Sample records for x1x2y sex chromosome

  1. Resolution and evolution of the duck-billed platypus karyotype with an X1Y1X2Y2X3Y3X4Y4X5Y5 male sex chromosome constitution.

    PubMed

    Rens, Willem; Grützner, Frank; O'brien, Patricia C M; Fairclough, Helen; Graves, Jennifer A M; Ferguson-Smith, Malcolm A

    2004-11-16

    The platypus (2n = 52) has a complex karyotype that has been controversial over the last three decades. The presence of unpaired chromosomes and an unknown sex-determining system especially has defied attempts at conventional analysis. This article reports on the preparation of chromosome-specific probes from flow-sorted chromosomes and their application in the identification and classification of all platypus chromosomes. This work reveals that the male karyotype has 21 pairs of chromosomes and 10 unpaired chromosomes (E1-E10), which are linked by short regions of homology to form a multivalent chain in meiosis. The female karyotype differs in that five of these unpaired elements (E1, E3, E5, E7, and E9) are each present in duplicate, whereas the remaining five unpaired elements (E2, E4, E6, E8, and E10) are absent. This finding indicates that sex is determined by the alternate segregation of the chain of 10 during spermatogenesis so that equal numbers of sperm bear either one of the two groups of five elements, i.e., five X and five Y chromosomes. Chromosome painting reveals that these X and Y chromosomes contain pairing (XY shared) and differential (X- or Y-specific) segments. Y differential regions must contain male-determining genes, and X differential regions should be dosage-compensated in the female. Two models for the evolution of the sex-determining system are presented. The resolution of the longstanding debate over the platypus karyotype is an important step toward the understanding of mechanisms of sex determination, dosage compensation, and karyotype evolution.

  2. Resolution and evolution of the duck-billed platypus karyotype with an X1Y1X2Y2X3Y3X4Y4X5Y5 male sex chromosome constitution

    PubMed Central

    Rens, Willem; Grützner, Frank; O'Brien, Patricia C. M.; Fairclough, Helen; Graves, Jennifer A. M.; Ferguson-Smith, Malcolm A.

    2004-01-01

    The platypus (2n = 52) has a complex karyotype that has been controversial over the last three decades. The presence of unpaired chromosomes and an unknown sex-determining system especially has defied attempts at conventional analysis. This article reports on the preparation of chromosome-specific probes from flow-sorted chromosomes and their application in the identification and classification of all platypus chromosomes. This work reveals that the male karyotype has 21 pairs of chromosomes and 10 unpaired chromosomes (E1-E10), which are linked by short regions of homology to form a multivalent chain in meiosis. The female karyotype differs in that five of these unpaired elements (E1, E3, E5, E7, and E9) are each present in duplicate, whereas the remaining five unpaired elements (E2, E4, E6, E8, and E10) are absent. This finding indicates that sex is determined by the alternate segregation of the chain of 10 during spermatogenesis so that equal numbers of sperm bear either one of the two groups of five elements, i.e., five X and five Y chromosomes. Chromosome painting reveals that these X and Y chromosomes contain pairing (XY shared) and differential (X- or Y-specific) segments. Y differential regions must contain male-determining genes, and X differential regions should be dosage-compensated in the female. Two models for the evolution of the sex-determining system are presented. The resolution of the longstanding debate over the platypus karyotype is an important step toward the understanding of mechanisms of sex determination, dosage compensation, and karyotype evolution. PMID:15534209

  3. Contrasting patterns of X/Y polymorphism distinguish Carica papaya from other sex chromosome systems.

    PubMed

    Weingartner, Laura A; Moore, Richard C

    2012-12-01

    The sex chromosomes of the tropical crop papaya (Carica papaya) are evolutionarily young and consequently allow for the examination of evolutionary mechanisms that drive early sex chromosome divergence. We conducted a molecular population genetic analysis of four X/Y gene pairs from a collection of 45 wild papaya accessions. These population genetic analyses reveal striking differences in the patterns of polymorphism between the X and Y chromosomes that distinguish them from other sex chromosome systems. In most sex chromosome systems, the Y chromosome displays significantly reduced polymorphism levels, whereas the X chromosome maintains a level of polymorphism that is comparable to autosomal loci. However, the four papaya sex-linked loci that we examined display diversity patterns that are opposite this trend: the papaya X alleles exhibit significantly reduced polymorphism levels, whereas the papaya Y alleles maintain greater than expected levels of diversity. Our analyses suggest that selective sweeps in the regions of the X have contributed to this pattern while also revealing geographically restricted haplogroups on the Y. We discuss the possible role sexual selection and/or genomic conflict have played in shaping the contrasting patterns of polymorphism found for the papaya X and Y chromosomes.

  4. Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution.

    PubMed

    Wang, Jianping; Na, Jong-Kuk; Yu, Qingyi; Gschwend, Andrea R; Han, Jennifer; Zeng, Fanchang; Aryal, Rishi; VanBuren, Robert; Murray, Jan E; Zhang, Wenli; Navajas-Pérez, Rafael; Feltus, F Alex; Lemke, Cornelia; Tong, Eric J; Chen, Cuixia; Wai, Ching Man; Singh, Ratnesh; Wang, Ming-Li; Min, Xiang Jia; Alam, Maqsudul; Charlesworth, Deborah; Moore, Paul H; Jiang, Jiming; Paterson, Andrew H; Ming, Ray

    2012-08-21

    Sex determination in papaya is controlled by a recently evolved XY chromosome pair, with two slightly different Y chromosomes controlling the development of males (Y) and hermaphrodites (Y(h)). To study the events of early sex chromosome evolution, we sequenced the hermaphrodite-specific region of the Y(h) chromosome (HSY) and its X counterpart, yielding an 8.1-megabase (Mb) HSY pseudomolecule, and a 3.5-Mb sequence for the corresponding X region. The HSY is larger than the X region, mostly due to retrotransposon insertions. The papaya HSY differs from the X region by two large-scale inversions, the first of which likely caused the recombination suppression between the X and Y(h) chromosomes, followed by numerous additional chromosomal rearrangements. Altogether, including the X and/or HSY regions, 124 transcription units were annotated, including 50 functional pairs present in both the X and HSY. Ten HSY genes had functional homologs elsewhere in the papaya autosomal regions, suggesting movement of genes onto the HSY, whereas the X region had none. Sequence divergence between 70 transcripts shared by the X and HSY revealed two evolutionary strata in the X chromosome, corresponding to the two inversions on the HSY, the older of which evolved about 7.0 million years ago. Gene content differences between the HSY and X are greatest in the older stratum, whereas the gene content and order of the collinear regions are identical. Our findings support theoretical models of early sex chromosome evolution.

  5. X inactivation in a mammal species with three sex chromosomes.

    PubMed

    Veyrunes, Frédéric; Perez, Julie

    2018-06-01

    X inactivation is a fundamental mechanism in eutherian mammals to restore a balance of X-linked gene products between XY males and XX females. However, it has never been extensively studied in a eutherian species with a sex determination system that deviates from the ubiquitous XX/XY. In this study, we explore the X inactivation process in the African pygmy mouse Mus minutoides, that harbours a polygenic sex determination with three sex chromosomes: Y, X, and a feminizing mutant X, named X*; females can thus be XX, XX*, or X*Y, and all males are XY. Using immunofluorescence, we investigated histone modification patterns between the two X chromosome types. We found that the X and X* chromosomes are randomly inactivated in XX* females, while no histone modifications were detected in X*Y females. Furthermore, in M. minutoides, X and X* chromosomes are fused to different autosomes, and we were able to show that the X inactivation never spreads into the autosomal segments. Evaluation of X inactivation by immunofluorescence is an excellent quantitative procedure, but it is only applicable when there is a structural difference between the two chromosomes that allows them to be distinguished.

  6. Synaptonemal complex analysis of the X1X2Y trivalent in Mantis religiosa L. males: inferences on the origin and maintenance of the sex-determining mechanism.

    PubMed

    del Cerro, A L; Cuñado, N; Santos, J L

    1998-01-01

    Characterization of sex chromosomes in males of Mantis religiosa L. (2n = 24 + X1X2Y) was carried out by C-banding, silver staining and fluorescence in situ hybridization. They are meta- or submetacentric, their arms being designated as X1L, X1R, X2R, X2L, YL and YR. Meiotic behaviour of the sex trivalent was examined through the analysis of synaptonemal complexes (SCs), prometaphase I (metaphase I) and metaphase II nuclei. On the basis of the SC analysis, chromosomal length measurements at mitosis and prometaphase I and data from several orthopteran species, it is proposed that the breakpoints of the reciprocal translocation that originated this complex sex-determining mechanism were close to the centromeres of the X and the largest autosome, and that the asynapsed X1L and X2R regions observed in the sex trivalent at pachytene represent the original X chromosome. The X centromere being probably that of the X2 element because it lacks a partner in the SC pachytene trivalent. The relationship among synaptic pattern, chiasma localization and balanced segregation of the sex trivalent is also discussed.

  7. The nuclear hormone receptor SEX-1 is an X-chromosome signal that determines nematode sex.

    PubMed

    Carmi, I; Kopczynski, J B; Meyer, B J

    1998-11-12

    Organisms in many phyla determine sexual fate by distinguishing one X chromosome from two. Here we use the model organism Caenorhabditis elegans to dissect such an X-chromosome-counting mechanism in molecular detail. In this nematode, several genes on the X chromosome called X signal elements communicate X-chromosome dose by controlling the activity of the sex-determination gene xol-1. xol-1 specifies male (XO) fate when active and hermaphrodite (XX) fate when inactive. The only X signal element described so far represses xol-1 post-transcriptionally, but xol-1 is repressed in XX animals by transcriptional and post-transcriptional mechanisms. Here we identify a nuclear-hormone-receptor homologue, SEX-1, that regulates the transcription of xol-1. We show that sex-1 is vital to X-chromosome counting: changing sex-1 gene dose in XX or XO embryos causes sexual transformation and death from inadequate dosage compensation (the hermaphrodite-specific process that equalizes X-gene expression between the sexes). The SEX-1 protein acts directly on xol-1, associating with its promoter in vivo and repressing xol-1 transcription in XX embryos. Thus, xol-1 is the direct molecular target of the primary sex-determination signal, and the dose of a nuclear hormone receptor helps to communicate X-chromosome number to determine nematode sex.

  8. A novel method for sex determination by detecting the number of X chromosomes.

    PubMed

    Nakanishi, Hiroaki; Shojo, Hideki; Ohmori, Takeshi; Hara, Masaaki; Takada, Aya; Adachi, Noboru; Saito, Kazuyuki

    2015-01-01

    A novel method for sex determination, based on the detection of the number of X chromosomes, was established. Current methods, based on the detection of the Y chromosome, can directly identify an unknown sample as male, but female gender is determined indirectly, by not detecting the Y chromosome. Thus, a direct determination of female gender is important because the quality (e.g., fragmentation and amelogenin-Y null allele) of the Y chromosome DNA may lead to a false result. Thus, we developed a novel sex determination method by analyzing the number of X chromosomes using a copy number variation (CNV) detection technique (the comparative Ct method). In this study, we designed a primer set using the amelogenin-X gene without the CNV region as the target to determine the X chromosome copy number, to exclude the influence of the CNV region from the comparative Ct value. The number of X chromosomes was determined statistically using the CopyCaller software with real-time PCR. All DNA samples from participants (20 males, 20 females) were evaluated correctly using this method with 1-ng template DNA. A minimum of 0.2-ng template DNA was found to be necessary for accurate sex determination with this method. When using ultraviolet-irradiated template DNA, as mock forensic samples, the sex of the samples could not be determined by short tandem repeat (STR) analysis but was correctly determined using our method. Thus, we successfully developed a method of sex determination based on the number of X chromosomes. Our novel method will be useful in forensic practice for sex determination.

  9. Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution

    PubMed Central

    Wang, Jianping; Na, Jong-Kuk; Yu, Qingyi; Gschwend, Andrea R.; Han, Jennifer; Zeng, Fanchang; Aryal, Rishi; VanBuren, Robert; Murray, Jan E.; Zhang, Wenli; Navajas-Pérez, Rafael; Feltus, F. Alex; Lemke, Cornelia; Tong, Eric J.; Chen, Cuixia; Man Wai, Ching; Singh, Ratnesh; Wang, Ming-Li; Min, Xiang Jia; Alam, Maqsudul; Charlesworth, Deborah; Moore, Paul H.; Jiang, Jiming; Paterson, Andrew H.; Ming, Ray

    2012-01-01

    Sex determination in papaya is controlled by a recently evolved XY chromosome pair, with two slightly different Y chromosomes controlling the development of males (Y) and hermaphrodites (Yh). To study the events of early sex chromosome evolution, we sequenced the hermaphrodite-specific region of the Yh chromosome (HSY) and its X counterpart, yielding an 8.1-megabase (Mb) HSY pseudomolecule, and a 3.5-Mb sequence for the corresponding X region. The HSY is larger than the X region, mostly due to retrotransposon insertions. The papaya HSY differs from the X region by two large-scale inversions, the first of which likely caused the recombination suppression between the X and Yh chromosomes, followed by numerous additional chromosomal rearrangements. Altogether, including the X and/or HSY regions, 124 transcription units were annotated, including 50 functional pairs present in both the X and HSY. Ten HSY genes had functional homologs elsewhere in the papaya autosomal regions, suggesting movement of genes onto the HSY, whereas the X region had none. Sequence divergence between 70 transcripts shared by the X and HSY revealed two evolutionary strata in the X chromosome, corresponding to the two inversions on the HSY, the older of which evolved about 7.0 million years ago. Gene content differences between the HSY and X are greatest in the older stratum, whereas the gene content and order of the collinear regions are identical. Our findings support theoretical models of early sex chromosome evolution. PMID:22869747

  10. X and Y Chromosome Complement Influence Adiposity and Metabolism in Mice

    PubMed Central

    Chen, Xuqi; McClusky, Rebecca; Itoh, Yuichiro; Reue, Karen

    2013-01-01

    Three different models of MF1 strain mice were studied to measure the effects of gonadal secretions and sex chromosome type and number on body weight and composition, and on related metabolic variables such as glucose homeostasis, feeding, and activity. The 3 genetic models varied sex chromosome complement in different ways, as follows: 1) “four core genotypes” mice, comprising XX and XY gonadal males, and XX and XY gonadal females; 2) the XY* model comprising groups similar to XO, XX, XY, and XXY; and 3) a novel model comprising 6 groups having XO, XX, and XY chromosomes with either testes or ovaries. In gonadally intact mice, gonadal males were heavier than gonadal females, but sex chromosome complement also influenced weight. The male/female difference was abolished by adult gonadectomy, after which mice with 2 sex chromosomes (XX or XY) had greater body weight and percentage of body fat than mice with 1 X chromosome. A second sex chromosome of either type, X or Y, had similar effects, indicating that the 2 sex chromosomes each possess factors that influence body weight and composition in the MF1 genetic background. Sex chromosome complement also influenced metabolic variables such as food intake and glucose tolerance. The results reveal a role for the Y chromosome in metabolism independent of testes and gonadal hormones and point to a small number of X–Y gene pairs with similar coding sequences as candidates for causing these effects. PMID:23397033

  11. Identification of mediator complex 26 (Crsp7) gametologs on platypus X1 and Y5 sex chromosomes: a candidate testis-determining gene in monotremes?

    PubMed

    Tsend-Ayush, Enkhjargal; Kortschak, R Daniel; Bernard, Pascal; Lim, Shu Ly; Ryan, Janelle; Rosenkranz, Ruben; Borodina, Tatiana; Dohm, Juliane C; Himmelbauer, Heinz; Harley, Vincent R; Grützner, Frank

    2012-01-01

    The basal lineage of monotremes features an extraordinarily complex sex chromosome system which has provided novel insights into the evolution of mammalian sex chromosomes. Recently, sequence information from autosomes, X chromosomes, and XY-shared pseudoautosomal regions has become available. However, no gene has so far been described on any of the Y chromosome-specific regions. We analyzed sequences derived from Y-specific BAC clones to identify genes with potentially male-specific function. Here, we report the identification and characterization of the mediator complex protein gametologs on platypus Y5 (Crspy). We also identified the X-chromosomal copy which unexpectedly maps to X1 (Crspx). Sequence comparison shows extensive divergence between the X and Y copy, but we found no significant positive selection on either gametolog. Expression analysis shows widespread expression of Crspx. Crspy is expressed exclusively in males with particularly strong expression in testis and kidney. Reporter gene assays to investigate whether Crspx/y can act on the recently discovered mouse Sox9 testis-specific enhancer element did reveal a modest effect together with mouse Sox9 + Sf1, but showed overall no significant upregulation of the reporter gene. This is the first report of a differentiated functional male-specific gene on platypus Y chromosomes, providing new insights into sex chromosome evolution and a candidate gene for male-specific function in monotremes.

  12. Low X/Y divergence in four pairs of papaya sex-linked genes.

    PubMed

    Yu, Qingyi; Hou, Shaobin; Feltus, F Alex; Jones, Meghan R; Murray, Jan E; Veatch, Olivia; Lemke, Cornelia; Saw, Jimmy H; Moore, Richard C; Thimmapuram, Jyothi; Liu, Lei; Moore, Paul H; Alam, Maqsudul; Jiang, Jiming; Paterson, Andrew H; Ming, Ray

    2008-01-01

    Sex chromosomes in flowering plants, in contrast to those in animals, evolved relatively recently and only a few are heteromorphic. The homomorphic sex chromosomes of papaya show features of incipient sex chromosome evolution. We investigated the features of paired X- and Y-specific bacterial artificial chromosomes (BACs), and estimated the time of divergence in four pairs of sex-linked genes. We report the results of a comparative analysis of long contiguous genomic DNA sequences between the X and hermaphrodite Y (Y(h)) chromosomes. Numerous chromosomal rearrangements were detected in the male-specific region of the Y chromosome (MSY), including inversions, deletions, insertions, duplications and translocations, showing the dynamic evolutionary process on the MSY after recombination ceased. DNA sequence expansion was documented in the two regions of the MSY, demonstrating that the cytologically homomorphic sex chromosomes are heteromorphic at the molecular level. Analysis of sequence divergence between four X and Y(h) gene pairs resulted in a estimated age of divergence of between 0.5 and 2.2 million years, supporting a recent origin of the papaya sex chromosomes. Our findings indicate that sex chromosomes did not evolve at the family level in Caricaceae, and reinforce the theory that sex chromosomes evolve at the species level in some lineages.

  13. X-chromosome-counting mechanisms that determine nematode sex.

    PubMed

    Nicoll, M; Akerib, C C; Meyer, B J

    1997-07-10

    Sex is determined in Caenorhabditis elegans by an X-chromosome-counting mechanism that reliably distinguishes the twofold difference in X-chromosome dose between males (1X) and hermaphrodites (2X). This small quantitative difference is translated into the 'on/off' response of the target gene, xol-1, a switch that specifies the male fate when active and the hermaphrodite fate when inactive. Specific regions of X contain counted signal elements whose combined dose sets the activity of xol-1. Here we ascribe the dose effects of one region to a discrete, protein-encoding gene, fox-1. We demonstrate that the dose-sensitive signal elements on chromosome X control xol-1 through two different molecular mechanisms. One involves the transcriptional repression of xol-1 in XX animals. The other uses the putative RNA-binding protein encoded by fox-1 to reduce the level of xol-1 protein. These two mechanisms of repression act together to ensure the fidelity of the X-chromosome counting process.

  14. Sex chromosomes: platypus genome suggests a recent origin for the human X.

    PubMed

    Ellegren, Hans

    2008-07-08

    The unusual sex chromosomes of platypus are not homologous to the human X and Y chromosomes, implying that the sex chromosomes of placental mammals evolved after the monotreme and placental mammal lineages split about 165 million years ago.

  15. The Number of X Chromosomes Causes Sex Differences in Adiposity in Mice

    PubMed Central

    Chen, Xuqi; McClusky, Rebecca; Chen, Jenny; Beaven, Simon W.; Tontonoz, Peter

    2012-01-01

    Sexual dimorphism in body weight, fat distribution, and metabolic disease has been attributed largely to differential effects of male and female gonadal hormones. Here, we report that the number of X chromosomes within cells also contributes to these sex differences. We employed a unique mouse model, known as the “four core genotypes,” to distinguish between effects of gonadal sex (testes or ovaries) and sex chromosomes (XX or XY). With this model, we produced gonadal male and female mice carrying XX or XY sex chromosome complements. Mice were gonadectomized to remove the acute effects of gonadal hormones and to uncover effects of sex chromosome complement on obesity. Mice with XX sex chromosomes (relative to XY), regardless of their type of gonad, had up to 2-fold increased adiposity and greater food intake during daylight hours, when mice are normally inactive. Mice with two X chromosomes also had accelerated weight gain on a high fat diet and developed fatty liver and elevated lipid and insulin levels. Further genetic studies with mice carrying XO and XXY chromosome complements revealed that the differences between XX and XY mice are attributable to dosage of the X chromosome, rather than effects of the Y chromosome. A subset of genes that escape X chromosome inactivation exhibited higher expression levels in adipose tissue and liver of XX compared to XY mice, and may contribute to the sex differences in obesity. Overall, our study is the first to identify sex chromosome complement, a factor distinguishing all male and female cells, as a cause of sex differences in obesity and metabolism. PMID:22589744

  16. Dosage effects of X and Y chromosomes on language and social functioning in children with supernumerary sex chromosome aneuploidies: Implications for idiopathic language impairment and autism spectrum disorders

    PubMed Central

    Lee, Nancy Raitano; Wallace, Gregory L.; Adeyemi, Elizabeth I.; Lopez, Katherine C.; Blumenthal, Jonathan D.; Clasen, Liv S.; Giedd, Jay N.

    2012-01-01

    Background Supernumerary sex chromosome aneuploidies (X/Y-aneuploidies), the presence of extra X- and/or Y-chromosomes, are associated with heightened rates of language impairments and social difficulties. However, no single study has examined different language domains and social functioning in the same sample of children with tri-, tetra-, and pentasomy X/Y-aneuploidy. The current research sought to fill this gap in the literature and to examine dosage effects of X- and Y-chromosomes on language and social functioning. Methods Participants included 110 youth with X/Y-aneuploidies (32 female) and 52 with typical development (25 female) matched on age (mean~12 years; range 4–22) and maternal education. Participants completed the Wechsler intelligence scales and parents completed the Children’s Communication Checklist-2 and the Social Responsiveness Scale to assess language skills and autistic traits, respectively. Results Both supernumerary X- and Y-chromosomes were related to depressed structural and pragmatic language skills and increased autistic traits. The addition of a Y-chromosome had a disproportionately greater impact on pragmatic language; the addition of one or more X-chromosomes had a disproportionately greater impact on structural language. Conclusions Given that we link extra X-chromosomes with structural language impairments and an extra Y-chromosome with pragmatic language impairments, X/Y-aneuploidies may provide clues to genetic mechanisms contributing to idiopathic language impairment and autism spectrum disorders. PMID:22827287

  17. The DNA sequence of the human X chromosome

    PubMed Central

    Ross, Mark T.; Grafham, Darren V.; Coffey, Alison J.; Scherer, Steven; McLay, Kirsten; Muzny, Donna; Platzer, Matthias; Howell, Gareth R.; Burrows, Christine; Bird, Christine P.; Frankish, Adam; Lovell, Frances L.; Howe, Kevin L.; Ashurst, Jennifer L.; Fulton, Robert S.; Sudbrak, Ralf; Wen, Gaiping; Jones, Matthew C.; Hurles, Matthew E.; Andrews, T. Daniel; Scott, Carol E.; Searle, Stephen; Ramser, Juliane; Whittaker, Adam; Deadman, Rebecca; Carter, Nigel P.; Hunt, Sarah E.; Chen, Rui; Cree, Andrew; Gunaratne, Preethi; Havlak, Paul; Hodgson, Anne; Metzker, Michael L.; Richards, Stephen; Scott, Graham; Steffen, David; Sodergren, Erica; Wheeler, David A.; Worley, Kim C.; Ainscough, Rachael; Ambrose, Kerrie D.; Ansari-Lari, M. Ali; Aradhya, Swaroop; Ashwell, Robert I. S.; Babbage, Anne K.; Bagguley, Claire L.; Ballabio, Andrea; Banerjee, Ruby; Barker, Gary E.; Barlow, Karen F.; Barrett, Ian P.; Bates, Karen N.; Beare, David M.; Beasley, Helen; Beasley, Oliver; Beck, Alfred; Bethel, Graeme; Blechschmidt, Karin; Brady, Nicola; Bray-Allen, Sarah; Bridgeman, Anne M.; Brown, Andrew J.; Brown, Mary J.; Bonnin, David; Bruford, Elspeth A.; Buhay, Christian; Burch, Paula; Burford, Deborah; Burgess, Joanne; Burrill, Wayne; Burton, John; Bye, Jackie M.; Carder, Carol; Carrel, Laura; Chako, Joseph; Chapman, Joanne C.; Chavez, Dean; Chen, Ellson; Chen, Guan; Chen, Yuan; Chen, Zhijian; Chinault, Craig; Ciccodicola, Alfredo; Clark, Sue Y.; Clarke, Graham; Clee, Chris M.; Clegg, Sheila; Clerc-Blankenburg, Kerstin; Clifford, Karen; Cobley, Vicky; Cole, Charlotte G.; Conquer, Jen S.; Corby, Nicole; Connor, Richard E.; David, Robert; Davies, Joy; Davis, Clay; Davis, John; Delgado, Oliver; DeShazo, Denise; Dhami, Pawandeep; Ding, Yan; Dinh, Huyen; Dodsworth, Steve; Draper, Heather; Dugan-Rocha, Shannon; Dunham, Andrew; Dunn, Matthew; Durbin, K. James; Dutta, Ireena; Eades, Tamsin; Ellwood, Matthew; Emery-Cohen, Alexandra; Errington, Helen; Evans, Kathryn L.; Faulkner, Louisa; Francis, Fiona; Frankland, John; Fraser, Audrey E.; Galgoczy, Petra; Gilbert, James; Gill, Rachel; Glöckner, Gernot; Gregory, Simon G.; Gribble, Susan; Griffiths, Coline; Grocock, Russell; Gu, Yanghong; Gwilliam, Rhian; Hamilton, Cerissa; Hart, Elizabeth A.; Hawes, Alicia; Heath, Paul D.; Heitmann, Katja; Hennig, Steffen; Hernandez, Judith; Hinzmann, Bernd; Ho, Sarah; Hoffs, Michael; Howden, Phillip J.; Huckle, Elizabeth J.; Hume, Jennifer; Hunt, Paul J.; Hunt, Adrienne R.; Isherwood, Judith; Jacob, Leni; Johnson, David; Jones, Sally; de Jong, Pieter J.; Joseph, Shirin S.; Keenan, Stephen; Kelly, Susan; Kershaw, Joanne K.; Khan, Ziad; Kioschis, Petra; Klages, Sven; Knights, Andrew J.; Kosiura, Anna; Kovar-Smith, Christie; Laird, Gavin K.; Langford, Cordelia; Lawlor, Stephanie; Leversha, Margaret; Lewis, Lora; Liu, Wen; Lloyd, Christine; Lloyd, David M.; Loulseged, Hermela; Loveland, Jane E.; Lovell, Jamieson D.; Lozado, Ryan; Lu, Jing; Lyne, Rachael; Ma, Jie; Maheshwari, Manjula; Matthews, Lucy H.; McDowall, Jennifer; McLaren, Stuart; McMurray, Amanda; Meidl, Patrick; Meitinger, Thomas; Milne, Sarah; Miner, George; Mistry, Shailesh L.; Morgan, Margaret; Morris, Sidney; Müller, Ines; Mullikin, James C.; Nguyen, Ngoc; Nordsiek, Gabriele; Nyakatura, Gerald; O’Dell, Christopher N.; Okwuonu, Geoffery; Palmer, Sophie; Pandian, Richard; Parker, David; Parrish, Julia; Pasternak, Shiran; Patel, Dina; Pearce, Alex V.; Pearson, Danita M.; Pelan, Sarah E.; Perez, Lesette; Porter, Keith M.; Ramsey, Yvonne; Reichwald, Kathrin; Rhodes, Susan; Ridler, Kerry A.; Schlessinger, David; Schueler, Mary G.; Sehra, Harminder K.; Shaw-Smith, Charles; Shen, Hua; Sheridan, Elizabeth M.; Shownkeen, Ratna; Skuce, Carl D.; Smith, Michelle L.; Sotheran, Elizabeth C.; Steingruber, Helen E.; Steward, Charles A.; Storey, Roy; Swann, R. Mark; Swarbreck, David; Tabor, Paul E.; Taudien, Stefan; Taylor, Tineace; Teague, Brian; Thomas, Karen; Thorpe, Andrea; Timms, Kirsten; Tracey, Alan; Trevanion, Steve; Tromans, Anthony C.; d’Urso, Michele; Verduzco, Daniel; Villasana, Donna; Waldron, Lenee; Wall, Melanie; Wang, Qiaoyan; Warren, James; Warry, Georgina L.; Wei, Xuehong; West, Anthony; Whitehead, Siobhan L.; Whiteley, Mathew N.; Wilkinson, Jane E.; Willey, David L.; Williams, Gabrielle; Williams, Leanne; Williamson, Angela; Williamson, Helen; Wilming, Laurens; Woodmansey, Rebecca L.; Wray, Paul W.; Yen, Jennifer; Zhang, Jingkun; Zhou, Jianling; Zoghbi, Huda; Zorilla, Sara; Buck, David; Reinhardt, Richard; Poustka, Annemarie; Rosenthal, André; Lehrach, Hans; Meindl, Alfons; Minx, Patrick J.; Hillier, LaDeana W.; Willard, Huntington F.; Wilson, Richard K.; Waterston, Robert H.; Rice, Catherine M.; Vaudin, Mark; Coulson, Alan; Nelson, David L.; Weinstock, George; Sulston, John E.; Durbin, Richard; Hubbard, Tim; Gibbs, Richard A.; Beck, Stephan; Rogers, Jane; Bentley, David R.

    2009-01-01

    The human X chromosome has a unique biology that was shaped by its evolution as the sex chromosome shared by males and females. We have determined 99.3% of the euchromatic sequence of the X chromosome. Our analysis illustrates the autosomal origin of the mammalian sex chromosomes, the stepwise process that led to the progressive loss of recombination between X and Y, and the extent of subsequent degradation of the Y chromosome. LINE1 repeat elements cover one-third of the X chromosome, with a distribution that is consistent with their proposed role as way stations in the process of X-chromosome inactivation. We found 1,098 genes in the sequence, of which 99 encode proteins expressed in testis and in various tumour types. A disproportionately high number of mendelian diseases are documented for the X chromosome. Of this number, 168 have been explained by mutations in 113 X-linked genes, which in many cases were characterized with the aid of the DNA sequence. PMID:15772651

  18. A new species of Endecous Saussure, 1878 (Orthoptera, Gryllidae) from northeast Brazil with the first X1X20 chromosomal sex system in Gryllidae.

    PubMed

    Zefa, Edison; Redü, Darlan Rutz; Da Costa, Maria Kátia Matiotti; Fontanetti, Carmem S; Gottschalk, Marco Silva; Padilha, Giovanna Boff; Fernandes e Silva, Anelise; Martins, Luciano De P

    2014-08-06

    In this paper we describe a new species of Luzarinae cricket collected from the cave "Gruta de Ubajara, municipality of Ubajara, State of Ceará, Brazil, highlighting phallic sclerites morphology and chromosome complement as diagnostic characters. We presented meiotic and mitotic characterization in order to define the karyotype with 2n = 12 + X1X2♂/12 + X1X1X2X2♀. This represents the first record of X1X20 chromosomal sex system in Gryllidae.

  19. Fragile X-related element 2 methylation analysis may provide a suitable option for inclusion of fragile X syndrome and/or sex chromosome aneuploidy into newborn screening: a technical validation study.

    PubMed

    Inaba, Yoshimi; Herlihy, Amy S; Schwartz, Charles E; Skinner, Cindy; Bui, Quang M; Cobb, Joanna; Shi, Elva Z; Francis, David; Arvaj, Alison; Amor, David J; Pope, Kate; Wotton, Tiffany; Cohen, Jonathan; Hewitt, Jacqueline K; Hagerman, Randi J; Metcalfe, Sylvia A; Hopper, John L; Loesch, Danuta Z; Slater, Howard R; Godler, David E

    2013-04-01

    We show that a novel fragile X-related epigenetic element 2 FMR1 methylation test can be used along with a test for sex-determining region Y (SRY) to provide the option of combined fragile X syndrome and sex chromosome aneuploidy newborn screening. Fragile X-related epigenetic element 2, SRY, and FMR1 CGG repeat analyses were performed on blood and saliva DNA, and in adult and newborn blood spots. The cohort consisted of 159 controls (CGG <40), 187 premutation (CGG 56-170), and 242 full-mutation (CGG ~200-2,000) males and females, 106 sex chromosome aneuploidy individuals, and 151 cytogenetically normal controls. At the 0.435 threshold, fragile X-related epigenetic element 2 analysis in males was robust on both blood DNA and newborn blood spots, with specificity and sensitivity of ~100% for full-mutation genotype. In females, the specificity was 99%, whereas half of full-mutation females were above the 0.435 threshold in both blood DNA and newborn blood spots. Furthermore, at this threshold, the test could not differentiate individuals with Klinefelter syndrome from female controls without using the SRY marker. When combined with SRY analysis, the test was consistent with most results for sex chromosome aneuploidies from karyotyping. Setting specific thresholds for fragile X-related epigenetic element 2 analysis and including the SRY marker provides the option to either include or exclude detection of sex chromosome aneuploidies as part of fragile X syndrome newborn screening.

  20. Bird-like sex chromosomes of platypus imply recent origin of mammal sex chromosomes.

    PubMed

    Veyrunes, Frédéric; Waters, Paul D; Miethke, Pat; Rens, Willem; McMillan, Daniel; Alsop, Amber E; Grützner, Frank; Deakin, Janine E; Whittington, Camilla M; Schatzkamer, Kyriena; Kremitzki, Colin L; Graves, Tina; Ferguson-Smith, Malcolm A; Warren, Wes; Marshall Graves, Jennifer A

    2008-06-01

    In therian mammals (placentals and marsupials), sex is determined by an XX female: XY male system, in which a gene (SRY) on the Y affects male determination. There is no equivalent in other amniotes, although some taxa (notably birds and snakes) have differentiated sex chromosomes. Birds have a ZW female: ZZ male system with no homology with mammal sex chromosomes, in which dosage of a Z-borne gene (possibly DMRT1) affects male determination. As the most basal mammal group, the egg-laying monotremes are ideal for determining how the therian XY system evolved. The platypus has an extraordinary sex chromosome complex, in which five X and five Y chromosomes pair in a translocation chain of alternating X and Y chromosomes. We used physical mapping to identify genes on the pairing regions between adjacent X and Y chromosomes. Most significantly, comparative mapping shows that, contrary to earlier reports, there is no homology between the platypus and therian X chromosomes. Orthologs of genes in the conserved region of the human X (including SOX3, the gene from which SRY evolved) all map to platypus chromosome 6, which therefore represents the ancestral autosome from which the therian X and Y pair derived. Rather, the platypus X chromosomes have substantial homology with the bird Z chromosome (including DMRT1) and to segments syntenic with this region in the human genome. Thus, platypus sex chromosomes have strong homology with bird, but not to therian sex chromosomes, implying that the therian X and Y chromosomes (and the SRY gene) evolved from an autosomal pair after the divergence of monotremes only 166 million years ago. Therefore, the therian X and Y are more than 145 million years younger than previously thought.

  1. Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome.

    PubMed

    Machiela, Mitchell J; Zhou, Weiyin; Karlins, Eric; Sampson, Joshua N; Freedman, Neal D; Yang, Qi; Hicks, Belynda; Dagnall, Casey; Hautman, Christopher; Jacobs, Kevin B; Abnet, Christian C; Aldrich, Melinda C; Amos, Christopher; Amundadottir, Laufey T; Arslan, Alan A; Beane-Freeman, Laura E; Berndt, Sonja I; Black, Amanda; Blot, William J; Bock, Cathryn H; Bracci, Paige M; Brinton, Louise A; Bueno-de-Mesquita, H Bas; Burdett, Laurie; Buring, Julie E; Butler, Mary A; Canzian, Federico; Carreón, Tania; Chaffee, Kari G; Chang, I-Shou; Chatterjee, Nilanjan; Chen, Chu; Chen, Constance; Chen, Kexin; Chung, Charles C; Cook, Linda S; Crous Bou, Marta; Cullen, Michael; Davis, Faith G; De Vivo, Immaculata; Ding, Ti; Doherty, Jennifer; Duell, Eric J; Epstein, Caroline G; Fan, Jin-Hu; Figueroa, Jonine D; Fraumeni, Joseph F; Friedenreich, Christine M; Fuchs, Charles S; Gallinger, Steven; Gao, Yu-Tang; Gapstur, Susan M; Garcia-Closas, Montserrat; Gaudet, Mia M; Gaziano, J Michael; Giles, Graham G; Gillanders, Elizabeth M; Giovannucci, Edward L; Goldin, Lynn; Goldstein, Alisa M; Haiman, Christopher A; Hallmans, Goran; Hankinson, Susan E; Harris, Curtis C; Henriksson, Roger; Holly, Elizabeth A; Hong, Yun-Chul; Hoover, Robert N; Hsiung, Chao A; Hu, Nan; Hu, Wei; Hunter, David J; Hutchinson, Amy; Jenab, Mazda; Johansen, Christoffer; Khaw, Kay-Tee; Kim, Hee Nam; Kim, Yeul Hong; Kim, Young Tae; Klein, Alison P; Klein, Robert; Koh, Woon-Puay; Kolonel, Laurence N; Kooperberg, Charles; Kraft, Peter; Krogh, Vittorio; Kurtz, Robert C; LaCroix, Andrea; Lan, Qing; Landi, Maria Teresa; Marchand, Loic Le; Li, Donghui; Liang, Xiaolin; Liao, Linda M; Lin, Dongxin; Liu, Jianjun; Lissowska, Jolanta; Lu, Lingeng; Magliocco, Anthony M; Malats, Nuria; Matsuo, Keitaro; McNeill, Lorna H; McWilliams, Robert R; Melin, Beatrice S; Mirabello, Lisa; Moore, Lee; Olson, Sara H; Orlow, Irene; Park, Jae Yong; Patiño-Garcia, Ana; Peplonska, Beata; Peters, Ulrike; Petersen, Gloria M; Pooler, Loreall; Prescott, Jennifer; Prokunina-Olsson, Ludmila; Purdue, Mark P; Qiao, You-Lin; Rajaraman, Preetha; Real, Francisco X; Riboli, Elio; Risch, Harvey A; Rodriguez-Santiago, Benjamin; Ruder, Avima M; Savage, Sharon A; Schumacher, Fredrick; Schwartz, Ann G; Schwartz, Kendra L; Seow, Adeline; Wendy Setiawan, Veronica; Severi, Gianluca; Shen, Hongbing; Sheng, Xin; Shin, Min-Ho; Shu, Xiao-Ou; Silverman, Debra T; Spitz, Margaret R; Stevens, Victoria L; Stolzenberg-Solomon, Rachael; Stram, Daniel; Tang, Ze-Zhong; Taylor, Philip R; Teras, Lauren R; Tobias, Geoffrey S; Van Den Berg, David; Visvanathan, Kala; Wacholder, Sholom; Wang, Jiu-Cun; Wang, Zhaoming; Wentzensen, Nicolas; Wheeler, William; White, Emily; Wiencke, John K; Wolpin, Brian M; Wong, Maria Pik; Wu, Chen; Wu, Tangchun; Wu, Xifeng; Wu, Yi-Long; Wunder, Jay S; Xia, Lucy; Yang, Hannah P; Yang, Pan-Chyr; Yu, Kai; Zanetti, Krista A; Zeleniuch-Jacquotte, Anne; Zheng, Wei; Zhou, Baosen; Ziegler, Regina G; Perez-Jurado, Luis A; Caporaso, Neil E; Rothman, Nathaniel; Tucker, Margaret; Dean, Michael C; Yeager, Meredith; Chanock, Stephen J

    2016-06-13

    To investigate large structural clonal mosaicism of chromosome X, we analysed the SNP microarray intensity data of 38,303 women from cancer genome-wide association studies (20,878 cases and 17,425 controls) and detected 124 mosaic X events >2 Mb in 97 (0.25%) women. Here we show rates for X-chromosome mosaicism are four times higher than mean autosomal rates; X mosaic events more often include the entire chromosome and participants with X events more likely harbour autosomal mosaic events. X mosaicism frequency increases with age (0.11% in 50-year olds; 0.45% in 75-year olds), as reported for Y and autosomes. Methylation array analyses of 33 women with X mosaicism indicate events preferentially involve the inactive X chromosome. Our results provide further evidence that the sex chromosomes undergo mosaic events more frequently than autosomes, which could have implications for understanding the underlying mechanisms of mosaic events and their possible contribution to risk for chronic diseases.

  2. Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome

    PubMed Central

    Machiela, Mitchell J.; Zhou, Weiyin; Karlins, Eric; Sampson, Joshua N.; Freedman, Neal D.; Yang, Qi; Hicks, Belynda; Dagnall, Casey; Hautman, Christopher; Jacobs, Kevin B.; Abnet, Christian C.; Aldrich, Melinda C.; Amos, Christopher; Amundadottir, Laufey T.; Arslan, Alan A.; Beane-Freeman, Laura E.; Berndt, Sonja I.; Black, Amanda; Blot, William J.; Bock, Cathryn H.; Bracci, Paige M.; Brinton, Louise A.; Bueno-de-Mesquita, H Bas; Burdett, Laurie; Buring, Julie E.; Butler, Mary A.; Canzian, Federico; Carreón, Tania; Chaffee, Kari G.; Chang, I-Shou; Chatterjee, Nilanjan; Chen, Chu; Chen, Constance; Chen, Kexin; Chung, Charles C.; Cook, Linda S.; Crous Bou, Marta; Cullen, Michael; Davis, Faith G.; De Vivo, Immaculata; Ding, Ti; Doherty, Jennifer; Duell, Eric J.; Epstein, Caroline G.; Fan, Jin-Hu; Figueroa, Jonine D.; Fraumeni, Joseph F.; Friedenreich, Christine M.; Fuchs, Charles S.; Gallinger, Steven; Gao, Yu-Tang; Gapstur, Susan M.; Garcia-Closas, Montserrat; Gaudet, Mia M.; Gaziano, J. Michael; Giles, Graham G.; Gillanders, Elizabeth M.; Giovannucci, Edward L.; Goldin, Lynn; Goldstein, Alisa M.; Haiman, Christopher A.; Hallmans, Goran; Hankinson, Susan E.; Harris, Curtis C.; Henriksson, Roger; Holly, Elizabeth A.; Hong, Yun-Chul; Hoover, Robert N.; Hsiung, Chao A.; Hu, Nan; Hu, Wei; Hunter, David J.; Hutchinson, Amy; Jenab, Mazda; Johansen, Christoffer; Khaw, Kay-Tee; Kim, Hee Nam; Kim, Yeul Hong; Kim, Young Tae; Klein, Alison P.; Klein, Robert; Koh, Woon-Puay; Kolonel, Laurence N.; Kooperberg, Charles; Kraft, Peter; Krogh, Vittorio; Kurtz, Robert C.; LaCroix, Andrea; Lan, Qing; Landi, Maria Teresa; Marchand, Loic Le; Li, Donghui; Liang, Xiaolin; Liao, Linda M.; Lin, Dongxin; Liu, Jianjun; Lissowska, Jolanta; Lu, Lingeng; Magliocco, Anthony M.; Malats, Nuria; Matsuo, Keitaro; McNeill, Lorna H.; McWilliams, Robert R.; Melin, Beatrice S.; Mirabello, Lisa; Moore, Lee; Olson, Sara H.; Orlow, Irene; Park, Jae Yong; Patiño-Garcia, Ana; Peplonska, Beata; Peters, Ulrike; Petersen, Gloria M.; Pooler, Loreall; Prescott, Jennifer; Prokunina-Olsson, Ludmila; Purdue, Mark P.; Qiao, You-Lin; Rajaraman, Preetha; Real, Francisco X.; Riboli, Elio; Risch, Harvey A.; Rodriguez-Santiago, Benjamin; Ruder, Avima M.; Savage, Sharon A.; Schumacher, Fredrick; Schwartz, Ann G.; Schwartz, Kendra L.; Seow, Adeline; Wendy Setiawan, Veronica; Severi, Gianluca; Shen, Hongbing; Sheng, Xin; Shin, Min-Ho; Shu, Xiao-Ou; Silverman, Debra T.; Spitz, Margaret R.; Stevens, Victoria L.; Stolzenberg-Solomon, Rachael; Stram, Daniel; Tang, Ze-Zhong; Taylor, Philip R.; Teras, Lauren R.; Tobias, Geoffrey S.; Van Den Berg, David; Visvanathan, Kala; Wacholder, Sholom; Wang, Jiu-Cun; Wang, Zhaoming; Wentzensen, Nicolas; Wheeler, William; White, Emily; Wiencke, John K.; Wolpin, Brian M.; Wong, Maria Pik; Wu, Chen; Wu, Tangchun; Wu, Xifeng; Wu, Yi-Long; Wunder, Jay S.; Xia, Lucy; Yang, Hannah P.; Yang, Pan-Chyr; Yu, Kai; Zanetti, Krista A.; Zeleniuch-Jacquotte, Anne; Zheng, Wei; Zhou, Baosen; Ziegler, Regina G.; Perez-Jurado, Luis A.; Caporaso, Neil E.; Rothman, Nathaniel; Tucker, Margaret; Dean, Michael C.; Yeager, Meredith; Chanock, Stephen J.

    2016-01-01

    To investigate large structural clonal mosaicism of chromosome X, we analysed the SNP microarray intensity data of 38,303 women from cancer genome-wide association studies (20,878 cases and 17,425 controls) and detected 124 mosaic X events >2 Mb in 97 (0.25%) women. Here we show rates for X-chromosome mosaicism are four times higher than mean autosomal rates; X mosaic events more often include the entire chromosome and participants with X events more likely harbour autosomal mosaic events. X mosaicism frequency increases with age (0.11% in 50-year olds; 0.45% in 75-year olds), as reported for Y and autosomes. Methylation array analyses of 33 women with X mosaicism indicate events preferentially involve the inactive X chromosome. Our results provide further evidence that the sex chromosomes undergo mosaic events more frequently than autosomes, which could have implications for understanding the underlying mechanisms of mosaic events and their possible contribution to risk for chronic diseases. PMID:27291797

  3. Evolutionary dynamics of autosomal-heterosomal rearrangements in a multiple-X chromosome system of tiger beetles (Cicindelidae)

    PubMed Central

    Galián, José; Proença, Sónia JR; Vogler, Alfried P

    2007-01-01

    Background Genetic systems involving multiple X chromosomes have arisen repeatedly in sexually reproducing animals. Tiger beetles (Cicindelidae) exhibit a phylogenetically ancient multiple-X system typically consisting of 2–4 X chromosomes and a single Y. Because recombination rates are suppressed in sex chromosomes, changes in their numbers and movement of genes between sex chromosomes and autosomes, could have important consequences for gene evolution and rates of speciation induced by these rearrangements. However, it remains unclear how frequent these rearrangements are and which genes are affected. Results Karyotype analyses were performed for a total of 26 North American species in the highly diverse genus Cicindela, tallying the number of X chromosomes and autosomes during mitosis and meiosis. The chromosomal location of the ribosomal rRNA gene cluster (rDNA) was used as an easily scored marker for genic turnover between sex chromosomes or autosomes. The findings were assessed in the light of a recent phylogenetic analysis of the group. While autosome numbers remained constant throughout the lineage, sex chromosome numbers varied. The predominant karyotype was n = 9+X1X2X3Y which was also inferred to be the ancestral state, with several changes to X1X2Y and X1X2X3X4Y confined to phylogenetically isolated species. The total (haploid) numbers of rDNA clusters varied between two, three, and six (in one exceptional case), and clusters were localized either on the autosomes, the sex chromosomes, or both. Transitions in rDNA localization and in numbers of rDNA clusters varied independently of each other, and also independently of changes in sex chromosome numbers. Conclusion Changes of X chromosome numbers and transposition of the rDNA locus (and presumably other genes) between autosomes and sex chromosomes in Cicindela occur frequently, and are likely to be the result of fusions or fissions between X chromosomes, rather than between sex chromosomes and

  4. Rapid divergence and expansion of the X chromosome in papaya

    PubMed Central

    Gschwend, Andrea R.; Yu, Qingyi; Tong, Eric J.; Zeng, Fanchang; Han, Jennifer; VanBuren, Robert; Aryal, Rishi; Charlesworth, Deborah; Moore, Paul H.; Paterson, Andrew H.; Ming, Ray

    2012-01-01

    X chromosomes have long been thought to conserve the structure and gene content of the ancestral autosome from which the sex chromosomes evolved. We compared the recently evolved papaya sex chromosomes with a homologous autosome of a close relative, the monoecious Vasconcellea monoica, to infer changes since recombination stopped between the papaya sex chromosomes. We sequenced 12 V. monoica bacterial artificial chromosomes, 11 corresponding to the papaya X-specific region, and 1 to a papaya autosomal region. The combined V. monoica X-orthologous sequences are much shorter (1.10 Mb) than the corresponding papaya region (2.56 Mb). Given that the V. monoica genome is 41% larger than that of papaya, this finding suggests considerable expansion of the papaya X; expansion is supported by a higher repetitive sequence content of the X compared with the papaya autosomal sequence. The alignable regions include 27 transcript-encoding sequences, only 6 of which are functional X/V. monoica gene pairs. Sequence divergence from the V. monoica orthologs is almost identical for papaya X and Y alleles; the Carica-Vasconcellea split therefore occurred before the papaya sex chromosomes stopped recombining, making V. monoica a suitable outgroup for inferring changes in papaya sex chromosomes. The papaya X and the hermaphrodite-specific region of the Yh chromosome and V. monoica have all gained and lost genes, including a surprising amount of changes in the X. PMID:22869742

  5. Dosage Effects of X and Y Chromosomes on Language and Social Functioning in Children with Supernumerary Sex Chromosome Aneuploidies: Implications for Idiopathic Language Impairment and Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Lee, Nancy Raitano; Wallace, Gregory L.; Adeyemi, Elizabeth I.; Lopez, Katherine C.; Blumenthal, Jonathan D.; Clasen, Liv S.; Giedd, Jay N.

    2012-01-01

    Background: Supernumerary sex chromosome aneuploidies (X/Y-aneuploidies), the presence of extra X and/or Y chromosomes, are associated with heightened rates of language impairments and social difficulties. However, no single study has examined different language domains and social functioning in the same sample of children with tri-, tetra-, and…

  6. Effects of age on segregation of the X and Y chromosomes in cultured lymphocytes from Chinese men.

    PubMed

    Song, Yaxian; Chen, Qian; Zhang, Zhen; Hou, Heli; Zhang, Ding; Shi, Qinghua

    2009-08-01

    Chromosome malsegregation in binucleated lymphocytes is a useful endpoint to evaluate age effect on genetic stability. However, the investigations on chromosome malsegregation in binucleated lymphocytes from Chinese are scarce. In this study, peripheral blood lymphocytes were collected from 14 old (60-70 years) and 10 young (22-26 years) healthy Chinese men. To detect malsegregation of the sex chromosomes, multi-color fluorescence in situ hybridization (FISH) was performed on binucleated lymphocytes, cytokinesis-blocked by cytochalasin B at the first mitosis after phytohaemagglutinin stimulation. Compared with that in young men, a significant increase in frequencies of loss of chromosome X (9.2 +/- 3.2 per thousand vs. 1.1 +/- 0.9 per thousand, P < 0.001) and Y (2.5 +/- 1.9 per thousand vs. 0.2 +/- 0.3 per thousand, P < 0.001) was found in old men. Similarly, nondisjunction of chromosome X (16.5 +/- 3.4 per thousand vs. 3.5 +/- 1.1 per thousand, P < 0.001) and Y (7.2 +/- 2.6 per thousand vs. 2.4 +/- 1.3 per thousand, P < 0.001) occurred more frequently in old men than in young men. Regardless of donor's age, nondisjunction is more prevalent than loss for both chromosome X and Y. The frequencies of observed simultaneous malsegregation were relatively higher than the expected, suggesting an association between malsegregation. These results indicated that in Chinese men, malsegregation of the sex chromosomes increases with age in an associated fashion, and nondisjunction accounts for the majority of spontaneous chromosome malsegregation.

  7. Sex reversal in the mouse (Mus musculus) is caused by a recurrent nonreciprocal crossover involving the x and an aberrant y chromosome.

    PubMed

    Singh, L; Jones, K W

    1982-02-01

    Satellite DNA (Bkm) from the W sex-determining chromosome of snakes, which is related to sequences on the mouse Y chromosome, has been used to analyze the DNA and chromosomes of sex-reversed (Sxr) XXSxr male mice. Such mice exhibit a male-specific Southern blot Bkm hybridization pattern, consistent with the presence of Y-chromosome DNA. In situ hybridization of Bkm to chromosomes of XXSxr mice shows an aberrant concentration of related sequences on the distal terminus of a large mouse chromosome. The XYSxr carrier male, however, shows a pair of small chromosomes, which are presumed to be aberrant Y derivatives. Meiosis in the XYSxr mouse involves transfer of chromatin rich in Bkm-related DNA from the Y-Y1 complex to the X distal terminus. We suggest that this event is responsible for the transmission of the Sxr trait.

  8. Genetic diagnosis of sex chromosome aberrations in horses based on parentage test by microsatellite DNA and analysis of X- and Y-linked markers.

    PubMed

    Kakoi, H; Hirota, K; Gawahara, H; Kurosawa, M; Kuwajima, M

    2005-03-01

    Sex chromosome aberrations are often associated with clinical signs that affect equine health and reproduction. However, abnormal manifestation with sex chromosome aberration usually appears at maturity and potential disorders may be suspected infrequently. A reliable survey at an early stage is therefore required. To detect and characterise sex chromosome aberrations in newborn foals by the parentage test and analysis using X- and Y-linked markers. We conducted a genetic diagnosis combined with a parentage test by microsatellite DNA and analysis of X- and Y-linked genetic markers in newborn light-breed foals (n = 17, 471). The minimum incidence of sex chromosome aberration in horses was estimated in the context of available population data. Eighteen cases with aberrations involving 63,XO, 65,XXY and 65,XXX were found. The XO, XXY (pure 65,XXY and/or mosaics/chimaeras) and XXX were found in 0.15, 0.02 and 0.01% of the population, respectively, based solely on detection of abnormal segregation of a single X chromosome marker, LEX003. Detection at an early age and understanding of the prevalence of sex chromosome aberrations should assist in the diagnosis and managment of horses kept for breeding. Further, the parental origin of the X chromosome of each disorder could be proved by the results of genetic analysis, thereby contributing to cytogenetic characterisation.

  9. Mammalian X homolog acts as sex chromosome in lacertid lizards

    PubMed Central

    Rovatsos, M; Vukić, J; Kratochvíl, L

    2016-01-01

    Among amniotes, squamate reptiles are especially variable in their mechanisms of sex determination; however, based largely on cytogenetic data, some lineages possess highly evolutionary stable sex chromosomes. The still very limited knowledge of the genetic content of squamate sex chromosomes precludes a reliable reconstruction of the evolutionary history of sex determination in this group and consequently in all amniotes. Female heterogamety with a degenerated W chromosome typifies the lizards of the family Lacertidae, the widely distributed Old World clade including several hundreds of species. From the liver transcriptome of the lacertid Takydromus sexlineatus female, we selected candidates for Z-specific genes as the loci lacking single-nucleotide polymorphisms. We validated the candidate genes through the comparison of the copy numbers in the female and male genomes of T. sexlineatus and another lacertid species, Lacerta agilis, by quantitative PCR that also proved to be a reliable technique for the molecular sexing of the studied species. We suggest that this novel approach is effective for the detection of Z-specific and X-specific genes in lineages with degenerated W, respectively Y chromosomes. The analyzed gene content of the Z chromosome revealed that lacertid sex chromosomes are not homologous with those of other reptiles including birds, but instead the genes have orthologs in the X-conserved region shared by viviparous mammals. It is possible that this part of the vertebrate genome was independently co-opted for the function of sex chromosomes in viviparous mammals and lacertids because of its content of genes involved in gonad differentiation. PMID:26980341

  10. Repetitive DNA and meiotic behavior of sex chromosomes in Gymnotus pantanal (Gymnotiformes, Gymnotidae).

    PubMed

    da Silva, M; Matoso, D A; Vicari, M R; de Almeida, M C; Margarido, V P; Artoni, R F

    2011-01-01

    Neotropical fishes have a low rate of chromosome differentiation between sexes. The present study characterizes the first meiotic analysis of sex chromosomes in the order Gymnotiformes. Gymnotus pantanal - females had 40 chromosomes (14m/sm, 26st/a) and males had 39 chromosomes (15m/sm, 24st/a), with a fundamental number of 54 - showed a multiple sexual determination chromosome system of the type X(1)X(1)X(2)X(2)/X(1)X(2)Y. The heterochromatin is restricted to centromeres of all chromosomes of the karyotype. The meiotic behavior of sex chromosomes involved in this system in males is from a trivalent totally pared in the pachytene stage, with a high degree of similarity. The cells of metaphase II exhibit 19 and 20 chromosomes, normal disjunction of sex chromosomes and the formation of balanced gametes with 18 + Y and 18 + X(1)X(2) chromosomes, respectively. The small amount of heterochromatin and repetitive DNA involved in this system and the high degree of chromosome similarity indicated a recent origin of the X(1)X(1)X(2)X(2)/X(1)X(2)Y system in G. pantanal and suggests the existence of a simple ancestral system with morphologically undifferentiated chromosomes. Copyright © 2011 S. Karger AG, Basel.

  11. Incidence of X and Y Chromosomal Aneuploidy in a Large Child Bearing Population

    PubMed Central

    Kırkızlar, Eser; Hall, Megan P.; Demko, Zachary; Zneimer, Susan M.; Curnow, Kirsten J.; Gross, Susan; Gropman, Andrea

    2016-01-01

    Background X&Y chromosomal aneuploidies are among the most common human whole-chromosomal copy number changes, but the population-based incidence and prevalence in the child-bearing population is unclear. Methods This retrospective analysis of prospectively collected data leveraged a routine non-invasive prenatal test (NIPT) using parental genotyping to estimate the population-based incidence of X&Y chromosome variations in this population referred for NIPT (generally due to advanced maternal age). Results From 141,916 women and 29,336 men, 119 X&Y chromosomal abnormalities (prevalence: 1 in 1,439) were identified. Maternal findings include: 43 cases of 45,X (40 mosaic); 30 cases of 47,XXX (12 mosaic); 3 cases of 46,XX uniparental disomy; 2 cases of 46,XY/46,XX; 23 cases of mosaicism of unknown type; 2 cases of 47,XX,i(X)(q10). Paternal findings include: 2 cases of 47,XXY (1 mosaic); 10 cases of 47,XYY (1 mosaic); 4 partial Y deletions. Conclusions Single chromosome aneuploidy was present in one of every 1,439 individuals considered in this study, showing 47,XXX; 47,XX,i(X)(q10); 47,XYY; 47,XXY, partial Y deletions, and a high level of mosaicism for 45,X. This expands significantly our understanding of X&Y chromosomal variations and fertility issues, and is critical for families and adults affected by these disorders. This current and extensive information on fertility will be beneficial for genetic counseling on prenatal diagnoses as well as for newly diagnosed postnatal cases. PMID:27512996

  12. High frequency fo X-Y chromosome dissociation in primary spermatocytes of F1 hybrids between Japanese wild mice (Mus musculus molossinus) and inbred laboratory mice.

    PubMed

    Imai, H T; Matsuda, Y; Shiroishi, T; Moriwaki, K

    1981-01-01

    In the hybrids between Japanese wild mice (Mus musculus molossinus) and inbred laboratory mice (BALB/c and B10.BR, which were probably derived from M. m. domesticus), the X and Y chromosomes dissociated precociously at the first meiotic metaphase in some 70% of spermatocytes; that percentage was only 8.9% in inbred laboratory mice and 21.1% in wild mice. X-Y dissociation began at least at early diakinesis and continued during metaphase I (MI). Some autosomes of the hybrid (10.1%) and BALB/c (10.6%) mice also dissociated precociously, but there was no distinctive correlation between X-Y and autosomal dissociation. In B10 or B6 congenic lines with a Y chromosome from wild M. m. molossinus, there was an apparent tendency for the percentage of precocious X-Y dissociation to decrease with an increasing number of back cross generations. Based on these observations we concluded that: 1. the X-Y dissociation found is genetically controlled, perhaps by multiple genes; 2. these genes are located on autosomes and are active only when they are heterozygous; 3. the frequent dissociation of the sex chromosomes neither affects male fertility nor induces non-disjunction of the X and Y chromosomes, though it significantly reduces testes weight.

  13. Recognition and modification of seX chromosomes.

    PubMed

    Nusinow, Dmitri A; Panning, Barbara

    2005-04-01

    Flies, worms and mammals employ dosage compensation complexes that alter chromatin or chromosome structure to equalize X-linked gene expression between the sexes. Recent work has improved our understanding of how dosage compensation complexes achieve X chromosome-wide association and has provided significant insight into the epigenetic modifications directed by these complexes to modulate gene expression. In flies, the prevailing view that dosage compensation complexes assemble on the X chromosome at approximately 35 chromatin-entry sites and then spread in cis to cover the chromosome has been re-evaluated in light of the evidence that these chromatin-entry sites are not required for localization of the complex. By contrast, identification of discrete recruitment elements indicates that nucleation at and spread from a limited number of sites directs dosage compensation complex localization on the worm X-chromosome. Studies in flies and mammals have extended our understanding of how ribonucleoprotein complexes are used to modify X chromatin, for either activation or repression of transcription. Finally, evidence from mammals suggests that the chromatin modifications that mediate dosage compensation are very dynamic, because they are established, reversed and re-established early in development.

  14. Silencing of X-Linked MicroRNAs by Meiotic Sex Chromosome Inactivation

    PubMed Central

    Royo, Hélène; Seitz, Hervé; ElInati, Elias; Peters, Antoine H. F. M.; Stadler, Michael B.; Turner, James M. A.

    2015-01-01

    During the pachytene stage of meiosis in male mammals, the X and Y chromosomes are transcriptionally silenced by Meiotic Sex Chromosome Inactivation (MSCI). MSCI is conserved in therian mammals and is essential for normal male fertility. Transcriptomics approaches have demonstrated that in mice, most or all protein-coding genes on the X chromosome are subject to MSCI. However, it is unclear whether X-linked non-coding RNAs behave in a similar manner. The X chromosome is enriched in microRNA (miRNA) genes, with many exhibiting testis-biased expression. Importantly, high expression levels of X-linked miRNAs (X-miRNAs) have been reported in pachytene spermatocytes, indicating that these genes may escape MSCI, and perhaps play a role in the XY-silencing process. Here we use RNA FISH to examine X-miRNA expression in the male germ line. We find that, like protein-coding X-genes, X-miRNAs are expressed prior to prophase I and are thereafter silenced during pachynema. X-miRNA silencing does not occur in mouse models with defective MSCI. Furthermore, X-miRNAs are expressed at pachynema when present as autosomally integrated transgenes. Thus, we conclude that silencing of X-miRNAs during pachynema in wild type males is MSCI-dependent. Importantly, misexpression of X-miRNAs during pachynema causes spermatogenic defects. We propose that MSCI represents a chromosomal mechanism by which X-miRNAs, and other potential X-encoded repressors, can be silenced, thereby regulating genes with critical late spermatogenic functions. PMID:26509798

  15. Chromosome chains and platypus sex: kinky connections.

    PubMed

    Ashley, Terry

    2005-07-01

    Mammal sex determination depends on an XY chromosome system, a gene for testis development and a means of activating the X chromosome. The duckbill platypus challenges these dogmas.(1,2) Gutzner et al.(1) find no recognizable SRY sequence and question whether the mammalian X was even the original sex chromosome in the platypus. Instead they suggest that the original platypus sex chromosomes were derived from the ZW chromosome system of birds and reptiles. Unraveling the puzzles of sex determination and dosage compensation in the platypus has been complicated by the fact that it has a surplus of sex chromosomes. Rather than a single X and Y chromosome, the male platypus has five Xs and five Ys. Copyright (c) 2005 Wiley Periodicals, Inc.

  16. The pig X and Y Chromosomes: structure, sequence, and evolution

    PubMed Central

    Skinner, Benjamin M.; Sargent, Carole A.; Churcher, Carol; Hunt, Toby; Herrero, Javier; Loveland, Jane E.; Dunn, Matt; Louzada, Sandra; Fu, Beiyuan; Chow, William; Gilbert, James; Austin-Guest, Siobhan; Beal, Kathryn; Carvalho-Silva, Denise; Cheng, William; Gordon, Daria; Grafham, Darren; Hardy, Matt; Harley, Jo; Hauser, Heidi; Howden, Philip; Howe, Kerstin; Lachani, Kim; Ellis, Peter J.I.; Kelly, Daniel; Kerry, Giselle; Kerwin, James; Ng, Bee Ling; Threadgold, Glen; Wileman, Thomas; Wood, Jonathan M.D.; Yang, Fengtang; Harrow, Jen; Affara, Nabeel A.; Tyler-Smith, Chris

    2016-01-01

    We have generated an improved assembly and gene annotation of the pig X Chromosome, and a first draft assembly of the pig Y Chromosome, by sequencing BAC and fosmid clones from Duroc animals and incorporating information from optical mapping and fiber-FISH. The X Chromosome carries 1033 annotated genes, 690 of which are protein coding. Gene order closely matches that found in primates (including humans) and carnivores (including cats and dogs), which is inferred to be ancestral. Nevertheless, several protein-coding genes present on the human X Chromosome were absent from the pig, and 38 pig-specific X-chromosomal genes were annotated, 22 of which were olfactory receptors. The pig Y-specific Chromosome sequence generated here comprises 30 megabases (Mb). A 15-Mb subset of this sequence was assembled, revealing two clusters of male-specific low copy number genes, separated by an ampliconic region including the HSFY gene family, which together make up most of the short arm. Both clusters contain palindromes with high sequence identity, presumably maintained by gene conversion. Many of the ancestral X-related genes previously reported in at least one mammalian Y Chromosome are represented either as active genes or partial sequences. This sequencing project has allowed us to identify genes—both single copy and amplified—on the pig Y Chromosome, to compare the pig X and Y Chromosomes for homologous sequences, and thereby to reveal mechanisms underlying pig X and Y Chromosome evolution. PMID:26560630

  17. Deep ancestry of mammalian X chromosome revealed by comparison with the basal tetrapod Xenopus tropicalis.

    PubMed

    Mácha, Jaroslav; Teichmanová, Radka; Sater, Amy K; Wells, Dan E; Tlapáková, Tereza; Zimmerman, Lyle B; Krylov, Vladimír

    2012-07-16

    The X and Y sex chromosomes are conspicuous features of placental mammal genomes. Mammalian sex chromosomes arose from an ordinary pair of autosomes after the proto-Y acquired a male-determining gene and degenerated due to suppression of X-Y recombination. Analysis of earlier steps in X chromosome evolution has been hampered by the long interval between the origins of teleost and amniote lineages as well as scarcity of X chromosome orthologs in incomplete avian genome assemblies. This study clarifies the genesis and remodelling of the Eutherian X chromosome by using a combination of sequence analysis, meiotic map information, and cytogenetic localization to compare amniote genome organization with that of the amphibian Xenopus tropicalis. Nearly all orthologs of human X genes localize to X. tropicalis chromosomes 2 and 8, consistent with an ancestral X-conserved region and a single X-added region precursor. This finding contradicts a previous hypothesis of three evolutionary strata in this region. Homologies between human, opossum, chicken and frog chromosomes suggest a single X-added region predecessor in therian mammals, corresponding to opossum chromosomes 4 and 7. A more ancient X-added ancestral region, currently extant as a major part of chicken chromosome 1, is likely to have been present in the progenitor of synapsids and sauropsids. Analysis of X chromosome gene content emphasizes conservation of single protein coding genes and the role of tandem arrays in formation of novel genes. Chromosomal regions orthologous to Therian X chromosomes have been located in the genome of the frog X. tropicalis. These X chromosome ancestral components experienced a series of fusion and breakage events to give rise to avian autosomes and mammalian sex chromosomes. The early branching tetrapod X. tropicalis' simple diploid genome and robust synteny to amniotes greatly enhances studies of vertebrate chromosome evolution.

  18. Deep ancestry of mammalian X chromosome revealed by comparison with the basal tetrapod Xenopus tropicalis

    PubMed Central

    2012-01-01

    Background The X and Y sex chromosomes are conspicuous features of placental mammal genomes. Mammalian sex chromosomes arose from an ordinary pair of autosomes after the proto-Y acquired a male-determining gene and degenerated due to suppression of X-Y recombination. Analysis of earlier steps in X chromosome evolution has been hampered by the long interval between the origins of teleost and amniote lineages as well as scarcity of X chromosome orthologs in incomplete avian genome assemblies. Results This study clarifies the genesis and remodelling of the Eutherian X chromosome by using a combination of sequence analysis, meiotic map information, and cytogenetic localization to compare amniote genome organization with that of the amphibian Xenopus tropicalis. Nearly all orthologs of human X genes localize to X. tropicalis chromosomes 2 and 8, consistent with an ancestral X-conserved region and a single X-added region precursor. This finding contradicts a previous hypothesis of three evolutionary strata in this region. Homologies between human, opossum, chicken and frog chromosomes suggest a single X-added region predecessor in therian mammals, corresponding to opossum chromosomes 4 and 7. A more ancient X-added ancestral region, currently extant as a major part of chicken chromosome 1, is likely to have been present in the progenitor of synapsids and sauropsids. Analysis of X chromosome gene content emphasizes conservation of single protein coding genes and the role of tandem arrays in formation of novel genes. Conclusions Chromosomal regions orthologous to Therian X chromosomes have been located in the genome of the frog X. tropicalis. These X chromosome ancestral components experienced a series of fusion and breakage events to give rise to avian autosomes and mammalian sex chromosomes. The early branching tetrapod X. tropicalis’ simple diploid genome and robust synteny to amniotes greatly enhances studies of vertebrate chromosome evolution. PMID:22800176

  19. X-Chromosome dosage compensation.

    PubMed

    Meyer, Barbara J

    2005-06-25

    In mammals, flies, and worms, sex is determined by distinctive regulatory mechanisms that cause males (XO or XY) and females (XX) to differ in their dose of X chromosomes. In each species, an essential X chromosome-wide process called dosage compensation ensures that somatic cells of either sex express equal levels of X-linked gene products. The strategies used to achieve dosage compensation are diverse, but in all cases, specialized complexes are targeted specifically to the X chromosome(s) of only one sex to regulate transcript levels. In C. elegans, this sex-specific targeting of the dosage compensation complex (DCC) is controlled by the same developmental signal that establishes sex, the ratio of X chromosomes to sets of autosomes (X:A signal). Molecular components of this chromosome counting process have been defined. Following a common step of regulation, sex determination and dosage compensation are controlled by distinct genetic pathways. C. elegans dosage compensation is implemented by a protein complex that binds both X chromosomes of hermaphrodites to reduce transcript levels by one-half. The dosage compensation complex resembles the conserved 13S condensin complex required for both mitotic and meiotic chromosome resolution and condensation, implying the recruitment of ancient proteins to the new task of regulating gene expression. Within each C. elegans somatic cell, one of the DCC components also participates in the separate mitotic/meiotic condensin complex. Other DCC components play pivotal roles in regulating the number and distribution of crossovers during meiosis. The strategy by which C. elegans X chromosomes attract the condensin-like DCC is known. Small, well-dispersed X-recognition elements act as entry sites to recruit the dosage compensation complex and to nucleate spreading of the complex to X regions that lack recruitment sites. In this manner, a repressed chromatin state is spread in cis over short or long distances, thus establishing the

  20. Replication asynchrony and differential condensation of X chromosomes in female platypus (Ornithorhynchus anatinus).

    PubMed

    Ho, Kristen K K; Deakin, Janine E; Wright, Megan L; Graves, Jennifer A Marshall; Grützner, Frank

    2009-01-01

    A common theme in the evolution of sex chromosomes is the massive loss of genes on the sex-specific chromosome (Y or W), leading to a gene imbalance between males (XY) and females (XX) in a male heterogametic species, or between ZZ and ZW in a female heterogametic species. Different mechanisms have evolved to compensate for this difference in dosage of X-borne genes between sexes. In therian mammals, one of the X chromosomes is inactivated, whereas bird dosage compensation is partial and gene-specific. In therian mammals, hallmarks of the inactive X are monoallelic gene expression, late DNA replication and chromatin condensation. Platypuses have five pairs of X chromosomes in females and five X and five Y chromosomes in males. Gene expression analysis suggests a more bird-like partial and gene-specific dosage compensation mechanism. We investigated replication timing and chromosome condensation of three of the five X chromosomes in female platypus. Our data suggest asynchronous replication of X-specific regions on X(1), X(3) and X(5) but show significantly different condensation between homologues for X(3) only, and not for X(1) or X(5). We discuss these results in relation to recent gene expression analysis of X-linked genes, which together give us insights into possible mechanisms of dosage compensation in platypus.

  1. Untangling the Contributions of Sex-Specific Gene Regulation and X-Chromosome Dosage to Sex-Biased Gene Expression in Caenorhabditis elegans

    PubMed Central

    Kramer, Maxwell; Rao, Prashant; Ercan, Sevinc

    2016-01-01

    Dosage compensation mechanisms equalize the level of X chromosome expression between sexes. Yet the X chromosome is often enriched for genes exhibiting sex-biased, i.e., imbalanced expression. The relationship between X chromosome dosage compensation and sex-biased gene expression remains largely unexplored. Most studies determine sex-biased gene expression without distinguishing between contributions from X chromosome copy number (dose) and the animal’s sex. Here, we uncoupled X chromosome dose from sex-specific gene regulation in Caenorhabditis elegans to determine the effect of each on X expression. In early embryogenesis, when dosage compensation is not yet fully active, X chromosome dose drives the hermaphrodite-biased expression of many X-linked genes, including several genes that were shown to be responsible for hermaphrodite fate. A similar effect is seen in the C. elegans germline, where X chromosome dose contributes to higher hermaphrodite X expression, suggesting that lack of dosage compensation in the germline may have a role in supporting higher expression of X chromosomal genes with female-biased functions in the gonad. In the soma, dosage compensation effectively balances X expression between the sexes. As a result, somatic sex-biased expression is almost entirely due to sex-specific gene regulation. These results suggest that lack of dosage compensation in different tissues and developmental stages allow X chromosome copy number to contribute to sex-biased gene expression and function. PMID:27356611

  2. Sex- and Gamete-Specific Patterns of X Chromosome Segregation in a Trioecious Nematode.

    PubMed

    Tandonnet, Sophie; Farrell, Maureen C; Koutsovoulos, Georgios D; Blaxter, Mark L; Parihar, Manish; Sadler, Penny L; Shakes, Diane C; Pires-daSilva, Andre

    2018-01-08

    Three key steps in meiosis allow diploid organisms to produce haploid gametes: (1) homologous chromosomes (homologs) pair and undergo crossovers; (2) homologs segregate to opposite poles; and (3) sister chromatids segregate to opposite poles. The XX/XO sex determination system found in many nematodes [1] facilitates the study of meiosis because variation is easily recognized [2-4]. Here we show that meiotic segregation of X chromosomes in the trioecious nematode Auanema rhodensis [5] varies according to sex (hermaphrodite, female, or male) and type of gametogenesis (oogenesis or spermatogenesis). In this species, XO males exclusively produce X-bearing sperm [6, 7]. The unpaired X precociously separates into sister chromatids, which co-segregate with the autosome set to generate a functional haplo-X sperm. The other set of autosomes is discarded into a residual body. Here we explore the X chromosome behavior in female and hermaphrodite meioses. Whereas X chromosomes segregate following the canonical pattern during XX female oogenesis to yield haplo-X oocytes, during XX hermaphrodite oogenesis they segregate to the first polar body to yield nullo-X oocytes. Thus, crosses between XX hermaphrodites and males yield exclusively male progeny. During hermaphrodite spermatogenesis, the sister chromatids of the X chromosomes separate during meiosis I, and homologous X chromatids segregate to the functional sperm to create diplo-X sperm. Given these intra-species, intra-individual, and intra-gametogenesis variations in the meiotic program, A. rhodensis is an ideal model for studying the plasticity of meiosis and how it can be modulated. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  3. Ever-Young Sex Chromosomes in European Tree Frogs

    PubMed Central

    Lindtke, Dorothea; Sermier, Roberto; Betto-Colliard, Caroline; Dufresnes, Christophe; Bonjour, Emmanuel; Dumas, Zoé; Luquet, Emilien; Maddalena, Tiziano; Sousa, Helena Clavero; Martinez-Solano, Iñigo; Perrin, Nicolas

    2011-01-01

    Non-recombining sex chromosomes are expected to undergo evolutionary decay, ending up genetically degenerated, as has happened in birds and mammals. Why are then sex chromosomes so often homomorphic in cold-blooded vertebrates? One possible explanation is a high rate of turnover events, replacing master sex-determining genes by new ones on other chromosomes. An alternative is that X-Y similarity is maintained by occasional recombination events, occurring in sex-reversed XY females. Based on mitochondrial and nuclear gene sequences, we estimated the divergence times between European tree frogs (Hyla arborea, H. intermedia, and H. molleri) to the upper Miocene, about 5.4–7.1 million years ago. Sibship analyses of microsatellite polymorphisms revealed that all three species have the same pair of sex chromosomes, with complete absence of X-Y recombination in males. Despite this, sequences of sex-linked loci show no divergence between the X and Y chromosomes. In the phylogeny, the X and Y alleles cluster according to species, not in groups of gametologs. We conclude that sex-chromosome homomorphy in these tree frogs does not result from a recent turnover but is maintained over evolutionary timescales by occasional X-Y recombination. Seemingly young sex chromosomes may thus carry old-established sex-determining genes, a result at odds with the view that sex chromosomes necessarily decay until they are replaced. This raises intriguing perspectives regarding the evolutionary dynamics of sexually antagonistic genes and the mechanisms that control X-Y recombination. PMID:21629756

  4. Coexistence of Y, W, and Z sex chromosomes in Xenopus tropicalis

    PubMed Central

    Roco, Álvaro S.; Olmstead, Allen W.; Degitz, Sigmund J.; Amano, Tosikazu; Zimmerman, Lyle B.; Bullejos, Mónica

    2015-01-01

    Homomorphic sex chromosomes and rapid turnover of sex-determining genes can complicate establishing the sex chromosome system operating in a given species. This difficulty exists in Xenopus tropicalis, an anuran quickly becoming a relevant model for genetic, genomic, biochemical, and ecotoxicological research. Despite the recent interest attracted by this species, little is known about its sex chromosome system. Direct evidence that females are the heterogametic sex, as in the related species Xenopus laevis, has yet to be presented. Furthermore, X. laevis’ sex-determining gene, DM-W, does not exist in X. tropicalis, and the sex chromosomes in the two species are not homologous. Here we identify X. tropicalis’ sex chromosome system by integrating data from (i) breeding sex-reversed individuals, (ii) gynogenesis, (iii) triploids, and (iv) crosses among several strains. Our results indicate that at least three different types of sex chromosomes exist: Y, W, and Z, observed in YZ, YW, and ZZ males and in ZW and WW females. Because some combinations of parental sex chromosomes produce unisex offspring and other distorted sex ratios, understanding the sex-determination systems in X. tropicalis is critical for developing this flexible animal model for genetics and ecotoxicology. PMID:26216983

  5. Expression pattern of X-linked genes in sex chromosome aneuploid bovine cells.

    PubMed

    Basrur, Parvathi K; Farazmand, Ali; Stranzinger, Gerald; Graphodatskaya, Daria; Reyes, Ed R; King, W Allan

    2004-01-01

    Expression of the X-inactive specific transcript (XIST) gene is a prerequisite step for dosage compensation in mammals, accomplished by silencing one of the two X chromosomes in normal female diploid cells or all X chromosomes in excess of one in sex chromosome aneuploids. Our previous studies showing that XIST expression does not eventuate the inactivation of X-linked genes in fetal bovine testis had suggested that XIST expression may not be an indicator of X inactivation in this species. In this study, we used a semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) approach on cultures of bovine cells with varying sex chromosome constitution (XY, XX, XXY and XXX) to test whether the levels of XIST expressed conform to the number of late replicating (inactive) X chromosomes displayed by proliferating cells in these cultures. Expression patterns of four X-linked genes, including hypoxanthine phosphorybosyl transferase (HPRT), glucose-6-phosphate dehydrogenase (G6PD), zinc finger protein locus on the X (ZFX). and 'selected mouse cDNA on the X' (SMCX), in all these cells were also tested. Results showed that XIST expression was significantly higher (p < 0.05) in XXX cells compared to XX and XXY cells and that G6PD. HPRT, and SMCX loci are subject to X inactivation. The significantly higher levels of ZFX expressed in XXX cells compared to XX and XXY cells (p < 0.05) confirmed that this bovine locus, as human ZFX, escapes X inactivation. However, the levels of XIST and ZFX expressed were not proportional to the X chromosome load in these cells suggesting that X-linked loci escaping inactivation may be regulated at transcription (or post-transcription) level by mechanisms that prevent gene-specific product accumulation beyond certain levels in sex chromosome aneuploids.

  6. X- and Y-chromosome-specific variants of the amelogenin gene allow non-invasive sex diagnosis for the detection of pseudohermaphrodite goats.

    PubMed

    Fábián, Renáta; Kovács, András; Stéger, Viktor; Frank, Krisztián; Egerszegi, István; Oláh, János; Bodó, Szilárd

    2017-12-01

    The Polled Intersex Syndrome (PIS) is responsible for the absence of horns in homozygous and heterozygous goats causing a female-to-male sex reversal in the homozygous polled genotypic female (XX) goats. A simple and efficient non-invasive method was elaborated to detect the genotypic sex from hair and faecal samples using a pair of primers to amplify the X- and Y-linked alleles of the amelogenin gene. The PCR products were easily distinguishable using agarose gel electrophoresis: we detected an X-specific single band in samples originating from healthy phenotypic females and double (X- and Y-) bands in samples from males. The new PCR method is applicable for diagnosing the sex of PIS-affected animals already as newborn kids, in contrast with the phenotypic findings appearing only after puberty, and thus it may replace the cumbersome chromosome investigations.

  7. Effects of sex chromosome dosage on corpus callosum morphology in supernumerary sex chromosome aneuploidies

    PubMed Central

    2014-01-01

    Background Supernumerary sex chromosome aneuploidies (sSCA) are characterized by the presence of one or more additional sex chromosomes in an individual’s karyotype; they affect around 1 in 400 individuals. Although there is high variability, each sSCA subtype has a characteristic set of cognitive and physical phenotypes. Here, we investigated the differences in the morphometry of the human corpus callosum (CC) between sex-matched controls 46,XY (N =99), 46,XX (N =93), and six unique sSCA karyotypes: 47,XYY (N =29), 47,XXY (N =58), 48,XXYY (N =20), 47,XXX (N =30), 48,XXXY (N =5), and 49,XXXXY (N =6). Methods We investigated CC morphometry using local and global area, local curvature of the CC boundary, and between-landmark distance analysis (BLDA). We hypothesized that CC morphometry would vary differentially along a proposed spectrum of Y:X chromosome ratio with supernumerary Y karyotypes having the largest CC areas and supernumerary X karyotypes having significantly smaller CC areas. To investigate this, we defined an sSCA spectrum based on a descending Y:X karyotype ratio: 47,XYY, 46,XY, 48,XXYY, 47,XXY, 48,XXXY, 49,XXXXY, 46,XX, 47,XXX. We similarly explored the effects of both X and Y chromosome numbers within sex. Results of shape-based metrics were analyzed using permutation tests consisting of 5,000 iterations. Results Several subregional areas, local curvature, and BLDs differed between groups. Moderate associations were found between area and curvature in relation to the spectrum and X and Y chromosome counts. BLD was strongly associated with X chromosome count in both male and female groups. Conclusions Our results suggest that X- and Y-linked genes have differential effects on CC morphometry. To our knowledge, this is the first study to compare CC morphometry across these extremely rare groups. PMID:25780557

  8. Effects of sex chromosome dosage on corpus callosum morphology in supernumerary sex chromosome aneuploidies.

    PubMed

    Wade, Benjamin S C; Joshi, Shantanu H; Reuter, Martin; Blumenthal, Jonathan D; Toga, Arthur W; Thompson, Paul M; Giedd, Jay N

    2014-01-01

    Supernumerary sex chromosome aneuploidies (sSCA) are characterized by the presence of one or more additional sex chromosomes in an individual's karyotype; they affect around 1 in 400 individuals. Although there is high variability, each sSCA subtype has a characteristic set of cognitive and physical phenotypes. Here, we investigated the differences in the morphometry of the human corpus callosum (CC) between sex-matched controls 46,XY (N =99), 46,XX (N =93), and six unique sSCA karyotypes: 47,XYY (N =29), 47,XXY (N =58), 48,XXYY (N =20), 47,XXX (N =30), 48,XXXY (N =5), and 49,XXXXY (N =6). We investigated CC morphometry using local and global area, local curvature of the CC boundary, and between-landmark distance analysis (BLDA). We hypothesized that CC morphometry would vary differentially along a proposed spectrum of Y:X chromosome ratio with supernumerary Y karyotypes having the largest CC areas and supernumerary X karyotypes having significantly smaller CC areas. To investigate this, we defined an sSCA spectrum based on a descending Y:X karyotype ratio: 47,XYY, 46,XY, 48,XXYY, 47,XXY, 48,XXXY, 49,XXXXY, 46,XX, 47,XXX. We similarly explored the effects of both X and Y chromosome numbers within sex. Results of shape-based metrics were analyzed using permutation tests consisting of 5,000 iterations. Several subregional areas, local curvature, and BLDs differed between groups. Moderate associations were found between area and curvature in relation to the spectrum and X and Y chromosome counts. BLD was strongly associated with X chromosome count in both male and female groups. Our results suggest that X- and Y-linked genes have differential effects on CC morphometry. To our knowledge, this is the first study to compare CC morphometry across these extremely rare groups.

  9. Platypus chain reaction: directional and ordered meiotic pairing of the multiple sex chromosome chain in Ornithorhynchus anatinus.

    PubMed

    Daish, Tasman; Casey, Aaron; Grützner, Frank

    2009-01-01

    Monotremes are phylogenetically and phenotypically unique animals with an unusually complex sex chromosome system that is composed of ten chromosomes in platypus and nine in echidna. These chromosomes are alternately linked (X1Y1, X2Y2, ...) at meiosis via pseudoautosomal regions and segregate to form spermatozoa containing either X or Y chromosomes. The physical and epigenetic mechanisms involved in pairing and assembly of the complex sex chromosome chain in early meiotic prophase I are completely unknown. We have analysed the pairing dynamics of specific sex chromosome pseudoautosomal regions in platypus spermatocytes during prophase of meiosis I. Our data show a highly coordinated pairing process that begins at the terminal Y5 chromosome and completes with the union of sex chromosomes X1Y1. The consistency of this ordered assembly of the chain is remarkable and raises questions about the mechanisms and factors that regulate the differential pairing of sex chromosomes and how this relates to potential meiotic silencing mechanisms and alternate segregation.

  10. Rapid Y degeneration and dosage compensation in plant sex chromosomes

    PubMed Central

    Papadopulos, Alexander S. T.; Chester, Michael; Ridout, Kate; Filatov, Dmitry A.

    2015-01-01

    The nonrecombining regions of animal Y chromosomes are known to undergo genetic degeneration, but previous work has failed to reveal large-scale gene degeneration on plant Y chromosomes. Here, we uncover rapid and extensive degeneration of Y-linked genes in a plant species, Silene latifolia, that evolved sex chromosomes de novo in the last 10 million years. Previous transcriptome-based studies of this species missed unexpressed, degenerate Y-linked genes. To identify sex-linked genes, regardless of their expression, we sequenced male and female genomes of S. latifolia and integrated the genomic contigs with a high-density genetic map. This revealed that 45% of Y-linked genes are not expressed, and 23% are interrupted by premature stop codons. This contrasts with X-linked genes, in which only 1.3% of genes contained stop codons and 4.3% of genes were not expressed in males. Loss of functional Y-linked genes is partly compensated for by gene-specific up-regulation of X-linked genes. Our results demonstrate that the rate of genetic degeneration of Y-linked genes in S. latifolia is as fast as in animals, and that the evolutionary trajectories of sex chromosomes are similar in the two kingdoms. PMID:26438872

  11. The X chromosome of monotremes shares a highly conserved region with the eutherian and marsupial X chromosomes despite the absence of X chromosome inactivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, J.M.; Spencer, J.A.; Graves, J.A.M.

    1990-09-01

    Eight genes, located on the long arm of the human X chromosome and present on the marsupial X chromosome, were mapped by in situ hybridization to the chromosomes of the platypus Ornithorhynchus anatinus, one of the three species of monotreme mammals. All were located on the X chromosome. The authors conclude that the long arm of the human X chromosome represents a highly conserved region that formed part of the X chromosome in a mammalian ancestor at least 150 million years ago. Since three of these genes are located on the long arm of the platypus X chromosome, which ismore » G-band homologous to the Y chromosome and apparently exempt from X chromosome inactivation, the conservation of this region has evidently not depended on isolation by X-Y chromosome differentiation and X chromosome inactivation.« less

  12. MECHANISMS IN ENDOCRINOLOGY: Aberrations of the X chromosome as cause of male infertility.

    PubMed

    Röpke, Albrecht; Tüttelmann, Frank

    2017-11-01

    Male infertility is most commonly caused by spermatogenetic failure, clinically noted as oligo- or a-zoospermia. Today, in approximately 20% of azoospermic patients, a causal genetic defect can be identified. The most frequent genetic causes of azoospermia (or severe oligozoospermia) are Klinefelter syndrome (47,XXY), structural chromosomal abnormalities and Y-chromosomal microdeletions. Consistent with Ohno's law, the human X chromosome is the most stable of all the chromosomes, but contrary to Ohno's law, the X chromosome is loaded with regions of acquired, rapidly evolving genes, which are of special interest because they are predominantly expressed in the testis. Therefore, it is not surprising that the X chromosome, considered as the female counterpart of the male-associated Y chromosome, may actually play an essential role in male infertility and sperm production. This is supported by the recent description of a significantly increased copy number variation (CNV) burden on both sex chromosomes in infertile men and point mutations in X-chromosomal genes responsible for male infertility. Thus, the X chromosome seems to be frequently affected in infertile male patients. Four principal X-chromosomal aberrations have been identified so far: (1) aneuploidy of the X chromosome as found in Klinefelter syndrome (47,XXY or mosaicism for additional X chromosomes). (2) Translocations involving the X chromosome, e.g. nonsyndromic 46,XX testicular disorders of sex development (XX-male syndrome) or X-autosome translocations. (3) CNVs affecting the X chromosome. (4) Point mutations disrupting X-chromosomal genes. All these are reviewed herein and assessed concerning their importance for the clinical routine diagnostic workup of the infertile male as well as their potential to shape research on spermatogenic failure in the next years. © 2017 European Society of Endocrinology.

  13. Sex chromosome diversity in Armenian toad grasshoppers (Orthoptera, Acridoidea, Pamphagidae)

    PubMed Central

    Bugrov, Alexander G.; Jetybayev, Ilyas E.; Karagyan, Gayane H.; Rubtsov, Nicolay B.

    2016-01-01

    Abstract Although previous cytogenetic analysis of Pamphagidae grasshoppers pointed to considerable karyotype uniformity among most of the species in the family, our study of species from Armenia has discovered other, previously unknown karyotypes, differing from the standard for Pamphagidae mainly in having unusual sets of sex chromosomes. Asiotmethis turritus (Fischer von Waldheim, 1833), Paranocaracris rubripes (Fischer von Waldheim, 1846), and Nocaracris cyanipes (Fischer von Waldheim, 1846) were found to have the karyotype 2n♂=16+neo-XY and 2n♀=16+neo-XX, the neo-X chromosome being the result of centromeric fusion of an ancient acrocentric X chromosome and a large acrocentric autosome. The karyotype of Paranothrotes opacus (Brunner von Wattenwyl, 1882) was found to be 2n♂=14+X1X2Y and 2n♀=14+X1X1X2X2., the result of an additional chromosome rearrangement involving translocation of the neo-Y and another large autosome. Furthermore, evolution of the sex chromosomes in these species has involved different variants of heterochromatinization and miniaturization of the neo-Y. The karyotype of Eremopeza festiva (Saussure, 1884), in turn, appeared to have the standard sex determination system described earlier for Pamphagidae grasshoppers, 2n♂=18+X0 and 2n♀=18+XX, but all the chromosomes of this species were found to have small second C-positive arms. Using fluorescent in situ hybridization (FISH) with 18S rDNA and telomeric (TTAGG)n DNA repeats to yield new data on the structural organization of chromosomes in the species studied, we found that for most of them, clusters of repeats homologous to 18S rDNA localize on two, three or four pairs of autosomes and on the X. In Eremopeza festiva, however, FISH with labelled 18S rDNA painted C-positive regions of all autosomes and the X chromosome; clusters of telomeric repeats localized primarily on the ends of the chromosome arms. Overall, we conclude that the different stages of neo-Y degradation revealed in

  14. New insights into sex chromosome evolution in anole lizards (Reptilia, Dactyloidae).

    PubMed

    Giovannotti, M; Trifonov, V A; Paoletti, A; Kichigin, I G; O'Brien, P C M; Kasai, F; Giovagnoli, G; Ng, B L; Ruggeri, P; Cerioni, P Nisi; Splendiani, A; Pereira, J C; Olmo, E; Rens, W; Caputo Barucchi, V; Ferguson-Smith, M A

    2017-03-01

    Anoles are a clade of iguanian lizards that underwent an extensive radiation between 125 and 65 million years ago. Their karyotypes show wide variation in diploid number spanning from 26 (Anolis evermanni) to 44 (A. insolitus). This chromosomal variation involves their sex chromosomes, ranging from simple systems (XX/XY), with heterochromosomes represented by either micro- or macrochromosomes, to multiple systems (X 1 X 1 X 2 X 2 /X 1 X 2 Y). Here, for the first time, the homology relationships of sex chromosomes have been investigated in nine anole lizards at the whole chromosome level. Cross-species chromosome painting using sex chromosome paints from A. carolinensis, Ctenonotus pogus and Norops sagrei and gene mapping of X-linked genes demonstrated that the anole ancestral sex chromosome system constituted by microchromosomes is retained in all the species with the ancestral karyotype (2n = 36, 12 macro- and 24 microchromosomes). On the contrary, species with a derived karyotype, namely those belonging to genera Ctenonotus and Norops, show a series of rearrangements (fusions/fissions) involving autosomes/microchromosomes that led to the formation of their current sex chromosome systems. These results demonstrate that different autosomes were involved in translocations with sex chromosomes in closely related lineages of anole lizards and that several sequential microautosome/sex chromosome fusions lead to a remarkable increase in size of Norops sagrei sex chromosomes.

  15. X chromosome dosage and presence of SRY shape sex-specific differences in DNA methylation at an autosomal region in human cells.

    PubMed

    Ho, Bianca; Greenlaw, Keelin; Al Tuwaijri, Abeer; Moussette, Sanny; Martínez, Francisco; Giorgio, Elisa; Brusco, Alfredo; Ferrero, Giovanni Battista; Linhares, Natália D; Valadares, Eugênia R; Svartman, Marta; Kalscheuer, Vera M; Rodríguez Criado, Germán; Laprise, Catherine; Greenwood, Celia M T; Naumova, Anna K

    2018-02-20

    Sexual dimorphism in DNA methylation levels is a recurrent epigenetic feature in different human cell types and has been implicated in predisposition to disease, such as psychiatric and autoimmune disorders. To elucidate the genetic origins of sex-specific DNA methylation, we examined DNA methylation levels in fibroblast cell lines and blood cells from individuals with different combinations of sex chromosome complements and sex phenotypes focusing on a single autosomal region--the differentially methylated region (DMR) in the promoter of the zona pellucida binding protein 2 (ZPBP2) as a reporter. Our data show that the presence of the sex determining region Y (SRY) was associated with lower methylation levels, whereas higher X chromosome dosage in the absence of SRY led to an increase in DNA methylation levels at the ZPBP2 DMR. We mapped the X-linked modifier of DNA methylation to the long arm of chromosome X (Xq13-q21) and tested the impact of mutations in the ATRX and RLIM genes, located in this region, on methylation levels. Neither ATRX nor RLIM mutations influenced ZPBP2 methylation in female carriers. We conclude that sex-specific methylation differences at the autosomal locus result from interaction between a Y-linked factor SRY and at least one X-linked factor that acts in a dose-dependent manner.

  16. Statistics for X-chromosome associations.

    PubMed

    Özbek, Umut; Lin, Hui-Min; Lin, Yan; Weeks, Daniel E; Chen, Wei; Shaffer, John R; Purcell, Shaun M; Feingold, Eleanor

    2018-06-13

    In a genome-wide association study (GWAS), association between genotype and phenotype at autosomal loci is generally tested by regression models. However, X-chromosome data are often excluded from published analyses of autosomes because of the difference between males and females in number of X chromosomes. Failure to analyze X-chromosome data at all is obviously less than ideal, and can lead to missed discoveries. Even when X-chromosome data are included, they are often analyzed with suboptimal statistics. Several mathematically sensible statistics for X-chromosome association have been proposed. The optimality of these statistics, however, is based on very specific simple genetic models. In addition, while previous simulation studies of these statistics have been informative, they have focused on single-marker tests and have not considered the types of error that occur even under the null hypothesis when the entire X chromosome is scanned. In this study, we comprehensively tested several X-chromosome association statistics using simulation studies that include the entire chromosome. We also considered a wide range of trait models for sex differences and phenotypic effects of X inactivation. We found that models that do not incorporate a sex effect can have large type I error in some cases. We also found that many of the best statistics perform well even when there are modest deviations, such as trait variance differences between the sexes or small sex differences in allele frequencies, from assumptions. © 2018 WILEY PERIODICALS, INC.

  17. New Defective Brannerite-Type Vanadates. I. Synthesis and Study of Mn 1- x- yφ xNa yV 2-2 x-yMo 2 x+yO 6 Solid Solutions

    NASA Astrophysics Data System (ADS)

    Masłowska, Bogna; Ziółkowski, Jacek

    1994-05-01

    MnV 2O 6 of the brannerite-type structure (below 540°C) doped with MoO 3 and Na 2O forms isomorphous solid solutions MnNaφ = Mn 1- x-yφ xNa yV 2-2 x-yMo 2 x+ yO 6 (φ cation vacancy in the original Mn position), belonging to the pseudoternary MnV 2O 6-NaVMoO 6-MoO 3 system. Particular cases are MnNa = Mn 1- yNa y V 2- yMo yO 6 ( x = 0), Mnφ = Mn 1- xφ xV 2-2 xMo 2 xO 6 ( y = 0), and Naφ = Na 1- xφ xV 1- xMo 1+ xO 6 ( x + y = 1). MnV 2O 6 and NaVMoO 6 show miscibility in the entire composition range (MnNa). The opposite boundary of MnNaφ passes through the (100 x, 100 y) points (45, 0), (33, 30), and (30, 70). The phase diagram of the pseudobinary MnV 2O 6-NaVMoO 6 system (determined with DTA) shows (i) a narrow double-lens-type solidus-liquidus gap at high values of y , (ii) two peritectic meltings at lower y (yielding the high temperature β-MnNa and Mn 2V 2O 7), and (iii) little area of β-MnNa. Lattice parameters of MnNa (determined with X-ray diffraction) reveal small deviations from Vegard's law. As the ionic radii of both dopants (Na + and Mo 6+) are, respectively, larger than those of mother ions (Mn 2+ and V 5+), the unit cell increases in all directions with rising y along the MnNa series of solid solutions. However, due to the anisotropy of the structure, parameter c is strongly sensitive to Na/Mn substitution, b is ruled by Mo/V, and a is weakly influenced by Mo/V. Close analogy to the behavior of the previously studied MnV 2O 6-LiVMoO 6-MoO 6 system is discussed.

  18. Rare congenital chromosomal aberration dic(X;Y)(p22.33;p11.32) in a patient with primary myelofibrosis.

    PubMed

    Pavlistova, Lenka; Izakova, Silvia; Zemanova, Zuzana; Bartuskova, Lucie; Langova, Martina; Malikova, Pavlina; Michalova, Kyra

    2016-01-01

    Constitutional translocations between sex chromosomes are rather rare in humans with breakpoints at Xp11 and Yq11 as the most frequent. Breakpoints on the short arm of the Y chromosome form one subgroup of t(X;Y), giving rise to a derived chromosome with the centromeres of both the X and Y chromosomes, dic(X;Y). Here, we report a rare congenital chromosomal aberration, 46,X,dic(X;Y)(p22.33;p11.32)[20]/45,X[10], in an adult male. Primary myelofibrosis, a malignant haematological disease, was diagnosed in a 63-year-old man following liver transplantation after hepatocellular carcinoma. By the analysis of the bone marrow sample, the karyotype 46,X,dic(X;Y)(p22.33;p11.32) was detected in all the mitoses analysed and verified with multicolour fluorescence in situ hybridization (mFISH). A cytogenetic examination of stimulated peripheral blood cells revealed the constitutional karyotype 46,X,dic(X;Y)(p22.33;p11.32)[20]/45,X[10]. The cell line 45,X was confirmed with FISH in 35 % of interphase nuclei. The SRY locus was present on the dicentric chromosome. A CGH/SNP array (Illumina) revealed a gain of 153,7 Mbp of the X chromosome and a 803-kbp microdeletion (including the SHOX gene), which were also confirmed with FISH. SHOX encodes a transcriptional factor that regulates the growth of the long bones. The deletion of the SHOX gene together with the Madelung deformity of the forearm and the short stature of the proband led to a diagnosis of Léri-Weill dyschondrosteosis (LWD). The gain of almost the whole X chromosome (153,7 Mbp) was considered a variant of Klinefelter syndrome (KS). The levels of gonadotropins and testosterone were consistent with gonadal dysfunction. A malformation of the right external ear was detected. We have reported a structural aberration of the sex chromosomes, dic(X;Y)(p22.33;p11.32). The related genomic imbalance is associated with two known hereditary syndromes, LWD and a KS variant, identified in our proband at an advanced age. Because the

  19. Evaluation and comparision of dc resistivity of NiZr x Co x Fe2-2x O4, Ni0.5Sn0.5Co x Mn x Fe2-2x O4, Mg1-x Ca x Ni y Fe2-y O4 and Mg1-x Ni x Co y Fe2-y O4 nanocrytalline materials

    NASA Astrophysics Data System (ADS)

    Ali, Rajjab; Gilani, Zaheer Abbas; Shahzad Shifa, Muhammad; Asghar, H. M. Noor Ul Huda Khan; Azhar Khan, Muhammad; Naeem Anjum, Muhammad; Nauman Usmani, Muhammad; Farooq Warsi, Muhammad; Khawaja, Imtiaz U.

    2017-11-01

    Four series nanocrystalline ferrites with nominal composition, NiZr x Co x Fe2-2x O4 (x  =  0.0, 0.2, 0.4, 0.6, 0.8) Ni0.5Sn0.5Co x Mn x Fe2-2x O4 (x  =  0.0, 0.2, 0.4, 0.6, 0.8), Mg1-x Ca x Ni y Fe2-y O4 (x  =  0.0, 0.2, 0.4, 0.6, 0.8; y  =  0, 04, 0.8, 1.2, 1.6) and Mg1-x Ni x Co y Fe2-y O4 (x,y  =  0.0, 0.2, 0.4, 0.6, 0.8) have been fabricated using the microemulsion synthesis route. The synthesized materials are investigated for dc electrical resistivity measurements. The variation of dc electrical resistivity of these materials has been explainedon the basis of hopping mechanism of both holes and electrons.

  20. Sex-specific silencing of X-linked genes by Xist RNA

    PubMed Central

    Gayen, Srimonta; Maclary, Emily; Hinten, Michael; Kalantry, Sundeep

    2016-01-01

    X-inactive specific transcript (Xist) long noncoding RNA (lncRNA) is thought to catalyze silencing of X-linked genes in cis during X-chromosome inactivation, which equalizes X-linked gene dosage between male and female mammals. To test the impact of Xist RNA on X-linked gene silencing, we ectopically induced endogenous Xist by ablating the antisense repressor Tsix in mice. We find that ectopic Xist RNA induction and subsequent X-linked gene silencing is sex specific in embryos and in differentiating embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs). A higher frequency of XΔTsixY male cells displayed ectopic Xist RNA coating compared with XΔTsixX female cells. This increase reflected the inability of XΔTsixY cells to efficiently silence X-linked genes compared with XΔTsixX cells, despite equivalent Xist RNA induction and coating. Silencing of genes on both Xs resulted in significantly reduced proliferation and increased cell death in XΔTsixX female cells relative to XΔTsixY male cells. Thus, whereas Xist RNA can inactivate the X chromosome in females it may not do so in males. We further found comparable silencing in differentiating XΔTsixY and 39,XΔTsix (XΔTsixO) ESCs, excluding the Y chromosome and instead implicating the X-chromosome dose as the source of the sex-specific differences. Because XΔTsixX female embryonic epiblast cells and EpiSCs harbor an inactivated X chromosome prior to ectopic inactivation of the active XΔTsix X chromosome, we propose that the increased expression of one or more X-inactivation escapees activates Xist and, separately, helps trigger X-linked gene silencing. PMID:26739568

  1. An XXX male resulting from paternal X-Y interchange and maternal X-X nondisjunction.

    PubMed Central

    Annerén, G; Andersson, M; Page, D C; Brown, L G; Berg, M; Läckgren, G; Gustavson, K H; de la Chapelle, A

    1987-01-01

    A 2-year-old boy was found to have a 47,XXX karyotype. Restriction-fragment-length-polymorphism analysis showed that, of his three X chromosomes, one is of paternal and two are of maternal origin. The results of Y-DNA hybridization were reminiscent of those in XX males in two respects. First, hybridization to Southern transfers revealed the presence in this XXX male of sequences derived from the Y-chromosomal short arm. Second, in situ hybridization showed that this Y DNA was located on the tip of the X-chromosomal short arm. We conclude that this XXX male resulted from the coincidence of X-X nondisjunction during maternal meiosis and aberrant X-Y interchange either during or prior to paternal meiosis. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:2889356

  2. An Autosomal Gene That Affects X Chromosome Expression and Sex Determination in CAENORHABDITIS ELEGANS

    PubMed Central

    Meneely, Philip M.; Wood, William B.

    1984-01-01

    Recessive mutant alleles at the autosomal dpy-21 locus of C. elegans cause a dumpy phenotype in XX animals but not in XO animals. This dumpy phenotype is characteristic of X chromosome aneuploids with higher than normal X to autosome ratios and is proposed to result from overexpression of X-linked genes. We have isolated a new dpy-21 allele that also causes partial hermaphroditization of XO males, without causing the dumpy phenotype. All dpy-21 alleles show hermaphroditization effects in XO males that carry a duplication of part of the X chromosome and also partially suppress a transformer (tra-1) mutation that converts XX animals into males. Experiments with a set of X chromosome duplications show that the defects of dpy-21 mutants can result from interaction with several different regions of the X chromosome. We propose that dpy-21 regulates X chromosome expression and may be involved in interpreting X chromosome dose for the developmental decisions of both sex determination and dosage compensation. PMID:6537930

  3. Coupling of electronic and magnetic properties in Fe1+y(Te1-xSex)

    NASA Astrophysics Data System (ADS)

    Hu, J.; Liu, T. J.; Qian, B.; Mao, Z. Q.

    2013-09-01

    We have studied the coupling of electronic and magnetic properties in Fe1+y(Te1-xSex) via systematic specific heat, magnetoresistivity (MR), and Hall coefficient measurements on two groups of samples with y=0.02 and 0.1. In the y=0.02 series, we find that the 0.09<x<0.3 composition region, where superconductivity is suppressed, has a large Sommerfeld coefficient γ (˜55-65 mJ/mol K2), positive Hall coefficient RH, and negative MR at low temperature, in sharp contrast with the x = 0.4-0.5 region, where γ drops to ˜26 mJ/mol K2 and RH and MR become negative and positive, respectively, at low temperature. Dramatic changes of γ, as well as sign reversal in low-temperature RH and MR, are also observed across the x˜0.1 boundary, where the long-range antiferromagnetic order is suppressed. However, for the system with rich interstitial excess Fe (y=0.1), where bulk superconductivity is suppressed even for x = 0.4-0.5, the variations of γ, RH, and MR with x are distinct from those seen in y=0.02 system: γ is ˜40 mJ/mol K2 for 0.1<x<0.3 and drops to ˜34 mJ/mol K2 for x = 0.4-0.5; RH and MR do not show any sign reversal as x is increased above 0.3. We will show that all these results can be understood in light of the evolution of the incoherent magnetic scattering by (π,0) magnetic fluctuations with Se concentration. In addition, with the suppression of magnetic scattering by the magnetic field, we observed the surprising effect of a remarkable increase in the superconducting volume fraction under moderate magnetic fields for x = 0.3-0.4 samples in the y=0.02 system.

  4. The protocadherin 11X/Y (PCDH11X/Y) gene pair as determinant of cerebral asymmetry in modern Homo sapiens.

    PubMed

    Priddle, Thomas H; Crow, Timothy J

    2013-06-01

    Annett's right-shift theory proposes that human cerebral dominance (the functional and anatomical asymmetry or torque along the antero-posterior axis) and handedness are determined by a single "right-shift" gene. Familial transmission of handedness and specific deviations of cerebral dominance in sex chromosome aneuploidies implicate a locus within an X-Y homologous region of the sex chromosomes. The Xq21.3/Yp11.2 human-specific region of homology includes the protocadherin 11X/Y (PCDH11X/Y) gene pair, which encode cell adhesion molecules subject to accelerated evolution following the separation of the human and chimpanzee lineages six million years ago. PCDH11X and PCDH11Y, differentially regulated by retinoic acid, are highly expressed in the ventricular zone, subplate, and cortical plate of the developing cerebral cortex. Both proteins interact with β-catenin, a protein that plays a role in determining axis formation and regulating cortical size. In this way, the PCDH11X/Y gene pair determines cerebral asymmetry by initiating the right shift in Homo sapiens. © 2013 New York Academy of Sciences.

  5. Transport and superconducting properties of Fe-based superconductors: a comparison between SmFeAsO1-xFx and Fe1+yTe1-xSex

    NASA Astrophysics Data System (ADS)

    Tropeano, M.; Pallecchi, I.; Cimberle, M. R.; Ferdeghini, C.; Lamura, G.; Vignolo, M.; Martinelli, A.; Palenzona, A.; Putti, M.

    2010-05-01

    In this paper we carry out a direct comparison between transport and superconducting properties—namely resistivity, magnetoresistivity, Hall effect, Seebeck effect, thermal conductivity, upper critical field—of two different families of Fe-based superconductors, which can be viewed in many respects as end members: SmFeAsO1 - xFx with the largest Tc and the largest anisotropy and Fe1 + yTe1 - xSex, with the largest Hc2, the lowest Tc and the lowest anisotropy. In the case of the SmFeAsO1 - xFx series, we find that a single-band description allows us to extract an approximate estimation of band parameters such as carrier density and mobility from experimental data, although the behaviour of the Seebeck effect as a function of doping demonstrates that a multiband description would be more appropriate. On the contrary, experimental data for the Fe1 + y(Te1 - x, Sex) series exhibit a strongly compensated behaviour, which can be described only within a multiband model. In the Fe1 + y(Te1 - x, Sex) series, the role of the excess Fe, tuned by Se stoichiometry, is found to be twofold: on one hand it dopes electrons in the system and on the other hand it introduces localized magnetic moments, responsible for Kondo like scattering and likely pairbreaking of Cooper pairs. Hence, Fe excess also plays a crucial role in determining superconducting properties such as the Tc and the upper critical field Hc2. The huge Hc2 values of the Fe1 + yTe1 - xSex samples are described by a dirty limit law, opposed to the clean limit behaviour of the SmFeAsO1 - xFx samples. Hence, magnetic scattering by excess Fe seems to drive the system in the dirty regime, but its detrimental pairbreaking role seems not to be as severe as predicted by theory. This issue has yet to be clarified, addressing the more fundamental issue of the interplay between magnetism and superconductivity.

  6. Neo-sex chromosome inheritance across species in Silene hybrids.

    PubMed

    Weingartner, L A; Delph, L F

    2014-07-01

    Neo-sex chromosomes, which form through the major restructuring of ancestral sex chromosome systems, have evolved in various taxa. Such restructuring often consists of the fusion of an autosome to an existing sex chromosome, resulting in novel sex chromosome formations (e.g. X1X2Y or XY1Y2.). Comparative studies are often made between restructured sex chromosome systems of closely related species, and here we evaluate the consequences of variable sex chromosome systems to hybrids. If neo-sex chromosomes are improperly inherited across species, this could lead to aberrant development and reproductive isolation. In this study, we examine the fate of neo-sex chromosomes in hybrids of the flowering plants Silene diclinis and Silene latifolia. Silene diclinis has a neo-sex chromosome system (XY1Y2) that is thought to have evolved from an ancestral XY system that is still present in S. latifolia. These species do not hybridize naturally, and improper sex chromosome inheritance could contribute to reproductive isolation. We investigated whether this major restructuring of sex chromosomes prevents their proper inheritance in a variety of hybrid crosses, including some F2 - and later-generation hybrids, with sex chromosome-linked, species-specific, polymorphic markers and chromosome squashes. We discovered that despite the differences in sex chromosomes that exist between these two species, proper segregation had occurred in hybrids that made it to flowering, including later-generation hybrids, indicating that neo-sex chromosome formation alone does not result in complete reproductive isolation between these two species. Additionally, hybrids with aberrant sex expression (e.g. neuter, hermaphrodite) also inherited the restructured sex chromosomes properly, highlighting that issues with sexual development in hybrids can be caused by intrinsic genetic incompatibility rather than improper sex chromosome inheritance. © 2014 The Authors. Journal of Evolutionary Biology © 2014

  7. ARPES Study on the Strongly Correlated Iron Chalcogenides Fe1+ySexTe1-x

    NASA Astrophysics Data System (ADS)

    Liu, Zhongkai

    2014-03-01

    The level of electronic correlation has been one of the key questions in understanding the nature of iron-based superconductivity. Using Angle Resolved Photoemission Spectroscopy (ARPES), we systematically investigated the correlation level in the iron chalcogenide family Fe1+ySexTe1-x. For the parent compound Fe1.02Te, we discovered ``peak-dip-hump'' spectra with heavily renormalized quasiparticles in the low temperature antiferromagnetic (AFM) state, characteristic of coherent polarons seen in other correlated materials with complex electronic and lattice interactions. As the temperature (or Se ratio x) increases and Fe1.02SexTe1-x is in the paramagnetic (PM) phase, we observed dissociation behavior of polarons, suggestive of connection between the weakening electron-phonon coupling and AFM. Further increase of x leads to an incoherent to coherent crossover in the electronic structure, indicating a reduction in the electronic correlation as the superconductivity emerges. Furthermore, the reduction of the electronic correlation in Fe1+ySexTe1-x evolves in an orbital-dependent way, where the dxy orbital is influenced most significantly. At the other end of the phase diagram (FeSe) where the single crystal is not stable, we have studied the MBE-grown thin film which also reveals orbital-dependent strong correlation in the electronic structure. Our findings provide a quantitative comprehension on the correlation level and its evolution on the phase diagram of Fe1+ySexTe1-x. We discuss the physical scenarios leading to strong correlations and its connection to superconductivity.

  8. Sex determining gene on the X chromosome short arm: dosage sensitive sex reversal.

    PubMed

    Ogata, T; Matsuo, N

    1996-08-01

    The present review article summarizes current knowledge concerning the sex determining gene on Xp21, termed DSS (dosage sensitive sex reversal). The presence of DSS has been based on the finding that, in the presence of SRY, partial active Xp duplications encompassing the middle part of Xp result in sex reversal, whereas those of the distal or proximal part of Xp permit male sex development. Because Klinefelter patients develop as males, it is believed that DSS is normally subject to X-inactivation, and that two active copies of DSS override the function of SRY, resulting in gonadal dysgenesis because of meiotic pairing failure. It may be possible that DSS encodes a target sequence for repressing function of SRY or that DSS is involved in an X chromosome-counting mechanism. Molecular approaches have localized DSS to a 160 kb region and isolated candidate genes such as DAX-1 and MAGE-Xp, but there has been no formal evidence equating the candidate gene with DSS. In addition to its clinical importance, the exploration of DSS must provide a useful clue to phylogenetic studies of sex chromosomes and dosage compensation.

  9. Construction of physical maps for the sex-specific regions of papaya sex chromosomes.

    PubMed

    Na, Jong-Kuk; Wang, Jianping; Murray, Jan E; Gschwend, Andrea R; Zhang, Wenli; Yu, Qingyi; Navajas-Pérez, Rafael; Feltus, F Alex; Chen, Cuixia; Kubat, Zdenek; Moore, Paul H; Jiang, Jiming; Paterson, Andrew H; Ming, Ray

    2012-05-08

    Papaya is a major fruit crop in tropical and subtropical regions worldwide. It is trioecious with three sex forms: male, female, and hermaphrodite. Sex determination is controlled by a pair of nascent sex chromosomes with two slightly different Y chromosomes, Y for male and Yh for hermaphrodite. The sex chromosome genotypes are XY (male), XYh (hermaphrodite), and XX (female). The papaya hermaphrodite-specific Yh chromosome region (HSY) is pericentromeric and heterochromatic. Physical mapping of HSY and its X counterpart is essential for sequencing these regions and uncovering the early events of sex chromosome evolution and to identify the sex determination genes for crop improvement. A reiterate chromosome walking strategy was applied to construct the two physical maps with three bacterial artificial chromosome (BAC) libraries. The HSY physical map consists of 68 overlapped BACs on the minimum tiling path, and covers all four HSY-specific Knobs. One gap remained in the region of Knob 1, the only knob structure shared between HSY and X, due to the lack of HSY-specific sequences. This gap was filled on the physical map of the HSY corresponding region in the X chromosome. The X physical map consists of 44 BACs on the minimum tiling path with one gap remaining in the middle, due to the nature of highly repetitive sequences. This gap was filled on the HSY physical map. The borders of the non-recombining HSY were defined genetically by fine mapping using 1460 F2 individuals. The genetically defined HSY spanned approximately 8.5 Mb, whereas its X counterpart extended about 5.4 Mb including a 900 Kb region containing the Knob 1 shared by the HSY and X. The 8.5 Mb HSY corresponds to 4.5 Mb of its X counterpart, showing 4 Mb (89%) DNA sequence expansion. The 89% increase of DNA sequence in HSY indicates rapid expansion of the Yh chromosome after genetic recombination was suppressed 2-3 million years ago. The genetically defined borders coincide with the common

  10. The importance of having two X chromosomes

    PubMed Central

    Arnold, Arthur P.; Reue, Karen; Eghbali, Mansoureh; Vilain, Eric; Chen, Xuqi; Ghahramani, Negar; Itoh, Yuichiro; Li, Jingyuan; Link, Jenny C.; Ngun, Tuck; Williams-Burris, Shayna M.

    2016-01-01

    Historically, it was thought that the number of X chromosomes plays little role in causing sex differences in traits. Recently, selected mouse models have been used increasingly to compare mice with the same type of gonad but with one versus two copies of the X chromosome. Study of these models demonstrates that mice with one X chromosome can be strikingly different from those with two X chromosomes, when the differences are not attributable to confounding group differences in gonadal hormones. The number of X chromosomes affects adiposity and metabolic disease, cardiovascular ischaemia/reperfusion injury and behaviour. The effects of X chromosome number are likely the result of inherent differences in expression of X genes that escape inactivation, and are therefore expressed from both X chromosomes in XX mice, resulting in a higher level of expression when two X chromosomes are present. The effects of X chromosome number contribute to sex differences in disease phenotypes, and may explain some features of X chromosome aneuploidies such as in Turner and Klinefelter syndromes. PMID:26833834

  11. Y fuse? Sex chromosome fusions in fishes and reptiles.

    PubMed

    Pennell, Matthew W; Kirkpatrick, Mark; Otto, Sarah P; Vamosi, Jana C; Peichel, Catherine L; Valenzuela, Nicole; Kitano, Jun

    2015-05-01

    Chromosomal fusion plays a recurring role in the evolution of adaptations and reproductive isolation among species, yet little is known of the evolutionary drivers of chromosomal fusions. Because sex chromosomes (X and Y in male heterogametic systems, Z and W in female heterogametic systems) differ in their selective, mutational, and demographic environments, those differences provide a unique opportunity to dissect the evolutionary forces that drive chromosomal fusions. We estimate the rate at which fusions between sex chromosomes and autosomes become established across the phylogenies of both fishes and squamate reptiles. Both the incidence among extant species and the establishment rate of Y-autosome fusions is much higher than for X-autosome, Z-autosome, or W-autosome fusions. Using population genetic models, we show that this pattern cannot be reconciled with many standard explanations for the spread of fusions. In particular, direct selection acting on fusions or sexually antagonistic selection cannot, on their own, account for the predominance of Y-autosome fusions. The most plausible explanation for the observed data seems to be (a) that fusions are slightly deleterious, and (b) that the mutation rate is male-biased or the reproductive sex ratio is female-biased. We identify other combinations of evolutionary forces that might in principle account for the data although they appear less likely. Our results shed light on the processes that drive structural changes throughout the genome.

  12. Y Fuse? Sex Chromosome Fusions in Fishes and Reptiles

    PubMed Central

    Vamosi, Jana C.; Peichel, Catherine L.; Valenzuela, Nicole; Kitano, Jun

    2015-01-01

    Chromosomal fusion plays a recurring role in the evolution of adaptations and reproductive isolation among species, yet little is known of the evolutionary drivers of chromosomal fusions. Because sex chromosomes (X and Y in male heterogametic systems, Z and W in female heterogametic systems) differ in their selective, mutational, and demographic environments, those differences provide a unique opportunity to dissect the evolutionary forces that drive chromosomal fusions. We estimate the rate at which fusions between sex chromosomes and autosomes become established across the phylogenies of both fishes and squamate reptiles. Both the incidence among extant species and the establishment rate of Y-autosome fusions is much higher than for X-autosome, Z-autosome, or W-autosome fusions. Using population genetic models, we show that this pattern cannot be reconciled with many standard explanations for the spread of fusions. In particular, direct selection acting on fusions or sexually antagonistic selection cannot, on their own, account for the predominance of Y-autosome fusions. The most plausible explanation for the observed data seems to be (a) that fusions are slightly deleterious, and (b) that the mutation rate is male-biased or the reproductive sex ratio is female-biased. We identify other combinations of evolutionary forces that might in principle account for the data although they appear less likely. Our results shed light on the processes that drive structural changes throughout the genome. PMID:25993542

  13. On Positive Solutions for the Rational Difference Equation Systems x n+1 = A/x n y n (2), and y n+1 = By n /x n-1 y n-1.

    PubMed

    Ma, Hui-Li; Feng, Hui

    2014-01-01

    Our aim in this paper is to investigate the behavior of positive solutions for the following systems of rational difference equations: x n+1 = A/x n y n (2), and y n+1 = By n /x n-1 y n-1, n = 0,1,…, where x -1, x 0, y -1, and y 0 are positive real numbers and A and B are positive constants.

  14. Surface and bulk effects of K in Cu 1-xK xIn 1-yGa ySe 2 solar cells

    DOE PAGES

    Muzzillo, Christopher P.; Anderson, Timothy J.

    2017-12-29

    Two strategies for enhancing photovoltaic (PV) performance in chalcopyrite solar cells were investigated: Cu 1-xK xIn 1-yGa ySe 2 absorbers with low K content (K/(K+Cu), or x ~ 0.07) distributed throughout the bulk, and CuIn 1-yGa ySe 2 absorbers with KIn 1-yGa ySe 2 grown on their surfaces. Distributing K throughout the bulk absorbers improved power conversion efficiency, open-circuit voltage (VOC) and fill factor (FF) for Ga/(Ga+In) of 0, 0.3 and 0.5. Surface KIn 1-yGa ySe 2 and bulk x ~ 0.07 Cu 1-xK xIn 1-yGa ySe 2 films with Ga/(Ga+In), or y of 0.3 and 0.5 also had improvedmore » efficiency, VOC, and FF, relative to CuIn 1-yGa ySe 2 baselines. On the other hand, y ~ 1 absorbers did not benefit from K introduction. Similar to Cu 1-xK xInSe 2, the formation of Cu 1-xK xGaSe 2 alloys was favored at low temperatures and high Na supply by the substrate, relative to the formation of mixed-phase CuGaSe 2 + KGaSe 2. KIn 1-yGa ySe 2 alloys were grown for the first time, as evidenced by X-ray diffraction and ultraviolet/visible spectroscopy. For all Ga/(Ga+In) compositions, the surface KIn 1-yGa ySe 2 absorbers had superior PV performance in buffered and buffer-free devices. However, the bulk x ~ 0.07 absorbers only outperformed the baselines in buffered devices. The data demonstrate that KIn 1-yGa ySe 2 passivates the surface of CuIn 1-yGa ySe 2 to increase efficiency, VOC, and FF, while bulk Cu 1-xK xIn 1-yGa ySe 2 absorbers with x ~ 0.07 enhance efficiency, VOC, and FF by some other mechanism.« less

  15. Surface and bulk effects of K in Cu 1-xK xIn 1-yGa ySe 2 solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muzzillo, Christopher P.; Anderson, Timothy J.

    Two strategies for enhancing photovoltaic (PV) performance in chalcopyrite solar cells were investigated: Cu 1-xK xIn 1-yGa ySe 2 absorbers with low K content (K/(K+Cu), or x ~ 0.07) distributed throughout the bulk, and CuIn 1-yGa ySe 2 absorbers with KIn 1-yGa ySe 2 grown on their surfaces. Distributing K throughout the bulk absorbers improved power conversion efficiency, open-circuit voltage (VOC) and fill factor (FF) for Ga/(Ga+In) of 0, 0.3 and 0.5. Surface KIn 1-yGa ySe 2 and bulk x ~ 0.07 Cu 1-xK xIn 1-yGa ySe 2 films with Ga/(Ga+In), or y of 0.3 and 0.5 also had improvedmore » efficiency, VOC, and FF, relative to CuIn 1-yGa ySe 2 baselines. On the other hand, y ~ 1 absorbers did not benefit from K introduction. Similar to Cu 1-xK xInSe 2, the formation of Cu 1-xK xGaSe 2 alloys was favored at low temperatures and high Na supply by the substrate, relative to the formation of mixed-phase CuGaSe 2 + KGaSe 2. KIn 1-yGa ySe 2 alloys were grown for the first time, as evidenced by X-ray diffraction and ultraviolet/visible spectroscopy. For all Ga/(Ga+In) compositions, the surface KIn 1-yGa ySe 2 absorbers had superior PV performance in buffered and buffer-free devices. However, the bulk x ~ 0.07 absorbers only outperformed the baselines in buffered devices. The data demonstrate that KIn 1-yGa ySe 2 passivates the surface of CuIn 1-yGa ySe 2 to increase efficiency, VOC, and FF, while bulk Cu 1-xK xIn 1-yGa ySe 2 absorbers with x ~ 0.07 enhance efficiency, VOC, and FF by some other mechanism.« less

  16. Characterization of the OmyY1 region on the rainbow trout Y chromosome

    USGS Publications Warehouse

    Phillips, Ruth B.; DeKoning, Jenefer J.; Brunelli, Joseph P.; Faber-Hammond, Joshua J.; Hansen, John D.; Christensen, Kris A.; Renn, Suzy C.P.; Thorgaard, Gary H.

    2013-01-01

    We characterized the male-specific region on the Y chromosome of rainbow trout, which contains both sdY (the sex-determining gene) and the male-specific genetic marker, OmyY1. Several clones containing the OmyY1 marker were screened from a BAC library from a YY clonal line and found to be part of an 800 kb BAC contig. Using fluorescence in situ hybridization (FISH), these clones were localized to the end of the short arm of the Y chromosome in rainbow trout, with an additional signal on the end of the X chromosome in many cells. We sequenced a minimum tiling path of these clones using Illumina and 454 pyrosequencing. The region is rich in transposons and rDNA, but also appears to contain several single-copy protein-coding genes. Most of these genes are also found on the X chromosome; and in several cases sex-specific SNPs in these genes were identified between the male (YY) and female (XX) homozygous clonal lines. Additional genes were identified by hybridization of the BACs to the cGRASP salmonid 4x44K oligo microarray. By BLASTn evaluations using hypothetical transcripts of OmyY1-linked candidate genes as query against several EST databases, we conclude at least 12 of these candidate genes are likely functional, and expressed.

  17. Mechanisms of X Chromosome Dosage Compensation

    PubMed Central

    Ercan, Sevinç

    2015-01-01

    In many animals, males have one X and females have two X chromosomes. The difference in X chromosome dosage between the two sexes is compensated by mechanisms that regulate X chromosome transcription. Recent advances in genomic techniques have provided new insights into the molecular mechanisms of X chromosome dosage compensation. In this review, I summarize our current understanding of dosage imbalance in general, and then review the molecular mechanisms of X chromosome dosage compensation with an emphasis on the parallels and differences between the three well-studied model systems, M. musculus, D. melanogaster and C. elegans. PMID:25628761

  18. Function of the Sex Chromosomes in Mammalian Fertility

    PubMed Central

    Heard, Edith; Turner, James

    2011-01-01

    The sex chromosomes play a highly specialized role in germ cell development in mammals, being enriched in genes expressed in the testis and ovary. Sex chromosome abnormalities (e.g., Klinefelter [XXY] and Turner [XO] syndrome) constitute the largest class of chromosome abnormalities and the commonest genetic cause of infertility in humans. Understanding how sex-gene expression is regulated is therefore critical to our understanding of human reproduction. Here, we describe how the expression of sex-linked genes varies during germ cell development; in females, the inactive X chromosome is reactivated before meiosis, whereas in males the X and Y chromosomes are inactivated at this stage. We discuss the epigenetics of sex chromosome inactivation and how this process has influenced the gene content of the mammalian X and Y chromosomes. We also present working models for how perturbations in sex chromosome inactivation or reactivation result in subfertility in the major classes of sex chromosome abnormalities. PMID:21730045

  19. Sex differences in life span: Females homozygous for the X chromosome do not suffer the shorter life span predicted by the unguarded X hypothesis.

    PubMed

    Brengdahl, Martin; Kimber, Christopher M; Maguire-Baxter, Jack; Friberg, Urban

    2018-03-01

    Life span differs between the sexes in many species. Three hypotheses to explain this interesting pattern have been proposed, involving different drivers: sexual selection, asymmetrical inheritance of cytoplasmic genomes, and hemizygosity of the X(Z) chromosome (the unguarded X hypothesis). Of these, the unguarded X has received the least experimental attention. This hypothesis suggests that the heterogametic sex suffers a shortened life span because recessive deleterious alleles on its single X(Z) chromosome are expressed unconditionally. In Drosophila melanogaster, the X chromosome is unusually large (∼20% of the genome), providing a powerful model for evaluating theories involving the X. Here, we test the unguarded X hypothesis by forcing D. melanogaster females from a laboratory population to express recessive X-linked alleles to the same degree as males, using females exclusively made homozygous for the X chromosome. We find no evidence for reduced life span or egg-to-adult viability due to X homozygozity. In contrast, males and females homozygous for an autosome both suffer similar, significant reductions in those traits. The logic of the unguarded X hypothesis is indisputable, but our results suggest that the degree to which recessive deleterious X-linked alleles depress performance in the heterogametic sex appears too small to explain general sex differences in life span. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  20. Small but mighty: the evolutionary dynamics of W and Y sex chromosomes.

    PubMed

    Mank, Judith E

    2012-01-01

    Although sex chromosomes have been the focus of a great deal of scientific scrutiny, most interest has centred on understanding the evolution and relative importance of X and Z chromosomes. By contrast, the sex-limited W and Y chromosomes have received far less attention, both because of their generally degenerate nature and the difficulty in studying non-recombining and often highly heterochromatic genomic regions. However, recent theory and empirical evidence suggest that the W and Y chromosomes play a far more important role in sex-specific fitness traits than would be expected based on their size alone, and this importance may explain the persistence of some Y and W chromosomes in the face of powerful degradative forces. In addition to their role in fertility and fecundity, the sex-limited nature of these genomic regions results in unique evolutionary forces acting on Y and W chromosomes, implicating them as potentially major contributors to sexual selection and speciation. Recent empirical studies have borne out these predictions and revealed that some W and Y chromosomes play a vital role in key sex-specific evolutionary processes.

  1. Convergent evolution of chicken Z and human X chromosomes by expansion and gene acquisition.

    PubMed

    Bellott, Daniel W; Skaletsky, Helen; Pyntikova, Tatyana; Mardis, Elaine R; Graves, Tina; Kremitzki, Colin; Brown, Laura G; Rozen, Steve; Warren, Wesley C; Wilson, Richard K; Page, David C

    2010-07-29

    In birds, as in mammals, one pair of chromosomes differs between the sexes. In birds, males are ZZ and females ZW. In mammals, males are XY and females XX. Like the mammalian XY pair, the avian ZW pair is believed to have evolved from autosomes, with most change occurring in the chromosomes found in only one sex--the W and Y chromosomes. By contrast, the sex chromosomes found in both sexes--the Z and X chromosomes--are assumed to have diverged little from their autosomal progenitors. Here we report findings that challenge this assumption for both the chicken Z chromosome and the human X chromosome. The chicken Z chromosome, which we sequenced essentially to completion, is less gene-dense than chicken autosomes but contains a massive tandem array containing hundreds of duplicated genes expressed in testes. A comprehensive comparison of the chicken Z chromosome with the finished sequence of the human X chromosome demonstrates that each evolved independently from different portions of the ancestral genome. Despite this independence, the chicken Z and human X chromosomes share features that distinguish them from autosomes: the acquisition and amplification of testis-expressed genes, and a low gene density resulting from an expansion of intergenic regions. These features were not present on the autosomes from which the Z and X chromosomes originated but were instead acquired during the evolution of Z and X as sex chromosomes. We conclude that the avian Z and mammalian X chromosomes followed convergent evolutionary trajectories, despite their evolving with opposite (female versus male) systems of heterogamety. More broadly, in birds and mammals, sex chromosome evolution involved not only gene loss in sex-specific chromosomes, but also marked expansion and gene acquisition in sex chromosomes common to males and females.

  2. Influence of interstitial Fe to the phase diagram of Fe1+yTe1-xSex single crystals

    NASA Astrophysics Data System (ADS)

    Sun, Yue; Yamada, Tatsuhiro; Pyon, Sunseng; Tamegai, Tsuyoshi

    2016-08-01

    Superconductivity (SC) with the suppression of long-range antiferromagnetic (AFM) order is observed in the parent compounds of both iron-based and cuprate superconductors. The AFM wave vectors are bicollinear (π, 0) in the parent compound FeTe different from the collinear AFM order (π, π) in most iron pnictides. Study of the phase diagram of Fe1+yTe1-xSex is the most direct way to investigate the competition between bicollinear AFM and SC. However, presence of interstitial Fe affects both magnetism and SC of Fe1+yTe1-xSex, which hinders the establishment of the real phase diagram. Here, we report the comparison of doping-temperature (x-T) phase diagrams for Fe1+yTe1-xSex (0 ≤ x ≤ 0.43) single crystals before and after removing interstitial Fe. Without interstitial Fe, the AFM state survives only for x < 0.05, and bulk SC emerges from x = 0.05, and does not coexist with the AFM state. The previously reported spin glass state, and the coexistence of AFM and SC may be originated from the effect of the interstitial Fe. The phase diagram of Fe1+yTe1-xSex is found to be similar to the case of the “1111” system such as LaFeAsO1-xFx, and is different from that of the “122” system.

  3. Sex differences in the human brain and the impact of sex chromosomes and sex hormones.

    PubMed

    Lentini, E; Kasahara, M; Arver, S; Savic, I

    2013-10-01

    While there has been increasing support for the existence of cerebral sex differences, the mechanisms underlying these differences are unclear. Based on animal data, it has long been believed that sexual differentiation of the brain is primarily linked to organizational effects of fetal testosterone. This view is, however, in question as more recent data show the presence of sex differences before the onset of testosterone production. The present study focuses on the impact that sex chromosomes might have on these differences. Utilizing the inherent differences in sex and X-chromosome dosage among XXY males, XY males, and XX females, comparative voxel-based morphometry was conducted using sex hormones and sex chromosomes as covariates. Sex differences in the cerebellar and precentral gray matter volumes (GMV) were found to be related to X-chromosome dosage, whereas sex differences in the amygdala, the parahippocamus, and the occipital cortex were linked to testosterone levels. An increased number of sex chromosomes was associated with reduced GMV in the amygdala, caudate, and the temporal and insular cortices, with increased parietal GMV and reduced frontotemporal white matter volume. No selective, testosterone independent, effect of the Y-chromosome was detected. Based on these observations, it was hypothesized that programming of the motor cortex and parts of cerebellum is mediated by processes linked to X-escapee genes, which do not have Y-chromosome homologs, and that programming of certain limbic structures involves testosterone and X-chromosome escapee genes with Y-homologs.

  4. Female phenotype and multiple abnormalities in sibs with a Y chromosome and partial X chromosome duplication: H--Y antigen and Xg blood group findings.

    PubMed Central

    Bernstein, R; Jenkins, T; Dawson, B; Wagner, J; Dewald, G; Koo, G C; Wachtel, S S

    1980-01-01

    A mentally retarded female child with multiple congenital abnormalities had an abnormal X chromosome and a Y chromosome; the karyotype was interpreted as 46,dup(X)(p21 leads to pter)Y. Prenatal chromosome studies in a later pregnancy indicated the same chromosomal abnormality in the fetus. The fetus and proband had normal female genitalia and ovarian tissue. H--Y antigen was virtually absent in both sibs, a finding consistent with the view that testis-determining genes of the Y chromosome may be suppressed by regulatory elements of the X. The abnormal X chromosome was present in the mother, the maternal grandmother, and a female sib: all were phenotypically normal and showed the karyotype 46,Xdup(X)(p21 leads to pter) with non-random inactivation of the abnormal X. Anomalous segregation of the Xga allele suggests that the Xg locus was involved in the inactivation process or that crossing-over at meiosis occurred. Images PMID:7193738

  5. Dosage compensation proteins targeted to X chromosomes by a determinant of hermaphrodite fate.

    PubMed

    Dawes, H E; Berlin, D S; Lapidus, D M; Nusbaum, C; Davis, T L; Meyer, B J

    1999-06-11

    In many organisms, master control genes coordinately regulate sex-specific aspects of development. SDC-2 was shown to induce hermaphrodite sexual differentiation and activate X chromosome dosage compensation in Caenorhabditis elegans. To control these distinct processes, SDC-2 acts as a strong gene-specific repressor and a weaker chromosome-wide repressor. To initiate hermaphrodite development, SDC-2 associates with the promoter of the male sex-determining gene her-1 to repress its transcription. To activate dosage compensation, SDC-2 triggers assembly of a specialized protein complex exclusively on hermaphrodite X chromosomes to reduce gene expression by half. SDC-2 can localize to X chromosomes without other components of the dosage compensation complex, suggesting that SDC-2 targets dosage compensation machinery to X chromosomes.

  6. Interchromosomal Duplications on the Bactrocera oleae Y Chromosome Imply a Distinct Evolutionary Origin of the Sex Chromosomes Compared to Drosophila

    PubMed Central

    Gabrieli, Paolo; Gomulski, Ludvik M.; Bonomi, Angelica; Siciliano, Paolo; Scolari, Francesca; Franz, Gerald; Jessup, Andrew; Malacrida, Anna R.; Gasperi, Giuliano

    2011-01-01

    Background Diptera have an extraordinary variety of sex determination mechanisms, and Drosophila melanogaster is the paradigm for this group. However, the Drosophila sex determination pathway is only partially conserved and the family Tephritidae affords an interesting example. The tephritid Y chromosome is postulated to be necessary to determine male development. Characterization of Y sequences, apart from elucidating the nature of the male determining factor, is also important to understand the evolutionary history of sex chromosomes within the Tephritidae. We studied the Y sequences from the olive fly, Bactrocera oleae. Its Y chromosome is minute and highly heterochromatic, and displays high heteromorphism with the X chromosome. Methodology/Principal Findings A combined Representational Difference Analysis (RDA) and fluorescence in-situ hybridization (FISH) approach was used to investigate the Y chromosome to derive information on its sequence content. The Y chromosome is strewn with repetitive DNA sequences, the majority of which are also interdispersed in the pericentromeric regions of the autosomes. The Y chromosome appears to have accumulated small and large repetitive interchromosomal duplications. The large interchromosomal duplications harbour an importin-4-like gene fragment. Apart from these importin-4-like sequences, the other Y repetitive sequences are not shared with the X chromosome, suggesting molecular differentiation of these two chromosomes. Moreover, as the identified Y sequences were not detected on the Y chromosomes of closely related tephritids, we can infer divergence in the repetitive nature of their sequence contents. Conclusions/Significance The identification of Y-linked sequences may tell us much about the repetitive nature, the origin and the evolution of Y chromosomes. We hypothesize how these repetitive sequences accumulated and were maintained on the Y chromosome during its evolutionary history. Our data reinforce the idea that the

  7. Increased high-density lipoprotein cholesterol levels in mice with XX versus XY sex chromosomes.

    PubMed

    Link, Jenny C; Chen, Xuqi; Prien, Christopher; Borja, Mark S; Hammerson, Bradley; Oda, Michael N; Arnold, Arthur P; Reue, Karen

    2015-08-01

    The molecular mechanisms underlying sex differences in dyslipidemia are poorly understood. We aimed to distinguish genetic and hormonal regulators of sex differences in plasma lipid levels. We assessed the role of gonadal hormones and sex chromosome complement on lipid levels using the four core genotypes mouse model (XX females, XX males, XY females, and XY males). In gonadally intact mice fed a chow diet, lipid levels were influenced by both male-female gonadal sex and XX-XY chromosome complement. Gonadectomy of adult mice revealed that the male-female differences are dependent on acute effects of gonadal hormones. In both intact and gonadectomized animals, XX mice had higher HDL cholesterol (HDL-C) levels than XY mice, regardless of male-female sex. Feeding a cholesterol-enriched diet produced distinct patterns of sex differences in lipid levels compared with a chow diet, revealing the interaction of gonadal and chromosomal sex with diet. Notably, under all dietary and gonadal conditions, HDL-C levels were higher in mice with 2 X chromosomes compared with mice with an X and Y chromosome. By generating mice with XX, XY, and XXY chromosome complements, we determined that the presence of 2 X chromosomes, and not the absence of the Y chromosome, influences HDL-C concentration. We demonstrate that having 2 X chromosomes versus an X and Y chromosome complement drives sex differences in HDL-C. It is conceivable that increased expression of genes escaping X-inactivation in XX mice regulates downstream processes to establish sexual dimorphism in plasma lipid levels. © 2015 American Heart Association, Inc.

  8. siRNAs from an X-linked satellite repeat promote X-chromosome recognition in Drosophila melanogaster.

    PubMed

    Menon, Debashish U; Coarfa, Cristian; Xiao, Weimin; Gunaratne, Preethi H; Meller, Victoria H

    2014-11-18

    Highly differentiated sex chromosomes create a lethal imbalance in gene expression in one sex. To accommodate hemizygosity of the X chromosome in male fruit flies, expression of X-linked genes increases twofold. This is achieved by the male- specific lethal (MSL) complex, which modifies chromatin to increase expression. Mutations that disrupt the X localization of this complex decrease the expression of X-linked genes and reduce male survival. The mechanism that restricts the MSL complex to X chromatin is not understood. We recently reported that the siRNA pathway contributes to localization of the MSL complex, raising questions about the source of the siRNAs involved. The X-linked 1.688 g/cm(3) satellite related repeats (1.688(X) repeats) are restricted to the X chromosome and produce small RNA, making them an attractive candidate. We tested RNA from these repeats for a role in dosage compensation and found that ectopic expression of single-stranded RNAs from 1.688(X) repeats enhanced the male lethality of mutants with defective X recognition. In contrast, expression of double-stranded hairpin RNA from a 1.688(X) repeat generated abundant siRNA and dramatically increased male survival. Consistent with improved survival, X localization of the MSL complex was largely restored in these males. The striking distribution of 1.688(X) repeats, which are nearly exclusive to the X chromosome, suggests that these are cis-acting elements contributing to identification of X chromatin.

  9. Small but mighty: the evolutionary dynamics of W and Y sex chromosomes

    PubMed Central

    2012-01-01

    Although sex chromosomes have been the focus of a great deal of scientific scrutiny, most interest has centred on understanding the evolution and relative importance of X and Z chromosomes. By contrast, the sex-limited W and Y chromosomes have received far less attention, both because of their generally degenerate nature and the difficulty in studying non-recombining and often highly heterochromatic genomic regions. However, recent theory and empirical evidence suggest that the W and Y chromosomes play a far more important role in sex-specific fitness traits than would be expected based on their size alone, and this importance may explain the persistence of some Y and W chromosomes in the face of powerful degradative forces. In addition to their role in fertility and fecundity, the sex-limited nature of these genomic regions results in unique evolutionary forces acting on Y and W chromosomes, implicating them as potentially major contributors to sexual selection and speciation. Recent empirical studies have borne out these predictions and revealed that some W and Y chromosomes play a vital role in key sex-specific evolutionary processes. PMID:22038285

  10. EXAFS spectrum peculiarities of Y 1- xYb xNi 2B 2C

    NASA Astrophysics Data System (ADS)

    Cortes, R.; Fomicheva, L. N.; Menushenkov, A. P.; Meyer-Klaucke, W.; Konarev, P. V.; Tsvyashchenko, A. V.

    2001-09-01

    The results on the temperature dependent EXAFS studies of the local structure peculiarities of Y 1- xYb xNi 2B 2C series synthesized at a high pressure of 8 GPa are presented. The interrelation between the local structure of Y 1- xYb xNi 2B 2C and its superconducting and magnetic properties was observed supporting the model where the contributions from all type of the nearest atoms to the electron-phonon coupling are important and cannot be neglected.

  11. The Status of Dosage Compensation in the Multiple X Chromosomes of the Platypus

    PubMed Central

    Deakin, Janine E.; Hore, Timothy A.; Koina, Edda; Marshall Graves, Jennifer A.

    2008-01-01

    Dosage compensation has been thought to be a ubiquitous property of sex chromosomes that are represented differently in males and females. The expression of most X-borne genes is equalized between XX females and XY males in therian mammals (marsupials and “placentals”) by inactivating one X chromosome in female somatic cells. However, compensation seems not to be strictly required to equalize the expression of most Z-borne genes between ZZ male and ZW female birds. Whether dosage compensation operates in the third mammal lineage, the egg-laying monotremes, is of considerable interest, since the platypus has a complex sex chromosome system in which five X and five Y chromosomes share considerable genetic homology with the chicken ZW sex chromosome pair, but not with therian XY chromosomes. The assignment of genes to four platypus X chromosomes allowed us to examine X dosage compensation in this unique species. Quantitative PCR showed a range of compensation, but SNP analysis of several X-borne genes showed that both alleles are transcribed in a heterozygous female. Transcription of 14 BACs representing 19 X-borne genes was examined by RNA-FISH in female and male fibroblasts. An autosomal control gene was expressed from both alleles in nearly all nuclei, and four pseudoautosomal BACs were usually expressed from both alleles in male as well as female nuclei, showing that their Y loci are active. However, nine X-specific BACs were usually transcribed from only one allele. This suggests that while some genes on the platypus X are not dosage compensated, other genes do show some form of compensation via stochastic transcriptional inhibition, perhaps representing an ancestral system that evolved to be more tightly controlled in placental mammals such as human and mouse. PMID:18654631

  12. The status of dosage compensation in the multiple X chromosomes of the platypus.

    PubMed

    Deakin, Janine E; Hore, Timothy A; Koina, Edda; Marshall Graves, Jennifer A

    2008-07-25

    Dosage compensation has been thought to be a ubiquitous property of sex chromosomes that are represented differently in males and females. The expression of most X-borne genes is equalized between XX females and XY males in therian mammals (marsupials and "placentals") by inactivating one X chromosome in female somatic cells. However, compensation seems not to be strictly required to equalize the expression of most Z-borne genes between ZZ male and ZW female birds. Whether dosage compensation operates in the third mammal lineage, the egg-laying monotremes, is of considerable interest, since the platypus has a complex sex chromosome system in which five X and five Y chromosomes share considerable genetic homology with the chicken ZW sex chromosome pair, but not with therian XY chromosomes. The assignment of genes to four platypus X chromosomes allowed us to examine X dosage compensation in this unique species. Quantitative PCR showed a range of compensation, but SNP analysis of several X-borne genes showed that both alleles are transcribed in a heterozygous female. Transcription of 14 BACs representing 19 X-borne genes was examined by RNA-FISH in female and male fibroblasts. An autosomal control gene was expressed from both alleles in nearly all nuclei, and four pseudoautosomal BACs were usually expressed from both alleles in male as well as female nuclei, showing that their Y loci are active. However, nine X-specific BACs were usually transcribed from only one allele. This suggests that while some genes on the platypus X are not dosage compensated, other genes do show some form of compensation via stochastic transcriptional inhibition, perhaps representing an ancestral system that evolved to be more tightly controlled in placental mammals such as human and mouse.

  13. Effects of sex chromosome aneuploidy on male sexual behavior.

    PubMed

    Park, J H; Burns-Cusato, M; Dominguez-Salazar, E; Riggan, A; Shetty, S; Arnold, A P; Rissman, E F

    2008-08-01

    Incidence of sex chromosome aneuploidy in men is as high as 1:500. The predominant conditions are an additional Y chromosome (47,XYY) or an additional X chromosome (47,XXY). Behavioral studies using animal models of these conditions are rare. To assess the role of sex chromosome aneuploidy on sexual behavior, we used mice with a spontaneous mutation on the Y chromosome in which the testis-determining gene Sry is deleted (referred to as Y(-)) and insertion of a Sry transgene on an autosome. Dams were aneuploid (XXY(-)) and the sires had an inserted Sry transgene (XYSry). Litters contained six male genotypes, XY, XYY(-), XXSry, XXY(-)Sry, XYSry and XYY(-)Sry. In order to eliminate possible differences in levels of testosterone, all of the subjects were castrated and received testosterone implants prior to tests for male sex behavior. Mice with an additional copy of the Y(-) chromosome (XYY(-)) had shorter latencies to intromit and achieve ejaculations than XY males. In a comparison of the four genotypes bearing the Sry transgene, males with two copies of the X chromosome (XXSry and XXY(-)Sry) had longer latencies to mount and thrust than males with only one copy of the X chromosome (XYSry and XYY(-)Sry) and decreased frequencies of mounts and intromissions as compared with XYSry males. The results implicate novel roles for sex chromosome genes in sexual behaviors.

  14. Sequences homologous to the human x- and y-borne zinc finger protein genes (ZFX/Y) are autosomal in monotreme mannals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, J.M.; Frost, C.; Graves, M.J.A.

    1993-02-01

    The human zinc finger protein genes (ZFX/Y) were identified as a result of a systematic search for the testis-determining factor gene on the human Y chromosome. Although they play no direct role in sex determination, they are of particular interest because they are highly conserved among mammals, birds, and amphibians and because, in eutherian mammals at least, they have active alleles on both the X and the Y chromosomes outside the pseudoautosomal region. We used in situ hybridization to localize the homologues of the zinc finger protein gene to chromosome 1 of the Australian echidna and to an equivalent positionmore » on chromosomes 1 and 2 of the playtpus. The localization to platypus chromosome 1 was confirmed by Southern analysis of a Chinese hamster [times] platypus cell hybrid retaining most of platypus chromosome 1. This localization is consistent with the cytological homology of chromosome 1 between the two species. The zinc finger protein gene homologues were localized to regions of platypus chromosomes 1 and 2 that included a number of other genes situated near ZFX on the short arm of the human X chromosome. These results support the hypothesis that many of the genes located on the short arm of the human X were originally autosomal and have been translocated to the X chromosome since the eutherian-metatherian divergence. 34 refs., 3 figs., 2 tabs.« less

  15. Regulation of the X Chromosome in the Germline and Soma of Drosophila melanogaster Males.

    PubMed

    Argyridou, Eliza; Parsch, John

    2018-05-04

    During the evolution of heteromorphic sex chromosomes, the sex-specific Y chromosome degenerates, while the X chromosome evolves new mechanisms of regulation. Using bioinformatic and experimental approaches, we investigate the expression of the X chromosome in Drosophila melanogaster . We observe nearly complete X chromosome dosage compensation in male somatic tissues, but not in testis. The X chromosome contains disproportionately fewer genes with high expression in testis than the autosomes, even after accounting for the lack of dosage compensation, which suggests that another mechanism suppresses their expression in the male germline. This is consistent with studies of reporter genes and transposed genes, which find that the same gene has higher expression when autosomal than when X-linked. Using a new reporter gene that is expressed in both testis and somatic tissues, we find that the suppression of X-linked gene expression is limited to genes with high expression in testis and that the extent of the suppression is positively correlated with expression level.

  16. When the Lyon(ized chromosome) roars: ongoing expression from an inactive X chromosome.

    PubMed

    Carrel, Laura; Brown, Carolyn J

    2017-11-05

    A tribute to Mary Lyon was held in October 2016. Many remarked about Lyon's foresight regarding many intricacies of the X-chromosome inactivation process. One such example is that a year after her original 1961 hypothesis she proposed that genes with Y homologues should escape from X inactivation to achieve dosage compensation between males and females. Fifty-five years later we have learned many details about these escapees that we attempt to summarize in this review, with a particular focus on recent findings. We now know that escapees are not rare, particularly on the human X, and that most lack functionally equivalent Y homologues, leading to their increasingly recognized role in sexually dimorphic traits. Newer sequencing technologies have expanded profiling of primary tissues that will better enable connections to sex-biased disorders as well as provide additional insights into the X-inactivation process. Chromosome organization, nuclear location and chromatin environments distinguish escapees from other X-inactivated genes. Nevertheless, several big questions remain, including what dictates their distinct epigenetic environment, the underlying basis of species differences in escapee regulation, how different classes of escapees are distinguished, and the roles that local sequences and chromosome ultrastructure play in escapee regulation.This article is part of the themed issue 'X-chromosome inactivation: a tribute to Mary Lyon'. © 2017 The Author(s).

  17. Mammalian X Chromosome Dosage Compensation: Perspectives From the Germ Line.

    PubMed

    Sangrithi, Mahesh N; Turner, James M A

    2018-06-01

    Sex chromosomes are advantageous to mammals, allowing them to adopt a genetic rather than environmental sex determination system. However, sex chromosome evolution also carries a burden, because it results in an imbalance in gene dosage between females (XX) and males (XY). This imbalance is resolved by X dosage compensation, which comprises both X chromosome inactivation and X chromosome upregulation. X dosage compensation has been well characterized in the soma, but not in the germ line. Germ cells face a special challenge, because genome wide reprogramming erases epigenetic marks responsible for maintaining the X dosage compensated state. Here we explain how evolution has influenced the gene content and germ line specialization of the mammalian sex chromosomes. We discuss new research uncovering unusual X dosage compensation states in germ cells, which we postulate influence sexual dimorphisms in germ line development and cause infertility in individuals with sex chromosome aneuploidy. © 2018 The Authors. BioEssays Published by Periodicals, Inc.

  18. Rapid rise and fall of selfish sex-ratio X chromosomes in Drosophila simulans: spatiotemporal analysis of phenotypic and molecular data.

    PubMed

    Bastide, Héloïse; Cazemajor, Michel; Ogereau, David; Derome, Nicolas; Hospital, Frédéric; Montchamp-Moreau, Catherine

    2011-09-01

    Sex-ratio drive, which has been documented in several Drosophila species, is induced by X-linked segregation distorters. Contrary to Mendel's law of independent assortment, the sex-ratio chromosome (X(SR)) is inherited by more than half the offspring of carrier males, resulting in a female-biased sex ratio. This segregation advantage allows X(SR) to spread in populations, even if it is not beneficial for the carriers. In the cosmopolitan species D. simulans, the Paris sex-ratio is caused by recently emerged selfish X(SR) chromosomes. These chromosomes have triggered an intragenomic conflict, and their propagation has been halted over a large area by the evolution of complete drive suppression. Previous molecular population genetics analyses revealed a selective sweep indicating that the invasion of X(SR) chromosomes was very recent in Madagascar (likely less than 100 years ago). Here, we show that X(SR) chromosomes are now declining at this location as well as in Mayotte and Kenya. Drive suppression is complete in the three populations, which display little genetic differentiation and share swept haplotypes, attesting to a common and very recent ancestry of the X(SR) chromosomes. Patterns of DNA sequence variation also indicate a fitness cost of the segmental duplication involved in drive. The data suggest that X(SR) chromosomes started declining first on the African continent, then in Mayotte, and finally in Madagascar and strongly support a scenario of rapid cycling of X chromosomes. Once drive suppression has evolved, standard X(ST) chromosomes locally replace costly X(SR) chromosomes in a few decades.

  19. Chromosome banding in Amphibia. XXVIII. Homomorphic XY sex chromosomes and a derived Y-autosome translocation in Eleutherodactylus riveroi (Anura, Leptodactylidae).

    PubMed

    Schmid, M; Feichtinger, W; Steinlein, C; Visbal García, R; Fernández Badillo, A

    2003-01-01

    Extensive cytogenetic analyses on a population of the leptodactylid frog Eleutherodactylus riveroi in northern Venezuela revealed the existence of multiple XXAA male/XYAA female/XAA(Y) female sex chromosomes. The XAA(Y) karyotype originated by a centric (Robertsonian) fusion between the original, free Y chromosome and an autosome. 46.2% of the male individuals in this population are carriers of this Y-autosome fusion. In male meiosis the XAA(Y) sex chromosomes pair in the expected trivalent configuration. In the same population 53.8% of the male animals still possess the original, free XY sex chromosomes. E. riveroi is only the second vertebrate species discovered in which a derived Y-autosome fusion coexists with the ancestral free XY sex chromosomes. The free XY sex chromosomes, as well as the multiple XA(Y) sex chromosomes are still in a very primitive (homomorphic) stage of differentiation. With no banding technique applied it is possible to distinguish the Y from the X. Various banding techniques and in situ hybridizations have been carried out to characterize the karyotypes. DNA flow cytometric measurements show that the genome size of E. riveroi resembles that of other Eleutherodactylus species. The cytogenetic data obtained in E. riveroi are compared with those of the sole other vertebrate known to possess the extremely rare, multiple XXAA male/XYAA female/XAA(Y) female sex chromosomes. Surprisingly enough, this vertebrate again is a frog belonging to the genus Eleutherodactylus [E. ((maussi) biporcatus] which lives exactly in the same habitat in northern Venezuela as does E. riveroi. Copyright 2003 S. Karger AG, Basel

  20. A History of the Discovery of Random X Chromosome Inactivation in the Human Female and its Significance

    PubMed Central

    Balderman, Sophia; Lichtman, Marshall A.

    2011-01-01

    Genetic determinants of sex in placental mammals developed by the evolution of primordial autosomes into the male and female sex chromosomes. The Y chromosome determines maleness by the action of the gene SRY, which encodes a protein that initiates a sequence of events prompting the embryonic gonads to develop into testes. The X chromosome in the absence of a Y chromosome results in a female by permitting the conversion of the embryonic gonads into ovaries. We trace the historical progress that resulted in the discovery that one X chromosome in the female is randomly inactivated in early embryogenesis, accomplishing approximate equivalency of X chromosome gene dosage in both sexes. This event results in half of the somatic cells in a tissue containing proteins encoded by the genes of the maternal X chromosome and half having proteins encoded by the genes of the paternal X chromosome, on average, accounting for the phenotype of a female heterozygote with an X chromosome mutation. The hypothesis of X chromosome inactivation as a random event early in embryogenesis was first described as a result of studies of variegated coat color in female mice. Similar results were found in women using the X chromosome-linked gene, glucose-6-phosphate dehydrogenase, studied in red cells. The random inactivation of the X chromosome-bearing genes for isoenzyme types A and B of glucose-6-phosphate dehydrogenase was used to establish the clonal origin of neoplasms in informative women with leiomyomas. Behind these discoveries are the stories of the men and women scientists whose research enlightened these aspects of X chromosome function and their implication for medicine. PMID:23908816

  1. Environmental Exposure of Sperm Sex-Chromosomes: A Gender Selection Technique.

    PubMed

    Oyeyipo, Ibukun P; van der Linde, Michelle; du Plessis, Stefan S

    2017-10-01

    Preconceptual sex selection is still a highly debatable process whereby X- and Y-chromosome-bearing spermatozoa are isolated prior to fertilization of the oocyte. Although various separation techniques are available, none can guarantee 100% accuracy. The aim of this study was to separate X- and Y-chromosome-bearing spermatozoa using methods based on the viability difference between the X- and Y-chromosome-bearing spermatozoa. A total of 18 experimental semen samples were used, written consent was obtained from all donors and results were analysed in a blinded fashion. Spermatozoa were exposed to different pH values (5.5, 6.5, 7.5, 8.5, and 9.5), increased temperatures (37°C, 41°C, and 45°C) and ROS level (50 μM, 750 μM, and 1,000 μM). The live and dead cell separation was done through a modified swim-up technique. Changes in the sex-chromosome ratio of samples were established by double-label fluorescent in situ hybridization (FISH) before and after processing. The results indicated successful enrichment of Xchromosome-bearing spermatozoa upon incubation in acidic media, increased temperatures, and elevated H 2 O 2 . This study demonstrated the potential role for exploring the physiological differences between X-and Y-chromosome-bearing spermatozoa in the development of preconceptual gender selection.

  2. Turnover of Sex Chromosomes in the Stickleback Fishes (Gasterosteidae)

    PubMed Central

    Ross, Joseph A.; Urton, James R.; Boland, Jessica; Shapiro, Michael D.; Peichel, Catherine L.

    2009-01-01

    Diverse sex-chromosome systems are found in vertebrates, particularly in teleost fishes, where different systems can be found in closely related species. Several mechanisms have been proposed for the rapid turnover of sex chromosomes, including the transposition of an existing sex-determination gene, the appearance of a new sex-determination gene on an autosome, and fusions between sex chromosomes and autosomes. To better understand these evolutionary transitions, a detailed comparison of sex chromosomes between closely related species is essential. Here, we used genetic mapping and molecular cytogenetics to characterize the sex-chromosome systems of multiple stickleback species (Gasterosteidae). Previously, we demonstrated that male threespine stickleback fish (Gasterosteus aculeatus) have a heteromorphic XY pair corresponding to linkage group (LG) 19. In this study, we found that the ninespine stickleback (Pungitius pungitius) has a heteromorphic XY pair corresponding to LG12. In black-spotted stickleback (G. wheatlandi) males, one copy of LG12 has fused to the LG19-derived Y chromosome, giving rise to an X1X2Y sex-determination system. In contrast, neither LG12 nor LG19 is linked to sex in two other species: the brook stickleback (Culaea inconstans) and the fourspine stickleback (Apeltes quadracus). However, we confirmed the existence of a previously reported heteromorphic ZW sex-chromosome pair in the fourspine stickleback. The sex-chromosome diversity that we have uncovered in sticklebacks provides a rich comparative resource for understanding the mechanisms that underlie the rapid turnover of sex-chromosome systems. PMID:19229325

  3. Sex Chromosome Turnover Contributes to Genomic Divergence between Incipient Stickleback Species

    PubMed Central

    Yoshida, Kohta; Makino, Takashi; Yamaguchi, Katsushi; Shigenobu, Shuji; Hasebe, Mitsuyasu; Kawata, Masakado; Kume, Manabu; Mori, Seiichi; Peichel, Catherine L.; Toyoda, Atsushi; Fujiyama, Asao; Kitano, Jun

    2014-01-01

    Sex chromosomes turn over rapidly in some taxonomic groups, where closely related species have different sex chromosomes. Although there are many examples of sex chromosome turnover, we know little about the functional roles of sex chromosome turnover in phenotypic diversification and genomic evolution. The sympatric pair of Japanese threespine stickleback (Gasterosteus aculeatus) provides an excellent system to address these questions: the Japan Sea species has a neo-sex chromosome system resulting from a fusion between an ancestral Y chromosome and an autosome, while the sympatric Pacific Ocean species has a simple XY sex chromosome system. Furthermore, previous quantitative trait locus (QTL) mapping demonstrated that the Japan Sea neo-X chromosome contributes to phenotypic divergence and reproductive isolation between these sympatric species. To investigate the genomic basis for the accumulation of genes important for speciation on the neo-X chromosome, we conducted whole genome sequencing of males and females of both the Japan Sea and the Pacific Ocean species. No substantial degeneration has yet occurred on the neo-Y chromosome, but the nucleotide sequence of the neo-X and the neo-Y has started to diverge, particularly at regions near the fusion. The neo-sex chromosomes also harbor an excess of genes with sex-biased expression. Furthermore, genes on the neo-X chromosome showed higher non-synonymous substitution rates than autosomal genes in the Japan Sea lineage. Genomic regions of higher sequence divergence between species, genes with divergent expression between species, and QTL for inter-species phenotypic differences were found not only at the regions near the fusion site, but also at other regions along the neo-X chromosome. Neo-sex chromosomes can therefore accumulate substitutions causing species differences even in the absence of substantial neo-Y degeneration. PMID:24625862

  4. Analysis of SINE and LINE repeat content of Y chromosomes in the platypus, Ornithorhynchus anatinus.

    PubMed

    Kortschak, R Daniel; Tsend-Ayush, Enkhjargal; Grützner, Frank

    2009-01-01

    Monotremes feature an extraordinary sex-chromosome system that consists of five X and five Y chromosomes in males. These sex chromosomes share homology with bird sex chromosomes but no homology with the therian X. The genome of a female platypus was recently completed, providing unique insights into sequence and gene content of autosomes and X chromosomes, but no Y-specific sequence has so far been analysed. Here we report the isolation, sequencing and analysis of approximately 700 kb of sequence of the non-recombining regions of Y2, Y3 and Y5, which revealed differences in base composition and repeat content between autosomes and sex chromosomes, and within the sex chromosomes themselves. This provides the first insights into repeat content of Y chromosomes in platypus, which overall show similar patterns of repeat composition to Y chromosomes in other species. Interestingly, we also observed differences between the various Y chromosomes, and in combination with timing and activity patterns we provide an approach that can be used to examine the evolutionary history of the platypus sex-chromosome chain.

  5. A cytogenetic view of sex chromosome evolution in plants.

    PubMed

    Armstrong, S J; Filatov, D A

    2008-01-01

    The recent origin of sex chromosomes in plant species provides an opportunity to study the early stages of sex chromosome evolution. This review focuses on the cytogenetic aspects of the analysis of sex chromosome evolution in plants and in particular, on the best-studied case, the sex chromosomes in Silene latifolia. We discuss the emerging picture of sex chromosome evolution in plants and the further work that is required to gain better understanding of the similarities and differences between the trends in animal and plant sex chromosome evolution. Similar to mammals, suppression of recombination between the X and Y in S. latifolia species has occurred in several steps, however there is little evidence that inversions on the S. latifolia Y chromosome have played a role in cessation of X/Y recombination. Secondly, in S. latifolia there is a lack of evidence for genetic degeneration of the Y chromosome, unlike the events documented in mammalian sex chromosomes. The insufficient number of genes isolated from this and other plant sex chromosomes does not allow us to generalize whether the trends revealed on S. latifolia Y chromosome are general for other dioecious plants. Isolation of more plant sex-linked genes and their cytogenetic mapping with fluorescent in situ hybridisation (FISH) will ultimately lead to a much better understanding of the processes driving sex chromosome evolution in plants. 2008 S. Karger AG, Basel

  6. Chromosomal phylogeny of Vampyressine bats (Chiroptera, Phyllostomidae) with description of two new sex chromosome systems.

    PubMed

    Gomes, Anderson José Baia; Nagamachi, Cleusa Yoshiko; Rodrigues, Luis Reginaldo Ribeiro; Benathar, Thayse Cristine Melo; Ribas, Talita Fernanda Augusto; O'Brien, Patricia Caroline Mary; Yang, Fengtang; Ferguson-Smith, Malcolm Andrew; Pieczarka, Julio Cesar

    2016-06-04

    The subtribe Vampyressina (sensu Baker et al. 2003) encompasses approximately 43 species and seven genera and is a recent and diversified group of New World leaf-nosed bats specialized in fruit eating. The systematics of this group continues to be debated mainly because of the lack of congruence between topologies generated by molecular and morphological data. We analyzed seven species of all genera of vampyressine bats by multidirectional chromosome painting, using whole-chromosome-painting probes from Carollia brevicauda and Phyllostomus hastatus. Phylogenetic analyses were performed using shared discrete chromosomal segments as characters and the Phylogenetic Analysis Using Parsimony (PAUP) software package, using Desmodontinae as outgroup. We also used the Tree Analysis Using New Technology (TNT) software. The result showed a well-supported phylogeny congruent with molecular topologies regarding the sister taxa relationship of Vampyressa and Mesophylla genera, as well as the close relationship between the genus Chiroderma and Vampyriscus. Our results supported the hypothesis that all genera of this subtribe have compound sex chromosome systems that originated from an X-autosome translocation, an ancestral condition observed in the Stenodermatinae. Additional rearrangements occurred independently in the genus Vampyressa and Mesophylla yielding the X1X1X2X2/X1X2Y sex chromosome system. This work presents additional data supporting the hypothesis based on molecular studies regarding the polyphyly of the genus Vampyressa and its sister relationship to Mesophylla.

  7. Inter- and Intraspecies Phylogenetic Analyses Reveal Extensive X–Y Gene Conversion in the Evolution of Gametologous Sequences of Human Sex Chromosomes

    PubMed Central

    Trombetta, Beniamino; Sellitto, Daniele; Scozzari, Rosaria; Cruciani, Fulvio

    2014-01-01

    It has long been believed that the male-specific region of the human Y chromosome (MSY) is genetically independent from the X chromosome. This idea has been recently dismissed due to the discovery that X–Y gametologous gene conversion may occur. However, the pervasiveness of this molecular process in the evolution of sex chromosomes has yet to be exhaustively analyzed. In this study, we explored how pervasive X–Y gene conversion has been during the evolution of the youngest stratum of the human sex chromosomes. By comparing about 0.5 Mb of human–chimpanzee gametologous sequences, we identified 19 regions in which extensive gene conversion has occurred. From our analysis, two major features of these emerged: 1) Several of them are evolutionarily conserved between the two species and 2) almost all of the 19 hotspots overlap with regions where X–Y crossing-over has been previously reported to be involved in sex reversal. Furthermore, in order to explore the dynamics of X–Y gametologous conversion in recent human evolution, we resequenced these 19 hotspots in 68 widely divergent Y haplogroups and used publicly available single nucleotide polymorphism data for the X chromosome. We found that at least ten hotspots are still active in humans. Hence, the results of the interspecific analysis are consistent with the hypothesis of widespread reticulate evolution within gametologous sequences in the differentiation of hominini sex chromosomes. In turn, intraspecific analysis demonstrates that X–Y gene conversion may modulate human sex-chromosome-sequence evolution to a greater extent than previously thought. PMID:24817545

  8. The multiple sex chromosomes of platypus and echidna are not completely identical and several share homology with the avian Z

    PubMed Central

    Rens, Willem; O'Brien, Patricia CM; Grützner, Frank; Clarke, Oliver; Graphodatskaya, Daria; Tsend-Ayush, Enkhjargal; Trifonov, Vladimir A; Skelton, Helen; Wallis, Mary C; Johnston, Steve; Veyrunes, Frederic; Graves, Jennifer AM; Ferguson-Smith, Malcolm A

    2007-01-01

    Background Sex-determining systems have evolved independently in vertebrates. Placental mammals and marsupials have an XY system, birds have a ZW system. Reptiles and amphibians have different systems, including temperature-dependent sex determination, and XY and ZW systems that differ in origin from birds and placental mammals. Monotremes diverged early in mammalian evolution, just after the mammalian clade diverged from the sauropsid clade. Our previous studies showed that male platypus has five X and five Y chromosomes, no SRY, and DMRT1 on an X chromosome. In order to investigate monotreme sex chromosome evolution, we performed a comparative study of platypus and echidna by chromosome painting and comparative gene mapping. Results Chromosome painting reveals a meiotic chain of nine sex chromosomes in the male echidna and establishes their order in the chain. Two of those differ from those in the platypus, three of the platypus sex chromosomes differ from those of the echidna and the order of several chromosomes is rearranged. Comparative gene mapping shows that, in addition to bird autosome regions, regions of bird Z chromosomes are homologous to regions in four platypus X chromosomes, that is, X1, X2, X3, X5, and in chromosome Y1. Conclusion Monotreme sex chromosomes are easiest to explain on the hypothesis that autosomes were added sequentially to the translocation chain, with the final additions after platypus and echidna divergence. Genome sequencing and contig anchoring show no homology yet between platypus and therian Xs; thus, monotremes have a unique XY sex chromosome system that shares some homology with the avian Z. PMID:18021405

  9. The multiple sex chromosomes of platypus and echidna are not completely identical and several share homology with the avian Z.

    PubMed

    Rens, Willem; O'Brien, Patricia C M; Grützner, Frank; Clarke, Oliver; Graphodatskaya, Daria; Tsend-Ayush, Enkhjargal; Trifonov, Vladimir A; Skelton, Helen; Wallis, Mary C; Johnston, Steve; Veyrunes, Frederic; Graves, Jennifer A M; Ferguson-Smith, Malcolm A

    2007-01-01

    Sex-determining systems have evolved independently in vertebrates. Placental mammals and marsupials have an XY system, birds have a ZW system. Reptiles and amphibians have different systems, including temperature-dependent sex determination, and XY and ZW systems that differ in origin from birds and placental mammals. Monotremes diverged early in mammalian evolution, just after the mammalian clade diverged from the sauropsid clade. Our previous studies showed that male platypus has five X and five Y chromosomes, no SRY, and DMRT1 on an X chromosome. In order to investigate monotreme sex chromosome evolution, we performed a comparative study of platypus and echidna by chromosome painting and comparative gene mapping. Chromosome painting reveals a meiotic chain of nine sex chromosomes in the male echidna and establishes their order in the chain. Two of those differ from those in the platypus, three of the platypus sex chromosomes differ from those of the echidna and the order of several chromosomes is rearranged. Comparative gene mapping shows that, in addition to bird autosome regions, regions of bird Z chromosomes are homologous to regions in four platypus X chromosomes, that is, X1, X2, X3, X5, and in chromosome Y1. Monotreme sex chromosomes are easiest to explain on the hypothesis that autosomes were added sequentially to the translocation chain, with the final additions after platypus and echidna divergence. Genome sequencing and contig anchoring show no homology yet between platypus and therian Xs; thus, monotremes have a unique XY sex chromosome system that shares some homology with the avian Z.

  10. Increased HDL cholesterol levels in mice with XX versus XY sex chromosomes

    PubMed Central

    Link, Jenny C.; Chen, Xuqi; Prien, Christopher; Borja, Mark S.; Hammerson, Bradley; Oda, Michael N.; Arnold, Arthur P.; Reue, Karen

    2015-01-01

    Objective The molecular mechanisms underlying sex differences in dyslipidemia are poorly understood. We aimed to distinguish genetic and hormonal regulators of sex differences in plasma lipid levels. Approach and Results We assessed the role of gonadal hormones and sex chromosome complement on lipid levels using the Four Core Genotypes mouse model (XX females, XX males, XY females, and XY males). In gonadally intact mice fed a chow diet, lipid levels were influenced by both male–female gonadal sex and XX–XY chromosome complement. Gonadectomy of adult mice revealed that the male–female differences are dependent on acute effects of gonadal hormones. In both intact and gonadectomized animals, XX mice had higher HDL cholesterol (HDL-C) levels than XY mice, regardless of male–female sex. Feeding a cholesterol-enriched diet produced distinct patterns of sex differences in lipid levels compared to a chow diet, revealing the interaction of gonadal and chromosomal sex with diet. Notably, under all dietary and gonadal conditions, HDL-C levels were higher in mice with two X chromosomes compared to mice with an X and Y chromosome. By generating mice with XX, XY and XXY chromosome complements, we determined that the presence of two X chromosomes, and not the absence of the Y chromosome, influences HDL-C concentration. Conclusions We demonstrate that having two X chromosomes versus an X and Y chromosome complement drives sex differences in HDL-C. It is conceivable that increased expression of genes escaping X-inactivation in XX mice regulates downstream processes to establish sexual dimorphism in plasma lipid levels. PMID:26112012

  11. Satellite DNA and Transposable Elements in Seabuckthorn (Hippophae rhamnoides), a Dioecious Plant with Small Y and Large X Chromosomes

    PubMed Central

    Puterova, Janka; Razumova, Olga; Martinek, Tomas; Alexandrov, Oleg; Divashuk, Mikhail; Kubat, Zdenek; Hobza, Roman; Karlov, Gennady

    2017-01-01

    Seabuckthorn (Hippophae rhamnoides) is a dioecious shrub commonly used in the pharmaceutical, cosmetic, and environmental industry as a source of oil, minerals and vitamins. In this study, we analyzed the transposable elements and satellites in its genome. We carried out Illumina DNA sequencing and reconstructed the main repetitive DNA sequences. For data analysis, we developed a new bioinformatics approach for advanced satellite DNA analysis and showed that about 25% of the genome consists of satellite DNA and about 24% is formed of transposable elements, dominated by Ty3/Gypsy and Ty1/Copia LTR retrotransposons. FISH mapping revealed X chromosome-accumulated, Y chromosome-specific or both sex chromosomes-accumulated satellites but most satellites were found on autosomes. Transposable elements were located mostly in the subtelomeres of all chromosomes. The 5S rDNA and 45S rDNA were localized on one autosomal locus each. Although we demonstrated the small size of the Y chromosome of the seabuckthorn and accumulated satellite DNA there, we were unable to estimate the age and extent of the Y chromosome degeneration. Analysis of dioecious relatives such as Shepherdia would shed more light on the evolution of these sex chromosomes. PMID:28057732

  12. X Chromosome Evolution in Cetartiodactyla

    PubMed Central

    Proskuryakova, Anastasia A.; Kulemzina, Anastasia I.; Makunin, Alexey I.; Kukekova, Anna V.; Lynn Johnson, Jennifer; Lemskaya, Natalya A.; Beklemisheva, Violetta R.; Roelke-Parker, Melody E.; Bellizzi, June; Ryder, Oliver A.; O’Brien, Stephen J.; Graphodatsky, Alexander S.

    2017-01-01

    The phenomenon of a remarkable conservation of the X chromosome in eutherian mammals has been first described by Susumu Ohno in 1964. A notable exception is the cetartiodactyl X chromosome, which varies widely in morphology and G-banding pattern between species. It is hypothesized that this sex chromosome has undergone multiple rearrangements that changed the centromere position and the order of syntenic segments over the last 80 million years of Cetartiodactyla speciation. To investigate its evolution we have selected 26 evolutionarily conserved bacterial artificial chromosome (BAC) clones from the cattle CHORI-240 library evenly distributed along the cattle X chromosome. High-resolution BAC maps of the X chromosome on a representative range of cetartiodactyl species from different branches: pig (Suidae), alpaca (Camelidae), gray whale (Cetacea), hippopotamus (Hippopotamidae), Java mouse-deer (Tragulidae), pronghorn (Antilocapridae), Siberian musk deer (Moschidae), and giraffe (Giraffidae) were obtained by fluorescent in situ hybridization. To trace the X chromosome evolution during fast radiation in specious families, we performed mapping in several cervids (moose, Siberian roe deer, fallow deer, and Pere David’s deer) and bovid (muskox, goat, sheep, sable antelope, and cattle) species. We have identified three major conserved synteny blocks and rearrangements in different cetartiodactyl lineages and found that the recently described phenomenon of the evolutionary new centromere emergence has taken place in the X chromosome evolution of Cetartiodactyla at least five times. We propose the structure of the putative ancestral cetartiodactyl X chromosome by reconstructing the order of syntenic segments and centromere position for key groups. PMID:28858207

  13. Increased number of sex chromosomes affects height in a nonlinear fashion: a study of 305 patients with sex chromosome aneuploidy.

    PubMed

    Ottesen, Anne Marie; Aksglaede, Lise; Garn, Inger; Tartaglia, Nicole; Tassone, Flora; Gravholt, Claus H; Bojesen, Anders; Sørensen, Kaspar; Jørgensen, Niels; Rajpert-De Meyts, Ewa; Gerdes, Tommy; Lind, Anne-Marie; Kjaergaard, Susanne; Juul, Anders

    2010-05-01

    Tall stature and eunuchoid body proportions characterize patients with 47,XXY Klinefelter syndrome, whereas patients with 45,X Turner syndrome are characterized by impaired growth. Growth is relatively well characterized in these two syndromes, while few studies describe the growth of patients with higher grade sex chromosome aneuploidies. It has been proposed that tall stature in sex chromosome aneuploidy is related to an overexpression of SHOX, although the copy number of SHOX has not been evaluated in previous studies. Our aims were therefore: (1) to assess stature in 305 patients with sex chromosome aneuploidy and (2) to determine the number of SHOX copies in a subgroup of these patients (n = 255) these patients and 74 healthy controls. Median height standard deviation scores in 46,XX males (n = 6) were -1.2 (-2.8 to 0.3), +0.9 (-2.2 to +4.6) in 47,XXY (n = 129), +1.3 (-1.8 to +4.9) in 47,XYY (n = 44), +1.1 (-1.9 to +3.4) in 48,XXYY (n = 45), +1.8 (-2.0 to +3.2) in 48,XXXY (n = 9), and -1.8 (-4.2 to -0.1) in 49,XXXXY (n = 10). Median height standard deviation scores in patients with 45,X (n = 6) were -2.6 (-4.1 to -1.6), +0.7 (-0.9 to +3.2) in 47,XXX (n = 40), -0.6 (-1.9 to +2.1) in 48,XXXX (n = 13), and -1.0 (-3.5 to -0.8) in 49,XXXXX (n = 3). Height increased with an increasing number of extra X or Y chromosomes, except in males with five, and in females with four or five sex chromosomes, consistent with a nonlinear effect on height. Copyright 2010 Wiley-Liss, Inc.

  14. Increased Number of Sex Chromosomes Affects Height in a Nonlinear Fashion: A Study of 305 Patients With Sex Chromosome Aneuploidy

    PubMed Central

    Ottesen, Anne Marie; Aksglaede, Lise; Garn, Inger; Tartaglia, Nicole; Tassone, Flora; Gravholt, Claus H.; Bojesen, Anders; Sørensen, Kaspar; Jørgensen, Niels; Meyts, Ewa Rajpert-De; Gerdes, Tommy; Lind, Anne-Marie; Kjaergaard, Susanne; Juul, Anders

    2017-01-01

    Tall stature and eunuchoid body proportions characterize patients with 47,XXY Klinefelter syndrome, whereas patients with 45,X Turner syndrome are characterized by impaired growth. Growth is relatively well characterized in these two syndromes, while few studies describe the growth of patients with higher grade sex chromosome aneuploidies. It has been proposed that tall stature in sex chromosome aneuploidy is related to an overexpression of SHOX, although the copy number of SHOX has not been evaluated in previous studies. Our aims were therefore: (1) to assess stature in 305 patients with sex chromosome aneuploidy and (2) to determine the number of SHOX copies in a subgroup of these patients (n =255) these patients and 74 healthy controls. Median height standard deviation scores in 46,XX males (n =6) were −1.2 (−2.8 to 0.3), +0.9 (−2.2 to + 4.6) in 47,XXY (n =129), +1.3 (−1.8 to +4.9) in 47,XYY (n =44), +1.1 (−1.9 to +3.4) in 48,XXYY (n =45), +1.8 (−2.0 to +3.2) in 48,XXXY (n =9), and −1.8 (−4.2 to −0.1) in 49,XXXXY (n =10). Median height standard deviation scores in patients with 45,X (n =6) were −2.6 (−4.1 to −1.6), +0.7 (−0.9 to +3.2) in 47,XXX (n =−40), −0.6 (−1.9 to +2.1) in 48,XXXX (n =13), and −1.0 (−3.5 to −0.8) in 49,XXXXX (n =3). Height increased with an increasing number of extra X or Y chromosomes, except in males with five, and in females with four or five sex chromosomes, consistent with a nonlinear effect on height. PMID:20425825

  15. Studies on metatherian sex chromosomes. IX. Sex chromosomes of the greater glider (Marsupialia: Petauridae).

    PubMed

    Murray, J D; McKay, G M; Sharman, G B

    1979-06-01

    The greater glider, currently but incorrectly known as Schoinobates volans, is widely distributed in forested regions in eastern Australia. All animals studied from six different localities had 20 autosomes but there were four chromosomally distinct populations. At Royal National Park, N.S.W., all female greater gliders studied had 22 chromosomes including two large submetacentric X chromosomes with subterminal secondary constrictions in their longer arms. This form of X chromosome occurred also at Bondo State Forest, Myall Lakes and Coff's Harbour, N.S.W., and at Eidsvold, Qld. At Coomooboolaroo, Qld, the X chromosome was also a large submetacentric but a secondary constriction occurred in the shorter arm. Two chromosomally distinct types apparently occur in Royal National Park, one with XY males as in all other populations, and one with XY1Y2 males. Y or Y1, but not Y2, chromosomes were eliminated from the bone marrow in all populations but were present in spermatogonia, primary spermatocytes and cultured fibroblasts. Animals from Bondo State Forest had three or more acrocentric or metacentric supernumerary chromosomes.

  16. Superconducting and magnetic properties of Bi 2Sr 2Ca 1- xY xCu 2O y (0≦ x≦1)

    NASA Astrophysics Data System (ADS)

    Yoshizaki, R.; Saito, Y.; Abe, Y.; Ikeda, H.

    1988-07-01

    The effect of substitution of Y atoms for Ca atoms has been studied in the Bi 2Sr 2Ca 1- xY xCu 2O y compound system. For x<0.5, superconductivity is observed and its fractional volume is reduced with increasing x, though the transition temperature of about 85 K is maintained. For x≧0.5 samples, the electrical resistivity behavior can be well described by the three-dimensional variable range hopping conduction, indicating that the system is essentially insulating. In this range of x, magnetic susceptibility shows spin-glass-type cusp at 13 K in the heating process after zero-field cooling and an enhanced cusp at 11 K in the field-cooling process. In the temperature range above about 150 K the Curie-Weiss dependence holds well with a positive paramagnetic Curie temperature, which increases to 40 K with increasing x in the insulating region.

  17. The sex-specific region of sex chromosomes in animals and plants.

    PubMed

    Gschwend, Andrea R; Weingartner, Laura A; Moore, Richard C; Ming, Ray

    2012-01-01

    Our understanding of the evolution of sex chromosomes has increased greatly in recent years due to a number of molecular evolutionary investigations in divergent sex chromosome systems, and these findings are reshaping theories of sex chromosome evolution. In particular, the dynamics of the sex-determining region (SDR) have been demonstrated by recent findings in ancient and incipient sex chromosomes. Radical changes in genomic structure and gene content in the male specific region of the Y chromosome between human and chimpanzee indicated rapid evolution in the past 6 million years, defying the notion that the pace of evolution in the SDR was fast at early stages but slowed down overtime. The chicken Z and the human X chromosomes appeared to have acquired testis-expressed genes and expanded in intergenic regions. Transposable elements greatly contributed to SDR expansion and aided the trafficking of genes in the SDR and its X or Z counterpart through retrotransposition. Dosage compensation is not a destined consequence of sex chromosomes as once thought. Most X-linked microRNA genes escape silencing and are expressed in testis. Collectively, these findings are challenging many of our preconceived ideas of the evolutionary trajectory and fates of sex chromosomes.

  18. Regulation of X-chromosome dosage compensation in human: mechanisms and model systems.

    PubMed

    Sahakyan, Anna; Plath, Kathrin; Rougeulle, Claire

    2017-11-05

    The human blastocyst forms 5 days after one of the smallest human cells (the sperm) fertilizes one of the largest human cells (the egg). Depending on the sex-chromosome contribution from the sperm, the resulting embryo will either be female, with two X chromosomes (XX), or male, with an X and a Y chromosome (XY). In early development, one of the major differences between XX female and XY male embryos is the conserved process of X-chromosome inactivation (XCI), which compensates gene expression of the two female X chromosomes to match the dosage of the single X chromosome of males. Most of our understanding of the pre-XCI state and XCI establishment is based on mouse studies, but recent evidence from human pre-implantation embryo research suggests that many of the molecular steps defined in the mouse are not conserved in human. Here, we will discuss recent advances in understanding the control of X-chromosome dosage compensation in early human embryonic development and compare it to that of the mouse.This article is part of the themed issue 'X-chromosome inactivation: a tribute to Mary Lyon'. © 2017 The Author(s).

  19. Sex Chromosome Translocations in the Evolution of Reproductive Isolation

    PubMed Central

    Tracey, Martin L.

    1972-01-01

    Haldane's rule states that in organisms with differentiated sex chromosomes, hybrid sterility or inviability is generally expressed more frequently in the heterogametic sex. This observation has been variously explained as due to either genic or chromosomal imbalance. The fixation probabilities and mean times to fixation of sex-chromosome translocations of the type necessary to explain Haldane's rule on the basis of chromosomal imbalance have been estimated in small populations of Drosophila melanogaster. The fixation probability of an X chromosome carrying the long arm of the Y(X·YL) is approximately 30% greater than expected under the assumption of no selection. No fitness differences associated with the attached YL segment were detected. The fixation probability of a deficient Y chromosome is 300% greater than expected when the X chromosome contains the deleted portion of the Y. It is suggested that sex-chromosome translocations may play a role in the establishment of reproductive isolation. PMID:4630586

  20. A Role for the X Chromosome in Sex Differences in Variability in General Intelligence?

    PubMed

    Johnson, Wendy; Carothers, Andrew; Deary, Ian J

    2009-11-01

    There is substantial evidence that males are more variable than females in general intelligence. In recent years, researchers have presented this as a reason that, although there is little, if any, mean sex difference in general intelligence, males tend to be overrepresented at both ends of its overall distribution. Part of the explanation could be the presence of genes on the X chromosome related both to syndromal disorders involving mental retardation and to population variation in general intelligence occurring normally. Genes on the X chromosome appear overrepresented among genes with known involvement in mental retardation, which is consistent with a model we developed of the population distribution of general intelligence as a mixture of two normal distributions. Using this model, we explored the expected ratios of males to females at various points in the distribution and estimated the proportion of variance in general intelligence potentially due to genes on the X chromosome. These estimates provide clues to the extent to which biologically based sex differences could be manifested in the environment as sex differences in displayed intellectual abilities. We discuss these observations in the context of sex differences in specific cognitive abilities and evolutionary theories of sexual selection. © 2009 Association for Psychological Science.

  1. Degeneration of the Y chromosome in evolutionary aging models

    NASA Astrophysics Data System (ADS)

    Lobo, M. P.; Onody, R. N.

    2005-06-01

    The Y chromosomes are genetically degenerated and do not recombine with their matching partners X. Recombination of XX pairs is pointed out as the key factor for the Y chromosome degeneration. However, there is an additional evolutionary force driving sex-chromosomes evolution. Here we show this mechanism by means of two different evolutionary models, in which sex chromosomes with non-recombining XX and XY pairs of chromosomes is considered. Our results show three curious effects. First, we observed that even when both XX and XY pairs of chromosomes do not recombine, the Y chromosomes still degenerate. Second, the accumulation of mutations on Y chromosomes followed a completely different pattern then those accumulated on X chromosomes. And third, the models may differ with respect to sexual proportion. These findings suggest that a more primeval mechanism rules the evolution of Y chromosomes due exclusively to the sex-chromosomes asymmetry itself, i.e., the fact that Y chromosomes never experience female bodies. Over aeons, natural selection favored X chromosomes spontaneously, even if at the very beginning of evolution, both XX and XY pairs of chromosomes did not recombine.

  2. Deciphering evolutionary strata on plant sex chromosomes and fungal mating-type chromosomes through compositional segmentation.

    PubMed

    Pandey, Ravi S; Azad, Rajeev K

    2016-03-01

    Sex chromosomes have evolved from a pair of homologous autosomes which differentiated into sex determination systems, such as XY or ZW system, as a consequence of successive recombination suppression between the gametologous chromosomes. Identifying the regions of recombination suppression, namely, the "evolutionary strata", is central to understanding the history and dynamics of sex chromosome evolution. Evolution of sex chromosomes as a consequence of serial recombination suppressions is well-studied for mammals and birds, but not for plants, although 48 dioecious plants have already been reported. Only two plants Silene latifolia and papaya have been studied until now for the presence of evolutionary strata on their X chromosomes, made possible by the sequencing of sex-linked genes on both the X and Y chromosomes, which is a requirement of all current methods that determine stratum structure based on the comparison of gametologous sex chromosomes. To circumvent this limitation and detect strata even if only the sequence of sex chromosome in the homogametic sex (i.e. X or Z chromosome) is available, we have developed an integrated segmentation and clustering method. In application to gene sequences on the papaya X chromosome and protein-coding sequences on the S. latifolia X chromosome, our method could decipher all known evolutionary strata, as reported by previous studies. Our method, after validating on known strata on the papaya and S. latifolia X chromosome, was applied to the chromosome 19 of Populus trichocarpa, an incipient sex chromosome, deciphering two, yet unknown, evolutionary strata. In addition, we applied this approach to the recently sequenced sex chromosome V of the brown alga Ectocarpus sp. that has a haploid sex determination system (UV system) recovering the sex determining and pseudoautosomal regions, and then to the mating-type chromosomes of an anther-smut fungus Microbotryum lychnidis-dioicae predicting five strata in the non

  3. X-ray photoemission study of NiS2-xSex (x=0.0 1.2)

    NASA Astrophysics Data System (ADS)

    Krishnakumar, S. R.; Sarma, D. D.

    2003-10-01

    Electronic structure of NiS2-xSex system has been investigated for various compositions (x) using x-ray photoemission spectroscopy. An analysis of the core-level as well as the valence-band spectra of NiS2 in conjunction with many-body cluster calculations provides a quantitative description of the electronic structure of this compound. With increasing Se content, the on-site Coulomb correlation strength (U) does not change, while the bandwidth W of the system increases, driving the system from a covalent insulating state to a pd-metallic state.

  4. The two "rules of speciation" in species with young sex chromosomes.

    PubMed

    Filatov, Dmitry A

    2018-05-21

    The two "rules of speciation," Haldane's rule (HR) and the large-X effect (LXE), are thought to be caused by recessive species incompatibilities exposed in the phenotype due to the hemizygosity of X-linked genes in the heterogametic sex. Thus, the reports of HR and the LXE in species with recently evolved non- or partially degenerate Y-chromosomes, such as Silene latifolia and its relatives, were surprising. Here, I argue that rapid species-specific degeneration of Y-linked genes and associated adjustment of expression of X-linked gametologs (dosage compensation) may lead to rapid evolution of sex-linked species incompatibilities. This process is likely to be too slow in species with old degenerate Y-chromosomes (e.g., in mammals), but Y-degeneration in species with young gene-rich sex chromosomes may be fast enough to play a significant role in speciation. To illustrate this point, I report the analysis of Y-degeneration and the associated evolution of gene expression on the X-chromosome of S. latifolia and Silene dioica, a close relative that shares the same recently evolved sex chromosomes. Despite the recent (≤1MY) divergence of the two species, ~7% of Y-linked genes have undergone degeneration in one but not the other species. This species-specific degeneration appears to drive faster expression divergence of X-linked genes, which may account for HR and the LXE reported for these species. Furthermore, I suggest that "exposure" of autosomal or sex-linked recessive species incompatibilities in the haploid plant gametophyte may mimic the presence of HR in plants. Both haploid expression and species-specific Y-degeneration need to receive more attention if we are to understand the role of these processes in speciation. © 2018 John Wiley & Sons Ltd.

  5. Effects of sex chromosome aneuploidy on male sexual behavior

    PubMed Central

    Park, J. H.; Burns-Cusato, M.; Dominguez-Salazar, E.; Riggan, A.; Shetty, S.; Arnold, A. P.; Rissman, E. F.

    2008-01-01

    Incidence of sex chromosome aneuploidy in men is as high as 1:500. The predominant conditions are an additional Y chromosome (47,XYY) or an additional X chromosome (47,XXY). Behavioral studies using animal models of these conditions are rare. To assess the role of sex chromosome aneuploidy on sexual behavior, we used mice with a spontaneous mutation on the Y chromosome in which the testis-determining gene Sry is deleted (referred to as Y−) and insertion of a Sry transgene on an autosome. Dams were aneuploid (XXY−) and the sires had an inserted Sry transgene (XYSry). Litters contained six male genotypes, XY, XYY−, XXSry, XXY−Sry, XYSry and XYY−Sry. In order to eliminate possible differences in levels of testosterone, all of the subjects were castrated and received testosterone implants prior to tests for male sex behavior. Mice with an additional copy of the Y− chromosome (XYY−) had shorter latencies to intromit and achieve ejaculations than XY males. In a comparison of the four genotypes bearing the Sry transgene, males with two copies of the X chromosome (XXSry and XXY−Sry) had longer latencies to mount and thrust than males with only one copy of the X chromosome (XYSry and XYY−Sry) and decreased frequencies of mounts and intromissions as compared with XYSry males. The results implicate novel roles for sex chromosome genes in sexual behaviors. PMID:18363850

  6. PinX1 is recruited to the mitotic chromosome periphery by Nucleolin and facilitates chromosome congression.

    PubMed

    Li, Na; Yuan, Kai; Yan, Feng; Huo, Yuda; Zhu, Tongge; Liu, Xing; Guo, Zhen; Yao, Xuebiao

    2009-06-19

    Mitotic chromosome movements are orchestrated by interactions between spindle microtubules and chromosomes. It is well known that kinetochore is the major site where microtubule-chromosome attachment occurs. However, the functions of other domains of chromosome such as chromosome periphery have remained elusive. Our previous studies show that PinX1 distributes to chromosome periphery and kinetochore during mitosis, and harbors the microtubule binding activity. Here we report that PinX1 interacts with Nucleolin, a chromosome periphery protein, through its C-termini. Deconvolution microscopic analyses show PinX1 mainly co-localizes with Nucleolin at chromosome periphery in prometaphase. Moreover, depletion of Nucleolin abolishes chromosome periphery localizations of PinX1, suggesting a functional interrelationship between PinX1 and Nucleolin. Importantly, repression of PinX1 and Nucleolin abrogates chromosome segregation in real-time mitosis, validating the functional importance of PinX1-Nucleolin interaction. We propose PinX1 is recruited to chromosome periphery by Nucleolin and a complex of PinX1 and Nucleolin is essential for faithful chromosome congression.

  7. Genomic relationships based on X chromosome markers and accuracy of genomic predictions with and without X chromosome markers

    PubMed Central

    2014-01-01

    Background Although the X chromosome is the second largest bovine chromosome, markers on the X chromosome are not used for genomic prediction in some countries and populations. In this study, we presented a method for computing genomic relationships using X chromosome markers, investigated the accuracy of imputation from a low density (7K) to the 54K SNP (single nucleotide polymorphism) panel, and compared the accuracy of genomic prediction with and without using X chromosome markers. Methods The impact of considering X chromosome markers on prediction accuracy was assessed using data from Nordic Holstein bulls and different sets of SNPs: (a) the 54K SNPs for reference and test animals, (b) SNPs imputed from the 7K to the 54K SNP panel for test animals, (c) SNPs imputed from the 7K to the 54K panel for half of the reference animals, and (d) the 7K SNP panel for all animals. Beagle and Findhap were used for imputation. GBLUP (genomic best linear unbiased prediction) models with or without X chromosome markers and with or without a residual polygenic effect were used to predict genomic breeding values for 15 traits. Results Averaged over the two imputation datasets, correlation coefficients between imputed and true genotypes for autosomal markers, pseudo-autosomal markers, and X-specific markers were 0.971, 0.831 and 0.935 when using Findhap, and 0.983, 0.856 and 0.937 when using Beagle. Estimated reliabilities of genomic predictions based on the imputed datasets using Findhap or Beagle were very close to those using the real 54K data. Genomic prediction using all markers gave slightly higher reliabilities than predictions without X chromosome markers. Based on our data which included only bulls, using a G matrix that accounted for sex-linked relationships did not improve prediction, compared with a G matrix that did not account for sex-linked relationships. A model that included a polygenic effect did not recover the loss of prediction accuracy from exclusion of X

  8. MECP2 duplications in six patients with complex sex chromosome rearrangements

    PubMed Central

    Breman, Amy M; Ramocki, Melissa B; Kang, Sung-Hae L; Williams, Misti; Freedenberg, Debra; Patel, Ankita; Bader, Patricia I; Cheung, Sau Wai

    2011-01-01

    Duplications of the Xq28 chromosome region resulting in functional disomy are associated with a distinct clinical phenotype characterized by infantile hypotonia, severe developmental delay, progressive neurological impairment, absent speech, and proneness to infections. Increased expression of the dosage-sensitive MECP2 gene is considered responsible for the severe neurological impairments observed in affected individuals. Although cytogenetically visible duplications of Xq28 are well documented in the published literature, recent advances using array comparative genomic hybridization (CGH) led to the detection of an increasing number of microduplications spanning MECP2. In rare cases, duplication results from intrachromosomal rearrangement between the X and Y chromosomes. We report six cases with sex chromosome rearrangements involving duplication of MECP2. Cases 1–4 are unbalanced rearrangements between X and Y, resulting in MECP2 duplication. The additional Xq material was translocated to Yp in three cases (cases 1–3), and to the heterochromatic region of Yq12 in one case (case 4). Cases 5 and 6 were identified by array CGH to have a loss in copy number at Xp and a gain in copy number at Xq28 involving the MECP2 gene. In both cases, fluorescent in situ hybridization (FISH) analysis revealed a recombinant X chromosome containing the duplicated material from Xq28 on Xp, resulting from a maternal pericentric inversion. These cases add to a growing number of MECP2 duplications that have been detected by array CGH, while demonstrating the value of confirmatory chromosome and FISH studies for the localization of the duplicated material and the identification of complex rearrangements. PMID:21119712

  9. Satellite DNA and Transposable Elements in Seabuckthorn (Hippophae rhamnoides), a Dioecious Plant with Small Y and Large X Chromosomes.

    PubMed

    Puterova, Janka; Razumova, Olga; Martinek, Tomas; Alexandrov, Oleg; Divashuk, Mikhail; Kubat, Zdenek; Hobza, Roman; Karlov, Gennady; Kejnovsky, Eduard

    2017-01-01

    Seabuckthorn (Hippophae rhamnoides) is a dioecious shrub commonly used in the pharmaceutical, cosmetic, and environmental industry as a source of oil, minerals and vitamins. In this study, we analyzed the transposable elements and satellites in its genome. We carried out Illumina DNA sequencing and reconstructed the main repetitive DNA sequences. For data analysis, we developed a new bioinformatics approach for advanced satellite DNA analysis and showed that about 25% of the genome consists of satellite DNA and about 24% is formed of transposable elements, dominated by Ty3/Gypsy and Ty1/Copia LTR retrotransposons. FISH mapping revealed X chromosome-accumulated, Y chromosome-specific or both sex chromosomes-accumulated satellites but most satellites were found on autosomes. Transposable elements were located mostly in the subtelomeres of all chromosomes. The 5S rDNA and 45S rDNA were localized on one autosomal locus each. Although we demonstrated the small size of the Y chromosome of the seabuckthorn and accumulated satellite DNA there, we were unable to estimate the age and extent of the Y chromosome degeneration. Analysis of dioecious relatives such as Shepherdia would shed more light on the evolution of these sex chromosomes. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. Brief Report: Non-Random X Chromosome Inactivation in Females with Autism

    ERIC Educational Resources Information Center

    Talebizadeh, Z.; Bittel, D. C.; Veatch, O. J.; Kibiryeva, N.; Butler, M. G.

    2005-01-01

    Autism is a heterogeneous neurodevelopmental disorder with a 3-4 times higher sex ratio in males than females. X chromosome genes may contribute to this higher sex ratio through unusual skewing of X chromosome inactivation. We studied X chromosome skewness in 30 females with classical autism and 35 similarly aged unaffected female siblings as…

  11. Assessment of fetal sex chromosome aneuploidy using directed cell-free DNA analysis.

    PubMed

    Nicolaides, Kypros H; Musci, Thomas J; Struble, Craig A; Syngelaki, Argyro; Gil, M M

    2014-01-01

    To examine the performance of chromosome-selective sequencing of cell-free (cf) DNA in maternal blood for assessment of fetal sex chromosome aneuploidies. This was a case-control study of 177 stored maternal plasma samples, obtained before fetal karyotyping at 11-13 weeks of gestation, from 59 singleton pregnancies with fetal sex chromosome aneuploidies (45,X, n = 49; 47,XXX, n = 6; 47,XXY, n = 1; 47,XYY, n = 3) and 118 with euploid fetuses (46,XY, n = 59; 46,XX, n = 59). Digital analysis of selected regions (DANSR™) on chromosomes 21, 18, 13, X and Y was performed and the fetal-fraction optimized risk of trisomy evaluation (FORTE™) algorithm was used to estimate the risk for non-disomic genotypes. Performance was calculated at a risk cut-off of 1:100. Analysis of cfDNA provided risk scores for 172 (97.2%) samples; 4 samples (45,X, n = 2; 46,XY, n = 1; 46,XX, n = 1) had an insufficient fetal cfDNA fraction for reliable testing and 1 case (47,XXX) failed laboratory quality control metrics. The classification was correct in 43 (91.5%) of 47 cases of 45,X, all 5 of 47,XXX, 1 of 47,XXY and 3 of 47,XYY. There were no false-positive results for monosomy X. Analysis of cfDNA by chromosome-selective sequencing can correctly classify fetal sex chromosome aneuploidy with reasonably high sensitivity. © 2013 S. Karger AG, Basel.

  12. Genetics of dioecy and causal sex chromosomes in plants.

    PubMed

    Kumar, Sushil; Kumari, Renu; Sharma, Vishakha

    2014-04-01

    Dioecy (separate male and female individuals) ensures outcrossing and is more prevalent in animals than in plants. Although it is common in bryophytes and gymnosperms, only 5% of angiosperms are dioecious. In dioecious higher plants, flowers borne on male and female individuals are, respectively deficient in functional gynoecium and androecium. Dioecy is inherited via three sex chromosome systems: XX/XY, XX/X0 and WZ/ZZ, such that XX or WZ is female and XY, X0 or ZZ are males. The XX/XY system generates the rarer XX/X0 and WZ/ZZ systems. An autosome pair begets XY chromosomes. A recessive loss-of-androecium mutation (ana) creates X chromosome and a dominant gynoecium-suppressing (GYS) mutation creates Y chromosome. The ana/ANA and gys/GYS loci are in the sex-determining region (SDR) of the XY pair. Accumulation of inversions, deleterious mutations and repeat elements, especially transposons, in the SDR of Y suppresses recombination between X and Y in SDR, making Y labile and increasingly degenerate and heteromorphic from X. Continued recombination between X and Y in their pseudoautosomal region located at the ends of chromosomal arms allows survival of the degenerated Y and of the species. Dioecy is presumably a component of the evolutionary cycle for the origin of new species. Inbred hermaphrodite species assume dioecy. Later they suffer degenerate-Y-led population regression. Cross-hybridization between such extinguishing species and heterologous species, followed by genome duplication of segregants from hybrids, give rise to new species.

  13. Nonstoichiometry in inorganic fluorides: 2. Ionic conductivity of nonstoichiometric M 1 - x R xF2 + x and R 1 - y M yF3 - y crystals ( M = Ca, Sr, Ba; R are rare earth elements)

    NASA Astrophysics Data System (ADS)

    Sobolev, B. P.; Sorokin, N. I.

    2014-11-01

    The peak manifestation of nonstoichiometry in fluoride systems in the number of phases with valuable properties and wide homogeneity ranges is 45 MF2- RF3 systems, where M = Ca, Sr, Ba and R are 15 rare earth elements from La to Lu and Y (with Pm and Sc excluded). A deviation from stoichiometry in crystals of the M 1 - x R xF2 + x (CaF2 fluorite type) and R 1 - y M yF3 - y (LaF3 tysonite type) phases is responsible for the fluorine superionic conductivity σ. The range of variation in σ with changes in the qualitative ( M, R) and quantitative ( x, y) compositions in both structure types is very wide. The σ value changes by a factor of 108 in the M 1 - x R xF2 + x phases (at 500 K) and by a factor of 106 in the R 1 - y M yF3 - y phases (at 293 K). Changing compositions, one can also obtain crystals with σ values large enough for their use as fluorine-conducting solid electrolytes. Phases promising for solid electrolytes were revealed in the MFm- RFn systems ( m < n ≤ 4), which were studied within the program of searching for new multicomponent fluoride materials at the Institute of Crystallography, Russian Academy of Sciences (IC RAS). Superionic conductivity is one of the peak manifestations of the influence of defect structure of nonstoichiometric crystals on their properties. The subject of this review is the results of the studies performed at the IC RAS on the ionic conductivity of single crystals of the M 1 - x R xF2 + x and R 1 - y M yF3 - y nonstoichiometric phases.

  14. Chromosome banding in Amphibia. XXVI. Coexistence of homomorphic XY sex chromosomes and a derived Y-autosome translocation in Eleutherodactylus maussi (Anura, Leptodactylidae).

    PubMed

    Schmid, M; Feichtinger, W; Steinlein, C; Haaf, T; Schartl, M; Visbal García, R; Manzanilla Pupo, J; Fernández Badillo, A

    2002-01-01

    A 15-year cytogenetic survey on one population of the leaf litter frog Eleutherodactylus maussi in northern Venezuela confirmed the existence of multiple XXAA male symbol /XAA(Y) female symbol sex chromosomes which originated by a centric (Robertsonian) fusion between the original Y chromosome and an autosome. 95% of the male individuals in this population are carriers of this Y-autosome fusion. In male meiosis the XAA(Y) sex chromosomes pair in the expected trivalent configuration. In the same population, 5% of the male animals still possess the original, free XY sex chromosomes. In a second population of E. maussi analyzed, all male specimens are characterized by these ancestral XY chromosomes which form normal bivalents in meiosis. E. maussi apparently represents the first vertebrate species discovered in which a derived Y-autosome fusion still coexists with the ancestral free XY sex chromosomes. The free XY sex chromosomes, as well as the multiple XA(Y) sex chromosomes are still in a very primitive (homomorphic) stage of differentiation. With no banding technique applied it is possible to distinguish the Y from the X. DNA flow cytometric measurements show that the genome of E. maussi is among the largest in the anuran family Leptodactylidae. The present study also supplies further data on differential chromosome banding and fluorescence in situ hybridization experiments in this amphibian species. Copyright 2003 S. Karger AG, Basel

  15. Aneuploidy detection for chromosomes 1, X and Y by fluorescence in situ hybridization in human sperm from oligoasthenoteratozoospermic patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pang, M.G.; Zackowski, J.L.; Acosta, A.A.

    1994-09-01

    Oligoasthenoteratozoospermic males (n=15) were investigated for infertility as compared with proven fertile donors. The oligoasthenoteratozoospermic population showed a mean sperm concentration of 9.7 x 10{sup 6}/ml (Range 4.2-19.7), mean motility of 38.5% (Range 10.6-76.8) and morphology (measured by the percentage of normal forms evaluated by strict criteria) with a mean of 3.49% (Range 1.5-5.0). Fluorescence in situ hybridization (FISH) using satellite DNA probes specific for chromosomes 1 (puc 1.77), X (alpha satellite), and Y (satellite-III at Yqh) was performed on human interphase sperm nuclei. DNA probes were either directly labelled with rhodamine-dUTP, FITC-dUTP, or biotinylated by nick translation. Hybridization andmore » signal detection were done by routine laboratory protocols. Microscopic analysis was performed using a cooled CCD camera attached to an epi-fluorescent microscope. After hybridization, fertile donors yielded a frequency of 0.96% (n=12) nullisomic, 98.5% (n=1231) monosomic and 0.96% (n=12) disomic for chromosome 1, whereas oligoasthenoteratozoospermic males yielded a frequency of 16% (n=600) nullisomic, 74.5% (n=2792) monosomic and 9.9% (n=370) disomic. In addition, fertile donors yielded a frequency of 45.7% (n=633) monosomic and 0.7% (n=11) disomic for chromosome X, whereas oligoasthenoteratozoospermic males yielded a frequency of 38.7% (n=760) monosomic and 0.8% (n=13) disomic. Chromosome Y frequencies for fertile donors showed 44.6% (n=614) monosomic and 0.6% (n=2) disomic, whereas oligoasthenoteratozoospermic males yielded a frequency of 33.2% (n=701) monosomic and 0.8% (n=15) disomic. This suggests that the frequency of nullisomy for chromosome 1 is significantly higher (p<0.001) in sperm from oligoasthenoteratozoospermic makes versus sperm from our fertile donors. We conclude that FISH is a powerful tool to determine the frequency of aneuploidy in sperm from oligoasthenoteratozoospermic patients.« less

  16. Oxygen ionic conductivity of NTE materials of cubic Zr 1- xLn xW 2- yMo yO 8- x/2 (Ln = Er, Yb)

    NASA Astrophysics Data System (ADS)

    Li, Hai-Hua; Xia, Hai-Ting; Jing, Xi-Ping; Zhao, Xin-Hua

    2008-08-01

    Cubic Zr 1- xLn xW 2- yMo yO 8- x/2 (Ln = Er: x = 0.01, 0.02, 0.03; y = 0; Ln = Yb: x = 0.02, 0.03; y = 0.4) solid solutions, well-known negative thermal expansion (NTE) materials were prepared by using conventional solid state reactions. The morphology and the composition of the fracture surfaces of the ceramic pellets were determined by SEM and EDX technology. The conductance properties of the pellets, such as conductivity and conductance activation energy, were studied by AC impedance spectroscopy and the materials perform clearly oxygen ionic conduction with the conductivity of about 10 -4 S cm -1 at 673 K, a comparable value to that of ceria based solid electrolytes. The substitution of Mo for W enhanced the thermal stability of ZrW 2O 8, so that the conductivity of Zr 0.98Yb 0.02W 1.6Mo 0.4O 7.99 ceramic can be measured up to 873 K, which is about 5.9 × 10 -4 S cm -1.

  17. Electronic structure of charge- and spin-controlled Sr(1-(x+y))La(x+y)Ti(1-x)Cr(x)O3.

    PubMed

    Iwasawa, H; Yamakawa, K; Saitoh, T; Inaba, J; Katsufuji, T; Higashiguchi, M; Shimada, K; Namatame, H; Taniguchi, M

    2006-02-17

    We present the electronic structure of Sr(1-(x+y))La(x+y)Ti(1-x)Cr(x)O3 investigated by high-resolution photoemission spectroscopy. In the vicinity of the Fermi level, it was found that the electronic structure was composed of a Cr 3d local state with the t(2g)3 configuration and a Ti 3d itinerant state. The energy levels of these Cr and Ti 3d states are well interpreted by the difference of the charge-transfer energy of both ions. The spectral weight of the Cr 3d state is completely proportional to the spin concentration x irrespective of the carrier concentration y, indicating that the spin density can be controlled by x as desired. In contrast, the spectral weight of the Ti 3d state is not proportional to y, depending on the amount of Cr doping.

  18. The contribution of the Y chromosome to hybrid male sterility in house mice.

    PubMed

    Campbell, Polly; Good, Jeffrey M; Dean, Matthew D; Tucker, Priscilla K; Nachman, Michael W

    2012-08-01

    Hybrid sterility in the heterogametic sex is a common feature of speciation in animals. In house mice, the contribution of the Mus musculus musculus X chromosome to hybrid male sterility is large. It is not known, however, whether F1 male sterility is caused by X-Y or X-autosome incompatibilities or a combination of both. We investigated the contribution of the M. musculus domesticus Y chromosome to hybrid male sterility in a cross between wild-derived strains in which males with a M. m. musculus X chromosome and M. m. domesticus Y chromosome are partially sterile, while males from the reciprocal cross are reproductively normal. We used eight X introgression lines to combine different X chromosome genotypes with different Y chromosomes on an F1 autosomal background, and we measured a suite of male reproductive traits. Reproductive deficits were observed in most F1 males, regardless of Y chromosome genotype. Nonetheless, we found evidence for a negative interaction between the M. m. domesticus Y and an interval on the M. m. musculus X that resulted in abnormal sperm morphology. Therefore, although F1 male sterility appears to be caused mainly by X-autosome incompatibilities, X-Y incompatibilities contribute to some aspects of sterility.

  19. Signatures of Sex-Antagonistic Selection on Recombining Sex Chromosomes

    PubMed Central

    Kirkpatrick, Mark; Guerrero, Rafael F.

    2014-01-01

    Sex-antagonistic (SA) selection has major evolutionary consequences: it can drive genomic change, constrain adaptation, and maintain genetic variation for fitness. The recombining (or pseudoautosomal) regions of sex chromosomes are a promising setting in which to study SA selection because they tend to accumulate SA polymorphisms and because recombination allows us to deploy the tools of molecular evolution to locate targets of SA selection and quantify evolutionary forces. Here we use coalescent models to characterize the patterns of polymorphism expected within and divergence between recombining X and Y (or Z and W) sex chromosomes. SA selection generates peaks of divergence between X and Y that can extend substantial distances away from the targets of selection. Linkage disequilibrium between neutral sites is also inflated. We show how the pattern of divergence is altered when the SA polymorphism or the sex-determining region was recently established. We use data from the flowering plant Silene latifolia to illustrate how the strength of SA selection might be quantified using molecular data from recombining sex chromosomes. PMID:24578352

  20. Signatures of sex-antagonistic selection on recombining sex chromosomes.

    PubMed

    Kirkpatrick, Mark; Guerrero, Rafael F

    2014-06-01

    Sex-antagonistic (SA) selection has major evolutionary consequences: it can drive genomic change, constrain adaptation, and maintain genetic variation for fitness. The recombining (or pseudoautosomal) regions of sex chromosomes are a promising setting in which to study SA selection because they tend to accumulate SA polymorphisms and because recombination allows us to deploy the tools of molecular evolution to locate targets of SA selection and quantify evolutionary forces. Here we use coalescent models to characterize the patterns of polymorphism expected within and divergence between recombining X and Y (or Z and W) sex chromosomes. SA selection generates peaks of divergence between X and Y that can extend substantial distances away from the targets of selection. Linkage disequilibrium between neutral sites is also inflated. We show how the pattern of divergence is altered when the SA polymorphism or the sex-determining region was recently established. We use data from the flowering plant Silene latifolia to illustrate how the strength of SA selection might be quantified using molecular data from recombining sex chromosomes. Copyright © 2014 by the Genetics Society of America.

  1. The unique sex chromosome system in platypus and echidna.

    PubMed

    Ferguson-Smith, M A; Rens, W

    2010-10-01

    A striking example of the power of chromosome painting has been the resolution of the male platypus karyotype and the pairing relationships of the chain often sex chromosomes. We have extended our analysis to the nine sex chromosomes of the male echidna. Cross-species painting with platypus shows that the first five chromosomes in the chain are identical in both, but the order of the remainder are different and, in each species, a different autosome replaces one of the five X chromosomes. As the therian X is homologous mainly to platypus autosome 6 and echidna 16, and as SRY is absent in both, the sex determination mechanism in monotremes is currently unknown. Several of the X and Y chromosomes contain genes orthologous to those in the avian Z but the significance of this is also unknown. It seems likely that a novel testis determinant is carried by a Y chromosome common to platypus and echidna. We have searched for candidates for this determinant among the many genes known to be involved in vertebrate sex differentiation. So far fourteen such genes have been mapped, eleven are autosomal in platypus, two map to the differential regions of X chromosomes, and one maps to a pairing segment and is likewise excluded. Search for the platypus testis-determining gene continues, and the extension of comparative mapping between platypus and birds and reptiles may shed light on the ancestral origin of monotreme sex chromosomes.

  2. Neutron investigation of Nd 2- x- yCe xLa yCuO 4 (0 ⩽ x ⩽ 0.2; y = 0.5, 1)

    NASA Astrophysics Data System (ADS)

    Gutmann, M.; Allenspach, P.; Fauth, F.; Furrer, A.; Zolliker, M.; Rosenkranz, S.; Eccleston, R. S.

    1997-02-01

    We present neutron diffraction and crystal field (CF) spectroscopy results obtained for the electron-doped superconductor precursor material Nd 2- x- yCe xLa yCuO 4 (0 ⩽ x ⩽ 0.2; y = 0.5, 1). Samples were prepared via a sol-gel methods. The lattice constants as a function of Ce-doping show the well-known behavior common to this class of compounds, i.e. the a parameter increases while the c parameter decreases with increasing Ce amount. The presence of La expands the unit cell in all directions compared to the mother compound Nd 2CuO 4 while preserving the T‧-structure for the above mentioned range. The CF spectra clearly show the presence of electronic inhomogeneities associated with electron doping from Ce 4+ on one Cu-site in the CuO 2-planes.

  3. Role of chalcogen vapor annealing in inducing bulk superconductivity in Fe1 +yTe1 -xSex

    NASA Astrophysics Data System (ADS)

    Lin, Wenzhi; Ganesh, P.; Gianfrancesco, Anthony; Wang, Jun; Berlijn, Tom; Maier, Thomas A.; Kalinin, Sergei V.; Sales, Brian C.; Pan, Minghu

    2015-02-01

    Recent investigations have shown that Fe1 +yTe1 -xSex can be made superconducting by annealing it in Se and O vapors. The current lore is that these chalcogen vapors induce superconductivity by removing the magnetic excess Fe atoms. To investigate this phenomenon, we performed a combination of magnetic susceptibility, specific heat, and transport measurements together with scanning tunneling microscopy and spectroscopy and density functional theory calculations on Fe1 +yTe1 -xSex treated with Te vapor. We conclude that the main role of the Te vapor is to quench the magnetic moments of the excess Fe atoms by forming FeTem (m ≥1 ) complexes. We show that the remaining FeTem complexes are still damaging to the superconductivity and therefore that their removal potentially could further improve superconductive properties in these compounds.

  4. Dependences of the density of M 1- x R x F2 + x and R 1- y M y F3- y single crystals ( M = Ca, Sr, Ba, Cd, Pb; R means rare earth elements) on composition

    NASA Astrophysics Data System (ADS)

    Sorokin, N. I.; Krivandina, E. A.; Zhmurova, Z. I.

    2013-11-01

    The density of single crystals of nonstoichiometric phases Ba1 - x La x F2 + x (0 ≤ x ≤ 0.5) and Sr0.8La0.2 - x Lu x F2.2 (0 ≤ x ≤ 0.2) with the fluorite (CaF2) structure type and R 1 - y Sr y F3 - y ( R = Pr, Nd; 0 ≤ y ≤ 0.15) with the tysonite (LaF3) structure type has been measured. Single crystals were grown from a melt by the Bridgman method. The measured concentration dependences of single crystal density are linear. The interstitial and vacancy models of defect formation in the fluorite and tysonite phases, respectively, are confirmed. To implement the composition control of single crystals of superionic conductors M 1 - x R x F2 + x and R 1 - y M y F3 - y in practice, calibration graphs of X-ray density in the MF2- RF3 systems ( M = Ca, Sr, Ba, Cd, Pb; R = La-Lu, Y) are plotted.

  5. Deficiency of uridine monophosphate synthase (DUMPS) and X-chromosome deletion in fetal mummification in cattle.

    PubMed

    Ghanem, Mohamed Elshabrawy; Nakao, Toshihiko; Nishibori, Masahide

    2006-01-01

    Ten mummified fetuses were tested for the deficiency of uridine monophosphate synthase (DUMPS), which is known to contribute to the embryonic and fetal mortality in cattle. Genomic DNAs of the mummified fetuses were extracted from tissue samples collected from the mummies and were amplified by GenomiPhi DNA amplification kit. UMPS gene of the mummies was amplified by polymerase chain reaction (PCR) with DUMPS primers. Out of ten mummies examined, two fetuses were heterozygous (carriers) for DUMPS as indicated by the presences of three bands of 89, 53 and 36 bp. Estimated stage of gestation when the death occurred in the two mummies was 3.5 and 2.5 months, respectively. The other fetuses exhibited only two bands of 53 and 36 bp on the polyacrylamide gel indicated that they were normal. On the other hand, all the mummies were sexed using AMX/Y primers. Specific regions of Y and X chromosomes were amplified by PCR using AMX/Y. The expected 280 bp fragment in the female sample and the 280 and 217 bp in the male sample were observed. Nine mummies had a normal X and Y chromosome bands; however, the other mummified fetus exhibited only Y chromosome band, while the constitutive X chromosome fragment was missing. The estimated stage of gestation when the death occurred in this mummified fetus was 100 days. This might be the first report of DUMPS and X-chromosome deletion at the amelogenin gene in bovine-mummified fetuses in Japan.

  6. Positron annihilation study of Y 1- xPr xBa 2Cu 3O 7

    NASA Astrophysics Data System (ADS)

    Zhao, Y. G.; Cao, B. S.; Yu, W. Z.; Du, Z. H.; Wang, Y. J.; Luo, C. Y.; Hu, H.; Wang, S.; Yang, J. H.; He, A. S.; Gu, B. L.

    1995-02-01

    A positron annihilation study of Y 1- xPr xBa 2Cu 3O 7 was performed. The results showed that charge transfer between the CuO 2 planes and 1D CuO chains upon Pr doping, as proposed in the literature, did not occur. Pr doping suppressed the anomaly of positron annihilation lifetime near and below Tc which has been observed in YBa 2Cu 3O 7. The perfection of the 1D CuO chains was reduced by Pr doping and this may be partly responsible for the increase of resistivity with Pr doping, and finally the semiconducting behaviour of DC resistivity in Y 1- xPr xBa 2Cu 3O 7 with x > 0.6.

  7. Regulatory and evolutionary signatures of sex-biased genes on both the X chromosome and the autosomes.

    PubMed

    Shen, Jiangshan J; Wang, Ting-You; Yang, Wanling

    2017-11-02

    Sex is an important but understudied factor in the genetics of human diseases. Analyses using a combination of gene expression data, ENCODE data, and evolutionary data of sex-biased gene expression in human tissues can give insight into the regulatory and evolutionary forces acting on sex-biased genes. In this study, we analyzed the differentially expressed genes between males and females. On the X chromosome, we used a novel method and investigated the status of genes that escape X-chromosome inactivation (escape genes), taking into account the clonality of lymphoblastoid cell lines (LCLs). To investigate the regulation of sex-biased differentially expressed genes (sDEG), we conducted pathway and transcription factor enrichment analyses on the sDEGs, as well as analyses on the genomic distribution of sDEGs. Evolutionary analyses were also conducted on both sDEGs and escape genes. Genome-wide, we characterized differential gene expression between sexes in 462 RNA-seq samples and identified 587 sex-biased genes, or 3.2% of the genes surveyed. On the X chromosome, sDEGs were distributed in evolutionary strata in a similar pattern as escape genes. We found a trend of negative correlation between the gene expression breadth and nonsynonymous over synonymous mutation (dN/dS) ratios, showing a possible pleiotropic constraint on evolution of genes. Genome-wide, nine transcription factors were found enriched in binding to the regions surrounding the transcription start sites of female-biased genes. Many pathways and protein domains were enriched in sex-biased genes, some of which hint at sex-biased physiological processes. These findings lend insight into the regulatory and evolutionary forces shaping sex-biased gene expression and their involvement in the physiological and pathological processes in human health and diseases.

  8. No Association of Coronary Artery Disease with X-Chromosomal Variants in Comprehensive International Meta-Analysis.

    PubMed

    Loley, Christina; Alver, Maris; Assimes, Themistocles L; Bjonnes, Andrew; Goel, Anuj; Gustafsson, Stefan; Hernesniemi, Jussi; Hopewell, Jemma C; Kanoni, Stavroula; Kleber, Marcus E; Lau, King Wai; Lu, Yingchang; Lyytikäinen, Leo-Pekka; Nelson, Christopher P; Nikpay, Majid; Qu, Liming; Salfati, Elias; Scholz, Markus; Tukiainen, Taru; Willenborg, Christina; Won, Hong-Hee; Zeng, Lingyao; Zhang, Weihua; Anand, Sonia S; Beutner, Frank; Bottinger, Erwin P; Clarke, Robert; Dedoussis, George; Do, Ron; Esko, Tõnu; Eskola, Markku; Farrall, Martin; Gauguier, Dominique; Giedraitis, Vilmantas; Granger, Christopher B; Hall, Alistair S; Hamsten, Anders; Hazen, Stanley L; Huang, Jie; Kähönen, Mika; Kyriakou, Theodosios; Laaksonen, Reijo; Lind, Lars; Lindgren, Cecilia; Magnusson, Patrik K E; Marouli, Eirini; Mihailov, Evelin; Morris, Andrew P; Nikus, Kjell; Pedersen, Nancy; Rallidis, Loukianos; Salomaa, Veikko; Shah, Svati H; Stewart, Alexandre F R; Thompson, John R; Zalloua, Pierre A; Chambers, John C; Collins, Rory; Ingelsson, Erik; Iribarren, Carlos; Karhunen, Pekka J; Kooner, Jaspal S; Lehtimäki, Terho; Loos, Ruth J F; März, Winfried; McPherson, Ruth; Metspalu, Andres; Reilly, Muredach P; Ripatti, Samuli; Sanghera, Dharambir K; Thiery, Joachim; Watkins, Hugh; Deloukas, Panos; Kathiresan, Sekar; Samani, Nilesh J; Schunkert, Heribert; Erdmann, Jeanette; König, Inke R

    2016-10-12

    In recent years, genome-wide association studies have identified 58 independent risk loci for coronary artery disease (CAD) on the autosome. However, due to the sex-specific data structure of the X chromosome, it has been excluded from most of these analyses. While females have 2 copies of chromosome X, males have only one. Also, one of the female X chromosomes may be inactivated. Therefore, special test statistics and quality control procedures are required. Thus, little is known about the role of X-chromosomal variants in CAD. To fill this gap, we conducted a comprehensive X-chromosome-wide meta-analysis including more than 43,000 CAD cases and 58,000 controls from 35 international study cohorts. For quality control, sex-specific filters were used to adequately take the special structure of X-chromosomal data into account. For single study analyses, several logistic regression models were calculated allowing for inactivation of one female X-chromosome, adjusting for sex and investigating interactions between sex and genetic variants. Then, meta-analyses including all 35 studies were conducted using random effects models. None of the investigated models revealed genome-wide significant associations for any variant. Although we analyzed the largest-to-date sample, currently available methods were not able to detect any associations of X-chromosomal variants with CAD.

  9. Study of electrical transport properties of (U 1- xY x)RuP 2Si 2

    NASA Astrophysics Data System (ADS)

    Radha, S.; Park, J.-G.; Roy, S. B.; Coles, B. R.; Nigam, A. K.; McEwen, K. A.

    1996-02-01

    Electrical resistivity and magnetoresistance ( {δϱ}/{ϱ}) measurements on a series of (U 1- xY x)Ru 2Si 2 (0 ⩽ x ⩽ 0.9) compounds in the temperature range 4.2-300 K and in magnetic fields up to 45 kOe are reported. The resistivity measurements do not show any signature of antiferromagnetism for x > 0.5. The compound URu 2Si 2 exhibits a large, positive ( {δϱ}/{ϱ}) presumably due to destruction of Kondo coherence as well as due to antiferromagnetism. The presence of even 5% Y at U-site weakens the Kondo coherence and reduces the magnetoresistance considerably.

  10. Using conventional F-statistics to study unconventional sex-chromosome differentiation.

    PubMed

    Rodrigues, Nicolas; Dufresnes, Christophe

    2017-01-01

    Species with undifferentiated sex chromosomes emerge as key organisms to understand the astonishing diversity of sex-determination systems. Whereas new genomic methods are widening opportunities to study these systems, the difficulty to separately characterize their X and Y homologous chromosomes poses limitations. Here we demonstrate that two simple F -statistics calculated from sex-linked genotypes, namely the genetic distance ( F st ) between sexes and the inbreeding coefficient ( F is ) in the heterogametic sex, can be used as reliable proxies to compare sex-chromosome differentiation between populations. We correlated these metrics using published microsatellite data from two frog species ( Hyla arborea and Rana temporaria ), and show that they intimately relate to the overall amount of X-Y differentiation in populations. However, the fits for individual loci appear highly variable, suggesting that a dense genetic coverage will be needed for inferring fine-scale patterns of differentiation along sex-chromosomes. The applications of these F -statistics, which implies little sampling requirement, significantly facilitate population analyses of sex-chromosomes.

  11. Transport properties of Y1-xNdxCo2 compounds

    NASA Astrophysics Data System (ADS)

    Uchima, K.; Takeda, M.; Zukeran, C.; Nakamura, A.; Arakaki, N.; Komesu, S.; Takaesu, Y.; Hedo, M.; Nakama, T.; Yagasaki, K.; Uwatoko, Y.; Burkov, A. T.

    2012-12-01

    Electrical resistivity ρ and thermopower S of light rare earth-based pseudo-binary Y1-xNdxCo2 alloys have been measured at temperatures from 2 K to 300 K and under pressures up to 3.5 GPa. The Curie temperature of the alloys, TC, determined from characteristic features in the temperature dependences of the transport properties, decreases with decreasing Nd concentration x and vanishes around xc = 0.3. The residual resistivity has a pronounced maximum at x = xc. The temperature coefficient of thermopower dS/dT at low temperature limit shows a complex dependence on alloy composition: it changes its sign from negative to positive at x ≍ 0.2, having a maximum at x = xc, and is nearly composition independent at x > 0.5. The pressure dependences of TC and ρ0 of Yo.6Ndo.4Co2 reveal the behavior similar to that observed in the Y1-xRxHCo2 (RH = heavy rare earth) alloy systems, which implies that the magnetic state of the Co-3d electron subsystem is responsible for the transport properties in the Y1-xNdxCo2 alloys.

  12. The Contribution of the Y Chromosome to Hybrid Male Sterility in House Mice

    PubMed Central

    Campbell, Polly; Good, Jeffrey M.; Dean, Matthew D.; Tucker, Priscilla K.; Nachman, Michael W.

    2012-01-01

    Hybrid sterility in the heterogametic sex is a common feature of speciation in animals. In house mice, the contribution of the Mus musculus musculus X chromosome to hybrid male sterility is large. It is not known, however, whether F1 male sterility is caused by X–Y or X-autosome incompatibilities or a combination of both. We investigated the contribution of the M. musculus domesticus Y chromosome to hybrid male sterility in a cross between wild-derived strains in which males with a M. m. musculus X chromosome and M. m. domesticus Y chromosome are partially sterile, while males from the reciprocal cross are reproductively normal. We used eight X introgression lines to combine different X chromosome genotypes with different Y chromosomes on an F1 autosomal background, and we measured a suite of male reproductive traits. Reproductive deficits were observed in most F1 males, regardless of Y chromosome genotype. Nonetheless, we found evidence for a negative interaction between the M. m. domesticus Y and an interval on the M. m. musculus X that resulted in abnormal sperm morphology. Therefore, although F1 male sterility appears to be caused mainly by X-autosome incompatibilities, X–Y incompatibilities contribute to some aspects of sterility. PMID:22595240

  13. Number of X-chromosome genes influences social behavior and vasopressin gene expression in mice

    PubMed Central

    Cox, Kimberly H.; Quinnies, Kayla M.; Eschendroeder, Alex; Didrick, Paula M.; Eugster, Erica A.; Rissman, Emilie F.

    2017-01-01

    Summary Sex differences in behavior are widespread and often caused by hormonal differences between the sexes. In addition to hormones, the composition and numbers of the sex chromosomes also affect a variety of sex differences. In humans, X-chromosome genes are implicated in neurobehavioral disorders (i.e. fragile-X, autism). To investigate the role of X-chromosome genes in social behavior, we used a mouse model that has atypical sex chromosome configurations resembling Turner (45, XO) and Klinefelter syndromes (47, XXY). We examined a number of behaviors in juvenile mice. Mice with only one copy of most X-chromosome genes, regardless of gonadal sex, were less social in dyadic interaction and social preference tasks. In the elevated plus maze, mice with one X-chromosome spent less time in the distal ends of the open arms as compared to mice with two copies of X-chromosome genes. Using qRTPCR, we noted that amygdala from female mice with one X-chromosome had higher expression levels of vasopressin (Avp) as compared to mice in the other groups. Finally, in plasma from girls with Turner syndrome we detected reduced vasopressin (AVP) concentrations as compared to control patients. These novel findings link sex chromosome genes with social behavior via concentrations of AVP in brain, adding to our understanding of sex differences in neurobehavioral disorders. PMID:25462900

  14. Nanocrystalline Ce 1- xY xO 2- x/2 (0≤ x≤0.35) Oxides via Carbonate Precipitation: Synthesis and Characterization

    NASA Astrophysics Data System (ADS)

    Li, Ji-Guang; Ikegami, Takayasu; Wang, Yarong; Mori, Toshiyuki

    2002-10-01

    A novel carbonate (co)precipitation method, employing nitrates as the starting salts and ammonium carbonate as the precipitant, has been used to synthesize nanocrystalline CeO 2 and Ce 1- xY xO 2- x/2 ( x≤0.35) solid-solutions. The resultant powders are characterized by elemental analysis, differential thermal analysis/thermogravimetry (DTA/TG), X-ray diffractometry (XRD), Brunauer-Emmett-Teller (BET) analysis, and high-resolution scanning electron microscopy (HRSEM). Due to the direct formation of carbonate solid-solutions during precipitation, Ce 1- xY xO 2- x/2 solid-solution oxides are formed directly during calcination at a very low temperature of ˜300°C for 2 h. The thus-produced oxide nanopowders are essentially non-agglomerated, as revealed by BET in conjunction with XRD analysis. The solubility of YO 1.5 in CeO 2 is determined via XRD to be somewhere in the range from 27 to 35 mol%, from which a Y 2O 3-related type-C phase appears in the final product. Y 3+-doping promotes the formation of spherical nanoparticles, retards thermal decomposition of the precursors, and suppresses significantly crystallite coarsening of the oxides during calcination. The activation energy for crystallite coarsening increases gradually from 68.7 kJ mol -1 for pure CeO 2 to 138.6 kJ mol -1 for CeO 2 doped with 35 mol% YO 1.5. The dopant effects on crystallite coarsening is elaborated from the view point of solid-state chemistry.

  15. X chromosome regulation: diverse patterns in development, tissues and disease

    PubMed Central

    Deng, Xinxian; Berletch, Joel B.; Nguyen, Di K.; Disteche, Christine M.

    2014-01-01

    Genes on the mammalian X chromosome are present in one copy in males and two copies in females. The complex mechanisms that regulate the X chromosome lead to evolutionary and physiological variability in gene expression between species, the sexes, individuals, developmental stages, tissues and cell types. In early development, delayed and incomplete X chromosome inactivation (XCI) in some species causes variability in gene expression. Additional diversity stems from escape from XCI and from mosaicism or XCI skewing in females. This causes sex-specific differences that manifest as differential gene expression and associated phenotypes. Furthermore, the complexity and diversity of X dosage regulation affect the severity of diseases caused by X-linked mutations. PMID:24733023

  16. 46, XX true hermaphroditism associated with a terminal deletion of the short arm of the X chromosome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbaux, S.; Vilain, E.; McElreavey, K.

    1994-09-01

    Testes are determined by the activity of the SRY gene product encoded by the Y chromosome. Mutations in SRY can lead to XY sex reversal (XY females) and the presence of the SRY gene in some XX individuals can lead either to complete (XX males) or incomplete (XX true hermaphrodites) sex reversal. Approximately 10% of XX true hermaphrodites contain a portion of the Y chromosome, including SRY, in their genome. The etiology of the remaining cases is unestablished but may be caused by mutations in other as yet unidentied sex determining genes downstream of SRY. Here we describe an SRY-negativemore » true hermaphrodite with a 46,X,del(X)(p21.1-pter). The patient also presented with severe mental retardation, abnormal skin pigmentation and below average height. Histological examination of the gonad revealed bilateral ovotestis. We postulate that the Xp deletion has unmasked a recessive allele on the apparently normal X chromosome generating the intersex phenotype. This observation together with recent findings of certain XY females carrying duplications of Xp21.3 suggests that there may be a loci on Xp which acts as a switch in the testis/ovarian determination pathways.« less

  17. Discovery of the youngest sex chromosomes reveals first case of convergent co-option of ancestral autosomes in turtles.

    PubMed

    Montiel, E E; Badenhorst, D; Tamplin, J; Burke, R L; Valenzuela, N

    2017-02-01

    Most turtle species possess temperature-dependent sex determination (TSD), but genotypic sex determination (GSD) has evolved multiple times independently from the TSD ancestral condition. GSD in animals typically involves sex chromosomes, yet the sex chromosome system of only 9 out of 18 known GSD turtles has been characterized. Here, we combine comparative genome hybridization (CGH) and BAC clone fluorescent in situ hybridization (BAC FISH) to identify a macro-chromosome XX/XY system in the GSD wood turtle Glyptemys insculpta (GIN), the youngest known sex chromosomes in chelonians (8-20 My old). Comparative analyses show that GIN-X/Y is homologous to chromosome 4 of Chrysemys picta (CPI) painted turtles, chromosome 5 of Gallus gallus chicken, and thus to the X/Y sex chromosomes of Siebenrockiella crassicollis black marsh turtles. We tentatively assign the gene content of the mapped BACs from CPI chromosome 4 (CPI-4) to GIN-X/Y. Chromosomal rearrangements were detected in G. insculpta sex chromosome pair that co-localize with the male-specific region of GIN-Y and encompass a gene involved in sexual development (Wt1-a putative master gene in TSD turtles). Such inversions may have mediated the divergence of G. insculpta sex chromosome pair and facilitated GSD evolution in this turtle. Our results illuminate the structure, origin, and evolution of sex chromosomes in G. insculpta and reveal the first case of convergent co-option of an autosomal pair as sex chromosomes within chelonians.

  18. Condensin-Driven Remodeling of X-Chromosome Topology during Dosage Compensation

    PubMed Central

    Crane, Emily; Bian, Qian; McCord, Rachel Patton; Lajoie, Bryan R.; Wheeler, Bayly S.; Ralston, Edward J.; Uzawa, Satoru; Dekker, Job; Meyer, Barbara J.

    2015-01-01

    The three-dimensional organization of a genome plays a critical role in regulating gene expression, yet little is known about the machinery and mechanisms that determine higher-order chromosome structure1,2. Here we perform genome-wide chromosome conformation capture analysis, FISH, and RNA-seq to obtain comprehensive 3D maps of the Caenorhabditis elegans genome and to dissect X-chromosome dosage compensation, which balances gene expression between XX hermaphrodites and XO males. The dosage compensation complex (DCC), a condensin complex, binds to both hermaphrodite X chromosomes via sequence-specific recruitment elements on X (rex sites) to reduce chromosome-wide gene expression by half3–7. Most DCC condensin subunits also act in other condensin complexes to control the compaction and resolution of all mitotic and meiotic chromosomes5,6. By comparing chromosome structure in wild-type and DCC-defective embryos, we show that the DCC remodels hermaphrodite X chromosomes into a sex-specific spatial conformation distinct from autosomes. Dosage-compensated X chromosomes consist of self-interacting domains (~1 Mb) resembling mammalian Topologically Associating Domains (TADs)8,9. TADs on X have stronger boundaries and more regular spacing than on autosomes. Many TAD boundaries on X coincide with the highest-affinity rex sites and become diminished or lost in DCC-defective mutants, thereby converting the topology of X to a conformation resembling autosomes. rex sites engage in DCC-dependent long-range interactions, with the most frequent interactions occurring between rex sites at DCC-dependent TAD boundaries. These results imply that the DCC reshapes the topology of X by forming new TAD boundaries and reinforcing weak boundaries through interactions between its highest-affinity binding sites. As this model predicts, deletion of an endogenous rex site at a DCC-dependent TAD boundary using CRISPR/Cas9 greatly diminished the boundary. Thus, the DCC imposes a distinct

  19. Landscape of X chromosome inactivation across human tissues.

    PubMed

    Tukiainen, Taru; Villani, Alexandra-Chloé; Yen, Angela; Rivas, Manuel A; Marshall, Jamie L; Satija, Rahul; Aguirre, Matt; Gauthier, Laura; Fleharty, Mark; Kirby, Andrew; Cummings, Beryl B; Castel, Stephane E; Karczewski, Konrad J; Aguet, François; Byrnes, Andrea; Lappalainen, Tuuli; Regev, Aviv; Ardlie, Kristin G; Hacohen, Nir; MacArthur, Daniel G

    2017-10-11

    X chromosome inactivation (XCI) silences transcription from one of the two X chromosomes in female mammalian cells to balance expression dosage between XX females and XY males. XCI is, however, incomplete in humans: up to one-third of X-chromosomal genes are expressed from both the active and inactive X chromosomes (Xa and Xi, respectively) in female cells, with the degree of 'escape' from inactivation varying between genes and individuals. The extent to which XCI is shared between cells and tissues remains poorly characterized, as does the degree to which incomplete XCI manifests as detectable sex differences in gene expression and phenotypic traits. Here we describe a systematic survey of XCI, integrating over 5,500 transcriptomes from 449 individuals spanning 29 tissues from GTEx (v6p release) and 940 single-cell transcriptomes, combined with genomic sequence data. We show that XCI at 683 X-chromosomal genes is generally uniform across human tissues, but identify examples of heterogeneity between tissues, individuals and cells. We show that incomplete XCI affects at least 23% of X-chromosomal genes, identify seven genes that escape XCI with support from multiple lines of evidence and demonstrate that escape from XCI results in sex biases in gene expression, establishing incomplete XCI as a mechanism that is likely to introduce phenotypic diversity. Overall, this updated catalogue of XCI across human tissues helps to increase our understanding of the extent and impact of the incompleteness in the maintenance of XCI.

  20. No Association of Coronary Artery Disease with X-Chromosomal Variants in Comprehensive International Meta-Analysis

    PubMed Central

    Loley, Christina; Alver, Maris; Assimes, Themistocles L.; Bjonnes, Andrew; Goel, Anuj; Gustafsson, Stefan; Hernesniemi, Jussi; Hopewell, Jemma C.; Kanoni, Stavroula; Kleber, Marcus E.; Lau, King Wai; Lu, Yingchang; Lyytikäinen, Leo-Pekka; Nelson, Christopher P.; Nikpay, Majid; Qu, Liming; Salfati, Elias; Scholz, Markus; Tukiainen, Taru; Willenborg, Christina; Won, Hong-Hee; Zeng, Lingyao; Zhang, Weihua; Anand, Sonia S.; Beutner, Frank; Bottinger, Erwin P.; Clarke, Robert; Dedoussis, George; Do, Ron; Esko, Tõnu; Eskola, Markku; Farrall, Martin; Gauguier, Dominique; Giedraitis, Vilmantas; Granger, Christopher B.; Hall, Alistair S.; Hamsten, Anders; Hazen, Stanley L.; Huang, Jie; Kähönen, Mika; Kyriakou, Theodosios; Laaksonen, Reijo; Lind, Lars; Lindgren, Cecilia; Magnusson, Patrik K. E.; Marouli, Eirini; Mihailov, Evelin; Morris, Andrew P.; Nikus, Kjell; Pedersen, Nancy; Rallidis, Loukianos; Salomaa, Veikko; Shah, Svati H.; Stewart, Alexandre F. R.; Thompson, John R.; Zalloua, Pierre A.; Chambers, John C.; Collins, Rory; Ingelsson, Erik; Iribarren, Carlos; Karhunen, Pekka J.; Kooner, Jaspal S.; Lehtimäki, Terho; Loos, Ruth J. F.; März, Winfried; McPherson, Ruth; Metspalu, Andres; Reilly, Muredach P.; Ripatti, Samuli; Sanghera, Dharambir K.; Thiery, Joachim; Watkins, Hugh; Deloukas, Panos; Kathiresan, Sekar; Samani, Nilesh J.; Schunkert, Heribert; Erdmann, Jeanette; König, Inke R.

    2016-01-01

    In recent years, genome-wide association studies have identified 58 independent risk loci for coronary artery disease (CAD) on the autosome. However, due to the sex-specific data structure of the X chromosome, it has been excluded from most of these analyses. While females have 2 copies of chromosome X, males have only one. Also, one of the female X chromosomes may be inactivated. Therefore, special test statistics and quality control procedures are required. Thus, little is known about the role of X-chromosomal variants in CAD. To fill this gap, we conducted a comprehensive X-chromosome-wide meta-analysis including more than 43,000 CAD cases and 58,000 controls from 35 international study cohorts. For quality control, sex-specific filters were used to adequately take the special structure of X-chromosomal data into account. For single study analyses, several logistic regression models were calculated allowing for inactivation of one female X-chromosome, adjusting for sex and investigating interactions between sex and genetic variants. Then, meta-analyses including all 35 studies were conducted using random effects models. None of the investigated models revealed genome-wide significant associations for any variant. Although we analyzed the largest-to-date sample, currently available methods were not able to detect any associations of X-chromosomal variants with CAD. PMID:27731410

  1. Independent Evolution of Transcriptional Inactivation on Sex Chromosomes in Birds and Mammals

    PubMed Central

    Livernois, Alexandra M.; Waters, Shafagh A.; Deakin, Janine E.; Marshall Graves, Jennifer A.; Waters, Paul D.

    2013-01-01

    X chromosome inactivation in eutherian mammals has been thought to be tightly controlled, as expected from a mechanism that compensates for the different dosage of X-borne genes in XX females and XY males. However, many X genes escape inactivation in humans, inactivation of the X in marsupials is partial, and the unrelated sex chromosomes of monotreme mammals have incomplete and gene-specific inactivation of X-linked genes. The bird ZW sex chromosome system represents a third independently evolved amniote sex chromosome system with dosage compensation, albeit partial and gene-specific, via an unknown mechanism (i.e. upregulation of the single Z in females, down regulation of one or both Zs in males, or a combination). We used RNA-fluorescent in situ hybridization (RNA-FISH) to demonstrate, on individual fibroblast cells, inactivation of 11 genes on the chicken Z and 28 genes on the X chromosomes of platypus. Each gene displayed a reproducible frequency of 1Z/1X-active and 2Z/2X-active cells in the homogametic sex. Our results indicate that the probability of inactivation is controlled on a gene-by-gene basis (or small domains) on the chicken Z and platypus X chromosomes. This regulatory mechanism must have been exapted independently to the non-homologous sex chromosomes in birds and mammals in response to an over-expressed Z or X in the homogametic sex, highlighting the universal importance that (at least partial) silencing plays in the evolution on amniote dosage compensation and, therefore, the differentiation of sex chromosomes. PMID:23874231

  2. Cytogenetic Insights into the Evolution of Chromosomes and Sex Determination Reveal Striking Homology of Turtle Sex Chromosomes to Amphibian Autosomes.

    PubMed

    Montiel, Eugenia E; Badenhorst, Daleen; Lee, Ling S; Literman, Robert; Trifonov, Vladimir; Valenzuela, Nicole

    2016-01-01

    Turtle karyotypes are highly conserved compared to other vertebrates; yet, variation in diploid number (2n = 26-68) reflects profound genomic reorganization, which correlates with evolutionary turnovers in sex determination. We evaluate the published literature and newly collected comparative cytogenetic data (G- and C-banding, 18S-NOR, and telomere-FISH mapping) from 13 species spanning 2n = 28-68 to revisit turtle genome evolution and sex determination. Interstitial telomeric sites were detected in multiple lineages that underwent diploid number and sex determination turnovers, suggesting chromosomal rearrangements. C-banding revealed potential interspecific variation in centromere composition and interstitial heterochromatin at secondary constrictions. 18S-NORs were detected in secondary constrictions in a single chromosomal pair per species, refuting previous reports of multiple NORs in turtles. 18S-NORs are linked to ZW chromosomes in Apalone and Pelodiscus and to X (not Y) in Staurotypus. Notably, comparative genomics across amniotes revealed that the sex chromosomes of several turtles, as well as mammals and some lizards, are homologous to components of Xenopus tropicalis XTR1 (carrying Dmrt1). Other turtle sex chromosomes are homologous to XTR4 (carrying Wt1). Interestingly, all known turtle sex chromosomes, except in Trionychidae, evolved via inversions around Dmrt1 or Wt1. Thus, XTR1 appears to represent an amniote proto-sex chromosome (perhaps linked ancestrally to XTR4) that gave rise to turtle and other amniote sex chromosomes. © 2016 S. Karger AG, Basel.

  3. Allometric Analysis Detects Brain Size-Independent Effects of Sex and Sex Chromosome Complement on Human Cerebellar Organization

    PubMed Central

    Mankiw, Catherine; Park, Min Tae M.; Reardon, P.K.; Fish, Ari M.; Clasen, Liv S.; Greenstein, Deanna; Blumenthal, Jonathan D.; Lerch, Jason P.; Chakravarty, M. Mallar

    2017-01-01

    The cerebellum is a large hindbrain structure that is increasingly recognized for its contribution to diverse domains of cognitive and affective processing in human health and disease. Although several of these domains are sex biased, our fundamental understanding of cerebellar sex differences—including their spatial distribution, potential biological determinants, and independence from brain volume variation—lags far behind that for the cerebrum. Here, we harness automated neuroimaging methods for cerebellar morphometrics in 417 individuals to (1) localize normative male–female differences in raw cerebellar volume, (2) compare these to sex chromosome effects estimated across five rare sex (X/Y) chromosome aneuploidy (SCA) syndromes, and (3) clarify brain size-independent effects of sex and SCA on cerebellar anatomy using a generalizable allometric approach that considers scaling relationships between regional cerebellar volume and brain volume in health. The integration of these approaches shows that (1) sex and SCA effects on raw cerebellar volume are large and distributed, but regionally heterogeneous, (2) human cerebellar volume scales with brain volume in a highly nonlinear and regionally heterogeneous fashion that departs from documented patterns of cerebellar scaling in phylogeny, and (3) cerebellar organization is modified in a brain size-independent manner by sex (relative expansion of total cerebellum, flocculus, and Crus II-lobule VIIIB volumes in males) and SCA (contraction of total cerebellar, lobule IV, and Crus I volumes with additional X- or Y-chromosomes; X-specific contraction of Crus II-lobule VIIIB). Our methods and results clarify the shifts in human cerebellar organization that accompany interwoven variations in sex, sex chromosome complement, and brain size. SIGNIFICANCE STATEMENT Cerebellar systems are implicated in diverse domains of sex-biased behavior and pathology, but we lack a basic understanding of how sex differences in the

  4. Allometric Analysis Detects Brain Size-Independent Effects of Sex and Sex Chromosome Complement on Human Cerebellar Organization.

    PubMed

    Mankiw, Catherine; Park, Min Tae M; Reardon, P K; Fish, Ari M; Clasen, Liv S; Greenstein, Deanna; Giedd, Jay N; Blumenthal, Jonathan D; Lerch, Jason P; Chakravarty, M Mallar; Raznahan, Armin

    2017-05-24

    The cerebellum is a large hindbrain structure that is increasingly recognized for its contribution to diverse domains of cognitive and affective processing in human health and disease. Although several of these domains are sex biased, our fundamental understanding of cerebellar sex differences-including their spatial distribution, potential biological determinants, and independence from brain volume variation-lags far behind that for the cerebrum. Here, we harness automated neuroimaging methods for cerebellar morphometrics in 417 individuals to (1) localize normative male-female differences in raw cerebellar volume, (2) compare these to sex chromosome effects estimated across five rare sex (X/Y) chromosome aneuploidy (SCA) syndromes, and (3) clarify brain size-independent effects of sex and SCA on cerebellar anatomy using a generalizable allometric approach that considers scaling relationships between regional cerebellar volume and brain volume in health. The integration of these approaches shows that (1) sex and SCA effects on raw cerebellar volume are large and distributed, but regionally heterogeneous, (2) human cerebellar volume scales with brain volume in a highly nonlinear and regionally heterogeneous fashion that departs from documented patterns of cerebellar scaling in phylogeny, and (3) cerebellar organization is modified in a brain size-independent manner by sex (relative expansion of total cerebellum, flocculus, and Crus II-lobule VIIIB volumes in males) and SCA (contraction of total cerebellar, lobule IV, and Crus I volumes with additional X- or Y-chromosomes; X-specific contraction of Crus II-lobule VIIIB). Our methods and results clarify the shifts in human cerebellar organization that accompany interwoven variations in sex, sex chromosome complement, and brain size. SIGNIFICANCE STATEMENT Cerebellar systems are implicated in diverse domains of sex-biased behavior and pathology, but we lack a basic understanding of how sex differences in the human

  5. Electronic disorder and magnetic-field-induced superconductivity enhancement in Fe1+y(Te1-xSex)

    NASA Astrophysics Data System (ADS)

    Hu, Jin; Liu, Tijiang; Qian, Bin; Mao, Zhiqiang

    2012-02-01

    The iron chalcogenide Fe1+y(Te1-xSex) superconductor system exhibits a unique electronic and magnetic phase diagram distinct from those seen in iron pnictides: bulk superconductivity does not appear immediately following the suppression of long-range (π,0) AFM order. Instead, an intermediate phase with weak charge carrier localization appears between AFM order and bulk superconductivity (Liu et al., Nat. Mater. 9, 719 (2010)). In this talk, we report our recent studies on the relationship between the normal state and superconducting properties in Fe1+y(Te1-xSex). We show that the superconducting volume fraction VSC and normal state metallicity significantly increase while the normal state Sommerfeld coefficient γ and Hall coefficient RH drop drastically with increasing Se content in the underdoped superconducting region. Additionally, VSC is surprisingly enhanced by magnetic field in heavily underdoped superconducting samples. The implications of these results will be discussed. Our analyses suggest that the suppression of superconductivity in the underdoped region is associated with electronic disorder caused by incoherent magnetic scattering arising from (π,0) magnetic fluctuations.

  6. Convergent evolution of Y chromosome gene content in flies.

    PubMed

    Mahajan, Shivani; Bachtrog, Doris

    2017-10-04

    Sex-chromosomes have formed repeatedly across Diptera from ordinary autosomes, and X-chromosomes mostly conserve their ancestral genes. Y-chromosomes are characterized by abundant gene-loss and an accumulation of repetitive DNA, yet the nature of the gene repertoire of fly Y-chromosomes is largely unknown. Here we trace gene-content evolution of Y-chromosomes across 22 Diptera species, using a subtraction pipeline that infers Y genes from male and female genome, and transcriptome data. Few genes remain on old Y-chromosomes, but the number of inferred Y-genes varies substantially between species. Young Y-chromosomes still show clear evidence of their autosomal origins, but most genes on old Y-chromosomes are not simply remnants of genes originally present on the proto-sex-chromosome that escaped degeneration, but instead were recruited secondarily from autosomes. Despite almost no overlap in Y-linked gene content in different species with independently formed sex-chromosomes, we find that Y-linked genes have evolved convergent gene functions associated with testis expression. Thus, male-specific selection appears as a dominant force shaping gene-content evolution of Y-chromosomes across fly species.While X-chromosome gene content tends to be conserved, Y-chromosome evolution is dynamic and difficult to reconstruct. Here, Mahajan and Bachtrog use a subtraction pipeline to identify Y-linked genes in 22 Diptera species, revealing patterns of Y-chromosome gene-content evolution.

  7. Avian sex, sex chromosomes, and dosage compensation in the age of genomics.

    PubMed

    Graves, Jennifer A Marshall

    2014-04-01

    Comparisons of the sex chromosome systems in birds and mammals are widening our view and deepening our understanding of vertebrate sex chromosome organization, function, and evolution. Birds have a very conserved ZW system of sex determination in which males have two copies of a large, gene-rich Z chromosome, and females have a single Z and a female-specific W chromosome. The avian ZW system is quite the reverse of the well-studied mammalian XY chromosome system, and evolved independently from different autosomal blocs. Despite the different gene content of mammal and bird sex chromosomes, there are many parallels. Genes on the bird Z and the mammal X have both undergone selection for male-advantage functions, and there has been amplification of male-advantage genes and accumulation of LINEs. The bird W and mammal Y have both undergone extensive degradation, but some birds retain early stages and some mammals terminal stages of the process, suggesting that the process is more advanced in mammals. Different sex-determining genes, DMRT1 and SRY, define the ZW and XY systems, but DMRT1 is involved in downstream events in mammals. Birds show strong cell autonomous specification of somatic sex differences in ZZ and ZW tissue, but there is growing evidence for direct X chromosome effects on sexual phenotype in mammals. Dosage compensation in birds appears to be phenotypically and molecularly quite different from X inactivation, being partial and gene-specific, but both systems use tools from the same molecular toolbox and there are some signs that galliform birds represent an early stage in the evolution of a coordinated system.

  8. Crystal structure and electrical conductivity of lanthanum-calcium chromites-titanates La 1-xCa xCr 1-yTi yO 3-δ ( x=0-1, y=0-1)

    NASA Astrophysics Data System (ADS)

    Vashook, V.; Vasylechko, L.; Zosel, J.; Gruner, W.; Ullmann, H.; Guth, U.

    2004-10-01

    Five series of perovskite-type compounds in the system La1-xCaxCr1-yTiyO3 with the nominal compositions y = 0 , x = 0 - 0.5 ; y = 0.2 , x = 0.2 - 0.8 ; y = 0.5 , x = 0.5 - 1.0 ; y = 0.8 , x = 0.6 - 1.0 and y = 1 , x = 0.8 - 1 were synthesized by a ceramic technique in air (final heating 1350 °C). On the basis of the X-ray analysis of the samples with (Ca/Ti)⩾1, the phase diagram of the CaTiO3-LaCrIIIO3-CaCrIVO3 quasi-ternary system was constructed. Extended solid solution with a wide homogeneity range is formed in the quasi-ternary system CaCrIVO3-CaTiO3-LaCrIIIO3. The solid solution La(1-x‧-y)Ca(x‧+y)CrIVx‧CrIII(1-x‧-y)TiyO3 exists by up to 0.6-0.7 mol fractions of CaCrIVO3 (x‧ < 0.6 - 0.7) at the experimental conditions. The crystal structure of the compounds is orthorhombic in the space group Pbnm at room temperature. The lattice parameters and the average interatomic distances of the samples within the solid solution ranges decrease uniformly with increasing Ca content. Outside the quasi-ternary system, the nominal compositions La0.1Ca0.9TiO3, La0.2Ca0.8TiO3, La0.4Ca0.6Cr0.2Ti0.8O3 and La0.3Ca0.7Cr0.2Ti0.8O3 in the system La1-xCaxCr1-yTiyO3 were found as single phases with an orthorhombic structure. In the temperature range between 850 and 1000 °C, the synthesized single-phase compositions are stable at pO2=6×10-16-0.21×105 Pa. Oxygen stoichiometry and electrical conductivity of the separate compounds were investigated as functions of temperature and oxygen partial pressure. The chemical stability of these oxides with respect to oxygen release during thermal dissociation decreases with increasing Ca-content. At 900 °C and oxygen partial pressure 1×10-15-0.21×105 Pa, the compounds with x > y (acceptor doped) are p-type semiconductors and those with x < y (donor doped) and x = y are n-type semiconductors. The type and level of electrical conductivity are functions of the concentration ratios of cations occupying the B-sites of the perovskite

  9. Differentiation of sex chromosomes and karyotypic evolution in the eye-lid geckos (Squamata: Gekkota: Eublepharidae), a group with different modes of sex determination.

    PubMed

    Pokorná, Martina; Rábová, Marie; Ráb, Petr; Ferguson-Smith, Malcolm A; Rens, Willem; Kratochvíl, Lukáš

    2010-11-01

    The eyelid geckos (family Eublepharidae) include both species with temperature-dependent sex determination and species where genotypic sex determination (GSD) was suggested based on the observation of equal sex ratios at several incubation temperatures. In this study, we present data on karyotypes and chromosomal characteristics in 12 species (Aeluroscalabotes felinus, Coleonyx brevis, Coleonyx elegans, Coleonyx variegatus, Eublepharis angramainyu, Eublepharis macularius, Goniurosaurus araneus, Goniurosaurus lichtenfelderi, Goniurosaurus luii, Goniurosaurus splendens, Hemitheconyx caudicinctus, and Holodactylus africanus) covering all genera of the family, and search for the presence of heteromorphic sex chromosomes. Phylogenetic mapping of chromosomal changes showed a long evolutionary stasis of karyotypes with all acrocentric chromosomes followed by numerous chromosomal rearrangements in the ancestors of two lineages. We have found heteromorphic sex chromosomes in only one species, which suggests that sex chromosomes in most GSD species of the eyelid geckos are not morphologically differentiated. The sexual difference in karyotype was detected only in C. elegans which has a multiple sex chromosome system (X(1)X(2)Y). The metacentric Y chromosome evolved most likely via centric fusion of two acrocentric chromosomes involving loss of interstitial telomeric sequences. We conclude that the eyelid geckos exhibit diversity in sex determination ranging from the absence of any sexual differences to heteromorphic sex chromosomes, which makes them an interesting system for exploring the evolutionary origin of sexually dimorphic genomes.

  10. Activity map of the tammar X chromosome shows that marsupial X inactivation is incomplete and escape is stochastic

    PubMed Central

    2010-01-01

    Background X chromosome inactivation is a spectacular example of epigenetic silencing. In order to deduce how this complex system evolved, we examined X inactivation in a model marsupial, the tammar wallaby (Macropus eugenii). In marsupials, X inactivation is known to be paternal, incomplete and tissue-specific, and occurs in the absence of an XIST orthologue. Results We examined expression of X-borne genes using quantitative PCR, revealing a range of dosage compensation for different loci. To assess the frequency of 1X- or 2X-active fibroblasts, we investigated expression of 32 X-borne genes at the cellular level using RNA-FISH. In female fibroblasts, two-color RNA-FISH showed that genes were coordinately expressed from the same X (active X) in nuclei in which both loci were inactivated. However, loci on the other X escape inactivation independently, with each locus showing a characteristic frequency of 1X-active and 2X-active nuclei, equivalent to stochastic escape. We constructed an activity map of the tammar wallaby inactive X chromosome, which identified no relationship between gene location and extent of inactivation, nor any correlation with the presence or absence of a Y-borne paralog. Conclusions In the tammar wallaby, one X (presumed to be maternal) is expressed in all cells, but genes on the other (paternal) X escape inactivation independently and at characteristic frequencies. The paternal and incomplete X chromosome inactivation in marsupials, with stochastic escape, appears to be quite distinct from the X chromosome inactivation process in eutherians. We find no evidence for a polar spread of inactivation from an X inactivation center. PMID:21182760

  11. Unique sex chromosome systems in Ellobius: How do male XX chromosomes recombine and undergo pachytene chromatin inactivation?

    PubMed

    Matveevsky, Sergey; Bakloushinskaya, Irina; Kolomiets, Oxana

    2016-07-18

    Most mammalian species have heteromorphic sex chromosomes in males, except for a few enigmatic groups such as the mole voles Ellobius, which do not have the Y chromosome and Sry gene. The Ellobius (XX ♀♂) system of sex chromosomes has no analogues among other animals. The structure and meiotic behaviour of the two X chromosomes were investigated for males of the sibling species Ellobius talpinus and Ellobius tancrei. Their sex chromosomes, despite their identical G-structure, demonstrate short synaptic fragments and crossover-associated MLH1 foci in both telomeric regions only. The chromatin undergoes modifications in the meiotic sex chromosomes. SUMO-1 marks a small nucleolus-like body of the meiotic XX. ATR and ubiH2A are localized in the asynaptic area and the histone γH2AFX covers the entire XX bivalent. The distribution of some markers of chromatin inactivation differentiates sex chromosomes of mole voles from those of other mammals. Sex chromosomes of both studied species have identical recombination and meiotic inactivation patterns. In Ellobius, similar chromosome morphology masks the functional heteromorphism of the male sex chromosomes, which can be seen at meiosis.

  12. Unique sex chromosome systems in Ellobius: How do male XX chromosomes recombine and undergo pachytene chromatin inactivation?

    PubMed Central

    Matveevsky, Sergey; Bakloushinskaya, Irina; Kolomiets, Oxana

    2016-01-01

    Most mammalian species have heteromorphic sex chromosomes in males, except for a few enigmatic groups such as the mole voles Ellobius, which do not have the Y chromosome and Sry gene. The Ellobius (XX ♀♂) system of sex chromosomes has no analogues among other animals. The structure and meiotic behaviour of the two X chromosomes were investigated for males of the sibling species Ellobius talpinus and Ellobius tancrei. Their sex chromosomes, despite their identical G-structure, demonstrate short synaptic fragments and crossover-associated MLH1 foci in both telomeric regions only. The chromatin undergoes modifications in the meiotic sex chromosomes. SUMO-1 marks a small nucleolus-like body of the meiotic XX. ATR and ubiH2A are localized in the asynaptic area and the histone γH2AFX covers the entire XX bivalent. The distribution of some markers of chromatin inactivation differentiates sex chromosomes of mole voles from those of other mammals. Sex chromosomes of both studied species have identical recombination and meiotic inactivation patterns. In Ellobius, similar chromosome morphology masks the functional heteromorphism of the male sex chromosomes, which can be seen at meiosis. PMID:27425629

  13. Spread of X-chromosome inactivation into chromosome 15 is associated with Prader-Willi syndrome phenotype in a boy with a t(X;15)(p21.1;q11.2) translocation.

    PubMed

    Sakazume, Satoru; Ohashi, Hirofumi; Sasaki, Yuki; Harada, Naoki; Nakanishi, Katsumi; Sato, Hidenori; Emi, Mitsuru; Endoh, Kazushi; Sohma, Ryoichi; Kido, Yasuhiro; Nagai, Toshiro; Kubota, Takeo

    2012-01-01

    X-chromosome inactivation (XCI) is an essential mechanism in females that compensates for the genome imbalance between females and males. It is known that XCI can spread into an autosome of patients with X;autosome translocations. The subject was a 5-year-old boy with Prader-Willi syndrome (PWS)-like features including hypotonia, hypo-genitalism, hypo-pigmentation, and developmental delay. G-banding, fluorescent in situ hybridization, BrdU-incorporated replication, human androgen receptor gene locus assay, SNP microarrays, ChIP-on-chip assay, bisulfite sequencing, and real-time RT-PCR were performed. Cytogenetic analyses revealed that the karyotype was 46,XY,der(X)t(X;15)(p21.1;q11.2),-15. In the derivative chromosome, the X and half of the chromosome 15 segments showed late replication. The X segment was maternal, and the chromosome 15 region was paternal, indicating its post-zygotic origin. The two chromosome 15s had a biparental origin. The DNA methylation level was relatively high in the region proximal from the breakpoint, and the level decreased toward the middle of the chromosome 15 region; however, scattered areas of hypermethylation were found in the distal region. The promoter regions of the imprinted SNRPN and the non-imprinted OCA2 genes were completely and half methylated, respectively. However, no methylation was found in the adjacent imprinted gene UBE3A, which contained a lower density of LINE1 repeats. Our findings suggest that XCI spread into the paternal chromosome 15 led to the aberrant hypermethylation of SNRPN and OCA2 and their decreased expression, which contributes to the PWS-like features and hypo-pigmentation of the patient. To our knowledge, this is the first chromosome-wide methylation study in which the DNA methylation level is demonstrated in an autosome subject to XCI.

  14. Sex chromosome-dependent differential viability of human spermatozoa during prolonged incubation.

    PubMed

    You, Young-Ah; Kwon, Woo-Sung; Saidur Rahman, Md; Park, Yoo-Jin; Kim, Young-Ju; Pang, Myung-Geol

    2017-06-01

    Are there significant differences in the ability of X chromosome-bearing (X) spermatozoa and Y chromosome-bearing (Y) spermatozoa to survive incubation under stressful conditions? Y spermatozoa are more vulnerable to stress than their X counterparts depending on culture period and temperature, and show higher expression of apoptotic proteins. The primary sex ratio is determined by there being an equal number of spermatozoa carrying X and Y chromosomes. This balance can be skewed by exposure to stressful environmental conditions such as changes in pH, pollutants or endocrine disruptors. However, less is known about the ability of sperm carrying either sex chromosome to withstand environmental stress. The difference in survival between X and Y spermatozoa was evaluated by measuring motility, viability and Y:X chromosome ratio during incubation for 5 days, at three temperatures (4, 22 and 37°C), and three pH conditions (6.5, 7.5 and 8.5). To identify the critical factors that determine the survival of X and Y bearing spermatozoa, we analysed the expression levels of apoptosis-related proteins (Bcl, Bax and Caspase-3), as well as the extent of DNA damage under a subset of conditions. Semen samples were obtained by masturbation from normozoospermic donors after 3 days of sexual abstinence. Four samples with >60% motility from different donors were mixed to obtain sufficient semen and eliminate sampling-related bias. Data are presented as mean ± SD of three independent experiments. Mean age of donors was 28.7 ± 3.2 years. In total, 58 489 spermatozoa were scored. The viability of Y spermatozoa was lower after exposure to different temperatures and culture periods than that of X spermatozoa (P < 0.05). Increased expression of apoptotic proteins in live Y spermatozoa was observed, despite the addition of tocopherol to the culture medium (P < 0.05). Spermatozoa were cultured in vitro during the treatment period. It is difficult to extrapolate the observed lifespan

  15. X-Chromosome Dosage and the Response to Cerebral Ischemia

    PubMed Central

    Turtzo, L. Christine; Siegel, Chad; McCullough, Louise D.

    2011-01-01

    Gonadal hormones contribute to ischemic neuroprotection, but cannot fully explain the observed sexual dimorphism in stroke outcomes seen during life stages with low sex steroid hormones. Sex chromosomal complement (XX in females; XY in males) may also contribute to ischemic sexual dimorphism. A transient middle cerebral artery occlusion model was used to investigate the role of X chromosome dosage in female XX and XO littermates of two mouse strains (Paf and EdaTa). Cohorts of XX and XO gonadally intact, ovariectomized, and ovariectomized females supplemented with estrogen were examined. Infarct sizes were equivalent between ovariectomized XX and XO mice, between intact XX and XO mice, and between estrogen-supplemented ovariectomized XX and XO mice. This is the first study to investigate the role of sex chromosome dosage in the response to cerebral ischemia. Neither the number of X chromosomes, nor the parent of origin of the remaining X chromosome, had a significant effect on the degree of cerebral infarction after experimental stroke in adult female mice. Estrogen was protective against cerebral ischemia in both XX and XO mice. PMID:21917808

  16. X chromosome dosage and the response to cerebral ischemia.

    PubMed

    Turtzo, L Christine; Siegel, Chad; McCullough, Louise D

    2011-09-14

    Gonadal hormones contribute to ischemic neuroprotection, but cannot fully explain the observed sexual dimorphism in stroke outcomes seen during life stages with low sex steroid hormones. Sex chromosomal complement (XX in females; XY in males) may also contribute to ischemic sexual dimorphism. A transient middle cerebral artery occlusion model was used to investigate the role of X chromosome dosage in female XX and XO littermates of two mouse strains (Paf and Eda(Ta)). Cohorts of XX and XO gonadally intact, ovariectomized, and ovariectomized females supplemented with estrogen were examined. Infarct sizes were equivalent between ovariectomized XX and XO mice, between intact XX and XO mice, and between estrogen-supplemented ovariectomized XX and XO mice. This is the first study to investigate the role of sex chromosome dosage in the response to cerebral ischemia. Neither the number of X chromosomes nor the parent of origin of the remaining X chromosome had a significant effect on the degree of cerebral infarction after experimental stroke in adult female mice. Estrogen was protective against cerebral ischemia in both XX and XO mice.

  17. X-chromosome dosage as a modulator of pluripotency, signalling and differentiation?

    PubMed

    Schulz, Edda G

    2017-11-05

    Already during early embryogenesis, before sex-specific hormone production is initiated, sex differences in embryonic development have been observed in several mammalian species. Typically, female embryos develop more slowly than their male siblings. A similar phenotype has recently been described in differentiating murine embryonic stem cells, where a double dose of the X-chromosome halts differentiation until dosage-compensation has been achieved through X-chromosome inactivation. On the molecular level, several processes associated with early differentiation of embryonic stem cells have been found to be affected by X-chromosome dosage, such as the transcriptional state of the pluripotency network, the activity pattern of several signal transduction pathways and global levels of DNA-methylation. This review provides an overview of the sex differences described in embryonic stem cells from mice and discusses a series of X-linked genes that are associated with pluripotency, signalling and differentiation and their potential involvement in mediating the observed X-dosage-dependent effects.This article is part of the themed issue 'X-chromosome inactivation: a tribute to Mary Lyon'. © 2017 The Author(s).

  18. Comets C/2003 X5-X11 and Y2-Y10 (SOHO)

    NASA Astrophysics Data System (ADS)

    Battams, K.; Boschat, M.; Zhou, X.-M.; Hoffman, T.; Leprette, X.; Matson, R.; Kracht, R.; Sachs, J.; Marsden, B. G.; Kisala, R.

    2004-06-01

    Further to IAUC 8356, K. Battams reports measurements for additional Kreutz sungrazing comets found on SOHO website C2 images by M. Boschat (C/2003 X5, X7, Y5, Y8), X.-m. Zhou (C/2003 X6, X9, X11), T. Hoffman (C/2003 X8), X. Leprette (C/2003 X10, Y2), R. Matson (2003 Y3, Y9, Y10), R. Kracht (C/2003 Y4, Y7), and J. Sachs (C/2003 Y6). C/2003 Y6 and Y7 were also visible on C3 images. The reductions by B. G. Marsden (and by R. Kisala for C/2003 Y8, Y9, Y10) and orbital elements by Marsden appear on the MPECs cited below. Comet 2003 UT R.A. (2000) Decl. MPEC C/2003 X5 Dec. 4.896 16 46.9 -24 12 2004-L24 C/2003 X6 6.396 16 52.2 -24 20 2004-L24 C/2003 X7 7.829 16 58.6 -24 27 2004-L24 C/2003 X8 8.246 17 00.9 -24 31 2004-L24 C/2003 X9 8.621 17 02.2 -24 34 2004-L24 C/2003 X10 11.188 17 14.5 -24 41 2004-L25 C/2003 X11 13.588 17 25.7 -24 57 2004-L25 C/2003 Y2 19.621 17 53.6 -25 08 2004-L25 C/2003 Y3 19.979 17 55.0 -25 02 2004-L25 C/2003 Y4 20.729 17 58.8 -25 14 2004-L25 C/2003 Y5 22.771 18 08.5 -25 08 2004-L25 C/2003 Y6 23.571 18 14.3 -27 22 2004-L26 C/2003 Y7 24.638 18 20.0 -27 44 2004-L26 C/2003 Y8 25.288 18 19.6 -25 00 2004-L67 C/2003 Y9 25.479 18 20.7 -24 46 2004-L67 C/2003 Y10 26.064 18 23.5 -24 50 2004-L67

  19. Imaging the coexistence of superconductivity and antiferromagnetism in Fe1+yTe1-xSex (x=0.1) using spin-polarized scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Haibiao; Aluru, Ramakrishna; Tsurkan, Vladimir; Loidl, Alois; Deisenhofer, Joachim; Wahl, Peter

    Magnetism has been widely thought to play an important role in unconventional superconductivity. In iron chalcogenide Fe1+yTe, the bicollinear antiferromagnetim (AFM) can be suppressed by Se doping, and consequently superconductivity appears. Though a competition between the two orders is expected, their relation has never been shown in details. Here, using spin-polarized scanning tunneling microscopy, we explore their relation at the atomic scale in an Fe1+yTe1-xSex (x=0.1) single crystal with TC = 10 K, in a regime of the phase diagram where a spin-glass phase has been detected. We clearly observe the short-range AFM order with domains of a lateral size of 10 nm embedded in a non-magnetic matrix. In addition we observe a superconducting gap with prominent coherent peaks in differential conductance spectroscopy with a gap size 2 Δ 4 mV. Surprisingly, no correlation between the superconducting properties (gap size and zero bias conductance) and the local AFM order is observed, while the coherence peaks are weakened by the existence of excess iron atoms. Our observations put constraints on theories that are aimed at explaining the relation between magnetism and unconventional superconductivity.

  20. The Evolutionary Tempo of Sex Chromosome Degradation in Carica papaya.

    PubMed

    Wu, Meng; Moore, Richard C

    2015-06-01

    Genes on non-recombining heterogametic sex chromosomes may degrade over time through the irreversible accumulation of deleterious mutations. In papaya, the non-recombining male-specific region of the Y (MSY) consists of two evolutionary strata corresponding to chromosomal inversions occurring approximately 7.0 and 1.9 MYA. The step-wise recombination suppression between the papaya X and Y allows for a temporal examination of the degeneration progress of the young Y chromosome. Comparative evolutionary analyses of 55 X/Y gene pairs showed that Y-linked genes have more unfavorable substitutions than X-linked genes. However, this asymmetric evolutionary pattern is confined to the oldest stratum, and is only observed when recently evolved pseudogenes are included in the analysis, indicating a slow degeneration tempo of the papaya Y chromosome. Population genetic analyses of coding sequence variation of six Y-linked focal loci in the oldest evolutionary stratum detected an excess of nonsynonymous polymorphism and reduced codon bias relative to autosomal loci. However, this pattern was also observed for corresponding X-linked loci. Both the MSY and its corresponding X-specific region are pericentromeric where recombination has been shown to be greatly reduced. Like the MSY region, overall selective efficacy on the X-specific region may be reduced due to the interference of selective forces between highly linked loci, or the Hill-Robertson effect, that is accentuated in regions of low or suppressed recombination. Thus, a pattern of gene decay on the X-specific region may be explained by relaxed purifying selection and widespread genetic hitchhiking due to its pericentromeric location.

  1. X-ray photoemission studies of Zn doped Cu 1- xTl xBa 2Ca 2Cu 3- yZn yO 10- δ ( y = 0, 2.65) superconductors

    NASA Astrophysics Data System (ADS)

    Khan, Nawazish A.; Mumtaz, M.; Ahadian, M. M.; Iraji-zad, Azam

    2007-03-01

    The X-ray photoemission (XPS) measurements of Cu 1- xTl xBa 2Ca 2Cu 3- yZn yO 10- δ ( y = 0, 2.65) superconductors have been performed and compared. These studies revealed that the charge state of thallium in the Cu 0.5Tl 0.5Ba 2O 4- δ charge reservoir layer in Zn doped samples is Tl 1+, while it is a mix of Tl 1+ and Tl 2+ in Zn free samples. The binding energy of Ba atoms in the Zn doped samples is shifted to higher energy, which when considered along with the presence of Tl 1+ suggested that it more efficiently directed the carriers to ZnO 2 and CuO 2 planes. The evidence of improved inter-plane coupling witnessed in X-ray diffraction is also confirmed by XPS measurements of Ca atoms in the Zn doped samples. The shift of the valance band spectrum in these Zn doped samples to higher energies suggested that the electrons at the top edge of the valance band were tied to a higher binding energy (relative to samples without Zn doping), which most likely resulted in a much lower energy state of the system in the superconducting state. The stronger superconducting state arising out of these effects is witnessed in the form of increased Tc( R = 0), Jc and the extent of diamagnetism in the final compound.

  2. X-Chromosome Control of Genome-Scale Recombination Rates in House Mice.

    PubMed

    Dumont, Beth L

    2017-04-01

    Sex differences in recombination are widespread in mammals, but the causes of this pattern are poorly understood. Previously, males from two interfertile subspecies of house mice, Mus musculus musculus and M. m. castaneus , were shown to exhibit a ∼30% difference in their global crossover frequencies. Much of this crossover rate divergence is explained by six autosomal loci and a large-effect locus on the X chromosome. Intriguingly, the allelic effects at this X-linked locus are transgressive, with the allele conferring increased crossover rate being transmitted by the low crossover rate M. m. castaneus parent. Despite the pronounced divergence between males, females from these subspecies exhibit similar crossover rates, raising the question of how recombination is genetically controlled in this sex. Here, I analyze publicly available genotype data from early generations of the Collaborative Cross, an eight-way panel of recombinant inbred strains, to estimate crossover frequencies in female mice with sex-chromosome genotypes of diverse subspecific origins. Consistent with the transgressive influence of the X chromosome in males, I show that females inheriting an M. m. castaneus X possess higher average crossover rates than females lacking the M. m. castaneus X chromosome. The differential inheritance of the X chromosome in males and females provides a simple genetic explanation for sex-limited evolution of this trait. Further, the presence of X-linked and autosomal crossover rate modifiers with antagonistic effects hints at an underlying genetic conflict fueled by selection for distinct crossover rate optima in males and females. Copyright © 2017 by the Genetics Society of America.

  3. An Allometric Analysis of Sex and Sex Chromosome Dosage Effects on Subcortical Anatomy in Humans.

    PubMed

    Reardon, Paul Kirkpatrick; Clasen, Liv; Giedd, Jay N; Blumenthal, Jonathan; Lerch, Jason P; Chakravarty, M Mallar; Raznahan, Armin

    2016-02-24

    Structural neuroimaging of humans with typical and atypical sex-chromosome complements has established the marked influence of both Yand X-/Y-chromosome dosage on total brain volume (TBV) and identified potential cortical substrates for the psychiatric phenotypes associated with sex-chromosome aneuploidy (SCA). Here, in a cohort of 354 humans with varying karyotypes (XX, XY, XXX, XXY, XYY, XXYY, XXXXY), we investigate sex and SCA effects on subcortical size and shape; focusing on the striatum, pallidum and thalamus. We find large effect-size differences in the volume and shape of all three structures as a function of sex and SCA. We correct for TBV effects with a novel allometric method harnessing normative scaling rules for subcortical size and shape in humans, which we derive here for the first time. We show that all three subcortical volumes scale sublinearly with TBV among healthy humans, mirroring known relationships between subcortical volume and TBV among species. Traditional TBV correction methods assume linear scaling and can therefore invert or exaggerate sex and SCA effects on subcortical anatomy. Allometric analysis restricts sex-differences to: (1) greater pallidal volume (PV) in males, and (2) relative caudate head expansion and ventral striatum contraction in females. Allometric analysis of SCA reveals that supernumerary X- and Y-chromosomes both cause disproportionate reductions in PV, and coordinated deformations of striatopallidal shape. Our study provides a novel understanding of sex and sex-chromosome dosage effects on subcortical organization, using an allometric approach that can be generalized to other basic and clinical structural neuroimaging settings. Copyright © 2016 the authors 0270-6474/16/362438-11$15.00/0.

  4. Chromosomal distribution of interstitial telomeric sequences as signs of evolution through chromosome fusion in six species of the giant water bugs (Hemiptera, Belostoma).

    PubMed

    Chirino, Mónica G; Dalíková, Martina; Marec, František R; Bressa, María J

    2017-07-01

    Tandem arrays of TTAGG repeats show a highly conserved location at the telomeres across the phylogenetic tree of arthropods. In giant water bugs Belostoma , the chromosome number changed during speciation by fragmentation of the single ancestral X chromosome, resulting in a multiple sex chromosome system. Several autosome-autosome fusions and a fusion between the sex chromosome pair and an autosome pair resulted in the reduced number in several species. We mapped the distribution of telomeric sequences and interstitial telomeric sequences (ITSs) in Belostoma candidulum (2n = 12 + XY/XX; male/female), B. dentatum (2n = 26 + X 1 X 2 Y/X 1 X 1 X 2 X 2 ), B. elegans (2n = 26 + X 1 X 2 Y/X 1 X 1 X 2 X 2 ), B. elongatum (2n = 26 + X 1 X 2 Y/X 1 X 1 X 2 X 2 ), B. micantulum (2n = 14 + XY/XX), and B. oxyurum (2n = 6 + XY/XX) by FISH with the (TTAGG) n probes. Hybridization signals confirmed the presence of TTAGG repeats in the telomeres of all species examined. The three species with reduced chromosome numbers showed additional hybridization signals in interstitial positions, indicating the occurrence of ITS. From the comparison of all species here analyzed, we observed inverse relationships between chromosome number and chromosome size, and between presence/absence of ITS and chromosome number. The ITS distribution between these closely related species supports the hypothesis that several telomere-telomere fusions of the chromosomes from an ancestral diploid chromosome number 2n = 26 + XY/XX played a major role in the karyotype evolution of Belostoma . Consequently, our study provide valuable features that can be used to understand the karyotype evolution, may contribute to a better understanding of taxonomic relationships, and also elucidate the high plasticity of nuclear genomes at the chromosomal level during the speciation processes.

  5. Condensin-driven remodelling of X chromosome topology during dosage compensation

    NASA Astrophysics Data System (ADS)

    Crane, Emily; Bian, Qian; McCord, Rachel Patton; Lajoie, Bryan R.; Wheeler, Bayly S.; Ralston, Edward J.; Uzawa, Satoru; Dekker, Job; Meyer, Barbara J.

    2015-07-01

    The three-dimensional organization of a genome plays a critical role in regulating gene expression, yet little is known about the machinery and mechanisms that determine higher-order chromosome structure. Here we perform genome-wide chromosome conformation capture analysis, fluorescent in situ hybridization (FISH), and RNA-seq to obtain comprehensive three-dimensional (3D) maps of the Caenorhabditis elegans genome and to dissect X chromosome dosage compensation, which balances gene expression between XX hermaphrodites and XO males. The dosage compensation complex (DCC), a condensin complex, binds to both hermaphrodite X chromosomes via sequence-specific recruitment elements on X (rex sites) to reduce chromosome-wide gene expression by half. Most DCC condensin subunits also act in other condensin complexes to control the compaction and resolution of all mitotic and meiotic chromosomes. By comparing chromosome structure in wild-type and DCC-defective embryos, we show that the DCC remodels hermaphrodite X chromosomes into a sex-specific spatial conformation distinct from autosomes. Dosage-compensated X chromosomes consist of self-interacting domains (~1 Mb) resembling mammalian topologically associating domains (TADs). TADs on X chromosomes have stronger boundaries and more regular spacing than on autosomes. Many TAD boundaries on X chromosomes coincide with the highest-affinity rex sites and become diminished or lost in DCC-defective mutants, thereby converting the topology of X to a conformation resembling autosomes. rex sites engage in DCC-dependent long-range interactions, with the most frequent interactions occurring between rex sites at DCC-dependent TAD boundaries. These results imply that the DCC reshapes the topology of X chromosomes by forming new TAD boundaries and reinforcing weak boundaries through interactions between its highest-affinity binding sites. As this model predicts, deletion of an endogenous rex site at a DCC-dependent TAD boundary using

  6. Dependences of the density of M{sub 1-x}R{sub x}F{sub 2+x} and R{sub 1-y}M{sub y}F{sub 3-y} single crystals (M = Ca, Sr, Ba, Cd, Pb; R means rare earth elements) on composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorokin, N. I., E-mail: sorokin@ns.crys.ras.ru; Krivandina, E. A.; Zhmurova, Z. I.

    2013-11-15

    The density of single crystals of nonstoichiometric phases Ba{sub 1-x}La{sub x}F{sub 2+x} (0 {<=} x {<=} 0.5) and Sr{sub 0.8}La{sub 0.2-x}Lu{sub x}F{sub 2.2} (0 {<=} x {<=} 0.2) with the fluorite (CaF{sub 2}) structure type and R{sub 1-y}Sr{sub y}F{sub 3-y} (R = Pr, Nd; 0 {<=} y {<=} 0.15) with the tysonite (LaF{sub 3}) structure type has been measured. Single crystals were grown from a melt by the Bridgman method. The measured concentration dependences of single crystal density are linear. The interstitial and vacancy models of defect formation in the fluorite and tysonite phases, respectively, are confirmed. To implement themore » composition control of single crystals of superionic conductors M{sub 1-x}R{sub x}F{sub 2+x} and R{sub 1-y}M{sub y}F{sub 3-y} in practice, calibration graphs of X-ray density in the MF{sub 2}-RF{sub 3} systems (M = Ca, Sr, Ba, Cd, Pb; R = La-Lu, Y) are plotted.« less

  7. X-chromosome inactivation and escape

    PubMed Central

    DISTECHE, CHRISTINE M.; BERLETCH, JOEL B.

    2016-01-01

    X-chromosome inactivation, which was discovered by Mary Lyon in 1961 results in random silencing of one X chromosome in female mammals. This review is dedicated to Mary Lyon, who passed away last year. She predicted many of the features of X inactivation, for e.g., the existence of an X inactivation center, the role of L1 elements in spreading of silencing and the existence of genes that escape X inactivation. Starting from her published work here we summarize advances in the field. PMID:26690513

  8. Dynamics of vertebrate sex chromosome evolution: from equal size to giants and dwarfs.

    PubMed

    Schartl, Manfred; Schmid, Michael; Nanda, Indrajit

    2016-06-01

    The Y and W chromosomes of mammals and birds are known to be small because most of their genetic content degenerated and were lost due to absence of recombination with the X or Z, respectively. Thus, a picture has emerged of ever-shrinking Ys and Ws that may finally even fade into disappearance. We review here the large amount of literature on sex chromosomes in vertebrate species and find by taking a closer look, particularly at the sex chromosomes of fishes, amphibians and reptiles where several groups have evolutionary younger chromosomes than those of mammals and birds, that the perception of sex chromosomes being doomed to size reduction is incomplete. Here, sex-determining mechanisms show a high turnover and new sex chromosomes appear repeatedly. In many species, Ys and Ws are larger than their X and Z counterparts. This brings up intriguing perspectives regarding the evolutionary dynamics of sex chromosomes. It can be concluded that, due to accumulation of repetitive DNA and transposons, the Y and W chromosomes can increase in size during the initial phase of their differentiation.

  9. Pressure effect on the electronic transport properties of Fe1+yTe1-xSex

    NASA Astrophysics Data System (ADS)

    Arsenijević, Stevan; Gaál, Richard; Rønnow, Henrik; Viennois, Romain; Giannini, Enrico; van der Marel, Dirk; Forró, László

    2012-02-01

    We present a systematic study of electronic transport as function of pressure up to 25 kbar of Fe+yTe1-xSex single crystalline samples (with y=0.02, 0.05, and x=0, 0.2, and 0.3). Pressure is demonstrated to be a clean control parameter to drive the system with high Fe-excess through the metal-insulator (MIT) transition, in analogy with increasing the Se-doping or reducing the Fe-excess. The scaling of resistivity ρ(T, p) below 50 K identified a critical pressure of pc=8 kbar which separates non-metallic and metallic temperature dependences. At the pc the low-temperature sheet resistance is in the 6.5 kφ/square range. The Seebeck coefficient (S) at pc changes sign from negative to positive indicating a change in the electronic structure and in the balance between the electron and hole carriers. The S at the highest pressure exhibits low positive values similar to the metallic, superconducting cuprates. The critical MIT behavior, related to a quantum phase transition, indicates a universality of the Fe- and Cu-based high-Tc superconductors.

  10. Sex chromosome aneuploidies.

    PubMed

    Skuse, David; Printzlau, Frida; Wolstencroft, Jeanne

    2018-01-01

    Sex chromosome aneuploidies comprise a relatively common group of chromosome disorders characterized by the loss or gain of one or more sex chromosomes. We discuss five of the better-known sex aneuploidies: Turner syndrome (XO), Klinefelter syndrome (XXY), trisomy X (XXX), XYY, and XXYY. Despite their prevalence in the general population, these disorders are underdiagnosed and the specific genetic mechanisms underlying their phenotypes are poorly understood. Although there is considerable variation between them in terms of associated functional impairment, each disorder has a characteristic physical, cognitive, and neurologic profile. The most common cause of sex chromosome aneuploidies is nondisjunction, which can occur during meiosis or during the early stages of postzygotic development. The loss or gain of genetic material can affect all daughter cells or it may be partial, leading to tissue mosaicism. In both typical and atypical sex chromosome karyotypes, there is random inactivation of all but one X chromosome. The mechanisms by which a phenotype results from sex chromosome aneuploidies are twofold: dosage imbalance arising from a small number of genes that escape inactivation, and their endocrinologic consequences. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Molecular cytogenetic characterization of Xp22.32→pter deletion and Xq26.3→qter duplication in a male fetus associated with 46,Y,rec(X)dup(Xq) inv(X)(p22.3q26.3), a hypoplastic left heart, short stature, and maternal X chromosome pericentric inversion.

    PubMed

    Chen, Chih-Ping; Chen, Chen-Yu; Chern, Schu-Rern; Wu, Peih-Shan; Chen, Yen-Ni; Chen, Shin-Wen; Lee, Chen-Chi; Town, Dai-Dyi; Lee, Meng-Shan; Yang, Chien-Wen; Wang, Wayseen

    2016-10-01

    We present molecular cytogenetic characterization of an Xp22.32→pter deletion and an Xq26.3→qter duplication in a male fetus with congenital malformations and maternal X chromosome pericentric inversion. A 22-year-old woman underwent amniocentesis at 17 weeks of gestation because of an abnormal maternal serum screening result. Prenatal ultrasound revealed a hypoplastic left heart and short limbs. Amniocentesis revealed a karyotype of 46,Y,der(X) t(X;?)(p22.31;?). The pregnancy was subsequently terminated, and a malformed fetus was delivered with short stature and facial dysmorphism. Repeat amniocentesis was performed before termination of the pregnancy. Array comparative genomic hybridization was performed on uncultured amniocytes and maternal blood. Conventional cytogenetic analysis was performed on cultured amniocytes, cord blood, and blood from both parents. Fluorescence in situ hybridization was performed on cultured amniocytes. The maternal karyotype was 46,X,inv(X)(p22.3q26.3). The fetal karyotype was 46,Y, rec(X)dup(Xq)inv(X)(p22.3q26.3) or 46,Y, rec(X)(qter→q26.3::p22.3→qter). Array comparative genomic hybridization on uncultured amniocytes revealed a 4.56-Mb deletion of Xp22.33-p22.32 encompassing SHOX, CSF2RA, and ARSE, and a 19.22-Mb duplication of Xq26.3-q28 encompassing SOX3, FMR1, MECP2, RAB39B, and CLIC2 in the fetus. The mother did not have X chromosome imbalance. Detection of X chromosome aberration in a male fetus should give suspicion of a recombinant X chromosome derived from maternal X chromosome pericentric inversion. Copyright © 2016. Published by Elsevier B.V.

  12. Sex chromosomes and speciation in Drosophila

    PubMed Central

    Presgraves, Daven C.

    2010-01-01

    Two empirical rules suggest that sex chromosomes play a special role in speciation. The first is Haldane's rule— the preferential sterility and inviability of species hybrids of the heterogametic (XY) sex. The second is the disproportionately large effect of the X chromosome in genetic analyses of hybrid sterility. Whereas the causes of Haldane's rule are well established, the causes of the ‘large X-effect’ have remained controversial. New genetic analyses in Drosophila confirm that the X is a hotspot for hybrid male sterility factors, providing a proximate explanation for the large X-effect. Several other new findings— on faster X evolution, X chromosome meiotic drive, and the regulation of the X chromosome in the male-germline— provide plausible evolutionary explanations for the large X-effect. PMID:18514967

  13. Molecular cytogenetic characterization of the dioecious Cannabis sativa with an XY chromosome sex determination system.

    PubMed

    Divashuk, Mikhail G; Alexandrov, Oleg S; Razumova, Olga V; Kirov, Ilya V; Karlov, Gennady I

    2014-01-01

    Hemp (Cannabis sativa L.) was karyotyped using by DAPI/C-banding staining to provide chromosome measurements, and by fluorescence in situ hybridization with probes for 45 rDNA (pTa71), 5S rDNA (pCT4.2), a subtelomeric repeat (CS-1) and the Arabidopsis telomere probes. The karyotype has 18 autosomes plus a sex chromosome pair (XX in female and XY in male plants). The autosomes are difficult to distinguish morphologically, but three pairs could be distinguished using the probes. The Y chromosome is larger than the autosomes, and carries a fully heterochromatic DAPI positive arm and CS-1 repeats only on the less intensely DAPI-stained, euchromatic arm. The X is the largest chromosome of all, and carries CS-1 subtelomeric repeats on both arms. The meiotic configuration of the sex bivalent locates a pseudoautosomal region of the Y chromosome at the end of the euchromatic CS-1-carrying arm. Our molecular cytogenetic study of the C. sativa sex chromosomes is a starting point for helping to make C. sativa a promising model to study sex chromosome evolution.

  14. The human enamel protein gene amelogenin is expressed from both the X and the Y chromosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salido, E.C.; Yen, P.H.; Koprivnikar, K.

    1992-02-01

    Amelogenins, a family of extracellular matrix proteins of the dental enamel, are transiently but abundantly expressed by ameloblasts during tooth development. In this paper the authors report the characterization of the AMGX and AMGY genes on the short arms of the human X and Y chromosomes which encode the amelogenins. Their studies on the expression of the amelogenin genes in male developing tooth buds showed that both the AMGX and AMGY genes are transcriptionally active and encode potentially functional proteins. They have isolated genomic and cDNA clones form both the AMGX and AMGY loci and have studied the sequence organizationmore » of these two genes. Reverse transcriptase (RT)PCR amplification of the 5[prime] portion of the amelogenin transcripts revealed several alternatively spliced products. This information will be useful for studying the molecular basis of X-linked amelogenesis imperfecta, for understanding the evolution and regulation of gene expression on the mammalian sex chromosomes, and for investigating the role of amelogenin genes during tooth development.« less

  15. Genetic and pharmacological reactivation of the mammalian inactive X chromosome

    PubMed Central

    Bhatnagar, Sanchita; Zhu, Xiaochun; Ou, Jianhong; Lin, Ling; Chamberlain, Lynn; Zhu, Lihua J.; Wajapeyee, Narendra; Green, Michael R.

    2014-01-01

    X-chromosome inactivation (XCI), the random transcriptional silencing of one X chromosome in somatic cells of female mammals, is a mechanism that ensures equal expression of X-linked genes in both sexes. XCI is initiated in cis by the noncoding Xist RNA, which coats the inactive X chromosome (Xi) from which it is produced. However, trans-acting factors that mediate XCI remain largely unknown. Here, we perform a large-scale RNA interference screen to identify trans-acting XCI factors (XCIFs) that comprise regulators of cell signaling and transcription, including the DNA methyltransferase, DNMT1. The expression pattern of the XCIFs explains the selective onset of XCI following differentiation. The XCIFs function, at least in part, by promoting expression and/or localization of Xist to the Xi. Surprisingly, we find that DNMT1, which is generally a transcriptional repressor, is an activator of Xist transcription. Small-molecule inhibitors of two of the XCIFs can reversibly reactivate the Xi, which has implications for treatment of Rett syndrome and other dominant X-linked diseases. A homozygous mouse knockout of one of the XCIFs, stanniocalcin 1 (STC1), has an expected XCI defect but surprisingly is phenotypically normal. Remarkably, X-linked genes are not overexpressed in female Stc1−/− mice, revealing the existence of a mechanism(s) that can compensate for a persistent XCI deficiency to regulate X-linked gene expression. PMID:25136103

  16. Sexual Dimorphism of Body Size Is Controlled by Dosage of the X-Chromosomal Gene Myc and by the Sex-Determining Gene tra in Drosophila.

    PubMed

    Mathews, Kristina Wehr; Cavegn, Margrith; Zwicky, Monica

    2017-03-01

    Drosophila females are larger than males. In this article, we describe how X -chromosome dosage drives sexual dimorphism of body size through two means: first, through unbalanced expression of a key X -linked growth-regulating gene, and second, through female-specific activation of the sex-determination pathway. X -chromosome dosage determines phenotypic sex by regulating the genes of the sex-determining pathway. In the presence of two sets of X -chromosome signal elements (XSEs), Sex-lethal ( Sxl ) is activated in female ( XX ) but not male ( XY ) animals. Sxl activates transformer ( tra ), a gene that encodes a splicing factor essential for female-specific development. It has previously been shown that null mutations in the tra gene result in only a partial reduction of body size of XX animals, which shows that other factors must contribute to size determination. We tested whether X dosage directly affects animal size by analyzing males with duplications of X -chromosomal segments. Upon tiling across the X chromosome, we found four duplications that increase male size by >9%. Within these, we identified several genes that promote growth as a result of duplication. Only one of these, Myc , was found not to be dosage compensated. Together, our results indicate that both Myc dosage and tra expression play crucial roles in determining sex-specific size in Drosophila larvae and adult tissue. Since Myc also acts as an XSE that contributes to tra activation in early development, a double dose of Myc in females serves at least twice in development to promote sexual size dimorphism. Copyright © 2017 by the Genetics Society of America.

  17. Dielectric Properties of BST/(Y 2O 3) x(ZrO 2) 1-x/BST Trilayer Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahoo, Santosh K.; Misra, D.

    2011-01-31

    Thin films of Ba1-xSrxTiO3 (BST) are being actively investigated for applications in dynamic random access memories (DRAM) because of their properties such as high dielectric constant, low leakage current, and high dielectric breakdown strength. Various approaches have been used to improve the dielectric properties of BST thin films such as doping, graded compositions, and multilayer structures. We have found that inserting a ZrO2 layer in between two BST layers results in a significant reduction in dielectric constant as well as dielectric loss. In this work the effect of Y2O3 doped ZrO2 on the dielectric properties of BST/ZrO2/BST trilayer structure ismore » studied. The structure Ba0.8Sr0.2TiO3/(Y2O3)x(ZrO2)1-x/Ba0.8Sr0.2TiO3 is deposited by a sol-gel process on platinized Si substrate. The composition (x) of the middle layer is varied while keeping the total thickness of the trilayer film constant. The dielectric constant of the multilayer film decreases with the increase of Y2O3 amount in the film whereas there is a slight variation in dielectric loss. In Y2O3 doped multilayer thin films, the dielectric loss is lower in comparison to other films and also there is good frequency stability in the loss in the measured frequency range and hence very suitable for microwave device applications.« less

  18. The X chromosome in space.

    PubMed

    Jégu, Teddy; Aeby, Eric; Lee, Jeannie T

    2017-06-01

    Extensive 3D folding is required to package a genome into the tiny nuclear space, and this packaging must be compatible with proper gene expression. Thus, in the well-hierarchized nucleus, chromosomes occupy discrete territories and adopt specific 3D organizational structures that facilitate interactions between regulatory elements for gene expression. The mammalian X chromosome exemplifies this structure-function relationship. Recent studies have shown that, upon X-chromosome inactivation, active and inactive X chromosomes localize to different subnuclear positions and adopt distinct chromosomal architectures that reflect their activity states. Here, we review the roles of long non-coding RNAs, chromosomal organizational structures and the subnuclear localization of chromosomes as they relate to X-linked gene expression.

  19. Extensive fragmentation of the X chromosome in the bed bug Cimex lectularius Linnaeus, 1758 (Heteroptera, Cimicidae): a survey across Europe

    PubMed Central

    Sadílek, David; Šťáhlavský, František; Vilímová, Jitka; Zima, Jan

    2013-01-01

    Abstract Variation in the number of chromosomes was revealed in 61 samples of Cimex lectularius Linnaeus, 1758 from the Czech Republic and other European countries, hosted on Myotis Kaup, 1829 (4) and Homo sapiens Linnaeus, 1758 (57). The karyotype of all the specimens of Cimex lectularius analysed contained 26 autosomes and a varying number of the sex chromosomes. The number of sex chromosomes showed extensive variation, and up to 20 fragments were recorded. Altogether, 12 distinct karyotypes were distinguished. The male karyotypes consisted of 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 42 and 47 chromosomes. The females usually exhibited the number of chromosomes which was complementary to the number established in the males from the same sample. However, 11 polymorphic samples were revealed in which the karyotypes of females and males were not complementary each other. The complement with 2n = 26+X1X2Y was found in 44% of the specimens and 57,4% samples of bed bugs studied. The karyotypes with higher chromosome numbers as well as individuals with chromosomal mosaics were usually found within the samples exhibiting particularly extensive variation between individuals, and such complements were not found within samples contaning a few or single specimen. The occurrence of chromosomal mosaics with the karyotype constitution varying between cells of single individual was observed in five specimens (4.3%) from five samples. We assume that polymorphism caused by fragmentation of the X chromosome may result in meiotic problems and non-disjunction can produce unbalanced gametes and result in lowered fitness of individuals carrying higher numbers of the X chromosome fragments. This effect should be apparently enhanced with the increasing number of the fragments and this may be the reason for the observed distribution pattern of individual karyotypes in the studied samples and the rarity of individuals with extremely high chromosome numbers. The assumed lowering of the

  20. Crown heights in the permanent teeth of 45,X and 45,X/46,XX females.

    PubMed

    Pentinpuro, Raija Helena; Lähdesmäki, Raija Eliisa; Niinimaa, Ahti Olavi; Pesonen, Paula Ritva Orvokki; Alvesalo, Lassi Juhani

    2014-11-01

    Previous results regarding human sex chromosome aneuploidies have shown that the X and Y chromosomes affect tooth size and morphology. This study looked for the effect of sex chromosome deficiency on permanent tooth crown heights. The material, from the Finnish KVANTTI Research Project, consisted of 97 45,X females and 15 45,X/46,XX females. The controls were 32 sisters and 28 mothers of the 45,X females, eight sisters and two mothers of the 45,X/46,XX females and 35 female population controls. Crown heights of all the available teeth except third molars on both sides of the jaws were measured from panoramic radiographs with a digital calliper according to the defined procedure. The tooth crown heights were significantly smaller in the 45,X females than in the female population controls, except for the incisors and one canine in the maxilla, whereas the tooth crown heights of the 45,X/46,XX females were close to those of the normal control females. The differences between the 45,X and 45,X/46,XX females were statistically significant, excluding the upper incisor area and a few teeth in the mandible. The effect of the sex chromosome deficiency on permanent tooth crown height is due to the magnitude of lacking sex chromosome material. The present results regarding the 45,X females are parallel to previous findings in Turner patients regarding reduced mesiodistal and labiolingual dimensions and tooth crown heights in the permanent dentition.

  1. Centromere reference models for human chromosomes X and Y satellite arrays

    PubMed Central

    Miga, Karen H.; Newton, Yulia; Jain, Miten; Altemose, Nicolas; Willard, Huntington F.; Kent, W. James

    2014-01-01

    The human genome sequence remains incomplete, with multimegabase-sized gaps representing the endogenous centromeres and other heterochromatic regions. Available sequence-based studies within these sites in the genome have demonstrated a role in centromere function and chromosome pairing, necessary to ensure proper chromosome segregation during cell division. A common genomic feature of these regions is the enrichment of long arrays of near-identical tandem repeats, known as satellite DNAs, which offer a limited number of variant sites to differentiate individual repeat copies across millions of bases. This substantial sequence homogeneity challenges available assembly strategies and, as a result, centromeric regions are omitted from ongoing genomic studies. To address this problem, we utilize monomer sequence and ordering information obtained from whole-genome shotgun reads to model two haploid human satellite arrays on chromosomes X and Y, resulting in an initial characterization of 3.83 Mb of centromeric DNA within an individual genome. To further expand the utility of each centromeric reference sequence model, we evaluate sites within the arrays for short-read mappability and chromosome specificity. Because satellite DNAs evolve in a concerted manner, we use these centromeric assemblies to assess the extent of sequence variation among 366 individuals from distinct human populations. We thus identify two satellite array variants in both X and Y centromeres, as determined by array length and sequence composition. This study provides an initial sequence characterization of a regional centromere and establishes a foundation to extend genomic characterization to these sites as well as to other repeat-rich regions within complex genomes. PMID:24501022

  2. Dosage Compensation of the Sex Chromosomes

    PubMed Central

    Disteche, Christine M.

    2013-01-01

    Differentiated sex chromosomes evolved because of suppressed recombination once sex became genetically controlled. In XX/XY and ZZ/ZW systems, the heterogametic sex became partially aneuploid after degeneration of the Y or W. Often, aneuploidy causes abnormal levels of gene expression throughout the entire genome. Dosage compensation mechanisms evolved to restore balanced expression of the genome. These mechanisms include upregulation of the heterogametic chromosome as well as repression in the homogametic sex. Remarkably, strategies for dosage compensation differ between species. In organisms where more is known about molecular mechanisms of dosage compensation, specific protein complexes containing noncoding RNAs are targeted to the X chromosome. In addition, the dosage-regulated chromosome often occupies a specific nuclear compartment. Some genes escape dosage compensation, potentially resulting in sex-specific differences in gene expression. This review focuses on dosage compensation in mammals, with comparisons to fruit flies, nematodes, and birds. PMID:22974302

  3. Rapid molecular sexing of three-spined sticklebacks, Gasterosteus aculeatus L., based on large Y-chromosomal insertions.

    PubMed

    Bakker, Theo C M; Giger, Thomas; Frommen, Joachim G; Largiadèr, Carlo R

    2017-08-01

    There is a need for rapid and reliable molecular sexing of three-spined sticklebacks, Gasterosteus aculeatus, the supermodel species for evolutionary biology. A DNA region at the 5' end of the sex-linked microsatellite Gac4202 was sequenced for the X chromosome of six females and the Y chromosome of five males from three populations. The Y chromosome contained two large insertions, which did not recombine with the phenotype of sex in a cross of 322 individuals. Genetic variation (SNPs and indels) within the insertions was smaller than on flanking DNA sequences. Three molecular PCR-based sex tests were developed, in which the first, the second or both insertions were covered. In five European populations (from DE, CH, NL, GB) of three-spined sticklebacks, tests with both insertions combined showed two clearly separated bands on agarose minigels in males and one band in females. The tests with the separate insertions gave similar results. Thus, the new molecular sexing method gave rapid and reliable results for sexing three-spined sticklebacks and is an improvement and/or alternative to existing methods.

  4. Cation and Vacancy Disorder in U 1-yNd yO 2.00-X Alloys

    DOE PAGES

    Barabash, Rozaliya I.; Voit, Stewart L.; Aidhy, Dilpuneet S.; ...

    2015-09-14

    In this study, the intermixing and clustering of U/Nd, O, and vacancies were studied by both laboratory and synchrotron-based x-ray diffraction in U 1-yNd yO 2-X alloys. It was found that an increased holding time at the high experimental temperature during initial alloy preparation results in a lower disorder of the Nd distribution in the alloys. Adjustment of the oxygen concentration in the U 1-yNd yO 2-X alloys with different Nd concentrations was accompanied by the formation of vacancies on the oxygen sublattice and a nanocrystalline component. The lattice parameters in the U 1-yNd yO 2-X alloys were also foundmore » to deviate significantly from Vegard's law when the Nd concentration was high (53%) and decreased with increasing oxygen concentration. Such changes indicate the formation of large vacancy concentrations during oxygen adjustment at these high temperatures. Finally, the change in the vacancy concentration after the oxygen adjustment was estimated relative to Nd concentration and oxygen stoichiometry.« less

  5. Weird mammals provide insights into the evolution of mammalian sex chromosomes and dosage compensation.

    PubMed

    Graves, Jennifer A Marshall

    2015-12-01

    The deep divergence of mammalian groups 166 and 190 million years ago (MYA) provide genetic variation to explore the evolution of DNA sequence, gene arrangement and regulation of gene expression in mammals. With encouragement from the founder of the field, Mary Lyon, techniques in cytogenetics and molecular biology were progressively adapted to characterize the sex chromosomes of kangaroos and other marsupials, platypus and echidna-and weird rodent species. Comparative gene mapping reveals the process of sex chromosome evolution from their inception 190 MYA (they are autosomal in platypus) to their inevitable end (the Y has disappeared in two rodent lineages). Our X and Y are relatively young, getting their start with the evolution of the sex-determining SRY gene, which triggered progressive degradation of the Y chromosome. Even more recently, sex chromosomes of placental mammals fused with an autosomal region which now makes up most of the Y. Exploration of gene activity patterns over four decades showed that dosage compensation via X-chromosome inactivation is unique to therian mammals, and that this whole chromosome control process is different in marsupials and absent in monotremes and reptiles, and birds. These differences can be exploited to deduce how mammalian sex chromosomes and epigenetic silencing evolved.

  6. Elliptic Curve Integral Points on y2 = x3 + 3x ‑ 14

    NASA Astrophysics Data System (ADS)

    Zhao, Jianhong

    2018-03-01

    The positive integer points and integral points of elliptic curves are very important in the theory of number and arithmetic algebra, it has a wide range of applications in cryptography and other fields. There are some results of positive integer points of elliptic curve y 2 = x 3 + ax + b, a, b ∈ Z In 1987, D. Zagier submit the question of the integer points on y 2 = x 3 ‑ 27x + 62, it count a great deal to the study of the arithmetic properties of elliptic curves. In 2009, Zhu H L and Chen J H solved the problem of the integer points on y 2 = x 3 ‑ 27x + 62 by using algebraic number theory and P-adic analysis method. In 2010, By using the elementary method, Wu H M obtain all the integral points of elliptic curves y 2 = x 3 ‑ 27x ‑ 62. In 2015, Li Y Z and Cui B J solved the problem of the integer points on y 2 = x 3 ‑ 21x ‑ 90 By using the elementary method. In 2016, Guo J solved the problem of the integer points on y 2 = x 3 + 27x + 62 by using the elementary method. In 2017, Guo J proved that y 2 = x 3 ‑ 21x + 90 has no integer points by using the elementary method. Up to now, there is no relevant conclusions on the integral points of elliptic curves y 2 = x 3 + 3x ‑ 14, which is the subject of this paper. By using congruence and Legendre Symbol, it can be proved that elliptic curve y 2 = x 3 + 3x ‑ 14 has only one integer point: (x, y) = (2, 0).

  7. X-Ray Crystal Structure of Bone Marrow Kinase in the X Chromosome: A Tec Family Kinase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muckelbauer, Jodi; Sack, John S.; Ahmed, Nazia

    Bone marrow kinase in the X chromosome, a member of the Tec family of tyrosine kinases, plays a role in both monocyte/macrophage trafficking as well as cytokine secretion. Although the structures of Tec family kinases Bruton's tyrosine kinase and IL-2-inducible T-cell kinase are known, the crystal structures of other Tec family kinases have remained elusive. We report the X-ray crystal structures of bone marrow kinase in the X chromosome in complex with dasatinib at 2.4 {angstrom} resolution and PP2 at 1.9 {angstrom} resolution. The bone marrow kinase in the X chromosome structures reveal a typical kinase protein fold; with well-orderedmore » protein conformation that includes an open/extended activation loop and a stabilized DFG-motif rendering the kinase in an inactive conformation. Dasatinib and PP2 bind to bone marrow kinase in the X chromosome in the ATP binding pocket and display similar binding modes to that observed in other Tec and Src protein kinases. The bone marrow kinase in the X chromosome structures identify conformational elements of the DFG-motif that could potentially be utilized to design potent and/or selective bone marrow kinase in the X chromosome inhibitors.« less

  8. An Allometric Analysis of Sex and Sex Chromosome Dosage Effects on Subcortical Anatomy in Humans

    PubMed Central

    Clasen, Liv; Giedd, Jay N.; Blumenthal, Jonathan; Lerch, Jason P.; Chakravarty, M. Mallar; Raznahan, Armin

    2016-01-01

    Structural neuroimaging of humans with typical and atypical sex-chromosome complements has established the marked influence of both Yand X-/Y-chromosome dosage on total brain volume (TBV) and identified potential cortical substrates for the psychiatric phenotypes associated with sex-chromosome aneuploidy (SCA). Here, in a cohort of 354 humans with varying karyotypes (XX, XY, XXX, XXY, XYY, XXYY, XXXXY), we investigate sex and SCA effects on subcortical size and shape; focusing on the striatum, pallidum and thalamus. We find large effect-size differences in the volume and shape of all three structures as a function of sex and SCA. We correct for TBV effects with a novel allometric method harnessing normative scaling rules for subcortical size and shape in humans, which we derive here for the first time. We show that all three subcortical volumes scale sublinearly with TBV among healthy humans, mirroring known relationships between subcortical volume and TBV among species. Traditional TBV correction methods assume linear scaling and can therefore invert or exaggerate sex and SCA effects on subcortical anatomy. Allometric analysis restricts sex-differences to: (1) greater pallidal volume (PV) in males, and (2) relative caudate head expansion and ventral striatum contraction in females. Allometric analysis of SCA reveals that supernumerary X- and Y-chromosomes both cause disproportionate reductions in PV, and coordinated deformations of striatopallidal shape. Our study provides a novel understanding of sex and sex-chromosome dosage effects on subcortical organization, using an allometric approach that can be generalized to other basic and clinical structural neuroimaging settings. SIGNIFICANCE STATEMENT Sex and sex-chromosome dosage (SCD) are known to modulate human brain size and cortical anatomy, but very little is known regarding their impact on subcortical structures that work with the cortex to subserve a range of behaviors in health and disease. Moreover

  9. Developmental Dynamics of X-Chromosome Dosage Compensation by the DCC and H4K20me1 in C. elegans

    PubMed Central

    Kramer, Maxwell; Kranz, Anna-Lena; Su, Amanda; Winterkorn, Lara H.; Albritton, Sarah Elizabeth; Ercan, Sevinc

    2015-01-01

    In Caenorhabditis elegans, the dosage compensation complex (DCC) specifically binds to and represses transcription from both X chromosomes in hermaphrodites. The DCC is composed of an X-specific condensin complex that interacts with several proteins. During embryogenesis, DCC starts localizing to the X chromosomes around the 40-cell stage, and is followed by X-enrichment of H4K20me1 between 100-cell to comma stage. Here, we analyzed dosage compensation of the X chromosome between sexes, and the roles of dpy-27 (condensin subunit), dpy-21 (non-condensin DCC member), set-1 (H4K20 monomethylase) and set-4 (H4K20 di-/tri-methylase) in X chromosome repression using mRNA-seq and ChIP-seq analyses across several developmental time points. We found that the DCC starts repressing the X chromosomes by the 40-cell stage, but X-linked transcript levels remain significantly higher in hermaphrodites compared to males through the comma stage of embryogenesis. Dpy-27 and dpy-21 are required for X chromosome repression throughout development, but particularly in early embryos dpy-27 and dpy-21 mutations produced distinct expression changes, suggesting a DCC independent role for dpy-21. We previously hypothesized that the DCC increases H4K20me1 by reducing set-4 activity on the X chromosomes. Accordingly, in the set-4 mutant, H4K20me1 increased more from the autosomes compared to the X, equalizing H4K20me1 level between X and autosomes. H4K20me1 increase on the autosomes led to a slight repression, resulting in a relative effect of X derepression. H4K20me1 depletion in the set-1 mutant showed greater X derepression compared to equalization of H4K20me1 levels between X and autosomes in the set-4 mutant, indicating that H4K20me1 level is important, but X to autosomal balance of H4K20me1 contributes only slightly to X-repression. Thus H4K20me1 by itself is not a downstream effector of the DCC. In summary, X chromosome dosage compensation starts in early embryos as the DCC localizes to

  10. Superconducting transition temperature in the Y(1-x)M(x)Ba2Cu3O(y) system

    NASA Astrophysics Data System (ADS)

    Suzuki, Takeyuki; Yamazaki, Tsutomu; Sekine, Ryuuta; Koukitsu, Akinori; Seki, Hisashi

    1989-04-01

    Experimental results are presented for the inclusion of compositional additives, M, to the sintered high-temperature superconductor Y(1-x)M(x)Ba2Cu3O(y); M can be the oxides of Mg, Ce, Gd, Yb, Ti, Zr, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Zn, B, Al, Ga, In, Si, Ge, Sn, Pb, Sb, Bi, and Te, as well as Li, Na, K, Ca, Sr, and La carbonates. Temperature dependence of the electrical resistance was measured down to about 80 K. Attention is given to the influence of ionic radius and the valence of the M species.

  11. Psychoeducational Implications of Sex Chromosome Anomalies

    ERIC Educational Resources Information Center

    Wodrich, David L.; Tarbox, Jennifer

    2008-01-01

    Numerous anomalies involving the sex chromosomes (X or Y) have been documented and their impact on development, learning, and behavior studied. This article reviews three of these disorders, Turner syndrome, Klinefelter syndrome, and Lesch-Nyhan disease. Each of these three is associated with one or more selective impairments or behavioral…

  12. Evolution of X-degenerate Y chromosome genes in greater apes: conservation of gene content in human and gorilla, but not chimpanzee.

    PubMed

    Goto, Hiroki; Peng, Lei; Makova, Kateryna D

    2009-02-01

    Compared with the X chromosome, the mammalian Y chromosome is considerably diminished in size and has lost most of its ancestral genes during evolution. Interestingly, for the X-degenerate region on the Y chromosome, human has retained all 16 genes, while chimpanzee has lost 4 of the 16 genes since the divergence of the two species. To uncover the evolutionary forces governing ape Y chromosome degeneration, we determined the complete sequences of the coding exons and splice sites for 16 gorilla Y chromosome genes of the X-degenerate region. We discovered that all studied reading frames and splice sites were intact, and thus, this genomic region experienced no gene loss in the gorilla lineage. Higher nucleotide divergence was observed in the chimpanzee than the human lineage, particularly for genes with disruptive mutations, suggesting a lack of functional constraints for these genes in chimpanzee. Surprisingly, our results indicate that the human and gorilla orthologues of the genes disrupted in chimpanzee evolve under relaxed functional constraints and might not be essential. Taking mating patterns and effective population sizes of ape species into account, we conclude that genetic hitchhiking associated with positive selection due to sperm competition might explain the rapid decline in the Y chromosome gene number in chimpanzee. As we found no evidence of positive selection acting on the X-degenerate genes, such selection likely targets other genes on the chimpanzee Y chromosome.

  13. Contrasting Levels of Molecular Evolution on the Mouse X Chromosome

    PubMed Central

    Larson, Erica L.; Vanderpool, Dan; Keeble, Sara; Zhou, Meng; Sarver, Brice A. J.; Smith, Andrew D.; Dean, Matthew D.; Good, Jeffrey M.

    2016-01-01

    The mammalian X chromosome has unusual evolutionary dynamics compared to autosomes. Faster-X evolution of spermatogenic protein-coding genes is known to be most pronounced for genes expressed late in spermatogenesis, but it is unclear if these patterns extend to other forms of molecular divergence. We tested for faster-X evolution in mice spanning three different forms of molecular evolution—divergence in protein sequence, gene expression, and DNA methylation—across different developmental stages of spermatogenesis. We used FACS to isolate individual cell populations and then generated cell-specific transcriptome profiles across different stages of spermatogenesis in two subspecies of house mice (Mus musculus), thereby overcoming a fundamental limitation of previous studies on whole tissues. We found faster-X protein evolution at all stages of spermatogenesis and faster-late protein evolution for both X-linked and autosomal genes. In contrast, there was less expression divergence late in spermatogenesis (slower late) on the X chromosome and for autosomal genes expressed primarily in testis (testis-biased). We argue that slower-late expression divergence reflects strong regulatory constraints imposed during this critical stage of sperm development and that these constraints are particularly acute on the tightly regulated sex chromosomes. We also found slower-X DNA methylation divergence based on genome-wide bisulfite sequencing of sperm from two species of mice (M. musculus and M. spretus), although it is unclear whether slower-X DNA methylation reflects development constraints in sperm or other X-linked phenomena. Our study clarifies key differences in patterns of regulatory and protein evolution across spermatogenesis that are likely to have important consequences for mammalian sex chromosome evolution, male fertility, and speciation. PMID:27317678

  14. Suppression of magnetic order in CaCo 1.86 As 2 with Fe substitution: Magnetization, neutron diffraction, and x-ray diffraction studies of Ca ( Co 1x Fe x ) y As 2

    DOE PAGES

    Jayasekara, W. T.; Pandey, Abhishek; Kreyssig, A.; ...

    2017-02-23

    Magnetization, neutron diffraction, and high-energy x-ray diffraction results for Sn-flux grown single-crystal samples of Ca(Co 1xFe x) yAs 2, 0 ≤ x1, 1.86 ≤ y2, are presented and reveal that A-type antiferromagnetic order, with ordered moments lying along the c axis, persists for x ≲ 0.12(1). The antiferromagnetic order is smoothly suppressed with increasing x, with both the ordered moment and Néel temperature linearly decreasing. Stripe-type antiferromagnetic order does not occur for x ≤ 0.25, nor does ferromagnetic order for x up to at least x = 0.104, and a smooth crossover from the collapsed-tetragonal (cT)more » phase of CaCo 1.86As 2 to the tetragonal (T) phase of CaFe 2As 2 occurs. Furthermore, these results suggest that hole doping CaCo 1.86As 2 has a less dramatic effect on the magnetism and structure than steric effects due to substituting Sr for Ca.« less

  15. Suppression of magnetic order in CaCo 1.86 As 2 with Fe substitution: Magnetization, neutron diffraction, and x-ray diffraction studies of Ca ( Co 1x Fe x ) y As 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayasekara, W. T.; Pandey, Abhishek; Kreyssig, A.

    Magnetization, neutron diffraction, and high-energy x-ray diffraction results for Sn-flux grown single-crystal samples of Ca(Co 1xFe x) yAs 2, 0 ≤ x1, 1.86 ≤ y2, are presented and reveal that A-type antiferromagnetic order, with ordered moments lying along the c axis, persists for x ≲ 0.12(1). The antiferromagnetic order is smoothly suppressed with increasing x, with both the ordered moment and Néel temperature linearly decreasing. Stripe-type antiferromagnetic order does not occur for x ≤ 0.25, nor does ferromagnetic order for x up to at least x = 0.104, and a smooth crossover from the collapsed-tetragonal (cT)more » phase of CaCo 1.86As 2 to the tetragonal (T) phase of CaFe 2As 2 occurs. Furthermore, these results suggest that hole doping CaCo 1.86As 2 has a less dramatic effect on the magnetism and structure than steric effects due to substituting Sr for Ca.« less

  16. Detection of Y chromosome sequences in a 45,X/46,XXq - patient by Southern blot analysis of PCR-amplified DNA and fluorescent in situ hybridization (FISH)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocova, M.; Siegel, S.F.; Wenger, S.L.

    1995-02-13

    In some cases of gonadal dysgenesis, cytogenetic analysis seems to be discordant with the phenotype of the patients. We have applied techniques such as Southern blot analysis and fluorescent in situ hybridization (FISH) to resolve the phenotype/genotype discrepancy in a patient with ambiguous genitalia in whom the peripheral blood karotype was 45,X. Gonadectomy at age 7 months showed the gonadal tissue to be prepubertal testis on the left side and a streak gonad on the right. The karyotype obtained from the left gonad was 45,X/46,XXq- and that from the right gonad was 45,X. Three different techniques, PCR amplification, FISH, andmore » chromosome painting for X and Y chromosomes, confirmed the presence of Y chromosome sequences. Five different tissues were evaluated. The highest percentage of Y chromosome positive cells were detected in the left gonad, followed by the peripheral blood lymphocytes, skin fibroblasts, and buccal mucosa. No Y chromosomal material could be identified in the right gonad. Since the Xq- chromosome is present in the left gonad (testis), it is likely that the Xq- contains Y chromosomal material. Sophisticated analysis in this patient showed that she has at least 2 cell lines, one of which contains Y chromosomal material. These techniques elucidated the molecular basis of the genital ambiguity for this patient. When Y chromosome sequences are present in patients with Ullrich-Turner syndrome or gonadal dysgenesis, the risk for gonadal malignancy is significantly increased. Hence, molecular diagnostic methods to ascertain for the presence of Y chromosome sequences may expedite the evaluation of patients with the ambiguous genitalia. 21 refs., 4 figs., 2 tabs.« less

  17. Sex-determining mechanisms in insects based on imprinting and elimination of chromosomes.

    PubMed

    Sánchez, L

    2014-01-01

    As a rule, the sex of an individual is fixed at fertilization, and the chromosomal constitution of the zygote is a direct consequence of the chromosomal constitution of the gametes. However, there are cases in which the chromosomal differences determining sex are brought about by elimination or inactivation of chromosomes in the embryo. In Sciaridae insects, all zygotes start with the XXX constitution; the loss of either 1 or 2 X chromosomes determines whether the zygote becomes XX (female) or X0 (male). In Cecydomyiidae and Collembola insects, all zygotes start with the XXXX constitution. If the embryo does not eliminate any X chromosome, this remains XXXX and develops as female, whereas if 2 X chromosomes are eliminated, the embryo becomes XX0 and develops as a male. In the coccids (scale insects), the chromosomal differences between the sexes result from either the elimination or the heterochromatinization (inactivation) of half of the chromosomes giving rise to haploid males and diploid females. The chromosomes that are eliminated or inactivated are those inherited from the father. Therefore, in the formation of the sex-determining chromosomal signal in those insects, a marking ('imprinting') process must occur in one of the parents, which determines that the chromosomes to be eliminated or inactivated are of paternal origin. In this article, the sex determination mechanism of these insects and the associated imprinting process are reviewed. © 2013 S. Karger AG, Basel.

  18. A new physical mapping approach refines the sex-determining gene positions on the Silene latifolia Y-chromosome

    NASA Astrophysics Data System (ADS)

    Kazama, Yusuke; Ishii, Kotaro; Aonuma, Wataru; Ikeda, Tokihiro; Kawamoto, Hiroki; Koizumi, Ayako; Filatov, Dmitry A.; Chibalina, Margarita; Bergero, Roberta; Charlesworth, Deborah; Abe, Tomoko; Kawano, Shigeyuki

    2016-01-01

    Sex chromosomes are particularly interesting regions of the genome for both molecular genetics and evolutionary studies; yet, for most species, we lack basic information, such as the gene order along the chromosome. Because they lack recombination, Y-linked genes cannot be mapped genetically, leaving physical mapping as the only option for establishing the extent of synteny and homology with the X chromosome. Here, we developed a novel and general method for deletion mapping of non-recombining regions by solving “the travelling salesman problem”, and evaluate its accuracy using simulated datasets. Unlike the existing radiation hybrid approach, this method allows us to combine deletion mutants from different experiments and sources. We applied our method to a set of newly generated deletion mutants in the dioecious plant Silene latifolia and refined the locations of the sex-determining loci on its Y chromosome map.

  19. A chromosomal analysis of Nepa cinerea Linnaeus, 1758 and Ranatra linearis (Linnaeus, 1758) (Heteroptera, Nepidae)

    PubMed Central

    Angus, Robert B.; Jeangirard, Constance; Stoianova, Desislava; Grozeva, Snejana; Kuznetsova, Valentina G.

    2017-01-01

    Abstract An account is given of the karyotypes and male meiosis of the Water Scorpion Nepa cinerea Linnaeus, 1758 and the Water Stick Insect Ranatra linearis (Linnaeus, 1758) (Heteroptera, Nepomorpha, Nepidae). A number of different approaches and techniques were tried: the employment of both male and female gonads and mid-guts as the sources of chromosomes, squash and air-drying methods for chromosome preparations, C-banding and fluorescence in situ hybridization (FISH) for chromosome study. We found that N. cinerea had a karyotype comprising 14 pairs of autosomes and a multiple sex chromosome system, which is X1X2X3X4Y (♂) / X1X1X2X2X3X3X4X4 (♀), whereas R. linearis had a karyotype comprising 19 pairs of autosomes and a multiple sex chromosome system X1X2X3X4Y (♂) / X1X1X2X2X3X3X4X4 (♀). In both N. cinerea and R. linearis, the autosomes formed chiasmate bivalents in spermatogenesis, and the sex chromosome univalents divided during the first meiotic division and segregated during the second one suggesting thus a post-reductional type of behaviour. These results confirm and amplify those of Steopoe (1925, 1927, 1931, 1932) but are inconsistent with those of other researchers. C-banding appeared helpful in pairing up the autosomes for karyotype assembly; however in R. linearis the chromosomes were much more uniform in size and general appearance than in N. cinerea. FISH for 18S ribosomal DNA (major rDNA) revealed hybridization signals on two of the five sex chromosomes in N. cinerea. In R. linearis, rDNA location was less obvious than in N. cinerea; however it is suggested to be similar. We have detected the presence of the canonical “insect” (TTAGG)n telomeric repeat in chromosomes of these species. This is the first application of C-banding and FISH in the family Nepidae. PMID:29114353

  20. X chromosome inactivation in a female carrier of a 1.28 Mb deletion encompassing the human X inactivation centre.

    PubMed

    de Hoon, B; Splinter, Erik; Eussen, B; Douben, J C W; Rentmeester, E; van de Heijning, M; Laven, J S E; de Klein, J E M M; Liebelt, J; Gribnau, J

    2017-11-05

    X chromosome inactivation (XCI) is a mechanism specifically initiated in female cells to silence one X chromosome, thereby equalizing the dose of X-linked gene products between male and female cells. XCI is regulated by a locus on the X chromosome termed the X-inactivation centre (XIC). Located within the XIC is XIST , which acts as a master regulator of XCI. During XCI, XIST is upregulated on the inactive X chromosome and chromosome-wide cis spreading of XIST leads to inactivation. In mouse, the Xic comprises Xist and all cis -regulatory elements and genes involved in Xist regulation. The activity of the XIC is regulated by trans -acting factors located elsewhere in the genome: X-encoded XCI activators positively regulating XCI, and autosomally encoded XCI inhibitors providing the threshold for XCI initiation. Whether human XCI is regulated through a similar mechanism, involving trans -regulatory factors acting on the XIC has remained elusive so far. Here, we describe a female individual with ovarian dysgenesis and a small X chromosomal deletion of the XIC. SNP-array and targeted locus amplification (TLA) analysis defined the deletion to a 1.28 megabase region, including XIST and all elements and genes that perform cis -regulatory functions in mouse XCI. Cells carrying this deletion still initiate XCI on the unaffected X chromosome, indicating that XCI can be initiated in the presence of only one XIC. Our results indicate that the trans -acting factors required for XCI initiation are located outside the deletion, providing evidence that the regulatory mechanisms of XCI are conserved between mouse and human.This article is part of the themed issue 'X-chromosome inactivation: a tribute to Mary Lyon'. © 2017 The Authors.

  1. Condensin controls recruitment of RNA polymerase II to achieve nematode X-chromosome dosage compensation

    PubMed Central

    Kruesi, William S; Core, Leighton J; Waters, Colin T; Lis, John T; Meyer, Barbara J

    2013-01-01

    The X-chromosome gene regulatory process called dosage compensation ensures that males (1X) and females (2X) express equal levels of X-chromosome transcripts. The mechanism in Caenorhabditis elegans has been elusive due to improperly annotated transcription start sites (TSSs). Here we define TSSs and the distribution of transcriptionally engaged RNA polymerase II (Pol II) genome-wide in wild-type and dosage-compensation-defective animals to dissect this regulatory mechanism. Our TSS-mapping strategy integrates GRO-seq, which tracks nascent transcription, with a new derivative of this method, called GRO-cap, which recovers nascent RNAs with 5′ caps prior to their removal by co-transcriptional processing. Our analyses reveal that promoter-proximal pausing is rare, unlike in other metazoans, and promoters are unexpectedly far upstream from the 5′ ends of mature mRNAs. We find that C. elegans equalizes X-chromosome expression between the sexes, to a level equivalent to autosomes, by reducing Pol II recruitment to promoters of hermaphrodite X-linked genes using a chromosome-restructuring condensin complex. DOI: http://dx.doi.org/10.7554/eLife.00808.001 PMID:23795297

  2. Widespread Over-Expression of the X Chromosome in Sterile F1 Hybrid Mice

    PubMed Central

    Good, Jeffrey M.; Giger, Thomas; Dean, Matthew D.; Nachman, Michael W.

    2010-01-01

    The X chromosome often plays a central role in hybrid male sterility between species, but it is unclear if this reflects underlying regulatory incompatibilities. Here we combine phenotypic data with genome-wide expression data to directly associate aberrant expression patterns with hybrid male sterility between two species of mice. We used a reciprocal cross in which F1 males are sterile in one direction and fertile in the other direction, allowing us to associate expression differences with sterility rather than with other hybrid phenotypes. We found evidence of extensive over-expression of the X chromosome during spermatogenesis in sterile but not in fertile F1 hybrid males. Over-expression was most pronounced in genes that are normally expressed after meiosis, consistent with an X chromosome-wide disruption of expression during the later stages of spermatogenesis. This pattern was not a simple consequence of faster evolutionary divergence on the X chromosome, because X-linked expression was highly conserved between the two species. Thus, transcriptional regulation of the X chromosome during spermatogenesis appears particularly sensitive to evolutionary divergence between species. Overall, these data provide evidence for an underlying regulatory basis to reproductive isolation in house mice and underscore the importance of transcriptional regulation of the X chromosome to the evolution of hybrid male sterility. PMID:20941395

  3. Lattice parameter functions of (AmyU1-y)O2-x based on XRD and XANES measurements

    NASA Astrophysics Data System (ADS)

    Nishi, Tsuyoshi; Nakada, Masami; Hirata, Masaru

    2017-12-01

    The lattice parameters of (Am0.50U0.50)O2.0, (Am0.37U0.63)O2.0, and (Am0.50U0.50)O2-x were determined by powder X-ray diffraction with Cu Kα radiation. In addition, the lattice parameter functions of (AmyU1-y)O2-x (0.00<x<0.25, 0.00<y<0.50) were evaluated using models of (Am3+yU4+1-2yU5+y)O2 and (Am3+yU4+1-y)O2-y/2 based on the results of X-ray diffraction and the ionic radii of Am3+, U4+, and U5+. In order to confirm the valence state of Am and U in (AmyU1-y)O2-x, the X-ray absorption near-edge structure measurements were performed in the transmission mode at the Am-LIII and U-LIII absorption edges of (Am0.50U0.50)O2.0, (Am0.50U0.50)O2-x, and UO2.0.

  4. Oxygen isotope effect in disordered underdoped and overdoped La 2-xSr xCu 1-yZn yO 4 superconductors

    NASA Astrophysics Data System (ADS)

    Naqib, S. H.; Islam, R. S.

    2011-04-01

    The effect of oxygen isotopic substitution on the superconducting transition temperature has been studied for heavily underdoped and overdoped La 2-xSr xCu 1-yZn yO 4 compounds with different Zn contents in the CuO 2 plane. The effect of Zn on the isotope coefficient, α, was significantly more pronounced in the case of the underdoped ( x = 0.09) compounds compared to the overdoped ( x = 0.22) ones. The variation of α with disorder content can be described quite well within a model based solely on Cooper pair-breaking in the case of the underdoped compounds. This model fails to describe the behavior of α( y) for the overdoped samples, even though Zn still suppresses T c very effectively at this hole (Sr) content, indicating that the Zn induced pair-breaking is still very much at play. We discuss the implications of these findings in details by considering the Zn induced magnetism, stripe correlations, and possible changes in the superconducting order parameter as hole content in the CuO 2 plane, p (≡ x), is varied.

  5. Magnetic properties of Ce xY 1-xPt compared to Ce xLa 1-xPt ones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ocko, M.; Zadro, K.; Drobac, D.

    In this paper, we have investigated the magnetic properties of the Ce xY 1-xPt Kondo ferromagnetic alloy system in the temperature range from 1.8 K to 320 K. The results of these investigations can be summarized as follows: dc-susceptibility can be described by the Curie-Weiss law at higher temperatures down to about 100 K, but also at low temperatures above the ferromagnetic phase transition. At higher temperatures, the extracted Curie-Weiss parameter, θ p, is negative and at low temperature θ C is positive. The extracted effective magnetic moment above 100 K increases with the Ce content up to almost themore » theoretical value of the isolated Ce 3+ ion, μ = 2.54 μ B, for CePt. This suggests an increase of the hybridization with decreasing Ce content, or said equivalently, it means that the increase of the Kondo interaction diminishes effective magnetic moment. These observations confirm the main conclusions inferred from an earlier transport properties investigation of this alloy system. The corresponding θ C differs within 1 K from the Curie temperature, T C, which is determined by the resistivity measurements. The most intriguing result of the investigation of Ce xY 1-xPt is the linear concentration dependence of T C vs. x and, moreover, it is the same as in Ce xLa 1-xPt although in the former system the hybridization diminishes considerably the effective magnetic moment per Ce ion, while in the latter system, hybridization is minor and independent of x. Finally, we offer the explanations of these intriguing experimental results.« less

  6. Magnetic properties of Ce xY 1-xPt compared to Ce xLa 1-xPt ones

    DOE PAGES

    Ocko, M.; Zadro, K.; Drobac, D.; ...

    2017-12-05

    In this paper, we have investigated the magnetic properties of the Ce xY 1-xPt Kondo ferromagnetic alloy system in the temperature range from 1.8 K to 320 K. The results of these investigations can be summarized as follows: dc-susceptibility can be described by the Curie-Weiss law at higher temperatures down to about 100 K, but also at low temperatures above the ferromagnetic phase transition. At higher temperatures, the extracted Curie-Weiss parameter, θ p, is negative and at low temperature θ C is positive. The extracted effective magnetic moment above 100 K increases with the Ce content up to almost themore » theoretical value of the isolated Ce 3+ ion, μ = 2.54 μ B, for CePt. This suggests an increase of the hybridization with decreasing Ce content, or said equivalently, it means that the increase of the Kondo interaction diminishes effective magnetic moment. These observations confirm the main conclusions inferred from an earlier transport properties investigation of this alloy system. The corresponding θ C differs within 1 K from the Curie temperature, T C, which is determined by the resistivity measurements. The most intriguing result of the investigation of Ce xY 1-xPt is the linear concentration dependence of T C vs. x and, moreover, it is the same as in Ce xLa 1-xPt although in the former system the hybridization diminishes considerably the effective magnetic moment per Ce ion, while in the latter system, hybridization is minor and independent of x. Finally, we offer the explanations of these intriguing experimental results.« less

  7. Neuropharmacology of Purinergic Receptors in Human Submucous Plexus: Involvement of P2X1, P2X2, P2X3 Channels, P2Y and A3 Metabotropic Receptors in Neurotransmission

    PubMed Central

    Liñán-Rico, A.; Wunderlich, JE.; Enneking, JT.; Tso, DR.; Grants, I.; Williams, KC.; Otey, A.; Michel, K.; Schemann, M.; Needleman, B.; Harzman, A.; Christofi, FL.

    2015-01-01

    Rationale The role of purinergic signaling in the human ENS is not well understood. We sought to further characterize the neuropharmacology of purinergic receptors in human ENS and test the hypothesis that endogenous purines are critical regulators of neurotransmission. Experimental Approach LSCM-Fluo-4-(Ca2+)-imaging of postsynaptic Ca2+ transients (PSCaTs) was used as a reporter of neural activity. Synaptic transmission was evoked by fiber tract electrical stimulation in human SMP surgical preparations. Pharmacological analysis of purinergic signaling was done in 1,556 neurons from 234 separate ganglia 107 patients; immunochemical labeling for P2XRs of neurons in ganglia from 19 patients. Real-time MSORT (Di-8-ANEPPS) imaging was used to test effects of adenosine on fast excitatory synaptic potentials (fEPSPs). Results Synaptic transmission is sensitive to pharmacological manipulations that alter accumulation of extracellular purines. Apyrase blocks PSCaTs in a majority of neurons. An ecto-NTPDase-inhibitor 6-N,N-diethyl-D-β,γ-dibromomethyleneATP or adenosine deaminase augments PSCaTs. Blockade of reuptake/deamination of eADO inhibits PSCaTs. Adenosine inhibits fEPSPs and PSCaTs (IC50=25μM), sensitive to MRS1220-antagonism (A3AR). A P2Y agonist ADPβS inhibits PSCaTs (IC50=111nM) in neurons without stimulatory ADPβS responses (EC50=960nM). ATP or a P2X1,2,2/3 (α,β-MeATP) agonist evokes fast, slow, biphasic Ca2+ transients or Ca2+ oscillations (EC50=400μM). PSCaTs are sensitive to P2X1 antagonist NF279. Low (20nM) or high (5μM) concentrations of P2X antagonist TNP-ATP block PSCaTs in different neurons; proportions of neurons with P2XR-ir follow the order P2X2>P2X1≫P2X3; P2X1+ P2X2 and P2X3+P2X2 are co-localized. RT-PCR identified mRNA-transcripts for P2X1-7,P2Y1,2,12-14R. Responsive neurons were also identified by HuC/D-ir. Conclusions Purines are critical regulators of neurotransmission in the human enteric nervous system. Purinergic signaling involves

  8. Independent degeneration of W and Y sex chromosomes in frog Rana rugosa.

    PubMed

    Miura, Ikuo; Ohtani, Hiromi; Ogata, Mitsuaki

    2012-01-01

    The frog Rana rugosa uniquely possesses two different sex-determining systems of XX/XY and ZZ/ZW, separately in the geographic populations. The sex chromosomes of both types share the same origin at chromosome 7, and the structural differences between X and Y or Z and W were evolved through two inversions. In order to ascertain the mechanisms of degeneration of W and Y chromosomes, we gynogenetically produced homozygous diploids WW and YY and examined their viability. Tadpoles from geographic group N (W(N)W(N)) containing three populations died of edema at an early developmental stage within 10 days after hatching, while tadpoles from the geographic group K (W(K)W(K)) that contained two populations died of underdeveloped growth at a much later stage, 40-50 days after fertilization. On the contrary, W(N)W(K) and W(K)W(N) hybrid embryos were viable, successfully passed the two lethal stages, and survived till the attainment of adulthood. The observed survival implies that the lethal genes of the W chromosomes are not shared by the two groups and thus demonstrates their independent degeneration histories between the local groups. In sharp contrast, a sex-linked gene of androgen receptor gene (AR) from the W chromosome was down-regulated in expression in both the groups, suggesting that inactivation of the W-AR allele preceded divergence of the two groups and appearance of the lethal genes. Besides, the YY embryos died of cardiac edema immediately after hatching. The symptom of lethality and the stage of developmental arrest differed from those for either of WW lethal embryos. We therefore conclude that the W and Y chromosomes involve no evolutionary common scenario for degeneration.

  9. Growth of (Y1-x Ca x )Ba2Cu4O8 in ambient pressure and its tri-axial magnetic alignment

    NASA Astrophysics Data System (ADS)

    Horii, S.; Yamaki, M.; Shimoyama, J.; Kishio, K.; Doi, T.

    2015-10-01

    We report the growth of single crystals in ambient pressure and tri-axial orientation under modulated rotation magnetic fields (MRFs) for (Y1-x Ca x )Ba2Cu4O8 [(Y1-x Ca x )124] with x ≤ 0.1. Rectangular (Y1-x Ca x )124 crystals approximately 50 μm in size have been successfully grown for x ≤ 0.1 in a growth temperature region from 650 °C to 750 °C. Their critical temperatures increased with x and exhibited approximately 91 K for x = 0.1. By applying an MRF of 10 T, pulverised powders of (Y1-x Ca x )124 were tri-axially aligned in epoxy resin at room temperature in a whole x region below x = 0.1. The magnitude relationship of the magnetic susceptibilities (χ) along crystallographic directions for (Y1-x Ca x )124 was χ c > χ a > χ b at room temperature and was unchanged with a change in x. From changes in the degrees of the c-axis and the in-plane orientation (Δω) for the (Y1-x Ca x )124 powder samples aligned under three different MRF conditions, it was found that MRFs above at least 1 T were required to achieve almost complete tri-axial alignment with Δω < 5°. Irreversibility lines for H//c were successfully determined even from the powder samples by the introduction of magnetic alignment without using single crystalline samples. The present study indicates that magnetic alignment is a useful process for the fabrication of quasi-single-crystals from the perspective of solid-state physics and the production of cuprate superconducting materials.

  10. Clinical utility of the X-chromosome array.

    PubMed

    Zarate, Yuri A; Dwivedi, Alka; Bartel, Frank O; Bellomo, M Allison; Cathey, Sara S; Champaigne, Neena L; Clarkson, L Kate; Dupont, Barbara R; Everman, David B; Geer, Joseph S; Gordon, Barbara C; Lichty, Angie W; Lyons, Michael J; Rogers, R Curtis; Saul, Robert A; Schroer, Richard J; Skinner, Steven A; Stevenson, Roger E

    2013-01-01

    Previous studies have limited the use of specific X-chromosome array designed platforms to the evaluation of patients with intellectual disability. In this retrospective analysis, we reviewed the clinical utility of an X-chromosome array in a variety of scenarios. We divided patients according to the indication for the test into four defined categories: (1) autism spectrum disorders and/or developmental delay and/or intellectual disability (ASDs/DD/ID) with known family history of neurocognitive disorders; (2) ASDs/DD/ID without known family history of neurocognitive disorders; (3) breakpoint definition of an abnormality detected by a different cytogenetic test; and (4) evaluation of suspected or known X-linked conditions. A total of 59 studies were ordered with 27 copy number variants detected in 25 patients (25/59 = 42%). The findings were deemed pathogenic/likely pathogenic (16/59 = 27%), benign (4/59 = 7%) or uncertain (7/59 = 12%). We place particular emphasis on the utility of this test for the diagnostic evaluation of families affected with X-linked conditions and how it compares to whole genome arrays in this setting. In conclusion, the X-chromosome array frequently detects genomic alterations of the X chromosome and it has advantages when evaluating some specific X-linked conditions. However, careful interpretation and correlation with clinical findings is needed to determine the significance of such changes. When the X-chromosome array was used to confirm a suspected X-linked condition, it had a yield of 63% (12/19) and was useful in the evaluation and risk assessment of patients and families. Copyright © 2012 Wiley Periodicals, Inc.

  11. Topological characters in Fe (Te1 -xSex ) thin films

    NASA Astrophysics Data System (ADS)

    Wu, Xianxin; Qin, Shengshan; Liang, Yi; Fan, Heng; Hu, Jiangping

    2016-03-01

    We investigate topological properties in the Fe(Te,Se) thin films. We find that the single layer FeTe1 -xSex has nontrivial Z2 topological invariance which originates from the parity exchange at the Γ point of the Brillouin zone. The nontrivial topology is mainly controlled by the Te(Se) height. Adjusting the anion height, which can be realized as the function of lattice constants and x in FeTe1 -xSex , can drive a topological phase transition. In a bulk material, the two-dimensional Z2 topology invariance is extended to a strong three-dimensional one. In a thin film, we predict that the topological invariance oscillates with the number of layers. The results can also be applied to iron pnictides. Our research establishes FeTe1 -xSex as a unique system to integrate high-Tc superconductivity and topological properties in a single electronic structure.

  12. Aplastic Anemia in Two Patients with Sex Chromosome Aneuploidies.

    PubMed

    Rush, Eric T; Schaefer, G Bradley; Sanger, Warren G; Coccia, Peter F

    2015-01-01

    Sex chromosome aneuploidies range in incidence from rather common to exceedingly rare and have a variable phenotype. We report 2 patients with sex chromosome aneuploidies who developed severe aplastic anemia requiring treatment. The first patient had tetrasomy X (48,XXXX) and presented at 9 years of age, and the second patient had trisomy X (47,XXX) and presented at 5 years of age. Although aplastic anemia has been associated with other chromosomal abnormalities, sex chromosome abnormalities have not been traditionally considered a risk factor for this condition. A review of the literature reveals that at least one other patient with a sex chromosome aneuploidy (45,X) has suffered from aplastic anemia and that other autosomal chromosomal anomalies have been described. Despite the uncommon nature of each condition, it is possible that the apparent association is coincidental. A better understanding of the genetic causes of aplastic anemia remains important. © 2015 S. Karger AG, Basel.

  13. The Sex Chromosomes in Evolution and in Medicine

    PubMed Central

    Barr, Murray L.

    1966-01-01

    The recent emergence of human cytogenetics has a firm foundation in studies on other forms of life. Historical highlights are Mendel's studies on the garden pea (published in 1865 but lost in an obscure journal until 1900); formulation of cytogenic postulates by Sutton and Boveri (1902-1903); Bridges' discovery of chromosome abnormalities in Drosophila (1916), followed by numerous similar studies in plants; and demonstration of the chromosomal basis of the syndromes of Down, Klinefelter and Turner in man (1959). The sex chromosomes (XX and XY) evolved from a pair of undifferentiated autosomes of a premammalian ancestor, the X chromosome changing less than the Y as they evolved. Eleven numerical abnormalities of the sex chromosomes are known in man, and knowledge of their effects on development is accumulating. The abnormal complexes range in size from the XO error of Turner's syndrome to the XXXXY error of a variant of Klinefelter's syndrome. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6Fig. 7Fig. 8 PMID:4224254

  14. Synthesis and electrochemical characterization of Li 1.05RE xCr yMn 2- x- yO 4 spinel as cathode material for rechargeable Li-battery

    NASA Astrophysics Data System (ADS)

    Xie, Yanting; Yang, Rudong; Yan, Lan; Qi, Lu; Dai, Kehua; He, Ping

    The spinel phases of Li 1.05RE xCr yMn 2- x- yO 4 (RE = Sc, Ce, Pr, Tb; 0 ≤ x ≤ 0.05; 0 ≤ y ≤ 0.1) were prepared by a soft chemical method. The structural and electrochemical properties of Li 1.05RE xCr yMn 2- x- yO 4 were investigated by X-ray diffraction (XRD), Transmission electron microscopy (TEM) and charge-discharge experiments. Rare earth element-Sc and transition metal-Cr as co-substituents stabilize the spinel framework and improve charge-discharge performance. For Li 1.05Sc 0.01Cr 0.03Mn 1.96O 4, the capacity of the cell maintained 95% of the initial capacity at the 80th cycle. The rare earth elements of the variable valent metals such as Ce 3+/4+, Pr 3+/4+, Tb 3+/4+ with transition metal Cr 3+ as co-substituent do not stable framework of spinel or improve the cycling performance. Cyclic voltammetry (CV) were measured to provide clues for the improved cycling performance of cathode electrodes.

  15. Size and Content of the Sex-Determining Region of the Y Chromosome in Dioecious Mercurialis annua, a Plant with Homomorphic Sex Chromosomes.

    PubMed

    Veltsos, Paris; Cossard, Guillaume; Beaudoing, Emmanuel; Beydon, Genséric; Savova Bianchi, Dessislava; Roux, Camille; C González-Martínez, Santiago; R Pannell, John

    2018-05-29

    Dioecious plants vary in whether their sex chromosomes are heteromorphic or homomorphic, but even homomorphic sex chromosomes may show divergence between homologues in the non-recombining, sex-determining region (SDR). Very little is known about the SDR of these species, which might represent particularly early stages of sex-chromosome evolution. Here, we assess the size and content of the SDR of the diploid dioecious herb Mercurialis annua , a species with homomorphic sex chromosomes and mild Y-chromosome degeneration. We used RNA sequencing (RNAseq) to identify new Y-linked markers for M. annua. Twelve of 24 transcripts showing male-specific expression in a previous experiment could be amplified by polymerase chain reaction (PCR) only from males, and are thus likely to be Y-linked. Analysis of genome-capture data from multiple populations of M. annua pointed to an additional six male-limited (and thus Y-linked) sequences. We used these markers to identify and sequence 17 sex-linked bacterial artificial chromosomes (BACs), which form 11 groups of non-overlapping sequences, covering a total sequence length of about 1.5 Mb. Content analysis of this region suggests that it is enriched for repeats, has low gene density, and contains few candidate sex-determining genes. The BACs map to a subset of the sex-linked region of the genetic map, which we estimate to be at least 14.5 Mb. This is substantially larger than estimates for other dioecious plants with homomorphic sex chromosomes, both in absolute terms and relative to their genome sizes. Our data provide a rare, high-resolution view of the homomorphic Y chromosome of a dioecious plant.

  16. Thin single-crystalline Bi2(Te1-xSex)3 ternary nanosheets synthesized by a solvothermal technique

    NASA Astrophysics Data System (ADS)

    Guo, Jing; Jian, Jikang; Zhang, Zhihua; Wu, Rong; Li, Jin; Sun, Yanfei

    2016-01-01

    Bi2(Te1-xSex)3 ternary nanosheets have been successfully synthesized through a facile solvothermal technique using diethylenetriamine as solvent, where x can vary from 0 to 1. X-ray diffraction (XRD) and Scanning electron microscopy (SEM) indicate that the as-synthesized Bi2(Te1-xSex)3 samples are nanosheets with rhombohedral structure, and the thickness of the nanosheets can be as thin as several nanometers. High resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) reveal that the nanosheets are single crystalline with a rhombohedral structure. Energy disperse spectroscopy (EDS) and XRD analysis by Vegard's law confirm that the ternary Bi2(Te1-xSex)3 nanosheets have been obtained here. The growth of the nanosheets is discussed based on an amine-based molecular template mechanism that has been employed to synthesize some other metal chalcogenides.

  17. Successive magnetic transitions of the pseudo-ternary compounds Ho1-xRxRh2Si2 (R=Y, La)

    NASA Astrophysics Data System (ADS)

    Shigeoka, Toru; Uchima, Kiyoharu; Uwatoko, Yoshiya

    2018-05-01

    Magnetic measurements on the pseudo-ternary compounds Ho1-xRxRh2Si2 (R = Y or La = Y or La) were performed in order to get information on the origin of "the successive component-separated magnetic transitions" which appear in HoRh2Si2. The lattice parameters a and c remain almost constant during changes to Y composition x, while they increase with increasing La composition x. The c/a ratios are also constant in the Y-system, and they increase with increasing x in the La-system especially for above around x = 0.4. The transition temperatures, TN1 = 29.1 K, Tt = 27.3 K and TN2 =12.1 K at x = 0, decrease with increasing x. The rates of decrease for TN1 and TN2 in the Y-system accord with those in the La system below x = 0.4. The critical compositions for TN1 and TN2 are determined to be xN1 = 0.88 and xN2 = 0.59 in the La-system, respectively, and xN1 = 0.98 and xN2 = 0.75 in the Y-system. In both the systems, "the successive component-separated magnetic transitions" appear for the wide x regions. The magnetic ordered state persists in very dilute Ho-compounds in spite of much weak magnetic interactions. The effective magnetic moments are almost constant for the ordered compounds; μeff = 10.6 ± 0.30 μB/Ho. These behaviors are strange, indicating a strong correlation exists in these systems.

  18. Composition-property relationships in (Gd3-xLux)(GayAl5-y)O12:Ce (x = 0, 1, 2, 3 and y = 0, 1, 2, 3, 4) multicomponent garnet scintillators

    NASA Astrophysics Data System (ADS)

    Luo, Jialiang; Wu, Yuntao; Zhang, Guoqing; Zhang, Huaijin; Ren, Guohao

    2013-12-01

    The (LuxGd3-x)(GayAl5-y)O12:Ce (x = 0, 1, 2, 3 and y = 0, 1, 2, 3, 4) scintillating polycrystalline powders were prepared by high temperature solid state reaction method. A pure cubic phase was confirmed in all samples by X-ray diffraction (XRD). X-ray excited luminescence (XEL), photoluminescence excitation and emission spectra were employed to study the influence of Gd3+-Ga3+ admixture on the luminescent mechanism of Ce3+ as well as the energy transfer from Gd3+ to Ce3+. The band-gap structures with varying Gd3+ and Ga3+ content were constructed to understand the luminescence behaviors. In addition, thermoluminescence spectra (TL) were utilized to identify the moving of conduction band (CB) by monitoring the shift of the corresponding TL peaks. Finally, it was found that incorporation of 40 mol% (y = 2) Ga3+ and 33.3-66.7 mol% (x = 1-2) Gd3+ could secure enough energy-separation between CB and 5d1 of Ce3+ avoiding thermal ionization effect at utmost, and bury the antisite defect traps into CB, and in turn achieving the optimum scintillation efficiency.

  19. Cryptic mosaicism involving a second chromosome X in patients with Turner syndrome.

    PubMed

    Araújo, A; Ramos, E S

    2008-05-01

    The high abortion rate of 45,X embryos indicates that patients with Turner syndrome and 45,X karyotype could be mosaics, in at least one phase of embryo development or cellular lineage, due to the need for the other sex chromosome presence for conceptus to be compatible with life. In cases of structural chromosomal aberrations or hidden mosaicism, conventional cytogenetic techniques can be ineffective and molecular investigation is indicated. Two hundred and fifty patients with Turner syndrome stigmata were studied and 36 who had female genitalia and had been cytogenetically diagnosed as having "pure" 45,X karyotype were selected after 100 metaphases were analyzed in order to exclude mosaicism and the presence of genomic Y-specific sequences (SRY, TSPY, and DAZ) was excluded by PCR. Genomic DNA was extracted from peripheral blood and screened by the human androgen receptor (HUMARA) assay. The HUMARA gene has a polymorphic CAG repeat and, in the presence of a second chromosome with a different HUMARA allele, a second band will be amplified by PCR. Additionally, the CAG repeats contain two methylation-sensitive HpaII enzyme restriction sites, which can be used to verify skewed inactivation. Twenty-five percent (9/36) of the cases showed a cryptic mosaicism involving a second X and approximately 14% (5/36), or 55% (5/9) of the patients with cryptic mosaicism, also presented skewed inactivation. The laboratory identification of the second X chromosome and its inactivation pattern are important for the clinical management (hormone replacement therapy, and inclusion in an oocyte donation program) and prognostic counseling of patients with Turner syndrome.

  20. Investigation of the Thermal Stability of Nd(x)Sc(y)Zr(1-x-y)O(2-δ) Materials Proposed for Inert Matrix Fuel Applications.

    PubMed

    Hayes, John R; Grosvenor, Andrew P; Saoudi, Mouna

    2016-02-01

    Inert matrix fuels (IMF) consist of transuranic elements (i.e., Pu, Am, Np, Cm) embedded in a neutron transparent (inert) matrix and can be used to "burn up" (transmute) these elements in current or Generation IV nuclear reactors. Yttria-stabilized zirconia has been extensively studied for IMF applications, but the low thermal conductivity of this material limits its usefulness. Other elements can be used to stabilize the cubic zirconia structure, and the thermal conductivity of the fuel can be increased through the use of a lighter stabilizing element. To this end, a series of Nd(x)Sc(y)Zr(1-x-y)O(2-δ) materials has been synthesized via a co-precipitation reaction and characterized by multiple techniques (Nd was used as a surrogate for Am). The long-range and local structures of these materials were studied using powder X-ray diffraction, scanning electron microscopy, and X-ray absorption spectroscopy. Additionally, the stability of these materials over a range of temperatures has been studied by annealing the materials at 1100 and 1400 °C. It was shown that the Nd(x)Sc(y)Zr(1-x-y)O(2-δ) materials maintained a single cubic phase upon annealing at high temperatures only when both Nd and Sc were present with y ≥ 0.10 and x + y > 0.15.

  1. X chromosome inactivation in women with alcoholism.

    PubMed

    Manzardo, Ann M; Henkhaus, Rebecca; Hidaka, Brandon; Penick, Elizabeth C; Poje, Albert B; Butler, Merlin G

    2012-08-01

    All female mammals with 2 X chromosomes balance gene expression with males having only 1 X by inactivating one of their X chromosomes (X chromosome inactivation [XCI]). Analysis of XCI in females offers the opportunity to investigate both X-linked genetic factors and early embryonic development that may contribute to alcoholism. Increases in the prevalence of skewing of XCI in women with alcoholism could implicate biological risk factors. The pattern of XCI was examined in DNA isolated in blood from 44 adult women meeting DSM-IV criteria for an alcohol use disorder and 45 control women with no known history of alcohol abuse or dependence. XCI status was determined by analyzing digested and undigested polymerase chain reaction (PCR) products of the polymorphic androgen receptor (AR) gene located on the X chromosome. Subjects were categorized into 3 groups based upon the degree of XCI skewness: random (50:50 to 64:36%), moderately skewed (65:35 to 80:20%), and highly skewed (>80:20%). XCI status from informative women with alcoholism was found to be random in 59% (n = 26), moderately skewed in 27% (n = 12), or highly skewed in 14% (n = 6). Control subjects showed 60, 29, and 11%, respectively. The distribution of skewed XCI observed among women with alcoholism did not differ statistically from that of control subjects (χ(2) test = 0.14, 2 df, p = 0.93). Our data did not support an increase in XCI skewness among women with alcoholism or implicate early developmental events associated with embryonic cell loss or unequal (nonrandom) expression of X-linked gene(s) or defects in alcoholism among women. Copyright © 2012 by the Research Society on Alcoholism.

  2. Escape of X-linked miRNA genes from meiotic sex chromosome inactivation

    PubMed Central

    Sosa, Enrique; Flores, Luis; Yan, Wei; McCarrey, John R.

    2015-01-01

    Past studies have indicated that transcription of all X-linked genes is repressed by meiotic sex chromosome inactivation (MSCI) during the meiotic phase of spermatogenesis in mammals. However, more recent studies have shown an increase in steady-state levels of certain X-linked miRNAs in pachytene spermatocytes, suggesting that either synthesis of these miRNAs increases or that degradation of these miRNAs decreases dramatically in these cells. To distinguish between these possibilities, we performed RNA-FISH to detect nascent transcripts from multiple miRNA genes in various spermatogenic cell types. Our results show definitively that Type I X-linked miRNA genes are subject to MSCI, as are all or most X-linked mRNA genes, whereas Type II and III X-linked miRNA genes escape MSCI by continuing ongoing, active transcription in primary spermatocytes. We corroborated these results by co-localization of RNA-FISH signals with both a corresponding DNA-FISH signal and an immunofluorescence signal for RNA polymerase II. We also found that X-linked miRNA genes that escape MSCI locate non-randomly to the periphery of the XY body, whereas genes that are subject to MSCI remain located within the XY body in pachytene spermatocytes, suggesting that the mechanism of escape of X-linked miRNA genes from MSCI involves their relocation to a position outside of the repressive chromatin domain associated with the XY body. The fact that Type II and III X-linked miRNA genes escape MSCI suggests an immediacy of function of the encoded miRNAs specifically required during the meiotic stages of spermatogenesis. PMID:26395485

  3. Thermal conductivity of Bi2(SexTe1-x)3 alloy films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Yoo, Taehee; Lee, Eungkyu; Dong, Sining; Li, Xiang; Liu, Xinyu; Furdyna, Jacek K.; Dobrowolska, Margaret; Luo, Tengfei

    2017-06-01

    We studied the thermal conductivity of Bi2Se3, Bi2Te3, and their alloy Bi2(SexTe1-x)3 at room temperature using time-domain thermoreflectance measurements. The Bi2(SexTe1-x)3 films with various concentrations of Se and Te prepared by molecular beam epitaxy on GaAs substrates were investigated to study the dependence of thermal conductivity on film composition. We observed that the Bi2(SexTe1-x)3 ternary alloys can have much lower thermal conductivity values compared to those of Bi2Se3 and Bi2Te3. These results may provide useful information for developing and engineering low thermal conductivity materials for thermoelectric applications.

  4. Unraveling unusual X-chromosome patterns during fragile-X syndrome genetic testing.

    PubMed

    Esposito, Gabriella; Tremolaterra, Maria Roberta; Savarese, Maria; Spiniello, Michele; Patrizio, Maria Pia; Lombardo, Barbara; Pastore, Lucio; Salvatore, Francesco; Carsana, Antonella

    2018-01-01

    Fragile X syndrome (FXS) is the most common form of inherited intellectual disability (ID). Together with fragile X-associated tremor and ataxia (FXTAS) and fragile X-associated premature ovarian failure (POF)/primary ovarian insufficiency (POI), FXS depends on dysfunctional expression of the FMR1 gene on Xq27.3. In most cases, FXS is caused by a >200 CGG repeats in FMR1 5'-untranslated region (UTR) and by promoter hypermethylation that results in gene silencing. Males and females with unmethylated premutated alleles (repeats between 55 and 200) are at risk for FXTAS and POF/POI. FXS molecular testing relied on PCR and methylation-specific Southern blot analysis of the FMR1 5'UTR. Atypical Southern blot patterns were studied by X-chromosome microsatellite analysis, copy number dosage at DMD locus, amelogenin gender-marker analysis and array-comparative genomic hybridization (array-CGH). Six men affected by ID and three women affected by ID and POF/POI underwent FXS molecular testing. They had normal FMR1 CGG repeats, but atypical X chromosome patterns. Further investigations revealed that the six males had Klinefelter syndrome (XXY), one female was a Turner mosaic (X0/XX) and two women had novel rearrangements involving X chromosome. Diagnostic investigation of atypical patterns at FMR1 locus can address patients and/or their relatives to further verify the condition by performing karyotyping and/or array-CGH. Copyright © 2017. Published by Elsevier B.V.

  5. Stability of Cd 1xZn xO yS 1y Quaternary Alloys Assessed with First-Principles Calculations

    DOE PAGES

    Varley, Joel B.; He, Xiaoqing; Rockett, Angus; ...

    2017-02-08

    One route to decreasing the absorption in CdS buffer layers in Cu(In,Ga)Se 2 and Cu 2ZnSn(S,Se) 4 thin-film photovoltaics is by alloying. Here we use first-principles calculations based on hybrid functionals to assess the energetics and stability of quaternary Cd, Zn, O, and S (Cd 1xZn xO yS 1y) alloys within a regular solution model. Our results identify that full miscibility of most Cd 1xZn xO yS 1y compositions and even binaries like Zn(O,S) is outside typical photovoltaic processing conditions. Finally, the results suggest that the tendency for phase separation of the oxysulfides may drive the nucleation of other phasesmore » such as sulfates that have been increasingly observed in oxygenated CdS and ZnS.« less

  6. Stability of Cd 1xZn xO yS 1y Quaternary Alloys Assessed with First-Principles Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varley, Joel B.; He, Xiaoqing; Rockett, Angus

    One route to decreasing the absorption in CdS buffer layers in Cu(In,Ga)Se 2 and Cu 2ZnSn(S,Se) 4 thin-film photovoltaics is by alloying. Here we use first-principles calculations based on hybrid functionals to assess the energetics and stability of quaternary Cd, Zn, O, and S (Cd 1xZn xO yS 1y) alloys within a regular solution model. Our results identify that full miscibility of most Cd 1xZn xO yS 1y compositions and even binaries like Zn(O,S) is outside typical photovoltaic processing conditions. Finally, the results suggest that the tendency for phase separation of the oxysulfides may drive the nucleation of other phasesmore » such as sulfates that have been increasingly observed in oxygenated CdS and ZnS.« less

  7. Progressive Recombination Suppression and Differentiation in Recently Evolved Neo-sex Chromosomes

    PubMed Central

    Natri, Heini M.; Shikano, Takahito; Merilä, Juha

    2013-01-01

    Recombination suppression leads to the structural and functional differentiation of sex chromosomes and is thus a crucial step in the process of sex chromosome evolution. Despite extensive theoretical work, the exact processes and mechanisms of recombination suppression and differentiation are not well understood. In threespine sticklebacks (Gasterosteus aculeatus), a different sex chromosome system has recently evolved by a fusion between the Y chromosome and an autosome in the Japan Sea lineage, which diverged from the ancestor of other lineages approximately 2 Ma. We investigated the evolutionary dynamics and differentiation processes of sex chromosomes based on comparative analyses of these divergent lineages using 63 microsatellite loci. Both chromosome-wide differentiation patterns and phylogenetic inferences with X and Y alleles indicated that the ancestral sex chromosomes were extensively differentiated before the divergence of these lineages. In contrast, genetic differentiation appeared to have proceeded only in a small region of the neo-sex chromosomes. The recombination maps constructed for the Japan Sea lineage indicated that recombination has been suppressed or reduced over a large region spanning the ancestral and neo-sex chromosomes. Chromosomal regions exhibiting genetic differentiation and suppressed or reduced recombination were detected continuously and sequentially in the neo-sex chromosomes, suggesting that differentiation has gradually spread from the fusion point following the extension of recombination suppression. Our study illustrates an ongoing process of sex chromosome differentiation, providing empirical support for the theoretical model postulating that recombination suppression and differentiation proceed in a gradual manner in the very early stage of sex chromosome evolution. PMID:23436913

  8. Structure and electrochemical performance of Li[Ni(1 -x-y)Co(x)Mn(y)]O2 [0.025 < or = x < or = 0.4, 0.015 < or = y < or = 0.25] as cathodes compound for lithium ion batteries.

    PubMed

    Choi, Y G; Kim, D H; Im, J S; Kang, J W; Kim, E J; Kim, J

    2008-10-01

    Li[Ni(1-x-y)Co(x)Mn(y)]O2 (0.025 < or = x < or = 0.4, 0.015 < or = y < or = 0.25) electrode powders were prepared by a solid-state reaction. The phase purity and R-3m layered structure of the synthesized Li[Ni(1-x-y)Co(x)Mn(y)]O2 materials were confirmed by X-ray diffraction analysis. The particle size of the powder/compounds was decreased with increasing Co and Mn contents to a minimum average particle size of 0.2 approximately 0.3 microm for the LiNi0.35Co0.4Mn0.25O2 powder. A specific capacity of 187 mAh/g was obtained for the LiNi0.35Co0.4Mn0.25O2 electrode with good capacity retention when cycled in the potential region of 3.0-4.6 V with a current density of 20 mA/g at room temperature. Although the structural parameters of the LiNi0.35Co0.4Mn0.25O2 cathode material were similar to those of the LiNil/3CO1/3Mn1/3O2 powder, its specific capacity was higher due to the higher Co contents.

  9. Synthesis of [(Ca1-xSrx)2-2y](Ti2-2yLi2y)Si2yO6-y Ceramic and its Application in Efficient Plasma Decomposition of CO2

    NASA Astrophysics Data System (ADS)

    Li, Ruixing; Tang, Qing; Yin, Shu; Sato, Tsugio

    According to both the first principle and materials chemistry, a method for fabricating [(Ca1-xSrx)2-2y](Ti2-2yLi2y)Si2yO6-y ceramic was investigated. It was considered that the sintering was promoted by self-accelerated diffusion due to the formation of point defects caused by doping with Li2Si2O5. Consequently, a concept of non-stoichiometrically activated sintering, which was enhanced by point defects without the help of a grain boundary phase, was systematically studied in the Ca1-xSrxTiO3-Li2Si2O5 system. The mechanical and dielectric properties of [(Ca1-xSrx)2-2y](Ti2-2yLi2y)Si2yO6-y were greatly enhanced by adding Li2Si2O5. To improve CO2 decomposition activity, [(Ca1-xSrx)2-2y](Ti2-2yLi2y)Si2yO6-y, which possesses both high permittivity and high dielectric strength was used as a dielectric barrier to decompose CO2 by dielectric barrier discharges (DBDs) plasma without using any catalyst and auxiliary substance. It successfully generated DBDs plasma and the CO2 conversion was much higher than that using an alumina or a silica glass barrier which was widely used as the dielectric barrier in previous studies.

  10. Spinodal decomposition regions of InxGa1-xSbyAszN1-y-z, InxGa1-xSbyPzN1-y-z and InxGa1-xAsyPzN1-y-z alloys

    NASA Astrophysics Data System (ADS)

    Elyukhin, Vyacheslav A.

    2017-07-01

    Considerable interest in highly mismatched semiconductor alloys as materials for device applications has recently been shown. However, the spinodal instability can be a serious obstacle to their use. Here, the spinodal decomposition regions of dilute nitride InxGa1-xSbyAszN1-y-z, InxGa1-xSbyPzN1-y-z and InxGa1-xAsyPzN1-y-z quinary alloys lattice matched to III-V compounds are studied from 0 °C to 1000 °C. The alloys contain six types of chemical bonds corresponding to the constituent compounds, and rearrangement of atoms changes the bonds between them. Therefore, a size and location of the spinodal decomposition regions depend on the enthalpies of constituent compounds, internal strain energy, coherency strain energy and entropy. Among the considered alloys, InxGa1-xSbyAszN1-y-z lattice matched to InAs, InxGa1-xSbyPzN1-y-z lattice matched to GaP and InP and InxGa1-xAsyPzN1-y-z lattice matched to GaAs and InP are most suitable for device applications.

  11. Birth of a new gene on the Y chromosome of Drosophila melanogaster

    PubMed Central

    Carvalho, Antonio Bernardo; Vicoso, Beatriz; Russo, Claudia A. M.; Swenor, Bonnielin; Clark, Andrew G.

    2015-01-01

    Contrary to the pattern seen in mammalian sex chromosomes, where most Y-linked genes have X-linked homologs, the Drosophila X and Y chromosomes appear to be unrelated. Most of the Y-linked genes have autosomal paralogs, so autosome-to-Y transposition must be the main source of Drosophila Y-linked genes. Here we show how these genes were acquired. We found a previously unidentified gene (flagrante delicto Y, FDY) that originated from a recent duplication of the autosomal gene vig2 to the Y chromosome of Drosophila melanogaster. Four contiguous genes were duplicated along with vig2, but they became pseudogenes through the accumulation of deletions and transposable element insertions, whereas FDY remained functional, acquired testis-specific expression, and now accounts for ∼20% of the vig2-like mRNA in testis. FDY is absent in the closest relatives of D. melanogaster, and DNA sequence divergence indicates that the duplication to the Y chromosome occurred ∼2 million years ago. Thus, FDY provides a snapshot of the early stages of the establishment of a Y-linked gene and demonstrates how the Drosophila Y has been accumulating autosomal genes. PMID:26385968

  12. Chromosome abnormalities in sperm of individuals with constitutional sex chromosomal abnormalities.

    PubMed

    Ferlin, A; Garolla, A; Foresta, C

    2005-01-01

    The most common type of karyotype abnormality detected in infertile subjects is represented by Klinefelter's syndrome, and the most frequent non-chromosomal alteration is represented by Y chromosome long arm microdeletions. Here we report our experience and a review of the literature on sperm sex chromosome aneuploidies in these two conditions. Non mosaic 47,XXY Klinefelter patients (12 subjects) show a significantly lower percentage of normal Y-bearing sperm and slightly higher percentage of normal X-bearing sperm. Consistent with the hypothesis that 47,XXY germ cells may undergo and complete meiosis, aneuploidy rate for XX- and XY-disomies is also increased with respect to controls, whereas the percentage of YY-disomies is normal. Aneuploidy rates in men with mosaic 47,XXY/46,XY (11 subjects) are lower than those observed in men with non-mosaic Klinefelter's syndrome, and only the frequency of XY-disomic sperm is significantly higher with respect to controls. Although the great majority of children born by intracytoplasmic sperm injection from Klinefelter subjects are chromosomally normal, the risk of producing offspring with chromosome aneuploidies is significant. Men with Y chromosome microdeletions (14 subjects) showed a reduction of normal Y-bearing sperm, and an increase in nullisomic and XY-disomic sperm, suggesting an instability of the deleted Y chromosome causing its loss in germ cells, and meiotic alterations leading to XY non-disjunction. Intracytoplasmic injection of sperm from Y-deleted men will therefore transmit the deletion to male children, and therefore the spermatogenic impairment, but raises also concerns of generating 45,X and 47,XXY embryos. Copyright 2005 S. Karger AG, Basel.

  13. Analysis of the parental origin of de novo MECP2 mutations and X chromosome inactivation in 24 sporadic patients with Rett syndrome in China.

    PubMed

    Zhu, Xingwang; Li, Meirong; Pan, Hong; Bao, Xinhua; Zhang, Jingjing; Wu, Xiru

    2010-07-01

    Rett syndrome is an X-linked neurodevelopmental disorder that predominantly affects females. It is caused by mutations in methyl-CpG-binding protein 2 gene. Due to the sex-limited expression, it has been suggested that de novo X-linked mutations may exclusively occur in male germ cells and thus only females are affected. In this study, the authors have analyzed the parental origin of mutations and the X-chromosome inactivation status in 24 sporadic patients with identified methyl-CpG-binding protein 2 gene mutations. The results showed that 22 of 24 patients have a paternal origin. Only 2 patients have a maternal origin. Except for 2 cases which were homozygotic at the androgen receptor gene locus, of the remaining 22 cases, 16 cases have a random X-chromosome inactivation pattern; the other 6 cases have a skewed X-chromosome inactivation and they favor expression of the wild allele. The relationship between X-chromosome inactivation and phenotype may need more cases to explore.

  14. Effect of polarizable lone pair cations on the second-harmonic generation (SHG) properties of noncentrosymmetric (NCS) Bi(2-x)Y(x)TeO₅ (x = 0-0.2).

    PubMed

    Jo, Hongil; Kim, Yeong Hun; Lee, Dong Woo; Ok, Kang Min

    2014-08-14

    Y(3+)-doped noncentrosymmetric (NCS) bismuth tellurite materials, Bi(2-x)Y(x)TeO5 (x = 0, 0.1, and 0.2), have been synthesized through standard solid-state reactions and structurally characterized by powder neutron diffraction. The reported NCS materials crystallize in the orthorhombic space group Abm2 (no. 39), and exhibit pseudo-three-dimensional frameworks that are composed of BiO3, BiO5, and TeO3 polyhedra. Detailed diffraction studies show that the cell volume of Bi(2-x)Y(x)TeO5 decreases with an increasing amount of Y(3+)on the Bi(3+) sites. However, no ordering between Bi(3+) and Y(3+) was observed in the Bi(2-x)Y(x)TeO5. Powder second-harmonic generation (SHG) measurements, using 1064 nm radiation, reveal that Bi2TeO5, Bi(1.9)Y(0.1)TeO5, and Bi(1.8)Y(0.2)TeO5 exhibit SHG efficiencies of approximately 300, 200, and 60 times that of α-SiO2, respectively. The reduction in SHG for Y(3+)-doped materials is consistent with the lack of net moment originating from polyhedra with a polarizable Bi(3+) cation.

  15. The Evolution of Sex Chromosomes and Dosage Compensation in Plants

    PubMed Central

    Shearn, Rylan; Marais, Gabriel AB

    2017-01-01

    Plant sex chromosomes can be vastly different from those of the few historical animal model organisms from which most of our understanding of sex chromosome evolution is derived. Recently, we have seen several advancements from studies on green algae, brown algae, and land plants that are providing a broader understanding of the variable ways in which sex chromosomes can evolve in distant eukaryotic groups. Plant sex-determining genes are being identified and, as expected, are completely different from those in animals. Species with varying levels of differentiation between the X and Y have been found in plants, and these are hypothesized to be representing different stages of sex chromosome evolution. However, we are also finding that sex chromosomes can remain morphologically unchanged over extended periods of time. Where degeneration of the Y occurs, it appears to proceed similarly in plants and animals. Dosage compensation (a phenomenon that compensates for the consequent loss of expression from the Y) has now been documented in a plant system, its mechanism, however, remains unknown. Research has also begun on the role of sex chromosomes in sexual conflict resolution, and it appears that sex-biased genes evolve similarly in plants and animals, although the functions of these genes remain poorly studied. Because the difficulty in obtaining sex chromosome sequences is increasingly being overcome by methodological developments, there is great potential for further discovery within the field of plant sex chromosome evolution. PMID:28391324

  16. YY1 binding association with sex-biased transcription revealed through X-linked transcript levels and allelic binding analyses.

    PubMed

    Chen, Chih-Yu; Shi, Wenqiang; Balaton, Bradley P; Matthews, Allison M; Li, Yifeng; Arenillas, David J; Mathelier, Anthony; Itoh, Masayoshi; Kawaji, Hideya; Lassmann, Timo; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R R; Brown, Carolyn J; Wasserman, Wyeth W

    2016-11-18

    Sex differences in susceptibility and progression have been reported in numerous diseases. Female cells have two copies of the X chromosome with X-chromosome inactivation imparting mono-allelic gene silencing for dosage compensation. However, a subset of genes, named escapees, escape silencing and are transcribed bi-allelically resulting in sexual dimorphism. Here we conducted in silico analyses of the sexes using human datasets to gain perspectives into such regulation. We identified transcription start sites of escapees (escTSSs) based on higher transcription levels in female cells using FANTOM5 CAGE data. Significant over-representations of YY1 transcription factor binding motif and ChIP-seq peaks around escTSSs highlighted its positive association with escapees. Furthermore, YY1 occupancy is significantly biased towards the inactive X (Xi) at long non-coding RNA loci that are frequent contacts of Xi-specific superloops. Our study suggests a role for YY1 in transcriptional activity on Xi in general through sequence-specific binding, and its involvement at superloop anchors.

  17. A mutually exclusive stem–loop arrangement in roX2 RNA is essential for X-chromosome regulation in Drosophila

    PubMed Central

    Ilik, Ibrahim Avsar; Maticzka, Daniel; Georgiev, Plamen; Gutierrez, Noel Marie; Backofen, Rolf; Akhtar, Asifa

    2017-01-01

    The X chromosome provides an ideal model system to study the contribution of RNA–protein interactions in epigenetic regulation. In male flies, roX long noncoding RNAs (lncRNAs) harbor several redundant domains to interact with the ubiquitin ligase male-specific lethal 2 (MSL2) and the RNA helicase Maleless (MLE) for X-chromosomal regulation. However, how these interactions provide the mechanics of spreading remains unknown. By using the uvCLAP (UV cross-linking and affinity purification) methodology, which provides unprecedented information about RNA secondary structures in vivo, we identified the minimal functional unit of roX2 RNA. By using wild-type and various MLE mutant derivatives, including a catalytically inactive MLE derivative, MLEGET, we show that the minimal roX RNA contains two mutually exclusive stem–loops that exist in a peculiar structural arrangement: When one stem–loop is unwound by MLE, an alternate structure can form, likely trapping MLE in this perpetually structured region. We show that this functional unit is necessary for dosage compensation, as mutations that disrupt this formation lead to male lethality. Thus, we propose that roX2 lncRNA contains an MLE-dependent affinity switch to enable reversible interactions of the MSL complex to allow dosage compensation of the X chromosome. PMID:29066499

  18. Impact of X/Y genes and sex hormones on mouse neuroanatomy.

    PubMed

    Vousden, Dulcie A; Corre, Christina; Spring, Shoshana; Qiu, Lily R; Metcalf, Ariane; Cox, Elizabeth; Lerch, Jason P; Palmert, Mark R

    2018-06-01

    Biological sex influences brain anatomy across many species. Sex differences in brain anatomy have classically been attributed to differences in sex chromosome complement (XX versus XY) and/or in levels of gonadal sex steroids released from ovaries and testes. Using the four core genotype (4CG) mouse model in which gonadal sex and sex chromosome complement are decoupled, we previously found that sex hormones and chromosomes influence the volume of distinct brain regions. However, recent studies suggest there may be more complex interactions between hormones and chromosomes, and that circulating steroids can compensate for and/or mask underlying chromosomal effects. Moreover, the impact of pre vs post-pubertal sex hormone exposure on this sex hormone/sex chromosome interplay is not well understood. Thus, we used whole brain high-resolution ex-vivo MRI of intact and pre-pubertally gonadectomized 4CG mice to investigate two questions: 1) Do circulating steroids mask sex differences in brain anatomy driven by sex chromosome complement? And 2) What is the contribution of pre- versus post-pubertal hormones to sex-hormone-dependent differences in brain anatomy? We found evidence of both cooperative and compensatory interactions between sex chromosomes and sex hormones in several brain regions, but the interaction effects were of low magnitude. Additionally, most brain regions affected by sex hormones were sensitive to both pre- and post-pubertal hormones. This data provides further insight into the biological origins of sex differences in brain anatomy. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Crystal growth of magnetic dihydride GdxY1-xH2 for generation of spin current

    NASA Astrophysics Data System (ADS)

    Sakuraba, T.; Hirama, H.; Sakai, M.; Honda, Z.; Hayakawa, M.; Okoshi, T.; Kitajima, A.; Oshima, A.; Higuchi, K.; Hasegawa, S.

    2013-09-01

    Crystal growth of pure phases of GdxY1-xH2 (0≤x≤1) was successfully carried out by depositing GdxY1-x films and their hydrogenation, the growth results of which were investigated by X-ray diffraction measurements as well as temperature (T) dependence of magnetic susceptibility (χ). The fcc lattice constant in GdxY1-xH2 is found to be linearly increased with increasing x. Behavior characteristic to the para-to-antiferromagnetic transition are clearly observed in the χ-T curve for x=0.39, 0.47, 0.76, and 1.0 cases. The Néel temperature (TN) is found to be linearly decreased with decreasing x from x=1.0 (GdH2), and is predicted to show TN=0 K at x˜0.1 by extrapolating TN from large x region, implying the antiferromagnetic order disappears at x˜0.1. The quasi-zero Hall effect was observed for x=0, 0.19, 0.37, 0.39, and 0.47 cases, whereas a moderate Hall effect is observed for x=0.76 and 1.0 cases. The type of Hall effect is also discussed.

  20. Thermoelectric properties of Ca(1-x-y)Dy(x)CeyMnO3 for power generation.

    PubMed

    Park, K; Lee, G W; Jung, J; Kim, S-J; Lim, Y-S; Choi, S-M; Seo, W-S

    2011-08-01

    The sintered Ca(1-x-y)Dy(x)CeyMnO3 bodies were a single phase with a perovskite structure without any impurity phases. The calculated crystallite sizes of the Ca(1-x-y)Dy(x)CeyMnO3 were in the range of 43.3 to 63.3 nm. The composition significantly affected their microstructural and thermoelectric characteristics. The doped Dy led to both an increase in the electrical conductivity as well as the absolute value of the Seebeck coefficient, resulting in an enhanced power factor. The highest power factor (5.1 x 10(-4) Wm(-1) K(-2)) was obtained for Ca(0.8)Dy(0.2)MnO3 at 800 degrees C. In this study, we systematically discussed the thermoelectric properties of the Ca(1-x-y)Dy(x)CeyMnO3, with respect to the substitution of Dy and/or Ce for Ca.

  1. A role for a neo-sex chromosome in stickleback speciation

    PubMed Central

    Kitano, Jun; Ross, Joseph A.; Mori, Seiichi; Kume, Manabu; Jones, Felicity C.; Chan, Yingguang F.; Absher, Devin M.; Grimwood, Jane; Schmutz, Jeremy; Myers, Richard M.; Kingsley, David M.; Peichel, Catherine L.

    2009-01-01

    Sexual antagonism, or conflict between the sexes, has been proposed as a driving force in both sex chromosome turnover and speciation. Although closely related species often have different sex chromosome systems, it is unknown whether sex chromosome turnover contributes to the evolution of reproductive isolation between species. In this study, we show that a newly evolved sex chromosome harbours genes that contribute to speciation in threespine stickleback fish (Gasterosteus aculeatus). We first identified a neo-sex chromosome system found only in one member of a sympatric species pair in Japan. We then performed genetic linkage mapping of male-specific traits important for reproductive isolation between the Japanese species pair. The neo-X chromosome harbours loci for male courtship display traits that contribute to behavioural isolation, while the ancestral X chromosome contains loci for both behavioural isolation and hybrid male sterility. Our work not only provides strong evidence for a large-X effect on reproductive isolation in a vertebrate system, but also provides direct evidence that a young neo-X chromosome contributes to reproductive isolation between closely related species. Our data suggest that sex chromosome turnover might play a greater role in speciation than previously appreciated. PMID:19783981

  2. A role for a neo-sex chromosome in stickleback speciation.

    PubMed

    Kitano, Jun; Ross, Joseph A; Mori, Seiichi; Kume, Manabu; Jones, Felicity C; Chan, Yingguang F; Absher, Devin M; Grimwood, Jane; Schmutz, Jeremy; Myers, Richard M; Kingsley, David M; Peichel, Catherine L

    2009-10-22

    Sexual antagonism, or conflict between the sexes, has been proposed as a driving force in both sex-chromosome turnover and speciation. Although closely related species often have different sex-chromosome systems, it is unknown whether sex-chromosome turnover contributes to the evolution of reproductive isolation between species. Here we show that a newly evolved sex chromosome contains genes that contribute to speciation in threespine stickleback fish (Gasterosteus aculeatus). We first identified a neo-sex chromosome system found only in one member of a sympatric species pair in Japan. We then performed genetic linkage mapping of male-specific traits important for reproductive isolation between the Japanese species pair. The neo-X chromosome contains loci for male courtship display traits that contribute to behavioural isolation, whereas the ancestral X chromosome contains loci for both behavioural isolation and hybrid male sterility. Our work not only provides strong evidence for a large X-effect on reproductive isolation in a vertebrate system, but also provides direct evidence that a young neo-X chromosome contributes to reproductive isolation between closely related species. Our data indicate that sex-chromosome turnover might have a greater role in speciation than was previously appreciated.

  3. Reversal of an ancient sex chromosome to an autosome in Drosophila.

    PubMed

    Vicoso, Beatriz; Bachtrog, Doris

    2013-07-18

    Although transitions of sex-determination mechanisms are frequent in species with homomorphic sex chromosomes, heteromorphic sex chromosomes are thought to represent a terminal evolutionary stage owing to chromosome-specific adaptations such as dosage compensation or an accumulation of sex-specific mutations. Here we show that an autosome of Drosophila, the dot chromosome, was ancestrally a differentiated X chromosome. We analyse the whole genome of true fruitflies (Tephritidae), flesh flies (Sarcophagidae) and soldier flies (Stratiomyidae) to show that genes located on the dot chromosome of Drosophila are X-linked in outgroup species, whereas Drosophila X-linked genes are autosomal. We date this chromosomal transition to early drosophilid evolution by sequencing the genome of other Drosophilidae. Our results reveal several puzzling aspects of Drosophila dot chromosome biology to be possible remnants of its former life as a sex chromosome, such as its minor feminizing role in sex determination or its targeting by a chromosome-specific regulatory mechanism. We also show that patterns of biased gene expression of the dot chromosome during early embryogenesis, oogenesis and spermatogenesis resemble that of the current X chromosome. Thus, although sex chromosomes are not necessarily evolutionary end points and can revert back to an autosomal inheritance, the highly specialized genome architecture of this former X chromosome suggests that severe fitness costs must be overcome for such a turnover to occur.

  4. Visible light water oxidation using a co-catalyst loaded anatase-structured Ti(1-(5x/4))Nb(x)O(2-y-δ)N(y) compound.

    PubMed

    Breault, Tanya M; Brancho, James J; Guo, Ping; Bartlett, Bart M

    2013-08-19

    The photocatalytic activity of anatase-structured Ti(1-(5x/4))Nb(x)O(2-y-δ)N(y) (x = 0.25, y = 0.02; NbN-25) was examined for water oxidation under UV and visible light irradiation. The semiconductor was prepared by sol-gel processing followed by nitridation in flowing ammonia and exhibits an indirect optical gap of 2.2 eV. Ti(1-(5x/4))Nb(x)O(2-y-δ)N(y) was loaded with RuO2 by an impregnation technique, and optimized conditions reveal that 1 wt % RuO2 generates 16 μmol O2 from water with concomitant IO3(-) reduction after 3 h of illumination under simulated solar radiation at a flux of 600 mW/cm(2) illumination, which corresponds to 6-sun AM1.5G illumination (compared to no detectible O2 without the RuO2 cocatalyst). A series of cut-on filters shows that the catalyst-loaded semiconductor evolves O2 for λ ≤ 515 nm, and a gas-phase mass spectrometry isotope labeling experiment shows that irradiating an iodate solution in H2(18)O in the presence of 1 wt % RuO2 loaded on NbN-25 gives rise to catalytic water oxidation: both (36)O2 and (34)O2 are observed. It is unclear whether (16)O arises from IO3(-) or surface reconstruction on the photocatalyst, but ICP-AES analysis of the postirradiated solution shows no dissolved metal ions.

  5. Dosage compensation of the sex chromosomes and autosomes

    PubMed Central

    Disteche, Christine M.

    2016-01-01

    Males are XY and females are XX in most mammalian species. Other species such as birds have a different sex chromosome make-up: ZZ in males and ZW in females. In both types of organisms one of the sex chromosomes, Y or W, has degenerated due to lack of recombination with its respective homolog X or Z. Since autosomes are present in two copies in diploid organisms the heterogametic sex has become a natural "aneuploid" with haploinsufficiency for X- or Z-linked genes. Specific mechanisms have evolved to restore a balance between critical gene products throughout the genome and between males and females. Some of these mechanisms were co-opted from and/or added to compensatory processes that alleviate autosomal aneuploidy. Surprisingly, several modes of dosage compensation have evolved. In this review we will consider the evidence for dosage compensation and the molecular mechanisms implicated. PMID:27112542

  6. Numerous Transitions of Sex Chromosomes in Diptera

    PubMed Central

    Vicoso, Beatriz; Bachtrog, Doris

    2015-01-01

    Many species groups, including mammals and many insects, determine sex using heteromorphic sex chromosomes. Diptera flies, which include the model Drosophila melanogaster, generally have XY sex chromosomes and a conserved karyotype consisting of six chromosomal arms (five large rods and a small dot), but superficially similar karyotypes may conceal the true extent of sex chromosome variation. Here, we use whole-genome analysis in 37 fly species belonging to 22 different families of Diptera and uncover tremendous hidden diversity in sex chromosome karyotypes among flies. We identify over a dozen different sex chromosome configurations, and the small dot chromosome is repeatedly used as the sex chromosome, which presumably reflects the ancestral karyotype of higher Diptera. However, we identify species with undifferentiated sex chromosomes, others in which a different chromosome replaced the dot as a sex chromosome or in which up to three chromosomal elements became incorporated into the sex chromosomes, and others yet with female heterogamety (ZW sex chromosomes). Transcriptome analysis shows that dosage compensation has evolved multiple times in flies, consistently through up-regulation of the single X in males. However, X chromosomes generally show a deficiency of genes with male-biased expression, possibly reflecting sex-specific selective pressures. These species thus provide a rich resource to study sex chromosome biology in a comparative manner and show that similar selective forces have shaped the unique evolution of sex chromosomes in diverse fly taxa. PMID:25879221

  7. The influence of sex chromosome aneuploidy on brain asymmetry.

    PubMed

    Rezaie, Roozbeh; Daly, Eileen M; Cutter, William J; Murphy, Declan G M; Robertson, Dene M W; DeLisi, Lynn E; Mackay, Clare E; Barrick, Thomas R; Crow, Timothy J; Roberts, Neil

    2009-01-05

    The cognitive deficits present in individuals with sex chromosome aneuploidies suggest that hemispheric differentiation of function is determined by an X-Y homologous gene [Crow (1993); Lancet 342:594-598]. In particular, females with Turner's syndrome (TS) who have only one X-chromosome exhibit deficits of spatial ability whereas males with Klinefelter's syndrome (KS) who possess a supernumerary X-chromosome are delayed in acquiring words. Since spatial and verbal abilities are generally associated with right and left hemispheric function, such deficits may relate to anomalies of cerebral asymmetry. We therefore applied a novel image analysis technique to investigate the relationship between sex chromosome dosage and structural brain asymmetry. Specifically, we tested Crow's prediction that the magnitude of the brain torque (i.e., a combination of rightward frontal and leftward occipital asymmetry) would, as a function of sex chromosome dosage, be respectively decreased in TS women and increased in KS men, relative to genotypically normal controls. We found that brain torque was not significantly different in TS women and KS men, in comparison to controls. However, TS women exhibited significantly increased leftward brain asymmetry, restricted to the posterior of the brain and focused on the superior temporal and parietal-occipital association cortex, while KS men showed a trend for decreased brain asymmetry throughout the frontal lobes. The findings suggest that the number of sex chromosomes influences the development of brain asymmetry not simply to modify the torque but in a complex pattern along the antero-posterior axis. 2008 Wiley-Liss, Inc.

  8. Control of Ge1-x-ySixSny layer lattice constant for energy band alignment in Ge1-xSnx/Ge1-x-ySixSny heterostructures

    NASA Astrophysics Data System (ADS)

    Fukuda, Masahiro; Watanabe, Kazuhiro; Sakashita, Mitsuo; Kurosawa, Masashi; Nakatsuka, Osamu; Zaima, Shigeaki

    2017-10-01

    The energy band alignment of Ge1-xSnx/Ge1-x-ySixSny heterostructures was investigated, and control of the valence band offset at the Ge1-xSnx/Ge1-x-ySixSny heterointerface was achieved by controlling the Si and Sn contents in the Ge1-x-ySixSny layer. The valence band offset in the Ge0.902Sn0.098/Ge0.41Si0.50Sn0.09 heterostructure was evaluated to be as high as 330 meV, and its conduction band offset was estimated to be 150 meV by considering the energy bandgap calculated from the theoretical prediction. In addition, the formation of the strain-relaxed Ge1-x-ySixSny layer was examined and the crystalline structure was characterized. The epitaxial growth of a strain-relaxed Ge0.64Si0.21Sn0.15 layer with the degree of strain relaxation of 55% was examined using a virtual Ge substrate. Moreover, enhancement of the strain relaxation was demonstrated by post-deposition annealing, where a degree of strain relaxation of 70% was achieved after annealing at 400 °C. These results indicate the possibility for enhancing the indirect-direct crossover with a strained and high-Sn-content Ge1-xSnx layer on a strain-relaxed Ge1-x-ySixSny layer, realizing preferable carrier confinement by type-I energy band alignment with high conduction and valence band offsets.

  9. Implications of monotreme and marsupial chromosome evolution on sex determination and differentiation.

    PubMed

    Deakin, Janine E

    2017-04-01

    Studies of chromosomes from monotremes and marsupials endemic to Australasia have provided important insight into the evolution of their genomes as well as uncovering fundamental differences in their sex determination/differentiation pathways. Great advances have been made this century into solving the mystery of the complicated sex chromosome system in monotremes. Monotremes possess multiple different X and Y chromosomes and a candidate sex determining gene has been identified. Even greater advancements have been made for marsupials, with reconstruction of the ancestral karyotype enabling the evolutionary history of marsupial chromosomes to be determined. Furthermore, the study of sex chromosomes in intersex marsupials has afforded insight into differences in the sexual differentiation pathway between marsupials and eutherians, together with experiments showing the insensitivity of the mammary glands, pouch and scrotum to exogenous hormones, led to the hypothesis that there is a gene (or genes) on the X chromosome responsible for the development of either pouch or scrotum. This review highlights the major advancements made towards understanding chromosome evolution and how this has impacted on our understanding of sex determination and differentiation in these interesting mammals. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Genetic analysis of tumorigenesis: XXXII. Localization of constitutionally amplified KRAS sequences to Chinese hamster chromosomes X and Y by in situ hybridization.

    PubMed

    Stenman, G; Anisowicz, A; Sager, R

    1988-11-01

    The KRAS gene is constitutionally amplified in the Chinese hamster. We have mapped the amplified sequences by in situ hybridization to two major sites on the X and Y chromosomes, Xq4 and Yp2. No autosomal site was detected despite a search under relaxed hybridization conditions. KRAS DNA is amplified about 50-fold compared to a human cell line known to have a diploid number of KRAS sequences, whereas mRNA expression is 5- to 10-fold lower than in normal human cells. While mRNA expression levels do not necessarily parallel gene copy number, the low expression level strongly suggests that the amplified sequences are transcriptionally silent. It is suggested that the amplified sequences arose from the original KRAS gene on chromosome 8 and that the KRAS sequences on the Y chromosome arose by X-Y recombination.

  11. The evolution of sex chromosomes in organisms with separate haploid sexes.

    PubMed

    Immler, Simone; Otto, Sarah Perin

    2015-03-01

    The evolution of dimorphic sex chromosomes is driven largely by the evolution of reduced recombination and the subsequent accumulation of deleterious mutations. Although these processes are increasingly well understood in diploid organisms, the evolution of dimorphic sex chromosomes in haploid organisms (U/V) has been virtually unstudied theoretically. We analyze a model to investigate the evolution of linkage between fitness loci and the sex-determining region in U/V species. In a second step, we test how prone nonrecombining regions are to degeneration due to accumulation of deleterious mutations. Our modeling predicts that the decay of recombination on the sex chromosomes and the addition of strata via fusions will be just as much a part of the evolution of haploid sex chromosomes as in diploid sex chromosome systems. Reduced recombination is broadly favored, as long as there is some fitness difference between haploid males and females. The degeneration of the sex-determining region due to the accumulation of deleterious mutations is expected to be slower in haploid organisms because of the absence of masking. Nevertheless, balancing selection often drives greater differentiation between the U/V sex chromosomes than in X/Y and Z/W systems. We summarize empirical evidence for haploid sex chromosome evolution and discuss our predictions in light of these findings. © 2015 The Author(s).

  12. Synthesis, characterization and chemical stability of silicon dichalcogenides, Si(SexS1-x)2

    NASA Astrophysics Data System (ADS)

    Chen, Chen; Zhang, Xiaotian; Krishna, Lakshmi; Kendrick, Chito; Shang, Shun-Li; Toberer, Eric; Liu, Zi-Kui; Tamboli, Adele; Redwing, Joan M.

    2016-10-01

    Silicon dichalcogenides have an intriguing crystal structure consisting of long tetrahedral chains held together by van der Waals forces but the electronic and optical properties have been less explored. In the present work, bulk SiSe2, SiS2, and Si(SexS1-x)2 were synthesized by the congruent melt growth method and characterized by Raman spectroscopy, X-ray Diffraction and UV/visible/IR transmission measurements supported by first-principles calculations. First-principles calculations reveal a nearly linear decrease of band gap energy in Si(SexS1-x)2 with increasing Se content, i.e., from SiS2 to SiSe2 which corresponds with a blue-shift in the transmission spectra from bulk SiSe2 to Si(Se0.6S0.4)2, and to SiS2. Air stability tests demonstrate the formation of toxic H2Se/H2S gas from sample oxidation at room temperature upon exposure to ambient air, and great care should be paid when handling these materials.

  13. Magnetic structure of NiS2 -xSex

    NASA Astrophysics Data System (ADS)

    Yano, S.; Louca, Despina; Yang, J.; Chatterjee, U.; Bugaris, D. E.; Chung, D. Y.; Peng, L.; Grayson, M.; Kanatzidis, Mercouri G.

    2016-01-01

    NiS2 -2 xSex is revisited to determine the magnetic structure using neutron diffraction and magnetic representational analysis. Upon cooling, the insulating parent compound, NiS2, becomes antiferromagnetic with two successive magnetic transitions. The first transition (M 1 ) occurs at TN˜39 K with Γ1ψ1 symmetry and a magnetic propagation vector of k =(000 ) . The second transition (M 2 ) occurs at TN˜30 K with k =(0.5 ,0.5 ,0.5 ) and a Γ1ψ2 symmetry with face-centered translations, giving rise to four possible magnetic domains. With doping, the system becomes metallic. The transition to the M 2 state is suppressed prior to x =0.4 while the M 1 state persists. The M 1 magnetic structure gradually vanishes by x ˜0.8 at a lower concentration than previously reported. The details of the magnetic structures are provided.

  14. The Evolution of Sex Chromosomes and Dosage Compensation in Plants.

    PubMed

    Muyle, Aline; Shearn, Rylan; Marais, Gabriel Ab

    2017-03-01

    Plant sex chromosomes can be vastly different from those of the few historical animal model organisms from which most of our understanding of sex chromosome evolution is derived. Recently, we have seen several advancements from studies on green algae, brown algae, and land plants that are providing a broader understanding of the variable ways in which sex chromosomes can evolve in distant eukaryotic groups. Plant sex-determining genes are being identified and, as expected, are completely different from those in animals. Species with varying levels of differentiation between the X and Y have been found in plants, and these are hypothesized to be representing different stages of sex chromosome evolution. However, we are also finding that sex chromosomes can remain morphologically unchanged over extended periods of time. Where degeneration of the Y occurs, it appears to proceed similarly in plants and animals. Dosage compensation (a phenomenon that compensates for the consequent loss of expression from the Y) has now been documented in a plant system, its mechanism, however, remains unknown. Research has also begun on the role of sex chromosomes in sexual conflict resolution, and it appears that sex-biased genes evolve similarly in plants and animals, although the functions of these genes remain poorly studied. Because the difficulty in obtaining sex chromosome sequences is increasingly being overcome by methodological developments, there is great potential for further discovery within the field of plant sex chromosome evolution. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. FISH-detected delay in replication timing of mutated FMR1 alleles on both active and inactive X-chromosomes.

    PubMed

    Yeshaya, J; Shalgi, R; Shohat, M; Avivi, L

    1999-01-01

    X-chromosome inactivation and the size of the CGG repeat number are assumed to play a role in the clinical, physical, and behavioral phenotype of female carriers of a mutated FMR1 allele. In view of the tight relationship between replication timing and the expression of a given DNA sequence, we have examined the replication timing of FMR1 alleles on active and inactive X-chromosomes in cell samples (lymphocytes or amniocytes) of 25 females: 17 heterozygous for a mutated FMR1 allele with a trinucleotide repeat number varying from 58 to a few hundred, and eight homozygous for a wild-type allele. We have applied two-color fluorescence in situ hybridization (FISH) with FMR1 and X-chromosome alpha-satellite probes to interphase cells of the various genotypes: the alpha-satellite probe was used to distinguish between early replicating (active) and late replicating (inactive) X-chromosomes, and the FMR1 probe revealed the replication pattern of this locus. All samples, except one with a large trinucleotide expansion, showed an early replicating FMR1 allele on the active X-chromosome and a late replicating allele on the inactive X-chromosome. In samples of mutation carriers, both the early and the late alleles showed delayed replication compared with normal alleles, regardless of repeat size. We conclude therefore that: (1) the FMR1 locus is subjected to X-inactivation; (2) mutated FMR1 alleles, regardless of repeat size, replicate later than wild-type alleles on both the active and inactive X-chromosomes; and (3) the delaying effect of the trinucleotide expansion, even with a low repeat size, is superimposed on the delay in replication associated with X-inactivation.

  16. Quasi-thermodynamic analysis of MOVPE growth of Ga xAl yIn 1- x- yN

    NASA Astrophysics Data System (ADS)

    Lu, Da-Cheng; Duan, Shukun

    2002-01-01

    A quasi-thermodynamic model of metalorganic vapor phase epitaxy (MOVPE) growth of Ga xAl yIn 1- x- yN alloys has been proposed. In view of the complex growth behavior of Ga xAl yIn 1- x- yN, we focus our attention on the gallium-rich quaternary alloys that are lattice matched to GaN, In 0.15Ga 0.85N or Al 0.15Ga 0.85N, which are widely used in the GaN-based optoelectronic devices. The relationship between GaAlInN alloy composition and input molar ratio of group III metalorganic compounds at various growth conditions has been calculated. The influence of growth temperature, nitrogen fraction in the carrier gas, input partial pressure of group III metalorganics, reactor pressure, V/III ratio and the decomposition rate of ammonia on the composition of deposited alloys are studied systematically. Based on these calculated results, we can find out the appropriate growth conditions for the MOVPE growth of Ga xAl yIn 1- x- yN alloy lattice matched to GaN, In 0.15Ga 0.85N or Al 0.15Ga 0.85N.

  17. High-throughput analysis of the satellitome revealed enormous diversity of satellite DNAs in the neo-Y chromosome of the cricket Eneoptera surinamensis.

    PubMed

    Palacios-Gimenez, Octavio Manuel; Dias, Guilherme Borges; de Lima, Leonardo Gomes; Kuhn, Gustavo Campos E Silva; Ramos, Érica; Martins, Cesar; Cabral-de-Mello, Diogo Cavalcanti

    2017-07-25

    Satellite DNAs (satDNAs) constitute large portion of eukaryote genomes, comprising non-protein-coding sequences tandemly repeated. They are mostly found in heterochromatic regions of chromosomes such as around centromere or near telomeres, in intercalary heterochromatin, and often in non-recombining segments of sex chromosomes. We examined the satellitome in the cricket Eneoptera surinamensis (2n = 9, neo-X 1 X 2 Y, males) to characterize the molecular evolution of its neo-sex chromosomes. To achieve this, we analyzed illumina reads using graph-based clustering and complementary analyses. We found an unusually high number of 45 families of satDNAs, ranging from 4 bp to 517 bp, accounting for about 14% of the genome and showing different modular structures and high diversity of arrays. FISH mapping revealed that satDNAs are located mostly in C-positive pericentromeric regions of the chromosomes. SatDNAs enrichment was also observed in the neo-sex chromosomes in comparison to autosomes. Especially astonishing accumulation of satDNAs loci was found in the highly differentiated neo-Y, including 39 satDNAs over-represented in this chromosome, which is the greatest satDNAs diversity yet reported for sex chromosomes. Our results suggest possible involvement of satDNAs in genome increasing and in molecular differentiation of the neo-sex chromosomes in this species, contributing to the understanding of sex chromosome composition and evolution in Orthoptera.

  18. Changes in the position and volume of inactive X chromosomes during the G0/G1 transition.

    PubMed

    Lyu, Guoliang; Tan, Tan; Guan, Yiting; Sun, Lei; Liang, Qianjin; Tao, Wei

    2018-04-21

    In female mammals, each cell silences one X chromosome by converting it into transcriptionally inert heterochromatin. The inactivation is concomitant with epigenetic changes including methylation of specific histone residues and incorporation of macroH2A. Such epigenetic changes may exert influence on the positioning of the inactive X chromosome (Xi) within the nucleus beyond the level of chromatin structure. However, the dynamic positioning of the inactive X chromosome during cell cycle remains unclear. Here, we show that H3K27me3 is a cell-cycle-independent marker for the inactivated X chromosomes in WI38 cells. By utilizing this marker, three types of Xi locations in the nuclei are classified, which are envelope position (associated with envelope), mid-position (between the envelope and nucleolus), and nucleolus position (associated with the nucleolus). Moreover, serial-section analysis revealed that the inactive X chromosomes in the mid-position appear to be sparser and less condensed than those associated with the nuclear envelope or nucleolus. During the transition from G0 to G1 phase, the inactive X chromosomes tend to move from the envelope position to the nucleolus position in WI38 cells. Our results imply a role of chromosome positioning in maintaining the organization of the inactive X chromosomes in different cell phases.

  19. Lattice Parameter Behavior with Different Nd and O Concentrations in (U 1-yNd y)O 2±x Solid Solution

    DOE PAGES

    Lee, Seung Min; Knight, Travis W.; Voit, Stwart L.; ...

    2016-02-02

    The solid solution of (U1-yFPy)O- 2±x, has the same fluorite structure as UO 2±x lambda, and the lattice parameter is affected by dissolved fission product and oxygen concentrations. We investigated the relation between the lattice parameter and the concentrations of neodymium and oxygen in the fluorite structure of (U 1-yNd y)O 2±x using X-ray diffraction. Moreover, the lattice parameter behavior in the (U 1-yNd y)O 2±x, solid solution shows a linear change as a function of the oxygen-to-metal ratio and solubility of neodymium. The lattice parameter depends on the radii of ions forming the fluorite structure and also can bemore » expressed by a particular rule (modified Vegard's law). Furthermore, the numerical analyses of the lattice parameters for the stoichiometric and nonstoichionietric solid solutions were conducted, and the lattice parameter model for the (U1-yNdy)O 2±x, solid solution was assessed. There is a very linear relationship between the lattice parameter and the Nd and O concentration for the stoichiometry and nonstoichiometry of the (U 1-yNd y)O 2±x solid solution was verified.« less

  20. Chromosome-wide mechanisms to decouple gene expression from gene dose during sex-chromosome evolution

    PubMed Central

    Wheeler, Bayly S; Anderson, Erika; Frøkjær-Jensen, Christian; Bian, Qian; Jorgensen, Erik; Meyer, Barbara J

    2016-01-01

    Changes in chromosome number impair fitness by disrupting the balance of gene expression. Here we analyze mechanisms to compensate for changes in gene dose that accompanied the evolution of sex chromosomes from autosomes. Using single-copy transgenes integrated throughout the Caenorhabditis elegans genome, we show that expression of all X-linked transgenes is balanced between XX hermaphrodites and XO males. However, proximity of a dosage compensation complex (DCC) binding site (rex site) is neither necessary to repress X-linked transgenes nor sufficient to repress transgenes on autosomes. Thus, X is broadly permissive for dosage compensation, and the DCC acts via a chromosome-wide mechanism to balance transcription between sexes. In contrast, no analogous X-chromosome-wide mechanism balances transcription between X and autosomes: expression of compensated hermaphrodite X-linked transgenes is half that of autosomal transgenes. Furthermore, our results argue against an X-chromosome dosage compensation model contingent upon rex-directed positioning of X relative to the nuclear periphery. DOI: http://dx.doi.org/10.7554/eLife.17365.001 PMID:27572259

  1. Mouse model systems to study sex chromosome genes and behavior: relevance to humans

    PubMed Central

    Cox, Kimberly H.; Bonthuis, Paul J.; Rissman, Emilie F.

    2014-01-01

    Sex chromosome genes directly influence sex differences in behavior. The discovery of the Sry gene on the Y chromosome (Gubbay et al., 1990; Koopman et al., 1990) substantiated the sex chromosome mechanistic link to sex differences. Moreover, the pronounced connection between X chromosome gene mutations and mental illness produces a strong sex bias in these diseases. Yet, the dominant explanation for sex differences continues to be the gonadal hormones. Here we review progress made on behavioral differences in mouse models that uncouple sex chromosome complement from gonadal sex. We conclude that many social and cognitive behaviors are modified by sex chromosome complement, and discuss the implications for human research. Future directions need to include identification of the genes involved and interactions with these genes and gonadal hormones. PMID:24388960

  2. Meiotic Sex Chromosome Inactivation Is Disrupted in Sterile Hybrid Male House Mice

    PubMed Central

    Campbell, Polly; Good, Jeffrey M.; Nachman, Michael W.

    2013-01-01

    In male mammals, the X and Y chromosomes are transcriptionally silenced in primary spermatocytes by meiotic sex chromosome inactivation (MSCI) and remain repressed for the duration of spermatogenesis. Here, we test the longstanding hypothesis that disrupted MSCI might contribute to the preferential sterility of heterogametic hybrid males. We studied a cross between wild-derived inbred strains of Mus musculus musculus and M. m. domesticus in which sterility is asymmetric: F1 males with a M. m. musculus mother are sterile or nearly so while F1 males with a M. m. domesticus mother are normal. In previous work, we discovered widespread overexpression of X-linked genes in the testes of sterile but not fertile F1 males. Here, we ask whether this overexpression is specifically a result of disrupted MSCI. To do this, we isolated cells from different stages of spermatogenesis and measured the expression of several genes using quantitative PCR. We found that X overexpression in sterile F1 primary spermatocytes is coincident with the onset of MSCI and persists in postmeiotic spermatids. Using a series of recombinant X genotypes, we then asked whether X overexpression in hybrids is controlled by cis-acting loci across the X chromosome. We found that it is not. Instead, one large interval in the proximal portion of the M. m. musculus X chromosome is associated with both overexpression and the severity of sterility phenotypes in hybrids. These results demonstrate a strong association between X-linked hybrid male sterility and disruption of MSCI and suggest that trans-acting loci on the X are important for the transcriptional regulation of the X chromosome during spermatogenesis. PMID:23307891

  3. Meiotic sex chromosome inactivation is disrupted in sterile hybrid male house mice.

    PubMed

    Campbell, Polly; Good, Jeffrey M; Nachman, Michael W

    2013-03-01

    In male mammals, the X and Y chromosomes are transcriptionally silenced in primary spermatocytes by meiotic sex chromosome inactivation (MSCI) and remain repressed for the duration of spermatogenesis. Here, we test the longstanding hypothesis that disrupted MSCI might contribute to the preferential sterility of heterogametic hybrid males. We studied a cross between wild-derived inbred strains of Mus musculus musculus and M. m. domesticus in which sterility is asymmetric: F1 males with a M. m. musculus mother are sterile or nearly so while F1 males with a M. m. domesticus mother are normal. In previous work, we discovered widespread overexpression of X-linked genes in the testes of sterile but not fertile F1 males. Here, we ask whether this overexpression is specifically a result of disrupted MSCI. To do this, we isolated cells from different stages of spermatogenesis and measured the expression of several genes using quantitative PCR. We found that X overexpression in sterile F1 primary spermatocytes is coincident with the onset of MSCI and persists in postmeiotic spermatids. Using a series of recombinant X genotypes, we then asked whether X overexpression in hybrids is controlled by cis-acting loci across the X chromosome. We found that it is not. Instead, one large interval in the proximal portion of the M. m. musculus X chromosome is associated with both overexpression and the severity of sterility phenotypes in hybrids. These results demonstrate a strong association between X-linked hybrid male sterility and disruption of MSCI and suggest that trans-acting loci on the X are important for the transcriptional regulation of the X chromosome during spermatogenesis.

  4. Establishment of a 10-Plex Quantitative Fluorescent-PCR Assay for Rapid Diagnosis of Sex Chromosome Aneuploidies

    PubMed Central

    Xie, Xingmei; Liang, Qiaoyi

    2014-01-01

    Sex chromosome aneuploidies occur commonly in the general population, with an incidence of 1 in 400 newborns. However, no tests specifically targeting sex chromosomes have been carried out in prenatal diagnosis or newborn screening, resulting in late recognition of these diseases. In this study, a rapid diagnostic method for sex chromosome aneuploidies was established using Quantitative Fluorescent-PCR (QF-PCR). Ten markers were included in one multiplex QF-PCR assay, including two sex determination genes (AMXY and SRY), five X-linked short tandem repeats (STRs; DXS1053, DXS981, DXS6809, DXS1187, and DXS8377), one X/Y-common STR (X22), and two autosomal STRs (D13S305 and D21S11). Retrospective tests of 70 cases with known cytogenetic results indicated that the 10-plex QF-PCR assay could well determine sex chromosome copy numbers by both allelic peak numbers and a sex chromosome dosage calculation with the autosomal STRs as internal controls. Prospective comparison with cytogenetic karyotyping on 534 cases confirmed that the 10-plex QF-PCR assay could be well employed for sex chromosome aneuploidy diagnosis in at least the Chinese Han population. This is the first QF-PCR test for the diagnosis of sex chromosome aneuploidies in the Chinese population. This test is superior to previous designs by including up to 8 sex-linked markers covering different parts of sex chromosomes as well as employing internal controls for copy number dosage calculation in a single PCR reaction. Due to simple technique and data analysis, as well as easy implementation within routine clinical services, this method is of great clinical application value and could be widely applied. PMID:25207978

  5. Microarray-Based Comparative Genomic Hybridization Using Sex-Matched Reference DNA Provides Greater Sensitivity for Detection of Sex Chromosome Imbalances than Array-Comparative Genomic Hybridization with Sex-Mismatched Reference DNA

    PubMed Central

    Yatsenko, Svetlana A.; Shaw, Chad A.; Ou, Zhishuo; Pursley, Amber N.; Patel, Ankita; Bi, Weimin; Cheung, Sau Wai; Lupski, James R.; Chinault, A. Craig; Beaudet, Arthur L.

    2009-01-01

    In array-comparative genomic hybridization (array-CGH) experiments, the measurement of DNA copy number of sex chromosomal regions depends on the sex of the patient and the reference DNAs used. We evaluated the ability of bacterial artificial chromosomes/P1-derived artificial and oligonucleotide array-CGH analyses to detect constitutional sex chromosome imbalances using sex-mismatched reference DNAs. Twenty-two samples with imbalances involving either the X or Y chromosome, including deletions, duplications, triplications, derivative or isodicentric chromosomes, and aneuploidy, were analyzed. Although concordant results were obtained for approximately one-half of the samples when using sex-mismatched and sex-matched reference DNAs, array-CGH analyses with sex-mismatched reference DNAs did not detect genomic imbalances that were detected using sex-matched reference DNAs in 6 of 22 patients. Small duplications and deletions of the X chromosome were most difficult to detect in female and male patients, respectively, when sex-mismatched reference DNAs were used. Sex-matched reference DNAs in array-CGH analyses provides optimal sensitivity and enables an automated statistical evaluation for the detection of sex chromosome imbalances when compared with an experimental design using sex-mismatched reference DNAs. Using sex-mismatched reference DNAs in array-CGH analyses may generate false-negative, false-positive, and ambiguous results for sex chromosome-specific probes, thus masking potential pathogenic genomic imbalances. Therefore, to optimize both detection of clinically relevant sex chromosome imbalances and ensure proper experimental performance, we suggest that alternative internal controls be developed and used instead of using sex-mismatched reference DNAs. PMID:19324990

  6. Mouse Y-linked Zfy1 and Zfy2 are expressed during the male-specific interphase between meiosis I and meiosis II and promote the 2nd meiotic division.

    PubMed

    Vernet, Nadège; Mahadevaiah, Shantha K; Yamauchi, Yasuhiro; Decarpentrie, Fanny; Mitchell, Michael J; Ward, Monika A; Burgoyne, Paul S

    2014-06-01

    Mouse Zfy1 and Zfy2 encode zinc finger transcription factors that map to the short arm of the Y chromosome (Yp). They have previously been shown to promote meiotic quality control during pachytene (Zfy1 and Zfy2) and at the first meiotic metaphase (Zfy2). However, from these previous studies additional roles for genes encoded on Yp during meiotic progression were inferred. In order to identify these genes and investigate their function in later stages of meiosis, we created three models with diminishing Yp and Zfy gene complements (but lacking the Y-long-arm). Since the Y-long-arm mediates pairing and exchange with the X via their pseudoautosomal regions (PARs) we added a minute PAR-bearing X chromosome derivative to enable formation of a sex bivalent, thus avoiding Zfy2-mediated meiotic metaphase I (MI) checkpoint responses to the unpaired (univalent) X chromosome. Using these models we obtained definitive evidence that genetic information on Yp promotes meiosis II, and by transgene addition identified Zfy1 and Zfy2 as the genes responsible. Zfy2 was substantially more effective and proved to have a much more potent transactivation domain than Zfy1. We previously established that only Zfy2 is required for the robust apoptotic elimination of MI spermatocytes in response to a univalent X; the finding that both genes potentiate meiosis II led us to ask whether there was de novo Zfy1 and Zfy2 transcription in the interphase between meiosis I and meiosis II, and this proved to be the case. X-encoded Zfx was also expressed at this stage and Zfx over-expression also potentiated meiosis II. An interphase between the meiotic divisions is male-specific and we previously hypothesised that this allows meiosis II critical X and Y gene reactivation following sex chromosome silencing in meiotic prophase. The interphase transcription and meiosis II function of Zfx, Zfy1 and Zfy2 validate this hypothesis.

  7. Mouse Y-Linked Zfy1 and Zfy2 Are Expressed during the Male-Specific Interphase between Meiosis I and Meiosis II and Promote the 2nd Meiotic Division

    PubMed Central

    Vernet, Nadège; Mahadevaiah, Shantha K.; Yamauchi, Yasuhiro; Decarpentrie, Fanny; Mitchell, Michael J.; Ward, Monika A.; Burgoyne, Paul S.

    2014-01-01

    Mouse Zfy1 and Zfy2 encode zinc finger transcription factors that map to the short arm of the Y chromosome (Yp). They have previously been shown to promote meiotic quality control during pachytene (Zfy1 and Zfy2) and at the first meiotic metaphase (Zfy2). However, from these previous studies additional roles for genes encoded on Yp during meiotic progression were inferred. In order to identify these genes and investigate their function in later stages of meiosis, we created three models with diminishing Yp and Zfy gene complements (but lacking the Y-long-arm). Since the Y-long-arm mediates pairing and exchange with the X via their pseudoautosomal regions (PARs) we added a minute PAR-bearing X chromosome derivative to enable formation of a sex bivalent, thus avoiding Zfy2-mediated meiotic metaphase I (MI) checkpoint responses to the unpaired (univalent) X chromosome. Using these models we obtained definitive evidence that genetic information on Yp promotes meiosis II, and by transgene addition identified Zfy1 and Zfy2 as the genes responsible. Zfy2 was substantially more effective and proved to have a much more potent transactivation domain than Zfy1. We previously established that only Zfy2 is required for the robust apoptotic elimination of MI spermatocytes in response to a univalent X; the finding that both genes potentiate meiosis II led us to ask whether there was de novo Zfy1 and Zfy2 transcription in the interphase between meiosis I and meiosis II, and this proved to be the case. X-encoded Zfx was also expressed at this stage and Zfx over-expression also potentiated meiosis II. An interphase between the meiotic divisions is male-specific and we previously hypothesised that this allows meiosis II critical X and Y gene reactivation following sex chromosome silencing in meiotic prophase. The interphase transcription and meiosis II function of Zfx, Zfy1 and Zfy2 validate this hypothesis. PMID:24967676

  8. Control of Co content and SOFC cathode performance in Y1-ySr2+yCu3-xCoxO7+δ

    NASA Astrophysics Data System (ADS)

    Šimo, F.; Payne, J. L.; Demont, A.; Sayers, R.; Li, Ming; Collins, C. M.; Pitcher, M. J.; Claridge, J. B.; Rosseinsky, M. J.

    2014-11-01

    The electrochemical performance of the layered perovskite YSr2Cu3-xCoxO7+δ, a potential solid oxide fuel cell (SOFC) cathode, is improved by increasing the Co content from x = 1.00 to a maximum of x = 1.30. Single phase samples with x > 1.00 are obtained by tuning the Y/Sr ratio, yielding the composition Y1-ySr2+yCu3-xCoxO7+δ (where y ≤ 0.05). The high temperature structure of Y0.95Sr2.05Cu1.7Co1.3O7+δ at 740 °C is characterised by powder neutron diffraction and the potential of this Co-enriched material as a SOFC cathode is investigated by combining AC impedance spectroscopy, four-probe DC conductivity and powder XRD measurements to determine its electrochemical properties along with its thermal stability and compatibility with a range of commercially available electrolytes. The material is shown to be compatible with doped ceria electrolytes at 900 °C.

  9. YY1 binding association with sex-biased transcription revealed through X-linked transcript levels and allelic binding analyses

    PubMed Central

    Chen, Chih-yu; Shi, Wenqiang; Balaton, Bradley P.; Matthews, Allison M.; Li, Yifeng; Arenillas, David J.; Mathelier, Anthony; Itoh, Masayoshi; Kawaji, Hideya; Lassmann, Timo; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R. R.; Brown, Carolyn J.; Wasserman, Wyeth W.

    2016-01-01

    Sex differences in susceptibility and progression have been reported in numerous diseases. Female cells have two copies of the X chromosome with X-chromosome inactivation imparting mono-allelic gene silencing for dosage compensation. However, a subset of genes, named escapees, escape silencing and are transcribed bi-allelically resulting in sexual dimorphism. Here we conducted in silico analyses of the sexes using human datasets to gain perspectives into such regulation. We identified transcription start sites of escapees (escTSSs) based on higher transcription levels in female cells using FANTOM5 CAGE data. Significant over-representations of YY1 transcription factor binding motif and ChIP-seq peaks around escTSSs highlighted its positive association with escapees. Furthermore, YY1 occupancy is significantly biased towards the inactive X (Xi) at long non-coding RNA loci that are frequent contacts of Xi-specific superloops. Our study suggests a role for YY1 in transcriptional activity on Xi in general through sequence-specific binding, and its involvement at superloop anchors. PMID:27857184

  10. Suppression of magnetic order in CaCo1.86As2 with Fe substitution: Magnetization, neutron diffraction, and x-ray diffraction studies of Ca (Co1-xFex) yAs2

    NASA Astrophysics Data System (ADS)

    Jayasekara, W. T.; Pandey, Abhishek; Kreyssig, A.; Sangeetha, N. S.; Sapkota, A.; Kothapalli, K.; Anand, V. K.; Tian, W.; Vaknin, D.; Johnston, D. C.; McQueeney, R. J.; Goldman, A. I.; Ueland, B. G.

    2017-02-01

    Magnetization, neutron diffraction, and high-energy x-ray diffraction results for Sn-flux grown single-crystal samples of Ca (Co1-xFex) yAs2 , 0 ≤x1 , 1.86 ≤y2 , are presented and reveal that A-type antiferromagnetic order, with ordered moments lying along the c axis, persists for x ≲0.12 (1 ) . The antiferromagnetic order is smoothly suppressed with increasing x , with both the ordered moment and Néel temperature linearly decreasing. Stripe-type antiferromagnetic order does not occur for x ≤0.25 , nor does ferromagnetic order for x up to at least x =0.104 , and a smooth crossover from the collapsed-tetragonal (cT) phase of CaCo1.86As2 to the tetragonal (T) phase of CaFe2As2 occurs. These results suggest that hole doping CaCo1.86As2 has a less dramatic effect on the magnetism and structure than steric effects due to substituting Sr for Ca.

  11. Low-temperature thermoelectric properties of the electron-doped perovskites Sr1- x Ca x Ti1- y Nb y O3

    NASA Astrophysics Data System (ADS)

    Okuda, Tetsuji; Fukuyado, Junichi; Narikiyo, Kurahito; Akaki, Mitsuru; Kuwahara, Hideki

    2013-08-01

    We have investigated the thermoelectric (TE) properties for single crystals of the perovskites Sr1- x Ca x Ti1- y Nb y O3 for 0 ≤ x ≤ 0.4 and 0 ≤ y ≤ 0.03 at temperatures below room temperature (RT). We found that SrTi0.99Nb0.01O3 showed a large power factor at low temperatures ( PF = 50 µW/K2cm at 100 K ˜ 90 µW/K2cm at 50 K) and the largest dimensionless TE figure-ofmerit at temperatures below 40 K ( ZT ˜ 0.07) among the reported materials. Such a large low-temperature TE response around a carrier concentration of 1020 cm-3 is due to a distinct phonon drag effect. We also found that the Ca2+ substitution for Sr2+ increased the ZT at 300 K for Sr1- x Ca x Ti0.97Nb0.03O3 from 0.08 to 0.105. The enhancement of the ZT around RT originates both from a large reduction of a thermal conductivity due to a randomness introduced into the crystal structure and from an unexpected enhancement of a Seebeck coefficient.

  12. Dosage compensation, the origin and the afterlife of sex chromosomes.

    PubMed

    Larsson, Jan; Meller, Victoria H

    2006-01-01

    Over the past 100 years Drosophila has been developed into an outstanding model system for the study of evolutionary processes. A fascinating aspect of evolution is the differentiation of sex chromosomes. Organisms with highly differentiated sex chromosomes, such as the mammalian X and Y, must compensate for the imbalance in gene dosage that this creates. The need to adjust the expression of sex-linked genes is a potent force driving the rise of regulatory mechanisms that act on an entire chromosome. This review will contrast the process of dosage compensation in Drosophila with the divergent strategies adopted by other model organisms. While the machinery of sex chromosome compensation is different in each instance, all share the ability to direct chromatin modifications to an entire chromosome. This review will also explore the idea that chromosome-targeting systems are sometimes adapted for other purposes. This appears the likely source of a chromosome-wide targeting system displayed by the Drosophila fourth chromosome.

  13. Spin and orbital ordering in Y 1-xLa xVO₃

    DOE PAGES

    Yan, J.-Q.; Zhou, J.-S.; Cheng, J. G.; ...

    2011-12-02

    The spin and orbital ordering in Y 1-xLa xVO₃ (0.30 ≤ x1.0) has been studied to map out the phase diagram over the whole doping range 0 ≤ x1. The phase diagram is compared with that for RVO₃ (R = rare earth or Y) perovskites without A-site variance. For x > 0.20, no long-range orbital ordering was observed above the magnetic ordering temperature T N; the magnetic order is accompanied by a lattice anomaly at a Tt ≤ T N as in LaVO₃. The magnetic ordering below Tt ≤ T N is G type in themore » compositional range 0.20 ≤ x ≤ 0.40 and C type in the range 0.738 ≤ x1.0. Magnetization and neutron powder diffraction measurements point to the coexistence below T N of the two magnetic phases in the compositional range 0.4 < x < 0.738. Samples in the compositional range 0.20 < x1.0 are characterized by an additional suppression of a glasslike thermal conductivity in the temperature interval T N < T < T* and a change in the slope of 1/χ(T). We argue that T* represents a temperature below which spin and orbital fluctuations couple together via λL∙S.« less

  14. Bismuth interstitial impurities and the optical properties of GaP 1- x - yBi xN y

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christian, Theresa M.; Beaton, Daniel A.; Perkins, John D.

    Two distinctive regimes of behavior are observed from GaP 1-x-y Bi x N y alloys with x < 2.4%, y < 3.4% grown by molecular beam epitaxy. These regimes are correlated with abundant bismuth interstitial impurities that are encouraged or suppressed according to the sample growth temperature, with up to 55% of incorporated bismuth located interstitially. When bismuth interstitials are present, radiative recombination arises at near-band-edge localized states rather than from impurity bands and deep state luminescence. Finally, this change demonstrates a novel strategy for controlling luminescence in isoelectronic semiconductor alloys and is attributed to a disruption of carrier transfermore » processes.« less

  15. Bismuth interstitial impurities and the optical properties of GaP 1- x - yBi xN y

    DOE PAGES

    Christian, Theresa M.; Beaton, Daniel A.; Perkins, John D.; ...

    2017-10-10

    Two distinctive regimes of behavior are observed from GaP 1-x-y Bi x N y alloys with x < 2.4%, y < 3.4% grown by molecular beam epitaxy. These regimes are correlated with abundant bismuth interstitial impurities that are encouraged or suppressed according to the sample growth temperature, with up to 55% of incorporated bismuth located interstitially. When bismuth interstitials are present, radiative recombination arises at near-band-edge localized states rather than from impurity bands and deep state luminescence. Finally, this change demonstrates a novel strategy for controlling luminescence in isoelectronic semiconductor alloys and is attributed to a disruption of carrier transfermore » processes.« less

  16. Interaction of Ce{sub 1x}Er{sub x}O{sub 2y} nanoparticles with SiO{sub 2}-effect of temperature and atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kepinski, L., E-mail: L.Kepinski@int.pan.wroc.pl; Krajczyk, L.; Mista, W.

    2014-01-15

    Morphology, microstructure and phase evolution of homogeneous, nanocrystalline Ce{sub 1x}Er{sub x}O{sub 2x/2} mixed oxide (x=0.3 and 0.5), prepared by microemulsion method, supported on amorphous SiO{sub 2} was studied in oxidizing and reducing atmosphere by XRD, TEM, SEM-EDS and N{sub 2} adsorption. The system is structurally and chemically stable in the oxidizing atmosphere up to 1000 °C, exhibiting only a small increase of the mean crystallite size of the oxide to ∼4 nm. At 1100 °C formation of Er silicate with unusual structure isomorphic with y-Y{sub 2}Si{sub 2}O{sub 7} (yttrialite), stabilized by Ce{sup 4+} ions was observed. In the reducing atmospheremore » the Ce{sub 1x}Er{sub x}O{sub 2x/2} reacted with SiO{sub 2} already at 900 °C, due to high affinity of the reduced Ce{sup 3+} to form a silicate phase. At higher temperature the silicate crystallized into the tetragonal, low temperature A-(Ce{sub 1x}Er{sub x}){sub 2}Si{sub 2}O{sub 7} polymorph. Such systems, containing nanocrystalline silicate particles with Er{sup 3+} ions placed in well defined sites embedded in silica matrix, may be interesting as highly efficient active components of optical waveguides amplifiers integrated with Si microelectronics. The nanocrystalline Ce–Er–O/SiO{sub 2} system prepared by the impregnation of the silica with the aqueous solution of nitrates appeared to be chemically inhomogeneous and less stable in both oxidising and reducing atmosphere. - Graphical abstract: Structure evolution of Ce{sub 0.5}Er{sub 0.5}O{sub 1.75} in air and in H{sub 2}. Display Omitted - Highlights: • Homogeneous 3 nm Ce{sub 1x}Er{sub x}O{sub 2y} particles were prepared and uniformly dispersed on SiO{sub 2}. • Er diffusion to SiO{sub 2} determines the stability of the mixed oxide in air to ∼1000 °C. • Spreading of Ce{sub 1x}Er{sub x}O{sub 2y} onto SiO{sub 2} occurs in hydrogen at 900 °C. • Nanocrystalline A-(Ce,Er){sub 2}Si{sub 2}O{sub 7} silicate

  17. Rapid Karyotype Evolution in Lasiopodomys Involved at Least Two Autosome – Sex Chromosome Translocations

    PubMed Central

    Lemskaya, Natalya A.; Serdyukova, Natalya A.; O’Brien, Patricia C. M.; Kovalskaya, Julia M.; Smorkatcheva, Antonina V.; Golenishchev, Feodor N.; Perelman, Polina L.; Trifonov, Vladimir A.; Ferguson-Smith, Malcolm A.; Yang, Fengtang; Graphodatsky, Alexander S.

    2016-01-01

    The generic status of Lasiopodomys and its division into subgenera Lasiopodomys (L. mandarinus, L. brandtii) and Stenocranius (L. gregalis, L. raddei) are not generally accepted because of contradictions between the morphological and molecular data. To obtain cytogenetic evidence for the Lasiopodomys genus and its subgenera and to test the autosome to sex chromosome translocation hypothesis of sex chromosome complex origin in L. mandarinus proposed previously, we hybridized chromosome painting probes from the field vole (Microtus agrestis, MAG) and the Arctic lemming (Dicrostonyx torquatus, DTO) onto the metaphases of a female Mandarin vole (L. mandarinus, 2n = 47) and a male Brandt's vole (L. brandtii, 2n = 34). In addition, we hybridized Arctic lemming painting probes onto chromosomes of a female narrow-headed vole (L. gregalis, 2n = 36). Cross-species painting revealed three cytogenetic signatures (MAG12/18, 17a/19, and 22/24) that could validate the genus Lasiopodomys and indicate the evolutionary affinity of L. gregalis to the genus. Moreover, all three species retained the associations MAG1bc/17b and 2/8a detected previously in karyotypes of all arvicolins studied. The associations MAG2a/8a/19b, 8b/21, 9b/23, 11/13b, 12b/18, 17a/19a, and 5 fissions of ancestral segments appear to be characteristic for the subgenus Lasiopodomys. We also validated the autosome to sex chromosome translocation hypothesis on the origin of complex sex chromosomes in L. mandarinus. Two translocations of autosomes onto the ancestral X chromosome in L. mandarinus led to a complex of neo-X1, neo-X2, and neo-X3 elements. Our results demonstrate that genus Lasiopodomys represents a striking example of rapid chromosome evolution involving both autosomes and sex chromosomes. Multiple reshuffling events including Robertsonian fusions, chromosomal fissions, inversions and heterochromatin expansion have led to the formation of modern species karyotypes in a very short time, about 2.4 MY. PMID

  18. EXAFS and electrical studies of new narrow-gap semiconductors: InTe1-xSex and In1-xGaxTe

    NASA Astrophysics Data System (ADS)

    Lebedev, A. I.; Michurin, A. V.; Sluchinskaya, I. A.; Demin, V. N.; Munro, I. H.

    2000-12-01

    The local environment of Ga, Se and Tl atoms in InTe-based solid solutions was studied by EXAFS technique. It was shown that all investigated atoms are substitutional impurities, which enter the In(1), Te and In(2) positions in the InTe structure, respectively. The electrical measurements revealed that In1-xGaxTe and InTe1-xSex solid solutions become semiconductors at x>0.24 and >0.15, respectively.

  19. Structure, magnetism and electronic properties in 3d-5d based double perovskite ({Sr_{1-x}} Y x )2FeIrO6

    NASA Astrophysics Data System (ADS)

    Kharkwal, K. C.; Pramanik, A. K.

    2017-12-01

    The 3d-5d based double perovskites are of current interest as they provide model systems to study the interplay between electronic correlation (U) and spin-orbit coupling (SOC). Here, we report detailed structural, magnetic and transport properties of doped double perovskite material (Sr1-x Y x )2FeIrO6 with x ≤slant 0.2 . With substitution of Y, the system retains its original crystal structure but structural parameters change with x in nonmonotonic fashion. The magnetization data for Sr2FeIrO6 show antiferromagnetic type magnetic transition around 45 K however, a close inspection of the data indicates a weak magnetic phase transition around 120 K. No change of structural symmetry has been observed down to low temperature, although the lattice parameters show sudden changes around the magnetic transitions. Sr2FeIrO6 shows an insulating behavior over the whole temperature range, which nevertheless does not change with Y substitution. The nature of charge conduction is found to follow thermally activated Mott’s variable range hopping and power law behavior for parent and doped samples, respectively. Interestingly, evolution of structural, magnetic and transport behavior in (Sr1-x Y x )2FeIrO6 is observed to reverse with x > 0.1 , which is believed to arise due to a change in the transition metal ionic state.

  20. Effects of sex chromosome aneuploidies on brain development: evidence from neuroimaging studies.

    PubMed

    Lenroot, Rhoshel K; Lee, Nancy Raitano; Giedd, Jay N

    2009-01-01

    Variation in the number of sex chromosomes is a relatively common genetic condition, affecting as many as 1/400 individuals. The sex chromosome aneuploidies (SCAs) are associated with characteristic behavioral and cognitive phenotypes, although the degree to which specific individuals are affected can fall within a wide range. Understanding the effects of different dosages of sex chromosome genes on brain development may help to understand the basis for functional differences in affected individuals. It may also be informative regarding how sex chromosomes contribute to typical sexual differentiation. Studies of 47,XXY males make up the bulk of the current literature of neuroimaging studies in individuals with supernumerary sex chromosomes, with a few small studies or case reports of the other SCAs. Findings in 47,XXY males typically include decreased gray and white matter volumes, with most pronounced effects in the frontal and temporal lobes. Functional studies have shown evidence of decreased lateralization. Although the hypogonadism typically found in 47,XXY males may contribute to the decreased brain volume, the observation that 47,XXX females also show decreased brain volume in the presence of normal pubertal maturation suggests a possible direct dosage effect of X chromosome genes. Additional X chromosomes, such as in 49,XXXXY males, are associated with more markedly decreased brain volume and increased incidence of white matter hyperintensities. The limited data regarding effects of having two Y chromosomes (47,XYY) do not find significant differences in brain volume, although there are some reports of increased head size.

  1. Effects of Sex Chromosome Aneuploidies on Brain Development: Evidence From Neuroimaging Studies

    PubMed Central

    Lenroot, Rhoshel K.; Lee, Nancy Raitano; Giedd, Jay N.

    2010-01-01

    Variation in the number of sex chromosomes is a relatively common genetic condition, affecting as many as 1/400 individuals. The sex chromosome aneuploidies (SCAs) are associated with characteristic behavioral and cognitive phenotypes, although the degree to which specific individuals are affected can fall within a wide range. Understanding the effects of different dosages of sex chromosome genes on brain development may help to understand the basis for functional differences in affected individuals. It may also be informative regarding how sex chromosomes contribute to typical sexual differentiation. Studies of 47,XXY males make up the bulk of the current literature of neuroimaging studies in individuals with supernumerary sex chromosomes, with a few small studies or case reports of the other SCAs. Findings in 47,XXY males typically include decreased gray and white matter volumes, with most pronounced effects in the frontal and temporal lobes. Functional studies have shown evidence of decreased lateralization. Although the hypogonadism typically found in 47,XXY males may contribute to the decreased brain volume, the observation that 47,XXX females also show decreased brain volume in the presence of normal pubertal maturation suggests a possible direct dosage effect of X chromosome genes. Additional X chromosomes, such as in 49,XXXXY males, are associated with more markedly decreased brain volume and increased incidence of white matter hyperintensities. The limited data regarding effects of having two Y chromosomes (47,XYY) do not find significant differences in brain volume, although there are some reports of increased head size. PMID:20014372

  2. A sex-ratio meiotic drive system in Drosophila simulans. II: an X-linked distorter.

    PubMed

    Tao, Yun; Araripe, Luciana; Kingan, Sarah B; Ke, Yeyan; Xiao, Hailian; Hartl, Daniel L

    2007-11-06

    The evolution of heteromorphic sex chromosomes creates a genetic condition favoring the invasion of sex-ratio meiotic drive elements, resulting in the biased transmission of one sex chromosome over the other, in violation of Mendel's first law. The molecular mechanisms of sex-ratio meiotic drive may therefore help us to understand the evolutionary forces shaping the meiotic behavior of the sex chromosomes. Here we characterize a sex-ratio distorter on the X chromosome (Dox) in Drosophila simulans by genetic and molecular means. Intriguingly, Dox has very limited coding capacity. It evolved from another X-linked gene, which also evolved de nova. Through retrotransposition, Dox also gave rise to an autosomal suppressor, not much yang (Nmy). An RNA interference mechanism seems to be involved in the suppression of the Dox distorter by the Nmy suppressor. Double mutant males of the genotype dox; nmy are normal for both sex-ratio and spermatogenesis. We postulate that recurrent bouts of sex-ratio meiotic drive and its subsequent suppression might underlie several common features observed in the heterogametic sex, including meiotic sex chromosome inactivation and achiasmy.

  3. Magnetic properties, phase evolution, and microstructure of melt-spun (Sm{sub 1-x}Pr{sub x})Co{sub 7-y}Hf{sub y}C{sub z} (x=0-1; y=0.1-0.3; z=0-0.14) ribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, H. W.; Chen, I. W.; Chang, C. W.

    2008-04-01

    Magnetic properties, phase evolution, and microstructure of melt-spun (Sm{sub 1-x}Pr{sub x})Co{sub 7-y}Hf{sub y}C{sub z} ribbons have been investigated. For (Sm{sub 1-x}Pr{sub x})Co{sub 7-y}Hf{sub y} (x=0-1; y=0.1-0.3) ribbons, the magnetization increases, but coercivity decreases, with increasing Pr content. However, the phase constitution and microstructure have not been influenced by modifying Pr content x. The attractive magnetic properties of B{sub r}=6.5 kG, {sub i}H{sub c}=6.1 kOe, and (BH){sub max}=7.2 MG Oe could be obtained for (Sm{sub 0.8}Pr{sub 0.2})Co{sub 6.9}Hf{sub 0.1} ribbons. A slight addition of C in (Sm{sub 0.8}Pr{sub 0.2})Co{sub 6.9}Hf{sub 0.1}C{sub z} (z=0.06-0.14) ribbon not only refines the microstructure, but alsomore » induces nanoscale fcc-Co precipitation in the matrix, leading to the stronger exchange-coupling effect between magnetic grains and the enhancement of remanence and magnetic energy product. As a result, the improved magnetic properties of B{sub r}=7.1 kOe, {sub i}H{sub c}=8.5 kOe, and (BH){sub max}=11.2 MG Oe can be achieved for (Sm{sub 0.8}Pr{sub 0.2})Co{sub 6.9}Hf{sub 0.1}C{sub 0.12} ribbons.« less

  4. Gender-Specific Gene Expression in Post-Mortem Human Brain: Localization to Sex Chromosomes

    PubMed Central

    Vawter, Marquis P; Evans, Simon; Choudary, Prabhakara; Tomita, Hiroaki; Meador-Woodruff, Jim; Molnar, Margherita; Li, Jun; Lopez, Juan F; Myers, Rick; Cox, David; Watson, Stanley J; Akil, Huda; Jones, Edward G; Bunney, William E

    2011-01-01

    Gender differences in brain development and in the prevalence of neuropsychiatric disorders such as depression have been reported. Gender differences in human brain might be related to patterns of gene expression. Microarray technology is one useful method for investigation of gene expression in brain. We investigated gene expression, cell types, and regional expression patterns of differentially expressed sex chromosome genes in brain. We profiled gene expression in male and female dorsolateral prefrontal cortex, anterior cingulate cortex, and cerebellum using the Affymetrix oligonucleotide microarray platform. Differentially expressed genes between males and females on the Y chromosome (DBY, SMCY, UTY, RPS4Y, and USP9Y) and X chromosome (XIST) were confirmed using real-time PCR measurements. In situ hybridization confirmed the differential expression of gender-specific genes and neuronal expression of XIST, RPS4Y, SMCY, and UTY in three brain regions examined. The XIST gene, which silences gene expression on regions of the X chromosome, is expressed in a subset of neurons. Since a subset of neurons express gender-specific genes, neural subpopulations may exhibit a subtle sexual dimorphism at the level of differences in gene regulation and function. The distinctive pattern of neuronal expression of XIST, RPS4Y, SMCY, and UTY and other sex chromosome genes in neuronal subpopulations may possibly contribute to gender differences in prevalence noted for some neuropsychiatric disorders. Studies of the protein expression of these sex- chromosome-linked genes in brain tissue are required to address the functional consequences of the observed gene expression differences. PMID:14583743

  5. Synthesis and characteristics of PbTe1-xSex thin films formed via electrodeposition

    NASA Astrophysics Data System (ADS)

    Bae, Sangwoo; Lee, Sangwon; Sohn, Ho-Sang; Lee, Ho Seong

    2017-09-01

    PbTe1-xSex films were grown using electrodeposition and their microstructural and electrical properties were investigated. The Se content incorporated in the PbTe1-xSex films increased with the Se content in the electrolyte. X-ray diffraction peaks of the PbTe1-xSex films shifted to higher angles according to Vegard's law. For the sample with a small Se content, the PbTe1-xSex films showed a characteristic feather-like dendrite, while PbTe1-xSex films with a higher Se content showed faceted particles. Transmission electron microscopy results showed that the feather-like dendritic PbTe1-xSex grew like a single crystal and a growing twinning was formed in some dendrites. With an increase in the Se content in the PbTe1-xSex thin films, the carrier concentrations increased but the mobility reduced. Electrical conductivity of the PbTe1-xSex thin films increased and then slightly decreased with increasing Se content.

  6. Development, beam characterization and chromosomal effectiveness of X-rays of RBC characteristic X-ray generator.

    PubMed

    Endo, Satoru; Hoshi, Masaharu; Takada, Jun; Takatsuji, Toshihiro; Ejima, Yosuke; Saigusa, Shin; Tachibana, Akira; Sasaki, Masao S

    2006-06-01

    A characteristic hot-filament type X-ray generator was constructed for irradiation of cultured cells. The source provides copper K, iron K, chromium K, molybdenum L, aluminium K and carbon K shell characteristic X-rays. When cultured mouse m5S cells were irradiated and frequencies of dicentrics were fitted to a linear-quadratic model, Y = alphaD + betaD2, the chromosomal effectiveness was not a simple function of photon energy. The alpha-terms increased with the decrease of the photon energy and then decreased with further decrease of the energy with an inflection point at around 10 keV. The beta-terms stayed constant for the photon energy down to 10 keV and then increased with further decrease of energy. Below 10 keV, the relative biological effectiveness (RBE) at low doses was proportional to the photon energy, which contrasted to that for high energy X- or gamma-rays where the RBE was inversely related with the photon energy. The reversion of the energy dependency occurred at around 1-2 Gy, where the RBE of soft X-rays was insensitive to X-ray energy. The reversion of energy-RBE relation at a moderate dose may shed light on the controversy on energy dependency of RBE of ultrasoft X-rays in cell survival experiments.

  7. Low-energy magnetic excitations from the Fe1+y-z(Ni/Cu)zTe1-xSex system

    NASA Astrophysics Data System (ADS)

    Xu, Zhijun; Wen, Jinsheng; Schneeloch, J.; Christianson, A. D.; Birgeneau, R. J.; Gu, Genda; Tranquada, J. M.; Xu, Guangyong

    2014-05-01

    We report neutron scattering measurements on low-energy (ℏω ˜5 meV) magnetic excitations from a series of Fe1+y-z(Ni/Cu)zTe1-xSex samples which belong to the "11" Fe-chalcogenide family. Our results suggest a strong correlation between the magnetic excitations near (0.5,0.5,0) and the superconducting properties of the system. The low-energy magnetic excitations are found to gradually move away from (0.5,0.5,0) to incommensurate positions when superconductivity is suppressed, either by heating or chemical doping, confirming previous observations.

  8. Ca 1-xMo 1-ySi yO 4:Eu x3+: A novel red phosphor for white light emitting diodes

    NASA Astrophysics Data System (ADS)

    Ci, Zhipeng; Wang, Yuhua; Zhang, Jiachi; Sun, Yunkui

    2008-03-01

    Single phase of Ca 1-xMo 1-ySi yO 4:Eu x3+ (0.18⩽ x⩽0.26, 0⩽ y⩽0.04) was synthesized by solid-state method. The photoluminescence investigation indicated that Ca 1-xMoO 4:Eu x3+ (0.18⩽ x⩽0.26) could be effectively excited by 393 and 464 nm, and it exhibited an intense red emission at 615 nm. The introduction of Si 4+ ions did not change the position of the peaks but strongly enhanced the emission intensity of Eu 3+ under 393 and 464 nm excitations and showed very good color purity. The emission intensity of optimal Ca 0.8Mo 0.98Si 0.02O 4:Eu 0.23+ sample (excited by 393 nm) was about 5.5 times higher than that of the phosphor Y 2O 2S:0.05Eu 3+. So this phosphor could be nicely suitable for the application of the UV LED chips.

  9. Agonist and antagonist effects of diadenosine tetraphosphate, a platelet dense granule constituent, on platelet P2Y1, P2Y12 and P2X1 receptors.

    PubMed

    Chang, Hung; Yanachkov, Ivan B; Michelson, Alan D; Li, YouFu; Barnard, M R; Wright, George E; Frelinger, Andrew L

    2010-02-01

    Diadenosine 5',5'''-P(1),P(4)- tetraphosphate (Ap(4)A) is stored in platelet dense granules, but its effects on platelet function are not well understood. We examined the effects of Ap(4)A on platelet purinergic receptors P2Y(1), P2Y(12) and P2X(1). Flow cytometry was used to measure the effects of Ap(4)A in the presence or absence of ADP on: a) P2Y(12)-mediated decrease in intraplatelet phosphorylated vasodilator stimulated phosphoprotein (VASP), b) P2Y(1)-mediated increase in platelet cytosolic Ca(2+), and c) P2X(1)-mediated intraplatelet entry of extracellular Ca(2+). ADP-stimulated platelet shape change (P2Y(1)-mediated) and aggregation (P2Y(1)- and P2Y(12)-mediated) were measured optically. Ap(4)A inhibited 3 microM ADP-induced: a) platelet aggregation (IC(50) 9.8+/-2.8 microM), b) P2Y(1)-mediated shape change, c) P2Y(1)-mediated increase in platelet cytosolic Ca(2+) (IC(50) 40.8+/-12.3 microM), and d) P2Y(12)-mediated decrease in VASP phosphorylation (IC(50)>250 microM). In the absence of added ADP, Ap(4)A had agonist effects on platelet P2X(1) and P2Y(12), but not P2Y(1), receptors. Ap(4)A, a constituent of platelet dense granules, is a) an antagonist of platelet P2Y(1) and P2Y(12) receptors, where it inhibits the effects of ADP, and b) an agonist of platelet P2X(1) and P2Y(12) receptors. Copyright 2009 Elsevier Ltd. All rights reserved.

  10. Agonist and Antagonist Effects of Diadenosine Tetraphosphate, a Platelet Dense Granule Constituent, on Platelet P2Y1, P2Y12 and P2X1 Receptors

    PubMed Central

    Chang, Hung; Yanachkov, Ivan B.; Michelson, Alan D.; Li, YouFu; Barnard, M.R.; Wright, George E.; Frelinger, Andrew L.

    2010-01-01

    Introduction Diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A) is stored in platelet dense granules, but its effects on platelet function are not well understood. Methods and Results We examined the effects of Ap4A on platelet purinergic receptors P2Y1, P2Y12 and P2X1. Flow cytometry was used to measure the effects of Ap4A in the presence or absence of ADP on: a) P2Y12-mediated decrease in intraplatelet phosphorylated vasodilator stimulated phosphoprotein (VASP), b) P2Y1-mediated increase in platelet cytosolic Ca2+, and c) P2X1-mediated intraplatelet entry of extracellular Ca2+. ADP-stimulated platelet shape change (P2Y1-mediated) and aggregation (P2Y1- and P2Y12-mediated) were measured optically. Ap4A inhibited 3 µM ADP-induced: a) platelet aggregation (IC50 9.8 ± 2.8 µM), b) P2Y1-mediated shape change, c) P2Y1-mediated increase in platelet cytosolic Ca2+ (IC50 40.8 ± 12.3 µM), and d) P2Y12-mediated decrease in VASP phosphorylation (IC50 >250 µM). In the absence of added ADP, Ap4A had agonist effects on platelet P2X1 and P2Y12, but not P2Y1, receptors. Conclusion Ap4A, a constituent of platelet dense granules, is a) an antagonist of platelet P2Y1 and P2Y12 receptors, where it inhibits the effects of ADP, and b) an agonist of platelet P2X1 and P2Y12 receptors. PMID:19945153

  11. Degenerate p-type conductivity in wide-gap LaCuOS1-xSex (x=0-1) epitaxial films

    NASA Astrophysics Data System (ADS)

    Hiramatsu, Hidenori; Ueda, Kazushige; Ohta, Hiromichi; Hirano, Masahiro; Kamiya, Toshio; Hosono, Hideo

    2003-02-01

    Epitaxial films of LaCuOS1-xSex (x=0-1) solid solution were grown on MgO (001) substrates and their electrical and optical properties were examined. Sharp emission due to room-temperature exciton with binding energy of ˜50 meV is observed for all x values. Hall mobility becomes large with an increase in the Se content and it reaches 8.0 cm2V-1s-1 in LaCuOSe, a comparable value to that of p-type GaN:Mg. Doping of Mg2+ ions at La3+ sites enhances a hole concentration up to 2.2×1020 cm-3, while maintaining the Hall mobility as large as 4.0 cm2V-1s-1. Consequently, a degenerate p-type electrical conduction with a conductivity of 140 S cm-1 was achieved.

  12. Long-Term Fragility of Y Chromosomes Is Dominated by Short-Term Resolution of Sexual Antagonism

    PubMed Central

    Blackmon, Heath; Brandvain, Yaniv

    2017-01-01

    The evolution of heteromorphic sex chromosomes has fascinated biologists, inspiring theoretical models, experimental studies, and studies of genome structure. This work has produced a clear model, in which heteromorphic sex chromosomes result from repeated fixations of inversions (or other recombination suppression mechanisms) that tether sexually antagonistic alleles to sex-determining regions, followed by the degeneration of these regions induced by the lack of sex chromosome recombination in the heterogametic sex. However, current models do not predict if inversions are expected to preferentially accumulate on one sex-chromosome or another, and do not address if inversions can accumulate even when they cause difficulties in pairing between heteromorphic chromosomes in the heterogametic sex increasing aneuploidy or meiotic arrest. To address these questions, we developed a population genetic model in which the sex chromosome aneuploidy rate is elevated when males carry an inversion on either the X or Y chromosome. We show that inversions fix more easily when male-beneficial alleles are dominant, and that inversions on the Y chromosome fix with lower selection coefficients than comparable X chromosome inversions. We further show that sex-chromosome inversions can often invade and fix despite causing a substantial increase in the risk of aneuploidy. As sexual antagonism can lead to the fixation of inversions that increase sex chromosomes aneuploidy (which underlies genetic diseases including Klinefelter and Turner syndrome in humans) selection could subsequently favor diverse mechanisms to reduce aneuploidy—including alternative meiotic mechanisms, translocations to, and fusions with, the sex chromosomes, and sex chromosome turnover. PMID:29021279

  13. Revisiting the X:A signal that specifies Caenorhabditis elegans sexual fate.

    PubMed

    Gladden, John M; Farboud, Behnom; Meyer, Barbara J

    2007-11-01

    In Caenorhabditis elegans, sex is determined by the opposing actions of X-signal elements (XSEs) and autosomal signal elements (ASEs), which communicate the ratio of X chromosomes to sets of autosomes (X:A signal). This study delves more deeply into the mechanism by which XSEs transmit X chromosome dose. We determined the relative contributions of individual XSEs to the X:A signal and showed the order of XSE strength to be sex-1 > sex-2 > fox-1 > ceh-39 >/= region 1 XSE. sex-1 exerts a more potent influence on sex determination and dosage compensation than any other XSE by functioning in two separate capacities in the pathway: sex-1 acts upstream as an XSE to repress xol-1 and downstream as an activator of hermaphrodite development and dosage compensation. Furthermore, the process of dosage compensation affects expression of the very XSEs that control it; XSEs become fully dosage compensated once sex is determined. The X:A signal is then equivalent between XO and XX animals, causing sexual differentiation to be controlled by genes downstream of xol-1 in the sex-determination pathway. Prior to the onset of dosage compensation, the difference in XSE expression between XX and XO embryos appears to be greater than twofold, making X chromosome counting a robust process.

  14. Nonlinear Diophantine equation 11 x +13 y = z 2

    NASA Astrophysics Data System (ADS)

    Sugandha, A.; Tripena, A.; Prabowo, A.; Sukono, F.

    2018-03-01

    This research aims to obtaining the solutions (if any) from the Non Linear Diophantine equation of 11 x + 13 y = z 2. There are 3 possibilities to obtain the solutions (if any) from the Non Linear Diophantine equation, namely single, multiple, and no solution. This research is conducted in two stages: (1) by utilizing simulation to obtain the solutions (if any) from the Non Linear Diophantine equation of 11 x + 13 y = z 2 and (2) by utilizing congruency theory with its characteristics proven that the Non Linear Diophantine equation has no solution for non negative whole numbers (integers) of x, y, z.

  15. Characterization of Y1-xCaxBa2Cu4O8 (x=0.0˜ 0.1) with Double Cu-O Chains by Raman Spectra

    NASA Astrophysics Data System (ADS)

    Kodama, Yasuharu; Tanemura, Sakae; Ikeda, Teruki

    1991-08-01

    Raman spectra of Y1-xCaxBa2Cu4O8 (x=0.0, 0.02, 0.05 and 0.1) ceramic samples synthesized under high oxygen pressure were investigated. Seven clear peaks assigned to Ag modes were observed for the sample with x=0. With increasing x, the peaks at 238 cm-1, 332 cm-1, 430 cm-1 and 590 cm-1 were broadened. The origin of the broadening of the peaks at 238 cm-1 and 590 cm-1 is considered to be the destruction of the double Cu-O chains due to the substitution of Ca for Y.

  16. Ftx is dispensable for imprinted X-chromosome inactivation in preimplantation mouse embryos.

    PubMed

    Soma, Miki; Fujihara, Yoshitaka; Okabe, Masaru; Ishino, Fumitoshi; Kobayashi, Shin

    2014-06-05

    X-chromosome inactivation (XCI) equalizes gene expression between the sexes by inactivating one of the two X chromosomes in female mammals. Xist has been considered as a major cis-acting factor that inactivates the paternally derived X chromosome (Xp) in preimplantation mouse embryos (imprinted XCI). Ftx has been proposed as a positive regulator of Xist. However, the physiological role of Ftx in female animals has never been studied. We recently reported that Ftx is located in the cis-acting regulatory region of the imprinted XCI and expressed from the inactive Xp, suggesting a role in the imprinted XCI mechanism. Here we examined the effects on imprinted XCI using targeted deletion of Ftx. Disruption of Ftx did not affect the survival of female embryos or expression of Xist and other X-linked genes in the preimplantation female embryos. Our results indicate that Ftx is dispensable for imprinted XCI in preimplantation embryos.

  17. X Linkage of AP3A, a Homolog of the Y-Linked MADS-Box Gene AP3Y in Silene latifolia and S. dioica

    PubMed Central

    Penny, Rebecca H.; Montgomery, Benjamin R.; Delph, Lynda F.

    2011-01-01

    Background The duplication of autosomal genes onto the Y chromosome may be an important element in the evolution of sexual dimorphism.A previous cytological study reported on a putative example of such a duplication event in a dioecious tribe of Silene (Caryophyllaceae): it was inferred that the Y-linked MADS-box gene AP3Y originated from a duplication of the reportedly autosomal orthologAP3A. However, a recent study, also using cytological methods, indicated that AP3A is X-linked in Silenelatifolia. Methodology/Principal Findings In this study, we hybridized S. latifolia and S. dioicato investigate whether the pattern of X linkage is consistent among distinct populations, occurs in both species, and is robust to genetic methods. We found inheritance patterns indicative of X linkage of AP3A in widely distributed populations of both species. Conclusions/Significance X linkage ofAP3A and Y linkage of AP3Yin both species indicates that the genes' ancestral progenitor resided on the autosomes that gave rise to the sex chromosomesand that neither gene has moved between chromosomes since species divergence.Consequently, our results do not support the contention that inter-chromosomal gene transfer occurred in the evolution of SlAP3Y from SlAP3A. PMID:21533056

  18. Magnetic and Superconducting Properties in Single Crystalline Fe1+δTe1-xSex (x<0.50) System

    NASA Astrophysics Data System (ADS)

    Jinhu Yang,; Mami Matsui,; Masatomo Kawa,; Hiroto Ohta,; Chishiro Michioka,; Chiheng Dong,; Hangdong Wang,; Huiqiu Yuan,; Minghu Fang,; Kazuyoshi Yoshimura,

    2010-07-01

    The spin-fluctuation effect in the Se-substituted single crystalline Fe1+δTe1-xSex (x = 0, 0.05, 0.12, 0.20, 0.30, 0.33, 0.45, and 0.48; 0≤δ≤ 0.12) and the polycrystalline Fe1.11Se has been studied by the measurements of the X-ray diffraction, the magnetic susceptibility under high magnetic fields and the electrical resistivity under magnetic fields up to 14 T. The samples with x = 0.05, 0.12, 0.20, 0.30, 0.33, 0.45, and 0.48 show superconducting transition temperatures in the ranger of 10-14 K. We obtained their intrinsic susceptibilities by the Honda-Owen method. A nearly linear-in-T behavior in magnetic susceptibility of Se-rich superconducting samples was observed, indicating the antiferromagnetic spin fluctuations have a strong link with the superconductivity in this series. The upper critical field μ0Hc2orb for T\\to 0 was estimated to exceed the Pauli paramagnetic limit. The Kadowaki-Woods and Wilson ratios indicate that electrons are strongly correlated in this system. Furthermore, the superconducting coherence length and the electron mean free path were also discussed. These superconducting parameters indicate that the superconductivity in the Fe1+δTe1-xSex system is unconventional.

  19. Mitotic Recombination in the Heterochromatin of the Sex Chromosomes of DROSOPHILA MELANOGASTER

    PubMed Central

    Ripoll, P.; Garcia-Bellido, A.

    1978-01-01

    The frequency of spontaneous and X-ray-induced mitotic recombination involving the Y chromosome has been studied in individuals with a marked Y chromosome arm and different XY compound chromosomes. The genotypes used include X chromosomes with different amounts of X heterochromatin and either or both arms of the Y chromosome attached to either side of the centromere. Individuals with two Y chromosomes have also been studied. The results show that the bulk of mitotic recombination takes place between homologous regions. PMID:100372

  20. Mapping the stability of human brain asymmetry across five sex-chromosome aneuploidies.

    PubMed

    Lin, Amy; Clasen, Liv; Lee, Nancy Raitano; Wallace, Gregory L; Lalonde, Francois; Blumenthal, Jonathan; Giedd, Jay N; Raznahan, Armin

    2015-01-07

    The human brain displays stereotyped and early emerging patterns of cortical asymmetry in health. It is unclear if these asymmetries are highly sensitive to genetic and environmental variation or fundamental features of the brain that can survive severe developmental perturbations. To address this question, we mapped cortical thickness (CT) asymmetry in a group of genetically defined disorders known to impact CT development. Participants included 137 youth with one of five sex-chromosome aneuploidies [SCAs; XXX (n = 28), XXY (n = 58), XYY (n = 26), XXYY (n = 20), and XXXXY (n = 5)], and 169 age-matched typically developing controls (80 female). In controls, we replicated previously reported rightward inferior frontal and leftward lateral parietal CT asymmetry. These opposing frontoparietal CT asymmetries were broadly preserved in all five SCA groups. However, we also detected foci of shifting CT asymmetry with aneuploidy, which fell almost exclusively within regions of significant CT asymmetry in controls. Specifically, X-chromosome aneuploidy accentuated normative rightward inferior frontal asymmetries, while Y-chromosome aneuploidy reversed normative rightward medial prefrontal and lateral temporal asymmetries. These findings indicate that (1) the stereotyped normative pattern of opposing frontoparietal CT asymmetry arises from developmental mechanisms that can withstand gross chromosomal aneuploidy and (2) X and Y chromosomes can exert focal, nonoverlapping and directionally opposed influences on CT asymmetry within cortical regions of significant asymmetry in health. Our study attests to the resilience of developmental mechanisms that support the global patterning of CT asymmetry in humans, and motivates future research into the molecular bases and functional consequences of sex chromosome dosage effects on CT asymmetry. Copyright © 2015 the authors 0270-6474/15/350140-06$15.00/0.

  1. Sex-chromosome differentiation parallels postglacial range expansion in European tree frogs (Hyla arborea).

    PubMed

    Dufresnes, Christophe; Bertholet, Youna; Wassef, Jérôme; Ghali, Karim; Savary, Romain; Pasteur, Baptiste; Brelsford, Alan; Rozenblut-Kościsty, Beata; Ogielska, Maria; Stöck, Matthias; Perrin, Nicolas

    2014-12-01

    Occasional XY recombination is a proposed explanation for the sex-chromosome homomorphy in European tree frogs. Numerous laboratory crosses, however, failed to detect any event of male recombination, and a detailed survey of NW-European Hyla arborea populations identified male-specific alleles at sex-linked loci, pointing to the absence of XY recombination in their recent history. Here, we address this paradox in a phylogeographic framework by genotyping sex-linked microsatellite markers in populations and sibships from the entire species range. Contrasting with postglacial populations of NW Europe, which display complete absence of XY recombination and strong sex-chromosome differentiation, refugial populations of the southern Balkans and Adriatic coast show limited XY recombination and large overlaps in allele frequencies. Geographically and historically intermediate populations of the Pannonian Basin show intermediate patterns of XY differentiation. Even in populations where X and Y occasionally recombine, the genetic diversity of Y haplotypes is reduced below the levels expected from the fourfold drop in copy numbers. This study is the first in which X and Y haplotypes could be phased over the distribution range in a species with homomorphic sex chromosomes; it shows that XY-recombination patterns may differ strikingly between conspecific populations, and that recombination arrest may evolve rapidly (<5000 generations). © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  2. Magnesium effects on CdSe self-assembled quantum dot formation on Zn xCd yMg 1-x-ySe layers

    NASA Astrophysics Data System (ADS)

    Noemi Perez-Paz, M.; Lu, Hong; Shen, Aidong; Jean Mary, F.; Akins, Daniel; Tamargo, Maria C.

    2006-09-01

    Optical and morphological studies are used to investigate the effects of chemical composition and, in particular, the magnesium content of the Zn xCd yMg 1-x-ySe barrier layers on the size, density and uniformity of CdSe self-assembled quantum dots (QDs). A reduction of the uncapped QD size, as well as a blue shift of the capped QD photoluminescence peak position by increasing Mg concentration in the Zn xCd yMg 1-x-ySe barrier has been demonstrated by changing the Mg cell temperature during growth. In addition, a more uniform and more densely packed QD layer has been observed with an increase of the MgSe fraction in the Zn xCd yMg 1-x-ySe barrier layer using three-dimensional topographic atomic force microscopy images of the surface of uncapped QDs. Results point to Mg as a chemical factor that induces QD formation, either by increasing the density of atomic steps or/and by changing the energy of the Zn xCd yMg 1-x-ySe surface.

  3. Molecular mapping of chromosomes 17 and X

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barker, D.F.

    1991-01-15

    Progress toward the construction of high density genetic maps of chromosomes 17 and X has been made by isolating and characterizing a relatively large set of polymorphic probes for each chromosome and using these probes to construct genetic maps. We have mapped the same polymorphic probes against a series of chromosome breakpoints on X and 17. The probes could be assigned to over 30 physical intervals on the X chromosome and 7 intervals on 17. In many cases, this process resulted in improved characterization of the relative locations of the breakpoints with respect to each other and the definition ofmore » new physical intervals. The strategy for isolation of the polymorphic clones utilized chromosome specific libraries of 1--15 kb segments from each of the two chromosomes. From these libraries, clones were screened for those detecting restriction fragment length polymorphisms. The markers were further characterized, the chromosomal assignments confirmed and in most cases segments of the original probes were subcloned into plasmids to produce probes with improved signal to noise ratios for use in the genetic marker studies. The linkage studies utilize the CEPH reference families and other well-characterized families in our collection which have been used for genetic disease linkage work. Preliminary maps and maps of portions of specific regions of 17 and X are provided. We have nearly completed a map of the 1 megabase Mycoplasma arthritidis genome by applying these techniques to a lambda phage library of its genome. We have found bit mapping to be an efficient means to organize a contiguous set of overlapping clones from a larger genome.« less

  4. Self-organization in P_xGe_xSe_1-2x glasses^*

    NASA Astrophysics Data System (ADS)

    Chakravarty, Swapnajit; Georgiev, Daniel; Boolchand, Punit; Micoulaut, Matthieu

    2003-03-01

    Bulk glasses in the titled ternary, in the 0 < x < 0.26 composition range, are examined in MDSC and Raman scattering measurements. Both fresh and aged samples were studied. Bimodal endotherms are observed but only the high^T endotherm displays a reversing heat flow signal that represents a glass transition. The pre^_Tg endotherm is observed in quenched samples only, and represents an activation energy [1] associated with P4 units (Se^_P(Se_1/2)_3) converting to P3 (P(Se_1/2)_3) ones. T_g(x) accessed from the reversing heat flow are found to increase with x as a power^_law, displaying a cusp near x = 0.04. The non^_reversing enthalpy is found to display a global minimum in the 0.08 < x < 0.145 range identified with the self^_organized phase. Raman scattering reveals the isostatically rigid units ( P3 , P_4, CS and ES Ge(Se_1/2)_4) comprising building blocks of the self^_organized phase. These results are parallel to those encountered in the As^_Ge^_Se ternary [2,3]. ^*Supported by NSF grant DMR ^_01^_01808 1. D.G. Georgiev et al Phys. Rev. B 64,134204(2001) 2.Y. Wang et al Europhys. Lett. 52, 633 (2000) 3. T.Qu et al. companion abstract

  5. High Temperature Superconductivity in Praseodymium Doped (0%, 2%, 4%) in Melt-Textured Y(1-x)Pr(x)Ba2Cu3O(7-delta) Systems

    NASA Technical Reports Server (NTRS)

    James, Claudell

    1995-01-01

    A study of the magnetic and structural properties of the alloy Y(1-x)Pr(x)Ba2Cu3O(7-delta) of 0%, 2%, and 4% doping of praseodymium is presented. The resulting oxides of the alloy series are a high-temperature superconductor Y-Ba-Cu-O, which has an orthorhombic superconducting crystal-lattice. Magnetic relaxation studies have been performed on the Y-Pr-Ba-CuO bulk samples for field orientation parallel to the c-axis, using a vibrating sample magnetometer. Relaxation was measured at several temperatures to obtain the irreversible magnetization curves used for the Bean model. Magnetization current densities were derived from the relaxation data. Field and temperature dependence of the logarithmic flux-creep relaxation was measured in critical state. The data indicates that the effective activation energy U(eff) increases with increasing T between 77 K and 86 K. Also, the data shows that U(eff)(T) and superconducting transition temperature, Tc, decreased as the lattice parameters increased with increasing Pr ion concentration, x, for the corresponding Y(1-x)Pr(x)Ba(x)Cu3O(7-delta) oxides. One contribution to Tc decrease in this sampling is suspected to be due to the larger ionic radius of the Pr(3+) ion. The upper critical field (H(sub c2)) was measured in the presence of magnetic field parallel to the c axis. A linear temperature dependence with H(sub c2) was obtained.

  6. Rare X Chromosome Abnormalities in Systemic Lupus Erythematosus and Sjögren's Syndrome.

    PubMed

    Sharma, Rohan; Harris, Valerie M; Cavett, Joshua; Kurien, Biji T; Liu, Ke; Koelsch, Kristi A; Fayaaz, Anum; Chaudhari, Kaustubh S; Radfar, Lida; Lewis, David; Stone, Donald U; Kaufman, C Erick; Li, Shibo; Segal, Barbara; Wallace, Daniel J; Weisman, Michael H; Venuturupalli, Swamy; Kelly, Jennifer A; Pons-Estel, Bernardo; Jonsson, Roland; Lu, Xianglan; Gottenberg, Jacques-Eric; Anaya, Juan-Manuel; Cunninghame-Graham, Deborah S; Huang, Andrew J W; Brennan, Michael T; Hughes, Pamela; Alevizos, Ilias; Miceli-Richard, Corinne; Keystone, Edward C; Bykerk, Vivian P; Hirschfield, Gideon; Nordmark, Gunnel; Bucher, Sara Magnusson; Eriksson, Per; Omdal, Roald; Rhodus, Nelson L; Rischmueller, Maureen; Rohrer, Michael; Wahren-Herlenius, Marie; Witte, Torsten; Alarcón-Riquelme, Marta; Mariette, Xavier; Lessard, Christopher J; Harley, John B; Ng, Wan-Fai; Rasmussen, Astrid; Sivils, Kathy L; Scofield, R Hal

    2017-11-01

    Sjögren's syndrome (SS) and systemic lupus erythematosus (SLE) are related by clinical and serologic manifestations as well as genetic risks. Both diseases are more commonly found in women than in men, at a ratio of ~10 to 1. Common X chromosome aneuploidies, 47,XXY and 47,XXX, are enriched among men and women, respectively, in either disease, suggesting a dose effect on the X chromosome. We examined cohorts of SS and SLE patients by constructing intensity plots of X chromosome single-nucleotide polymorphism alleles, along with determining the karyotype of selected patients. Among ~2,500 women with SLE, we found 3 patients with a triple mosaic, consisting of 45,X/46,XX/47,XXX. Among ~2,100 women with SS, 1 patient had 45,X/46,XX/47,XXX, with a triplication of the distal p arm of the X chromosome in the 47,XXX cells. Neither the triple mosaic nor the partial triplication was found among the controls. In another SS cohort, we found a mother/daughter pair with partial triplication of this same region of the X chromosome. The triple mosaic occurs in ~1 in 25,000-50,000 live female births, while partial triplications are even rarer. Very rare X chromosome abnormalities are present among patients with either SS or SLE and may inform the location of a gene(s) that mediates an X dose effect, as well as critical cell types in which such an effect is operative. © 2017, American College of Rheumatology.

  7. A Comparison of Selective Pressures in Plant X-Linked and Autosomal Genes

    PubMed Central

    Krasovec, Marc; Filatov, Dmitry A.

    2018-01-01

    Selection is expected to work differently in autosomal and X-linked genes because of their ploidy difference and the exposure of recessive X-linked mutations to haploid selection in males. However, it is not clear whether these expectations apply to recently evolved sex chromosomes, where many genes retain functional X- and Y-linked gametologs. We took advantage of the recently evolved sex chromosomes in the plant Silene latifolia and its closely related species to compare the selective pressures between hemizygous and non-hemizygous X-linked genes as well as between X-linked genes and autosomal genes. Our analysis, based on over 1000 genes, demonstrated that, similar to animals, X-linked genes in Silene evolve significantly faster than autosomal genes—the so-called faster-X effect. Contrary to expectations, faster-X divergence was detectable only for non-hemizygous X-linked genes. Our phylogeny-based analyses of selection revealed no evidence for faster adaptation in X-linked genes compared to autosomal genes. On the other hand, partial relaxation of purifying selection was apparent on the X-chromosome compared to the autosomes, consistent with a smaller genetic diversity in S. latifolia X-linked genes (πx = 0.016; πaut = 0.023). Thus, the faster-X divergence in S. latifolia appears to be a consequence of the smaller effective population size rather than of a faster adaptive evolution on the X-chromosome. We argue that this may be a general feature of “young” sex chromosomes, where the majority of X-linked genes are not hemizygous, preventing haploid selection in heterogametic sex. PMID:29751495

  8. A Comparison of Selective Pressures in Plant X-Linked and Autosomal Genes.

    PubMed

    Krasovec, Marc; Nevado, Bruno; Filatov, Dmitry A

    2018-05-03

    Selection is expected to work differently in autosomal and X-linked genes because of their ploidy difference and the exposure of recessive X-linked mutations to haploid selection in males. However, it is not clear whether these expectations apply to recently evolved sex chromosomes, where many genes retain functional X- and Y-linked gametologs. We took advantage of the recently evolved sex chromosomes in the plant Silene latifolia and its closely related species to compare the selective pressures between hemizygous and non-hemizygous X-linked genes as well as between X-linked genes and autosomal genes. Our analysis, based on over 1000 genes, demonstrated that, similar to animals, X-linked genes in Silene evolve significantly faster than autosomal genes—the so-called faster-X effect. Contrary to expectations, faster-X divergence was detectable only for non-hemizygous X-linked genes. Our phylogeny-based analyses of selection revealed no evidence for faster adaptation in X-linked genes compared to autosomal genes. On the other hand, partial relaxation of purifying selection was apparent on the X-chromosome compared to the autosomes, consistent with a smaller genetic diversity in S. latifolia X-linked genes (π x = 0.016; π aut = 0.023). Thus, the faster-X divergence in S. latifolia appears to be a consequence of the smaller effective population size rather than of a faster adaptive evolution on the X-chromosome. We argue that this may be a general feature of “young” sex chromosomes, where the majority of X-linked genes are not hemizygous, preventing haploid selection in heterogametic sex.

  9. X Chromosome Abnormalities and Cognitive Development: Implications for Understanding Normal Human Development.

    ERIC Educational Resources Information Center

    Walzer, Stanley

    1985-01-01

    Argues that knowledge from studies of individuals with sex chromosome abnormalities can further understanding of aspects of normal human development. Studies of XO girls, XXY boys, XXX girls, and males with a fragile X chromosome are summarized to demonstrate how results contribute to knowledge about normal cognitive development and about…

  10. Artificially layered films of CuBa{sub 2} (Ca{sub 1{minus}x}Sr{sub x}){sub n{minus}1}Cu{sub n}O{sub y} grown using pulsed laser deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aruta, C.; Balestrino, G.; Martellucci, S.

    We have shown that the pulsed laser deposition technique (PLD) can be successfully used to grow artificially layered films of the CuBa{sub 2}(Ca{sub 1{minus}x}Sr{sub x}){sub n{minus}1}Cu{sub n}O{sub y} compound using only two targets having nominal composition BaCuO{sub y} and (Ca{sub 1{minus}x}Sr{sub x})CuO{sub y}, respectively. n was varied between 2 and 5. We have demonstrated, by a kinematic analysis of the x-ray diffraction spectra that the average random discrete thickness fluctuations which affect both the BaCuO{sub y} and (Ca{sub 1{minus}x}Sr{sub x})CuO{sub y} layers are much smaller than one atomic layer. Such features are confirmed by the appearance of sharp peaks evenmore » for the n=2 artificially layered structure where only one (Ca{sub 1{minus}x}Sr{sub x})CuO{sub y} cell is deposited in the stacking sequence. These results show that truly new structures can be obtained by a layer by layer deposition technique with a low interfacial disorder and give strong support to the idea of synthesizing new artificial high T{sub c} structures by the PLD technique.{copyright} {ital 1997 American Institute of Physics.}« less

  11. Ftx is dispensable for imprinted X-chromosome inactivation in preimplantation mouse embryos

    PubMed Central

    Soma, Miki; Fujihara, Yoshitaka; Okabe, Masaru; Ishino, Fumitoshi; Kobayashi, Shin

    2014-01-01

    X-chromosome inactivation (XCI) equalizes gene expression between the sexes by inactivating one of the two X chromosomes in female mammals. Xist has been considered as a major cis-acting factor that inactivates the paternally derived X chromosome (Xp) in preimplantation mouse embryos (imprinted XCI). Ftx has been proposed as a positive regulator of Xist. However, the physiological role of Ftx in female animals has never been studied. We recently reported that Ftx is located in the cis-acting regulatory region of the imprinted XCI and expressed from the inactive Xp, suggesting a role in the imprinted XCI mechanism. Here we examined the effects on imprinted XCI using targeted deletion of Ftx. Disruption of Ftx did not affect the survival of female embryos or expression of Xist and other X-linked genes in the preimplantation female embryos. Our results indicate that Ftx is dispensable for imprinted XCI in preimplantation embryos. PMID:24899465

  12. IMPACT OF Ce DOPING ON THE MAGNETIC AND TRANSPORT PROPERTIES OF Y1-xCexSr2Ru0.9Cu2.1O7.9; x = 0.05 AND 0.1

    NASA Astrophysics Data System (ADS)

    Balamurugan, S.

    2012-11-01

    The magnetic and transport properties of lightly Ce doped, Y1-xCexSr2Ru0.9Cu2.1 O7.9(x = 0.05 and 0.1) samples have been studied and their results are compared with the pristine rutheno-cuprate, YSr2Ru0.9Cu2.1O7.9. The electron doping due to Ce4+ for Y3+ ion impacts on the physical properties of the present system. The tetragonal stabilized samples exhibit magneto superconducting properties under zero field cooled condition (H = 10 Oe) and the diamagnetic onset transition, Td shift slightly towards higher temperature with the increase of "x". Weak antiferromagnetic like hysteresis curves are seen for these samples at 2 K in the magnetic field strength up to ±10 kOe and the magnetization moment, M(μB/Ru) decreases with increase of "x". While the magnetic property of the present system is due to canted Ru moments, the superconducting signal originates from CuO2 plane. Through electrical resistivity measurements we observe that none of the samples exhibit bulk superconductivity down to 2 K. However the x = 0.05 sample reveals lowest resistivity in the entire temperature range than x = 0 and 0.1 samples. The isothermal magnetoresistance, MR(H) measured at different temperatures vary with tuning of "x". While x = 0.1 doped sample shows lower -MR( 8%), the pristine sample exhibits maximum -MR(45%) at 2 K under ±90 kOe field condition.

  13. Sjögren's syndrome X-chromosome dose effect: An epigenetic perspective.

    PubMed

    Mougeot, J-Lc; Noll, B D; Bahrani Mougeot, F K

    2018-01-09

    Sjögren's syndrome (SS) is a chronic autoimmune disease affecting exocrine glands leading to mouth and eyes dryness. The extent to which epigenetic DNA methylation changes are responsible for an X-chromosome dose effect has yet to be determined. Our objectives were to (i) describe how epigenetic DNA methylation changes could explain an X-chromosome dose effect in SS for women with normal 46,XX genotype and (ii) determine the relevant relationships to this dose effect, between X-linked genes, genes controlling X-chromosome inactivation (XCI) and genes encoding associated transcription factors, all of which are differentially expressed and/or differentially methylated in the salivary glands of patients with SS. We identified 58 upregulated X-chromosome genes, including 22 genes previously shown to escape XCI, based on the analysis of SS patient salivary gland GEO2R gene expression datasets. Moreover, we found XIST and its cis regulators RLIM, FTX, and CHIC1, and polycomb repressor genes of the PRC1/2 complexes to be upregulated. Many of the X-chromosome genes implicated in SS pathogenesis can be regulated by transcription factors which we found to be overexpressed and/or differentially methylated in patients with SS. Determination of the mechanisms underlying methylation-dependent gene expression and impaired XCI is needed to further elucidate the etiopathogenesis of SS. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. All rights reserved.

  14. Sex Hormones and Sex Chromosomes Cause Sex Differences in the Development of Cardiovascular Diseases.

    PubMed

    Arnold, Arthur P; Cassis, Lisa A; Eghbali, Mansoureh; Reue, Karen; Sandberg, Kathryn

    2017-05-01

    This review summarizes recent evidence concerning hormonal and sex chromosome effects in obesity, atherosclerosis, aneurysms, ischemia/reperfusion injury, and hypertension. Cardiovascular diseases occur and progress differently in the 2 sexes, because biological factors differing between the sexes have sex-specific protective and harmful effects. By comparing the 2 sexes directly, and breaking down sex into its component parts, one can discover sex-biasing protective mechanisms that might be targeted in the clinic. Gonadal hormones, especially estrogens and androgens, have long been found to account for some sex differences in cardiovascular diseases, and molecular mechanisms mediating these effects have recently been elucidated. More recently, the inherent sexual inequalities in effects of sex chromosome genes have also been implicated as contributors in animal models of cardiovascular diseases, especially a deleterious effect of the second X chromosome found in females but not in males. Hormonal and sex chromosome mechanisms interact in the sex-specific control of certain diseases, sometimes by opposing the action of the other. © 2017 American Heart Association, Inc.

  15. [Molecular and cytogenetic characterization of six 46, XX males due to translocations between the short arms of X and Y chromosomes].

    PubMed

    Xing, Ya; Ji, Xing; Xiao, Bing; Jiang, Wen-ting; Hu, Qin; Hu, Juan; Cao, Ying; Tao, Jiong

    2012-08-01

    To characterize molecular and cytogenetic abnormalities in six 46, XX males, and to investigate the clinical manifestations and underlying mechanisms in such patients. Clinical data of six XX male patients were collected. Karyotyping, multiple polymerase chain reaction (PCR) and fluorescence in situ hybridization (FISH) were utilized to detect and locate the sex determining region (SRY) gene. PCR and FISH showed that all patients were SRY-positive XX males. All patients have their SRY gene located at the tip of derivative X chromosomes, which have resulted from translocation between short arms of X and Y chromosomes. High resolution karyotyping at 550-750 band level has revealed that the translocation breakpoints were at Xp22.33 and Yp11.2 in three patients. In the remaining patients, the breakpoints were either at Xp22.32 and Yp11.31 or Xp22.31 and Yp11.2. The breakpoints at Xp22.32, Xp22.31 and Yp11.31 were rarely reported. Genotype-phenotype correlation analysis indicated that the clinical manifestations were age-specific. Four adult patients have come to clinical attention due to infertility, with typical features including azoospermia and testis dysgenesis, whereas poorly developed secondary sexual characteristics and short stature were main complaints of adolescence patients, and short stature was the sole symptom in a child patient. Combined karyotyping, PCR and FISH are important for the analysis of XX males. Particularly, high resolution karyotyping is valuable for the refinement of chromosome breakpoints and detailed analysis of genotype-phenotype correlation.

  16. Magnetic susceptibility of YBa2(Cu/1-x/Fe/x/)3O(y) prepared by various heat treatments

    NASA Astrophysics Data System (ADS)

    Shibata, Tomohiko; Katsuyama, Shigeru; Yoshimura, Kazuyoshi; Kosuge, Koji

    1991-02-01

    The magnetic susceptibility of YBa2(Cu/1-x/Fe/x/)3O(y) specimens was measured following a standard heat treatment and a special heat treament stabilizing the orthorhombic phase to higher Fe concentrations. The values of the effective magnetic moment per Fe in the Cu1 site, estimated from the magnetic susceptibility and Mossbauer effect measurements, were 4.4 and 2.2 muB for the standard and specially treated specimens, respectively. The smaller effective magnetic moment in the case of specially treated specimens is attributed to the antiferromagnetic coupling between Fe spins at high temperatures.

  17. Photoluminescence of A- and B-site Eu{sup 3+}-substituted (Sr{sub x}Ba{sub 1x}){sub 2}CaW{sub y}Mo{sub 1y}O{sub 6} phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sletnes, M.; Lindgren, M.; Valmalette, J.C.

    The photoluminescence of two series of A- and B-site Eu{sup 3+} substituted (Sr{sub x}Ba{sub 1x}){sub 2}CaW{sub y}Mo{sub 1y}O{sub 6} double perovskite phosphor materials, (Sr{sub x}Ba{sub 1x}){sub 1.96}Eu{sub 0.02}K{sub 0.02}CaW{sub y}Mo{sub 1y}O{sub 6} and (Sr{sub x}Ba{sub 1x}){sub 2}Ca{sub 0.96}Eu{sub 0.02}Li{sub 0.02}W{sub y}Mo{sub 1y}O{sub 6} (x and y=0, 0.25, 0.50, 0.75, and 1), were studied systematically as a function of stoichiometry and crystal structure. The Eu{sup 3+} lattice sites controlled by co-doping with either K or Li were confirmed by Raman spectroscopy. The variation in integrated emission intensity and emission colour over the experimental matrix was examined using statistical tools, and themore » observed trends were rationalized based on the physical and electronic structure of the phosphors. Phosphors with Eu on B-site with maximum Sr content had remarkably higher emission intensities than all other materials, but the emission was more orange than red due to domination of the {sup 5}D{sub 0}–{sup 7}F{sub 1} (595 nm) transition of Eu{sup 3+}. The relative intensities of the {sup 5}D{sub 0}–{sup 7}F{sub 2} (615 nm) and {sup 5}D{sub 0}–{sup 7}F{sub 1} transitions of Eu{sup 3+}, and thus the red-shift of the emission, decreased linearly with increasing Sr content in the A-site Eu-substituted phosphors, and reached a maximum for Sr{sub 1.96}Eu{sub 0.02}K{sub 0.02}CaW{sub 0.25}Mo{sub 0.75}O{sub 6}. A maximum external quantum efficiency of 17% was obtained for the phosphor Sr{sub 2}Ca{sub 0.7}Eu{sub 0.15}Li{sub 0.15}W{sub 0.5}Mo{sub 0.5}O{sub 6} with Eu on B-site. - Highlights: • Systematic study of the photoluminescence of Eu{sup 3+}-doped (Sr{sub x}Ba{sub 1x}){sub 2}CaW{sub y}Mo{sub 1y}O{sub 6}. • The Eu{sup 3+} lattice sites were confirmed by Raman spectroscopy. • A large parameter space was investigated using statistical tools. • A maximum external QE of 17% was obtained for Sr{sub 2}Ca{sub 0.7}Eu{sub 0

  18. Mechanical properties, microstructural and thermal evolution of Mg65Ni20Y15-xSix (X = 1, 2, 3) alloys by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Kursun, Celal; Gogebakan, Musa; Eskalen, Hasan

    2018-03-01

    We report on a work of the influence of the mechanical alloying on the microstructure, thermal and mechanical features of Mg65Ni20Y15-xSix (X = 1, 2, 3) alloys. The Mg-based alloys were produced by mechanical alloying technique from mixtures of pure crystalline Mg, Ni, Y and Si powders. These alloys were investigated using a variety of analytical techniques including x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry (EDX) and differential scanning calorimetry (DSC). The mechanical properties of the alloys were investigated by Vickers microhardness (HV) tester. After 75 h of milling time, three different intermetallic phases were obtained. These phases were defined as Mg24Y5, Mg2Ni3Si and Mg2Ni by XRD data. The particle and crystallite sizes of the Mg-based alloys were decreased by increasing milling time and they were calculated 2 μm and ˜9 nm, respectively. From the EDX analysis, it was determined that compositional homogeneity of the Mg-based alloys was fairly high. The microhardness values of the Mg65Ni20Y15-xSix (X = 1, 2, 3) alloys increased by increasing Si into the alloys and were determined 101, 131 and 158 HV, respectively.

  19. Impaired imprinted X chromosome inactivation is responsible for the skewed sex ratio following in vitro fertilization

    PubMed Central

    Tan, Kun; An, Lei; Miao, Kai; Ren, Likun; Hou, Zhuocheng; Tao, Li; Zhang, Zhenni; Wang, Xiaodong; Xia, Wei; Liu, Jinghao; Wang, Zhuqing; Xi, Guangyin; Gao, Shuai; Sui, Linlin; Zhu, De-Sheng; Wang, Shumin; Wu, Zhonghong; Bach, Ingolf; Chen, Dong-bao; Tian, Jianhui

    2016-01-01

    Dynamic epigenetic reprogramming occurs during normal embryonic development at the preimplantation stage. Erroneous epigenetic modifications due to environmental perturbations such as manipulation and culture of embryos during in vitro fertilization (IVF) are linked to various short- or long-term consequences. Among these, the skewed sex ratio, an indicator of reproductive hazards, was reported in bovine and porcine embryos and even human IVF newborns. However, since the first case of sex skewing reported in 1991, the underlying mechanisms remain unclear. We reported herein that sex ratio is skewed in mouse IVF offspring, and this was a result of female-biased peri-implantation developmental defects that were originated from impaired imprinted X chromosome inactivation (iXCI) through reduced ring finger protein 12 (Rnf12)/X-inactive specific transcript (Xist) expression. Compensation of impaired iXCI by overexpression of Rnf12 to up-regulate Xist significantly rescued female-biased developmental defects and corrected sex ratio in IVF offspring. Moreover, supplementation of an epigenetic modulator retinoic acid in embryo culture medium up-regulated Rnf12/Xist expression, improved iXCI, and successfully redeemed the skewed sex ratio to nearly 50% in mouse IVF offspring. Thus, our data show that iXCI is one of the major epigenetic barriers for the developmental competence of female embryos during preimplantation stage, and targeting erroneous epigenetic modifications may provide a potential approach for preventing IVF-associated complications. PMID:26951653

  20. Oxygen storage properties and catalytic activity of layer-ordered perovskites BaY 1-xGd xMn 2O 5+δ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klimkowicz, A.; Świerczek, K.; Rząsa, T.

    2016-05-01

    Crystal structure, oxygen storage-related and preliminary anaerobic methane combustion studies were conducted for BaY 1-xGd xMn 2O 5+δ (0, 0.25, 0.5, 0.75 and 1) series of oxides prepared by a sol–gel method. All samples were found to possess layered-type A-site cation ordering, with the unit cell volume linearly dependent on the average radius of Y 1-xGd x for both the reduced and the oxidized materials. The oxygen content in the temperature range of 400 °C–600 °C indicates change on the order of 1 atomic mole, occurring when the sample's surrounding atmosphere was changed from air to 5 vol.% H 2more » in Ar. The time dependence of the reduction shows activated character on temperature, with an activation energy, which seems to be related to the oxygen diffusion in the bulk of the materials. Initial data concerning methane combustion in oxygen-free conditions show promising catalytic activity of BaYMn 2O 6 at elevated temperatures.« less

  1. Photoemission and x-ray absorption studies of the isostructural to Fe-based superconductors diluted magnetic semiconductor Ba1 -xKx(Zn1 -yMny)2As2

    NASA Astrophysics Data System (ADS)

    Suzuki, H.; Zhao, K.; Shibata, G.; Takahashi, Y.; Sakamoto, S.; Yoshimatsu, K.; Chen, B. J.; Kumigashira, H.; Chang, F.-H.; Lin, H.-J.; Huang, D. J.; Chen, C. T.; Gu, Bo; Maekawa, S.; Uemura, Y. J.; Jin, C. Q.; Fujimori, A.

    2015-04-01

    The electronic and magnetic properties of a new diluted magnetic semiconductor (DMS) Ba1 -xKx (Zn1 -yMny )2As2 , which is isostructural to so-called 122-type Fe-based superconductors, are investigated by x-ray absorption spectroscopy (XAS) and resonance photoemission spectroscopy (RPES). Mn L2 ,3-edge XAS indicates that the doped Mn atoms have a valence 2+ and strongly hybridize with the 4 p orbitals of the tetrahedrally coordinating As ligands. The Mn 3 d partial density of states obtained by RPES shows a peak around 4 eV and is relatively high between 0 and 2 eV below the Fermi level (EF) with little contribution at EF, similar to that of the archetypal DMS Ga1 -xMnxAs . This energy level creates a d5 electron configuration with S =5 /2 local magnetic moments at the Mn atoms. Hole carriers induced by K substitution for Ba atoms go into the top of the As 4 p valence band and are weakly bound to the Mn local spins. The ferromagnetic correlation between the local spins mediated by the hole carriers induces ferromagnetism in Ba1 -xKx (Zn1 -yMny )2As2 .

  2. Somatically Acquired Isodicentric Y and Mosaic Loss of Chromosome Y in a Boy with Hypospadias.

    PubMed

    Miyado, Mami; Muroya, Koji; Katsumi, Momori; Saito, Kazuki; Kon, Masafumi; Fukami, Maki

    2018-04-07

    Isodicentric Y chromosome [idic(Y)] represents a relatively common subtype of Y chromosomal rearrangements in the germline; however, limited evidence supports the postzygotic occurrence of idic(Y). Here, we report a boy with hypospadias and somatically acquired idic(Y). The 3.5-year-old boy has been identified in our previous study for patients with hypospadias. In the present study, cytogenetic analysis including FISH revealed a 45,X[5]/46,X,idic(Y)[7]/46,XY[8] karyotype. MLPA showed a mosaic deletion involving PPP1R12BP1 and RBMY2DP. The idic(Y) was likely to have been formed through aberrant recombination between P1 palindromes and subsequently underwent mosaic loss. The patient's phenotype was attributable to deletion of some Y chromosomal genes and/or mosaic loss of chromosome Y (mLOY). The results suggest that idic(Y) can originate in postzygotic cells via palindrome-mediated crossovers. Moreover, our data indicate that somatically acquired idic(Y) can trigger mLOY, which usually appears as an aging-related phenomenon in elderly men. © 2018 S. Karger AG, Basel.

  3. Thermoelectric Inhomogeneities in (Ag(sub 1-y)SbTe2)(sub x)(PbTe)(sub 1-x)

    NASA Technical Reports Server (NTRS)

    Snyder, G. Jeffrey; Chen, Nancy; Gascoin, Franck; Mueller, Eckhard; Karpinski, Gabriele; Stiewe, Christian

    2006-01-01

    A document presents a study of why materials of composition (Ag1 ySbTe2)0.05 (PbTe)0.95 [0< or = y < or = 1] were previously reported to have values of the thermoelectric figure of merit [ZT (where Z = alpha(sup 2)/rk, alpha is the Seebeck coefficient, r is electrical resistivity, k is thermal conductivity, and T is absolute temperature)] ranging from <1 to >2. In the study, samples of (AgSbTe2)0.05(PbTe)0.95, (Ag0.67SbTe2)0.05 (PbTe)0.95, and (Ag0.55SbTe2)0.05(PbTe)0.95 were prepared by melting followed, variously, by slow or rapid cooling. Analyses of these samples by x-ray diffraction, electron microscopy, and scanning-microprobe measurements of the Seebeck coefficient led to the conclusion that these materials have a multiphase character on a scale of the order of millimeters, even though they appear homogeneous in x-ray diffraction and electron microscopy. The Seebeck measurements showed significant variations, including both n-type and p-type behavior in the same sample. These variations were found to be consistent with observed variations of ZT. The rapidly quenched samples were found to be less inhomogeneous than were the furnace-cooled ones; hence, rapid quenching was suggested as a basis of research on synthesizing more nearly uniform high-ZT samples.

  4. Selectivity and activity of adenine dinucleotides at recombinant P2X2 and P2Y1 purinoceptors.

    PubMed Central

    Pintor, J.; King, B. F.; Miras-Portugal, M. T.; Burnstock, G.

    1996-01-01

    1. Adenine dinucleotides (Ap3A, x = 2-6) are naturally-occurring polyphosphated nucleotidic substances which are found in the CNS and are known to be released in a calcium-dependent manner from storage vesicles in brain synaptosomes. The selectivity and activity of adenine dinucleotides for neuronally-derived recombinant P2 purinoceptors were studied using P2X2 and P2Y1 subtypes expressed in Xenopus oocytes. 2. For the P2Y1 subtype derived from chick brain, Ap3A was equipotent and as active as ATP (EC50 values: 375 +/- 86 nM and 334 +/- 25 nM, respectively). Ap4A was a weak partial agonist and other dinucleotides were inactive as agonists. None of the inactive dinucleotides were antagonists nor modulated the activity of Ap3A and ATP. 3. For the P2X2 subtype derived from rat PC12 cells, Ap4A was as active as ATP but less potent (EC50 values: 15.2 +/- 1 microM and 3.7 +/- 0.7 microM, respectively). Other adenosine dinucleotides were inactive as either agonists or antagonists. 4. Ap5A (1-100 nM) potentiated ATP-responses at the P2X2 subtype, showing an EC50 of 2.95 +/- 0.7 nM for this modulatory effect. Ap5A (10 nM) shifted the concentration-response curves for ATP to the left by one-half log10 unit but did not alter the Hill co-efficient for ATP (nH = 2.1 +/- 0.1). Ap5A (10 nM) failed to potentiate Ap4A-responses but did enhance the efficacy of the P2 purinoceptor antagonist, suramin, by 12 fold at the P2X2 subtype. 5. In conclusion, the results show that ionotropic (P2X2) and metabotropic (P2Y1) ATP receptors which occur in the CNS are activated selectively by naturally-occurring adenine dinucleotides which are known to be released with nucleotides from storage vesicles. The observed potentiation of P2X2-responses by Ap5A, where co-released with ATP by brain synaptosomes, may have a functional bearing in purinergic signalling in the CNS. PMID:8922753

  5. Root length in the permanent teeth of women with an additional X chromosome (47,XXX females).

    PubMed

    Lähdesmäki, Raija E; Alvesalo, Lassi J

    2010-07-01

    Previous studies have demonstrated differential effects of the X and Y chromosomes on dental development. The expression of sexual dimorphism in terms of tooth size, shape, number and developmental timing has been explained especially by Y chromosome influence. The Y chromosome promotes enamel, crown and root dentin development. The X chromosome has an effect on enamel deposition. The aim of this research is to study the influence of the extra X chromosome on the development of permanent tooth root length. The study subjects (all of whom were from the Kvantti Dental Research Project) were seven 47,XXX females, five female relatives and 51 and 52 population control men and women, respectively. Measurements were made from panoramic radiographs on available permanent teeth by a digital calliper according to established procedures. The results showed that the maxillary root lengths of the 47,XXX females were of the same magnitude as those in normal women, but the mandibular root lengths were longer in 47,XXX females than in normal men or women. Increased enamel thickness in the teeth of 47,XXX females is apparently caused by the active enamel gene in all X chromosomes having no increased influence on crown dentin formation. These results in 47,XXX females indicate an increase in root dentin development, at least in the mandible, which together with the data on crown formation reflects a continuous long-lasting effect of the X chromosome on dental development.

  6. What a difference an X or Y makes: sex chromosomes, gene dose, and epigenetics in sexual differentiation

    PubMed Central

    Arnold, Arthur P.; Chen, Xuqi; Itoh, Yuichiro

    2014-01-01

    Summary A modern general theory of sex determination and sexual differentiation identifies the factors that cause sexual bias in gene networks, leading to sex differences in physiology and disease. The primary sex-biasing factors are those encoded on the sex chromosomes that are inherently different in the male and female zygote. These factors, and downstream factors such as gonadal hormones, act directly on tissues to produce sex differences, and to antagonize each other to reduce sex differences. Recent study of mouse models such as the Four Core Genotypes has begun to distinguish between direct effects of sex chromosome complement (XX vs. XY) and hormonal effects. Several lines of evidence implicate epigenetic processes in the control of sex differences, although a great deal of more information is needed about sex differences in the epigenome. PMID:23027446

  7. Molecular cytogenetic analysis of monoecious hemp (Cannabis sativa L.) cultivars reveals its karyotype variations and sex chromosomes constitution.

    PubMed

    Razumova, Olga V; Alexandrov, Oleg S; Divashuk, Mikhail G; Sukhorada, Tatiana I; Karlov, Gennady I

    2016-05-01

    Hemp (Cannabis sativa L., 2n = 20) is a dioecious plant. Sex expression is controlled by an X-to-autosome balance system consisting of the heteromorphic sex chromosomes XY for males and XX for females. Genetically monoecious hemp offers several agronomic advantages compared to the dioecious cultivars that are widely used in hemp cultivation. The male or female origin of monoecious maternal plants is unknown. Additionally, the sex chromosome composition of monoecious hemp forms remains unknown. In this study, we examine the sex chromosome makeup in monoecious hemp using a cytogenetic approach. Eight monoecious and two dioecious cultivars were used. The DNA of 210 monoecious plants was used for PCR analysis with the male-associated markers MADC2 and SCAR323. All monoecious plants showed female amplification patterns. Fluorescence in situ hybridization (FISH) with the subtelomeric CS-1 probe to chromosomes plates and karyotyping revealed a lack of Y chromosome and presence of XX sex chromosomes in monoecious cultivars with the chromosome number 2n = 20. There was a high level of intra- and intercultivar karyotype variation detected. The results of this study can be used for further analysis of the genetic basis of sex expression in plants.

  8. Modelling the thermal conductivity of (U xTh 1-x)O 2 and (U xPu 1-x)O 2

    DOE PAGES

    Cooper, M. W. D.; Middleburgh, S. C.; Grimes, R. W.

    2015-07-15

    The degradation of thermal conductivity due to the non-uniform cation lattice of (U xTh 1-x)O 2 and (U xPu 1-x)O 2 solid solutions has been investigated by molecular dynamics, using the non-equilibrium method, from 300 to 2000 K. Degradation of thermal conductivity is predicted in (U xTh 1-x)O 2 and (U xPu 1-x)O 2 as compositions deviate from the pure end members: UO 2, PuO 2 and ThO 2. The reduction in thermal conductivity is most apparent at low temperatures where phonon-defect scattering dominates over phonon-phonon interactions. The effect is greater for (U xTh 1-x)O 2 than U xPu 1-x)Omore » 2 due to the greater mismatch in cation size. Parameters for an analytical expressions have been developed that describe the predicted thermal conductivities over the full temperature and compositional ranges. Finally, these expressions may be used in higher level fuel performance codes.« less

  9. Pseudosynapsis and Decreased Stringency of Meiotic Repair Pathway Choice on the Hemizygous Sex Chromosome of Caenorhabditis elegans Males

    PubMed Central

    Checchi, Paula M.; Lawrence, Katherine S.; Van, Mike V.; Larson, Braden J.; Engebrecht, JoAnne

    2014-01-01

    During meiosis, accurate chromosome segregation relies on homology to mediate chromosome pairing, synapsis, and crossover recombination. Crossovers are dependent upon formation and repair of double-strand breaks (DSBs) by homologous recombination (HR). In males of many species, sex chromosomes are largely hemizygous, yet DSBs are induced along nonhomologous regions. Here we analyzed the genetic requirements for meiotic DSB repair on the completely hemizygous X chromosome of Caenorhabditis elegans males. Our data reveal that the kinetics of DSB formation, chromosome pairing, and synapsis are tightly linked in the male germ line. Moreover, DSB induction on the X is concomitant with a brief period of pseudosynapsis that may allow X sister chromatids to masquerade as homologs. Consistent with this, neither meiotic kleisins nor the SMC-5/6 complex are essential for DSB repair on the X. Furthermore, early processing of X DSBs is dependent on the CtIP/Sae2 homolog COM-1, suggesting that as with paired chromosomes, HR is the preferred pathway. In contrast, the X chromosome is refractory to feedback mechanisms that ensure crossover formation on autosomes. Surprisingly, neither RAD-54 nor BRC-2 are essential for DSB repair on the X, suggesting that unlike autosomes, the X is competent for repair in the absence of HR. When both RAD-54 and the structure-specific nuclease XPF-1 are abrogated, X DSBs persist, suggesting that single-strand annealing is engaged in the absence of HR. Our findings indicate that alteration in sister chromatid interactions and flexibility in DSB repair pathway choice accommodate hemizygosity on sex chromosomes. PMID:24939994

  10. Transport and magnetic properties of disordered Li xV yO 2 ( x=0.8 and y=0.8)

    NASA Astrophysics Data System (ADS)

    Du, Fei; Li, Ang; Liu, Daliang; Zhan, Shiying; Hu, Fang; Wang, Chunzhong; Chen, Yan; Feng, Shouhua; Chen, Gang

    2009-07-01

    The magnetic and electron transport properties of rhombohedral Li xV yO 2 ( x=0.8 and y=0.8) are studied. The dc susceptibility of Li xV yO 2 can be well fitted to the modified Curie-Weiss law, which verified the paramagnetic ground state. The magnetic hysteresis and ac susceptibility also confirm this paramagnetism. The Li xV yO 2 exhibits semiconducting behavior, which is explained by thermal activated process at high temperature and variable-range hopping mechanism at low temperature. Anderson localization plays an important role in both the electron transport behavior and the magnetic behavior due to the site disorder between the Li + ion and V 4+ ion.

  11. Repetitive sequences and epigenetic modification: inseparable partners play important roles in the evolution of plant sex chromosomes.

    PubMed

    Li, Shu-Fen; Zhang, Guo-Jun; Yuan, Jin-Hong; Deng, Chuan-Liang; Gao, Wu-Jun

    2016-05-01

    The present review discusses the roles of repetitive sequences played in plant sex chromosome evolution, and highlights epigenetic modification as potential mechanism of repetitive sequences involved in sex chromosome evolution. Sex determination in plants is mostly based on sex chromosomes. Classic theory proposes that sex chromosomes evolve from a specific pair of autosomes with emergence of a sex-determining gene(s). Subsequently, the newly formed sex chromosomes stop recombination in a small region around the sex-determining locus, and over time, the non-recombining region expands to almost all parts of the sex chromosomes. Accumulation of repetitive sequences, mostly transposable elements and tandem repeats, is a conspicuous feature of the non-recombining region of the Y chromosome, even in primitive one. Repetitive sequences may play multiple roles in sex chromosome evolution, such as triggering heterochromatization and causing recombination suppression, leading to structural and morphological differentiation of sex chromosomes, and promoting Y chromosome degeneration and X chromosome dosage compensation. In this article, we review the current status of this field, and based on preliminary evidence, we posit that repetitive sequences are involved in sex chromosome evolution probably via epigenetic modification, such as DNA and histone methylation, with small interfering RNAs as the mediator.

  12. Fetal sex chromosome testing by maternal plasma DNA sequencing: clinical laboratory experience and biology.

    PubMed

    Bianchi, Diana W; Parsa, Saba; Bhatt, Sucheta; Halks-Miller, Meredith; Kurtzman, Kathryn; Sehnert, Amy J; Swanson, Amy

    2015-02-01

    To describe the clinical experience with noninvasive prenatal testing for fetal sex chromosomes using sequencing of maternal plasma cell-free DNA in a commercial laboratory. A noninvasive prenatal testing laboratory data set was examined for samples in which fetal sex chromosomes were reported. Available clinical outcomes were reviewed. Of 18,161 samples with sex chromosome results, no sex chromosome aneuploidy was detected in 98.9% and the fetal sex was reported as XY (9,236) or XX (8,721). In 4 of 32 cases in which the fetal sex was reportedly discordant between noninvasive prenatal testing and karyotype or ultrasonogram, a potential biological reason for the discordance exists, including two cases of documented co-twin demise, one case of a maternal kidney transplant from a male donor, and one case of fetal ambiguous genitalia. In the remaining 204 samples (1.1%), one of four sex chromosome aneuploidies (monosomy X, XXX, XXY, or XYY) was detected. The frequency of false positive results for sex chromosome aneuploidies is a minimum of 0.26% and a maximum of 1.05%. All but one of the discordant sex chromosome aneuploidy results involved the X chromosome. In two putative false-positive XXX cases, maternal XXX was confirmed by karyotype. For the false-positive cases, mean maternal age was significantly higher in monosomy X (P<.001) and lower in XXX (P=.008). Noninvasive prenatal testing results for sex chromosome aneuploidy can be confounded by maternal or fetal biological phenomena. When a discordant noninvasive prenatal testing result is encountered, resolution requires additional maternal history, detailed fetal ultrasonography, and determination of fetal and possibly maternal karyotypes.

  13. Comparative cytogenetic analysis of sex chromosomes in several Canidae species using zoo-FISH.

    PubMed

    Bugno-Poniewierska, Monika; Sojecka, Agnieszka; Pawlina, Klaudia; Jakubczak, Andrzej; Jezewska-Witkowska, Grazyna

    2012-01-01

    Sex chromosome differentiation began early during mammalian evolution. The karyotype of almost all placental mammals living today includes a pair of heterosomes: XX in females and XY in males. The genomes of different species may contain homologous synteny blocks indicating that they share a common ancestry. One of the tools used for their identification is the Zoo-FISH technique. The aim of the study was to determine whether sex chromosomes of some members of the Canidae family (the domestic dog, the red fox, the arctic fox, an interspecific hybrid: arctic fox x red fox and the Chinese raccoon dog) are evolutionarily conservative. Comparative cytogenetic analysis by Zoo-FISH using painting probes specific to domestic dog heterosomes was performed. The results show the presence of homologous synteny covering the entire structures of the X and the Y chromosomes. This suggests that sex chromosomes are conserved in the Canidae family. The data obtained through Zoo-FISH karyotype analysis append information obtained using other comparative genomics methods, giving a more complete depiction of genome evolution.

  14. Sex chromosome loss and the pseudoautosomal region genes in hematological malignancies

    PubMed Central

    Weng, Stephanie; Stoner, Samuel A.; Zhang, Dong-Er

    2016-01-01

    Cytogenetic aberrations, such as chromosomal translocations, aneuploidy, and amplifications, are frequently detected in hematological malignancies. For many of the common autosomal aberrations, the mechanisms underlying their roles in cancer development have been well-characterized. On the contrary, although loss of a sex chromosome is observed in a broad range of hematological malignancies, how it cooperates in disease development is less understood. Nevertheless, it has been postulated that tumor suppressor genes reside on the sex chromosomes. Although the X and Y sex chromosomes are highly divergent, the pseudoautosomal regions are homologous between both chromosomes. Here, we review what is currently known about the pseudoautosomal region genes in the hematological system. Additionally, we discuss implications for haploinsufficiency of critical pseudoautosomal region sex chromosome genes, driven by sex chromosome loss, in promoting hematological malignancies. Because mechanistic studies on disease development rely heavily on murine models, we also discuss the challenges and caveats of existing models, and propose alternatives for examining the involvement of pseudoautosomal region genes and loss of a sex chromosome in vivo. With the widespread detection of loss of a sex chromosome in different hematological malignances, the elucidation of the role of pseudoautosomal region genes in the development and progression of these diseases would be invaluable to the field. PMID:27655702

  15. A pseudoautosomal random amplified polymorphic DNA marker for the sex chromosomes of Silene dioica.

    PubMed Central

    Di Stilio, V S; Kesseli, R V; Mulcahy, D L

    1998-01-01

    The segregation pattern of an 810-bp random amplified polymorphic DNA (RAPD) band in the F1 and backcross generations of a Silene dioica (L.) Clairv. family provides evidence that this molecular marker is located in the pseudoautosomal region (PAR) of the X and Y chromosomes. The marker was found through a combination of bulked segregant analysis (BSA) and RAPD techniques. Recombination rates between this pseudoautosomal marker and the differentiating portion of the Y chromosome are 15% in both generations. Alternative explanations involving nondisjunction or autosomal inheritance are presented and discussed. Chromosome counts provide evidence against the nondisjunction hypothesis, and probability calculations argue against the possibility of autosomal inheritance. This constitutes the first report of a pseudoautosomal DNA marker for plant sex chromosomes. PMID:9691057

  16. X2Y2 isomers: tuning structure and relative stability through electronegativity differences (X = H, Li, Na, F, Cl, Br, I; Y = O, S, Se, Te).

    PubMed

    El-Hamdi, Majid; Poater, Jordi; Bickelhaupt, F Matthias; Solà, Miquel

    2013-03-04

    We have studied the XYYX and X2YY isomers of the X2Y2 species (X = H, Li, Na, F, Cl, Br, I; Y = O, S, Se, Te) using density functional theory at the ZORA-BP86/QZ4P level. Our computations show that, over the entire range of our model systems, the XYYX isomers are more stable than the X2YY forms except for X = F and Y = S and Te, for which the F2SS and F2TeTe isomers are slightly more stable. Our results also point out that the Y-Y bond length can be tuned quite generally through the X-Y electronegativity difference. The mechanism behind this electronic tuning is the population or depopulation of the π* in the YY fragment.

  17. Sex chromosome-specific regulation in the Drosophila male germline but little evidence for chromosomal dosage compensation or meiotic inactivation.

    PubMed

    Meiklejohn, Colin D; Landeen, Emily L; Cook, Jodi M; Kingan, Sarah B; Presgraves, Daven C

    2011-08-01

    The evolution of heteromorphic sex chromosomes (e.g., XY in males or ZW in females) has repeatedly elicited the evolution of two kinds of chromosome-specific regulation: dosage compensation--the equalization of X chromosome gene expression in males and females--and meiotic sex chromosome inactivation (MSCI)--the transcriptional silencing and heterochromatinization of the X during meiosis in the male (or Z in the female) germline. How the X chromosome is regulated in the Drosophila melanogaster male germline is unclear. Here we report three new findings concerning gene expression from the X in Drosophila testes. First, X chromosome-wide dosage compensation appears to be absent from most of the Drosophila male germline. Second, microarray analysis provides no evidence for X chromosome-specific inactivation during meiosis. Third, we confirm the previous discovery that the expression of transgene reporters driven by autosomal spermatogenesis-specific promoters is strongly reduced when inserted on the X chromosome versus the autosomes; but we show that this chromosomal difference in expression is established in premeiotic cells and persists in meiotic cells. The magnitude of the X-autosome difference in transgene expression cannot be explained by the absence of dosage compensation, suggesting that a previously unrecognized mechanism limits expression from the X during spermatogenesis in Drosophila. These findings help to resolve several previously conflicting reports and have implications for patterns of genome evolution and speciation in Drosophila.

  18. Enhanced energy storage and pyroelectric properties of highly (100)-oriented (Pb1-x-yLaxCay)Ti1-x/4O3 thin films derived at low temperature

    NASA Astrophysics Data System (ADS)

    Zhu, Hanfei; Ma, Hongfang; Zhao, Yuyao

    2018-05-01

    Highly (100)-oriented (Pb1-x-yLaxCay)Ti1-x/4O3 (x = 0.15, y = 0.05; x = 0.1, y = 0.1; x = 0.05, y = 0.15) thin films were deposited on Pt/Ti/SiO2/Si substrates at a low temperature of 450 °C via a sol-gel route. It was found that all the (Pb1-x-yLaxCay)Ti1-x/4O3 thin films could be completely crystallized and the content of La/Ca showed a significant effect on the electrical properties of films. Among the three films, the (Pb1-x-yLaxCay)Ti1-x/4O3 (x = 0.1, y = 0.1) thin film exhibited the enhanced overall electrical properties, such as a low dielectric loss (tan ⁡ δ < 0.08) and leakage current (J ∼ 4.6 ×10-5 A/cm2), a high recoverable energy density (Wre ∼ 15 J/cm3), as well as a large pyroelectric coefficient (p ∼ 190 μC/m2K) and figure of merit (Fd‧∼ 77 μC /m2K). The findings suggest that the fabricated thin films with a good (100) orientation can be an attractive candidate for applications in Si-based energy storage and pyroelectric devices.

  19. Hybrid Sterility Locus on Chromosome X Controls Meiotic Recombination Rate in Mouse.

    PubMed

    Balcova, Maria; Faltusova, Barbora; Gergelits, Vaclav; Bhattacharyya, Tanmoy; Mihola, Ondrej; Trachtulec, Zdenek; Knopf, Corinna; Fotopulosova, Vladana; Chvatalova, Irena; Gregorova, Sona; Forejt, Jiri

    2016-04-01

    Meiotic recombination safeguards proper segregation of homologous chromosomes into gametes, affects genetic variation within species, and contributes to meiotic chromosome recognition, pairing and synapsis. The Prdm9 gene has a dual role, it controls meiotic recombination by determining the genomic position of crossover hotspots and, in infertile hybrids of house mouse subspecies Mus m. musculus (Mmm) and Mus m. domesticus (Mmd), it further functions as the major hybrid sterility gene. In the latter role Prdm9 interacts with the hybrid sterility X 2 (Hstx2) genomic locus on Chromosome X (Chr X) by a still unknown mechanism. Here we investigated the meiotic recombination rate at the genome-wide level and its possible relation to hybrid sterility. Using immunofluorescence microscopy we quantified the foci of MLH1 DNA mismatch repair protein, the cytological counterparts of reciprocal crossovers, in a panel of inter-subspecific chromosome substitution strains. Two autosomes, Chr 7 and Chr 11, significantly modified the meiotic recombination rate, yet the strongest modifier, designated meiotic recombination 1, Meir1, emerged in the 4.7 Mb Hstx2 genomic locus on Chr X. The male-limited transgressive effect of Meir1 on recombination rate parallels the male-limited transgressive role of Hstx2 in hybrid male sterility. Thus, both genetic factors, the Prdm9 gene and the Hstx2/Meir1 genomic locus, indicate a link between meiotic recombination and hybrid sterility. A strong female-specific modifier of meiotic recombination rate with the effect opposite to Meir1 was localized on Chr X, distally to Meir1. Mapping Meir1 to a narrow candidate interval on Chr X is an important first step towards positional cloning of the respective gene(s) responsible for variation in the global recombination rate between closely related mouse subspecies.

  20. Hybrid Sterility Locus on Chromosome X Controls Meiotic Recombination Rate in Mouse

    PubMed Central

    Balcova, Maria; Faltusova, Barbora; Gergelits, Vaclav; Bhattacharyya, Tanmoy; Mihola, Ondrej; Trachtulec, Zdenek; Knopf, Corinna; Fotopulosova, Vladana; Chvatalova, Irena; Gregorova, Sona; Forejt, Jiri

    2016-01-01

    Meiotic recombination safeguards proper segregation of homologous chromosomes into gametes, affects genetic variation within species, and contributes to meiotic chromosome recognition, pairing and synapsis. The Prdm9 gene has a dual role, it controls meiotic recombination by determining the genomic position of crossover hotspots and, in infertile hybrids of house mouse subspecies Mus m. musculus (Mmm) and Mus m. domesticus (Mmd), it further functions as the major hybrid sterility gene. In the latter role Prdm9 interacts with the hybrid sterility X 2 (Hstx2) genomic locus on Chromosome X (Chr X) by a still unknown mechanism. Here we investigated the meiotic recombination rate at the genome-wide level and its possible relation to hybrid sterility. Using immunofluorescence microscopy we quantified the foci of MLH1 DNA mismatch repair protein, the cytological counterparts of reciprocal crossovers, in a panel of inter-subspecific chromosome substitution strains. Two autosomes, Chr 7 and Chr 11, significantly modified the meiotic recombination rate, yet the strongest modifier, designated meiotic recombination 1, Meir1, emerged in the 4.7 Mb Hstx2 genomic locus on Chr X. The male-limited transgressive effect of Meir1 on recombination rate parallels the male-limited transgressive role of Hstx2 in hybrid male sterility. Thus, both genetic factors, the Prdm9 gene and the Hstx2/Meir1 genomic locus, indicate a link between meiotic recombination and hybrid sterility. A strong female-specific modifier of meiotic recombination rate with the effect opposite to Meir1 was localized on Chr X, distally to Meir1. Mapping Meir1 to a narrow candidate interval on Chr X is an important first step towards positional cloning of the respective gene(s) responsible for variation in the global recombination rate between closely related mouse subspecies. PMID:27104744

  1. Comprehensive Evaluation of the Contribution of X Chromosome Genes to Platinum Sensitivity

    PubMed Central

    Gamazon, Eric R.; Im, Hae Kyung; O’Donnell, Peter H.; Ziliak, Dana; Stark, Amy L.; Cox, Nancy J.; Dolan, M. Eileen; Huang, Rong Stephanie

    2011-01-01

    Utilizing a genome-wide gene expression dataset generated from Affymetrix GeneChip® Human Exon 1.0ST array, we comprehensively surveyed the role of 322 X chromosome gene expression traits on cellular sensitivity to cisplatin and carboplatin. We identified 31 and 17 X chromosome genes whose expression levels are significantly correlated (after multiple testing correction) with sensitivity to carboplatin and cisplatin, respectively, in the combined HapMap CEU and YRI populations (false discovery rate, FDR<0.05). Of those, 14 overlap for both cisplatin and carboplatin. Employing an independent gene expression quantification method, the Illumina Sentrix Human-6 Expression BeadChip, measured on the same HapMap cell lines, we found that 4 and 2 of these genes are significantly associated with carboplatin and cisplatin sensitivity respectively in both analyses. Two genes, CTPS2 and DLG3, were identified by both genome-wide gene expression analyses as correlated with cellular sensitivity to both platinating agents. The expression of DLG3 gene was also found to correlate with cellular sensitivity to platinating agents in NCI60 cancer cell lines. In addition, we evaluated the role of X chromosome gene expression to the observed differences in sensitivity to the platinums between CEU and YRI derived cell lines. Of the 34 distinct genes significantly correlated with either carboplatin or cisplatin sensitivity, 14 are differentially expressed (defined as p<0.05) between CEU and YRI. Thus, sex chromosome genes play a role in cellular sensitivity to platinating agents and differences in the expression level of these genes are an important source of variation that should be included in comprehensive pharmacogenomic studies. PMID:21252287

  2. Oxygen-induced Al surface segregation in Al(x)Ga(1-x)As and the effect of Y overlayers on the oxidation of the Y/Al(x)Ga(1-x)As interface

    NASA Technical Reports Server (NTRS)

    Mesarwi, A.; Ignatiev, A.

    1992-01-01

    The oxidation of Al(x)Ga(1-x)As (x = 0.15, AlGaAs) was studied by AES and XPS at 350 C and different oxygen exposures (up to 5 x 10 exp 4 L). Also studied were the effects of yttrium overlayers (theta = 3 ML) on the oxidation of the AlGaAs surface. Substantial oxygen-induced Al surface segregation has been observed for both yttriated and nonyttriated AlGaAs surfaces which increased with increasing oxygen exposure. Also observed is a significant Y-enhanced oxidation of the AlGaAs surface. Oxidation of the yttriated AlGaAs surface was found to be a factor of 4 greater than that of the nonyttriated surface. Also, while oxidation of the nonyttriated AlGaAs yielded mainly Al2O(x) (x less than 3) and only little Ga2O3, the yttriated AlGaAs surface oxide layer was principally Ga2O3 and stoichiometric Al2O3. However, both the yttriated and nonyttriated surfaces were found to contain metallic As within the oxide layer.

  3. Combinatorial search for green and blue phosphors of high thermal stabilities under UV excitation based on the K(Sr1-x-y)PO4:Tb3+ xEu2+y system.

    PubMed

    Chan, Ting-Shan; Liu, Yao-Min; Liu, Ru-Shi

    2008-01-01

    The present investigation aims at the synthesis of KSr 1-x-y PO 4:Tb(3+) x Eu(2+) y phosphors using the combinatorial chemistry method. We have developed square-type arrays consisting of 121 compositions to investigate the optimum composition and luminescence properties of KSrPO 4 host matrix under 365 nm ultraviolet (UV) light. The optimized compositions of phosphors were found to be KSr 0.93PO 4:Tb(3+) 0.07 (green) and KSr 0.995PO 4:Eu(2+) 0.005 (blue). These phosphors showed good thermal luminescence stability better than commercially available YAG:Ce at temperature above 200 degrees C. The result indicates that the KSr 1-x-y PO 4:Tb(3+) x Eu (2+)y can be potentially useful as a UV radiation-converting phosphor for light-emitting diodes.

  4. Nanostructured crystals of fluorite phases Sr1 - x R x F2 + x ( R = Y, La-Lu) and their ordering: Part III. A study of the refractive indices

    NASA Astrophysics Data System (ADS)

    Glushkova, T. M.; Karimov, D. N.; Krivandina, E. A.; Zhmurova, Z. I.; Sobolev, B. P.

    2009-07-01

    The refractive indices n of Sr1 - x R x F2 + x crystals ( R = Y, La-Lu; 0 ≤ x ≤ 0.5) have been measured at wavelengths of 0.436, 0.546, and 0.589 μm. It is established that n increases when there is an increase in the RF3 content x according to a weakly quadratic law for each R. For the isoconcentration series of Sr0.9 R 0.1F2.1 crystals, the change in n in the series of rare earth elements has a pronounced nonlinear character, which reflects the nonmonotonous change in the properties of compounds in the R series. It is shown that the method of molecular refraction additivity can be used to calculate n for Sr1 - x R x F2 + x crystals. By varying the RF3 content in them, one can obtain optical media with a gradually varied refractive index n in the range 1.44-1.55, thus filling the gap in the n values between high ones for RF3 crystals and low ones for crystals of alkaline earth fluorides MF2.

  5. The Three-Dimensional Organization of Polytene Nuclei in Male Drosophila Melanogaster with Compound Xy or Ring X Chromosomes

    PubMed Central

    Mathog, D.; Sedat, J. W.

    1989-01-01

    The three-dimensional organization of polytene chromosomes within nuclei containing rearranged X chromosomes was examined in male Drosophila melanogaster. Salivary glands of third instar larvae containing either an inverted X chromosome (Y(S)X·Y(L), In(1)EN/O) or a ring X chromosome (R(1) 2/B(S)Yy(+)) were fixed, embedded, and serially sectioned. The nuclei in contiguous groups of cells were modeled and analyzed. We find that for both genotypes the three-dimensional behavior at each euchromatic locus is independent of the orientation of the chromosome on which it resides, independent of the behavior of loci not closely linked to it, and not similar in neighboring cells. The preference for right-handed chromosome coiling noted in previous studies is shown to be independent of homologous pairing. However, a relation between the extent of chromosome curvature and the handedness of chromosome coiling is present only in homologously paired chromosomes. The attached-XY chromosome has two previously undescribed behaviors: a nearly invariant association of the euchromatic side of the proximal heterochromatin/euchromatin junction with the nucleolus and a frequent failure of this site to attach to the chromocenter. The relative chromosome arm positions are often similar in several neighboring cells. The size of these patches of cells, assuming that they represent clones, indicates that such arrangements are at best quasi-stable: they may be maintained over at least one, but less than four, cell divisions. The observed nuclear organization in salivary glands is inconsistent with the idea that position in the polytene nucleus plays a major role in the normal genetic regulation of euchromatic loci. PMID:2499510

  6. Photoelectrical properties of sprayed In2-2xAl2xS3- 3yO3y alloys

    NASA Astrophysics Data System (ADS)

    Bhira, L.; Belgacem, S.; Bernede, J. C.

    2002-11-01

    In2-2xAl2xS3-3yO3y alloys have been prepared on Pyrextrademark glass substrates by the spray pyrolysis technique. The shape of the photoconductivity spectrums Iph (hnu) and the variations Iph (f ) and Iph (V) allow us to understand the conduction mechanism and the photocarriers' recombination. For low compositions (xless-than-or-equal0.2), Iph)(V parabolic variation shows that this conduction is limited by the space charge zone in accordance with Child's law (Iph[is proportional to]V2) [N. F. Mott and R. W. Gurney, Electronics Processes in Ionic Crystals (Oxford, New York, 1940), p. 463]. The exploitation of such variation shows that the density of the trap centers increases with the composition. For x[greater-than-or-equal, slanted]0.4, the electrical conduction instead follows Ohm's law. In the same way, the analysis of an extension of Devore's model [Phys. Rev. 102, 86 (1956)] as (Iph)hnu2 versus photon energy hnu shows an increase of the band gap energy Eg according to a parabolic profile. On the other hand, for low compositions (x=0,0.05,0.1,0.2), the conductivity study as a function of the temperature presents a deviation to Arrhenius's law in the intermediate temperature domain ranging from 80 to 330 K. Moreover, in this domain, the study of the activation energy Ea)(T according to Werner's model [Solid State Phenom. 37, 214 (1994)] supposing potential fluctuations at the grain boundaries yields the values of the barrier high phib and the standard deviation sigma][phi. From these results, we see that Eg increased versus x and that the electrical properties are essentially preserved for low aluminum concentration films. This may be due to a minor presence of an Al2O3 phase for such deposits.

  7. Complete titanium substitution by boron in a tetragonal prism: exploring the complex boride series Ti(3-x)Ru(5-y)Ir(y)B(2+x) (0 ≤ x1 and 1 < y < 3) by experiment and theory.

    PubMed

    Fokwa, Boniface P T; Hermus, Martin

    2011-04-18

    Polycrystalline samples and single crystals of four members of the new complex boride series Ti(3-x)Ru(5-y)Ir(y)B(2+x) (0 ≤ x1 and 1 < y < 3) were synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere. The new silvery phases were structurally characterized by powder and single-crystal X-ray diffraction as well as energy- and wavelength-dispersive X-ray spectroscopy analyses. They crystallize with the tetragonal Ti(3)Co(5)B(2) structure type in space group P4/mbm (No. 127). Tetragonal prisms of Ru/Ir atoms are filled with titanium in the boron-poorest phase (Ti(3)Ru(2.9)Ir(2.1)B(2)). Gradual substitution of titanium by boron then results in the successive filling of this site by a Ti/B mixture en route to the complete boron occupation, leading to the boron-richest phase (Ti(2)Ru(2.8)Ir(2.2)B(3)). Furthermore, both ruthenium and iridium share two sites in these structures, but a clear Ru/Ir site preference is found. First-principles density functional theory calculations (Vienna ab initio simulation package) on appropriate structural models (using a supercell approach) have provided more evidence on the stability of the boron-richest and -poorest phases, and the calculated lattice parameters corroborate very well with the experimentally found ones. Linear muffin-tin orbital atomic sphere approximation calculations further supported these findings through crystal orbital Hamilton population bonding analyses, which also show that the Ru/Ir-B and Ru/Ir-Ti heteroatomic interactions are mainly responsible for the structural stability of these compounds. Furthermore, some stable and unstable phases of this complex series could be predicted using the rigid-band model. According to the density of states analyses, all phases should be metallic conductors, as was expected from these metal-rich borides.

  8. Sex-biased chromatin and regulatory cross-talk between sex chromosomes, autosomes, and mitochondria

    PubMed Central

    2014-01-01

    Several autoimmune and neurological diseases exhibit a sex bias, but discerning the causes and mechanisms of these biases has been challenging. Sex differences begin to manifest themselves in early embryonic development, and gonadal differentiation further bifurcates the male and female phenotypes. Even at this early stage, however, there is evidence that males and females respond to environmental stimuli differently, and the divergent phenotypic responses may have consequences later in life. The effect of prenatal nutrient restriction illustrates this point, as adult women exposed to prenatal restrictions exhibited increased risk factors of cardiovascular disease, while men exposed to the same condition did not. Recent research has examined the roles of sex-specific genes, hormones, chromosomes, and the interactions among them in mediating sex-biased phenotypes. Such research has identified testosterone, for example, as a possible protective agent against autoimmune disorders and an XX chromosome complement as a susceptibility factor in murine models of lupus and multiple sclerosis. Sex-biased chromatin is an additional and likely important component. Research suggesting a role for X and Y chromosome heterochromatin in regulating epigenetic states of autosomes has highlighted unorthodox mechanisms of gene regulation. The crosstalk between the Y chromosomes and autosomes may be further mediated by the mitochondria. The organelles have solely maternal transmission and exert differential effects on males and females. Altogether, research supports the notion that the interaction between sex-biased elements might exert novel regulatory functions in the genome and contribute to sex-specific susceptibilities to autoimmune and neurological diseases. PMID:24422881

  9. Benchmark ab Initio Characterization of the Complex Potential Energy Surfaces of the X- + NH2Y [X, Y = F, Cl, Br, I] Reactions.

    PubMed

    Hajdu, Bálint; Czakó, Gábor

    2018-02-22

    We report a comprehensive high-level explicitly correlated ab initio study on the X - + NH 2 Y [X,Y = F, Cl, Br, I] reactions characterizing the stationary points of the S N 2 (Y - + NH 2 X) and proton-transfer (HX + NHY - ) pathways as well as the reaction enthalpies of various endothermic additional product channels such as H - + NHXY, XY - + NH 2 , XY + NH 2 - , and XHY - + NH. Benchmark structures and harmonic vibrational frequencies are obtained at the CCSD(T)-F12b/aug-cc-pVTZ(-PP) level of theory, followed by CCSD(T)-F12b/aug-cc-pVnZ(-PP) [n = Q and 5] and core correlation energy computations. In the entrance and exit channels we find two equivalent hydrogen-bonded C 1 minima, X - ···HH'NY and X - ···H'HNY connected by a C s first-order saddle point, X - ···H 2 NY, as well as a halogen-bonded front-side complex, X - ···YNH 2 . S N 2 reactions can proceed via back-side attack Walden inversion and front-side attack retention pathways characterized by first-order saddle points, submerged [X-NH 2 -Y] - and high-energy [H 2 NXY] - , respectively. Product-like stationary points below the HX + NHY - asymptotes are involved in the proton-transfer processes.

  10. Nano-domain states of strontium ferrites SrFe{sub 1y}M{sub y}O{sub 2.5+x} (M=V, Mo; y≤0.1; x≤0.2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ancharova, Uliana V., E-mail: ancharova@gmail.com; Cherepanova, Svetlana V., E-mail: svch@catalysis.ru; Novosibirsk State University, Pirogova st., 2, Novosibirsk 630090

    Series of the oxygen-deficient strontium ferrites SrFe{sub 1y}M{sub y}O{sub 2.5+x} (M=V, Mo, y<0.1; x<0.2) substituted with high-charged cations have been investigated by HRTEM and synchrotron radiation XRD. For artificial lowering of x, all the compounds were treated and quenched in vacuum from 950 °C, which led to the formation of the vacancy-ordered brownmillerite phase at local order. Depending on y, the substituted strontium ferrites have three differently disordered nano-domain states. At y≤0.03 there are twinned lamellar 1D nano-domain structures. At 0.04≤y≤0.05 and 0.06≤y≤0.08 the intergrown 3D nano-domain structures with two different types of disorder are formed. The higher the y,more » the lower the domain size. Disordering phenomena of the 3D nano-domain states were examined with local structure simulations followed by the Debye calculation of XRD patterns. - Graphical abstract: Evolution of nano-domain structure with an increase in the substitution degree y in strontium ferrites SrFe{sub 1y}M{sub y}O{sub 2.5+x} (M=V, Mo; y≤0.1; x≤0.2): an increase in y decreases the average size of domains and increases the degree of disorder, thus producing the lamellar (1D) or 3D nano-domains. - Highlights: • Two major nanodomain states were found for SrFe{sub 1y}M{sub y}O{sub 2.5+x} (M=V, Mo, y<0.1; x<0.2). • Both contain vacancy-ordered orthorhombic domains intergrown with cubic matrix. • First (y≤0.03) shows orthorhombic and second (0.04≤y≤0.08) – cubic XRD patterns. • First contains 1D twinned lamellar domains with low-angle boundaries and deformations. • Second contains intergrown isotropic in 3D domains perpendicular oriented in matrix.« less

  11. Sex-linked dominant

    MedlinePlus

    Inheritance - sex-linked dominant; Genetics - sex-linked dominant; X-linked dominant; Y-linked dominant ... can be either an autosomal chromosome or a sex chromosome. It also depends on whether the trait ...

  12. Single crystal growth and structural evolution across the 1st order valence transition in (Pr 1yY y) 1xCa xCoO 3-δ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schreiber, N. J.; Zhang, Junjie; Zheng, Hong

    Here, praseodymium-containing cobalt perovskites, such as (Pr 1-yY y) 1-xCa xCoO 3-δ, have been argued to undergo a first-order charge shift between Pr and hybridized Co-O orbitals that leads to a metal-insulator transition at a temperature, T VT. Magnetization and x-ray absorption spectroscopy measurements on single crystals of (Pr 0.85Y 0.15) 0.7Ca 0.3CoO 3-δ grown in an IR image furnace under 40-60 bar of oxygen confirm the presence of this valence transition. Single crystal x-ray synchrotron diffraction measurements are consistent with an isomorphic phase transition at T VT. No evidence of charge ordering was revealed by the single crystal diffraction.more » Dissimilar to analytical transmission electron microscopy measurements performed on a grain from a polycrystalline sample that revealed an oxygen vacancy order-disorder transition at T VT, the present single-crystal measurements did not evidence such a transition, likely reflecting a lower density of oxygen vacancies in the high-pO 2 grown single crystals.« less

  13. Single crystal growth and structural evolution across the 1st order valence transition in (Pr 1yY y) 1xCa xCoO 3-δ

    DOE PAGES

    Schreiber, N. J.; Zhang, Junjie; Zheng, Hong; ...

    2017-06-27

    Here, praseodymium-containing cobalt perovskites, such as (Pr 1-yY y) 1-xCa xCoO 3-δ, have been argued to undergo a first-order charge shift between Pr and hybridized Co-O orbitals that leads to a metal-insulator transition at a temperature, T VT. Magnetization and x-ray absorption spectroscopy measurements on single crystals of (Pr 0.85Y 0.15) 0.7Ca 0.3CoO 3-δ grown in an IR image furnace under 40-60 bar of oxygen confirm the presence of this valence transition. Single crystal x-ray synchrotron diffraction measurements are consistent with an isomorphic phase transition at T VT. No evidence of charge ordering was revealed by the single crystal diffraction.more » Dissimilar to analytical transmission electron microscopy measurements performed on a grain from a polycrystalline sample that revealed an oxygen vacancy order-disorder transition at T VT, the present single-crystal measurements did not evidence such a transition, likely reflecting a lower density of oxygen vacancies in the high-pO 2 grown single crystals.« less

  14. X Chromosome Control of Meiotic Chromosome Synapsis in Mouse Inter-Subspecific Hybrids

    PubMed Central

    Bhattacharyya, Tanmoy; Reifova, Radka; Gregorova, Sona; Simecek, Petr; Gergelits, Vaclav; Mistrik, Martin; Martincova, Iva; Pialek, Jaroslav; Forejt, Jiri

    2014-01-01

    Hybrid sterility (HS) belongs to reproductive isolation barriers that safeguard the integrity of species in statu nascendi. Although hybrid sterility occurs almost universally among animal and plant species, most of our current knowledge comes from the classical genetic studies on Drosophila interspecific crosses or introgressions. With the house mouse subspecies Mus m. musculus and Mus m. domesticus as a model, new research tools have become available for studies of the molecular mechanisms and genetic networks underlying HS. Here we used QTL analysis and intersubspecific chromosome substitution strains to identify a 4.7 Mb critical region on Chromosome X (Chr X) harboring the Hstx2 HS locus, which causes asymmetrical spermatogenic arrest in reciprocal intersubspecific F1 hybrids. Subsequently, we mapped autosomal loci on Chrs 3, 9 and 13 that can abolish this asymmetry. Combination of immunofluorescent visualization of the proteins of synaptonemal complexes with whole-chromosome DNA FISH on pachytene spreads revealed that heterosubspecific, unlike consubspecific, homologous chromosomes are predisposed to asynapsis in F1 hybrid male and female meiosis. The asynapsis is under the trans- control of Hstx2 and Hst1/Prdm9 hybrid sterility genes in pachynemas of male but not female hybrids. The finding concurred with the fertility of intersubpecific F1 hybrid females homozygous for the Hstx2Mmm allele and resolved the apparent conflict with the dominance theory of Haldane's rule. We propose that meiotic asynapsis in intersubspecific hybrids is a consequence of cis-acting mismatch between homologous chromosomes modulated by the trans-acting Hstx2 and Prdm9 hybrid male sterility genes. PMID:24516397

  15. X chromosome control of meiotic chromosome synapsis in mouse inter-subspecific hybrids.

    PubMed

    Bhattacharyya, Tanmoy; Reifova, Radka; Gregorova, Sona; Simecek, Petr; Gergelits, Vaclav; Mistrik, Martin; Martincova, Iva; Pialek, Jaroslav; Forejt, Jiri

    2014-02-01

    Hybrid sterility (HS) belongs to reproductive isolation barriers that safeguard the integrity of species in statu nascendi. Although hybrid sterility occurs almost universally among animal and plant species, most of our current knowledge comes from the classical genetic studies on Drosophila interspecific crosses or introgressions. With the house mouse subspecies Mus m. musculus and Mus m. domesticus as a model, new research tools have become available for studies of the molecular mechanisms and genetic networks underlying HS. Here we used QTL analysis and intersubspecific chromosome substitution strains to identify a 4.7 Mb critical region on Chromosome X (Chr X) harboring the Hstx2 HS locus, which causes asymmetrical spermatogenic arrest in reciprocal intersubspecific F1 hybrids. Subsequently, we mapped autosomal loci on Chrs 3, 9 and 13 that can abolish this asymmetry. Combination of immunofluorescent visualization of the proteins of synaptonemal complexes with whole-chromosome DNA FISH on pachytene spreads revealed that heterosubspecific, unlike consubspecific, homologous chromosomes are predisposed to asynapsis in F1 hybrid male and female meiosis. The asynapsis is under the trans- control of Hstx2 and Hst1/Prdm9 hybrid sterility genes in pachynemas of male but not female hybrids. The finding concurred with the fertility of intersubpecific F1 hybrid females homozygous for the Hstx2(Mmm) allele and resolved the apparent conflict with the dominance theory of Haldane's rule. We propose that meiotic asynapsis in intersubspecific hybrids is a consequence of cis-acting mismatch between homologous chromosomes modulated by the trans-acting Hstx2 and Prdm9 hybrid male sterility genes.

  16. Xenon-plasma-light low-energy ultrahigh-resolution photoemission study of Co(S1-xSex)2 (x=0.075)

    NASA Astrophysics Data System (ADS)

    Sato, Takafumi; Souma, Seigo; Sugawara, Katsuaki; Nakayama, Kosuke; Raj, Satyabrata; Hiraka, Haruhiro; Takahashi, Takashi

    2007-09-01

    We have performed low-energy ultrahigh-resolution photoemission spectroscopy on Co(S1-xSex)2 (x=0.075) to elucidate the bulk electronic states responsible for the ferromagnetic transition. By using a newly developed plasma-driven low-energy xenon (Xe) discharge lamp (hν=8.436eV) , we clearly observed a sharp quasiparticle peak at the Fermi level together with the remarkable temperature dependence of the electron density of states across the transition temperature. Comparison with the experimental result by the HeIα resonance line (hν=21.218eV) indicates that the sharp quasiparticle is of bulk origin and is produced by the Fermi-level crossing of the Co 3d eg↓ subband.

  17. DNA amount of X and B chromosomes in the grasshoppers Eyprepocnemis plorans and Locusta migratoria.

    PubMed

    Ruiz-Ruano, F J; Ruiz-Estévez, M; Rodríguez-Pérez, J; López-Pino, J L; Cabrero, J; Camacho, J P M

    2011-01-01

    We analyzed the DNA amount in X and B chromosomes of 2 XX/X0 grasshopper species (Eyprepocnemis plorans and Locusta migratoria), by means of Feulgen image analysis densitometry (FIAD), using previous estimates in L. migratoria as standard (5.89 pg). We first analyzed spermatids of 0B males and found a bimodal distribution of integrated optical densities (IODs), suggesting that one peak corresponded to +X and the other to -X spermatids. The difference between the 2 peaks corresponded to the X chromosome DNA amount, which was 1.28 pg in E. plorans and 0.80 pg in L. migratoria. In addition, the +X peak in E. plorans gave an estimate of the C-value in this species (10.39 pg). We next analyzed diplotene cells from 1B males in E. plorans and +B males in L. migratoria (a species where Bs are mitotically unstable and no integer B number can be defined for an individual) and measured B chromosome IOD relative to X chromosome IOD, within the same cell, taking advantage of the similar degree of condensation for both positively heteropycnotic chromosomes at this meiotic stage. From this proportion, we estimated the DNA amount for 3 different B chromosome variants found in individuals from 3 E. plorans Spanish populations (0.54 pg for B1 from Saladares, 0.51 pg for B2 from Salobreña and 0.64 for B24 from Torrox). Likewise, we estimated the DNA amount of the B chromosome in L. migratoria to be 0.15 pg. To automate measurements, we wrote a GPL3 licensed Python program (pyFIA). We discuss the utility of the present approach for estimating X and B chromosome DNA amount in a variety of situations, and the meaning of the DNA amount estimates for X and B chromosomes in these 2 species. Copyright © 2011 S. Karger AG, Basel.

  18. Selenium doping NaCl-type superconductor: SnAs1-xSex (x=0-0.13)

    NASA Astrophysics Data System (ADS)

    He, Jianqiao; Zhang, Xian; Lai, Xiaofang; Huang, Fuqiang

    2017-08-01

    Selenium doped NaCl-type superconductor SnAs1-xSex (x=0-0.13) were made through solid state reaction. EDS results show that Se content increases with Se doping until over doped in SnAs0.9Se0.1 and SnAs0.87Se0.13 (around 2.7%). PXRD patterns confirmed the main phase of the six doped samples are SnAs. The cell parameters of doped SnAs were calculated using Rietveld refinements. Their cell parameters increase almost linearly with x until x reaches 13%. Single crystal diffraction measurement results show that there are no interstitial atom in doped SnAs. We conclude that Se atoms are substitutional atoms in SnAs. The superconducting onset temperatures (Tconset, under a magnetic field of 10 Oe) of SnAs increased from 3.8 K to 4.5 K by 10% Se doping. ρ-T curves of 1%, 5% and 10% Se doped samples show that all the three samples are metallic. Upper critical field Hc2(0) of 1%, 5% and 10% Se doped samples are 294 Oe, 649 Oe and 1011 Oe, respectively.

  19. The electronic and optical properties of quaternary GaAs1-x-y N x Bi y alloy lattice-matched to GaAs: a first-principles study.

    PubMed

    Ma, Xiaoyang; Li, Dechun; Zhao, Shengzhi; Li, Guiqiu; Yang, Kejian

    2014-01-01

    First-principles calculations based on density functional theory have been performed for the quaternary GaAs1-x-y N x Bi y alloy lattice-matched to GaAs. Using the state-of-the-art computational method with the Heyd-Scuseria-Ernzerhof (HSE) hybrid functional, electronic, and optical properties were obtained, including band structures, density of states (DOSs), dielectric function, absorption coefficient, refractive index, energy loss function, and reflectivity. It is found that the lattice constant of GaAs1-x-y N x Bi y alloy with y/x =1.718 can match to GaAs. With the incorporation of N and Bi into GaAs, the band gap of GaAs1-x-y N x Bi y becomes small and remains direct. The calculated optical properties indicate that GaAs1-x-y N x Bi y has higher optical efficiency as it has less energy loss than GaAs. In addition, it is also found that the electronic and optical properties of GaAs1-x-y N x Bi y alloy can be further controlled by tuning the N and Bi compositions in this alloy. These results suggest promising applications of GaAs1-x-y N x Bi y quaternary alloys in optoelectronic devices.

  20. Hydrazine solution processed Sb2S3, Sb2Se3 and Sb2(S1xSex)3 film: molecular precursor identification, film fabrication and band gap tuning

    PubMed Central

    Yang, Bo; Xue, Ding-Jiang; Leng, Meiying; Zhong, Jie; Wang, Liang; Song, Huaibing; Zhou, Ying; Tang, Jiang

    2015-01-01

    Sb2(S1xSex)3 (0 ≤ x ≤ 1) compounds have been proposed as promising light-absorbing materials for photovoltaic device applications. However, no systematic study on the synthesis and characterization of polycrystalline Sb2(S1xSex)3 thin films has been reported. Here, using a hydrazine based solution process, single-phase Sb2(S1xSex)3 films were successfully obtained. Through Raman spectroscopy, we have investigated the dissolution mechanism of Sb in hydrazine: 1) the reaction between Sb and S/Se yields [Sb4S7]2-/[Sb4Se7]2- ions within their respective solutions; 2) in the Sb-S-Se precursor solutions, Sb, S, and Se were mixed on a molecular level, facilitating the formation of highly uniform polycrystalline Sb2(S1xSex)3 thin films at a relatively low temperature. UV-vis-NIR transmission spectroscopy revealed that the band gap of Sb2(S1xSex)3 alloy films had a quadratical relationship with the Se concentration x and it followed the equation , where the bowing parameter was 0.118 eV. Our study provides a valuable guidance for the adjustment and optimization of the band gap in hydrazine solution processed Sb2(S1xSex)3 alloy films for the future fabrication of improved photovoltaic devices. PMID:26042519

  1. X exceptionalism in Caenorhabditis speciation.

    PubMed

    Cutter, Asher D

    2017-11-13

    Speciation genetics research in diverse organisms shows the X-chromosome to be exceptional in how it contributes to "rules" of speciation. Until recently, however, the nematode phylum has been nearly silent on this issue, despite the model organism Caenorhabditis elegans having touched most other topics in biology. Studies of speciation with Caenorhabditis accelerated with the recent discovery of species pairs showing partial interfertility. The resulting genetic analyses of reproductive isolation in nematodes demonstrate key roles for the X-chromosome in hybrid male sterility and inviability, opening up new understanding of the genetic causes of Haldane's rule, Darwin's corollary to Haldane's rule, and enabling tests of the large-X effect hypothesis. Studies to date implicate improper chromatin regulation of the X-chromosome by small RNA pathways as integral to hybrid male dysfunction. Sexual transitions in reproductive mode to self-fertilizing hermaphroditism inject distinctive molecular evolutionary features into the speciation process for some species. Caenorhabditis also provides unique opportunities for analysis in a system with XO sex determination that lacks a Y-chromosome, sex chromosome-dependent sperm competition differences and mechanisms of gametic isolation, exceptional accessibility to the development process and rapid experimental evolution. As genetic analysis of reproductive isolation matures with investigation of multiple pairs of Caenorhabditis species and new species discovery, nematodes will provide a powerful complement to more established study organisms for deciphering the genetic basis of and rules to speciation. © 2017 John Wiley & Sons Ltd.

  2. The Role of Xist in X-Chromosome Dosage Compensation.

    PubMed

    Sahakyan, Anna; Yang, Yihao; Plath, Kathrin

    2018-06-14

    In each somatic cell of a female mammal one X chromosome is transcriptionally silenced via X-chromosome inactivation (XCI), initiating early in development. Although XCI events are conserved in mouse and human postimplantation development, regulation of X-chromosome dosage in preimplantation development occurs differently. In preimplantation development, mouse embryos undergo imprinted form of XCI, yet humans lack imprinted XCI and instead regulate gene expression of both X chromosomes by dampening transcription. The long non-coding RNA Xist/XIST is expressed in mouse and human preimplantation and postimplantation development to orchestrate XCI, but its role in dampening is unclear. In this review, we discuss recent advances in our understanding of the role of Xist in X chromosome dosage compensation in mouse and human. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. X Chromosome Inactivation in Women with Alcoholism

    PubMed Central

    Manzardo, Ann M.; Henkhaus, Rebecca; Hidaka, Brandon; Penick, Elizabeth C.; Poje, Albert B.; Butler, Merlin G.

    2012-01-01

    Background All female mammals with two X chromosomes balance gene expression with males having only one X by inactivating one of their Xs (X chromosome inactivation, XCI). Analysis of XCI in females offers the opportunity to investigate both X-linked genetic factors and early embryonic development that may contribute to alcoholism. Increases in the prevalence of skewing of XCI in women with alcoholism could implicate biological risk factors. Methods The pattern of XCI was examined in DNA isolated in blood from 44 adult females meeting DSM IV criteria for an Alcohol Use Disorder, and 45 control females with no known history of alcohol abuse or dependence. XCI status was determined by analyzing digested and undigested polymerase chain reaction (PCR) products of the polymorphic androgen receptor (AR) gene located on the X chromosome. Subjects were categorized into 3 groups based upon the degree of XCI skewness: random (50:50–64:36), moderately skewed (65:35–80:20) and highly skewed (>80:20). Results XCI status from informative females with alcoholism was found to be random in 59% (n=26), moderately skewed in 27% (n=12) or highly skewed in 14% (n=6). Control subjects showed 60%, 29% and 11%, respectively. The distribution of skewed XCI observed among women with alcoholism did not differ statistically from that of control subjects (χ2 =0.14, 2 df, p=0.93). Conclusions Our data did not support an increase in XCI skewness among women with alcoholism or implicate early developmental events associated with embryonic cell loss or unequal (non-random) expression of X-linked gene(s) or defects in alcoholism among females. PMID:22375556

  4. Optimization and Analysis of Thermoelectric Properties of Unfilled Co(1-x-y)Ni(x)Fe(y)Sb3 Synthesized via a Rapid Hydrothermal Procedure.

    PubMed

    Gharleghi, Ahmad; Chu, Yu-Hsien; Lin, Fei-Hung; Yang, Zong-Ren; Pai, Yi-Hsuan; Liu, Chia-Jyi

    2016-03-02

    A series of nanostructured co-doped Co(1-x-y)Ni(x)Fe(y)Sb3 were fabricated using a rapid hydrothermal method at 170 °C for a duration of 12 h, followed by evacuated-and-encapsulated heating at 580 °C for a short period of 5 h. The resulting samples were characterized using powder X-ray diffraction, field emission scanning electron microscopy, bulk density, electronic and thermal transport measurements. The power factor of Co(1-x-y)Ni(x)Fe(y)Sb3 is significantly enhanced in the high-temperature region due to significant enhancement of the electrical conductivity and absolute value of thermopower. The latter arises from the onset of bipolar effect being shifted to higher temperatures as compared with the non-doped CoSb3. The room temperature thermal conductivity falls in the range between 1.22 and 1.67 W m(-1) K(-1) for Co(1-x-y)Ni(x)Fe(y)Sb3. The thermal conductivity of both the (x,y) = (0.14,10) and (0.14,12) samples is measured up to 600 K and found to decrease with increasing temperature. The thermal conductivity of the (0.14,10) sample goes down to ∼1.02 W m(-1) K(-1). As a result, zT = 0.68 is attained at 600 K. The lattice thermal conductivity is analyzed to gain insight into the contribution of various scattering processes that suppress the heat transfer through the phonons in Co(1-x-y)Ni(x)Fe(y)Sb3. The effect of the simultaneous presence of Co, Ni, and Fe elements on the electronic structure and transport properties of Co(1-x-y)Ni(x)Fe(y)Sb3 is described using the quantum mechanical tunneling theory of electron transmission among the potential barriers.

  5. The complex metal-rich boride Ti1+xRh2-x+yIr3-yB3 (x=0.68, y=1.06) with a new structure type containing B4 zigzag fragments: Synthesis, crystal chemistry and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Goerens, Christian; Fokwa, Boniface P. T.

    2012-08-01

    Polycrystalline samples and single crystals of the new complex boride Ti1+xRh2-x+yIr3-yB3 (x=0.68; y=1.06) were synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere and characterized by X-Ray diffraction as well as EDX measurements. The crystal structure was refined on the basis of single crystal data. The new phase, which represents a new structure type containing trans zigzag B4 fragments as well as isolated boron atoms crystallizes in the orthorhombic space group Pbam (Nr. 55) with the lattice parameters a=8.620(1) Å, b=14.995(2) Å and c=3.234(1) Å. First-principles density functional theory calculations using the Vienna ab-initio simulation package (VASP) were performed on an appropriate structural model (using a supercell approach) and the experimental crystallographic data could be reproduced accurately. Based on this model, the density of states and crystal orbital Hamilton population (for bonding analysis) were calculated, using the linear muffin-tin orbital atomic sphere approximation (LMTO-ASA) method. According to these calculations, this metal-rich compound should be metallic, as expected. Furthermore, very strong boron-boron interactions are observed in the trans zigzag B4 fragment, which induce a clear differentiation of two types of metal-boron contacts with different strength. The observed three-dimensional metal-metal interaction is in good agreement with the predicted metallic behavior.

  6. Sex chromosome abnormalities and sterility in river buffalo.

    PubMed

    Di Meo, G P; Perucatti, A; Di Palo, R; Iannuzzi, A; Ciotola, F; Peretti, V; Neglia, G; Campanile, G; Zicarelli, L; Iannuzzi, L

    2008-01-01

    Thirteen male river buffaloes, 119 females with reproductive problems (which had reached reproductive age but had failed to become pregnant in the presence of bulls) and two male co-twins underwent both clinical and cytogenetic investigation. Clinical analyses performed by veterinary practitioners revealed normal body conformation and external genitalia for most females. However, some subjects showed some slight male traits such as large base horn circumference, prominent withers and tight pelvis. Rectal palpation revealed damage to internal sex adducts varying between atrophy of Mullerian ducts to complete lack of internal sex adducts (with closed vagina). All bulls had normal karyotypes at high resolution banding, while 25 animals (23 females and 2 male co-twins) (20.7%) with reproductive problems were found to carry the following sex chromosome abnormalities: X monosomy (2 females); X trisomy (1 female); sex reversal syndrome (2 females); and free-martinism (18 females and 2 males). All female carriers were sterile. Copyright 2008 S. Karger AG, Basel.

  7. Search for the sex-determining switch in monotremes: mapping WT1, SF1, LHX1, LHX2, FGF9, WNT4, RSPO1 and GATA4 in platypus.

    PubMed

    Grafodatskaya, Daria; Rens, Willem; Wallis, Mary C; Trifonov, Vladimir; O'Brien, Patricia C M; Clarke, Oliver; Graves, Jennifer A M; Ferguson-Smith, Malcolm A

    2007-01-01

    The duck-billed platypus has five pairs of sex chromosomes, but there is no information about the primary sex-determining switch in this species. As there is no apparent SRY orthologue in platypus, another gene must acquire the function of a key regulator of the gonadal male or female fate. SOX9 was ruled out from being this key regulator as it maps to an autosome in platypus. To check whether other genes in mammalian gonadogenesis could be the primary switch in monotremes, we have mapped a number of candidates in platypus. We report here the autosomal location of WT1, SF1, LHX1, LHX9, FGF9, WNT4 and RSPO1 in platypus, thus excluding these from being key regulators of sex determination in this species. We found that GATA4 maps to sex chromosomes Y1 and X2; however, it lies in the pairing region shown by chromosome painting to be homologous, so is unlikely to be either male-specific or differentially dosed in male and female.

  8. Role of chalcogen vapor annealing in inducing bulk superconductivity in Fe 1+yTe 1-xSe x [How does annealing in chalcogen vapor induce superconductivity in Fe 1+yTe -xSe x?

    DOE PAGES

    Lin, Wenzhi; Ganesh, P.; Gianfrancesco, Anthony; ...

    2015-02-27

    Recent investigations have shown that Fe 1+yTe 1-xSe x can be made superconducting by annealing it in Se and O vapors. The current lore is that these chalcogen vapors induce superconductivity by removing the magnetic excess Fe atoms. To investigate this phenomenon we performed a combination of magnetic susceptibility, specific heat and transport measurements together with scanning tunneling microscopy and spectroscopy and density functional theory calculations on Fe 1+yTe 1-xSe x treated with Te vapor. We conclude that the main role of the Te vapor is to quench the magnetic moments of the excess Fe atoms by forming FeTe mmore » (m ≥ 1) complexes. We show that the remaining FeTe m complexes are still damaging to the superconductivity and therefore that their removal potentially could further improve superconductive properties in these compounds.« less

  9. Anomalous Composition-Induced Crossover in the Magnetic Properties of the Itinerant-Electron Antiferromagnet Ca 1 - x Sr x Co 2 - y As 2

    DOE PAGES

    Sangeetha, N. S.; Smetana, V.; Mudring, A. -V.; ...

    2017-12-20

    We report the inference of Ying et al. [Europhys. Lett. 104, 67005 (2013)] of a composition-induced change from c-axis ordered-moment alignment in a collinear A-type antiferromagnetic (AFM) structure at small x to ab-plane alignment in an unknown AFM structure at larger x in Ca 1-xSr xCo 2-yAs 2 with the body-centered tetragonal ThCr 2Si 2 structure is confirmed. Our major finding is an anomalous magnetic behavior in the crossover region 0.2x ≲ 0.3 between these two phases. Also, in this region the magnetic susceptibility vs temperature χ ab(T) measured with magnetic fields H applied in the ab planemore » exhibit typical AFM behaviors with cusps at the Néel temperatures of ~ 65 K, whereas χ c(T) and the low-temperature isothermal magnetization M c(H) with H aligned along the c axis exhibit extremely soft ferromagneticlike behaviors.« less

  10. Anomalous Composition-Induced Crossover in the Magnetic Properties of the Itinerant-Electron Antiferromagnet Ca 1 - x Sr x Co 2 - y As 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sangeetha, N. S.; Smetana, V.; Mudring, A. -V.

    We report the inference of Ying et al. [Europhys. Lett. 104, 67005 (2013)] of a composition-induced change from c-axis ordered-moment alignment in a collinear A-type antiferromagnetic (AFM) structure at small x to ab-plane alignment in an unknown AFM structure at larger x in Ca 1-xSr xCo 2-yAs 2 with the body-centered tetragonal ThCr 2Si 2 structure is confirmed. Our major finding is an anomalous magnetic behavior in the crossover region 0.2x ≲ 0.3 between these two phases. Also, in this region the magnetic susceptibility vs temperature χ ab(T) measured with magnetic fields H applied in the ab planemore » exhibit typical AFM behaviors with cusps at the Néel temperatures of ~ 65 K, whereas χ c(T) and the low-temperature isothermal magnetization M c(H) with H aligned along the c axis exhibit extremely soft ferromagneticlike behaviors.« less

  11. Real-Space Bonding Indicator Analysis of the Donor-Acceptor Complexes X3BNY3, X3AlNY3, X3BPY3, and X3AlPY3 (X, Y = H, Me, Cl).

    PubMed

    Mebs, Stefan; Beckmann, Jens

    2017-10-12

    Calculations of real-space bonding indicators (RSBI) derived from Atoms-In-Molecules (AIM), Electron Localizability Indicator (ELI-D), Non-Covalent Interactions index (NCI), and Density Overlap Regions Indicator (DORI) toolkits for a set of 36 donor-acceptor complexes X 3 BNY 3 (1, 1a-1h), X 3 AlNY 3 (2, 2a-2h), X 3 BPY 3 (3, 3a-3h), and X 3 AlPY 3 (4, 4a-4h) reveal that the donor-acceptor bonds comprise covalent and ionic interactions in varying extents (X = Y = H for 1-4; X = H, Y = Me for 1a-4a; X = H, Y = Cl for 1b-4b; X = Me, Y = H for 1c-4c; X, Y = Me for 1d-4d; X = Me, Y = Cl for 1e-4e; X = Cl, Y = H for 1f-4f; X = Cl, Y = Me for 1g-4g; X, Y = Cl for 1h-4h). The phosphinoboranes X 3 BPY 3 (3, 3a-3h) in general and Cl 3 BPMe 3 (3f) in particular show the largest covalent contributions and the least ionic contributions. The aminoalanes X 3 AlNY 3 (2, 2a-2h) in general and Me 3 AlNCl 3 (2e) in particular show the least covalent contributions and the largest ionic contributions. The aminoboranes X 3 BNY 3 (1, 1a-1h) and the phosphinoalanes X 3 AlPY 3 (4, 4a-4h) are midway between phosphinoboranes and aminoalanes. The degree of covalency and ionicity correlates with the electronegativity difference BP (ΔEN = 0.15) < AlP (ΔEN = 0.58) < BN (ΔEN = 1.00) < AlN (ΔEN = 1.43) and a previously published energy decomposition analysis (EDA). To illustrate the importance of both contributions in Lewis formula representations, two resonance formulas should be given for all compounds, namely, the canonical form with formal charges denoting covalency and the arrow notation pointing from the donor to the acceptor atom to emphasis ionicity. If the Lewis formula mainly serves to show the atomic connectivity, the most significant should be shown. Thus, it is legitimate to present aminoalanes using arrows; however, for phosphinoboranes the canonical form with formal charges is more appropriate.

  12. Medicinal chemistry of adenosine, P2Y and P2X receptors.

    PubMed

    Jacobson, Kenneth A; Müller, Christa E

    2016-05-01

    Pharmacological tool compounds are now available to define action at the adenosine (ARs), P2Y and P2X receptors. We present a selection of the most commonly used agents to study purines in the nervous system. Some of these compounds, including A1 and A3 AR agonists, P2Y1R and P2Y12R antagonists, and P2X3, P2X4 and P2X7 antagonists, are potentially of clinical use in treatment of disorders of the nervous system, such as chronic pain, neurodegeneration and brain injury. Agonists of the A2AAR and P2Y2R are already used clinically, P2Y12R antagonists are widely used antithrombotics and an antagonist of the A2AAR is approved in Japan for treating Parkinson's disease. The selectivity defined for some of the previously introduced compounds has been revised with updated pharmacological characterization, for example, various AR agonists and antagonists were deemed A1AR or A3AR selective based on human data, but species differences indicated a reduction in selectivity ratios in other species. Also, many of the P2R ligands still lack bioavailability due to charged groups or hydrolytic (either enzymatic or chemical) instability. X-ray crystallographic structures of AR and P2YRs have shifted the mode of ligand discovery to structure-based approaches rather than previous empirical approaches. The X-ray structures can be utilized either for in silico screening of chemically diverse libraries for the discovery of novel ligands or for enhancement of the properties of known ligands by chemical modification. Although X-ray structures of the zebrafish P2X4R have been reported, there is scant structural information about ligand recognition in these trimeric ion channels. In summary, there are definitive, selective agonists and antagonists for all of the ARs and some of the P2YRs; while the pharmacochemistry of P2XRs is still in nascent stages. The therapeutic potential of selectively modulating these receptors is continuing to gain interest in such fields as cancer, inflammation, pain

  13. Pr:Ca1-xRxF2+x (R=Y or Gd) crystals: Modulated blue, orange and red emission spectra with the proportion of R3+ ions

    NASA Astrophysics Data System (ADS)

    Yu, Hao; Qian, Xiaobo; Guo, Linyang; Jiang, Dapeng; Wu, Qinghui; Tang, Fei; Su, Liangbi; Ju, Qiangwen; Wang, Jingya; Xu, Jun

    2018-04-01

    The spectroscopic properties of 0.6at.%:Pr:Ca1-xRxF2+x (R = Y, Gd; x = 0,0.006, 0.012, 0.03, 0.06) crystals were investigated and compared. The XRD tests were conducted and the cell dimensions of the crystals were calculated. Room temperature absorption spectra have been registered and analyzed. The emission spectra and decay curves of the crystals were obtained at room temperature. Increasing the proportion of the lattice regulators of Y3+ or Gd3+ ions could significantly enhance the luminescence intensity of all visible emission bands with different ratios. Particularly, the emission intensity ratio of orange to red increased from 0.15 to 1.9 in Pr:Ca1-xYxF2+x crystals and to 1.02 in Pr:Ca1-xGdxF2+x crystals, respectively. Furthermore, Pr:Ca1-xGdxF2+x crystals have substantially strong emission at orange and red region of 580-660 nm, comparable with blue light at 482 nm. The quantum efficiency of the crystals increased rapidly with the increment of R3+ concentration, and finally tend to be 100%.

  14. Mosaic male fetus of Turner syndrome with partial chromosome Y: A case report.

    PubMed

    Xue, Dan; Cao, Dong-Hua; Mu, Kai; Lv, Yuan; Yang, Jun

    2018-06-01

    Turner syndrome, characterized by the presence of a monosomy X cell line, is a common chromosomal disorder. Patients with Turner syndrome are usually phenotypically female, and male cases are rarely reported. Here, we report a fetus with a mosaic karyotype: mos 45,X/46,X,del(Y)(q11.21). The fetus was initially misdiagnosed as female with Turner syndrome by both noninvasive prenatal testing and cytogenetic analysis of amniotic fluid and was subsequently found to have male anatomy by antenatal ultrasonography at 24 weeks gestational age. Through single nucleotide polymorphism-array and fluorescence in situ hybridization testing, we found that there was a truncated Y chromosome with sex-determining region Y (SRY) present in some cells of the fetus, which caused the male features in the fetus. © 2018 Japan Society of Obstetrics and Gynecology.

  15. [Prenatal diagnosis of X-linked anhidrotic ectodermal dysplasia with X-chromosome inversion].

    PubMed

    Shi, Hui-juan; Fang, Qun; Wang, Lian-tang

    2005-07-13

    To investigate the possibility of prenatal diagnosis of the fetal suspected to be affected by anhidrotic ectodermal dysplasia (EDA) in a family with X-linked EDA so as to provide a basis for prenatal diagnosis and genetic counseling of this disorder. Pedigree analysis and genetic counseling were performed in a family after a proband was diagnosed with EDA. The peripheral blood samples were collected from the proband, a 12-year-old boy, his mother, and his 2 aunts, one being pregnant, to undergo chromosome karyotype analysis. The fetus Puncture of umbilical vein was performed to collect the blood of fetus for chromosome examination. Induced abortion was conducted due to the diagnosis of the fetus with EDA. Autopsy, immunohistochemistry of the skin tissues of face, breast, epigastrium, and thigh, and X-ray photography of the lower jawbone were made. Pericentric inversion occurring at one of the X-chromosome [inv (x) (p22q13)] was found in the proband and his nephew (the fetus), both patients, and his mother and his second aunt (the pregnant woman), both carriers. Autopsy of the fetus showed epidermis dysplasia and deficiency of hair follicle and sebaceous gland. Immunohistochemistry showed that epithelial membrane antigen and cytokeratin were negatively expressed in the fetal skin tissues. Pedigree analysis and genetic counseling for the family members of EDA patients and prenatal and postpartum examination for the fetus help diagnose EDA.

  16. Copper-tuned magnetic order and excitations in iron-based superconductors Fe1+yTe1-xSex

    NASA Astrophysics Data System (ADS)

    Wen, Jinsheng; Xu, Zhijun; Xu, Guangyong; Lumsden, Mark; Matsuda, Masaaki; Valdivia, Patrick; Bourret, Edith; Lee, Dunghai; Gu, Genda; Tranquada, John; Birgeneau, Robert

    2012-02-01

    We report neutron scattering results on the Cu-substitution effects in the iron-based superconductors, Fe1+yTe1-xSex. In the parent compound, it is found that Cu drives the low-temperature magnetic ground state from long-range commensurate antiferromagnetic order in Fe1.06TeCu0.04 to short-range incommensurate order in FeTeCu0.1. In the former sample, the structural and magnetic ordering temperature is 40 K; in FeTeCu0.1, the structural phase transition is not obvious and a transition to the spin-glass state is found at 22 K. Cu suppresses superconductivity in FeTe0.5Se0.5---Tc is reduced to 7 K with a 2% Cu doping, and no superconductivity is found in the 10% Cu-doped sample. In the meantime, the intensity and energy of the resonance mode are suppressed in the 2% Cu-doped sample, while there is no resonance in the non-superconducting sample. Besides, the low-temperature magnetic excitation spectra are distinct for these two samples, with the superconducting one having an ``hour-glass" shape and the other one having a ``waterfall" shape. Our results provide further insights on the interplay between magnetism and superconductivity in the iron-based superconductors.

  17. HIM-8 binds to the X chromosome pairing center and mediates chromosome-specific meiotic synapsis.

    PubMed

    Phillips, Carolyn M; Wong, Chihunt; Bhalla, Needhi; Carlton, Peter M; Weiser, Pinky; Meneely, Philip M; Dernburg, Abby F

    2005-12-16

    The him-8 gene is essential for proper meiotic segregation of the X chromosomes in C. elegans. Here we show that loss of him-8 function causes profound X chromosome-specific defects in homolog pairing and synapsis. him-8 encodes a C2H2 zinc-finger protein that is expressed during meiosis and concentrates at a site on the X chromosome known as the meiotic pairing center (PC). A role for HIM-8 in PC function is supported by genetic interactions between PC lesions and him-8 mutations. HIM-8 bound chromosome sites associate with the nuclear envelope (NE) throughout meiotic prophase. Surprisingly, a point mutation in him-8 that retains both chromosome binding and NE localization fails to stabilize pairing or promote synapsis. These observations indicate that stabilization of homolog pairing is an active process in which the tethering of chromosome sites to the NE may be necessary but is not sufficient.

  18. X-chromosome tiling path array detection of copy number variants in patients with chromosome X-linked mental retardation

    PubMed Central

    Madrigal, I; Rodríguez-Revenga, L; Armengol, L; González, E; Rodriguez, B; Badenas, C; Sánchez, A; Martínez, F; Guitart, M; Fernández, I; Arranz, JA; Tejada, MI; Pérez-Jurado, LA; Estivill, X; Milà, M

    2007-01-01

    Background Aproximately 5–10% of cases of mental retardation in males are due to copy number variations (CNV) on the X chromosome. Novel technologies, such as array comparative genomic hybridization (aCGH), may help to uncover cryptic rearrangements in X-linked mental retardation (XLMR) patients. We have constructed an X-chromosome tiling path array using bacterial artificial chromosomes (BACs) and validated it using samples with cytogenetically defined copy number changes. We have studied 54 patients with idiopathic mental retardation and 20 controls subjects. Results Known genomic aberrations were reliably detected on the array and eight novel submicroscopic imbalances, likely causative for the mental retardation (MR) phenotype, were detected. Putatively pathogenic rearrangements included three deletions and five duplications (ranging between 82 kb to one Mb), all but two affecting genes previously known to be responsible for XLMR. Additionally, we describe different CNV regions with significant different frequencies in XLMR and control subjects (44% vs. 20%). Conclusion This tiling path array of the human X chromosome has proven successful for the detection and characterization of known rearrangements and novel CNVs in XLMR patients. PMID:18047645

  19. Tunable Optical Properties and Increased Thermal Quenching in the Blue-Emitting Phosphor Series: Ba 2 (Y 1x Lu x ) 5 B 5 O 17 :Ce 3+ ( x = 0–1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hermus, Martin; Phan, Phu-Cuong; Duke, Anna C.

    The preparation of cerium-substituted barium lutetium borate, Ba2Lu5B5O17:Ce3+, is achieved using high temperature solid state synthesis. This compound crystallizes in the Ba2Y5B5O17-type structure and shows an efficient blue emission (λmax = 447 nm) when excited by UV-light (λex = 340 nm) with a photoluminescent quantum yield near 90%, a fast luminescence decay time (<40 ns), and a thermal quenching temperature of 452 K. Further, preparing a solid solution following Ba2(Y1xLux)5B5O17:Ce3+ (x = 0, 0.25, 0.50, 0.75, 1) confirms that all compounds are isostructural and follow Vegard’s law. Substituting Y3+ for Lu3+ yields a nearly constant emission spectrum that blue-shifts bymore » only 9 nm and has a consistent luminescence lifetime across the range prepared. The photoluminescent quantum yield (PLQY) and thermal quenching (T50) of the solid solution, however, are dramatically impacted by the composition, with the PLQY decreasing to ≈70% and the T50 dropping 49 K going from x = 1 to x = 0. These significant changes in the optical properties likely stem from enhanced structural rigidity as the larger, more polarizable Y3+ is substituted for the smaller, harder Lu3+ cation. These results highlight the importance of optimizing chemical bonding to improve a phosphor’s optical properties.« less

  20. Investigation de l'anisotropie du gap supraconducteur dans les composes Ba(Fe(1-x)Co(x))2As2, Ba(1-x)K(x)Fe2As2, LiFeAs et Fe1-deltaTe(1-x)Se(x)

    NASA Astrophysics Data System (ADS)

    Reid, Jean-Philippe

    ommaire La structure du gap supraconducteur et sa modulation sont intimement liees au potentiel d'interaction responsable de l'appariement des electrons d'un supraconducteur. Ainsi, l'etude de la structure du gap-SC et de sa modulation permettent de faire la lumiere sur la nature du mecanisme d'appariement des electrons. A cet egard, les resultats experimentaux des supraconducteurs a base de fer ne cadrent pas dans un seul ensemble, ce qui est en opposition au gap-SC universel des cuprates. Dans ce qui suit, nous presenterons une etude systematique du gap-SC pour plusieurs pnictides. En effet, en utilisant la conductivite thermique, une sonde directionnelle du gap-SC, nous avons ete en mesure de reveler la structure du gap-SC pour les composes suivants : Ba1-xKxFe 2As2, Ba(Fe1-xCo x)2As2, LiFeAs et Fe1-deltaTe 1-xSex. L'etude de ces quatre composes, de trois differentes familles structurales, a pu etablir un tableau partiel mais tres exhaustif de la structure du gap-SC de pnictides. En effet, tel qu'illustre dans cette these, ces quatre composes ne possedent aucun noeud dans leur structure du gap-SC a dopage optimal. Toutefois, a une concentration differente de celle optimale pour les composes K-Ba122 et Co-Ba122, des noeuds apparaissent sur la surface de Fermi, aux extremites 'du dome supraconducteur. Ceci suggere fortement que, pour ces composes, la presence de noeuds sur la surface de Fermi est nuisible a la phase supraconductrice. Mots-cles: Supraconducteurs a base de fer, Pnictides, Structure du gap supraconducteur, Conductivite thermique

  1. Epigenetics and autoimmune diseases: the X chromosome-nucleolus nexus

    PubMed Central

    Brooks, Wesley H.; Renaudineau, Yves

    2015-01-01

    Autoimmune diseases occur more often in females, suggesting a key role for the X chromosome. X chromosome inactivation, a major epigenetic feature in female cells that provides dosage compensation of X-linked genes to avoid overexpression, presents special vulnerabilities that can contribute to the disease process. Disruption of X inactivation can result in loss of dosage compensation with expression from previously sequestered genes, imbalance of gene products, and altered endogenous material out of normal epigenetic context. In addition, the human X has significant differences compared to other species and these differences can contribute to the frequency and intensity of the autoimmune disease in humans as well as the types of autoantigens encountered. Here a link is demonstrated between autoimmune diseases, such as systemic lupus erythematosus, and the X chromosome by discussing cases in which typically non-autoimmune disorders complicated with X chromosome abnormalities also present lupus-like symptoms. The discussion is then extended to the reported spatial and temporal associations of the inactive X chromosome with the nucleolus. When frequent episodes of cellular stress occur, the inactive X chromosome may be disrupted and inadvertently become involved in the nucleolar stress response. Development of autoantigens, many of which are at least transiently components of the nucleolus, is then described. Polyamines, which aid in nucleoprotein complex assembly in the nucleolus, increase further during cell stress, and appear to have an important role in the autoimmune disease process. Autoantigenic endogenous material can potentially be stabilized by polyamines. This presents a new paradigm for autoimmune diseases: that many are antigen-driven and the autoantigens originate from altered endogenous material due to episodes of cellular stress that disrupt epigenetic control. This suggests that epigenetics and the X chromosome are important aspects of autoimmune

  2. Sex differences in cortical thickness and their possible genetic and sex hormonal underpinnings.

    PubMed

    Savic, I; Arver, S

    2014-12-01

    Although it has been shown that cortical thickness (Cth) differs between sexes, the underlying mechanisms are unknown. Seeing as XXY males have 1 extra X chromosome, we investigated the possible effects of X- and sex-chromosome dosage on Cth by comparing data from 31 XXY males with 39 XY and 47 XX controls. Plasma testosterone and estrogen were also measured in an effort to differentiate between possible sex-hormone and sex-chromosome gene effects. Cth was calculated with FreeSurfer software. Parietal and occipital Cth was greater in XX females than XY males. In these regions Cth was inversely correlated with z-normalized testosterone. In the motor strip, the cortex was thinner in XY males compared with both XX females and XXY males, indicating the possibility of an X-chromosome gene-dosage effect. XXY males had thinner right superior temporal and left middle temporal cortex, and a thicker right orbitofrontal cortex and lingual cortex than both control groups. Based on these data and previous reports from women with XO monosomy, it is hypothesized that programming of the motor cortex is influenced by processes linked to X-escapee genes, which do not have Y-chromosome homologs, and that programming of the superior temporal cortex is mediated by X-chromosome escapee genes with Y-homologs. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Why Y chromosome is shorter and women live longer?

    NASA Astrophysics Data System (ADS)

    Biecek, P.; Cebrat, S.

    2008-09-01

    We have used the Penna ageing model to analyze how the differences in evolution of sex chromosomes depend on the strategy of reproduction. In panmictic populations, when females (XX) can freely choose the male partner (XY) for reproduction from the whole population, the Y chromosome accumulates defects and eventually the only information it brings is a male sex determination. As a result of shrinking Y chromosome the male genomes de facto loose one copy of the X chromosome information and, as a result, males are characterized by higher mortality, observed also in the human populations. If it is assumed in the model that the presence of the male is indispensable at least during the pregnancy of his female partner and he cannot be seduced by another female at least during the one reproduction cycle-the Y chromosome preserves its content, does not shrink and the lifespan of females and males is the same. Thus, Y chromosome shrinks not because of existing in one copy, without the possibility of recombination, but because it stays under weaker selection pressure; in panmictic populations without the necessity of being faithful, a considerable fraction of males is dispensable and they can be eliminated from the population without reducing its reproduction potential.

  4. On the Samarium Substitution Effects in Y3-x Sm x Al5O12 (x = 0.1-3.0)

    NASA Astrophysics Data System (ADS)

    Skaudzius, Ramunas; Sakirzanovas, Simas; Kareiva, Aivaras

    2018-04-01

    Yttrium aluminium garnet substituted by samarium Y3-x Sm x Al5O12, (YSmAG, x = 0.1, 0.15, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5 and 3.0) was prepared by an aqueous sol-gel processing using etane-1,2-diol as complexing agent. The end products obtained at 1000°C in air were characterized by x-ray diffraction analysis, infrared spectroscopy (FT-IR) and scanning electron microscopy. It was demonstrated, however, that the total substitution of yttrium by samarium does not proceed in the YSmAG. The single cubic garnet phase was formed only at a low concentration of samarium (x = 0.1, 0.15, 0.25, 0.5, 0.75, 1.0). With further substitutional levels, if the amount of samarium was x = 1.5, 2.0, 2.5 and 3, respectively, the formation a of minor amount of side perovskite samarium aluminate SmAlO3 (SmAP) phase was observed. Surprisingly, when yttrium was totally replaced by the samarium (x = 3.0) the main synthesis product was SmAP. The possible formation of Sm3Al5O12 (SmAG) garnet was also investigated for the first time by variation of the temperature in the range of 780-835°C.

  5. Cytological and cytogenetical studies on brain tumors. V. Preferential loss of sex chromosomes in human meningiomas.

    PubMed

    Zankl, H; Seidel, H; Zang, K D

    1975-01-01

    Twelve out of 88 cytogenetically examined meningiomas of female patients showed, in addition to the typical loss of a chromosome 22, a loss of 1 or more chromosomes of group C. Among them 8 tumors had less than 8% cells with Barr-body-like particles, whereas in one tumor 12% and in 3 others over 20% Barr bodies were found, which, based on control studies, were classified as sex-chromatin negative, partly positive, and positive, respectively. In one case the loss of an X chromosome was verified by Giemsa banding. In 6 out of 24 meningiomas of male origin, the chromosomal morphology and association pattern strongly indicated that besides the loss of a chromosome 22, the Y chromosome was also missing. Moreover, the loss of the male sex chromosome could be ascertained in 4 tumors by the conspicuous absence of Y fluorescence in interphase nuclei and in metaphase plates after fluorescence staining. The findings are discussed in connection with the gonosomal loss in other human tumors and in old age.

  6. Analysis of Bos taurus and Sus scrofa X and Y chromosome transcriptome highlights reproductive driver genes

    PubMed Central

    Khan, Faheem Ahmed; Liu, Hui; Zhou, Hao; Wang, Kai; Qamar, Muhammad Tahir Ul; Pandupuspitasari, Nuruliarizki Shinta; Shujun, Zhang

    2017-01-01

    The biology of sperm, its capability of fertilizing an egg and its role in sex ratio are the major biological questions in reproductive biology. To answer these question we integrated X and Y chromosome transcriptome across different species: Bos taurus and Sus scrofa and identified reproductive driver genes based on Weighted Gene Co-Expression Network Analysis (WGCNA) algorithm. Our strategy resulted in 11007 and 10445 unique genes consisting of 9 and 11 reproductive modules in Bos taurus and Sus scrofa, respectively. The consensus module calculation yields an overall 167 overlapped genes which were mapped to 846 DEGs in Bos taurus to finally get a list of 67 dual feature genes. We develop gene co-expression network of selected 67 genes that consists of 58 nodes (27 down-regulated and 31 up-regulated genes) enriched to 66 GO biological process (BP) including 6 GO annotations related to reproduction and two KEGG pathways. Moreover, we searched significantly related TF (ISRE, AP1FJ, RP58, CREL) and miRNAs (bta-miR-181a, bta-miR-17-5p, bta-miR-146b, bta-miR-146a) which targeted the genes in co-expression network. In addition we performed genetic analysis including phylogenetic, functional domain identification, epigenetic modifications, mutation analysis of the most important reproductive driver genes PRM1, PPP2R2B and PAFAH1B1 and finally performed a protein docking analysis to visualize their therapeutic and gene expression regulation ability. PMID:28903352

  7. Comparative analysis of high-performance infrared avalanche InxGa1-xAsyP1-y and Hg1-xCdxTe heterophotodiodes

    NASA Astrophysics Data System (ADS)

    Kholodnov, Viacheslav; Drugova, Albina; Nikitin, Mikhail; Chekanova, Galina

    2012-10-01

    Technology of infrared (IR) avalanche photodiodes (APDs) gradually moves from simple single element APD to 2D focal plane arrays (FPA). Spectral covering of APDs is expanded continuously from classic 1.3 μm to longer wavelengths due to using of narrow-gap semiconductor materials like Hg1-xCdxTe. APDs are of great interest to developers and manufacturers of different optical communication, measuring and 3D reconstruction thermal imaging systems. Major IR detector materials for manufacturing of high-performance APDs became heteroepitaxial structures InxGa1-xAsyP1-y and Hg1-xCdxTe. Progress in IR APD technology was achieved through serious improvement in material growing techniques enabling forming of multilayer heterostuctures with separate absorption and multiplication regions (SAM). Today SAM-APD design can be implemented both on InxGa1-xAsyP1-y and Hg1-xCdxTe multilayer heteroepitaxial structures. To create the best performance optimal design avalanche heterophotodiode (AHPD) it is necessary to carry out a detailed theoretical analysis of basic features of generation, avalanche breakdown and multiplication of charge carriers in proper heterostructure. Optimization of AHPD properties requires comprehensive estimation of AHPD's pixel performance depending on pixel's multi-layer structure design, layers doping, distribution of electric field in the structure and operating temperature. Objective of the present article is to compare some features of 1.55 μm SAM-AHPDs based on InxGa1-xAsyP1-y and Hg1-xCdxTe.

  8. Effect of interfacial SiO2- y layer and defect in HfO2- x film on flat-band voltage of HfO2- x /SiO2- y stacks for backside-illuminated CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Na, Heedo; Lee, Jimin; Jeong, Juyoung; Kim, Taeho; Sohn, Hyunchul

    2018-03-01

    In this study, the effect of oxygen gas fraction during deposition of a hafnium oxide (HfO2- x ) film and the influence of the quality of the SiO2- y interlayer on the nature of flat-band voltage ( V fb) in TiN/HfO/SiO2- y /p-Si structures were investigated. X-ray photoemission spectroscopy analysis showed that the non-lattice oxygen peak, indicating an existing oxygen vacancy, increased as the oxygen gas fraction decreased during sputtering. From C- V and J- E analyses, the V fb behavior was significantly affected by the characteristics of the SiO2- y interlayer and the non-lattice oxygen fraction in the HfO2- x films. The HfO2- x /native SiO2- y stack presented a V fb of - 1.01 V for HfO2- x films with an oxygen gas fraction of 5% during sputtering. Additionally, the V fb of the HfO2- x /native SiO2- y stack could be controlled from - 1.01 to - 0.56 V by changing the deposition conditions of the HfO2- x film with the native SiO2- y interlayer. The findings of this study can be useful to fabricate charge-accumulating layers for backside-illuminated image sensor devices.

  9. Unequal rates of Y chromosome gene divergence during speciation of the family Ursidae.

    PubMed

    Nakagome, Shigeki; Pecon-Slattery, Jill; Masuda, Ryuichi

    2008-07-01

    Evolution of the bear family Ursidae is well investigated in terms of morphological, paleontological, and genetic features. However, several phylogenetic ambiguities occur within the subfamily Ursinae (the family Ursidae excluding the giant panda and spectacled bear), which may correlate with behavioral traits of female philopatry and male-biased dispersal which form the basis of the observed matriarchal population structure in these species. In the process of bear evolution, we investigate the premise that such behavioral traits may be reflected in patterns of variation among genes with different modes of inheritance: matrilineal mitochondrial DNA (mtDNA), patrilineal Y chromosome, biparentally inherited autosomes, and the X chromosome. In the present study, we sequenced 3 Y-linked genes (3,453 bp) and 4 X-linked genes (4,960 bp) and reanalyzed previously published sequences from autosome genes (2,347 bp) in ursid species to investigate differences in evolutionary rates associated with patterns of inheritance. The results describe topological incongruence between sex-linked genes and autosome genes and between nuclear DNA and mtDNA. In more ancestral branches within the bear phylogeny, Y-linked genes evolved faster than autosome and X-linked genes, consistent with expectations based on male-driven evolution. However, this pattern changes among branches leading to each species within the lineage of Ursinae whereby the evolutionary rates of Y-linked genes have fewer than expected substitutions. This inconsistency between more recent nodes of the bear phylogeny with more ancestral nodes may reflect the influences of sex-biased dispersal as well as molecular evolutionary characteristics of the Y chromosome, and stochastic events in species natural history, and phylogeography unique to ursine bears.

  10. Effects of Zn on the grain boundary properties of La 2-xSr xCu 1-yZn yO 4 superconductors

    NASA Astrophysics Data System (ADS)

    Naqib, S. H.; Islam, R. S.

    2010-12-01

    The properties of the grain boundaries (GBs) are of significant importance in high- T c cuprates. Most large scale applications of cuprate superconductors involve usage of sintered compounds. The critical current density and the ability to trap high magnetic flux inside the sample depend largely on the quality of the GBs. Zn has the ability to pin vortices but it also degrades superconductivity. In this study we have investigated the effect of Zn impurity on the intergrain coupling properties in high-quality La 2-xSr xCu 1-yZn yO 4 sintered samples with different hole concentrations, p (≡ x), over a wide range of Zn contents ( y) using field-dependent AC susceptibility (ACS) measurements. The ACS results enabled us to determine the superconducting transition temperature T c, and the temperature T gcp, at which the randomly oriented superconducting grains become coupled as a function of hole and disorder contents. We have analyzed the behavior of the GBs from the systematic evolution of the values of T gcp( p, y), T c( p, y), and from the contribution to the field-dependent ACS signal coming from the intergrain shielding current. Zn suppresses both T c and T gcp in a similar fashion. The hole content and the carrier localization due to Zn substitution seem to have significant effect on the coupling properties of the GBs. We have discussed the possible implications of these findings in detail in this article.

  11. Interband absorption edge in the topological insulators Bi2(Te1-xSex) 3

    NASA Astrophysics Data System (ADS)

    Dubroka, A.; Caha, O.; Hronček, M.; Friš, P.; Orlita, M.; Holý, V.; Steiner, H.; Bauer, G.; Springholz, G.; Humlíček, J.

    2017-12-01

    We have investigated the optical properties of thin films of topological insulators Bi2Te3 , Bi2Se3 , and their alloys Bi2(Te1-xSex) 3 on BaF2 substrates by a combination of infrared ellipsometry and reflectivity in the energy range from 0.06 to 6.5 eV. For the onset of interband absorption in Bi2Se3 , after the correction for the Burstein-Moss effect, we find the value of the direct band gap of 215 ±10 meV at 10 K. Our data support the picture that Bi2Se3 has a direct band gap located at the Γ point in the Brillouin zone and that the valence band reaches up to the Dirac point and has the shape of a downward-oriented paraboloid, i.e., without a camel-back structure. In Bi2Te3 , the onset of strong direct interband absorption at 10 K is at a similar energy of about 200 meV, with a weaker additional feature at about 170 meV. Our data support the recent G W band-structure calculations suggesting that the direct interband transition does not occur at the Γ point but near the Z -F line of the Brillouin zone. In the Bi2(Te1-xSex) 3 alloy, the energy of the onset of direct interband transitions exhibits a maximum near x =0.3 (i.e., the composition of Bi2Te2Se ), suggesting that the crossover of the direct interband transitions between the two points in the Brillouin zone occurs close to this composition.

  12. Defect engineering of complex semiconductor alloys: Cu2-2xMxO1-yXy

    NASA Astrophysics Data System (ADS)

    Lany, Stephan; Stevanovic, Vladan

    2013-03-01

    The electrical properties of semiconductors are generally controlled via doping, i.e., the incorporation of dilute concentrations of aliovalent impurity atoms, whereas the band structure properties (gap, effective masses, optical properties) are manipulated by alloying, i.e., the incorporation of much larger amounts of isovalent elements. Theoretical approaches usually address either doping or alloying, but rarely both problems at the same time. By combining defect supercell calculations, GW quasi-particle energy calculation, and thermodynamic modeling, we study the range of electrical and band structure properties accessible by alloying aliovalent cations (M = Mg, Zn, Cd) and isovalent anions (X = S, Se) in Cu2O. In order to extend dilute defect models to higher concentrations, we take into account the association/dissociation of defect pairs and complexes, as well as the composition dependence of the band gap and the band edge energies. Considering a composition window for the Cu2-2xMxO1-yXy alloys of 0 <= (x,y) <= 0.2, we predict a wide range of possible band gaps from 1.7 to 2.6 eV, and net doping concentrations between p = 1019 cm-3 and n = 1017cm-3, notably achieving type conversion from p- to n-type at Zn or Cd compositions around x = 0.1. This work is supported as part of the SunShot initiative by the U. S. Department of Energy, Office of Energy Efficiency and Renewable Energy under Contract No. DE-AC36-08GO28308 to NREL.

  13. The XX sex chromosome complement in mice is associated with increased spontaneous lupus compared with XY.

    PubMed

    Sasidhar, Manda V; Itoh, Noriko; Gold, Stefan M; Lawson, Gregory W; Voskuhl, Rhonda R

    2012-08-01

    Many autoimmune diseases are characterised by a female predominance. This may be caused by sex hormones, sex chromosomes or both. This report uses a transgenic mouse model to investigate how sex chromosome complement, not confounded by differences in gonadal type, might contribute to lupus pathogenesis. Transgenic NZM2328 mice were created by deletion of the Sry gene from the Y chromosome, thereby separating genetic from gonadal sex. Survival, renal histopathology and markers of immune activation were compared in mice carrying the XX versus the XY(-) sex chromosome complement, with each genotype being ovary bearing. Mice with XX sex chromosome complement compared with XY(-) exhibited poorer survival rates and increased kidney pathology. Splenic T lymphocytes from XX mice demonstrated upregulated X-linked CD40 ligand expression and higher levels of activation markers ex vivo. Increased MMP, TGF and IL-13 production was found, while IL-2 was lower in XX mice. An accumulation of splenic follicular B cells and peritoneal marginal zone B cells was observed, coupled with upregulated costimulatory marker expression on B cells in XX mice. These data show that the XX sex chromosome complement, compared with XY(-), is associated with accelerated spontaneous lupus.

  14. Growth and characterization of dilute nitride GaN{sub x}P{sub 1x} nanowires and GaN{sub x}P{sub 1x}/GaN{sub y}P{sub 1y} core/shell nanowires on Si (111) by gas source molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sukrittanon, S.; Kuang, Y. J.; Dobrovolsky, A.

    2014-08-18

    We have demonstrated self-catalyzed GaN{sub x}P{sub 1x} and GaN{sub x}P{sub 1x}/GaN{sub y}P{sub 1y} core/shell nanowire growth by gas-source molecular beam epitaxy. The growth window for GaN{sub x}P{sub 1x} nanowires was observed to be comparable to that of GaP nanowires (∼585 °C to ∼615 °C). Transmission electron microscopy showed a mixture of cubic zincblende phase and hexagonal wurtzite phase along the [111] growth direction in GaN{sub x}P{sub 1x} nanowires. A temperature-dependent photoluminescence (PL) study performed on GaN{sub x}P{sub 1x}/GaN{sub y}P{sub 1y} core/shell nanowires exhibited an S-shape dependence of the PL peaks. This suggests that at low temperature, the emission stems from N-related localizedmore » states below the conduction band edge in the shell, while at high temperature, the emission stems from band-to-band transition in the shell as well as recombination in the GaN{sub x}P{sub 1x} core.« less

  15. Seebeck Coefficient of Cation-Substituted Disulfides CuCr1-x Fe x S2 and Cu1-x Fe x CrS2

    NASA Astrophysics Data System (ADS)

    Korotaev, Evgeniy V.; Syrokvashin, Mikhail M.; Filatova, Irina Yu.; Pelmenev, Konstantin G.; Zvereva, Valentina V.; Peregudova, Natalya N.

    2018-03-01

    The effect of cation substitution on the Seebeck coefficient of CuCr1-x Fe x S2 (x = 0 to 0.30) and Cu1-x Fe x CrS2 (x = 0 to 0.03) in the temperature range of 100 K to 450 K has been investigated. Increasing iron concentration led to a metal-insulator transition which suppressed the thermoelectric power. However, for low iron concentration (x < 0.03), the Seebeck coefficient of CuCr1-x Fe x S2 and Cu1-x Fe x CrS2 exceeded the values for the undoped copper-chromium disulfide matrix CuCrS2 at temperature below 300 K.

  16. Structural organization of the inactive X chromosome in the mouse

    PubMed Central

    Giorgetti, Luca; Lajoie, Bryan R.; Carter, Ava C.; Attia, Mikael; Zhan, Ye; Xu, Jin; Chen, Chong Jian; Kaplan, Noam; Chang, Howard Y.; Heard, Edith; Dekker, Job

    2017-01-01

    X-chromosome inactivation (XCI) involves major reorganization of the X chromosome as it becomes silent and heterochromatic. During female mammalian development, XCI is triggered by upregulation of the non-coding Xist RNA from one of the two X chromosomes. Xist coats the chromosome in cis and induces silencing of almost all genes via its A-repeat region1,2, although some genes (constitutive escapees) avoid silencing in most cell types, and others (facultative escapees) escape XCI only in specific contexts3. A role for Xist in organizing the inactive X (Xi) chromosome has been proposed4–6. Recent chromosome conformation capture approaches have revealed global loss of local structure on the Xi chromosome and formation of large mega-domains, separated by a region containing the DXZ4 macrosatellite7–10. However, the molecular architecture of the Xi chromosome, in both the silent and expressed regions, remains unclear. Here we investigate the structure, chromatin accessibility and expression status of the mouse Xi chromosome in highly polymorphic clonal neural progenitors (NPCs) and embryonic stem cells. We demonstrate a crucial role for Xist and the DXZ4-containing boundary in shaping Xi chromosome structure using allele-specific genome-wide chromosome conformation capture (Hi-C) analysis, an assay for transposase-accessible chromatin with high throughput sequencing (ATAC–seq) and RNA sequencing. Deletion of the boundary disrupts mega-domain formation, and induction of Xist RNA initiates formation of the boundary and the loss of DNA accessibility. We also show that in NPCs, the Xi chromosome lacks active/inactive compartments and topologically associating domains (TADs), except around genes that escape XCI. Escapee gene clusters display TAD-like structures and retain DNA accessibility at promoter-proximal and CTCF-binding sites. Furthermore, altered patterns of facultative escape genes in different neural progenitor clones are associated with the presence of

  17. A study on the redox, spectroscopic, and photophysical characteristics of a series of octahedral hexamolybdenum(ii) clusters: [{Mo6X8}Y6]2- (X, Y = Cl, Br, or I).

    PubMed

    Akagi, Soichiro; Fujii, Sho; Kitamura, Noboru

    2018-01-23

    We report a systematic study on the redox, spectroscopic, and photophysical properties of a series of [{Mo 6 X 8 }Y 6 ] 2- (X, Y = Cl, Br, or I. 1-9). All of the [{Mo 6 X 8 }Y 6 ] 2- clusters show intense and long-lived phosphorescence in both CH 3 CN and crystalline phases at 298 K. We found that the emission quantum yields (Φ em ) of 1-9 increase in the sequences X = Cl < Br < I and Y = I < Br < Cl for given Y and X, respectively. The emission lifetimes (τ em ) of the clusters also increase in the sequence Y = I < Br < Cl for given {Mo 6 X 8 } 4+ -core clusters. The present data demonstrate that arbitrary combinations of X and Y in [{Mo 6 X 8 }Y 6 ] 2- could tune τ em and Φ em in the ranges of 85-300 μs and 0.09-0.47, respectively. Both capping (X) and terminal ligand (Y) effects on the photophysical properties of the clusters are discussed on the basis of the energy gap (i.e., emission energy) dependence of the nonradiative decay rate constant.

  18. Magnetic properties of CexY1-xPt compared to CexLa1-xPt ones

    NASA Astrophysics Data System (ADS)

    Očko, M.; Zadro, K.; Drobac, Đ.; Aviani, I.; Salamon, K.; Mixon, D.; Bauer, E. D.; Sarrao, J. L.

    2018-04-01

    We have investigated the magnetic properties of the CexY1-xPt Kondo ferromagnetic alloy system in the temperature range from 1.8 K to 320 K. The results of these investigations can be summarized as follows: dc-susceptibility can be described by the Curie-Weiss law at higher temperatures down to about 100 K, but also at low temperatures above the ferromagnetic phase transition. At higher temperatures, the extracted Curie-Weiss parameter, θp, is negative and at low temperature θC is positive. The extracted effective magnetic moment above 100 K increases with the Ce content up to almost the theoretical value of the isolated Ce3+ ion, μ = 2.54 μB, for CePt. This suggests an increase of the hybridization with decreasing Ce content, or said equivalently, it means that the increase of the Kondo interaction diminishes effective magnetic moment. These observations confirm the main conclusions inferred from an earlier transport properties investigation of this alloy system. The corresponding θC differs within 1 K from the Curie temperature, TC, which is determined by the resistivity measurements. The most intriguing result of the investigation of CexY1-xPt is the linear concentration dependence of TC vs. x and, moreover, it is the same as in CexLa1-xPt although in the former system the hybridization diminishes considerably the effective magnetic moment per Ce ion, while in the latter system, hybridization is minor and independent of x. We offer the explanations of these intriguing experimental results.

  19. Temperature-dependent dielectric functions and interband critical points of sulfur-rich TlIn(S1-xSex)2 layered solid solution crystals

    NASA Astrophysics Data System (ADS)

    Gomonnai, O. O.; Gordan, O.; Guranich, P. P.; Slivka, A. G.; Gomonnai, A. V.; Zahn, D. R. T.

    2017-12-01

    Real and imaginary parts of the dielectric function of TlIn(S1-xSex)2 (x = 0.05, 0.08, 0.25) single crystals were determined in the spectral range from 1 to 5 eV within a temperature interval 140-293 K from spectroscopic ellipsometry measurements. The energies of interband transitions (critical points) of the TlIn(S1-xSex)2 crystals were obtained from the second derivative of the real and imaginary parts of dielectric function. Structural phase transitions are behind the observed change of electronic band structure.

  20. Magnetic properties of quadruple perovskite solid solutions Ca{sub 1x}Y{sub x}Cu{sub 3}Fe{sub 4}O{sub 12} and Y{sub 1y}Ce{sub x}Cu{sub 3}Fe{sub 4}O{sub 12}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murakami, Makoto; Mori, Shigeo; Yamada, Ikuya, E-mail: i-yamada@21c.osakafu-u.ac.jp

    Magnetic properties of the quadruple perovskite solid solutions Ca{sub 1x}Y{sub x}Cu{sub 3}Fe{sub 4}O{sub 12} and Y{sub 1y}Ce{sub y}Cu{sub 3}Fe{sub 4}O{sub 12} are investigated. Ca{sub 1x}Y{sub x}Cu{sub 3}Fe{sub 4}O{sub 12} shows continuous increase in the ferromagnetic transition temperature as x increases. Y{sub 1y}Ce{sub y}Cu{sub 3}Fe{sub 4}O{sub 12} exhibits a ferromagnetic-antiferromagnetic transition in the vicinity of y = 0.5. These observations demonstrate the electron doping effect on magnetic properties of charge-disproportionated ACu{sub 3}Fe{sub 4}O{sub 12} phases.

  1. Luminescence properties and scintillation response in Ce3+-doped Y2Gd1Al5-xGaxO12 (x = 2, 3, 4) single crystals

    NASA Astrophysics Data System (ADS)

    Chewpraditkul, Warut; Pánek, Dalibor; Brůža, Petr; Chewpraditkul, Weerapong; Wanarak, Chalerm; Pattanaboonmee, Nakarin; Babin, Vladimir; Bartosiewicz, Karol; Kamada, Kei; Yoshikawa, Akira; Nikl, Martin

    2014-08-01

    The compositional dependence of luminescence properties and scintillation response were investigated in Ce3+-doped Y2Gd1Al5-xGaxO12 (x = 2, 3, 4) single crystals. The Gd3+ → Ce3+ energy transfer was evidenced by photoluminescence excitation spectra of Ce3+ emission. With increasing Ga content in the garnet host, the Ce3+ luminescence from the lowest 5d level (5d1) is shifted toward higher energy due to the decrease in the crystal field splitting of the 5d levels. Light yield (LY) and its dependence on the amplifier shaping time were measured under excitation with γ-rays. High LY value of ˜38 000 ph/MeV was obtained for a Y2Gd1Al3Ga2O12:Ce sample. Scintillation decay was measured with an extended dynamical and temporal scale under the nanosecond pulse soft X-ray excitation. The decrease of both LY value and relative contribution of slower decay component in the scintillation response was observed with increasing Ga content in the garnet host.

  2. Microscopic coexistence of magnetism and superconductivity in charge-compensated Ba1-xKx(Fe1-yCoy)2As2

    NASA Astrophysics Data System (ADS)

    Goltz, Til; Zinth, Veronika; Johrendt, Dirk; Rosner, Helge; Pascua, Gwendolyne; Luetkens, Hubertus; Materne, Philipp; Klauss, Hans-Henning

    2014-04-01

    We present a detailed investigation of the electronic phase diagram of effectively charge compensated Ba1-xKx(Fe1-yCoy)2As2 with x /2y. Our experimental study by means of x-ray diffraction, Mössbauer spectroscopy, muon spin relaxation and ac-susceptibility measurements on polycrystalline samples is complemented by density functional electronic structure calculations. For low substitution levels of x /2≈y≤0.13, the system displays an orthorhombically distorted and antiferromagnetically ordered ground state. The low-temperature structural and magnetic order parameters are successively reduced with increasing substitution level. We observe a linear relationship between the structural and the magnetic order parameter as a function of temperature and substitution level for x /2≈y≤0.13. At intermediate substitution levels in the range between 0.13 and 0.19, we find superconductivity with a maximum Tc of 15 K coexisting with static magnetic order on a microscopic length scale. For higher substitution levels x /2≈y≥0.25, a tetragonal nonmagnetic ground state is observed. Our DFT calculations yield a significant reduction of the Fe 3d density of states at the Fermi energy and a strong suppression of the ordered magnetic moment in excellent agreement with experimental results. The appearance of superconductivity within the antiferromagnetic state can by explained by the introduction of disorder due to nonmagnetic impurities to a system with a constant charge carrier density.

  3. Assessing the putative roles of X-autosome and X-Y interactions in hybrid male sterility of the Drosophila bipectinata species complex.

    PubMed

    Mishra, Paras Kumar; Singh, Bashisth Narayan

    2007-07-01

    Interspecific F1 hybrid males of the Drosophila bipectinata species complex are sterile, while females are fertile, following Haldane's rule. A backcross scheme involving a single recessive visible marker on the X chromosome has been used to assess the putative roles of X-autosome and X-Y interactions in hybrid male sterility in the D. bipectinata species complex. The results suggest that X-Y interactions are playing the major role in hybrid male sterility in the crosses D. bipectinata x D. parabipectinata and D. bipectinata x D. pseudoananassae, while X-autosome interactions are largely involved in hybrid male sterility in the crosses D. malerkotliana x D. bipectinata and D. malerkotliana x D. parabipectinata. However, by using this single marker it is not possible to rule out the involvement of autosome-autosome interactions in hybrid male sterility. These findings also lend further support to the phylogenetic relationships among 4 species of the D. bipectinata complex.

  4. Tunable thermodynamic activity of La x Sr1-x Mn y Al1-y O3-δ (0 ≤ x1, 0 ≤ y1) perovskites for solar thermochemical fuel synthesis.

    PubMed

    Ezbiri, M; Takacs, M; Theiler, D; Michalsky, R; Steinfeld, A

    2017-02-28

    Nonstoichiometric metal oxides with variable valence are attractive redox materials for thermochemical and electrochemical fuel processing. To guide the design of advanced redox materials for solar-driven splitting of CO 2 and/or H 2 O to produce CO and/or H 2 (syngas), we investigate the equilibrium thermodynamics of the La x Sr 1- x Mn y Al 1- y O 3- δ perovskite family (0 ≤ x1, 0 ≤ y1) and La 0.6 Ca 0.4 Mn 0.8 Al 0.2 O 3- δ , and compare them to those of CeO 2 as the baseline. Oxygen nonstoichiometry measurements from 1573 to 1773 K and from 0.206 to 180 mbar O 2 show a tunable reduction extent, increasing with increasing Sr content. Maximal nonstoichiometry of 0.32 is established with La 0.2 Sr 0.8 Mn 0.8 Al 0.2 O 3- δ at 1773 K and 2.37 mbar O 2 . As a trend, we find that oxygen capacities are most sensitive to the A-cation composition. Partial molar enthalpy, entropy and Gibbs free energy changes for oxide reduction are extracted from the experimental data using defect models for Mn 4+ /Mn 3+ and Mn 3+ /Mn 2+ redox couples. We find that perovskites exhibit typically decreasing enthalpy changes with increasing nonstoichiometries. This desirable characteristic is most pronounced by La 0.6 Sr 0.4 Mn 0.4 Al 0.6 O 3- δ , rendering it attractive for CO 2 and H 2 O splitting. Generally, perovskites show lower enthalpy and entropy changes than ceria, resulting in more favorable reduction but less favorable oxidation equilibria. The energy penalties due to larger temperature swings and excess oxidants are discussed in particular. Using electronic structure theory, we conclude with a practical methodology estimating thermodynamic activity to rationally design perovskites with variable stoichiometry and valence.

  5. Ancient Male Recombination Shaped Genetic Diversity of Neo-Y Chromosome in Drosophila albomicans.

    PubMed

    Satomura, Kazuhiro; Tamura, Koichiro

    2016-02-01

    Researchers studying Y chromosome evolution have drawn attention to neo-Y chromosomes in Drosophila species due to their resembling the initial stage of Y chromosome evolution. In the studies of neo-Y chromosome of Drosophila miranda, the extremely low genetic diversity observed suggested various modes of natural selection acting on the nonrecombining genome. However, alternative possibility may come from its peculiar origin from a single chromosomal fusion event with male achiasmy, which potentially caused and maintained the low genetic diversity of the neo-Y chromosome. Here, we report a real case where a neo-Y chromosome is in transition from an autosome to a typical Y chromosome. The neo-Y chromosome of Drosophila albomicans harbored a rich genetic diversity comparable to its gametologous neo-X chromosome and an autosome in the same genome. Analyzing sequence variations in 53 genes and measuring recombination rates between pairs of loci by cross experiments, we elucidated the evolutionary scenario of the neo-Y chromosome of D. albomicans having high genetic diversity without assuming selective force, i.e., it originated from a single chromosomal fusion event, experienced meiotic recombination during the initial stage of evolution and diverged from neo-X chromosome by the suppression of recombination tens or a few hundreds of thousand years ago. Consequently, the observed high genetic diversity on the neo-Y chromosome suggested a strong effect of meiotic recombination to introduce genetic variations into the newly arisen sex chromosome. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. 45,X/47,XXX/47,XX, del(Y)(p?)/46,XX mosaicism causing true hermaphroditism.

    PubMed

    Nieto, Karem; Peña, Rocío; Palma, Icela; Dorantes, Luis M; Eraña, Luis; Alvarez, Rebeca; García-Cavazos, Ricardo; Kofman-Alfaro, Susana; Queipo, Gloria

    2004-10-15

    Sex differentiation in humans depends on the presence of the Y-linked gene SRY, which is activated in the pre-Sertoli cells of the developing gonadal primordium to trigger testicular differentiation. Occasionally testicular formation can take place in subjects lacking a Y chromosome resulting in a 46,XX sex reversal condition. True hermaphroditism (TH) is a rare form of intersexuality characterized by the presence of testicular and ovarian tissue in the same individual. Genetic heterogeneity has been proposed as a cause of dual gonadal development in some cases and recently, hidden mosaicism was reported to cause TH in some 46,XX SRY negative patients. Here we report a TH case in which hidden mosaicism for the Y and X chromosome was detected by PCR and FISH in peripheral blood and gonadal tissue, supporting the fact that mosaicism may cause TH and that molecular analysis of gonadal tissue should be performed in all 46,XX cases.

  7. Sol-gel synthesis of red-phosphors [Na xGd 1-x/3-zEu z]Mo yW 1-yO 4 powers and luminescence properties

    NASA Astrophysics Data System (ADS)

    Cao, Fa-Bin; Li, Liao-Sha; Tian, Yan-Wen; Gao, Zhi-Fang; Chen, Yong-Jie; Xiao, Lin-Jiu; Wu, Xing-Rong

    2011-04-01

    In this work, we report on the sol-gel synthesis of red-phosphors [Na xGd 1-x/3-zEu z]Mo yW 1-yO 4 powders doped with several dopants and its luminescence properties at room temperature. X-ray diffraction patters indicated that red-phosphors powders present tetragonal symmetry and cubic structure. The red-phosphors [Na xGd 1-x/3-zEu z]Mo yW 1-yO 4 powders doped exhibit characteristic of a ultraviolet visible-light emission diode. The SEM images for [ NaGdEu0.043+]Mo 0.4W 0.6O 4 phosphor exhibits irregular morphology and cottonlike shape. The size of the particles is estimated to be about 1 μm. Luminescence properties showed that the maximum emission in red region lies in the arrange of 613 nm and 617 nm.

  8. Skewed X-chromosome inactivation in women affected by Alzheimer's disease.

    PubMed

    Bajic, Vladan; Mandusic, Vesna; Stefanova, Elka; Bozovic, Ana; Davidovic, Radoslav; Zivkovic, Lada; Cabarkapa, Andrea; Spremo-Potparevic, Biljana

    2015-01-01

    X-chromosome instability has been a long established feature in Alzheimer's disease (AD). Premature centromere division and aneuploidy of the X-chromosome has been found in peripheral blood lymphocytes and neuronal tissue in female AD patients. Interestingly, only one chromosome of the X pair has been affected. These results raised a question, "Is the X-chromosome inactivation pattern altered in peripheral blood lymphocytes of women affected by AD?" To address this question, we analyzed the methylation status of androgen receptor promoter which may show us any deviation from the 50 : 50% X inactivation status in peripheral blood lymphocytes of women with AD. Our results showed skewed inactivation patterns (>90%). These findings suggest that an epigenetic alteration on the inactivation centers of the X-chromosome (or skewing) relates not only to aging, by might be a novel property that could account for the higher incidence of AD in women.

  9. Molecular mapping of chromosomes 17 and X. Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barker, D.F.

    1991-01-15

    Progress toward the construction of high density genetic maps of chromosomes 17 and X has been made by isolating and characterizing a relatively large set of polymorphic probes for each chromosome and using these probes to construct genetic maps. We have mapped the same polymorphic probes against a series of chromosome breakpoints on X and 17. The probes could be assigned to over 30 physical intervals on the X chromosome and 7 intervals on 17. In many cases, this process resulted in improved characterization of the relative locations of the breakpoints with respect to each other and the definition ofmore » new physical intervals. The strategy for isolation of the polymorphic clones utilized chromosome specific libraries of 1--15 kb segments from each of the two chromosomes. From these libraries, clones were screened for those detecting restriction fragment length polymorphisms. The markers were further characterized, the chromosomal assignments confirmed and in most cases segments of the original probes were subcloned into plasmids to produce probes with improved signal to noise ratios for use in the genetic marker studies. The linkage studies utilize the CEPH reference families and other well-characterized families in our collection which have been used for genetic disease linkage work. Preliminary maps and maps of portions of specific regions of 17 and X are provided. We have nearly completed a map of the 1 megabase Mycoplasma arthritidis genome by applying these techniques to a lambda phage library of its genome. We have found bit mapping to be an efficient means to organize a contiguous set of overlapping@ clones from a larger genome.« less

  10. Origin and domestication of papaya Yh chromosome

    USDA-ARS?s Scientific Manuscript database

    Sex in papaya is controlled by a pair of nascent sex chromosomes. Females are XX, and two slightly different Y chromosomes distinguish males (XY) and hermaphrodites (XYh). The hermaphrodite-specific region of the Yh chromosome (HSY) and its X chromosome counterpart were sequenced and analyzed previo...

  11. Proechimys (Rodentia, Echimyidae): characterization and taxonomic considerations of a form with a very low diploid number and a multiple sex chromosome system

    PubMed Central

    2013-01-01

    Background Proechimys is the most diverse genus in family Echimyidae, comprising 25 species (two of which are polytypic) and 39 taxa. Despite the numerous forms of this rodent and their abundance in nature, there are many taxonomic problems due to phenotypic similarities within the genus and high intraspecific variation. Extensive karyotypic variation has been noted, however, with diploid numbers (2n) ranging from 14 to 62 chromosomes. Some heteromorphism can be found, and 57 different karyotypes have been described to date. Results In the present work, we describe a cytotype with a very low 2n. Specimens of Proechimys cf. longicaudatus were collected from two different places in northern Mato Grosso state, Brazil (12°54″S, 52°22″W and 9°51′17″S, 58°14′53″W). The females and males had 16 and 17 chromosomes, respectively; all chromosomes were acrocentric, with the exception of the X chromosome, which was bi-armed. The sex chromosome system was found to be XY1Y2, originating from a Robertsonian rearrangement involving the X and a large acrocentric autosome. Females had two Neo-X chromosomes, and males had one Neo-X and two Y chromosomes. NOR staining was found in the interstitial region of one autosomal pair. Conclusions Comparison of this karyotype with those described in the literature revealed that Proechimys with similar karyotypes had previously been collected from nearby localities. We therefore suggest that this Proechimys belongs to a different taxon, and is either a new species or one that requires reassessment. PMID:23496787

  12. Measurement and analysis of electronic energy transfer between Tb 3+ and Eu 3+ ions in Cs 2NaY 1-x-y Tb xEu yCl 6

    NASA Astrophysics Data System (ADS)

    Moran, Diane M.; May, P. Stanley; Richardson, F. S.

    1994-08-01

    Electronic energy-transfer processes between Tb 3+5D 4) and Eu 3+ ( 7F 0, 7F 1) ions in crystalline Cs 2NaY 1-x-yTb xEu yCl 6 compounds are examined over a wide range of relative Tb 3+ and Eu 3+ concentrations (at sample temperature of 77 and 295 K). In these systems, the Tb 3+ and Eu 3+ ions are located at centrosymmetric (O h) sites surrounded by six Cl - ions, and the minimum distance between these sites is ≈ 7.6 Å. The host lattice has a cubic structure (space group O h5-Fm3m), and the phonon spectrum of this lattice has a cut-off frequency of ≈ 300 cm -1. The optical spectra of Tb 3+ and Eu 3+ in Cs 2NaYCl 6 exhibit relatively sparse line structures, consisting almost entirely of magnetic-dipole origin lines and one-phonon-assisted electric-dipole vibronic lines that reflect O h selection rules and have relatively low oscillator strenghts. Overlap between Tb 3+ ( 5D 4) emission and Eu 3+ ( 7F 0, 7F 1) absorption spectra occurs only within the Tb 3+ ( 5D 4 → 7 F 4 and Eu 3+ ( 7F 0, 7F 1 → 5D 0 transition regions, and resonances between individual lines in these regions are used to identify possible pathways for Tb 3+ ( 5D 4)-to-Eu 3+ ( 7F 0, 7F 1) energy transfer. Rates of energy transfer are determined from time-resolved Tb 3+ ( 5D 4) luminescence intersity measurements, analyzed in terms of two different models for representing donor (Tb 3+)-acceptor (Eu 3+) site distributions in Cs 2NaY 1-x-yTb xEu yCl 6 systems. In one model, donor-accepator site distances are represented by a continuous radial distribution function, whereas in the second model, these distances are represented by a discrete distribution function. Both models are used to analyze donor luminescence decay data in terms of rate parameters that reflect specific mechanistic contributions to electronic energy transfer. Both electron-exchange and multipole-multipole mechanisms are considered in the analyses. Results from these analyses, combined with spectral overlap considerations and

  13. Influence of Sn on the thermoelectric properties of (Bi{sub x}Sb{sub 1-x}){sub 2}Te{sub 3} single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulbachinskii, V.A., E-mail: kulb@mig.phys.msu.ru; Kytin, V.G.; Kudryashov, A.A.

    2012-09-15

    The influence of tin on the thermoelectric properties of p-(Bi{sub x}Sb{sub 1-x}){sub 2}Te{sub 3} single crystals (x=0; 0.25; 0.5) has been investigated. The temperature dependence of the Seebeck coefficient S, the electrical conductivity {sigma}, the heat conductivity k and the thermoelectric figure of merit of p-(Bi{sub x}Sb{sub 1-x}){sub 2}Te{sub 3} single crystals were measured in the temperature range 7-300 K. By an increase the Sn content, the hole concentration increases in p-(Bi{sub x}Sb{sub 1-x}){sub 2-y}Sn{sub y}Te{sub 3}. The heat conductivity k of the p-(Bi{sub x}Sb{sub 1-x}){sub 2-y}Sn{sub y}Te{sub 3} crystals decreases due to the Sn doping, while the electrical conductivitymore » {sigma} increases in the temperature interval about 200« less

  14. Vortex pinning and irreversibility fields in FeS1-xSex (x = 0, 0.06)

    NASA Astrophysics Data System (ADS)

    Wang, Aifeng; Petrovic, C.

    2017-06-01

    We report strong vortex pinning and large irreversibility fields in single crystals of tetragonal FeS1-xSex (x = 0, 0.06). Vortex dynamics is characterized by crossover in field dependence of the depinning energy U0, indicative of single flux surface pinning to the region of collective flux pinning on point-like defects. The close proximity of the irreversibility lines to the upper critical field (Hc2) is consistent with strong pinning in FeS and FeS0.94Se0.06, pointing that new materials with building-blocks of FeS4 tetrahedra are likely to host high critical currents.

  15. Purifying Selection Maintains Dosage-Sensitive Genes during Degeneration of the Threespine Stickleback Y Chromosome

    PubMed Central

    White, Michael A.; Kitano, Jun; Peichel, Catherine L.

    2015-01-01

    Sex chromosomes are subject to unique evolutionary forces that cause suppression of recombination, leading to sequence degeneration and the formation of heteromorphic chromosome pairs (i.e., XY or ZW). Although progress has been made in characterizing the outcomes of these evolutionary processes on vertebrate sex chromosomes, it is still unclear how recombination suppression and sequence divergence typically occur and how gene dosage imbalances are resolved in the heterogametic sex. The threespine stickleback fish (Gasterosteus aculeatus) is a powerful model system to explore vertebrate sex chromosome evolution, as it possesses an XY sex chromosome pair at relatively early stages of differentiation. Using a combination of whole-genome and transcriptome sequencing, we characterized sequence evolution and gene expression across the sex chromosomes. We uncovered two distinct evolutionary strata that correspond with known structural rearrangements on the Y chromosome. In the oldest stratum, only a handful of genes remain, and these genes are under strong purifying selection. By comparing sex-linked gene expression with expression of autosomal orthologs in an outgroup, we show that dosage compensation has not evolved in threespine sticklebacks through upregulation of the X chromosome in males. Instead, in the oldest stratum, the genes that still possess a Y chromosome allele are enriched for genes predicted to be dosage sensitive in mammals and yeast. Our results suggest that dosage imbalances may have been avoided at haploinsufficient genes by retaining function of the Y chromosome allele through strong purifying selection. PMID:25818858

  16. Surprising loss of three-dimensionality in low-energy spin correlations on approaching superconductivity in Fe1 +yTe1 -xSex

    NASA Astrophysics Data System (ADS)

    Xu, Zhijun; Schneeloch, J. A.; Wen, Jinsheng; Winn, B. L.; Granroth, G. E.; Zhao, Yang; Gu, Genda; Zaliznyak, Igor; Tranquada, J. M.; Birgeneau, R. J.; Xu, Guangyong

    2017-10-01

    We report inelastic neutron scattering measurements of low-energy (ℏ ω ≲10 meV) magnetic excitations in the "11" system Fe1 +yTe1 -xSex . The spin correlations are two-dimensional (2D) in the superconducting samples at low temperature, but appear much more three-dimensional (3D) when the temperature rises well above Tc˜15 K, with a clear increase of the (dynamic) spin correlation length perpendicular to the Fe planes. This behavior is extremely unusual; typically, the suppression of thermal fluctuations at low temperature would favor the enhancement of 3D correlations, or even ordering, and the reversion to 2D cannot be naturally explained when only the spin degree of freedom is considered. Our results suggest that the low temperature physics in the 11 system, in particular the evolution of low-energy spin excitations towards superconducting pairing, intrinsically involves changes in orbital correlations.

  17. Magnetic properties of bulk, and rapidly solidified nanostructured (Nd 1-xCe x) 2Fe 14-yCo yB ribbons

    DOE PAGES

    Pathak, Arjun K.; Khan, M.; Gschneidner, Jr., K. A.; ...

    2015-11-06

    Magnetic properties of Ce and Co co-doped (Nd 1-xCe x) 2Fe 14-yCo yB compounds have been investigated both in bulk polycrystalline and rapidly solidified nanostructured ribbon forms. For certain Ce concentrations the materials exhibit spin re-orientation transitions below 140 K. The Curie temperatures, saturation magnetizations, and other magnetic properties relevant for applications as permanent magnets are controlled by Ce and Co substitutions for Nd and Fe, respectively. Most importantly, the results show that Ce, Co co-doped compounds are excellent replacements for several Dy-based high performance permanent magnets (dysprosium is one of the critical elements and is, therefore, in short supply).more » As a result, the high temperature (>375 K) magnetic properties for Nd–Ce–Fe–Co–B based alloys show promise not only as a replacement for Dy-doped Nd 2Fe 14B permanent magnets, but the new alloys also require significantly lower amounts of Nd, which too is the critical element that can be replaced by a more abundant Ce.« less

  18. Preparation of Single-Layer MoS 2xSe 2(1-x) and Mo xW 1-xS 2 Nanosheets with High-Concentration Metallic 1T Phase

    DOE PAGES

    Tan, Chaoliang; Zhao, Wei; Chaturvedi, Apoorva; ...

    2016-02-24

    The high-yield and scalable production of single-layer ternary transition metal dichalcogenide nanosheets with ≈66% of metallic 1T phase, including MoS 2xSe 2(1-x) and Mo xW 1-xS 2 is here achieved via electrochemical Li-intercalation and the exfoliation method. Thin film MoS 2xSe 2(1-x) nanosheets drop-cast on a fluorine-doped tin oxide substrate are used as an efficient electrocatalyst on the counter electrode for the tri-iodide reduction in a dye-sensitized solar cell.

  19. X-inactivation and X-reactivation: epigenetic hallmarks of mammalian reproduction and pluripotent stem cells.

    PubMed

    Payer, Bernhard; Lee, Jeannie T; Namekawa, Satoshi H

    2011-08-01

    X-chromosome inactivation is an epigenetic hallmark of mammalian development. Chromosome-wide regulation of the X-chromosome is essential in embryonic and germ cell development. In the male germline, the X-chromosome goes through meiotic sex chromosome inactivation, and the chromosome-wide silencing is maintained from meiosis into spermatids before the transmission to female embryos. In early female mouse embryos, X-inactivation is imprinted to occur on the paternal X-chromosome, representing the epigenetic programs acquired in both parental germlines. Recent advances revealed that the inactive X-chromosome in both females and males can be dissected into two elements: repeat elements versus unique coding genes. The inactive paternal X in female preimplantation embryos is reactivated in the inner cell mass of blastocysts in order to subsequently allow the random form of X-inactivation in the female embryo, by which both Xs have an equal chance of being inactivated. X-chromosome reactivation is regulated by pluripotency factors and also occurs in early female germ cells and in pluripotent stem cells, where X-reactivation is a stringent marker of naive ground state pluripotency. Here we summarize recent progress in the study of X-inactivation and X-reactivation during mammalian reproduction and development as well as in pluripotent stem cells.

  20. Maternal mosaicism is a significant contributor to discordant sex chromosomal aneuploidies associated with noninvasive prenatal testing.

    PubMed

    Wang, Yanlin; Chen, Yan; Tian, Feng; Zhang, Jianguang; Song, Zhuo; Wu, Yi; Han, Xu; Hu, Wenjing; Ma, Duan; Cram, David; Cheng, Weiwei

    2014-01-01

    In the human fetus, sex chromosome aneuploidies (SCAs) are as prevalent as the common autosomal trisomies 21, 18, and 13. Currently, most noninvasive prenatal tests (NIPTs) offer screening only for chromosomes 21, 18, and 13, because the sensitivity and specificity are markedly higher than for the sex chromosomes. Limited studies suggest that the reduced accuracy associated with detecting SCAs is due to confined placental, placental, or true fetal mosaicism. We hypothesized that an altered maternal karyotype may also be an important contributor to discordant SCA NIPT results. We developed a rapid karyotyping method that uses massively parallel sequencing to measure the degree of chromosome mosaicism. The method was validated with DNA models mimicking XXX and XO mosaicism and then applied to maternal white blood cell (WBC) DNA from patients with discordant SCA NIPT results. Sequencing karyotyping detected chromosome X (ChrX) mosaicism as low as 5%, allowing an accurate assignment of the maternal X karyotype. In a prospective NIPT study, we showed that 16 (8.6%) of 181 positive SCAs were due to an abnormal maternal ChrX karyotype that masked the true contribution of the fetal ChrX DNA fraction. The accuracy of NIPT for ChrX and ChrY can be improved substantially by integrating the results of maternal-plasma sequencing with those for maternal-WBC sequencing. The relatively high frequency of maternal mosaicism warrants mandatory WBC testing in both shotgun sequencing- and single-nucleotide polymorphism-based clinical NIPT after the finding of a potential fetal SCA.

  1. Evolutionary rate of a gene affected by chromosomal position.

    PubMed

    Perry, J; Ashworth, A

    1999-09-09

    Genes evolve at different rates depending on the strength of selective pressure to maintain their function. Chromosomal position can also have an influence [1] [2]. The pseudoautosomal region (PAR) of mammalian sex chromosomes is a small region of sequence identity that is the site of an obligatory pairing and recombination event between the X and Y chromosomes during male meiosis [3] [4] [5] [6]. During female meiosis, X chromosomes can pair and recombine along their entire length. Recombination in the PAR is therefore approximately 10 times greater in male meiosis compared with female meiosis [4] [5] [6]. The gene Fxy (also known as MID1 [7]) spans the pseudoautosomal boundary (PAB) in the laboratory mouse (Mus musculus domesticus, C57BL/6) such that the 5' three exons of the gene are located on the X chromosome but the seven exons encoding the carboxy-terminal two-thirds of the protein are located within the PAR and are therefore present on both the X and Y chromosomes [8]. In humans [7] [9], the rat, and the wild mouse species Mus spretus, the gene is entirely X-unique. Here, we report that the rate of sequence divergence of the 3' end of the Fxy gene is much higher (estimated at 170-fold higher for synonymous sites) when pseudoautosomal (present on both the X and Y chromosomes) than when X-unique. Thus, chromosomal position can directly affect the rate of evolution of a gene. This finding also provides support for the suggestion that regions of the genome with a high recombination frequency, such as the PAR, may have an intrinsically elevated rate of sequence divergence.

  2. Composition dependence of superconductivity in YBa2(Cu(3-x)Al(x))O(y)

    NASA Technical Reports Server (NTRS)

    Bansal, N. P.

    1993-01-01

    Eleven different compositions in the system YBa2(Cu(3-x)Al(x))O(y) (x = 0 to 0.3) have been synthesized and characterized by electrical resistivity measurements, powder X-ray diffraction, and scanning electron microscopy. The superconducting transition temperature T sub c (onset) was almost unaffected by the presence of alumina due to its limited solubility in YBa2Cu3O(7-x). However, T sub c(R = 0) gradually decreased, and the resistive tails became longer with increasing Al2O3 concentration. This was probably due to formation of BaAl2O4 and other impurity phases from chemical decomposition of the superconducting phase by reaction with Al2O3.

  3. Social Function in Multiple X and Y Chromosome Disorders: XXY, XYY, XXYY, XXXY

    PubMed Central

    Visootsak, Jeannie; Graham, John M.

    2014-01-01

    Klinefelter syndrome (47,XXY) was initially described in the context of its endocrinologic and physical features; however, subsequent studies have revealed specific impairments in verbal skills and social functioning. Males with sex chromosomal aneuploidies are known to have variability in their developmental profile with the majority presenting with expressive language deficits. As a consequence of language delays, they have an increased likelihood of language-based learning disabilities and social-emotional problems that may persist through adulthood. Studies on males with 47,XXY have revealed unique behavioral and social profiles with possible vulnerability to autistic traits. The prevalence of males with more than one extra sex chromosome (e.g., 48,XXYY and 48,XXXY) and an additional Y (e.g., 47,XYY) is less common, but it is important to understand their social functioning as it provides insight into treatment implications. PMID:20014367

  4. X-chromosome inactivation in development and cancer.

    PubMed

    Chaligné, Ronan; Heard, Edith

    2014-08-01

    X-chromosome inactivation represents an epigenetics paradigm and a powerful model system of facultative heterochromatin formation triggered by a non-coding RNA, Xist, during development. Once established, the inactive state of the Xi is highly stable in somatic cells, thanks to a combination of chromatin associated proteins, DNA methylation and nuclear organization. However, sporadic reactivation of X-linked genes has been reported during ageing and in transformed cells and disappearance of the Barr body is frequently observed in cancer cells. In this review we summarise current knowledge on the epigenetic changes that accompany X inactivation and discuss the extent to which the inactive X chromosome may be epigenetically or genetically perturbed in breast cancer. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  5. Spread of X-chromosome inactivation into autosomal sequences: role for DNA elements, chromatin features and chromosomal domains

    PubMed Central

    Cotton, Allison M.; Chen, Chih-Yu; Lam, Lucia L.; Wasserman, Wyeth W.; Kobor, Michael S.; Brown, Carolyn J.

    2014-01-01

    X-chromosome inactivation results in dosage equivalence between the X chromosome in males and females; however, over 15% of human X-linked genes escape silencing and these genes are enriched on the evolutionarily younger short arm of the X chromosome. The spread of inactivation onto translocated autosomal material allows the study of inactivation without the confounding evolutionary history of the X chromosome. The heterogeneity and reduced extent of silencing on autosomes are evidence for the importance of DNA elements underlying the spread of silencing. We have assessed DNA methylation in six unbalanced X-autosome translocations using the Illumina Infinium HumanMethylation450 array. Two to 42% of translocated autosomal genes showed this mark of silencing, with the highest degree of inactivation observed for trisomic autosomal regions. Generally, the extent of silencing was greatest close to the translocation breakpoint; however, silencing was detected well over 100 kb into the autosomal DNA. Alu elements were found to be enriched at autosomal genes that escaped from inactivation while L1s were enriched at subject genes. In cells without the translocation, there was enrichment of heterochromatic features such as EZH2 and H3K27me3 for those genes that become silenced when translocated, suggesting that underlying chromatin structure predisposes genes towards silencing. Additionally, the analysis of topological domains indicated physical clustering of autosomal genes of common inactivation status. Overall, our analysis indicated a complex interaction between DNA sequence, chromatin features and the three-dimensional structure of the chromosome. PMID:24158853

  6. Digital transcriptome analysis of putative sex-determination genes in papaya (Carica papaya).

    PubMed

    Urasaki, Naoya; Tarora, Kazuhiko; Shudo, Ayano; Ueno, Hiroki; Tamaki, Moritoshi; Miyagi, Norimichi; Adaniya, Shinichi; Matsumura, Hideo

    2012-01-01

    Papaya (Carica papaya) is a trioecious plant species that has male, female and hermaphrodite flowers on different plants. The primitive sex chromosomes genetically determine the sex of the papaya. Although draft sequences of the papaya genome are already available, the genes for sex determination have not been identified, likely due to the complicated structure of its sex-chromosome sequences. To identify the candidate genes for sex determination, we conducted a transcriptome analysis of flower samples from male, female and hermaphrodite plants using high-throughput SuperSAGE for digital gene expression analysis. Among the short sequence tags obtained from the transcripts, 312 unique tags were specifically mapped to the primitive sex chromosome (X or Y(h)) sequences. An annotation analysis revealed that retroelements are the most abundant sequences observed in the genes corresponding to these tags. The majority of tags on the sex chromosomes were located on the X chromosome, and only 30 tags were commonly mapped to both the X and Y(h) chromosome, implying a loss of many genes on the Y(h) chromosome. Nevertheless, candidate Y(h) chromosome-specific female determination genes, including a MADS-box gene, were identified. Information on these sex chromosome-specific expressed genes will help elucidating sex determination in the papaya.

  7. Structural aspects of the inactive X chromosome.

    PubMed

    Bonora, Giancarlo; Disteche, Christine M

    2017-11-05

    A striking difference between male and female nuclei was recognized early on by the presence of a condensed chromatin body only in female cells. Mary Lyon proposed that X inactivation or silencing of one X chromosome at random in females caused this structural difference. Subsequent studies have shown that the inactive X chromosome (Xi) does indeed have a very distinctive structure compared to its active counterpart and all autosomes in female mammals. In this review, we will recap the discovery of this fascinating biological phenomenon and seminal studies in the field. We will summarize imaging studies using traditional microscopy and super-resolution technology, which revealed uneven compaction of the Xi. We will then discuss recent findings based on high-throughput sequencing techniques, which uncovered the distinct three-dimensional bipartite configuration of the Xi and the role of specific long non-coding RNAs in eliciting and maintaining this structure. The relative position of specific genomic elements, including genes that escape X inactivation, repeat elements and chromatin features, will be reviewed. Finally, we will discuss the position of the Xi, either near the nuclear periphery or the nucleolus, and the elements implicated in this positioning.This article is part of the themed issue 'X-chromosome inactivation: a tribute to Mary Lyon'. © 2017 The Authors.

  8. The trans-activator RNF12 and cis-acting elements effectuate X chromosome inactivation independent of X-pairing.

    PubMed

    Barakat, Tahsin Stefan; Loos, Friedemann; van Staveren, Selma; Myronova, Elvira; Ghazvini, Mehrnaz; Grootegoed, J Anton; Gribnau, Joost

    2014-03-20

    X chromosome inactivation (XCI) in female placental mammals is a vital mechanism for dosage compensation between X-linked and autosomal genes. XCI starts with activation of Xist and silencing of the negative regulator Tsix, followed by cis spreading of Xist RNA over the future inactive X chromosome (Xi). Here, we show that XCI does not require physical contact between the two X chromosomes (X-pairing) but is regulated by trans-acting diffusible factors. We found that the X-encoded trans-acting and dose-dependent XCI-activator RNF12 acts in concert with the cis-regulatory region containing Jpx, Ftx, and Xpr to activate Xist and to overcome repression by Tsix. RNF12 acts at two subsequent steps; two active copies of Rnf12 drive initiation of XCI, and one copy needs to remain active to maintain XCI toward establishment of the Xi. This two-step mechanism ensures that XCI is very robust and fine-tuned, preventing XCI of both X chromosomes. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Detection of Turner syndrome using X-chromosome inactivation specific differentially methylated CpG sites: A pilot study.

    PubMed

    Zhang, Qiang; Guo, Xiaohong; Tian, Tian; Wang, Teng; Li, Qiaoli; Wang, Lei; Liu, Yun; Xing, Qinghe; He, Lin; Zhao, Xinzhi

    2017-05-01

    Early diagnosis of Turner syndrome (TS) may improve preventive measures and treatment. X-chromosome inactivation specific differentially methylated CpG sites (XIDMSs) that are high methylated in inactive X chromosomes (Xi) and unmethylated in active X chromosomes (Xa) may be potential makers for TS detection. The candidate XIDMSs were screened from 9 male and 12 female DNA samples with normal karyotypes using the Illumina 450k array and validated by bisulfite sequencing PCR and pyrosequencing assay. X chromosome dosage was calculated according to the methylation level of multiple XIDMSs. Overall, 108 candidate XIDMSs were screened by the 450k array. Validations indicated that XIDMSs gathered and formed the X-chromosome inactivation specific differentially methylated regions (XIDMRs). Using 3 XIDMRs at SAT1, UXT and UTP14A loci, 36 TS, 22 normal female and 6 male samples were analyzed. Methylation levels of the 20 XIDMSs in the XIDMRs could distinguish between TS and normal female DNA samples, the X chromosome dosage was consistent with karyotyping data. Analyzing samples of 2 triple X syndrome and 3 Klinefelter syndrome patients suggested that this method could be used to detect X chromosome aneuploids other than TS. XIDMSs are widely spread along the X chromosome and might be effective markers for detection of TS and other X chromosome aneuploids. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Plant sex chromosomes: lost genes with little compensation.

    PubMed

    Toups, Melissa; Veltsos, Paris; Pannell, John R

    2015-05-18

    In many animals, gene loss on Y chromosomes is compensated through altered expression of their X-chromosome homologue. Now, however, a new study in plants finds that even genes deleted from the Y show no dosage compensation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. X-derived marker chromosome in patient with mosaic Turner syndrome and Dandy-Walker syndrome: a case report.

    PubMed

    Telepova, Alena S; Romanenko, Svetlana A; Lemskaya, Natalya A; Maksimova, Yulia V; Shorina, Asia R; Yudkin, Dmitry V

    2017-01-01

    Small supernumerary marker chromosomes can be derived from autosomes and sex chromosomes and can accompany chromosome pathologies, such as Turner syndrome. Here, we present a case report of a patient with mosaic Turner syndrome and Dandy-Walker syndrome carrying a marker chromosome. We showed the presence of the marker chromosome in 33.8% of blood cells. FISH of the probe derived from the marker chromosome by microdissection revealed that it originated from the centromeric region of chromosome X. Additionally, we showed no telomeric sequences and no XIST sequence in the marker chromosome. This is the first report of these two syndromes accompanied by the presence of a marker chromosome. Marker chromosome was X-derived and originated from centromeric region. Patient has mild symptoms but there is no XIST gene in marker chromosome. CPG137. Registered 03 March 2017.

  12. Finding the factors of reduced genetic diversity on X chromosomes of Macaca fascicularis: male-driven evolution, demography, and natural selection.

    PubMed

    Osada, Naoki; Nakagome, Shigeki; Mano, Shuhei; Kameoka, Yosuke; Takahashi, Ichiro; Terao, Keiji

    2013-11-01

    The ratio of genetic diversity on X chromosomes relative to autosomes in organisms with XX/XY sex chromosomes could provide fundamental insight into the process of genome evolution. Here we report this ratio for 24 cynomolgus monkeys (Macaca fascicularis) originating in Indonesia, Malaysia, and the Philippines. The average X/A diversity ratios in these samples was 0.34 and 0.20 in the Indonesian-Malaysian and Philippine populations, respectively, considerably lower than the null expectation of 0.75. A Philippine population supposed to derive from an ancestral population by founding events showed a significantly lower ratio than the parental population, suggesting a demographic effect for the reduction. Taking sex-specific mutation rate bias and demographic effect into account, expected X/A diversity ratios generated by computer simulations roughly agreed with the observed data in the intergenic regions. In contrast, silent sites in genic regions on X chromosomes showed strong reduction in genetic diversity and the observed X/A diversity ratio in the genic regions cannot be explained by mutation rate bias and demography, indicating that natural selection also reduces the level of polymorphism near genes. Whole-genome analysis of a female cynomolgus monkey also supported the notion of stronger reduction of genetic diversity near genes on the X chromosome.

  13. Finding the Factors of Reduced Genetic Diversity on X Chromosomes of Macaca fascicularis: Male-Driven Evolution, Demography, and Natural Selection

    PubMed Central

    Osada, Naoki; Nakagome, Shigeki; Mano, Shuhei; Kameoka, Yosuke; Takahashi, Ichiro; Terao, Keiji

    2013-01-01

    The ratio of genetic diversity on X chromosomes relative to autosomes in organisms with XX/XY sex chromosomes could provide fundamental insight into the process of genome evolution. Here we report this ratio for 24 cynomolgus monkeys (Macaca fascicularis) originating in Indonesia, Malaysia, and the Philippines. The average X/A diversity ratios in these samples was 0.34 and 0.20 in the Indonesian–Malaysian and Philippine populations, respectively, considerably lower than the null expectation of 0.75. A Philippine population supposed to derive from an ancestral population by founding events showed a significantly lower ratio than the parental population, suggesting a demographic effect for the reduction. Taking sex-specific mutation rate bias and demographic effect into account, expected X/A diversity ratios generated by computer simulations roughly agreed with the observed data in the intergenic regions. In contrast, silent sites in genic regions on X chromosomes showed strong reduction in genetic diversity and the observed X/A diversity ratio in the genic regions cannot be explained by mutation rate bias and demography, indicating that natural selection also reduces the level of polymorphism near genes. Whole-genome analysis of a female cynomolgus monkey also supported the notion of stronger reduction of genetic diversity near genes on the X chromosome. PMID:24026095

  14. Identification of the facultative heterochromatic X chromosome in females of 25 rodent species.

    PubMed

    Kanda, N; Yosida, T H

    1979-01-01

    Treatment of the chromosomes of 25 rodent species with a 50 degrees C hypotonic solution and Giemsa staining permitted identification of the heterochromatic X chromosome in 24 species. With this technique, the facultative of the heterochromatic X chromosome or the facultative portion of large, composite-type X chromosoms is stained darker than the other chromosomes, allowing it to be distinguished from the homologous euchromatic X chromosome in female metaphase cells. Intense staining of the single X chromosome was not observed in male metaphase cells. It is suggested that this differential staining of one of the two X chromosomes might be due to qualitative differences in chromosomal proteins rather than to differences in the degree of chromosomal condensation or in DNA base sequence.

  15. Magnetic phase transitions and magnetic structures in RTxX2, RSn1+xGe1-x and RSn2 compounds

    NASA Astrophysics Data System (ADS)

    Gil, Alina

    2018-02-01

    The work presents the review of magnetic properties of the RTxX2, RSn1+xGe1-x and RSn2 compounds. The RTxX2 (where R - rare earth, T - 3d-metal, X - p-electron element: Si, Ge, Sn, and 1x > 0) and RSn1+xGe1-x compounds (where x ≈ 0.1) crystallize in the orthorhombic crystal structure of CeNiSi2-type and RSn2 compounds crystallize in ZrSi2-type structure. Both structures are described by the space group Cmcm. The RSn1+xGe1-x compounds seem to be interesting due to the replacement of d-metal to p-electron element. The non-stoichiometric CeNiSi2-type of RTxX2 compounds may be regarded as partially filled ZrSi2-type compounds. The transitions from paramagnetic to antiferromagnetic or ferromagnetic states are observed at low temperatures and there are lots of variants of magnetic structures ranging from simple collinear to the sine-modulated structures with commensurate or incommensurate propagation vector. The comparison of magnetic properties of these compounds may help to find answers to questions concerning mechanisms of interaction between the magnetic moments.

  16. P2X and P2Y receptors as possible targets of therapeutic manipulations in CNS illnesses.

    PubMed

    Köles, Laszlo; Furst, Susanna; Illes, Peter

    2005-03-01

    Adenine and/or uridine nucleotide-sensitive receptors are classified into two types belonging to the ligand-gated ionotropic family (P2X) and the metabotropic, G-protein-coupled family (P2Y). In humans, seven different P2X receptors (P2X(1-7)) and eight different P2Y receptors (P2Y(1), P2Y(2), P2Y(4), P2Y(6), P2Y(11-14)) have been detected hitherto. All P2 receptors are expressed in the CNS, with the preferential expression of the P2X(2), P2X(4), P2X(6) and P2Y(1) receptors in neurons. In addition to the neurotransmitter and modulator functions, neurite outgrowth, proliferation of glial cells and the expression of transmitter receptors at target cells have also been suggested to be regulated by extracellular nucleotides in the nervous system. In spite of the expanding knowledge in the purinergic research field, the present therapeutic utilization of P2 receptor ligands is mostly related to peripheral diseases such as thromboembolic disorders and cystic fibrosis. In this review we provide some evidence that P2 receptors play an important role in the regulation of CNS functions related to hippocampal activity, the mesolimbic dopaminergic system and the nociceptive system. The role of purinergic receptors located on astrocytes/microglia and implications of these receptors for neurodegenerative/neuroinflammatory disorders, CNS injury and epilepsy will be highlighted as well. (c) 2005 Prous Science. All rights reserved.

  17. Male meiosis, heterochromatin characterization and chromosomal location of rDNA in Microtomus lunifer (Berg, 1900) (Hemiptera: Reduviidae: Hammacerinae)

    PubMed Central

    Poggio, María Georgina; Bressa, María José; Papeschi, Alba Graciela

    2011-01-01

    Abstract In the present work, we analysed the male meiosis, the content and distribution of heterochromatin and the number and location of nucleolus organizing regions in Microtomus lunifer (Berg, 1900) by means of standard technique, C- and fluorescent bandings, and fluorescent in situ hybridization with an 18S rDNA probe. This species is the second one cytogenetically analysed within the Hammacerinae. Its male diploid chromosome number is 31 (2n=28+X1X2Y), including a minute pair of m-chromosomes. The diploid autosomal number and the presence of m-chromosomes are similar to those reported in Microtomus conspicillaris (Drury, 1782) (2n=28+XY). However, Microtomus lunifer has a multiple sex chromosome system X1X2Y (male) that could have originated by fragmentation of the ancestral X chromosome. Taking into account that Microtomus conspicillaris and Microtomus lunifer are the only two species within Reduviidae that possess m-chromosomes, the presence of this pair could be a synapomorphy for the species of this genus. C- and fluorescent bandings showed that the amount of heterochromatin in Microtomus lunifer was small, and only a small CMA3 bright band was observed in the largest autosomal pair at one terminal region. FISH with the 18S rDNA probe demonstrated that ribosomal genes were terminally placed on the largest autosomal pair. Our present results led us to propose that the location of rDNA genes could be associated with variants of the sex chromosome systems in relation with a kind of the sex chromosome systems within this family. Furthermore, the terminal location of NOR in the largest autosomal pair allowed us to use it as a chromosome marker and, thus, to infer that the kinetic activity of both ends is not a random process, and there is an inversion of this activity. PMID:24260616

  18. X-inactivation: Xist RNA uses chromosome contacts to coat the X.

    PubMed

    Leung, Karen N; Panning, Barbara

    2014-01-20

    The mechanisms by which Xist RNA associates with the X chromosome to mediate alterations in chromatin structure remain mysterious. Recent genome-wide Xist RNA distribution studies suggest that this long noncoding RNA uses 3-dimensional chromosome contacts to move to its sites of action. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Contrasting Patterns of Genomic Diversity Reveal Accelerated Genetic Drift but Reduced Directional Selection on X-Chromosome in Wild and Domestic Sheep Species.

    PubMed

    Chen, Ze-Hui; Zhang, Min; Lv, Feng-Hua; Ren, Xue; Li, Wen-Rong; Liu, Ming-Jun; Nam, Kiwoong; Bruford, Michael W; Li, Meng-Hua

    2018-04-01

    Analyses of genomic diversity along the X chromosome and of its correlation with autosomal diversity can facilitate understanding of evolutionary forces in shaping sex-linked genomic architecture. Strong selective sweeps and accelerated genetic drift on the X-chromosome have been inferred in primates and other model species, but no such insight has yet been gained in domestic animals compared with their wild relatives. Here, we analyzed X-chromosome variability in a large ovine data set, including a BeadChip array for 943 ewes from the world's sheep populations and 110 whole genomes of wild and domestic sheep. Analyzing whole-genome sequences, we observed a substantially reduced X-to-autosome diversity ratio (∼0.6) compared with the value expected under a neutral model (0.75). In particular, one large X-linked segment (43.05-79.25 Mb) was found to show extremely low diversity, most likely due to a high density of coding genes, featuring highly conserved regions. In general, we observed higher nucleotide diversity on the autosomes, but a flat diversity gradient in X-linked segments, as a function of increasing distance from the nearest genes, leading to a decreased X: autosome (X/A) diversity ratio and contrasting to the positive correlation detected in primates and other model animals. Our evidence suggests that accelerated genetic drift but reduced directional selection on X chromosome, as well as sex-biased demographic events, explain low X-chromosome diversity in sheep species. The distinct patterns of X-linked and X/A diversity we observed between Middle Eastern and non-Middle Eastern sheep populations can be explained by multiple migrations, selection, and admixture during the domestic sheep's recent postdomestication demographic expansion, coupled with natural selection for adaptation to new environments. In addition, we identify important novel genes involved in abnormal behavioral phenotypes, metabolism, and immunity, under selection on the sheep X-chromosome.

  20. Filipino DNA variation at 12 X-chromosome short tandem repeat markers.

    PubMed

    Salvador, Jazelyn M; Apaga, Dame Loveliness T; Delfin, Frederick C; Calacal, Gayvelline C; Dennis, Sheila Estacio; De Ungria, Maria Corazon A

    2018-06-08

    Demands for solving complex kinship scenarios where only distant relatives are available for testing have risen in the past years. In these instances, other genetic markers such as X-chromosome short tandem repeat (X-STR) markers are employed to supplement autosomal and Y-chromosomal STR DNA typing. However, prior to use, the degree of STR polymorphism in the population requires evaluation through generation of an allele or haplotype frequency population database. This population database is also used for statistical evaluation of DNA typing results. Here, we report X-STR data from 143 unrelated Filipino male individuals who were genotyped via conventional polymerase chain reaction-capillary electrophoresis (PCR-CE) using the 12 X-STR loci included in the Investigator ® Argus X-12 kit (Qiagen) and via massively parallel sequencing (MPS) of seven X-STR loci included in the ForenSeq ™ DNA Signature Prep kit of the MiSeq ® FGx ™ Forensic Genomics System (Illumina). Allele calls between PCR-CE and MPS systems were consistent (100% concordance) across seven overlapping X-STRs. Allele and haplotype frequencies and other parameters of forensic interest were calculated based on length (PCR-CE, 12 X-STRs) and sequence (MPS, seven X-STRs) variations observed in the population. Results of our study indicate that the 12 X-STRs in the PCR-CE system are highly informative for the Filipino population. MPS of seven X-STR loci identified 73 X-STR alleles compared with 55 X-STR alleles that were identified solely by length via PCR-CE. Of the 73 sequence-based alleles observed, six alleles have not been reported in the literature. The population data presented here may serve as a reference Philippine frequency database of X-STRs for forensic casework applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Identification of Y-Chromosome Sequences in Turner Syndrome.

    PubMed

    Silva-Grecco, Roseane Lopes da; Trovó-Marqui, Alessandra Bernadete; Sousa, Tiago Alves de; Croce, Lilian Da; Balarin, Marly Aparecida Spadotto

    2016-05-01

    To investigate the presence of Y-chromosome sequences and determine their frequency in patients with Turner syndrome. The study included 23 patients with Turner syndrome from Brazil, who gave written informed consent for participating in the study. Cytogenetic analyses were performed in peripheral blood lymphocytes, with 100 metaphases per patient. Genomic DNA was also extracted from peripheral blood lymphocytes, and gene sequences DYZ1, DYZ3, ZFY and SRY were amplified by Polymerase Chain Reaction. The cytogenetic analysis showed a 45,X karyotype in 9 patients (39.2 %) and a mosaic pattern in 14 (60.8 %). In 8.7 % (2 out of 23) of the patients, Y-chromosome sequences were found. This prevalence is very similar to those reported previously. The initial karyotype analysis of these patients did not reveal Y-chromosome material, but they were found positive for Y-specific sequences in the lymphocyte DNA analysis. The PCR technique showed that 2 (8.7 %) of the patients with Turner syndrome had Y-chromosome sequences, both presenting marker chromosomes on cytogenetic analysis.

  2. Crystal structure study of dielectric oxynitride perovskites La{sub 1x}Sr{sub x}TiO{sub 2+x}N{sub 1x} (x=0, 0.2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habu, Daiki; Masubuchi, Yuji; Torii, Shuki

    As is the case with SrTaO{sub 2}N, both cis-ordering of nitride anions and octahedral titling are also preferable in La{sub 1x}Sr{sub x}TiO{sub 2+x}N{sub 1x} (x=0, 0.2) oxynitride perovskites. A larger dielectric constant of ε{sub r}≈5.0×10{sup 3} was estimated for the pure oxynitride with x=0.2, compared with ε{sub r}≈750 for the product with x=0, by extrapolating the ε{sub r} values obtained from powders mixed with paraffin at various mixing ratios. The crystal structure of x=0.2 with larger tolerance factor than x=0 increased the octahedral tilting, which contributes to the increased dielectric constant. The increased dielectric constant supports the exchange mechanism formore » the dielectric property between two kinds of –Ti–N– helical coils (clockwise and anticlockwise) derived from the above cis-ordering of nitride anions. - Graphical abstract: Very large dielectric constant values were estimated for La{sub 1x}Sr{sub x}TiO{sub 2+x}N{sub 1x}; ε{sub r}≈5.0×10{sup 3} in x=0.2 and ε{sub r}≈750 in x=0. - Highlights: • Cis-configuration of nitride anions was confirmed in La{sub 1x}Sr{sub x}TiO{sub 2+x}N{sub 1x} (x=0, 0.2). • Dielectric constant values were estimated to be 750 for x=0 and 5.0×10{sup 3} for x=0.2, respectively. • The large dielectric property is to the exchange mechanism between clockwise and anticlockwise –Ti–N– coil motifs.« less

  3. Range-Wide Sex-Chromosome Sequence Similarity Supports Occasional XY Recombination in European Tree Frogs (Hyla arborea)

    PubMed Central

    Brelsford, Alan; Perrin, Nicolas

    2014-01-01

    In contrast with mammals and birds, most poikilothermic vertebrates feature structurally undifferentiated sex chromosomes, which may result either from frequent turnovers, or from occasional events of XY recombination. The latter mechanism was recently suggested to be responsible for sex-chromosome homomorphy in European tree frogs (Hyla arborea). However, no single case of male recombination has been identified in large-scale laboratory crosses, and populations from NW Europe consistently display sex-specific allelic frequencies with male-diagnostic alleles, suggesting the absence of recombination in their recent history. To address this apparent paradox, we extended the phylogeographic scope of investigations, by analyzing the sequences of three sex-linked markers throughout the whole species distribution. Refugial populations (southern Balkans and Adriatic coast) show a mix of X and Y alleles in haplotypic networks, and no more within-individual pairwise nucleotide differences in males than in females, testifying to recurrent XY recombination. In contrast, populations of NW Europe, which originated from a recent postglacial expansion, show a clear pattern of XY differentiation; the X and Y gametologs of the sex-linked gene Med15 present different alleles, likely fixed by drift on the front wave of expansions, and kept differentiated since. Our results support the view that sex-chromosome homomorphy in H. arborea is maintained by occasional or historical events of recombination; whether the frequency of these events indeed differs between populations remains to be clarified. PMID:24892652

  4. A boy with 46,X,+mar presenting gynecomastia and short stature.

    PubMed

    Kim, Ki Eun; Kim, Ye Jin; Jung, Mo Kyoung; Chae, Hyun-Wook; Kwon, Ah Reum; Lee, Woo Jung; Kim, Duk-Hee; Kim, Ho-Seong

    2017-12-01

    A 15-year-old boy was referred due to gynecomastia and short stature. He was overweight and showed the knuckle-dimple sign on the left hand, a short fourth toe on the left foot, and male external genitalia with a small phallus. His levels of estradiol and follicle-stimulating hormone were increased, and his testosterone concentration was normal. Other hormonal tests were within the normal range. Radiographs showed short fourth and fifth metacarpals and fourth metatarsal bones. The karyotype was reported as 46,X,+mar, and the marker chromosome was shown to originate from the Y chromosome, which was identified by fluorescence in situ hybridization. Polymerase chain reaction and direct sequencing were used to clarify the deleted loci of the Y chromosome by making use of Y-specific sequence-tagged sites (STSs). The sex-determining region Y and centromere were verified, and there were microdeletions on the long arm of the Y chromosome. The azoospermia factor (AZF) b region was partially deleted, and AZFa and AZFc were completely deleted. Two STS probes of sY143 and the Y chromosome RNA recognition motif in AZFb showed positive signals corresponding to Yq11.223. The karyotype of the patient was interpreted as 46,X,der(Y)del(Y)(q11.21q11.222)del(Y)(q11.23qter). Herein, we report a rare case of a boy presenting with gynecomastia and short stature with 46, X, +mar, which originated from the Y chromosome, which was identified to have Yq microdeletions.

  5. Selfish X chromosomes and speciation.

    PubMed

    Patten, Manus M

    2017-12-27

    In two papers published at about the same time almost thirty years ago, Frank (Evolution, 45, 1991a, 262) and Hurst and Pomiankowski (Genetics, 128, 1991, 841) independently suggested that divergence of meiotic drive systems-comprising genes that cheat meiosis and genes that suppress this cheating-might provide a general explanation for Haldane's rule and the large X-effect in interspecific hybrids. Although at the time, the idea was met with skepticism and a conspicuous absence of empirical support, the tide has since turned. Some of the clearest mechanistic explanations we have for hybrid male sterility involve meiotic drive systems, and several other cases of hybrid sterility are suggestive of a role for meiotic drive. In this article, I review these ideas and their descendants and catalog the current evidence for the meiotic drive model of speciation. In addition, I suggest that meiotic drive is not the only intragenomic conflict to involve the X chromosome and contribute to hybrid incompatibility. Sexually and parentally antagonistic selection pressures can also pit the X chromosome and autosomes against each other. The resulting intragenomic conflicts should lead to co-evolution within populations and divergence between them, thus increasing the likelihood of incompatibilities in hybrids. I provide a sketch of these ideas and interpret some empirical patterns in the light of these additional X-autosome conflicts. © 2017 John Wiley & Sons Ltd.

  6. Double-inversion mechanisms of the X⁻ + CH₃Y [X,Y = F, Cl, Br, I] SN2 reactions.

    PubMed

    Szabó, István; Czakó, Gábor

    2015-03-26

    The double-inversion and front-side attack transition states as well as the proton-abstraction channels of the X(-) + CH3Y [X,Y = F, Cl, Br, I] reactions are characterized by the explicitly correlated CCSD(T)-F12b/aug-cc-pVTZ(-PP) level of theory using small-core relativistic effective core potentials and the corresponding aug-cc-pVTZ-PP bases for Br and I. In the X = F case the double-inversion classical(adiabatic) barrier heights are 28.7(25.6), 15.8(13.4), 13.2(11.0), and 8.6(6.6) kcal mol(-1) for Y = F, Cl, Br, and I, respectively, whereas the barrier heights are in the 40-90 kcal mol(-1) range for the other 12 reactions. The abstraction channels are always above the double-inversion saddle points. For X = F, the front-side attack classical(adiabatic) barrier heights, 45.8(44.8), 31.0(30.3), 24.7(24.2), and 19.5(19.3) kcal mol(-1) for Y = F, Cl, Br, and I, respectively, are higher than the corresponding double-inversion ones, whereas for the other systems the front-side attack saddle points are in the 35-70 kcal mol(-1) range. The double-inversion transition states have XH···CH2Y(-) structures with Cs point-group symmetry, and the front-side attack saddle points have either Cs (X = F or X = Y) or C1 symmetry with XCY angles in the 78-88° range. On the basis of the previous reaction dynamics simulations and the minimum energy path computations along the inversion coordinate of selected XH···CH2Y(-) systems, we suggest that the double inversion may be a general mechanism for SN2 reactions.

  7. Out-of-plane easy-axis in thin films of diluted magnetic semiconductor Ba1-xKx(Zn1-yMny)2As2

    NASA Astrophysics Data System (ADS)

    Wang, R.; Huang, Z. X.; Zhao, G. Q.; Yu, S.; Deng, Z.; Jin, C. Q.; Jia, Q. J.; Chen, Y.; Yang, T. Y.; Jiang, X. M.; Cao, L. X.

    2017-04-01

    Single-phased, single-oriented thin films of Mn-doped ZnAs-based diluted magnetic semiconductor (DMS) Ba1-xKx(Zn1-yMny)2As2 (x = 0.03, 0.08; y = 0.15) have been deposited on Si, SrTiO3, LaAlO3, (La,Sr)(Al,Ta)O3, and MgAl2O4 substrates, respectively. Utilizing a combined synthesis and characterization system excluding the air and further optimizing the deposition parameters, high-quality thin films could be obtained and be measured showing that they can keep inactive-in-air up to more than 90 hours characterized by electrical transport measurements. In comparison with films of x = 0.03 which possess relatively higher resistivity, weaker magnetic performances, and larger energy gap, thin films of x = 0.08 show better electrical and magnetic performances. Strong magnetic anisotropy was found in films of x = 0.08 grown on (La,Sr)(Al,Ta)O3 substrate with their magnetic polarization aligned almost solely on the film growth direction.

  8. Divergent Evolutionary Trajectories of Two Young, Homomorphic, and Closely Related Sex Chromosome Systems

    PubMed Central

    Furman, Benjamin L S; Evans, Ben J

    2018-01-01

    Abstract There exists extraordinary variation among species in the degree and nature of sex chromosome divergence. However, much of our knowledge about sex chromosomes is based on comparisons between deeply diverged species with different ancestral sex chromosomes, making it difficult to establish how fast and why sex chromosomes acquire variable levels of divergence. To address this problem, we studied sex chromosome evolution in two species of African clawed frog (Xenopus), both of whom acquired novel systems for sex determination from a recent common ancestor, and both of whom have female (ZW/ZZ) heterogamy. Derived sex chromosomes of one species, X. laevis, have a small region of suppressed recombination that surrounds the sex determining locus, and have remained this way for millions of years. In the other species, X. borealis, a younger sex chromosome system exists on a different pair of chromosomes, but the region of suppressed recombination surrounding an unidentified sex determining gene is vast, spanning almost half of the sex chromosomes. Differences between these sex chromosome systems are also apparent in the extent of nucleotide divergence between the sex chromosomes carried by females. Our analyses also indicate that in autosomes of both of these species, recombination during oogenesis occurs more frequently and in different genomic locations than during spermatogenesis. These results demonstrate that new sex chromosomes can assume radically different evolutionary trajectories, with far-reaching genomic consequences. They also suggest that in some instances the origin of new triggers for sex determination may be coupled with rapid evolution sex chromosomes, including recombination suppression of large genomic regions. PMID:29608717

  9. THE RELATION BETWEEN DNA SYNTHESIS AND CHROMOSOME STRUCTURE AS RESOLVED BY X-RAY DAMAGE

    PubMed Central

    Evans, H. J.; Savage, J. R. K.

    1963-01-01

    Vicia faba root tip cells were treated for short periods with tritiated thymidine, either immediately before or after exposure of roots to x-rays, and autoradiograph preparations were analysed in an attempt to test the hypothesis that chromatid type (B') aberrations are induced only in those chromosome regions that have synthesized DNA prior to x-irradiation, whereas chromosome type (B'') aberrations are induced only in unduplicated chromosome regions. Studying the relation between presence or absence of label at loci involved in aberrations, in cells irradiated at different development stages, and the pattern of labelling in cells carrying both types of aberration leads to the conclusion that B'' aberrations are induced only in unreplicated chromosome regions. Following replication, only B' aberrations are induced, but these aberrations are also induced in chromosome regions preparing to incorporate DNA. It is suggested that the doubled response of the chromosome to x-rays prior to DNA incorporation might reflect a physical separation of replicating units prior to replication. The aberration yields in damaged cells which were irradiated in G 1 S, and early G 2 were in the ratio of 1.0:2.0:3.2. The data indicate that the increased yield of B' in early G 2 relative to S cells may be a consequence of changes in the spatial distribution of the chromosomes within the nucleus. PMID:14064107

  10. Thermochemistry of rare earth doped uranium oxides LnxU1-xO2-0.5x+y (Ln = La, Y, Nd)

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Navrotsky, Alexandra

    2015-10-01

    Lanthanum, yttrium, and neodymium doped uranium dioxide samples in the fluorite structure have been synthesized, characterized in terms of metal ratio and oxygen content, and their enthalpies of formation measured by high temperature oxide melt solution calorimetry. For oxides doped with 10-50 mol % rare earth (Ln) cations, the formation enthalpies from constituent oxides (LnO1.5, UO2 and UO3 in a reaction not involving oxidation or reduction) become increasingly exothermic with increasing rare earth content, while showing no significant dependence on the varying uranium oxidation state. The oxidation enthalpy of LnxU1-xO2-0.5x+y is similar to that of UO2 to UO3 for all three rare earth doped systems. Though this may suggest that the oxidized uranium in these systems is energetically similar to that in the hexavalent state, thermochemical data alone can not constrain whether the uranium is present as U5+, U6+, or a mixture of oxidation states. The formation enthalpies from elements calculated from the calorimetric data are generally consistent with those from free energy measurements.

  11. X-chromosome monosomy in an infertile female llama.

    PubMed

    Hinrichs, K; Horin, S E; Buoen, L C; Zhang, T Q; Ruth, G R

    1997-05-15

    A 3-year-old female llama was examined because of a history of infertility and apparent anovulation. The llama had indifferent behavior when penned with a male, but eventually would assume sternal recumbency for breeding. On examination, the llama was underweight and small in stature. The uterine horns and ovaries could not be identified during palpation or ultrasonography per rectum, and the cervix was dilated when examined with a speculum. Chromosomal preparations of lymphocytes and skin fibroblasts were performed; all cells examined had a 73, X karyotype (X-chromosome monosomy). To our knowledge, this is the first report of a chromosomal anomaly in a llama. Signs seen in this llama were similar to those seen in mares with X-chromosome monosomy. This condition should be considered in the differential diagnosis of infertility in llamas that fail to ovulate, especially if other abnormalities such as indifferent sexual behavior and short stature are present.

  12. Phospho-Bcl-xL(Ser62) influences spindle assembly and chromosome segregation during mitosis.

    PubMed

    Wang, Jianfang; Beauchemin, Myriam; Bertrand, Richard

    2014-01-01

    Functional analysis of a series of phosphorylation mutants reveals that Bcl-xL(Ser62Ala) influences cell entry into anaphase and mitotic exit in taxol-exposed cells compared with cells expressing wild-type Bcl-xL or a series of other phosphorylation mutants, an effect that appears to be independent of its anti-apoptotic activity. During normal mitosis progression, Bcl-xL(Ser62) is strongly phosphorylated by PLK1 and MAPK14/SAPKp38α at the prometaphase, metaphase, and the anaphase boundaries, while it is de-phosphorylated at telophase and cytokinesis. Phospho-Bcl-xL(Ser62) localizes in centrosomes with γ-tubulin and in the mitotic cytosol with some spindle-assembly checkpoint signaling components, including PLK1, BubR1, and Mad2. In taxol- and nocodazole-exposed cells, phospho-Bcl-xL(Ser62) also binds to Cdc20- Mad2-, BubR1-, and Bub3-bound complexes, while Bcl-xL(Ser62Ala) does not. Silencing Bcl-xL expression and expressing the phosphorylation mutant Bcl-xL(Ser62Ala) lead to an increased number of cells harboring mitotic spindle defects including multipolar spindle, chromosome lagging and bridging, aneuploidy with micro-, bi-, or multi-nucleated cells, and cells that fail to resolve undergo mitosis within 6 h. Together, the data indicate that during mitosis, Bcl-xL(Ser62) phosphorylation impacts on spindle assembly and chromosome segregation, influencing chromosome stability. Observations of mitotic cells harboring aneuploidy with micro-, bi-, or multi-nucleated cells, and cells that fail to resolve undergo mitosis within 6 h were also made with cells expressing the phosphorylation mutant Bcl-xL(Ser49Ala) and dual mutant Bcl-xL(Ser49/62Ala).

  13. Modified magnetism within the coherence volume of superconducting Fe1SexTe1-x

    NASA Astrophysics Data System (ADS)

    Leiner, J.; Thampy, V.; Christianson, A. D.; Abernathy, D. L.; Stone, M. B.; Lumsden, M. D.; Sefat, A. S.; Sales, B. C.; Hu, Jin; Mao, Zhiqiang; Bao, Wei; Broholm, C.

    2014-09-01

    Neutron scattering is used to probe magnetic interactions as superconductivity develops in optimally doped Fe1SexTe1-x. Applying the first moment sum rule to comprehensive neutron scattering data, we extract the change in magnetic exchange energy Δ [JR -R'] in the superconducting state referenced to the normal state. Oscillatory changes are observed for Fe-Fe displacements |ΔR |<ξ, where ξ =1.3(1) nm is the superconducting coherence length. Dominated by a large reduction in the second nearest neighbor exchange energy [-1.2(2) meV/Fe], the overall reduction in magnetic interaction energy is Δ=-0.31(9) meV/Fe. Comparison to the superconducting condensation energy ΔESC=-0.013(1) meV/Fe, which we extract from specific heat data, suggests the modified magnetism we probe drives superconductivity in Fe1SexTe1-x.

  14. Xist recruits the X chromosome to the nuclear lamina to enable chromosome-wide silencing.

    PubMed

    Chen, Chun-Kan; Blanco, Mario; Jackson, Constanza; Aznauryan, Erik; Ollikainen, Noah; Surka, Christine; Chow, Amy; Cerase, Andrea; McDonel, Patrick; Guttman, Mitchell

    2016-10-28

    The Xist long noncoding RNA orchestrates X chromosome inactivation, a process that entails chromosome-wide silencing and remodeling of the three-dimensional (3D) structure of the X chromosome. Yet, it remains unclear whether these changes in nuclear structure are mediated by Xist and whether they are required for silencing. Here, we show that Xist directly interacts with the Lamin B receptor, an integral component of the nuclear lamina, and that this interaction is required for Xist-mediated silencing by recruiting the inactive X to the nuclear lamina and by doing so enables Xist to spread to actively transcribed genes across the X. Our results demonstrate that lamina recruitment changes the 3D structure of DNA, enabling Xist and its silencing proteins to spread across the X to silence transcription. Copyright © 2016, American Association for the Advancement of Science.

  15. Impeding Xist expression from the active X chromosome improves mouse somatic cell nuclear transfer.

    PubMed

    Inoue, Kimiko; Kohda, Takashi; Sugimoto, Michihiko; Sado, Takashi; Ogonuki, Narumi; Matoba, Shogo; Shiura, Hirosuke; Ikeda, Rieko; Mochida, Keiji; Fujii, Takashi; Sawai, Ken; Otte, Arie P; Tian, X Cindy; Yang, Xiangzhong; Ishino, Fumitoshi; Abe, Kuniya; Ogura, Atsuo

    2010-10-22

    Cloning mammals by means of somatic cell nuclear transfer (SCNT) is highly inefficient because of erroneous reprogramming of the donor genome. Reprogramming errors appear to arise randomly, but the nature of nonrandom, SCNT-specific errors remains elusive. We found that Xist, a noncoding RNA that inactivates one of the two X chromosomes in females, was ectopically expressed from the active X (Xa) chromosome in cloned mouse embryos of both sexes. Deletion of Xist on Xa showed normal global gene expression and resulted in about an eight- to ninefold increase in cloning efficiency. We also identified an Xist-independent mechanism that specifically down-regulated a subset of X-linked genes through somatic-type repressive histone blocks. Thus, we have identified nonrandom reprogramming errors in mouse cloning that can be altered to improve the efficiency of SCNT methods.

  16. Counseling parents before prenatal diagnosis: do we need to say more about the sex chromosome aneuploidies?

    PubMed

    Lalatta, Faustina; Tint, G Stephen

    2013-11-01

    Sex chromosome trisomies (SCT), an extra X chromosome in females (triple X, XXX), males with an extra X chromosome (Klinefelter syndrome, XXY) or an extra Y chromosome (XYY) occur because of errors during meiosis and are relatively frequent in humans. Their identification has never been the goal of prenatal diagnosis (PD) but they almost never escape detection by any of the methods commonly in use. Despite recommendations and guide-lines which emphasize the importance of structured counseling before and after PD, most women remain unaware that testing for serious genetic abnormalities is more likely to uncover these trisomies. With the increasing use of PD more and more prospective parents receive a diagnosis of sex chromosome trisomies and are faced with the dilemma of whether to terminate the pregnancy or to carry it to term. Despite the dramatic and emotionally devastating consequences of having to make such a decision, they have little opportunity to consider in advance the possible outcomes of such a pregnancy and, rather than relying on their own feelings and judgements, are forced to depend on the advice of counseling professionals who may or may not themselves be fully aware of what having an extra sex chromosome can mean to the development of a child. We address here the principles of reproductive autonomy together with an analysis of the major issues that ought to be discussed with the parents before a PD is carried out in order to minimize detrimental effects caused by this unexpected finding. © 2013 Wiley Periodicals, Inc.

  17. [Origin and morphological features of small supernumerary marker chromosomes in Turner syndrome].

    PubMed

    Liu, Nan; Tong, Tong; Chen, Yue; Chen, Yanling; Cai, Chunquan

    2018-02-10

    OBJECTIVE To explore the origin and morphological features of small supernumerary marker chromosomes (sSMCs) in Turner syndrome. METHODS For 5 cases of Turner syndrome with a sSMC identified by conventional G-banding, dual-color fluorescence in situ hybridization (FISH) was applied to explore their origin and morphological features. RESULTS Among the 5 cases, 3 have derived from the X chromosome, which included 2 ring chromosomes and 1 centric minute. For the 2 sSMCs derived from the Y chromosome, 1 was ring or isodicentric chromosome, while the other was an isodicentric chromosome. CONCLUSION The sSMCs found in Turner syndrome have almost all derived from sex chromosomes. The majority of sSMCs derived from the X chromosome will form ring chromosomes, while a minority will form centric minute. While most sSMC derived from Y chromosome may exist as isodicentric chromosomes, and a small number may exist as rings. For Turner syndrome patients with sSMCs, dual-color FISH may be used to delineate their origins to facilitate genetic counseling and selection of clinical regime.

  18. Luminescent properties of Cr-doped (GdX, Y1-X)3Al5O12 infra-red scintillator crystals

    NASA Astrophysics Data System (ADS)

    Suzuki, Akira; Kurosawa, Shunsuke; Yamaji, Akihiro; Shoji, Yasuhiro; Pejchal, Jan; Kamada, Kei; Yokota, Yuui; Yoshikawa, Akira

    2014-10-01

    Cr-doped (GdX Y1-X)3Al5O12 (X = 0, 0.25, 0.50) crystals prepared by the micro-pulling down method were investigated to develop a infra-red scintillator for implantable patient dosimeter in radiation therapy. In order to evaluate their optical and scintillation performance, the following properties were measured: (i) transmittance between ultra-violet and near-infra red region, (ii) photoluminescence spectra under Xe-lamp excitation, and (iii) X-ray excited radio-luminescence spectra. Cr:Y3Al5O12 and Cr:(Gd0.25 Y0.75)3Al5O12 crystals showed increased transmittance of 80%, while Cr:(Gd0.50 Y0.50)3Al5O12 had a lower transmittance of 40% due to its polycrystalline structure. In addition, all the Cr:(GdX Y1-X)3Al5O12 crystals showed sharp scintillation luminescence peaks ascribed to Cr3+ d-d transitions. Therefore, these results suggested that Cr:Y3Al5O12 and Cr:(Gd0.25 Y0.75)3Al5O12 crystals can be candidate materials for the dosimeter use.

  19. Nuclear organization in human sperm: preliminary evidence for altered sex chromosome centromere position in infertile males.

    PubMed

    Finch, K A; Fonseka, K G L; Abogrein, A; Ioannou, D; Handyside, A H; Thornhill, A R; Hickson, N; Griffin, D K

    2008-06-01

    Many genetic defects with a chromosomal basis affect male reproduction via a range of different mechanisms. Chromosome position is a well-known marker of nuclear organization, and alterations in standard patterns can lead to disease phenotypes such as cancer, laminopathies and epilepsy. It has been demonstrated that normal mammalian sperm adopt a pattern with the centromeres aligning towards the nuclear centre. The purpose of this study was to test the hypothesis that altered chromosome position in the sperm head is associated with male infertility. The average nuclear positions of fluorescence in-situ hybridization signals for three centromeric probes (for chromosomes X, Y and 18) were compared in normoozoospermic men and in men with compromised semen parameters. In controls, the centromeres of chromosomes X, Y and 18 all occupied a central nuclear location. In infertile men the sex chromosomes appeared more likely to be distributed in a pattern not distinguishable from a random model. Our findings cast doubt on the reliability of centromeric probes for aneuploidy screening. The analysis of chromosome position in sperm heads should be further investigated for the screening of infertile men.

  20. Investigation of La xSr 1-xCo yM 1-yO 3-δ (M = Mn Fe) perovskite materials as thermochemical energy storage media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babiniec, Sean Michael; Coker, Eric Nicholas; Miller, James E.

    2015-06-23

    Materials in the La xSr 1xCo yMn 1yO 3–δ (LSCM) and La xSr 1xCo yFe 1yO 3–δ (LSCF) families are candidates for high-temperature thermochemical energy storage due to their facility for cyclic endothermic reduction and exothermic oxidation. A set of 16 LSCM and 21 LSCF compositions were synthesized by a modified Pechini method and characterized by powder X-ray diffraction and thermogravimetric analysis. All materials were found to be various symmetries of the perovskite phase. LSCM was indexed as tetragonal, cubic, rhombohedral, or orthorhombic as a function of increased lanthanum content. For LSCF, compositions containing low lanthanum content were indexed asmore » cubic while materials with high lanthanum content were indexed as rhombohedral. An initial screening of redox activity was completed by thermogravimetric analysis for each composition. The top three compositions with the greatest recoverable redox capacity for each family were further characterized in equilibrium thermogravimetric experiments over a range of temperatures and oxygen partial pressures. As a result, these equilibrium experiments allowed the extraction of thermodynamic parameters for LSCM and LSCF compositions operated in thermochemical energy storage conditions.« less

  1. Identification of the sex-determining locus in grass puffer (Takifugu niphobles) provides evidence for sex-chromosome turnover in a subset of Takifugu species

    PubMed Central

    Atsumi, Kazufumi; Kamiya, Takashi; Nozawa, Aoi; Aoki, Yuma; Tasumi, Satoshi; Koyama, Takashi; Nakamura, Osamu; Suzuki, Yuzuru

    2018-01-01

    There is increasing evidence for frequent turnover in sex chromosomes in vertebrates. Yet experimental systems suitable for tracing the detailed process of turnover are rare. In theory, homologous turnover is possible if the new sex-determining locus is established on the existing sex-chromosome. However, there is no empirical evidence for such an event. The genus Takifugu includes fugu (Takifugu rubripes) and its two closely-related species whose sex is most likely determined by a SNP at the Amhr2 locus. In these species, males are heterozygous, with G and C alleles at the SNP site, while females are homozygous for the C allele. To determine if a shift in the sex-determining locus occurred in another member of this genus, we used genetic mapping to characterize the sex-chromosome systems of Takifugu niphobles. We found that the G allele of Amhr2 is absent in T. niphobles. Nevertheless, our initial mapping suggests a linkage between the phenotypic sex and the chromosome 19, which harbors the Amhr2 locus. Subsequent high-resolution analysis using a sex-reversed fish demonstrated that the sex-determining locus maps to the proximal end of chromosome 19, far from the Amhr2 locus. Thus, it is likely that homologous turnover involving these species has occurred. The data also showed that there is a male-specific reduction of recombination around the sex-determining locus. Nevertheless, no evidence for sex-chromosome differentiation was detected: the reduced recombination depended on phenotypic sex rather than genotypic sex; no X- or Y-specific maker was obtained; the YY individual was viable. Furthermore, fine-scale mapping narrowed down the new sex-determining locus to the interval corresponding to approximately 300-kb of sequence in the fugu genome. Thus, T. niphobles is determined to have a young and small sex-determining region that is suitable for studying an early phase of sex-chromosome evolution and the mechanisms underlying turnover of sex chromosome. PMID

  2. Chromosome Characteristic of Peranakan Etawa (PE) Goat (Capra hircus Linn.) as Indonesian Local Breed

    NASA Astrophysics Data System (ADS)

    Putri, A. R. I.; Ciptadi, G.; Warih, A. P.

    2018-02-01

    Chromosome characteristics of Peranakan Etawa (PE) goat needs to be analyzed because information about Indonesian goat races is very limited. The purpose of this research was to determine the characteristics of PE goat chromosome as basic data as one of the genetic local resources. Blood was collected from pair of PE goat at Sumber Sekar Field Laboratory, Faculty of Animal Husbandry, Brawijaya University, Malang. Blood cultured using standard cytogenetic technique and stained with G-Banding. Observations being done in metaphase cells and analyzed using Genus Cytovision Image. Chromosomes arranged and numbered by standard goat karyotype. The result of this research showed that PE goat had number of chromosomes 2n=60, consisting of 29 pairs of autosome and a pair of sex chromosomes. Female goat had average of total length (TL) of autosome ranged from 47.91 µm±6.46 to 22.12 µm±3.33. TL of chromosome X are 45.96 µm±4,59 and 44.45 µm±3,96. Centromeric index (Ci) of chromosome X, 31,74 and 32,80. PE goat had average of TL of autosome ranged from 58.20µm±6.72 to 18.97µm±2.82. TL of chromosome X is 56,42µm±7,38 and Y chromosome is 15,80 µm±3,24. Ci in chromosome X and Y are 19.34 and 46.84. These results concluded that the total of goat chromosome was 60 with types of autosomal chromosomes were acrocentric as many as 58 chromosomes and pair of sex chromosomes XX and XY, X classified as subtelocentric and Y submetacentric.

  3. NACA Aircraft on Lakebed - D-558-2, X-1B, and X-1E

    NASA Technical Reports Server (NTRS)

    1955-01-01

    Early NACA research aircraft on the lakebed at the High Speed Research Station in 1955: Left to right: X-1E, D-558-2, X-1B There were four versions of the original Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for EXperimental Supersonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many structural and aerodynamic advances including extremely thin, yet extremely strong wing sections; supersonic fuselage configurations; control system requirements; powerplant compatibility; and cockpit environments. The X-1 aircraft were the first transonic-capable aircraft to use an all-moving stabilizer. The flights of the X-1s opened up a new era in aviation. The first X-1 was air-launched unpowered from a Boeing B-29 Superfortress on January 25, 1946. Powered flights began in December 1946. On October 14, 1947, the X-1-1, piloted by Air Force Captain Charles 'Chuck' Yeager, became the first aircraft to exceed the speed of sound, reaching about 700 miles per hour (Mach 1.06) and an altitude of 43,000 feet. The number 2 X-1 was modified and redesignated the X-1E. The modifications included adding a conventional canopy, an ejection seat, a low-pressure fuel system

  4. Molecular mapping of chromosomes 17 and X

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barker, D.F.

    1989-01-01

    The basic aims of this project are the construction of high density genetic maps of chromosomes 17 and X and the utilization of these maps for the subsequent isolation of a set of physically overlapping DNA segment clones. The strategy depends on the utilization of chromosome specific libraries of small (1--15 kb) segments from each of the two chromosomes. Since the time of submission of our previous progress report, we have refined the genetic map of markers which we had previously isolated for chromosome 17. We have completed our genetic mapping in CEPH reference and NF1 families of 15 markersmore » in the pericentric region of chromosome 17. Physical mapping results with three probes, were shown be in very close genetic proximity to the NF1 gene, with respect to two translocation breakpoints which disrupt the activity of the gene. All three of the probes were found to lie between the centromere and the most proximal translocation breakpoint, providing important genetic markers proximal to the NF1 gene. Our primary focus has shifted to the X chromosome. We have isolated an additional 30 polymorphic markers, bringing the total number we have isolated to over 80. We have invested substantial effort in characterizing the polymorphisms at each of these loci and constructed plasmid subclones which reveal the polymorphisms for nearly all of the loci. These subclones are of practical value in that they produce simpler and stronger patterns on human genomic Southern blots, thus improving the efficiency of the genetic mapping experiments. These subclones may also be of value for deriving DNA sequence information at each locus, necessary for establishing polymerase chain reaction primers specific for each locus. Such information would allow the use of each locus as a sequence tagged site.« less

  5. Investigation of GaAs/Al(x)Ga(1-x)As and In(y)Ga(1-y)As/GaAs superlattices on Si substrates

    NASA Technical Reports Server (NTRS)

    Reddy, U. K.; Ji, G.; Huang, D.; Munns, G.; Morkoc, H.

    1987-01-01

    The optical properties of lattice-matched GaAs/Al(x)Ga(1-x)As and In(y)Ga(1-y)As/GaAs strained-layer superlattices grown on Si substrates have been studied using the photoreflectance technique. These preliminary results show that good quality III-IV epilayers can be grown on Si. The experimental data were compared with calculations based on the envelope-function approximation and fitted to the third-derivative functional form of reflectance modulation theory.

  6. Ferromagnetic resonance in non-stoichiometric Ni 1- x- yMn xGa y

    NASA Astrophysics Data System (ADS)

    Shanina, B. D.; Konchits, A. A.; Kolesnik, S. P.; Gavriljuk, V. G.; Glavatskij, I. N.; Glavatska, N. I.; Söderberg, O.; Lindroos, V. K.; Foct, J.

    2001-12-01

    Non-stoichiometric alloys Ni 1- x- yMn xGa y characterised by different values of MSME (from 0.2% to 7.3%) were studied using ferromagnetic resonance (FMR). The angular dependence of the FMR signals was measured in the martensitic and austenitic states of the samples just before and after martensite-austenite transition. Experimental data were used for the determination of the magnetisation 4 πMs and anisotropy parameters K1, K2 for the martensitic state and K1c for the austenitic state. All studied alloys were characterised by large values of the anisotropy parameters of the first and second orders. A special feature of the alloys possessing high MSME is a larger value of the coefficient K2. The temperature dependence of the FMR signals was investigated in the temperature range from below Ms to above TC, where FMR was replaced by conduction electron spin resonance (CESR). Magnetically induced strain in the martensitic phase was measured as a function of the applied magnetic field. The main difference between the alloys in the martensitic state revealing the large or small MSM strain is the behaviour of the electronic structure. In the alloys with the small MSM strain, all the electrons are involved in the ferromagnetic system. On the contrary, in the alloy with the large MSM strain, the narrow resonance line of one electron subsystem is present separately in the FMR spectra. An intensive signal of CESR is observed in the alloys with the large MSME, which is an evidence for a high concentration of free electrons. The suggestion made is that the high concentration of free electrons, i.e. enhanced metallic character of interatomic bonds, assists MSME.

  7. Modulated visible spectra properties of Pr:Ca1-xRxF2+x(R=Y, La, Gd) crystals

    NASA Astrophysics Data System (ADS)

    Yu, Hao; Qian, Xiaobo; Wu, Qinghui; Ma, Fengkai; Wang, Jingya; Xu, Jun; Su, Liangbi

    2017-10-01

    The spectroscopic properties of the 1.0 at.%Pr:Ca0.97R0.02F2.03(R=Y, La, Gd) crystals are investigated. X-diffraction and room temperature absorption spectra have been registered and analyzed. The emission spectra and decay curves of the crystals were obtained at room temperature. The photoluminescence intensity in the visible region is significantly enhanced by co-doping R3+ ions in Pr:CaF2 crystal. The different effects among the R3+ (Y3+, La3+ and Gd3+) regulating ions on the crystals were observed and compared. Pr:Ca0.97La0.02F2.03 and Pr:Ca0.97Y0.02F2.03 crystals have substantially strong emission at blue and orange region, while the Pr:Ca0.97Gd0.02F2.03 crystal is more suitable for the red emission emitting.

  8. Metal-insulator transition in NiS2-xSex

    NASA Astrophysics Data System (ADS)

    Kuneš, J.; Baldassarre, L.; Schächner, B.; Rabia, K.; Kuntscher, C. A.; Korotin, Dm. M.; Anisimov, V. I.; McLeod, J. A.; Kurmaev, E. Z.; Moewes, A.

    2010-01-01

    The origin of the gap in NiS2 as well as the pressure- and doping-induced metal-insulator transition in the NiS2-xSex solid solutions are investigated both theoretically using the first-principles band structures combined with the dynamical mean-field approximation for the electronic correlations and experimentally by means of infrared and x-ray absorption spectroscopies. The bonding-antibonding splitting in the S-S (Se-Se) dimer is identified as the main parameter controlling the size of the charge gap. The implications for the metal-insulator transition driven by pressure and Se doping are discussed.

  9. Generic Superconducting Inhomogeneity in Single Crystal Fe(Te1-xSex) Probed by Nanostructure-transport

    NASA Astrophysics Data System (ADS)

    Yue, Chunlei; Hu, Jin; Liu, Xue; Mao, Zhiqiang; Wei, Jiang

    2015-03-01

    We have investigated the nano-scale electronic properties of the iron-based unconventional superconductor Fe(Te1-xSex) with optimal Se content x = 0.5. Using the microexfoliation method and ion milling thinning, we successfully produced Fe(Te1-xSex) devices with thickness varying from 90nm down to 12nm. Our transport measurements revealed a suppression of superconductivity coinciding with the loss of normal state metallicity. Through the simulation of the formation of superconducting region in nano-scale thin flakes, we show that our observation is in line with the nano-scale inhomogeneity proposed for this material; therefore it provides a more direct evidence for the nano-scale inhomogeneous superconductivity in Fe(Te1-xSex) .

  10. Sex, rebellion and decadence: the scandalous evolutionary history of the human Y chromosome.

    PubMed

    Navarro-Costa, Paulo

    2012-12-01

    It can be argued that the Y chromosome brings some of the spirit of rock&roll to our genome. Equal parts degenerate and sex-driven, the Y has boldly rebelled against sexual recombination, one of the sacred pillars of evolution. In evolutionary terms this chromosome also seems to have adopted another of rock&roll's mottos: living fast. Yet, it appears to have refused to die young. In this manuscript the Y chromosome will be analyzed from the intersection between structural, evolutionary and functional biology. Such integrative approach will present the Y as a highly specialized product of a series of remarkable evolutionary processes. These led to the establishment of a sex-specific genomic niche that is maintained by a complex balance between selective pressure and the genetic diversity introduced by intrachromosomal recombination. Central to this equilibrium is the "polish or perish" dilemma faced by the male-specific Y genes: either they are polished by the acquisition of male-related functions or they perish via the accumulation of inactivating mutations. Thus, understanding to what extent the idiosyncrasies of Y recombination may impact this chromosome's role in sex determination and male germline functions should be regarded as essential for added clinical insight into several male infertility phenotypes. This article is part of a Special Issue entitled: Molecular Genetics of Human Reproductive Failure. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. X Chromosome of female cells shows dynamic changes in status during human somatic cell reprogramming.

    PubMed

    Kim, Kun-Yong; Hysolli, Eriona; Tanaka, Yoshiaki; Wang, Brandon; Jung, Yong-Wook; Pan, Xinghua; Weissman, Sherman Morton; Park, In-Hyun

    2014-06-03

    Induced pluripotent stem cells (iPSCs) acquire embryonic stem cell (ESC)-like epigenetic states, including the X chromosome. Previous studies reported that human iPSCs retain the inactive X chromosome of parental cells, or acquire two active X chromosomes through reprogramming. Most studies investigated the X chromosome states in established human iPSC clones after completion of reprogramming. Thus, it is still not fully understood when and how the X chromosome reactivation occurs during reprogramming. Here, we report a dynamic change in the X chromosome state throughout reprogramming, with an initial robust reactivation of the inactive X chromosome followed by an inactivation upon generation of nascent iPSC clones. iPSCs with two active X chromosomes or an eroded X chromosome arise in passaging iPSCs. These data provide important insights into the plasticity of the X chromosome of human female iPSCs and will be crucial for the future application of such cells in cell therapy and X-linked disease modeling.

  12. Targeting of >1.5 Mb of Human DNA into the Mouse X Chromosome Reveals Presence of cis-Acting Regulators of Epigenetic Silencing

    PubMed Central

    Yang, Christine; McLeod, Andrea J.; Cotton, Allison M.; de Leeuw, Charles N.; Laprise, Stéphanie; Banks, Kathleen G.; Simpson, Elizabeth M.; Brown, Carolyn J.

    2012-01-01

    Regulatory sequences can influence the expression of flanking genes over long distances, and X chromosome inactivation is a classic example of cis-acting epigenetic gene regulation. Knock-ins directed to the Mus musculus Hprt locus offer a unique opportunity to analyze the spread of silencing into different human DNA sequences in the identical genomic environment. X chromosome inactivation of four knock-in constructs, including bacterial artificial chromosome (BAC) integrations of over 195 kb, was demonstrated by both the lack of expression from the inactive X chromosome in females with nonrandom X chromosome inactivation and promoter DNA methylation of the human transgene in females. We further utilized promoter DNA methylation to assess the inactivation status of 74 human reporter constructs comprising >1.5 Mb of DNA. Of the 47 genes examined, only the PHB gene showed female DNA hypomethylation approaching the level seen in males, and escape from X chromosome inactivation was verified by demonstration of expression from the inactive X chromosome. Integration of PHB resulted in lower DNA methylation of the flanking HPRT promoter in females, suggesting the action of a dominant cis-acting escape element. Female-specific DNA hypermethylation of CpG islands not associated with promoters implies a widespread imposition of DNA methylation during X chromosome inactivation; yet transgenes demonstrated differential capacities to accumulate DNA methylation when integrated into the identical location on the inactive X chromosome, suggesting additional cis-acting sequence effects. As only one of the human transgenes analyzed escaped X chromosome inactivation, we conclude that elements permitting ongoing expression from the inactive X are rare in the human genome. PMID:23023002

  13. Formation of Y(x)Nd(1-x) Ba2Cu3O(7-delta) (0 = or < x < or = 0.7) Superconductors from an Undercooled Melt Via Aero-Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Gustafson, D. E.; Hofmeister, W. H.; Bayuzick, R. J.

    2001-01-01

    Melt processing of RE123 superconductors has gained importance in recent years. While the first high temperature superconductors (HTSCs) were made using traditional ceramic press and sinter technology, recent fabrication efforts have employed alternate processing techniques including laser ablation and ion beam assisted deposition for thin film fabrication of tapes and wires and melt growth for bulk materials. To optimize these techniques and identify other potential processing strategies, phase relation studies on HTSCs have been conducted on a wide variety of superconducting compounds using numerous processing strategies. This data has enhanced the understanding of these complex systems and allowed more accurate modeling of phase interactions. All of this research has proved useful in identifying processing capabilities for HTSCs but has failed to achieve a breakthrough for wide spread application of these materials. This study examines the role of full to partial substitution of Nd in the Y123 structure under rapid solidification conditions. Aero-acoustic levitation (AAL) was used to levitate and undercool RE123 in pure oxygen binary alloys with RE = Nd an Y along a range of compositions corresponding to Y(x)Nd(1-x) Ba2Cu3O(7-delta) (0 = or < x < or = 0.7) which were melted by a CO2 laser. Higher Y content spheres could not be melted in the AAL and were excluded from this report. Solidification structures were examined using scanning electron microscopy, electron dispersive spectroscopy, and powder x-ray diffraction to characterize microstructures and identify phases.

  14. Credit WCT. Original 2Y4" x 2Y4" color negative is housed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit WCT. Original 2-Y4" x 2-Y4" color negative is housed in the JPL Photography Laboratory, Pasadena, California. JPL staff members Harold Anderson and John Morrow cast grain from the 1-gallon BakerPerkins model 4-PU mixer. A 1-pint Baker-Perkins model 2-PX mixer stands to the left in this view (JPL negative no. JPL-10295BC, 27 January 1989) - Jet Propulsion Laboratory Edwards Facility, Mixer & Casting Building, Edwards Air Force Base, Boron, Kern County, CA

  15. Thermoelectric properties of p-type Ag{sub 1x}(Pb{sub 1y}Sn{sub y}){sub m}Sb{sub 1−z}Te{sub m+2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Kyunghan; Center for Nanoparticle Research, Institute for Basic Science,; Kong, Huijun

    The thermoelectric properties of Ag{sub 1x}(Pb{sub 1y}Sn{sub y}){sub m}Sb{sub 1−z}Te{sub m+2} (4≤m≤16, −0.1≤x≤0.3, 1/3≤y≤2/3, 0.2≤z≤0.4; Lead Antimony Silver Tellurium Tin, LASTT-m) compositions were investigated in the temperature range of 300 to ~670 K. All samples crystallize in the average NaCl-type structure without any noticeable second phase and exhibit very narrow bandgaps of <0.1 eV. We studied a range of m values, silver concentrations (x), Pb/Sn ratios (y), and antimony concentrations (z) to determine their effects on the thermoelectric properties. The samples were investigated as melt grown polycrystalline ingots. Varying the Ag contents, the Pb/Sn ratios, and the Sb contents off-stoichiometrymore » allowed us to control the electrical conductivity, the Seebeck coefficient, and the thermal conductivity. The electrical conductivity tends to decrease with decreasing m values. The highest ZT of ~1.1 was achieved at ~660 K for Ag{sub 0.9}Pb{sub 5}Sn{sub 5}Sb{sub 0.8}Te{sub 12} mainly due to the very low lattice thermal conductivity of ~0.4 W/(m K) around 660 K. Also, samples with charge-balanced stoichiometries, Ag(Pb{sub 1y}Sn{sub y}){sub m}SbTe{sub m+2}, were studied and found to exhibit a lower power factor and higher lattice thermal conductivity than the Ag{sub 1x}(Pb{sub 1y}Sn{sub y}){sub m}Sb{sub 1−z}Te{sub m+2} compositions. - Graphical abstract: The Ag{sub 1x}(Pb{sub 1y}Sn{sub y}){sub m}Sb{sub 1−z}Te{sub m+2} system defines a complex and flexible class of tunable thermoelectric class of materials with high performance.« less

  16. Experimental mutation-accumulation on the X chromosome of Drosophila melanogaster reveals stronger selection on males than females.

    PubMed

    Mallet, Martin A; Bouchard, Jessica M; Kimber, Christopher M; Chippindale, Adam K

    2011-06-06

    Sex differences in the magnitude or direction of mutational effect may be important to a variety of population processes, shaping the mutation load and affecting the cost of sex itself. These differences are expected to be greatest after sexual maturity. Mutation-accumulation (MA) experiments provide the most direct way to examine the consequences of new mutations, but most studies have focused on juvenile viability without regard to sex, and on autosomes rather than sex chromosomes; both adult fitness and X-linkage have been little studied. We therefore investigated the effects of 50 generations of X-chromosome mutation accumulation on the fitness of males and females derived from an outbred population of Drosophila melanogaster. Fitness declined rapidly in both sexes as a result of MA, but adult males showed markedly greater fitness loss relative to their controls compared to females expressing identical genotypes, even when females were made homozygous for the X. We estimate that these mutations are partially additive (h ~ 0.3) in females. In addition, the majority of new mutations appear to harm both males and females. Our data helps fill a gap in our understanding of the consequences of sexual selection for genetic load, and suggests that stronger selection on males may indeed purge deleterious mutations affecting female fitness.

  17. Ternary lanthanum sulfide selenides {alpha}-LaS{sub 2-x}Se{sub x} (0<x<2) with mixed dichalcogenide anions X{sub 2}{sup 2-} (X=S, Se)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartsch, Christian; Doert, Thomas, E-mail: thomas.doert@chemie.tu-dresden.de

    2012-01-15

    Mixed lanthanum sulfide selenides LaS{sub 2-x}Se{sub x} (0<x<2) were obtained by metathesis reactions starting from anhydrous lanthanum chloride and alkali metal polychalcogenides. The LaS{sub 2-x}Se{sub x} compounds crystallize in space group P2{sub 1}/a, no. 14, and adopt the {alpha}-LnS{sub 2} (Ln=Y, La-Lu) structure type with a pronounced site preference for the chalcogen atoms. The mixed chalcogenides form a complete miscible series with lattice parameters a=820-849 pm, b=413-425 pm and c=822-857 pm ({beta} Almost-Equal-To 90 Degree-Sign) following Vegard's rule. Raman signals indicate the presence of mixed X{sub 2}{sup 2-} dianions, a species rarely evidenced in literature, besides the well known anionsmore » S{sub 2}{sup 2-} and Se{sub 2}{sup 2-}. The band gaps of the LaS{sub 2-x}Se{sub x} compounds, determined by optical spectroscopy, decrease nearly linearly with increasing amount of selenium. - Graphical abstract: Raman spectra and site occupancies in the structures of selected lanthanum sulfide selenides. Highlights: Black-Right-Pointing-Pointer Vegard series of mixed lanthanum sulfide selenides LaS{sub 2-x}Se{sub x} (0<x<2). Black-Right-Pointing-Pointer Pronounced site ordering of chalcogen positions. Black-Right-Pointing-Pointer Optical band gaps decrease with Se content. Black-Right-Pointing-Pointer Raman measurements evidence mixed X{sub 2}{sup 2-} dimeric anions.« less

  18. Molecular analysis of recombination in a family with Duchenne muscular dystrophy and a large pericentric X chromosome inversion.

    PubMed Central

    Shashi, V.; Golden, W. L.; Allinson, P. S.; Blanton, S. H.; von Kap-Herr, C.; Kelly, T. E.

    1996-01-01

    It has been demonstrated in animal studies that, in animals heterozygous for pericentric chromosomal inversions, loop formation is greatly reduced during meiosis. This results in absence of recombination within the inverted segment, with recombination seen only outside the inversion. A recent study in yeast has shown that telomeres, rather than centromeres, lead in chromosome movement just prior to meiosis and may be involved in promoting recombination. We studied by cytogenetic analysis and DNA polymorphisms the nature of meiotic recombination in a three-generation family with a large pericentric X chromosome inversion, inv(X)(p21.1q26), in which Duchenne muscular dystrophy (DMD) was cosegregating with the inversion. On DNA analysis there was no evidence of meiotic recombination between the inverted and normal X chromosomes in the inverted segment. Recombination was seen at the telomeric regions, Xp22 and Xq27-28. No deletion or point mutation was found on analysis of the DMD gene. On the basis of the FISH results, we believe that the X inversion is the mutation responsible for DMD in this family. Our results indicate that (1) pericentric X chromosome inversions result in reduction of recombination between the normal and inverted X chromosomes; (2) meiotic X chromosome pairing in these individuals is likely initiated at the telomeres; and (3) in this family DMD is caused by the pericentric inversion. Images Figure 2 Figure 5 Figure 6 Figure 7 PMID:8651300

  19. Differential expression of non-coding RNAs and continuous evolution of the X chromosome in testicular transcriptome of two mouse species.

    PubMed

    Homolka, David; Ivanek, Robert; Forejt, Jiri; Jansa, Petr

    2011-02-14

    Tight regulation of testicular gene expression is a prerequisite for male reproductive success, while differentiation of gene activity in spermatogenesis is important during speciation. Thus, comparison of testicular transcriptomes between closely related species can reveal unique regulatory patterns and shed light on evolutionary constraints separating the species. Here, we compared testicular transcriptomes of two closely related mouse species, Mus musculus and Mus spretus, which diverged more than one million years ago. We analyzed testicular expression using tiling arrays overlapping Chromosomes 2, X, Y and mitochondrial genome. An excess of differentially regulated non-coding RNAs was found on Chromosome 2 including the intronic antisense RNAs, intergenic RNAs and premature forms of Piwi-interacting RNAs (piRNAs). Moreover, striking difference was found in the expression of X-linked G6pdx gene, the parental gene of the autosomal retrogene G6pd2. The prevalence of non-coding RNAs among differentially expressed transcripts indicates their role in species-specific regulation of spermatogenesis. The postmeiotic expression of G6pdx in Mus spretus points towards the continuous evolution of X-chromosome silencing and provides an example of expression change accompanying the out-of-the X-chromosomal retroposition.

  20. Spatial sexual dimorphism of X and Y homolog gene expression in the human central nervous system during early male development.

    PubMed

    Johansson, Martin M; Lundin, Elin; Qian, Xiaoyan; Mirzazadeh, Mohammadreza; Halvardson, Jonatan; Darj, Elisabeth; Feuk, Lars; Nilsson, Mats; Jazin, Elena

    2016-01-01

    Renewed attention has been directed to the functions of the Y chromosome in the central nervous system during early human male development, due to the recent proposed involvement in neurodevelopmental diseases. PCDH11Y and NLGN4Y are of special interest because they belong to gene families involved in cell fate determination and formation of dendrites and axon. We used RNA sequencing, immunocytochemistry and a padlock probing and rolling circle amplification strategy, to distinguish the expression of X and Y homologs in situ in the human brain for the first time. To minimize influence of androgens on the sex differences in the brain, we focused our investigation to human embryos at 8-11 weeks post-gestation. We found that the X- and Y-encoded genes are expressed in specific and heterogeneous cellular sub-populations of both glial and neuronal origins. More importantly, we found differential distribution patterns of X and Y homologs in the male developing central nervous system. This study has visualized the spatial distribution of PCDH11X/Y and NLGN4X/Y in human developing nervous tissue. The observed spatial distribution patterns suggest the existence of an additional layer of complexity in the development of the male CNS.