merger. However, given the complex scenario of galaxy cluster mergers, many of the discovered sources hardly fit into the strict boundaries of a precise taxonomy. This is especially true for radio phoenixes that do not have very well defined observational criteria. Radio phoenixes are aged radio galaxy lobes whose emission is reactivated by compression or other mechanisms. Here in this paper, we present the detection of a radio phoenix close to the moment of its formation. The source is located in Abell 1033,more » a peculiar galaxy cluster which underwent a recent merger. To support our claim, we present unpublished Westerbork Synthesis Radio Telescope and Chandra observations together with archival data from the Very Large Array and the Sloan Digital Sky Survey. We discover the presence of two subclusters displaced along the N–S direction. The two subclusters probably underwent a recent merger which is the cause of a moderately perturbed X-ray brightness distribution. A steep-spectrum extended radio source very close to an active galactic nucleus (AGN) is proposed to be a newly born radio phoenix: the AGN lobes have been displaced/compressed by shocks formed during the merger event. This scenario explains the source location, morphology, spectral index, and brightness. Finally, we show evidence of a density discontinuity close to the radio phoenix and discuss the consequences of its presence.« less

  8. The AGN-driven shock in NGC 4472

    NASA Astrophysics Data System (ADS)

    Gendron-Marsolais, Marie-Lou; Kraft, Ralph P.; Bogdan, Akos; Forman, William R.; Hlavacek-Larrondo, Julie; Jones, Christine; Nulsen, Paul; Randall, Scott W.; Roediger, Elke

    2016-04-01

    Chandra observations of most cool core clusters of galaxies have revealed large cavities where the inflation of the jet-driven radio bubbles displace the cluster gas. In a few cases, outburst shocks, likely driven by cavity inflation, are detected in the ambient gas. AGN-driven shocks may be key to balancing the radiative losses as shocks will increase the entropy of, and thereby heat, the diffuse gas. We will present initial results on deep Chandra observations of the nearby (D=17 Mpc) early-type massive elliptical galaxy NGC 4472, the most optically luminous galaxy in the local Universe, lying on the outskirts of the Virgo cluster. The X-ray observations show clear cavities in the X-ray emission at the position of the radio lobes, and rings of enhanced X-ray emission just beyond the lobes. We will present results from our analysis to determine whether the lobes are inflating supersonically or are rising buoyantly. We will compare the energy and power of this AGN outburst with previous powerful radio outbursts in clusters and groups to determine whether this outburst lies on the same scaling relations or whether it represents a new category of outburst.

  9. Simulations of the galaxy cluster CIZA J2242.8+5301 - I. Thermal model and shock properties

    NASA Astrophysics Data System (ADS)

    Donnert, J. M. F.; Beck, A. M.; Dolag, K.; Röttgering, H. J. A.

    2017-11-01

    The giant radio relic in CIZA J2242.8+5301 provides clear evidence of an Mpc-sized shock in a massive merging galaxy cluster. Here, we present idealized SPH hydrodynamical and collisionless dark matter simulations, aiming to find a model that is consistent with that large range of observations of this galaxy cluster. We first show that in the northern shock, the observed radio spectral index profile and integrated radio spectrum are consistent with the observed upstream X-ray temperature. Using simulations, we first find that only a cool-core versus non-cool-core merger can lead to the observed elongated X-ray morphology. We then carry out simulations for two merging clusters assuming a range of NFW and β-model density profiles and hydrostatic equilibrium. We find a fiducial model that mimics the overall morphology of the shock structures, has a total mass of 1.6 × 1015 M⊙ and a mass ratio of 1.76. For this model, the derived Mach number for the northern shock is 4.5. This is almost a factor 2 higher compared to the observational determination of the Mach number using X-ray observations or measurements of the radio injection spectral index. We could not find numerical models that both fit the X-ray properties and yielded such low Mach numbers. We discuss various ways of understanding this difference and argue that deep X-ray observations of CIZA J2242.8+5301 will be able to test our model and reconcile the differences.

  10. The Complete Local-Volume Groups Sample (CLoGS): Early results from X-ray and radio observations

    NASA Astrophysics Data System (ADS)

    Vrtilek, Jan M.; O'Sullivan, Ewan; David, Laurence P.; Giacintucci, Simona; Kolokythas, Konstantinos

    2017-08-01

    Although the group environment is the dominant locus of galaxy evolution (in contrast to rich clusters, which contain only a few percent of galaxies), there has been a lack of reliable, representative group samples in the local Universe. In particular, X-ray selected samples are strongly biased in favor of the X-ray bright, centrally-concentrated cool-core systems. In response, we have designed the Complete Local-Volume Groups Sample (CLoGS), an optically-selected statistically-complete sample of 53 groups within 80 Mpc which is intended to overcome the limitations of X-ray selected samples and serve as a representative survey of groups in the local Universe. We have supplemented X-ray data from Chandra and XMM (70% complete to date, using both archival and new observations, with a 26-group high richness subsample 100% complete) with GMRT radio continuum observations (at 235 and 610 MHz, complete for the entire sample). CLoGS includes groups with a wide variety of properties in terms of galaxy population, hot gas content, and AGN power. We here describe early results from the survey, including the range of AGN activity observed in the dominant galaxies, the relative fraction of cool-core and non-cool-core groups in our sample, and the degree of disturbance observed in the IGM.

  11. EVN observations of the radio galaxy M87 following a TeV flare

    NASA Astrophysics Data System (ADS)

    Giroletti, M.; Giovannini, G.; Beilicke, M.; Cesarini, A.; Krawczynski, H.

    2010-02-01

    We report on EVN observations of the radio galaxy M87, taken at 5 GHz on 2010 Feb 10. Data were acquired by 7 radio telescopes from 21:40 UT on Feb 10 to 8:30 UT on Feb 11, directly streamed to the central data processor at JIVE, and correlated in real-time (eVLBI). This permits us to promptly report on the status of the radio jet of the source, following the increase in gamma ray emission above 100GeV reported by MAGIC (ATel #2431) The observations have an angular resolution of about 7 mas x 3 mas and rms noise of 0.12 mJy/beam.

  12. Observational evidence for black holes

    NASA Astrophysics Data System (ADS)

    Hutchings, J. B.

    1985-02-01

    Observational data supporting the existence of black holes are presented graphically and characterized in a general review. Object classes discussed include quasars as galaxy cores, X-ray-emitting binaries (Cyg X-1, LMC X-3, and the apparent miniature quasar SS 433), radio galaxies and quasars with twin jets, and interacting galaxies. This evidence is found to strongly suggest that quasars are accreting black holes of mass about 10 to the 8th solar mass, that they formed more easily in earlier stages of the universe (corresponding to redshifts around 2), and that they are analogous in many ways to the stellar-mass object SS 433.

  13. Ghostly Glow Reveals a Hidden Class of Long-Wavelength Radio Emitters

    NASA Astrophysics Data System (ADS)

    2008-10-01

    (Washington, DC. 08)- A team of scientists, including astronomers from the Naval Research Laboratory (NRL), have detected long wavelength radio emission from a colliding, massive galaxy cluster which, surprisingly, is not detected at the shorter wavelengths typically seen in these objects. The discovery implies that existing radio telescopes have missed a large population of these colliding objects. It also provides an important confirmation of the theoretical prediction that colliding galaxy clusters accelerate electrons and other particles to very high energies through the process of turbulent waves. The team revealed their findings in the October 16, 2008 edition of Nature. This new population of objects is most easily detected at long wavelengths. Professor Greg Taylor of the University of New Mexico and scientific director of the Long Wavelength Array (LWA) points out, "This result is just the tip of the iceberg. When an emerging suite of much more powerful low frequency telescopes, including the LWA in New Mexico, turn their views to the cosmos, the sky will 'light up' with hundreds or even thousands of colliding galaxy clusters." NRL has played a key role in promoting the development of this generation of new instruments and is currently involved with the development of the LWA. NRL radio astronomer and LWA Project Scientist Namir Kassim says "Our discovery of a previously hidden class of low frequency cluster-radio sources is particularly important since the study of galaxy clusters was a primary motivation for development of the LWA." The discovery of the emission in the galaxy cluster Abell 521 (or A521 for short) was made using the Giant Metrewave Radiotelescope (GMRT) in India, and its long wavelength nature was confirmed by the National Science Foundation's (NRAO) Very Large Array (VLA) radio telescope in New Mexico. The attached image shows the radio emission at a wavelength of 125cm in red superimposed on a blue image made from data taken by the Chandra X-ray Observatory. X-ray Chandra X-ray Image The X-ray emission comes from hot thermal gas, a well-known sign-post of massive galaxy clusters. Furthermore, its elongated shape indicates that the cluster has undergone a recent violent collision or "merger event" in which another group or cluster of galaxies was swallowed up by the gravitational potential of the main cluster. Interferometrics Inc. and NRL scientist Tracy Clarke, who is also the LWA System Scientist, notes "In addition to teaching us about the nature of Dark Matter, merging clusters are also important in studies of the mysterious nature of Dark Energy. Understanding these two strange components of the Universe will help us understand its ultimate destiny." In the radio image there is a strong, oblong source of emission located on the lower left periphery of the X-ray gas detected by Chandra; this is a separate source. In the center of the cluster, within the region indicated by a dashed circle, there is radio emission which changes significantly with wavelength. At the longest wavelength (125 cm, shown) it is clearly detected, but at a wavelength of 49 cm it is much fainter, and it is almost entirely gone at 21 cm wavelength. This multi-wavelength picture of the diffuse emission is in good agreement with theoretical predictions for particle acceleration by turbulent waves generated by a violent collision. People Who Read This Also Read... Black Holes Have Simple Feeding Habits NASA’s Swift Satellite Catches First Supernova in The Act of Exploding Oldest Known Objects Are Surprisingly Immature Chandra Data Reveal Rapidly Whirling Black Holes In a broader astrophysical context, galaxy clusters are the largest gravitationally bound systems in the Universe and their collisions are the most energetic events since the Big Bang. Says team leader Gianfranco Brunetti (Instituto di Radioastronomia, Bologna, Italy), "The A521 system provides evidence that turbulence acts as a source of particle acceleration in an environment that is unique in the Universe due to its large spatial and temporal scales, and due to the low density and high temperature of the gas." The team included scientists from Instituto di Radioastronomia, the University of Bologna, the Smithsonian Astrophysical Observatory, the National Radio Astronomy Observatory, and the Naval Research Laboratory. Basic research in radio astronomy at the Naval Research Laboratory is supported by 6.1 base funding. The NRAO is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. The GMRT is run by the National Centre for Radio Astrophysics of the Tata Institute of Fundamental Research. The LWA, funding for which is provided by the Office of Naval Research, is led by the University of New Mexico, and includes NRL, The Applied Research Laboratory at the University of Texas at Austin, Virginia Tech, the Los Alamos National Laboratory, and the University of Iowa, with contributions and cooperation from NRAO. The Long Wavelength Array (LWA) website is http://lwa.unm.edu The Naval Research Laboratory is the Department of the Navy's corporate laboratory. NRL conducts a broad program of scientific research, technology, and advanced development. The Laboratory, with a total complement of nearly 2,500 personnel, is located in southwest Washington, DC, with other major sites at the Stennis Space Center, MS; and Monterey, CA.

  14. Radio Selection of the Most Distant Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Daddi, E.; Jin, S.; Strazzullo, V.; Sargent, M. T.; Wang, T.; Ferrari, C.; Schinnerer, E.; Smolčić, V.; Calabró, A.; Coogan, R.; Delhaize, J.; Delvecchio, I.; Elbaz, D.; Gobat, R.; Gu, Q.; Liu, D.; Novak, M.; Valentino, F.

    2017-09-01

    We show that the most distant X-ray-detected cluster known to date, Cl J1001 at {z}{spec}=2.506, hosts a strong overdensity of radio sources. Six of them are individually detected (within 10\\prime\\prime ) in deep 0\\buildrel{\\prime\\prime}\\over{.} 75 resolution VLA 3 GHz imaging, with {S}3{GHz}> 8 μ {Jy}. Of the six, an active galactic nucleus (AGN) likely affects the radio emission in two galaxies, while star formation is the dominant source powering the remaining four. We searched for cluster candidates over the full COSMOS 2 deg2 field using radio-detected 3 GHz sources and looking for peaks in {{{Σ }}}5 density maps. Cl J1001 is the strongest overdensity by far with > 10σ , with a simple {z}{phot}> 1.5 preselection. A cruder photometric rejection of z< 1 radio foregrounds leaves Cl J1001 as the second strongest overdensity, while even using all radio sources Cl J1001 remains among the four strongest projected overdensities. We conclude that there are great prospects for future deep and wide-area radio surveys to discover large samples of the first generation of forming galaxy clusters. In these remarkable structures, widespread star formation and AGN activity of massive galaxy cluster members, residing within the inner cluster core, will ultimately lead to radio continuum as one of the most effective means for their identification, with detection rates expected in the ballpark of 0.1-1 per square degree at z≳ 2.5. Samples of hundreds such high-redshift clusters could potentially constrain cosmological parameters and test cluster and galaxy formation models.

  15. The Luminosity Function of QSO Host Galaxies

    NASA Technical Reports Server (NTRS)

    Hamilton, Timothy S.; Casertano, Stefano; Turnshek, David A.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We present some results from our HST archival image study of 71 QSO host galaxies. The objects are selected to have z less than or equal to 0.46 and total absolute magnitude M(sub v) less than or equal to -23 in our adopted cosmology (H(sub 0) = 50 kilometers per second Mpc(sup-1), q(sub 0) = 0.5, lambda = 0)). The aim of this initial study is to investigate the composition of the sample with respect to host morphology and radio loudness, as well as derive the QSO host galaxy luminosity function. We have analyzed available WFPC2 images in R or I band (U in one case), using a uniform set of procedures. The host galaxies span a narrow range of luminosities and are exceptionally bright, much more so than normal galaxies, usually L greater than L*(sub v). The QSOs are almost equally divided among three subclasses: radio-loud QSOs with elliptical hosts, radio-quiet QSOs with elliptical hosts, and radio-quiet QSOs with spiral hosts. Radio-loud QSOs with spiral hosts are extremely rare. Using a weighting procedure, we derive the combined luminosity function of QSO host galaxies. We find that the luminosity function of QSO hosts differs in shape from that of normal galaxies but that they coincide at the highest luminosities. The ratio of the number of quasar hosts to the number of normal galaxies at a luminosity L*(sub v) is R = (Lv/11.48L*(sub v))(sup 2.46), where L*(sub v) corresponds to M*(sub v)= -22.35, and a QSO is defined to be an object with total nuclear plus host light M(sub v) less than or equal to -23. This ratio can be interpreted as the probability that a galaxy with luminosity L(sub V) will host a QSO at redshift z approximately equal to 0.26.

  16. GIANT LOBES OF CENTAURUS A RADIO GALAXY OBSERVED WITH THE SUZAKU X-RAY SATELLITE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stawarz, L.; Gandhi, P.; Takahashi, T.

    2013-03-20

    We report on Suzaku observations of selected regions within the southern giant lobe of the radio galaxy Centaurus A. In our analysis we focus on distinct X-ray features detected with the X-ray Imaging Spectrometer within the range 0.5-10 keV, some of which are likely associated with fine structure of the lobe revealed by recent high-quality radio intensity and polarization maps. With the available photon statistics, we find that the spectral properties of the detected X-ray features are equally consistent with thermal emission from hot gas with temperatures kT > 1 keV, or with a power-law radiation continuum characterized by photonmore » indices {Gamma} {approx} 2.0 {+-} 0.5. However, the plasma parameters implied by these different models favor a synchrotron origin for the analyzed X-ray spots, indicating that a very efficient acceleration of electrons up to {approx}> 10 TeV energies is taking place within the giant structure of Centaurus A, albeit only in isolated and compact regions associated with extended and highly polarized radio filaments. We also present a detailed analysis of the diffuse X-ray emission filling the whole field of view of the instrument, resulting in a tentative detection of a soft excess component best fitted by a thermal model with a temperature of kT {approx} 0.5 keV. The exact origin of the observed excess remains uncertain, although energetic considerations point to thermal gas filling the bulk of the volume of the lobe and mixed with the non-thermal plasma, rather than to the alternative scenario involving a condensation of the hot intergalactic medium around the edges of the expanding radio structure. If correct, this would be the first detection of the thermal content of the extended lobes of a radio galaxy in X-rays. The corresponding number density of the thermal gas in such a case is n{sub g} {approx} 10{sup -4} cm{sup -3}, while its pressure appears to be in almost exact equipartition with the volume-averaged non-thermal pressure provided by the radio-emitting electrons and the lobes' magnetic field. A prominent large-scale fluctuation of the Galactic foreground emission, resulting in excess foreground X-ray emission aligned with the lobe, cannot be ruled out. Although tentative, our findings potentially imply that the structure of the extended lobes in active galaxies is likely to be highly inhomogeneous and non-uniform, with magnetic reconnection and turbulent acceleration processes continuously converting magnetic energy to internal energy of the plasma particles, leading to possibly significant spatial and temporal variations in the plasma {beta} parameter around the volume-averaged equilibrium condition {beta} {approx} 1.« less

  17. What Are “X-shaped” Radio Sources Telling Us? II. Properties of a Sample of 87

    NASA Astrophysics Data System (ADS)

    Saripalli, Lakshmi; Roberts, David H.

    2018-01-01

    In an earlier paper, we presented Jansky Very Large Array multi-frequency, multi-array continuum imaging of a unique sample of low-axial ratio radio galaxies. In this paper, the second in the series, we examine the images to learn the phenomenology of how the off-axis emission relates to the main radio source. Inversion-symmetric offset emission appears to be bimodal and to originate from one of two strategic locations: outer ends of radio lobes (outer-deviation) or from inner ends (inner-deviation). The latter sources are almost always associated with edge-brightened sources. With S- and Z-shaped sources being a subset of outer-deviation sources, this class lends itself naturally to explanations involving black hole axis precession. Our data allow us to present a plausible model for the more enigmatic inner-deviation sources with impressive wings; as for outer-deviation sources these too require black hole axis shifts, although they also require plasma backflows into relic channels. Evolution in morphology over time relates the variety in structures in inner-deviation sources including XRGs. With features such as non-collinearities, central inner-S “spine,” corresponding lobe emission peaks, double and protruding hotspots not uncommon, black hole axis precession, drifts, or flips could be active in a significant fraction of radio sources with prominent off-axis emission. At least 4% of radio galaxies appear to undergo black hole axis rotation. Quasars offer a key signature for recognizing rotating axes. With a rich haul of sources that have likely undergone axis rotation, our work shows the usefulness of low-axial ratio sources in pursuing searches for binary supermassive black holes.

  18. Short-Term Variability and Power Spectral Density Analysis of the Radio-Loud Active Galactic Nucleus 3C 390.3

    NASA Astrophysics Data System (ADS)

    Gliozzi, Mario; Papadakis, Iossif E.; Eracleous, Michael; Sambruna, Rita M.; Ballantyne, David R.; Braito, Valentina; Reeves, James N.

    2009-09-01

    We investigate the short-term variability properties and the power spectral density (PSD) of the broad-line radio galaxy (BLRG) 3C 390.3 using observations made by XMM-Newton, RXTE, and Suzaku on several occasions between 2004 October and 2006 December. The main aim of this work is to derive model-independent constraints on the origin of the X-ray emission and on the nature of the central engine in 3C 390.3. On timescales of the order of few hours, probed by uninterrupted XMM-Newton light curves, the flux of 3C 390.3 is consistent with being constant in all energy bands. On longer timescales, probed by the 2-day RXTE and Suzaku observations, the flux variability becomes significant. The latter observation confirms that the spectral variability behavior of 3C 390.3 is consistent with the spectral evolution observed in (radio-quiet) Seyfert galaxies: the spectrum softens as the source brightens. The correlated variability between soft and hard X-rays, observed during the Suzaku exposure and between the two XMM-Newton pointings, taken 1 week apart, argues against scenarios characterized by the presence of two distinct variable components in the 0.5-10 keV X-ray band. A detailed PSD analysis carried out over five decades in frequency suggests the presence of a break at T br = 43+34 -25 days at a 92% confidence level. This is the second tentative detection of a PSD break in a radio-loud, non-jet dominated active galactic nucleus (AGN), after the BLRG 3C 120, and appears to be in general agreement with the relation between T br, M BH, and L bol, followed by Seyfert galaxies. Our results indicate that the X-ray variability properties of 3C 390.3 are broadly consistent with those of radio-quiet AGN, suggesting that the X-ray emission mechanism in 3C 390.3 is similar to that of nearby Seyfert galaxies without any significant contribution from a jet component.

  19. Cosmic Ray Streaming in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Wiener, Joshua; Gould Zweibel, Ellen; Oh, Siang P.

    2017-08-01

    The origin of diffuse radio emission in galaxy clusters remains an open question in astrophysics. This emission indicates the presence of cluster-wide magnetic fields and high energy cosmic ray (CR) electrons. I will discuss how the properties of the observed radio emission in clusters are shaped by different CR transport processes, namely CR streaming. Recent work has shown that fast streaming may turn off radio emission on relatively short time scales - a full treatment of magnetohydrodynamic (MHD) wave damping shows that streaming may be even faster than previously thought in high β environments. I will briefly introduce the physics behind CR transport, and present simple numerical simulations of the Coma cluster that predict radio emission, as well as other observable signatures such as gamma radiation that can differentiate between models for the source of the CR electrons.

  20. X-Ray Spectra of Quasars from the ROSAT Public Archive

    NASA Technical Reports Server (NTRS)

    Elvis, Martin S.; West, Donald (Technical Monitor)

    2000-01-01

    This has been a most productive proposal. We have: (1) Found many new X-ray absorbed quasars at z>2; (2) Determined that all of these are radio-loud, favoring an intrinsic origin for the absorption; (3) Found that the one radio-quiet exception lay close to a nearby galaxy, so initiating the X-ray study of the ISM of normal galaxies via X-ray spectroscopy; (4) Discovered a class of 'red quasars', probably the tip of a large obscured population; and (5) Discovered a class of 'blank field X-ray sources'. These are a heterogeneous collection but probably include several peculiar types of active galactic nuclei (AGN). Follow-up of the 'blanks' is being undertaken under a separate ADP program. Chandra and XMM-Newton observing time for these objects has been approved. This program has produced six refereed papers and six published conference proceedings.

  1. GALEX Wide-field Ultraviolet Imaging of NGC 5128 (Centaurus-A)

    NASA Technical Reports Server (NTRS)

    Neff, S. G.; Shiminovich, D.; Martin, C. D.

    2004-01-01

    We present new wide-field ultraviolet (UV) observations of the nearby active galaxy NGC 5128 (Centaurus A). The GALEX images provide 3.5 sec - 5.5 sec resolution over a 1.2 degree field, in two broad bands (1350- 1800A and 1800-3000A, centered at 1550A and 2200A). We detect ultraviolet emission associated with the radio and X-ray jets in both bands, extending out to a distance of approx. 40kpc from the galaxy nucleus. We compare the radio, X-ray, and UV jets, and discuss the feasibility of jet-induced star formation. We show how the UV emission relates to the optical filaments: HI and CO clouds, stellar shells, X-ray arcs, and young star chains previously reported by other authors. In the central region of NGC 5128, we detect UV emission from young super-star-clusters and associated ionized gas located along the near edge and on the upper surface of the dusty warped disk. All of the UV emission in the galaxy appears to result from intense star formation in the disk; none appears to be associated with the old stellar population of the main galaxy body, and no UV emission from the AGN is detected. We estimate the numbers and ages of the massive young stars present, and the associated ionized gas masses. Finally, we compare Cen-A to high redshift radio galaxies which were much more numerous in the earlier universe. The GALEX satellite is a NASA Small Explorer, launched in April 2003. We gratefully acknowledge NASA's support for construction, operation, and science analysis for the GALEX mission.

  2. Radio Identifications of UGC Galaxies - Starbursts and Monsters

    NASA Astrophysics Data System (ADS)

    Condon, J. J.; Broderick, J. J.

    1995-11-01

    Radio identifications of galaxies in the Uppsala General Catalogue of Galaxies with delta < +82 degrees were made from the Green Bank 1400 MHz sky maps. Every source having peak flux density S(P) >= 150 mJy in the approximately 12 arcmin FWHM map point-source response and position < 5 arcmin in both coordinates from the optical position of any UGC galaxy was considered a candidate identification to ensure that very extended (up to 1 Mpc) and asymmetric sources would not be missed. Maps in the literature or new 1.49 GHz VLA C-array maps made with 18 arcsec FWHM resolution were used to confirm or reject candidate identifications. The maps in this directory include both confirmed identifications and candidates rejected because of confusion or low flux density. For more information on this study, please see the following reference: Condon, J. J., and Broderick, J. J., 1988, AJ, 96, 30. The images and related TeX file come from the NRAO CDROM "Images From the Radio Universe" (c. 1992 National Radio Astronomy Observatory, used with permission).

  3. The BL Lac Classification

    NASA Astrophysics Data System (ADS)

    Landt, H.; Padovani, P.

    1999-12-01

    In the optical wavelength range the distinction between a radio galaxy and a BL Lac object is mainly based on the Ca II H and K break observed in the optical spectrum. Marchã et al. (1996, MNRAS, 281, 425) have expanded on the previously used division by suggesting objects with Ca II break values lower than 0.4 to be classified as BL Lacs and sources with values higher than 0.4 to be classified as galaxies. We present new evidence that there is a smooth transition between BL Lac objects and Fanaroff-Riley type I radio galaxies. We find an increase in X-ray and radio core luminosity as the Ca II break gets more and more diluted. This suggests that the only difference between BL Lac objects and their parent population lies in orientation. The closer the jet of the radio galaxy to the observer's line of sight, the more its luminosity gets amplified and the object becomes BL Lac-like. We will address the question of the BL Lac parent population and will propose to unify the beamed and unbeamed objects in nomenclature.

  4. Galaxy Cluster Smashes Distance Record

    NASA Astrophysics Data System (ADS)

    2009-10-01

    he most distant galaxy cluster yet has been discovered by combining data from NASA's Chandra X-ray Observatory and optical and infrared telescopes. The cluster is located about 10.2 billion light years away, and is observed as it was when the Universe was only about a quarter of its present age. The galaxy cluster, known as JKCS041, beats the previous record holder by about a billion light years. Galaxy clusters are the largest gravitationally bound objects in the Universe. Finding such a large structure at this very early epoch can reveal important information about how the Universe evolved at this crucial stage. JKCS041 is found at the cusp of when scientists think galaxy clusters can exist in the early Universe based on how long it should take for them to assemble. Therefore, studying its characteristics - such as composition, mass, and temperature - will reveal more about how the Universe took shape. "This object is close to the distance limit expected for a galaxy cluster," said Stefano Andreon of the National Institute for Astrophysics (INAF) in Milan, Italy. "We don't think gravity can work fast enough to make galaxy clusters much earlier." Distant galaxy clusters are often detected first with optical and infrared observations that reveal their component galaxies dominated by old, red stars. JKCS041 was originally detected in 2006 in a survey from the United Kingdom Infrared Telescope (UKIRT). The distance to the cluster was then determined from optical and infrared observations from UKIRT, the Canada-France-Hawaii telescope in Hawaii and NASA's Spitzer Space Telescope. Infrared observations are important because the optical light from the galaxies at large distances is shifted into infrared wavelengths because of the expansion of the universe. The Chandra data were the final - but crucial - piece of evidence as they showed that JKCS041 was, indeed, a genuine galaxy cluster. The extended X-ray emission seen by Chandra shows that hot gas has been detected between the galaxies, as expected for a true galaxy cluster rather than one that has been caught in the act of forming. Also, without the X-ray observations, the possibility remained that this object could have been a blend of different groups of galaxies along the line of sight, or a filament, a long stream of galaxies and gas, viewed front on. The mass and temperature of the hot gas detected estimated from the Chandra observations rule out both of those alternatives. The extent and shape of the X-ray emission, along with the lack of a central radio source argue against the possibility that the X-ray emission is caused by scattering of cosmic microwave background light by particles emitting radio waves. It is not yet possible, with the detection of just one extremely distant galaxy cluster, to test cosmological models, but searches are underway to find other galaxy clusters at extreme distances. "This discovery is exciting because it is like finding a Tyrannosaurus Rex fossil that is much older than any other known," said co-author Ben Maughan, from the University of Bristol in the United Kingdom. "One fossil might just fit in with our understanding of dinosaurs, but if you found many more, you would have to start rethinking how dinosaurs evolved. The same is true for galaxy clusters and our understanding of cosmology." The previous record holder for a galaxy cluster was 9.2 billion light years away, XMMXCS J2215.9-1738, discovered by ESA's XMM-Newton in 2006. This broke the previous distance record by only about 0.1 billion light years, while JKCS041 surpasses XMMXCS J2215.9 by about ten times that. "What's exciting about this discovery is the astrophysics that can be done with detailed follow-up studies," said Andreon. Among the questions scientists hope to address by further studying JKCS041 are: What is the build-up of elements (such as iron) like in such a young object? Are there signs that the cluster is still forming? Do the temperature and X-ray brightness of such a distant cluster relate to its mass in the same simple way as they do for nearby clusters? The paper describing the results on JKCS041 from Andreon and his colleagues will appear in an upcoming issue of the journal Astronomy and Astrophysics. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington, DC. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass.

  5. Raining on black holes and massive galaxies: the top-down multiphase condensation model

    NASA Astrophysics Data System (ADS)

    Gaspari, M.; Temi, P.; Brighenti, F.

    2017-04-01

    The plasma haloes filling massive galaxies, groups and clusters are shaped by active galactic nucleus (AGN) heating and subsonic turbulence (σv ˜ 150 km s-1), as probed by Hitomi. Novel 3D high-resolution simulations show the soft X-ray, keV hot plasma cools rapidly via radiative emission at the high-density interface of the turbulent eddies, stimulating a top-down condensation cascade of warm 104 K filaments. The kpc-scale ionized (optical/ultraviolet) filaments form a skin enveloping the neutral filaments (optical/infrared/21 cm). The peaks of the warm filaments further condense into cold molecular clouds (<50 K; radio) with total mass of several 107 M⊙ and inheriting the turbulent kinematics. In the core, the clouds collide inelastically, mixing angular momentum and leading to Chaotic Cold Accretion (CCA). The black hole accretion rate (BHAR) can be modelled via quasi-spherical viscous accretion, dot{M}_bullet ∝ ν _c, with clump collisional viscosity νc ≡ λc σv and λc ˜ 100 pc. Beyond the core, pressure torques shape the angular momentum transport. In CCA, the BHAR is recurrently boosted up to 2 dex compared with the disc evolution, which arises as turbulence becomes subdominant. With negligible rotation too, compressional heating inhibits the molecular phase. The CCA BHAR distribution is lognormal with pink noise, f-1 power spectrum characteristic of fractal phenomena. Such chaotic fluctuations can explain the rapid luminosity variability of AGN and high-mass X-ray binaries. An improved criterium to trace non-linear condensation is proposed: σv/vcool ≲ 1. The three-phase CCA reproduces key observations of cospatial multiphase gas in massive galaxies, including Chandra X-ray images, SOAR Hα filaments and kinematics, Herschel [C+] emission and ALMA molecular associations. CCA plays important role in AGN feedback and unification, the evolution of BHs, galaxies and clusters.

  6. XMM-Newton Observations of the Southeastern Radio Relic in Abell 3667

    NASA Astrophysics Data System (ADS)

    Storm, Emma; Vink, Jacco; Zandanel, Fabio; Akamatsu, Hiroki

    2018-06-01

    Radio relics, elongated, non-thermal, structures located at the edges of galaxy clusters, are the result of synchrotron radiation from cosmic-ray electrons accelerated by merger-driven shocks at the cluster outskirts. However, X-ray observations of such shocks in some clusters suggest that they are too weak to efficiently accelerate electrons via diffusive shock acceleration to energies required to produce the observed radio power. We examine this issue in the merging galaxy cluster Abell 3667 (A3667), which hosts a pair of radio relics. While the Northwest relic in A3667 has been well studied in the radio and X-ray by multiple instruments, the Southeast relic region has only been observed so far by Suzaku, which detected a temperature jump across the relic, suggesting the presence of a weak shock. We present observations of the Southeastern region of A3667 with XMM-Newton centered on the radio relic. We confirm the existence of an X-ray shock with Mach number of about 1.8 from a clear detection of temperature jump and a tentative detection of a density jump, consistent with previous measurements by Suzaku. We discuss the implications of this measurement for diffusive shock acceleration as the main mechanism for explaining the origin of radio relics. We then speculate on the plausibility of alternative scenarios, including re-acceleration and variations in the Mach number along shock fronts.

  7. Starburst Galaxies. II. Imaging and Spectroscopy of a Radio-selected Sample

    NASA Astrophysics Data System (ADS)

    Smith, Denise A.; Herter, Terry; Haynes, Martha P.; Beichman, C. A.; Gautier, T. N., III

    1996-06-01

    We present J-, H-, and K-band images and low-resolution K-band spectra of the 20 most luminous starburst galaxies from the survey of Condon, Frayer, & Broderick. Optical rotation curves are also shown for 10 of these galaxies. Near-infrared colors, optical depths, CO indices, and dynamical masses are calculated. The near-infrared colors of the starburst nuclei are significantly redder than those observed in "normal" galaxies. Together, the Brγ and radio fluxes available for five of the galaxies imply that the starbursts are heavily obscured; an average extinction of A_V_~ 25 is derived. Strong CO absorption features indicate that late-type evolved stars are present in many of the starbursts. The average dynamical mass of the starburst region is found to be (1.0 +/- 0.4) x 10^9^ M_sun_.

  8. Investigation of Dual Active Nuclei, Outflows, Shock-heated Gas, and Young Star Clusters in Markarian 266

    NASA Astrophysics Data System (ADS)

    Mazzarella, J. M.; Iwasawa, K.; Vavilkin, T.; Armus, L.; Kim, D.-C.; Bothun, G.; Evans, A. S.; Spoon, H. W. W.; Haan, S.; Howell, J. H.; Lord, S.; Marshall, J. A.; Ishida, C. M.; Xu, C. K.; Petric, A.; Sanders, D. B.; Surace, J. A.; Appleton, P.; Chan, B. H. P.; Frayer, D. T.; Inami, H.; Khachikian, E. Ye.; Madore, B. F.; Privon, G. C.; Sturm, E.; U, Vivian; Veilleux, S.

    2012-11-01

    Results of observations with the Spitzer, Hubble, GALEX, Chandra, and XMM-Newton space telescopes are presented for the luminous infrared galaxy (LIRG) merger Markarian 266. The SW (Seyfert 2) and NE (LINER) nuclei reside in galaxies with Hubble types SBb (pec) and S0/a (pec), respectively. Both companions are more luminous than L* galaxies and they are inferred to each contain a ≈2.5 × 108 M ⊙ black hole. Although the nuclei have an observed hard X-ray flux ratio of fX (NE)/fX (SW) = 6.4, Mrk 266 SW is likely the primary source of a bright Fe Kα line detected from the system, consistent with the reflection-dominated X-ray spectrum of a heavily obscured active galactic nucleus (AGN). Optical knots embedded in an arc with aligned radio continuum radiation, combined with luminous H2 line emission, provide evidence for a radiative bow shock in an AGN-driven outflow surrounding the NE nucleus. A soft X-ray emission feature modeled as shock-heated plasma with T ~ 107 K is cospatial with radio continuum emission between the galaxies. Mid-infrared diagnostics provide mixed results, but overall suggest a composite system with roughly equal contributions of AGN and starburst radiation powering the bolometric luminosity. Approximately 120 star clusters have been detected, with most having estimated ages less than 50 Myr. Detection of 24 μm emission aligned with soft X-rays, radio continuum, and ionized gas emission extending ~34'' (20 kpc) north of the galaxies is interpreted as ~2 × 107 M ⊙ of dust entrained in an outflowing superwind. At optical wavelengths this Northern Loop region is resolved into a fragmented morphology indicative of Rayleigh-Taylor instabilities in an expanding shell of ionized gas. Mrk 266 demonstrates that the dust "blow-out" phase can begin in a LIRG well before the galaxies fully coalesce during a subsequent ultraluminous infrared galaxy (ULIRG) phase, and rapid gas consumption in luminous dual AGNs with kiloparsec-scale separations early in the merger process may explain the paucity of detected binary QSOs (with parsec-scale orbital separations) in spectroscopic surveys. An evolutionary sequence is proposed representing a progression from dual to binary AGNs, accompanied by an increase in observed Lx /L ir ratios by over two orders of magnitude.

  9. CHILES Con Pol: An ultra-deep JVLA survey probing galaxy evolution and cosmic magnetism

    NASA Astrophysics Data System (ADS)

    Hales, Christopher A.; Momjian, Emmanuel; van Gorkom, Jacqueline; Rupen, Michael P.; Greiner, Maksim; Ensslin, Torsten A.; Bonzini, Margherita; Padovani, Paolo; Harrison, Ian; Brown, Michael L.; Gim, Hansung; Yun, Min S.; Maddox, Natasha; Stewart, Adam; Fender, Rob P.; Tremou, Evangelia; Chomiuk, Laura; Peters, Charee; Wilcots, Eric M.; Lazio, Joseph

    2015-08-01

    We are undertaking a 1000 hour campaign with the Karl G. Jansky VLA to survey 0.2 square degrees of the COSMOS field in full polarization continuum at 1.4 GHz. Our observations are part of a joint program with the spectral line COSMOS HI Large Extragalactic Survey (CHILES). When complete, we expect our CHILES Continuum Polarization (CHILES Con Pol) survey to reach an SKA-era sensitivity of 500 nJy per 4 arcsecond resolving beam, the deepest view of the radio sky yet. CHILES Con Pol will open new and fertile parameter space, with sensitivity to star formation rates of 10 Msun per year out to an unprecedented redshift of z=2, and ultra-luminous infrared galaxies and sub-millimeter galaxies out to redshifts of z=8 and beyond. This rich resource will extend the utility of radio band studies beyond the usual radio quasar and radio galaxy populations, opening sensitivity to the starforming and radio-quiet AGN populations that form the bulk of extragalactic sources detected in the optical, X-ray, and infrared bands. In this talk I will outline the key science of CHILES Con Pol, including galaxy evolution and novel measurements of intergalactic magnetic fields. I will present initial results from the first 180 hours of the survey and describe our forthcoming Data Release 1. I invite the astronomical community to consider unique science that can be pursued with CHILES Con Pol radio data.

  10. The environmental properties of radio-emitting AGN

    NASA Astrophysics Data System (ADS)

    Magliocchetti, M.; Popesso, P.; Brusa, M.; Salvato, M.

    2018-05-01

    We study the environmental properties of z≲ 1.2 radio-selected AGN belonging to the ˜2 deg2 of the COSMOS field, finding that about 20% of them appear within overdense structures. AGN with P_{1.4 GHz}>10^{23.5} W Hz^{-1} sr^{-1} are twice more likely to be found in clusters with respect to fainter sources (˜38% vs ˜15%), just as radio-selected AGN with stellar masses M* > 1011M⊙ are twice more likely to be found in overdense environments with respect to objects of lower mass (˜24% vs ˜11%). Comparisons with galaxy samples further suggest that radio-selected AGN of large stellar mass tend to avoid underdense environments more than normal galaxies with the same stellar content. Stellar masses also seem to determine the location of radio-active AGN within clusters: ˜100% of the sources found as satellite galaxies have M* < 1011.3M⊙, while ˜100% of the AGN coinciding with a cluster central galaxy have M* > 1011M⊙. No different location within the cluster is instead observed for AGN of various radio luminosities. Radio AGN which also emit in the MIR show a marked preference to be found as isolated galaxies (˜70%) at variance with those also active in the X-ray which all seem to reside within overdensities. What emerges from our work is a scenario whereby physical processes on sub-pc and kpc scales (e.g. emission respectively related to the AGN and to star formation) are strongly interconnected with the large-scale environment of the AGN itself.

  11. Winds from the S-Star Cluster Reduce the Accretion Rate onto Sgr A*

    NASA Astrophysics Data System (ADS)

    Yusef-Zadeh, Farhad; Wardle, M.; Roberts, D. A; Haggard, Daryl; Lacy, John H.; Royster, Marc; Cotton, William D.

    2014-06-01

    High-resolution radio continuum images of the region within a few arcseconds of Sgr A* at wavelengths of 7 and 12 mm show three new radio structures. One is a 2-3'' hollow teardrop-shaped structure centered on Sgr A*. Highly blue-shifted [NeII] and [FeIII] line emission is detected along the boundary of this teardrop-shaped bubble, ~2.2'' south of Sgr A*. The second structure is a faint, incomplete ring surrounding Sgr A* with typical surface brightness at 7 mm of ~0.1 mJy per ~0.04'' x 0.08'' beam. This partial ring coincides with the outer boundary of the S-star cluster which consists of ~30 B dwarfs orbiting within 1'' of Sgr A*. Lastly, on a scale of ~20'' to the N of Sgr A*, a balloon-shaped structure is detected.We interpret that the new morphological and kinematic structures result from the dynamical effects of a combined cluster wind. This wind is created at a rate ~3 x 10^{-5} solar mass per year by the merging of individual stellar winds from the B stars in the S-star cluster. What is significant about this interpretation is that the expanding wind excludes the shocked winds from O and WR stars in the central parsec of the Galaxy. Meanwhile Sgr A* accretes material from within the S cluster at a rate less than or equal 3 x 10^{-7} solar mass per year, thus explaining the low luminosity of Sgr A* without the ejection of a large fraction of the accreted material.

  12. The γ-ray emission region in the Fanaroff-Riley II radio galaxy 3C 111

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grandi, P.; Torresi, E.; Stanghellini, C.

    The broad-line radio galaxy 3C 111, characterized by a Fanaroff-Riley II (FRII) radio morphology, is one of the sources of the misaligned active galactic nucleus sample, consisting of radio galaxies and steep spectrum radio quasars, recently detected by the Fermi Large Area Telescope (LAT). In this analysis of the 24 month γ-ray light curve shows that 3C 111 was only occasionally detected at high energies. It was bright at the end of 2008 and faint, below the Fermi-LAT sensitivity threshold, for the rest of the time. A multifrequency campaign of 3C 111, ongoing in the same period, revealed an increasemore » of the millimeter, optical, and X-ray fluxes in 2008 September-November, interpreted by Chatterjee et al. as due to the passage of a superluminal knot through the jet core. Furthermore, the temporal coincidence of the millimeter-optical-X-ray outburst with the GeV activity suggests a cospatiality of the events, allowing, for the first time, the localization of the γ-ray dissipative zone in an FRII jet. Here, we argue that the GeV photons of 3C 111 are produced in a compact region confined within 0.1 pc and at a distance of about 0.3 pc from the black hole.« less

  13. The γ-ray emission region in the Fanaroff-Riley II radio galaxy 3C 111

    DOE PAGES

    Grandi, P.; Torresi, E.; Stanghellini, C.

    2012-04-30

    The broad-line radio galaxy 3C 111, characterized by a Fanaroff-Riley II (FRII) radio morphology, is one of the sources of the misaligned active galactic nucleus sample, consisting of radio galaxies and steep spectrum radio quasars, recently detected by the Fermi Large Area Telescope (LAT). In this analysis of the 24 month γ-ray light curve shows that 3C 111 was only occasionally detected at high energies. It was bright at the end of 2008 and faint, below the Fermi-LAT sensitivity threshold, for the rest of the time. A multifrequency campaign of 3C 111, ongoing in the same period, revealed an increasemore » of the millimeter, optical, and X-ray fluxes in 2008 September-November, interpreted by Chatterjee et al. as due to the passage of a superluminal knot through the jet core. Furthermore, the temporal coincidence of the millimeter-optical-X-ray outburst with the GeV activity suggests a cospatiality of the events, allowing, for the first time, the localization of the γ-ray dissipative zone in an FRII jet. Here, we argue that the GeV photons of 3C 111 are produced in a compact region confined within 0.1 pc and at a distance of about 0.3 pc from the black hole.« less

  14. Images From Hubbles's ACS Tell A Tale Of Two Record-Breaking Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    2004-01-01

    Looking back in time nearly 9 billion years, an international team of astronomers found mature galaxies in a young universe. The galaxies are members of a cluster of galaxies that existed when the universe was only 5 billion years old, or about 35 percent of its present age. This compelling evidence that galaxies must have started forming just after the big bang was bolstered by observations made by the same team of astronomers when they peered even farther back in time. The team found embryonic galaxies a mere 1.5 billion years after the birth of the cosmos, or 10 percent of the universe's present age. The "baby galaxies" reside in a still-developing cluster, the most distant proto-cluster ever found. The Advanced Camera for Surveys (ACS) aboard NASA's Hubble Space Telescope was used to make observations of the massive cluster, RDCS 1252.9-2927, and the proto-cluster, TN J1338-1942. Observations by NASA's Chandra X-ray Observatory yielded the mass and heavy element content of RDCS 1252, the most massive known cluster for that epoch. These observations are part of a coordinated effort by the ACS science team to track the formation and evolution of clusters of galaxies over a broad range of cosmic time. The ACS was built especially for studies of such distant objects. These findings further support observations and theories that galaxies formed relatively early in the history of the cosmos. The existence of such massive clusters in the early universe agrees with a cosmological model wherein clusters form from the merger of many sub-clusters in a universe dominated by cold dark matter. The precise nature of cold dark matter, however, is still not known. The first Hubble study estimated that galaxies in RDCS 1252 formed the bulk of their stars more than 11 billion years ago (at redshifts greater than 3). The results were published in the Oct. 20, 2003 issue of the Astrophysical Journal. The paper's lead author is John Blakeslee of the Johns Hopkins University in Baltimore, Md. Optical Image of RDCS 1252.9-2927 HST Optical Image of RDCS 1252.9-2927 The second Hubble study uncovered, for the first time, a proto-cluster of "infant galaxies" that existed more than 12 billion years ago (at redshift 4.1). These galaxies are so young that astronomers can still see a flurry of stars forming within them. The galaxies are grouped around one large galaxy. These results will be published in the Jan. 1, 2004 issue of Nature. The paper's lead author is George Miley of Leiden Observatory in the Netherlands. "Until recently people didn't think that clusters existed when the universe was only about 5 billion years old," Blakeslee explained. "Even if there were such clusters," Miley added, "until recently astronomers thought it was almost impossible to find clusters that existed 8 billion years ago. In fact, no one really knew when clustering began. Now we can witness it." Both studies led the astronomers to conclude that these systems are the progenitors of the galaxy clusters seen today. "The cluster RDCS 1252 looks like a present-day cluster," said Marc Postman of the Space Telescope Science Institute in Baltimore, Md., and co-author of both research papers. "In fact, if you were to put it next to a present-day cluster, you wouldn't know which is which." A Tale of Two Clusters How can galaxies grow so fast after the big bang? "It is a case of the rich getting richer," Blakeslee said. "These clusters grew quickly because they are located in very dense regions, so there is enough material to build up the member galaxies very fast." This idea is strengthened by X-ray observations of the massive cluster RDCS 1252. Chandra and the European Space Agency's XMM-Newton provided astronomers with the most accurate measurements to date of the properties of an enormous cloud of hot gas that pervades the massive cluster. This 160-million-degree Fahrenheit (70-million-degree Celsius) gas is a reservoir of most of the heavy elements in the cluster and an accurate tracer of its total mass. A paper by Piero Rosati of the European Southern Observatory (ESO) and colleagues that presents the X-ray observations of RDCS 1252 will be published in January 2004 in the Astronomical Journal. "Chandra's sharp vision resolved the shape of the hot gas halo and showed that RDCS 1252 is very mature for its age," said Rosati, who discovered the cluster with the ROSAT X-ray telescope. RDCS 1252 may contain many thousands of galaxies. Most of these galaxies, however, are too faint to detect. But the powerful "eyes" of the ACS pinpointed several hundred of them. Observations using ESO's Very Large Telescope (VLT) provided a precise measurement of the distance to the cluster. The ACS enabled the researchers to accurately determine the shapes and colors of the 100 galaxies, providing information on the ages of the stars residing in them. The ACS team estimated that most of the stars in the cluster were already formed when the universe was about 2 billion years old. X-ray observations, furthermore, showed that 5 billion years after the big bang the surrounding hot gas had been enriched with heavy elements from these stars and had been swept away from the galaxies. If most of the galaxies in RDCS 1252 have reached maturity and are settling into a quiet adulthood, the forming galaxies in the distant proto-cluster are in their energetic, unruly youth. The proto-cluster TN J1338 contains a massive embryonic galaxy surrounded by smaller developing galaxies, which look like dots in the Hubble image. The dominant galaxy is producing spectacular radio-emitting jets, fueled by a supermassive black hole deep within the galaxy's nucleus. Interaction between these jets and the gas can stimulate a torrent of star birth. The energetic radio galaxy's discovery by radio telescopes prompted astronomers to hunt for the smaller galaxies that make up the bulk of the cluster. "Massive clusters are the cities of the universe, and the radio galaxies within them are the smokestacks we can use for finding them when they are just beginning to form," Miley said. The two findings underscore the power of combining observations from many different telescopes that provided views of the distant universe in a range of wavelengths. Hubble's advanced camera provided critical information on the structure of both distant galaxy clusters. Chandra's and XMM-Newton's X-ray vision furnished the essential measurements of the primordial gas in which the galaxies in RDCS 1252 are embedded, and accurate estimates of the total mass contained within that cluster. Large ground-based telescopes, like the VLT, provided precise measurements of the distance of both clusters as well as the chemical composition of the galaxies in them. The ACS team is conducting further observations of distant clusters to solidify our understanding of how these young clusters and their galaxies evolve into the shape of things seen today. Their planned observations include using near-infrared observations to analyze the star-formation rates in some of the target clusters, including RDCS 1252, to measure the cosmic history of star formation in these massive structures. The team is also searching the regions around several ultra-distant radio galaxies for additional examples of proto-clusters. The team's ultimate scientific goal is to establish a complete picture of cluster evolution beginning with the formation at the earliest epochs and detailing the evolution up to today. Electronic image files and additional information are available at http://hubblesite.org/newscenter/newsdesk/archive/releases/2004/01/ The Space Telescope Science Institute (STScI) is operated by the Association of Universities for Research in Astronomy, Inc. (AURA), for NASA, under contract with the Goddard Space Flight Center, Greenbelt, MD. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency (ESA).

  15. New Detections of Radio Minihalos in Cool Cores of Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    Giacintucci, Simona; Markevitch, Maxim; Venturi, Tiziana; Clarke, Tracy E.; Cassano, Rossella; Mazzotta, Pasquale

    2013-01-01

    Cool cores of some galaxy clusters exhibit faint radio minihalos. Their origin is unclear, and their study has been limited by their small number. We undertook a systematic search for minihalos in a large sample of X-ray luminous clusters with high-quality radio data. In this article, we report four new minihalos (A 478, ZwCl 3146,RXJ 1532.9+3021, and A 2204) and five candidates found in the reanalyzed archival Very Large Array observations.The radio luminosities of our minihalos and candidates are in the range of 102325 W Hz1 at 1.4 GHz, which is consistent with these types of radio sources. Their sizes (40160 kpc in radius) are somewhat smaller than those of previously known minihalos. We combine our new detections with previously known minihalos, obtaining a total sample of 21 objects, and briefly compare the cluster radio properties to the average X-ray temperature and the total masses estimated from Planck.We find that nearly all clusters hosting minihalos are hot and massive. Beyond that, there is no clear correlation between the minihalo radio power and cluster temperature or mass (in contrast with the giant radio halos found in cluster mergers, whose radio luminosity correlates with the cluster mass). Chandra X-ray images indicate gas sloshing in the cool cores of most of our clusters, with minihalos contained within the sloshing regions in many of them. This supports the hypothesis that radio-emitting electrons are reaccelerated by sloshing. Advection of relativistic electrons by the sloshing gas may also play a role in the formation of the less extended minihalos.

  16. Particle acceleration areas in two radio galaxies.

    NASA Astrophysics Data System (ADS)

    Andernach, H.

    1989-04-01

    Two edge-darkened, tailed radio galaxies (PKS 0123-01 and PKS 2247+11) were mapped with the VLA at 1.4 and 5 GHz at sub-arcmin resolution as well as with the Effelsberg 100-m telescope at 2.7, 5 and 10.7 GHz at arcmin resolution. With additional use of existing low-frequency maps the shape of the radio spectrum is analyzed point by point across the source extent. The shape is found to be concave (i.e. having high-frequency excess) over major parts of the source extent, in the case of 2247+11 even for a region in the far radio tail. Possible mechanisms causing this feature are proposed. Using a subset of maps at higher angular resolution most of the regions with spectral flattening turn out to coincide with bends and wiggles of the radio jets and/or tails. Polarization data are available at four frequencies and some problems in their interpretation are discussed. The following one consists of a 1-page "extended abstract" including two small figures. I attach to this message the processed postscript file which I would be happy to offer in ADS as a "scanned" paper. I include here the full extended abstract text which you could also offer as HTML code. I converted the four references to bibcodes.

  17. Watching the Birth of a Galaxy Cluster?

    NASA Astrophysics Data System (ADS)

    1999-07-01

    First Visiting Astronomers to VLT ANTU Observe the Early Universe When the first 8.2-m VLT Unit Telescope (ANTU) was "handed over" to the scientists on April 1, 1999, the first "visiting astronomers" at Paranal were George Miley and Huub Rottgering from the Leiden Observatory (The Netherlands) [1]. They obtained unique pictures of a distant exploding galaxy known as 1138 - 262 . These images provide new information about how massive galaxies and clusters of galaxies may have formed in the early Universe. Formation of clusters of galaxies An intriguing question in modern astronomy is how the first galaxies and groupings or clusters of galaxies emerged from the primeval gas produced in the Big Bang. Some theories predict that giant galaxies, often found at the centres of rich galaxy clusters, are built up through a step-wise process. Clumps develop in this gas and stars condense out of those clumps to form small galaxies. Finally these small galaxies merge together to form larger units. An enigmatic class of objects important for investigating such scenarios are galaxies which emit intense radio emission from explosions that occur deep in their nuclei. The explosions are believed to be triggered when material from the merging swarm of smaller galaxies is fed into a rotating black hole located in the central regions. There is strong evidence that these distant radio galaxies are amongst the oldest and most massive galaxies in the early Universe and are often located at the heart of rich clusters of galaxies. They can therefore help pinpoint regions of the Universe in which large galaxies and clusters of galaxies are being formed. The radio galaxy 1138-262 The first visiting astronomers pointed ANTU towards a particularly important radio galaxy named 1138-262 . It is located in the southern constellation Hydra (The Water Snake). This galaxy was discovered some years ago using ESO's 3.5-m New Technology Telescope (NTT) at La Silla. Because 1138-262 is at a distance of about 10,000 million light-years from the Earth (the redshift is 2.2), the VLT sees it as it was when the Universe was only about 20% of its present age. Previous observations of this galaxy by the same team of astronomers showed that its radio, X-ray and optical emission had many extreme characteristics that would be expected from a giant galaxy, forming at the centre of a rich cluster. However, because the galaxy is so distant, the cluster could not be seen directly. Radio data obtained by the Very Large Array (VLA) in the USA and X-ray data with the ROSAT satellite both indicated that the galaxy is surrounded by a hot gas similar to that observed at the centres of nearby rich clusters of galaxies. Most telling was a picture taken by the Hubble Space Telescope that revealed that the galaxy comprises a large number of clumps, and which bore a remarkable resemblance to computer models of the birth of giant galaxies in clusters. From these observations, it was concluded that 1138-262 is likely to be a massive galaxy in the final stage of assemblage through merging with many smaller galaxies in an infant rich cluster and the most distant known X-ray cluster. VLT obtains Lyman-alpha images ESO PR Photo 33a/99 ESO PR Photo 33a/99 [Preview - JPEG: 483 x 400 pix - 86k] [Normal - JPEG: 966 x 800 pix - 230k] [High-Res - JPEG: 2894 x 2396 pix - 1.1M] Caption to ESO PR Photo 33a/99 : False-colour picture of the ionized hydrogen gas surrounding 1138-262 (Lyman-alpha). The size of this cloud is about 5 times larger than the optical extent of the Milky Way Galaxy. A contour plot, as observed with VLT ANTU + FORS1 in a narrow-band filter around the wavelength of the redshifted Lyman-alpha line, is superposed on a false-colour representation of the same image. The contour levels are a geometric progression in steps of 2 1/2. The image has not been flux calibrated, so the first contour level is arbitrary. The field measures 35 x 25 arcsec 2 , corresponding to about 910,000 x 650,000 light-years (280 x 200 kpc). The linear scale is indicated at the lower left. North is up and East is left. The Leiden astronomers used the FORS1 instrument on ANTU to take long-exposure pictures of 1138-262 and a surrounding field of 36 square arcmin. Images were obtained through two optical filters, one which tunes in to light produced by hydrogen gas (the redshifted Lyman-alpha line) and the other which is dominated by light from stars (the B-band). The "difference" between the images shows that the hydrogen gas surrounding the galaxy and from which the galaxy is presumably forming is huge ( Photo 33a/99 ). The measured size is about 20 arcsec or, at the distance of the cluster, somewhat more than 500,000 light-years (160 kpc), making it the largest such structure ever seen. It corresponds to about 5 times the size of the optical extent of the Milky Way Galaxy ! ESO PR Photo 33b/99 ESO PR Photo 33b/99 [Preview - JPEG: 400 x 593 pix - 149k] [Normal - JPEG: 800 x 1185 pix - 335k] [High-Res - JPEG: 1982 x 2935 pix - 1.1M] Caption to ESO PR Photo 33b/99 : Three small fields near radio galaxy 1138-262 as observed with VLT ANTU + FORS1 in a narrow-band filter at the redshifted wavelength of Lyman-alpha emission in that galaxy (left) and a broader filter in the surrounding spectral region (right), respectively. Three excellent candidates of Lyman-alpha emitters are seen at the centres of the fields. They are clearly visible in the narrow-band image (that mostly shows the gas), but are not detected in the broad-band image (that mostly shows the stars). Each field measures 24 x 24 arcsec 2 , corresponding to about 620,000 x 620,000 light-years (190 x 190 kpc); North is up and East is left. Even more intriguing is the presence of a number of objects in the gas picture (to the left in PR Photo 33b/99 ), but absent from the stars' picture (right). These are galaxies whose hydrogen gas is emitting the bright Lyman-alpha spectral line within a distance of the order of about 3 million light-years (1 Mpc) from the radio galaxy, and probably in the surrounding cluster. The team has pinpointed a total of 26 objects in the surrounding field that may be companion galaxies with fainter hydrogen emission. The detection by the VLT of the huge gas halo and of the companion galaxies is further evidence that 1138-262 is a massive galaxy, forming in a group or cluster of galaxies. The next step The next step in the project will be to confirm the distances of the candidate companion galaxies and establish that they are indeed members of a cluster of galaxies surrounding 1138-262 . This can be done using one of the spectrographs on the VLT. Note [1] The project on 1138-262 is being carried out by a large international consortium of scientists led by astronomers from the Leiden Observatory. Besides George Miley and Huub Rottgering , the team includes Jaron Kurk , Laura Pentericci , and Bram Venemans (Leiden), Alan Moorwood (ESO), Chris Carilli (US National Radio Astronomy Observatory - NRAO), Wil van Breugel (University of California, USA) Holland Ford and Tim Heckman (Johns Hopkins University, Baltimore, USA) and Pat McCarthy (Carnegie Institute, Pasadena, USA). Technical information about the VLT images of 1138-262 Narrow and broad-band imaging was carried out on April 12 and 13, 1999, with the ESO VLT ANTU (UT1), using the FORS1 multi-mode instrument in imaging mode. A narrow-band filter was used which has a central wavelength of 381.4 nm and a bandpass of 6.5 nm. For 1138-262 (redshift z = 2.2), the emission of Lyman-alpha at 121.6 nm is redshifted to 383.8 nm, which falls in this narrow band. The broad-band filter was a Bessel-B with central wavelength of 429.0 nm. The detector was a Tektronix CCD with 2048 x 2046 pixels and an image scale of 0.20 arcsec/pixel. Eight separate 30-min exposures were taken in the narrow band and six 5-min in the broad band, shifted by about 20 arcsec with respect to each other to minimize problems due to flat-fielding and to facilitate cosmic ray removal. The average seeing was 1.0 arcsec. Image reduction was carried out by means of the IRAF reduction package. The individual images were bias subtracted and flat-fielded using twilight exposures (narrow band) or an average of the unregistered science exposures (broad-band). The images were then registered by shifting them in position by an amount determined from the location of several stars on the CCD. The registered images were co-added and dark pixels from cosmic rays were cleaned. To improve the signal-to-noise ratio, the resulting images were smoothed with a Gaussian function having full-width-at half-maximum (FWHM) = 1 arcsec (5 pixels). How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../ ). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  18. Flat-Spectrum Radio Sources as Likely Counterparts of Unidentified INTEGRAL Sources (Research Note)

    NASA Technical Reports Server (NTRS)

    Molina, M.; Landi, R.; Bassani, L.; Malizia, A.; Stephen, J. B.; Bazzano, A.; Bird, A. J.; Gehrels, N.

    2012-01-01

    Many sources in the fourth INTEGRAL/IBIS catalogue are still unidentified since they lack an optical counterpart. An important tool that can help in identifying and classifying these sources is the cross-correlation with radio catalogues, which are very sensitive and positionally accurate. Moreover, the radio properties of a source, such as the spectrum or morphology, could provide further insight into its nature. In particular, flat-spectrum radio sources at high Galactic latitudes are likely to be AGN, possibly associated to a blazar or to the compact core of a radio galaxy. Here we present a small sample of 6 sources extracted from the fourth INTEGRAL/IBIS catalogue that are still unidentified or unclassified, but which are very likely associated with a bright, flat-spectrum radio object. To confirm the association and to study the source X-ray spectral parameters, we performed X-ray follow-up observations with Swift/XRT of all objects. We report in this note the overall results obtained from this search and discuss the nature of each individual INTEGRAL source. We find that 5 of the 6 radio associations are also detected in X-rays; furthermore, in 3 cases they are the only counterpart found. More specifically, IGR J06073-0024 is a flat-spectrum radio quasar at z = 1.08, IGR J14488-4008 is a newly discovered radio galaxy, while IGR J18129-0649 is an AGN of a still unknown type. The nature of two sources (IGR J07225-3810 and IGR J19386-4653) is less well defined, since in both cases we find another X-ray source in the INTEGRAL error circle; nevertheless, the flat-spectrum radio source, likely to be a radio loud AGN, remains a viable and, in fact, a more convincing association in both cases. Only for the last object (IGR J11544-7618) could we not find any convincing counterpart since the radio association is not an X-ray emitter, while the only X-ray source seen in the field is a G star and therefore unlikely to produce the persistent emission seen by INTEGRAL.

  19. MC 2 : galaxy imaging and redshift analysis of the merging cluster Ciza J2242.8+5301

    DOE PAGES

    Dawson, William A.; Jee, M. James; Stroe, Andra; ...

    2015-05-28

    X-ray and radio observations of CIZA J2242.8+5301 suggest that it is a major cluster merger. Despite being well studied in the X-ray, and radio, little has been presented on the cluster structure and dynamics inferred from its galaxy population. We carried out a deep (i < 25) broad band imaging survey of the system with Subaru SuprimeCam (g & i bands) and the Canada France Hawaii Telescope (r band) as well as a comprehensive spectroscopic survey of the cluster area (505 redshifts) using Keck DEIMOS. We use this data to perform a comprehensive galaxy/redshift analysis of the system, which ismore » the first step to a proper understanding the geometry and dynamics of the merger, as well as using the merger to constrain self-interacting dark matter.« less

  20. Variability and Spectral Studies of Luminous Seyfert 1 Galaxy Fairall 9. Search for the Reflection Component is a Quasar: RXTE and ASCA Observation of a Nearby Radio-Quiet Quasar MR 2251-178

    NASA Technical Reports Server (NTRS)

    Leighly, Karen M.

    1999-01-01

    Monitoring observations with interval of 3 days using RXTE (X Ray Timing Explorer) of the luminous Seyfert 1 galaxy Fairall 9 were performed for one year. The purpose of the observations were to study the variability of Fairall 9 and compare the results with those from the radio-loud object 3C 390.3. The data has been received and analysis is underway, using the new background model. An observation of the quasar MR 2251-178 was made in order to determine whether or not it has a reflection component. Older background models gave an unacceptable subtraction and analysis is underway using the new background model. The observation of NGC 6300 showed that the X-ray spectrum from this Seyfert 2 galaxy appears to be dominated by Compton reflection.

  1. Interpretation of the Arcade 2 Absolute Sky Brightness Measurement

    NASA Technical Reports Server (NTRS)

    Seiffert, M.; Fixsen, D. J.; Kogut, A.; Levin, S. M.; Limon, M.; Lubin, P. M.; Mirel, P.; Singal, J.; Villela, T.; Wollack, E.; hide

    2011-01-01

    We use absolutely calibrated data between 3 and 90 GHz from the 2006 balloon flight of the ARCADE 2 instrument, along with previous measurements at other frequencies to constrain models of extragalactic emission. Such emission is a combination of the cosmic microwave background (CMB) monopole, Galactic foreground emission, the integrated contribution of radio emission from external galaxies, any spectral distortions present in the CMB, and any other extragalactic source. After removal of estimates of foreground emission from our own Galaxy, and an estimated contribution of external galaxies, we present fits to a combination of the flat-spectrum CMB and potential spectral distortions in the CMB. We find 217 upper limits to CMB spectral distortions of u < 6x10(exp -4) and [Y(sub ff)] < 1x10(exp -4). We also find a significant detection of a residual signal beyond that, which can be explained by the CMB plus the integrated radio emission from galaxies estimated from existing surveys. This residual signal may be due to an underestimated galactic foreground contribution, an unaccounted for contribution of a background of radio sources, or some combination of both. The residual signal is consistent with emission in the form of a power law with amplitUde 18.4 +/- 2.1 K at 0.31 GHz and a spectral index of -2.57 +/- 0.05.

  2. An infrared jet in Centaurus A - A link to the extranuclear activity in distant radio galaxies?

    NASA Technical Reports Server (NTRS)

    Joy, Marshall; Harvey, P. M.; Tollestrup, E. V.; Sellgren, K.; Mcgregor, P. J.

    1991-01-01

    High-resolution NIR images of the visually obscured central region of Centaurus A (NGC 5128) were obtained with the University of Texas array camera on the AAT in June 1988, in order to investigate the effect of the active nucleus on the surrounding galaxy. The J (1.25 micron), H (1.65 micron), and K (2.2 micron) images of the central 40 arcsec of the galaxy revealed an emission feature extending about 10 arcsec northeast of the nucleus at the same position angle as the X-ray and radio jets. This jet is most prominent at the 1.25 micron wavelength, where its brightness was comparable to that of the nucleus. The observed properties of the 'infrared jet' were found to be similar to those seen in distant radio sources.

  3. A Submillimeter Perspective on the Goods Fields. II. The High Radio Power Population in the Goods-N

    NASA Astrophysics Data System (ADS)

    Barger, A. J.; Cowie, L. L.; Owen, F. N.; Hsu, L.-Y.; Wang, W.-H.

    2017-01-01

    We use ultradeep 20 cm data from the Karl G. Jansky Very Large Array and 850 μm data from SCUBA-2 and the Submillimeter Array of an 124 arcmin2 region of the Chandra Deep Field-north to analyze the high radio power ({P}20{cm}> {10}31 erg s-1 Hz-1) population. We find that 20 (42 ± 9%) of the spectroscopically identified z> 0.8 sources have consistent star formation rates (SFRs) inferred from both submillimeter and radio observations, while the remaining sources have lower (mostly undetected) submillimeter fluxes, suggesting that active galactic nucleus (AGN) activity dominates the radio power in these sources. We develop a classification scheme based on the ratio of submillimeter flux to radio power versus radio power and find that it agrees with AGN and star-forming galaxy classifications from Very Long Baseline Interferometry. Our results provide support for an extremely rapid drop in the number of high SFR galaxies above about a thousand solar masses per year (Kroupa initial mass function) and for the locally determined relation between X-ray luminosity and radio power for star-forming galaxies applying at high redshifts and high radio powers. We measure far-infrared (FIR) luminosities and find that some AGNs lie on the FIR-radio correlation, while others scatter below. The AGNs that lie on the correlation appear to do so based on their emission from the AGN torus. We measure a median radio size of 1.″0 ± 0.3 for the star-forming galaxies. The radio sizes of the star-forming galaxies are generally larger than those of the AGNs. The W. M. Keck Observatory is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W. M. Keck Foundation.

  4. Accretion processes of radio galaxies at high energies

    NASA Astrophysics Data System (ADS)

    de Jong, Sandra

    2013-10-01

    AGN are the luminous (L>10^42 erg/s) cores of active galaxies, powered by accretion onto the central super massive black hole, either via an accretion disk or via a radiatively inefficient accretion flow. There are still several open questions, for example on the launching of jets, which are present in about 10% of the AGN. Another question appeared with the Fermi/LAT gamma-ray survey, which detected many blazars but also a small group of radio galaxies. Radio galaxies are postulated to be blazars where the observer sees the jet at an angle θ>10 degrees allowing a view of both jet and core, rather than only the jet as is the case with blazars. Radio galaxies are divided into two classes, depending on the radio luminosity of the jets. The Fanaroff-Riley I (FR-I) sources have jets that are bright near the core, where the FR-IIs display extended edge-brightened jets. The FR-I sources are connected to the BL Lacs, which are low-luminosity blazars. FR-II types are thought to be the parent population of the luminous FSRQ, which are also blazars. This thesis presents a study of gamma-ray bright radio galaxies. By analysing X-ray and gamma-ray data in addition to creating broad-band spectral energy distributions (SEDs), we studied two examples of this new class of sources. For the FR-II source 3C 111 we analysed Suzaku/XIS and PIN and INTEGRAL IBIS/ISGRI observations to create a X-ray spectrum. We also used a Swift/BAT spectrum from the 58-month survey. The 0.4-200 keV spectrum of the source shows both thermal, Seyfert-like signatures such as an iron K-α line, and non-thermal jet features. We also analysed gamma-ray data from Fermi/LAT. The gamma-ray and X-ray data are combined with historical radio, infrared and optical observations to build the SED, which can be well represented with a non-thermal jet model. The bolometric luminosity of 3C111 is rather low, and the SED model shows rather a BL Lac type than the expected FSRQ. The next source we studied is the nearby FR-I M87. This source has been detected ! in gamma-rays and in the TeV band, but so far not in the hard X-rays (>10 keV). The first part of our analysis was focused on setting an upper limit to the hard X-ray emission of this source, using INTEGRAL IBIS/ISGRI observations. In addition to the standard method we applied several techniques in the analysis process, such as pointing selection and shadowgram treatment, in order to decrease the noise level of the result. Using 5.1 Ms of ISGRI data we determined a 3σ upper limit to the average 20-60 keV flux of f < 3x10^-12 erg/cm^2/s. We have also analysed Suzaku/PIN observations, where we detected M87 for the first time in the hard X-ray band, with a flux of f=1.3x 10^-11 erg/cm^2/s. between 20 and 60 keV. This detection indicates a flare, since the flux is significantly higher than the derived average upper limit. We also analysed Fermi/LAT data and combined this with the X-ray upper limits and historical radio, infrared and optical observations to build a SED. The SED can be modelled as a BL Lac source, which is expected since M87 is a FR-I type. We then also examined the general aspects of gamma-ray bright radio galaxies. Most of these objects are of the FR-I type, and the core of at least one FR-II, 3C 111, is rather BL Lac-like than the expected FSRQ. For the other FR-II sources this might also be the case. The gamma-ray emission originates from the jet, similar as in the case of blazars. Due to the large jet angle, the emission is not observed to be boosted. However, since the gamma-ray emission originates near the black hole, either reflection or a large opening angle can explain the observations. In addition, I contributed to the study of a possible dark matter halo observed with Fermi/LAT in the vicinity of the Virgo cluster. Our work has shown that a population of point sources contributes to this emission. In this thesis, the result of an extended emission analysis and the search for possible counter parts of new sources are presented. ! Finally, the detection of two new X-ray sources using Swift is reported here for the first time. These sources, the BL Lac object BZB J1552+0850 and the Seyfert galaxy LSBC F727-V01, are both located within the 95% error circle of the Fermi/LAT source 2FGL J1551.9+0855. We analysed the X-ray data from the XRT and UV data from the UVOT. The likely counterpart of the Fermi source is rather the blazer BZB J1552+0850, since Seyfert galaxies are rarely gamma-ray emitters. To understand the gamma-ray bright radio galaxies, X-ray observations can be used to can characterise these sources. Using for example the new generation of instruments, such as NuSTAR and ASTRO-H, will help with their superior resolution to distinguish between thermal and non-thermal emission in the X-ray spectrum. Additionally, building SEDs from simultaneous multi-wavelength observations will help constrain the broad-band emission. This will also help to pinpoint the counter part of Fermi/LAT detected sources, which is not trivial due to the large uncertainty in position

  5. Occurrence of Radio Minihalos in a Mass-Limited Sample of Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    Giacintucci, Simona; Markevitch, Maxim; Cassano, Rossella; Venturi, Tiziana; Clarke, Tracy E.; Brunetti, Gianfranco

    2017-01-01

    We investigate the occurrence of radio minihalos-diffuse radio sources of unknown origin observed in the cores of some galaxy clusters-in a statistical sample of 58 clusters drawn from the Planck Sunyaev-Zeldovich cluster catalog using a mass cut (M(sub 500) greater than 6 x 10(exp 14) solar mass). We supplement our statistical sample with a similarly sized nonstatistical sample mostly consisting of clusters in the ACCEPT X-ray catalog with suitable X-ray and radio data, which includes lower-mass clusters. Where necessary (for nine clusters), we reanalyzed the Very Large Array archival radio data to determine whether a minihalo is present. Our total sample includes all 28 currently known and recently discovered radio minihalos, including six candidates. We classify clusters as cool-core or non-cool-core according to the value of the specific entropy floor in the cluster center, rederived or newly derived from the Chandra X-ray density and temperature profiles where necessary (for 27 clusters). Contrary to the common wisdom that minihalos are rare, we find that almost all cool cores-at least 12 out of 15 (80%)-in our complete sample of massive clusters exhibit minihalos. The supplementary sample shows that the occurrence of minihalos may be lower in lower-mass cool-core clusters. No minihalos are found in non-cool cores or "warm cores." These findings will help test theories of the origin of minihalos and provide information on the physical processes and energetics of the cluster cores.

  6. Gentle reenergization of electrons in merging galaxy clusters

    PubMed Central

    de Gasperin, Francesco; Intema, Huib T.; Shimwell, Timothy W.; Brunetti, Gianfranco; Brüggen, Marcus; Enßlin, Torsten A.; van Weeren, Reinout J.; Bonafede, Annalisa; Röttgering, Huub J. A.

    2017-01-01

    Galaxy clusters are the most massive constituents of the large-scale structure of the universe. Although the hot thermal gas that pervades galaxy clusters is relatively well understood through observations with x-ray satellites, our understanding of the nonthermal part of the intracluster medium (ICM) remains incomplete. With Low-Frequency Array (LOFAR) and Giant Metrewave Radio Telescope (GMRT) observations, we have identified a phenomenon that can be unveiled only at extremely low radio frequencies and offers new insights into the nonthermal component. We propose that the interplay between radio-emitting plasma and the perturbed intracluster medium can gently reenergize relativistic particles initially injected by active galactic nuclei. Sources powered through this mechanism can maintain electrons at higher energies than radiative aging would allow. If this mechanism is common for aged plasma, a population of mildly relativistic electrons can be accumulated inside galaxy clusters providing the seed population for merger-induced reacceleration mechanisms on larger scales such as turbulence and shock waves. PMID:28983512

  7. Gentle reenergization of electrons in merging galaxy clusters.

    PubMed

    de Gasperin, Francesco; Intema, Huib T; Shimwell, Timothy W; Brunetti, Gianfranco; Brüggen, Marcus; Enßlin, Torsten A; van Weeren, Reinout J; Bonafede, Annalisa; Röttgering, Huub J A

    2017-10-01

    Galaxy clusters are the most massive constituents of the large-scale structure of the universe. Although the hot thermal gas that pervades galaxy clusters is relatively well understood through observations with x-ray satellites, our understanding of the nonthermal part of the intracluster medium (ICM) remains incomplete. With Low-Frequency Array (LOFAR) and Giant Metrewave Radio Telescope (GMRT) observations, we have identified a phenomenon that can be unveiled only at extremely low radio frequencies and offers new insights into the nonthermal component. We propose that the interplay between radio-emitting plasma and the perturbed intracluster medium can gently reenergize relativistic particles initially injected by active galactic nuclei. Sources powered through this mechanism can maintain electrons at higher energies than radiative aging would allow. If this mechanism is common for aged plasma, a population of mildly relativistic electrons can be accumulated inside galaxy clusters providing the seed population for merger-induced reacceleration mechanisms on larger scales such as turbulence and shock waves.

  8. Radio jet refraction in galactic atmospheres with static pressure gradients

    NASA Technical Reports Server (NTRS)

    Henriksen, R. N.; Vallee, J. P.; Bridle, A. H.

    1981-01-01

    A theory of double radio sources which have a 'Z' or 'S' morphology is proposed, based on the refraction of radio jets in the extended atmosphere of an elliptical galaxy. The model describes a collimated jet of supersonic material bending self-consistently under the influence of external static pressure gradients. Gravity and magnetic fields are neglected in the simplest case except insofar as they determine the static pressure distribution. The calculation is a straightforward extension of a method used to calculate a ram-pressure model for twin radio trails ('C' morphology). It may also be described as a continuous-jet version of a buoyancy model proposed in 1973. The model has the added virtue of invoking a galactic atmosphere similar to those already indicated by X-ray measurements of some other radio galaxies and by models for the collimation of other radio jets.

  9. THE VLA SURVEY OF CHANDRA DEEP FIELD SOUTH. V. EVOLUTION AND LUMINOSITY FUNCTIONS OF SUB-MILLIJANSKY RADIO SOURCES AND THE ISSUE OF RADIO EMISSION IN RADIO-QUIET ACTIVE GALACTIC NUCLEI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padovani, P.; Mainieri, V.; Rosati, P.

    2011-10-10

    We present the evolutionary properties and luminosity functions of the radio sources belonging to the Chandra Deep Field South Very Large Array survey, which reaches a flux density limit at 1.4 GHz of 43 {mu}Jy at the field center and redshift {approx}5 and which includes the first radio-selected complete sample of radio-quiet active galactic nuclei (AGNs). We use a new, comprehensive classification scheme based on radio, far- and near-IR, optical, and X-ray data to disentangle star-forming galaxies (SFGs) from AGNs and radio-quiet from radio-loud AGNs. We confirm our previous result that SFGs become dominant only below 0.1 mJy. The sub-millijanskymore » radio sky turns out to be a complex mix of SFGs and radio-quiet AGNs evolving at a similar, strong rate; non-evolving low-luminosity radio galaxies; and declining radio powerful (P {approx}> 3 x 10{sup 24} W Hz{sup -1}) AGNs. Our results suggest that radio emission from radio-quiet AGNs is closely related to star formation. The detection of compact, high brightness temperature cores in several nearby radio-quiet AGNs can be explained by the coexistence of two components, one non-evolving and AGN related and one evolving and star formation related. Radio-quiet AGNs are an important class of sub-millijansky sources, accounting for {approx}30% of the sample and {approx}60% of all AGNs, and outnumbering radio-loud AGNs at {approx}< 0.1 mJy. This implies that future, large area sub-millijansky surveys, given the appropriate ancillary multiwavelength data, have the potential of being able to assemble vast samples of radio-quiet AGNs, bypassing the problems of obscuration that plague the optical and soft X-ray bands.« less

  10. Infalling groups and galaxy transformations in the cluster A2142

    NASA Astrophysics Data System (ADS)

    Einasto, Maret; Deshev, Boris; Lietzen, Heidi; Kipper, Rain; Tempel, Elmo; Park, Changbom; Gramann, Mirt; Heinämäki, Pekka; Saar, Enn; Einasto, Jaan

    2018-03-01

    Context. Superclusters of galaxies provide dynamical environments for the study of the formation and evolution of structures in the cosmic web from galaxies, to the richest galaxy clusters, and superclusters themselves. Aims: We study galaxy populations and search for possible merging substructures in the rich galaxy cluster A2142 in the collapsing core of the supercluster SCl A2142, which may give rise to radio and X-ray structures in the cluster, and affect galaxy properties of this cluster. Methods: We used normal mixture modelling to select substructure of the cluster A2142. We compared alignments of the cluster, its brightest galaxies (hereafter BCGs), subclusters, and supercluster axes. The projected phase space (PPS) diagram and clustercentric distributions are used to analyse the dynamics of the cluster and study the distribution of various galaxy populations in the cluster and subclusters. Results: We find several infalling galaxy groups and subclusters. The cluster, supercluster, BCGs, and one infalling subcluster are all aligned. Their orientation is correlated with the alignment of the radio and X-ray haloes of the cluster. Galaxy populations in the main cluster and in the outskirts subclusters are different. Galaxies in the centre of the main cluster at the clustercentric distances 0.5 h-1 Mpc (Dc/Rvir < 0.5, Rvir = 0.9 h-1 Mpc) have older stellar populations (with the median age of 10-11 Gyr) than galaxies at larger clustercentric distances. Star-forming and recently quenched galaxies are located mostly at the clustercentric distances Dc ≈ 1.8 h-1 Mpc, where subclusters fall into the cluster and the properties of galaxies change rapidly. In this region the median age of stellar populations of galaxies is about 2 Gyr. Galaxies in A2142 on average have higher stellar masses, lower star formation rates, and redder colours than galaxies in rich groups. The total mass in infalling groups and subclusters is M ≈ 6 × 1014 h-1 M⊙, that is approximately half of the mass of the cluster. This mass is sufficient for the mass growth of the cluster from redshift z = 0.5 (half-mass epoch) to the present. Conclusions: Our analysis suggests that the cluster A2142 has formed as a result of past and present mergers and infallen groups, predominantly along the supercluster axis. Mergers cause complex radio and X-ray structure of the cluster and affect the properties of galaxies in the cluster, especially at the boundaries of the cluster in the infall region. Explaining the differences between galaxy populations, mass, and richness of A2142, and other groups and clusters may lead to better insight about the formation and evolution of rich galaxy clusters.

  11. A Minor-Merger Interpretation for NGC 1097's ``Jets''

    NASA Astrophysics Data System (ADS)

    Higdon, James L.; Wallin, John F.

    2003-03-01

    We have conducted a deep search for neutral hydrogen gas associated with the faint optical ``jets'' of NGC 1097 using the Very Large Array. Measurable H I would have been expected if the jets were tidal in origin given their moderately blue optical and near-infrared colors. The jets are free of H I emission to a limiting surface density (ΣHI) of 0.06 Msolar pc-2 (3 σ) over a 1102 km s-1 velocity range. We also rule out extended H I emission down to 0.02 Msolar pc-2 (3 σ, ΔV=45 km s-1) within a 4' FWHM aperture centered on the right-angle turn in jet R1. We have detected an H I source [MHI=(5.1+/-1.0)×106 Msolar] coincident with a small edge-on spiral or irregular galaxy (NGC 1097B) 12' southwest of NGC 1097, situated between two jets. Two other ~106 Msolar H I point sources in the field are considered marginal detections. Neither are associated with the optical jets. The jets' radio-X-ray spectral energy distribution is most consistent with starlight. However, from their morphology, optical/near-infrared colors, and lack of H I, we argue that the jets are not tidal tails drawn out of NGC 1097's disk or stars stripped from the elliptical companion NGC 1097A. We also reject in situ star formation in ancient radio jets as this requires essentially 100% conversion of gas into stars on large scales. Instead, we conclude that the jets represent the captured remains of a disrupted dwarf galaxy that passed through the inner few kiloparsecs of NGC 1097's disk. We present N-body simulations of such an encounter that reproduce the essential features of NGC 1097's jets: A long and narrow ``X''-shaped morphology centered near the spiral's nucleus, right-angle bends, and no discernible dwarf galaxy remnant. A series of jetlike distributions are formed, with the earliest appearing ~1.4 Gyr after impact. Well-defined X shapes form only when the more massive galaxy has a strong disk component. Ram-pressure stripping of the dwarf's interstellar medium would be expected to occur while passing through NGC 1097's disk, accounting for the jets' lack of H I and H II. The remnants' (B-V) color would still agree with observations even after ~3 Gyr of passive evolution, provided the cannibalized dwarf was low-metallicity and dominated by young stars at impact.

  12. Einstein observations of active galaxies

    NASA Technical Reports Server (NTRS)

    Tananbaum, H.

    1980-01-01

    X-ray observations of Cen A (NGC 5128) and seven other X-ray emitting active galaxies are discussed which were made with the imaging proportional counter and the high-resolution imager aboard the Einstein Observatory. In addition to Cen A, the sources observed were the N-type galaxy 3C 120, the quasars OX 169 and 3C 273, and four Class 1 Seyfert galaxies, viz., Mkn 509, Mkn 79, NGC 6814, and NGC 4151. For Cen A, it is found that the X-ray data are dominated by a central point source of about 2 cts/sec, that X-ray elongations (possibly associated with the inner radio lobes) extend in the NE and SW directions, and that an X-ray jet exists which is aligned with the optical jet. The results for the other sources are used to derive emitting-region sizes and black-hole masses for models based on an accreting central black hole.

  13. 3C 220.3: A Radio Galaxy Lensing a Submillimeter Galaxy

    NASA Astrophysics Data System (ADS)

    Haas, Martin; Leipski, Christian; Barthel, Peter; Wilkes, Belinda J.; Vegetti, Simona; Bussmann, R. Shane; Willner, S. P.; Westhues, Christian; Ashby, Matthew L. N.; Chini, Rolf; Clements, David L.; Fassnacht, Christopher D.; Horesh, Assaf; Klaas, Ulrich; Koopmans, Léon V. E.; Kuraszkiewicz, Joanna; Lagattuta, David J.; Meisenheimer, Klaus; Stern, Daniel; Wylezalek, Dominika

    2014-07-01

    Herschel Space Observatory photometry and extensive multiwavelength follow-up have revealed that the powerful radio galaxy (PRG) 3C 220.3 at z = 0.685 acts as a gravitational lens for a background submillimeter galaxy (SMG) at z = 2.221. At an observed wavelength of 1 mm, the SMG is lensed into three distinct images. In the observed near infrared, these images are connected by an arc of ~1''.8 radius forming an Einstein half-ring centered near the radio galaxy. In visible light, only the arc is apparent. 3C 220.3 is the only known instance of strong galaxy-scale lensing by a PRG not located in a galaxy cluster and therefore it offers the potential to probe the dark matter content of the radio galaxy host. Lens modeling rejects a single lens, but two lenses centered on the radio galaxy host A and a companion B, separated by 1''.5, provide a fit consistent with all data and reveal faint candidates for the predicted fourth and fifth images. The model does not require an extended common dark matter halo, consistent with the absence of extended bright X-ray emission on our Chandra image. The projected dark matter fractions within the Einstein radii of A (1''.02) and B (0''.61) are about 0.4 ± 0.3 and 0.55 ± 0.3. The mass to i-band light ratios of A and B, M/Li ˜ 8 +/- 4 M⊙ L⊙ -1, appear comparable to those of radio-quiet lensing galaxies at the same redshift in the CfA-Arizona Space Telescope LEns Survey, Lenses Structure and Dynamics, and Strong Lenses in the Legacy Survey samples. The lensed SMG is extremely bright with observed f(250 μm) = 440 mJy owing to a magnification factor μ ~ 10. The SMG spectrum shows luminous, narrow C IV λ1549 Å emission, revealing that the SMG houses a hidden quasar in addition to a violent starburst. Multicolor image reconstruction of the SMG indicates a bipolar morphology of the emitted ultraviolet (UV) light suggestive of cones through which UV light escapes a dust-enshrouded nucleus.

  14. Probing the Relativistic Jets of Active Galactic Nuclei with Multiwavelength Monitoring

    NASA Technical Reports Server (NTRS)

    Marscher, Alan P.; Jorstad, Svetlana G.; Aller, Margo

    2005-01-01

    The work completed includes the analysis of observations obtained during Cycle 7 (March 2002-February 2003) of the Rossi X-ray Timing Explorer (RXTE). The project was part of a longer-term, continuing program to study the X-ray emission process in blazars and radio galaxies in collaboration with Dr. Ian McHardy (U. of Southampton, UK) and Prof. Thomas Balonek (Colgate U.). The goals of the program are to study the X-ray emission mechanism in blazars and radio galaxies and the relation of the X-ray emission to changes in the relativistic jet. The program includes contemporaneous brightness and linear polarization monitoring at radio and optical wavelengths, total and polarized intensity imaging at at 43 GHz with a resolution of 0.1 milliarcseconds with the VLBA, and well-sampled X-ray light curves obtained from a series of approved RXTE programs. The objects studied in the time period covered by the grant were 3C 120, 3C 279, PKS 1510-089, and 3C 273, all with radio jets containing bright knots that appear to move at superluminal speeds. During RXTE Cycle 7, the project was awarded RXTE time to monitor PKS 1510-089 two times per week, 3C 273 and 3C 279 three times per week, and 3C 120 four times per week. In addition, 3C273 and 3C 279 were observed several times per day during a ten-day period in April 2002. The X-ray data, including those from earlier cycles, were compared with radio measurements obtained in the centimeter-wave band by the monitoring program of Drs. Margo and Hugh Aller at the University of Michigan Radio Astronomy Observatory, monthly imaging observations with the VLBA at 43 GHz, and optical observations obtained at several telescopes around the world.

  15. Intermediate BL Lac objects

    NASA Astrophysics Data System (ADS)

    Bondi, M.; Marchã, M. J. M.; Dallacasa, D.; Stanghellini, C.

    2001-08-01

    The 200-mJy sample, defined by Marchã et al., contains about 60 nearby, northern, flat-spectrum radio sources. In particular, the sample has proved effective at finding nearby radio-selected BL Lac objects with radio luminosities comparable to those of X-ray-selected objects, and low-luminosity flat-spectrum weak emission-line radio galaxies (WLRGs). The 200-mJy sample contains 23 BL Lac objects (including 6 BL Lac candidates) and 19 WLRGs. We will refer to these subsamples as the 200-mJy BL Lac sample and the 200-mJy WLRG sample, respectively. We have started a systematic analysis of the morphological pc-scale properties of the 200-mJy radio sources using VLBI observations. This paper presents VLBI observations at 5 and 1.6GHz of 14 BL Lac objects and WLRGs selected from the 200-mJy sample. The pc-scale morphology of these objects is briefly discussed. We derive the radio beaming parameters of the 200-mJy BL Lac objects and WLRGs and compare them with those of other BL Lac samples and with a sample of FR I radio galaxies. The overall broad-band radio, optical and X-ray properties of the 200-mJy BL Lac sample are discussed and compared with those of other BL Lac samples, radio- and X-ray-selected. We find that the 200-mJy BL Lac objects fill the gap between HBL and LBL objects in the colour-colour plot, and have intermediate αXOX as expected in the spectral energy distribution unification scenario. Finally, we briefly discuss the role of the WLRGs.

  16. Clues from Bent Jets

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-04-01

    Powerful jets emitted from the centers of distant galaxies make for spectacular signposts in the radio sky. Can observations of these jets reveal information about the environments that surround them?Signposts in the SkyVLA FIRST images of seven bent double-lobed radio galaxies from the authors sample. [Adapted from Silverstein et al. 2018]An active supermassive black hole lurking in a galactic center can put on quite a show! These beasts fling out accreting material, often forming intense jets that punch their way out of their host galaxies. As the jets propagate, they expand into large lobes of radio emission that we can spot from Earth observable signs of the connection between distant supermassive black holes and the galaxies in which they live.These distinctive double-lobed radio galaxies (DLRGs) dont all look the same. In particular, though the jets are emitted from the black holes two poles, the lobes of DLRGs dont always extend perfectly in opposite directions; often, the jets become bent on larger scales, appearing to us to subtend angles of less than 180 degrees.Can we use our observations of DLRG shapes and distributions to learn about their surroundings? A new study led by Ezekiel Silverstein (University of Michigan) has addressed this question by exploring DLRGs living in dense galaxy-cluster environments.Projected density of DLRGcentral galaxy matches (black) compared to a control sample of random positionscentral galaxy matches (red) for different distances from acluster center. DLRGs have a higher likelihood of being located close to a cluster center. [Silverstein et al. 2018]Living Near the HubTo build a sample of DLRGs in dense environments, Silverstein and collaborators started from a large catalog of DLRGs in Sloan Digital Sky Survey quasars with radio lobes visible in Very Large Array data. They then cross-matched these against three galaxy catalogs to produce a sample of 44 DLRGs that are each paired to a nearby massive galaxy, galaxy group, or galaxy cluster.To determine if these DLRGs locations are unusual, the authors next constructed a control sample of random galaxies using the same selection biases as their DLRG sample.Silverstein and collaborators found that the density of DLRGs as a function of distance from a cluster center drops off more rapidly than the density of galaxies in a typical cluster. Observed DLRGs are therefore more likely than random galaxies to be found near galaxy groups and clusters. The authors speculate that this may be a selection effect: DLRGs further from cluster centers may be less bright, preventing their detection.Bent Under PressureThe angle subtended by the DLRG radio lobes, plotted against the distance of the DLRG to the cluster center. Central galaxies (red circle) experience different physics and are therefore excluded from the sample. In the remaining sample, bent DLRGs appear to favor cluster centers, compared to unbent DLRGs. [Silverstein et al. 2018]In addition, Silverstein and collaborators found that location appears to affect the shape of a DLRG. Bent DLRGs (those with a measured angle between their lobes of 170 or smaller) are more likely to be found near a cluster center than unbent DLRGs (those with angles of 170180). The fraction of bent DLRGs is 78% within 3 million light-years of the cluster center, and 56% within double that distance compared to a typical fraction of just 29% in the field.These results support the idea that ram pressure the pressure experienced by a galaxy as it moves through the higher density environment closer to the center of a cluster is what bends the DLRGs.Whats next to learn? This study relies on a fairly small sample, so Silverstein and collaborators hope that future deep optical surveys will increase the completeness of cluster catalogs, enabling further testing of these outcomes and the exploration of other physics of galaxy-cluster environments.CitationEzekiel M Silverstein et al 2018 AJ 155 14. doi:10.3847/1538-3881/aa9d2e

  17. Intracluster medium cooling, AGN feedback, and brightest cluster galaxy properties of galaxy groups. Five properties where groups differ from clusters

    NASA Astrophysics Data System (ADS)

    Bharadwaj, V.; Reiprich, T. H.; Schellenberger, G.; Eckmiller, H. J.; Mittal, R.; Israel, H.

    2014-12-01

    Aims: We aim to investigate cool-core and non-cool-core properties of galaxy groups through X-ray data and compare them to the AGN radio output to understand the network of intracluster medium (ICM) cooling and feedback by supermassive black holes. We also aim to investigate the brightest cluster galaxies (BCGs) to see how they are affected by cooling and heating processes, and compare the properties of groups to those of clusters. Methods: Using Chandra data for a sample of 26 galaxy groups, we constrained the central cooling times (CCTs) of the ICM and classified the groups as strong cool-core (SCC), weak cool-core (WCC), and non-cool-core (NCC) based on their CCTs. The total radio luminosity of the BCG was obtained using radio catalogue data and/or literature, which in turn was compared to the cooling time of the ICM to understand the link between gas cooling and radio output. We determined K-band luminosities of the BCG with 2MASS data, and used a scaling relation to constrain the masses of the supermassive black holes, which were then compared to the radio output. We also tested for correlations between the BCG luminosity and the overall X-ray luminosity and mass of the group. The results obtained for the group sample were also compared to previous results for clusters. Results: The observed cool-core/non-cool-core fractions for groups are comparable to those of clusters. However, notable differences are seen: 1) for clusters, all SCCs have a central temperature drop, but for groups this is not the case as some have centrally rising temperature profiles despite very short cooling times; 2) while for the cluster sample, all SCC clusters have a central radio source as opposed to only 45% of the NCCs, for the group sample, all NCC groups have a central radio source as opposed to 77% of the SCC groups; 3) for clusters, there are indications of an anticorrelation trend between radio luminosity and CCT. However, for groups this trend is absent; 4) the indication of a trend of radio luminosity with black hole mass observed in SCC clusters is absent for groups; and 5) similarly, the strong correlation observed between the BCG luminosity and the cluster X-ray luminosity/cluster mass weakens significantly for groups. Conclusions: We conclude that there are important differences between clusters and groups within the ICM cooling/AGN feedback paradigm and speculate that more gas is fueling star formation in groups than in clusters where much of the gas is thought to feed the central AGN. Table 6 and Appendices A-C are available in electronic form at http://www.aanda.org

  18. Statistical methods for astronomical data with upper limits. II - Correlation and regression

    NASA Technical Reports Server (NTRS)

    Isobe, T.; Feigelson, E. D.; Nelson, P. I.

    1986-01-01

    Statistical methods for calculating correlations and regressions in bivariate censored data where the dependent variable can have upper or lower limits are presented. Cox's regression and the generalization of Kendall's rank correlation coefficient provide significant levels of correlations, and the EM algorithm, under the assumption of normally distributed errors, and its nonparametric analog using the Kaplan-Meier estimator, give estimates for the slope of a regression line. Monte Carlo simulations demonstrate that survival analysis is reliable in determining correlations between luminosities at different bands. Survival analysis is applied to CO emission in infrared galaxies, X-ray emission in radio galaxies, H-alpha emission in cooling cluster cores, and radio emission in Seyfert galaxies.

  19. Spectral Energy Distribution and Radio Halo of NGC 253 at Low Radio Frequencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapińska, A. D.; Staveley-Smith, L.; Meurer, G. R.

    We present new radio continuum observations of NGC 253 from the Murchison Widefield Array at frequencies between 76 and 227 MHz. We model the broadband radio spectral energy distribution for the total flux density of NGC 253 between 76 MHz and 11 GHz. The spectrum is best described as a sum of a central starburst and extended emission. The central component, corresponding to the inner 500 pc of the starburst region of the galaxy, is best modeled as an internally free–free absorbed synchrotron plasma, with a turnover frequency around 230 MHz. The extended emission component of the spectrum of NGCmore » 253 is best described as a synchrotron emission flattening at low radio frequencies. We find that 34% of the extended emission (outside the central starburst region) at 1 GHz becomes partially absorbed at low radio frequencies. Most of this flattening occurs in the western region of the southeast halo, and may be indicative of synchrotron self-absorption of shock-reaccelerated electrons or an intrinsic low-energy cutoff of the electron distribution. Furthermore, we detect the large-scale synchrotron radio halo of NGC 253 in our radio images. At 154–231 MHz the halo displays the well known X-shaped/horn-like structure, and extends out to ∼8 kpc in the z -direction (from the major axis).« less

  20. The two-component giant radio halo in the galaxy cluster Abell 2142

    NASA Astrophysics Data System (ADS)

    Venturi, T.; Rossetti, M.; Brunetti, G.; Farnsworth, D.; Gastaldello, F.; Giacintucci, S.; Lal, D. V.; Rudnick, L.; Shimwell, T. W.; Eckert, D.; Molendi, S.; Owers, M.

    2017-07-01

    Aims: We report on a spectral study at radio frequencies of the giant radio halo in A 2142 (z = 0.0909), which we performed to explore its nature and origin. The optical and X-ray properties of the cluster suggest that A 2142 is not a major merger and the presence of a giant radio halo is somewhat surprising. Methods: We performed deep radio observations of A 2142 with the Giant Metrewave Radio Telescope (GMRT) at 608 MHz, 322 MHz, and 234 MHz and with the Very Large Array (VLA) in the 1-2 GHz band. We obtained high-quality images at all frequencies in a wide range of resolutions, from the galaxy scale, I.e. 5'', up to 60'' to image the diffuse cluster-scale emission. The radio halo is well detected at all frequencies and extends out to the most distant cold front in A 2142, about 1 Mpc away from the cluster centre. We studied the spectral index in two regions: the central part of the halo, where the X-ray emission peaks and the two brightest dominant galaxies are located; and a second region, known as the ridge (in the direction of the most distant south-eastern cold front), selected to follow the bright part of the halo and X-ray emission. We complemented our deep observations with a preliminary LOw Frequency ARray (LOFAR) image at 118 MHz and with the re-analysis of archival VLA data at 1.4 GHz. Results: The two components of the radio halo show different observational properties. The central brightest part has higher surface brightess and a spectrum whose steepness is similar to those of the known radio halos, I.e. α1.78 GHz118 MHz = 1.33 ± 0.08 . The ridge, which fades into the larger scale emission, is broader in size and has considerably lower surface brightess and a moderately steeper spectrum, I.e. α1.78 GHz118 MHz 1.5. We propose that the brightest part of the radio halo is powered by the central sloshing in A 2142, in a process similar to what has been suggested for mini-halos, or by secondary electrons generated by hadronic collisions in the ICM. On the other hand, the steeper ridge may probe particle re-acceleration by turbulence generated either by stirring the gas and magnetic fields on a larger scale or by less energetic mechanisms, such as continuous infall of galaxy groups or an off-axis (minor) merger.

  1. Radio Galaxy Zoo: A Search for Hybrid Morphology Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Kapińska, A. D.; Terentev, I.; Wong, O. I.; Shabala, S. S.; Andernach, H.; Rudnick, L.; Storer, L.; Banfield, J. K.; Willett, K. W.; de Gasperin, F.; Lintott, C. J.; López-Sánchez, Á. R.; Middelberg, E.; Norris, R. P.; Schawinski, K.; Seymour, N.; Simmons, B.

    2017-12-01

    Hybrid morphology radio sources (HyMoRS) are a rare type of radio galaxy that display different Fanaroff-Riley classes on opposite sides of their nuclei. To enhance the statistical analysis of HyMoRS, we embarked on a large-scale search of these sources within the international citizen science project, Radio Galaxy Zoo (RGZ). Here, we present 25 new candidate hybrid morphology radio galaxies. Our selected candidates are moderate power radio galaxies ({L}{median}=4.7× {10}24 W Hz-1 sr-1) at redshifts 0.14< z< 1.0. Hosts of nine candidates have spectroscopic observations, of which six are classified as quasars, one as high- and two as low-excitation galaxies. Two candidate HyMoRS are giant (> 1 Mpc) radio galaxies, one resides at the center of a galaxy cluster, and one is hosted by a rare green bean galaxy. Although the origin of the hybrid morphology radio galaxies is still unclear, this type of radio source starts depicting itself as a rather diverse class. We discuss hybrid radio morphology formation in terms of the radio source environment (nurture) and intrinsically occurring phenomena (nature; activity cessation and amplification), showing that these peculiar radio galaxies can be formed by both mechanisms. While high angular resolution follow-up observations are still necessary to confirm our candidates, we demonstrate the efficacy of the RGZ in the pre-selection of these sources from all-sky radio surveys, and report the reliability of citizen scientists in identifying and classifying complex radio sources.

  2. Discovery of low-redshift X-ray selected quasars - New clues to the QSO phenomenon

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.; Forman, W. R.; Steiner, J. E.; Canizares, C. R.; Mcclintock, J. E.

    1980-01-01

    The identification of six X-ray sources discovered by the Einstein Observatory with X-ray quasars is reported, and the properties of these X-ray selected quasars are discussed. The four high-latitude fields of 1 sq deg each in which the Einstein imaging proportional counter detected serendipitous X-ray sources at intermediate exposures of 10,000 sec were observed by 4-m and 1.5-m telescopes, and optical sources with uv excesses and emission line spectra typical of many low-redshift quasars and Seyfert 1 galaxies were found within the 1-arcsec error boxes of the X-ray sources. All six quasars identified were found to be radio quiet, with low redshift and relatively faint optical magnitudes, and to be similar in space density, colors and magnitude versus redshift relation to an optically selected sample at the same mean magnitude. X-ray luminosity was found to be well correlated with both continuum and broad-line emission luminosities for the known radio-quiet quasars and Seyfert 1 galaxies, and it was observed that the five objects with the lowest redshifts have very similar X-ray/optical luminosity ratios despite tenfold variations in X-ray luminosity. It is concluded that photoionization by a continuum extending to X-ray energies is the dominant excitation mechanism in radio-quiet quasars.

  3. Peanut-shaped metallicity distributions in bulges of edge-on galaxies: the case of NGC 4710

    NASA Astrophysics Data System (ADS)

    Gonzalez, Oscar A.; Debattista, Victor P.; Ness, Melissa; Erwin, Peter; Gadotti, Dimitri A.

    2017-03-01

    Bulges of edge-on galaxies are often boxy/peanut-shaped (B/PS), and unsharp masks reveal the presence of an X shape. Simulations show that these shapes can be produced by dynamical processes driven by a bar which vertically thickens the centre. In the Milky Way, which contains such a B/PS bulge, the X-shaped structure is traced by the metal-rich stars but not by the metal-poor ones. Recently, Debattista et al. interpreted this property as a result of the varying effect of the bar on stellar populations with different starting kinematics. This kinematic fractionation model predicts that cooler populations at the time of bar formation go on to trace the X shape, whereas hotter populations are more uniformly distributed. As this prediction is not specific to the Milky Way, we test it with Multi Unit Spectroscopic Explorer (MUSE) observations of the B/PS bulge in the nearby galaxy NGC 4710. We show that the metallicity map is more peanut-shaped than the density distribution itself, in good agreement with the prediction. This result indicates that the X-shaped structure in B/PS bulges is formed of relatively metal-rich stars that have been vertically redistributed by the bar, whereas the metal-poor stars have a more uniform, box-shaped distribution.

  4. The gamma-ray emitting radio-loud narrow-line Seyfert 1 galaxy PKS 2004-447. I. The X-ray View

    NASA Astrophysics Data System (ADS)

    Kreikenbohm, A.; Schulz, R.; Kadler, M.; Wilms, J.; Markowitz, A.; Chang, C. S.; Carpenter, B.; Elsässer, D.; Gehrels, N.; Mannheim, K.; Müller, C.; Ojha, R.; Ros, E.; Trüstedt, J.

    2016-01-01

    As part of the TANAMI multiwavelength progam, we discuss new X-ray observations of the γ-ray and radio-loud narrow line Seyfert 1 galaxy (γ-NLS1) PKS 2004-447. The active galaxy is a member of a small sample of radio-loud NLS1s detected in γ-rays by the Fermi Large Area Telescope. It stands out for being the radio-loudest and the only southern-hemisphere source in this sample. We present results from our X-ray monitoring program comprised of Swift snapshot observations from 2012 through 2014 and two new X-ray observations with XMM-Newton in 2012. Supplemented by archival data from 2004 and 2011, our data set allows for a careful analysis of the X-ray spectrum and variability of this peculiar source. The (0.5-10) keV spectrum is described well by a power law (Γ ~ 1.6), which can be interpreted as non-thermal emission from a relativistic jet. The source exhibits moderate flux variability on timescales of both months and years. Correlated brightness variations in the (0.5-2) keV and (2-10) keV bands are explained by a single variable spectral component, such as the one from the jet. A possible soft excess seen in the data from 2004 cannot be confirmed by the new XMM-Newton observations taken during low-flux states. Any contribution to the total flux in 2004 is less than 20% of the power-law component. The (0.5-10) keV luminosities of PKS 2004-447 are in the range of (0.5-2.7) × 1044 erg s-1. A comparison of the X-ray properties among the known γ-NLS1 galaxies shows that in four out of five cases the X-ray spectrum is dominated by a flat power law without intrinsic absorption. These objects are moderately variable in their brightness, while spectral variability is observed in at least two sources. The major difference across the X-ray spectra of γ-NLS1s is the luminosity, which spans a range of almost two orders of magnitude from 1044 erg s-1 to 1046 erg s-1 in the (0.5-10) keV band.

  5. Chapter 27: Deja vu All Over Again: Using NVO Tools to Re-Investigate a Complete Sample of Texas Radio Survey Sources

    NASA Astrophysics Data System (ADS)

    Lucas, Ray A.; Rohde, David; Tamura, Takayuki; van Dyne, Jeffrey

    At the first NVO Summer School in September 2004, a complete sample of Texas Radio Survey sources, first derived in 1989 and subsequently observed with the VLA in A-array snapshot mode in 1990, was revisited. The original investigators had never had the occasion to reduce the A-array 5-minute snapshot data, nor to do any other significant follow-up, though the sample still seemed a possibly useful but relatively small study of radio galaxies, AGN, quasars, extragalactic sources, and galaxy clusters, etc. At the time of the original sample definition in late 1989, the best optical material available for the region was the SRC-J plate from the UK Schmidt Telescope in Australia. In much more recent times, the Sloan Digital Sky Survey has included the region in its DR2 data release, so good multicolor optical imaging in a number of standard bandpasses has finally become available. These data, along with other material in the radio, infrared, and (where available) were used to get a better preliminary idea of the nature of the objects in the 1989 sample. We also investigated one of the original questions: whether these radio sources with steeper (or at least non-flat) radio spectra were associated with galaxy clusters, and in some cases higher-redshift galaxy clusters and AGN. A rudimentary web service was created which allowed the user to perform simple cone searches and SIAP image extractions of specified field sizes for multiwavelength data across the electromagnetic spectrum, and a prototype web page was set up which would display the resulting images in wavelength order across the page for sources in the sample. Finally, as an additional investigation, using radio and X-ray IDs as a proxy for AGN which might be associated with large, central cluster galaxies, positional matches of radio and X-ray sources from two much larger catalogs were done using the tool TOPCAT in order to search for the degree of correlation between ID positions, radio luminosity, and cluster ID positions. It was hoped that cross-correlated matches could possibly give some clue to the relationship of these radio sources to galaxy clusters. These preliminary results need more in-depth investigation and are currently being pursued via a NVO grant to the first author. The original VLA 5-minute A-array snapshots have also now been reduced and are complementary in nature to the VLA FIRST data. It is planned to eventually make these reduced VLA A-array data publicas part of a web service via the NVO facilities along with a table of multiwavelength properties for the sources in VOTable format.

  6. A New Look at Speeding Outflows

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-02-01

    The compact centers of active galaxies known as active galactic nuclei, or AGN are known for the dynamic behavior they exhibit as the supermassive black holes at their centers accrete matter. New observations of outflows from a nearby AGN provide a more detailed look at what happens in these extreme environments.Outflows from GiantsThe powerful radio jets of Cygnus A, which extend far beyond the galaxy. [NRAO/AUI]AGN consist of a supermassive black hole of millions to tens of billions of solar masses surrounded by an accretion disk of in-falling matter. But not all the material falling toward the black hole accretes! Some of it is flung from the AGN via various types of outflows.The most well-known of these outflows are powerful radio jets collimated and incredibly fast-moving streams of particles that blast their way out of the host galaxy and into space. Only around 10% of AGN are observed to host such jets, however and theres another outflow thats more ubiquitous.Fast-Moving AbsorbersPerhaps 30% of AGN both those with and without observed radio jets host wider-angle, highly ionized gaseous outflows known as ultra-fast outflows (UFOs). Ultraviolet and X-ray radiation emitted from the AGN is absorbed by the UFO, revealing the outflows presence: absorption lines appear in the ultraviolet and X-ray spectra of the AGN, blue-shifted due to the high speeds of the absorbing gas in the outflow.Quasar PG 1211+143, indicated by the crosshairs at the center of the image, in the color context of its surroundings. [SDSS/S. Karge]But what is the nature of UFOs? Are they disk winds? Or are they somehow related to the radio jets? And what impact do they have on the AGNs host galaxy?X-ray and Ultraviolet CooperationNew observations are now providing fresh information about one particular UFO. A team of scientists led by Ashkbiz Danehkar (Harvard-Smithsonian Center for Astrophysics) recently used the Chandra and Hubble space telescopes to make the first simultaneous observations of the same outflow a UFO in quasar PG 1211+143 in both X-rays and in ultraviolet.Danehkar and collaborators found absorption lines in both sets of data revealing an outflow moving at 17,000 km/s (for reference, thats 5.6% of the speed of light, and more than 1,500 times faster than Elon Musks roadster will be traveling at its maximum speed in the orbit it was launched onto yesterday by the Falcon Heavy). Having the information both from the X-ray and the ultraviolet data provides the opportunity to better asses the UFOs physical characteristics.The X-ray spectrum for PG 1211+143 was obtained by Chandra HETGS (top); the ultraviolet spectrum was obtained by HST-COS G130M (bottom). [Adapted from Danehkar et al. 2018]A Link Between Black Holes and Galaxies?The authors use models of the data to demonstrate the plausibility of a scenario in which a shock driven by the radio jet gives rise to the fast bulk outflows detected in the X-ray and ultraviolet spectra.They also estimate the impact that the outflows might have on the AGNs host galaxy, demonstrating that the energy injected into the galaxy could be somewhere between 0.02% and 0.6% of the AGNs total luminosity. At the higher end of this range, this could have an evolutionary impact on the host galaxy, suggesting a possible link between the black holes behavior and how its host galaxy evolves.In order to draw definitive conclusions, we will need higher-resolution observations that can determine the total size and extent of these outflows. For that, we may need to wait for 2023, when a proposed X-ray spectrometer that might fit the bill, Arcus, may be launched.CitationAshkbiz Danehkar et al 2018 ApJ 853 165. doi:10.3847/1538-4357/aaa427

  7. BEYOND ELLIPSE(S): ACCURATELY MODELING THE ISOPHOTAL STRUCTURE OF GALAXIES WITH ISOFIT AND CMODEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciambur, B. C., E-mail: bciambur@swin.edu.au

    2015-09-10

    This work introduces a new fitting formalism for isophotes that enables more accurate modeling of galaxies with non-elliptical shapes, such as disk galaxies viewed edge-on or galaxies with X-shaped/peanut bulges. Within this scheme, the angular parameter that defines quasi-elliptical isophotes is transformed from the commonly used, but inappropriate, polar coordinate to the “eccentric anomaly.” This provides a superior description of deviations from ellipticity, better capturing the true isophotal shape. Furthermore, this makes it possible to accurately recover both the surface brightness profile, using the correct azimuthally averaged isophote, and the two-dimensional model of any galaxy: the hitherto ubiquitous, but artificial,more » cross-like features in residual images are completely removed. The formalism has been implemented into the Image Reduction and Analysis Facility tasks Ellipse and Bmodel to create the new tasks “Isofit,” and “Cmodel.” The new tools are demonstrated here with application to five galaxies, chosen to be representative case-studies for several areas where this technique makes it possible to gain new scientific insight. Specifically: properly quantifying boxy/disky isophotes via the fourth harmonic order in edge-on galaxies, quantifying X-shaped/peanut bulges, higher-order Fourier moments for modeling bars in disks, and complex isophote shapes. Higher order (n > 4) harmonics now become meaningful and may correlate with structural properties, as boxyness/diskyness is known to do. This work also illustrates how the accurate construction, and subtraction, of a model from a galaxy image facilitates the identification and recovery of over-lapping sources such as globular clusters and the optical counterparts of X-ray sources.« less

  8. Optical Time-Domain and Radio Imaging Analyses of the Dynamic Hearts of AGN

    NASA Astrophysics Data System (ADS)

    Smith, Krista Lynne

    Active galactic nuclei (AGN) are among the most extreme objects in the universe: galaxies with a central supermassive black hole feeding on gas from a hot accretion disk. Despite their potential as powerful tools to study topics ranging from relativity to cosmology, they remain quite mysterious. In the first portion of this thesis, we explore how an AGN may influence the formation of stars in its host galaxy. Using high-resolution 22 GHz radio imaging of an X-ray selected sample of radio-quiet AGN, we find that the far-infrared radio correlation for normal star forming galaxies remains valid within a few hundred parsecs of the central engine. Because the core flux is often spatially isolated from star formation, we can also determine that the radio emission in radio-quiet AGN is consistent with both coronal and disk-jet coupling models. Finally, we find that AGN with jet-like radio morphologies have suppressed star formation, possibly indicating ongoing feedback. The second portion of this thesis uses optical AGN light curves to study the physics of accretion. The Kepler spacecraft produces groundbreaking light curves, but its fixed field of view only contained a handful of known AGN. We conduct an X-ray survey of this field, yielding 93 unique X-ray sources identified by optical follow-up spectroscopy as a mixture of AGN and stars. For the AGN, we spectroscopically measure black hole masses and accretion rates. We then analyze a sample of 22 Kepler AGN light curves. We develop a customized pipeline for AGN science with Kepler, a necessary step since the initial data was optimized for the unique goal of exoplanet detection. The light curves display an astonishing variety of behaviors in a new regime of optical variability inaccessible with previous facilities. We find power spectral slopes inconsistent with the damped random walk model, characteristic variability timescales, correlations of variability properties with physical parameters, and bimodal flux distributions possibly consistent with passing obscuring material. We also conclude that this regime of optical variability is not produced by simple X-ray reprocessing. Finally, we explain how this work supports future robust accretion studies with upcoming large timing surveys.

  9. Einstein observations of the X-ray structure of Centaurus A - Evidence for the radio-lobe energy source

    NASA Technical Reports Server (NTRS)

    Schreier, E. J.; Feigelson, E.; Delvaille, J.; Giacconi, R.; Grindlay, J.; Schwartz, D. A.; Fabian, A. C.

    1979-01-01

    The X-ray source at the center of the radio galaxy Centaurus A has been resolved into the following components with the imaging detectors on board the Einstein X-ray Observatory: (1) a point source coincident with the infrared nucleus; (2) diffuse X-ray emission coinciding with the inner radio lobes; (3) a 4-arcmin extended region of emission about the nucleus; and (4) an X-ray jet between the nucleus and the NE inner radio lobe. The 2 x 10 to the 39th ergs/s detected from the radio lobes probably arises from inverse Compton scattering of the microwave background. The average magnetic field in the SW lobe is determined to be not less than 4 microgauss. The extended region may be due to emission by a cloud of hot gas, cosmic-ray scattering, or stellar sources. The jet provides strong evidence for the continuous resupply of energy to the lobes from the nucleus.

  10. Phenomenological model for the evolution of radio galaxies such as Cygnus A

    NASA Astrophysics Data System (ADS)

    Artyukh, V. S.

    2015-06-01

    A phenomenological model for the evolution of classical radio galaxies such as Cygnus A is presented. An activity cycle of the host galaxy in the radio begins with the birth of radio jets, which correspond to shocks on scales ˜1 pc (the radio galaxy B0108+388). In the following stage of the evolution, the radio emission comes predominantly from formations on scales of 10-100 pc, whose physical parameters are close to those of the hot spots of Cygnus A (this corresponds to GHz-peaked spectrum radio sources). Further, the hot spots create radio lobes on scales of 103-104 pc (compact steep-spectrum radio sources). The fully formed radio galaxies have radio jets, hot spots, and giant radio lobes; the direction of the jets can vary in a discrete steps with time, creating new hot spots and inflating the radio lobes (as in Cygnus A). In the final stage of the evolutionary cycle, first the radio jets disappear, then the hot spots, and finally the radio lobes (similar to the giant radio galaxies DA 240 and 3C 236). A large fraction of radio galaxies with repeating activity cycles is observed. The close connection between Cygnus A-type radio galaxies and optical quasars is noted, as well as similarity in the cosmological evolution of powerful radio galaxies and optical quasars.

  11. Do Radio Jets Contribute to Driving Ionized Gas Outflows in Moderate Luminosity Type 2 AGN?

    NASA Astrophysics Data System (ADS)

    Fowler, Julia; Sajina, Anna; Lacy, Mark

    2016-01-01

    This poster examines the role of AGN-driven feedback in low to intermediate power radio galaxies. We begin with [OIII] measurements of ionized gas outflows in 29 moderate AGN-luminosity z~0.3-0.7 dust-obscured Type 2 AGN. We aim to examine the relative role of the AGN itself, of star-formation and of nascent radio jets in driving these outflows. The strength of the AGN and star formation are based on the [OIII] luminosities, and the far-IR luminosities respectively. For the radio jets, we present multi-frequency radio (X, S, and L-bands) JVLA imaging of our sample, which allows us both to constrain the overall radio power, but also look for signatures of young radio sources, including Giga-hertz Peaked Spectrum (GPS) sources, as well as small-scale jets. While radio jet-driven outflows are well known for powerful radio-loud galaxies, this study allows us to constrain the degree to which this mechanism is significant at more modest radio luminosities of L5GHz~10^22-25 W/Hz.

  12. Buoyancy, Uplift, and AGN Feedback - Deep Chandra and XMM-Newton Observations of the Radio Outbursts in NGC 4472 and NGC 1399

    NASA Astrophysics Data System (ADS)

    Kraft, R.; Su, Y.; Gendron Marsolais, M.; Roediger, E.; Nulsen, P.; Hlavacek-Larrondo, J.; Forman, W.; Jones, C.; Randall, S.; Machacek, M.

    2017-10-01

    We present results from deep Chandra and XMM-Newton observations of the AGN outbursts in the nearby early-type galaxies NGC 4472 and NGC 1399. Both pairs of radio bubbles are surrounded by rims of enhanced X-ray emission. Spectral analysis shows that the temperatures of these rims are less than that of the surrounding medium, suggesting that they are gas uplifted from the group center by the buoyant rise of the radio bubbles and not shocks due to the supersonic inflation of the lobes. The energy required to uplift these shells can be a significant fraction of the total outburst energy, and thus may play an important role in the thermodynamic evolution of the galaxy core. Buoyant uplift could also be a very efficient means of transporting metals from the galaxy core to the halo.

  13. Radio weak lensing shear measurement in the visibility domain - I. Methodology

    NASA Astrophysics Data System (ADS)

    Rivi, M.; Miller, L.; Makhathini, S.; Abdalla, F. B.

    2016-12-01

    The high sensitivity of the new generation of radio telescopes such as the Square Kilometre Array (SKA) will allow cosmological weak lensing measurements at radio wavelengths that are competitive with optical surveys. We present an adaptation to radio data of lensfit, a method for galaxy shape measurement originally developed and used for optical weak lensing surveys. This likelihood method uses an analytical galaxy model and makes a Bayesian marginalization of the likelihood over uninteresting parameters. It has the feature of working directly in the visibility domain, which is the natural approach to adopt with radio interferometer data, avoiding systematics introduced by the imaging process. As a proof of concept, we provide results for visibility simulations of individual galaxies with flux density S ≥ 10 μJy at the phase centre of the proposed SKA1-MID baseline configuration, adopting 12 frequency channels in the band 950-1190 MHz. Weak lensing shear measurements from a population of galaxies with realistic flux and scalelength distributions are obtained after natural gridding of the raw visibilities. Shear measurements are expected to be affected by `noise bias': we estimate the bias in the method as a function of signal-to-noise ratio (SNR). We obtain additive and multiplicative bias values that are comparable to SKA1 requirements for SNR > 18 and SNR > 30, respectively. The multiplicative bias for SNR >10 is comparable to that found in ground-based optical surveys such as CFHTLenS, and we anticipate that similar shear measurement calibration strategies to those used for optical surveys may be used to good effect in the analysis of SKA radio interferometer data.

  14. A misbehaving spiral

    NASA Image and Video Library

    2016-01-29

    Despite its unassuming appearance, the edge-on spiral galaxy captured in the left half of this NASA/ESA Hubble Space Telescope image is actually quite remarkable. Located about one billion light-years away in the constellation of Eridanus, this striking galaxy — known as LO95 0313-192 — has a spiral shape similar to that of the Milky Way. It has a large central bulge, and arms speckled with brightly glowing gas mottled by thick lanes of dark dust. Its companion, sitting pretty in the right of the frame, is known rather unpoetically as [LOY2001] J031549.8-190623. Jets, outbursts of superheated gas moving at close to the speed of light, have long been associated with the cores of giant elliptical galaxies, and galaxies in the process of merging. However, in an unexpected discovery, astronomers found LO95 0313-192 to have intense radio jets spewing out from its centre! The galaxy appears to have two more regions that are also strongly emitting in the radio part of the spectrum, making it even rarer still. The discovery of these giant jets in 2003 — not visible in this image, but indicated in this earlier Hubble composite — has been followed by the unearthing of a further three spiral galaxies containing radio-emitting jets in recent years. This growing class of unusual spirals continues to raise significant questions about how jets are produced within galaxies, and how they are thrown out into the cosmos.

  15. Nuclear Gas Dynamics of NGC2110: A Black Hole Offset from the Host Galaxy Mass Center?

    NASA Technical Reports Server (NTRS)

    Mundell, C. G.; Ferruit, P.; Nagar, N.; Wilson, A. S.

    2004-01-01

    It has been suggested that the central regions of many galaxies are unlikely to be in a static steady state, with instabilities caused by sinking satellites, the influence of a supermassive black hole or residuals of galaxy formation, resulting in the nuclear black hole orbiting the galaxy center. The observational signature of such an orbiting black hole is an offset of the active nucleus (AGN) from the kinematic center defined by the galaxy rotation curve. This orbital motion may provide fuel for the AGN, as the hole 'grazes' on the ISM, and bent radio jets, due to the motion of their source. The early type (E/SO) Seyfert galaxy, NGC2210, with its striking twin, 'S'-shaped radio jets, is a unique and valuable test case for the offset-nucleus phenomenon since, despite its remarkably normal rotation curve, its kinematically-measured mass center is displaced both spatially (260 pc) and kinematically (170 km/s) from the active nucleus located in optical and radio studies. However, the central kinematics, where the rotation curve rises most steeply, have been inaccessible with ground-based resolutions. We present new, high resolution WFPC2 imaging and long-slit STIS spectroscopy of the central 300 pc of NGC2110. We discuss the structure and kinematics of gas moving in the galactic potential on subarcsecond scales and the reality of the offset between the black hole and the galaxy mass center.

  16. Black hole outflows from Centaurus A detected with APEX

    NASA Astrophysics Data System (ADS)

    2009-01-01

    Astronomers have a new insight into the active galaxy Centaurus A (NGC 5128), as the jets and lobes emanating from the central black hole have been imaged at submillimetre wavelengths for the first time. The new data, from the Atacama Pathfinder Experiment (APEX) telescope in Chile, which is operated by ESO, have been combined with visible and X-ray wavelengths to produce this striking new image. ESO PR Photo 03a/09 Centaurus A Centaurus A is our nearest giant galaxy, at a distance of about 13 million light-years in the southern constellation of Centaurus. It is an elliptical galaxy, currently merging with a companion spiral galaxy, resulting in areas of intense star formation and making it one of the most spectacular objects in the sky. Centaurus A hosts a very active and highly luminous central region, caused by the presence of a supermassive black hole (see ESO 04/01), and is the source of strong radio and X-ray emission. In the image, we see the dust ring encircling the giant galaxy, and the fast-moving radio jets ejected from the galaxy centre, signatures of the supermassive black hole at the heart of Centaurus A. In submillimetre light, we see not only the heat glow from the central dust disc, but also the emission from the central radio source and - for the first time in the submillimetre - the inner radio lobes north and south of the disc. Measurements of this emission, which occurs when fast-moving electrons spiral around the lines of a magnetic field, reveal that the material in the jet is travelling at approximately half the speed of light. In the X-ray emission, we see the jets emerging from the centre of Centaurus A and, to the lower right of the galaxy, the glow where the expanding lobe collides with the surrounding gas, creating a shockwave. The Large APEX Bolometer Camera (LABOCA), built by the Max-Planck-Institute for Radio Astronomy (MPIfR), is mounted on APEX, a 12-metre diameter submillimetre-wavelength telescope located on the 5000 m high plateau of Chajnantor in the Chilean Atacama region. APEX is a collaboration between the MPIfR, the Onsala Space Observatory and ESO. The telescope is based on a prototype antenna constructed for the next generation Atacama Large Millimeter/submillimeter Array (ALMA) project. Operation of APEX at Chajnantor is entrusted to ESO. The APEX observations of Centaurus A are presented in the paper by Axel Weiss et al. 2008, LABOCA observations of nearby, active galaxies, A&A, 490, 77-86. A German-language page about this image, "Radiosignale aus der Richtung des Schwarzen Lochs im Zentrum von Centaurus A", is available on the MPIfR website.

  17. A Chandra High-Resolution X-ray Image of Centaurus A.

    PubMed

    Kraft; Forman; Jones; Kenter; Murray; Aldcroft; Elvis; Evans; Fabbiano; Isobe; Jerius; Karovska; Kim; Prestwich; Primini; Schwartz; Schreier; Vikhlinin

    2000-03-01

    We present first results from a Chandra X-Ray Observatory observation of the radio galaxy Centaurus A with the High-Resolution Camera. All previously reported major sources of X-ray emission including the bright nucleus, the jet, individual point sources, and diffuse emission are resolved or detected. The spatial resolution of this observation is better than 1&arcsec; in the center of the field of view and allows us to resolve X-ray features of this galaxy not previously seen. In particular, we resolve individual knots of emission in the inner jet and diffuse emission between the knots. All of the knots are diffuse at the 1&arcsec; level, and several exhibit complex spatial structure. We find the nucleus to be extended by a few tenths of an arcsecond. Our image also suggests the presence of an X-ray counterjet. Weak X-ray emission from the southwest radio lobe is also seen, and we detect 63 pointlike galactic sources (probably X-ray binaries and supernova remnants) above a luminosity limit of approximately 1.7x1037 ergs s-1.

  18. ROSAT detection of diffuse hot gas in the edge-on galaxy NGC 4631

    NASA Technical Reports Server (NTRS)

    Wang, Q. David; Walterbos, Rene A. M.; Steakley, Michael F.; Norman, Colin A.; Braun, Robert

    1994-01-01

    ROSAT observation is presented of the edge-on spiral galaxy NGC 4631, a nearby Sc/SBd galaxy best known for its extended radio halo. Because of the low foreground Galactic X-ray-absorbing gas column density, N(sub H) approximately 1.4 x 10(exp 20)cm(exp -2), this observation is sensitive to gas of temperature greater than or equal to a few times 10(exp 5) K. A soft (approximately 0.25 keV) X-ray radiation out to more than 8 kpc above the midplane of the galaxy was detected. The strongest X-ray emission in the halo is above the central disk, a region of about 3 kpc radius which shows high star formation activity. The X-ray emission in the halo is bordered by two extended filaments of radio continuum emission. Diffuse X-ray emission from hot gas in the galaxy's disk was found. The spectrum of the radiation can be characterized by a thermal plasma with a temperature of 3 x 10(exp 6) K and a radiative cooling rate of approximately 8 x 10(exp 39) ergs s(exp -1). This rate is only a few percent of the estimated supernova energy release in the interstellar medium of the galaxy. Analysis of the X-ray spectrum shows evidence for the presence of a cooler (several times 10(exp 5) K) halo gas component that could consume a much larger fraction of the supernova energy. Strong evidence was found for disk/halo interaction. Hot gas apparently blows out from supershells in the galaxy's disk at a rate of approximately 1 solar mass yr(exp -1). This outflow of hot gas drags magnetic field lines up in the halo and forms a magnetized gaseous halo. If the magnetic field lines are still anchored to the disk gas at large disk radii, the outflowing gas may be confined high above the disk by magnetic pressure. A strong X-ray source which coincides spatially with an H I supershell has been identified. However, the source is likely an extremely luminous X-ray binary with L(sub chi)(0.1 - 2 keV) approximately 5 x 10(exp 39) ergs s(exp -1), which makes it a stellar mass black hole candidate.

  19. A DISTANT RADIO MINI-HALO IN THE PHOENIX GALAXY CLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Weeren, R. J.; Andrade-Santos, F.; Forman, W. R.

    We report the discovery of extended radio emission in the Phoenix cluster (SPT-CL J2344-4243, z = 0.596) with the Giant Metrewave Radio Telescope (GMRT) at 610 MHz. The diffuse emission extends over a region of at least 400-500 kpc and surrounds the central radio source of the Brightest Cluster Galaxy, but does not appear to be directly associated with it. We classify the diffuse emission as a radio mini-halo, making it the currently most distant mini-halo known. Radio mini-halos have been explained by synchrotron emitting particles re-accelerated via turbulence, possibly induced by gas sloshing generated from a minor merger event. Chandra observationsmore » show a non-concentric X-ray surface brightness distribution, which is consistent with this sloshing interpretation. The mini-halo has a flux density of 17 ± 5 mJy, resulting in a 1.4 GHz radio power of (10.4 ± 3.5) × 10{sup 24} W Hz{sup –1}. The combined cluster emission, which includes the central compact radio source, is also detected in a shallow GMRT 156 MHz observation and together with the 610 MHz data we compute a spectral index of –0.84 ± 0.12 for the overall cluster radio emission. Given that mini-halos typically have steeper radio spectra than cluster radio galaxies, this spectral index should be taken as an upper limit for the mini-halo.« less

  20. A search for X-ray bright distant clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Nichol, R. C.; Ulmer, M. P.; Kron, R. G.; Wirth, G. D.; Koo, D. C.

    1994-01-01

    We present the results of a search for X-ray luminous distant clusters of galaxies. We found extended X-ray emission characteristic of a cluster toward two of our candidate clusters of galaxies. They both have a luminosity in the ROSAT bandpass of approximately equals 10(exp 44) ergs/s and a redshift greater than 0.5; thus making them two of the most distant X-ray clusters ever observed. Furthermore, we show that both clusters are optically rich and have a known radio source associated with them. We compare our result with other recent searches for distant X-ray luminous clusters and present a lower limit of 1.2 x 10(exp -7)/cu Mpc for the number density of such high-redshift clusters. This limit is consistent with the expected abundance of such clusters in a standard (b = 2) cold dark matter universe. Finally, our clusters provide important high-redshift targets for further study into the origin and evolution of massive clusters of galaxies.

  1. The average X-ray/gamma-ray spectra of Seyfert galaxies from Ginga and OSSE and the origin of the cosmic X-ray background

    NASA Technical Reports Server (NTRS)

    Zdziarski, Andrzej A.; Johnson, W. Neil; Done, Chris; Smith, David; Mcnaron-Brown, Kellie

    1995-01-01

    We have obtained the first average 2-500 keV spectra of Seyfert galaxies, using the data from Ginga and Compton Gamma-Ray Observatory's (CGRO) Oriented Scintillation Spectrometer Experiment (OSSE). Our sample contains three classes of objects with markedly different spectra: radio-quiet Seyfert 1's and 2's, and radio-loud Seyfert 1's. The average radio-quiet Seyfert 1 spectrum is well-fitted by a power law continuum with the energy spectral index alpha approximately equals 0.9, a Compton reflection component corresponding to a approximately 2 pi covering solid angle, and ionized absorption. There is a high-energy cutoff in the incident power law continuum: the e-folding energy is E(sub c) approximately equals 0.6(sup +0.8 sub -0.3) MeV. The simplest model that describes this spectrum is Comptonization in a relativistic optically-thin thermal corona above the surface of an accretion disk. Radio-quiet Seyfert 2's show strong netural absorption, and there is an indication that their X-ray power laws are intrinsically harder. Finally, the radio-loud Seyfert spectrum has alpha approximately equals 0.7, moderate neutral absorption E(sub C) = 0.4(sup +0.7 sub -0.2) MeV, and no or little Compton reflection. This is incompatible with the radio-quiet Seyfert 1 spectrum, and probably indicating that the X-rays are beamed away from the accretion disk in these objects. The average spectra of Seyferts integrated over redshift with a power-law evolution can explain the hard X-ray spectrum of the cosmic background.

  2. CMB-induced radio quenching of high-redshift jetted AGNs with highly magnetic hotspots

    NASA Astrophysics Data System (ADS)

    Wu, Jianfeng; Ghisellini, Gabriele; Hodges-Kluck, Edmund; Gallo, Elena; Ciardi, Benedetta; Haardt, Francesco; Sbarrato, Tullia; Tavecchio, Fabrizio

    2017-06-01

    In an effort to understand the cause of the apparent depletion in the number density of radio-loud active galactic nuclei (AGNs) at z > 3, this work investigates the viability of the so-called cosmic microwave background (CMB) quenching mechanism of intrinsically jetted, high-z AGNs, whereby inverse Compton scattering of CMB photons off electrons within the extended lobes results in a substantial dimming of the lobe synchrotron emission at GHz frequencies, while simultaneously boosting their diffuse X-ray signal. We focus on five z > 3.5 radio galaxies that have sufficiently deep Chandra exposure (>50 ks) to warrant a meaningful investigation of any extended X-ray emission. For those objects with evidence for statistically significant extended X-ray lobes (4C 41.17 and 4C 03.24), we combine the Chandra measurements with literature data at lower frequencies to assemble the systems' spectral energy distributions (SEDs), and utilize state-of-the-art SED modelling - including emission from the disc, torus, jet, hotspots and lobes - to infer their physical parameters. For both radio galaxies, the magnetic energy density in the hotspots is found to exceed the energy density in CMB photons, whereas the opposite is true for the lobes. This implies that any extended synchrotron emission likely originates from the hotspots themselves, rather than the lobes. Conversely, inverse Compton scattering of CMB photons dominates the extended X-ray emission from the lobes, which are effectively 'radio-quenched'. As a result, CMB quenching is effective in these systems in spite of the fact that the observed X-ray to radio luminosity ratio does not bear the signature (1 + z)4 dependence of the CMB energy density.

  3. JET TRAILS AND MACH CONES: THE INTERACTION OF MICROQUASARS WITH THE INTERSTELLAR MEDIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, D.; Morsony, B.; Heinz, S.

    2011-11-20

    A subset of microquasars exhibits high peculiar velocity with respect to the local standard of rest due to the kicks they receive when being born in supernovae. The interaction between the radio plasma released by microquasar jets from such high-velocity binaries with the interstellar medium must lead to the production of trails and bow shocks similar to what is observed in narrow-angle tailed radio galaxies and pulsar wind nebulae. We present a set of numerical simulations of this interaction that illuminate the long-term dynamical evolution and the observational properties of these microquasar bow-shock nebulae and trails. We find that thismore » interaction always produces a structure that consists of a bow shock, a trailing neck, and an expanding bubble. Using our simulations to model emission, we predict that the shock surrounding the bubble and the neck should be visible in H{sub {alpha}} emission, the interior of the bubble should be visible in synchrotron radio emission, and only the bow shock is likely to be detectable in X-ray emission. We construct an analytic model for the evolution of the neck and bubble shape and compare this model with observations of the X-ray binary SAX J1712.6-3739.« less

  4. Radio weak lensing shear measurement in the visibility domain - II. Source extraction

    NASA Astrophysics Data System (ADS)

    Rivi, M.; Miller, L.

    2018-05-01

    This paper extends the method introduced in Rivi et al. (2016b) to measure galaxy ellipticities in the visibility domain for radio weak lensing surveys. In that paper, we focused on the development and testing of the method for the simple case of individual galaxies located at the phase centre, and proposed to extend it to the realistic case of many sources in the field of view by isolating visibilities of each source with a faceting technique. In this second paper, we present a detailed algorithm for source extraction in the visibility domain and show its effectiveness as a function of the source number density by running simulations of SKA1-MID observations in the band 950-1150 MHz and comparing original and measured values of galaxies' ellipticities. Shear measurements from a realistic population of 104 galaxies randomly located in a field of view of 1 \\deg ^2 (i.e. the source density expected for the current radio weak lensing survey proposal with SKA1) are also performed. At SNR ≥ 10, the multiplicative bias is only a factor 1.5 worse than what found when analysing individual sources, and is still comparable to the bias values reported for similar measurement methods at optical wavelengths. The additive bias is unchanged from the case of individual sources, but it is significantly larger than typically found in optical surveys. This bias depends on the shape of the uv coverage and we suggest that a uv-plane weighting scheme to produce a more isotropic shape could reduce and control additive bias.

  5. Spatially offset AGN candidates in the CLASS survey

    NASA Astrophysics Data System (ADS)

    Skipper, Chris J.; Browne, Ian W. A.

    2018-04-01

    Prompted by a recent claim by Barrows et al. that X-ray active galactic nuclei (AGNs) are often found significantly offset from the centres of their host galaxies, we have looked for examples of compact radio sources that are offset from the optical centroids of nearby (z < 0.2) galaxies. We have selected a sample of 345 galaxies from the Sloan Digital Sky Survey (SDSS) galaxy catalogue, which have nearby compact radio sources listed in the Cosmic-Lens All Sky Survey (CLASS) catalogue. We find only three matches (˜0.87 per cent of the sample) with offsets greater than 600 milliarcsec (mas), which is considerably fewer than we would have expected from the Barrows et al. X-ray survey. We fit our histogram of offsets with a Rayleigh distribution with σ = 60.5 mas, but find that there is an excess of objects with separations greater than ˜150 mas. Assuming that this excess represents AGNs with real offsets, we place an upper limit of ˜17 per cent on the fraction of offset AGNs in our radio-selected sample. We select 38 objects with offsets greater than 150 mas, and find they have some diverse properties: Some are well known, such as Mrk 273 and Arp 220, some have dust lanes, which may have affected the optical astrometry, and a few are strong new candidates for offset AGNs.

  6. CO detections and IRAS observations of bright radio spiral galaxies at cz equal or less than 9000 kilometers per second

    NASA Technical Reports Server (NTRS)

    Sanders, D. B.; Mirabel, I. F.

    1985-01-01

    CO emission has been detected from 20 of 21 bright radio spirals with strong extended nuclear sources, including the most distant (NGC 7674) and the most luminous (IC 4553 = Arp 220, NGC 6240) galaxies yet detected in CO. All of these galaxies are rich in molecular gas, with M total(H2) = 3 x 10 to the 8th - 2 x 10 to the 10th solar masses. IRAS observations show that they have a strong far-infrared (FIR) excess, with L(FIR)/L(B) approximately equal to 1-35 and L(FIR) (40-400 microns) approximately equal to 10 to the 10th - 10 to the 12th L solar masses. The primary luminosity source for these radio cores appears to be star formation in molecular clouds. A strong correlation is found between the FIR and extended 21 cm continuum flux, implying that the fraction of massive stars formed is independent of the star formation rate. The ratio L(FIR)/M(H2) provides a measure of the current rate of star formation, which is found to be a factor 3-20 larger in these galaxies than for the ensemble of molecular clouds in the Milky Way. At these rates their molecular gas will be depleted in about 10 to the 8th yr.

  7. Extremely red objects in the fields of high redshift radio galaxies

    NASA Technical Reports Server (NTRS)

    Persson, S. E.; Mccarthy, P. J.; Dressler, Alan; Matthews, Keith

    1993-01-01

    We are engaged in a program of infrared imaging photometry of high redshift radio galaxies. The observations are being done using NICMOS2 and NICMOS3 arrays on the DuPont 100-inch telescope at Las Campanas Observatory. In addition, Persson and Matthews are measuring the spectral energy distributions of normal cluster galaxies in the redshift range 0 to 1. These measurements are being done with a 58 x 62 InSb array on the Palomar 5-m telescope. During the course of these observations we have imaged roughly 20 square arcminutes of sky to limiting magnitudes greater than 20 in the J, H, and K passbands (3 sigma in 3 square arcseconds). We have detected several relatively bright, extremely red, extended objects during the course of this work. Because the radio galaxy program requires Thuan-Gunn gri photometry, we are able to construct rough photometric energy distributions for many of the objects. A sample of the galaxy magnitudes within 4 arcseconds diameter is given. All the detections are real; either the objects show up at several wavelengths, or in subsets of the data. The reddest object in the table, 9ab'B' was found in a field of galaxies in a rich cluster at z = 0.4; 9ab'A' lies 8 arcseconds from it.

  8. Multiwavelength Study of the Bright X-ray Source Population in the Interacting Galaxies NGC 5774/NGC 5775

    NASA Technical Reports Server (NTRS)

    Ghosh, Kajal K.; Swartz, Douglas A.; Tennant, Allyn F.; Saripalli, Lakshmi; Gandhi, Poshak; Foellmi, Cedric; Gutierrez, Carlos M.; Lopez-Corredoira, Martin

    2006-01-01

    The X-ray source population in the field of the interacting pair of galaxies NGC 5774/5775 is reported. A total of 49 discrete sources are detected, including 12 ultraluminous X-ray source candidates with lum inosities above 10(exp 39)erg/s in the 0.5 - 8.0 keV X-ray band. Several of these latter are transient X-ray sources that fall below detect ion levels in one of two X-ray observations spaced 15 months apart. X-ray source positions are mapped onto optical and radio images to sear ch for potential counterparts. Eleven sources have optically-bright c ounterparts. Optical colors are used to differentiate these sources, which are mostly located outside the optical extent of the interacting galaxies, as potential globular clusters (3 sources) and quasars (5) . Follow-up optical spectroscopy confirms two of the latter are background quasars.

  9. Analysis and Interpretation of Hard X-ray Emission fromthe Bullet Cluster (1E0657-56), the Most Distant Cluster of Galaxies Observed by the RXTE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrosian, Vahe; /Stanford U., Phys. Dept. /SLAC /Stanford U., Appl. Phys. Dept.; Madejski, Greg

    2006-08-16

    Evidence for non-thermal activity in clusters of galaxies is well established from radio observations of synchrotron emission by relativistic electrons. New windows in the Extreme Ultraviolet and Hard X-ray ranges have provided for more powerful tools for the investigation of this phenomenon. Detection of hard X-rays in the 20 to 100 keV range have been reported from several clusters of galaxies, notably from Coma and others. Based on these earlier observations we identified the relatively high redshift cluster 1E0657-56 (also known as RX J0658-5557) as a good candidate for hard X-ray observations. This cluster, also known as the bullet cluster,more » has many other interesting and unusual features, most notably that it is undergoing a merger, clearly visible in the X-ray images. Here we present results from a successful RXTE observations of this cluster. We summarize past observations and their theoretical interpretation which guided us in the selection process. We describe the new observations and present the constraints we can set on the flux and spectrum of the hard X-rays. Finally we discuss the constraints one can set on the characteristics of accelerated electrons which produce the hard X-rays and the radio radiation.« less

  10. Radio continuum of galaxies with H2O megamaser disks: 33 GHz VLA data

    NASA Astrophysics Data System (ADS)

    Kamali, F.; Henkel, C.; Brunthaler, A.; Impellizzeri, C. M. V.; Menten, K. M.; Braatz, J. A.; Greene, J. E.; Reid, M. J.; Condon, J. J.; Lo, K. Y.; Kuo, C. Y.; Litzinger, E.; Kadler, M.

    2017-09-01

    Context. Galaxies with H2O megamaser disks are active galaxies in whose edge-on accretion disks 22 GHz H2O maser emission has been detected. Because their geometry is known, they provide a unique view into the properties of active galactic nuclei. Aims: The goal of this work is to investigate the nuclear environment of galaxies with H2O maser disks and to relate the maser and host galaxy properties to those of the radio continuum emission of the galaxy. Methods: The 33 GHz (9 mm) radio continuum properties of 24 galaxies with reported 22 GHz H2O maser emission from their disks are studied in the context of the multiwavelength view of these sources. The 29-37 GHz Ka-band observations are made with the Karl Jansky Very Large Array in B, CnB, or BnA configurations, achieving a resolution of 0.2-0.5 arcsec. Hard X-ray data from the Swift/BAT survey and 22 μm infrared data from WISE, 22 GHz H2O maser data and 1.4 GHz data from NVSS and FIRST surveys are also included in the analysis. Results: Eighty-seven percent (21 out of 24) galaxies in our sample show 33 GHz radio continuum emission at levels of 4.5-240σ. Five sources show extended emission (deconvolved source size larger than 2.5 times the major axis of the beam), including one source with two main components and one with three main components. The remaining detected 16 sources (and also some of the above-mentioned targets) exhibit compact cores within the sensitivity limits. Little evidence is found for extended jets (>300 pc) in most sources. Either they do not exist, or our chosen frequency of 33 GHz is too high for a detection of these supposedly steep spectrum features. In NGC 4388, we find an extended jet-like feature that appears to be oriented perpendicular to the H2O megamaser disk. NGC 2273 is another candidate whose radio continuum source might be elongated perpendicular to the maser disk. Smaller 100-300 pc sized jets might also be present, as is suggested by the beam-deconvolved morphology of our sources. Whenever possible, central positions with accuracies of 20-280 mas are provided. A correlation analysis shows that the 33 GHz luminosity weakly correlates with the infrared luminosity. The 33 GHz luminosity is anticorrelated with the circular velocity of the galaxy. The black hole masses show stronger correlations with H2O maser luminosity than with 1.4 GHz, 33 GHz, or hard X-ray luminosities. Furthermore, the inner radii of the disks show stronger correlations with 1.4 GHz, 33 GHz, and hard X-ray luminosities than their outer radii, suggesting that the outer radii may be affected by disk warping, star formation, or peculiar density distributions.

  11. Photometric redshifts for the next generation of deep radio continuum surveys - II. Gaussian processes and hybrid estimates

    NASA Astrophysics Data System (ADS)

    Duncan, Kenneth J.; Jarvis, Matt J.; Brown, Michael J. I.; Röttgering, Huub J. A.

    2018-07-01

    Building on the first paper in this series (Duncan et al. 2018), we present a study investigating the performance of Gaussian process photometric redshift (photo-z) estimates for galaxies and active galactic nuclei (AGNs) detected in deep radio continuum surveys. A Gaussian process redshift code is used to produce photo-z estimates targeting specific subsets of both the AGN population - infrared (IR), X-ray, and optically selected AGNs - and the general galaxy population. The new estimates for the AGN population are found to perform significantly better at z > 1 than the template-based photo-z estimates presented in our previous study. Our new photo-z estimates are then combined with template estimates through hierarchical Bayesian combination to produce a hybrid consensus estimate that outperforms both of the individual methods across all source types. Photo-z estimates for radio sources that are X-ray sources or optical/IR AGNs are significantly improved in comparison to previous template-only estimates - with outlier fractions and robust scatter reduced by up to a factor of ˜4. The ability of our method to combine the strengths of the two input photo-z techniques and the large improvements we observe illustrate its potential for enabling future exploitation of deep radio continuum surveys for both the study of galaxy and black hole coevolution and for cosmological studies.

  12. Coupling of jet and accretion activity in the active galaxy NGC 1052

    NASA Astrophysics Data System (ADS)

    Boeck, Moritz; Kadler, Matthias; Ros, Eduardo; Weaver, Kimberly; Wilms, Joern; Brenneman, Laura; Angelakis, Emmanouil

    The radio loud galaxy NGC 1052 has been monitored for the past fifteen years with Very Long Baseline Interferometry (VLBI) observations and has been the target of an intense multiwave-length monitoring campaign since 2005. This provides an excellent dataset for analyzing the relationship between properties of the relativistic jet and the accretion disk in active galactic nuclei. Components in the jet are tracked and the ejection times of new components are deter-mined. The analysis of the radio variability is complemented by the study of X-ray observations allowing us to draw conclusions on the accretion activity. The X-ray variability on weekly and monthly time scales is monitored with the Rossi X-ray Timing Explorer, whereas deep XMM-Newton and Suzaku observations provide spectra showing a broad Fe Kα line, whose variability can provide a particularly valuable probe of the inner accretion flow.

  13. First Results on the Cluster Galaxy Population from the Subaru Hyper Suprime-Cam Survey. III. Brightest Cluster Galaxies, Stellar Mass Distribution, and Active Galaxies

    NASA Astrophysics Data System (ADS)

    Lin, Yen-Ting; Hsieh, Bau-Ching; Lin, Sheng-Chieh; Oguri, Masamune; Chen, Kai-Feng; Tanaka, Masayuki; Chiu, I.-Non; Huang, Song; Kodama, Tadayuki; Leauthaud, Alexie; More, Surhud; Nishizawa, Atsushi J.; Bundy, Kevin; Lin, Lihwai; Miyazaki, Satoshi

    2017-12-01

    The unprecedented depth and area surveyed by the Subaru Strategic Program with the Hyper Suprime-Cam (HSC-SSP) have enabled us to construct and publish the largest distant cluster sample out to z∼ 1 to date. In this exploratory study of cluster galaxy evolution from z = 1 to z = 0.3, we investigate the stellar mass assembly history of brightest cluster galaxies (BCGs), the evolution of stellar mass and luminosity distributions, the stellar mass surface density profile, as well as the population of radio galaxies. Our analysis is the first high-redshift application of the top N richest cluster selection, which is shown to allow us to trace the cluster galaxy evolution faithfully. Over the 230 deg2 area of the current HSC-SSP footprint, selecting the top 100 clusters in each of the four redshift bins allows us to observe the buildup of galaxy population in descendants of clusters whose z≈ 1 mass is about 2× {10}14 {M}ȯ . Our stellar mass is derived from a machine-learning algorithm, which is found to be unbiased and accurate with respect to the COSMOS data. We find very mild stellar mass growth in BCGs (about 35% between z = 1 and 0.3), and no evidence for evolution in both the total stellar mass–cluster mass correlation and the shape of the stellar mass surface density profile. We also present the first measurement of the radio luminosity distribution in clusters out to z∼ 1, and show hints of changes in the dominant accretion mode powering the cluster radio galaxies at z∼ 0.8.

  14. A Multi-Wavelength View of Radio Galaxy Hercules A

    NASA Image and Video Library

    2017-12-08

    Spectacular jets powered by the gravitational energy of a super massive black hole in the core of the elliptical galaxy Hercules A illustrate the combined imaging power of two of astronomy's cutting-edge tools, the Hubble Space Telescope's Wide Field Camera 3, and the recently upgraded Karl G. Jansky Very Large Array (VLA) radio telescope in New Mexico. To view a video of this go to: bit.ly/Ue2ypS Some two billion light-years away, the yellowish elliptical galaxy in the center of the image appears quite ordinary as seen by Hubble in visible wavelengths of light. The galaxy is roughly 1,000 times more massive than the Milky Way and harbors a 2.5-billion-solar-mass central black hole that is 1,000 times more massive than the black hole in the Milky Way. But the innocuous-looking galaxy, also known as 3C 348, has long been known as the brightest radio-emitting object in the constellation Hercules. Emitting nearly a billion times more power in radio wavelengths than our Sun, the galaxy is one of the brightest extragalactic radio sources in the entire sky. Credit: NASA, ESA, S. Baum and C. O'Dea (RIT), R. Perley and W. Cotton (NRAO/AUI/NSF), and the Hubble Heritage Team (STScI/AURA) To read more about this image go to: 1.usa.gov/Yu7uvX NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. Feeding and feedback in radio galaxies of the local universe

    NASA Astrophysics Data System (ADS)

    Couto, Guilherme dos Santos

    2016-10-01

    We present integral field spectroscopic data covering the inner kiloparsecs of four radio galaxies of the local Universe (z<0.07), Arp 102B, Pictor A, 3C 33 and 4C +29.30, obtained with the GMOS-IFU instrument of the Gemini telescopes. We use these data to analyze the gas excitation and kinematics via two-dimensional maps. Using the flux distributions of the emission lines, we identify extended emission in ionized gas up to the edges of the observed field, which corresponds to 1.7 kpc x 2.5 kpc for Arp 102B, 2.5 kpc x 3.4 kpc for Pictor A, 4.0 kpc x 5.8 kpc for 3C 33 and 4.3 kpc x 6.2 kpc for 4C +29.30. The extended line emitting gas displays structures resembling rotating disks, spiral arms and bars. Line ratios indicate that both photons from the nuclear source and shocks originated in the interaction of the radio jet with circumnuclear gas are ionizing mechanisms of the gas. Line ratio values are typical of Seyfert galaxies for 3C 33 and 4C +29.30, while intermediate values between Seyferts and LINERs are observed in Arp 102B. Pictor A galaxy, however, shows low values of [NII]/Ha=0.15-0.25, expected for HII regions. We suggest that these values are observed due to the low gas metallicity (12+log(O/H)=8.39). Centroid velocity maps show that the gas kinematics is dominated by rotation only in Arp 102B and 3C 33. Outflows are observed in the galaxies Arp 102B, 3C 33 and 4C +29.30. We obtain mass outflow rates of 0.32-0.49 Msun per year, but the outflow kinetic power is small, ranging 0.04-0.07% of the AGN bolometric luminosity, indicating that the feedback has little impact in the host galaxies evolution. The high masses of ionized gas, ranging from 7.4E7 to 4.6E8 Msun, and the fact that these galaxies are early-type, suggest an external origin of the gas. Indeed, it is observed evidence of interaction with companion galaxies in Arp 102B, Pictor A and 4C +29.30. We suggest that the capture of mass has triggered the nuclear activity in these galaxies, with the high masses feeding not only the SMBH but also being a possible source of star formation.

  16. Galactic SNR Candidates in the ROSAT All-Sky Survey

    NASA Technical Reports Server (NTRS)

    Schaudel, Daniel; Becker, Werner; Voges, Wolfgand; Reich, Wolfgang; Weisskopf, Martin; Six, N. Frank (Technical Monitor)

    2001-01-01

    Identified radio supernova remnants (SNRS) in the Galaxy comprise an incomplete sample of the SNR population due to various selection effects. ROSAT performed the first all-sky survey with an imaging X-ray telescope, and thus provides another window for finding SNRS and compact objects that may reside within them. Performing a search for extended X-ray sources in the ROSAT all-sky survey database about 350 objects were identified as SNR candidates in recent years. Continuing this systematic search, we have reanalyzed the ROSAT all-sky survey (BASS) data of these candidates and correlated the results with radio surveys like NVSS, ATNF, Molonglo, and Effelsberg. A further correlation with SIMBAD and NED were used for subsequent identification purpose. About 50 of the 350 candidates turned out to be likely galaxies or clusters of galaxies. We found 14 RASS sources which are very promising SNR candidates and are currently subject of further follow-up studies. We will provide the details of the identification campaign and present first results.

  17. THE X-SHAPED BULGE OF THE MILKY WAY REVEALED BY WISE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ness, Melissa; Lang, Dustin, E-mail: ness@mpia-hd.mpg.de

    2016-07-01

    The Milky Way bulge has a boxy/peanut morphology and an X-shaped structure. This X-shape has been revealed by the “split in the red clump” from star counts along the line of sight toward the bulge, measured from photometric surveys. This boxy, X-shaped bulge morphology is not unique to the Milky Way and such bulges are observed in other barred spiral galaxies. N -body simulations show that boxy and X-shaped bulges are formed from the disk via dynamical instabilities. It has also been proposed that the Milky Way bulge is not X-shaped, but rather, the apparent split in the red clumpmore » stars is a consequence of different stellar populations, in an old classical spheroidal bulge. We present a Wide-Field Infrared Survey Explorer ( WISE ) image of the Milky Way bulge, produced by downsampling the publicly available “unWISE” coadds. The WISE image of the Milky Way bulge shows that the X-shaped nature of the Milky Way bulge is self-evident and irrefutable. The X-shape morphology of the bulge in itself and the fraction of bulge stars that comprise orbits within this structure has important implications for the formation history of the Milky Way, and, given the ubiquity of boxy X-shaped bulges, spiral galaxies in general.« less

  18. The X-ray structure of Centaurus A

    NASA Technical Reports Server (NTRS)

    Feigelson, E. D.; Schreier, E. J.; Delvaille, J. P.; Giacconi, R.; Grindlay, J. E.; Lightman, A. P.

    1981-01-01

    The Einstein X-ray observatory imaging detectors have found X-ray emission associated with several components of the nearby radio galaxy Cen A = NGC 5128: (1) the compact nucleus; (2) an X-ray jet pointed toward the NE radio lobes; (3) the middle NE radio lobe; (4) the disk or dust lane; and (5) diffuse emission extending several arcmin around the nucleus. The intensity of the nucleus changed by a factor of seven over six months. The X-ray jet is considered in terms of thermal, inverse Compton, and synchrotron models. The emission of the NE radio lobe is greater than that expected from inverse Compton or synchrotron processes. Two ridges of emission are found along each edge of the dust lane, within several arcmin of the nucleus. The diffuse X-ray component has a luminosity which is too high to be due to bulge population X-ray sources, but which may be produced by main sequence stars under appropriate circumstances.

  19. Chandra Observations of Hydra A

    NASA Technical Reports Server (NTRS)

    McNamara, Brian; Lavoie, Anthony R. (Technical Monitor)

    2000-01-01

    We present Chandra X-ray Observations of the Hydra A cluster of galaxies, and we report the discovery of structure in the central 80 kpc of the cluster's X-ray-emitting gas. The most remarkable structures are depressions in the X-ray surface brightness, approx. 25 - 35 kpc diameter, that are coincident with Hydra A's radio lobes. The depressions are nearly devoid of X-ray-emitting gas, and there is no evidence for shock-heated gas surrounding the radio lobes. We suggest the gas within the surface brightness depressions was displaced as the radio lobes expanded subsonically, leaving cavities in the hot atmosphere. The gas temperature declines from 4 keV at 70 kpc to 3 keV in the inner 20 kpc of the brightest cluster galaxy (BCG), and the cooling time of the gas is approx. 600 Myr in the inner 10 kpc. These properties are consistent with the presence of a approx. 34 solar mass/yr cooling flow within a 70 kpc radius. Bright X-ray emission is present in the BCG surrounding a recently-accreted disk of nebular emission and young stars. The star formation rate is commensurate with the cooling rate of the hot gas within the volume of the disk, although the sink for the material that may be cooling at larger radii remains elusive.

  20. A decade of Rossi X-ray Timing Explorer Seyfert observations: An RXTE Seyfert spectral database

    NASA Astrophysics Data System (ADS)

    Mattson, Barbara Jo

    2008-10-01

    With over forty years of X-ray observations, we should have a grasp on the X- ray nature of active galactic nuclei (AGN). The unification model of Antonucci and Miller (1985) offered a context for understanding observations by defining a "typical" AGN geometry, with observed spectral differences explained by line- of-sight effects. However, the emerging picture is that the central AGN is more complex than unification alone can describe. We explore the unified model with a systematic X-ray spectral study of bright Seyfert galaxies observed by the Rossi X-Ray Timing Explorer (RXTE) over its first 10 years. We develop a spectral-fit database of 821 time-resolved spectra from 39 Seyfert galaxies fitted to a model describing the effects of an X-ray power-law spectrum reprocessed and absorbed by material in the central AGN region. We observe a relationship between radio and X-ray properties for Seyfert 1s, with the spectral parameters differing between radio-loud and radio-quiet Seyfert 1s. We also find a complex relationship between the Fe K equivalent width ( EW ) and the power-law photon index (Gamma) for the Seyfert 1s, with a correlation for the radio-loud sources and an anti-correlation for the radio- quiet sources. These results can be explained if X-rays from the relativistic jet in radio-loud sources contribute significantly to the observed spectrum. We observe scatter in the EW-Gamma relationship for the Seyfert 2s, suggesting complex environments that unification alone cannot explain. We see a strong correlation between Gamma and the reflection fraction ( R ) in the Seyfert 1 and 2 samples, but modeling degeneracies are present, so this relationship cannot be trusted as instructive of the AGN physics. For the Seyfert 1 sample, we find an anticorrelation between EW and the 2 to 10 keV luminosity ( L x ), also known as the X-ray Baldwin effect. This may suggest that higher luminosity sources contain less material or may be due to a time-lag effect. We do not observe the previously reported relationship between Gamma and the ratio of L x to the Eddington luminosity.

  1. The coma cluster after lunch: Has a galaxcy group passed through the cluster core?

    NASA Technical Reports Server (NTRS)

    Burns, Jack O.; Roettiger, Kurt; Ledlow, Michael; Klypin, Anatoly

    1994-01-01

    We propose that the Coma cluster has recently undergone a collision with the NGC 4839 galaxy group. The ROSAT X-ray morphology, the Coma radio halo, the presence of poststarburst galaxies in the bridge between Coma and NGC 4839, the usually high velocity dispersion for the NGC 4839 group, and the position of a large-scale galaxy filament to the NE of Coma are all used to argue that the NGC 4839 group passed through the core of Coma approximately 2 Gyr ago. We present a new Hydro/N-body simulation of the merger between a galaxy group and a rich cluster that reproduces many of the observed X-ray and optical properties of Coma/NGC 4839.

  2. Chandra Sees Shape of Universe During Formative, Adolescent Years

    NASA Astrophysics Data System (ADS)

    2003-03-01

    Scientists using NASA's Chandra X-ray Observatory have taken a snapshot of the adolescent universe from about five billion years ago when the familiar web-like structure of galaxy chains and voids first emerged. The observation reveals distant and massive galaxies dotting the sky, clustered together under the gravitational attraction of deep, unseen pockets of dark matter. This provides important clues of how the universe matured from its chaotic beginnings to its elegant structure we see today. These results are presented today in a press conference at the meeting of the High Energy Astrophysics Division of the American Astronomical Society at Mt. Tremblant, Quebec. "Piece by piece, we are assembling a photo album of the universe through the ages," said Yuxuan Yang, a doctorate candidate at the University of Maryland, College Park, who conducted the analysis. "Last month we saw a picture of the infant universe taken with the Wilkinson Microwave Anisotropy Probe. Now we can add a snapshot of its adolescence." The Chandra observation traced a patch of sky known as the Lockman Hole in the constellation Ursa Major (containing the Big Dipper). Chandra saw a rich density of active galaxies, seven times denser than what has been detected in previous optical and radio surveys at similar distances. This provides the clearest picture yet at the large-scale structure of the universe at such distances (and age), according to Dr. Richard Mushotzky of NASA Goddard Space Flight Center in Greenbelt, Md., who led the observation. Lockman Hole JPEG, TIFF, PS An image that has been "blurred" to allow better view of the structures outlined by the X-ray sources. The color represents the spectra of the AGN. The red color indicates the sources on average radiates at longer wavelength while green and blue colors indicates the sources radiates at shorter wavelength. The Green and blue regions appear to form a wall, or shows more lumpiness than the "red" sources. If one could capture the universe in a box, scientists say that the large scale structure -- that is, galaxies, galaxy clusters and voids of seemingly empty space -- takes the appearance of a web. Galaxies and intergalactic gas are strung like pearls on unseen filaments of dark matter, which comprises over 85 percent of all matter. Galaxies are attracted to dark matter's gravitational potential. Dark matter does not shine, like ordinary matter made of atoms, and may very well be intrinsically different. Chandra's observation of distant galaxies in the Lockman Hole, spread out over several billion light years from Earth, essentially maps the distribution of dark matter. This provides clues to how the universe grew. "We are seeing the universe during its formative years," said Mushotzky. "This is billions of years after galaxies were born, during a period when the universe began to take on the trappings of an adult." The galaxies that the team saw with Chandra were either dim or altogether undetectable with optical and radio telescopes. This may be because they are enshrouded in dust and gas, which blocks radio waves and optical light. X-rays, a higher-energy form of light, can penetrate this shroud. "Chandra is the only X-ray telescope with a spatial resolution comparable to the optical telescopes," according to Dr. Amy Barger of University of Wisconsin at Madison, who led the optical follow-up with the 10-meter Keck telescope on Mauna Kea, Hawaii. "This is critical to unambiguously identify the optical counterparts of the X-ray sources and measuring distances, or redshifts. This allows scientists to create a three-dimensional image of the large-scale structure." The additive effect of future deep and long Chandra surveys over the next few years will provide an even sharper picture of the young universe. Other scientists who participated in this observation include Drs. Len Cowie and Dave Sanders of the University of Hawaii, and Ph.D. student Aaron Steffen of the University of Wisconsin at Madison. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program, and TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass., for the Office of Space Science at NASA Headquarters, Washington.

  3. The Inhomogeneous Centers of Cooling Flows in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Sharma, Mangala

    2004-04-01

    The intracluster medium (ICM) in the centers of galaxy clusters is cool, dense and may be imhomogeneous. We present Chandra X-ray Observatory imaging spectroscopic data on two galaxy clusters, Abell 1991 and MS 0839.8+2938, that have cooling flows in their central few hundred kpc. Their cD galaxies show current star formation, and host compact radio sources. The hot ICM at both their centers has nonhomogeneities on kiloparsec scales. These finer structures are likely to be signatures of the formation of clusters through infall of smaller, cooler subclusters.

  4. A cooling flow cluster at redshift Z = 0.2

    NASA Astrophysics Data System (ADS)

    Wolter, Anna; Schild, R.; Gioia, I. M.; Maccacaro, T.; Morris, S. L.; Nesci, R.; Perola, G. C.

    The cluster of galaxies 1E0839.9 + 2938, discovered in X-ray observations by Nesci et al. (1988), is characterized on the basis of VLA 6-cm radio observations, Whipple Observatory CCD photometry, and spectroscopic observations obtained with the Multiple Mirror Telescope and the 88-inch University of Hawaii Telescope at Mauna Kea. The data are presented in tables, maps, and sample images and spectra and briefly characterized. The bright X-ray object is identified with a cluster at redshift z = 0.195; its central galaxy has radio emission of 1.1 x 10 exp 24 W/Hz as well as strong optical line emission which is not restricted to its nucleus. It is concluded that 1E0839.9 + 2938 is a cooling-flow cluster similar to 3C295 (found at z = 0.461 by Henry et al., 1986). The need for space observations (by Rosat or the AXAF) to determine the object's X-ray luminosity distribution is indicated.

  5. A cooling flow cluster at redshift z = 0.2

    NASA Technical Reports Server (NTRS)

    Wolter, Anna; Schild, R.; Gioia, I. M.; Maccacaro, T.; Morris, S. L.; Nesci, R.; Perola, G. C.

    1990-01-01

    The cluster of galaxies 1E0839.9 + 2938, discovered in X-ray observations by Nesci et al. (1988), is characterized on the basis of VLA 6-cm radio observations, Whipple Observatory CCD photometry, and spectroscopic observations obtained with the Multiple Mirror Telescope and the 88-inch University of Hawaii Telescope at Mauna Kea. The data are presented in tables, maps, and sample images and spectra and briefly characterized. The bright X-ray object is identified with a cluster at redshift z = 0.195; its central galaxy has radio emission of 1.1 x 10 exp 24 W/Hz as well as strong optical line emission which is not restricted to its nucleus. It is concluded that 1E0839.9 + 2938 is a cooling-flow cluster similar to 3C295 (found at z = 0.461 by Henry et al., 1986). The need for space observations (by Rosat or the AXAF) to determine the object's X-ray luminosity distribution is indicated.

  6. The Discovery of Low-Luminosity BL Lacs

    NASA Astrophysics Data System (ADS)

    Rector, Travis A.; Stocke, John T.

    1995-12-01

    Many of the properties of BL Lacs have become explicable in terms of the ``relativistic beaming'' hypothesis whereby BL Lacs are ``highly beamed'' FR-I radio galaxies (i.e. our line of sight to these objects is nearly along the jet axis). Further, radio-selected BL Lacs (RBLs) are believed to be seen nearly ``on-axis'' (the line-of-sight angle theta ~ 8deg ) while X-ray selected BL Lacs (XBLs) are seen at larger angles (theta ~ 30deg ; the X-ray emitting jet is believed to be less collimated). However, a major problem with this model was that a transition population between beamed BL Lacs and unbeamed FR-Is had not been detected. Low-luminosity BL Lacs may be such a transition population, and were predicted to exist by Browne and Marcha (1993). We present ROSAT HRI images, VLA radio maps and optical spectra which confirm the existence of low-luminosity BL Lacs, objects which were previously mis-identified in the EMSS catalog as clusters of galaxies. Thus our results strengthen the relativistic beaming hypothesis.

  7. Fermi/LAT observations of lobe-dominant radio galaxy 3C 207 and possible radiation region of γ-rays

    NASA Astrophysics Data System (ADS)

    Guo, Sheng-Chu; Zhang, Hai-Ming; Zhang, Jin; Liang, En-Wei

    2018-06-01

    3C 207 is a lobe-dominant radio galaxy with a one sided jet and bright knots, spanning a kpc-Mpc scale, which have been resolved in the radio, optical and X-ray bands. This target was confirmed as a γ-ray emitter with Fermi/LAT, but it is uncertain whether the γ-ray emission region is the core or knots due to the low spatial resolution of Fermi/LAT. We present an analysis of its Fermi/LAT data acquired during the past 9 years. Different from the radio and optical emission from the core, it is found that the γ-ray emission is steady without detection of flux variation at over a 2σ confidence level. This likely implies that the γ-ray emission is from its knots. We collect the radio, optical and X-ray data of knot-A, the closest knot from the core at 1.4″, and compile its spectral energy distribution (SED). Although the single-zone synchrotron+SSC+IC/CMB model that assumes knot-A is at rest can reproduce the SED in the radio-optical-X-ray band, the predicted γ-ray flux is lower than the LAT observations and the derived magnetic field strength deviates from the equipartition condition by 3 orders of magnitude. Assuming that knot-A is moving relativistically, its SED from radio to γ-ray bands would be represented well with the single-zone synchrotron+SSC+IC/CMB model under the equipartition condition. These results likely suggest that the γ-ray emission may be from knot-A via the IC/CMB process and the knot should have relativistical motion. The jet power derived from our model parameters is also roughly consistent with the kinetic power estimated with radio data.

  8. The Discovery of Lensed Radio and X-ray Sources Behind the Frontier Fields Cluster MACS J0717.5+3745 with the JVLA and Chandra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weeren, R. J. van; Ogrean, G. A.; Jones, C.

    We report on high-resolution JVLA and Chandra observations of the Hubble Space Telescope (HST) Frontier Cluster MACS J0717.5+3745. MACS J0717.5+3745 offers the largest contiguous magnified area of any known cluster, making it a promising target to search for lensed radio and X-ray sources. With the high-resolution 1.0–6.5 GHz JVLA imaging in A and B configuration, we detect a total of 51 compact radio sources within the area covered by the HST imaging. Within this sample, we find seven lensed sources with amplification factors larger than two. None of these sources are identified as multiply lensed. Based on the radio luminosities,more » the majority of these sources are likely star-forming galaxies with star-formation rates (SFRs) of 10–50 M ⊙ yr -1 located at 1≲ z ≲ 2. Two of the lensed radio sources are also detected in the Chandra image of the cluster. These two sources are likely active galactic nuclei, given their 2–10 keV X-ray luminosities of ~ 10 43-44 erg s -1. From the derived radio luminosity function, we find evidence for an increase in the number density of radio sources at 0.6 < z < 2.0, compared to a z < 0.3 sample. Lastly, our observations indicate that deep radio imaging of lensing clusters can be used to study star-forming galaxies, with SFRs as low as ~10M ⊙ yr -1, at the peak of cosmic star formation history.« less

  9. The Discovery of Lensed Radio and X-ray Sources Behind the Frontier Fields Cluster MACS J0717.5+3745 with the JVLA and Chandra

    DOE PAGES

    Weeren, R. J. van; Ogrean, G. A.; Jones, C.; ...

    2016-01-27

    We report on high-resolution JVLA and Chandra observations of the Hubble Space Telescope (HST) Frontier Cluster MACS J0717.5+3745. MACS J0717.5+3745 offers the largest contiguous magnified area of any known cluster, making it a promising target to search for lensed radio and X-ray sources. With the high-resolution 1.0–6.5 GHz JVLA imaging in A and B configuration, we detect a total of 51 compact radio sources within the area covered by the HST imaging. Within this sample, we find seven lensed sources with amplification factors larger than two. None of these sources are identified as multiply lensed. Based on the radio luminosities,more » the majority of these sources are likely star-forming galaxies with star-formation rates (SFRs) of 10–50 M ⊙ yr -1 located at 1≲ z ≲ 2. Two of the lensed radio sources are also detected in the Chandra image of the cluster. These two sources are likely active galactic nuclei, given their 2–10 keV X-ray luminosities of ~ 10 43-44 erg s -1. From the derived radio luminosity function, we find evidence for an increase in the number density of radio sources at 0.6 < z < 2.0, compared to a z < 0.3 sample. Lastly, our observations indicate that deep radio imaging of lensing clusters can be used to study star-forming galaxies, with SFRs as low as ~10M ⊙ yr -1, at the peak of cosmic star formation history.« less

  10. A physical classification scheme for blazars

    NASA Astrophysics Data System (ADS)

    Landt, Hermine; Padovani, Paolo; Perlman, Eric S.; Giommi, Paolo

    2004-06-01

    Blazars are currently separated into BL Lacertae objects (BL Lacs) and flat spectrum radio quasars based on the strength of their emission lines. This is performed rather arbitrarily by defining a diagonal line in the Ca H&K break value-equivalent width plane, following Marchã et al. We readdress this problem and put the classification scheme for blazars on firm physical grounds. We study ~100 blazars and radio galaxies from the Deep X-ray Radio Blazar Survey (DXRBS) and 2-Jy radio survey and find a significant bimodality for the narrow emission line [OIII]λ5007. This suggests the presence of two physically distinct classes of radio-loud active galactic nuclei (AGN). We show that all radio-loud AGN, blazars and radio galaxies, can be effectively separated into weak- and strong-lined sources using the [OIII]λ5007-[OII]λ3727 equivalent width plane. This plane allows one to disentangle orientation effects from intrinsic variations in radio-loud AGN. Based on DXRBS, the strongly beamed sources of the new class of weak-lined radio-loud AGN are made up of BL Lacs at the ~75 per cent level, whereas those of the strong-lined radio-loud AGN include mostly (~97 per cent) quasars.

  11. Featured Image: New Detail in the Toothbrush Cluster

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-01-01

    This spectacular composite (click here for the full image) reveals the galaxy cluster 1RXS J0603.3+4214, known as the Toothbrush cluster due to the shape of its most prominent radio relic. Featured in a recent publication led by Kamlesh Rajpurohit (Thuringian State Observatory, Germany), this image contains new Very Large Array (VLA) 1.5-GHz observations (red) showing the radio emission within the cluster. This is composited with a Chandra view of the X-ray emitting gas of the cluster (blue) and an optical image of the background from Subaru data. The new deep VLA data totaling 26 hours of observations provides a detailed look at the complex structure within the Toothbrush relic, revealing enigmatic filaments and twists (see below). This new data will help us to explore the possible merger history of this cluster, which is theorized to have caused the unusual shapes we see today. For more information, check out the original article linked below.High resolution VLA 12 GHz image of the Toothbrush showing the complex, often filamentary structures. [Rajpurohit et al. 2018]CitationK. Rajpurohit et al 2018 ApJ 852 65. doi:10.3847/1538-4357/aa9f13

  12. Far Outer Galaxy H II Regions

    NASA Technical Reports Server (NTRS)

    Rudolph, A. L.; deGues, E. J.; Brand, J.; Wouterloot, J. G. A.; Gross, Anthony R. (Technical Monitor)

    1994-01-01

    We have made a multifrequency (6, 3.6, and 2 cm), high-resolution (3"-6"), radio continuum survey of IRAS selected sources from the catalogue of Wouterloot & Brand (1989) to search for and study H II regions in the far outer Galaxy. We identified 31 sources in this catalog with well determined galactocentric distances, and with R approx.. greater than 15 kpc and L(sub FIR) approx.greater than 10(exp 4) solar luminosity, indicating the presence of high-mass star-formation. We have observed 11 of these sources with the Very Large Array (VLA). We observed the sources at 6 and 2 cm using "scaled arrays", making possible a direct and reliable comparison of the data at these two wavelengths for the determination of spectral indices. We detected a total of 12 radio sources, of which 10 have spectral indices consistent with optically-thin free-free emission from H II regions. Combined with previous VLA observations by other investigators, we have data on a total of 15 H II regions at galactocentric distances of 15 to 18.2kpc, among the most remote H II regions found in our Galaxy. The sizes of the H II regions range from approx. less than 0.10 to 2.3 pc. Using the measured fluxes and sizes, we determine the electron densities, emission measures, and excitation parameters of the H II regions, as well as the fluxes of Lyman continuum photons needed to keep the nebulae ionized. The sizes and electron densities are consistent with most of the sources detected in this survey being compact or ultracompact H II regions. Seven of the fifteen H II regions have sizes approx. less than 0.20 pc. Assuming simple pressure-driven expansion of the H II regions, these sizes indicate ages approx. less than 5 x 10(exp 4) yr, or only 1% of the lifetime of an O star, which implies an unlikely overabundance of O stars in the outer Galaxy. Thus, the large number of compact H II regions suggests that the time these regions spend in a compact phase must be much longer than their dynamical expansion times. Five of the fifteen H II regions have cometary shapes; the remainder are spherical or unresolved. Comparison of the radio continuum data with molecular line maps suggests that the cometary shape of the two H II regions in S 127 may be due to pressure confinement of the expanding ionized gas, as in the "blister" or "champagne flow" models of H II regions. Comparison of the radio continuum data with the IRAS far-infrared data indicates that the five most luminous H II regions are consistent with a single 0 or B star exciting a dust-free H II region. Subject headings: stars: formation - ISM: H II regions - ISM: individual objects: S 127 radio continuum: interstellar

  13. Radio and X-ray variability of the nucleus of Centaurus A /NGC 5128/

    NASA Technical Reports Server (NTRS)

    Beall, J. H.; Rose, W. K.; Graf, W.; Price, K. M.; Dent, W. A.; Hobbs, R. W.; Dennis, B. R.; Crannell, C. J.; Conklin, E. K.; Ulich, B. L.

    1978-01-01

    Centaurus A (NGC 5128) has been observed at radio frequencies of 10.7, 31.4, 85.2, and 89 GHz and at X-ray energies greater than 20 keV. These observations, together with results reported by other workers, are interpreted in terms of models of the nucleus of this radio galaxy. The radio observations cover the period from 1973 through early 1977. The X-ray observations cover two 10-day intervals, one in July and August (1975) and the other in July and August 1976. The source exhibits significant variability in all the observed radio frequencies. The observed radio and X-ray intensities show some concurrent variations but do not track one another throughout the observations. A model of the source in which X-rays are produced by inverse Compton scattering of blackbody photons by relativistic electrons is proposed to explain these observations. The observed variations in the electromagnetic spectrum are shown to be consistent with adiabatic expansion of a trapped plasma in conjunction with turbulent accelerations of the relativistic electrons. Upper limits obtained with the model indicate that there may be sufficient energy available in the nucleus to form radio lobes with the same total energy as those already present.

  14. The inevitable youthfulness of known high-redshift radio galaxies

    NASA Astrophysics Data System (ADS)

    Blundell, Katherine M.; Rawlings, Steve

    1999-05-01

    Some galaxies are very luminous in the radio part of the spectrum. These `radio galaxies' have extensive (hundreds of kiloparsecs) lobes of emission powered by plasma jets originating at a central black hole. Some radio galaxies can be seen at very high redshifts, where in principle they can serve as probes of the early evolution of the Universe. Here we show that, for any model of radio-galaxy evolution in which the luminosity decreases with time after an initial rapid increase (that is, essentially all reasonable models), all observable high-redshift radio galaxies must be seen when the lobes are less than 107 years old. This means that high-redshift radio galaxies can be used as a high-time-resolution probe of evolution in the early Universe. Moreover, this result explains many observed trends of radio-galaxy properties with redshift, without needing to invoke explanations based on cosmology or strong evolution of the surrounding intergalactic medium with cosmic time, thereby avoiding conflict with current theories of structure formation.

  15. The mystery of the "Kite" radio source in Abell 2626: Insights from new Chandra observations

    NASA Astrophysics Data System (ADS)

    Ignesti, A.; Gitti, M.; Brunetti, G.; O'Sullivan, E.; Sarazin, C.; Wong, K.

    2018-03-01

    Context. We present the results of a new Chandra study of the galaxy cluster Abell 2626. The radio emission of the cluster shows a complex system of four symmetric arcs without known correlations with the thermal X-ray emission. The mirror symmetry of the radio arcs toward the center and the presence of two optical cores in the central galaxy suggested that they may be created by pairs of precessing radio jets powered by dual active galactic nuclei (AGNs) inside the core dominant galaxy. However, previous observations failed to observe the second jetted AGN and the spectral trend due to radiative age along the radio arcs, thus challenging this interpretation. Aim. The new Chandra observation had several scientific objectives, including the search for the second AGN that would support the jet precession model. We focus here on the detailed study of the local properties of the thermal and non-thermal emission in the proximity of the radio arcs, in order to obtain further insights into their origin. Methods: We performed a standard data reduction of the Chandra dataset deriving the radial profiles of temperature, density, pressure and cooling time of the intra-cluster medium. We further analyzed the two-dimensional (2D) distribution of the gas temperature, discovering that the south-western junction of the radio arcs surrounds the cool core of the cluster. Results: We studied the X-ray surface brightness and spectral profiles across the junction, finding a cold front spatially coincident with the radio arcs. This may suggest a connection between the sloshing of the thermal gas and the nature of the radio filaments, raising new scenarios for their origin. A tantalizing possibility is that the radio arcs trace the projection of a complex surface connecting the sites where electrons are most efficiently reaccelerated by the turbulence that is generated by the gas sloshing. In this case, diffuse emission embedded by the arcs and with extremely steep spectrum should be most visible at very low radio frequencies.

  16. Rapid and multiband variability of the TeV bright active nucleus of the galaxy IC 310

    DOE PAGES

    Aleksić, J.; Antonelli, L. A.; Antoranz, P.; ...

    2014-03-14

    Recently the radio galaxy IC 310 was identified as a γ-ray emitter based on observations at GeV energies with Fermi-LAT and at very high energies (VHE, E > 100 GeV) with the MAGIC telescopes. Originally classified as a head-tail radio galaxy, the nature of this object is subject of controversy since its nucleus shows blazar-like behavior. In order to understand the nature of IC 310 and the origin of the VHE emission, we studied the spectral and flux variability of IC 310 from the X-ray band to the VHE γ-ray regime. The light curve of IC 310 above 300 GeVmore » has been measured with the MAGIC telescopes from 2009 October to 2010 February. Contemporaneous Fermi-LAT data (2008-2011) in the 10-500 GeV energy range were also analyzed. In the X-ray regime, archival observations from 2003 to 2007 with XMM-Newton, Chandra, and Swift-XRT in the 0.5-10 keV band were studied. The VHE light curve reveals several high-amplitude and short-duration flares. Day-to-day flux variability is clearly present (>5σ). The photon index between 120 GeV and 8 TeV remains at the value Γ ~ 2.0 during both low and high flux states. The VHE spectral shape does not show significant variability, whereas the flux at 1 TeV changes by a factor of ~7. Fermi-LAT detected only eight γ-ray events in the energy range 10 GeV–500 GeV in three years of observation. Moreover, the measured photon index of Γ = 1.3 ± 0.5 in the Fermi-LAT range is very hard. The X-ray measurements show strong variability in both flux and photon index. The latter varied from 1.76 ± 0.07 to 2.55 ± 0.07. The rapid variability measured in γ-rays and X-rays confirms the blazar-like behavior of IC 310. The multi-TeV γ-ray emission seems to originate from scales of less than 80 Schwarzschild radii (for a black hole mass of 2 × 10 8 M⊙) within the compact core of its FR I radio jet with orientation angle 10°-38°. The spectral energy distribution resembles that of an extreme blazar, albeit the luminosity is more than two orders of magnitude lower.« less

  17. Internal dynamics of the radio-halo cluster A2219: A multi-wavelength analysis

    NASA Astrophysics Data System (ADS)

    Boschin, W.; Girardi, M.; Barrena, R.; Biviano, A.; Feretti, L.; Ramella, M.

    2004-03-01

    We present the results of the dynamical analysis of the rich, hot, and X-ray very luminous galaxy cluster A2219, containing a powerful diffuse radio-halo. Our analysis is based on new redshift data for 27 galaxies in the cluster region, measured from spectra obtained at the TNG, with the addition of other 105 galaxies recovered from reduction of CFHT archive data in a cluster region of ˜5 arcmin radius (˜ 0.8 h-1 Mpc ; at the cluster distance) centered on the cD galaxy. The investigation of the dynamical status is also performed using X-ray data stored in the Chandra archive. Further, valuable information comes from other bands - optical photometric, infrared, and radio data - which are analyzed and/or discussed, too. We find that A2219 appears as a peak in the velocity space at z=0.225, and select 113 cluster members. We compute a high value for the line-of-sight velocity dispersion, σv= 1438+109-86 km s-1, consistent with the high average X-ray temperature of 10.3 keV. If dynamical equilibrium is assumed, the virial theorem leads to M˜2.8× 1015 M⊙ ;sun for the global mass within the virial region. However, further investigation based on both optical and X-ray data shows significant signs of a young dynamical status. In fact, we find strong evidence for the elongation of the cluster in the SE-NW direction coupled with a significant velocity gradient, as well as for the presence of substructure both in optical data and X-ray data. Moreover, we point out the presence of several active galaxies. We discuss the results of our multi-wavelength investigation suggesting a complex merging scenario where the main, original structure is subject to an ongoing merger with a few clumps aligned in a filament in the foreground oriented in an oblique direction with respect to the line-of-sight. Our conclusion supports the view of the connection between extended radio emission and merging phenomena in galaxy clusters. Based on observations made on the island of La Palma with the Italian Telescopio Nazionale Galileo (TNG) operated by the Centro Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) and with the 1.0 m Jacobus Kapteyn Telescope (JKT) operated by the Isaac Newton Group at the Spanish Observatorio de Roque de los Muchachos of the Instituto de Astrofisica de Canarias. Table 1 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/416/839

  18. Contemporaneous observations of the radio galaxy NGC 1275 from radio to very high energy γ -rays

    DOE PAGES

    Aleksić, J.; Ansoldi, S.; Antonelli, L. A.; ...

    2014-03-27

    The radio galaxy NGC 1275, recently identified as a very high energy (VHE, >100 GeV) γ-ray emitter by MAGIC, is one of the few non-blazar active galactic nuclei detected in the VHE regime. The purpose of this work is to better understand the origin of the γ-ray emission and locate it within the galaxy. We studied contemporaneous multifrequency observations of NGC 1275 and modeled the overall spectral energy distribution. We analyzed unpublished MAGIC observations carried out between October 2009 and February 2010, and the previously published observations taken between August 2010 and February 2011. Here, we studied the multiband variabilitymore » and correlations by analyzing data of Fermi-LAT in the 100 MeV–100 GeV energy band, as well as Chandra (X-ray), KVA (optical), and MOJAVE (radio) data taken during the same period. Using customized Monte Carlo simulations corresponding to early MAGIC stereoscopic data, we detect NGC 1275 also in the earlier MAGIC campaign. The flux level and energy spectra are similar to the results of the second campaign. The monthly light curve above 100 GeV shows a hint of variability at the 3.6σ level. In the Fermi-LAT band, both flux and spectral shape variabilities are reported. Furthermore, the optical light curve is also variable and shows a clear correlation with the γ-ray flux above 100 MeV. In radio, three compact components are resolved in the innermost part of the jet. One of these components shows a similar trend as the Fermi-LAT and KVA light curves. The γ-ray spectra measured simultaneously with MAGIC and Fermi-LAT from 100 MeV to 650 GeV can be well fitted either by a log-parabola or by a power-law with a subexponential cutoff for the two observation campaigns. A single-zone synchrotron-self-Compton model, with an electron spectrum following a power-law with an exponential cutoff, can explain the broadband spectral energy distribution and the multifrequency behavior of the source. But, this model suggests an untypical low bulk-Lorentz factor or a velocity alignment closer to the line of sight than the parsec-scale radio jet.« less

  19. Observation of Gamma-Ray Emission from the Galaxy M87 above 250 GeV with VERITAS

    NASA Astrophysics Data System (ADS)

    Acciari, V. A.; Beilicke, M.; Blaylock, G.; Bradbury, S. M.; Buckley, J. H.; Bugaev, V.; Butt, Y.; Celik, O.; Cesarini, A.; Ciupik, L.; Cogan, P.; Colin, P.; Cui, W.; Daniel, M. K.; Duke, C.; Ergin, T.; Falcone, A. D.; Fegan, S. J.; Finley, J. P.; Finnegan, G.; Fortin, P.; Fortson, L. F.; Gibbs, K.; Gillanders, G. H.; Grube, J.; Guenette, R.; Gyuk, G.; Hanna, D.; Hays, E.; Holder, J.; Horan, D.; Hughes, S. B.; Hui, M. C.; Humensky, T. B.; Imran, A.; Kaaret, P.; Kertzman, M.; Kieda, D. B.; Kildea, J.; Konopelko, A.; Krawczynski, H.; Krennrich, F.; Lang, M. J.; LeBohec, S.; Lee, K.; Maier, G.; McCann, A.; McCutcheon, M.; Millis, J.; Moriarty, P.; Mukherjee, R.; Nagai, T.; Ong, R. A.; Pandel, D.; Perkins, J. S.; Pohl, M.; Quinn, J.; Ragan, K.; Reynolds, P. T.; Rose, H. J.; Schroedter, M.; Sembroski, G. H.; Smith, A. W.; Steele, D.; Swordy, S. P.; Syson, A.; Toner, J. A.; Valcarcel, L.; Vassiliev, V. V.; Wakely, S. P.; Ward, J. E.; Weekes, T. C.; Weinstein, A.; White, R. J.; Williams, D. A.; Wissel, S. A.; Wood, M. D.; Zitzer, B.

    2008-05-01

    The multiwavelength observation of the nearby radio galaxy M87 provides a unique opportunity to study in detail processes occurring in active galactic nuclei from radio waves to TeV γ-rays. Here we report the detection of γ-ray emission above 250 GeV from M87 in spring 2007 with the VERITAS atmospheric Cerenkov telescope array and discuss its correlation with the X-ray emission. The γ-ray emission is measured to be pointlike with an intrinsic source radius less than 4.5'. The differential energy spectrum is fitted well by a power-law function: dΦ/dE = (7.4 +/- 1.3stat +/- 1.5sys)(E/TeV)(- 2.31 +/- 0.17stat +/- 0.2sys) 10-9 m-2 s-1 TeV-1. We show strong evidence for a year-scale correlation between the γ-ray flux reported by TeV experiments and the X-ray emission measured by the ASM RXTE observatory, and discuss the possible short-timescale variability. These results imply that the γ-ray emission from M87 is more likely associated with the core of the galaxy than with other bright X-ray features in the jet. Corresponding author: .

  20. CHANG-ES. VII. Magnetic Outflows from the Virgo Cluster Galaxy NGC 4388

    NASA Astrophysics Data System (ADS)

    Damas-Segovia, A.; Beck, R.; Vollmer, B.; Wiegert, T.; Krause, M.; Irwin, J.; Weżgowiec, M.; Li, J.; Dettmar, R.-J.; English, J.; Wang, Q. D.

    2016-06-01

    We investigate the effects of ram pressure on the ordered magnetic field of a galaxy hosting a radio halo and strong nuclear outflows. New radio images in total and polarized intensity of the edge-on Virgo galaxy NGC 4388 were obtained within the CHANG-ES EVLA project. The unprecedented noise level reached allows us to detect striking new features of the ordered magnetic field. The nuclear outflow extends far into the halo to about 5 kpc from the center and is spatially correlated with the {{H}}α and X-ray emission. For the first time, the southern outflow is detected. Above and below both spiral arms we find extended blobs of polarized emission with an ordered field oriented perpendicular to the disk. The synchrotron lifetime of the cosmic-ray electrons (CREs) in these regions yields a mean outflow velocity of 270+/- 70 {km} {{{s}}}-1, in agreement with a galactic wind scenario. The observed symmetry of the polarized halo features in NGC 4388 excludes a compression of the halo gas by the ram pressure of the intracluster medium (ICM). The assumption of equilibrium between the halo pressure and the ICM ram pressure yields an estimate of the ICM density that is consistent with both the ICM density derived from X-ray observations and the recent Planck Sunyaev-Zel’dovich measurements. The detection of a faint radio halo around cluster galaxies could thus be used for an estimate of ICM ram pressure.

  1. Search for low-frequency diffuse radio emission around a shock in the massive galaxy cluster MACS J0744.9+3927

    NASA Astrophysics Data System (ADS)

    Wilber, A.; Brüggen, M.; Bonafede, A.; Rafferty, D.; Savini, F.; Shimwell, T.; van Weeren, R. J.; Botteon, A.; Cassano, R.; Brunetti, G.; De Gasperin, F.; Wittor, D.; Hoeft, M.; Birzan, L.

    2018-05-01

    Merging galaxy clusters produce low-Mach-number shocks in the intracluster medium. These shocks can accelerate electrons to relativistic energies that are detectable at radio frequencies. MACS J0744.9+3927 is a massive [M500 = (11.8 ± 2.8) × 1014 M⊙], high-redshift (z = 0.6976) cluster where a Bullet-type merger is presumed to have taken place. Sunyaev-Zel'dovich maps from MUSTANG indicate that a shock, with Mach number M = 1.0-2.9 and an extension of ˜200 kpc, sits near the centre of the cluster. The shock is also detected as a brightness and temperature discontinuity in X-ray observations. To search for diffuse radio emission associated with the merger, we have imaged the cluster with the LOw Frequency ARray (LOFAR) at 120-165 MHz. Our LOFAR radio images reveal previously undetected AGN emission, but do not show clear cluster-scale diffuse emission in the form of a radio relic nor a radio halo. The region of the shock is on the western edge of AGN lobe emission from the brightest cluster galaxy. Correlating the flux of known shock-induced radio relics versus their size, we find that the radio emission overlapping the shocked region in MACS J0744.9+3927 is likely of AGN origin. We argue against the presence of a relic caused by diffusive shock acceleration and suggest that the shock is too weak to accelerate electrons from the intracluster medium.

  2. LeMMINGs - I. The eMERLIN legacy survey of nearby galaxies. 1.5-GHz parsec-scale radio structures and cores

    NASA Astrophysics Data System (ADS)

    Baldi, R. D.; Williams, D. R. A.; McHardy, I. M.; Beswick, R. J.; Argo, M. K.; Dullo, B. T.; Knapen, J. H.; Brinks, E.; Muxlow, T. W. B.; Aalto, S.; Alberdi, A.; Bendo, G. J.; Corbel, S.; Evans, R.; Fenech, D. M.; Green, D. A.; Klöckner, H.-R.; Körding, E.; Kharb, P.; Maccarone, T. J.; Martí-Vidal, I.; Mundell, C. G.; Panessa, F.; Peck, A. B.; Pérez-Torres, M. A.; Saikia, D. J.; Saikia, P.; Shankar, F.; Spencer, R. E.; Stevens, I. R.; Uttley, P.; Westcott, J.

    2018-05-01

    We present the first data release of high-resolution (≤0.2 arcsec) 1.5-GHz radio images of 103 nearby galaxies from the Palomar sample, observed with the eMERLIN array, as part of the LeMMINGs survey. This sample includes galaxies which are active (low-ionization nuclear emission-line regions [LINER] and Seyfert) and quiescent (H II galaxies and absorption line galaxies, ALGs), which are reclassified based upon revised emission-line diagrams. We detect radio emission ≳0.2 mJy for 47/103 galaxies (22/34 for LINERS, 4/4 for Seyferts, 16/51 for H II galaxies, and 5/14 for ALGs) with radio sizes typically of ≲100 pc. We identify the radio core position within the radio structures for 41 sources. Half of the sample shows jetted morphologies. The remaining half shows single radio cores or complex morphologies. LINERs show radio structures more core-brightened than Seyferts. Radio luminosities of the sample range from 1032 to 1040 erg s-1: LINERs and H II galaxies show the highest and lowest radio powers, respectively, while ALGs and Seyferts have intermediate luminosities. We find that radio core luminosities correlate with black hole (BH) mass down to ˜107 M⊙, but a break emerges at lower masses. Using [O III] line luminosity as a proxy for the accretion luminosity, active nuclei and jetted H II galaxies follow an optical Fundamental Plane of BH activity, suggesting a common disc-jet relationship. In conclusion, LINER nuclei are the scaled-down version of FR I radio galaxies; Seyferts show less collimated jets; H II galaxies may host weak active BHs and/or nuclear star-forming cores; and recurrent BH activity may account for ALG properties.

  3. Collimation, Acceleration, and Recollimation Shock in the Jet of Gamma-Ray Emitting Radio-loud Narrow-line Seyfert 1 Galaxy 1H0323+342

    NASA Astrophysics Data System (ADS)

    Hada, Kazuhiro; Doi, Akihiro; Wajima, Kiyoaki; D’Ammando, Filippo; Orienti, Monica; Giroletti, Marcello; Giovannini, Gabriele; Nakamura, Masanori; Asada, Keiichi

    2018-06-01

    We investigated the detailed radio structure of the jet of 1H 0323+342 using high-resolution multifrequency Very Long Baseline Array observations. This source is known as the nearest γ-ray emitting radio-loud narrow-line Seyfert 1 (NLS1) galaxy. We discovered that the morphology of the inner jet is well characterized by a parabolic shape, indicating that the jet is continuously collimated near the jet base. On the other hand, we found that the jet expands more rapidly at larger scales, resulting in a conical shape. The location of the “collimation break” is coincident with a bright quasi-stationary feature at 7 mas from core (corresponding to a deprojected distance on the order of ∼100 pc), where the jet width locally contracts together with highly polarized signals, suggesting a recollimation shock. We found that the collimation region is coincident with the region where the jet speed gradually accelerates, suggesting a coexistence of the jet acceleration and collimation zone, ending up with the recollimation shock, which could be a potential site of high-energy γ-ray flares detected by the Fermi-LAT. Remarkably, these observational features of the 1H 0323+342 jet are overall very similar to those of the nearby radio galaxy M87 and HST-1 as well as some blazars, suggesting that a common jet formation mechanism might be at work. Based on the similarity of the jet profile of the two sources, we also briefly discuss the mass of the central black hole of 1H 0323+342, which is also still highly controversial in this source and NLS1s in general.

  4. Cluster galaxy population evolution from the Subaru Hyper Suprime-Cam survey: brightest cluster galaxies, stellar mass distribution, and active galaxies

    NASA Astrophysics Data System (ADS)

    Lin, Yen-Ting; Hsieh, Bau-Ching; Lin, Sheng-Chieh; Oguri, Masamune; Chen, Kai-Feng; Tanaka, Masayuki; Chiu, I.-non; Huang, Song; Kodama, Tadayuki; Leauthaud, Alexie; More, Surhud; Nishizawa, Atsushi J.; Bundy, Kevin; Lin, Lihwai; Miyazaki, Satoshi; HSC Collaboration

    2018-01-01

    The unprecedented depth and area surveyed by the Subaru Strategic Program with the Hyper Suprime-Cam (HSC-SSP) have enabled us to construct and publish the largest distant cluster sample out to z~1 to date. In this exploratory study of cluster galaxy evolution from z=1 to z=0.3, we investigate the stellar mass assembly history of brightest cluster galaxies (BCGs), and evolution of stellar mass and luminosity distributions, stellar mass surface density profile, as well as the population of radio galaxies. Our analysis is the first high redshift application of the top N richest cluster selection, which is shown to allow us to trace the cluster galaxy evolution faithfully. Our stellar mass is derived from a machine-learning algorithm, which we show to be unbiased and accurate with respect to the COSMOS data. We find very mild stellar mass growth in BCGs, and no evidence for evolution in both the total stellar mass-cluster mass correlation and the shape of the stellar mass surface density profile. The clusters are found to contain more red galaxies compared to the expectations from the field, even after the differences in density between the two environments have been taken into account. We also present the first measurement of the radio luminosity distribution in clusters out to z~1.

  5. A Multiwavelength Study of the Starburst Galaxy NGC 7771

    NASA Technical Reports Server (NTRS)

    Davies, Richard I.; Alonso-Herrero, Almudena; Ward, Martin J.

    1997-01-01

    We present a multiwavelength study of the interacting starburst galaxy NGC 7771, including new optical and ultra-violet spectra and a previously unpublished soft X-ray ROSAT image and spectrum. The far-infrared, radio, and X-ray fluxes suggest that a massive burst of star-formation is currently in progress but the small equivalent width of the Balmer emission lines (equivalent width H(alpha approximately equals 100 A), the weak UV flux, the low abundance of ionised oxygen, and the shape of the optical spectrum lead us to conclude that there are few 0 stars. This might normally suggest that star-formation has ceased but the galaxy's barred gravitational potential and large gas reserves imply that this should not be so, and we therefore consider other explanations. We argue that the observations cannot be due to effects of geometry, density bounded nebulae, or dust within the nebulae, and conclude that a truncated IMF is required. The dwarf galaxy NGC 7770 appears to be in the initial stages of a merger with NGC 7771, and the resulting tidal perturbations may have induced the apparent two-armed spiral pattern, and driven a substantial fraction of the disk gas inwards. The presence of a bulge in NGC 7771 may be moderating the starburst so that, while still occuring on a large scale with a supernova rate of 0.8-1/yr, it is less violent and the IMF has a relatively low upper mass limit. We find that there is a cluster of stars obscuring part of the starburst region, and we offer an explanation of its origin.

  6. The MIXR sample or: how I learned to stop worrying and love multiwavelength catalogue cross-correlations

    NASA Astrophysics Data System (ADS)

    Mingo, Beatriz; Watson, Mike; Stewart, Gordon; Rosen, Simon; Blain, Andrew; Hardcastle, Martin; Mateos, Silvia; Carrera, Francisco; Ruiz, Angel; Pineau, Francois-Xavier

    2016-08-01

    We cross-match 3XMM, WISE and FIRST/NVSS to create the largest-to-date mid-IR, X-ray, and radio (MIXR) sample of galaxies and AGN. We use MIXR to triage sources and efficiently and accurately pre-classify them as star-forming galaxies or AGN, and to highlight bias and shortcomings in current AGN sample selection methods, paving the way for the next generation of instruments. Our results highlight key questions in AGN science, such as the need for a re-definition of the radio-loud/radio-quiet classification, and our observed lack of correlation between the kinetic (jet) and radiative (luminosity) output in AGN, which has dramatic potential consequences on our current understanding of AGN accretion, variability and feedback.

  7. Occurrence of Radio Minihalos in a Mass-limited Sample of Galaxy Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giacintucci, Simona; Clarke, Tracy E.; Markevitch, Maxim

    2017-06-01

    We investigate the occurrence of radio minihalos—diffuse radio sources of unknown origin observed in the cores of some galaxy clusters—in a statistical sample of 58 clusters drawn from the Planck Sunyaev–Zel’dovich cluster catalog using a mass cut ( M {sub 500} > 6 × 10{sup 14} M {sub ⊙}). We supplement our statistical sample with a similarly sized nonstatistical sample mostly consisting of clusters in the ACCEPT X-ray catalog with suitable X-ray and radio data, which includes lower-mass clusters. Where necessary (for nine clusters), we reanalyzed the Very Large Array archival radio data to determine whether a minihalo is present.more » Our total sample includes all 28 currently known and recently discovered radio minihalos, including six candidates. We classify clusters as cool-core or non-cool-core according to the value of the specific entropy floor in the cluster center, rederived or newly derived from the Chandra X-ray density and temperature profiles where necessary (for 27 clusters). Contrary to the common wisdom that minihalos are rare, we find that almost all cool cores—at least 12 out of 15 (80%)—in our complete sample of massive clusters exhibit minihalos. The supplementary sample shows that the occurrence of minihalos may be lower in lower-mass cool-core clusters. No minihalos are found in non-cool cores or “warm cores.” These findings will help test theories of the origin of minihalos and provide information on the physical processes and energetics of the cluster cores.« less

  8. The Disk-Jet Connection in Radio-Loud AGN: The X-Ray Perspective

    NASA Technical Reports Server (NTRS)

    Sambruna, Rita

    2008-01-01

    Unification schemes assume that radio-loud active galactic nuclei (AGN) contain an accretion disk and a relativistic jet perpendicular to the disk, and an obscuring molecular torus. The jet dominance decreases with larger viewing angles from blazars to Broad-Line and Narrow-Line Radio Galaxies. A fundamental question is how accretion and ejecta are related. The X-rays provide a convenient window to study these issues, as they originate in the innermost nuclear regions and penetrate large obscuring columns. I review the data, using observations by Chandra but also from other currently operating high-energy experiments. Synergy with the upcoming GLAST mission will also be highlighted.

  9. Jets, hotspots and lobes: what X-ray observations tell us about extra-galactic radio sources.

    PubMed

    Hardcastle, Martin J

    2005-12-15

    The brightest and most numerous discrete radio sources in the sky, radio galaxies and quasars, are powered by twin jets of plasma which emerge at relativistic speeds from very small regions at the centre of large elliptical galaxies, powered by mass infall on to supermassive black holes. The jets can carry material out to very large distances (millions of light years) where it forms balloon-like lobes. Until recently it has been impossible to make definite statements about the energy or the nature of the matter supplied by the jets, or the dynamics of the lobes as they expand into the external medium. This has meant that crucial questions about the generation of radio sources and their effect on their environment have gone unanswered. The situation has been revolutionized by the launch at the start of this decade of a new generation of X-ray observatories, Chandra and XMM-Newton. In this article, I explain why observations with these instruments have made such a difference, what we have learned as a result and why the community remains divided on some important features of the interpretation of the data.

  10. New Members in the Galaxy Group Around Giant Radio Galaxy DA 240

    NASA Astrophysics Data System (ADS)

    Chen, Ru-Rong; Peng, Bo; Strom, Richard

    2018-05-01

    With new spectroscopic observations of group candidates around the giant radio galaxy DA 240, we have identified five new group members, increasing the number to twenty-five. While all the new members are located some distance from the host galaxy, two of them lie in one of the radio lobes, and the rest are found at a distance from the radio components. The new group members reinforce our earlier conclusion that the distribution of the DA 240 group with respect to the radio lobes is unusual among giant radio galaxy host environments.

  11. Very-long-baseline radio interferometry observations of low power radio galaxies.

    PubMed Central

    Giovannini, G; Cotton, W D; Feretti, L; Lara, L; Venturi, T; Marcaide, J M

    1995-01-01

    The parsec scale properties of low power radio galaxies are reviewed here, using the available data on 12 Fanaroff-Riley type I galaxies. The most frequent radio structure is an asymmetric parsec-scale morphology--i.e., core and one-sided jet. It is shared by 9 (possibly 10) of the 12 mapped radio galaxies. One (possibly 2) of the other galaxies has a two-sided jet emission. Two sources are known from published data to show a proper motion; we present here evidence for proper motion in two more galaxies. Therefore, in the present sample we have 4 radio galaxies with a measured proper motion. One of these has a very symmetric structure and therefore should be in the plane of the sky. The results discussed here are in agreement with the predictions of the unified scheme models. Moreover, the present data indicate that the parsec scale structure in low and high power radio galaxies is essentially the same. PMID:11607596

  12. VizieR Online Data Catalog: Blazars equivalent widths and radio luminosity (Landt+, 2004)

    NASA Astrophysics Data System (ADS)

    Landt, H.; Padovani, P.; Perlman, E. S.; Giommi, P.

    2004-07-01

    Blazars are currently separated into BL Lacertae objects (BL Lacs) and flat spectrum radio quasars based on the strength of their emission lines. This is performed rather arbitrarily by defining a diagonal line in the Ca H&K break value-equivalent width plane, following Marcha et al. (1996MNRAS.281..425M). We readdress this problem and put the classification scheme for blazars on firm physical grounds. We study ~100 blazars and radio galaxies from the Deep X-ray Radio Blazar Survey (DXRBS, Cat. and ) and 2-Jy radio survey and find a significant bimodality for the narrow emission line [OIII]{lambda}5007. This suggests the presence of two physically distinct classes of radio-loud active galactic nuclei (AGN). We show that all radio-loud AGN, blazars and radio galaxies, can be effectively separated into weak- and strong-lined sources using the [OIII]{lambda}5007-[OII]{lambda}3727 equivalent width plane. This plane allows one to disentangle orientation effects from intrinsic variations in radio-loud AGN. Based on DXRBS, the strongly beamed sources of the new class of weak-lined radio-loud AGN are made up of BL Lacs at the ~75 per cent level, whereas those of the strong-lined radio-loud AGN include mostly (~97 per cent) quasars. (4 data files).

  13. The Role of Star Formation in Radio-Loud Galaxy Groups

    NASA Astrophysics Data System (ADS)

    Herbst, Hanna; Wilcots, E.; Hess, K.

    2010-01-01

    X-ray observations have shown that additional non-gravitational processes are required to explain the heating of the intergalactic medium in galaxy groups. The two most likely processes are galactic outflows from starbursts and feedback from AGN. Here, we look at star formation as a possible additional heating mechanism in X-ray luminous groups such as NGC 741, NGC 1052, NGC 524, and NGC 1587. We report on the results of optical imaging of these groups carried out using the WIYN 3.5m telescope with a specific emphasis on measuring the star formation rates of the resident galaxies in each group and estimating the impact of that star formation on the thermodynamics of the intragroup medium.

  14. SDSS J211852.96-073227.5: a new γ-ray flaring narrow-line Seyfert 1 galaxy

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Yuan, Weimin; Yao, Su; Li, Ye; Zhang, Jin; Zhou, Hongyan; Komossa, S.; Liu, He-Yang; Jin, Chichuan

    2018-07-01

    We report on the identification of a new γ-ray-emitting narrow-line Seyfert 1 (NLS1) galaxy, SDSS J211852.96-073227.5 (hereinafter J2118-0732). The galaxy, at a redshift of 0.26, is associated with a radio source of flat/inverted spectrum at high radio frequencies. The analysis of its optical spectrum obtained in the Sloan Digital Sky Survey (SDSS) revealed a small linewidth of the broad component of the Hβ line (full width at half-maximum = 1585 km s-1), making it a radio-loud NLS1 galaxy - an intriguing class of active galactic nuclei with exceptional multiwavelength properties. A new γ-ray source centred at J2118-0732 was sporadically detected during 2009-2013 in form of flares by the Fermi-LAT. Our XMM-Newton observations revealed a flat X-ray spectrum described by a simple power law, and a flux variation by a factor of ˜2.5 in five months. The source also shows intraday variability in the infrared band. Its broad-band spectral energy distribution can be modelled by emission from a simple one-zone leptonic jet model, and the flux drop from infrared to X-rays in five months can be explained by changes of the jet parameters, though the exact values may be subject to relatively large uncertainties. With the NLS1-blazar composite nucleus, the clear detection of the host galaxy, and the synchronous variations in the multiwavelength fluxes, J2118-0732 provides a new perspective on the formation and evolution of relativistic jets under the regime of relatively small black hole masses and high accretion rates.

  15. SDSS J211852.96-073227.5: a new γ-ray flaring narrow-line Seyfert 1 galaxy

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Yuan, Weimin; Yao, Su; Li, Ye; Zhang, Jin; Zhou, Hongyan; Komossa, S.; Liu, He-Yang; Jin, Chichuan

    2018-04-01

    We report on the identification of a new γ-ray-emitting narrow-line Seyfert 1 (NLS1) galaxy, SDSS J211852.96-073227.5 (hereafter J2118-0732). The galaxy, at a redshift of 0.26, is associated with a radio source of flat/inverted spectrum at high radio frequencies. The analysis of its optical spectrum obtained in the Sloan Digital Sky Survey revealed a small linewidth of the broad component of the Hβ line (FWHM = 1585 km s-1), making it a radio-loud NLS1 galaxy - an intriguing class of active galactic nuclei with exceptional multi-wavelength properties. A new γ-ray source centred at J2118-0732 was sporadically detected during 2009-2013 in form of flares by the Fermi-LAT. Our XMM-Newton observations revealed a flat X-ray spectrum described by a simple power law, and a flux variation by a factor of ˜2.5 in 5 months. The source also shows intraday variability in the infrared band. Its broad-band spectral energy distribution can be modelled by emission from a simple one-zone leptonic jet model, and the flux drop from infrared to X-rays in five months can be explained by changes of the jet parameters, though the exact values may be subject to relatively large uncertainties. With the NLS1-blazar composite nucleus, the clear detection of the host galaxy and the synchronous variations in the multi-wavelength fluxes, J2118-0732 provides a new perspective on the formation and evolution of relativistic jets under the regime of relatively small black hole masses and high accretion rates.

  16. Galactic Starburst NGC 3603 from X-Rays to Radio

    NASA Technical Reports Server (NTRS)

    Moffat, A. F. J.; Corcoran, M. F.; Stevens, I. R.; Skalkowski, G.; Marchenko, S. V.; Muecke, A.; Ptak, A.; Koribalski, B. S.; Brenneman, L.; Mushotzky, R.; hide

    2002-01-01

    NGC 3603 is the most massive and luminous visible starburst region in the Galaxy. We present the first Chandra/ACIS-I X-ray image and spectra of this dense, exotic object, accompanied by deep cm-wavelength ATCA radio image at similar or less than 1 inch spatial resolution, and HST/ground-based optical data. At the S/N greater than 3 level, Chandra detects several hundred X-ray point sources (compared to the 3 distinct sources seen by ROSAT). At least 40 of these sources are definitely associated with optically identified cluster O and WR type members, but most are not. A diffuse X-ray component is also seen out to approximately 2 feet (4 pc) form the center, probably arising mainly from the large number of merging/colliding hot stellar winds and/or numerous faint cluster sources. The point-source X-ray fluxes generally increase with increasing bolometric brightnesses of the member O/WR stars, but with very large scatter. Some exceptionally bright stellar X-ray sources may be colliding wind binaries. The radio image shows (1) two resolved sources, one definitely non-thermal, in the cluster core near where the X-ray/optically brightest stars with the strongest stellar winds are located, (2) emission from all three known proplyd-like objects (with thermal and non-thermal components, and (3) many thermal sources in the peripheral regions of triggered star-formation. Overall, NGC 3603 appears to be a somewhat younger and hotter, scaled-down version of typical starbursts found in other galaxies.

  17. Stochastic Particle Acceleration in the Hot Spots of FRII Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Liu, Siming; Fan, Z.; Wang, J.; Fryer, C. L.; Li, H.

    2007-12-01

    Chandra, XMM-Newton, and HST observations of FRII radio galaxies, in combination with traditional radio studies, have advanced our understanding of the nature of jets, hot spots, and lobes significantly. The observed radio to optical emission has been attributed to the synchrotron processes. The X-ray emission can be produced through synchrotron, synchrotron self-Comptonization, and inverse Comptonization of the CMB or other background photos. Phenomenologically modelings of the observed broadband spectra have led to good constraints on the magnetic field and electron distribution. However, the matter and energy contents of the relativistic outflows driven by the central black holes, which power these sources, are still not well-constrained, and we also lack an understanding of the physical processes that determine the energy partition between the electrons and the magnetic field, the low energy cutoff of the electron spectrum, and the electron acceleration rate in these strongly magnetized relativistic plasmas. In the context of stochastic particle acceleration, we propose a model for the hot spots of radio galaxies and show how it may help us to address the above issues. This work was funded in part under the auspices of the US Department of Energy, and supported by its contract W-7405-ENG-36 to Los Alamos National Laboratory.

  18. On the merging cluster Abell 578 and its central radio galaxy 4C+67.13

    DOE PAGES

    Hagino, K.; Stawarz, Ł.; Siemiginowska, A.; ...

    2015-05-26

    Here we analyze radio, optical, and X-ray data for the peculiar cluster Abell 578. This cluster is not fully relaxed and consists of two merging sub-systems. The brightest cluster galaxy (BCG), CGPG 0719.8+6704, is a pair of interacting ellipticals with projected separation ~10 kpc, the brighter of which hosts the radio source 4C+67.13. The Fanaroff–Riley type-II radio morphology of 4C+67.13 is unusual for central radio galaxies in local Abell clusters. Our new optical spectroscopy revealed that both nuclei of the CGPG 0719.8+6704 pair are active, albeit at low accretion rates corresponding to the Eddington ratiomore » $$\\sim {{10}^{-4}}$$ (for the estimated black hole masses of $$\\sim 3\\times {{10}^{8}}\\;{{M}_{\\odot }}$$ and $$\\sim {{10}^{9}}\\;{{M}_{\\odot }}$$). The gathered X-ray (Chandra) data allowed us to confirm and to quantify robustly the previously noted elongation of the gaseous atmosphere in the dominant sub-cluster, as well as a large spatial offset (~60 kpc projected) between the position of the BCG and the cluster center inferred from the modeling of the X-ray surface brightness distribution. Detailed analysis of the brightness profiles and temperature revealed also that the cluster gas in the vicinity of 4C+67.13 is compressed (by a factor of about ~1.4) and heated (from $$\\simeq 2.0$$ keV up to 2.7 keV), consistent with the presence of a weak shock (Mach number ~1.3) driven by the expanding jet cocoon. As a result, this would then require the jet kinetic power of the order of $$\\sim {{10}^{45}}$$ erg s –1, implying either a very high efficiency of the jet production for the current accretion rate, or a highly modulated jet/accretion activity in the system.« less

  19. Constraining the Thermal Contents of X-Ray Cavities in Galaxy Clusters with Sunyaev Zel'dovich Effect Observations

    NASA Astrophysics Data System (ADS)

    Abdulla, Zubair M.

    We use Sunyaev Zel'dovich Effect observations at 30 GHz with the Combined Array for Research in Millimeter Astronomy (CARMA) to probe the thermal contents of X-ray cavities in the galaxy cluster MS 0735+741 (MS0735). The hot (3-10 keV), diffuse X-ray emitting atmospheres of galaxy clusters should quickly radiate away its thermal energy via radiative cooling. However, high-resolution X-ray observations from Chandra and XMM have shown that the gas is not cooling to low temperatures at the rates expected, suggesting that the radiative cooling is being balanced by non-gravitational sources of heating. Of primary interest is the energy output from active galactic nuclei (AGN), outbursts from accreting super massive black holes at the center of clusters, which drive radio jets into the atmospheres of clusters and terminate in spectacular radio lobes. High resolution X-ray images have revealed giant cavities produced by the radio lobes displacing the X-ray emitting gas, providing a gauge for the mean mechanical power output of the AGN. These measured powers are enough to offset radiative cooling at the center of relaxed clusters, however, little beyond the energetics of the outbursts is known. The relative balance and efficiency of heating mechanisms for converting the mechanical energy from the AGN into thermal energy in the cluster atmosphere is not well understood, nor are the details of the jets whose contents inflate and support the X-ray cavities. The Sunyaev-Zel'dovich (SZ) effect, which is proportional to the line-of-sight pressure of the electrons of the hot gas in galaxy clusters, can shed light on these outstanding issues by directly constraining the thermal contents of the radio-filled X-ray cavities. In this work, we describe the assembly and commissioning of 1-cm cryogenic receivers for CARMA, which are vital for the high-fidelity SZ observations required for the proposed measurements. CARMA is a 23-element heterogeneous radio interferometer in Cedar Flat, CA. Receivers previously used on the Cosmic Background Imager (CBI) experiment were rebuilt with new low noise amplifiers and updated electronics and installed on the nine 6.1 m telescopes of CARMA, making all 23 CARMA telescopes capable of 1-cm observations. Commissioning observations of the CARMA-23 1-cm instrument took place in February to March of 2013. The upgraded CARMA-23 instrument is used to observe the SZ effect in the direction of the giant X-ray cavities of MS0735, the most energetic AGN outbursts known (˜ 1062 erg). We model the new CARMA data with a simple analytical model for the SZ signal produced by cavities embedded in an otherwise relaxed cluster, and supplement the model with X-ray and radio observations of MS0735 from Chandra and VLA. We find a sharp contrast in the SZ signal highly coincident with the X-ray identified cavities, suggesting a lack of SZ contributing material in the cavities and representing the first ever detection of these phenomena with the SZ effect. Our model strongly disfavors the cavities containing thermal gas of < 150 keV. If the pressure support in the bubbles is thermal, it is likely several hundreds to thousands of keV and very diffuse (<10-4 cm-3 ). Or alternatively, our findings are consistent with bubbles supported non-thermally by relativistic particles or magnetic fields.

  20. A Comparison of the Extra Nuclear X-ray and Radio Features in M87

    NASA Technical Reports Server (NTRS)

    Harris, D. E.; Owen, F.; Biretta, J. A.; Junor, W.

    2000-01-01

    ROSAT High Resolution Imager (HRI) data from eight observations have been co-added to obtain an effective exposure of 230 ksec. We have identified a number of features and regions with excess X-ray brightness over that from a circularly symmetric model of the well known hot gas component. A prominent 'spur' extends 4feet from the vicinity of knot A towards the south-west. The brightness to the south and east of this spur is significantly higher than that to the north and west. Excess brightness is also found to the East of the nucleus, with a local maximum centered on the eastern radio lobe 3 feet from the core. There are two well known relationships between radio and X-ray emission for radio galaxies in clusters: coincidence of emissions because the X-rays come from inverse Compton or synchrotron processes; and anti-coincidence caused by exclusion of hot gas from radio entities. We present a radio/X-ray comparison to determine if either of these relationships can be isolated in M87. The greatest obstacle we face is the unknown projection which affects both bands.

  1. First evidence of diffuse ultra-steep-spectrum radio emission surrounding the cool core of a cluster

    NASA Astrophysics Data System (ADS)

    Savini, F.; Bonafede, A.; Brüggen, M.; van Weeren, R.; Brunetti, G.; Intema, H.; Botteon, A.; Shimwell, T.; Wilber, A.; Rafferty, D.; Giacintucci, S.; Cassano, R.; Cuciti, V.; de Gasperin, F.; Röttgering, H.; Hoeft, M.; White, G.

    2018-05-01

    Diffuse synchrotron radio emission from cosmic-ray electrons is observed at the center of a number of galaxy clusters. These sources can be classified either as giant radio halos, which occur in merging clusters, or as mini halos, which are found only in cool-core clusters. In this paper, we present the first discovery of a cool-core cluster with an associated mini halo that also shows ultra-steep-spectrum emission extending well beyond the core that resembles radio halo emission. The large-scale component is discovered thanks to LOFAR observations at 144 MHz. We also analyse GMRT observations at 610 MHz to characterise the spectrum of the radio emission. An X-ray analysis reveals that the cluster is slightly disturbed, and we suggest that the steep-spectrum radio emission outside the core could be produced by a minor merger that powers electron re-acceleration without disrupting the cool core. This discovery suggests that, under particular circumstances, both a mini and giant halo could co-exist in a single cluster, opening new perspectives for particle acceleration mechanisms in galaxy clusters.

  2. 'Death Star' Galaxy Black Hole Fires at Neighboring Galaxy

    NASA Astrophysics Data System (ADS)

    2008-12-01

    This "death star" galaxy was discovered through the combined efforts of both space and ground-based telescopes. NASA's Chandra X-ray Observatory, Hubble Space Telescope, and Spitzer Space Telescope were part of the effort. The Very Large Array telescope, Socorro, N.M., and the Multi-Element Radio Linked Interferometer Network (MERLIN) telescopes in the United Kingdom also were needed for the finding. Illustration of Jet Striking Galaxy (unlabeled) Illustration of Jet Striking Galaxy (unlabeled) "We've seen many jets produced by black holes, but this is the first time we've seen one punch into another galaxy like we're seeing here," said Dan Evans, a scientist at the Harvard-Smithsonian Center for Astrophysics and leader of the study. "This jet could be causing all sorts of problems for the smaller galaxy it is pummeling." Jets from super massive black holes produce high amounts of radiation, especially high-energy X-rays and gamma-rays, which can be lethal in large quantities. The combined effects of this radiation and particles traveling at almost the speed of light could severely damage the atmospheres of planets lying in the path of the jet. For example, protective layers of ozone in the upper atmosphere of planets could be destroyed. X-ray & Radio Full Field Image of 3C321 X-ray & Radio Full Field Image of 3C321 Jets produced by super massive black holes transport enormous amounts of energy far from black holes and enable them to affect matter on scales vastly larger than the size of the black hole. Learning more about jets is a key goal for astrophysical research. "We see jets all over the Universe, but we're still struggling to understand some of their basic properties," said co-investigator Martin Hardcastle of the University of Hertfordshire, United Kingdom. "This system of 3C321 gives us a chance to learn how they're affected when they slam into something - like a galaxy - and what they do after that." Optical Image of 3C321 Optical Image of 3C321 The effect of the jet on the companion galaxy is likely to be substantial, because the galaxies in 3C321 are extremely close at a distance of only about 20,000 light years apart. They lie approximately the same distance as Earth is from the center of the Milky Way galaxy. A bright spot in the Very Large Array and MERLIN images shows where the jet has struck the side of the galaxy, dissipating some of the jet's energy. The collision disrupted and deflected the jet. X-ray Image of 3C321 X-ray Image of 3C321 Another unique aspect of the discovery in 3C321 is how relatively short-lived this event is on a cosmic time scale. Features seen in the Very Large Array and Chandra images indicate that the jet began impacting the galaxy about one million years ago, a small fraction of the system's lifetime. This means such an alignment is quite rare in the nearby universe, making 3C321 an important opportunity to study such a phenomenon. It is possible the event is not all bad news for the galaxy being struck by the jet. The massive influx of energy and radiation from the jet could induce the formation of large numbers of stars and planets after its initial wake of destruction is complete. The results from Evans and his colleagues will appear in The Astrophysical Journal. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.

  3. 'Death Star' Galaxy Black Hole Fires at Neighboring Galaxy

    NASA Astrophysics Data System (ADS)

    2007-12-01

    This "death star" galaxy was discovered through the combined efforts of both space and ground-based telescopes. NASA's Chandra X-ray Observatory, Hubble Space Telescope, and Spitzer Space Telescope were part of the effort. The Very Large Array telescope, Socorro, N.M., and the Multi-Element Radio Linked Interferometer Network (MERLIN) telescopes in the United Kingdom also were needed for the finding. Illustration of Jet Striking Galaxy (unlabeled) Illustration of Jet Striking Galaxy (unlabeled) "We've seen many jets produced by black holes, but this is the first time we've seen one punch into another galaxy like we're seeing here," said Dan Evans, a scientist at the Harvard-Smithsonian Center for Astrophysics and leader of the study. "This jet could be causing all sorts of problems for the smaller galaxy it is pummeling." Jets from super massive black holes produce high amounts of radiation, especially high-energy X-rays and gamma-rays, which can be lethal in large quantities. The combined effects of this radiation and particles traveling at almost the speed of light could severely damage the atmospheres of planets lying in the path of the jet. For example, protective layers of ozone in the upper atmosphere of planets could be destroyed. X-ray & Radio Full Field Image of 3C321 X-ray & Radio Full Field Image of 3C321 Jets produced by super massive black holes transport enormous amounts of energy far from black holes and enable them to affect matter on scales vastly larger than the size of the black hole. Learning more about jets is a key goal for astrophysical research. "We see jets all over the Universe, but we're still struggling to understand some of their basic properties," said co-investigator Martin Hardcastle of the University of Hertfordshire, United Kingdom. "This system of 3C321 gives us a chance to learn how they're affected when they slam into something - like a galaxy - and what they do after that." Optical Image of 3C321 Optical Image of 3C321 The effect of the jet on the companion galaxy is likely to be substantial, because the galaxies in 3C321 are extremely close at a distance of only about 20,000 light years apart. They lie approximately the same distance as Earth is from the center of the Milky Way galaxy. A bright spot in the Very Large Array and MERLIN images shows where the jet has struck the side of the galaxy, dissipating some of the jet's energy. The collision disrupted and deflected the jet. X-ray Image of 3C321 X-ray Image of 3C321 Another unique aspect of the discovery in 3C321 is how relatively short-lived this event is on a cosmic time scale. Features seen in the Very Large Array and Chandra images indicate that the jet began impacting the galaxy about one million years ago, a small fraction of the system's lifetime. This means such an alignment is quite rare in the nearby universe, making 3C321 an important opportunity to study such a phenomenon. It is possible the event is not all bad news for the galaxy being struck by the jet. The massive influx of energy and radiation from the jet could induce the formation of large numbers of stars and planets after its initial wake of destruction is complete. The results from Evans and his colleagues will appear in The Astrophysical Journal. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.

  4. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. VIII. A Comparison to Cosmological Short-duration Gamma-Ray Bursts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fong, W.; Berger, E.; Blanchard, P. K.

    Here, we present a comprehensive comparison of the properties of the radio through X-ray counterpart of GW170817 and the properties of short-duration gamma-ray bursts (GRBs). For this effort, we utilize a sample of 36 short GRBs spanning a redshift range ofmore » $$z \\approx 0.12-2.6$$ discovered over 2004-2017. We find that the counterpart to GW170817 has an isotropic-equivalent luminosity that is $$\\approx 3000$$ times less than the median value of on-axis short GRB X-ray afterglows, and $$\\gtrsim10^{4}$$ times less than that for detected short GRB radio afterglows. Moreover, the allowed jet energies and particle densities inferred from the radio and X-ray counterparts to GW170817 and on-axis short GRB afterglows are remarkably similar, suggesting that viewing angle effects are the dominant, and perhaps only, difference in their observed radio and X-ray behavior. From comparison to previous claimed kilonovae following short GRBs, we find that the optical and near-IR counterpart to GW170817 is comparatively under-luminous by a factor of $$\\approx 3-5$$, indicating a range of kilonova luminosities and timescales. A comparison of the optical limits following short GRBs on $$\\lesssim 1$$ day timescales also rules out a "blue" kilonova of comparable optical isotropic-equivalent luminosity in one previous short GRB. Finally, we investigate the host galaxy of GW170817, NGC4993, in the context of short GRB host galaxy stellar population properties. We find that NGC4993 is superlative in terms of its large luminosity, old stellar population age, and low star formation rate compared to previous short GRB hosts. Additional events within the Advanced LIGO/VIRGO volume will be crucial in delineating the properties of the host galaxies of NS-NS mergers, and connecting them to their cosmological counterparts.« less

  5. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. VIII. A Comparison to Cosmological Short-duration Gamma-Ray Bursts

    DOE PAGES

    Fong, W.; Berger, E.; Blanchard, P. K.; ...

    2017-10-16

    Here, we present a comprehensive comparison of the properties of the radio through X-ray counterpart of GW170817 and the properties of short-duration gamma-ray bursts (GRBs). For this effort, we utilize a sample of 36 short GRBs spanning a redshift range ofmore » $$z \\approx 0.12-2.6$$ discovered over 2004-2017. We find that the counterpart to GW170817 has an isotropic-equivalent luminosity that is $$\\approx 3000$$ times less than the median value of on-axis short GRB X-ray afterglows, and $$\\gtrsim10^{4}$$ times less than that for detected short GRB radio afterglows. Moreover, the allowed jet energies and particle densities inferred from the radio and X-ray counterparts to GW170817 and on-axis short GRB afterglows are remarkably similar, suggesting that viewing angle effects are the dominant, and perhaps only, difference in their observed radio and X-ray behavior. From comparison to previous claimed kilonovae following short GRBs, we find that the optical and near-IR counterpart to GW170817 is comparatively under-luminous by a factor of $$\\approx 3-5$$, indicating a range of kilonova luminosities and timescales. A comparison of the optical limits following short GRBs on $$\\lesssim 1$$ day timescales also rules out a "blue" kilonova of comparable optical isotropic-equivalent luminosity in one previous short GRB. Finally, we investigate the host galaxy of GW170817, NGC4993, in the context of short GRB host galaxy stellar population properties. We find that NGC4993 is superlative in terms of its large luminosity, old stellar population age, and low star formation rate compared to previous short GRB hosts. Additional events within the Advanced LIGO/VIRGO volume will be crucial in delineating the properties of the host galaxies of NS-NS mergers, and connecting them to their cosmological counterparts.« less

  6. Andromeda Galaxy: Extension of the 610.5-Megacyle-per-Second Map.

    PubMed

    Dickel, J R; Macleod, J M; Swenson, G W

    1965-11-12

    A radio map of the Andromeda galaxy, M 31, made with the 400-foot (122 m) radio telescope at the University of Illinois has been extended northward to cover the full optical extent of the galaxy. Several condensations of radio emission appear along the major axis of the galaxy, and other radio features are resolved.

  7. Giant Low Surface Brightness Galaxies

    NASA Astrophysics Data System (ADS)

    Mishra, Alka; Kantharia, Nimisha G.; Das, Mousumi

    2018-04-01

    In this paper, we present radio observations of the giant low surface brightness (LSB) galaxies made using the Giant Metrewave Radio Telescope (GMRT). LSB galaxies are generally large, dark matter dominated spirals that have low star formation efficiencies and large HI gas disks. Their properties suggest that they are less evolved compared to high surface brightness galaxies. We present GMRT emission maps of LSB galaxies with an optically-identified active nucleus. Using our radio data and archival near-infrared (2MASS) and near-ultraviolet (GALEX) data, we studied morphology and star formation efficiencies in these galaxies. All the galaxies show radio continuum emission mostly associated with the centre of the galaxy.

  8. CHANDRA Observations OF The Shock Heated Gas Around 3c 288 And 3c 449

    NASA Astrophysics Data System (ADS)

    Lal, Dharam V.; Kraft, R. P.; Evans, D. A.; Hardcastle, M. J.; Nulsen, P. E. J.; Croston, J. H.; Forman, W. R.; Jones, C.; Lee, J. C.

    2010-03-01

    The inflation of radio bubbles in the hot gas atmospheres of clusters of galaxies plays an important role in the overall energy budget of the ICM. Regular gentle (i.e. subsonic) nuclear outbursts may be able to provide sufficient energy to the gas in the cool cores of clusters to offset radiative losses and regulate large cooling flows; and one method to supplement the total energy input into the gas is for the lobes to initially drive strong shocks into the gas. We present results from Chandra/ACIS-S observations of the hot gas atmospheres of two powerful, nearby radio galaxies in poor clusters: 3C 288 and 3C 449. We measure the total energy of the current outburst to be a few times 10^{59} ergs for 3C 288 (T = 2.8 keV, L_X = 1.4 × 10^{44} ergs) and ˜10^{58} ergs for 3C 449 (T = 1.5 keV, L_X = 2.0 × 10^{42} ergs). We find multiple surface brightness discontinuities in the gas, which are probably shocks and are indicative of supersonic heating by the inflation of the radio lobe. We do not find X-ray cavity in 3C 288, whereas cavities are associated with both the radio lobes in 3C 449.

  9. Testing Precipitation-Driven Feedback Models in Nearby Ellipticals

    NASA Astrophysics Data System (ADS)

    Donahue, Megan

    2016-09-01

    We propose to analyze the inner cooling-time and entropy profiles of 12 elliptical galaxies with strong radio AGN. X-ray studies of galaxy-cluster cores and massive ellipticals indicate that feedback from an AGN replaces energy radiated by these objects. The AGN at 10 pc seems tuned to the thermodynamic state of gas on 10 kpc scales, but how that occurs is a resilient mystery. The precipitation model posits if the AGN does not provide enough heat, then thermal instabilities rain cold clouds on it, increasing accretion from Bondi to 100 times that rate when t_cool drops below 10 t_ff. We will test precipitation-driven feedback models by measuring t_cool and gravitational potential within the central kpc and to see how radio power is related to t_c/t_ff at small radii in these galaxies.

  10. FERMI Large Area Telescope Gamma-Ray Detection of the Radio Galaxy M87

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2009-11-17

    Here, we report the Fermi Large Area Telescope (LAT) discovery of high-energy (MeV/GeV) γ-ray emission positionally consistent with the center of the radio galaxy M87, at a source significance of over 10σ in 10 months of all-sky survey data. Following the detections of Cen A and Per A, this makes M87 the third radio galaxy seen with the LAT. The faint point-like γ-ray source has a >100 MeV flux of 2.45 (±0.63) × 10 –8 photons cm –2 s –1 (photon index = 2.26 ± 0.13) with no significant variability detected within the LAT observation. This flux is comparable withmore » the previous EGRET upper limit (<2.18 × 10 –8 photons cm –2 s –1, 2σ), thus there is no evidence for a significant MeV/GeV flare on decade timescales. Contemporaneous Chandra and Very Long Baseline Array data indicate low activity in the unresolved X-ray and radio core relative to previous observations, suggesting M87 is in a quiescent overall level over the first year of Fermi-LAT observations. The LAT γ-ray spectrum is modeled as synchrotron self-Compton (SSC) emission from the electron population producing the radio-to-X-ray emission in the core. The resultant SSC spectrum extrapolates smoothly from the LAT band to the historical-minimum TeV emission. Lastly, alternative models for the core and possible contributions from the kiloparsec-scale jet in M87 are considered, and cannot be excluded.« less

  11. Multiwavelength and Statistical Research in Space Astrophysics

    NASA Technical Reports Server (NTRS)

    Feigelson, Eric D.

    1997-01-01

    The accomplishments in the following three research areas are summarized: multiwavelength study of active galactic nuclei; magnetic activity of young stellar objects; and statistical methodology for astronomical data analysis. The research is largely based on observations of the ROSAT and ASCA X-ray observatories, complemented by ground-based optical and radio studies. Major findings include: discovery of inverse Compton X-ray emission from radio galaxy lobes; creation of the largest and least biased available sample of BL Lac objects; characterization of X-ray and nonthermal radio emission from T Tauri stars; obtaining an improved census of young stars in a star forming region and modeling the star formation history and kinematics; discovery of X-ray emission from protostars; development of linear regression methods and codes for interpreting astronomical data; and organization of the first cross-disciplinary conferences for astronomers and statisticians.

  12. The radio emission from the ultraluminous far-infrared galaxy NGC 6240

    NASA Technical Reports Server (NTRS)

    Colbert, Edward J. M.; Wilson, Andrew S.; Bland-Hawthorn, Jonathan

    1994-01-01

    We present new radio observations of the 'prototypical' ultraluminous far-infrared galaxy NGC 6240, obtained using the Very Large Array (VLA) at lambda = 20 cm in B-configuration and at lambda = 3.6 cm in A-configuration. These data, along with those from four previous VLA observations, are used to perform a comprehensive study of the radio emission from NGC 6240. Approximately 70% (approximately 3 x 10(exp 23) W/Hz) of the total radio power at 20 cm originates from the nuclear region (approximately less than 1.5 kpc), of which half is emitted by two unresolved (R approximately less than 36 pc) cores and half by a diffuse component. The radio spectrum of the nuclear emission is relatively flat (alpha approximately equals 0.6; S(sub nu) proportional to nu(exp -alpha). The supernova rate required to power the diffuse component is consistent with that predicted by the stellar evolution models of Rieke et al. (1985). If the radio emission from the two compact cores is powered by supernova remnants, then either the remnants overlap and form hot bubbles in the cores, or they are very young (approximately less than 100 yr.) Nearly all of the remaining 30% of the total radio power comes from an 'armlike' region extending westward from the nuclear region. The western arm emission has a steep spectrum (alpha approximately equals 1.0), suggestive of aging effects from synchrotron or inverse-Compton losses, and is not correlated with starlight; we suggest that it is synchrotron emission from a shell of material driven by a galactic superwind. Inverse Compton scattering of far-infrared photons in the radio sources is expected to produce an X-ray flux of approximately 2 - 6 x 10(exp -14) ergs/s/sq cm in the 2 - 10 keV band. No significant radio emission is detected from or near the possible ultramassive 'dark core'.

  13. Detection and Characterization of Galaxy Systems at Intermediate Redshift.

    NASA Astrophysics Data System (ADS)

    Barrena, Rafael

    2004-11-01

    This thesis is divided into two very related parts. In the first part we implement and apply a galaxy cluster detection method, based on multiband observations in visible. For this purpose, we use a new algorithm, the Voronoi Galaxy Cluster Finder, which identifies overdensities over a Poissonian field of objects. By applying this algorithm over four photometric bands (B, V, R and I) we reduce the possibility of detecting galaxy projection effects and spurious detections instead of real galaxy clusters. The B, V, R and I photometry allows a good characterization of galaxy systems. Therefore, we analyze the colour and early-type sequences in the colour-magnitude diagrams of the detected clusters. This analysis helps us to confirm the selected candidates as actual galaxy systems. In addition, by comparing observational early-type sequences with a semiempirical model we can estimate a photometric redshift for the detected clusters. We will apply this detection method on four 0.5x0.5 square degrees areas, that partially overlap the Postman Distant Cluster Survey (PDCS). The observations were performed as part of the International Time Programme 1999-B using the Wide Field Camera mounted at Isaac Newton Telescope (Roque de los Muchachos Observatory, La Palma island, Spain). The B and R data obtained were completed with V and I photometry performed by Marc Postman. The comparison of our cluster catalogue with that of PDCS reveals that our work is a clear improvement in the cluster detection techniques. Our method efficiently selects galaxy clusters, in particular low mass galaxy systems, even at relative high redshift, and estimate a precise photometric redshift. The validation of our method comes by observing spectroscopically several selected candidates. By comparing photometric and spectroscopic redshifts we conclude: 1) our photometric estimation method gives an precision lower than 0.1; 2) our detection technique is even able to detect galaxy systems at z~0.7 using visible photometric bands. In the second part of this thesis we analyze in detail the dynamical state of 1E0657-56 (z=0.296), a hot galaxy cluster with strong X-ray and radio emissions. Using spectroscopic and photometric observations in visible (obtained with the New Technology Telescope and the Very Large Telescope, both located at La Silla Observatory, Chile) we analyze the velocity field, morphology, colour and star formation in the galaxy population of this cluster. 1E0657-56 is involved in a collision event. We identify the substructure involved in this collision and we propose a dynamical model that allows us to investigate the origins of X-ray and radio emissions and the relation between them. The analysis of 1E0657-56 presented in this thesis constitutes a good example of what kind of properties could be studied in some of the clusters catalogued in first part of this thesis. In addition, the detailed analysis of this cluster represents an improvement in the study of the origin of X-ray and radio emissions and merging processes in galaxy clusters.

  14. Hard X-ray Emission from Galaxy Clusters Observed with INTEGRAL and Prospects for Simbol-X

    NASA Astrophysics Data System (ADS)

    Eckert, D.; Paltani, S.; Courvoisier, T. J.-L.

    2009-05-01

    Some galaxy clusters are known to contain a large population of relativistic electrons, which produce radio emission through synchrotron radiation. Therefore, it is expected that inverse-Compton scattering of the relativistic electrons with the CMB produce non-thermal emission which should be observable in the hard X-ray domain. Here we focus on the recent results by INTEGRAL, which shed a new light on the non-thermal emission thanks to its angular resolution and sensitivity in the hard X-ray range. We also present the exciting prospects in this field for Simbol-X, which will allow us to detect the non-thermal emission in a number of clusters and map the magnetic field throughout the intra-cluster medium.

  15. Superwind Outflows in Seyfert Galaxies? : Large-Scale Radio Maps of an Edge-On Sample

    NASA Astrophysics Data System (ADS)

    Colbert, E.; Gallimore, J.; Baum, S.; O'Dea, C.

    1995-03-01

    Large-scale galactic winds (superwinds) are commonly found flowing out of the nuclear region of ultraluminous infrared and powerful starburst galaxies. Stellar winds and supernovae from the nuclear starburst provide the energy to drive these superwinds. The outflowing gas escapes along the rotation axis, sweeping up and shock-heating clouds in the halo, which produces optical line emission, radio synchrotron emission, and X-rays. These features can most easily be studied in edge-on systems, so that the wind emission is not confused by that from the disk. We have begun a systematic search for superwind outflows in Seyfert galaxies. In an earlier optical emission-line survey, we found extended minor axis emission and/or double-peaked emission line profiles in >~30% of the sample objects. We present here large-scale (6cm VLA C-config) radio maps of 11 edge-on Seyfert galaxies, selected (without bias) from a distance-limited sample of 23 edge-on Seyferts. These data have been used to estimate the frequency of occurrence of superwinds. Preliminary results indicate that four (36%) of the 11 objects observed and six (26%) of the 23 objects in the distance-limited sample have extended radio emission oriented perpendicular to the galaxy disk. This emission may be produced by a galactic wind blowing out of the disk. Two (NGC 2992 and NGC 5506) of the nine objects for which we have both radio and optical data show good evidence for a galactic wind in both datasets. We suggest that galactic winds occur in >~30% of all Seyferts. A goal of this work is to find a diagnostic that can be used to distinguish between large-scale outflows that are driven by starbursts and those that are driven by an AGN. The presence of starburst-driven superwinds in Seyferts, if established, would have important implications for the connection between starburst galaxies and AGN.

  16. Radio Source Morphology: 'nature or nuture'?

    NASA Astrophysics Data System (ADS)

    Banfield, Julie; Emonts, Bjorn; O'Sullivan, Shane

    2012-10-01

    Radio sources, emanating from supermassive black-holes in the centres of active galaxies, display a large variety of morphological properties. It is a long-standing debate to what extent the differences between various types of radio sources are due to intrinsic properties of the central engine (`nature') or due to the properties of the interstellar medium that surrounds the central engine and host galaxy (`nurture'). Settling this `nature vs. nurture' debate for nearby radio galaxies, which can be studied in great detail, is vital for understanding the properties and evolution of radio galaxies throughout the Universe. We propose to observe the radio galaxy NGC 612 where previous observations have detected the presence of a large-scale HI bridge between the host galaxy and a nearby galaxy NGC 619. We request a total of 13 hrs in the 750m array-configuration to determine whether or not the 100 kpc-scale radio source morphology is directly related to the intergalactic distribution of neutral hydrogen gas.

  17. Evidence for a Multiphase ISM in Early Type Galaxies and Elliptical Galaxies with Strong Radio Continuum

    NASA Technical Reports Server (NTRS)

    Kim, Dong Woo

    1997-01-01

    We have observed NGC 1316 (Fornax A) with the ROSAT HRI. In this paper, we present the results of these observations and we complement them with the spectral analysis of the archival PSPC data. The spectral properties suggest the presence of a significant component of thermal X-ray emission (greater than 60%), amounting to approx. 10(exp 9) solar mass of hot ISM. Within 3 feet from the nucleus of NGC 1316, the HRI X-ray surface brightness falls as r(exp -2) following the stellar light. In the inner approx. 30 inch., however, the X-ray surface brightness is significantly elongated, contrary to the distribution of stellar light, which is significantly rounder within 10 inch. This again argues for a non-stellar origin of the X-ray emission. This flattened X-ray feature is suggestive of either the disk-like geometry of a rotating cooling flow and/or the presence of extended, elongated dark matter. By comparing the morphology of the X-ray emission with the distribution of optical dust patches, we find that the X-ray emission is significantly reduced at the locations where the dust patches are more pronounced, indicating that at least some of the X-ray photons are absorbed by the cold ISM. We also compare the distribution of the hot and cold ISM with that of the ionized gas, using recently obtained H(sub alpha) CCD data. We find that the ionized gas is distributed roughly along the dust patches and follows the large scale X-ray distribution at r greater than 1 foot from the nucleus. However, there is no one-to-one correspondence between ionized gas and hot gas. Both morphological relations and kinematics suggest different origins for hot and cold ISM. The radio jets in projection appear to pass perpendicularly through the central X-ray ellipsoid. Comparison of thermal and radio pressures suggests that the radio jets are confined by the surrounding hot gaseous medium.

  18. Announcment: Conference on Obscured AGN Across Cosmic Time

    NASA Astrophysics Data System (ADS)

    2006-12-01

    Current deep surveys, notably in X-rays and the mid-IR, are making it possible to carry out a census of essentially all the luminous AGN in the Universe. By pene-trating the obscuration that, in Type 2 sources, hides the nuclear regions in the UV to the near-IR spectrum, these new surveys are finding the radio quiet coun-terparts of the powerful radio galaxies.

  19. Fermi Large Area Telescope Detection of Extended Gamma-Ray Emission from the Radio Galaxy Fornax A

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Ajello, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Brandt, T. J.; Bregeon, J.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caragiulo, M.; Caraveo, P. A.; Cavazzuti, E.; Cecchi, C.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiaro, G.; Ciprini, S.; Cohen, J. M.; Cohen-Tanugi, J.; Costanza, F.; Cutini, S.; D'Ammando, F.; Davis, D. S.; de Angelis, A.; de Palma, F.; Desiante, R.; Digel, S. W.; Di Lalla, N.; Di Mauro, M.; Di Venere, L.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Georganopoulos, M.; Giglietto, N.; Giordano, F.; Giroletti, M.; Godfrey, G.; Green, D.; Grenier, I. A.; Guiriec, S.; Hays, E.; Hewitt, J. W.; Hill, A. B.; Jogler, T.; Jóhannesson, G.; Kensei, S.; Kuss, M.; Larsson, S.; Latronico, L.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lubrano, P.; Magill, J. D.; Maldera, S.; Manfreda, A.; Mayer, M.; Mazziotta, M. N.; McConville, W.; McEnery, J. E.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Negro, M.; Nuss, E.; Ohno, M.; Ohsugi, T.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Schmid, J.; Sgrò, C.; Simone, D.; Siskind, E. J.; Spada, F.; Spandre, G.; Spinelli, P.; Stawarz, Ł.; Takahashi, H.; Thayer, J. B.; Thompson, D. J.; Torres, D. F.; Tosti, G.; Troja, E.; Vianello, G.; Wood, K. S.; Wood, M.; Zimmer, S.; Fermi LAT Collaboration

    2016-07-01

    We report the Fermi Large Area Telescope detection of extended γ-ray emission from the lobes of the radio galaxy Fornax A using 6.1 years of Pass 8 data. After Centaurus A, this is now the second example of an extended γ-ray source attributed to a radio galaxy. Both an extended flat disk morphology and a morphology following the extended radio lobes were preferred over a point-source description, and the core contribution was constrained to be < 14% of the total γ-ray flux. A preferred alignment of the γ-ray elongation with the radio lobes was demonstrated by rotating the radio lobes template. We found no significant evidence for variability on ˜0.5 year timescales. Taken together, these results strongly suggest a lobe origin for the γ-rays. With the extended nature of the > 100 MeV γ-ray emission established, we model the source broadband emission considering currently available total lobe radio and millimeter flux measurements, as well as X-ray detections attributed to inverse Compton (IC) emission off the cosmic microwave background (CMB). Unlike the Centaurus A case, we find that a leptonic model involving IC scattering of CMB and extragalactic background light (EBL) photons underpredicts the γ-ray fluxes by factors of about ˜2-3, depending on the EBL model adopted. An additional γ-ray spectral component is thus required, and could be due to hadronic emission arising from proton-proton collisions of cosmic rays with thermal plasma within the radio lobes.

  20. Fermi large area telescope detection of extended gamma-ray emission from the radio galaxy fornax A

    DOE PAGES

    Ackermann, M.; Ajello, M.; Baldini, L.; ...

    2016-07-14

    Here, we report the Fermi Large Area Telescope detection of extended γ-ray emission from the lobes of the radio galaxy Fornax A using 6.1 years of Pass 8 data. After Centaurus A, this is now the second example of an extended γ-ray source attributed to a radio galaxy. Both an extended flat disk morphology and a morphology following the extended radio lobes were preferred over a point-source description, and the core contribution was constrained to bemore » $$\\lt 14$$% of the total γ-ray flux. We also demonstrated a preferred alignment of the γ-ray elongation with the radio lobes by rotating the radio lobes template. We found no significant evidence for variability on ~0.5 year timescales. Taken together, these results strongly suggest a lobe origin for the γ-rays. Furthermore, with the extended nature of the $$\\gt 100\\;{\\rm{MeV}}$$ γ-ray emission established, we model the source broadband emission considering currently available total lobe radio and millimeter flux measurements, as well as X-ray detections attributed to inverse Compton (IC) emission off the cosmic microwave background (CMB). Unlike the Centaurus A case, we find that a leptonic model involving IC scattering of CMB and extragalactic background light (EBL) photons underpredicts the γ-ray fluxes by factors of about ~2–3, depending on the EBL model adopted. An additional γ-ray spectral component is thus required, and could be due to hadronic emission arising from proton–proton collisions of cosmic rays with thermal plasma within the radio lobes.« less

  1. THE COMPLEX CIRCUMNUCLEAR ENVIRONMENT OF THE BROAD-LINE RADIO GALAXY 3C 390.3 REVEALED BY CHANDRA HETG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tombesi, F.; Kallman, T.; Leutenegger, M. A.

    2016-10-20

    We present the first high spectral resolution X-ray observation of the broad-line radio galaxy 3C 390.3 obtained with the high-energy transmission grating spectrometer on board the Chandra X-ray Observatory . The spectrum shows complex emission and absorption features in both the soft X-rays and Fe K band. We detect emission and absorption lines in the energy range E = 700–1000 eV associated with ionized Fe L transitions (Fe XVII–XX). An emission line at the energy of E ≃ 6.4 keV consistent with the Fe K α is also observed. Our best-fit model requires at least three different components: (i) amore » hot emission component likely associated with the hot interstellar medium in this elliptical galaxy with temperature kT = 0.5 ± 0.1 keV; (ii) a warm absorber with ionization parameter log ξ = 2.3 ± 0.5 erg s{sup −1} cm, column density log N {sub H} = 20.7 ± 0.1 cm{sup −2}, and outflow velocity v {sub out} < 150 km s{sup −1}; and (iii) a lowly ionized reflection component in the Fe K band likely associated with the optical broad-line region or the outer accretion disk. These evidences suggest the possibility that we are looking directly down the ionization cone of this active galaxy and that the central X-ray source only photoionizes along the unobscured cone. This is overall consistent with the angle-dependent unified picture of active galactic nuclei.« less

  2. The Complex Circumnuclear Environment of the Broad-Line Radio Galaxy 3C 390.3 Revealed by Chandra HETG

    NASA Technical Reports Server (NTRS)

    Tombesi, F.; Reeves, J. N.; Kallman, Timothy R.; Reynolds, C. S.; Mushotzky, R. F.; Braito, V.; Behar, E.; Leutenegger, Maurice A.; Cappi, M.

    2016-01-01

    We present the first high spectral resolution X-ray observation of the broad-line radio galaxy 3C 390.3 obtained with the high-energy transmission grating spectrometer on board the Chandra X-ray Observatory. The spectrum shows complex emission and absorption features in both the soft X-rays and Fe K band. We detect emission and absorption lines in the energy range E = 700-1000 eV associated with ionized Fe L transitions (Fe XVIIXX). An emission line at the energy of E approximately equal to 6.4 keV consistent with the Fe K alpha is also observed. Our best-fit model requires at least three different components: (i) a hot emission component likely associated with the hot interstellar medium in this elliptical galaxy with temperature kT = 0.5 +/- 0.1 keV; (ii) a warm absorber with ionization parameter log Epislon = 2.3 +/- 0.5 erg s(exp 1) cm, column density logN(sub H) = 20.7 +/- 0.1 cm(exp -2), and outflow velocity v(sub out) less than 150 km s(exp -1); and (iii) a lowly ionized reflection component in the Fe K band likely associated with the optical broad-line region or the outer accretion disk. These evidences suggest the possibility that we are looking directly down the ionization cone of this active galaxy and that the central X-ray source only photoionizes along the unobscured cone. This is overall consistent with the angle-dependent unified picture of active galactic nuclei.

  3. NuSTAR reveals the Comptonizing corona of the broad-line radio galaxy 3C 382

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballantyne, D. R.; Bollenbacher, J. M.; Brenneman, L. W.

    Broad-line radio galaxies (BLRGs) are active galactic nuclei that produce powerful, large-scale radio jets, but appear as Seyfert 1 galaxies in their optical spectra. In the X-ray band, BLRGs also appear like Seyfert galaxies, but with flatter spectra and weaker reflection features. One explanation for these properties is that the X-ray continuum is diluted by emission from the jet. Here, we present two NuSTAR observations of the BLRG 3C 382 that show clear evidence that the continuum of this source is dominated by thermal Comptonization, as in Seyfert 1 galaxies. The two observations were separated by over a year andmore » found 3C 382 in different states separated by a factor of 1.7 in flux. The lower flux spectrum has a photon-index of Γ=1.68{sub −0.02}{sup +0.03}, while the photon-index of the higher flux spectrum is Γ=1.78{sub −0.03}{sup +0.02}. Thermal and anisotropic Comptonization models provide an excellent fit to both spectra and show that the coronal plasma cooled from kT{sub e} = 330 ± 30 keV in the low flux data to 231{sub −88}{sup +50} keV in the high flux observation. This cooling behavior is typical of Comptonizing corona in Seyfert galaxies and is distinct from the variations observed in jet-dominated sources. In the high flux observation, simultaneous Swift data are leveraged to obtain a broadband spectral energy distribution and indicates that the corona intercepts ∼10% of the optical and ultraviolet emitting accretion disk. 3C 382 exhibits very weak reflection features, with no detectable relativistic Fe Kα line, that may be best explained by an outflowing corona combined with an ionized inner accretion disk.« less

  4. Submillimeter evidence for the coeval growth of massive black holes and galaxy bulges.

    PubMed

    Page, M J; Stevens, J A; Mittaz, J P; Carrera, F J

    2001-12-21

    The correlation, found in nearby galaxies, between black hole mass and stellar bulge mass implies that the formation of these two components must be related. Here we report submillimeter photometry of eight x-ray-absorbed active galactic nuclei that have luminosities and redshifts characteristic of the sources that produce the bulk of the accretion luminosity in the universe. The four sources with the highest redshifts are detected at 850 micrometers, with flux densities between 5.9 and 10.1 millijanskies, and hence are ultraluminous infrared galaxies. If the emission is from dust heated by starbursts, then the majority of stars in spheroids were formed at the same time as their central black holes built up most of their mass by accretion. This would account for the observed demography of massive black holes in the local universe. The skewed rate of submillimeter detection with redshift is consistent with a high redshift epoch of star formation in radio-quiet active galactic nuclei, similar to that seen in radio galaxies.

  5. The Stormy Life of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Rudnick, Lawrence

    2018-01-01

    Galaxy clusters, the largest gravitationally bound structures, hold the full history of their baryonic evolution, serve as important cosmological tools and allow us to probe unique physical regimes in their diffuse plasmas. With characteristic dynamical timescales of 107-109 years, these diffuse thermal and relativistic media continue to evolve, as dark matter drives major mergers and more gentle continuing accretion. The history of this assembly is encoded in the plasmas, and a wide range of observational and theoretical investigations are aimed at decoding their signatures. X-ray temperature and density variations, low Mach number shocks, and "cold front" discontinuities all illuminate clusters' continued evolution. Radio structures and spectra are passive indicators of merger shocks, while radio galaxy distortions reveal the complex motions in the intracluster medium. Deep in cluster cores, AGNs associated with brightest cluster galaxies provide ongoing energy, and perhaps even stabilize the intracluster medium. In this talk, we will recount this evolving picture of the stormy ICM, and suggest areas of likely advance in the coming years.

  6. X-ray detections of submillimetre galaxies: active galactic nuclei versus starburst contribution

    NASA Astrophysics Data System (ADS)

    Johnson, S. P.; Wilson, G. W.; Wang, Q. D.; Williams, C. C.; Scott, K. S.; Yun, M. S.; Pope, A.; Lowenthal, J.; Aretxaga, I.; Hughes, D.; Kim, M. J.; Kim, S.; Tamura, Y.; Kohno, K.; Ezawa, H.; Kawabe, R.; Oshima, T.

    2013-05-01

    We present a large-scale study of the X-ray properties and near-IR-to-radio spectral energy distributions (SEDs) of submillimetre galaxies (SMGs) detected at 1.1 mm with the AzTEC instrument across a ˜1.2 square degree area of the sky. Combining deep 2-4 Ms Chandra data with Spitzer IRAC/MIPS and Very Large Array data within the Great Observatories Origins Deep Survey North (GOODS-N), GOODS-S and COSMOS fields, we find evidence for active galactic nucleus (AGN) activity in ˜14 per cent of 271 AzTEC SMGs, ˜28 per cent considering only the two GOODS fields. Through X-ray spectral modelling and multiwavelength SED fitting using Monte Carlo Markov chain techniques to Siebenmorgen et al. (AGN) and Efstathiou, Rowan-Robinson & Siebenmorgen (starburst) templates, we find that while star formation dominates the IR emission, with star formation rates (SFRs) ˜100-1000 M⊙ yr-1, the X-ray emission for most sources is almost exclusively from obscured AGNs, with column densities in excess of 1023 cm-2. Only for ˜6 per cent of our sources do we find an X-ray-derived SFR consistent with NIR-to-radio SED derived SFRs. Inclusion of the X-ray luminosities as a prior to the NIR-to-radio SED effectively sets the AGN luminosity and SFR, preventing significant contribution from the AGN template. Our SED modelling further shows that the AGN and starburst templates typically lack the required 1.1 mm emission necessary to match observations, arguing for an extended, cool dust component. The cross-correlation function between the full samples of X-ray sources and SMGs in these fields does not indicate a strong correlation between the two populations at large scales, suggesting that SMGs and AGNs do not necessarily trace the same underlying large-scale structure. Combined with the remaining X-ray-dim SMGs, this suggests that sub-mm-bright sources may evolve along multiple tracks, with X-ray-detected SMGs representing transitionary objects between periods of high star formation and AGN activity, while X-ray-faint SMGs represent a brief starburst phase of more normal galaxies.

  7. Shocks and Cool Cores: An ALMA View of Massive Galaxy Cluster Formation at High Redshifts

    NASA Astrophysics Data System (ADS)

    Basu, Kaustuv

    2017-07-01

    These slides present some recent results on the Sunyaev-Zel'dovich (SZ) effect imaging of galaxy cluster substructures. The advantage of SZ imaging at high redshifts or in the low density cluster outskirts is already well-known. Now with ALMA a combination of superior angular resolution and high sensitivity is available. One example is the first ALMA measurement of a merger shock at z=0.9 in the famous El Gordo galaxy cluster. Here comparison between SZ, X-ray and radio data enabled us to put constraints on the shock Mach number and magnetic field strength for a high-z radio relic. Second example is the ALMA SZ imaging of the core region of z=1.4 galaxy cluster XMMU J2235.2-2557. Here ALMA data provide an accurate measurement of the thermal pressure near the cluster center, and from a joint SZ/X-ray analysis we find clear evidence for a reduced core temperature. This result indicate that a cool core establishes itself early enough in the cluster formation history while the gas accumulation is still continuing. The above two ALMA measurements are among several other recent SZ results that shed light on the formation process of massive clusters at high redshifts.

  8. Radio properties of type 1.8 and 1.9 Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Ulvestad, James S.

    1986-01-01

    A number of type 1.8 and 1.9 Seyfert galaxies have been observed at the VLA in order to compare their properties with those of the other types of Seyfert galaxy. The observed types have radio luminosities in the range of 10 to the 39th-40.5th args/s, with the median near 10 to the 40th ergs/s. Most of these galaxies have radio sources with diameters of about 500 pc or less. The ratio of radio luminosity to featureless optical continuum luminosity in the Seyfert 1.8/12.9 galaxies and Seyfert 1.2/1.5 galaxies is intermediate between the values for Seyfert 1 and Seyfert 2 galaxies. The infrared-to-radio ratio decreases along the sequence from Seyfert 1 galaxies, through intermediate Seyfert galaxies, to Seyfert 2 galaxies. This systematic statistical difference in the ratio of two aspect-independent quantities implies that the differences among the Seyfert classes cannot be attributed solely to differences in viewing angle.

  9. Testing the Merger Paradigm: X-ray Observations of Radio-Selected Sub-Galactic-Scale Binary AGNs

    NASA Astrophysics Data System (ADS)

    Fu, Hai

    2016-09-01

    Interactions play an important role in galaxy evolution. Strong gas inflows are expected in the process of gas-rich mergers, which may fuel intense black hole accretion and star formation. Sub-galactic-scale binary/dual AGNs thus offer elegant laboratories to study the merger-driven co-evolution phase. However, previous samples of kpc-scale binaries are small and heterogeneous. We have identified a flux-limited sample of kpc-scale binary AGNs uniformly from a wide-area high-resolution radio survey conducted by the VLA. Here we propose Chandra X-ray characterization of a subset of four radio-confirmed binary AGNs at z 0.1. Our goal is to compare their X-ray properties with those of matched control samples to test the merger-driven co-evolution paradigm.

  10. The Complete Local Volume Groups Sample - I. Sample selection and X-ray properties of the high-richness subsample

    NASA Astrophysics Data System (ADS)

    O'Sullivan, Ewan; Ponman, Trevor J.; Kolokythas, Konstantinos; Raychaudhury, Somak; Babul, Arif; Vrtilek, Jan M.; David, Laurence P.; Giacintucci, Simona; Gitti, Myriam; Haines, Chris P.

    2017-12-01

    We present the Complete Local-Volume Groups Sample (CLoGS), a statistically complete optically selected sample of 53 groups within 80 Mpc. Our goal is to combine X-ray, radio and optical data to investigate the relationship between member galaxies, their active nuclei and the hot intra-group medium (IGM). We describe sample selection, define a 26-group high-richness subsample of groups containing at least four optically bright (log LB ≥ 10.2 LB⊙) galaxies, and report the results of XMM-Newton and Chandra observations of these systems. We find that 14 of the 26 groups are X-ray bright, possessing a group-scale IGM extending at least 65 kpc and with luminosity >1041 erg s-1, while a further three groups host smaller galaxy-scale gas haloes. The X-ray bright groups have masses in the range M500 ≃ 0.5-5 × 1013 M⊙, based on system temperatures of 0.4-1.4 keV, and X-ray luminosities in the range 2-200 × 1041 erg s-1. We find that ∼53-65 per cent of the X-ray bright groups have cool cores, a somewhat lower fraction than found by previous archival surveys. Approximately 30 per cent of the X-ray bright groups show evidence of recent dynamical interactions (mergers or sloshing), and ∼35 per cent of their dominant early-type galaxies host active galactic nuclei with radio jets. We find no groups with unusually high central entropies, as predicted by some simulations, and confirm that CLoGS is in principle capable of detecting such systems. We identify three previously unrecognized groups, and find that they are either faint (LX, R500 < 1042 erg s-1) with no concentrated cool core, or highly disturbed. This leads us to suggest that ∼20 per cent of X-ray bright groups in the local universe may still be unidentified.

  11. The structure and content of the galaxy and galactic gamma rays. [conferences

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Stecker, F. W.

    1976-01-01

    Papers are presented dealing with galactic structure drawing on all branches of galactic astronomy with emphasis on the implications of the new gamma ray observations. Topics discussed include: (1) results from the COS-B gamma ray satellite; (2) results from SAS-2 on gamma ray pulsar, Cygnus X-3, and maps of the galactic diffuse flux; (3) recent data from CO surveys of the galaxy; (4) high resolution radio surveys of external galaxies; (5) results on the galactic distribution of pulsars; and (6) theoretical work on galactic gamma ray emission.

  12. The properties of radio ellipticals

    NASA Astrophysics Data System (ADS)

    Sparks, W. B.; Disney, M. J.; Wall, J. V.; Rodgers, A. W.

    1984-03-01

    The authors present optical and additional radio data for the bright galaxies of the Disney & Wall survey. These data form the basis of a statistical comparison of the properties of radio elliptical galaxies to radio-quiet ellipticals. The correlations may be explained by the depth of the gravitational potential well in which the galaxy resides governing the circumstances under which an elliptical galaxy rids itself of internally produced gas.

  13. STAR FORMATION SUPPRESSION DUE TO JET FEEDBACK IN RADIO GALAXIES WITH SHOCKED WARM MOLECULAR GAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lanz, Lauranne; Ogle, Patrick M.; Appleton, Philip N.

    2016-07-20

    We present Herschel observations of 22 radio galaxies, selected for the presence of shocked, warm molecular hydrogen emission. We measured and modeled spectral energy distributions in 33 bands from the ultraviolet to the far-infrared to investigate the impact of jet feedback on star formation activity. These galaxies are massive, early-type galaxies with normal gas-to-dust ratios, covering a range of optical and infrared colors. We find that the star formation rate (SFR) is suppressed by a factor of ∼3–6, depending on how molecular gas mass is estimated. We suggest that this suppression is due to the shocks driven by the radiomore » jets injecting turbulence into the interstellar medium (ISM), which also powers the luminous warm H{sub 2} line emission. Approximately 25% of the sample shows suppression by more than a factor of 10. However, the degree of SFR suppression does not correlate with indicators of jet feedback including jet power, diffuse X-ray emission, or intensity of warm molecular H{sub 2} emission, suggesting that while injected turbulence likely impacts star formation, the process is not purely parameterized by the amount of mechanical energy dissipated into the ISM. Radio galaxies with shocked warm molecular gas cover a wide range in SFR–stellar mass space, indicating that these galaxies are in a variety of evolutionary states, from actively star-forming and gas-rich to quiescent and gas-poor. SFR suppression appears to have the largest impact on the evolution of galaxies that are moderately gas-rich.« less

  14. The Gamma-Ray Emitting Radio-Loud Narrow-Line Seyfert 1 Galaxy PKS 2004-447 II. The Radio View

    NASA Technical Reports Server (NTRS)

    Schulz, R.; Kreikenbohm, A.; Kadler, M.; Ojha, R.; Ros, E.; Stevens, J.; Edwards, P. G.; Carpenter, B.; Elsaesser, D.; Gehrels, N.; hide

    2016-01-01

    Context. gamma-ray-detected radio-loud narrow-line Seyfert 1 (gamma-NLS1) galaxies constitute a small but interesting sample of the gamma-ray-loud AGN. The radio-loudest gamma-NLS1 known, PKS2004447, is located in the southern hemisphere and is monitored in the radio regime by the multiwavelength monitoring programme TANAMI. Aims. We aim for the first detailed study of the radio morphology and long-term radio spectral evolution of PKS2004447, which are essential for understanding the diversity of the radio properties of gamma-NLS1s. Methods. The TANAMI VLBI monitoring program uses the Australian Long Baseline Array (LBA) and telescopes in Antarctica, Chile, New Zealand, and South Africa to monitor the jets of radio-loud active galaxies in the southern hemisphere. Lower resolution radio flux density measurements at multiple radio frequencies over four years of observations were obtained with the Australia Telescope Compact Array (ATCA). Results. The TANAMI VLBI image at 8.4GHz shows an extended one-sided jet with a dominant compact VLBI core. Its brightness temperature is consistent with equipartition, but it is an order of magnitude below other gamma-NLS1s with the sample value varying over two orders of magnitude. We find a compact morphology with a projected large-scale size 11 kpc and a persistent steep radio spectrum with moderate flux-density variability. Conclusions. PKS2004447 appears to be a unique member of the gamma-NLS1 sample. It exhibits blazar-like features, such as a flat featureless X-ray spectrum and a core-dominated, one-sided parsec-scale jet with indications for relativistic beaming. However, the data also reveal properties atypical for blazars, such as a radio spectrum and large-scale size consistent with compact-steep-spectrum (CSS) objects, which are usually associated with young radio sources. These characteristics are unique among all gamma-NLS1s and extremely rare among gamma-ray-loud AGN.

  15. Galaxy Evolution in the Radio Band: The Role of Star-forming Galaxies and Active Galactic Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mancuso, C.; Prandoni, I.; Lapi, A.

    We investigate the astrophysics of radio-emitting star-forming galaxies and active galactic nuclei (AGNs) and elucidate their statistical properties in the radio band, including luminosity functions, redshift distributions, and number counts at sub-mJy flux levels, which will be crucially probed by next-generation radio continuum surveys. Specifically, we exploit the model-independent approach by Mancuso et al. to compute the star formation rate functions, the AGN duty cycles, and the conditional probability of a star-forming galaxy to host an AGN with given bolometric luminosity. Coupling these ingredients with the radio emission properties associated with star formation and nuclear activity, we compute relevant statisticsmore » at different radio frequencies and disentangle the relative contribution of star-forming galaxies and AGNs in different radio luminosity, radio flux, and redshift ranges. Finally, we highlight that radio-emitting star-forming galaxies and AGNs are expected to host supermassive black holes accreting with different Eddington ratio distributions and to occupy different loci in the galaxy main-sequence diagrams. These specific predictions are consistent with current data sets but need to be tested with larger statistics via future radio data with multiband coverage on wide areas, as will become routinely achievable with the advent of the Square Kilometre Array and its precursors.« less

  16. Constraints on submicrojansky radio number counts based on evolving VLA-COSMOS luminosity functions

    NASA Astrophysics Data System (ADS)

    Novak, M.; Smolčić, V.; Schinnerer, E.; Zamorani, G.; Delvecchio, I.; Bondi, M.; Delhaize, J.

    2018-06-01

    We present an investigation of radio luminosity functions (LFs) and number counts based on the Karl G. Jansky Very Large Array-COSMOS 3 GHz Large Project. The radio-selected sample of 7826 galaxies with robust optical/near-infrared counterparts with excellent photometric coverage allows us to construct the total radio LF since z 5.7. Using the Markov chain Monte Carlo algorithm, we fit the redshift dependent pure luminosity evolution model to the data and compare it with previously published VLA-COSMOS LFs obtained on individual populations of radio-selected star-forming galaxies and galaxies hosting active galactic nuclei classified on the basis of presence or absence of a radio excess with respect to the star-formation rates derived from the infrared emission. We find they are in excellent agreement, thus showing the reliability of the radio excess method in selecting these two galaxy populations at radio wavelengths. We study radio number counts down to submicrojansky levels drawn from different models of evolving LFs. We show that our evolving LFs are able to reproduce the observed radio sky brightness, even though we rely on extrapolations toward the faint end. Our results also imply that no new radio-emitting galaxy population is present below 1 μJy. Our work suggests that selecting galaxies with radio flux densities between 0.1 and 10 μJy will yield a star-forming galaxy in 90-95% of the cases with a high percentage of these galaxies existing around a redshift of z 2, thus providing useful constraints for planned surveys with the Square Kilometer Array and its precursors.

  17. Spectroscopic confirmation of a galaxy cluster associated with 7C 1756+6520 at z = 1.416

    NASA Astrophysics Data System (ADS)

    Galametz, A.; Stern, D.; Stanford, S. A.; De Breuck, C.; Vernet, J.; Griffith, R. L.; Harrison, F. A.

    2010-06-01

    We present spectroscopic follow-up of an overdensity of galaxies photometrically selected to be at 1.4 < z < 2.5 found in the vicinity of the radio galaxy 7C 1756+6520 at z = 1.4156. Using the DEIMOS optical multi-object spectrograph on the Keck 2 telescope, we observed a total of 129 BzK-selected sources, comprising 82 blue, star-forming galaxy candidates (sBzK) and 47 red, passively-evolving galaxy candidates (pBzK*), as well as 11 mid-infrared selected AGN candidates. We obtain robust spectroscopic redshifts for 36 blue galaxies, 7 red galaxies and 9 AGN candidates. Assuming all foreground interlopers were identified, we find that only 16% (9%) of the sBzK (pBzK*) galaxies are at z < 1.4. Therefore, the BzK criteria are shown to be relatively robust at identifying galaxies at moderate redshifts. Twenty-one galaxies, including the radio galaxy, four additional AGN candidates and three red galaxy candidates are found with 1.4156 ± 0.025, forming a large scale structure at the redshift of the radio galaxy. Of these, eight have projected offsets <2 Mpc relative to the radio galaxy position and have velocity offsets <1000 km s-1 relative to the radio galaxy redshift. This confirms that 7C 1756+6520 is associated with a high-redshift galaxy cluster. A second compact group of four galaxies is found at z ~ 1.437, forming a sub-group offset by Δv ~ 3000 km s-1 and approximately 1.'5 east of the radio galaxy.

  18. The Undergraduate ALFALFA Groups Project: Properties of the Galaxy Group MKW 11

    NASA Astrophysics Data System (ADS)

    Manglitz, Scott; Russell, P.; Turner, J.; Crone, M.

    2009-01-01

    The Undergraduate ALFALFA team is an NSF-funded collaboration of 14 institutions that supports undergraduate research using data from the Arecibo Legacy Fast ALFA (ALFALFA) survey. As part of this project, we are examining MKW 11, a galaxy group with an unusual, irregular X-ray distribution centered on what appears to be an X-ray bright tidal filament. Its optical velocity distribution is large and non-Gaussian, suggesting that it is in the process of merging. Here we present the position and velocity structure of MKW 11 using the radio sources in the blind ALFALFA survey. Besides a complicated structure, our results suggest a deficiency of HI gas in galaxies that are near the center of the group.

  19. Radio galaxies dominate the high-energy diffuse gamma-ray background

    DOE PAGES

    Hooper, Dan; Linden, Tim; Lopez, Alejandro

    2016-08-09

    It has been suggested that unresolved radio galaxies and radio quasars (sometimes referred to as misaligned active galactic nuclei) could be responsible for a significant fraction of the observed diffuse gamma-ray background. In this study, we use the latest data from the Fermi Gamma-Ray Space Telescope to characterize the gamma-ray emission from a sample of 51 radio galaxies. In addition to those sources that had previously been detected using Fermi data, we report here the first statistically significant detection of gamma-ray emission from the radio galaxies 3C 212, 3C 411, and B3 0309+411B. Combining this information with the radio fluxes,more » radio luminosity function, and redshift distribution of this source class, we find that radio galaxies dominate the diffuse gamma-ray background, generating 77.2(+25.4)(-9.4)% of this emission at energies above ~1 GeV . We discuss the implications of this result and point out that it provides support for scenarios in which IceCube's high-energy astrophysical neutrinos also originate from the same population of radio galaxies.« less

  20. Protoclusters with evolved populations around radio galaxies at z ~ 2.5

    NASA Astrophysics Data System (ADS)

    Kajisawa, Masaru; Kodama, Tadayuki; Tanaka, Ichi; Yamada, Toru; Bower, Richard

    2006-09-01

    We report the discovery of protocluster candidates around high-redshift radio galaxies at z ~ 2.5 on the basis of clear statistical excess of colour-selected galaxies around them seen in the deep near-infrared imaging data obtained with CISCO on the Subaru Telescope. We have observed six targets, all at similar redshifts at z ~ 2.5, and our data reach J = 23.5, H = 22.6 and K = 21.8 (5σ) and cover a 1.6 × 1.6 arcmin2 field centred on each radio galaxy. We apply colour cuts in JHK bands in order to exclusively search for galaxies located at high redshifts, z > 2. Over the magnitude range of 19.5 < K < 21.5, we see a significant excess of red galaxies with J - K > 2.3 by a factor of 2 around the combined radio galaxies fields compared to those found in the general field of the Great Observatories Origins Deep Survey-South (GOODS-S). The excess of galaxies around the radio galaxies fields becomes more than a factor of 3 around 19.5 < K < 20.5 when the two-colour cuts are applied with JHK bands. Such overdensity of the colour-selected galaxies suggests that those fields tend to host high-density regions at high redshifts, although there seems to be the variety of the density of the colour-selected galaxies in each field. In particular, two radio galaxies fields out of the six observed fields show very strong density excess and these are likely to be protoclusters associated with the radio galaxies which would evolve into rich clusters of galaxies dominated by old passively evolving galaxies.

  1. Einstein observations of the Hydra A cluster and the efficiency of galaxy formation in groups and clusters

    NASA Technical Reports Server (NTRS)

    David, L. P.; Arnaud, K. A.; Forman, W.; Jones, C.

    1990-01-01

    The Einstein imaging proportional counter observations of the poor cluster of galaxies centered on the radio galaxy Hydra A are examined. From the surface brightness profile, it is found that the X-ray-emitting gas in the Hydra A cluster must be condensing out of the intracluster medium at a rate of 600 solar masses/yr. This is one of the largest mass deposition rates observed in a cluster of galaxies. The ratio of gas mass to stellar mass is compared for a variety of systems, showing that this ratio correlates with the gas temperature.

  2. Twenty-two emission-line AGNs from the HEAO-1 X-ray survey

    NASA Technical Reports Server (NTRS)

    Remillard, R. A.; Bradt, H. V. D.; Brissenden, R. J. V.; Buckley, D. A. H.; Roberts, W.; Schwartz, D. A.; Stroozas, B. A.; Tuohy, I. R.

    1993-01-01

    We report 22 emission-line AGN as bright, hard X-ray sources. All of them appear to be new classifications with the exception of one peculiar IRAS source which is a known quasar and has no published spectrum. This sample exhibits a rich diversity in optical spectral properties and luminosities, ranging from a powerful broad-absorption-line quasar to a weak nucleus embedded in a nearby NGC galaxy. Two cases confer X-ray luminosities in excess of 10 exp 47 erg/s. However, there is a degree of uncertainty in the X-ray identification for the AGN fainter than V about 16.5. Optically, several AGN exhibit very strong Fe II emission. One Seyfert galaxy with substantial radio flux is an exception to the common association of strong Fe II emission and radio-quiet AGN. The previously recognized IRAS quasar shows extreme velocities in the profiles of the forbidden lines; the 0 III pair is broadened to the point that the lines are blended. Several of these AGN show evidence of intrinsic obscuration, illustrating the effectiveness of hard X-ray surveys in locating AGN through high column density.

  3. The role of submillimetre galaxies in galaxy evolution

    NASA Astrophysics Data System (ADS)

    Pope, Erin Alexandra

    2007-08-01

    This thesis presents a comprehensive study of high redshift submillimetre galaxies (SMGs) using the deepest multi-wavelength observations. The submm sample consists of galaxies detected at 850 mm with the Submillimetre Common User Bolometer Array (SCUBA) in the Great Observatories Origins Deep Survey- North region. Using the deep Spitzer Space Telescope images and new data and reductions of the Very Large Array radio data, I find statistically secure counterparts for 60% of the submm sample, and identify tentative counterparts for most of the remaining objects. This is the largest sample of submm galaxies with statistically secure counterparts detected in the radio and with Spitzer . This thesis presents spectral energy distributions (SEDs), Spitzer colours, and infrared (IR) luminosities for the SMGs. A composite rest-frame SED shows that the submm sources peak at longer wavelengths than those of local ultraluminous IR galaxies (ULIRGs), i.e. they appear to be cooler than local ULIRGs of the same luminosity. This demonstrates the strong selection effects, both locally and at high redshift, which may lead to an incomplete census of the ULIRG population. The SEDs of submm galaxies are also different from those of their high redshift neighbours, the near-IR selected BzK galaxies, whose mid-IR to radio SEDs are more like those of local ULIRGs. I fit templates that span the mid-IR through radio to derive the integrated 1R luminosities of the submm galaxies and find a median value of L IR (8-1000 mm) = 6.0 x 10 12 [Special characters omitted.] . I also find that submm flux densities by themselves systematically overpredict L IR when using templates which obey the local ULIRG temperature-luminosity relation. The SED fits show that SMGs are consistent with the correlation between radio and IR luminosity observed in local galaxies. Because the shorter Spitzer wavelengths sample the stellar bump at the redshifts of the submm sources, one can obtain a model independent estimate of the redshift, s(D z /(1 + z )) = 0.07. The median redshift of the secure submm counterparts is 2.0. Using X-ray and mid-IR imaging data, only 5% of the secure counterparts show strong evidence for an active galactic nucleus (AGN) dominating the IR luminosity. This thesis also presents deep Spitzer mid-IR spectroscopy of 13 of these SMGs in order to determine the contribution from AGN and starburst emission to the IR luminosity. I find strong polycyclic aromatic hydrocarbon (PAH) emission features in all of the targets, while only 2/13 SMGs have a significant mid-IR rising power-law component which would indicate an AGN. In the high signal-to- noise ratio composite spectrum of the SMGs I find that the AGN component contributes at most 30% of the mid-IR luminosity, implying that the total LIR in SMGs is dominated by star formation and not AGN emission. I also find that the SMGs lie on the relation between the luminosity of the main PAH features and L IR established for local starburst galaxies, confirming that the PAH luminosity can be used as a proxy for the star formation rate. Interestingly, local ULIRGs, which are often thought to be the low redshift analogues of SMGs, lie off these relations, as they appear deficient in PAH luminosity for a given L IR . In terms of an evolutionary scenario for IR luminous galaxies, SMGs are consistent with being an earlier phase in the massive merger (compared with other local or high redshift ULIRGs) in which the AGN has not yet become strong enough to heat the dust and dilute the PAH emission. I further investigate the overlap between high redshift infrared and submm populations using a statistical stacking analysis to measure the contribution of near- and mid-IR galaxy populations to the 850 mm submm background. For the first time, it is found that the 850 mm background can be completely resolved into individual galaxies and the bulk of these galaxies lie at z [Special characters omitted.] 3. Additionally I present a detailed study of the most distant SMG discovered to date, which I call GN20. This unusually bright source led to the discovery of a high redshift galaxy cluster, which is likely to be lensing the SMG. I discuss the potential for using bright SMGs in future submm surveys to identify high redshift clusters. Finally, for this complete sample of SMGs, I present the cumulative flux distribution at X-ray, optical, IR and radio wavelengths and I determine the depths at which one can expect to detect the majority of submm galaxies in future mm/submm surveys, such as with SCUBA-2, the successor to SCUBA.

  4. Tracing Galactic Outflows to the Source: Spatially Resolved Feedback in M83 with COS

    NASA Astrophysics Data System (ADS)

    Aloisi, Alessandra

    2016-10-01

    Star-formation (SF) feedback plays a vital role in shaping galaxy properties, but there are many open questions about how this feedback is created, propagated, and felt by galaxies. SF-driven feedback can be observationally constrained with rest-frame UV absorption-line spectroscopy that accesses a range of powerful gas density and kinematic diagnostics. Studies at both high and low redshift show clear evidence for large-scale outflows in star-forming galaxies that scale with galaxy SF rate. However, by sampling one sightline or the galaxy as a whole, these studies are not tailored to reveal how the large-scale outflows develop from their ultimate sources at the scale of individual SF regions. We propose the first spatially-resolved COS G130M/G160M (1130-1800 A) study of the ISM in the nearby (4.6 Mpc) face-on spiral starburst M83 using individual young star clusters as background sources. This is the first down-the-barrel study where blueshifted absorptions can be identified directly with outflowing gas in a spatially resolved fashion. The kpc-scale flows sampled by the COS pointings will be anchored to the properties of the large-scale (10-100 kpc) flows thanks to the wealth of multi-wavelength observations of M83 from X-ray to radio. A comparison of COS data with mock spectra from constrained simulations of spiral galaxies with FIRE (Feedback In Realistic Environments; a code with unprecedented 1-100 pc spatial resolution and self-consistent treatments of stellar feedback) will provide an important validation of these simulations and will supply the community with a powerful and well-tested tool for galaxy formation predictions applicable to all redshifts.

  5. Alma observations of massive molecular gas filaments encasing radio bubbles in the Phoenix cluster

    DOE PAGES

    Russell, H. R.; McDonald, M.; McNamara, B. R.; ...

    2017-02-14

    We report new ALMA observations of the CO(3-2) line emission from themore » $$2.1\\pm0.3\\times10^{10}\\rm\\thinspace M_{\\odot}$$ molecular gas reservoir in the central galaxy of the Phoenix cluster. The cold molecular gas is fuelling a vigorous starburst at a rate of $$500-800\\rm\\thinspace M_{\\odot}\\rm\\; yr^{-1}$$ and powerful black hole activity in the form of both intense quasar radiation and radio jets. The radio jets have inflated huge bubbles filled with relativistic plasma into the hot, X-ray atmospheres surrounding the host galaxy. The ALMA observations show that extended filaments of molecular gas, each $$10-20\\rm\\; kpc$$ long with a mass of several billion solar masses, are located along the peripheries of the radio bubbles. The smooth velocity gradients and narrow line widths along each filament reveal massive, ordered molecular gas flows around each bubble, which are inconsistent with gravitational free-fall. The molecular clouds have been lifted directly by the radio bubbles, or formed via thermal instabilities induced in low entropy gas lifted in the updraft of the bubbles. These new data provide compelling evidence for close coupling between the radio bubbles and the cold gas, which is essential to explain the self-regulation of feedback. As a result, the very feedback mechanism that heats hot atmospheres and suppresses star formation may also paradoxically stimulate production of the cold gas required to sustain feedback in massive galaxies.« less

  6. The Jet/Disk Connection in AGN: Chandra and XMM-Newton Observations of Three Powerful Radio-Loud Quasars

    NASA Technical Reports Server (NTRS)

    Sambruna, Rita; Gliozzi, Mario; Tavecchio, F.; Maraschi, L.; Foschini, Luigi

    2007-01-01

    The connection between the accretion process that powers AGN and the formation of jets is still poorly understood. Here we tackle this issue using new, deep Chandra and XMM-Newton observations of tlie cores of three powerful radio loud quasars: 1136-135, 1150+497 (Chandra), and 0723+679 (XMM-Newton), in the redshift range z=0.3-0.8. These sources are known from our previous Chandra siiapsliot survey to liave kpc-scale X-ray jets. In 1136-135 and 1150-1+497; evidence is found for the presence of diffuse thermal X-ray emission around the cores; on scales of 40-50 kpc and with luminosity L(sub 0.3-2 kev approx. 10(sup 43) erg per second, suggesting thermal emission from the host galaxy or a galaxy group. The X-ray continua of the cores in the three sources are described by an upward-curved (concave) broken power law, with photon indices GAMMA (sub soft) approx. 1.8 - 2.1 and GAMMA (sub hard) approx. 1.7 below and above approx. equal to 2 keV, respectively. There is evidence for an uiiresolved Fe K alpha line with EW approx. 70 eV in the three quasars. The Spectral Energy Distributions of the sources can be well described by a mix of jet and disk emission, with the jet dominating the radio and hard X-rays (via synchrotron and external Compton) and the disk dominating the optical/UV through soft X-rays. The ratio of the jet-to-disk powers is approx. 1, consistent with those derived for a number of gamma ray emitting blazars. This indicates that near equality of accretion and jet power may be common in powerful radio-loud AGN.

  7. The Swift BAT Hard X-ray Survey - A New Window on the Local AGN Universe

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard

    2009-01-01

    The Swift Burst and Transient telescope (BAT) has surveyed the entire sky for the last 3.5 years obtaining the first sensitive all sky survey of the 14-195 keV sky. At high galactic latitudes the vast majority of the detected sources are AGN. Since hard x-rays penetrate all but Compton thick obscuring material (Column densities of 1.6E24 atms/cm2) this survey is unbiased with respect to obscuration, host galaxy type, optical , radio or IR properties. We will present results on the broad band x-ray properties, the nature of the host galaxies, the luminosity function and will discuss a few of the optical, IR and x-ray results in detail.

  8. The Chandra Deep Field-North Survey and the cosmic X-ray background.

    PubMed

    Brandt, W Nielsen; Alexander, David M; Bauer, Franz E; Hornschemeier, Ann E

    2002-09-15

    Chandra has performed a 1.4 Ms survey centred on the Hubble Deep Field-North (HDF-N), probing the X-ray Universe 55-550 times deeper than was possible with pre-Chandra missions. We describe the detected point and extended X-ray sources and discuss their overall multi-wavelength (optical, infrared, submillimetre and radio) properties. Special attention is paid to the HDF-N X-ray sources, luminous infrared starburst galaxies, optically faint X-ray sources and high-to-extreme redshift active galactic nuclei. We also describe how stacking analyses have been used to probe the average X-ray-emission properties of normal and starburst galaxies at cosmologically interesting distances. Finally, we discuss plans to extend the survey and argue that a 5-10 Ms Chandra survey would lay key groundwork for future missions such as XEUS and Generation-X.

  9. Evidence for an extensive intracluster medium from radio observations of distant Abell clusters

    NASA Technical Reports Server (NTRS)

    Hanisch, R. J.; Ulmer, M. P.

    1985-01-01

    Observations have been made of 18 distance class 5 and 6 Abell clusters of galaxies using the VLA in its 'C' configuration at a frequency of 1460 MHz. Half of the clusters in the sample are confirmed or probable sources of X-ray emission. All the detected radio sources with flux densities above 10 mJy are reported, and information is provided concerning the angular extent of the sources, as well as the most likely optical identification. The existence of an extensive intracluster medium is inferred by identifying extended/distorted radio sources with galaxies whose apparent magnitudes are consistent with their being cluster members and that are at projected distances of 3-4 Abell radii (6-8 Mpc) from the nearest cluster center. By requiring that the radio sources are confined by the ambient medium, the ambient density is calculated and the total cluster mass is estimated. As a sample calculation, a wide-angle-tail radio source some 5 Mpc from the center of Abell 348 is used to estimate these quantities.

  10. Investigating powerful jets in radio-loud narrow-line Seyfert 1s

    DOE PAGES

    Orienti, M.; D'Ammando, F.; Larsson, J.; ...

    2015-09-14

    Here, we report results on multiband observations from radio to γ-rays of the two radio-loud narrow-line Seyfert 1 (NLSy1) galaxies PKS 2004-447 and J1548+3511. Furthermore, both sources show a core–jet structure on parsec scale, while they are unresolved at the arcsecond scale. The high core dominance and the high variability brightness temperature make these NLSy1 galaxies good γ-ray source candidates. Fermi-Large Area Telescope detected γ-ray emission only from PKS 2004-447, with a γ-ray luminosity comparable to that observed in blazars. There was no γ-ray emission observed for J1548+3511. Both sources are variable in X-rays. J1548+3511 shows a hardening of themore » spectrum during high activity states, while PKS 2004-447 has no spectral variability. A spectral steepening likely related to the soft excess is hinted below 2 keV for J1548+3511, while the X-ray spectra of PKS 2004-447 collected by XMM–Newton in 2012 are described by a single power law without significant soft excess. No additional absorption above the Galactic column density or the presence of an Fe line is detected in the X-ray spectra of both sources.« less

  11. Chandra Detection of a Parsec Scale Wind in the Broad Line Radio Galaxy 3C 382

    NASA Technical Reports Server (NTRS)

    Reeves, J. N.; Sambruna, R. M.; Braito, V.; Eracleous, Michael

    2009-01-01

    We present unambiguous evidence for a parsec scale wind in the Broad-Line Radio Galaxy (BLRG) 3C 382, the first radio-loud AGN whereby an outflow has been measured with X-ray grating spectroscopy. A 118 ks Chandra grating (HETG) observation of 3C 382 has revealed the presence of several high ionization absorption lines in the soft X-ray band, from Fe, Ne, Mg and Si. The absorption lines are blue-shifted with respect to the systemic velocity of 3C 382 by -840+/-60 km/s and are resolved by Chandra with a velocity width of sigma = 340+/-70 km/s. The outflow appears to originate from a single zone of gas of column density N(sub H) = 1.3 x 10(exp 21)/sq cm and ionization parameter log(E/erg/cm/s) = 2.45. From the above measurements we calculate that the outflow is observed on parsec scales, within the likely range from 10-1000 pc, i.e., consistent with an origin in the Narrow Line Region. Finally we also discuss the possibility of a much faster (0.1c) outflow component, based on a blue-shifted iron K(alpha) emission line in the Suzaku observation of 3C 382, which could have an origin in an accretion disk wind.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, H. R.; McDonald, M.; McNamara, B. R.

    We report new ALMA observations of the CO(3-2) line emission from themore » $$2.1\\pm0.3\\times10^{10}\\rm\\thinspace M_{\\odot}$$ molecular gas reservoir in the central galaxy of the Phoenix cluster. The cold molecular gas is fuelling a vigorous starburst at a rate of $$500-800\\rm\\thinspace M_{\\odot}\\rm\\; yr^{-1}$$ and powerful black hole activity in the form of both intense quasar radiation and radio jets. The radio jets have inflated huge bubbles filled with relativistic plasma into the hot, X-ray atmospheres surrounding the host galaxy. The ALMA observations show that extended filaments of molecular gas, each $$10-20\\rm\\; kpc$$ long with a mass of several billion solar masses, are located along the peripheries of the radio bubbles. The smooth velocity gradients and narrow line widths along each filament reveal massive, ordered molecular gas flows around each bubble, which are inconsistent with gravitational free-fall. The molecular clouds have been lifted directly by the radio bubbles, or formed via thermal instabilities induced in low entropy gas lifted in the updraft of the bubbles. These new data provide compelling evidence for close coupling between the radio bubbles and the cold gas, which is essential to explain the self-regulation of feedback. As a result, the very feedback mechanism that heats hot atmospheres and suppresses star formation may also paradoxically stimulate production of the cold gas required to sustain feedback in massive galaxies.« less

  13. The Host Galaxy and Central Engine of the Dwarf Active Galactic Nucleus POX 52

    NASA Astrophysics Data System (ADS)

    Thornton, Carol E.; Barth, Aaron J.; Ho, Luis C.; Rutledge, Robert E.; Greene, Jenny E.

    2008-10-01

    We present new multiwavelength observations of the dwarf Seyfert 1 galaxy POX 52 in order to investigate the properties of the host galaxy and the active nucleus and to examine the mass of its black hole, previously estimated to be ~105 M⊙. HST ACS HRC images show that the host galaxy has a dwarf elliptical morphology (MI = - 18.4 mag, Sérsic index n = 4.3) with no detected disk component or spiral structure, confirming previous results from ground-based imaging. X-ray observations from both Chandra and XMM-Newton show strong (factor of 2) variability over timescales as short as 500 s, as well as a dramatic decrease in the absorbing column density over a 9 month period. We attribute this change to a partial covering absorber, with a 94% covering fraction and NH = 58+ 8.4-9.2 × 1021 cm -2, that moved out of the line of sight in between the XMM-Newton and Chandra observations. Combining these data with observations from the VLA, Spitzer, and archival data from 2MASS and GALEX, we examine the SED of the active nucleus. Its shape is broadly similar to typical radio-quiet quasar SEDs, despite the very low bolometric luminosity of Lbol = 1.3 × 1043 ergs s-1. Finally, we compare black hole mass estimators, including methods based on X-ray variability, and optical scaling relations using the broad Hβ line width and AGN continuum luminosity, finding a range of black hole mass from all methods to be MBH = (2.2-4.2) × 105 M⊙, with an Eddington ratio of Lbol/LEdd ≈ 0.2-0.5.

  14. THE SUZAKU VIEW OF THE DISK-JET CONNECTION IN THE LOW-EXCITATION RADIO GALAXY NGC 6251

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, D. A.; Kraft, R. P.; Lee, J. C.

    We present results from an 87 ks Suzaku observation of the canonical low-excitation radio galaxy (LERG) NGC 6251. We have previously suggested that LERGs violate conventional active galactic nucleus unification schemes: they may lack an obscuring torus and are likely to accrete in a radiatively inefficient manner, with almost all of the energy released by the accretion process being channeled into powerful jets. We model the 0.5-20 keV Suzaku spectrum with a single power law of photon index {Gamma} = 1.82{sup +0.04} {sub -0.05}, together with two collisionally ionized plasma models whose parameters are consistent with the known galaxy- andmore » group-scale thermal emission. Our observations confirm that there are no signatures of obscured, accretion-related X-ray emission in NGC 6251, and we show that the luminosity of any such component must be substantially sub-Eddington in nature.« less

  15. Hubble Finds Misbehaving Spiral

    NASA Image and Video Library

    2016-01-29

    Despite its unassuming appearance, the edge-on spiral galaxy captured in the left half of this NASA/ESA Hubble Space Telescope image is actually quite remarkable. Located about one billion light-years away in the constellation of Eridanus, this striking galaxy — known as LO95 0313-192 — has a spiral shape similar to that of the Milky Way. It has a large central bulge, and arms speckled with brightly glowing gas mottled by thick lanes of dark dust. Its companion, sitting in the right of the frame, is known rather unpoetically as [LOY2001] J031549.8-190623. Jets, outbursts of superheated gas moving at close to the speed of light, have long been associated with the cores of giant elliptical galaxies, and galaxies in the process of merging. However, in an unexpected discovery, astronomers found LO95 0313-192, even though it is a spiral galaxy, to have intense radio jets spewing out from its center. The galaxy appears to have two more regions that are also strongly emitting in the radio part of the spectrum, making it even rarer still. The discovery of these giant jets in 2003 — not visible in this image, but indicated in this earlier Hubble composite — has been followed by the unearthing of a further three spiral galaxies containing radio-emitting jets in recent years. This growing class of unusual spirals continues to raise significant questions about how jets are produced within galaxies, and how they are thrown out into the cosmos. Image credit: ESA/Hubble & NASA; acknowledgement, Judy Schmidt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. On the Physical Environment in the Galactic Nuclei. Ph.D. Thesis - Maryland Univ.

    NASA Technical Reports Server (NTRS)

    Beall, J. H.

    1979-01-01

    Galactic nuclei and quasars emit radiation over the entire electromagnetic spectrum. This suggests that concurrent observations over a wide frequency range may provide useful information in determining appropriate models for the physical environment in which the radiation is produced. In conjunction with observations by the high energy spectrometer on OSO-8, four sources have been studied in this manner; the nucleus of the elliptical galaxy, Centaurus A (NGG 5128); the quasar, 30273; the Seyfert galaxy, NGC 4151 and the nucleus of the Milky Way (GCX). Concurrent observations are used to construct the composite spectra (from radio to X-ray) for Cen A and NGC 4151 while the composite spectra of 30273 and GCX are derived from the OSO-8 data and from other observers. A skymap technique used to analyze observations of the galactic center region yielded data consistent with a significant, hard X-ray source at the radio and infrared position of the nucleus of the Milky Way. A theoretical analysis of the temporal variability of the Cen A data is undertaken and its implications discussed. Similarities between the composite spectra of the observed sources suggest that radio-bright and radio-quiet quasars may represent the emission from galactic nuclei with elliptical and Seyfert-like morphologies, respectively.

  17. Witnessing the Gradual Slowdown of Powerful Extragalactic Jets: The X-Ray-Optical-Radio Connection

    NASA Technical Reports Server (NTRS)

    Georganopoulos, Markos; Kazanas, Demosthenes

    2004-01-01

    A puzzling feature of the Chandra-detected quasar jets is that their X-ray emission decreases faster along the jet than their radio emission, resulting from an outward-increasing radio-to-X-ray ratio. In some sources this behavior is so extreme that the radio emission peak is located clearly downstream of that of the X-rays. This is a rather unanticipated behavior given that the inverse Compton nature of the X-rays and the synchrotron radio emission are attributed to roughly the same electrons of the jet's nonthermal electron distribution. In this letter we show that this morphological behavior can result from the gradual deceleration of a relativistic flow and that the offsets in peak emission at different wavelengths carry the imprint of this deceleration. This notion is consistent with another recent finding, namely, that the jets feeding the terminal hot spots of powerful radio galaxies and quasars are still relativistic with Lorentz factors GAMMA approximately 2-3. The picture of the kinematics of powerful jets emerging from these considerations is that they remain relativistic as they gradually decelerate from kiloparsec scales to the hot spots, where, in a final collision with the intergalactic medium, they slow down rapidly to the subrelativistic velocities of the hot spot advance speed.

  18. The dust masses of powerful radio galaxies: clues to the triggering of their activity

    NASA Astrophysics Data System (ADS)

    Tadhunter, C.; Dicken, D.; Morganti, R.; Konyves, V.; Ysard, N.; Nesvadba, N.; Ramos Almeida, C.

    2014-11-01

    We use deep Herschel Space Observatory observations of a 90 per cent complete sample of 32 intermediate-redshift 2Jy radio galaxies (0.05 < z < 0.7) with strong emission lines to estimate the dust masses of their host galaxies and thereby investigate the triggering mechanisms for their quasar-like AGN. The dust masses derived for the radio galaxies (7.2 × 105 < Md < 2.6 × 108 M⊙) are intermediate between those of quiescent elliptical galaxies on the one hand, and ultraluminous infrared galaxies (ULIRGs) on the other. Consistent with simple models for the co-evolution of supermassive black holes and their host galaxies, these results suggest that most radio galaxies represent the late time re-triggering of AGN activity via mergers between the host giant elliptical galaxies and companion galaxies with relatively low gas masses. However, a minority of the radio galaxies in our sample (˜20 per cent) have high, ULIRG-like dust masses, along with evidence for prodigious star formation activity. The latter objects are more likely to have been triggered in major, gas-rich mergers that represent a rapid growth phase for both their host galaxies and their supermassive black holes.

  19. The Large Area Radio Galaxy Evolution Spectroscopic Survey (LARGESS): survey design, data catalogue and GAMA/WiggleZ spectroscopy

    NASA Astrophysics Data System (ADS)

    Ching, John H. Y.; Sadler, Elaine M.; Croom, Scott M.; Johnston, Helen M.; Pracy, Michael B.; Couch, Warrick J.; Hopkins, A. M.; Jurek, Russell J.; Pimbblet, K. A.

    2017-01-01

    We present the Large Area Radio Galaxy Evolution Spectroscopic Survey (LARGESS), a spectroscopic catalogue of radio sources designed to include the full range of radio AGN populations out to redshift z ˜ 0.8. The catalogue covers ˜800 deg2 of sky, and provides optical identifications for 19 179 radio sources from the 1.4 GHz Faint Images of the Radio Sky at Twenty-cm (FIRST) survey down to an optical magnitude limit of Imod < 20.5 in Sloan Digital Sky Survey (SDSS) images. Both galaxies and point-like objects are included, and no colour cuts are applied. In collaboration with the WiggleZ and Galaxy And Mass Assembly (GAMA) spectroscopic survey teams, we have obtained new spectra for over 5000 objects in the LARGESS sample. Combining these new spectra with data from earlier surveys provides spectroscopic data for 12 329 radio sources in the survey area, of which 10 856 have reliable redshifts. 85 per cent of the LARGESS spectroscopic sample are radio AGN (median redshift z = 0.44), and 15 per cent are nearby star-forming galaxies (median z = 0.08). Low-excitation radio galaxies (LERGs) comprise the majority (83 per cent) of LARGESS radio AGN at z < 0.8, with 12 per cent being high-excitation radio galaxies (HERGs) and 5 per cent radio-loud QSOs. Unlike the more homogeneous LERG and QSO sub-populations, HERGs are a heterogeneous class of objects with relatively blue optical colours and a wide dispersion in mid-infrared colours. This is consistent with a picture in which most HERGs are hosted by galaxies with recent or ongoing star formation as well as a classical accretion disc.

  20. Four hot DOGs in the microwave

    NASA Astrophysics Data System (ADS)

    Frey, Sándor; Paragi, Zsolt; Gabányi, Krisztina Éva; An, Tao

    2016-01-01

    Hot dust-obscured galaxies (hot DOGs) are a rare class of hyperluminous infrared galaxies identified with the Wide-field Infrared Survey Explorer (WISE) satellite. The majority of them are at high redshifts (z ˜ 2-3), at the peak epoch of star formation in the Universe. Infrared, optical, radio, and X-ray data suggest that hot DOGs contain heavily obscured, extremely luminous active galactic nuclei (AGN). This class may represent a short phase in the life of the galaxies, signifying the transition from starburst- to AGN-dominated phases. Hot DOGs are typically radio-quiet, but some of them show mJy-level emission in the radio (microwave) band. We observed four hot DOGs using the technique of very long baseline interferometry (VLBI). The 1.7 GHz observations with the European VLBI Network (EVN) revealed weak radio features in all sources. The radio is free from dust obscuration and, at such high redshifts, VLBI is sensitive only to compact structures that are characteristic of AGN activity. In two cases (WISE J0757+5113, WISE J1603+2745), the flux density of the VLBI-detected components is much smaller than the total flux density, suggesting that ˜70-90 per cent of the radio emission, while still dominated by AGN, originates from angular scales larger than that probed by the EVN. The source WISE J1146+4129 appears a candidate compact symmetric object, and WISE J1814+3412 shows a 5.1 kpc double structure, reminiscent of hotspots in a medium-sized symmetric object. Our observations support that AGN residing in hot DOGs may be genuine young radio sources where starburst and AGN activities coexist.

  1. The radio astronomy explorer satellite, a low-frequency observatory.

    NASA Technical Reports Server (NTRS)

    Weber, R. R.; Alexander, J. K.; Stone, R. G.

    1971-01-01

    The RAE-1 is the first spacecraft designed exclusively for radio astronomical studies. It is a small, but relatively complex, observatory including two 229-meter antennas, several radiometer systems covering a frequency range of 0.2 to 9.2 MHz, and a variety of supporting experiments such as antenna impedance probes and TV cameras to monitor antenna shape. Since its launch in July, 1968, RAE-1 has sent back some 10 billion data bits per year on measurements of long-wavelength radio phenomena in the magnetosphere, the solar corona, and the Galaxy. In this paper we describe the design, calibration, and performance of the RAE-1 experiments in detail.

  2. An Analysis Framework for Understanding the Origin of Nuclear Activity in Low-power Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Lin, Yen-Ting; Huang, Hung-Jin; Chen, Yen-Chi

    2018-05-01

    Using large samples containing nearly 2300 active galaxies of low radio luminosity (1.4 GHz luminosity between 2 × 1023 and 3 × 1025 W Hz‑1, essentially low-excitation radio galaxies) at z ≲ 0.3, we present a self-contained analysis of the dependence of the nuclear radio activity on both intrinsic and extrinsic properties of galaxies, with the goal of identifying the best predictors of the nuclear radio activity. While confirming the established result that stellar mass must play a key role on the triggering of radio activities, we point out that for the central, most massive galaxies, the radio activity also shows a strong dependence on halo mass, which is not likely due to enhanced interaction rates in denser regions in massive, cluster-scale halos. We thus further investigate the effects of various properties of the intracluster medium (ICM) in massive clusters on the radio activities, employing two standard statistical tools, principle component analysis and logistic regression. It is found that ICM entropy, local cooling time, and pressure are the most effective in predicting the radio activity, pointing to the accretion of gas cooling out of a hot atmosphere to be the likely origin in triggering such activities in galaxies residing in massive dark matter halos. Our analysis framework enables us to logically discern the mechanisms responsible for the radio activity separately for central and satellite galaxies.

  3. The Swift Burst and Transient Telescope (BAT)

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard

    2008-01-01

    The Swift Burst and Transient telescope (BAT) has surveyed the entire sky for the last 3.5 years obtaining the first sensitive all sky survey of the 14-195 kev sky. At high galactic latitudes the vast majority of the detected sources are AGN. Since hard x-rays penetrate all but Compton thick obscuring material (Column densities of 1.6324 atms/sq cm) this survey is unbiased with respect to obscuration, host galaxy type, optical , radio or IR properties. We will present results on the broad band x-ray properties, the nature of the host galaxies, the luminosity function and will discuss a few of the optical, IR and x-ray results in detail.

  4. Chandra Finds Ghosts Of Eruption In Galaxy Cluster

    NASA Astrophysics Data System (ADS)

    2002-01-01

    "Ghostly" relics of an ancient eruption that tore through a cluster of galaxies were recently uncovered by NASA's Chandra X-ray Observatory. The discovery implies that galaxy clusters are the sites of enormously energetic and recurring explosions, and may provide an explanation why galaxy clusters behave like giant cosmic magnets. "Chandra's image revealed vast regions in the galaxy cluster Abell 2597 that contain almost no X-ray or radio emission. We call them ghost cavities," said Brian McNamara of Ohio University in Athens today during a press conference at the American Astronomical Society meeting in Washington. "They appear to be remnants of an old explosion where the radio emission has faded away over millions of years." The ghost cavities were likely created by extremely powerful explosions, due to material falling toward a black hole millions of times more massive than the Sun. As the matter swirled around the black hole, located in a galaxy near the center of the cluster, it generated enormous electromagnetic fields that expelled material from the vicinity of the black hole at high speeds. This explosive activity in Abell 2597 created jets of highly energetic particles that cleared out voids in the hot gas. Because they are lighter than the surrounding material, the cavities will eventually push their way to the edge of the cluster, just as air bubbles in water make their way to the surface. Researchers also found evidence that this explosion was not a one-time event. "We detected a small, bright radio source near the center of the cluster that indicates a new explosion has occurred recently," said team member Michael Wise of the Massachusetts Institute of Technology in Cambridge, "so the cycle of eruption is apparently continuing." Though dim, the ghost cavities are not completely empty. They contain a mixture of very hot gas, high-energy particles and magnetic fields -- otherwise the cavities would have collapsed under the pressure of the surrounding hot gas. "Ghost cavities may be the vessels that transport magnetic fields generated in a disk surrounding a giant black hole to the cluster gas that is spread over a region a billion times larger," said McNamara. If dozens of these cavities were created over the life of the cluster, they could explain the surprisingly strong magnetic field of the multimillion-degree gas that pervades the cluster. Galaxy clusters are the largest known gravitationally bound structures in the universe. Hundreds of galaxies swarm in giant reservoirs of multimillion-degree gas that radiates most of its energy in X-rays. Over the course of billions of years some of the gas should cool and sink toward a galaxy in the center of the cluster where it could trigger an outburst in the vicinity of the central massive black hole. Chandra observed Abell 2597 on July 28, 2000,for 40,000 seconds with the Advanced CCD Imaging Spectrometer (ACIS) instrument. Pennsylvania State University, University Park, and MIT developed the instrument for NASA. In addition to a group of astronomers from the Space Telescope Science Institute, Baltimore, and the University of Virginia, Charlottesville, the team included: Paul Nulsen, University of Wollagong, Australia; Larry David, Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass.; Chris Carilli, National Radio Astronomy Observatory, Socorro, N.M.; and Craig Sarazin, University of Virginia. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program, and TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleksić, J.; Antonelli, L. A.; Antoranz, P.

    Recently the radio galaxy IC 310 was identified as a γ-ray emitter based on observations at GeV energies with Fermi-LAT and at very high energies (VHE, E > 100 GeV) with the MAGIC telescopes. Originally classified as a head-tail radio galaxy, the nature of this object is subject of controversy since its nucleus shows blazar-like behavior. In order to understand the nature of IC 310 and the origin of the VHE emission, we studied the spectral and flux variability of IC 310 from the X-ray band to the VHE γ-ray regime. The light curve of IC 310 above 300 GeVmore » has been measured with the MAGIC telescopes from 2009 October to 2010 February. Contemporaneous Fermi-LAT data (2008-2011) in the 10-500 GeV energy range were also analyzed. In the X-ray regime, archival observations from 2003 to 2007 with XMM-Newton, Chandra, and Swift-XRT in the 0.5-10 keV band were studied. The VHE light curve reveals several high-amplitude and short-duration flares. Day-to-day flux variability is clearly present (>5σ). The photon index between 120 GeV and 8 TeV remains at the value Γ ~ 2.0 during both low and high flux states. The VHE spectral shape does not show significant variability, whereas the flux at 1 TeV changes by a factor of ~7. Fermi-LAT detected only eight γ-ray events in the energy range 10 GeV–500 GeV in three years of observation. Moreover, the measured photon index of Γ = 1.3 ± 0.5 in the Fermi-LAT range is very hard. The X-ray measurements show strong variability in both flux and photon index. The latter varied from 1.76 ± 0.07 to 2.55 ± 0.07. The rapid variability measured in γ-rays and X-rays confirms the blazar-like behavior of IC 310. The multi-TeV γ-ray emission seems to originate from scales of less than 80 Schwarzschild radii (for a black hole mass of 2 × 10 8 M⊙) within the compact core of its FR I radio jet with orientation angle 10°-38°. The spectral energy distribution resembles that of an extreme blazar, albeit the luminosity is more than two orders of magnitude lower.« less

  6. Exploring the Full Range of Properties of Quasar Spectral Distributions

    NASA Technical Reports Server (NTRS)

    Wilkes, B.

    1998-01-01

    The aim of this work is to support our ISO, far-infrared (IR) observing program of quasars and active galaxies. We have obtained, as far as possible, complete spectral energy distributions (radio-X-ray) of the ISO sample in order to fully delineate the continuum shapes and to allow detailed modelling of that continuum. This includes: ground-based optical, near-IR and mm data, the spectral ranges closest to the ISO data, within 1-2 years of the ISO observations themselves. ISO was launched in Nov 1995 and is currently observing routinely. It has an estimated lifetime is 2 years. All near-IR and optical imaging and spectroscopy are now in hand and in the process of being reduced, mm data collection and proposal writing continues.

  7. Discovery of megaparsec-scale, low surface brightness nonthermal emission in merging galaxy clusters using the green bank telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farnsworth, Damon; Rudnick, Lawrence; Brown, Shea

    2013-12-20

    We present results from a study of 12 X-ray bright clusters at 1.4 GHz with the 100 m Green Bank Telescope. After subtraction of point sources using existing interferometer data, we reach a median (best) 1σ rms sensitivity level of 0.01 (0.006) μJy arcsec{sup –2}, and find a significant excess of diffuse, low surface brightness emission in 11 of 12 Abell clusters observed. We also present initial results at 1.4 GHz of A2319 from the Very Large Array. In particular, we find: (1) four new detections of diffuse structures tentatively classified as two halos (A2065, A2069) and two relics (A2067,more » A2073); (2) the first detection of the radio halo in A2061 at 1.4 GHz, which qualifies this as a possible ultra-steep spectrum halo source with a synchrotron spectral index of α ∼ 1.8 between 327 MHz and 1.4 GHz; (3) a ∼2 Mpc radio halo in the sloshing, minor-merger cluster A2142; (4) a >2× increase of the giant radio halo extent and luminosity in the merging cluster A2319; (5) a ∼7× increase to the integrated radio flux and >4× increase to the observed extent of the peripheral radio relic in A1367 to ∼600 kpc, which we also observe to be polarized on a similar scale; (6) significant excess emission of ambiguous nature in three clusters with embedded tailed radio galaxies (A119, A400, A3744). Our radio halo detections agree with the well-known X-ray/radio luminosity correlation, but they are larger and fainter than current radio power correlation studies would predict. The corresponding volume-averaged synchrotron emissivities are 1-2 orders of magnitude below the characteristic value found in previous studies. Some of the halo-like detections may be some type of previously unseen, low surface brightness radio halo or blend of unresolved shock structures and sub-Mpc-scale turbulent regions associated with their respective cluster merging activity. Four of the five tentative halos contain one or more X-ray cold fronts, suggesting a possible connection between gas sloshing and particle acceleration on large scales in some of these clusters. Additionally, we see evidence for a possible inter-cluster filament between A2061 and A2067. For our faintest detections, we note the possibility of residual contamination from faint radio galaxies not accounted for in our confusion subtraction procedure. We also quantify the sensitivity of the NVSS to extended emission as a function of size.« less

  8. LOFAR, VLA, and Chandra observations of the Toothbrush Galaxy Cluster

    DOE PAGES

    van Weeren, R. J.; Brunetti, G.; Bruggen, M.; ...

    2016-02-22

    We present deep LOFAR observations between 120 {181 MHz of the `Toothbrush' (RX J0603.3+4214), a cluster that contains one of the brightest radio relic sources known. Our LOFAR observations exploit a new and novel calibration scheme to probe 10 times deeper than any previous study in this relatively unexplored part of the spectrum. The LOFAR observations, when combined with VLA, GMRT, and Chandra X-ray data, provide new information about the nature of cluster merger shocks and their role in re-accelerating relativistic particles. We derive a spectral index of α = -0:8±0:1 at the northern edge of the main radio relic,more » steepening towards the south to α ≈ -2. The spectral index of the radio halo is remarkably uniform (α = -1:16, with an intrinsic scatter of ≤ 0:04). The observed radio relic spectral index gives a Mach number of M = 2:8 +0:5 -0:3, assuming diffusive shock acceleration (DSA). However, the gas density jump at the northern edge of the large radio relic implies a much weaker shock (M≈1:2, with an upper limit ofM≈1:5). The discrepancy between the Mach numbers calculated from the radio and X-rays can be explained if either (i) the relic traces a complex shock surface along the line of sight, or (ii) if the radio relic emission is produced by a re-accelerated population of fossil particles from a radio galaxy. Our results highlight the need for additional theoretical work and numerical simulations of particle acceleration and re-acceleration at cluster merger shocks.« less

  9. UGC Galaxies Stronger than 25 MJy at 4.85 GHz

    NASA Astrophysics Data System (ADS)

    Condon, J. J.; Frayer, D. T.; Broderick, J. J.

    1995-11-01

    UGC galaxies in the declination band +5 degrees < delta < +75 degrees were identified by position coincidence with radio sources stronger than 25 mJy on the Green Bank 4.85 GHz sky maps. Candidate identifications were confirmed or rejected with the aid of published aperture-synthesis maps (including those in the companion directory UGC20CM.DIR) and new 4.86 GHz VLA D-array maps having 15 or 18 arcsec FWHM resolution. The 4.86 GHz maps in this directory cover both confirmed identifications and candidates rejected because of confusion, low flux density, etc. For more information on this study, please see the following references: Condon, J. J., Frayer, D. T., and Broderick, J. J. 1991, AJ, 101, 362. The image(s) and related TeX file come from the NRAO CDROM "Images From the Radio Universe" (c. 1992 National Radio Astronomy Observatory, used with permission).

  10. The First GeV Outburst of the Radio-loud Narrow-line Seyfert 1 Galaxy PKS 1502+036

    NASA Astrophysics Data System (ADS)

    Paliya, Vaidehi S.; Stalin, C. S.

    2016-03-01

    The γ-ray-loud narrow-line Seyfert 1 (γ-NLSy1) galaxy PKS 1502+036 (z = 0.409) exhibited its first γ-ray outburst on 2015 December 20. In the energy range of 0.1-300 GeV, the highest flux measured by the Fermi-Large Area Telescope is (3.90 ± 1.52) × 10-6 {ph} {{cm}}-2 {{{s}}}-1, which is the highest γ-ray flux ever detected from this object. The associated spectral shape is soft (Γ0.1-300 GeV = 2.57 ± 0.17) and this corresponds to an isotropic γ-ray luminosity of (1.2 ± 0.6) × 1048 erg s-1. We generate the broadband spectral energy distribution (SED) during the GeV flare and reproduce it using a one-zone leptonic emission model. The optical-UV spectrum can be explained by a combination of synchrotron and accretion disk emission, whereas the X-ray-to-γ-ray SED can be satisfactorily reproduced by inverse-Compton scattering of thermal photons that originated from the torus. The derived SED parameters hint that the increase in the bulk Lorentz factor is a major cause of the flare and the location of the emission region is estimated as being outside the broad-line region but still inside the torus. A comparison of the GeV-flaring SED of PKS 1502+036 with that of two other γ-NLSy1 galaxies, namely, 1H 0323+342 (z = 0.061) and PMN J0948+0022 (z = 0.585), and also with flat spectrum radio quasar (FSRQ) 3C 279 (z = 0.536), has led to the conclusion that the GeV-flaring SEDs of γ-NLSy1 galaxies resemble FSRQs and a major fraction of their bolometric luminosities are emitted at γ-ray energies.

  11. Anomalous Arms

    NASA Image and Video Library

    2007-12-18

    This composite image is of spiral galaxy M106 NGC 4258; optical data from the Digitized Sky Survey is yellow, radio data from the Very Large Array is purple, X-ray data from Chandra is blue, and infrared data from the Spitzer Space Telescope is red.

  12. Exploring Hot Gas at Junctions of Galaxy Filaments

    NASA Astrophysics Data System (ADS)

    Mitsuishi, Ikuyuki; Yamasaki, Noriko; Kawahara, Hajime; Sekiya, Norio; Sasaki, Shin; Sousbie, Thierry

    Because galaxies are forced to follow the strong gravitational potential created by the underlying cosmic web of the dark matter, their distribution reflects its filamentary structures. By identifying the filamentary structures, one can therefore recover a map of the network that drives structure formation. Filamentary junctions are regions of particular interest as they identify places where mergers and other interesting astrophysical phenomena have high chances to occur. We identified the galaxy filaments by our original method (Sousbie (2011) & Sousbie et al. (2011)) and X-ray pointing observations were conducted for the six fields locating in the junctions of the galaxy filaments where no specific diffuse X-ray emissions had previously been detected so far. We discovered significant X-ray signals in their images and spectra of the all regions. Spectral analysis demonstrated that six sources originate from diffuse emissions associated with optically bright galaxies, group-scale, or cluster-scale X-ray halos with kT˜1-4 keV, while the others are compact object origin. Interestingly, all of the newly discovered three intracluster media show peculiar features such as complex or elongated morphologies in X-ray and/or optical and hot spot involved in ongoing merger events (Kawahara et al. (2011) & Mitsuishi et al. (2014)). In this conference, results of follow-up radio observations for the merging groups as well as the details of the X-ray observations will be reported.

  13. Compact radio sources in the starburst galaxy M82 and the Sigma-D relation for supernova remnants

    NASA Technical Reports Server (NTRS)

    Huang, Z. P.; Thuan, T. X.; Chevalier, R. A.; Condon, J. J.; Yin, Q. F.

    1994-01-01

    We have obtained an 8.4 GHz Very Large Array (VLA) A-array map of the starburst galaxy M82 with a resolution Full Width at Half Maximum (FWHM) approximately 0.182 sec. About 50 compact radio sources in the central region of M82 were detected with a peak surface brightness approximately greater than 10(exp -17) W/Hz/sq m/sr. Comparison with previous observations shows that most sources are declining in flux. Three previously visible sources have faded into the background of our map (approximately less than 0.2 mJy/beam), while a few sources, including the second and third brightest radio sources in M82, may have increased slightly in flux over the last decade. No new radio supernova was found. The birth rate of the compact radio sources is estimated to be 0.11 + or - 0.05/yr. We attribute the population of such bright, small supernova remnants (SNRs) in M82 to the high pressure in the central region that can truncate the mass loss during a red supergiant phase or allow dense ionized clouds to be present. The compact radio sources obey a Sigma(radio surface brightness) - D(diameter) relation which is remarkably similar to that followed by supernova remnants in the Galaxy and the Magellanic Clouds and by two of the strongest known extragalactic radio supernovae: SN 1986J and SN 1979C. A least-squares fit to the SNR data gives: Sigma(sub 8.4 GHz) (W/Hz/sq m/sr) = 4.4 x 10(exp -16) D(sub pc)(exp -3.5 +/- 0.1) covering seven orders of magnitude in Sigma. Possible selection effects are discussed and a theoretical discussion of the correlation is presented.

  14. MC 2: Mapping the dark matter distribution of the “Toothbrush” cluster RX J0603.3+4214 with Hubble Space Telescope and Subaru weak lensing

    DOE PAGES

    Jee, M. James; Dawson, William A.; Stroe, Andra; ...

    2016-02-01

    The galaxy cluster RX J0603.3+4214 at z = 0:225 is one of the rarest clusters boasting an extremely large ( 2 Mpc) radio relic. Because of the remarkable morphology of the relic, the cluster is nicknamed the \\Toothbrush Cluster". Although the cluster's underlying mass distribution is one of the critical pieces of information needed to reconstruct the merger scenario responsible for the puzzling radio relic morphology, its proximity to the Galactic plane b 10 has imposed signi cant observational challenges. We present a high-resolution weak-lensing study of the cluster with Subaru/Suprime Cam and Hubble Space Telescope imaging data. Our massmore » reconstruction reveals that the cluster is composed of complicated dark matter substructures closely tracing the galaxy distribution, in contrast, however, with the relatively simple binary X-ray morphology. Nevertheless, we nd that the cluster mass is still dominated by the two most massive clumps aligned north-south with a 3:1 mass ratio (M 200 = 6:29 +2:24 -1:62 X 10 14M⊙ and 1:98 +1:24 -0:74 X 10 14M⊙ for the northern and southern clumps, respectively). The southern mass peak is 20 o set toward the south with respect to the corresponding X-ray peak, which has a \\bullet"-like morphology pointing south. Comparison of the current weak- lensing result with the X-ray, galaxy, and radio relic suggests that perhaps the dominant mechanism responsible for the observed relic may be a high-speed collision of the two most massive subclusters, although the peculiarity of the morphology necessitates involvement of additional subclusters. Careful numerical simulations should follow in order to obtain more complete understanding of the merger scenario utilizing all existing observations.« less

  15. Bright radio emission from an ultraluminous stellar-mass microquasar in M 31.

    PubMed

    Middleton, Matthew J; Miller-Jones, James C A; Markoff, Sera; Fender, Rob; Henze, Martin; Hurley-Walker, Natasha; Scaife, Anna M M; Roberts, Timothy P; Walton, Dominic; Carpenter, John; Macquart, Jean-Pierre; Bower, Geoffrey C; Gurwell, Mark; Pietsch, Wolfgang; Haberl, Frank; Harris, Jonathan; Daniel, Michael; Miah, Junayd; Done, Chris; Morgan, John S; Dickinson, Hugh; Charles, Phil; Burwitz, Vadim; Della Valle, Massimo; Freyberg, Michael; Greiner, Jochen; Hernanz, Margarita; Hartmann, Dieter H; Hatzidimitriou, Despina; Riffeser, Arno; Sala, Gloria; Seitz, Stella; Reig, Pablo; Rau, Arne; Orio, Marina; Titterington, David; Grainge, Keith

    2013-01-10

    A subset of ultraluminous X-ray sources (those with luminosities of less than 10(40) erg s(-1); ref. 1) are thought to be powered by the accretion of gas onto black holes with masses of ∼5-20M cicled dot, probably by means of an accretion disk. The X-ray and radio emission are coupled in such Galactic sources; the radio emission originates in a relativistic jet thought to be launched from the innermost regions near the black hole, with the most powerful emission occurring when the rate of infalling matter approaches a theoretical maximum (the Eddington limit). Only four such maximal sources are known in the Milky Way, and the absorption of soft X-rays in the interstellar medium hinders the determination of the causal sequence of events that leads to the ejection of the jet. Here we report radio and X-ray observations of a bright new X-ray source in the nearby galaxy M 31, whose peak luminosity exceeded 10(39) erg s(-1). The radio luminosity is extremely high and shows variability on a timescale of tens of minutes, arguing that the source is highly compact and powered by accretion close to the Eddington limit onto a black hole of stellar mass. Continued radio and X-ray monitoring of such sources should reveal the causal relationship between the accretion flow and the powerful jet emission.

  16. Galaxy-galaxy and galaxy-cluster lensing with the SDSS and FIRST surveys

    NASA Astrophysics Data System (ADS)

    Demetroullas, C.; Brown, M. L.

    2018-01-01

    We perform a galaxy-galaxy lensing study by correlating the shapes of ∼2.7 × 105 galaxies selected from the VLA FIRST (Faint Images of the Radio Sky at Twenty centimetres) radio survey with the positions of ∼38.5 million Sloan Digital Sky Survey (SDSS) galaxies, ∼132 000 Brightest Cluster Galaxies (BCGs) and ∼78 000 SDSS galaxies that are also detected in the VLA FIRST survey. The measurements are conducted on angular scales θ ≲ 1200 arcsec. On scales θ ≲ 200 arcsec, we find that the measurements are corrupted by residual systematic effects associated with the instrumental beam of the VLA data. Using simulations, we show that we can successfully apply a correction for these effects. Using the three lens samples (the SDSS DR10 sample, the BCG sample and the SDSS-FIRST matched object sample), we measure a tangential shear signal that is inconsistent with 0 at the 10.2σ, 3.8σ and 9σ levels, respectively. Fitting an NFW model to the detected signals, we find that the ensemble mass profile of the BCG sample agrees with the values in the literature. However, the mass profiles of the SDSS DR10 and the SDSS-FIRST matched object samples are found to be shallower and steeper than results in the literature, respectively. The best-fitting Virial masses for the SDSS DR10, BCG and SDSS-FIRST matched samples, derived using an NFW model and allowing for a varying concentration factor, are M_{200}^SDSS-DR10 = (1.2 ± 0.4) × 10^{12} M_{⊙}, M_{200}^BCG = (1.4 ± 1.3) × 10^{13} M_{⊙} and M_{200}^SDSS-FIRST =8.0 ± 4.2 × 10^{13} M_{⊙}, respectively. These results are in good agreement (within ∼2σ) with values in the literature. Our findings suggest that for galaxies to be bright both in the radio and in the optical, they must be embedded in very dense environment on scales R ≲ 1 Mpc.

  17. A more direct measure of supernova rates in starburst galaxies

    NASA Technical Reports Server (NTRS)

    Van Buren, Dave; Greenhouse, Matthew A.

    1994-01-01

    We determine ages for young supernova remnants in the starburst galaxies M82 and NGC 253 by applying Chevalier's model for radio emission from supernova blast waves expanding into the ejecta of their precursor stars. Absolute ages are determined by calibrating the model with radio observations of Cas A. We derive supernova rates of 0.10 and 0.08/yr for M82 and NGC 253, respectively. Assuming L (sub FIR) to be proportional to the supernova rate, we find r(sub SN) approximately equal 2 x 10(exp -12) x L(sub FIR), solar yr(exp -1) for these archetypal starburst galaxies. This approach is unique in that the supernova rate is derived from direct observation of supernova remnants rather than from star formation rates and an assumed initial mass function (IMF). We suggest that the approach presented here can be used to derive star-formation rates that are more directly related to observable quantities than those derived by other methods. We find that the supernova rate, far infrared (FIR) luminosity, and dynamical mass of the M82 starburst place few constraints on the initial mass function (IMF) slope and mass limits.

  18. Connecting optical and X-ray tracers of galaxy cluster relaxation

    NASA Astrophysics Data System (ADS)

    Roberts, Ian D.; Parker, Laura C.; Hlavacek-Larrondo, Julie

    2018-04-01

    Substantial effort has been devoted in determining the ideal proxy for quantifying the morphology of the hot intracluster medium in clusters of galaxies. These proxies, based on X-ray emission, typically require expensive, high-quality X-ray observations making them difficult to apply to large surveys of groups and clusters. Here, we compare optical relaxation proxies with X-ray asymmetries and centroid shifts for a sample of Sloan Digital Sky Survey clusters with high-quality, archival X-ray data from Chandra and XMM-Newton. The three optical relaxation measures considered are the shape of the member-galaxy projected velocity distribution - measured by the Anderson-Darling (AD) statistic, the stellar mass gap between the most-massive and second-most-massive cluster galaxy, and the offset between the most-massive galaxy (MMG) position and the luminosity-weighted cluster centre. The AD statistic and stellar mass gap correlate significantly with X-ray relaxation proxies, with the AD statistic being the stronger correlator. Conversely, we find no evidence for a correlation between X-ray asymmetry or centroid shift and the MMG offset. High-mass clusters (Mhalo > 1014.5 M⊙) in this sample have X-ray asymmetries, centroid shifts, and Anderson-Darling statistics which are systematically larger than for low-mass systems. Finally, considering the dichotomy of Gaussian and non-Gaussian clusters (measured by the AD test), we show that the probability of being a non-Gaussian cluster correlates significantly with X-ray asymmetry but only shows a marginal correlation with centroid shift. These results confirm the shape of the radial velocity distribution as a useful proxy for cluster relaxation, which can then be applied to large redshift surveys lacking extensive X-ray coverage.

  19. A Multi-Wavelength Study of the X-Ray Sources in the NGC 5018

    NASA Technical Reports Server (NTRS)

    Ghosh, Kajal K.; Swartz, Douglas A.; Tennant, Allyn F.; Wu, Kinwah; Saripalli, Lakshmi

    2004-01-01

    The E3 giant elliptical galaxy NGC-5018 was observed with the cxo X-ray Observatory's Advanced CCD Imaging Spectrometer for 30-h on 14 April 2001. Results of analysis of these X-ray data as well as of complementary optical, infrared, and radio data are reported. Seven X-ray point sources, including the nucleus, were detected. If they are intrinsic to NGC-5018, then all six non-nuclear sources have luminosities exceeding 10(exp 39)-ergl in the 0.5-8.0-keV energy band; placing them in the class of Ultra- luminous X-ray sources. Comparison of X-ray source positions to archival Hubble Space Telescope/Wide Field Planetary Camera 2 (hst/WFPC2) images reveal four of the six non-nuclear sources are spatially--coincident with bright, M$(sub V)LA -8.6 mag, objects. These four objects have optical magnitudes and (V-I) colors consistent with globular clusters in NGC-5018. However, one of these objects was observed to vary by siml mag in both V and I between observations taken 28 July 1997 and 04 Feb 1999 indicating this source is a background active galactic nucleus (AGN). The nature of the other three optically-bright objects cannot be determined from the available optical data but all have X-ray-to-optical flux ratios consistent with background AGNs. Strong, unpolarized, radio emission has been detected from another of the optically-bright counterparts. It displays an inverted radio spectrum and is the most absorbed of the seven sources in the X-ray band. It, too, is most readily explained as a background AGN, though alternative explanations cannot be ruled out. Extended X-ray emission is detected within a siml5 arcsec radius of the galaxy center at a luminosity of sim lO(exp 40)-ergl in the X-ray band. Its thermal X-ray spectrum (kT sim0.4-keV) and its spatial coincidence with strong H(alpha) emission are consistent with a hot gas origin. The nucleus itself is a weak X-ray source, LA-5 times 10(exp 39)-ergl, but displays a radio spectrum typical of AGN.

  20. Molecular Gas in Obscured and Extremely Red Quasars at z ˜ 2.5

    NASA Astrophysics Data System (ADS)

    Alexandroff, Rachael; Zakamska, Nadia; Hamann, Fred; Greene, Jenny; Rahman, Mubdi

    2018-01-01

    Quasar feedback is a key element of modern galaxy evolution theory. During powerful episodes of feedback, quasar-driven winds are suspected of removing large amounts of molecular gas from the host galaxy, thus limiting supplies for star formation and ultimately curtailing the maximum mass of galaxies. Here we present Karl A. Jansky Very Large Array (VLA) observations of the CO(1-0) transition in 11 powerful obscured and extremely red quasars (ERQs) at z~2.5. Previous observations have shown that several of these targets display signatures of powerful quasar-driven winds in their ionized gas. Molecular emission is not detected in a single object, whether kinematically disturbed due to a quasar wind or in equilibrium with the host galaxy and neither is molecular gas detected in a combined stack of all objects (equivalent to an exposure time of over 10 hours with the VLA). This observation is in contrast with the previous suggestions that such objects should occupy gas-rich, extremely star-forming galaxies. Possible explanations include a paucity of molecular gas or an excess of high- excitation molecular gas, both of which could be the results of quasar feedback. In the radio continuum, we detect an average point-like (< 5 kpc) emission with luminosity νLν[33 GHz]=2.2 x 1042 erg s-1, consistent with optically-thin (α ≈ -1.0) synchrotron with some possible contribution from thermal free-free emission. The continuum radio emission of these radio-intermediate objects may be a bi-product of radiatively driven winds or may be due to weak jets confined to the host galaxy.

  1. VLBA Observations of Low Luminosity Flat Spectrum Radio Galaxies and BL Lac Objects: Polarisation Properties

    NASA Astrophysics Data System (ADS)

    Bondi, M.; Dallacasa, D.; Stanghellini, C.; Marchã, M. J. M.

    We obtained two-epoch VLBA observations at 5 GHz of a list of radio galaxies drawn from the 200 mJy sample (Marcha et al. 1996). The objects selected for milli-arcsecond scale observations are classified, on the basis of their optical spectroscopic and polarimetric properties, as BL Lac objects, normal weak line radio galaxies, broad line radio galaxies, and transition objects (those with intermediate properties). We present preliminary results on the radio polarization properties, on the milli-arcsecond scale, of objects with different optical properties and discuss structural variations detected from the two epochs.

  2. On the Merging Cluster Abell 578 and Its Central Radio Galaxy 4C+67.13

    NASA Astrophysics Data System (ADS)

    Hagino, K.; Stawarz, Ł.; Siemiginowska, A.; Cheung, C. C.; Kozieł-Wierzbowska, D.; Szostek, A.; Madejski, G.; Harris, D. E.; Simionescu, A.; Takahashi, T.

    2015-06-01

    Here we analyze radio, optical, and X-ray data for the peculiar cluster Abell 578. This cluster is not fully relaxed and consists of two merging sub-systems. The brightest cluster galaxy (BCG), CGPG 0719.8+6704, is a pair of interacting ellipticals with projected separation ˜10 kpc, the brighter of which hosts the radio source 4C+67.13. The Fanaroff-Riley type-II radio morphology of 4C+67.13 is unusual for central radio galaxies in local Abell clusters. Our new optical spectroscopy revealed that both nuclei of the CGPG 0719.8+6704 pair are active, albeit at low accretion rates corresponding to the Eddington ratio ˜ {{10}-4} (for the estimated black hole masses of ˜ 3× {{10}8} {{M}⊙ } and ˜ {{10}9} {{M}⊙ }). The gathered X-ray (Chandra) data allowed us to confirm and to quantify robustly the previously noted elongation of the gaseous atmosphere in the dominant sub-cluster, as well as a large spatial offset (˜60 kpc projected) between the position of the BCG and the cluster center inferred from the modeling of the X-ray surface brightness distribution. Detailed analysis of the brightness profiles and temperature revealed also that the cluster gas in the vicinity of 4C+67.13 is compressed (by a factor of about ˜1.4) and heated (from ≃ 2.0 keV up to 2.7 keV), consistent with the presence of a weak shock (Mach number ˜1.3) driven by the expanding jet cocoon. This would then require the jet kinetic power of the order of ˜ {{10}45} erg s-1, implying either a very high efficiency of the jet production for the current accretion rate, or a highly modulated jet/accretion activity in the system. Based on service observations made with the WHT operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  3. Extreme particle acceleration in the microquasar Cygnus X-3.

    PubMed

    Tavani, M; Bulgarelli, A; Piano, G; Sabatini, S; Striani, E; Evangelista, Y; Trois, A; Pooley, G; Trushkin, S; Nizhelskij, N A; McCollough, M; Koljonen, K I I; Pucella, G; Giuliani, A; Chen, A W; Costa, E; Vittorini, V; Trifoglio, M; Gianotti, F; Argan, A; Barbiellini, G; Caraveo, P; Cattaneo, P W; Cocco, V; Contessi, T; D'Ammando, F; Del Monte, E; De Paris, G; Di Cocco, G; Di Persio, G; Donnarumma, I; Feroci, M; Ferrari, A; Fuschino, F; Galli, M; Labanti, C; Lapshov, I; Lazzarotto, F; Lipari, P; Longo, F; Mattaini, E; Marisaldi, M; Mastropietro, M; Mauri, A; Mereghetti, S; Morelli, E; Morselli, A; Pacciani, L; Pellizzoni, A; Perotti, F; Picozza, P; Pilia, M; Prest, M; Rapisarda, M; Rappoldi, A; Rossi, E; Rubini, A; Scalise, E; Soffitta, P; Vallazza, E; Vercellone, S; Zambra, A; Zanello, D; Pittori, C; Verrecchia, F; Giommi, P; Colafrancesco, S; Santolamazza, P; Antonelli, A; Salotti, L

    2009-12-03

    Super-massive black holes in active galaxies can accelerate particles to relativistic energies, producing jets with associated gamma-ray emission. Galactic 'microquasars', which are binary systems consisting of a neutron star or stellar-mass black hole accreting gas from a companion star, also produce relativistic jets, generally together with radio flares. Apart from an isolated event detected in Cygnus X-1, there has hitherto been no systematic evidence for the acceleration of particles to gigaelectronvolt or higher energies in a microquasar, with the consequence that we are as yet unsure about the mechanism of jet energization. Here we report four gamma-ray flares with energies above 100 MeV from the microquasar Cygnus X-3 (an exceptional X-ray binary that sporadically produces radio jets). There is a clear pattern of temporal correlations between the gamma-ray flares and transitional spectral states of the radio-frequency and X-ray emission. Particle acceleration occurred a few days before radio-jet ejections for two of the four flares, meaning that the process of jet formation implies the production of very energetic particles. In Cygnus X-3, particle energies during the flares can be thousands of times higher than during quiescent states.

  4. Cosmic Ray and Tev Gamma Ray Generation by Quasar Remnants

    NASA Technical Reports Server (NTRS)

    Boldt, Elihu; Loewenstein, Michael; White, Nicholas E. (Technical Monitor)

    2000-01-01

    Results from new broadband (radio to X-ray) high-resolution imaging studies of the dormant quasar remnant cores of nearby giant elliptical galaxies are now shown to permit the harboring of compact dynamos capable of generating the highest energy cosmic ray particles and associated curvature radiation of TeV photons. Confirmation would imply a global inflow of interstellar gas all the way to the accretion powered supermassive black hole at the center of the host galaxy.

  5. Bursting with Stars and Black Holes

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A growing black hole, called a quasar, can be seen at the center of a faraway galaxy in this artist's concept. Astronomers using NASA's Spitzer and Chandra space telescopes discovered swarms of similar quasars hiding in dusty galaxies in the distant universe.

    The quasar is the orange object at the center of the large, irregular-shaped galaxy. It consists of a dusty, doughnut-shaped cloud of gas and dust that feeds a central supermassive black hole. As the black hole feeds, the gas and dust heat up and spray out X-rays, as illustrated by the white rays. Beyond the quasar, stars can be seen forming in clumps throughout the galaxy. Other similar galaxies hosting quasars are visible in the background.

    The newfound quasars belong to a long-lost population that had been theorized to be buried inside dusty, distant galaxies, but were never actually seen. While some quasars are easy to detect because they are oriented in such a way that their X-rays point toward Earth, others are oriented with their surrounding doughnut-clouds blocking the X-rays from our point of view. In addition, dust and gas in the galaxy itself can block the X-rays.

    Astronomers had observed the most energetic of this dusty, or obscured, bunch before, but the 'masses,' or more typical members of the population, remained missing. Using data from Spitzer and Chandra, the scientists uncovered many of these lost quasars in the bellies of massive galaxies between 9 and 11 billion light-years away. Because the galaxies were also busy making stars, the scientists now believe most massive galaxies spent their adolescence building up their stars and black holes simultaneously.

    The Spitzer observations were made as part of the Great Observatories Origins Deep Survey program, which aims to image the faintest distant galaxies using a variety of wavelengths.

  6. Large scale structures around radio galaxies at z ~ 1.5

    NASA Astrophysics Data System (ADS)

    Galametz, A.; De Breuck, C.; Vernet, J.; Stern, D.; Rettura, A.; Marmo, C.; Omont, A.; Allen, M.; Seymour, N.

    2009-11-01

    We explore the environments of two radio galaxies at z ~ 1.5, 7C 1751+6809 and 7C 1756+6520, using deep optical and near-infrared imaging. Our data cover 15×15 arcmin2 fields around the radio galaxies. We develop and apply BzK color criteria to select cluster member candidates around the radio galaxies and find no evidence of an overdensity of red galaxies within 2 Mpc of 7C 1751+6809. In contrast, 7C 1756+6520 shows a significant overdensity of red galaxies within 2 Mpc of the radio galaxy, by a factor of 3.1±0.8 relative to the four MUSYC fields. At small separation (r < 6 arcsec), this radio galaxy also has one z > 1.4 evolved galaxy candidate, one z > 1.4 star-forming galaxy candidate, and an AGN candidate (at indeterminate redshift). This is suggestive of several close-by companions. Several concentrations of red galaxies are also noticed in the full 7C 1756+6520 field, forming a possible large-scale structure of evolved galaxies with a NW-SE orientation. We construct the color-magnitude diagram of red galaxies found near 7C 1756+6520 (r < 2 Mpc), and find a clear red sequence that is truncated at Ks ~ 21.5 (AB). We also find an overdensity of mid-infrared selected AGN in the surroundings of 7C 1756+6520. These results are suggestive of a proto-cluster at high redshift. Tables 2-6 are only available in electronic form at http://www.aanda.org

  7. The Nature of Faint Spitzer-selected Dust-obscured Galaxies

    NASA Astrophysics Data System (ADS)

    Pope, Alexandra; Bussmann, R. Shane; Dey, Arjun; Meger, Nicole; Alexander, David M.; Brodwin, Mark; Chary, Ranga-Ram; Dickinson, Mark E.; Frayer, David T.; Greve, Thomas R.; Huynh, Minh; Lin, Lihwai; Morrison, Glenn; Scott, Douglas; Yan, Chi-Hung

    2008-12-01

    We use deep far-IR, submillimeter, radio, and X-ray imaging and mid-IR spectroscopy to explore the nature of a sample of Spitzer-selected dust-obscured galaxies (DOGs) in GOODS-N. A sample of 79 galaxies satisfy the criteria R - [ 24] > 14 (Vega) down to S24 > 100 μJy (median flux density S24 = 180 μJy). Twelve of these galaxies have IRS spectra available, which we use to measure redshifts and classify these objects as being dominated by star formation or active galactic nucleus (AGN) activity in the mid-IR. The IRS spectra and Spitzer photometric redshifts confirm that the DOGs lie in a tight redshift distribution around z ~ 2. Based on mid-IR colors, 80% of DOGs are likely dominated by star formation; the stacked X-ray emission from this subsample of DOGs is also consistent with star formation. Since only a small number of DOGs are individually detected at far-IR and submillimeter wavelengths, we use a stacking analysis to determine the average flux from these objects and plot a composite IR (8-1000 μm) spectral energy distribution (SED). The average luminosity of these star-forming DOGs is LIR ~ 1 × 1012 L⊙. We compare the average star-forming DOG to the average bright (S850 > 5 mJy) submillimeter galaxy (SMG); the S24 > 100 μJy DOGs are 3 times more numerous but 8 times less luminous in the IR. The far-IR SED shape of DOGs is similar to that of SMGs (average dust temperature of around 30 K), but DOGs have a higher mid-IR-to-far-IR flux ratio. The average star formation-dominated DOG has a star formation rate of 200 M⊙ yr -1, which, given their space density, amounts to a contribution of 0.01 M⊙ yr-1 Mpc-3 (or 5%-10%) to the star formation rate density at z ~ 2.

  8. ONLY THE LONELY: H I IMAGING OF VOID GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreckel, K.; Van Gorkom, J. H.; Platen, E.

    2011-01-15

    Void galaxies, residing within the deepest underdensities of the Cosmic Web, present an ideal population for the study of galaxy formation and evolution in an environment undisturbed by the complex processes modifying galaxies in clusters and groups, as well as provide an observational test for theories of cosmological structure formation. We have completed a pilot survey for the H I imaging aspects of a new Void Galaxy Survey (VGS), imaging 15 void galaxies in H I in local (d < 100 Mpc) voids. H I masses range from 3.5 x 10{sup 8} to 3.8 x 10{sup 9} M{sub sun}, withmore » one nondetection with an upper limit of 2.1 x 10{sup 8} M{sub sun}. Our galaxies were selected using a structural and geometric technique to produce a sample that is purely environmentally selected and uniformly represents the void galaxy population. In addition, we use a powerful new backend of the Westerbork Synthesis Radio Telescope that allows us to probe a large volume around each targeted galaxy, simultaneously providing an environmentally constrained sample of fore- and background control samples of galaxies while still resolving individual galaxy kinematics and detecting faint companions in H I. This small sample makes up a surprisingly interesting collection of perturbed and interacting galaxies, all with small stellar disks. Four galaxies have significantly perturbed H I disks, five have previously unidentified companions at distances ranging from 50 to 200 kpc, two are in interacting systems, and one was found to have a polar H I disk. Our initial findings suggest void galaxies are a gas-rich, dynamic population which present evidence of ongoing gas accretion, major and minor interactions, and filamentary alignment despite the surrounding underdense environment.« less

  9. The Possible Submillimeter Bump and Accretion-jet in the Central Supermassive Black Hole of NGC 4993

    NASA Astrophysics Data System (ADS)

    Wu, Qingwen; Feng, Jianchao; Fan, Xuliang

    2018-03-01

    NGC 4993, as a host galaxy of the electromagnetic counterpart of the first gravitational-wave detection of a binary neutron-star merger, was observed by many powerful telescopes from radio to γ-ray wavebands. The weak nuclear activities of NGC 4993 suggest that it is a low-luminosity active galactic nuclei (LLAGNs). We build the multiwaveband spectral energy distributions (SEDs) of NGC 4993 from the literature. We find that the radio spectrum at ∼100–300 GHz is much steeper than that of the low-frequency waveband (e.g., 6–100 GHz), where this break was also found in the supermassive black holes (SMBHs) in our galaxy center (Sgr A*), and in some other nearby AGNs. The radio emission above and below this break may have different physical origins, which provide an opportunity to probe the accretion and jet properties. We model the multiwaveband SEDs of NGC 4993 with an advection-dominated accretion flow (ADAF) jet model. We find that the high-frequency steep radio emission at the millimeter waveband is consistent with the prediction of the ADAF, while the low-frequency flat radio spectrum is better fitted by the jet. Furthermore, the X-ray emission can also be simultaneously explained by the ADAF model. From the model fits, we estimate important parameters of the central engine (e.g., the accretion rate near the horizon of the black hole and the mass-loss rate in the jet) for NGC 4993. This result strengthens the theory that the millimeter, submillimeter, and deep X-ray observations are crucial to understanding the weak or quiescent activities in SMBH systems. Further simultaneous millimeter and X-ray monitoring of this kind of LLAGN will help us to better understand the physical origin of multiwaveband emission.

  10. FR II radio galaxies in the Sloan Digital Sky Survey: observational facts

    NASA Astrophysics Data System (ADS)

    Kozieł-Wierzbowska, D.; Stasińska, G.

    2011-08-01

    Starting from the Cambridge Catalogues of radio sources, we have created a sample of 401 Fanaroff-Riley type II (FR II) radio sources that have counterparts in the main galaxy sample of the seventh Data release of the Sloan Digital Sky Survey (SDSS) and analyse their radio and optical properties. We find that the luminosity in the Hα line - which we argue gives a better measure of the total emission-line flux than the widely used luminosity in [O III]- is strongly correlated with the radio luminosity P1.4 GHz. We show that the absence of emission lines in about one third of our sample is likely due to a detection threshold and not to a lack of optical activity. We also find a very strong correlation between the values of LHα and P1.4 GHz when scaled by ‘MBH’, an estimate of the black hole mass. We find that the properties of FR II galaxies are mainly driven by the Eddington parameter LHα/‘MBH’ or, equivalently, P1.4 GHz/‘MBH’. Radio galaxies with hotspots are found among the ones with the highest values of P1.4 GHz/‘MBH’. Compared to classical active galactic nuclei (AGN) hosts in the main galaxy sample of the SDSS, our FR II galaxies show a larger proportion of objects with very hard ionizing radiation field and large ionization parameter. A few objects are, on the contrary, ionized by a softer radiation field. Two of them have double-peaked emission lines and deserve more attention. We find that the black hole masses and stellar masses in FR II galaxies are very closely related: ‘MBH’∝M1.13* with very little scatter. A comparison sample of line-less galaxies in the SDSS follows exactly the same relation, although the masses are, on average, smaller. This suggests that the FR II radio phenomenon occurs in normal elliptical galaxies, preferentially in the most massive ones. Although most FR II galaxies are old, some contain traces of young stellar populations. Such young populations are not seen in normal line-less galaxies, suggesting that the radio (and optical) activity in some FR II galaxies may be triggered by recent star formation. The ‘MBH’-M* relation in a comparison sample of radio-quiet AGN hosts from the SDSS is very different, suggesting that galaxies which are still forming stars are also still building their central black holes. Globally, our study indicates that, while radio and optical activity are strongly related in FR II galaxies, the features of the optical activity in FR IIs are distinct from those of the bulk of radio-quiet active galaxies. An appendix (available as Supporting Information with the online version of the article) gives the radio maps of our FR II galaxies, superimposed on the SDSS images, and the parameters derived for our analysis that were not publicly available.

  11. A Uniformly Selected Sample of Low-mass Black Holes in Seyfert 1 Galaxies. II. The SDSS DR7 Sample

    NASA Astrophysics Data System (ADS)

    Liu, He-Yang; Yuan, Weimin; Dong, Xiao-Bo; Zhou, Hongyan; Liu, Wen-Juan

    2018-04-01

    A new sample of 204 low-mass black holes (LMBHs) in active galactic nuclei (AGNs) is presented with black hole masses in the range of (1–20) × 105 M ⊙. The AGNs are selected through a systematic search among galaxies in the Seventh Data Release (DR7) of the Sloan Digital Sky Survey (SDSS), and careful analyses of their optical spectra and precise measurement of spectral parameters. Combining them with our previous sample selected from SDSS DR4 makes it the largest LMBH sample so far, totaling over 500 objects. Some of the statistical properties of the combined LMBH AGN sample are briefly discussed in the context of exploring the low-mass end of the AGN population. Their X-ray luminosities follow the extension of the previously known correlation with the [O III] luminosity. The effective optical-to-X-ray spectral indices α OX, albeit with a large scatter, are broadly consistent with the extension of the relation with the near-UV luminosity L 2500 Å. Interestingly, a correlation of α OX with black hole mass is also found, with α OX being statistically flatter (stronger X-ray relative to optical) for lower black hole masses. Only 26 objects, mostly radio loud, were detected in radio at 20 cm in the FIRST survey, giving a radio-loud fraction of 4%. The host galaxies of LMBHs have stellar masses in the range of 108.8–1012.4 M ⊙ and optical colors typical of Sbc spirals. They are dominated by young stellar populations that seem to have undergone continuous star formation history.

  12. DISTANT CLUSTER OF GALAXIES [left

    NASA Technical Reports Server (NTRS)

    2002-01-01

    One of the deepest images to date of the universe, taken with NASA's Hubble Space Telescope (HST), reveals thousands of faint galaxies at the detection limit of present day telescopes. Peering across a large volume of the observable cosmos, Hubble resolves thousands of galaxies from five to twelve billion light-years away. The light from these remote objects has taken billions of years to cross the expanding universe, making these distant galaxies fossil evidence' of events that happened when the universe was one-third its present age. A fraction of the galaxies in this image belong to a cluster located nine billion light-years away. Though the field of view (at the cluster's distance) is only two million light-years across, it contains a multitude of fragmentary objects. (By comparison, the two million light-years between our Milky Way galaxy and its nearest large companion galaxy, in the constellation Andromeda, is essentially empty space!) Very few of the cluster's members are recognizable as normal spiral galaxies (like our Milky Way), although some elongated members might be edge-on disks. Among this zoo of odd galaxies are ``tadpole-like'' objects, disturbed and apparently merging systems dubbed 'train-wrecks,' and a multitude of faint, tiny shards and fragments, dwarf galaxies or possibly an unknown population of objects. However, the cluster also contains red galaxies that resemble mature examples of today's elliptical galaxies. Their red color comes from older stars that must have formed shortly after the Big Bang. The image is the full field view of the Wide Field and Planetary Camera-2. The picture was taken in intervals between May 11 and June 15, 1994 and required an 18-hour long exposure, over 32 orbits of HST, to reveal objects down to 29th magnitude. [bottom right] A close up view of the peculiar radio galaxy 3C324 used to locate the cluster. The galaxy is nine billion light-years away as measured by its spectral redshift (z=1.2), and located in the constellation Serpens. Based on the colors and the statistical distribution of the galaxies in 3C 324's vicinity, astronomers conclude a remote cluster is at the same distance as a radio galaxy. [center right] This pair of elliptical galaxies, seen together with a few fainter companions, is remarkably similar in shape, light distribution, and color to their present day descendants. This Hubble image provides evidence that ellipticals formed remarkably early in the universe. [top right] Some of the objects in this compact tangled group resemble today's spiral galaxies. However, they have irregular shapes and appear disrupted and asymmetric. This might be due to a high frequency of galaxy collisions and close encounters in the early universe. Credit: Mark Dickinson (STScI) and NASA

  13. Local Volume Hi Survey: the far-infrared radio correlation

    NASA Astrophysics Data System (ADS)

    Shao, Li; Koribalski, Bärbel S.; Wang, Jing; Ho, Luis C.; Staveley-Smith, Lister

    2018-06-01

    In this paper we measure the far-infrared (FIR) and radio flux densities of a sample of 82 local gas-rich galaxies, including 70 "dwarf" galaxies (M* < 109 M⊙), from the Local Volume HI Survey (LVHIS), which is close to volume limited. It is found that LVHIS galaxies hold a tight linear FIR-radio correlation (FRC) over four orders of magnitude (F_1.4GHz ∝ F_FIR^{1.00± 0.08}). However, for detected galaxies only, a trend of larger FIR-to-radio ratio with decreasing flux density is observed. We estimate the star formation rate by combining UV and mid-IR data using empirical calibration. It is confirmed that both FIR and radio emission are strongly connected with star formation but with significant non-linearity. Dwarf galaxies are found radiation deficient in both bands, when normalized by star formation rate. It urges a "conspiracy" to keep the FIR-to-radio ratio generally constant. By using partial correlation coefficient in Pearson definition, we identify the key galaxy properties associated with the FIR and radio deficiency. Some major factors, such as stellar mass surface density, will cancel out when taking the ratio between FIR and radio fluxes. The remaining factors, such as HI-to-stellar mass ratio and galaxy size, are expected to cancel each other due to the distribution of galaxies in the parameter space. Such cancellation is probably responsible for the "conspiracy" to keep the FRC alive.

  14. X-ray spectra and time variability of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Mushotzky, R. F.

    1984-01-01

    The X-ray spectra of broad line active galactic nuclei (AGN) of all types (Seyfert I's, NELG's, broadline radio galaxies) are well fit by a power law in the .5 to 100 keV band of man energy slope alpha = .68 + or - .15. There is, as yet, no strong evidence for time variability of this slope in a given object. The constraints that this places on simple models of the central energy source are discussed. BL Lac objects have quite different X-ray spectral properties and show pronounced X-ray spectral variability. On time scales longer than 12 hours most radio quiet AGN do not show strong, delta I/I .5, variability. The probability of variability of these AGN seems to be inversely related to their luminosity. However characteristics timescales for variability have not been measured for many objects. This general lack of variability may imply that most AGN are well below the Eddington limit. Radio bright AGN tend to be more variable than radio quiet AGN on long, tau approx 6 month, timescales.

  15. Chandra Finds Surprising Black Hole Activity In Galaxy Cluster

    NASA Astrophysics Data System (ADS)

    2002-09-01

    Scientists at the Carnegie Observatories in Pasadena, California, have uncovered six times the expected number of active, supermassive black holes in a single viewing of a cluster of galaxies, a finding that has profound implications for theories as to how old galaxies fuel the growth of their central black holes. The finding suggests that voracious, central black holes might be as common in old, red galaxies as they are in younger, blue galaxies, a surprise to many astronomers. The team made this discovery with NASA'S Chandra X-ray Observatory. They also used Carnegie's 6.5-meter Walter Baade Telescope at the Las Campanas Observatory in Chile for follow-up optical observations. "This changes our view of galaxy clusters as the retirement homes for old and quiet black holes," said Dr. Paul Martini, lead author on a paper describing the results that appears in the September 10 issue of The Astrophysical Journal Letters. "The question now is, how do these black holes produce bright X-ray sources, similar to what we see from much younger galaxies?" Typical of the black hole phenomenon, the cores of these active galaxies are luminous in X-ray radiation. Yet, they are obscured, and thus essentially undetectable in the radio, infrared and optical wavebands. "X rays can penetrate obscuring gas and dust as easily as they penetrate the soft tissue of the human body to look for broken bones," said co-author Dr. Dan Kelson. "So, with Chandra, we can peer through the dust and we have found that even ancient galaxies with 10-billion-year-old stars can have central black holes still actively pulling in copious amounts of interstellar gas. This activity has simply been hidden from us all this time. This means these galaxies aren't over the hill after all and our theories need to be revised." Scientists say that supermassive black holes -- having the mass of millions to billions of suns squeezed into a region about the size of our Solar System -- are the engines in the cores of bright active galaxies, often referred to as Active Galactic Nuclei, or AGN. Many astronomers think that all galaxies have central, supermassive black holes, yet only a small percent show activity. What is needed to power the AGN is fuel in the form of a nearby reservoir of gas and dust. Galaxy clusters contain hundreds to thousands of galaxies. They are the largest known structures in the universe and serve as a microcosm for the mechanics of the Universe at large. The galaxies in clusters are often old, reddish elliptically shaped galaxies, distinct from blue, spiral galaxies like our own. These old galaxies also do not have many young stars. The theory now in question is that as galaxies enter into clusters at high speeds, they are stripped of their interstellar gas, much as a strong wind strips leaves from a tree. Galaxies may also collide with one another and use up all of their gas in one huge burst of star formation triggered by this interaction. These processes remove most, if not all, of the gas that isn't locked up in stars. As they no longer have the raw material to form new stars, the stellar population slowly gets old and the Galaxy appears red. No gas is left to fuel an AGN. Previous surveys of galaxy clusters with optical telescopes have found that about only one percent of the galaxies in a cluster have AGN. This latest Chandra observation if typical, however, bumps the count up to about 5 percent. The team found six red galaxies with high X-ray activity during a nearly 14-hour Chandra observation of a galaxy cluster named Abell 2104, over 700 million light years from Earth. Based on previous optical surveys, only one was expected. "If we relied on optical data alone, we would have missed these hidden monsters," said co-author Dr. John Mulchaey. Only one of the six AGN, in fact, had the optical spectral properties typical of AGN activity. "The presence of these AGN indicate that supermassive black holes have somehow retained a fuel source, despite the harsh treatment galaxies suffer in clusters, and are now coming out of retirement," said Martini. This could imply that galaxies are better at holding onto a supply of gas and dust than previously thought, particularly deep down at their cores near the supermassive black hole. This gas and dust may also be the same material that obscures the AGN at other wavelengths. The presence of so many AGN could also contribute to the radio and infrared radiation from the clusters, which until now was thought to be almost exclusively a product of star formation. Thus, scientists may be overestimating the amount of star formation taking place in clusters. The Carnegie group has begun a study of other galaxy clusters with Chandra. Martini and Kelson are postdoctoral researchers at the Carnegie Observatories in Pasadena; Mulchaey is a staff astronomer. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program, and TRW, Inc., Redondo Beach, Calif., is the prime contractor. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass.

  16. Radio Telescope Reveals Secrets of Massive Black Hole

    NASA Astrophysics Data System (ADS)

    2008-04-01

    At the cores of many galaxies, supermassive black holes expel powerful jets of particles at nearly the speed of light. Just how they perform this feat has long been one of the mysteries of astrophysics. The leading theory says the particles are accelerated by tightly-twisted magnetic fields close to the black hole, but confirming that idea required an elusive close-up view of the jet's inner throat. Now, using the unrivaled resolution of the National Radio Astronomy Observatory's Very Long Baseline Array (VLBA), astronomers have watched material winding a corkscrew outward path and behaving exactly as predicted by the theory. Galactic core and jet Artist's conception of region near supermassive black hole where twisted magnetic fields propel and shape jet of particles (Credit: Marscher et al., Wolfgang Steffen, Cosmovision, NRAO/AUI/NSF). Click on image for high-resolution file. Watch Video of Black-Hole-Powered Jet (Credit: Cosmovision, Wolfgang Steffen) Download: NTSC Format (90MB) | PAL Format (90MB) "We have gotten the clearest look yet at the innermost portion of the jet, where the particles actually are accelerated, and everything we see supports the idea that twisted, coiled magnetic fields are propelling the material outward," said Alan Marscher, of Boston University, leader of an international research team. "This is a major advance in our understanding of a remarkable process that occurs throughout the Universe," he added. Marscher's team studied a galaxy called BL Lacertae (BL Lac), some 950 million light-years from Earth. BL Lac is a blazar, the most energetic type of black-hole-powered galactic core. A black hole is a concentration of mass so dense that not even light can escape its gravitational pull. Supermassive black holes in galaxies' cores power jets of particles and intense radiation in similar objects including quasars and Seyfert galaxies. Material pulled inward toward the black hole forms a flattened, rotating disk, called an accretion disk. As the material moves from the outer edge of the disk inward, magnetic field lines perpendicular to the disk are twisted, forming a tightly-coiled bundle that, astronomers believe, propels and confines the ejected particles. Closer to the black hole, space itself, including the magnetic fields, is twisted by the strong gravitational pull and rotation of the black hole. Theorists predicted that material moving outward in this close-in acceleration region would follow a corkscrew-shaped path inside the bundle of twisted magnetic fields. They also predicted that light and other radiation emitted by the moving material would brighten when its rotating path was aimed most directly toward Earth. Marscher and his colleagues predicted there would also be a flare later when the material hits a stationary shock wave called the "core" some time after it has emerged from the acceleration region. "That behavior is exactly what we saw," Marscher said, when his team followed an outburst from BL Lac. In late 2005 and early 2006, the astronomers watched BL Lac with an international collection of telescopes as a knot of material was ejected outward through the jet. As the material sped out from the neighborhood of the black hole, the VLBA could pinpoint its location, while other telescopes measured the properties of the radiation emitted from the knot. Bright bursts of light, X-rays, and gamma rays came when the knot was precisely at locations where the theories said such bursts would be seen. In addition, the alignment of the radio and light waves -- a property called polarization -- rotated as the knot wound its corkscrew path inside the tight throat of twisted magnetic fields. "We got an unprecedented view of the inner portion of one of these jets and gained information that's very important to understanding how these tremendous particle accelerators work," Marscher said. In addition to the continent-wide VLBA, an array of 10 radio telescopes spread from Hawaii to the Virgin Islands, the team used telescopes at the Steward Observatory, the Crimean Astrophysical Observatory, Lowell Observatory, Perugia University Astronomical Observatory, Abastumani Astrophysical Observatory, NASA's Rossi X-Ray Timing Explorer, the University of Michigan Radio Astronomy Observatory, and the Metsahovi Radio Observatory. The astronomers reported their findings in the April 24 issue of the journal Nature. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  17. Probing The Stellar, Gaseous, And Dust Properties Of Galaxies Through Analysis Of Their Spectral Energy Distributions

    NASA Astrophysics Data System (ADS)

    Eufrasio, Rafael T.

    The spectral energy distributions (SEDs) of galaxies are shaped by their physical properties and they are our primary source of information on galaxies stellar, gaseous, and dust content. Nearby galaxies (less than 100 Mpc away) are spatially resolved by current telescopes from the ultraviolet (UV) to radio wavelengths, allowing the study of the SEDs of subgalactic regions. Such studies are necessary for deriving maps and spatial trends of the physical properties across a galaxy. In principle, the complex history of the formation, growth, and evolution of a galaxy or a region of a galaxy can be inferred from its radiative output. In practice, this task is complicated by the fact that a significant fraction of the star formation activity takes place in dust obscured regions, in which a significant fraction of the stellar radiative output is absorbed, scattered, and reradiated by the gas and dust in the interstellar medium (ISM). This reprocessing of the stellar radiation takes place in ionized interstellar gas regions (H II regions) surrounding massive hot stars, in diffuse atomic gas (H I regions), and in dense molecular clouds. For this work, we have analyzed two galaxies in detail, NGC 6872 and NGC 6946, also known as Condor and Fireworks Galaxy, respectively. The Condor galaxy is the largest-known spiral galaxy. It is part a group of galaxies, the Pavo group, with 12 other galaxies. It has, however, interacted in the past ~150 Myr with a smaller companion, previously believed to have shaped the physical extent of the giant spiral. We have performed detailed SED fitting from the UV to mid-infrared (mid-IR) to obtain star formation histories of seventeen sub-galactic regions across the Condor. These regions are large enough to be galaxies themselves, with 32.3 million light-years in diameter. We find that the Condor was already very massive before this interaction and that it was much less affected by the passage of the companion than previously thought. We also found that a significant fraction of the 22 micron flux, usually considered a complementary measure of the UV-optically determined star formation rate (SFR), is not associated with the recent (last 100 Myr) star formation activity. A fraction of the 22 micron flux represents the energy reradiated by dust heated by intermediate age, long-lived stars. For the Fireworks galaxy, data coverage from the UV to radio allowed us to measure the full radiative budget from the stellar emission (bolometric luminosities) and the fraction coming from reprocessing by dust and gas in the IR. We present a self-consistent, physically-motivated model to describe SEDs of subgalactic regions across the galaxy, which simultaneously fits the stellar attenuated SED from UV to mid-infrared emission, the reradiated infrared emission from the dust, the radio continuum emission from the gas, as well as the intensity of select recombination lines from the ionized gas. We present a framework capable of determine the IR fraction not associated with the recent SFR. This work provides a novel and crucial step towards understanding the physical processes responsible for various empirical laws to determine SFR in galaxies, the correlation between the IR and stellar emission, and the physical conditions of the ISM. It provides essential inputs for more detailed modeling of the spatially-resolved photometric and chemical (dust and gas) evolution of galaxies.

  18. An origin for short gamma-ray bursts unassociated with current star formation.

    PubMed

    Barthelmy, S D; Chincarini, G; Burrows, D N; Gehrels, N; Covino, S; Moretti, A; Romano, P; O'Brien, P T; Sarazin, C L; Kouveliotou, C; Goad, M; Vaughan, S; Tagliaferri, G; Zhang, B; Antonelli, L A; Campana, S; Cummings, J R; D'Avanzo, P; Davies, M B; Giommi, P; Grupe, D; Kaneko, Y; Kennea, J A; King, A; Kobayashi, S; Melandri, A; Meszaros, P; Nousek, J A; Patel, S; Sakamoto, T; Wijers, R A M J

    2005-12-15

    Two short (< 2 s) gamma-ray bursts (GRBs) have recently been localized and fading afterglow counterparts detected. The combination of these two results left unclear the nature of the host galaxies of the bursts, because one was a star-forming dwarf, while the other was probably an elliptical galaxy. Here we report the X-ray localization of a short burst (GRB 050724) with unusual gamma-ray and X-ray properties. The X-ray afterglow lies off the centre of an elliptical galaxy at a redshift of z = 0.258 (ref. 5), coincident with the position determined by ground-based optical and radio observations. The low level of star formation typical for elliptical galaxies makes it unlikely that the burst originated in a supernova explosion. A supernova origin was also ruled out for GRB 050709 (refs 3, 31), even though that burst took place in a galaxy with current star formation. The isotropic energy for the short bursts is 2-3 orders of magnitude lower than that for the long bursts. Our results therefore suggest that an alternative source of bursts--the coalescence of binary systems of neutron stars or a neutron star-black hole pair--are the progenitors of short bursts.

  19. Observations and Modeling of Merging Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Golovich, Nathan Ryan

    Context: Galaxy clusters grow hierarchically with continuous accretion bookended by major merging events that release immense gravitational potential energy (as much as ˜1065 erg). This energy creates an environment for rich astrophysics. Precise measurements of the dark matter halo, intracluster medium, and galaxy population have resulted in a number of important results including dark matter constraints and explanations of the generation of cosmic rays. However, since the timescale of major mergers (˜several Gyr) relegates observations of individual systems to mere snapshots, these results are difficult to understand under a consistent dynamical framework. While computationally expensive simulations are vital in this regard, the vastness of parameter space has necessitated simulations of idealized mergers that are unlikely to capture the full richness. Merger speeds, geometries, and timescales each have a profound consequential effect, but even these simple dynamical properties of the mergers are often poorly understood. A method to identify and constrain the best systems for probing the rich astrophysics of merging clusters is needed. Such a method could then be utilized to prioritize observational follow up and best inform proper exploration of dynamical phase space. Task: In order to identify and model a large number of systems, in this dissertation, we compile an ensemble of major mergers each containing radio relics. We then complete a pan-chromatic study of these 29 systems including wide field optical photometry, targeted optical spectroscopy of member galaxies, radio, and X-ray observations. We use the optical observations to model the galaxy substructure and estimate line of sight motion. In conjunction with the radio and X-ray data, these substructure models helped elucidate the most likely merger scenario for each system and further constrain the dynamical properties of each system. We demonstrate the power of this technique through detailed analyses of two individual merging clusters. Each are largely bimodal mergers occurring in the plane of the sky. We build on the dynamical analyses of Dawson (2013b) and Ng et al. (2015) in order to constrain the merger speeds, timescales, and geometry for these two systems, which are among a gold sample earmarked for further follow up. Findings: MACS J1149.5+2223 has a previously unidentified southern subcluster involved in a major merger with the well-studied northern subcluster. We confirm the system to be among the most massive clusters known, and we study the dynamics of the merger. MACS J1149.5+2223 appears to be a more evolved system than the Bullet Cluster observed near apocenter. ZwCl 0008.8+5215 is a less massive but a bimodal system with two radio relics and a cool-core "bullet" analogous to the namesake of the Bullet Cluster. These two systems occupy different regions of merger phase space with the pericentric relative velocities of ˜2800 km s-1 and ˜1800 km s-1 for MACS J1149.5+2223 and ZwCl 0008.8+5215, respectively. The time since pericenter for the observed states are ˜1.2 Gyr and ˜0.8 Gyr, respectivel. In the ensemble analysis, we confirm that radio relic selection is an efficient trigger for the identification of major mergers. In particular, 28 of the 29 systems exhibit galaxy substructure aligned with the radio relics and the disturbed intra-cluster medium. Radio relics are typically aligned within 20° of the axis connecting the two galaxy subclusters. Furthermore, when radio relics are aligned with substructure, the line of sight velocity difference between the two subclusters is small compared with the infall velocity. This strongly implies radio relic selection is an efficient selector of systems merging in the plane of the sky. While many of the systems are complex with several simultaneous merging subclusters, these systems generally only contain one radio relic. Systems with double radio relics uniformly suggest major mergers with two dominant substructures well aligned between the radio relics. Conclusions: Radio relics are efficient triggers for identifying major mergers occurring within the plane of the sky. This is ideal for observing offsets between galaxies and dark matter distributions as well as cluster shocks. Double radio relic systems, in particular, have the simplest geometries, which allow for accurate dynamical models and inferred astrophysics. Comparing and contrasting the dynamical models of MACS J1149.5+2223 and ZwCl 0008.8+5215 with similar studies in the literature (Dawson, 2013b; Ng et al., 2015; van Weeren et al., 2017), a wide range of dynamical phase space (˜ 1500 - 3000 km -1 at pericenter and ˜ 500 - 1500 Myr after pericenter) may be sampled with radio relic mergers. With sufficient samples of bimodal systems, velocity dependence of underlying astrophysics may be uncovered. (Abstract shortened by ProQuest.).

  20. LOFAR-Boötes: properties of high- and low-excitation radio galaxies at 0.5 < z < 2.0

    NASA Astrophysics Data System (ADS)

    Williams, W. L.; Calistro Rivera, G.; Best, P. N.; Hardcastle, M. J.; Röttgering, H. J. A.; Duncan, K. J.; de Gasperin, F.; Jarvis, M. J.; Miley, G. K.; Mahony, E. K.; Morabito, L. K.; Nisbet, D. M.; Prandoni, I.; Smith, D. J. B.; Tasse, C.; White, G. J.

    2018-04-01

    This paper presents a study of the redshift evolution of radio-loud active galactic nuclei (AGN) as a function of the properties of their galaxy hosts in the Boötes field. To achieve this we match low-frequency radio sources from deep 150-MHz LOFAR (LOw Frequency ARray) observations to an I-band-selected catalogue of galaxies, for which we have derived photometric redshifts, stellar masses, and rest-frame colours. We present spectral energy distribution (SED) fitting to determine the mid-infrared AGN contribution for the radio sources and use this information to classify them as high- versus low-excitation radio galaxies (HERGs and LERGs) or star-forming galaxies. Based on these classifications, we construct luminosity functions for the separate redshift ranges going out to z = 2. From the matched radio-optical catalogues, we select a sub-sample of 624 high power (P150 MHz > 1025 W Hz-1) radio sources between 0.5 ≤ z < 2. For this sample, we study the fraction of galaxies hosting HERGs and LERGs as a function of stellar mass and host galaxy colour. The fraction of HERGs increases with redshift, as does the fraction of sources in galaxies with lower stellar masses. We find that the fraction of galaxies that host LERGs is a strong function of stellar mass as it is in the local Universe. This, combined with the strong negative evolution of the LERG luminosity functions over this redshift range, is consistent with LERGs being fuelled by hot gas in quiescent galaxies.

  1. The magnetized universe: its origin and dissipation through acceleration and leakage to the voids

    NASA Astrophysics Data System (ADS)

    Colgate, Stirling A.; Li, Hui; Kronberg, Philipp P.

    2011-06-01

    The consistency is awesome between over a dozen observations and the paradigm of radio lobes being immense sources of magnetic energy, flux, and relativistic electrons, - a magnetized universe. The greater the total energy of an astrophysical phenomenon, the more restricted are the possible explanations. Magnetic energy is the most challenging because its origin is still considered problematic. We suggest that it is evident that the universe is magnetized because of radio lobes, ultra relativistic electrons, Faraday rotation measures, the polarized emission of extra galactic radio structures, the x-rays from relativistic electrons Comptonized on the CMB, and possibly extra galactic cosmic rays. The implied energies are so large that only the formation of supermassive black hole, (SMBH) at the center of every galaxy is remotely energetic enough to supply this immense energy, ~(1/10) 108 Msolarc2 per galaxy. Only a galaxy cluster of 1000 galaxies has comparable energy, but it is inversely, (to the number of galaxies), rare per galaxy. Yet this energy appears to be shared between magnetic fields and accelerated relativistic particles, both electrons and ions. Only a large-scale coherent dynamo generating poloidal flux within the accretion disk forming the massive black hole makes a reasonable starting point. The subsequent winding of this dynamo-derived magnetic flux by conducting, angular momentum-dominated accreting matter, (~1011 turns near the event horizon in 108 years) produces the immense, coherent magnetic jets or total flux of radio lobes and similarly in star formation. By extending this same physics to supernova-neutron star formation, we predict that similar differential winding of the flux that couples explosion ejecta and a newly formed, rapidly rotating neutron star will produce similar phenomena of a magnetic jet and lobes in the forming supernova nebula. In all cases the conversion of force-free magnetic energy into accelerated ions and electrons is a major challenge.

  2. Vacuum ultraviolet imagery of the Virgo Cluster region. II - Total far-ultraviolet flux of galaxies

    NASA Astrophysics Data System (ADS)

    Kodaira, K.; Watanabe, T.; Onaka, T.; Tanaka, W.

    1990-11-01

    The total flux in the far-ultraviolet region around 150 nm was measured for more than 40 galaxies in the central region of the Virgo Cluster, using two imaging telescopes on board a sounding rocket. The observed far-ultraviolet flux shows positive correlations with the H I 21 cm flux and the far-infrared flux for spiral galaxies, and with the X-ray flux and the radio continuum flux for elliptical galaxies. The former correlations of spiral galaxies are interpreted in terms of star formation activity, which indicates substantial depletion in the Virgo galaxies in accordance with the H I stripping. The latter correlations of elliptical galaxies indicate possible far-ultraviolet sources of young population, in addition to evolved hot stars. Far-ultraviolet fluxes from two dwarf elliptical galaxies were obtained tentatively, indicating star formation activity in elliptical galaxies. A high-resolution UV imagery by HST would be effective to distinguish the young population and the old population in elliptical galaxies.

  3. Chandra High Resolution Imaging of NGC 1365 and NGC 4151

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng; Fabbiano, G.; Elvis, M.; Risaliti, G.; Karovska, M.; Zezas, A.; Mazzarella, J. M.; Lord, S.; Howell, J. H.; Mundell, C. G.

    2010-07-01

    We present Chandra high resolution imaging of the circumnuclear regions of two nearby active galaxies, namely the starburst/AGN composite Seyfert 1.8 NGC 1365 and the archetypal Seyfert 1 NGC 4151. In NGC 1365, the X-ray morphology shows a biconical soft X-ray-emission region extending ~5 kpc in projection from the nucleus, coincident with the optical high-excitation outflows. Chandra HRC imaging of the NGC 4151 nucleus resolves X-ray emission from the 4 arcsec radio jet and the narrow line region (NLR) clouds. Our results demonstrate the unique power of spatially resolved spectroscopy with Chandra, and support previous claims that frequent jet-ISM interaction may explain why jets in Seyfert galaxies appear small, slow, and thermally dominated.

  4. Imaging the host galaxies of high-redshift radio-quiet QSOs

    NASA Technical Reports Server (NTRS)

    Lowenthal, James D.; Heckman, Timothy M.; Lehnert, Matthew, D.; Elias, J. H.

    1995-01-01

    We present new deep K-band and optical images of four radio-quiet QSOs at z approximately = 1 and six radio-quiet QSOs at z approximately = 2.5, as well as optical images only of six more at z approximately = 2.5. We have examined the images carefully for evidence of extended 'fuzz' from any putative QSO host galaxy. None of the z approximately = 2.5 QSOs shows any extended emission, and only two of the z approximately = 1 QSOs show marginal evidence for extended emission. Our 3 sigma detection limits in the K images, m(sub K) approximately = 21 for an isolated source, would correspond approximately to an unevolved L(sup star) elliptical galaxy at z = 2.5 or 2-3 mag fainter than an L(sup star) elliptical at z = 1, although our limits on host galaxy light are weaker than this due to the difficulty of separating galaxy light from QSO light. We simulate simple models of disk and elliptical host galaxies, and find that the marginal emission around the two z approximately = 1 QSOs can be explained by disks or bulges that are approximately 1-2 mag brighter than an unevolved L(sup star) galaxy in one case and approximately 1.5-2.5 mag brighter than L(sub star) in the other. For two other z approximately = 1 QSOs, we have only upper limits (L approximately = L(sup star)). The hosts of the high-redshift sample must be no brighter than about 3 mag above an unevolved L(sup star) galaxy, and are at least 1 magnitude fainter than the hosts of radio-loud QSOs at the same redshift. If the easily detected K-band light surrounding a previous sample of otherwise similar but radio-loud QSOs is starlight, then it must evolve on timescales of greater than or approximately equal to 10(exp 8) yr (e.g., Chambers & Charlot 1990); therefore our non-detection of host galaxy fuzz around radio-quiet QSOs supports the view that high-redshift radio-quiet and radio-loud QSOs inhabit different host objects, rather than being single types of objects that turn their radio emission on and off over short timescales. This is consistent with the general trend at low redshifts that radio-loud QSOs are found in giant elliptical galaxies while radio-quiet QSOs are found in less luminous disk galaxies. It also suggests that the processes responsible for the spectacular properties of radio-loud AGNs at high redshifts might not be generally relevent to the (far more numerous) radio-quiet population.

  5. VLA and ALMA Imaging of Intense Galaxy-wide Star Formation in z ˜ 2 Galaxies

    NASA Astrophysics Data System (ADS)

    Rujopakarn, W.; Dunlop, J. S.; Rieke, G. H.; Ivison, R. J.; Cibinel, A.; Nyland, K.; Jagannathan, P.; Silverman, J. D.; Alexander, D. M.; Biggs, A. D.; Bhatnagar, S.; Ballantyne, D. R.; Dickinson, M.; Elbaz, D.; Geach, J. E.; Hayward, C. C.; Kirkpatrick, A.; McLure, R. J.; Michałowski, M. J.; Miller, N. A.; Narayanan, D.; Owen, F. N.; Pannella, M.; Papovich, C.; Pope, A.; Rau, U.; Robertson, B. E.; Scott, D.; Swinbank, A. M.; van der Werf, P.; van Kampen, E.; Weiner, B. J.; Windhorst, R. A.

    2016-12-01

    We present ≃0.″4 resolution extinction-independent distributions of star formation and dust in 11 star-forming galaxies (SFGs) at z = 1.3-3.0. These galaxies are selected from sensitive blank-field surveys of the 2‧ × 2‧ Hubble Ultra-Deep Field at λ = 5 cm and 1.3 mm using the Karl G. Jansky Very Large Array and Atacama Large Millimeter/submillimeter Array. They have star formation rates (SFRs), stellar masses, and dust properties representative of massive main-sequence SFGs at z ˜ 2. Morphological classification performed on spatially resolved stellar mass maps indicates a mixture of disk and morphologically disturbed systems; half of the sample harbor X-ray active galactic nuclei (AGNs), thereby representing a diversity of z ˜ 2 SFGs undergoing vigorous mass assembly. We find that their intense star formation most frequently occurs at the location of stellar-mass concentration and extends over an area comparable to their stellar-mass distribution, with a median diameter of 4.2 ± 1.8 kpc. This provides direct evidence of galaxy-wide star formation in distant blank-field-selected main-sequence SFGs. The typical galactic-average SFR surface density is 2.5 M ⊙ yr-1 kpc-2, sufficiently high to drive outflows. In X-ray-selected AGN where radio emission is enhanced over the level associated with star formation, the radio excess pinpoints the AGNs, which are found to be cospatial with star formation. The median extinction-independent size of main-sequence SFGs is two times larger than those of bright submillimeter galaxies, whose SFRs are 3-8 times larger, providing a constraint on the characteristic SFR (˜300 M ⊙ yr-1) above which a significant population of more compact SFGs appears to emerge.

  6. A soft X-ray map of the Perseus cluster of galaxies

    NASA Technical Reports Server (NTRS)

    Cash, W.; Malina, R. F.; Wolff, R. S.

    1976-01-01

    A 0.5-3-keV X-ray map of the Perseus cluster of galaxies is presented. The map shows a region of strong emission centered near NGC 1275 plus a highly elongated emission region which lies along the line of bright galaxies that dominates the core of the cluster. The data are compared with various models that include point and diffuse sources. One model which adequately represents the data is the superposition of a point source at NGC 1275 and an isothermal ellipsoid resulting from the bremsstrahlung emission of cluster gas. The ellipsoid has a major core radius of 20.5 arcmin and a minor core radius of 5.5 arcmin, consistent with the values obtained from galaxy counts. All acceptable models provide evidence for a compact source (less than 3 arcmin FWHM) at NGC 1275 containing about 25% of the total emission. Since the diffuse X-ray and radio components have radically different morphologies, it is unlikely that the emissions arise from a common source, as proposed in inverse-Compton models.

  7. Discovery of Misaligned Radio Emission in Galaxy Cluster Zw CL 2971

    NASA Astrophysics Data System (ADS)

    Wallack, Nicole; Migliore, C.; Resnick, A.; White, T.; Liu, C.

    2014-01-01

    In a search for green valley galaxies with radio loud active galactic nuclei (AGN), we found one such object that may be associated with the cluster of galaxies Zw CL 2971 (z = 0.098). Serendipitously, we found in this cluster a strong bent-jet radio source associated with the cluster's central dominant (cD) elliptical galaxy. The center of the cD galaxy is coincident (0.35 arcsecond) with the second brightest spot of radio continuum emission (34.3 mJy as measured by FIRST), but the brightest radio hotspot (66.8 mJy) is offset by 4.6 arcseconds 9 kpc at the redshift of the cluster) and has no visible counterpart. Furthermore, the optical spectrum of the cD galaxy has only weak emission lines, suggesting the absence of a currently active nucleus. It is possible that the counterpart is optically faint (possibly due to a recently completed duty cycle) or is not visible due to movement or position. If the radio source is a distant background object, then the brighter jet is most likely magnified by gravitational lensing. If the radio source is located at the redshift of the cluster, then the brighter radio jet trails backward toward and past the cD galaxy to a distance of ~120 kpc, while the fainter jet is bent at a nearly orthogonal angle, ~40 kpc away from the brightest radio hotspot, in the opposite direction. These geometric offsets could be used to constrain the duty cycle history of the AGN creating the radio emission, as well as the dynamical properties of the intracluster medium.

  8. Radio-Loud AGN: The Suzaku View

    NASA Technical Reports Server (NTRS)

    Sambruna, Rita

    2009-01-01

    We review our Suzaku observations of Broad-Line Radio Galaxies (BLRGs). The continuum above 2 approx.keV in BLRGs is dominated by emission from an accretion flow, with little or no trace of a jet, which is instead expected to emerge at GeV energies and be detected by Fermi. Concerning the physical conditions of the accretion disk, BLRGs are a mixed bag. In some sources the data suggest relatively high disk ionization, in others obscuration of the innermost regions, perhaps by the jet base. While at hard X-rays the distinction between BLRGs and Seyferts appears blurry, one of the cleanest observational differences between the two classes is at soft X-rays, where Seyferts exhibit warm absorbers related to disk winds while BLRGs do not. We discuss the possibility that jet formation inhibits disk winds, and thus is related to the remarkable dearth of absorption features at soft X-rays in BLRGs and other radio-loud AGN.

  9. Radio continuum survey of the Coma/A1367 supercluster. I - 610 MHz observations of CGCG galaxies in four groups

    NASA Astrophysics Data System (ADS)

    Jaffe, W.; Gavazzi, G.; Valentijn, E.

    1986-02-01

    Radio continuum observations obtained with the Westerbork Radio Synthesis Telescope at 0.6 GHz of four groups of galaxies in the Coma/A1367 supercluster area are presented. Ninety-nine CGCG galaxies were surveyed, yielding the detection of 21 objects. A wide-angle-tail radio galaxy, NGC 4061, is found in the NGC 4065 group. Analysis of this source suggests a relatively low value (neT ≡ 1000 cm-3K) for the intracluster gas pressure in this group.

  10. Evidence for a Circum-Nuclear and Ionised Absorber in the X-ray Obscured Broad Line Radio Galaxy 3C 445

    NASA Technical Reports Server (NTRS)

    Braito, V.; Reeves, J. N.; Sambruna, R. M.; Gofford, J.

    2012-01-01

    Here we present the results of a Suzaku observation of the Broad Line Radio Galaxy 3C 445. We confirm the results obtained with the previous X-ray observations which unveiled the presence of several soft X-ray emission lines and an overall X-ray emission which strongly resembles a typical Seyfert 2 despite of the optical classification as an unobscured AGN. The broad band spectrum allowed us to measure for the first time the amount of reflection (R approximately 0.9) which together with the relatively strong neutral Fe Ka emission line (EW approximately 100 eV) strongly supports a scenario where a Compton-thick mirror is present. The primary X ray continuum is strongly obscured by an absorber with a column density of NH = 2 - 3 x 10(exp 23) per square centimeter. Two possible scenarios are proposed for the absorber: a neutral partial covering or a mildly ionised absorber with an ionisation parameter log xi approximately 1.0 erg centimeter per second. A comparison with the past and more recent X-ray observations of 3C 445 performed with XMM-Newton and Chandra is presented, which provided tentative evidence that the ionised and outflowing absorber varied. We argue that the absorber is probably associated with an equatorial diskwind located within the parsec scale molecular torus.

  11. LOFAR discovery of a double radio halo system in Abell 1758 and radio/X-ray study of the cluster pair

    NASA Astrophysics Data System (ADS)

    Botteon, A.; Shimwell, T. W.; Bonafede, A.; Dallacasa, D.; Brunetti, G.; Mandal, S.; van Weeren, R. J.; Brüggen, M.; Cassano, R.; de Gasperin, F.; Hoang, D. N.; Hoeft, M.; Röttgering, H. J. A.; Savini, F.; White, G. J.; Wilber, A.; Venturi, T.

    2018-05-01

    Radio halos and radio relics are diffuse synchrotron sources that extend over Mpc-scales and are found in a number of merger galaxy clusters. They are believed to form as a consequence of the energy that is dissipated by turbulence and shocks in the intra-cluster medium (ICM). However, the precise physical processes that generate these steep synchrotron spectrum sources are still poorly constrained. We present a new LOFAR observation of the double galaxy cluster Abell 1758. This system is composed of A1758N, a massive cluster hosting a known giant radio halo, and A1758S, which is a less massive cluster whose diffuse radio emission is confirmed here for the first time. Our observations have revealed a radio halo and a candidate radio relic in A1758S, and a suggestion of emission along the bridge connecting the two systems which deserves confirmation. We combined the LOFAR data with archival VLA and GMRT observations to constrain the spectral properties of the diffuse emission. We also analyzed a deep archival Chandra observation and used this to provide evidence that A1758N and A1758S are in a pre-merger phase. The ICM temperature across the bridge that connects the two systems shows a jump which might indicate the presence of a transversal shock generated in the initial stage of the merger.

  12. On the unity of activity in galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowan-Robinson, M.

    1977-05-01

    A scheme is presented which unites quasars, radio galaxies, N galaxies, and Seyfert galaxies into a single picture of activity in galaxies. Probability functions are given for optical and radio cores, and extended radio sources (in the case of ellipticals), for both spirals and ellipticals. Activity occurs in galaxies of all luminosities, but the strength of it is made proportional to galaxy luminosity. It is assumed that there is dust surrounding the optical cores, to explain the strong infrared emission in Seyferts.Quasars may, in this picture, occur in both spirals and ellipticals, and in fact most optically selected QSOs aremore » predicted to be in spirals.« less

  13. ISM stripping from cluster galaxies and inhomogeneities in cooling flows

    NASA Technical Reports Server (NTRS)

    Soker, Noam; Bregman, Joel N.; Sarazin, Craig L.

    1990-01-01

    Analyses of the x ray surface brightness profiles of cluster cooling flows suggest that the mass flow rate decreases towards the center of the cluster. It is often suggested that this decrease results from thermal instabilities, in which denser blobs of gas cool rapidly and drop below x ray emitting temperatures. If the seeds for the thermal instabilities are entropy perturbations, these perturbations must enter the flow already in the nonlinear regime. Otherwise, the blobs would take too long to cool. Here, researchers suggest that such nonlinear perturbations might start as blobs of interstellar gas which are stripped out of cluster galaxies. Assuming that most of the gas produced by stellar mass loss in cluster galaxies is stripped from the galaxies, the total rate of such stripping is roughly M sub Interstellar Matter (ISM) approx. 100 solar mass yr(-1). It is interesting that the typical rates of cooling in cluster cooling flows are M sub cool approx. 100 solar mass yr(-1). Thus, it is possible that a substantial portion of the cooling gas originates as blobs of interstellar gas stripped from galaxies. The magnetic fields within and outside of the low entropy perturbations can help to maintain their identities, both by suppressing thermal conduction and through the dynamical effects of magnetic tension. One significant question concerning this scenario is: Why are cooling flows seen only in a fraction of clusters, although one would expect gas stripping to be very common. It may be that the density perturbations only survive and cool efficiently in clusters with a very high intracluster gas density and with the focusing effect of a central dominant galaxy. Inhomogeneities in the intracluster medium caused by the stripping of interstellar gas from galaxies can have a number of other effects on clusters. For example, these density fluctuations may disrupt the propagation of radio jets through the intracluster gas, and this may be one mechanism for producing Wide-Angle-Tail radio galaxies.

  14. Chandra X-Ray Observatory Image of Andromeda Galaxy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Chandra X-Ray Observatory took this first x-ray picture of the Andromeda Galaxy (M31) on October 13, 1999. The blue dot in the center of the image is a 'cool' million-degree x-ray source where a supermassive black hole with the mass of 30-million suns is located. The x-rays are produced by matter furneling toward the black hole. Numerous other hotter x-ray sources are also apparent. Most of these are probably due to x-ray binary systems, in which a neutron star or black hole is in close orbit around a normal star. While the gas falling into the central black hole is cool, it is only cool by comparison to the 100 other x-ray sources in the Andromeda Galaxy. To be detected by an x-ray telescope, the gas must have a temperature of more than a million degrees. The Andromeda Galaxy is our nearest neighbor spiral galaxy at a distance of two million light years. It is similar to our own Milky Way in size, shape, and also contains a supermassive black hole at the center. (Photo Credit: NASA/CXC/SAO/S. Murray, M. Garcia)

  15. Radio-loud AGN through the eyes of 3XMM, WISE and FIRST/NVSS

    NASA Astrophysics Data System (ADS)

    Mingo, B.

    2014-07-01

    We present the results from a new radio-loud AGN sample, obtained through the cross-correlation between the 3XMM, WISE and FIRST/NVSS catalogues. The radio selection allows us to eliminate the restrictions traditionally associated with mid-IR and X-ray sample selections, and to explore the population of lower luminosity AGN, in which the host galaxy contribution is substantial. We investigate the correlations between radio, mid-IR and X-ray emission associated to both stellar and AGN activity, and whether they can be disentangled. This work has been carried out as part of the ARCHES project. ARCHES (Astronomical Resource Cross-matching for High Energy Studies), funded within the EU/FP7-Cooperation Space framework, is a project which aims to produce well-characterised multi-wavelength data for large samples of sources drawn from the 3XMM serendipitous source catalogue.

  16. Relativistic inverse Compton scattering of photons from the early universe.

    PubMed

    Malu, Siddharth; Datta, Abhirup; Colafrancesco, Sergio; Marchegiani, Paolo; Subrahmanyan, Ravi; Narasimha, D; Wieringa, Mark H

    2017-12-05

    Electrons at relativistic speeds, diffusing in magnetic fields, cause copious emission at radio frequencies in both clusters of galaxies and radio galaxies through non-thermal radiation emission called synchrotron. However, the total power radiated through this mechanism is ill constrained, as the lower limit of the electron energy distribution, or low-energy cutoffs, for radio emission in galaxy clusters and radio galaxies, have not yet been determined. This lower limit, parametrized by the lower limit of the electron momentum - p min - is critical for estimating the total energetics of non-thermal electrons produced by cluster mergers or injected by radio galaxy jets, which impacts the formation of large-scale structure in the universe, as well as the evolution of local structures inside galaxy clusters. The total pressure due to the relativistic, non-thermal population of electrons can be measured using the Sunyaev-Zel'dovich Effect, and is critically dependent on p min , making the measurement of this non-thermal pressure a promising technique to estimate the electron low-energy cutoff. We present here the first unambiguous detection of this Sunyaev-Zel'dovich Effect for a non-thermal population of electrons in a radio galaxy jet/lobe, located at a significant distance away from the center of the Bullet cluster of galaxies.

  17. Discovery of Most Recent Supernova in Our Galaxy

    NASA Astrophysics Data System (ADS)

    2008-05-01

    The most recent supernova in our Galaxy has been discovered by tracking the rapid expansion of its remains. This result, using NASA's Chandra X-ray Observatory and NRAO's Very Large Array (VLA), has implications for understanding how often supernovas explode in the Milky Way galaxy. The supernova explosion occurred about 140 years ago, making it the most recent supernova in the Milky Way as measured in Earth's time frame. Previously, the last known galactic supernova occurred around 1680, based on studying the expansion of its remnant Cassiopeia A. X-ray Image Radio and X-ray Images The recent supernova explosion was not seen in optical light about 140 years ago because it occurred close to the center of the Galaxy, and is embedded in a dense field of gas and dust. This made it about a trillion times fainter, in optical light, than an unobscured supernova. However, the supernova remnant it caused, G1.9+0.3, is now seen in X-ray and radio images. "We can see some supernova explosions with optical telescopes across half of the Universe, but when they're in this murk we can miss them in our own cosmic backyard," said Stephen Reynolds of North Carolina State University, who led the Chandra study. "Fortunately, the expanding gas cloud from the explosion shines brightly in radio waves and X-rays for thousands of years. X-ray and radio telescopes can see through all that obscuration and show us what we've been missing." Astronomers regularly observe supernovas in other galaxies like ours, and based on those rates, estimate that about three should explode every century in our Milky Way, although these estimates have large margins of error. People Who Read This Also Read... Milky Way's Super-efficient Particle Accelerators Caught in The Act Oldest Known Objects Are Surprisingly Immature Action Replay of Powerful Stellar Explosion Milky Way’s Giant Black Hole Awoke from Slumber 300 Years Ago "If the supernova rate estimates are correct, there should be the remnants of about 10 supernova explosions that are younger than Cassiopeia A," said David Green of the University of Cambridge in the United Kingdom, who led the VLA study. "It's great to finally track one of them down." The tracking of this source began in 1985 when astronomers, led by Green, used the VLA to identify G1.9+0.3 as the remnant of a supernova explosion near the center of our Galaxy. Based on its small size, it was thought to have resulted from a supernova that exploded about 400 to 1000 years ago. Twenty two years later, Chandra observations of this object revealed that the remnant had expanded by a surprisingly large amount, about 16% since 1985. This indicates that the supernova remnant is much younger than previously thought. The young age was confirmed when new radio observations from the VLA were made just within the past several weeks. This "apples to apples" comparison nails the age of the remnant to be about 140 years (less if it has been slowing down), making it the youngest on record in the Milky Way. Finding such a recent, obscured supernova is a vital first step in making a better estimate of the supernova rate in our Galaxy. Knowing this rate is important because supernovas heat and redistribute large amounts of gas, pump large amounts of heavy elements out into their surroundings, and can trigger the formation of new stars, closing the cycle of stellar death and rebirth. The explosion may also leave behind, in addition to the expanding remnant, a central neutron star or black hole. In addition to being a record holder for youth, G1.9+0.3 is of considerable interest for other reasons. The high expansion velocities and the extreme particle energies that have been generated are unprecedented and should stimulate deeper studies of this object with Chandra and the VLA. "No other object in the Galaxy has properties like this," said Reynolds. "Finding G1.9+0.3 is extremely important for learning more about how some stars explode and what happens in the aftermath. Scientists can also use it to probe the environment into which it exploded. At perhaps only a few thousand light years from the center of the Galaxy, it appears to be embedded in the dense environment near the Milky Way's supermassive black hole. These results will appear in The Astrophysical Journal Letters. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.

  18. THE COMPLEX NORTH TRANSITION REGION OF CENTAURUS A: A GALACTIC WIND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neff, Susan G.; Eilek, Jean A.; Owen, Frazer N., E-mail: susan.g.neff@nasa.gov

    2015-04-01

    We present deep GALEX images of NGC 5128, the parent galaxy of Centaurus A. We detect a striking “weather ribbon” of far-UV (FUV) and Hα emission which extends more than 35 kpc northeast of the galaxy. This ribbon is associated with a knotty ridge of radio/X-ray emission and is an extension of the previously known string of optical emission-line filaments. Many phenomena in the region are too short-lived to have survived transit out from the inner galaxy; something must be driving them locally. We also detect FUV emission from the galaxy’s central dust lane. Combining this with previous radio andmore » far-IR measurements, we infer an active starburst in the central galaxy which is currently forming stars at ∼2 M{sub ☉} yr{sup −1}, and has been doing so for 50–100 Myr. If the wind from this starburst is enhanced by energy and mass driven out from the active galactic nucleus, the powerful augmented wind can be the driver needed for the northern weather system. We argue that both the diverse weather system, and the enhanced radio emission in the same region, result from the wind’s encounter with cool gas left by one of the recent merger/encounter events in the history of NGC 5128.« less

  19. [CII] emission from NGC 4258 with SOFIA/FIFI-LS

    NASA Astrophysics Data System (ADS)

    Fadda, Dario; Appleton, Philip N.; Diaz Santos, Tanio; Togi, Aditya; Ogle, Patrick

    2018-06-01

    We present the [CII]157.7μm map of the NGC 4258 (M106) galaxy obtained with the FIFI-LS spectrometer onboard SOFIA.M106 contains an active nucleus classified as type 1.9 Seyfert with a warped inner rotating disk of water-vapor masers which allowed for the first high accuracy measurements of the mass of a supermassive black hole in any galaxy. A relativistic jet is thought to be responsible for anomalous radio-continuum spiral arms, which appear several kpc from the center, and extend outwards through the outer disk. These arms do not correlate with the galaxy's underlying stellar spiral structure, and their presence suggest that in the past, the jet has strongly interacted with the galaxy's outer disk , exciting synchrotron radiation. Since that time, a new burst of activity seems to have occurred, creating a compact jet at the core of the galaxy, and two radio hotspots further out associated with optical "bow-shocks". The position angle of this new "active" jet is different from that needed to excited the outer radio arms, presumably because the jet has precessed, perhaps as a result of precession of the axis of the inner warped accretion disk.Our observations reveal three main sources of [CII] emission: two associated with large regions of gas at the ends of the active jet, and a third minor axis filament associated with linear clumps of star formation and dust seen in HST images offset from the nucleus. We combine the SOFIA observations with previous Spitzer mid-IR, Chandra X-ray and VLA radio observations to explore the nature of the detected [CII] emission. In regions along the northern active jet, we see a significant deficiency in the [CII]/FIR ratio, and higher ratios near the ends of the jet. This implies that the jet has changed the conditions of the gas along its length. In several places near the jet, the [CII] emission shows very broad lines, suggestive of enhanced turbulence. Additionally, the minor-axis filament we discovered may represent gas in-falling towards the nucleus perpendicular to the jet. The results provide clues about how radio jets in active galaxies can influence the star formation properties of their host galaxies.

  20. VLBA Reveals Formation Region of Giant Cosmic Jet

    NASA Astrophysics Data System (ADS)

    1999-10-01

    Astronomers have gained their first glimpse of the mysterious region near a black hole at the heart of a distant galaxy, where a powerful stream of subatomic particles spewing outward at nearly the speed of light is formed into a beam, or jet, that then goes nearly straight for thousands of light-years. The astronomers used radio telescopes in Europe and the U.S., including the National Science Foundation's (NSF) Very Long Baseline Array (VLBA) to make the most detailed images ever of the center of the galaxy M87, some 50 million light-years away. "This is the first time anyone has seen the region in which a cosmic jet is formed into a narrow beam," said Bill Junor of the University of New Mexico, in Albuquerque. "We had always speculated that the jet had to be made by some mechanism relatively near the black hole, but as we looked closer and closer to the center, we kept seeing an already-formed beam. That was becoming embarrassing, because we were running out of places to put the formation mechanism that we knew had to be there." Junor, along with John Biretta and Mario Livio of the Space Telescope Science Institute, in Baltimore, MD, now have shown that M87's jet is formed within a few tenths of a light-year of the galaxy's core, presumed to be a black hole three billion times more massive than the sun. In the formation region, the jet is seen opening widely, at an angle of about 60 degrees, nearest the black hole, but is squeezed down to only 6 degrees a few light-years away. "The 60-degree angle of the inner part of M87's jet is the widest such angle yet seen in any jet in the universe," said Junor. "We found this by being able to see the jet to within a few hundredths of a light-year of the galaxy's core -- an unprecedented level of detail." The scientists reported their findings in the October 28 issue of the journal Nature. At the center of M87, material being drawn inward by the strong gravitation of the black hole is formed into a rapidly-spinning flat disk, called an accretion disk. The subatomic particles are thought to be pushed outward from the poles of this disk. The scientists believe that magnetic fields in the disk are twisted tightly as the disk spins and then channel the electrically-charged particles into a pair of narrow jets. "Our new image of M87 supports this idea of magnetic fields doing the work of forming the stream of particles into a narrow jet," said Biretta. Jets such as the one in M87 are seen emerging from numerous galaxies throughout the universe. "What we learn about how M87's jet is formed and shaped can be applied to others," said Livio. "These jets coming from radio galaxies and quasars are among the greatest 'particle accelerators' in the universe, but we don't fully understand how they work. This new information will help scientists decipher the physics of these powerful 'engines,'" he added. "We can see such jets very far away, even at distances of billions of light-years," said Junor. "They are fascinating to us because they show how nature is somehow using the accretion disk and the jet to tap into the enormous gravitational energy of a black hole and use that energy to 'light up' the outer regions of the galaxy." "We have never thought these jets are created fully-formed," said Biretta. "They need some space in which to reach the stable configuration we see at larger scales. We now have seen that space for the first time, and this will help show which theoretical models might be right." He added that "magnetic fields are almost certainly involved," and said that future radio-telescope observations will attempt to find evidence of the magnetic fields. The astronomers studied M87 because it is one of the nearest jet- emitting galaxies and its strong radio emission made it an excellent target for radio telescopes. In addition to the VLBA, a continent-wide radio-telescope system, they used the NSF's Very Large Array, a radio telescope near Socorro, NM, and radio telescopes in Germany, Italy, Finland, Sweden and Spain. The signals from all the telescopes were combined to produce an image with extremely great resolution, or ability to discern fine detail. The combination of radio telescopes formed, in effect, a telescope the size of the Earth. In addition to using NSF's VLBA, Junor received financial support for his research from the NSF. Biretta and Livio received support from NASA. Both radio observations with the VLBA and optical observations with the Hubble Space Telescope have measured the motions of concentrations of material in M87's jets, and have shown the material to be moving at apparent speeds greater than that of light. This "superluminal" motion is a geometric illusion created by material moving nearly, but under, the speed of light, but in a direction somewhat toward the Earth. M87 also is known by radio astronomers as Virgo A, the strongest emitter of radio waves in the constellation Virgo. The galaxy was discovered by the French astronomer Charles Messier in 1781. The jet was first seen in 1918 by Lick Observatory astronomer Heber Curtis, who described it as "a curious straight ray." The galaxy's radio emission was first observed by Australian astronomers in 1948/49. M87 is the largest of thousands of galaxies in the Virgo Cluster of galaxies. The Local Group of galaxies, of which our own Milky Way is a member, is in the outskirts of the Virgo Cluster. The VLA and VLBA are instruments of the National Radio Astronomy Observatory, a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc. for NASA, under contract with NASA's Goddard Space Flight Center, Greenbelt, MD. ### CAPTION for Radio Images: Radio images of the galaxy M87 at different scales show, top left, giant, bubble-like structures where radio emission is thought to be powered by the jets from the galaxy's central black hole; top right, the jets of subatomic particles coming from the core; and bottom, the new VLBA image of the region close to the core, where the jet is formed into a narrow beam. The scales of the images are shown by white bars in each image: 10 kpc (kiloparsecs) is equal to 32,600 light-years; 1 kpc equals 3,260 light-years; and 0.01 pc equals 0.0326 light- years, or 2,062 times the distance from the Earth to the Sun. The small circle labeled 6Rs shows six times the Schwarzschild Radius, (radius of the event horizon) for the galaxy's black hole. That length corresponds to slightly more than 9 times the distance from the Sun to Pluto. The top two images are from the National Science Foundation's Very Large Array (VLA) radio telescope; the lower one from the NSF's Very Long Baseline Array (VLBA). Credit: National Radio Astronomy Observatory/Associated Universities, Inc. CAPTION for Graphic: Artist's conception of the formation region of M87's jet. Accretion disk (red-yellow) surrounds the black hole, and its magnetic field lines twist tightly to channel the outpouring subatomic particles into a narrow jet. The jet opens widely near the black hole, then is shaped into a narrower beam within a light- year of the black hole. Credit: Space Telescope Science Institute.

  1. Extended Narrow-Line Region in Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Congiu, Enrico; Contini, Marcella.; Ciroi, Stefano; Cracco, Valentina; Di Mille, Francesco; Berton, Marco; Frezzato, Michele; La Mura, Giovanni; Rafanelli, Piero

    2017-10-01

    We present our recent results about the extended narrow-line region (ENLR) of two nearby Seyfert 2 galaxies (IC 5063 and NGC 7212) obtained by modelling the observed line profiles and spectra with composite models (photoionization+shocks) in the different regions surrounding the AGN. Then, we compare the Seyfert 2 ENLRs with the very extended one recently discovered in the narrow-line Seyfert 1 (NLS1) galaxy Mrk 783. We have found several evidences of interaction between the ISM of the galaxies and their radio jets, such as a) the contribution of shocks in ionizing the high velocity gas, b) the complex kinematics showed by the profile of the emission lines, c) the high fragmentation of matter, etc. The results suggest that the ENLR of IC 5063 have a hollow bi-conical shape, with one edge aligned to the galaxy disk, which may cause some kind of dependence on velocity of the ionization parameter. Regarding the Mrk 783 properties, it is found that the extension of the optical emission is almost twice the size of the radio one and it seems due to the AGN activity, although there is contamination by star formation around 12 arcsec from the nucleus. Diagnostic diagrams excluded the contribution of star formation in IC 5063 and NGC 7212, while the shock contribution was used to explain the spectra emitted by their high velocity gas.

  2. Stellar Dynamics and Star Formation Histories of z ∼ 1 Radio-loud Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barišić, Ivana; Van der Wel, Arjen; Chauké, Priscilla

    We investigate the stellar kinematics and stellar populations of 58 radio-loud galaxies of intermediate luminosities ( L {sub 3} {sub GHz} > 10{sup 23} W Hz{sup −1}) at 0.6 < z < 1. This sample is constructed by cross-matching galaxies from the deep VLT/VIMOS LEGA-C spectroscopic survey with the VLA 3 GHz data set. The LEGA-C continuum spectra reveal for the first time stellar velocity dispersions and age indicators of z ∼ 1 radio galaxies. We find that z ∼ 1 radio-loud active galactic nucleus (AGN) occur exclusively in predominantly old galaxies with high velocity dispersions: σ {sub *} >more » 175 km s{sup −1}, corresponding to black hole masses in excess of 10{sup 8} M {sub ⊙}. Furthermore, we confirm that at a fixed stellar mass the fraction of radio-loud AGN at z ∼ 1 is five to 10 times higher than in the local universe, suggesting that quiescent, massive galaxies at z ∼ 1 switch on as radio AGN on average once every Gyr. Our results strengthen the existing evidence for a link between high black hole masses, radio loudness, and quiescence at z ∼ 1.« less

  3. Ultraviolet and Radio Emission from the Northern Middle Lobe of Centaurus A

    NASA Technical Reports Server (NTRS)

    Neff, Susan

    2009-01-01

    We present deep GALEX ultraviolet (135 - 280 nm) images of the Northern Middle Lobe (NML) of the nearby radio galaxy Centaurus A. We find that the ultraviolet emission appears to have a complex interaction with soft X-ray, H-alpha emission, and radio emission, which should help constrain various models of energy transport in the NML. We also present new 90cm VLA images of the NML. The radio morphology at this wavelength is indicative of a more complex system than either a straightforward flaring jet (Morganti et al. 1999) or a bubble with trailing stem (Saxton et al. 2001). New limits are placed on the lack of radio emission from any corresponding southern counterpart to the NML.

  4. The Northern Middle Lobe of Centaurus A: Circumgalactic Gas in a Starburst Wind

    NASA Technical Reports Server (NTRS)

    Neff, S. G.; Eilek, J. A.; Owen, F. N.; Schiminovich, D.; Seibert, M.; Thilker, D.

    2012-01-01

    We present deep ultraviolet (GALEX), radio continuum (VLA) and H-alpha (Magellan) images of the circumgalactic medium around Centaurus A (NGC5128). We focus on the Northern Middle Lobe (NML), a region extending more than 50kpc beyond the galaxy and known to host a collection of striking phenomena: emission line filaments, recent star formation, disrupted HI/molecular gas streams, and short-lived X-ray clouds. Far UV emission is tightly correlated with H-alpha emission for more than 50kpc, and loosely associated with a filament of X-ray clouds and with the radio continuum emission. The radio emission in the NML region does not appear to be an extension of the inner radio jet (10kpc) or a typical radio lobe. We speculate that the "weather" seen in the NML region is a short-lived phenomenon, caused by an outflow encountering cool gas deposited by one of the recent merger/encounter events which have characterized the history of NGC5128.

  5. Accretion States of the Galactic Micro Quasar GRS 1758-258

    NASA Technical Reports Server (NTRS)

    Soria, Roberto; Mehdipour, Missagh; Broderick, Jess W.; Hao, JingFang; Hannikainen, Diana C.; Pottschmidt, Katja; Zhang, Shuang-Nan

    2011-01-01

    We present the results of a radio and X-ray study of the Galactic micro quasar GRS 1758-258, using unpublished archival data and new observations. We focus in particular on the 2000-2002 state transitions, and on its more quiet behaviour in 2008-2009. Our spectral and timing analysis of the XMM-Newton data shows that the source was in the canonical intermediate, soft and hard states in 2000 September 19,2001 March 22 and 2002 September 28, respectively. We estimate the disk size, luminosity and temperature, which are consistent with a black hole mass approx.10 Solar Mass, There is much overlap between the range of total X-ray luminosities (on average approx. 0.02L(sub Edd)) in the hard and soft states, and probably between the corresponding mass accretion rates; in fact, the hard state is often more luminous. The extended radio lobes seen in 1992 and 1997 are still present in 2008-2009. The 5-GHz radio core flux density has shown variability between approx. 0.1-0.5 mJy over the last two decades. This firmly places GRS 1758-258 in the radio-quiet sequence of Galactic black holes, in the radio/X-ray plane. We note that this dichotomy is similar to the dichotomy between the radio/X-ray sequences of Seyfert and radio galaxies. We propose that the different radio efficiency of the two sequences is due to relativistic electron/positron jets in radio-loud black holes, and sub-relativistic, thermally dominated outflows in radio-quiet sources.

  6. Radio Map of the Andromeda Galaxy.

    PubMed

    Macleod, J M

    1964-07-24

    The University of Illinois radio telescope has resolved the 610.5 Mcy/sec disk component of radio emission from the large galaxy M 31 into several discrete concentrations. In two cases, these correspond to the crossing of the optical major axis by spiral arms. A spur of emission extends southeast from the galaxy near the minor axis.

  7. Redshifts of twenty radio galaxies.

    NASA Technical Reports Server (NTRS)

    Burbidge, E. M.; Strittmatter, P. A.

    1972-01-01

    Spectroscopic observations and redshifts of 20 radio galaxies obtained with the Lick 120-inch telescope are presented. Ten of the radio galaxies are from the 3C R catalog, and the remainder are from the 4C, 5C, Ohio, and Parkes catalogs. The reported results represent a continuation of Burbidge's (1970) previously published data.

  8. Shock Heating of the Merging Galaxy Cluster A521

    NASA Technical Reports Server (NTRS)

    Bourdin, H.; Mazzotta, P.; Markevitch, M.; Giacintucci, S.; Brunetti, G.

    2013-01-01

    A521 is an interacting galaxy cluster located at z = 0.247, hosting a low-frequency radio halo connected to an eastern radio relic. Previous Chandra observations hinted at the presence of an X-ray brightness edge at the position of the relic, which may be a shock front. We analyze a deep observation of A521 recently performed with XMM-Newton in order to probe the cluster structure up to the outermost regions covered by the radio emission. The cluster atmosphere exhibits various brightness and temperature anisotropies. In particular, two cluster cores appear to be separated by two cold fronts. We find two shock fronts, one that was suggested by Chandra and that is propagating to the east, and another to the southwestern cluster outskirt. The two main interacting clusters appear to be separated by a shock-heated region, which exhibits a spatial correlation with the radio halo. The outer edge of the radio relic coincides spatially with a shock front, suggesting that this shock is responsible for the generation of cosmic-ray electrons in the relic. The propagation direction and Mach number of the shock front derived from the gas density jump, M = 2.4 +/- 0.2, are consistent with expectations from the radio spectral index, under the assumption of Fermi I acceleration mechanism.

  9. THE TYPE Ia SUPERNOVA RATE IN RADIO AND INFRARED GALAXIES FROM THE CANADA-FRANCE-HAWAII TELESCOPE SUPERNOVA LEGACY SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, M. L.; Pritchet, C. J.; Balam, D.

    2010-02-15

    We have combined the large SN Ia database of the Canada-France-Hawaii Telescope Supernova Legacy Survey and catalogs of galaxies with photometric redshifts, Very Large Array 1.4 GHz radio sources, and Spitzer infrared sources. We present eight SNe Ia in early-type host galaxies which have counterparts in the radio and infrared source catalogs. We find the SN Ia rate in subsets of radio and infrared early-type galaxies is {approx}1-5 times the rate in all early-type galaxies, and that any enhancement is always {approx}<2{sigma}. Rates in these subsets are consistent with predictions of the two-component 'A+B' SN Ia rate model. Since infraredmore » properties of radio SN Ia hosts indicate dust-obscured star formation, we incorporate infrared star formation rates into the 'A+B' model. We also show the properties of SNe Ia in radio and infrared galaxies suggest the hosts contain dust and support a continuum of delay time distributions (DTDs) for SNe Ia, although other DTDs cannot be ruled out based on our data.« less

  10. A Giant Radio Halo in a Low-Mass SZ-Selected Galaxy Cluster: ACT-CL J0256.5+0006

    NASA Technical Reports Server (NTRS)

    Knowles, K.; Intema, H. T.; Baker, A. J.; Bharadwaj, V.; Bond, J. R.; Cress, C.; Gupta, N.; Hajian, A.; Hilton, M.; Hincks, A. D.; hide

    2016-01-01

    We present the detection of a giant radio halo (GRH) in the Sunyaev-Zel'dovich (SZ)-selected merging galaxy cluster ACT-CL J0256.5+0006 (zeta = 0.363), observed with the Giant Metrewave Radio Telescope at 325 MHz and 610 MHz. We find this cluster to host a faint (S(sub 610) = 5.6 +/- 1.4 mJy) radio halo with an angular extent of 2.6 arcmin, corresponding to 0.8 Mpc at the cluster redshift, qualifying it as a GRH. J0256 is one of the lowest-mass systems, M(sub 500,SZ) = (5.0 +/- 1.2) x 10(sup14) solar mass foud to host a GRH. We measure the GRH at lower significance at 325 MHz (S(sub 325) = 10.3 +/- 5.3 mJy), obtaining a spectral index measurement of alpha sup 610 sub 325 = 1.0(sup +0.7)(sub 0.9). This result is consistent with the mean spectral index of the population of typical radio halos, alpha = 1.2 +/- 0.2. Adopting the latter value, we determine a 1.4 GHz radio power of P(sub 1.4GHz) = (1.0 +/- 03) x 10(sup 24) W Hz(sup -1), placing this cluster within the scatter of known scaling relations. Various lines of evidence, including the ICM morphology, suggest that ACT-CL J0256.5+0006 is composed of two subclusters. We determine a merger mass ratio of 7:4, and a line-of-sight velocity difference of perpendicular = 1880 +/- 210 km s(sup -1). We construct a simple merger model of infer relevant time-scales in the merger. From its location on the P1.4GHz-L(sub x) scaling relation, we infer that we observe ACT-CL J0256.5+0006 just before first core crossing.

  11. LOFAR discovery of an ultra-steep radio halo and giant head-tail radio galaxy in Abell 1132

    NASA Astrophysics Data System (ADS)

    Wilber, A.; Brüggen, M.; Bonafede, A.; Savini, F.; Shimwell, T.; van Weeren, R. J.; Rafferty, D.; Mechev, A. P.; Intema, H.; Andrade-Santos, F.; Clarke, A. O.; Mahony, E. K.; Morganti, R.; Prandoni, I.; Brunetti, G.; Röttgering, H.; Mandal, S.; de Gasperin, F.; Hoeft, M.

    2018-01-01

    Low-Frequency Array (LOFAR) observations at 144 MHz have revealed large-scale radio sources in the unrelaxed galaxy cluster Abell 1132. The cluster hosts diffuse radio emission on scales of ∼650 kpc near the cluster centre and a head-tail (HT) radio galaxy, extending up to 1 Mpc, south of the cluster centre. The central diffuse radio emission is not seen in NRAO VLA FIRST Survey, Westerbork Northern Sky Survey, nor in C & D array VLA observations at 1.4 GHz, but is detected in our follow-up Giant Meterwave Radio Telescope (GMRT) observations at 325 MHz. Using LOFAR and GMRT data, we determine the spectral index of the central diffuse emission to be α = -1.75 ± 0.19 (S ∝ να). We classify this emission as an ultra-steep spectrum radio halo and discuss the possible implications for the physical origin of radio haloes. The HT radio galaxy shows narrow, collimated emission extending up to 1 Mpc and another 300 kpc of more diffuse, disturbed emission, giving a full projected linear size of 1.3 Mpc - classifying it as a giant radio galaxy (GRG) and making it the longest HT found to date. The head of the GRG coincides with an elliptical galaxy (SDSS J105851.01+564308.5) belonging to Abell 1132. In our LOFAR image, there appears to be a connection between the radio halo and the GRG. The turbulence that may have produced the halo may have also affected the tail of the GRG. In turn, the GRG may have provided seed electrons for the radio halo.

  12. Active galactic nucleus feedback in clusters of galaxies

    PubMed Central

    Blanton, Elizabeth L.; Clarke, T. E.; Sarazin, Craig L.; Randall, Scott W.; McNamara, Brian R.

    2010-01-01

    Observations made during the last ten years with the Chandra X-ray Observatory have shed much light on the cooling gas in the centers of clusters of galaxies and the role of active galactic nucleus (AGN) heating. Cooling of the hot intracluster medium in cluster centers can feed the supermassive black holes found in the nuclei of the dominant cluster galaxies leading to AGN outbursts which can reheat the gas, suppressing cooling and large amounts of star formation. AGN heating can come in the form of shocks, buoyantly rising bubbles that have been inflated by radio lobes, and the dissipation of sound waves. PMID:20351250

  13. High-redshift galaxy populations.

    PubMed

    Hu, Esther M; Cowie, Lennox L

    2006-04-27

    We now see many galaxies as they were only 800 million years after the Big Bang, and that limit may soon be exceeded when wide-field infrared detectors are widely available. Multi-wavelength studies show that there was relatively little star formation at very early times and that star formation was at its maximum at about half the age of the Universe. A small number of high-redshift objects have been found by targeting X-ray and radio sources and most recently, gamma-ray bursts. The gamma-ray burst sources may provide a way to reach even higher-redshift galaxies in the future, and to probe the first generation of stars.

  14. ALMA Explores How Supermassive Black Holes Talk to Their Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-03-01

    We believe that supermassive black holes evolve in tandem with their host galaxies but how do the two communicate? Observations from the Atacama Large Millimeter/submillimeter Array (ALMA) have revealed new clues about how a monster black hole talks to its galaxy.A Hubble image of the central galaxy in the Phoenix cluster. [Adapted from Russell et al. 2017]Observing FeedbackActive galactic nuclei (AGN), the highly luminous centers of some galaxies, are thought to radiate due to active accretion onto the supermassive black hole at their center.Its long been suspected that the radiation and outflowing material which often takes the form of enormous bipolar radio jets emitted into the surroundings influence the AGNs host galaxy, affecting star formation rates and the evolution of the galaxy. This AGN feedback has been alternately suggested to trigger star formation, quench it, and truncate the growth of massive galaxies.The details of this feedback process, however, have yet to be thoroughly understood in part because its difficult to obtain detailed observations of how AGN outflows interact with the galactic gas surrounding them. Now, a team of scientists led by Helen Russell (Institute of Astronomy in Cambridge, UK) has published the results of a new, high-resolution look at the gas in a massive galaxy in the center of the Phoenix cluster.Many Uses for FuelThe Phoenix cluster, a nearby (z = 0.596) group of star-forming galaxies, is the most luminous X-ray cluster known. The central galaxy in the cluster is especially active: it hosts a starburst of 500800 solar masses per year, the largest starburst found in any galaxy below a redshift of z= 1.The star formation in this galaxy is sustained by an enormous reservoir of cold molecular gas roughly 20 billion solar masses worth. This reservoir also powers the galaxys central black hole, fueling powerful radio jets that extend into the hot atmosphere of the galaxy and blow a giant bubble into the hot gas at each pole.ALMA observations of the molecular gas in the central galaxy of the Phoenix cluster. The bubbles blown by the radio jets are indicated by the dashed white contours. Extended filaments of molecular gas can be seen to wrap around these cavities. [Adapted from Russell et al. 2017]ALMA Spots FilamentsALMAs observations of this reservoir show that extended filaments of molecular gas wrap around the peripheries of the radio bubbles. These filaments span 1020 kpc ( 3060 thousand light-years) and have a mass of several billion solar masses. The velocity gradients along them are smooth, suggesting that the gas is moving in an ordered flow around the bubble.Russell and collaborators suggest that these observations indicate that the clouds of molecular gas were either lifted by the radio bubbles as they inflated, or they formed in place via instabilities caused by the inflating bubbles.Either way, the data provide clear confirmation that the jets from the black hole affect the location and motion of the cold gas in the surrounding galaxy. This is a beautiful pieceof direct evidence showing how supermassive black holes might be communicating with their galaxies.CitationH. R. Russell et al 2017 ApJ 836 130. doi:10.3847/1538-4357/836/1/130

  15. Infrared images of distant 3C radio galaxies

    NASA Technical Reports Server (NTRS)

    Eisenhardt, Peter; Chokshi, Arati

    1990-01-01

    J (1.2-micron) and K (2.2 micron) images have been obtained for eight 3CR radio galaxies with redshifts from 0.7 to 1.8. Most of the objects were known to have extended asymmetric optical continuum or line emission aligned with the radio lobe axis. In general, the IR morphologies of these galaxies are just as peculiar as their optical morphologies. For all the galaxies, when asymmetric structure is present in the optical, structure with the same orientation is seen in the IR and must be accounted for in any model to explain the alignment of optical and radio emission.

  16. Radio emission from the X-ray pulsar Her X-1: a jet launched by a strong magnetic field neutron star?

    NASA Astrophysics Data System (ADS)

    van den Eijnden, J.; Degenaar, N.; Russell, T. D.; Miller-Jones, J. C. A.; Wijnands, R.; Miller, J. M.; King, A. L.; Rupen, M. P.

    2018-01-01

    Her X-1 is an accreting neutron star (NS) in an intermediate-mass X-ray binary. Like low-mass X-ray binaries (LMXBs), it accretes via Roche lobe overflow, but similar to many high-mass X-ray binaries containing a NS; Her X-1 has a strong magnetic field and slow spin. Here, we present the discovery of radio emission from Her X-1 with the Very Large Array. During the radio observation, the central X-ray source was partially obscured by a warped disc. We measure a radio flux density of 38.7 ± 4.8 μJy at 9 GHz but cannot constrain the spectral shape. We discuss possible origins of the radio emission, and conclude that coherent emission, a stellar wind, shocks and a propeller outflow are all unlikely explanations. A jet, as seen in LMXBs, is consistent with the observed radio properties. We consider the implications of the presence of a jet in Her X-1 on jet formation mechanisms and on the launching of jets by NSs with strong magnetic fields.

  17. A new giant luminous arc gravitational lens associated with a z = 0.62 galaxy cluster, and the environments of distant radio galaxies

    NASA Technical Reports Server (NTRS)

    Dickinson, Mark

    1993-01-01

    In the course of a survey investigating the cluster environments of distant 3CR radio galaxies, I have identified a previously unknown 'giant luminous arc' gravitational lens. The lensing cluster is associated with the radio galaxy 3C 220.1 at z = 0.62 and is the most distant cluster now known to produce such arcs. I present imaging and spectroscopic observations of the cluster and the arc, and discuss the implications for the cluster mass. At z greater than 0.6 the cluster velocity dispersions implied by such giant arcs may provide an interesting constraint on theories of large scale structure formation. The parent investigation in which this arc was identified concerns galaxy clusters and radio galaxy environments at 0.35 less than z less than 0.8. At the present epoch, powerful FR 2 radio galaxies tend to be found in environments of poor or average galaxy density. In contrast, at the higher redshifts investigated here, richer group and cluster environments are common. I present additional data on other clusters from this survey, and discuss its extension to z greater than 1 through a program of near-infrared and optical imaging.

  18. `Zwicky's Nonet': a compact merging ensemble of nine galaxies and 4C 35.06, a peculiar radio galaxy with dancing radio jets

    NASA Astrophysics Data System (ADS)

    Biju, K. G.; Bagchi, Joydeep; Ishwara-Chandra, C. H.; Pandey-Pommier, M.; Jacob, Joe; Patil, M. K.; Kumar, P. Sunil; Pandge, Mahadev; Dabhade, Pratik; Gaikwad, Madhuri; Dhurde, Samir; Abraham, Sheelu; Vivek, M.; Mahabal, Ashish A.; Djorgovski, S. G.

    2017-10-01

    We report the results of our radio, optical and infrared studies of a peculiar radio source 4C 35.06, an extended radio-loud active galactic nucleus (AGN) at the centre of galaxy cluster Abell 407 (z = 0.047). The central region of this cluster hosts a remarkably tight ensemble of nine galaxies, the spectra of which resemble those of passive red ellipticals, embedded within a diffuse stellar halo of ˜1 arcmin size. This system (named 'Zwicky's Nonet') provides unique and compelling evidence for a multiple-nucleus cD galaxy precursor. Multifrequency radio observations of 4C 35.06 with the Giant Meterwave Radio Telescope (GMRT) at 610, 235 and 150 MHz reveal a system of 400-kpc scale helically twisted and kinked radio jets and outer diffuse lobes. The outer extremities of jets contain extremely steep-spectrum (spectral index -1.7 to -2.5) relic/fossil radio plasma with a spectral age of a few ×(107-108) yr. Such ultra-steep spectrum relic radio lobes without definitive hotspots are rare and they provide an opportunity to understand the life cycle of relativistic jets and physics of black hole mergers in dense environments. We interpret our observations of this radio source in the context of growth of its central black hole, triggering of its AGN activity and jet precession, all possibly caused by galaxy mergers in this dense galactic system. A slow conical precession of the jet axis due to gravitational perturbation between interacting black holes is invoked to explain the unusual jet morphology.

  19. Next VLT Instrument Ready for the Astronomers

    NASA Astrophysics Data System (ADS)

    2000-02-01

    FORS2 Commissioning Period Successfully Terminated The commissioning of the FORS2 multi-mode astronomical instrument at KUEYEN , the second FOcal Reducer/low dispersion Spectrograph at the ESO Very Large Telescope, was successfully finished today. This important work - that may be likened with the test driving of a new car model - took place during two periods, from October 22 to November 21, 1999, and January 22 to February 8, 2000. The overall goal was to thoroughly test the functioning of the new instrument, its conformity to specifications and to optimize its operation at the telescope. FORS2 is now ready to be handed over to the astronomers on April 1, 2000. Observing time for a six-month period until October 1 has already been allocated to a large number of research programmes. Two of the images that were obtained with FORS2 during the commissioning period are shown here. An early report about this instrument is available as ESO PR 17/99. The many modes of FORS2 The FORS Commissioning Team carried out a comprehensive test programme for all observing modes. These tests were done with "observation blocks (OBs)" that describe the set-up of the instrument and telescope for each exposure in all details, e.g., position in the sky of the object to be observed, filters, exposure time, etc.. Whenever an OB is "activated" from the control console, the corresponding observation is automatically performed. Additional information about the VLT Data Flow System is available in ESO PR 10/99. The FORS2 observing modes include direct imaging, long-slit and multi-object spectroscopy, exactly as in its twin, FORS1 at ANTU . In addition, FORS2 contains the "Mask Exchange Unit" , a motorized magazine that holds 10 masks made of thin metal plates into which the slits are cut by means of a laser. The advantage of this particular observing method is that more spectra (of more objects) can be taken with a single exposure (up to approximately 80) and that the shape of the slits can be adapted to the shape of the objects, thus increasing the scientific return. Results obtained so far look very promising. To increase further the scientific power of the FORS2 instrument in the spectroscopic mode, a number of new optical dispersion elements ("grisms", i.e., a combination of a grating and a glass prism) have been added. They give the scientists a greater choice of spectral resolution and wavelength range. Another mode that is new to FORS2 is the high time resolution mode. It was demonstrated with the Crab pulsar, cf. ESO PR 17/99 and promises very interesting scientific returns. Images from the FORS2 Commissioning Phase The two composite images shown below were obtained during the FORS2 commissioning work. They are based on three exposures through different optical broadband filtres (B: 429 nm central wavelength; 88 nm FWHM (Full Width at Half Maximum), V: 554/111 nm, R: 655/165 nm). All were taken with the 2048 x 2048 pixel 2 CCD detector with a field of view of 6.8 x 6.8 arcmin 2 ; each pixel measures 24 µm square. They were flatfield corrected and bias subtracted, scaled in intensity and some cosmetic cleaning was performed, e.g. removal of bad columns on the CCD. North is up and East is left. Tarantula Nebula in the Large Magellanic Cloud ESO Press Photo 05a/00 ESO Press Photo 05a/00 [Preview; JPEG: 400 x 452; 52k] [Normal; JPEG: 800 x 903; 142k] [Full-Res; JPEG: 2048 x 2311; 2.0Mb] The Tarantula Nebula in the Large Magellanic Cloud , as obtained with FORS2 at KUEYEN during the recent Commissioning period. It was taken during the night of January 31 - February 1, 2000. It is a composite of three exposures in B (30 sec exposure, image quality 0.75 arcsec; here rendered in blue colour), V (15 sec, 0.70 arcsec; green) and R (10 sec, 0.60 arcsec; red). The full-resolution version of this photo retains the orginal pixels. 30 Doradus , also known as the Tarantula Nebula , or NGC 2070 , is located in the Large Magellanic Cloud (LMC) , some 170,000 light-years away. It is one of the largest known star-forming regions in the Local Group of Galaxies. It was first catalogued as a star, but then recognized to be a nebula by the French astronomer A. Lacaille in 1751-52. The Tarantula Nebula is the only extra-galactic nebula which can be seen with the unaided eye. It contains in the centre the open stellar cluster R 136 with many of the largest, hottest, and most massive stars known. Radio Galaxy Centaurus A ESO Press Photo 05b/00 ESO Press Photo 05b/00 [Preview; JPEG: 400 x 448; 40k] [Normal; JPEG: 800 x 896; 110k] [Full-Res; JPEG: 2048 x 2293; 2.0Mb] The radio galaxy Centarus A , as obtained with FORS2 at KUEYEN during the recent Commissioning period. It was taken during the night of January 31 - February 1, 2000. It is a composite of three exposures in B (300 sec exposure, image quality 0.60 arcsec; here rendered in blue colour), V (240 sec, 0.60 arcsec; green) and R (240 sec, 0.55 arcsec; red). The full-resolution version of this photo retains the orginal pixels. ESO Press Photo 05c/00 ESO Press Photo 05c/00 [Preview; JPEG: 400 x 446; 52k] [Normal; JPEG: 801 x 894; 112k] An area, north-west of the centre of Centaurus A with a detailed view of the dust lane and clusters of luminous blue stars. The normal version of this photo retains the orginal pixels. The new FORS2 image of Centaurus A , also known as NGC 5128 , is an example of how frontier science can be combined with esthetic aspects. This galaxy is a most interesting object for the present attempts to understand active galaxies . It is being investigated by means of observations in all spectral regions, from radio via infrared and optical wavelengths to X- and gamma-rays. It is one of the most extensively studied objects in the southern sky. FORS2 , with its large field-of-view and excellent optical resolution, makes it possible to study the global context of the active region in Centaurus A in great detail. Note for instance the great number of massive and luminous blue stars that are well resolved individually, in the upper right and lower left in PR Photo 05b/00 . Centaurus A is one of the foremost examples of a radio-loud active galactic nucleus (AGN) . On images obtained at optical wavelengths, thick dust layers almost completely obscure the galaxy's centre. This structure was first reported by Sir John Herschel in 1847. Until 1949, NGC 5128 was thought to be a strange object in the Milky Way, but it was then identified as a powerful radio galaxy and designated Centaurus A . The distance is about 10-13 million light-years (3-4 Mpc) and the apparent visual magnitude is about 8, or 5 times too faint to be seen with the unaided eye. There is strong evidence that Centaurus A is a merger of an elliptical with a spiral galaxy, since elliptical galaxies would not have had enough dust and gas to form the young, blue stars seen along the edges of the dust lane. The core of Centaurus A is the smallest known extragalactic radio source, only 10 light-days across. A jet of high energy particles from this centre is observed in radio and X-ray images. The core probably contains a supermassive black hole with a mass of about 100 million solar masses. This is the caption to ESO PR Photos 05a-c/00 . They may be reproduced, if credit is given to the European Southern Observatory..

  20. The X-ray emitting galaxy Cen-A

    NASA Technical Reports Server (NTRS)

    Mushotzky, R. F.; Sercemitsos, P. J.; Becker, R. H.; Boldt, E. A.; Holt, S. S.

    1977-01-01

    OSO-8 X-ray observations of Cen-A in 1975 and 1976 are reported. The source spectrum is well fit in both years by a power law of number index 1.62 and absorption due to 1.3 x 10 to the 23rd power at/sq cm. The total flux varied by a factor 2 between 1975 and 1976. In 1976 there were approximately 40% flux variations on a time scale of days. The 6.4 keV Fe fluorescent line and the 7.1 keV absorption edge were measured implying Fe/H approximately equals .000016. Simultaneous radio measurements show variation in phase with X-ray variability. Models considering radio, milimeter, IR and X-ray data show that all the data can be accounted for by a model in which the X-rays are due to a synchrotron self-Compton source embedded in a cold H(2) cloud.

  1. Galaxy Cluster Takes It to the Extreme

    NASA Astrophysics Data System (ADS)

    2007-05-01

    Evidence for an awesome upheaval in a massive galaxy cluster was discovered in an image made by NASA's Chandra X-ray Observatory. The origin of a bright arc of ferociously hot gas extending over two million light years requires one of the most energetic events ever detected. The cluster of galaxies is filled with tenuous gas at 170 million degree Celsius that is bound by the mass equivalent of a quadrillion, or 1,000 trillion, suns. The temperature and mass make this cluster a giant among giants. VLA Radio Image of 3C438 VLA Radio Image of 3C438 "The huge feature detected in the cluster, combined with the high temperature, points to an exceptionally dramatic event in the nearby Universe," said Ralph Kraft of the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass., and leader of a team of astronomers involved in this research. "While we're not sure what caused it, we've narrowed it down to a couple of exciting possibilities." The favored explanation for the bright X-ray arc is that two massive galaxy clusters are undergoing a collision at about 4 million miles per hour. Shock waves generated by the violent encounter of the clusters' hot gas clouds could produce a sharp change in pressure along the boundary where the collision is occurring, giving rise to the observed arc-shaped structure which resembles a titanic weather front. "Although this would be an extreme collision, one of the most powerful ever seen, we think this may be what is going on," said team member Martin Hardcastle, of the University of Hertfordshire, United Kingdom. Images of 3C438 and Surrounding Galaxy Cluster Images of 3C438 and Surrounding Galaxy Cluster A problem with the collision theory is that only one peak in the X-ray emission is seen, whereas two are expected. Longer observations with Chandra and the XMM-Newton X-ray observatories should help determine how serious this problem is for the collision hypothesis. Another possible explanation is that the disturbance was caused by an outburst generated by the infall of matter into a supermassive black hole located in a central galaxy. The black hole inhales much of the matter but expels some of it outward in a pair of high-speed jets, heating and pushing aside the surrounding gas. Such events are known to occur in this cluster. The galaxy 3C438 in the central region of the cluster is known to be a powerful source of explosive activity, which is presumably due to a central supermassive black hole. But the energy in these outbursts is not nearly large enough to explain the Chandra data. "If this event was an outburst from a supermassive black hole, then it's by far the most powerful one ever seen," said team member Bill Forman, also of CfA. The phenomenal amount of energy involved implies a very large amount of mass would have been swallowed by the black hole, about 30 billion times the Sun's mass over a period of 200 million years. The authors consider this rate of black hole growth implausible. "These values have never been seen before and, truthfully, are hard to believe," said Kraft. These results were presented at the American Astronomical Society meeting in Honolulu, HI, and will appear in an upcoming issue of The Astrophysical Journal. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  2. Interstellar matter in early-type galaxies. I. The catalog

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, M.S.; Hogg, D.E.; Bregman, J.N.

    1991-03-01

    A catalog is given of the currently available measurements of interstellar matter in the 467 early-type galaxies listed in the second edition of the Revised Shapley-Ames Catalog of Bright Galaxies. The morphological type range is E, SO, and Sa. The ISM tracers are emission in the following bands: IRAS 100 micron, X-ray, radio, neutral hydrogen, and carbon monoxide. Nearly two-thirds of the Es and SOs have been detected in one or more of these tracers. Additional observed quantities that are tabulated include: magnitude, colors, radial velocity, central velocity dispersion, maximum of the rotation curve, angular size, 60 micron flux, andmore » supernovae. Qualitative statements as to the presence of dust or emission lines, when available in the literature, are given. Quantities derivative from the observed values are also listed and include masses of H I, CO, X-ray gas, and dust as well as an estimate of the total mass and mass-to-luminosity ratio of the individual galaxies. 204 refs.« less

  3. Xray cavities in a sample of 83 SPT-selected clusters galaxies. Tracing the evolution of AGN feedback in clusters of galaxies out to z=1.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hlavacek-Larrondo, J.; McDonald, M.; Benson, B. A.

    2015-05-18

    X-ray cavities are key tracers of mechanical (or radio mode) heating arising from the active galactic nuclei (AGNs) in brightest cluster galaxies (BCGs). We report on a survey for X-ray cavities in 83 massive, high-redshift (more » $$0.4\\lt z\\lt 1.2$$) clusters of galaxies selected by their Sunyaev-Zel’dovich signature in the South Pole Telescope data. Based on Chandra X-ray images, we find a total of six clusters having symmetric pairs of surface brightness depressions consistent with the picture of radio jets inflating X-ray cavities in the intracluster medium (ICM). The majority of these detections are of relatively low significance and require deeper follow-up data in order to be confirmed. Further, this search will miss small (<10 kpc) X-ray cavities that are unresolved by Chandra at high ($$z\\gtrsim 0.5$$) redshift. Despite these limitations, our results suggest that the power generated by AGN feedback in BCGs has remained unchanged for over half of the age of the universe ($$\\gt 7$$ Gyr at $$z\\sim 0.8$$). On average, the detected X-ray cavities have powers of $$(0.8-5)\\times {{10}^{45}}\\ {\\rm erg}\\ {{{\\rm s}}^{-1}}$$, enthalpies of $$(3-6)\\times {{10}^{59}}\\ {\\rm erg}$$, and radii of ~17 kpc. Integrating over 7 Gyr, we find that the supermassive black holes in BCGs may have accreted 10(8) to several $${{10}^{9}}\\,{{M}_{\\odot }}$$ of material to power these outflows. This level of accretion indicates that significant supermassive black hole growth may occur not only at early times, in the quasar era, but at late times as well. We also find that X-ray cavities at high redshift may inject an excess heat of 0.1–1.0 keV per particle into the hot ICM above and beyond the energy needed to offset cooling. Although this result needs to be confirmed, we note that the magnitude of excess heating is similar to the energy needed to preheat clusters, break self-similarity, and explain the excess entropy in hot atmospheres.« less

  4. SPT0346-52: Negligible AGN Activity in a Compact, Hyper-starburst Galaxy at z = 5.7

    NASA Astrophysics Data System (ADS)

    Ma, Jingzhe; Gonzalez, Anthony. H.; Vieira, J. D.; Aravena, M.; Ashby, M. L. N.; Béthermin, M.; Bothwell, M. S.; Brandt, W. N.; de Breuck, C.; Carlstrom, J. E.; Chapman, S. C.; Gullberg, B.; Hezaveh, Y.; Litke, K.; Malkan, M.; Marrone, D. P.; McDonald, M.; Murphy, E. J.; Spilker, J. S.; Sreevani, J.; Stark, A. A.; Strandet, M.; Wang, S. X.

    2016-12-01

    We present Chandra ACIS-S and Australia Telescope Compact Array (ATCA) radio continuum observations of the strongly lensed dusty, star-forming galaxy SPT-S J034640-5204.9 (hereafter SPT0346-52) at z = 5.656. This galaxy has also been observed with ALMA, HST, Spitzer, Herschel, Atacama Pathfinder EXperiment, and the Very Large Telescope. Previous observations indicate that if the infrared (IR) emission is driven by star formation, then the inferred lensing-corrected star formation rate (SFR) (˜4500 M ⊙ yr-1) and SFR surface density ΣSFR (˜2000 M ⊙ yr-1 kpc-2) are both exceptionally high. It remained unclear from the previous data, however, whether a central active galactic nucleus (AGN) contributes appreciably to the IR luminosity. The Chandra upper limit shows that SPT0346-52 is consistent with being star formation dominated in the X-ray, and any AGN contribution to the IR emission is negligible. The ATCA radio continuum upper limits are also consistent with the FIR-to-radio correlation for star-forming galaxies with no indication of an additional AGN contribution. The observed prodigious intrinsic IR luminosity of (3.6 ± 0.3) × 1013 L ⊙ originates almost solely from vigorous star formation activity. With an intrinsic source size of 0.61 ± 0.03 kpc, SPT0346-52 is confirmed to have one of the highest ΣSFR of any known galaxy. This high ΣSFR, which approaches the Eddington limit for a radiation pressure supported starburst, may be explained by a combination of very high star formation efficiency and gas fraction.

  5. Measuring the Symmetry of Supernova Remnants in the Radio

    NASA Astrophysics Data System (ADS)

    Stafford, Jennifer; Lopez, Laura A.

    2017-01-01

    Nearly 300 supernova remnants (SNRs) are known in the MIlky Way galaxy, and they offer an important means to study the explosions and interactions of supernovae at sub-pc scales. In this poster, we present analysis of the morphology of Galactic SNRs at radio wavelengths. Specifically, we measure the symmetry of several tens of SNRs in 6- and 20-cm Very Large Array images using a multipole expansion technique, the power-ratio method. We explore how the SNRs' morphology changes as a function of their size and estimated dynamical ages, with the aim of probing how SNR shapes evolve with time.

  6. Searching for intermediate-mass black holes in galaxies with low-luminosity AGN: a multiple-method approach

    NASA Astrophysics Data System (ADS)

    Koliopanos, F.; Ciambur, B.; Graham, A.; Webb, N.; Coriat, M.; Mutlu-Pakdil, B.; Davis, B.; Godet, O.; Barret, D.; Seigar, M.

    2017-10-01

    Intermediate Mass Black Holes (IMBHs) are predicted by a variety of models and are the likely seeds for super massive BHs (SMBHs). However, we have yet to establish their existence. One method, by which we can discover IMBHs, is by measuring the mass of an accreting BH, using X-ray and radio observations and drawing on the correlation between radio luminosity, X-ray luminosity and the BH mass, known as the fundamental plane of BH activity (FP-BH). Furthermore, the mass of BHs in the centers of galaxies, can be estimated using scaling relations between BH mass and galactic properties. We are initiating a campaign to search for IMBH candidates in dwarf galaxies with low-luminosity AGN, using - for the first time - three different scaling relations and the FP-BH, simultaneously. In this first stage of our campaign, we measure the mass of seven LLAGN, that have been previously suggested to host central IMBHs, investigate the consistency between the predictions of the BH scaling relations and the FP-BH, in the low mass regime and demonstrate that this multiple method approach provides a robust average mass prediction. In my talk, I will discuss our methodology, results and next steps of this campaign.

  7. Radio jets and gamma-ray emission in radio-silent narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Lähteenmäki, A.; Järvelä, E.; Ramakrishnan, V.; Tornikoski, M.; Tammi, J.; Vera, R. J. C.; Chamani, W.

    2018-06-01

    We have detected six narrow-line Seyfert 1 (NLS1) galaxies at 37 GHz that were previously classified as radio silent and two that were classified as radio quiet. These detections reveal the presumption that NLS1 galaxies labelled radio quiet or radio silent and hosted by spiral galaxies are unable to launch jets to be incorrect. The detections are a plausible indicator of the presence of a powerful, most likely relativistic jet because this intensity of emission at 37 GHz cannot be explained by, for example, radiation from supernova remnants. Additionally, one of the detected NLS1 galaxies is a newly discovered source of gamma rays and three others are candidates for future detections. 37 GHz data are only available in electronic form at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/L1

  8. Confining hot spots in 3C 196 - Implications for QSO-companion galaxies

    NASA Technical Reports Server (NTRS)

    Brown, R. L.; Broderick, J. J.; Mitchell, K. J.

    1986-01-01

    VLBI observations of the extremely compact hot spot in the northern radio lobe of the QSO 3C 196 reveal the angular size of its smallest substructure to be 0.065 arcsec x 0.045 arcsec or about 300 pc at the redshift distance. The morphology of the hot spot and its orientation relative to the more diffuse radio emission suggest that it is formed by an oblique interaction between the nuclear QSO jet and circum-QSO cloud. The inferred density in this cloud, together with its apparent size, imply that the cloud contains a galactic mass, greater than a billion solar masses of gas. The effect of the jet will be to hasten gravitational collapse of the cloud. If many QSOs such as 3C 196 are formed or found in gas-rich environments, the QSO radio phase may commonly stimulate the metamorphosis of circum-QSO gas to QSO-companion galaxies or it may play a significant part in catalyzing star formation in existing companions.

  9. A Supermassive Black Hole in a Nearby Galaxy

    NASA Astrophysics Data System (ADS)

    2001-03-01

    ISAAC Inspects the Center of Centaurus A Summary The nearby galaxy Centaurus A harbours a supermassive black hole at its centre . Using the ISAAC instrument at the ESO Very Large Telescope (VLT) , an international team of astronomers [1] has peered right through the spectacular dust lane of the peculiar galaxy Centaurus A , located approximately 11 million light-years away. They were able to probe the thin disk of gas that surrounds the very center of this galaxy. The new measurements show that the compact nucleus in the middle weighs more than 200 million solar masses ! This is too much just to be due to normal stars. The astronomers thus conclude the existence of a supermassive black hole lurking at the centre of Centaurus A . PR Photo 08a/01 : Visual image of the centre of Centaurus A . PR Photo 08b/01 : ISAAC spectrum of the centre of Centaurus A . PR Photo 08c/01 : The corresponding rotation curve from which the mass of the black hole was deduced. A well studied galaxy with a hidden center ESO PR Photo 08a/01 ESO PR Photo 08a/01 [Preview - JPEG: 352 x 400 pix - 160k] [Normal - JPEG: 704 x 800 pix - 376k] Caption : PR Photo 08a/01 shows a small area in the direction of the heavily obscured centre of the peculiar radio galaxy Centaurus A , as seen in visual light. It measures about 80 x 80 arcsec 2 , or 4400 x 4400 light-year 2 at the distance of this galaxy, and has been reproduced from exposures made with the FORS2 multi-mode instrument at the 8.2-m VLT KUEYEN telescope at Paranal. The full field may be seen in PR Photo 05b/00. Technical information about this photo is available below. The galaxy Centaurus A (NGC 5128) is one of the most studied objects in the southern sky. The unique appearance of this galaxy was already noticed by the famous British astronomer John Herschel in 1847 who catalogued the southern skies and made a comprehensive list of "nebulae". A fine photo of Centaurus A from the VLT was published last year as PR Photo 05b/00. Herschel could not know, however, that this beautiful and spectacular appearance is due to an opaque dust lane that covers the central part of the galaxy. This dust is likely the remain of a cosmic merger between a giant elliptical galaxy, and a smaller spiral galaxy full of dust. Centaurus A is even more spectacular when observed with radio telescopes. It is in fact one of the brightest radio sources in the sky (its name indicates that it is the strongest radio source in the southern constellation Centaurus). At a distance of merely 11 million light-years, it is also the nearest radio galaxy. The radio emission from the very compact centre exhibits strong activity. It has for some time been suspected that this powerful energy release is due to accretion of material onto a massive black hole. The details of the centre have remained largely unknown, due to the dense dust lane that completely obscures the central part of the galaxy in optical light, cf. PR Photo 08a/01 . Observations of the dust emission in the mid-infrared spectral region were carried out with the ISOCAM camera onboard the ESA Infrared Space Observatory . They revealed a structure extending over 5 arcmin (16,500 light-years or 5 kpc), centred on the compact radio source, and very similar to that of a small barred galaxy. This bar may serve to funnel gas towards the active nucleus of the galaxy. Peering through the dust To look into the very centre of the galaxy, the observations must be carried out at wavelengths longer than those of visual light, e.g., in the infrared spectral region. This is because the dust absorbs much less the infrared radiation. Infrared observations of the innermost regions (of Centaurus A (on an arcsec scale) were recently done by a team of astronomers from Italy, UK and USA [1], by means of the multi-mode ISAAC instrument on the ESO Very Large Telescope (VLT) at Paranal Observatory. In fact, the team started their infrared studies of this galaxy already in 1997, using the NICMOS camera on board the Hubble Space Telescope (HST) . That close view of the galaxy nucleus revealed a thin gaseous disk of material close to the center, which looked very much like an accretion disk that was feeding material into a central black hole. The HST image prompted further spectroscopic observations to probe the rotation of the disk, and thus to measure the mass of the central object. The ISAAC spectra ESO PR Photo 08b/01 ESO PR Photo 08b/01 [Preview - JPEG: 400 x 303 pix - 216k] [Normal - JPEG: 800 x 606 pix - 572k] [Hires - JPEG: 2274 x 3000 pix - 4.0M] Caption : PR Photo 08b/01 shows two wavelength regions of one of the infrared ISAAC spectra of the center of Centaurus A . The direction of the long spectrograph slit is vertical and the dispersion (wavelength) direction is horizontal; longer wavelengths are towards the right. The two emission lines shown originate in singly ionized Iron ([FeII]; rest wavelength 1256.68 nm) and in Hydrogen (Paschen-Beta; 1281.81 nm) and both are clearly tilted. This is due to the rapid rotation of the accretion disk surrounding the supermassive black hole in the center of the galaxy. The light from the receding edge of the disk is Doppler-shifted towards the red (to the right) and the light from the part of the disk approaching us is shifted to the left. This may be better seen in the inserted enlargements. Therefore the inclined disk shows a tilted spectrum. These motions may be represented in a rotation curve, cf. PR Photo 08c/01 . There are other emitting areas above and below the nucleus, especially in the Paschen-Beta line. Technical information about these photos is available below. ESO PR Photo 08c/01 ESO PR Photo 08c/01 [Preview - JPEG: 341 x 400 pix - 56k] [Normal - JPEG: 682 x 800 pix - 132k] Caption : PR Photo 08c/01 shows the rotation curve (velocity vrs. distance from the centre) of the disk surrounding the black hole at the centre of Centaurus A . From the ISAAC spectrum displayed in PR Photo 08b/01 , the `average' gas velocities along the slit direction can be derived. Position `0' on the horizontal axis indicates the exact position of the galaxy nucleus; at the distance of Centaurus A , 1 arcsec corresponds to 55.5 light-years (17 pc). The blue triangles and the red squares correspond to emission lines from singly ionized Iron atoms ([Fe II]) and Hydrogen (Paschen-Beta), respectively. The high velocities are the hallmark of a central black hole. The thick solid line represents the expected velocities, assuming the presence of a 200 million solar-mass black hole at the centre. Technical information about these photos is available below. The spectroscopic observations required both a high sensitivity in the infrared and excellent seeing conditions. This combination was achieved using ISAAC at VLT. Peering through the thick walls of dust enshrouding the nuclear region of Centaurus A , the astronomers succeeded in acquiring several high-quality spectra of the thin central disk; the exposure time for each spectrum was (about) 35 min. The spectra did show the characteristic shape of a rotating disk, cf. PR Photo 08b/01 . High-speed motions of the gas in this disk were detected ( PR Photo 08c/01 ), which are the hallmark of a black hole. An analysis of the rotational speed of the disk leads to determination of the total mass of the material inside the disk. This showed that about 200 million solar masses of material resides inside the nuclear disk. A massive black hole The astronomers quickly realized that this enormous mass within the central region cannot be caused by normal stars, as it would then be much more luminous. Instead they conclude that the most conservative explanation for the dark, central mass concentration observed in Centaurus A is indeed a supermassive black hole. The most likely mass of this "central beast" is then about 200 million times the mass of our Sun. This discovery confirms the previous suspicion that the active nucleus of Centaurus A is powered by a supermassive black hole. It is the first time infrared spectroscopy has been used to weigh a black hole. Many other galaxies have dust-enshrouded nuclei, and the excellent capabilities of ISAAC now hold a great potential to discover and weigh many more black holes. More Information The research described in this Press Release is reported in a research article ("Peering through the dust: Evidence for a supermassive Black Hole at the Nucleus of Centaurus A from VLT IR spectroscopy"), that will appear in the international research journal the Astrophysical Journal on March 10, 2001. The full article is also available on the web as astro-ph/0011059. Note [1]: The team is composed by Ethan Schreier (Principal Investigator; Space Telescope Science Institute - STScI, Baltimore, USA), Alessandro Marconi (Arcetri Observatory, Italy), Alessandro Capetti (Turin Observatory, Italy), David Axon (University of Hertfordshire, United Kingdom), Anton Koekemoer (STScI, USA) and Duccio Macchetto (ESA/STScI, USA). Technical information about the photos PR Photo 08a/01 is reproduced from three exposures, obtained during the night of January 31 - February 1, 2000. It is a composite of three exposures in B (300 sec exposure, image quality 0.60 arcsec; here rendered in blue colour), V (240 sec, 0.60 arcsec; green) and R (240 sec, 0.55 arcsec; red). The field covered corresponds to about 80 x 80 arcsec 2 (395 x 395 pix 2 , 1 pix = 0.2 arcsec). North is up and East is left. PR Photo 08b+c/01 : The original ISAAC spectra were exposed for 35 min each with an average seeing of 0.5 arcsec. Three spectrograph slits were used, but only one of these is shown here. It was centered on the nucleus of Centaurus A and oriented at 33°, measured counter-clockwise from the North direction. The spectral pixel size is 0.6 Angstrom x 0.15 arcsec (i.e., 14 km/sec x 8.3 light-year). The large and small figures cover 2300 km/s x 1665 light-years and 1150 km/s x 330 light-years, respectively.

  10. The Ophiuchus cluster - A bright X-ray cluster of galaxies at low galactic latitude

    NASA Technical Reports Server (NTRS)

    Johnston, M. D.; Bradt, H. V.; Doxsey, R. E.; Marshall, F. E.; Schwartz, D. A.; Margon, B.

    1981-01-01

    The discovery of an extended X-ray source identified with a cluster of galaxies at low galactic latitude is reported. The source, designated the Ophiuchus cluster, was detected near 4U 1708-23 with the HEAO 1 Scanning Modulation Collimator, and identified with the cluster on the basis of extended X-ray size and positional coincidence on the ESO/SRC (J) plate of the region. An X-ray flux density in the region 2-10 keV of approximately 25 microJ was measured, along with an X-ray luminosity of 1.6 x 10 to the 45th ergs/sec and an X-ray core radius of approximately 4 arcmin (0.2 Mpc) for an assumed isothermal sphere surface brightness distribution. The X-ray spectrum in the range 2-10 keV obtained with the HEAO 1 A-2 instrument is well fit by a thermal bremsstrahlung model with kT = 8 keV and a 6.7-keV iron line of equivalent width 450 eV. The steep-spectrum radio source MSH 17-203 also appears to be associated with the cluster, which is the closest and brightest representative of the class of X-ray clusters with a dominant central galaxy.

  11. Jets, arcs, and shocks: NGC 5195 at radio wavelengths

    NASA Astrophysics Data System (ADS)

    Rampadarath, H.; Soria, R.; Urquhart, R.; Argo, M. K.; Brightman, M.; Lacey, C. K.; Schlegel, E. M.; Beswick, R. J.; Baldi, R. D.; Muxlow, T. W. B.; McHardy, I. M.; Williams, D. R. A.; Dumas, G.

    2018-05-01

    We studied the nearby, interacting galaxy NGC 5195 (M 51b) in the radio, optical and X-ray bands. We mapped the extended, low-surface-brightness features of its radio-continuum emission; determined the energy content of its complex structure of shock-ionized gas; constrained the current activity level of its supermassive nuclear black hole. In particular, we combined data from the European Very Long Baseline Interferometry Network (˜1-pc scale), from our new e-MERLIN observations (˜10-pc scale), and from the Very Large Array (˜100-1000-pc scale), to obtain a global picture of energy injection in this galaxy. We put an upper limit to the luminosity of the (undetected) flat-spectrum radio core. We find steep-spectrum, extended emission within 10 pc of the nuclear position, consistent with optically thin synchrotron emission from nuclear star formation or from an outflow powered by an active galactic nucleus (AGN). A linear spur of radio emission juts out of the nuclear source towards the kpc-scale arcs (detected in radio, Hα and X-ray bands). From the size, shock velocity, and Balmer line luminosity of the kpc-scale bubble, we estimate that it was inflated by a long-term-average mechanical power ˜3-6 × 1041 erg s-1 over the last 3-6 Myr. This is an order of magnitude more power than can be provided by the current level of star formation, and by the current accretion power of the supermassive black hole. We argue that a jet-inflated bubble scenario associated with previous episodes of AGN activity is the most likely explanation for the kpc-scale structures.

  12. Discovery of Ultra-fast Outflows in a Sample of Broad-line Radio Galaxies Observed with Suzaku

    NASA Astrophysics Data System (ADS)

    Tombesi, F.; Sambruna, R. M.; Reeves, J. N.; Braito, V.; Ballo, L.; Gofford, J.; Cappi, M.; Mushotzky, R. F.

    2010-08-01

    We present the results of a uniform and systematic search for blueshifted Fe K absorption lines in the X-ray spectra of five bright broad-line radio galaxies observed with Suzaku. We detect, for the first time in radio-loud active galactic nuclei (AGNs) at X-rays, several absorption lines at energies greater than 7 keV in three out of five sources, namely, 3C 111, 3C 120, and 3C 390.3. The lines are detected with high significance according to both the F-test and extensive Monte Carlo simulations. Their likely interpretation as blueshifted Fe XXV and Fe XXVI K-shell resonance lines implies an origin from highly ionized gas outflowing with mildly relativistic velocities, in the range v ~= 0.04-0.15c. A fit with specific photoionization models gives ionization parameters in the range log ξ ~= 4-5.6 erg s-1 cm and column densities of N H ~= 1022-1023 cm-2. These characteristics are very similar to those of the ultra-fast outflows (UFOs) previously observed in radio-quiet AGNs. Their estimated location within ~0.01-0.3 pc of the central super-massive black hole suggests a likely origin related with accretion disk winds/outflows. Depending on the absorber covering fraction, the mass outflow rate of these UFOs can be comparable to the accretion rate and their kinetic power can correspond to a significant fraction of the bolometric luminosity and is comparable to their typical jet power. Therefore, these UFOs can play a significant role in the expected feedback from the AGN to the surrounding environment and can give us further clues on the relation between the accretion disk and the formation of winds/jets in both radio-quiet and radio-loud AGNs.

  13. CHANG-ES. IX. Radio scale heights and scale lengths of a consistent sample of 13 spiral galaxies seen edge-on and their correlations

    NASA Astrophysics Data System (ADS)

    Krause, Marita; Irwin, Judith; Wiegert, Theresa; Miskolczi, Arpad; Damas-Segovia, Ancor; Beck, Rainer; Li, Jiang-Tao; Heald, George; Müller, Peter; Stein, Yelena; Rand, Richard J.; Heesen, Volker; Walterbos, Rene A. M.; Dettmar, Ralf-Jürgen; Vargas, Carlos J.; English, Jayanne; Murphy, Eric J.

    2018-03-01

    Aim. The vertical halo scale height is a crucial parameter to understand the transport of cosmic-ray electrons (CRE) and their energy loss mechanisms in spiral galaxies. Until now, the radio scale height could only be determined for a few edge-on galaxies because of missing sensitivity at high resolution. Methods: We developed a sophisticated method for the scale height determination of edge-on galaxies. With this we determined the scale heights and radial scale lengths for a sample of 13 galaxies from the CHANG-ES radio continuum survey in two frequency bands. Results: The sample average values for the radio scale heights of the halo are 1.1 ± 0.3 kpc in C-band and 1.4 ± 0.7 kpc in L-band. From the frequency dependence analysis of the halo scale heights we found that the wind velocities (estimated using the adiabatic loss time) are above the escape velocity. We found that the halo scale heights increase linearly with the radio diameters. In order to exclude the diameter dependence, we defined a normalized scale height h˜ which is quite similar for all sample galaxies at both frequency bands and does not depend on the star formation rate or the magnetic field strength. However, h˜ shows a tight anticorrelation with the mass surface density. Conclusions: The sample galaxies with smaller scale lengths are more spherical in the radio emission, while those with larger scale lengths are flatter. The radio scale height depends mainly on the radio diameter of the galaxy. The sample galaxies are consistent with an escape-dominated radio halo with convective cosmic ray propagation, indicating that galactic winds are a widespread phenomenon in spiral galaxies. While a higher star formation rate or star formation surface density does not lead to a higher wind velocity, we found for the first time observational evidence of a gravitational deceleration of CRE outflow, e.g. a lowering of the wind velocity from the galactic disk.

  14. The X-Ray Weakness of GPS Radio Galaxies: A Volume-Limited Complete Sample

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard F. (Technical Monitor); Siemiginowska, Aneta (Principal Investigator)

    2004-01-01

    The XMM observations of Mkn 668 have been analyzed. We found soft X-ray signatures of a hot plasma (kT approximately 10^7 approximately K) and a hard X-ray emission from the nucleus. The X-ray spectrum above 2.5 approximately keV is characterized by a very flat (observed photon index, Gamma approximately 0.5) power-law continuum, alongside with a strong Fe-K-alpha neutral iron fluorescent line (EW approximately 600 approximately eV). The best explanation for the origin of this high energy X-ray emission is in terms of the Compton-reflection of the nuclear emission. The primary X-ray emission is obscured by a Compton-thick (N_H approximately 10^24 approximately cm-2) matter which becomes transparent at higher energies. The observed above 2.5-keV X-rays are mostly due to reflection which is indicated by a strong Fe-K-alpha line. This represents the second hard X-ray detection of the GPS galaxy ever (the first one being 1345+125; O Dea et al. 2000). Interestingly, the both such trend is confirmed by our on going XMM-Newton observations of a larger GPS sample, it would lead us to looking into the question on how the dense nuclear environment impacts the nature and evolution of a GPS source, and more generally, on the history of radio power in the universe. The paper summarizing the results has been submitted to Astronomy and Astrophysics in December 2003.

  15. Mapping the Dark Matter Distribution of the Merging Galaxy Cluster Abell 115

    NASA Astrophysics Data System (ADS)

    Kim, Mincheol; Jee, Myungkook James; Forman, William; Golovich, Nathan; van Weeren, Reinout

    2018-01-01

    The colliding galaxy cluster Abell 115 shows a number of clear merging features including radio relics, double X-ray peaks, and offsets between the cluster member galaxies and the X-ray distributions. In order to constrain the merging scenario of this complex system, it is critical to know where the dark matter is. We present a high-fidelity weak-lensing analysis of the system using a state-of-the-art method that robustly models the detailed PSF variations. Our mass reconstruction reveals two distinct mass peaks. Through a careful bootstrapping analysis, we demonstrate that the positions of these two mass peaks are highly consistent with those of the cluster galaxies, although the comparison with the X-ray emission shows that the mass peaks lead the X-ray peaks. We obtain the first weak-lensing mass of each subcluster by simultaneously fitting two NFW profiles, as well as the total mass of the system. Interestingly, the total mass is a few factors lower than the published dynamical mass based on velocity dispersion. This large mass discrepancy may be attributed to a significant disruption of the cluster galaxy orbits due to the violent merger. Our preliminary analysis indicates that the two subclusters might have experienced a first off-axis collision a few Gyrs ago and might be now returning for a second collision.

  16. A New Method to Separate Star-forming from AGN Galaxies at Intermediate Redshift: The Submillijansky Radio Population in the VLA-COSMOS Survey

    NASA Astrophysics Data System (ADS)

    Smolčić, V.; Schinnerer, E.; Scodeggio, M.; Franzetti, P.; Aussel, H.; Bondi, M.; Brusa, M.; Carilli, C. L.; Capak, P.; Charlot, S.; Ciliegi, P.; Ilbert, O.; Ivezić, Ž.; Jahnke, K.; McCracken, H. J.; Obrić, M.; Salvato, M.; Sanders, D. B.; Scoville, N.; Trump, J. R.; Tremonti, C.; Tasca, L.; Walcher, C. J.; Zamorani, G.

    2008-07-01

    We explore the properties of the submillijansky radio population at 20 cm by applying a newly developed optical color-based method to separate star-forming (SF) from active galactic nucleus (AGN) galaxies at intermediate redshifts (zlesssim 1.3). Although optical rest-frame colors are used, our separation method is shown to be efficient and not biased against dusty starburst galaxies. This classification method has been calibrated and tested on a local radio-selected optical sample. Given accurate multiband photometry and redshifts, it carries the potential to be generally applicable to any galaxy sample where SF and AGN galaxies are the two dominant populations. In order to quantify the properties of the submillijansky radio population, we have analyzed ~2,400 radio sources, detected at 20 cm in the VLA-COSMOS survey; 90% of these have submillijansky flux densities. We classify the objects into (1) star candidates, (2) quasi-stellar objects, (3) AGN, (4) SF, and (5) high-redshift (z > 1.3) galaxies. We find, for the composition of the submillijansky radio population, that SF galaxies are not the dominant population at submillijansky flux levels, as previously often assumed, but that they make up an approximately constant fraction of 30%-40% in the flux density range of ~50 μJy to 0.7 mJy. In summary, based on the entire VLA-COSMOS radio population at 20 cm, we find that the radio population at these flux densities is a mixture of roughly 30%-40% of SF and 50%-60% of AGN galaxies, with a minor contribution (~10%) of QSOs.

  17. Winds of Change

    NASA Image and Video Library

    2010-03-05

    Observation Date: 1 pointing on Dec 4, 2000 and 9 pointings between Nov 18 and Dec 5, 2008. Distance Estimate: About 50 million light years away. This is a composite image of NGC 1068, one of the nearest and brightest galaxies containing a rapidly growing supermassive black hole. The X-ray images and spectra obtained using Chandra's High Energy Transmission Grating Spectrometer show that a strong wind is being driven away from the center of NGC 1068 at a rate of about a million miles per hour. This wind is likely generated as surrounding gas is accelerated and heated as it swirls toward the black hole. A portion of the gas is pulled into the black hole, but some of it is blown away. High energy X-rays produced by the gas near the black hole heat the ouflowing gas, causing it to glow at lower X-ray energies. X-ray data from the Chandra X-ray Observatory are shown in red, optical data from the Hubble Space Telescope in green and radio data from the Very Large Array in blue. The spiral structure of NGC 1068 is shown by the X-ray and optical data, and a jet powered by the central supermassive black hole is shown by the radio data. This Chandra study is much deeper than previous X-ray observations. Using this data, researchers believe that each year several times the mass of our sun is being deposited out to large distances, about 3,000 light years from the black hole. The wind likely carries enough energy to heat the surrounding gas and suppress extra star formation. These results help explain how a supermassive black hole can alter the evolution of its host galaxy. It has long been suspected that material blown away from a black hole can affect its environment, but a key question has been whether such "black hole blowback" typically delivers enough power to have a significant impact. NGC 1068 is located about 50 million light years from Earth and contains a supermassive black hole about twice as massive as the one in the middle of the Milky Way Galaxy. Image Credit: X-ray (NASA/CXC/ MIT/C.Canizares, D.Evans et al), Optical (NASA/STScI), Radio (NSF/ NRAO/VLA)

  18. Searching for intermediate groups of galaxies with Suzaku in Bootes field

    NASA Astrophysics Data System (ADS)

    Tawara, Yuzuru; Mitsuishi, Ikuyuki

    2016-07-01

    To investigate redshift evolution of groups of galaxies is significant also in terms of galaxy evolution. Recent observational studies show that an AGN fraction and a magnitude gap between the first and the second brightest group galaxies increase in group environments at lower redshifts (Oh et al. 2014 & Gozaliasl et al. 2014). Thus, comprehension for the evolution of the systems will bring us to hints on both morphological evolution of galaxies and galaxy-galaxy interactions. However, observational samples of groups of galaxies at higher redshifts are limited due to its low flux and surface brightness. Thus, we aimed at searching for new samples using both X-ray and optical data. To identify the group systems at higher redshifts, deep optical imaging and spectroscopic data are needed. Bootes field is one of the best regions for this purpose because there are up to 17 bands of data available per source from infrared, optical, UV, and X-ray (e.g., Kenter et al. 2005, Chung et al. 2014). XBootes survey was conducted in 2003 using Chandra (Murray et al. 2005) and X-ray extended sources were detected around intermediate optically-identified groups of galaxies even though Chandra could not reveal their origins due to poor photon statistics. Thus, we conducted X-ray follow-up observations using Suzaku which has low and stable background and thus is optimum for such low surface brightness sources for brightest 6 group candidates with redshifts of 0.15-0.42. Consequently, Suzaku detected excess emissions from all the targets in their images and spectral analysis reveals that 6 sources are originated from group- or poor-cluster-scale halos with temperatures, abundances and luminosities of 1.6-3.0 keV, <0.3 solar and ~1044 erg s-1, respectively. In this conference, we will report on the details of our analysis and results using multiwavelength data such as radio, optical and X-ray to examine the AGN fractions and magnitude gaps in our samples and discuss the redshift evolution.

  19. FR II radio galaxies at low frequencies - I. Morphology, magnetic field strength and energetics.

    PubMed

    Harwood, Jeremy J; Croston, Judith H; Intema, Huib T; Stewart, Adam J; Ineson, Judith; Hardcastle, Martin J; Godfrey, Leith; Best, Philip; Brienza, Marisa; Heesen, Volker; Mahony, Elizabeth K; Morganti, Raffaella; Murgia, Matteo; Orrú, Emanuela; Röttgering, Huub; Shulevski, Aleksandar; Wise, Michael W

    2016-06-01

    Due to their steep spectra, low-frequency observations of Fanaroff-Riley type II (FR II) radio galaxies potentially provide key insights in to the morphology, energetics and spectrum of these powerful radio sources. However, limitations imposed by the previous generation of radio interferometers at metre wavelengths have meant that this region of parameter space remains largely unexplored. In this paper, the first in a series examining FR IIs at low frequencies, we use LOFAR (LOw Frequency ARray) observations between 50 and 160 MHz, along with complementary archival radio and X-ray data, to explore the properties of two FR II sources, 3C 452 and 3C 223. We find that the morphology of 3C 452 is that of a standard FR II rather than of a double-double radio galaxy as had previously been suggested, with no remnant emission being observed beyond the active lobes. We find that the low-frequency integrated spectra of both sources are much steeper than expected based on traditional assumptions and, using synchrotron/inverse-Compton model fitting, show that the total energy content of the lobes is greater than previous estimates by a factor of around 5 for 3C 452 and 2 for 3C 223. We go on to discuss possible causes of these steeper-than-expected spectra and provide revised estimates of the internal pressures and magnetic field strengths for the intrinsically steep case. We find that the ratio between the equipartition magnetic field strengths and those derived through synchrotron/inverse-Compton model fitting remains consistent with previous findings and show that the observed departure from equipartition may in some cases provide a solution to the spectral versus dynamical age disparity.

  20. Orbiting Water Molecules Dance to Tune Of Galaxy's "Central Engine," Astronomers Say

    NASA Astrophysics Data System (ADS)

    2000-01-01

    A disk of water molecules orbiting a supermassive black hole at the core of a galaxy 60 million light-years away is "reverberating" in response to variations in the energy output from the galaxy's powerful "central engine" close to the black hole, astronomers say. The team of astronomers used the National Science Foundation's (NSF) Very Large Array (VLA) radio telescope in New Mexico and the 100-meter-diameter radio telescope of the Max Planck Institute for Radio Astronomy at Effelsberg, Germany, to observe the galaxy NGC 1068 in the constellation Cetus. They announced their findings today at the American Astronomical Society's meeting in Atlanta. The water molecules, in a disk some 5 light-years in diameter, are acting as a set of giant cosmic radio-wave amplifiers, called masers. Using energy radiated by the galaxy's "central engine," the molecules strengthen, or brighten, radio emission at a particular frequency as seen from Earth. "We have seen variations in the radio 'brightness' of these cosmic amplifiers that we believe were caused by variations in the energy output of the central engine," said Jack Gallimore, an astronomer at the National Radio Astronomy Observatory (NRAO) in Charlottesville, VA. "This could provide us with a valuable new tool for learning about the central engine itself," he added. Gallimore worked with Stefi Baum of the Space Telescope Science Institute in Baltimore, MD; Christian Henkel of the Max Planck Institute for Radio Astronomy in Bonn, Germany; Ian Glass of the South African Astronomical Observatory; Mark Claussen of the NRAO in Socorro, NM; and Almudena Prieto of the European Southern Observatory in Munich, Germany. "Our observations show that NGC 1068 is the second-known case of a giant disk of water molecules orbiting a supermassive black hole at a galaxy's core," Gallimore said. The first case was the galaxy NGC 4258 (Messier 106), whose disk of radio-amplifying water molecules was measured by the NSF's Very Long Baseline Array (VLBA) radio telescope in 1995. Further VLBA observations of NGC 4258 allowed astronomers to calculate an extremely accurate distance to that galaxy last year. "We're excited to find this phenomenon in a second galaxy, but we're also tantalized by the evidence that these masers respond to variations of the central engine," Gallimore said. In order to amplify radio signals, masers, like their visible-light counterparts, lasers, require a source of energy, called the pumping energy. The scientists believe the masers in NGC 1068 get that pumping energy from a highly-energetic, superhot disk of material that is being pulled into the black hole. That disk, called an accretion disk, emits X-rays that the astronomers think start a chain of events that powers the masers. Such accretion disks can be unstable, dramatically changing their energy output from time to time. "When the accretion disk puts out more energy, the masers should brighten, and when it puts out less energy, they should get fainter. If the accretion disk gets too bright, however, water molecules are destroyed and the masers turn off. We think that's what we're seeing in this galaxy," Gallimore said. "We want to watch this in the future to learn more, not only about the masers, but also about the accretion disk itself," he said. The strongest evidence that the masers are responding to variations in the output of the central engine came from watching variations in the brightness of masers on opposite sides of the water molecule disk. The masers on both sides of the molecular disk, some 5 light-years across, brightened within about two weeks of each other. "If this were caused by something within that molecular disk itself, it would take about 10,000 years to affect both sides of the disk, because of the orbital times involved. However, both sides of the disk are the same distance from the central engine, so they can both respond to the central engine simultaneously," Gallimore explained. The black hole at NGC 1068's center, the scientists say, is about 10 million times more massive than the Sun. NGC 1068 also is known as Messier 77 (M77), one of the objects listed in French astronomer Charles Messier's catalog of non-stellar objects. First observed in 1780, it appeared in the version of Messier's catalog published in 1781. In 1914, Lowell Observatory astronomer Vesto Slipher measured the Doppler shift in the galaxy's light, showing that the galaxy is receding from Earth at a speed of about 1,100 kilometers per second. The galaxy's water masers, which amplify radio signals at a frequency of 22 GHz, were discovered in 1984. The galaxy is visible in moderate-sized amateur telescopes. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  1. Classifying Radio Galaxies with the Convolutional Neural Network

    NASA Astrophysics Data System (ADS)

    Aniyan, A. K.; Thorat, K.

    2017-06-01

    We present the application of a deep machine learning technique to classify radio images of extended sources on a morphological basis using convolutional neural networks (CNN). In this study, we have taken the case of the Fanaroff-Riley (FR) class of radio galaxies as well as radio galaxies with bent-tailed morphology. We have used archival data from the Very Large Array (VLA)—Faint Images of the Radio Sky at Twenty Centimeters survey and existing visually classified samples available in the literature to train a neural network for morphological classification of these categories of radio sources. Our training sample size for each of these categories is ˜200 sources, which has been augmented by rotated versions of the same. Our study shows that CNNs can classify images of the FRI and FRII and bent-tailed radio galaxies with high accuracy (maximum precision at 95%) using well-defined samples and a “fusion classifier,” which combines the results of binary classifications, while allowing for a mechanism to find sources with unusual morphologies. The individual precision is highest for bent-tailed radio galaxies at 95% and is 91% and 75% for the FRI and FRII classes, respectively, whereas the recall is highest for FRI and FRIIs at 91% each, while the bent-tailed class has a recall of 79%. These results show that our results are comparable to that of manual classification, while being much faster. Finally, we discuss the computational and data-related challenges associated with the morphological classification of radio galaxies with CNNs.

  2. A catalogue of faint local radio AGN and the properties of their host galaxies

    NASA Astrophysics Data System (ADS)

    Lofthouse, E. K.; Kaviraj, S.; Smith, D. JB; Hardcastle, M. J.

    2018-05-01

    We present a catalogue of local (z < 0.1) galaxies that contain faint AGN. We select these objects by identifying galaxies that exhibit a significant excess in their radio luminosities, compared to what is expected from the observed levels of star-formation activity in these systems. This is achieved by comparing the optical (spectroscopic) star formation rate (SFR) to the 1.4 GHz luminosity measured from the FIRST survey. The majority of the AGN identified in this study are fainter than those in previous work, such as in the Best and Heckman (2012) catalogue. We show that these faint AGN make a non-negligible contribution to the radio luminosity function at low luminosities (below 1022.5 W Hz-1), and host ˜13 per cent of the local radio luminosity budget. Their host galaxies are predominantly high stellar-mass systems (with a median stellar mass of 1011M⊙), are found across a range of environments (but typically in denser environments than star-forming galaxies) and have early-type morphologies. This study demonstrates a general technique to identify AGN in galaxy populations where reliable optical SFRs can be extracted using spectro-photometry and where radio data are also available so that a radio excess can be measured. Our results also demonstrate that it is unsafe to infer SFRs from radio emission alone, even if bright AGN have been excluded from a sample, since there is a significant population of faint radio AGN which may contaminate the radio-derived SFRs.

  3. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    2002-07-31

    This is a photo taken by NASA's Chandra X-ray Observatory that reveals the remains of an explosion in the form of two enormous arcs of multimillion-degree gas in the galaxy Centaurus A that appear to be part of a ring 25,000 light years in diameter. The size and location of the ring suggest that it could have been an explosion that occurred about 10 million years ago. A composite image made with radio (red and green), optical (yellow-orange), and X-ray data (blue) presents a sturning tableau of a turbulent galaxy. A broad band of dust and cold gas is bisected at an angle by opposing jets of high-energy particles blasting away from the supermassive black hole in the nucleus. Lying in a plane perpendicular to the jets are the two large arcs of x-ray emitting multi-million degree gas. This discovery can help astronomers better understand the cause and effect of violent outbursts from the vicinity of supermassive black holes of active galaxies. The Chandra program is managed by the Marshall Space Flight Center in Huntsville, Alabama.

  4. Science Priorities of the RadioAstron Space VLBI Mission

    NASA Astrophysics Data System (ADS)

    Langston, Glen; Kardashev, N.; International Space VLBI Collaboration

    2006-12-01

    The main scientific goal of the RadioAstron Space VLBI mission is study of Active Galactic Nuclei (AGN), Masers and other astronomical objects with unprecedented angular resolution, up to few millionths of an arc-second. The resolution achieved with RadioAstron will allow study the following phenomena and problems: * Central engine of AGN and physical processes near super massive black holes providing an acceleration of cosmic rays size, velocity and shape of emitting region in the core, spectrum, polarization and variability of emitting components; * Cosmological models, dark matter and dark energy by studying dependence of above mentioned AGN's parameters with redshift, and by observing gravitational lensing; * Structure and dynamics of star and planets forming regions in our Galaxy and in AGN by studying maser and Mega maser radio emission; * Neutron (quark?) stars and black holes in our Galaxy, their structure and dynamics by VLBI and measurements of visibility scintillations, proper motions and parallaxes; * Structure and distribution of interstellar and interplanetary plasma by fringe visibility scintillations of pulsars; The RadioAstron mission uses the satellite SPECTR (astrophysical module), developed by Lavochkin Association of Russian Aviation and Space Agency (RASA). This module will be used in several other scientific missions. The total mass of the scientific payload is about 2500 kg, of which the unfolding parabolic 10-m radio astronomy antenna's mass is about 1500 kg, and scientific package holding the receivers, power supply, synthesizers, control units, frequency standards and data transmission radio system. The mass of the whole system (satellite and scientific payload) to be carried into orbit by the powerful "Zenit-2SB"-"Fregat-2CB" launcher is about 5000 kg. The RadioAstron project is an international collaboration between RASA and ground radio telescope facilities around the world.

  5. VizieR Online Data Catalog: SEDs of the radio continuum from KINGFISHER (Tabatabaei+, 2017)

    NASA Astrophysics Data System (ADS)

    Tabatabaei, F. S.; Schinnerer, E.; Krause, M.; Dumas, G.; Meidt, S.; Damas-Segovia, A.; Beck, R.; Murphy, E. J.; Mulcahy, D. D.; Groves, B.; Bolatto, A.; Dale, D.; Galametz, M.; Sandstrom, K.; Boquien, M.; Calzetti, D.; Kennicutt, R. C.; Hunt, L. K.; de Looze, I.; Pellegrini, E. W.

    2017-10-01

    The KINGFISH sample consists of 61 nearby galaxies of different morphological types. From this sample, we selected all galaxies with declinations >=-21° and named this subsample KINGFISHER (KINGFISH galaxies Emitting in Radio). These galaxies can be observed with the Effelsberg 100m single-dish telescope to obtain global measurements of the radio continuum at 20cm, 6cm, and 3.6cm. The non-KINGFISH galaxy, M51, is also included in this study. We observed 35 of these galaxies at 6cm, 10 galaxies at 20cm, and 7 at 3.6cm to complete already existing archival data during four observation runs (2008 Dec, 2009 Dec, 2010 Apr and 2010 Dec & 2012 Mar). (3 data files).

  6. Radio Observations of Ultra-Luminous X-Ray Sources ---Microblazars or Intermediate-Mass Black Holes?---

    NASA Astrophysics Data System (ADS)

    Körding, E.; Colbert, E.; Falcke, H.

    In recent years Ultra-Luminous X-Ray sources (ULXs) received wide attention, however, their true nature is not yet understood. Many explanations have been suggested, including intermediate-mass black holes, super-Eddington accretion flows, anisotropic emission, and relativistic beaming of microquasars. We model the logN-logS distribution of ULXs assuming that each neutron star or black hole XRB can be described by an accretion disk plus jet model, where the jet is relativistically beamed. The distribution can be either fit by intermediate-mass black holes or by stellar mass black holes with mildly relativistic jets. Even though the jet is intrinsically weaker than the accretion disk, relativistic beaming can in the latter approach lead to the high fluxes observed. To further explore the possibility of microblazars contributing to the ULX phenomenon, we have embarked on a radio-monitoring study of ULXs in nearby galaxies with the VLA. However, up to now no radio flare has been detected. Using the radio/X-ray correlation the upper limits on the radio flux can be converted into upper limits for the black hole masses of MBH ≲ 10^3 M⊙.

  7. Local Group dSph radio survey with ATCA - II. Non-thermal diffuse emission

    NASA Astrophysics Data System (ADS)

    Regis, Marco; Richter, Laura; Colafrancesco, Sergio; Profumo, Stefano; de Blok, W. J. G.; Massardi, Marcella

    2015-04-01

    Our closest neighbours, the Local Group dwarf spheroidal (dSph) galaxies, are extremely quiescent and dim objects, where thermal and non-thermal diffuse emissions lack, so far, of detection. In order to possibly study the dSph interstellar medium, deep observations are required. They could reveal non-thermal emissions associated with the very low level of star formation, or to particle dark matter annihilating or decaying in the dSph halo. In this work, we employ radio observations of six dSphs, conducted with the Australia Telescope Compact Array in the frequency band 1.1-3.1 GHz, to test the presence of a diffuse component over typical scales of few arcmin and at an rms sensitivity below 0.05 mJy beam-1. We observed the dSph fields with both a compact array and long baselines. Short spacings led to a synthesized beam of about 1 arcmin and were used for the extended emission search. The high-resolution data mapped background sources, which in turn were subtracted in the short-baseline maps, to reduce their confusion limit. We found no significant detection of a diffuse radio continuum component. After a detailed discussion on the modelling of the cosmic ray (CR) electron distribution and on the dSph magnetic properties, we present bounds on several physical quantities related to the dSphs, such that the total radio flux, the angular shape of the radio emissivity, the equipartition magnetic field, and the injection and equilibrium distributions of CR electrons. Finally, we discuss the connection to far-infrared and X-ray observations.

  8. An optical imaging study of 0.4 ≤ z ≤ 0.8 quasar host galaxies . II. Analysis and interpretation

    NASA Astrophysics Data System (ADS)

    Örndahl, E.; Rönnback, J.

    2005-11-01

    We performed optical imaging of 102 radio-loud and radio-quiet quasars at z=0.4{-}0.8, of which 91 fields were found suitable for host galaxy analysis after the deselection of saturated and otherwise flawed images. The data sets were obtained mainly in the R band, but also in the V and I or Gunn i band, and were presented in Rönnback et al.(1996, MNRAS, 283, 282) and Örndahl et al. (2003, A&A, 404, 883). In this paper we combine the two above-mentioned samples and also separately discuss additional hosts, extracted from data taken by Wold et al. (2000, MNRAS, 316, 267; 2001, MNRAS, 323, 231). The joint sample forms a sizeable fraction of the to-date total number of observed sources at intermediate redshifts and increases the number of resolved radio-quiet hosts at z>0.4 considerably. Equal numbers of radio-loud and radio-quiet objects were observed, resulting in a detection rate of 79% for the radio-loud hosts and 66% for the radio-quiet hosts. Profile fitting could only be carried out for a minority of the sample, but it results in predominantly elliptical morphologies. This is consistent with the mean values of the axial ratios, for which we find b/a⪆0.8 for both radio-quiet and radio-loud hosts, just as in the case of normal elliptical galaxies. The mean absolute magnitudes of the radio-loud and radio-quiet hosts is M_R=-23.5 in both cases. This similarity between the mean magnitudes of the two types of host galaxy is also seen in the other imaged bands. While the radio-loud host absolute R magnitudes are correlated with redshift, only a weak trend of the same sort is seen for the radio-quiet host magnitudes. Note, however, that the sample is not fully resolved and that the detection limit, in combination with the relationship between host and nuclear luminosity, may conspire in creating the illusion of an upturn in magnitude. The average nucleus-to-host galaxy luminosity ratios of the radio-loud and radio-quiet objects do not differ significantly in any band, nor is the difference between the average luminosity ratios of flat spectrum and steep spectrum radio-loud quasars larger than 1.5σ. Thus, no effect of beaming (as expected in the unifying scheme) is seen. The colours of both radio-loud and radio-quiet host galaxies are found to be as blue as present-day late-type spirals and starburst galaxies. These blue colours are most likely due neither to galaxy evolution over the range, which only gives rise to a colour shift of 0.2 mag, nor to scattered nuclear light, since colours determined from annular apertures yield very similar results. Since close companions in projection are not uncommon (and a few sources even exhibit tidal tail-like features and other signs of interaction), ongoing star formation is a reasonable explanation of the blue host colours. As multiple-band imaging primarily was carried out for quasars showing indications of the presence of a host galaxy, the colour analysis results are valid for host galaxies which are large, bright, have low nucleus-to-host luminosity ratios, and/or display large scale disturbances, but cannot however safely be generalised to hold for the quasar host galaxy population at intermediate redshift as a whole.

  9. The X-Ray Reflection Spectrum of the Radio-Loud Quasar 4C 74.26

    NASA Technical Reports Server (NTRS)

    Lohfink, Ann M.; Fabian, Andrew C.; Ballantyne, David R.; Boggs, S. E.; Boorman, Peter; Christensen, F. E.; Craig, W. W.; Farrah, Duncan; Garcia, Javier; Hailey, C. J.; hide

    2017-01-01

    The relativistic jets created by some active galactic nuclei are important agents of AGN feedback. In spite of this, our understanding of what produces these jets is still incomplete. X-ray observations, which can probe the processes operating in the central regions in the immediate vicinity of the supermassive black hole, the presumed jet launching point, are potentially particularly valuable in illuminating the jet formation process. Here, we present the hard X-ray NuSTAR observations of the radio-loud quasar 4C 74.26 in a joint analysis with quasi-simultaneous, soft X-ray Swift observations. Our spectral analysis reveals a high-energy cutoff of -183+3551 keV and confirms the presence of ionized reflection in the source. From the average spectrum we detect that the accretion disk is mildly recessed, with an inner radius of Rin4180 Rg. However, no significant evolution of the inner radius is seen during the three months covered by our NuSTAR campaign. This lack of variation could mean that the jet formation in this radio-loud quasar differs from what is observed in broad-line radio galaxies.

  10. The X-Ray Reflection Spectrum of the Radio-loud Quasar 4C 74.26

    NASA Astrophysics Data System (ADS)

    Lohfink, Anne M.; Fabian, Andrew C.; Ballantyne, David R.; Boggs, S. E.; Boorman, Peter; Christensen, F. E.; Craig, W. W.; Farrah, Duncan; García, Javier; Hailey, C. J.; Harrison, F. A.; Ricci, Claudio; Stern, Daniel; Zhang, W. W.

    2017-06-01

    The relativistic jets created by some active galactic nuclei are important agents of AGN feedback. In spite of this, our understanding of what produces these jets is still incomplete. X-ray observations, which can probe the processes operating in the central regions in the immediate vicinity of the supermassive black hole, the presumed jet launching point, are potentially particularly valuable in illuminating the jet formation process. Here, we present the hard X-ray NuSTAR observations of the radio-loud quasar 4C 74.26 in a joint analysis with quasi-simultaneous, soft X-ray Swift observations. Our spectral analysis reveals a high-energy cutoff of {183}-35+51 keV and confirms the presence of ionized reflection in the source. From the average spectrum we detect that the accretion disk is mildly recessed, with an inner radius of R in = 4-180 R g. However, no significant evolution of the inner radius is seen during the three months covered by our NuSTAR campaign. This lack of variation could mean that the jet formation in this radio-loud quasar differs from what is observed in broad-line radio galaxies.

  11. Sub-millimetre properties of massive star-forming galaxies at z ~ 2 in SHADES/SXDF

    NASA Astrophysics Data System (ADS)

    Takagi, T.; Mortier, A. M. J.; Shimasaku, K.; Coppin, K.; Pope, A.; Ivison, R. J.; Hanami, H.; Serjeant, S.; Dunlop, J. S.

    2007-05-01

    We study the submillimetre (submm) properties of the following NIR-selected massive galaxies at high redshifts: BzK-selected star-forming galaxies (BzKs), distant red galaxies (DRGs) and extremely red objects (EROs). We used the SCUBA HAlf Degree Extragalactic Survey (SHADES), the largest uniform submm survey to date. We detected 6 NIR-selected galaxies in our SCUBA map. Four submm-detected galaxies out of six are found to be detected both at 24 micron and in radio (1.4 GHz), and therefore confirmed as genuine submm-bright galaxies. We identify two submm-bright NIR-selected galaxies are the BzK-DRG-ERO overlapping population. Although this overlapping population is rare, about 12% of this population could be submm galaxies. With a stacking analysis, we detected the 850-micron flux of submm-faint BzKs and EROs in our SCUBA maps. While the contribution from BzKs at z˜2 to submm background is about 10 - 15 % and similar to that from EROs typically at z˜1, BzKs have a higher fraction (˜30%) of flux in resolved sources than EROs do. Therefore, submm flux of BzKs seems to be biased high. From the SED fitting using an evolutionary model of starbursts with radiative transfer, submm-bright NIR-selected galaxies, mostly BzKs, are found to have the stellar mass of >5x1010M[sun] with the bolometric luminosity of >3x1012L[sun]. On the other hand, an average SED of submm-faint BzKs indicates the typical stellar mass of <6x1010M[sun] and therefore less massive.

  12. The X-ray luminous galaxy cluster XMMU J1007.4+1237 at z = 1.56. The dawn of starburst activity in cluster cores

    NASA Astrophysics Data System (ADS)

    Fassbender, R.; Nastasi, A.; Böhringer, H.; Šuhada, R.; Santos, J. S.; Rosati, P.; Pierini, D.; Mühlegger, M.; Quintana, H.; Schwope, A. D.; Lamer, G.; de Hoon, A.; Kohnert, J.; Pratt, G. W.; Mohr, J. J.

    2011-03-01

    Context. Observational galaxy cluster studies at z > 1.5 probe the formation of the first massive M > 1014 M⊙ dark matter halos, the early thermal history of the hot ICM, and the emergence of the red-sequence population of quenched early-type galaxies. Aims: We present first results for the newly discovered X-ray luminous galaxy cluster XMMU J1007.4+1237 at z = 1.555, detected and confirmed by the XMM-Newton Distant Cluster Project (XDCP) survey. Methods: We selected the system as a serendipitous weak extended X-ray source in XMM-Newton archival data and followed it up with two-band near-infrared imaging and deep optical spectroscopy. Results: We can establish XMMU J1007.4+1237 as a spectroscopically confirmed, massive,bona fide galaxy cluster with a bolometric X-ray luminosity of Lbol_X,500≃(2.1 ± 0.4)× 10^{44} erg/s, a red galaxy population centered on the X-ray emission, and a central radio-loud brightest cluster galaxy. However, we see evidence for the first time that the massive end of the galaxy population and the cluster red-sequence are not yet fully in place. In particular, we find ongoing starburst activity for the third ranked galaxy close to the center and another slightly fainter object. Conclusions: At a lookback time of 9.4 Gyr, the cluster galaxy population appears to be caught in an important evolutionary phase, prior to full star-formation quenching and mass assembly in the core region. X-ray selection techniques are an efficient means of identifying and probing the most distant clusters without any prior assumptions about their galaxy content. Based on observations under programme ID 081.A-0312 collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, and observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).Figure 2 and Tables 1 and 2 are only available in electronic form at http://www.aanda.org

  13. A radio counterpart to a neutron star merger

    NASA Astrophysics Data System (ADS)

    Hallinan, G.; Corsi, A.; Mooley, K. P.; Hotokezaka, K.; Nakar, E.; Kasliwal, M. M.; Kaplan, D. L.; Frail, D. A.; Myers, S. T.; Murphy, T.; De, K.; Dobie, D.; Allison, J. R.; Bannister, K. W.; Bhalerao, V.; Chandra, P.; Clarke, T. E.; Giacintucci, S.; Ho, A. Y. Q.; Horesh, A.; Kassim, N. E.; Kulkarni, S. R.; Lenc, E.; Lockman, F. J.; Lynch, C.; Nichols, D.; Nissanke, S.; Palliyaguru, N.; Peters, W. M.; Piran, T.; Rana, J.; Sadler, E. M.; Singer, L. P.

    2017-12-01

    The gravitational wave event GW170817 was caused by the merger of two neutron stars (see the Introduction by Smith). In three papers, teams associated with the GROWTH (Global Relay of Observatories Watching Transients Happen) project present their observations of the event at wavelengths from x-rays to radio waves. Evans et al. used space telescopes to detect GW170817 in the ultraviolet and place limits on its x-ray flux, showing that the merger generated a hot explosion known as a blue kilonova. Hallinan et al. describe radio emissions generated as the explosion slammed into the surrounding gas within the host galaxy. Kasliwal et al. present additional observations in the optical and infrared and formulate a model for the event involving a cocoon of material expanding at close to the speed of light, matching the data at all observed wavelengths.

  14. The X-ray emitting galaxy Centaurus A

    NASA Technical Reports Server (NTRS)

    Mushotzky, R. F.; Serlemitsos, P. J.; Boldt, E. A.; Holt, S. S.; Becker, R. H.

    1978-01-01

    OSO-8 X-ray observations of Cen A in 1975 and 1976 are reported. The source spectrum can be well fitted in both years by a power law of number index 1.66 and absorption due to 1.3 by 10 to the 23rd power atoms/sq cm. The total flux varied by a factor of 2 between 1975 and 1976. In 1976 there were flux variations of approximately 40% on a time scale of days. Measurements of the 6.4-keV Fe fluorescent line and the 7.1-keV absorption edge imply Fe/H of approximately 0.000016. Simultaneous radio measurements show variation in phase with X-ray variability. Consideration of radio, millimeter, infrared, and X-ray data shows that all the data can be accounted for by a model in which the X-rays are due to a synchrotron self-Compton source embedded in a cold H2 cloud.

  15. A Possible X-Ray and Radio Counterpart of the High-Energy Gamma-Ray Source 3EG J2227+6122

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Gotthelf, E. V.; Helfand, D. J.; Leighly, K. M.; Oliversen, Ronald (Technical Monitor)

    2001-01-01

    The identity of the persistent EGRET sources in the Galactic plane is largely a mystery. For one of these, 3EG J2227+6122, our complete census of X-ray and radio sources in its error circle reveals a remarkable superposition of an incomplete radio shell with a flat radio spectrum, and a compact, power-law X-ray source with photon index Gamma = 1.5 and with no obvious optical counterpart. The radio shell is polarized at a level of approx. = 25%. The anomalous properties of the radio source prevent us from deriving a completely satisfactory theory as to its nature. Nevertheless, using data from ROSAT, ASCA, the VLA, and optical imaging and spectroscopy, we argue that the X-ray source may be a young pulsar with an associated wind-blown bubble or bow shock nebula, and an example of the class of radio-quiet pulsars which are hypothesized to comprise the majority of EGRET sources in the Galaxy. The distance to this source can be estimated from its X-ray absorption as 3 kpc. At this distance, the X-ray and gamma-ray luminosities would be approx. = 1.7 x 10(exp 33) and approx. = 3.7 x 10(exp 35) erg/s, respectively, which would require an energetic pulsar to power them. If, on the contrary, this X-ray source is not the counterpart of 3EG J2227+6122, then by process of elimination the X-ray luminosity of the latter must be less than 10(exp -4) of its gamma-ray luminosity, a condition not satisfied by any established class of gamma-ray source counterpart. This would require the existence of at least a quantitatively new type of EGRET source, as has been suggested in studies of other EGRET fields.

  16. State-of-the-art multi-wavelength observations of nearby brightest group/cluster galaxies

    NASA Astrophysics Data System (ADS)

    Gendron-Marsolais, Marie-Lou; Hlavacek-Larrondo, Julie

    2018-01-01

    Nearby galaxy groups and clusters are crucial to our understanding of the impact of nuclear outbursts on the intracluster medium as their proximity allows us to study in detail the processes of feedback from active galactic nuclei in these systems. In this talk, I will present state-of-the-art multi-wavelength observations signatures of this mechanism.I will first show results on multi-configuration 230-470 MHz observations of the Perseus cluster from the Karl G. Jansky Very Large Array, probing the non-thermal emission from the old particle population of the AGN outflows. These observations reveal a multitude of new structures associated with the “mini-halo” and illustrate the high-quality images that can be obtained with the new JVLA at low radio-frequencies.Second, I will present new observations with the optical imaging Fourier transform spectrometer SITELLE (CFHT) of NGC 1275, the Perseus cluster's brightest galaxy. With its wide field of view, it is the only integral field unit spectroscopy instrument able to cover the large emission-line filamentary nebula in NGC 1275. I will present the first detailed velocity map of this nebula in its entirety and tackle the question of its origin (residual cooling flow or dragged gas).Finally, I will present deep Chandra observations of the nearby early-type massive elliptical galaxy NGC 4472, the most optically luminous galaxy in the local Universe, lying on the outskirts of the Virgo cluster. Enhanced X-ray rims around the radio lobes are detected and interpreted as gas uplifted from the core by the buoyant rise of the radio bubbles. We estimate the energy required to lift the gas to constitute a significant fraction of the total outburst energy.I will thus show how these high-fidelity observations of nearby brightest group/cluster galaxies are improving our understanding of the AGN feedback mechanism taking place in galaxy groups and clusters.

  17. Investigating the unification of LOFAR-detected powerful AGN in the Boötes field

    NASA Astrophysics Data System (ADS)

    Morabito, Leah K.; Williams, W. L.; Duncan, Kenneth J.; Röttgering, H. J. A.; Miley, George; Saxena, Aayush; Barthel, Peter; Best, P. N.; Bruggen, M.; Brunetti, G.; Chyży, K. T.; Engels, D.; Hardcastle, M. J.; Harwood, J. J.; Jarvis, Matt J.; Mahony, E. K.; Prandoni, I.; Shimwell, T. W.; Shulevski, A.; Tasse, C.

    2017-08-01

    Low radio frequency surveys are important for testing unified models of radio-loud quasars and radio galaxies. Intrinsically similar sources that are randomly oriented on the sky will have different projected linear sizes. Measuring the projected linear sizes of these sources provides an indication of their orientation. Steep-spectrum isotropic radio emission allows for orientation-free sample selection at low radio frequencies. We use a new radio survey of the Boötes field at 150 MHz made with the Low-Frequency Array (LOFAR) to select a sample of radio sources. We identify 60 radio sources with powers P > 1025.5 W Hz-1 at 150 MHz using cross-matched multiwavelength information from the AGN and Galaxy Evolution Survey, which provides spectroscopic redshifts and photometric identification of 16 quasars and 44 radio galaxies. When considering the radio spectral slope only, we find that radio sources with steep spectra have projected linear sizes that are on average 4.4 ± 1.4 larger than those with flat spectra. The projected linear sizes of radio galaxies are on average 3.1 ± 1.0 larger than those of quasars (2.0 ± 0.3 after correcting for redshift evolution). Combining these results with three previous surveys, we find that the projected linear sizes of radio galaxies and quasars depend on redshift but not on power. The projected linear size ratio does not correlate with either parameter. The LOFAR data are consistent within the uncertainties with theoretical predictions of the correlation between the quasar fraction and linear size ratio, based on an orientation-based unification scheme.

  18. Long-Term Variability of AGN at Hard X-Rays

    NASA Technical Reports Server (NTRS)

    Soldi, S.; Beckmann, V.; Baumgartner W. H.; Ponti, G.; Shrader, C. R.; Lubinski, P.; Krimm, H. A.; Mattana, F.; Tueller, J.

    2013-01-01

    Variability at all observed wavelengths is a distinctive property of active galactic nuclei (AGN). Hard X-rays provide us with a view of the innermost regions of AGN, mostly unbiased by absorption along the line of sight. Characterizing the intrinsic hard X-ray variability of a large AGN sample and comparing it to the results obtained at lower X-ray energies can significantly contribute to our understanding of the mechanisms underlying the high-energy radiation. Methods. Swift/BAT provides us with the unique opportunity to follow, on time scales of days to years and with a regular sampling, the 14-195 keV emission of the largest AGN sample available up to date for this kind of investigation. As a continuation of an early work on the first 9 months of BAT data, we study the amplitude of the variations, and their dependence on sub-class and on energy, for a sample of 110 radio quiet and radio loud AGN selected from the BAT 58-month survey. About 80 of the AGN in the sample are found to exhibit significant variability on months to years time scales, radio loud sources being the most variable. The amplitude of the variations and their energy dependence are incompatible with variability being driven at hard X-rays by changes of the absorption column density. In general, the variations in the 14-24 and 35-100 keV bands are well correlated, suggesting a common origin of the variability across the BAT energy band. However, radio quiet AGN display on average 10 larger variations at 14-24 keV than at 35-100 keV and a softer-when-brighter behavior for most of the Seyfert galaxies with detectable spectral variability on month time scale. In addition, sources with harder spectra are found to be more variable than softer ones. These properties are generally consistent with a variable power law continuum, in flux and shape, pivoting at energies 50 keV, to which a constant reflection component is superposed. When the same time scales are considered, the timing properties of AGN at hard X-rays are comparable to those at lower energies, with at least some of the differences possibly ascribable to components contributing differently in the two energy domains (e.g., reflection, absorption).

  19. The invisible AGN catalogue: a mid-infrared-radio selection method for optically faint active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Truebenbach, Alexandra E.; Darling, Jeremy

    2017-06-01

    A large fraction of active galactic nuclei (AGN) are 'invisible' in extant optical surveys due to either distance or dust-obscuration. The existence of this large population of dust-obscured, infrared (IR)-bright AGN is predicted by models of galaxy-supermassive black hole coevolution and is required to explain the observed X-ray and IR backgrounds. Recently, IR colour cuts with Wide-field Infrared Survey Explorer have identified a portion of this missing population. However, as the host galaxy brightness relative to that of the AGN increases, it becomes increasingly difficult to differentiate between IR emission originating from the AGN and from its host galaxy. As a solution, we have developed a new method to select obscured AGN using their 20-cm continuum emission to identify the objects as AGN. We created the resulting invisible AGN catalogue by selecting objects that are detected in AllWISE (mid-IR) and FIRST (20 cm), but are not detected in SDSS (optical) or 2MASS (near-IR), producing a final catalogue of 46 258 objects. 30 per cent of the objects are selected by existing selection methods, while the remaining 70 per cent represent a potential previously unidentified population of candidate AGN that are missed by mid-IR colour cuts. Additionally, by relying on a radio continuum detection, this technique is efficient at detecting radio-loud AGN at z ≥ 0.29, regardless of their level of dust obscuration or their host galaxy's relative brightness.

  20. Complete identification of the Parkes half-Jansky sample of GHz peaked spectrum radio galaxies

    NASA Astrophysics Data System (ADS)

    de Vries, N.; Snellen, I. A. G.; Schilizzi, R. T.; Lehnert, M. D.; Bremer, M. N.

    2007-03-01

    Context: Gigahertz Peaked Spectrum (GPS) radio galaxies are generally thought to be the young counterparts of classical extended radio sources. Statistically complete samples of GPS sources are vital for studying the early evolution of radio-loud AGN and the trigger of their nuclear activity. The "Parkes half-Jansky" sample of GPS radio galaxies is such a sample, representing the southern counterpart of the 1998 Stanghellini sample of bright GPS sources. Aims: As a first step of the investigation of the sample, the host galaxies need to be identified and their redshifts determined. Methods: Deep R-band VLT-FORS1 and ESO 3.6 m EFOSC II images and long slit spectra have been taken for the unidentified sources in the sample. Results: We have identified all twelve previously unknown host galaxies of the radio sources in the sample. Eleven have host galaxies in the range 21.0 < RC < 23.0, while one object, PKS J0210+0419, is identified in the near infrared with a galaxy with Ks = 18.3. The redshifts of 21 host galaxies have been determined in the range 0.474 < z < 1.539, bringing the total number of redshifts to 39 (80%). Analysis of the absolute magnitudes of the GPS host galaxies show that at z>1 they are on average a magnitude fainter than classical 3C radio galaxies, as found in earlier studies. However their restframe UV luminosities indicate that there is an extra light contribution from the AGN, or from a population of young stars. Based on observations collected at the European Southern Observatory Very Large Telescope, Paranal, Chile (ESO prog. ID No. 073.B-0289(B)) and the European Southern Observatory 3.6 m Telescope, La Silla, Chile (prog. ID No. 073.B-0289(A)). Appendices are only available in electronic form at http://www.aanda.org

Top