Sample records for xanes spectroscopy showed

  1. Phosphorus K-edge XANES spectroscopy of mineral standards

    PubMed Central

    Ingall, Ellery D.; Brandes, Jay A.; Diaz, Julia M.; de Jonge, Martin D.; Paterson, David; McNulty, Ian; Elliott, W. Crawford; Northrup, Paul

    2011-01-01

    Phosphorus K-edge X-ray absorption near-edge structure (XANES) spectroscopy was performed on phosphate mineral specimens including (a) twelve specimens from the apatite group covering a range of compositional variation and crystallinity; (b) six non-apatite calcium-rich phosphate minerals; (c) 15 aluminium-rich phosphate minerals; (d) ten phosphate minerals rich in either reduced iron or manganese; (e) four phosphate minerals rich in either oxidized iron or manganese; (f) eight phosphate minerals rich in either magnesium, copper, lead, zinc or rare-earth elements; and (g) four uranium phosphate minerals. The identity of all minerals examined in this study was independently confirmed using X-ray powder diffraction. Minerals were distinguished using XANES spectra with a combination of pre-edge features, edge position, peak shapes and post-edge features. Shared spectral features were observed in minerals with compositions dominated by the same specific cation. Analyses of apatite-group minerals indicate that XANES spectral patterns are not strongly affected by variations in composition and crystallinity typical of natural mineral specimens. PMID:21335905

  2. Characterization of extracellular polymeric substances in the biofilms of typical bacteria by the sulfur K-edge XANES spectroscopy.

    PubMed

    Lin, Huirong; Ye, Chengsong; Lv, Lu; Zheng, Clark Renjun; Zhang, Shenghua; Zheng, Lei; Zhao, Yidong; Yu, Xin

    2014-08-01

    A combined approach of physicochemical extraction and sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy was applied to characterize the extracellular polymeric substances (EPS) of typical bacterial biofilms in this study. Physicochemical analysis showed variation of the contents of DNA, polysaccharide and protein in different fractions of EPS in different mediums. The sulfur K-edge XANES analysis yielded a variety of spectra. Spectral fitting of the XANES spectra utilizing a large set of model compounds showed that there was more reduced sulfur in both LB-EPS (loosely bound EPS) and TB-EPS (tightly bound EPS) of all the biofilms in LB medium than in R2A medium. More oxidized sulfur was identified in LB-EPS than that in TB-EPS, suggesting different niches and physiological heterogeneity in the biofilms. Our results suggested that the sulfur K-edge XANES can be a useful tool to analyze the sulfur speciation in EPS of biofilms. Copyright © 2014. Published by Elsevier B.V.

  3. Bone char effects on soil: sequential fractionations and XANES spectroscopy

    NASA Astrophysics Data System (ADS)

    Morshedizad, Mohsen; Panten, Kerstin; Klysubun, Wantana; Leinweber, Peter

    2018-01-01

    The acceptability of novel bone char fertilizers depends on their P release, but reactions at bone char surfaces and impacts on soil P speciation are insufficiently known. By using sequential fractionation and synchrotron-based X-ray absorption near-edge structure (XANES) spectroscopy we investigated whether and how the chemical composition of bone char particles has been altered in soil and has consequently affected the P speciation of amended soils. Therefore, two different kinds of bone char particles (BC produced by the pyrolysis of degreased animal bone chips at 800 °C and BCplus, a BC enriched with reduced sulfur compounds) were manually separated from the soil at the end of two different experiments: incubation leaching and ryegrass cultivation. Sequential P fractionation of amended soils showed P enrichment in all fractions compared to the control. The most P increase between all treatments significantly occurred in the NaOH-P and resin-P fractions in response to BCplus application in both incubation-leaching and ryegrass cultivation experiments. This increase in the readily available P fraction in BCplus-treated soils was confirmed by linear combination fitting (LCF) analysis on P K-edge XANES spectra of BC particles and amended soils. The proportion of Ca hydroxyapatite decreased, whereas the proportion of CaHPO4 increased in BCplus particles after amended soils had been incubated and leached and cropped by ryegrass. Based on P XANES speciation as determined by LCF analysis, the proportion of inorganic Ca(H2PO4)2 increased in amended soils after BCplus application. These results indicate that soil amendment with BCplus particles leads to elevated P concentration and maintains more soluble P species than BC particles even after 230 days of ryegrass cultivation.

  4. Characterization of Sulfur Compounds in Coffee Beans by Sulfur K-XANES Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lichtenberg, H.; Hormes, J.; Institute of Physics, University of Bonn, Nussallee 12, 53115 Bonn

    2007-02-02

    In this 'feasibility study' the influence of roasting on the sulfur speciation in Mexican coffee beans was investigated by sulfur K-XANES Spectroscopy. Spectra of green and slightly roasted beans could be fitted to a linear combination of 'standard' reference spectra for biological samples, whereas longer roasting obviously involves formation of additional sulfur compounds in considerable amounts.

  5. Structural investigations of Pu{sup III} phosphate by X-ray diffraction, MAS-NMR and XANES spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popa, Karin; Raison, Philippe E., E-mail: philippe.raison@ec.europa.eu; Martel, Laura

    2015-10-15

    PuPO{sub 4} was prepared by a solid state reaction method and its crystal structure at room temperature was solved by powder X-ray diffraction combined with Rietveld refinement. High resolution XANES measurements confirm the +III valence state of plutonium, in agreement with valence bond derivation. The presence of the americium (as β{sup −} decay product of plutonium) in the +III oxidation state was determined based on XANES spectroscopy. High resolution solid state {sup 31}P NMR agrees with the XANES results and the presence of a solid-solution. - Graphical abstract: A full structural analysis of PuPO{sub 4} based on Rietveld analysis ofmore » room temperature X-ray diffraction data, XANES and MAS NMR measurements was performed. - Highlights: • The crystal structure of PuPO{sub 4} monazite is solved. • In PuPO{sub 4} plutonium is strictly trivalent. • The presence of a minute amount of Am{sup III} is highlighted. • We propose PuPO{sub 4} as a potential reference material for spectroscopic and microscopic studies.« less

  6. XANES Identification of Plutonium Speciation in RFETS Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LoPresti, V.; Conradson, S.D.; Clark, D.L.

    2009-06-03

    Using primarily X-ray absorption near edge spectroscopy (XANES) with standards run in tandem with samples, probable plutonium speciation was determined for 13 samples from contaminated soil, acid-splash or fire-deposition building interior surfaces, or asphalt pads from the Rocky Flats Environmental Technology Site (RFETS). Save for extreme oxidizing situations, all other samples were found to be of Pu(IV) speciation, supporting the supposition that such contamination is less likely to show mobility off site. EXAFS analysis conducted on two of the 13 samples supported the validity of the XANES features employed as determinants of the plutonium valence.

  7. Magnesium K-edge XANES spectroscopy of geological standards.

    PubMed

    Yoshimura, Toshihiro; Tamenori, Yusuke; Iwasaki, Nozomu; Hasegawa, Hiroshi; Suzuki, Atsushi; Kawahata, Hodaka

    2013-09-01

    Magnesium K-edge X-ray absorption near-edge structure (XANES) spectra have been investigated to develop a systematic understanding of a suite of Mg-bearing geological materials such as silicate and carbonate minerals, sediments, rocks and chemical reagents. For the model compounds the Mg XANES was found to vary widely between compounds and to provide a fingerprint for the form of Mg involved in geologic materials. The energy positions and resonance features obtained from these spectra can be used to specify the dominant molecular host site of Mg, thus shedding light on Mg partitioning and isotope fractionation in geologic materials and providing a valuable complement to existing knowledge of Mg geochemistry.

  8. Speciation of Soil Phosphorus Assessed by XANES Spectroscopy at Different Spatial Scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hesterberg, Dean; McNulty, Ian; Thieme, Juergen

    Precise management of soil phosphorus (P) to meet competing demands of agriculture and environmental protection can benefit from more comprehensive characterization of P speciation in soils. Our objectives were to provide spatial context for spectroscopic analyses of soil P speciation in relation to molecular-scale species and landscape-scale management of P, and to compare soil P-species diversity from spectroscopic measurements at submicron and millimeter scales. The spatial range of ~26 orders of magnitude between atomic and field scales presents a challenge to upscaling and downscaling information from spectroscopic analyses of soils. Scanning fluorescence X-ray microscopy images of a 50-mm ´ 45-mmmore » area of an organic soil sample showed heterogeneous distributions of P, Al, and Si. Microscale X-ray absorption near edge structure (μ-XANES) spectra collected at the P K-edge from 12 spots on the soil sample exhibited diverse features that indicated variations in highly localized P speciation. Linear combination fitting analysis of the μ-XANES spectra included various proportions of three standards that appeared in fits for most spots and five standards that appeared in fits for one spot each. The fit to a bulk-soil spectrum was dominated by two of the common standards in the μ-XANES fits, and a fit to the sum of m-XANES spectra included four of the standards. Lastly, these results illustrate a gain in P species sensitivity from spatially resolved XANES analysis. Integrating spectroscopic analyses from multiple scales determines soil P species diversity and will ultimately help connect speciation to the chemical reactivity and mobility of P in soils.« less

  9. Speciation of Soil Phosphorus Assessed by XANES Spectroscopy at Different Spatial Scales

    DOE PAGES

    Hesterberg, Dean; McNulty, Ian; Thieme, Juergen

    2017-07-27

    Precise management of soil phosphorus (P) to meet competing demands of agriculture and environmental protection can benefit from more comprehensive characterization of P speciation in soils. Our objectives were to provide spatial context for spectroscopic analyses of soil P speciation in relation to molecular-scale species and landscape-scale management of P, and to compare soil P-species diversity from spectroscopic measurements at submicron and millimeter scales. The spatial range of ~26 orders of magnitude between atomic and field scales presents a challenge to upscaling and downscaling information from spectroscopic analyses of soils. Scanning fluorescence X-ray microscopy images of a 50-mm ´ 45-mmmore » area of an organic soil sample showed heterogeneous distributions of P, Al, and Si. Microscale X-ray absorption near edge structure (μ-XANES) spectra collected at the P K-edge from 12 spots on the soil sample exhibited diverse features that indicated variations in highly localized P speciation. Linear combination fitting analysis of the μ-XANES spectra included various proportions of three standards that appeared in fits for most spots and five standards that appeared in fits for one spot each. The fit to a bulk-soil spectrum was dominated by two of the common standards in the μ-XANES fits, and a fit to the sum of m-XANES spectra included four of the standards. Lastly, these results illustrate a gain in P species sensitivity from spatially resolved XANES analysis. Integrating spectroscopic analyses from multiple scales determines soil P species diversity and will ultimately help connect speciation to the chemical reactivity and mobility of P in soils.« less

  10. 279 - Xanes Studies on UV-Irradiated Interstellar Ice Analogs: A Comparison to STARDUST Samples

    NASA Technical Reports Server (NTRS)

    Milam, Stefanie N.; Cody, George D.; Kilcoyne, A. L. David; Nuevo, Michel; Sandford, Scott A.; Stroud, Rhonda M.; DeGregorio, Bradley T.

    2010-01-01

    We present C-, N-, and O-XANES (X-ray Absorption Near-Edge Spectroscopy) results of organic residues produced in the laboratory from the UV irradiation of astrophysical ice analogs containing H20, CO, CH30H, NH31 in order to mimic processes that may occur in cold icy bodies of the outer Solar System, particularly in comets, Such analyses showed that laboratory-formed organic residues mainly consist of a solid phase and an oily phase. C-XANES analysis of the solid phase suggests a rich distribution of organic functionalities, among which carbonyl groups, C=C bonds, and alcohols are present. Results from N-XANES indicate the possible presence of amide, amine, and nitrile groups, The O-XANES spectra confirmed the a-bearing groups, These results are compared with the XANES spectra obtained from STARDUST cometary samples,

  11. New insights into the role of Mn and Fe in coloring origin of blue decorations of blue-and-white porcelains by XANES spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Luo, Wugan; Chen, Dongliang; Xu, Wei; Ming, Chaofang; Wang, Changsui; Wang, Lihua

    2013-04-01

    Blue and white porcelain is one of the most valuable ancient ceramics varieties in ancient China. It is well known for its beautiful blue decorations. However, the origin of its blue color has not been very clear till now. In this research, two blue and white porcelains from Jingdezhen, Jiangxi province were selected and Mn and Fe K-edge XANES spectra were recorded from blue decorations with or without transparent glaze. Results showed that Mn K-edge XANES features were almost identical between different samples while that of iron changed. The above findings indicated the positive role of iron in the variation of blue decorations. As for manganese, although more system researches were need, its negative role on the variations of the tone of blue decorations was obtained. On the other hand, the paper also revealed the XAFS results will be affect by the glaze layer above the pigment. These findings provided us more information to understand the coloring origin of blue decorations of blue-and-white porcelain by means of XANES spectroscopy.

  12. Chemical species of sulfur in prostate cancer cells studied by XANES spectroscopy

    NASA Astrophysics Data System (ADS)

    Czapla, Joanna; Kwiatek, Wojciech M.; Lekki, Janusz; Dulińska-Litewka, Joanna; Steininger, Ralph; Göttlicher, Jörg

    2013-12-01

    The role of sulfur in prostate cancer progression may be significant for understanding the process of carcinogenesis. This work, based on X-ray Absorption Near Edge Structure (XANES) spectroscopy, is focused on determination of sulfur chemical species occurring in prostate cancer cell lines. The experimental material consisted of four commercially available cell lines: three from metastasized prostate cancer (PC3, LNCaP, and DU145) and one, used as a control, from the non-tumourigenic peripheral zone of the prostate (PZ-HPV-7). The experiment was performed at the SUL-X beamline of the synchrotron radiation source ANKA, Karlsruhe (Germany). The K-edge XANES spectra of sulfur were analyzed by deconvolution in order to establish sulfur species that occur in prostate cancer cells and to find out whether there are any differences in their content between various cell lines. Experimental spectra were fitted in two ways: with two Gaussian peaks and one arctangent step function, and additionally by a Linear Combination Fit with spectra of reference compounds in order to obtain quantitative chemical information. All fitting procedures were performed with the Athena code (Ravel and Newville, 2005) and the results of deconvolution were used to determine the fraction of each sulfur form. The results of data analysis showed that cell lines from different metastasis had different ratio of reduced to oxidized sulfur species. The LCF analysis demonstrated that the highest content of GSH, one of the most important sulfur-bearing compounds in cells, was observed in DU145 cells. These findings may confirm the hypothesis of changes in redox balance in case of cancer initiation and progression.

  13. XANES Analysis of Organic Residues Produced from the UV Irradiation of Astrophysical Ice Analogs

    NASA Technical Reports Server (NTRS)

    Nuevo, M.; Milam, S N.; Sandford, S A.; De Gregorio, B T.; Cody, G D.; Kilcoyne, A L.

    2011-01-01

    Organic residues formed in the laboratory from the ultraviolet (UV) photo-irradiation or ion bombardment of astrophysical ice analogs have been extensively studied for the last 15 years with a broad suite of techniques, including infrared (IR) and UV spectroscopies, as well as mass spectrometry. Analyses of these materials show that they consist of complex mixtures of organic compounds stable at room temperature, mostly soluble, that have not been fully characterized. However, the hydrolysis products of these residues have been partly identified using chromatography techniques, which indicate that they contain molecular precursors of prebiotic interest such as amino acids, nitrile-bearing compounds, and amphiphilic compounds. In this study, we present the first X-ray absorption near-edge structure (XANES) spectroscopy measurements of three organic residues made from the UV irradiation of ices having different starting compositions. XANES spectra confirm the presence of different chemical functions in these residues, and indicate that they are rich in nitrogenand oxygen-bearing species. These data can be compared with XANES measurements of extraterrestrial materials. Finally, this study also shows how soft X rays can alter the chemical composition of samples.

  14. Ce(III) and Ce(IV) (re)distribution and fractionation in a laterite profile from Madagascar: Insights from in situ XANES spectroscopy at the Ce LIII-edge

    NASA Astrophysics Data System (ADS)

    Janots, Emilie; Bernier, Felix; Brunet, Fabrice; Muñoz, Manuel; Trcera, Nicolas; Berger, Alfons; Lanson, Martine

    2015-03-01

    The distribution of trivalent and tetravalent cerium, Ce(III) and Ce(IV) respectively, in a lateritic profile from Madagascar, has been characterized by X-ray-absorption near-edge structure (XANES) spectroscopy at the Ce LIII-edge on the LUCIA beamline (SOLEIL synchrotron, France). XANES spectra were acquired on bulk-rock samples as well as on specific lateritic minerals or polymineral zones (in-situ measurements) of the tonalite bedrock and the three overlying weathered horizons (C-, B- and A-horizons). Geochemically, the bedrock, and the A- and C-horizons show similar rare earth element content (REE = 363-405 mg/kg). They also display the same positive Ce-anomaly (CeCN/Ce∗ = 1.12-1.45), which is therefore likely to be inherited from the bedrock. In the B-horizon, the higher REE content (REE = 2194 mg/kg) and the larger Ce-anomaly (CeCN/Ce∗ = 4.26) are consistent with an accumulation zone caused by the evaporation of groundwater during the dry season. There is a good agreement between the Ce(III)/Cetotal ratio (XCe(III)) deduced from the positive Ce-anomaly (bulk-rock geochemical data) and that derived from XANES spectroscopy on the same bulk-rock samples (BR-XCe(III)-XANES) in the bedrock, and the C- and B-horizons. In the A-horizon, XANES measurements on bulk rock and minerals revealed a higher BR-XCe(III)-XANES (up to 100%) compared to the XCe(III) deduced from geochemical data (XCe(III) = 79%). The preservation of a positive Ce-anomaly in the A-horizon suggests that the Ce mobilization and redistribution during weathering occurred with no significant Ce fractionation from other trivalent REE. Remarkably, the only investigated sample where cerianite is observed belongs to the B-horizon. Within this horizon, Ce oxidation state varies depending on the microstructural position (porosity, cracks, clay-rich groundmass). The highest Ce(IV) concentrations are measured in cerianite (and aluminophosphates) localized in pores at the vicinity of Mn-rich domains (XCe(III)-XANES

  15. Diversity in C-Xanes Spectra Obtained from Carbonaceous Solid Inclusions from Monahans Halite

    NASA Technical Reports Server (NTRS)

    Kebukawa, Y.; Zolensky, M. E.; Fries, M.; Kilcoyne, A. L. D.; Rahman, Z.; Cody, G. D.

    2014-01-01

    Monahans meteorite (H5) contains fluid inclusion- bearing halite (NaCl) crystals [1]. Microthermometry and Raman spectroscopy showed that the fluid in the inclusions is an aqueous brine and they were trapped near 25degC [1]. Their continued presence in the halite grains requires that their incorporation into the H chondrite asteroid was post metamorphism [2]. Abundant solid inclusions are also present in the halites. The solid inclusions include abundant and widely variable organics [2]. Analyses by Raman microprobe, SEM/EDX, synchrotron X-ray diffraction and TEM reveal that these grains include macromolecular carbon similar in structure to CV3 chondrite matrix carbon, aliphatic carbon compounds, olivine (Fo99-59), high- and low-Ca pyroxene, feldspars, magnetite, sulfides, lepidocrocite, carbonates, diamond, apatite and possibly the zeolite phillipsite [3]. Here we report organic analyses of these carbonaceous residues in Monahans halite using C-, N-, and O- X-ray absorption near edge structure (XANES). Samples and Methods: Approximately 100 nm-thick sections were extracted with a focused ion beam (FIB) at JSC from solid inclusions from Monahans halite. The sections were analyzed using the scanning transmission X-ray microscope (STXM) on beamline 5.3.2.2 at the Advanced Light Source, Lawrence Berkeley National Laboratory for XANES spectroscopy. Results and Discussion: C-XANES spectra of the solid inclusions show micrometer-scale heterogeneity, indicating that the macromolecular carbon in the inclusions have complex chemical variations. C-XANES features include 284.7 eV assigned to aromatic C=C, 288.4-288.8 eV assigned to carboxyl, and 290.6 eV assigned to carbonate. The carbonyl features obtained by CXANES might have been caused by the FIB used in sample preparation. No specific N-XANES features are observed. The CXANES spectra obtained from several areas in the FIB sections include type 1&2 chondritic IOM like, type 3 chondritic IOM like, and none of the above

  16. Polarized XANES Monitors Femtosecond Structural Evolution of Photoexcited Vitamin B 12

    DOE PAGES

    Miller, Nicholas A.; Deb, Aniruddha; Alonso-Mori, Roberto; ...

    2017-01-30

    Ultrafast, polarization-selective time-resolved X-ray absorption near-edge structure (XANES) was used to characterize the photochemistry of vitamin B 12, cyanocobalamin (CNCbl), in solution. Cobalamins are important biological cofactors involved in methyl transfer, radical rearrangement, and light-activated gene regulation, while also holding promise as light-activated agents for spatiotemporal controlled delivery of therapeutics. We introduce polarized femtosecond XANES, combined with UV–visible spectroscopy, to reveal sequential structural evolution of CNCbl in the excited electronic state. Femtosecond polarized XANES provides the crucial structural dynamics link between computed potential energy surfaces and optical transient absorption spectroscopy. Polarization selectivity can be used to uniquely identify electronic contributionsmore » and structural changes, even in isotropic samples when well-defined electronic transitions are excited. Our XANES measurements reveal that the structural changes upon photoexcitation occur mainly in the axial direction, where elongation of the axial Co–CN bond and Co–N Im bond on a 110 fs time scale is followed by corrin ring relaxation on a 260 fs time scale. In conclusion, these observations expose features of the potential energy surfaces controlling cobalamin reactivity and deactivation.« less

  17. Polarized XANES Monitors Femtosecond Structural Evolution of Photoexcited Vitamin B 12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Nicholas A.; Deb, Aniruddha; Alonso-Mori, Roberto

    Ultrafast, polarization-selective time-resolved X-ray absorption near-edge structure (XANES) was used to characterize the photochemistry of vitamin B 12, cyanocobalamin (CNCbl), in solution. Cobalamins are important biological cofactors involved in methyl transfer, radical rearrangement, and light-activated gene regulation, while also holding promise as light-activated agents for spatiotemporal controlled delivery of therapeutics. We introduce polarized femtosecond XANES, combined with UV–visible spectroscopy, to reveal sequential structural evolution of CNCbl in the excited electronic state. Femtosecond polarized XANES provides the crucial structural dynamics link between computed potential energy surfaces and optical transient absorption spectroscopy. Polarization selectivity can be used to uniquely identify electronic contributionsmore » and structural changes, even in isotropic samples when well-defined electronic transitions are excited. Our XANES measurements reveal that the structural changes upon photoexcitation occur mainly in the axial direction, where elongation of the axial Co–CN bond and Co–N Im bond on a 110 fs time scale is followed by corrin ring relaxation on a 260 fs time scale. In conclusion, these observations expose features of the potential energy surfaces controlling cobalamin reactivity and deactivation.« less

  18. Inherent size effects on XANES of nanometer metal clusters: Size-selected platinum clusters on silica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Yang; Gorey, Timothy J.; Anderson, Scott L.

    2016-12-12

    X-ray absorption near-edge structure (XANES) is commonly used to probe the oxidation state of metal-containing nanomaterials, however, as the particle size in the material drops below a few nanometers, it becomes important to consider inherent size effects on the electronic structure of the materials. In this paper, we analyze a series of size-selected Pt n/SiO 2 samples, using X-ray photoelectron spectroscopy (XPS), low energy ion scattering, grazing-incidence small angle X-ray scattering, and XANES. The oxidation state and morphology are characterized both as-deposited in UHV, and after air/O 2 exposure and annealing in H 2. Here, the clusters are found tomore » be stable during deposition and upon air exposure, but sinter if heated above ~150 °C. XANES shows shifts in the Pt L 3 edge, relative to bulk Pt, that increase with decreasing cluster size, and the cluster samples show high white line intensity. Reference to bulk standards would suggest that the clusters are oxidized, however, XPS shows that they are not. Instead, the XANES effects are attributable to development of a band gap and localization of empty state wavefunctions in small clusters.« less

  19. Solid energy calibration standards for P K-edge XANES: electronic structure analysis of PPh4Br.

    PubMed

    Blake, Anastasia V; Wei, Haochuan; Donahue, Courtney M; Lee, Kyounghoon; Keith, Jason M; Daly, Scott R

    2018-03-01

    P K-edge X-ray absorption near-edge structure (XANES) spectroscopy is a powerful method for analyzing the electronic structure of organic and inorganic phosphorus compounds. Like all XANES experiments, P K-edge XANES requires well defined and readily accessible calibration standards for energy referencing so that spectra collected at different beamlines or under different conditions can be compared. This is especially true for ligand K-edge X-ray absorption spectroscopy, which has well established energy calibration standards for Cl (Cs 2 CuCl 4 ) and S (Na 2 S 2 O 3 ·5H 2 O), but not neighboring P. This paper presents a review of common P K-edge XANES energy calibration standards and analysis of PPh 4 Br as a potential alternative. The P K-edge XANES region of commercially available PPh 4 Br revealed a single, highly resolved pre-edge feature with a maximum at 2146.96 eV. PPh 4 Br also showed no evidence of photodecomposition when repeatedly scanned over the course of several days. In contrast, we found that PPh 3 rapidly decomposes under identical conditions. Density functional theory calculations performed on PPh 3 and PPh 4 + revealed large differences in the molecular orbital energies that were ascribed to differences in the phosphorus oxidation state (III versus V) and molecular charge (neutral versus +1). Time-dependent density functional theory calculations corroborated the experimental data and allowed the spectral features to be assigned. The first pre-edge feature in the P K-edge XANES spectrum of PPh 4 Br was assigned to P 1s → P-C π* transitions, whereas those at higher energy were P 1s → P-C σ*. Overall, the analysis suggests that PPh 4 Br is an excellent alternative to other solid energy calibration standards commonly used in P K-edge XANES experiments.

  20. Speciation of sulfur in humic and fulvic acids using X-ray absorption near-edge structure (XANES) spectroscopy

    NASA Astrophysics Data System (ADS)

    Morra, Matthew J.; Fendorf, Scott E.; Brown, Paul D.

    1997-02-01

    Sulfur species in soils and sediments have previously been determined indirectly using destructive techniques. A direct and more accurate method for S speciation would improve our understanding of S biogeochemistry. X-ray absorption near edge structure (XANES) spectroscopy was performed on purified humic and fulvic acids from terrestrial and aquatic environments. This methodology allows direct determination of S species using the relationship that exists with the energy required for core electron transitions and in some cases, correlation with additional spectral features. Soil, peat, and aquatic humic acids were dominated by sulfonates with an oxidation state of +5, but also contained ester-bonded sulfates with an oxidation state of +6. Leonardite humic acid contained ester-bonded sulfate and an unidentified S compound with an oxidation state of +4.0. In contrast, high-valent S in soil, peat, and aquatic fulvic acids was exclusively in the form of sulfonic acids. Reduced S species were also present in both humic and fulvic acids. XANES is a valuable method for the speciation of S in humic materials and of potential use in S speciation of unfractionated soils.

  1. The interaction of copper ions with Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli: an X-ray absorption near-edge structure (XANES) spectroscopy study.

    PubMed

    Zanzen, Ulrike; Bovenkamp-Langlois, Lisa; Klysubun, Wantana; Hormes, Josef; Prange, Alexander

    2018-04-01

    The antimicrobial properties of copper ions have been known for a long time. However, the exact mechanism of action of the transition metal on microorganisms has long been unclear. X-ray absorption near-edge structure (XANES) spectroscopy at the Cu K edge allows the determination of copper speciation in Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa that have been treated with Cu(II) and Cu(I) solutions. The death/inactivation of the bacteria was observed using plate counting and light microscopy. The Cu K-XANES spectra of the two Gram-negative bacteria are different than those of the Gram-positive strain. The results clearly show that the Cu + -S bond contributes to the antibacterial activity of copper, as in the case of silver. The detailed evaluation of the differentiated absorption spectra shows that Cu + (not Cu 2+ ) is the dominant ion that binds to the bacteria. Because Cu + is not the most common copper ion, copper is not as effective an antibacterial agent as silver, whose common valency is actually + 1. Any reaction of copper with phosphorus from the bacteria can be excluded after the evaluation of the absorption spectra.

  2. Direct determination of oxidation state of gold deposits in metal-reducing bacterium Shewanella algae using X-ray absorption near-edge structure spectroscopy (XANES).

    PubMed

    Konishi, Yasuhiro; Tsukiyama, Takeshi; Saitoh, Norizoh; Nomura, Toshiyuki; Nagamine, Shinsuke; Takahashi, Yoshio; Uruga, Tomoya

    2007-06-01

    X-ray absorption near-edge structure spectroscopy (XANES) was successfully employed to determine the gold valence in the metal-reducing bacterium Shewanella algae after exposure to a 1 mM aqueous HAuCl4 solution for 10-120 min. XANES spectra revealed the oxidation state of gold in the bacterial cells to be Au(0) without any contribution from Au(III), demonstrating that S. algae cells can reduce AuCl4- ions to elemental gold. Transmission electron microscopy (TEM) and energy dispersive X-ray (EDX) analysis confirmed that gold nanoparticles 5-15 nm in size were deposited in the periplasmic space of the bacterial cells; a preferable, cell surface location for the easy recovery of biogenic nanoparticles.

  3. A New Look at the Structural and Magnetic Properties of Potassium Neptunate K2NpO4 Combining XRD, XANES Spectroscopy, and Low-Temperature Heat Capacity.

    PubMed

    Smith, Anna L; Colineau, Eric; Griveau, Jean-Christophe; Popa, Karin; Kauric, Guilhem; Martin, Philippe; Scheinost, Andreas C; Cheetham, Anthony K; Konings, Rudy J M

    2017-05-15

    The physicochemical properties of the potassium neptunate K 2 NpO 4 have been investigated in this work using X-ray diffraction, X-ray absorption near edge structure (XANES) spectroscopy at the Np-L 3 edge, and low-temperature heat capacity measurements. A Rietveld refinement of the crystal structure is reported for the first time. The Np(VI) valence state has been confirmed by the XANES data, and the absorption edge threshold of the XANES spectrum has been correlated to the Mössbauer isomer shift value reported in the literature. The standard entropy and heat capacity of K 2 NpO 4 have been derived at 298.15 K from the low-temperature heat capacity data. The latter suggest the existence of a magnetic ordering transition around 25.9 K, most probably of the ferromagnetic type.

  4. Structure, Bonding, and Stability of Mercury Complexes with Thiolate and Thioether Ligands from High-Resolution XANES Spectroscopy and First-Principles Calculations.

    PubMed

    Manceau, Alain; Lemouchi, Cyprien; Rovezzi, Mauro; Lanson, Martine; Glatzel, Pieter; Nagy, Kathryn L; Gautier-Luneau, Isabelle; Joly, Yves; Enescu, Mironel

    2015-12-21

    We present results obtained from high energy-resolution L3-edge XANES spectroscopy and first-principles calculations for the structure, bonding, and stability of mercury(II) complexes with thiolate and thioether ligands in crystalline compounds, aqueous solution, and macromolecular natural organic matter (NOM). Core-to-valence XANES features that vary in intensity differentiate with unprecedented sensitivity the number and identity of Hg ligands and the geometry of the ligand environment. Post-Hartree-Fock XANES calculations, coupled with natural population analysis, performed on MP2-optimized Hg[(SR)2···(RSR)n] complexes show that the shape, position, and number of electronic transitions observed at high energy-resolution are directly correlated to the Hg and S (l,m)-projected empty densities of states and occupations of the hybridized Hg 6s and 5d valence orbitals. Linear two-coordination, the most common coordination geometry in mercury chemistry, yields a sharp 2p to 6s + 5d electronic transition. This transition varies in intensity for Hg bonded to thiol groups in macromolecular NOM. The intensity variation is explained by contributions from next-nearest, low-charge, thioether-type RSR ligands at 3.0-3.3 Å from Hg. Thus, Hg in NOM has two strong bonds to thiol S and k additional weak Hg···S contacts, or 2 + k coordination. The calculated stabilization energy is -5 kcal/mol per RSR ligand. Detection of distant ligands beyond the first coordination shell requires precise measurement of, and comparison to, spectra of reference compounds as well as accurate calculation of spectra for representative molecular models. The combined experimental and theoretical approaches described here for Hg can be applied to other closed-shell atoms, such as Ag(I) and Au(I). To facilitate further calculation of XANES spectra, experimental data, a new crystallographic structure of a key mercury thioether complex, Cartesian coordinates of the computed models, and examples of

  5. Alternative difference analysis scheme combining R-space EXAFS fit with global optimization XANES fit for X-ray transient absorption spectroscopy.

    PubMed

    Zhan, Fei; Tao, Ye; Zhao, Haifeng

    2017-07-01

    Time-resolved X-ray absorption spectroscopy (TR-XAS), based on the laser-pump/X-ray-probe method, is powerful in capturing the change of the geometrical and electronic structure of the absorbing atom upon excitation. TR-XAS data analysis is generally performed on the laser-on minus laser-off difference spectrum. Here, a new analysis scheme is presented for the TR-XAS difference fitting in both the extended X-ray absorption fine-structure (EXAFS) and the X-ray absorption near-edge structure (XANES) regions. R-space EXAFS difference fitting could quickly provide the main quantitative structure change of the first shell. The XANES fitting part introduces a global non-derivative optimization algorithm and optimizes the local structure change in a flexible way where both the core XAS calculation package and the search method in the fitting shell are changeable. The scheme was applied to the TR-XAS difference analysis of Fe(phen) 3 spin crossover complex and yielded reliable distance change and excitation population.

  6. XANES mapping of organic sulfate in three scleractinian coral skeletons

    NASA Astrophysics Data System (ADS)

    Cuif, Jean-Pierre; Dauphin, Yannicke; Doucet, Jean; Salome, Murielle; Susini, Jean

    2003-01-01

    The presence and localization of organic sulfate within coral skeletons are studied by using X-ray absorption near edge structure spectroscopy (XANES) fluorescence. XANES spectra are recorded from four reference sulfur-bearing organic molecules: three amino acids (H-S-C bonds in cysteine; C-S-C bonds in methionine; one disulfide bond C-S-S-C bonds in cystine) and a sulfated sugar (C-SO 4 bonds in chondroitin sulfate). Spectral responses of three coral skeletons show that the sulfated form is extremely dominant in coral aragonite, and practically exclusive within both centres of calcification and the surrounding fibrous tissues of coral septa. Mapping of S-sulfate concentrations in centres and fibres gives us direct evidence of high concentration of organic sulfate in centres of calcification. Additionally, a banding pattern of S-sulfate is visible in fibrous part of the coral septa, evidencing a biochemical zonation that corresponds to the step-by-step growth of fibres.

  7. Tetrahedrally Coordinated Fe3+ in Silicate Glasses: A Mossbauer, Iron K-edge XANES and Raman Spectroscopies Study

    NASA Astrophysics Data System (ADS)

    Cochain, B.; Neuville, D. R.; McCammon, C.; Henderson, G. S.; de Ligny, D.; Pinet, O.; Richet, P.

    2009-05-01

    In natural or industrial glasses, iron is the most abundant transition metal. A good knowledge of its redox equilibrium is important to better understand the chemical and structural evolution of magmas (crystallization, viscosity), and also to optimize vitrification processes and properties of iron-bearing glasses. To study the role of iron in silicate glasses and melts, we have used in a consistent manner the Mössbauer, iron K-edge XANES and Raman spectroscopies to investigate several series of silicate glasses as a function of redox state. The samples were selected to cover a wide composition range and to investigate the interactions of iron with two network forming cations, namely, Al3+ and B3+. The glasses investigated were synthesized at high temperature under various conditions of oxygen fugacity to achieve different redox ratios for each composition. Therefore, the iron redox state was varied from the most oxidized to the most reduced. Iron redox ratios were first determined by wet chemical analysis and in some cases by room temperature Mossbauer spectroscopy. This experimental method was also used to determine the local structure of iron of some of the investigated glasses. These results where compared to iron K-edge XANES/EXAFS spectroscopy results, which lead to the iron redox state and indicate that Fe2+ is in octahedral coordination whereas Fe3+ is in tetrahedral coordination. In addition, Raman spectroscopy gave us information on the network polymerization of glasses. Clearly changes in Raman spectra are visible with the evolution of iron redox ratio. For a given composition, we observed systematically, in the 800-1200 cm-1 envelope, which is sensitive to the environment of tetrahedrally coordinated cations, the growth of a band with the iron content and the oxidation state of the sample. The peak area of this band, which we attribute to vibrational modes involving tetrahedrally coordinated Fe3+, increases with the oxidation of the sample. This

  8. Alternative difference analysis scheme combining R -space EXAFS fit with global optimization XANES fit for X-ray transient absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhan, Fei; Tao, Ye; Zhao, Haifeng

    Time-resolved X-ray absorption spectroscopy (TR-XAS), based on the laser-pump/X-ray-probe method, is powerful in capturing the change of the geometrical and electronic structure of the absorbing atom upon excitation. TR-XAS data analysis is generally performed on the laser-on minus laser-off difference spectrum. Here, a new analysis scheme is presented for the TR-XAS difference fitting in both the extended X-ray absorption fine-structure (EXAFS) and the X-ray absorption near-edge structure (XANES) regions.R-space EXAFS difference fitting could quickly provide the main quantitative structure change of the first shell. The XANES fitting part introduces a global non-derivative optimization algorithm and optimizes the local structure changemore » in a flexible way where both the core XAS calculation package and the search method in the fitting shell are changeable. The scheme was applied to the TR-XAS difference analysis of Fe(phen) 3spin crossover complex and yielded reliable distance change and excitation population.« less

  9. XANES study of Fe-implanted strontium titanate

    NASA Astrophysics Data System (ADS)

    Lobacheva, O.; Goncharova, L. V.; Chavarha, M.; Sham, T. K.

    2014-03-01

    Properties of strontium titanate SrTiO3 (STO) depend to a great extent on the substitutional dopants and defects of crystal structure. The ion beam implantation method was used for doping STO (001) crystals with Fe at different doses. Implanted samples were then annealed at 350°C in oxygen to induce recrystallization and remove oxygen vacancies produced during ion implantation process. The effect of Fe doping and post-implantation annealing was studied by X-ray Absorption Near Edge Spectroscopy (XANES) method and Superconducting Quantum Interference Device (SQUID). XANES allowed to monitor the change in structure of STO crystals and in the local environment of Fe following the implantation and annealing steps. SQUID measurements revealed correlation between magnetic moment and Fe implantation dose. Ferromagnetic hysteresis was observed on selected Fe-implanted STO at 5 K. The observed magnetic properties can be correlated with the several Fe oxide phases in addition to the presence of O/Ti vacancies.

  10. µ-XANES AND µ-XRF INVESTIGATIONS OF METAL BINDING MECHANISMS IN BIOSOLIDS

    EPA Science Inventory

    Micro-X-ray fluorescence (µ-XRF) microprobe analysis and micro-X-ray absorption near edge spectroscopy (µ-XANES) were employed to identify Fe and Mn phases and their association with selected toxic elements in two biosolids (limed composted and Nu-Earth) containing low ...

  11. First-Principles Fe L 2,3 -Edge and O K-Edge XANES and XMCD Spectra for Iron Oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sassi, Michel; Pearce, Carolyn I.; Bagus, Paul S.

    X-ray absorption near-edge structure (XANES) and X-ray magnetic circular dichroism (XMCD) spectroscopies are tools in widespread use for providing detailed local atomic structure, oxidation state, and magnetic structure information for materials and organometallic complexes. The analysis of these spectra for transition-metal L-edges is routinely performed on the basis of ligand-field multiplet theory because one- and two-particle mean-field ab initio methods typically cannot describe the multiplet structure. Here we show that multireference configuration interaction (MRCI) calculations can satisfactorily reproduce measured XANES spectra for a range of complex iron oxide materials including hematite and magnetite. MRCI Fe L2,3-edge XANES and XMCD spectramore » of Fe(II)O6, Fe(III)O6, and Fe(III)O4 in magnetite are found to be in very good qualitative agreement with experiment and multiplet calculations. Point-charge embedding and small distortions of the first-shell oxygen ligands have only small effects. Oxygen K-edge XANES/XMCD spectra for magnetite investigated by a real-space Green’s function approach complete the very good qualitative agreement with experiment. Material-specific differences in local coordination and site symmetry are well reproduced, making the approach useful for assigning spectral features to specific oxidation states and coordination environments.« less

  12. X-ray absorption spectroscopy: EXAFS (Extended X-ray Absorption Fine Structure) and XANES (X-ray Absorption Near Edge Structure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alp, E.E.; Mini, S.M.; Ramanathan, M.

    1990-04-01

    The x-ray absorption spectroscopy (XAS) had been an essential tool to gather spectroscopic information about atomic energy level structure in the early decades of this century. It has also played an important role in the discovery and systematization of rare-earth elements. The discovery of synchrotron radiation in 1952, and later the availability of broadly tunable synchrotron based x-ray sources have revitalized this technique since the 1970's. The correct interpretation of the oscillatory structure in the x-ray absorption cross-section above the absorption edge by Sayers et. al. has transformed XAS from a spectroscopic tool to a structural technique. EXAFS (Extended X-raymore » Absorption Fine Structure) yields information about the interatomic distances, near neighbor coordination numbers, and lattice dynamics. An excellent description of the principles and data analysis techniques of EXAFS is given by Teo. XANES (X-ray Absorption Near Edge Structure), on the other hand, gives information about the valence state, energy bandwidth and bond angles. Today, there are about 50 experimental stations in various synchrotrons around the world dedicated to collecting x-ray absorption data from the bulk and surfaces of solids and liquids. In this chapter, we will give the basic principles of XAS, explain the information content of essentially two different aspects of the absorption process leading to EXAFS and XANES, and discuss the source and samples limitations.« less

  13. Experimental evidence of six-fold oxygen coordination for phosphorus and XANES calculations

    NASA Astrophysics Data System (ADS)

    Flank, A.-M.; Trcera, N.; Brunet, F.; Itié, J.-P.; Irifune, T.; Lagarde, P.

    2009-11-01

    Phosphorus, a group V element, has always been found so far in minerals, biological systems and synthetic compounds with an oxygen coordination number of four (i.e, PO4 groups). We demonstrate here using phosphorus K-edge XANES spectroscopy that this element can also adopt a six-fold oxygen coordination (i.e, PO6 groups). This new coordination was achieved in AlPO4 doped SiO2 stishovite synthesized at 18 GPa and 1873 K and quenched down to ambient conditions. The well-crystallized P-bearing stishovite grains (up to 100μm diameter) were embedded in the back-transformation products of high pressure form of AlPO4 matrix. They were identified by elemental mapping (μ-XRF). μ-XANES spectra collected at the Si and P K edges in the Si rich region with a very low concentration of P present striking resemblance, Si itself being characteristic of pure stishovite. We can therefore infer that phosphorus in the corresponding stishovite crystal is involved in an octahedral coordination made of six oxygen atoms. First principle XANES calculations using a plane-wave density functional formalism with core-hole effects treated in a supercell approach at the P K edge for a P atom substituting an Si one in the stishovite structure confirm this assertion. This result shows that in the lower-mantle where all silicon is six-fold coordinated, phosphorus has the crystal-chemical ability to remain incorporated into silicate structures.

  14. 2D XANES-XEOL mapping: observation of enhanced band gap emission from ZnO nanowire arrays

    NASA Astrophysics Data System (ADS)

    Wang, Zhiqiang; Guo, Xiaoxuan; Sham, Tsun-Kong

    2014-05-01

    Using 2D XANES-XEOL spectroscopy, it is found that the band gap emission of ZnO nanowire arrays is substantially enhanced i.e. that the intensity ratio between the band gap and defect emissions increases by more than an order of magnitude when the excitation energy is scanned across the O K-edge. Possible mechanisms are discussed.Using 2D XANES-XEOL spectroscopy, it is found that the band gap emission of ZnO nanowire arrays is substantially enhanced i.e. that the intensity ratio between the band gap and defect emissions increases by more than an order of magnitude when the excitation energy is scanned across the O K-edge. Possible mechanisms are discussed. Electronic supplementary information (ESI) available: XEOL spectra with different excitation energies. X-ray attenuation length vs. photon energy. Details of surface defects in ZnO NWs. The second O K-edge and Zn L-edge 2D XANES-XEOL maps. Comparison of the first and second TEY at O K-edge and Zn L-edge scans, respectively. Raman spectra of the ZnO NWs with different IBGE/IDE ratios. See DOI: 10.1039/c4nr01049c

  15. Chemical Heterogeneity of a Large Cluster IDP: Clues to its Formation History Using X-ray Fluorescence Mapping and XANES Spectroscopy

    NASA Technical Reports Server (NTRS)

    Wirick, S.; Flynn, G. J.; Sutton, S.; Zolensky, M. E.

    2013-01-01

    Chondritic porous IDPs may be among the most primitive objects found in our solar system [1]. They consist of many micron to submicron minerals, glasses and carbonaceous matter [2,3,4,5,6,7] with > 10(exp 4) grains in a 10 micron cluster [8]. Speculation on the environment where these fine grained, porous IDPs formed varies with possible sources being presolar dusty plasma clouds, protostellar condensation, solar asteroids or comets [4,6,9]. Also, fine grained dust forms in our solar system today [10,11]. Isotopic anomalies in some particles in IDPs suggest an interstellar source[4,7,12]. IDPs contain relic particles left from the dusty plasma that existed before the protostellar disk formed and other grains in the IDPs formed later after the cold dense nebula cloud collapsed to form our protostar and other grains formed more recently. Fe and CR XANES spectroscopy is used here to investigate the oxygen environment in a large (>50 10 micron or larger sub-units) IDP. Conclusions: Analyzing large (>50 10 micron or larger sub-units) CP IDPs gives one a view on the environments where these fine dust grains formed which is different from that found by only analyzing the small, 10 micron IDPs. As with cluster IDP L2008#5 [3], L2009R2 cluster #13 appears to be an aggregate of grains that sample a diversity of solar and perhaps presolar environments. Sub-micron, grain by grain measurement of trace element contents and elemental oxidation states determined by XANES spectroscopy offers the possibility of understanding the environments in which these grains formed when compared to standard spectra. By comparing thermodynamic modeling of condensates with analytical data an understanding of transport mechanisms operating in the early solar system may be attained.

  16. Indium local geometry in In-Sb-Te thin films using XANES and DFT calculations

    NASA Astrophysics Data System (ADS)

    Bilovol, V.; Gil Rebaza, A. V.; Mudarra Navarro, A. M.; Errico, L.; Fontana, M.; Arcondo, B.

    2017-12-01

    In-Sb-Te when is a thin film presents a huge difference in its electrical resistivity when transform from the amorphous (insulating) to the crystalline (conducting) phase. This property made this system one of the main phase-change materials used in the data storage industry. The change in the electrical conductivity is probably associated to a change in the bonding geometry of some of its constituents. To explore this point, we present in this work an study of the bonding geometry of In atoms in In-Sb-Te films by means of In K-edge X-ray absorption near edge structure (XANES) spectroscopy using synchrotron radiation in both as deposited (amorphous) and crystalline thin films obtained as a result of resistance (R) vs temperature (T) measurements. Comparison of the XANES spectra obtained for ternary amorphous films and binary crystalline reference films suggests that in amorphous films the bonding geometry of In atoms is tetrahedral-like. After the thermal annealing has been carried out the differences in the XANES spectra of the as deposited and the annealed films indicate that the bonding geometry of In atoms changes. Based on X-ray diffraction results and ab initio calculations in the framework of the Density Functional Theory (DFT) we show that the new coordination geometry is associated with a tendency of In atoms towards octahedral-like.

  17. XANES study on Fe, U and Th in hydrous melts at high temperature and pressure

    NASA Astrophysics Data System (ADS)

    Wilke, M.; Schmidt, C.; Farges, F.; Borchert, M.; Simionovici, A.; Hahn, M.

    2005-12-01

    Insight to the structural units of melts is an important key to model properties of magmas. The effect of water and pressure on the local structure around minor to trace elements in silicate melts was investigated at in-situ conditions. The study was performed using XANES spectroscopy and a diamond anvil-cell. This was done to characterize spurious effects observed on glasses that are potentially invoked by quenching [1] and to understand better the processes occurring during the quench. We present results of in-situ XANES measurements on iron, uranium and thorium in hydrous silicate melt up to 1 GPa and 700° C. In-situ XANES spectra were recorded at the ESRF (Grenoble, France), beamline ID 22, using a hydrothermal diamond anvil cell with a design optimized for such measurements [2], i.e. recesses on the front and the back-side of one of the diamond anvils that provide the possibility to collect spectra at relatively low energies (down to 7 keV) and relatively low concentrations (0.1-1 wt%). In-situ Fe K-edge XANES spectra of Fe(II) in hydrous haplogranitic melt at 700° C and 500 MPa suggests that the local structure around Fe in hydrous glass observed previously is probably due to ordering during the quench. Additionally, the XANES is very similar to in-situ spectra taken on Fe(II) in anhydrous haplogranitic melt at 1150° C and ambient pressure. This indicates that the combined effect of water and pressure (0-500 MPa range) does not influence drastically the local structure of Fe in this type of melt composition. In-situ LIII-edge XANES of U in hydrous haplogranitic melt (1 wt% U) at 700° C and 620 MPa show that, upon reduction, U precipitated as uraninite. This suggests a low amount of NBO's (to which tetravalent actinides preferentially bond [3]) in this water-saturated melt. In contrast, U-bearing (1000 ppm) hydrous sodium-tri-silicate melt shows the presence of U(IV) dissolved in the melt as 6-7 coordinated species, as in dry glasses [3]. Similar

  18. Local structure in LaMnO3 and CaMnO3 perovskites: A quantitative structural refinement of Mn K -edge XANES data

    NASA Astrophysics Data System (ADS)

    Monesi, C.; Meneghini, C.; Bardelli, F.; Benfatto, M.; Mobilio, S.; Manju, U.; Sarma, D. D.

    2005-11-01

    Hole-doped perovskites such as La1-xCaxMnO3 present special magnetic and magnetotransport properties, and it is commonly accepted that the local atomic structure around Mn ions plays a crucial role in determining these peculiar features. Therefore experimental techniques directly probing the local atomic structure, like x-ray absorption spectroscopy (XAS), have been widely exploited to deeply understand the physics of these compounds. Quantitative XAS analysis usually concerns the extended region [extended x-ray absorption fine structure (EXAFS)] of the absorption spectra. The near-edge region [x-ray absorption near-edge spectroscopy (XANES)] of XAS spectra can provide detailed complementary information on the electronic structure and local atomic topology around the absorber. However, the complexity of the XANES analysis usually prevents a quantitative understanding of the data. This work exploits the recently developed MXAN code to achieve a quantitative structural refinement of the Mn K -edge XANES of LaMnO3 and CaMnO3 compounds; they are the end compounds of the doped manganite series LaxCa1-xMnO3 . The results derived from the EXAFS and XANES analyses are in good agreement, demonstrating that a quantitative picture of the local structure can be obtained from XANES in these crystalline compounds. Moreover, the quantitative XANES analysis provides topological information not directly achievable from EXAFS data analysis. This work demonstrates that combining the analysis of extended and near-edge regions of Mn K -edge XAS spectra could provide a complete and accurate description of Mn local atomic environment in these compounds.

  19. PROCEEDINGS ON SYNCHROTRON RADIATION: Transfer characterization of sulfur from coal-burning emission to plant leaves by PIXE and XANES

    NASA Astrophysics Data System (ADS)

    Bao, Liang-Man; Zhang, Gui-Lin; Zhang, Yuan-Xim; Li, Yan; Lin, Jun; Liu, Wei; Cao, Qing-Chen; Zhao, Yi-Dong; Ma, Chen-Yan; Han, Yong

    2009-11-01

    The impact of coal-burning emission on sulfur in camphor leaves was investigated using Proton Induced X-ray Emission (PIXE) and synchrotron radiation technique X-ray Absorption Near-Edge Structure (XANES) spectroscopy. The PIXE results show that the sulfur concentrations in the leaves collected at the polluted site are significantly higher than those in controls. The Sulfur XANES spectra show the presence of organic (disulfides, thiols, thioethers, sulfonates and sulfoxides) and inorganic sulfur (sulfates) in the leaves. The inorganic sulfur in the leaves of camphor tree polluted by coal combustion is 15% more than that of the control site. The results suggest that the long-term coal-burning pollution resulted in an enhanced content of the total sulfur and sulfate in the leaves, and the uptake of sulfur by leaves had exceeded the metabolic requirement of plants and the excess of sulfur was stored as SO2-4. It can monitor the sulfur pollution in atmosphere.

  20. Synchrotron WAXS and XANES studies of silica (SiO2) powders synthesized from Indonesian natural sands

    NASA Astrophysics Data System (ADS)

    Muchlis, Khairanissa; Aini Fauziyah, Nur; Soontaranon, Siriwat; Limpirat, Wanwisa; Pratapa, Suminar

    2017-01-01

    In this study, we have investigated polymorphic silica (SiO2) powders using, Wide Angle X-ray Scattering (WAXS) and X-Ray Absorption Near Edge Spectroscopy (XANES), laboratory X-Ray Diffraction (XRD) instruments. The WAXS and XANES spectra were collected using synchrotron radiation at Synchrotron Light Research Institute (SLRI), Nakhon Ratchasima, Thailand. The silica powders were obtained by processing silica sand from Tanah Laut, South Kalimantan, Indonesia. Purification process of silica sand was done by magnetic separation and immersion with HCl. The purification step was needed to reduce impurity or undesirable non Si elements. Three polymorphs of silica were produced, i.e. amorphous phase (A), quartz (B), and cristobalite (C). WAXS profile for each phase was presented in terms of intensity vs. 2θ prior to analyses. Both XRD (λCuKα=1.54056 Å) and WAXS (λ=1.09 Å) patttern show that (1) A sample contains no crystallites, (2) B sample is monophasic, contains only quartz, and (3) C sample contains cristobalite and trydimite. XRD quantitative analysis using Rietica gave 98,8 wt% cristobalite, while the associated WAXS data provided 98.7 wt% cristobalite. Si K-edge XANES spectra were measured at energy range 1840 to 1920 eV. Qualitatively, the pre-edge and edge features for all phases are similar, but their main peaks in the post-edge region are different.

  1. Diamond xenolith and matrix organic matter in the Sutter's Mill meteorite measured by C-XANES

    NASA Astrophysics Data System (ADS)

    Kebukawa, Yoko; Zolensky, Michael E.; Kilcoyne, A. L. David; Rahman, Zia; Jenniskens, Peter; Cody, George D.

    2014-11-01

    The Sutter's Mill (SM) meteorite fell in El Dorado County, California, on April 22, 2012. This meteorite is a regolith breccia composed of CM chondrite material and at least one xenolithic phase: oldhamite. The meteorite studied here, SM2 (subsample 5), was one of three meteorites collected before it rained extensively on the debris site, thus preserving the original asteroid regolith mineralogy. Two relatively large (10 μm sized) possible diamond grains were observed in SM2-5 surrounded by fine-grained matrix. In the present work, we analyzed a focused ion beam (FIB) milled thin section that transected a region containing these two potential diamond grains as well as the surrounding fine-grained matrix employing carbon and nitrogen X-ray absorption near-edge structure (C-XANES and N-XANES) spectroscopy using a scanning transmission X-ray microscope (STXM) (Beamline 5.3.2 at the Advanced Light Source, Lawrence Berkeley National Laboratory). The STXM analysis revealed that the matrix of SM2-5 contains C-rich grains, possibly organic nanoglobules. A single carbonate grain was also detected. The C-XANES spectrum of the matrix is similar to that of insoluble organic matter (IOM) found in other CM chondrites. However, no significant nitrogen-bearing functional groups were observed with N-XANES. One of the possible diamond grains contains a Ca-bearing inclusion that is not carbonate. C-XANES features of the diamond-edges suggest that the diamond might have formed by the CVD process, or in a high-temperature and -pressure environment in the interior of a much larger parent body.

  2. Ca L2,3-edge XANES and Sr K-edge EXAFS study of hydroxyapatite and fossil bone apatite.

    PubMed

    Zougrou, I M; Katsikini, M; Brzhezinskaya, M; Pinakidou, F; Papadopoulou, L; Tsoukala, E; Paloura, E C

    2016-08-01

    Upon burial, the organic and inorganic components of hard tissues such as bone, teeth, and tusks are subjected to various alterations as a result of interactions with the chemical milieu of soil, groundwater, and presence of microorganisms. In this study, simulation of the Ca L 2,3-edge X-ray absorption near edge structure (XANES) spectrum of hydroxyapatite, using the CTM4XAS code, reveals that the different symmetry of the two nonequivalent Ca(1) and Ca(2) sites in the unit cell gives rise to specific spectral features. Moreover, Ca L 2,3-edge XANES spectroscopy is applied in order to assess variations in fossil bone apatite crystallinity due to heavy bacterial alteration and catastrophic mineral dissolution, compared to well-preserved fossil apatite, fresh bone, and geologic apatite reference samples. Fossilization-induced chemical alterations are investigated by means of Ca L 2,3-edge XANES and scanning electron microscopy (SEM) and are related to histological evaluation using optical microscopy images. Finally, the variations in the bonding environment of Sr and its preference for substitution in the Ca(1) or Ca(2) sites upon increasing the Sr/Ca ratio is assessed by Sr K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy.

  3. Ca L2,3-edge XANES and Sr K-edge EXAFS study of hydroxyapatite and fossil bone apatite

    NASA Astrophysics Data System (ADS)

    Zougrou, I. M.; Katsikini, M.; Brzhezinskaya, M.; Pinakidou, F.; Papadopoulou, L.; Tsoukala, E.; Paloura, E. C.

    2016-08-01

    Upon burial, the organic and inorganic components of hard tissues such as bone, teeth, and tusks are subjected to various alterations as a result of interactions with the chemical milieu of soil, groundwater, and presence of microorganisms. In this study, simulation of the Ca L 2,3-edge X-ray absorption near edge structure (XANES) spectrum of hydroxyapatite, using the CTM4XAS code, reveals that the different symmetry of the two nonequivalent Ca(1) and Ca(2) sites in the unit cell gives rise to specific spectral features. Moreover, Ca L 2,3-edge XANES spectroscopy is applied in order to assess variations in fossil bone apatite crystallinity due to heavy bacterial alteration and catastrophic mineral dissolution, compared to well-preserved fossil apatite, fresh bone, and geologic apatite reference samples. Fossilization-induced chemical alterations are investigated by means of Ca L 2,3-edge XANES and scanning electron microscopy (SEM) and are related to histological evaluation using optical microscopy images. Finally, the variations in the bonding environment of Sr and its preference for substitution in the Ca(1) or Ca(2) sites upon increasing the Sr/Ca ratio is assessed by Sr K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy.

  4. Reduced chromium in olivine grains from lunar basalt 15555 - X-ray Absorption Near Edge Structure (XANES)

    NASA Technical Reports Server (NTRS)

    Sutton, S. R.; Jones, K. W.; Gordon, B.; Rivers, M. L.; Bajt, S.; Smith, J. V.

    1993-01-01

    The oxidation state of Cr in 200-micron regions within individual lunar olivine and pyroxene grains from lunar basalt 15555 was inferred using X-ray Absorption Near Edge Structure (XANES). Reference materials had previously been studied by optical absorption spectroscopy and included Cr-bearing borosilicate glasses synthesized under controlled oxygen fugacity and Cr-doped olivines. The energy dependence of XANES spectral features defined by these reference materials indicated that Cr is predominantly divalent in the lunar olivine and trivalent in the pyroxene. These results, coupled with the apparent f(02)-independence of partitioning coefficients for Cr into olivine, imply that the source magma was dominated by divalent Cr at the time of olivine crystallization.

  5. Correlated XANES, TEM, and NanoSIMS of presolar graphite grains

    NASA Astrophysics Data System (ADS)

    Groopman, Evan E.; Nittler, Larry R.

    2018-01-01

    We report correlated XANES, TEM, and NanoSIMS measurements of twelve presolar graphite grains extracted from primitive meteorites and for which isotopic data indicate predominantly Type-II supernovae origins. We find continued evidence for isotopic heterogeneities in presolar graphite grains, including the first observation of a radial gradient in the inferred initial 26Al/27Al within a presolar graphite grain. The XANES spectra of these samples show a variety of minor absorbances near the C K-edge, attributable to vinyl-keto, aliphatic, carboxyl, and carbonate molecules, as well as possible damage during sample preparation. Each sample exhibits homogeneous C K-edge XANES spectra within the graphite, however, showing no correlation with isotopic heterogeneities. Gradients in the isotope ratios of C, N, O, and Al could be due to both processes during condensation, e.g., mixing in stellar ejecta and granular transport, and post-condensation effects, such as isotope dilution and exchange with isotopically normal material in the early Solar System or laboratory, the latter of which is a significant issue for high-density presolar graphite grains. It remains unknown whether the mechanisms behind isotope exchange would also affect the local chemistry and therefore the XANES spectra. Ti L-edge XANES from most Ti-rich subgrains match standard spectra for TiC and potentially TiCN. A rare rutile (TiO2) subgrain has been identified, though it lacks the lowest energy L3 peak typically seen in standard spectra. Ca has also been identified by EDXS in TiC subgrains, likely due to the decay of live 44Ti at the time of formation. Future NanoSIMS measurements will determine the variability of initial 44Ti in TiC subgrains, an important constraint on mixing in the ejecta of the grains' parent supernovae.

  6. X-Ray Absorption Near-Edge Structure (XANES) Spectroscopy Study of the Interaction of Silver Ions with Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli

    PubMed Central

    Zanzen, Ulrike; Krishna, Katla Sai; Hormes, Josef

    2013-01-01

    Silver ions are widely used as antibacterial agents, but the basic molecular mechanism of this effect is still poorly understood. X-ray absorption near-edge structure (XANES) spectroscopy at the Ag LIII, S K, and P K edges reveals the chemical forms of silver in Staphylococcus aureus and Escherichia coli (Ag+ treated). The Ag LIII-edge XANES spectra of the bacteria are all slightly different and very different from the spectra of silver ions (silver nitrate and silver acetate), which confirms that a reaction occurs. Death or inactivation of bacteria was observed by plate counting and light microscopy. Silver bonding to sulfhydryl groups (Ag-S) in cysteine and Ag-N or Ag-O bonding in histidine, alanine, and dl-aspartic acid was detected by using synthesized silver-amino acids. Significantly lower silver-cysteine content, coupled with higher silver-histidine content, in Gram-positive S. aureus and Listeria monocytogenes cells indicates that the peptidoglycan multilayer could be buffering the biocidal effect of silver on Gram-positive bacteria, at least in part. Bonding of silver to phosphate groups was not detected. Interaction with DNA or proteins can occur through Ag-N bonding. The formation of silver-cysteine can be confirmed for both bacterial cell types, which supports the hypothesis that enzyme-catalyzed reactions and the electron transport chain within the cell are disrupted. PMID:23934494

  7. Surface complexation and precipitate geometry for aqueous Zn(II) sorption on ferrihydrite: II. XANES analysis and simulation

    USGS Publications Warehouse

    Waychunas, G.A.; Fuller, C.C.; Davis, J.A.; Rehr, J.J.

    2003-01-01

    X-ray absorption near-edge spectroscopy (XANES) analysis of sorption complexes has the advantages of high sensitivity (10- to 20-fold greater than extended X-ray absorption fine structure [EXAFS] analysis) and relative ease and speed of data collection (because of the short k-space range). It is thus a potentially powerful tool for characterization of environmentally significant surface complexes and precipitates at very low surface coverages. However, quantitative analysis has been limited largely to "fingerprint" comparison with model spectra because of the difficulty of obtaining accurate multiple-scattering amplitudes for small clusters with high confidence. In the present work, calculations of the XANES for 50- to 200-atom clusters of structure from Zn model compounds using the full multiple-scattering code Feff 8.0 accurately replicate experimental spectra and display features characteristic of specific first-neighbor anion coordination geometry and second-neighbor cation geometry and number. Analogous calculations of the XANES for small molecular clusters indicative of precipitation and sorption geometries for aqueous Zn on ferrihydrite, and suggested by EXAFS analysis, are in good agreement with observed spectral trends with sample composition, with Zn-oxygen coordination and with changes in second-neighbor cation coordination as a function of sorption coverage. Empirical analysis of experimental XANES features further verifies the validity of the calculations. The findings agree well with a complete EXAFS analysis previously reported for the same sample set, namely, that octahedrally coordinated aqueous Zn2+ species sorb as a tetrahedral complex on ferrihydrite with varying local geometry depending on sorption density. At significantly higher densities but below those at which Zn hydroxide is expected to precipitate, a mainly octahedral coordinated Zn2+ precipitate is observed. An analysis of the multiple scattering paths contributing to the XANES

  8. Polarized XANES and EXAFS spectroscopic investigation into copper(II) complexes on vermiculite

    NASA Astrophysics Data System (ADS)

    Furnare, Luca J.; Vailionis, Arturas; Strawn, Daniel G.

    2005-11-01

    Interaction of heavy metals with clay minerals can dominate solid-solution reactions in soil, controlling the fate of the metals in the environment. In this study we used powdered and polarized extended X-ray absorption fine structure (EXAFS) spectroscopy and X-ray absorption near edge spectroscopy (XANES) to investigate Cu sorbed on Llano vermiculite and compare the results to reported Cu sorption mechanism on Wyoming (WY) smectite and reduced South African (SA) vermiculite. Analysis of the Cu K-edge spectra revealed that Cu sorbed on Llano vermiculite at high ionic strength ( I) has the greatest degree of covalent bond character, followed by Cu sorbed on montmorillonite at high I, and Cu sorbed on reduced SA vermiculite at high I. Cu sorbed on clay minerals at low I has the least covalent character. EXAFS data from Cu sorbed Ca- and K-equilibrated Llano vermiculites showed the presence of a second-shell Al, Si, or Mg backscatterer at 3.02 Å. This distance is consistent with Cu sorbing via a corner-sharing monodentate or bidentate bond. Polarized XANES and EXAFS results revealed that the angle between the Cu atom and the mineral sorption sites is 68° with respect to the [001] direction. From the bond angle and the persistence of the second-shell backscatterer when the interlayer is collapsed (K-equilibration), we conclude that Cu adsorption on the Llano vermiculite is not occurring in the interlayer but rather Cu is adsorbing onto the edges of the vermiculite. Results from this research provide evidence that Cu forms inner-sphere and outer-sphere complexes on clay minerals, and does not form the vast multinuclear surface precipitates that have been observed for Co, Zn, and Ni.

  9. XANES analysis of dried and calcined bones.

    PubMed

    Rajendran, Jayapradhi; Gialanella, Stefano; Aswath, Pranesh B

    2013-10-01

    The structure of dried and calcined bones from chicken, bovine, deer, pig, sheep and chamois was examined using X-ray Absorption Near Edge Structure (XANES) spectroscopy. The oxygen K-edge absorption edge indicates that the surface of dried bone has a larger proportion of carbonate than the interior that is made up of phosphates. The phosphorus L and K edge clearly indicate that pyrophosphates, α-tricalcium phosphate (α-TCP) and hydrogen phosphates of Ca do not exist in either the dried bone or calcined bone and phosphorus exists as either β-tricalcium phosphate (β-TCP) or hydroxyapatite, both in the dried and calcined conditions. The Ca K-edge analysis indicates that β-TCP is the likely form of phosphate in both the dried and calcined conditions. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. [XANES study of lead speciation in duckweed].

    PubMed

    Chu, Bin-Bin; Luo, Li-Qiang; Xu, Tao; Yuan, Jing; Sun, Jian-Ling; Zeng, Yuan; Ma, Yan-Hong; Yi, Shan

    2012-07-01

    Qixiashan lead-zinc mine of Nanjing was one of the largest lead zinc deposits in East China Its exploitation has been over 50 years, and the environmental pollution has also been increasing. The lead concentration in the local environment was high, but lead migration and toxic mechanism has not been clear. Therefore, biogeochemistry research of the lead zinc mine was carried out. Using ICP-MS and Pb-L III edge XANES, lead concentration and speciation were analyzed respectively, and duckweed which can tolerate and enriched heavy metals was found in the pollution area. The results showed that the lead concentration of duckweed was 39.4 mg x kg(-1). XANES analysis and linear combination fit indicated that lead stearate and lead sulfide accounted for 65% and 36.9% respectively in the lead speciation of duckweed, suggesting that the main lead speciation of duckweed was sulfur-containing lead-organic acid.

  11. Chemical forms of sulfur in geological and archeological asphaltenes from Middle East, France, and Spain determined by sulfur K- and L-edge X-ray absorption near-edge structure spectroscopy

    NASA Astrophysics Data System (ADS)

    Sarret, Géraldine; Connan, Jacques; Kasrai, Masoud; Bancroft, G. Michael; Charrié-Duhaut, Armelle; Lemoine, Sylvie; Adam, Pierre; Albrecht, Pierre; Eybert-Bérard, Laurent

    1999-11-01

    Asphaltene samples extracted from archeological and geological bitumens from the Middle East, France, and Spain were studied by sulfur K- and L-edge X-ray absorption near-edge structure (XANES) spectroscopy in combination with isotopic analyses (δ 13C and δD). Within each series, the samples were genetically related by their δ 13C values. The gross and elemental composition and the δD values were used to characterize the weathering state of the samples. Sulfur K- and L-edge XANES results show that in all the samples, dibenzothiophenes are the dominant forms of sulfur. In the least oxidized asphaltenes, minor species include disulfides, alkyl and aryl sulfides, and sulfoxides. With increasing alteration the proportion of oxidized sulfur (sulfoxides, sulfones, sulfonates and sulfates) increases, whereas the disulfide and sulfide content decreases. This evolution is observed in all the series, regardless of the origin of the asphaltenes. This work illustrates the advantages of XANES spectroscopy as a selective probe for determining sulfur speciation in natural samples. It also shows that S K- and L-edge XANES spectroscopy are complementary for identifying the oxidized and reduced forms of sulfur, respectively.

  12. XANES, EXAFS and Kbeta spectroscopic studies of the oxygen-evolving complex in Photosystem II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robblee, John Henry

    A key question for the understanding of photosynthetic water oxidation is whether the four oxidizing equivalents necessary to oxidize water to dioxygen are accumulated on the four Mn ions of the oxygen evolving complex (OEC), or whether some ligand-centered oxidations take place before the formation and release of dioxygen during the S 3 → [S 4] → S 0 transition. Progress in instrumentation and flash sample preparation allowed us to apply Mn Kβ X-ray emission spectroscopy (Kb XES) to this problem for the first time. The Kβ XES results, in combination with Mn X-ray absorption near-edge structure (XANES) and electronmore » paramagnetic resonance (EPR) data obtained from the same set of samples, show that the S 2 → S 3 transition, in contrast to the S 0 → S 1 and S 1 → S 2 transitions, does not involve a Mn-centered oxidation. This is rationalized by manganese μ-oxo bridge radical formation during the S 2 → S 3 transition. Using extended X-ray absorption fine structure (EXAFS) spectroscopy, the local environment of the Mn atoms in the S 0 state has been structurally characterized. These results show that the Mn-Mn distance in one of the di-μ-oxo-bridged Mn-Mn moieties increases from 2.7 Å in the S 1} state to 2.85 Å in the S 0 state. Furthermore, evidence is presented that shows three di-μ-oxo binuclear Mn 2 clusters may be present in the OEC, which is contrary to the widely held theory that two such clusters are present in the OEC. The EPR properties of the S 0 state have been investigated and a characteristic ''multiline'' signal in the S 0 state has been discovered in the presence of methanol. This provides the first direct confirmation that the native S 0 state is paramagnetic. In addition, this signal was simulated using parameters derived from three possible oxidation states of Mn in the S 0 state. The dichroic nature of X-rays from synchrotron radiation and single-crystal Mn complexes have been exploited to selectively probe Mn-ligand bonds

  13. In Situ XANES of U and Th in Silicate Liquids at High Pressure and Temperature

    NASA Astrophysics Data System (ADS)

    Mallmann, G.; Wykes, J.; Berry, A.; O'Neill, H. S.; Cline, C. J., II; Turner, S.; Rushmer, T. A.

    2016-12-01

    Although the chemical environments of elements in silicate melts at specific conditions of temperature, pressure and oxygen fugacity (fO2) are often inferred from measurements after quenching the melts to glasses, it is widely recognized that changes may occur during the quenching process, making measurements in situ at high pressure and temperature highly desirable. A case of importance in geochemistry is the speciation of uranium in silicate melts as a function of pressure. Evidence from mineral-melt partitioning and XANES (X-ray Absorption Near-Edge Structure) spectroscopy of glasses suggests that U5+ may be stable at low pressures in the Earth's crust (along with U4+ or U6+, depending on fO2) where basaltic liquids crystallize, but not in the Earth's upper mantle where peridotite partially melts to produce such liquids. To test these observations we recorded in situ transmission U and Th L3-edge XANES spectra of U and Th-doped silicate liquids at 1.6 GPa and 1350°C using the D-DIA apparatus at the X-ray Absorption Spectroscopy Beamline of the Australian Synchrotron. Data for thorium, which occurs exclusively as a tetravalent cation under terrestrial fO2 conditions, were collected as a `control' to monitor for changes in coordination. The cell assembly consisted of a boron-epoxy cube as pressure medium, alumina sleeve and cylindrical graphite heater. The starting mix, a powdered synthetic average MORB silicate glass doped with 2 wt.% of U and Th, was loaded into San Carlos olivine capsules along with solid oxygen buffers (either Re-ReO2 or Ru-RuO2) in a sandwich arrangement. The capsule was then placed inside the graphite heater and insulated with crushable MgO powder. Temperature was monitored using a type D thermocouple. U and Th L3-edge XANES spectra were recorded throughout the heating/compression cycle and then after quenching. Our preliminary assessment indicates that the U-XANES spectra recorded for the liquid in situ at high pressure and temperature and

  14. Oxidation of shallow conduit magma: Insight from μ-XANES analysis on volcanic ash particle

    NASA Astrophysics Data System (ADS)

    Miwa, T.; Ishibashi, H.; Iguchi, M.

    2014-12-01

    Redox state of magma is important to understand dynamics of volcanic eruptions because magma properties such as composition of degassed volatiles, stability field of minerals, and rheology of magma depend on redox state. To evaluate redox state of magma, Fe3+/ΣFe ratio [= Fe3+/( Fe3++ Fe2+)] of volcanic glass has been measured non-destructively by Fe-K edge μ-XANES (micro X-ray Absorption Near Edge Structure) spectroscopy (e.g., Cottrell and Kelly, 2011). We performed textural, compositional, and Fe-K edge μ-XANES analyses on volcanic ash to infer oxidation process of magma at shallow conduit during eruption at Bromo Volcano, Indonesia. The volcanic ash particles were collected in 24th March 2011 by real-time sampling from ongoing activity. The activity was characterized by strombolian eruption showing magma head ascended to near the ground surface. The ash sample contains two type of volcanic glasses named as Brown and Black glasses (BrG and BlG), based on their color. Textual analysis shows microlite crystallinities are same in the two type of glasses, ranging from 0 to 3 vol.%. EPMA analyses show that all of the glasses have almost identical andesitic composition with SiO2 = 60 wt.%. In contrast, Fe-K edge μ-XANES spectra with the analytical method by Ishibashi et al. (in prep) demonstrate that BrG (Fe3+/ΣFe = 0.20-0.26) is more oxidized than BlG (Fe3+/ΣFe = 0.32-0.60). From combination of the glass composition, the measured Fe3+/ΣFe ratio and 1060 degree C of temperature (Kress and Carmichael, 1991), the oxygen fugacities are estimated to be NNO and NNO+4 for BrG and BlG, respectively. The volcanic glasses preserve syn-eruptive physicochemical conditions by rapid quenching due to their small size ranging from 125 to 250 μm. Our results demonstrate that BrG and BlG magmas are textually and chemically identical but their redox conditions are different at the eruption. The oxidation of magma can be caused by following two processes; 1) diffusive transport

  15. In situ S-K XANES study of polymer electrolyte fuel cells: changes in the chemical states of sulfonic groups depending on humidity.

    PubMed

    Isegawa, Kazuhisa; Nagami, Tetsuo; Jomori, Shinji; Yoshida, Masaaki; Kondoh, Hiroshi

    2016-09-14

    Changes in the chemical states of sulfonic groups of Nafion in polymer electrolyte fuel cells (PEFCs) under gas-flowing conditions were studied using in situ S-K XANES spectroscopy. The applied potential to the electrodes and the humidity of the cell were changed under flowing H 2 gas in the anode and He gas in the cathode. While the potential shows no significant effect on the S-K XANES spectra, the humidity is found to induce reversible changes in the spectra. Comparison of the spectral changes with simulations based on the density functional theory calculations indicates that the humidity influences the chemical state of the sulfonic group; under wet conditions the sulfonic group is in the form of a sulfonate ion. By drying treatment the sulfonate ion binds to hydrogen and becomes sulfonic acid. Furthermore, a small fraction of the sulfonic acid irreversibly decomposes to atomic sulfur. The peak energy of the atomic sulfur suggests that the generated atomic sulfur is adsorbed on the Pt catalyst surfaces.

  16. Identification of Second Shell Coordination in Transition Metal Species Using Theoretical XANES: Example of Ti–O–(C, Si, Ge) Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spanjers, Charles S.; Guillo, Pascal; Tilley, T. Don

    X-ray absorption near-edge structure (XANES) is a common technique for elucidating oxidation state and first shell coordination geometry in transition metal complexes, among many other materials. However, the structural information obtained from XANES is often limited to the first coordination sphere. In this study, we show how XANES can be used to differentiate between C, Si, and Ge in the second coordination shell of Ti–O–(C, Si, Ge) molecular complexes based on differences in their Ti K-edge XANES spectra. Experimental spectra were compared with theoretical spectra calculated using density functional theory structural optimization and ab initio XANES calculations. The unique featuresmore » for second shell C, Si, and Ge present in the Ti K pre-edge XANES are attributed to the interaction between the Ti center and the O–X (X = C, Si, or Ge) antibonding orbitals.« less

  17. Interaction of Nanostructured Calcium Silicate Hydrate with Ibuprofen Drug Molecules: X-ray Absorption Near Edge Structure (XANES) Study at the Ca, Si and O K-edge

    NASA Astrophysics Data System (ADS)

    Guo, X. X.; Sham, T. K.; Zhu, Y. J.; Hu, Y. F.

    2013-04-01

    Mesoporous calcium silicate hydrate (CSH) nanostructure has been proven to be bioactive and biocompatible, and has a bright future in the application of bone treatment among other applications. X-ray absorption near edge structure (XANES) is a powerful tool for the study of the interactions of calcium silicate hydrates with drug molecules because it is element specific and it probes the unoccupied electronic states. Herein, we report the use of the calcium, silicon and oxygen K-edge XANES spectroscopy to identify how drug molecules interact with different groups in calcium silicate hydrate mesoporous nano-carriers with different morphologies. Significant changes are observed in XANES spectra after drug loading into the calcium silicate hydrate system, especially at the Si and O K-edge. The implications of these findings are discussed.

  18. Progressive Oxidation of Pyrite in Five Bituminous Coal Samples: An As XANES and 57Fe Mossbauer Spectroscopic Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolker,A.; Huggins, F.

    2007-01-01

    Naturally occurring pyrite commonly contains minor substituted metals and metalloids (As, Se, Hg, Cu, Ni, etc.) that can be released to the environment as a result of its weathering. Arsenic, often the most abundant minor constituent in pyrite, is a sensitive monitor of progressive pyrite oxidation in coal. To test the effect of pyrite composition and environmental parameters on the rate and extent of pyrite oxidation in coal, splits of five bituminous coal samples having differing amounts of pyrite and extents of As substitution in the pyrite, were exposed to a range of simulated weathering conditions over a period ofmore » 17 months. Samples investigated include a Springfield coal from Indiana (whole coal pyritic S = 2.13 wt.%; As in pyrite = detection limit (d.l.) to 0.06 wt.%), two Pittsburgh coal samples from West Virginia (pyritic S = 1.32-1.58 wt.%; As in pyrite = d.l. to 0.34 wt.%), and two samples from the Warrior Basin, Alabama (pyritic S = 0.26-0.27 wt.%; As in pyrite = d.l. to 2.72 wt.%). Samples were collected from active mine faces, and expected differences in the concentration of As in pyrite were confirmed by electron microprobe analysis. Experimental weathering conditions in test chambers were maintained as follows: (1) dry Ar atmosphere; (2) dry O{sub 2} atmosphere; (3) room atmosphere (relative humidity {approx}20-60%); and (4) room atmosphere with samples wetted periodically with double-distilled water. Sample splits were removed after one month, nine months, and 17 months to monitor the extent of As and Fe oxidation using As X-ray absorption near-edge structure (XANES) spectroscopy and {sup 57}Fe Mossbauer spectroscopy, respectively. Arsenic XANES spectroscopy shows progressive oxidation of pyritic As to arsenate, with wetted samples showing the most rapid oxidation. {sup 57}Fe Mossbauer spectroscopy also shows a much greater proportion of Fe{sup 3+} forms (jarosite, Fe{sup 3+} sulfate, FeOOH) for samples stored under wet conditions, but much

  19. The characterization of Cr secondary oxide phases in ZnO films studied by X-ray spectroscopy and photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Chiou, J. W.; Chang, S. Y.; Huang, W. H.; Chen, Y. T.; Hsu, C. W.; Hu, Y. M.; Chen, J. M.; Chen, C.-H.; Kumar, K.; Guo, J.-H.

    2011-03-01

    X-ray absorption near-edge structure (XANES), X-ray emission spectroscopy (XES), and X-ray photoemission spectroscopy (XPS) were used to characterize the Cr secondary oxide phases in ZnO films that had been prepared using a co-sputtering method. Analysis of the Cr L3,2-edge XANES spectra reveals that the intensity of white-line features decreases subtly as the sputtering power increases, indicating that the occupation of Cr 3 d orbitals increases with Cr concentration in (Zn, Cr)O films. The O K-edge spectra show that the intensity of XANES features of (Zn, Cr)O films is lower than those of ZnO film, suggesting enhanced occupation of O 2 p-derived states through O 2 p-Cr 3 d hybridization. The XES and XPS spectra indicate that the line shapes in the valence band of (Zn, Cr)O films are quite different from those of ZnO and that the Cr 2O 3 phase dominates the spinel structure of (Zn, Cr)O films increasingly as the Cr sputtering power is increased. Over all results suggest that the non-ferromagnetic behavior of (Zn, Cr)O films can be attributed to the dominant presence of Cr 2O 3, whereas the bulk comprise phase segregations of Cr 2O 3 and/or ZnCr 2O 4, which results them the most stable TM-doped ZnO material against etching.

  20. Analysis of the detailed configuration of hydrated lanthanoid(III) ions in aqueous solution and crystalline salts by using K- and L(3)-edge XANES spectroscopy.

    PubMed

    D'Angelo, Paola; Zitolo, Andrea; Migliorati, Valentina; Persson, Ingmar

    2010-01-11

    The structural properties of the hydrated lanthanoid(III) ions in aqueous solution and in the isostructural trifluoromethanesulfonate salts have been investigated by a quantitative analysis of the X-ray absorption near-edge structure (XANES) spectra at the K- and L(3)-edges. The XANES analysis has provided a clear description of the variation of lanthanoid(III) hydration properties across the series. It was found that all of the lanthanoid(III) hydration complexes retain a tricapped trigonal prism (TTP) geometry, and along the series two of the capping water molecules become less and less strongly bound, before finally, on average, one of them leaves the hydration cluster. This gives rise to an eight-coordinated distorted bicapped trigonal prism with two different Ln--O capping distances for the smallest lanthanoid(III) ions. This systematic study has shown that for lanthanoid compounds more accurate structural information is obtained from the analysis of the L(3)-edge than from K-edge XANES data. Moreover, whereas the second hydration shells provide a detectable contribution to the L(3)-edge XANES spectra of the lighter lanthanoid ions, the K-edge spectra are insensitive to the more distant coordination spheres.

  1. Comparison of Nickel XANES Spectra and Elemental Maps from a Ureilite, a LL3.8 Ordinary Chondrite, Two Carbonaceous Chondrites and Two Large Cluster IDPs

    NASA Technical Reports Server (NTRS)

    Wirick, S.; Flynn, G. J.; Sutton, S.; Zolensky, M. E.

    2014-01-01

    Nickel in the extraterrestrial world is commonly found in both Fe-Ni sulfide and Fe-Ni met-al forms [1] and in the pure metal state in the interior of iron meteorites where it is not easily oxidized. Ni is also found in olivine, pyroxene and glasses and in some melts the partitioning of Ni between the olivines and glass is controlled by the amount of S in the melt [2]. Its most common valence state is Ni(2+) but Ni also occurs as Ni(0), Ni(+), and Ni(3+) and rarely as Ni(2-), Ni(1-) and Ni(4+) [3]. It's valence state in olivines is Ni(2+) in octa-hedral coordination on the M1 site and rarely on the M2 site.[4]. The chemical sensitivity of X-ray absorp-tion near-edge structure (XANES) spectroscopy is well established and can be used to determine not only va-lence states but also coordination sites [5]. We report here Ni XANES spectroscopy and elemental maps collected from 2 carbonaceous chondrites, 2 large clus-ter IDPs, 1 ureilite and 1 LL3 orginary chondrite.Using XANES it may be possible to find a common trait in the large cluster IDPs that will also be found in mete-orite samples.

  2. Experimental and theoretical XANES of CdSxSe1-x nanostructures

    NASA Astrophysics Data System (ADS)

    Yiu, Y. M.; Murphy, M. W.; Liu, L.; Hu, Y.; Sham, T. K.

    2014-03-01

    The morphology and electronic properties of the CdSxSe1-x nanostructures with varying alloy compositions have been acquired experimentally by X-ray Absorption Near-Edge Structures (XANES) at the Cd, Se and S K-edge and L3,2-edges. The theoretical XANES spectra have been calculated using the density functional approach. It is found that the optical band-gap emission of these CdSxSe1-x nano-ribbons can be tuned to the range between that of pure CdS (2.43 eV) and CdSe (1.74 eV) by changing the S and Se ratio. This gradual shift in (optical and structural) properties from CdS character to CdSe character is also seen in the electronic structures. The densities of states and band structures show that with the addition of Se replacing S in CdS, the band gap shrinks. The K and L3,2 edges of Cd, Se, and S of the XANES structures of both the CdS and CdSe in B4 (wurtzite) and B3 (cubic zinc-blende) structures have been calculated and compared.

  3. The speciation of soluble sulphur compounds in bacterial culture fluids by X-ray absorption near edge structure spectroscopy.

    PubMed

    Franz, Bettina; Lichtenberg, Henning; Hormes, Josef; Dahl, Christiane; Prange, Alexander

    2009-11-01

    Over the last decade X-ray absorption near edge structure (XANES) spectroscopy has been used in an increasing number of microbiological studies. In addition to other applications it has served as a valuable tool for the investigation of the sulphur globules deposited intra- or extracellularly by certain photo- and chemotrophic sulphur-oxidizing (Sox) bacteria. For XANES measurements, these deposits can easily be concentrated by filtration or sedimentation through centrifugation. However, during oxidative metabolism of reduced sulphur compounds, such as sulphide or thiosulphate, sulphur deposits are not the only intermediates formed. Soluble intermediates such as sulphite may also be produced and released into the medium. In this study, we explored the potential of XANES spectroscopy for the detection and speciation of sulphur compounds in culture supernatants of the phototrophic purple sulphur bacterium Allochromatium vinosum. More specifically, we investigated A. vinosum DeltasoxY, a strain with an in frame deletion of the soxY gene. This gene encodes an essential component of the thiosulphate-oxidizing Sox enzyme complex. Improved sample preparation techniques developed for the DeltasoxY strain allowed for the first time not only the qualitative but also the quantitative analysis of bacterial culture supernatants by XANES spectroscopy. The results thus obtained verified and supplemented conventional HPLC analysis of soluble sulphur compounds. Sulphite and also oxidized organic sulphur compounds were shown by XANES spectroscopy to be present, some of which were not seen when standard HPLC protocols were used.

  4. XRF and XANES Data for Kaplan U Paper

    EPA Pesticide Factsheets

    The dataset contains two XRF images of iron and uranium distribution on plant roots and a database of XANES data used to produce XANES spectra figure for Figure 7 in the published paper.This dataset is associated with the following publication:Kaplan, D., R. Kukkadapu, J. Seaman, B. Arey, A. Dohnalkova, S. Buettner, D. Li, T. Varga, K. Scheckel, and P. Jaffe. Iron Mineralogy and Uranium-Binding Environment in the Rhizosphere of a Wetland Soil. D. Barcelo SCIENCE OF THE TOTAL ENVIRONMENT. Elsevier BV, AMSTERDAM, NETHERLANDS, 569: 53-64, (2016).

  5. Reference spectra of important adsorbed organic and inorganic phosphate binding forms for soil P speciation using synchrotron-based K-edge XANES spectroscopy.

    PubMed

    Prietzel, Jörg; Harrington, Gertraud; Häusler, Werner; Heister, Katja; Werner, Florian; Klysubun, Wantana

    2016-03-01

    Direct speciation of soil phosphorus (P) by linear combination fitting (LCF) of P K-edge XANES spectra requires a standard set of spectra representing all major P species supposed to be present in the investigated soil. Here, available spectra of free- and cation-bound inositol hexakisphosphate (IHP), representing organic P, and of Fe, Al and Ca phosphate minerals are supplemented with spectra of adsorbed P binding forms. First, various soil constituents assumed to be potentially relevant for P sorption were compared with respect to their retention efficiency for orthophosphate and IHP at P levels typical for soils. Then, P K-edge XANES spectra for orthophosphate and IHP retained by the most relevant constituents were acquired. The spectra were compared with each other as well as with spectra of Ca, Al or Fe orthophosphate and IHP precipitates. Orthophosphate and IHP were retained particularly efficiently by ferrihydrite, boehmite, Al-saturated montmorillonite and Al-saturated soil organic matter (SOM), but far less efficiently by hematite, Ca-saturated montmorillonite and Ca-saturated SOM. P retention by dolomite was negligible. Calcite retained a large portion of the applied IHP, but no orthophosphate. The respective P K-edge XANES spectra of orthophosphate and IHP adsorbed to ferrihydrite, boehmite, Al-saturated montmorillonite and Al-saturated SOM differ from each other. They also are different from the spectra of amorphous FePO4, amorphous or crystalline AlPO4, Ca phosphates and free IHP. Inclusion of reference spectra of orthophosphate as well as IHP adsorbed to P-retaining soil minerals in addition to spectra of free or cation-bound IHP, AlPO4, FePO4 and Ca phosphate minerals in linear combination fitting exercises results in improved fit quality and a more realistic soil P speciation. A standard set of P K-edge XANES spectra of the most relevant adsorbed P binding forms in soils is presented.

  6. Low Z elements (Mg, Al, and Si) K-edge X-ray absorption spectroscopy in minerals and disordered systems

    NASA Astrophysics Data System (ADS)

    Ildefonse, Ph.; Calas, G.; Flank, A. M.; Lagarde, P.

    1995-05-01

    Soft X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy have been performed at the Mg-, Al- and Si-K edges in order to establish the ability of this spectroscopy to derive structural information in disordered solids such as glasses and gels. Mg- and Al-K XANES are good structural probes to determine the coordination state of these elements in important minerals, glasses and gels. In a CaOsbnd MgOsbnd 2SiO2 glass Mg XANES spectra differ from that found in the crystalline equivalent, with a significant shift of the edge maxima to lower energy, consistent with a CN lower than 6. Mg-EXAFS on the same sample are in agreement and indicate the presence of 5-coordinated Mg with Mgsbnd O distances of 2.01Å. In aluminosilicate gels, Alsbnd K XANES has been used to investigate the [4]Al/Altotal ratios. These ratios increase as the Al/Si ratios decrease. Aluminosilicate and ferric-silicate gels were studied by using Sisbnd K edge XANES. XANES spectra differ significantly among the samples studied. Aluminosilicate gels with Al/Si= 1 present a different Al and Si local environment from that known in clay minerals with the same Al/Si ratio. The gel-to-mineral transformation thus implies a dissolution-recrystallization mechanism. On the contrary, ferric-silicate gel presents a Si local environment close to that found in nontronite which may be formed by a long range ordering of the initial gels.

  7. Distribution and oxidation state of copper in the cell walls of treated wood examined by synchrotron based XANES and XFM

    Treesearch

    Samuel L. Zelinka; Grant T. Kirker; Joseph E. Jakes; Leandro Passarini; Barry Lai

    2016-01-01

    Recently, synchrotron based X-ray fluorescence microscopy (XFM) and X-ray absorption near edge spectroscopy (XANES) were used to examine the metal fastener corrosion in copper-treated wood. XFM is able to map the copper concentration in the wood with a spatial resolution of 0.5 µm and is able to quantify the copper concentration to within 0.05 µg cm-3...

  8. Olivine-melt relationships and syneruptive redox variations in the 1959 eruption of K$$\\bar{i}$$lauea Volcano as revealed by XANES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helz, R. T.; Cottrell, E.; Brounce, M. N.

    The 1959 summit eruption of Kmore » $$\\bar{i}$$lauea Volcano exhibited high lava fountains of gas-rich, primitive magma, containing olivine + chromian spinel in highly vesicular brown glass. Microprobe analysis of these samples shows that euhedral rims on olivine phenocrysts, in direct contact with glass, vary significantly in forsterite (Fo) content, at constant major-element melt composition, as do unzoned groundmass olivine crystals. Ferric/total iron (Fe+ 3/FeT)ratios for matrix and interstitial glasses, plus olivine-hosted glass inclusions in eight 1959 scoria samples have been determined by micro X-ray absorption near-edge structure spectroscopy (μ-XANES). These data show that much of the variation in Fo content reflects variation in oxidation state of iron in the melt, which varies with sulfur concentration in the glass and (locally) with proximity to scoria edges in contact with air. Data for 24 olivine-melt pairs in the better-equilibrated samples from later in the eruption show KD averaging 0.280 ± 0.03 for the exchange of Fe and Mg between olivine and melt, somewhat displaced from the value of 0.30 ± 0.03 given by Roeder and Emslie (1970). This may reflect the low SiO2 content of the 1959 magmas, which is lower than that in most K$$\\bar{i}$$lauea tholeiites. More broadly, we show the potential of μ-XANES and electron microprobe to revisit and refine the value of KD in natural systems.« less

  9. EXAFS and XANES analysis of oxides at the nanoscale.

    PubMed

    Kuzmin, Alexei; Chaboy, Jesús

    2014-11-01

    Worldwide research activity at the nanoscale is triggering the appearance of new, and frequently surprising, materials properties in which the increasing importance of surface and interface effects plays a fundamental role. This opens further possibilities in the development of new multifunctional materials with tuned physical properties that do not arise together at the bulk scale. Unfortunately, the standard methods currently available for solving the atomic structure of bulk crystals fail for nanomaterials due to nanoscale effects (very small crystallite sizes, large surface-to-volume ratio, near-surface relaxation, local lattice distortions etc.). As a consequence, a critical reexamination of the available local-structure characterization methods is needed. This work discusses the real possibilities and limits of X-ray absorption spectroscopy (XAS) analysis at the nanoscale. To this end, the present state of the art for the interpretation of extended X-ray absorption fine structure (EXAFS) is described, including an advanced approach based on the use of classical molecular dynamics and its application to nickel oxide nanoparticles. The limits and possibilities of X-ray absorption near-edge spectroscopy (XANES) to determine several effects associated with the nanocrystalline nature of materials are discussed in connection with the development of ZnO-based dilute magnetic semiconductors (DMSs) and iron oxide nanoparticles.

  10. Fe K-Edge X-ray absorption near-edge spectroscopy (XANES) and X-ray diffraction (XRD) analyses of LiFePO4 and its base materials

    NASA Astrophysics Data System (ADS)

    Latif, C.; Negara, V. S. I.; Wongtepa, W.; Thamatkeng, P.; Zainuri, M.; Pratapa, S.

    2018-03-01

    XANES analysis has been performed with the aim of knowing the Fe oxidation state in a synthesized LiFePO4 and its base materials. XANES measurements were performed at SLRI on energy around Fe K-edge. An XRD analysis has also been performed with the aim of knowing the phase composition, lattice parameters and crystallite size of the LiFePO4 as well as the base materials. From the XRD analysis, it was found that the dominating phase in the iron sand sample was Fe3O4 and the only phase found after calcination was LiFePO4. The latter phase exhibited crystallite size of 100 nm and lattice parameters a = 10.169916 Å, b = 5.919674 Å, c = 4.627893 Å. Qualitative analysis of XANES data revealed that the oxidation number of Fe in the sample before calcination was greater than that after calcination and Fe in the natural iron sand, indicated by the E0 values of 7129.2 eV, 7120.6 eV and 7124.4 eV respectively.

  11. Sulfur K-edge XANES and acid volatile sulfide analyses of changes in chemical speciation of S and Fe during sequential extraction of trace metals in anoxic sludge from biogas reactors.

    PubMed

    Shakeri Yekta, Sepehr; Gustavsson, Jenny; Svensson, Bo H; Skyllberg, Ulf

    2012-01-30

    The effect of sequential extraction of trace metals on sulfur (S) speciation in anoxic sludge samples from two lab-scale biogas reactors augmented with Fe was investigated. Analyses of sulfur K-edge X-ray absorption near edge structure (S XANES) spectroscopy and acid volatile sulfide (AVS) were conducted on the residues from each step of the sequential extraction. The S speciation in sludge samples after AVS analysis was also determined by S XANES. Sulfur was mainly present as FeS (≈ 60% of total S) and reduced organic S (≈ 30% of total S), such as organic sulfide and thiol groups, in the anoxic solid phase. Sulfur XANES and AVS analyses showed that during first step of the extraction procedure (the removal of exchangeable cations), a part of the FeS fraction corresponding to 20% of total S was transformed to zero-valent S, whereas Fe was not released into the solution during this transformation. After the last extraction step (organic/sulfide fraction) a secondary Fe phase was formed. The change in chemical speciation of S and Fe occurring during sequential extraction procedure suggests indirect effects on trace metals associated to the FeS fraction that may lead to incorrect results. Furthermore, by S XANES it was verified that the AVS analysis effectively removed the FeS fraction. The present results identified critical limitations for the application of sequential extraction for trace metal speciation analysis outside the framework for which the methods were developed. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Existence of Fe{sup 4+} ions in Co{sub 2.25}Fe{sub 0.75}O{sub 4} spinel ferrite confirmed from SXRD and XANES spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panda, Manas Ranjan, E-mail: manasranjan056@gmail.com; Bhowmik, R. N.; Sinha, A. K.

    2015-06-24

    The Co{sub 2.25}Fe{sub 0.75}O{sub 4} ferrite composition has been prepared by chemical co-precipitation route. The as-prepared sample after annealing at 900°C in air formed single phase cubic spinel structure. Synchrotron X-ray diffraction and X-ray absorption near edge structure (XANES) measurements were used to study charge states of the cations in octahedral and tetrahedral sites of the cubic spinel structure. Raman spectra indicated normal cubic spinel structure. XANES data suggested the existence of Fe{sup 4+} ions in the spinel structure.

  13. PREFACE: Proceedings of the First International Workshop on the Theoretical Calculation of ELNES and XANES (TEX2008) (Nagoya, Japan, 2-4 July 2008) Proceedings of the First International Workshop on the Theoretical Calculation of ELNES and XANES (TEX2008) (Nagoya, Japan, 2-4 July 2008)

    NASA Astrophysics Data System (ADS)

    Tanaka, Isao; Mizoguchi, Teruyasu; Yamamoto, Tomoyuki

    2009-03-01

    Both electron energy loss near edge structure (ELNES) spectroscopy and x-ray absorption near edge structure (XANES) spectroscopy provide information on the local structural and chemical environments of selected elements of interest. Recent technological progress in scanning transmission electron microscopy has enabled ELNES measurements with atomic column spatial resolution. Very dilute concentrations (nanograms per milliliter or ppb level) of dopants can be observed using third-generation synchrotron facilities when x-ray fluorescence is measured with highly efficient detectors. With such technical developments, ELNES and XANES have become established as essential tools in a large number of fields of natural science, including condensed matter physics, chemistry, mineralogy and materials science. In addition to these developments in experimental methodology, notable progress in reproducing spectra using theoretical methods has recently been made. Using first-principles methods, one can analyze and interpret spectra without reference to experiment. This is quite important since we are often interested in the analysis of exotic materials or specific atoms located at lattice discontinuities such as surfaces and interfaces, where appropriate experimental data are difficult to obtain. Using the structures predicted by reliable first-principles calculations, one can calculate theoretical ELNES and XANES spectra without too much difficulty even in such cases. Despite the fact that ELNES and XANES probe the same phenomenon—essentially the electric dipole transition from a core orbital to an unoccupied band—there have not been many opportunities for researchers in the two areas to meet and discuss. Theoretical calculations of ELNES spectra have been mainly confined to the electron microscopy community. On the other hand, the theory of XANES has been developed principally by researchers in the x-ray community. Publications describing the methods have been written more

  14. Reactions of SO 2 on hydrated cement particle system for atmospheric pollution reduction: A DRIFTS and XANES study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramakrishnan, Girish; Wu, Qiyuan; Moon, Juhyuk

    An investigation of the adsorptive property of hydrated cement particle system for sulfur dioxide (SO2) removal was conducted. In situ and ex situ experiments using Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) and X-ray Absorption Near Edge Spectroscopy (XANES) characterization techniques were employed to identify surface species formed during the exposure to SO2. Oxidation of SO2 to sulfate and sulfite species observed during these experiments indicated dominant reaction pathways for SO2 reaction with concrete constituents, such as calcium hydroxide, which were also moderated by adsorption on porous surfaces of crushed aggregates. The impact of variable composition of concrete on itsmore » adsorption capacity and reaction mechanisms was also proposed in this work.« less

  15. EXAFS/XANES studies of plutonium-loaded sodalite/glass waste forms

    NASA Astrophysics Data System (ADS)

    Richmann, Michael K.; Reed, Donald T.; Kropf, A. Jeremy; Aase, Scott B.; Lewis, Michele A.

    2001-09-01

    A sodalite/glass ceramic waste form is being developed to immobilize highly radioactive nuclear wastes in chloride form, as part of an electrochemical cleanup process. Two types of simulated waste forms were studied: where the plutonium was alone in an LiCl/KCl matrix and where simulated fission-product elements were added representative of the electrometallurgical treatment process used to recover uranium from spent nuclear fuel also containing plutonium and a variety of fission products. Extended X-ray absorption fine structure spectroscopy (EXAFS) and X-ray absorption near-edge spectroscopy (XANES) studies were performed to determine the location, oxidation state, and particle size of the plutonium within these waste form samples. Plutonium was found to segregate as plutonium(IV) oxide with a crystallite size of at least 4.8 nm in the non-fission-element case and 1.3 nm with fission elements present. No plutonium was observed within the sodalite in the waste form made from the plutonium-loaded LiCl/KCl eutectic salt. Up to 35% of the plutonium in the waste form made from the plutonium-loaded simulated fission-product salt may be segregated with a heavy-element nearest neighbor other than plutonium or occluded internally within the sodalite lattice.

  16. EXAFS and XANES investigation of (Li, Ni) codoped ZnO thin films grown by pulsed laser deposition.

    PubMed

    Mino, Lorenzo; Gianolio, Diego; Bardelli, Fabrizio; Prestipino, Carmelo; Senthil Kumar, E; Bellarmine, F; Ramanjaneyulu, M; Lamberti, Carlo; Ramachandra Rao, M S

    2013-09-25

    Ni doped, Li doped and (Li, Ni) codoped ZnO thin films were successfully grown using a pulsed laser deposition technique. Undoped and doped ZnO thin films were investigated using extended x-ray absorption fine structure (EXAFS) and x-ray absorption near edge spectroscopy (XANES). Preliminary investigations on the Zn K-edge of the undoped and doped ZnO thin films revealed that doping has not influenced the average Zn-Zn bond length and Debye-Waller factor. This shows that both Ni and Li doping do not appreciably affect the average local environment of Zn. All the doped ZnO thin films exhibited more than 50% of substitutional Ni, with a maximum of 77% for 2% Ni and 2% Li doped ZnO thin film. The contribution of Ni metal to the EXAFS signal clearly reveals the presence of Ni clusters. The Ni-Ni distance in the Ni(0) nanoclusters, which are formed in the film, is shorter with respect to the reference Ni metal foil and the Debye-Waller factor is higher. Both facts perfectly reflect what is expected for metal nanoparticles. At the highest doping concentration (5%), the presence of Li favors the growth of a secondary NiO phase. Indeed, 2% Ni and 5% Li doped ZnO thin film shows %Nisub = 75 ± 11, %Nimet = 10 ± 8, %NiO = 15 ± 8. XANES studies further confirm that the substitutional Ni is more than 50% in all the samples. These results explain the observed magnetic properties.

  17. Investigation of nanoparticulate silicon as printed layers using scanning electron microscopy, transmission electron microscopy, X-ray absorption spectroscopy and X-ray photoelectron spectroscopy

    DOE PAGES

    Unuigbe, David M.; Harting, Margit; Jonah, Emmanuel O.; ...

    2017-08-21

    The presence of native oxide on the surface of silicon nanoparticles is known to inhibit charge transport on the surfaces. Scanning electron microscopy (SEM) studies reveal that the particles in the printed silicon network have a wide range of sizes and shapes. High-resolution transmission electron microscopy reveals that the particle surfaces have mainly the (111)- and (100)-oriented planes which stabilizes against further oxidation of the particles. X-ray absorption spectroscopy (XANES) and X-ray photoelectron spectroscopy (XPS) measurements at the O 1s-edge have been utilized to study the oxidation and local atomic structure of printed layers of silicon nanoparticles which were milledmore » for different times. XANES results reveal the presence of the +4 (SiO 2) oxidation state which tends towards the +2 (SiO) state for higher milling times. Si 2pXPS results indicate that the surfaces of the silicon nanoparticles in the printed layers are only partially oxidized and that all three sub-oxide, +1 (Si 2O), +2 (SiO) and +3 (Si 2O 3), states are present. The analysis of the change in the sub-oxide peaks of the silicon nanoparticles shows the dominance of the +4 state only for lower milling times.« less

  18. Local Environment Sensitivity of the Cu K-Edge XANES Features in Cu-SSZ-13: Analysis from First-Principles.

    PubMed

    Zhang, Renqin; McEwen, Jean-Sabin

    2018-05-22

    Cu K-edge X-ray absorption near-edge spectra (XANES) have been widely used to study the properties of Cu-SSZ-13. In this Letter, the sensitivity of the XANES features to the local environment for a Cu + cation with a linear configuration and a Cu 2+ cation with a square-linear configuration in Cu-SSZ-13 is reported. When a Cu + cation is bonded to H 2 O or NH 3 in a linear configuration, the XANES has a strong peak at around 8983 eV. The intensity of this peak decreases as the linear configuration is broken. As for the Cu 2+ cations in a square-planar configuration with a coordination number of 4, two peaks at around 8986 and 8993 eV are found. An intensity decrease for both peaks at around 8986 and 8993 eV is found in an NH 3 _4_Z 2 Cu model as the N-Cu-N angle changes from 180 to 100°. We correlate these features to the variation of the 4p state by PDOS analysis. In addition, the feature peaks for both the Cu + cation and Cu 2+ cation do not show a dependence on the Cu-N bond length. We further show that the feature peaks also change when the coordination number of the Cu cation is varied, while these feature peaks are independent of the zeolite topology. These findings help elucidate the experimental XANES features at an atomic and an electronic level.

  19. An x-ray absorption spectroscopy study of Ni-Mn-Ga shape memory alloys.

    PubMed

    Sathe, V G; Dubey, Aditi; Banik, Soma; Barman, S R; Olivi, L

    2013-01-30

    The austenite to martensite phase transition in Ni-Mn-Ga ferromagnetic shape memory alloys was studied by extended x-ray absorption fine structure (EXAFS) and x-ray absorption near-edge structure (XANES) spectroscopy. The spectra at all the three elements', namely, Mn, Ga and Ni, K-edges in several Ni-Mn-Ga samples (with both Ni and Mn excess) were analyzed at room temperature and low temperatures. The EXAFS analysis suggested a displacement of Mn and Ga atoms in opposite direction with respect to the Ni atoms when the compound transforms from the austenite phase to the martensite phase. The first coordination distances around the Mn and Ga atoms remained undisturbed on transition, while the second and subsequent shells showed dramatic changes indicating the presence of a modulated structure. The Mn rich compounds showed the presence of antisite disorder of Mn and Ga. The XANES results showed remarkable changes in the unoccupied partial density of states corresponding to Mn and Ni, while the electronic structure of Ga remained unperturbed across the martensite transition. The post-edge features in the Mn K-edge XANES spectra changed from a double peak like structure to a flat peak like structure upon phase transition. The study establishes strong correlation between the crystal structure and the unoccupied electronic structure in these shape memory alloys.

  20. Sulfur Speciation in Biochars by Very High Resolution Benchtop Kα X-ray Emission Spectroscopy.

    PubMed

    Holden, William M; Seidler, Gerald T; Cheah, Singfoong

    2018-05-30

    The analytical chemistry of sulfur-containing materials poses substantial technical challenges, especially due to the limitations of 33 S NMR and the time-intensive preparations required for wet-chemistry analyses. A number of prior studies have found that synchrotron-based X-ray absorption near edge structure (XANES) measurements can give detailed speciation of sulfur chemistry in such cases. However, due to the obvious access limitations, synchrotron XANES of sulfur cannot be part of routine analytical practice across the chemical sciences community. Here, in a study of the sulfur chemistry in biochars, we compare and contrast the chemical inferences available from synchrotron XANES with that given by benchtop, extremely high resolution wavelength-dispersive X-ray fluorescence (WD-XRF) spectroscopy, also often called X-ray emission spectroscopy (XES). While the XANES spectra have higher total information content, often giving differentiation between different moieties having the same oxidation state, the lower sensitivity of the S Kα XES to coordination and local structure provides pragmatic benefit for the more limited goal of quantifying the S oxidation state distribution. Within that constrained metric, we find good agreement between the two methods. As the sulfur concentrations were as low as 150 ppm, these measurements provide proof-of-principle for characterization of the sulfur chemistry of biochars and potential applications to other areas such as soils, batteries, catalysts, and fossil fuels and their combustion products.

  1. Sulfur K-edge XANES analysis of natural and synthetic basaltic glasses: Implications for S speciation and S content as function of oxygen fugacity

    NASA Astrophysics Data System (ADS)

    Jugo, Pedro J.; Wilke, Max; Botcharnikov, Roman E.

    2010-05-01

    XANES analyses at the sulfur K-edge were used to determine the oxidation state of S in natural and synthetic basaltic glasses and to constrain the fO2 conditions for the transition from sulfide (S2-) to sulfate (S6+) in silicate melts. XANES spectra of basaltic samples from the Galapagos spreading center, the Juan de Fuca ridge and the Lau Basin showed a dominant broad peak at 2476.8 eV, similar to the spectra obtained from synthetic sulfide-saturated basalts and pyrrhotite. An additional sharp peak at 2469.8 eV, similar to that of crystalline sulfides, was present in synthetic glasses quenched from hydrous melts but absent in anhydrous glasses and may indicate differences in sulfide species with hydration or presence of minute sulfide inclusions exsolved during quenching. The XANES spectra of a basalt from the 1991 eruption of Mount Pinatubo, Philippines, and absarokitic basalts from the Cascades Range, Oregon, U.S.A., showed a sharp peak at 2482.8 eV, characteristic of synthetic sulfate-saturated basaltic glasses and crystalline sulfate-bearing minerals such as haüyne. Basaltic samples from the Lamont Seamount, the early submarine phase of Kilauea volcano and the Loihi Seamount showed unequivocal evidence of the coexistence of S2- and S6+ species, emphasizing the relevance of S6+ to these systems. XANES spectra of basaltic glasses synthesized in internally-heated pressure vessels and equilibrated at fO2 ranging from FMQ-1.7 to FMQ+2.7 showed systematic changes in the features related to S2- and S6+ with changes in fO2. No significant features related to sulfite (S4+) species were observed. These results were used to construct a function that allows estimates of S6+/ΣS from XANES data. Theoretical considerations and comparison of compiled S6+/ΣS data obtained by SKα shifts estimated with electron probe microanalysis (EPMA) and S6+/ΣS obtained from XANES spectra show that data obtained from EPMA measurements underestimate S6+/ΣS in samples that are sulfate

  2. Sulfur K-edge XANES analysis of natural and synthetic basaltic glasses: Implications for S speciation and S content as function of oxygen fugacity

    NASA Astrophysics Data System (ADS)

    Jugo, Pedro J.; Wilke, Max; Botcharnikov, Roman E.

    2010-10-01

    XANES analyses at the sulfur K-edge were used to determine the oxidation state of S species in natural and synthetic basaltic glasses and to constrain the fO 2 conditions for the transition from sulfide (S 2-) to sulfate (S 6+) in silicate melts. XANES spectra of basaltic samples from the Galapagos spreading center, the Juan de Fuca ridge and the Lau Basin showed a dominant broad peak at 2476.8 eV, similar to the spectra obtained from synthetic sulfide-saturated basalts and pyrrhotite. An additional sharp peak at 2469.8 eV, similar to that of crystalline sulfides, was present in synthetic glasses quenched from hydrous melts but absent in anhydrous glasses and may indicate differences in sulfide species with hydration or presence of minute sulfide inclusions exsolved during quenching. The XANES spectra of a basalt from the 1991 eruption of Mount Pinatubo, Philippines, and absarokitic basalts from the Cascades Range, Oregon, USA, showed a sharp peak at 2482.8 eV, characteristic of synthetic sulfate-saturated basaltic glasses and crystalline sulfate-bearing minerals such as hauyne. Basaltic samples from the Lamont Seamount, the early submarine phase of Kilauea volcano and the Loihi Seamount showed unequivocal evidence of the coexistence of S 2- and S 6+ species, emphasizing the relevance of S 6+ to these systems. XANES spectra of basaltic glasses synthesized in internally-heated pressure vessels and equilibrated at fO 2 ranging from FMQ - 1.4 to FMQ + 2.7 showed systematic changes in the features related to S 2- and S 6+ with changes in fO 2. No significant features related to sulfite (S 4+) species were observed. These results were used to construct a function that allows estimates of S 6+/ΣS from XANES data. Comparison of S 6+/ΣS data obtained by S Kα shifts measured with electron probe microanalysis (EPMA), S 6+/ΣS obtained from XANES spectra, and theoretical considerations show that data obtained from EPMA measurements underestimate S 6+/ΣS in samples that

  3. Ag XANES data of biosolids

    EPA Pesticide Factsheets

    The dataset contains energy and absorption data for XANES spectra indicated in Figure 1 of the manuscript.This dataset is associated with the following publication:Donner, E., K. Scheckel , R. Sekine, R. Popelka-Filcoff, J. Bennett, G. Brunetti, R. Naidu, S. McGrath, and E. Lombi. Non-labile silver species in biosolids remain stable throughout 50 years of weathering and ageing.. D.O. Carpenter, and E.Y. Zeng ENVIRONMENTAL POLLUTION. Elsevier Science Ltd, New York, NY, USA, 205: 78-86, (2015).

  4. SORPTION OF ARSENATE AND ARSENITE ON RUO2 X H2O: ANALYSIS OF SORBED PHASE OXIDATION STATE BY XANES IN ADVANCED PHOTON SOURCE ACTIVITY REPORT 2002

    EPA Science Inventory

    The sorption reactions of arsenate (As(V)) and arsenite (As(III)) on RuO2 x H2O were examined by X-ray Absorption Near Edge Spectroscopy (XANES) to elucidate the solid state speciation of sorbed As. At all pH values studied (pH 4-8), RuO2 x H

  5. Fe K-edge XANES of Maya blue pigment

    NASA Astrophysics Data System (ADS)

    Río, M. Sánchez del; Sodo, A.; Eeckhout, S. G.; Neisius, T.; Martinetto, P.; Dooryhée, E.; Reyes-Valerio, C.

    2005-08-01

    The utilization of techniques used in Materials Science for the characterization of artefacts of interest for cultural heritage is getting more and more attention nowadays. One of the products of the ancient Maya chemistry is the "Maya blue" pigment, made with natural indigo and palygorskite. This pigment is different from any other pigment used in other parts of the world. It is durable and acid-resistant, and still keeps many secrets to scientists even though it has been studied for more than 50 years. Although the pigment is basically made of palygorskite Si8(Mg2Al2)O20(OH)2(OH2)4.4H2O and an organic colourant (indigo: C16H10N2O2), a number of other compounds have been found in previous studies on archaeological samples, like other clays and minerals, iron nanoparticles, iron oxides, impurities of transition metals (Cr, Mn, Ti, V), etc. We measured at the ESRF ID26 beamline the Fe K-edge XANES spectra of the blue pigment in ancient samples. They are compared to XANES spectra of Maya blue samples synthesized under controlled conditions, and iron oxides usually employed as pigments (hematite and goethite). Our results show that the iron found in ancient Maya blue pigment is related to the Fe exchanged in the palygorskite clay. We did not find iron in metallic form or goethite in archaeological Maya blue.

  6. XANES analyses of silicon crystalline irradiated by nitrogen/oxygen ions.

    PubMed

    Yoshida, T; Hara, T; Li, T; Yoshida, H; Tanabe, T

    2001-03-01

    X-ray absorption techniques have been applied to the characterization of 5 keV nitrogen / oxygen ions implanted silicon samples. The depth selective measurement of XANES by recording in PEY mode and the quantitative analysis by superposition of XANES spectra were carried out to elucidate the depth profile of implanted ions. It has been revealed that the silicon nitride phase were formed in silicon after prolonged N+ irradiation and it extended over the deep part of the damaged region from the surface. On the other hand, for the O+ irradiation, silicon dioxide phase were produced only in the shallow part of the damaged region, i.e., the silicon dioxide phase likely broke off during the irradiation.

  7. Speciation Mapping of Environmental Samples Using XANES Imaging

    EPA Science Inventory

    Fast X-ray detectors with large solid angles and high dynamic ranges open the door to XANES imaging, in which millions of spectra are collected to image the speciation of metals at micrometre resolution, over areas up to several square centimetres. This paper explores how such mu...

  8. Full-Field Calcium K-Edge X-ray Absorption Near-Edge Structure Spectroscopy on Cortical Bone at the Micron-Scale: Polarization Effects Reveal Mineral Orientation.

    PubMed

    Hesse, Bernhard; Salome, Murielle; Castillo-Michel, Hiram; Cotte, Marine; Fayard, Barbara; Sahle, Christoph J; De Nolf, Wout; Hradilova, Jana; Masic, Admir; Kanngießer, Birgit; Bohner, Marc; Varga, Peter; Raum, Kay; Schrof, Susanne

    2016-04-05

    Here, we show results on X-ray absorption near edge structure spectroscopy in both transmission and X-ray fluorescence full-field mode (FF-XANES) at the calcium K-edge on human bone tissue in healthy and diseased conditions and for different tissue maturation stages. We observe that the dominating spectral differences originating from different tissue regions, which are well pronounced in the white line and postedge structures are associated with polarization effects. These polarization effects dominate the spectral variance and must be well understood and modeled before analyzing the very subtle spectral variations related to the bone tissue variations itself. However, these modulations in the fine structure of the spectra can potentially be of high interest to quantify orientations of the apatite crystals in highly structured tissue matrices such as bone. Due to the extremely short wavelengths of X-rays, FF-XANES overcomes the limited spatial resolution of other optical and spectroscopic techniques exploiting visible light. Since the field of view in FF-XANES is rather large the acquisition times for analyzing the same region are short compared to, for example, X-ray diffraction techniques. Our results on the angular absorption dependence were verified by both site-matched polarized Raman spectroscopy, which has been shown to be sensitive to the orientation of bone building blocks and by mathematical simulations of the angular absorbance dependence. As an outlook we further demonstrate the polarization based assessment of calcium-containing crystal orientation and specification of calcium in a beta-tricalcium phosphate (β-Ca3(PO4)2 scaffold implanted into ovine bone. Regarding the use of XANES to assess chemical properties of Ca in human bone tissue our data suggest that neither the anatomical site (tibia vs jaw) nor pathology (healthy vs necrotic jaw bone tissue) affected the averaged spectral shape of the XANES spectra.

  9. Sulfur Speciation in Biochars by Very High Resolution Benchtop Ka X-Ray Emission Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheah, Singfoong; Holden, William M.; Seidler, Gerald T.

    The analytical chemistry of sulfur-containing materials poses substantial technical challenges, especially due to the limitations of 33S NMR and the time-intensive preparations required for wet-chemistry analyses. A number of prior studies have found that synchrotron-based X-ray absorption near edge structure (XANES) measurements can give detailed speciation of sulfur chemistry in such cases. However, due to the obvious access limitations, synchrotron XANES of sulfur cannot be part of routine analytical practice across the chemical sciences community. Here, in a study of the sulfur chemistry in biochars, we compare and contrast the chemical inferences available from synchrotron XANES with that given bymore » benchtop, extremely high resolution wavelength-dispersive X-ray fluorescence (WD-XRF) spectroscopy, also often called X-ray emission spectroscopy (XES). While the XANES spectra have higher total information content, often giving differentiation between different moieties having the same oxidation state, the lower sensitivity of the S Ka XES to coordination and local structure provides pragmatic benefit for the more limited goal of quantifying the S oxidation state distribution. Within that constrained metric, we find good agreement between the two methods. As the sulfur concentrations were as low as 150 ppm, these measurements provide proof-of-principle for characterization of the sulfur chemistry of biochars and potential applications to other areas such as soils, batteries, catalysts, and fossil fuels and their combustion products.« less

  10. Micro-XANES Determination Fe Speciation in Natural Basalts at Mantle-Relevant fO2

    NASA Astrophysics Data System (ADS)

    Fischer, R.; Cottrell, E.; Lanzirotti, A.; Kelley, K. A.

    2007-12-01

    We demonstrate that the oxidation state of iron (Fe3+/ΣFe) can be determined with a precision of ±0.02 (10% relative) on natural basalt glasses at mantle-relevant fO2 using Fe K-edge X-ray absorption near edge structure (XANES) spectroscopy. This is equivalent to ±0.25 log unit resolution relative to the QFM buffer. Precise determination of the oxidation state over this narrow range (Fe3+/ΣFe=0.06-0.30) and at low fO2 (down to QFM-2) relies on appropriate standards, high spectral resolution, and highly reproducible methods for extracting the pre-edge centroid position. We equilibrated natural tholeiite powder in a CO/CO2 gas mixing furnace at 1350°C from QFM-3 to QFM+2 to create six glasses of known Fe3+/ΣFe, independently determined by Mössbauer spectroscopy. XANES spectra were collected at station X26A at NSLS, Brookhaven Natl. Lab, in fluorescence mode (9 element Ge array detector) using both Si(111) and Si(311) monochromators. Generally, the energy position of the 1s→3d (pre-edge) transition centroid is the most sensitive monitor of Fe oxidation state using XANES. For the mixture of Fe oxidation states in these glasses and the resulting coordination geometries, the pre-edge spectra are best defined by two multiple 3d crystal field transitions. The Si(311) monochromator, with higher energy resolution, substantially improved spectral resolution for the 1s→3d transition. Dwell times of 5s at 0.1eV intervals across the pre-edge region yielded spectra with the 1s→3d transition peaks clearly resolved. The pre-edge centroid position is highly sensitive to the background subtraction and peak fitting procedures. Differences in fitting models result in small but significant differences in the calculated peak area of each pre-edge multiplet, and the relative contribution of each peak to the calculated centroid. We assessed several schemes and obtained robust centroid positions by simultaneously fitting the background with a damped harmonic oscillator (DHO

  11. Olivine-melt relationships and syneruptive redox variations in the 1959 eruption of Kīlauea Volcano as revealed by XANES

    NASA Astrophysics Data System (ADS)

    Helz, R. T.; Cottrell, E.; Brounce, M. N.; Kelley, K. A.

    2017-03-01

    The 1959 summit eruption of Kīlauea Volcano exhibited high lava fountains of gas-rich, primitive magma, containing olivine + chromian spinel in highly vesicular brown glass. Microprobe analysis of these samples shows that euhedral rims on olivine phenocrysts, in direct contact with glass, vary significantly in forsterite (Fo) content, at constant major-element melt composition, as do unzoned groundmass olivine crystals. Ferric/total iron (Fe+ 3/FeT)ratios for matrix and interstitial glasses, plus olivine-hosted glass inclusions in eight 1959 scoria samples have been determined by micro X-ray absorption near-edge structure spectroscopy (μ-XANES). These data show that much of the variation in Fo content reflects variation in oxidation state of iron in the melt, which varies with sulfur concentration in the glass and (locally) with proximity to scoria edges in contact with air. Data for 24 olivine-melt pairs in the better-equilibrated samples from later in the eruption show KD averaging 0.280 ± 0.03 for the exchange of Fe and Mg between olivine and melt, somewhat displaced from the value of 0.30 ± 0.03 given by Roeder and Emslie (1970). This may reflect the low SiO2 content of the 1959 magmas, which is lower than that in most Kīlauea tholeiites. More broadly, we show the potential of μ-XANES and electron microprobe to revisit and refine the value of KD in natural systems. The observed variations of Fe+ 3/FeT ratios in the glasses reflect two distinct processes. The main process, sulfur degassing, produces steady decrease of the Fe+ 3/FeT ratio. Melt inclusions in olivine are high in sulfur (1060-1500 ppm S), with Fe+ 3/FeT = 0.160-0.175. Matrix glasses are degassed (mostly S < 200 ppm) with generally lower Fe+ 3/FeT (0.114-0.135). Interstitial glasses within clumps of olivine crystals locally show intermediate levels of sulfur and Fe+ 3/FeT ratio. The correlation suggests that (1) the 1959 magma was significantly reduced by sulfur degassing during the eruption

  12. Sequestration of Tellurium From Seawater by Ferromanganese Crusts: A XANES/EXAFS Perspective

    NASA Astrophysics Data System (ADS)

    Hein, J. R.; Bargar, J.; Koschinsky, A.; Dunham, R.; Halliday, A. N.

    2007-12-01

    Marine iron-oxyhydroxide/manganese-oxide crusts (Fe-Mn crusts) provide the richest known source of tellurium (Te). Te averages about 50 ppm in Fe-Mn crusts distributed globally, with concentrations locally up to 210 ppm. The sorption of Te onto Fe-Mn crusts likely controls the dominant redox species and concentration of Te in the global ocean (Hein et al., 2003). However, little is known about the mechanisms by which Te is sequestered by Fe-Mn crusts and Fe-Mn colloids in the water column, and then stabilized in the Fe/Mn oxyhydroxide/oxide framework. Two primary hypotheses are being tested: (a) Te(IV) is initially the predominant adsorbed species, which is subsequently oxidized on the Fe-oxyhydroxide and/or Mn oxide phases in natural systems and in sorption experiments. (b) Once oxidized, Te(VI) remains tightly bound to the Fe phase in Fe-Mn crusts as adsorbed surface complexes. These hypotheses are being examined by using the Stanford Synchrotron Radiation Laboratory's (SSRL) synchrotron-based XANES (x-ray absorption near-edge structure) spectroscopy to assess Te oxidation state in natural samples and samples in which Te(IV) and Te(VI) were sorbed onto synthetic and natural FeOOH and Mn oxides. EXAFS (extended x-ray absorption fine structure) spectroscopy is being used to resolve the local molecular-scale structure around Te in these same samples. Data have thus far been obtained for six Fe-Mn crusts from a variety of geographic locations and water depths of occurrence, with differing chemical compositions; and two model compounds, Te(IV) sorbed on FeOOH and Te(IV) sorbed on MnO2. XANES data show that for all six Fe-Mn crust samples, 85 to 100 percent of the Te occurs as Te(VI). For the model compounds, about 65 percent of the Te(IV) sorbed onto the MnO2 had oxidized to Te(VI) by the time (one week) the sample was analyzed, whereas Te sorbed onto FeOOH remained at about 100 percent Te(IV). The most striking result from the EXAFS data is that all spectra for the

  13. XANES and EXAFS study of Au-substituted YBa2Cu3O(7-delta)

    NASA Technical Reports Server (NTRS)

    Ruckman, Mark W.; Hepp, Aloysius F.

    1990-01-01

    The near-edge structure (XANES) of the Au L3 and Cu K edges of YBa2Au(0.3)Cu(2.7)O(7-delta) was studied. X ray diffraction suggests that Au goes on the Cu(1) site and XANES shows that this has little effect on the oxidation state of the remaining copper. The gold L3 edge develops a white line feature whose position lies between that of trivalent gold oxide (Au2O3) and monovalent potassium gold cyanide (KAu(CN)2) and whose intensity relative to the edge step is smaller than in the two reference compounds. The L3 EXAFS for Au in the superconductor resembles that of Au2O3. However, differences in the envelope of the Fourier filtered component for the first shell suggest that the local structure of the Au in the superconductor is not equivalent to Au2O3.

  14. How water molecules affect the catalytic activity of hydrolases--a XANES study of the local structures of peptide deformylase.

    PubMed

    Cui, Peixin; Wang, Yu; Chu, Wangsheng; Guo, Xiaoyun; Yang, Feifei; Yu, Meijuan; Zhao, Haifeng; Dong, Yuhui; Xie, Yaning; Gong, Weimin; Wu, Ziyu

    2014-12-12

    Peptide deformylase (PDF) is a prokaryotic enzyme that catalyzes the deformylation of nascent peptides generated during protein synthesis and water molecules play a key role in these hydrolases. Using X-ray absorption near edge spectroscopy (XANES) and ab initio calculations we accurately probe the local atomic environment of the metal ion binding in the active site of PDF at different pH values and with different metal ions. This new approach is an effective way to monitor existing correlations among functions and structural changes. We show for the first time that the enzymatic activity depends on pH values and metal ions via the bond length of the nearest coordinating water (Wat1) to the metal ion. Combining experimental and theoretical data we may claim that PDF exhibits an enhanced enzymatic activity only when the distance of the Wat1 molecule with the metal ion falls in the limited range from 2.15 to 2.55 Å.

  15. Electronic structure of transition metal-cysteine complexes from X-ray absorption spectroscopy.

    PubMed

    Leung, Bonnie O; Jalilehvand, Farideh; Szilagyi, Robert K

    2008-04-17

    The electronic structures of HgII, NiII, CrIII, and MoV complexes with cysteine were investigated by sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy and density functional theory. The covalency in the metal-sulfur bond was determined by analyzing the intensities of the electric-dipole allowed pre-edge features appearing in the XANES spectra below the ionization threshold. Because of the well-defined structures of the selected cysteine complexes, the current work provides a reference set for further sulfur K-edge XAS studies of bioinorganic active sites with transition metal-sulfur bonds from cysteine residues as well as more complex coordination compounds with thiolate ligands.

  16. Application toward Confocal Full-Field Microscopic X-ray Absorption Near Edge Structure Spectroscopy.

    PubMed

    Tack, Pieter; Vekemans, Bart; Laforce, Brecht; Rudloff-Grund, Jennifer; Hernández, Willinton Y; Garrevoet, Jan; Falkenberg, Gerald; Brenker, Frank; Van Der Voort, Pascal; Vincze, Laszlo

    2017-02-07

    Using X-ray absorption near edge structure (XANES) spectroscopy, information on the local chemical structure and oxidation state of an element of interest can be acquired. Conventionally, this information can be obtained in a spatially resolved manner by scanning a sample through a focused X-ray beam. Recently, full-field methods have been developed to obtain direct 2D chemical state information by imaging a large sample area. These methods are usually in transmission mode, thus restricting the use to thin and transmitting samples. Here, a fluorescence method is displayed using an energy-dispersive pnCCD detector, the SLcam, characterized by measurement times far superior to what is generally applicable. Additionally, this method operates in confocal mode, thus providing direct 3D spatially resolved chemical state information from a selected subvolume of a sample, without the need of rotating a sample. The method is applied to two samples: a gold-supported magnesia catalyst (Au/MgO) and a natural diamond containing Fe-rich inclusions. Both samples provide XANES spectra that can be overlapped with reference XANES spectra, allowing this method to be used for fingerprinting and linear combination analysis of known XANES reference compounds.

  17. XANES study of hydrogen incorporation in a Pd-capped Nb thin film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruckman, M.W.; Reisfeld, G.; Jisrawi, N.M.

    X-ray absorption near-edge structure (XANES) measurements were used to probe the H-charging-induced electronic structure changes of a 2400 {Angstrom} Nb film capped with Pd. These results are discussed in terms of {ital ab initio} linear augmented plane-wave (LAPW) band-structure calculations for this material. The Pd-L{sub 3}-edge XANES clearly manifested the spectral (Pd-d state related) changes expected for Pd-hydride formation, a white line feature degradation, and the appearance of a Pd-H antibonding feature at 6 eV above the threshold. The Nb-L{sub 2,3} edge changes with H charging show a distinct enhancement of the white line strength; a feature 6 eV abovemore » the edges, associated with Nb-H antibonding states in analogy with the Pd results; the suppression of a threshold-onset feature of Nb metal; and a shift of the centrum of the white line feature towards the threshold. Comparison of the Nb sphere projection of the d{sub 3/2} component of the LAPW density of states (DOS) to the Nb-L{sub 2}-edge spectra yields good basic agreement with the observed spectral changes. In particular, the substantial theoretical reduction in the DOS at, and just above, the Fermi energy (E{sub f}) is directly related to the near threshold Nb-L{sub 2,3} spectral changes. The more modest white line enhancement in the theoretical DOS is noted and discussed. Nb-K-edge XANES are also discussed in terms of the Nb-site p-state projected LAPW DOS. This last comparison indicates a p-state reduction near E{sub f} upon H charging of the Nb. {copyright} {ital 1998} {ital The American Physical Society}« less

  18. Composition-driven Cu-speciation and reducibility in Cu-CHA zeolite catalysts: a multivariate XAS/FTIR approach to complexity† †Electronic supplementary information (ESI) available: Sample description and synthesis details, experimental setup for in situ XAS and FTIR spectroscopy, details on the MCR-ALS method, details on DFT-assisted XANES simulations, details on the determination of N pure by PCA, MCR-ALS results for downsized and upsized component spaces, additional information to support the assignment of theoretical XANES curves, details on EXAFS analysis, details on IR spectral deconvolution. See DOI: 10.1039/c7sc02266b Click here for additional data file.

    PubMed Central

    Martini, A.; Lomachenko, K. A.; Pankin, I. A.; Negri, C.; Berlier, G.; Beato, P.; Falsig, H.; Bordiga, S.; Lamberti, C.

    2017-01-01

    The small pore Cu-CHA zeolite is attracting increasing attention as a versatile platform to design novel single-site catalysts for deNOx applications and for the direct conversion of methane to methanol. Understanding at the atomic scale how the catalyst composition influences the Cu-species formed during thermal activation is a key step to unveil the relevant composition–activity relationships. Herein, we explore by in situ XAS the impact of Cu-CHA catalyst composition on temperature-dependent Cu-speciation and reducibility. Advanced multivariate analysis of in situ XANES in combination with DFT-assisted simulation of XANES spectra and multi-component EXAFS fits as well as in situ FTIR spectroscopy of adsorbed N2 allow us to obtain unprecedented quantitative structural information on the complex dynamics during the speciation of Cu-sites inside the framework of the CHA zeolite. PMID:29147509

  19. Specimen charging in X-ray absorption spectroscopy: correction of total electron yield data from stabilized zirconia in the energy range 250-915 eV.

    PubMed

    Vlachos, Dimitrios; Craven, Alan J; McComb, David W

    2005-03-01

    The effects of specimen charging on X-ray absorption spectroscopy using total electron yield have been investigated using powder samples of zirconia stabilized by a range of oxides. The stabilized zirconia powder was mixed with graphite to minimize the charging but significant modifications of the intensities of features in the X-ray absorption near-edge fine structure (XANES) still occurred. The time dependence of the charging was measured experimentally using a time scan, and an algorithm was developed to use this measured time dependence to correct the effects of the charging. The algorithm assumes that the system approaches the equilibrium state by an exponential decay. The corrected XANES show improved agreement with the electron energy-loss near-edge fine structure obtained from the same samples.

  20. Ab-initio Calculation of the XANES of Lithium Phosphates and LiFePO4

    NASA Astrophysics Data System (ADS)

    Yiu, Y. M.; Yang, Songlan; Wang, Dongniu; Sun, Xueliang; Sham, T. K.

    2013-04-01

    Lithium iron phosphate has been regarded as a promising cathode material for the next generation lithium ion batteries due to its high specific capacity, superior thermal and cyclic stability [1]. In this study, the XANES (X-ray Absorption Near Edge Structure) spectra of lithium iron phosphate and lithium phosphates of various compositions at the Li K, P L3,2, Fe M3,2 and O K-edges have been simulated self-consistently using ab-initio calculations based on multiple scattering theory (the FEFF9 code) and DFT (Density Functional Theory, the Wien2k code). The lithium phosphates under investigation include LiFePO4, γ-Li3PO4, Li4P2O7 and LiPO3. The calculated spectra are compared to the experimental XANES recorded in total electron yield (TEY) and fluorescence yield (FLY). This work was carried out to assess the XANES of possible phases presented in LiFePO4 based Li ion battery applications [2].

  1. Olivine-melt relationships and syneruptive redox variations in the 1959 eruption of Kīlauea Volcano as revealed by XANES

    USGS Publications Warehouse

    Helz, Rosalind L.; Cottrell, Elizabeth; Brounce, Maryjo N.; Kelley, Katherine A.

    2017-01-01

    The 1959 summit eruption of Kīlauea Volcano exhibited high lava fountains of gas-rich, primitive magma, containing olivine + chromian spinel in highly vesicular brown glass. Microprobe analysis of these samples shows that euhedral rims on olivine phenocrysts, in direct contact with glass, vary significantly in forsterite (Fo) content, at constant major-element melt composition, as do unzoned groundmass olivine crystals. Ferric/total iron (Fe+ 3/FeT)ratios for matrix and interstitial glasses, plus olivine-hosted glass inclusions in eight 1959 scoria samples have been determined by micro X-ray absorption near-edge structure spectroscopy (μ-XANES). These data show that much of the variation in Fo content reflects variation in oxidation state of iron in the melt, which varies with sulfur concentration in the glass and (locally) with proximity to scoria edges in contact with air. Data for 24 olivine-melt pairs in the better-equilibrated samples from later in the eruption show KD averaging 0.280 ± 0.03 for the exchange of Fe and Mg between olivine and melt, somewhat displaced from the value of 0.30 ± 0.03 given by Roeder and Emslie (1970). This may reflect the low SiO2 content of the 1959 magmas, which is lower than that in most Kīlauea tholeiites. More broadly, we show the potential of μ-XANES and electron microprobe to revisit and refine the value of KD in natural systems.The observed variations of Fe+ 3/FeT ratios in the glasses reflect two distinct processes. The main process, sulfur degassing, produces steady decrease of the Fe+ 3/FeT ratio. Melt inclusions in olivine are high in sulfur (1060–1500 ppm S), with Fe+ 3/FeT = 0.160–0.175. Matrix glasses are degassed (mostly S < 200 ppm) with generally lower Fe+ 3/FeT(0.114–0.135). Interstitial glasses within clumps of olivine crystals locally show intermediate levels of sulfur and Fe+ 3/FeT ratio. The correlation suggests that (1) the 1959 magma was significantly reduced by sulfur

  2. Antimony leaching and chemical species analyses in an industrial solid waste: Surface and bulk speciation using ToF-SIMS and XANES.

    PubMed

    Kappen, P; Ferrando-Miguel, G; Reichman, S M; Innes, L; Welter, E; Pigram, P J

    2017-05-05

    The surface chemistry and bulk chemical speciation of solid industrial wastes containing 8wt-% antimony (Sb) were investigated using synchrotron X-ray Absorption Near Edge Structure (XANES) and Time-of-Flight Ion Secondary Mass Spectrometry (ToF-SIMS). Leaching experiments were conducted in order to better understand the behavior of Sb in waste streams and to inform regulatory management of antimony-containing wastes. The experiments also demonstrate how a combination of XANES and ToF-SIMS adds value to the field of waste investigations. Leaching treatments (acid and base) were performed at a synchrotron over 24h time periods. Surface analyses of the wastes before leaching showed the presence of Sb associated with S and O. Bulk analyses revealed Sb to be present, primarily, as trivalent sulfide species. Both acid and base leaching did not change the antimony speciation on the solid. Leaching transferred about 1% of the total Sb into solution where Sb was found to be present as Sb(V). XANES data showed similarities between leachate and FeSbO 4 . During base leaching, the Sb content in solution gradually increased over time, and potential desorption mechanisms are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Microanalysis of iron oxidation state in iron oxides using X Ray Absorption Near Edge Structure (XANES)

    NASA Technical Reports Server (NTRS)

    Sutton, S. R.; Delaney, J.; Bajt, S.; Rivers, M. L.; Smith, J. V.

    1993-01-01

    An exploratory application of x ray absorption near edge structure (XANES) analysis using the synchrotron x ray microprobe was undertaken to obtain Fe XANES spectra on individual sub-millimeter grains in conventional polished sections. The experiments concentrated on determinations of Fe valence in a suite of iron oxide minerals for which independent estimates of the iron speciation could be made by electron microprobe analysis and x ray diffraction.

  4. Reduced As Components in Highly Oxidized Environments: Evidence from Full Spectral XANES Imaging using the Maia Massively Parallel Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Etschmann, B.; Ryan, C; Brugger, J

    2010-01-01

    Synchrotron X-ray fluorescence (SXRF) and X-ray absorption spectroscopy (XAS) have become standard tools to measure element concentration, distribution at micrometer- to nanometer-scale, and speciation (e.g., nature of host phase; oxidation state) in inhomogeneous geomaterials. The new Maia X-ray detector system provides a quantum leap for the method in terms of data acquisition rate. It is now possible to rapidly collect fully quantitative maps of the distribution of major and trace elements at micrometer spatial resolution over areas as large as 1 x 5 cm{sup 2}. Fast data acquisition rates also open the way to X-ray absorption near-edge structure (XANES) imaging,more » in which spectroscopic information is available at each pixel in the map. These capabilities are critical for studying inhomogeneous Earth materials. Using a 96-element prototype Maia detector, we imaged thin sections of an oxidized pisolitic regolith (2 x 4.5 mm{sup 2} at 2.5 x 2.5 {micro}m{sup 2} pixel size) and a metamorphosed, sedimentary exhalative Mn-Fe ore (3.3 x 4 mm{sup 2} at 1.25 x 5 {micro}m{sup 2}). In both cases, As K-edge XANES imaging reveals localized occurrence of reduced As in parts of these oxidized samples, which would have been difficult to recognize using traditional approaches.« less

  5. First Ti-XANES analyses of refractory inclusions from Murchison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, S.B.; Sutton, S.R.; Grossman, L.

    2009-03-23

    Ti valence in refractory phases is an important recorder of redox conditions in the early solar nebula. We report the valence of Ti in pyroxene, spinel and hibonite in spinel-hibonite and spinel-pyroxene inclusions and in a coarse hibonite grain. A system of solar composition is so reducing that Ti{sup 3+} and Ti{sup 4+} can coexist, making the valence of Ti a valuable indicator of f{sub O2} conditions during formation of nebular materials. The Ti{sup 3+}/Ti{sup 4+} ratios observed in the Ti-rich phases fassaite and rhoenite in coarse-grained refractory inclusions from CV3 chondrites have been shown to be quantitatively consistent withmore » formation in a gas of solar composition (log f{sub O2} = IW-6.8), but these are the only objects in chondrites for which this is the case. Here, we report the valence of Ti in various phases in refractory inclusions from the Murchison CM2 chondrite. The second-highest temperature, major-element-bearing phase predicted to condense from a gas of solar composition, hibonite (ideally CaAl{sub 12}O{sub 19}), can contain significant amounts of Ti, but the hibonite structure can have oxygen vacancies, so calculation of Ti valence from stoichiometry of electron probe analyses is not recommended for hibonite. To date, the only reported measurement of Ti valence in meteoritic hibonite was done by electron spin resonance, on coarse crystals from a Murchison hibonite-perovskite-melilite inclusion. Spinel and most of the pyroxene in CM inclusions contain too little Ti for derivation of Ti{sup 3+}/Ti{sup 4+} ratios from electron probe analyses. X-ray absorption near edge spectroscopy (XANES), however, allows determination of Ti valence in relatively Ti-poor phases. In the present work, we apply synchrotron microXANES to a large hibonite grain from Murchison and to spinel-hibonite (sp-hib) and spinel-pyroxene (sp-pyx) inclusions from Murchison, refractory materials whose Ti{sup 3+}/Ti{sup 4+} ratios have not been previously measured

  6. HgL(3) XANES Study of Mercury Methylation in Shredded Eichhornia Crassipes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajan, M.; Darrow, J.; Hua, M.

    2009-05-21

    Eichhornia crassipes (water hyacinth) is a non-native plant found in abundance in the Sacramento-San Joaquin River Delta (hereafter called Delta). This species has become a problem, clogging waterways and wetlands. Water hyacinth are also known to accumulate mercury. Recent attempts to curb its proliferation have included shredding with specialized boats. The purpose of this research is to better understand the ability of water hyacinth to phytoremediate mercury and to determine the effect of shredding and anoxic conditions on mercury speciation in plant tissue. In the field assessment, total mercury levels in sediment from the Dow Wetlands in the Delta weremore » found to be 0.273 {+-} 0.070 ppm Hg, and levels in hyacinth roots and shoots from this site were 1.17 {+-} 0.08 ppm and 1.03 {+-} 0.52 ppm, respectively, indicating bioaccumulation of mercury. Plant samples collected at this site were also grown in nutrient solution with 1 ppm HgCl{sub 2} under (1) aerobic conditions, (2) anaerobic conditions, and (3) with shredded plant material only. The greatest accumulation was found in the roots of whole plants. Plants grown in these conditions were also analyzed at Stanford Synchrotron Radiation Laboratory using Hg L{sub 3} X-ray Absorption Near Edge Spectroscopy (XANES), a method to examine speciation that is element-specific and noninvasive. Least-squares fitting of the XANES data to methylated and inorganic mercury(II) model compounds revealed that in plants grown live and aerobically, 5 {+-} 3% of the mercury was in the form of methylmercury, in a form similar to methylmercury cysteine. This percentage increased to 16 {+-} 4% in live plants grown anaerobically and to 22 {+-} 6% in shredded anaerobic plants. We conclude that shredding of the hyacinth plants and, in fact, subjection of plants to anaerobic conditions (e.g., as in normal decay, or in crowded growth conditions) increases mercury methylation. Mechanical removal of the entire plant is significantly

  7. In Situ X-ray Absorption Near-Edge Structure Spectroscopy of ZnO Nanowire Growth During Chemical Bath Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McPeak, Kevin M.; Becker, Matthew A.; Britton, Nathan G.

    2010-12-03

    Chemical bath deposition (CBD) offers a simple and inexpensive route to deposit semiconductor nanostructures, but lack of fundamental understanding and control of the underlying chemistry has limited its versatility. Here we report the first use of in situ X-ray absorption spectroscopy during CBD, enabling detailed investigation of both reaction mechanisms and kinetics of ZnO nanowire growth from zinc nitrate and hexamethylenetetramine (HMTA) precursors. Time-resolved X-ray absorption near-edge structure (XANES) spectra were used to quantify Zn(II) speciation in both solution and solid phases. ZnO crystallizes directly from [Zn(H{sub 2}O){sub 6}]{sup 2+} without long-lived intermediates. Using ZnO nanowire deposition as an example,more » this study establishes in situ XANES spectroscopy as an excellent quantitative tool to understand CBD of nanomaterials.« less

  8. [Effect of Long-Term Fertilization on Organic Nitrogen Functional Groups in Black Soil as Revealed by Synchrotron-Based X-Ray Absorption Near-Edge Structure Spectroscopy].

    PubMed

    Li, Hui; Gao, Qiang; Wang, Shuai; Zhu, Ping; Zhang, Jin-jing; Zhao, Yi-dong

    2015-07-01

    Nitrogen (N) is a common limiting nutrient in crop production. The N content of soil has been used as an important soil fertility index. Organic N is the major form of N in soil. In most agricultural surface soils, more than 90% of total N occurs in organic forms. Therefore, understanding the compositional characteristics of soil organic N functional groups can provide the scientific basis for formulating the reasonable farmland management strategies. Synchrotron radiation soft X-ray absorption near-edge structure (N K-edge XANES) spectroscopy is the most powerful tool to characterize in situ organic N functional groups compositions in soil. However, to our most knowledge, no studies have been conducted to examine the organic N functional groups compositions of soil using N K-edge XANES spectroscopy under long-term fertilization practices. Based on a long-term field experiment (started in 1990) in a black soil (Gongzhuling, Northeast China), we investigated the differences in organic N functional groups compositions in bulk soil and clay-size soil fraction among fertilization patterns using synchrotron-based N K- edge XANES spectroscopy. Composite soil samples (0-20 cm) were collected in 2008. The present study included six treatments: farmland fallow (FALL), no-fertilization control (CK), chemical nitrogen, phosphorus, and potassium fertilization (NPK), NPK in combination with organic manure (NPKM), 1.5 times of NPKM (1.5 NPKM), and NPK in combination with maize straw (NPKS). The results showed that N K-edge XANES spectra of all the treatments under study exhibited characteristic absorption peaks in the ranges of 401.2-401.6 and 402.7-403.1 eV, which were assigned as amides/amine-N and pyrrole-N, respectively. These characteristic absorption peaks were more obvious in clay-size soil fraction than in bulk soil. The results obtained from the semi-quantitative analysis of N K-edge XANES spectra indicated that the relative proportion of amides/amine-N was the highest

  9. Monitoring morphology and hydrogen coverage of nanometric Pt/γ-Al2 O3 particles by in situ HERFD-XANES and quantum simulations.

    PubMed

    Gorczyca, Agnes; Moizan, Virginie; Chizallet, Celine; Proux, Olivier; Del Net, William; Lahera, Eric; Hazemann, Jean-Louis; Raybaud, Pascal; Joly, Yves

    2014-11-10

    Platinum nanoclusters highly dispersed on γ-alumina are widely used as heterogeneous catalysts. To understand the chemical interplay between the Pt nanoparticles, the support, and the reductive atmosphere, we performed X-ray absorption near edge structure (XANES) in situ experiments recorded in high energy resolution fluorescence detection (HERFD) mode. Spectra are assigned by comparison with simulated XANES spectra on models obtained by molecular dynamics (DFT-MD). We propose platinum cluster morphologies and quantify the hydrogen coverages compatible with XANES spectra recorded at variable hydrogen pressures and temperatures. Using cutting-edge methodologies to assign XANES spectra, this work gives unequalled atomic insights into the characterization of supported nanoclusters. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The origin of luminescence from di[4-(4-diphenylaminophenyl)phenyl]sulfone (DAPSF), a blue light emitter: an X-ray excited optical luminescence (XEOL) and X-ray absorption near edge structure (XANES) study.

    PubMed

    Zhang, Duo; Zhang, Hui; Zhang, Xiaohong; Sham, Tsun-Kong; Hu, Yongfeng; Sun, Xuhui

    2016-03-07

    The electronic structure and optical properties of di[4-(4-diphenylaminophenyl)phenyl]sulfone (denoted as DAPSF), a highly efficient fluorophor, have been investigated using X-ray excited optical luminescence (XEOL) and X-ray absorption near edge structure (XANES) spectroscopy at excitation energies across the C, N, O K-edges and the sulfur K-edge. The results indicate that the blue luminescence is mainly related to the sulfur functional group.

  11. Borosilicate glass structure: An investigation of high resolution B K-edge XANES

    NASA Astrophysics Data System (ADS)

    Dong, S.; Henderson, G. S.; Galoisy, L.; Calas, G.

    2009-05-01

    The Alkali-borosilicate glasses in the systems Na2O-B2O3-SiO2 and K2O- B2O3-SiO2 have been prepared by melting/quenching in air and studied using synchrotron radiation B K-edge XANES to estimate the evolution of boron coordination as a function of composition. The ratio of alkali/B2O3 (R) and SiO2/B2O3 (K) in the glasses are respectively between 0.5 to 2.0 and 0.5 to 7.0. The edge features of trigonal B ([3]B) and tetrahedral B ([4]B) in B K-edge XANES spectra have been interpreted carefully from B standards such as (B2O3 and BPO4), as well as, a wide range of borate minerals. We find that the proportion of tetrahedral B in glass is increasing as a function of both R and K, similar to previous studies. Contributions of the [3]B and [4]B features to the B K-edge XANES is complex with 6-7 individual transitions contributing to the overall spectral envelope. Many of these transitions are common to both B coordination states making extraction of quantitative [4]B numbers difficult. However, we can calculate the proportion of tetrahedral B accurately by appropriate curve- fitting.

  12. Multi-edge X-ray absorption spectroscopy study of road dust samples from a traffic area of Venice using stoichiometric and environmental references

    NASA Astrophysics Data System (ADS)

    Valotto, Gabrio; Cattaruzza, Elti; Bardelli, Fabrizio

    2017-02-01

    The appropriate selection of representative pure compounds to be used as reference is a crucial step for successful analysis of X-ray absorption near edge spectroscopy (XANES) data, and it is often not a trivial task. This is particularly true when complex environmental matrices are investigated, being their elemental speciation a priori unknown. In this paper, an investigation on the speciation of Cu, Zn, and Sb based on the use of conventional (stoichiometric compounds) and non-conventional (environmental samples or relevant certified materials) references is explored. This method can be useful in when the effectiveness of XANES analysis is limited because of the difficulty in obtaining a set of references sufficiently representative of the investigated samples. Road dust samples collected along the bridge connecting Venice to the mainland were used to show the potentialities and the limits of this approach.

  13. Correlation of the oxidation state of cerium in sol-gel glasses as a function of thermal treatment via optical spectroscopy and XANES studies.

    PubMed

    Assefa, Zerihun; Haire, R G; Caulder, D L; Shuh, D K

    2004-07-01

    Sol-gel glass matrices containing lanthanides have numerous technological applications and their formation involves several chemical facets. In the case of cerium, its ability to exist in two different oxidation states or in mixed valence state provides additional complexities for the sol-gel process. The oxidation state of cerium present during different facets of preparation of sol-gel glasses, and also as a function of the starting oxidation state of cerium added, were studied both by optical spectroscopy and X-ray absorption near-edge structures (XANES). The findings acquired by each approach were compared. The primary focus was on the redox chemistries associated with sample preparation, gelation, and thermal treatment. When Ce3+ is introduced into the starting sols, the trivalent state normally prevails in the wet and room temperature-dried gels. Heating in air at >100 degrees C can generate a light yellow coloration with partial oxidation to the tetravalent state. Above 200 degrees C and up to approximately 1000 degrees C, cerium is oxidized to its tetravalent state. In contrast, when tetravalent cerium is introduced into the sol, both the wet and room temperature-dried gels lose the yellow-brown color of the initial ceric ammonium nitrate solution. When the sol-gel is heated to 110 degrees C it turns yellowish as the cerium tends to be re-oxidized. The yellow color is believed to represent the effect of oxidation and oligomerization of the cerium-silanol units in the matrix. The luminescence properties are also affected by these changes, the details of which are reported herein.

  14. XANES Spectroscopic Analysis of Phosphorus Speciation in Alum-Amended Poultry Litter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seiter,J.; Staats-Borda, K.; Ginder-Vogel, M.

    2008-01-01

    Aluminum sulfate (alum; Al2(SO4)3{center_dot}14H2O) is used as a chemical treatment of poultry litter to reduce the solubility and release of phosphate, thereby minimizing the impacts on adjacent aquatic ecosystems when poultry litter is land applied as a crop fertilizer. The objective of this study was to determine, through the use of X-ray absorption near edge structure (XANES) spectroscopy and sequential extraction, how alum amendments alter P distribution and solid-state speciation within the poultry litter system. Our results indicate that traditional sequential fractionation procedures may not account for variability in P speciation in heterogeneous animal manures. Analysis shows that NaOH-extracted Pmore » in alum amended litters is predominantly organic ({approx}80%), whereas in the control samples, >60% of NaOH-extracted P was inorganic P. Linear least squares fitting (LLSF) analysis of spectra collected of sequentially extracted litters showed that the P is present in inorganic (P sorbed on Al oxides, calcium phosphates) and organic forms (phytic acid, polyphosphates, and monoesters) in alum- and non-alum-amended poultry litter. When determining land application rates of poultry litter, all of these compounds must be considered, especially organic P. Results of the sequential extractions in conjunction with LLSF suggest that no P species is completely removed by a single extractant. Rather, there is a continuum of removal as extractant strength increases. Overall, alum-amended litters exhibited higher proportions of Al-bound P species and phytic acid, whereas untreated samples contained Ca-P minerals and organic P compounds. This study provides in situ information about P speciation in the poultry litter solid and about P availability in alum- and non-alum-treated poultry litter that will dictate P losses to ground and surface water systems.« less

  15. In situ XANES and EXAFS Analysis of Redox Active Fe Center Ionic Liquids

    DOE PAGES

    Apblett, Christopher A.; Stewart, David M.; Fryer, Robert T.; ...

    2015-10-23

    We apply in situ X-Ray Absorption Near Edge Spectroscopy (XANES) and Extended X-Ray Absorption Fine Structure (EXAFS) techniques to a metal center ionic liquid undergoing oxidation and reduction in a three electrode spectroscopic cell. Furthermore, the determination of the extent of reduction under negative bias on the working electrode and the extent of oxidation are determined after pulse voltammetry to quiescence. While the ionic liquid undergoes full oxidation, it undergoes only partial reduction, likely due to transport issues on the timescale of the experiment. Nearest neighbor Fe-O distances in the fully oxidized state match well to expected values for similarlymore » coordinated solids, but reduction does not result in an extension of the Fe-O bond length, as would be expected from comparisons to the solid phase. Instead, little change in bond length is observed. Finally, we suggest that this may be due to a more complex interaction between the monodentate ligands of the metal center anion and the surrounding charge cloud, rather than straightforward electrostatics between the metal center and the nearest neighbor grouping.« less

  16. Analysis of electronic structure of amorphous InGaZnO/SiO{sub 2} interface by angle-resolved X-ray photoelectron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueoka, Y.; Ishikawa, Y.; Maejima, N.

    2013-10-28

    The electronic structures of amorphous indium gallium zinc oxide (a-IGZO) on a SiO{sub 2} layers before and after annealing were observed by constant final state X-ray photoelectron spectroscopy (CFS-XPS) and X-ray adsorption near-edge structure spectroscopy (XANES). From the results of angle-resolved CFS-XPS, the change in the electronic state was clearly observed in the a-IGZO bulk rather than in the a-IGZO/SiO{sub 2} interface. This suggests that the electronic structures of the a-IGZO bulk strongly affected the thin-film transistor characteristics. The results of XANES indicated an increase in the number of tail states upon atmospheric annealing (AT). We consider that the increasemore » in the number of tail states decreased the channel mobility of AT samples.« less

  17. Study of the Warm Dense Matter with XANES spectroscopy - Applications to planetary interiors

    NASA Astrophysics Data System (ADS)

    Denoeud, Adrien

    With the recent discovery of many exoplanets, modelling the interior of these celestial bodies is becoming a fascinating scientific challenge. In this context, it is crucial to accurately know the equations of state and the macroscopic and microscopic physical properties of their constituent materials in the Warm Dense Matter regime (WDM). Moreover, planetary models rely almost exclusively on physical properties obtained using first principles simulations based on density functional theory (DFT) predictions. It is thus of paramount importance to validate the basic underlying mechanisms occurring for key planetary constituents (metallization, dissociation, structural modifications, phase transitions, etc....) as pressure and temperature both increase. In this work, we were interested in two materials that can be mainly found in the Earth-like planets: silica, or SiO2, as a model compound of the silicates that constitute the major part of their mantles, and iron, which is found in abundance in their cores. These two materials were compressed and brought to the WDM regime by using strong shock created by laser pulses during various experiments performed on the LULI2000 (Palaiseau, France) and the JLF (Livermore, US) laser facilities and on the LCLS XFEL (Stanford, US). In order to penetrate this dense matter and to have access to its both ionic and electronic structures, we have probed silica and iron with time-resolved X-ray Absorption Near Edge Structure (XANES). In parallel with these experiments, we performed quantum molecular dynamics simulations based on DFT at conditions representative of the region investigated experimentally so as to extract the interesting physical processes and comprehend the limits of the implemented models. In particular, these works allowed us to highlight the metallization processes of silica in temperature and the structural changes of its liquid in density, as well as to more constrain the melting curve of iron at very high pressures.

  18. Multi-edge X-ray absorption spectroscopy study of road dust samples from a traffic area of Venice using stoichiometric and environmental references.

    PubMed

    Valotto, Gabrio; Cattaruzza, Elti; Bardelli, Fabrizio

    2017-02-15

    The appropriate selection of representative pure compounds to be used as reference is a crucial step for successful analysis of X-ray absorption near edge spectroscopy (XANES) data, and it is often not a trivial task. This is particularly true when complex environmental matrices are investigated, being their elemental speciation a priori unknown. In this paper, an investigation on the speciation of Cu, Zn, and Sb based on the use of conventional (stoichiometric compounds) and non-conventional (environmental samples or relevant certified materials) references is explored. This method can be useful in when the effectiveness of XANES analysis is limited because of the difficulty in obtaining a set of references sufficiently representative of the investigated samples. Road dust samples collected along the bridge connecting Venice to the mainland were used to show the potentialities and the limits of this approach. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. XANES and EXAFS investigation of uranium incorporation on nZVI in the presence of phosphate.

    PubMed

    Qiu, Muqing; Wang, Min; Zhao, Qingzhou; Hu, Baowei; Zhu, Yuling

    2018-06-01

    Effect of phosphate on the reduction of U(VI) on nZVI was determined by batch, XPS, XANES and EXAFS techniques. The batch experiments showed that nZVI was quite effective for the removal of uranium under the anaerobic conditions, whereas the addition of phosphate enhanced uranium removal over wide pH range. At low pH, the reduction of U(VI) to U(IV) significantly decreased with increasing phosphate concentration by XPS and XANES analysis. According to EXAFS analysis, the occurrence of UU shell at 10 mg/L phosphate and pH 4.0 was similar to that of U (IV) O 2 (s), whereas the UP and UFe shells were observed at 50 mg/L phosphate, revealing that reductive co-precipitate (U (IV) O 2 (s)) and precipitation of uranyl-phosphate were observed at low and high phosphate, respectively. The findings are crucial for the prediction of the effect of phosphate on the speciation and binding of uranium by nZVI at low pH, which is significant in controlling the mobility of U(VI) in contaminated environments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Manganese speciation in Diplodon chilensis patagonicus shells: a XANES study

    NASA Astrophysics Data System (ADS)

    Soldati, A. L.; Vicente-Vilas, V.; Goettlicher, J.; Jacob, D. E.

    2009-04-01

    century, resolving the environmental signal annually and even seasonally (Soldati et al., 2008b). High resolution trace elemental analysis by LA-ICPMS and EPMA in the shells show that elements like Mg and Mn are related to the seasonal pattern and can be enriched along the organic-rich annual shell growth lines. Thus, these elements could possibly be bound organically instead of occupying a defined site in the crystal lattice of the calcium carbonate phase. LA-ICP-MS results show that Mn concentrations in these Diplodon shells range between 1000-300 g/g and 100-10 g/g and that the areas of enrichment are in the micrometer range. Raman and XRD measurements at high spatial resolution failed in recognizing whether the Mn is in carbonate solid solution or not. Therefore, speciation techniques like X-ray absorption fine structure (XAFS) spectroscopy with a high lateral resolution are required to address this question. Prior to XAFS spectroscopy the samples were mapped with the intensity of the Mn Kα fluorescence emission line in order to locate the Mn rich areas of interest. Because of the Mn concentrations in the sub % range the XAFS spectra at the positions of interest have been recorded in fluorescence mode using a 7 element Si(Li) detector. This study focuses on the near edge (XANES: X-ray absorption near edge structure) part of the spectra. For data evaluation, XANES spectra of reference substances were additionally measured in order to get first hints to Mn valence and bonding. As standards were used Mn and Mn rich carbonates, Mn oxides with Mn in different oxidation states, and Mn in organic compounds (Mn-porphyrin and Mn-acetate). The XAFS measurements have been carried out at the SUL-X beamline of the synchrotron radiation source ANKA of the Forschungszentrum Karlsruhe. Data evaluation is ongoing. References MEIBOM, A., CUIF, J.P., HOULBREQUE, F., MOSTEFAOUI, S., DAUPHIN, Y., MEIBOM; K.L. & DUNBAR, R. (2008). Compositional variations at ultra-structure length scales

  1. Chemical Modification of Graphene Oxide by Nitrogenation: An X-ray Absorption and Emission Spectroscopy Study

    DOE PAGES

    Chuang, Cheng-Hao; Ray, Sekhar C.; Mazumder, Debarati; ...

    2017-02-10

    Nitrogen-doped graphene oxides (GO:N x) were synthesized by a partial reduction of graphene oxide (GO) using urea [CO(NH 2) 2 ]. Their electronic/bonding structures were investigated using X-ray absorption near-edge structure (XANES), valence-band photoemission spectroscopy (VB-PES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). During GO:N x synthesis, different nitrogen-bonding species, such as pyrrolic/graphitic-nitrogen, were formed by replacing of oxygen-containing functional groups. At lower N-content (2.7 at%), pyrrolic-N, owing to surface and subsurface diffusion of C, N and NH is deduced from various X-ray spectroscopies. In contrast, at higher N-content (5.0 at%) graphitic nitrogen was formed in whichmore » each N-atom trigonally bonds to three distinct sp 2 -hybridized carbons with substitution of the N-atoms for C atoms in the graphite layer. Upon nitrogen substitution, the total density of state close to Fermi level is increased to raise the valence-band maximum, as revealed by VB-PES spectra, indicating an electron donation from nitrogen, molecular bonding C/N/O coordination or/and lattice structure reorganization in GO:N x . The well-ordered chemical environments induced by nitrogen dopant are revealed by XANES and RIXS measurements.« less

  2. Chemical Modification of Graphene Oxide by Nitrogenation: An X-ray Absorption and Emission Spectroscopy Study

    NASA Astrophysics Data System (ADS)

    Chuang, Cheng-Hao; Ray, Sekhar C.; Mazumder, Debarati; Sharma, Surbhi; Ganguly, Abhijit; Papakonstantinou, Pagona; Chiou, Jau-Wern; Tsai, Huang-Ming; Shiu, Hung-Wei; Chen, Chia-Hao; Lin, Hong-Ji; Guo, Jinghua; Pong, Way-Faung

    2017-02-01

    Nitrogen-doped graphene oxides (GO:Nx) were synthesized by a partial reduction of graphene oxide (GO) using urea [CO(NH2)2]. Their electronic/bonding structures were investigated using X-ray absorption near-edge structure (XANES), valence-band photoemission spectroscopy (VB-PES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). During GO:Nx synthesis, different nitrogen-bonding species, such as pyrrolic/graphitic-nitrogen, were formed by replacing of oxygen-containing functional groups. At lower N-content (2.7 at%), pyrrolic-N, owing to surface and subsurface diffusion of C, N and NH is deduced from various X-ray spectroscopies. In contrast, at higher N-content (5.0 at%) graphitic nitrogen was formed in which each N-atom trigonally bonds to three distinct sp2-hybridized carbons with substitution of the N-atoms for C atoms in the graphite layer. Upon nitrogen substitution, the total density of state close to Fermi level is increased to raise the valence-band maximum, as revealed by VB-PES spectra, indicating an electron donation from nitrogen, molecular bonding C/N/O coordination or/and lattice structure reorganization in GO:Nx. The well-ordered chemical environments induced by nitrogen dopant are revealed by XANES and RIXS measurements.

  3. Combined In-Situ XRD and In-Situ XANES Studies on the Reduction Behavior of a Rhenium Promoted Cobalt Catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Nitin; Payzant, E Andrew; Jothimurugesan, K

    2011-01-01

    A 10% Co 4% Re/(2% Zr/SiO2) catalyst was prepared by co-impregnation using a silica support modified by 2% Zr. The catalyst was characterized by temperature programmed reduction (TPR), in situ XRD and in situ XANES analysis where it was simultaneously exposed to H2 using a temperature programmed ramp. The results showed the two step reduction of large crystalline Co3O4 with CoO as an intermediate. TPR results showed that the reduction of highly dispersed Co3O4 was facilitated by reduced rhenium by a H2-spillover mechanism. In situ XRD results showed the presence of both, Co-hcp and Co-fcc phases in the reduced catalystmore » at 400 C. However, the Co-hcp phase was more abundant, which is thought to be the more active phase as compared to the Co-fcc phase for CO hydrogenation. CO hydrogenation at 270 C and 5 bar pressure produces no detectable change in the phases during the time of experiment. In situ XANES results showed a decrease in the metallic cobalt in the presence of H2/CO, which can be attributed due to oxidation of the catalyst by reaction under these conditions.« less

  4. Roles of Pt and BaO in the Sulfation of Pt/BaO/Al2O3 Lean NOx Trap Materials: Sulfur K-edge XANES and Pt LIII XAFS Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Do Heui; Kwak, Ja Hun; Szanyi, Janos

    2008-02-28

    The roles of barium oxide and platinum during the sulfation of Pt-BaO/Al2O3 lean NOx trap catalysts were investigated by S K edge XANES (X-ray absorption near-edge spectroscopy) and Pt LIII XAFS (X-ray absorption fine structure). All of the samples studied (Al2O3, BaO/Al2O3, Pt/Al2O3 and Pt-BaO/Al2O3) were pre-sulfated prior to the X-ray absorption measurements. It was found that barium oxide itself has the ability to directly form barium sulfate even in the absence of Pt and gas phase oxygen. In the platinum-containing samples, the presence of Pt-O species plays an important role in the formation of sulfate species. Even if bariummore » and aluminum sites are available for SO2 to form sulfate, for the case of the BaO(8)/Al2O3 sample, where the barium coverage is about 0.26 ML, S XANES spectroscopy results show that barium sulfates are preferentially produced over aluminum sulfates . When oxygen is absent from the gas phase, the sulfation route that involves Pt-O is eliminated after the initially present Pt-O species are completely consumed. In this case, formation of sulfates is suppressed unless barium oxide is also present. Pt LIII XAFS results show that the first coordination sphere around the Pt atoms in the Pt particles is dependent upon the redox nature of the gas mixture used during the sulfation process. Sulfation under reducing environments (e.g. SO2+H2) leads to formation of Pt-S bonds, while oxidizing conditions (e.g. SO2+O2) continue to show the presence of Pt-O bonds. In addition, the former condition was found to give rise to a higher degree of Pt sintering than the latter one. This result explains why samples sulfated under reducing conditions had lower NOx uptakes than those sulfated under oxidizing conditions. Therefore, our results provide needed information for the development of optimum practical operation conditions (e.g. sulfation or desulfation) for lean NOx trap catalysts that minimize deactivation by sulfur.« less

  5. Chemical Behavior of Sulfur in Minerals and Silicate Glasses Studied Using Inner Shell Spectroscopy

    NASA Astrophysics Data System (ADS)

    Alonso Mori, R.; Paris, E.; Glatzel, P.; Giuli, G.; Scaillet, B.

    2008-12-01

    Understanding the chemical behaviour of sulfur is of fundamental importance in explaining different geological mechanisms ranging from volcano-climatic interactions to the genesis of ore deposits. Understanding how sulphur behaves is also of great economic importance in industrial activities including glass-forming processes and the treatment of vitreous waste material from refuse incineration. The chemical behaviour of sulfur in minerals and glasses has been widely studied via X-ray absorption near edge structure (XANES) spectroscopy, which probes the unoccupied density of states and thus provides information on the oxidation state and local structure of the species under study. However, the XANES spectral shape is influenced by various effects, namely the local symmetry, the ligand type, even up to high coordination spheres, and the valence electron occupation, making it difficult to systematically analyze the different spectral contributions. We use X-ray emission spectroscopy (XES) as a complementary technique to avoid some of the inherent difficulties of XANES analysis, and to extract additional information on the electronic structure. The Kb lines, close to the K-edge, directly yield the p-density of occupied valence states, giving valuable information on the local coordination. We have compared XANES and Kb XES experimental data on sulfur- bearing minerals with ab initio quantum-chemical calculations based on density functional theory (DFT), in order to visualize the molecular orbitals and to extract information about the chemical bonding in these compounds. The S Ka emission lines, which arise from 2p to 1s transitions, are expected to be mostly free from chemical bond effects except for small energy shifts that reflect the valence orbital electron population via screening effects. S Ka shifts can be readily used to determine the speciation of sulfur in silicate glasses. The electronic configuration of the sulfur atoms is obtained by calculating the

  6. Organometallic model complexes elucidate the active gallium species in alkane dehydrogenation catalysts based on ligand effects in Ga K-edge XANES

    DOE PAGES

    Getsoian, Andrew "Bean"; Das, Ujjal; Camacho-Bunquin, Jeffrey; ...

    2016-06-13

    Gallium-modified zeolites are known catalysts for the dehydrogenation of alkanes, reactivity that finds industrial application in the aromatization of light alkanes by Ga-ZSM5. While the role of gallium cations in alkane activation is well known, the oxidation state and coordination environment of gallium under reaction conditions has been the subject of debate. Edge shifts in Ga K-edge XANES spectra acquired under reaction conditions have long been interpreted as evidence for reduction of Ga(III) to Ga(I). However, a change in oxidation state is not the only factor that can give rise to a change in the XANES spectrum. In order tomore » better understand the XANES spectra of working catalysts, we have synthesized a series of molecular model compounds and grafted surface organometallic Ga species and compared their XANES spectra to those of gallium-based catalysts acquired under reducing conditions. We demonstrate that changes in the identity and number of gallium nearest neighbors can give rise to changes in XANES spectra similar to those attributed in literature to changes in oxidation state. Specifically, spectral features previously attributed to Ga(I) may be equally well interpreted as evidence for low-coordinate Ga(III) alkyl or hydride species. Furthermore, these findings apply both to gallium-impregnated zeolite catalysts and to silica-supported single site gallium catalysts, the latter of which is found to be active and selective for dehydrogenation of propane and hydrogenation of propylene.« less

  7. In situ TPR XANES study of the partial oxidation of methane using a Ni-substituted hexaaluminate catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kugler, E.L.; Gardner, T.H.; Campos, Andrew

    2008-04-01

    Metallic Ni formation near the mirror cation site, Ba in this study, is believed to cause the partial oxidation activity observed in Ni-substituted hexaaluminate catalysts. The BaNi1.0Al11.6O19-d catalyst was prepared by coprecipitation with nitrate salt precursors; following the coprecipitation procedure, the catalyst was calcined at 1400°C to create the hexaaluminate structure. TPR XANES in fluorescence was used to probe the local structure of the BaNi1.0Al11.6O19-d catalyst to determine whether metallic nickel forms at different temperatures: 825°C, 875°C, 925°C. The XANES results indicate that the Ni in the hexaaluminate catalyst only reduces if the temperature is maintained at 925°C. Once themore » metallic state is formed, the oxidation state is stable; even in the POX environment. Future work using a theoretical approach to the XANES data using FEFF 8.4 gives information on the interactions between Ni and Ba, which will be used to further optimize the catalyst.« less

  8. Silicon K-edge XANES spectra of silicate minerals

    NASA Astrophysics Data System (ADS)

    Li, Dien; Bancroft, G. M.; Fleet, M. E.; Feng, X. H.

    1995-03-01

    Silicon K-edge x-ray absorption near-edge structure (XANES) spectra of a selection of silicate and aluminosilicate minerals have been measured using synchrotron radiation (SR). The spectra are qualitatively interpreted based on MO calculation of the tetrahedral SiO{4/4-}cluster. The Si K-edge generally shifts to higher energy with increased polymerization of silicates by about 1.3 eV, but with considerable overlap for silicates of different polymerization types. The substitution of Al for Si shifts the Si K-edge to lower energy. The chemical shift of Si K-edge is also sensitive to cations in more distant atom shells; for example, the Si K-edge shifts to lower energy with the substitution of Al for Mg in octahedral sites. The shifts of the Si K-edge show weak correlation with average Si-O bond distance (dSi-O), Si-O bond valence (sSi-O) and distortion of SiO4 tetrahedra, due to the crystal structure complexity of silicate minerals and multiple factors effecting the x-ray absorption processes.

  9. EXAFS and XANES investigation of the ETS-10 microporous titanosilicate.

    PubMed

    Prestipino, C; Solari, P L; Lamberti, C

    2005-07-14

    In this work, we report state-of-the-art analysis of both Ti K-edge high-resolution XANES and EXAFS data collected on the ETS-10 molecular sieve at the GILDA BM8 beamline of the ESRF facility. The interatomic distances and the angles obtained in our EXAFS study are in fair agreement with the single-crystal XRD data of Wang and Jacobson (Chem. Commun. 1999, 973) and with the recent ab initio periodic study of Damin et al. (J. Phys. Chem. B 2004, 108, 1328) Differently from previous EXAFS work (J. Phys. Chem. 1996, 100, 449), our study supports a model of ETS-10 where the Ti atoms are bonded with two equivalent axial oxygen atoms. This model is also able to reproduce the edge and the post-edge region of the XANES spectrum. Conversely, the weak but well-defined pre-edge peak at 4971.3 eV can be explained only by assuming that a fraction of Ti atoms are in a local geometry similar to that of the pentacoordinated Ti sites in the ETS-4 structure. These Ti atoms in ETS-10 should be the terminal of the -Ti-O-Ti-O-Ti- chains, of which the actual number is strongly increased by the high crystal defectivity (Ti vacancies).

  10. Localization and Speciation of Arsenic in Soil and Desert Plant Parkinsonia florida using μXRF and μXANES

    PubMed Central

    Castillo-Michel, Hiram; Hernandez-Viezcas, Jose; Dokken, Kenneth M.; Marcus, Matthew A.; Peralta-Videa, Jose R.; Gardea-Torresdey, Jorge L.

    2011-01-01

    Parkinsonia florida is a plant species native to the semi-desert regions of North America. The cultivation characteristics of this shrub/tree suggest that it could be used for phytoremediation purposes in semiarid regions. This work describes, through the use of synchrotron μXRF and μXANES techniques and ICP-OES, the arsenic (As) accumulation and distribution in P. florida plants grown in two soils spiked with As at 20 mg kg-1. Plants grown in a sandy soil accumulated at least twice more As in the roots compared to plants grown in a loamy soil. The lower As accumulation in plants grown in the loamy soil corresponded to a lower concentration of As in the water soluble fraction (WSF) of this soil. LC-ICP-MS speciation analysis showed only As(V) in the WSF from all treatments. In contrast, linear combination XANES speciation analysis from the root tissues showed As mainly present in the reduced As(III) form. Moreover, a fraction of the reduced As was found coordinating to S in a form consistent with As-Cys3. The percentage of As coordinated to sulfur was smaller for plants grown in the loamy soil when compared to the sandy soil. PMID:21842861

  11. Localization and speciation of arsenic in soil and desert plant Parkinsonia florida using μXRF and μXANES.

    PubMed

    Castillo-Michel, Hiram; Hernandez-Viezcas, Jose; Dokken, Kenneth M; Marcus, Matthew A; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2011-09-15

    Parkinsonia florida is a plant species native to the semidesert regions of North America. The cultivation characteristics of this shrub/tree suggest that it could be used for phytoremediation purposes in semiarid regions. This work describes, through the use of synchrotron μXRF and μXANES techniques and ICP-OES, the arsenic (As) accumulation and distribution in P. florida plants grown in two soils spiked with As at 20 mg kg(-1). Plants grown in a sandy soil accumulated at least twice more As in the roots compared to plants grown in a loamy soil. The lower As accumulation in plants grown in the loamy soil corresponded to a lower concentration of As in the water-soluble fraction (WSF) of this soil. LC-ICP-MS speciation analysis showed only As(V) in the WSF from all treatments. In contrast, linear combination XANES speciation analysis from the root tissues showed As mainly present in the reduced As(III) form. Moreover, a fraction of the reduced As was found coordinating to S in a form consistent with As-Cys(3). The percentage of As coordinated to sulfur was smaller for plants grown in the loamy soil when compared to the sandy soil.

  12. Solid-phase cadmium speciation in soil using L3-edge XANES spectroscopy with partial least-squares regression.

    PubMed

    Siebers, Nina; Kruse, Jens; Eckhardt, Kai-Uwe; Hu, Yongfeng; Leinweber, Peter

    2012-07-01

    Cadmium (Cd) has a high toxicity and resolving its speciation in soil is challenging but essential for estimating the environmental risk. In this study partial least-square (PLS) regression was tested for its capability to deconvolute Cd L(3)-edge X-ray absorption near-edge structure (XANES) spectra of multi-compound mixtures. For this, a library of Cd reference compound spectra and a spectrum of a soil sample were acquired. A good coefficient of determination (R(2)) of Cd compounds in mixtures was obtained for the PLS model using binary and ternary mixtures of various Cd reference compounds proving the validity of this approach. In order to describe complex systems like soil, multi-compound mixtures of a variety of Cd compounds must be included in the PLS model. The obtained PLS regression model was then applied to a highly Cd-contaminated soil revealing Cd(3)(PO(4))(2) (36.1%), Cd(NO(3))(2)·4H(2)O (24.5%), Cd(OH)(2) (21.7%), CdCO(3) (17.1%) and CdCl(2) (0.4%). These preliminary results proved that PLS regression is a promising approach for a direct determination of Cd speciation in the solid phase of a soil sample.

  13. Chromium in urban sediment particulates: an integrated micro-chemical and XANES study

    NASA Astrophysics Data System (ADS)

    Taylor, Kevin; Byrne, Patrick; Hudson-Edwards, Karen

    2015-04-01

    Chromium is generally common within the urban sediment cascade as a result of abundant industrial and transport-related sources. The risks that Cr-bearing particles pose to ecosystems and humans depend on the solid phase chemical speciation of Cr in the particles. In this study, we use bulk chemical digests, sequential chemical extraction analysis, electron microscopy, electron microprobe and microfocus XANES analysis to describe the solid-phase speciation of Cr in urban particulate matter from both aquatic sediment and road dust sediment (RDS) in Manchester, UK. Cr-bearing grains within RDS are predominantly iron oxide grains, commonly of goethite or haematite mineralogy, but Cr-bearing silicate glass grains are also present. Iron oxide glass grains most likely have sorbed Cr, and derive from the rusting of Cr-steel particles from vehicles. Electron microprobe analysis indicates concentrations of Cr up to 3200 μg/g in these grains, and XANES analysis indicates that Cr(III) is the dominant oxidation state, with some trace amounts of Cr(VI). Cr-bearing grains within aquatic sediments are dominated by alumino-silicate glass grains derived from industrial waste. These grains contain Cr-rich areas with up to 19% Cr2O3 and XANES analysis indicates that Cr is present as Cr(III). The dominance of Cr(III) in these urban particulate grains suggests limited bioavailability or toxicity. However, the presence within two markedly different grain types (iron oxides and silicate glasses) indicates that the long-term geochemical behaviour and environmental risk of RDS and the aquatic sediments studied are likely to be quite different. These findings highlight the importance of understanding sources of metal contaminants in urban environments and the geochemical processes that affect their transfer through the urban sediment cascade and the wider river basin.

  14. Mn K-Edge XANES and Kβ XES Studies of Two Mn–Oxo Binuclear Complexes: Investigation of Three Different Oxidation States Relevant to the Oxygen-Evolving Complex of Photosystem II

    PubMed Central

    Visser, Hendrik; Anxolabéhère-Mallart, Elodie; Bergmann, Uwe; Glatzel, Pieter; Robblee, John H.; Cramer, Stephen P.; Girerd, Jean-Jacques; Sauer, Kenneth; Klein, Melvin P.; Yachandra, Vittal K.

    2014-01-01

    Two structurally homologous Mn compounds in different oxidation states were studied to investigate the relative influence of oxidation state and ligand environment on Mn K-edge X-ray absorption near-edge structure (XANES) and Mn Kβ X-ray emission spectroscopy (Kβ XES). The two manganese compounds are the di-μ-oxo compound [L′2MnIIIO2MnIVL′2](ClO4)3, where L′ is 1,10-phenanthroline (Cooper, S. R.; Calvin, M. J. Am. Chem. Soc. 1977, 99, 6623–6630) and the linear mono-μ-oxo compound [LMnIIIOMnIIIL](ClO4)2, where L− is the monoanionic N,N-bis(2-pyridylmethyl)-N′-salicylidene-1,2-diaminoethane ligand (Horner, O.; Anxolabéhère-Mallart, E.; Charlot, M. F.; Tchertanov, L.; Guilhem, J.; Mattioli, T. A.; Boussac, A.; Girerd, J.-J. Inorg. Chem. 1999, 38, 1222–1232). Preparative bulk electrolysis in acetonitrile was used to obtain higher oxidation states of the compounds: the MnIVMnIV species for the di-μ-oxo compound and the MnIIIMnIV and MnIVMnIV species for the mono-μ-oxo compound. IR, UV/vis, EPR, and EXAFS spectra were used to determine the purity and integrity of the various sample solutions. The Mn K-edge XANES spectra shift to higher energy upon oxidation when the ligand environment remains similar. However, shifts in energy are also observed when only the ligand environment is altered. This is achieved by comparing the di-μ-oxo and linear mono-μ-oxo Mn–Mn moieties in equivalent oxidation states, which represent major structural changes. The magnitude of an energy shift due to major changes in ligand environment can be as large as that of an oxidation-state change. Therefore, care must be exercised when correlating the Mn K-edge energies to manganese oxidation states without taking into account the nature of the ligand environment and the overall structure of the compound. In contrast to Mn K-edge XANES, Kβ XES spectra show less dependence on ligand environment. The Kβ1,3 peak energies are comparable for the di-μ-oxo and mono

  15. Structural evolution of fluorinated graphene upon molten-alkali treatment probed by X-ray absorption near-edge structure spectroscopy

    NASA Astrophysics Data System (ADS)

    Liang, Xianqing; Pan, Deyou; Lao, Ming; Liang, Shuiying; Huang, Dan; Zhou, Wenzheng; Guo, Jin

    2017-05-01

    The structural evolution of fluorinated graphene (FG) nanosheets upon molten-alkali treatment has been systematically investigated utilizing X-ray absorption near-edge structure (XANES) spectroscopy. It is found that the hydroxyl groups can progressively displace fluorine atoms to form covalent bonds to the graphene sheets under designed molten-alkali condition. The XANES spectra also reveal the formation of epoxide groups through intramolecular dehydration of neighbouring hydroxyl groups after substitution reaction. At high alkali-FG weight ratio, the restoration of the π-conjugated structure in graphene sheets can be observed due to the gradual decomposition of epoxide groups. Our experimental results indicate that the surface chemistry and electronic structure of hydroxyl-functionalized FG (HFG) can be readily tuned by varying the ratio of reactants.

  16. A structural study of bone changes in knee osteoarthritis by synchrotron-based X-ray fluorescence and X-ray absorption spectroscopy techniques

    NASA Astrophysics Data System (ADS)

    Sindhupakorn, Bura; Thienpratharn, Suwittaya; Kidkhunthod, Pinit

    2017-10-01

    Osteoarthritis (OA) is characterized by degeneration of articular cartilage and thickening of subchondral bone. The present study investigated the changing of biochemical components of cartilage and bone compared between normal and OA people. Using Synchrotron-based X-ray fluorescence (SR-XRF) and X-ray absorption spectroscopy (XAS) techniquesincluding X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) were employed for the bone changes in kneeosteoarthritisstudies. The bone samples were collected from various osteoarthritis patients with both male and female in the ages range between 20 and 74 years old. SR-XRF results excited at 4240 eV for Ca elements show a majority three main groups, based on their XRF intensities, 20-36 years, 40-60 years and over 70 years, respectively. By employing XAS techniques, XANES features can be used to clearly explain in term of electronic transitions occurring in bone samples which are affected from osteoarthritis symptoms. Moreover, a structural change around Ca ions in bone samples is obviously obtained by EXAFS results indicating an increase of Ca-amorphous phase when the ages increase.

  17. X-ray absorption near-edge structure micro-spectroscopy study of vanadium speciation in Phycomyces blakesleeanus mycelium.

    PubMed

    Žižić, Milan; Dučić, Tanja; Grolimund, Daniel; Bajuk-Bogdanović, Danica; Nikolic, Miroslav; Stanić, Marina; Križak, Strahinja; Zakrzewska, Joanna

    2015-09-01

    Vanadium speciation in the fungus Phycomyces blakesleeanus was examined by X-ray absorption near-edge structure (XANES) spectroscopy, enabling assessment of oxidation states and related molecular symmetries of this transition element in the fungus. The exposure of P. blakesleeanus to two physiologically important vanadium species (V(5+) and V(4+)) resulted in the accumulation of this metal in central compartments of 24 h old mycelia, most probably in vacuoles. Tetrahedral V(5+), octahedral V(4+), and proposed intracellular complexes of V(5+) were detected simultaneously after addition of a physiologically relevant concentration of V(5+) to the mycelium. A substantial fraction of the externally added V(4+) remained mostly in its original form. However, observable variations in the pre-edge-peak intensities in the XANES spectra indicated intracellular complexation and corresponding changes in the molecular coordination symmetry. Vanadate complexation was confirmed by (51)V NMR and Raman spectroscopy, and potential binding compounds including cell-wall constituents (chitosan and/or chitin), (poly)phosphates, DNA, and proteins are proposed. The evidenced vanadate complexation and reduction could also explain the resistance of P. blakesleeanus to high extracellular concentrations of vanadium.

  18. Disentangling atomic-layer-specific x-ray absorption spectra by Auger electron diffraction spectroscopy

    NASA Astrophysics Data System (ADS)

    Matsui, Fumihiko; Matsushita, Tomohiro; Kato, Yukako; Hashimoto, Mie; Daimon, Hiroshi

    2009-11-01

    In order to investigate the electronic and magnetic structures of each atomic layer at subsurface, we have proposed a new method, Auger electron diffraction spectroscopy, which is the combination of x-ray absorption spectroscopy (XAS) and Auger electron diffraction (AED) techniques. We have measured a series of Ni LMM AED patterns of the Ni film grown on Cu(001) surface for various thicknesses. Then we deduced a set of atomic-layer-specific AED patterns in a numerical way. Furthermore, we developed an algorithm to disentangle XANES spectra from different atomic layers using these atomic-layer-specific AED patterns. Surface and subsurface core level shift were determined for each atomic layer.

  19. XANES evidence for sulphur speciation in Mn-, Ni- and W-bearing silicate melts

    NASA Astrophysics Data System (ADS)

    Evans, K. A.; O'Neill, H. St. C.; Mavrogenes, J. A.; Keller, N. S.; Jang, L.-Y.; Lee, J.-F.

    2009-11-01

    spectra of the component element monosulphides. Mn-, W- and Ni-XANES and EXAFS for synthetic glasses without sulphide exsolution did not show any sensitivity to the presence of sulphur, which is unsurprising as S:O ratios were sufficiently low that metals would be mostly co-ordinated by O. Mn EXAFS spectra were consistent with divalent Mn in 5 co-ordinated Mn-O melt species. W spectra were consistent with tetrahedrally co-ordinated hexavalent W, most likely in scheelite-like melt species, and Ni spectra were consistent with [4] co-ordinated divalent Ni. These results indicate lower co-ordinations for both W and Ni than those inferred by some previous workers. Cation co-ordination may reflect the proportion of non-bridging oxygens, which is lower in the Ca-rich and Al-poor samples investigated here than for previous studies.

  20. Effects of sulfation level on the desulfation behavior of pre-sulfated Pt BaO/Al2O3 lean NOx trap catalysts: a combined H2 Temperature-Programmed Reaction, in-situ sulfur K-edge X-ray Absorption Near-Edge Spectroscopy, X-ray Photoelectron Spectroscopy, and Time-Resolved X-ray Diffraction Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Do Heui; Szanyi, Janos; Kwak, Ja Hun

    2009-04-03

    Desulfation by hydrogen of pre-sulfated Pt(2wt%) BaO(20wt%)/Al2O3 with various sulfur loading (S/Ba = 0.12, 0.31 and 0.62) were investigated by combining H2 temperature programmed reaction (TPRX), x-ray photoelectron spectroscopy (XPS), in-situ sulfur K-edge x-ray absorption near-edge spectroscopy (XANES), and synchrotron time-resolved x-ray diffraction (TR-XRD) techniques. We find that the amount of H2S desorbed during the desulfation in the H2 TPRX experiments is not proportional to the amount of initial sulfur loading. The results of both in-situ sulfur K-edge XANES and TR-XRD show that at low sulfur loadings, sulfates were transformed to a BaS phase and remained in the catalyst, rathermore » than being removed as H2S. On the other hand, when the deposited sulfur level exceeded a certain threshold (at least S/Ba = 0.31) sulfates were reduced to form H2S, and the relative amount of the residual sulfide species in the catalyst was much less than at low sulfur loading. Unlike samples with high sulfur loading (e.g., S/Ba = 0.62), H2O did not promote the desulfation for the sample with S/Ba of 0.12, implying that the formed BaS species originating from the reduction of sulfates at low sulfur loading are more stable to hydrolysis. The results of this combined spectroscopy investigation provide clear evidence to show that sulfates at low sulfur loadings are less likely to be removed as H2S and have a greater tendency to be transformed to BaS on the material, leading to the conclusion that desulfation behavior of Pt BaO/Al2O3 lean NOx trap catalysts is markedly dependent on the sulfation levels.« less

  1. XPS and XANES studies of biomimetic composites based on B-type nano-hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Goloshchapov, D. L.; Gushchin, M. S.; Kashkarov, V. M.; Seredin, P. V.; Ippolitov, Y. A.; Khmelevsky, N. O.; Aksenenko, A. Yu.

    2018-06-01

    The paper presents an investigation of the local atomic structure of nanocrystalline carbonate-substituted hydroxyapatite (CHAP) contained in biomimetic composites - analogues of intact human tooth tissues. Using the XPS technique, the presence of impurity Mg and F atoms and structurally bound carbon in CHAP, at the concentrations typical of apatite enamel and dentine was determined. The XANES method was used to study the changes occurring in P L2,3 spectra of biocomposites with CHAP, depending on the percentage of the amino acid matrix. The appearance of maxima in the spectra of XANES P L2,3 near 135.7 eV for the samples with the composition of amino acid complex/hydroxyapatite - 5/95, 25/75 and the splitting of a broad peak of 146.9 eV in the spectrum of a biocomposite with a composition of 40/60 indicates at the interaction of molecular complex of amino acids with atomic environment of phosphorus. This fact can be used in the fundamental medicine for synthesizing of new biomaterials in dentistry.

  2. Vanadium, sulfur, and iron valences in melt inclusions as a window into magmatic processes: A case study at Nyamuragira volcano, Africa

    NASA Astrophysics Data System (ADS)

    Head, Elisabet; Lanzirotti, Antonio; Newville, Matthew; Sutton, Stephen

    2018-04-01

    This study describes microscale sulfur (S), vanadium (V), and iron (Fe) K-edge X-ray absorption near edge structure (μ-XANES) spectroscopy measurements on olivine-hosted melt inclusions (MI) preserved in tephras (1986 and 2006) and lavas (1938 and 1948) erupted from Nyamuragira volcano (D.R. Congo, Africa). The S, V, and Fe spectroscopic data are used to constrain the evolution of oxygen fugacity (fO2) and sulfur speciation for the entrapped melts. Melt inclusions from lavas show evidence of post-entrapment crystallization and were thus reheated prior to μ-XANES analysis. The MI from tephra show no evidence of post-entrapment crystallization and were, therefore, not reheated. Sulfur, V, and Fe μ-XANES results from 1938, 1948, and 2006 eruptive materials are all similar within analytical uncertainty and provide similar average calculated melt fO2's based on XANES oxybarometry. However, olivine-hosted MI from the 1986 tephras yield significantly different S, V, and Fe XANES spectra when compared to MI from the other eruptions, with disagreement between calculated fO2's from the three valence state oxybarometers beyond the uncertainty of the calibration models. Their V μ-XANES spectra are also significantly more ordered and yield more reduced average V valence. The S μ-XANES spectra display a significantly more intense low-energy spectral resonance, which indicates differences in Fe-S bonding character, and greater variability in their measured sulfate content. These V and S spectroscopic features are best explained by crystallization of sub-micrometer magnetite and sulfide crystallites within the 1986 inclusions. The sensitivity of XANES spectroscopy to short-range order allows these crystallites to be recognized even though they are not easily detected by imaging analysis. This shows that V and S μ-XANES are potentially highly sensitive tools for identifying the presence of volumetrically minor amounts of spinel and sulfide within inclusions extracted from

  3. XANES and Mg isotopic analyses of spinels in Ca-Al-rich inclusions: Evidence for formation under oxidizing conditions

    NASA Astrophysics Data System (ADS)

    Paque, J. M.; Sutton, S. R.; Simon, S. B.; Beckett, J. R.; Burnett, D. S.; Grossman, L.; Yurimoto, H.; Itoh, S.; Connolly, H. C.

    2013-10-01

    Ti valence measurements in MgAl2O4 spinel from calcium-aluminum-rich inclusions (CAIs) by X-ray absorption near-edge structure (XANES) spectroscopy show that many spinels have predominantly tetravalent Ti, regardless of host phases. The average spinel in Allende type B1 inclusion TS34 has 87% Ti+4. Most spinels in fluffy type A (FTA) inclusions also have high Ti valence. In contrast, the rims of some spinels in TS34 and spinel grain cores in two Vigarano type B inclusions have larger amounts of trivalent titanium. Spinels from TS34 have approximately equal amounts of divalent and trivalent vanadium. Based on experiments conducted on CAI-like compositions over a range of redox conditions, both clinopyroxene and spinel should be Ti+3-rich if they equilibrated with CAI liquids under near-solar oxygen fugacities. In igneous inclusions, the seeming paradox of high-valence spinels coexisting with low-valence clinopyroxene can be explained either by transient oxidizing conditions accompanying low-pressure evaporation or by equilibration of spinel with relict Ti+4-rich phases (e.g., perovskite) prior to or during melting. Ion probe analyses of large spinel grains in TS34 show that they are enriched in heavy Mg, with an average Δ25Mg of 4.25 ± 0.028‰, consistent with formation of the spinel from an evaporating liquid. Δ25Mg shows small, but significant, variation, both within individual spinels and between spinel and adjacent melilite hosts. The Δ25Mg data are most simply explained by the low-pressure evaporation model, but this model has difficulty explaining the high Ti+4 concentrations in spinel.

  4. Identification of Martian Regolith Sulfur Components in Shergottites Using Sulfur K Xanes and Fe/S Ratios

    NASA Technical Reports Server (NTRS)

    Sutton, S. R.; Ross, D. K.; Rao, M. N.; Nyquist, L. E.

    2014-01-01

    Based on isotopic anomalies in Kr and Sm, Sr-isotopes, S-isotopes, XANES results on S-speciation, Fe/S ratios in sulfide immiscible melts [5], and major element correlations with S determined in impact glasses in EET79001 Lith A & Lith B and Tissint, we have provided very strong evidence for the occurrence of a Martian regolith component in some impact melt glasses in shergottites. Using REE measurements by LA-ICP-MS in shergottite impact glasses, Barrat and co-workers have recently reported conflicting conclusions about the occurrence of Martian regolith components: (a) Positive evidence was reported for a Tissint impact melt, but (b) Negative evidence for impact melt in EET79001 and another impact melt in Tissint. Here, we address some specific issues related to sulfur speciation and their relevance to identifying Martian regolith components in impact glasses in EET79001 and Tissint using sulfur K XANES and Fe/S ratios in sulfide immiscible melts. XANES and FE-SEM measurements in approx. 5 micron size individual sulfur blebs in EET79001 and Tissint glasses are carried out by us using sub-micron size beams, whereas Barrat and coworkers used approx. 90 micron size laser spots for LA- ICP-MS to determine REE abundances in bulk samples of the impact melt glasses. We contend that Martian regolith components in some shergottite impact glasses are present locally, and that studying impact melts in various shergottites can give evidence both for and against regolith components because of sample heterogeneity.

  5. Theory and X-ray Absorption Spectroscopy for Aluminum Coordination Complexes – Al K-Edge Studies of Charge and Bonding in (BDI)Al, (BDI)AlR2, and (BDI)AlX2 Complexes.

    PubMed

    Altman, Alison B; Pemmaraju, C D; Camp, Clément; Arnold, John; Minasian, Stefan G; Prendergast, David; Shuh, David K; Tyliszczak, Tolek

    2015-08-19

    its valence electronic structure from that of the formally trivalent compounds (BDI)AlX2 and (BDI)AlR2. The work shows that Al K-edge XANES spectroscopy can be used to provide valuable insight into electronic structure and reactivity relationships for main-group coordination compounds.

  6. Following the movement of Cu ions in a SSZ-13 zeolite during dehydration, reduction and adsorption: a combined in situ TP-XRD, XANES/DRIFTS study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwak, Ja Hun; Varga, Tamas; Peden, Charles HF

    2014-05-05

    Cu-SSZ-13 has been shown to possess high activity and superior N2 formation selectivity in the selective catalytic reduction of NOx under oxygen rich conditions. Here, a combination of synchrotron-based (XRD and XANES) and vibrational (DRIFTS) spectroscopy tools have been used to follow the changes in the location and coordination environment of copper ions in a Cu-SSZ-13 zeolite during calcinations, reduction with CO, and adsorption of CO and H2O. XANES spectra collected during these procedures provides critical information not only on the variation in the oxidation state of the copper species in the zeolite structure, but also on the changes inmore » the coordination environment around these ions as they interact with the framework, and with different adsorbates (H2O and CO). Time-resolved XRD data indicate the movement of copper ions and the consequent variation of the unit cell parameters during dehydration. DRIFT spectra provide information about the adsorbed species present in the zeolite, as well as the oxidation states of and coordination environment around the copper ions. A careful analysis of the asymmetric T-O-T vibrations of the CHA framework perturbed by copper ions in different coordination environments proved to be especially informative. The results of this study will aid the identification of the location, coordination and oxidation states of copper ions obtained during in operando catalytic studies. Financial support was provided by the US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Part of this work (sample preparation) was performed in the Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL). The EMSL is a national scientific user facility supported by the US DOE, Office of Biological and Environmental Research. PNNL is a multi-program national laboratory operated for the US DOE by Battelle. All of the spectroscopy work reported here

  7. Investigating the Geochemical Model for Molybdenum Mineralization in the JEB Tailings Management Facility at McClean Lake, Saskatchewan: An X-ray Absorption Spectroscopy Study.

    PubMed

    Blanchard, Peter E R; Hayes, John R; Grosvenor, Andrew P; Rowson, John; Hughes, Kebbi; Brown, Caitlin

    2015-06-02

    The geochemical model for Mo mineralization in the JEB Tailings Management Facility (JEB TMF), operated by AREVA Resources Canada at McClean Lake, Saskatchewan, was investigated using X-ray Absorption Near-Edge Spectroscopy (XANES), an elemental-specific technique that is sensitive to low elemental concentrations. Twenty five samples collected during the 2013 sampling campaign from various locations and depths in the TMF were analyzed by XANES. Mo K-edge XANES analysis indicated that the tailings consisted primarily of Mo(6+) species: powellite (CaMoO4), ferrimolybdite (Fe2(MoO4)3·8H2O), and molybdate adsorbed on ferrihydrite (Fe(OH)3 - MoO4). A minor concentration of a Mo(4+) species in the form of molybdenite (MoS2) was also present. Changes in the Mo mineralization over time were inferred by comparing the relative amounts of the Mo species in the tailings to the independently measured aqueous Mo pore water concentration. It was found that ferrimolybdite and molybdate adsorbed on ferrihydrite initially dissolves in the TMF and precipitates as powellite.

  8. Vanadium K Xanes Studies of EET79001 Impact-Melt Glasses Revisited

    NASA Technical Reports Server (NTRS)

    Sutton, S. R.; Rao, M. N.; Nyquist, L. E.; Ross, D. K.

    2016-01-01

    Some impact-melt glasses in shergottites are rich in Martian atmospheric noble gases and sulfur suggesting a possible association with regolith-derived secondary mineral assemblages in the shocked samples. Previously, we studied two glasses, # 506 (Lith C in Lith A) and # 507 (Lith C in Lith B) from EET79001 [1,2] and suggested that sulfur initially existed as sulfate in the glass precursor materials and, on shock-melting of the precursors, the sulfate was reduced to sulfides in the shock glasses. To examine the validity of this hypothesis, we used V K microXANES techniques to measure the valence states of vanadium in the Lith C glasses from Lith A and Lith B in EET79001 [3] to complement and com-pare with previous analogous measurements on,78 glass (Lith C in Lith A) [4,5]. We reported the preliminary results in [3]. Vanadium is ideal for addressing the redox issue because it has multiple valence states and is a well-studied element. Vanadium in basalts exists mostly as V(sup 3+), V(sup 4+) and V(sup 5+) in terrestrial samples, mainly as V(sup 3+) with minor V(sup 2+) and minor V(sup 4+) in lunar samples and as roughly equal mixtures of V(sup 3+) and V(sup 4+) in Martian meteorites. In this report, we discuss the application of the V K XANES results to decipher the nature of shock reduction occurring in the silicate glasses during the impact process.

  9. Fischer-Tropsch Synthesis: XANES Investigation of Hydrogen Chloride Poisoned Iron and Cobalt-Based Catalysts at the K-Edges of Cl, Fe, and Co

    DOE PAGES

    Pendyala, Venkat Ramana Rao; Jacobs, Gary; Ma, Wenping; ...

    2016-07-23

    The effect of co-fed hydrogen chloride (HCl) in syngas on the performance of iron and cobalt-based Fischer-Tropsch (FT) catalysts was investigated in our earlier studies [ACS Catal. 5 (2015) 3124-3136 and DOE final report 2011; Catal. Lett. 144 (2014) 1127-1133]. For an iron catalyst, lower HCl concentrations (< 2.0 ppmw of HCl)) in syngas did not significantly affect the activity, whereas rapid deactivation occurred at higher concentrations (~20 ppmw). With cobalt catalysts, even low concentrations of HCl (100 ppbw) caused catalyst deactivation, and the deactivation rate increased with increasing HCl concentration in the syngas. The deactivation of the catalysts ismore » explained by the chloride being adsorbed on the catalyst surface to (1) block the active sites and/or (2) electronically modify the sites. In this study, XANES spectroscopy was employed to investigate HCl poisoning mechanism on the iron and cobalt catalysts. Cl K-edge normalized XANES results indicate that Cl is indeed present on the catalyst following HCl poisoning and exhibits a structure similar to the family of compounds MCl; two main peaks are formed, with the second peak consisting of a main peak and a higher energy shoulder. At the Co K and Fe K edges, the white line was observed to be slightly increased relative to the same catalyst under clean conditions. There is then the additional possibility that Cl adsorption may act in part to intercept electron density from the FT metallic function (e.g.,cobalt or iron carbide). If so, this would result in less back-donation and therefore hinder the scission of molecules such as CO.« less

  10. Synchrotron-based P K-edge XANES spectroscopy reveals rapid changes of phosphorus speciation in the topsoil of two glacier foreland chronosequences

    NASA Astrophysics Data System (ADS)

    Prietzel, Jörg; Dümig, Alexander; Wu, Yanhong; Zhou, Jun; Klysubun, Wantana

    2013-05-01

    Phosphorus (P) is a crucial element for life on Earth, and the bioavailability of P in terrestrial ecosystems, which is dependent on the soil P stock and its speciation, may limit ecosystem productivity and succession. In our study, for the first time a direct speciation of soil P in two glacier foreland chronosequences has been conducted using synchrotron-based X-ray Absorption Near-Edge Structure (XANES) spectroscopy. The chronosequences are located in the forefields of Hailuogou Glacier (Gongga Shan, China) and Damma Glacier (Swiss Alps). The age since deglaciation of the investigated soils ranges from 0 to 120 years at Hailuogou, and from 15 to >700 years at Damma. Differences in climate conditions (cooler at Damma, in contrast to Hailuogou precluding the establishment of forest in advanced ecosystem succession stages) and in the chemical composition of the parent material result in different soil contents of total P and Fe/Al oxyhydroxides, which are much smaller at Damma than at Hailuogou. Nevertheless, both chronosequences show similar trends of their topsoil P status with increasing soil age. Our study reveals a rapid change of topsoil P speciation in glacier retreat areas already during initial stages of pedogenesis: Initially dominating bedrock-derived apatite-P and Al-bound P is depleted; Fe-bound P and particularly organically-bound P is accumulated. Organic P strongly dominates in the topsoil of the mature soils outside the proglacial area of Damma Glacier (age 700-3000 years), and already 50 years after deglacation in the topsoil of the retreat area of Hailuogou Glacier. A key factor for the change in topsoil P speciation is the establishment of vegetation, resulting in soil organic matter (SOM) accumulation as well as accelerated soil acidification and apatite dissolution by organic acids, which are produced by SOM-degrading micro-organisms, mykorrhiza fungi, and plant roots. Particularly the succession of grassland to forest seems to accelerate the

  11. Linear Combination Fitting (LCF)-XANES analysis of As speciation in selected mine-impacted materials

    EPA Pesticide Factsheets

    This table provides sample identification labels and classification of sample type (tailings, calcinated, grey slime). For each sample, total arsenic and iron concentrations determined by acid digestion and ICP analysis are provided along with arsenic in-vitro bioaccessibility (As IVBA) values to estimate arsenic risk. Lastly, the table provides linear combination fitting results from synchrotron XANES analysis showing the distribution of arsenic speciation phases present in each sample along with fitting error (R-factor).This dataset is associated with the following publication:Ollson, C., E. Smith, K. Scheckel, A. Betts, and A. Juhasz. Assessment of arsenic speciation and bioaccessibility in mine-impacted materials. Diana Aga, Wonyong Choi, Andrew Daugulis, Gianluca Li Puma, Gerasimos Lyberatos, and Joo Hwa Tay JOURNAL OF HAZARDOUS MATERIALS. Elsevier Science Ltd, New York, NY, USA, 313: 130-137, (2016).

  12. Investigation of the nanoscale two-component ZnS-ZnO heterostructures by means of HR-TEM and X-ray based analysis

    NASA Astrophysics Data System (ADS)

    Pankin, I. A.; Polozhentsev, O. E.; Soldatov, M. A.; Bugaev, A. L.; Tsaturyan, A.; Lomachenko, K. A.; Guda, A. A.; Budnyk, A. P.; Lamberti, C.; Soldatov, A. V.

    2018-06-01

    This article is devoted to the spectroscopic characterization of ZnS-ZnO nanoscale heterostructures synthesized by the microwave-assisted solvothermal method. The synthesized samples were investigated by means of X-ray powder diffraction (XRPD), high energy resolution fluorescence detected X-ray absorption near-edge-structure (HERFD-XANES) spectroscopy, valence-to-core X-ray emission spectroscopy (VtC-XES) and high resolution transmission electron microscopy (HR-TEM) as well as energy dispersive X-ray spectroscopy (EDX). The average crystallite size estimated by the broadening of XRPD peaks increases from 2.7 nm to 3.7 nm in the temperature range from 100 °C to 150 °C. HR-TEM images show that nanoparticles are arranged in aggregates with the 60-200 nm size. Theoretical estimation shows that the systems synthesized at higher temperatures more prone to the agglomeration. The full profile Reitveld analysis of XRPD data reveals the formation of hexagonal zinc sulfide structure, whereas electron diffraction data reveal also the formation of cubic zinc sulfide and claim the polymorphous character of the system. High energy resolution Zn K-edge XANES data unambiguously demonstrate the presence of a certain amount of the zinc oxide which is likely to have an amorphous structure and could not be detected by XRPD. Qualitative analysis of XANES data allows deriving ZnS/ZnO ratio as a function of synthesis temperature. EDX analysis depicts homogeneous distribution of ZnS and amorphous ZnO phases across the conglomerates. A complementary element-selective valence to core X-ray emission spectroscopy evidences formation of two-component system and confirms estimations of ZnS/ZnO fractions obtained by linear combination fit of XANES data.

  13. Effects of Sulfation Level on the Desulfation Behavior of Presulfated Pt-BaO/Al2O3 Lean NOx Trap Catalysts: A Combined H2 Temperature-Programmed Reaction, in Situ Sulfur K-Edge X-ray Absorption Near-Edge Spectroscopy, X-ray Photoelectron Spectroscopy, and Time-Resolved X-ray Diffraction Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, D.H.; Hanson, J.; Szanyi, J.

    2009-04-30

    Desulfation by hydrogen of presulfated Pt (2 wt %)-BaO(20 wt %)/Al{sub 2}O{sub 3} with various sulfur loading (S/Ba = 0.12, 0.31, and 0.62) were investigated by combining H{sub 2} temperature programmed reaction (TPRX), X-ray photoelectron spectroscopy (XPS), in situ sulfur K-edge X-ray absorption near-edge spectroscopy (XANES), and synchrotron time-resolved X-ray diffraction (TR-XRD) techniques. We find that the amount of H{sub 2}S desorbed during the desulfation in the H{sub 2} TPRX experiments is not proportional to the amount of initial sulfur loading. The results of both in situ sulfur K-edge XANES and TR-XRD show that at low sulfur loadings, sulfates weremore » transformed to a BaS phase and remained in the catalyst rather than being removed as H{sub 2}S. On the other hand, when the deposited sulfur level exceeded a certain threshold (at least S/Ba = 0.31) sulfates were reduced to form H{sub 2}S, and the relative amount of the residual sulfide species in the catalyst was much less than at low sulfur loading. Unlike samples with high sulfur loading (e.g., S/Ba = 0.62), H{sub 2}O did not promote the desulfation for the sample with S/Ba of 0.12, implying that the formed BaS species originating from the reduction of sulfates at low sulfur loading are more stable to hydrolysis. The results of this combined spectroscopy investigation provide clear evidence to show that sulfates at low sulfur loadings are less likely to be removed as H{sub 2}S and have a greater tendency to be transformed to BaS on the material, leading to the conclusion that desulfation behavior of Pt-BaO/Al{sub 2}O{sub 3} lean NO{sub x} trap catalysts is markedly dependent on the sulfation levels.« less

  14. Characterization by 27Al NMR, X-ray absorption spectroscopy, and density functional theory techniques of the species responsible for benzene hydrogenation in Y zeolite-supported carburized molybdenum catalysts.

    PubMed

    Rocha, Angela S; da Silva, Victor Teixeira; Eon, Jean G; de Menezes, Sônia M C; Faro, Arnaldo C; Rocha, Alexandre B

    2006-08-17

    Carburized molybdenum catalysts supported on a dealuminated NaH-Y zeolite were prepared by carburization under a 20% methane in hydrogen flow of two precursors obtained by adsorption of molybdenum hexacarbonyl, one containing 5 wt % and the other 10 wt % Mo, and a third one was prepared by impregnation with aqueous ammonium heptamolybdate, containing 5 wt % Mo. The three catalysts displayed very distinct behaviors in the benzene hydrogenation reaction at atmospheric pressure and 363 K. By using XANES spectroscopy at the molybdenum L edge, EXAFS and XANES spectroscopy at the molybdenum K edge, and 27Al solid-state NMR spectroscopy, it was shown that different carburized molybdenum species exist in each sample. In the catalyst containing 10 wt % Mo, formation of molybdenum carbide nanoparticles was observed, with an estimated diameter of 1.8 nm. In the catalyst containing 5 wt % Mo and prepared by carburization of adsorbed molybdenum hexacarbonyl, formation of molybdenum oxycarbide dimers is proposed. In the latter case, density functional theory calculations have led to a dimer structure which is compatible with EXAFS results. In the catalyst prepared by impregnation with ammonium heptamolybdate solution followed by carburization, the molybdenum seems to interact with extraframework alumina to produce highly disordered mixed molybdenum-aluminum oxycarbides.

  15. Magnetite Crisis in Miniature: Vanadium, Sulfur, and Iron Valence State Measurements in Melt Inclusions from Nyamuragira Volcano (D.R. Congo, Africa)

    NASA Astrophysics Data System (ADS)

    Head, E.; Lanzirotti, A.; Sutton, S.; Newville, M.

    2017-12-01

    Sulfur (S), vanadium (V), and iron (Fe) K-edge micro-X-ray absorption near edge structure (micro-XANES) spectroscopy of melt inclusions (MI) from Nyamuragira volcano (D.R. Congo, Africa) shows that diffusive loss of H from olivine-hosted melt inclusions may lead to crystallization of submicron magnetite and sulfide crystallites that are imperceptible petrographically or via electron microscopy. Micro-XANES was used to constrain the evolution of oxygen fugacity (fO2) and sulfur speciation for MI preserved in Nyamuragira tephra (1986 and 2006) and lava (1938 and 1948). The S, V, and Fe valence state oxybarometry for 1938, 1948, and 2006 MI are all consistent with equilibration at FMQ-1, and sulfur in MI from these three eruptions are sulfide-dominated (< 9% sulfate). However, Fe and V micro-XANES data for 1986 MI appear to be more reduced by 1-2 log units, while S micro-XANES data indicate more variable sulfate content. The 1986 results are best explained by diffusive loss of H from the entrapped melt. Submicron magnetite forms as Fe oxidizes in the melt in response to the loss of H, and V strongly partitions into these magnetite nanolites due to its compatibility. The nanolites are consistently analyzed within the beam volume and, thus, the measured V XANES appears more ordered. Magnetite crystallization from the melt also triggers precipitation of crystalline FeS phases within the inclusion, leading to a more ordered S XANES spectra as well. This may suggest a different magma storage history for the 1986 eruption compared to the others. Results demonstrate that coupled S, V, and Fe micro-XANES analysis of alkalic MI can provide accurate measures of the fO2 of entrapped melts, and that S and V micro-XANES spectroscopy are potentially highly sensitive tools for identifying diffusive water loss in olivine-hosted MIs.

  16. Sulfur and iron speciation in gas-rich impact-melt glasses from basaltic shergottites determined by microXANES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutton, S.R.; Rao, M.N.; Nyquist, L.E.

    2008-04-28

    Sulfur and iron K XANES measurements were made on GRIM glasses from EET 79001. Iron is in the ferrous state. Sulfur speciation is predominately sulfide coordination but is Fe coordinated in Lith B and, most likely, Ca coordinated in Lith A. Sulfur is abundantly present as sulfate near Martian surface based on chemical and mineralogical investigations on soils and rocks in Viking, Pathfinder and MER missions. Jarosite is identified by Moessbauer studies on rocks at Meridian and Gusev, whereas MgSO{sub 4} is deduced from MgO-SO{sub 3} correlations in Pathfinder MER and Viking soils. Other sulfate minerals such as gypsum andmore » alunogen/S-rich aluminosilicates and halides are detected only in martian meteorites such as shergottites and nakhlites using SEM/FE-SEM and EMPA techniques. Because sulfur has the capacity to occur in multiple valence states, determination of sulfur speciation (sulfide/sulfate) in secondary mineral assemblages in soils and rocks near Mars surface may help us understand whether the fluid-rock interactions occurred under oxidizing or reducing conditions. On Earth, volcanic rocks contain measurable quantities of sulfur present as both sulfide and sulfate. Carroll and Rutherford showed that oxidized forms of sulfur may comprise a significant fraction of total dissolved sulfur, if the oxidation state is higher than {approx}2 log fO{sub 2} units relative to the QFM buffer. Terrestrial samples containing sulfates up to {approx}25% in fresh basalts from the Galapagos Rift on one hand and high sulfide contents present in oceanic basalts on the other indicate that the relative abundance of sulfide and sulfate varies depending on the oxygen fugacity of the system. Basaltic shergottites (bulk) such as Shergotty, EET79001 and Zagami usually contain small amounts of sulfur ({approx}0.5%) as pyrrhotite. But, in isolated glass pockets containing secondary salts (known as GRIM glasses) in these meteorites, sulfur is present in high abundance ({approx}1

  17. Evaluating the electronic structure of formal Ln II ions in Ln II(C 5H 4SiMe 3) 3 1– using XANES spectroscopy and DFT calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fieser, Megan E.; Ferrier, Maryline Ghislaine; Su, Jing

    Here, the isolation of [K(2.2.2-cryptand)][Ln(C 5H 4SiMe 3) 3], formally containing LnII, for all lanthanides (excluding Pm) was surprising given that +2 oxidation states are typically regarded as inaccessible for most 4f-elements. Herein, X-ray absorption near-edge spectroscopy (XANES), ground-state density functional theory (DFT), and transition dipole moment calculations are used to investigate the possibility that Ln(C 5H 4SiMe 3) 3 1– (Ln = Pr, Nd, Sm, Gd, Tb, Dy, Y, Ho, Er, Tm, Yb and Lu) compounds represented molecular Ln II complexes. Results from the ground-state DFT calculations were supported by additional calculations that utilized complete-active-space multi-configuration approach with second-ordermore » perturbation theoretical correction (CASPT2). Through comparisons with standards, Ln(C 5H 4SiMe 3) 3 1– (Ln = Sm, Tm, Yb, Lu, Y) are determined to contain 4f 6 5d 0 (Sm II), 4f 13 5d 0 (Tm II), 4f 14 5d 0 (Yb II), 4f 14 5d 1 (Lu II), and 4d 1 (Y II) electronic configurations. Additionally, our results suggest that Ln(C 5H 4SiMe 3) 3 1– (Ln = Pr, Nd, Gd, Tb, Dy, Ho, and Er) also contain Ln II ions, but with 4f n 5d 1 configurations (not 4f n +1 5d 0). In these 4f n 5d 1 complexes, the C 3h-symmetric ligand environment provides a highly shielded 5d-orbital of a' symmetry that made the 4f n 5d 1 electronic configurations lower in energy than the more typical 4f n+1 5d 0 configuration.« less

  18. Evaluating the electronic structure of formal Ln II ions in Ln II(C 5H 4SiMe 3) 3 1– using XANES spectroscopy and DFT calculations

    DOE PAGES

    Fieser, Megan E.; Ferrier, Maryline Ghislaine; Su, Jing; ...

    2017-06-30

    Here, the isolation of [K(2.2.2-cryptand)][Ln(C 5H 4SiMe 3) 3], formally containing LnII, for all lanthanides (excluding Pm) was surprising given that +2 oxidation states are typically regarded as inaccessible for most 4f-elements. Herein, X-ray absorption near-edge spectroscopy (XANES), ground-state density functional theory (DFT), and transition dipole moment calculations are used to investigate the possibility that Ln(C 5H 4SiMe 3) 3 1– (Ln = Pr, Nd, Sm, Gd, Tb, Dy, Y, Ho, Er, Tm, Yb and Lu) compounds represented molecular Ln II complexes. Results from the ground-state DFT calculations were supported by additional calculations that utilized complete-active-space multi-configuration approach with second-ordermore » perturbation theoretical correction (CASPT2). Through comparisons with standards, Ln(C 5H 4SiMe 3) 3 1– (Ln = Sm, Tm, Yb, Lu, Y) are determined to contain 4f 6 5d 0 (Sm II), 4f 13 5d 0 (Tm II), 4f 14 5d 0 (Yb II), 4f 14 5d 1 (Lu II), and 4d 1 (Y II) electronic configurations. Additionally, our results suggest that Ln(C 5H 4SiMe 3) 3 1– (Ln = Pr, Nd, Gd, Tb, Dy, Ho, and Er) also contain Ln II ions, but with 4f n 5d 1 configurations (not 4f n +1 5d 0). In these 4f n 5d 1 complexes, the C 3h-symmetric ligand environment provides a highly shielded 5d-orbital of a' symmetry that made the 4f n 5d 1 electronic configurations lower in energy than the more typical 4f n+1 5d 0 configuration.« less

  19. A XANES Study of Sulfur Speciation and Reactivity in Cokes for Anodes Used in Aluminum Production

    NASA Astrophysics Data System (ADS)

    Jahrsengene, Gøril; Wells, Hannah C.; Rørvik, Stein; Ratvik, Arne Petter; Haverkamp, Richard G.; Svensson, Ann Mari

    2018-03-01

    Availability of anode raw materials in the growing aluminum industry results in a wider range of petroleum cokes being used to produce carbon anodes. The boundary between anode grade cokes and what previously was considered non-anode grades are no longer as distinct as before, leading to introduction of cokes with higher sulfur and higher trace metal impurity content in anode manufacturing. In this work, the chemical nature of sulfur in five industrial cokes, ranging from 1.42 to 5.54 wt pct S, was investigated with K-edge XANES, while the reactivity of the cokes towards CO2 was measured by a standard mass loss test. XANES identified most of the sulfur as organic sulfur compounds. In addition, a significant amount is identified (16 to 53 pct) as S-S bound sulfur. A strong inverse correlation is observed between CO2-reactivity and S-S bound sulfur in the cokes, indicating that the reduction in reactivity is more dependent on the amount of this type of sulfur compound rather than the total amount of sulfur or the amount of organic sulfur.

  20. A XANES Study of Sulfur Speciation and Reactivity in Cokes for Anodes Used in Aluminum Production

    NASA Astrophysics Data System (ADS)

    Jahrsengene, Gøril; Wells, Hannah C.; Rørvik, Stein; Ratvik, Arne Petter; Haverkamp, Richard G.; Svensson, Ann Mari

    2018-06-01

    Availability of anode raw materials in the growing aluminum industry results in a wider range of petroleum cokes being used to produce carbon anodes. The boundary between anode grade cokes and what previously was considered non-anode grades are no longer as distinct as before, leading to introduction of cokes with higher sulfur and higher trace metal impurity content in anode manufacturing. In this work, the chemical nature of sulfur in five industrial cokes, ranging from 1.42 to 5.54 wt pct S, was investigated with K-edge XANES, while the reactivity of the cokes towards CO2 was measured by a standard mass loss test. XANES identified most of the sulfur as organic sulfur compounds. In addition, a significant amount is identified (16 to 53 pct) as S-S bound sulfur. A strong inverse correlation is observed between CO2-reactivity and S-S bound sulfur in the cokes, indicating that the reduction in reactivity is more dependent on the amount of this type of sulfur compound rather than the total amount of sulfur or the amount of organic sulfur.

  1. Roles of Pt and BaO in the Sulfation of Pt/BaO/Al2O3 Lean NOx Trap Materials: Sulfur K-edge XANES and Pt Llll XAFS Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim,D.; Kwak, J.; Szanyi, J.

    2008-01-01

    The roles of barium oxide and platinum during the sulfation of Pt-BaO/Al2O3 lean NOx trap catalysts were investigated by S K edge XANES (X-ray absorption near-edge spectroscopy) and Pt LIII XAFS (X-ray absorption fine structure). All of the samples studied [Al2O3, BaO(x; x = 8 or 20 wt %)/Al2O3, Pt(2.5 wt %)/Al2O3, and Pt(2 wt %)-BaO(x; x = 8 or 20 wt %)/Al2O3] were pre-sulfated prior to the X-ray absorption measurements. It was found that barium oxide itself has the ability to directly form barium sulfate even in the absence of Pt and gas-phase oxygen. In the platinum-containing samples, themore » presence of Pt-O species plays an important role in the formation of sulfate species. For the case of the BaO(8)/Al2O3 sample, where the barium coverage is about 0.26 ML, both baria and alumina phases are available for sulfation. S XANES results show that barium sulfates are formed preferentially over aluminum sulfates. When oxygen is absent from the gas phase, the sulfation route that involves Pt-O is eliminated after the initially present Pt-O species are completely consumed. In this case, formation of sulfates is suppressed unless barium oxide is also present. Pt LIII XAFS results show that the first coordination sphere around the Pt atoms in the Pt particles is dependent upon the gas mixture used during the sulfation process. Sulfation under reducing environments (e.g., SO2/H2) leads to formation of Pt-S bonds, while oxidizing conditions (e.g., SO2/O2) continue to show the presence of Pt-O bonds. In addition, a reducing environment was found to cause Pt sintering in greater extent than an oxidizing one. This result explains why samples sulfated under reducing conditions had lower NOx uptakes than those sulfated under oxidizing conditions. Therefore, our results provide needed information for the development of optimum practical operation conditions (e.g., sulfation or desulfation) for lean NOx trap catalysts that minimize deactivation by sulfur.« less

  2. Probing Selenium-Ion Distributions and Changes in Redox-State at Biofilm/Mineral Interfaces by Coupling Long-period X-ray Standing Wave and XANES Measurements

    NASA Astrophysics Data System (ADS)

    Templeton, A. S.; Trainor, T. P.; Spormann, A. M.; Brown, G. E.

    2002-12-01

    Metal sorption and precipitation reactions at biological as well as mineral surfaces are important controls on metal speciation and bioavailability in natural environments. When highly hydrated biofilms form on mineral surfaces, numerous competitive and synergistic effects are predicted to occur. Experimentally, it is challenging to determine where the sorbed metal ions are localized, the relative affinity of the biological vs. mineral surface sites, or to monitor biomineralization reactions or changes in metal speciation that may also occur. A large part of the difficulty is due to the low concentrations of sorbed ions, the small length-scale of the biofilm-mineral interface, and the complex interplay between microbially-catalayzed redox transformations vs. sorption and/or transport processes. Long-period x-ray standing wave (XSW) techniques are well-suited to determining the vertical distribution of metal(oid) species within biofilms overlying mineral surfaces. We will discuss experiments where Se fluorescence yield profiles are used to compare the affinity of Burkholderia cepacia biofilms for binding Se(IV) and Se(VI) species relative to underlying alpha-Al2O3 substrates over three orders of magnitude in [Se]. In addition, we will discuss how coupling the XSW experiments to grazing-incidence, spatially-resolved Se K-edge XANES spectroscopy can be used to differentiate between the oxidation state of the Se complexes localized within the biofilm vs. the mineral surface. This approach is used to monitor changes in the relative distributions of Se(VI), Se(IV) and Se(0) species as a function of time and proximity to the mineral surface. The long-period XSW data show that selenite preferentially binds to the oxide surfaces, particularly at low [Se]. When B. cepacia is metabolically active, B. cepacia rapidly reduces a fraction of the Se(IV) to the red elemental Se form. In contrast, selenate is preferentially partitioned into the B. cepacia biofilms at all [Se] tested

  3. Selenium speciation in seleniferous agricultural soils under different cropping systems using sequential extraction and X-ray absorption spectroscopy.

    PubMed

    Qin, Hai-Bo; Zhu, Jian-Ming; Lin, Zhi-Qing; Xu, Wen-Po; Tan, De-Can; Zheng, Li-Rong; Takahashi, Yoshio

    2017-06-01

    Selenium (Se) speciation in soil is critically important for understanding the solubility, mobility, bioavailability, and toxicity of Se in the environment. In this study, Se fractionation and chemical speciation in agricultural soils from seleniferous areas were investigated using the elaborate sequential extraction and X-ray absorption near-edge structure (XANES) spectroscopy. The speciation results quantified by XANES technique generally agreed with those obtained by sequential extraction, and the combination of both approaches can reliably characterize Se speciation in soils. Results showed that dominant organic Se (56-81% of the total Se) and lesser Se(IV) (19-44%) were observed in seleniferous agricultural soils. A significant decrease in the proportion of organic Se to the total Se was found in different types of soil, i.e., paddy soil (81%) > uncultivated soil (69-73%) > upland soil (56-63%), while that of Se(IV) presented an inverse tendency. This suggests that Se speciation in agricultural soils can be significantly influenced by different cropping systems. Organic Se in seleniferous agricultural soils was probably derived from plant litter, which provides a significant insight for phytoremediation in Se-laden ecosystems and biofortification in Se-deficient areas. Furthermore, elevated organic Se in soils could result in higher Se accumulation in crops and further potential chronic Se toxicity to local residents in seleniferous areas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Dehydration of the Uranyl Peroxide Studtite, [UO 2(η 2-O 2)(H 2O) 2]·2H 2O, Affords a Drastic Change in the Electronic Structure: A Combined X-ray Spectroscopic and Theoretical Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vitova, Tonya; Pidchenko, Ivan; Biswas, Saptarshi

    The dehydration of studtite, [UO 2(2-O 2)(H 2O)2]·2H 2O, to metastudtite, [UO 2(2-O 2)(H 2O) 2], uranyl peroxide minerals that are major oxidative alteration phases of UO2 under conditions of geological storage, has been studied using X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy. XPS of the U 4f region shows small but significant differences between studtite and metastudtite, with the 4f binding energy of studtite the highest reported for a uranyl mineral studied by this technique. Further information on the changes in the electronic structure was elucidated using U M4-edge High Energy Resolution XANES (HR-XANES) spectroscopy, which directly probesmore » f-orbital states. The transition from the 3d to the 5f* orbital is sensitive to variations of the U=Oaxial bond length and to changes in the bond covalency. We report evidences that the covalence in the uranyl fragment decreases upon dehydration. Photoluminescence spectroscopy at near liquid helium temperatures reveals significant spectral differences between the two materials, correlating with the X-ray spectroscopy results. A theoretical investigation has been conducted on the structures of both studtite and metastudtite and benchmarked to the HR-XANES spectra. These illustrate the sensitivity of the 3d to the 5f * transition towards U=Oaxial bond variation.« less

  5. A Study of Ziegler–Natta Propylene Polymerization Catalysts by Spectroscopic Methods

    PubMed Central

    Tkachenko, Olga P.; Kucherov, Alexey V.; Kustov, Leonid M.; Virkkunen, Ville; Leinonen, Timo; Denifl, Peter

    2017-01-01

    Ziegler–Natta polymerization catalysts were characterized by a complex of surface- and bulk-sensitive methods (DRIFTS, XPS, ESR, and XAS = XANES + EXAFS). A diffuse-reflectance Fourier-transform IR spectroscopy (DRIFTS) study showed the presence of strong Lewis acid sites in different concentrations and absence of strong basic sites in the polymerization catalysts. X-ray photoelectron spectroscopy (XPS), electron-spin resonance (ESR), and (X-ray absorption near-edge structure (XANES) analysis revealed the presence of Ti4+, Ti3+, Ti2+, and Ti1+ species in the surface layers and in the bulk of catalysts. The samples under study differ drastically in terms of the number of ESR-visible paramagnetic sites. The EXAFS study shows the presence of a Cl atom as a nearest neighbor of the absorbing Ti atom. PMID:28772850

  6. Optimized Finite Difference Method for the Full-Potential XANES Simulations: Application to Molecular Adsorption Geometries in MOFs and Metal-Ligand Intersystem Crossing Transients.

    PubMed

    Guda, Sergey A; Guda, Alexander A; Soldatov, Mikhail A; Lomachenko, Kirill A; Bugaev, Aram L; Lamberti, Carlo; Gawelda, Wojciech; Bressler, Christian; Smolentsev, Grigory; Soldatov, Alexander V; Joly, Yves

    2015-09-08

    Accurate modeling of the X-ray absorption near-edge spectra (XANES) is required to unravel the local structure of metal sites in complex systems and their structural changes upon chemical or light stimuli. Two relevant examples are reported here concerning the following: (i) the effect of molecular adsorption on 3d metals hosted inside metal-organic frameworks and (ii) light induced dynamics of spin crossover in metal-organic complexes. In both cases, the amount of structural models for simulation can reach a hundred, depending on the number of structural parameters. Thus, the choice of an accurate but computationally demanding finite difference method for the ab initio X-ray absorption simulations severely restricts the range of molecular systems that can be analyzed by personal computers. Employing the FDMNES code [Phys. Rev. B, 2001, 63, 125120] we show that this problem can be handled if a proper diagonalization scheme is applied. Due to the use of dedicated solvers for sparse matrices, the calculation time was reduced by more than 1 order of magnitude compared to the standard Gaussian method, while the amount of required RAM was halved. Ni K-edge XANES simulations performed by the accelerated version of the code allowed analyzing the coordination geometry of CO and NO on the Ni active sites in CPO-27-Ni MOF. The Ni-CO configuration was found to be linear, while Ni-NO was bent by almost 90°. Modeling of the Fe K-edge XANES of photoexcited aqueous [Fe(bpy)3](2+) with a 100 ps delay we identified the Fe-N distance elongation and bipyridine rotation upon transition from the initial low-spin to the final high-spin state. Subsequently, the X-ray absorption spectrum for the intermediate triplet state with expected 100 fs lifetime was theoretically predicted.

  7. Probing the Electronic Structure of - and Electron-Doped High-Temperature Superconductors with Photoemission and X-Ray Absorption Spectroscopies

    NASA Astrophysics Data System (ADS)

    Lederman, Eli R.

    1990-01-01

    The electronic structures of hole- and electron -doped high temperature superconductors have been probed using x-ray absorption near-edge spectroscopy (XANES) and photoelectron emission spectroscopy (PES). These measurements have been performed on RBa_2Cu _3O_{rm 7-y} , La_{rm 2-x}Sr _{rm x}CuO _4 and Ln_{rm 2 -x}Ce_{rm x} CuO_{rm 4} for R = Y, Eu and Ln = Nd, Pr and Sm. The parameters x and y have been varied to include a range of hole and electron carrier densities and the undoped parent compounds. Previous XANES and PES results have indicated that unoccupied states of O 2p character can be associated with the carriers in the materials RBa_2 Cu_3O_{ rm 7-y} and La_{ rm 2-x}Sr_{rm x}CuO_4 and that the density of holes increases with O and Sr content, respectively. Conduction was hole-based in all known high-T_{ rm c} cuprates until the recent discovery of superconductivity in Ln_{rm 2-x}Ce_{rm x} CuO_4. Hall coefficient measurements have suggested that the carriers in this system are electrons added with Ce doping. It has been anticipated that these electron-doped materials will provide an important test for models of high temperature superconductivity. PES measurements are presented that show significant Cu 3d character in the valence band of these electron-based materials, but that the Cu^{2+} /Cu^{1+} ratio is unchanged by the level of Ce doping, indicating that doped electrons are itinerant rather than highly correlated. Resonant photoemission from the valence band indicates the presence of unoccupied O 2p states, but these holes are less abundant than in the hole-doped materials. Measurements of XANES at the O 1s edge suggest that unoccupied states of O 2p character in the electron -doped materials are not related to conduction in a simple way. The density of these holes is shown to decrease upon Ce doping and the process of reduction, despite the fact that both are necessary of superconductivity. Furthermore, whereas the O 2p holes are at E_{rm F} in the

  8. XANES study of elemental mercury oxidation over RuO 2/TiO 2 and selective catalytic reduction catalysts for mercury emissions control

    DOE PAGES

    Liu, Zhouyang; Li, Can; Sriram, Vishnu; ...

    2016-07-25

    Linear combination fitting of the X-ray Absorption Near Edge Spectroscopy (XANES) was used to quantify oxidized mercury species over RuO 2/TiO 2 and Selective Catalytic Reduction (SCR) catalysts under different simulated flue gas conditions. Halogen gases play a major role in mercury oxidation. In the absence of halogen gas, elemental mercury can react with sulfur that is contained in both the RuO2/TiO2 and SCR catalysts to form HgS and HgSO 4. In the presence of HCl or HBr gas, HgCl 2 or HgBr 2 is the main oxidized mercury species. When both HCl and HBr gases are present, HgBr2 ismore » the preferred oxidation product and no HgCl 2 can be found. The formation of HgO and HgS cannot be neglected with or without halogen gas. Other simulated flue gas components such as NO, NH 3, SO 2 and CO 2 do not have significant effect on oxidized mercury speciation when halogen gas is present.« less

  9. Surface modification study of borate materials from B K-edge X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Kasrai, Masoud; Fleet, Michael E.; Muthupari, Swaminathan; Li, D.; Bancroft, G. M.

    The B K-edge X-ray absorption near-edge structure (XANES) spectra of two borates with tetrahedrally-coordinated B [[4]B; natural danburite (CaB2Si2O8) and synthetic boron phosphate (BPO4)] have been recorded in total electron yield (TEY) and fluorescence yield (FY) modes to investigate the surface and bulk structure of these materials. The TEY XANES measurement shows that danburite is susceptible to surface damage involving conversion of [4]B sites to [3]B sites by reaction with moisture and/or mechanical abrasion (grinding, polishing, etc.). The bulk of the mineral is essentially unaffected. Commercial boron phosphate powder exhibits more extensive surface and bulk damage, which increases with air exposure but is recovered on heating at 650°C. In contrast to ELNES, the XANES technique is not affected by beam damage and when collected in the FY mode is capable of yielding meaningful information on the coordination and intermediate-range structure of B in borate and borosilicate materials.

  10. Mercury speciation on three European mining districts by XANES techniques

    NASA Astrophysics Data System (ADS)

    Esbri, J. M.; Garcia-Noguero, E. M.; Guerrero, B.; Kocman, D.; Bernaus, A.; Gaona, X.; Higueras, P.; Alvarez, R.; Loredo, J.; Horvat, M.; Ávila, M.

    2009-04-01

    The mobility, bioavailability and toxicity of mercury in the environment depend on the chemical species in which is present in soil, sediments, water or air. In this work we used synchrotron radiation to determine mercury species in geological samples of three mercury mining districts: Almadén (Spain), Idria (Slovenia) and Asturias (Spain). The aim of this study was to find differences on mobility and bioavailability of mercury on three mining districts with different type of mineralization. For this porpoises we selected samples of ore, calcines, soils and stream sediments from the three sites, completely characterized by the Almadén School of Mines, Josef Stefan Institute of Ljubljana and Oviedo School of Mines. Speciation of mercury was carried out on Synchrotron Laboratories of Hamburg (HASYLAB) by XANES techniques. Spectra of pure compounds [HgCl2, HgSO4, HgO, CH3HgCl, Hg2Cl2 (calomel), HgSred (cinnabar), HgSblack (metacinnabar), Hg2NCl0.5(SO4)0.3(MoO4)0.1(CO3)0.1(H2O) (mosesite), Hg3S2Cl2 (corderoite), Hg3(SO4)O2 (schuetteite) y Hg2ClO (terlinguaite)] were obtained on transmittance mode. The number and type of the compounds required to reconstruct experimental spectra for each sample was obtained by PCA analysis and linear fitting of minimum quadratics of the pure compounds spectra. This offers a semiquantitative approach to the mineralogical constitution of each analyzed sample. The results put forward differences on the efficiency of roasting furnaces from the three studied sites, evidenced by the presence of metacinnabar on the less efficient (Almadén and Asturias) and absence on the most efficient (Idria). For the three studied sites, sulfide species (cinnabar and metacinnabar) were largely more abundant than soluble species (chlorides and sulfates). On the other hand, recent results on the mobility of both Hg and As on the target sites will be presented. These results correlate with the related chemical species found by XANES techniques.

  11. Coordination chemistry of titanium (IV) in silicate glasses and melts: IV. XANES studies of synthetic and natural volcanic glasses and tektites at ambient temperature and pressure

    NASA Astrophysics Data System (ADS)

    Farges, François; Brown, Gordon E.

    1997-05-01

    The coordination environment of Ti(IV) in seven natural and synthetic glasses of basaltic, trachytic, rhyolitic composition as well as four tektites has been studied using high-resolution Ti K-edge x-ray absorption near edge structure (XANES) spectroscopy at ambient temperature and pressure. Pre-edge features of Ti K-edge XANES spectra for these glasses suggest that [5]Ti is the dominant Ti coordination in all volcanic glasses. However, in the less polymerized glasses studied (basaltic and trachytic), [6]Ti is also important (30-50% of the total Ti) but [4]Ti was not detected. In contrast, [4]Ti is important in the most polymerized glasses (rhyolites and tektites) (from 30 to 60% of the total Ti depending on NBO/T) with [6]Ti below the detection level (≈10 at%). The local structure around Ti in the natural volcanic glasses is similar to that observed in compositionally similar synthetic silicate glasses and also in Ti-bearing silicate glass and melts with simpler compositions. The presence of F, Cl, and H 2O does not appear to affect the coordination of Ti, based on Ti K-edge XANES measurements of natural glasses bearing these volatile components. In contrast, the presence of nonbridging oxygens (produced by network modifiers) favors [5]Ti in these glass/melts. In parallel, [4]Ti is important when nonbridging oxygens are at small concentrations (NBO/T < 0.1). [6]Ti is detected (i.e., when present >10% of the total Ti) when alkaline-earths are dominant over alkalis, in agreement with bond-valence predictions for Ti-bearing silicate glass/melts below TiO 2 saturation. The abundance of [5]Ti in these silicate glasses (and presumably their melts) is in sharp contrast with the rarity of this Ti coordination state in common rock-forming minerals. Titanium cannot readily enter the structure of most rock-forming minerals, because it is present dominantly as titanyl-bearing ( [5]TiO) units in most natural magmas. In contrast, [6]Ti and [4]Ti (present, respectively, in

  12. Retention Mechanisms of Citric Acid in Ternary Kaolinite-Fe(III)-Citrate Acid Systems Using Fe K-edge EXAFS and L3,2-edge XANES Spectroscopy

    PubMed Central

    Yang, Jianjun; Wang, Jian; Pan, Weinan; Regier, Tom; Hu, Yongfeng; Rumpel, Cornelia; Bolan, Nanthi; Sparks, Donald

    2016-01-01

    Organic carbon (OC) stability in tropical soils is strongly interlinked with multivalent cation interaction and mineral association. Low molecular weight organic acids (LMWOAs) represent the readily biodegradable OC. Therefore, investigating retention mechanisms of LMWOAs in mineral-cation-LMWOAs systems is critical to understanding soil C cycling. Given the general acidic conditions and dominance of kaolinite in tropical soils, we investigated the retention mechanisms of citric acid (CA) in kaolinite-Fe(III)-CA systems with various Fe/CA molar ratios at pH ~3.5 using Fe K-edge EXAFS and L3,2-edge XANES techniques. With Fe/CA molar ratios >2, the formed ferrihydrite mainly contributed to CA retention through adsorption and/or coprecipitation. With Fe/CA molar ratios from 2 to 0.5, ternary complexation of CA to kaolinite via a five-coordinated Fe(III) bridge retained higher CA than ferrihydrite-induced adsorption and/or coprecipitation. With Fe/CA molar ratios ≤0.5, kaolinite-Fe(III)-citrate complexation preferentially occurred, but less CA was retained than via outer-sphere kaolinite-CA complexation. This study highlighted the significant impact of varied Fe/CA molar ratios on CA retention mechanisms in kaolinite-Fe(III)-CA systems under acidic conditions, and clearly showed the important contribution of Fe-bridged ternary complexation on CA retention. These findings will enhance our understanding of the dynamics of CA and other LMWOAs in tropical soils. PMID:27212680

  13. Retention mechanisms of citric acid in ternary kaolinite-Fe(III)-citrate acid systems using Fe K-edge EXAFS and L 3,2-edge XANES spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Jianjun; Wang, Jian; Pan, Weinan

    Organic carbon (OC) stability in tropical soils is strongly interlinked with multivalent cation interaction and mineral association. Low molecular weight organic acids (LMWOAs) represent the readily biodegradable OC. Therefore, investigating retention mechanisms of LMWOAs in mineral-cation-LMWOAs systems is critical to understanding soil C cycling. Given the general acidic conditions and dominance of kaolinite in tropical soils, we investigated the retention mechanisms of citric acid (CA) in kaolinite-Fe(III)-CA systems with various Fe/CA molar ratios at pH ~3.5 using Fe K-edge EXAFS and L- 3,2-edge XANES techniques. With Fe/CA molar ratios >2, the formed ferrihydrite mainly contributed to CA retention through adsorptionmore » and/or coprecipitation. With Fe/CA molar ratios from 2 to 0.5, ternary complexation of CA to kaolinite via a five-coordinated Fe(III) bridge retained higher CA than ferrihydrite-induced adsorption and/or coprecipitation. With Fe/CA molar ratios ≤ 0.5, kaolinite-Fe(III)-citrate complexation preferentially occurred, but less CA was retained than via outer-sphere kaolinite-CA complexation. This study highlighted the significant impact of varied Fe/CA molar ratios on CA retention mechanisms in kaolinite-Fe(III)-CA systems under acidic conditions, and clearly showed the important contribution of Fe-bridged ternary complexation on CA retention. In conclusion, these findings will enhance our understanding of the dynamics of CA and other LMWOAs in tropical soils.« less

  14. Retention mechanisms of citric acid in ternary kaolinite-Fe(III)-citrate acid systems using Fe K-edge EXAFS and L 3,2-edge XANES spectroscopy

    DOE PAGES

    Yang, Jianjun; Wang, Jian; Pan, Weinan; ...

    2016-05-23

    Organic carbon (OC) stability in tropical soils is strongly interlinked with multivalent cation interaction and mineral association. Low molecular weight organic acids (LMWOAs) represent the readily biodegradable OC. Therefore, investigating retention mechanisms of LMWOAs in mineral-cation-LMWOAs systems is critical to understanding soil C cycling. Given the general acidic conditions and dominance of kaolinite in tropical soils, we investigated the retention mechanisms of citric acid (CA) in kaolinite-Fe(III)-CA systems with various Fe/CA molar ratios at pH ~3.5 using Fe K-edge EXAFS and L- 3,2-edge XANES techniques. With Fe/CA molar ratios >2, the formed ferrihydrite mainly contributed to CA retention through adsorptionmore » and/or coprecipitation. With Fe/CA molar ratios from 2 to 0.5, ternary complexation of CA to kaolinite via a five-coordinated Fe(III) bridge retained higher CA than ferrihydrite-induced adsorption and/or coprecipitation. With Fe/CA molar ratios ≤ 0.5, kaolinite-Fe(III)-citrate complexation preferentially occurred, but less CA was retained than via outer-sphere kaolinite-CA complexation. This study highlighted the significant impact of varied Fe/CA molar ratios on CA retention mechanisms in kaolinite-Fe(III)-CA systems under acidic conditions, and clearly showed the important contribution of Fe-bridged ternary complexation on CA retention. In conclusion, these findings will enhance our understanding of the dynamics of CA and other LMWOAs in tropical soils.« less

  15. Correlated NanoSIMS, TEM, and XANES Studies of Presolar Grains

    NASA Astrophysics Data System (ADS)

    Groopman, Evan Edward

    The objective of this thesis is to describe the correlated study of individual presolar grains via Nano-scale Secondary Ion Mass Spectrometry (NanoSIMS), Transmission Electron Microscopy (TEM), and Scanning Transmission X-ray Microscopy (STXM) utilizing X-ray Absorption Near Edge Structure (XANES), with a focus on connecting these correlated laboratory studies to astrophysical phenomena. The correlated isotopic, chemical, and microstructural studies of individual presolar grains provide the most detailed description of their formation environments, and help to inform astrophysical models and observations of stellar objects. As a part of this thesis I have developed and improved upon laboratory techniques for micromanipulating presolar grains and embedding them in resin for ultramicrotomy after NanoSIMS analyses and prior to TEM characterization. The new methods have yielded a 100% success rate and allow for the specific correlation of microstructural and isotopic properties of individual grains. Knowing these properties allows for inferences to be made regarding the condensation sequences and the origins of the stellar material that condensed to form these grains. NanoSIMS studies of ultramicrotomed sections of presolar graphite grains have revealed complex isotopic heterogeneities that appear to be primary products of the grains' formation environments and not secondary processing during the grains' lifetimes. Correlated excesses in 15N and 18O were identified as being carried by TiC subgrains within presolar graphite grains from supernovae (SNe). These spatially-correlated isotopic anomalies pinpoint the origin of the material that formed these grains: the inner He/C zone. Complex microstructures and isotopic heterogeneities also provide evidence for mixing in globular SN ejecta, which is corroborated by models and telescopic observations. In addition to these significant isotopic discoveries, I have also observed the first reported nanocrystalline core

  16. X-ray absorption and Raman spectroscopy studies of molybdenum environments in borosilicate waste glasses

    NASA Astrophysics Data System (ADS)

    McKeown, David A.; Gan, Hao; Pegg, Ian L.

    2017-05-01

    Mo-containing high-level nuclear waste borosilicate glasses were investigated as part of an effort to improve Mo loading while avoiding yellow phase crystallization. Previous work showed that additions of vanadium decrease yellow phase formation and increases Mo solubility. X-ray absorption spectroscopy (XAS) and Raman spectroscopy were used to characterize Mo environments in HLW borosilicate glasses and to investigate possible structural relationships between Mo and V. Mo XAS spectra for the glasses indicate isolated tetrahedral Mo6+O4 with Mo-O distances near 1.75 Å. V XANES indicate tetrahedral V5+O4 as the dominant species. Raman spectra show composition dependent trends, where Mo-O symmetrical stretch mode frequencies (ν1) are sensitive to the mix of alkali and alkaline earth cations, decreasing by up to 10 cm-1 for glasses that change from Li+ to Na+ as the dominant network-modifying species. This indicates that MoO4 tetrahedra are isolated from the borosilicate network and are surrounded, at least partly, by Na+ and Li+. Secondary ν1 frequency effects, with changes up to 7 cm-1, were also observed with increasing V2O5 and MoO3 content. These secondary trends may indicate MoO4-MoO4 and MoO4-VO4 clustering, suggesting that V additions may stabilize Mo in the matrix with respect to yellow phase formation.

  17. The coordination of sulfur in synthetic and biogenic Mg calcites: The red coral case

    NASA Astrophysics Data System (ADS)

    Perrin, J.; Rivard, C.; Vielzeuf, D.; Laporte, D.; Fonquernie, C.; Ricolleau, A.; Cotte, M.; Floquet, N.

    2017-01-01

    Sulfur has been recognized in biogenic calcites for a long time. However, its structural position is matter of debate. For some authors, sulfur is a marker of the organic matrix while it is part of the calcite structure itself for others. To better understand the place of sulfur in calcite, sulfated magnesian calcites (S-MgCalcite) have been synthetized at high pressure and temperature and studied by μ-XANES spectroscopy. S-MgCalcite XANES spectra show two different types of sulfur: sulfate (SO42-) as a predominant species and a small contribution of sulfite (SO32-), both substituting for carbonate ions in the calcite structure. To address the question of the position of sulfur in biogenic calcites, the oxidation states of sulfur in the skeleton and organic tissues of Corallium rubrum have been investigated by micro X-ray fluorescence (μ-XRF) and sulfur K-edge micro X-ray absorption near edge structure (μ-XANES) spectroscopy at the European Synchrotron Radiation Facility (ESRF, Grenoble, France) on beamline ID21. In the skeleton, sulfur is mainly present as oxidized sulfur SO42- (+VI), plus a weak sulfite contribution. XANES spectra indicate that sulfur is inorganically incorporated as sulfur structurally substituted to carbonate ions (SSS). Although an organic matrix is present in the red coral skeleton, reduced organic sulfur could not be detected by μ-XANES spectroscopy in the skeleton probably due to low organic/inorganic sulfur ratio. In the organic tissues surrounding the skeleton, several sulfur oxidation states have been detected including disulfide (S-S), thioether (R-S-CH3), sulfoxide (SO2), sulfonate (SO2O-) and sulfate (SO42-). The unexpected occurrence of inorganic sulfate within the organic tissues suggests the presence of pre-organized organic/inorganic complexes in the circulatory system of the red coral, precursors to biomineralization ahead of the growth front.

  18. Elucidating the Nature of the Excited State of a Heteroleptic Copper Photosensitizer by using Time-Resolved X-ray Absorption Spectroscopy.

    PubMed

    Moonshiram, Dooshaye; Garrido-Barros, Pablo; Gimbert-Suriñach, Carolina; Picón, Antonio; Liu, Cunming; Zhang, Xiaoyi; Karnahl, Michael; Llobet, Antoni

    2018-04-25

    We report the light-induced electronic and geometric changes taking place within a heteroleptic Cu I photosensitizer, namely [(xant)Cu(Me 2 phenPh 2 )]PF 6 (xant=xantphos, Me 2 phenPh 2 =bathocuproine), by time-resolved X-ray absorption spectroscopy in the ps-μs time regime. Time-resolved X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analysis enabled the elucidation of the electronic and structural configuration of the copper center in the excited state as well as its decay dynamics in different solvent conditions with and without triethylamine acting as a sacrificial electron donor. A three-fold decrease in the decay lifetime of the excited state is observed in the presence of triethylamine, showing the feasibility of the reductive quenching pathway in the latter case. A prominent pre-edge feature is observed in the XANES spectrum of the excited state upon metal to charge ligand transfer transition, showing an increased hybridization of the 3d states with the ligand p orbitals in the tetrahedron around the Cu center. EXAFS and density functional theory illustrate a significant shortening of the Cu-N and an elongation of the Cu-P bonds together with a decrease in the torsional angle between the xantphos and bathocuproine ligand. This study provides mechanistic time-resolved understanding for the development of improved heteroleptic Cu I photosensitizers, which can be used for the light-driven production of hydrogen from water. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Use of X-ray absorption near edge structure (XANES) to identify physisorption and chemisorption of phosphate onto ferrihydrite-modified diatomite.

    PubMed

    Xiong, Wenhui; Peng, Jian; Hu, Yongfeng

    2012-02-15

    This paper presents a novel technique integrating bulk-sensitive and surface-sensitive XANES methods to distinguish between physisorption and chemisorption for phosphate adsorption onto ferrihydrite-modified diatomite (FHMD). XANES P K-edge, L-edge, and Fe M-edge spectra were obtained for reference samples (K(2)HPO(4) and FePO(4)·2H(2)O) and test samples (phosphate adsorbed onto FHMD (FHMD-Ps) and Si-containing ferrihydrite (FHYD-Ps)). A resolvable pre-edge peak in the P K-edge spectra of FHMD-Ps and FHYD-Ps provided direct evidence for the formation of P-O-Fe(III) coordination and the occurrence of chemisorption. The resemblance between the P L-edge spectra of K(2)HPO(4) and FHMD-Ps and the marked difference between the spectra of FHMD-Ps and FePO(4)·2H(2)O indicated the intact existence of the adsorbate and the adsorbent. The similarity between Fe M-edge spectra of FHMD and FHMD-Ps and the difference between the spectra of FHMD-Ps and FePO(4)·2H(2)O confirmed the findings from P L-edge analyses. Therefore, chemisorption and physisorption coexisted during phosphate adsorption onto FHMD. Phosphate chemisorption occurred in the deeper zone of FHMD (from 50 nm to 5 μm); whereas physisorption occurred in the zone of FHMD shallower than 50 nm since the probing depth of XANES P K-edge method is 5 μm and that of P L-edge and Fe M-edge methods is 50 nm. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Micro-Raman spectroscopy shows how the coating process affects the characteristics of hydroxylapatite.

    PubMed

    Saber-Samandari, Saeed; Alamara, Kadhim; Saber-Samandari, Samaneh; Gross, Karlis A

    2013-12-01

    The diversity in the structural and chemical state of apatites allows implant manufacturers to fine-tune implant properties. This requires suitable manufacturing processes and characterization tools to adjust the amorphous phase and hydroxyl content from the source hydroxylapatite. Hydroxylapatite was processed by high-velocity oxy-fuel spraying, plasma spraying and flame spraying, and primarily analyzed by Raman spectroscopy. Investigation of rounded splats, the building blocks of thermal spray coatings, allowed correlation between the visual identity of the splat surface and the Raman spectra. Splats were heat-treated to crystallize any remaining amorphous phase. The ν1 PO4 stretching peak at 950-970 cm(-1) displayed the crystalline order, but the hydroxyl peak at 3572 cm(-1) followed the degree of dehydroxylation. Hydroxyl loss was greatest for flame-sprayed particles, which create the longest residence time for the melted particle. Higher-frequency hydroxyl peaks in flame- and plasma-sprayed splats indicated a lower structural order for the recrystallized hydroxylapatite within the splats. Crystallization at 700 °C has shown potential for revealing hydroxyl ions previously trapped in amorphous calcium phosphate. This work compares Fourier transform infrared and Raman spectroscopy to measure the hydroxyl content in rapidly solidified apatites and shows that Raman spectroscopy is more suitable. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Estimating the number of pure chemical components in a mixture by X-ray absorption spectroscopy.

    PubMed

    Manceau, Alain; Marcus, Matthew; Lenoir, Thomas

    2014-09-01

    Principal component analysis (PCA) is a multivariate data analysis approach commonly used in X-ray absorption spectroscopy to estimate the number of pure compounds in multicomponent mixtures. This approach seeks to describe a large number of multicomponent spectra as weighted sums of a smaller number of component spectra. These component spectra are in turn considered to be linear combinations of the spectra from the actual species present in the system from which the experimental spectra were taken. The dimension of the experimental dataset is given by the number of meaningful abstract components, as estimated by the cascade or variance of the eigenvalues (EVs), the factor indicator function (IND), or the F-test on reduced EVs. It is shown on synthetic and real spectral mixtures that the performance of the IND and F-test critically depends on the amount of noise in the data, and may result in considerable underestimation or overestimation of the number of components even for a signal-to-noise (s/n) ratio of the order of 80 (σ = 20) in a XANES dataset. For a given s/n ratio, the accuracy of the component recovery from a random mixture depends on the size of the dataset and number of components, which is not known in advance, and deteriorates for larger datasets because the analysis picks up more noise components. The scree plot of the EVs for the components yields one or two values close to the significant number of components, but the result can be ambiguous and its uncertainty is unknown. A new estimator, NSS-stat, which includes the experimental error to XANES data analysis, is introduced and tested. It is shown that NSS-stat produces superior results compared with the three traditional forms of PCA-based component-number estimation. A graphical user-friendly interface for the calculation of EVs, IND, F-test and NSS-stat from a XANES dataset has been developed under LabVIEW for Windows and is supplied in the supporting information. Its possible application to

  2. Combining µXANES and µXRD mapping to analyse the heterogeneity in calcium carbonate granules excreted by the earthworm Lumbricus terrestris

    PubMed Central

    Brinza, Loredana; Schofield, Paul F.; Hodson, Mark E.; Weller, Sophie; Ignatyev, Konstantin; Geraki, Kalotina; Quinn, Paul D.; Mosselmans, J. Frederick W.

    2014-01-01

    The use of fluorescence full spectral micro-X-ray absorption near-edge structure (µXANES) mapping is becoming more widespread in the hard energy regime. This experimental method using the Ca K-edge combined with micro-X-ray diffraction (µXRD) mapping of the same sample has been enabled on beamline I18 at Diamond Light Source. This combined approach has been used to probe both long- and short-range order in calcium carbonate granules produced by the earthworm Lumbricus terrestris. In granules produced by earthworms cultured in a control artificial soil, calcite and vaterite are observed in the granules. However, granules produced by earthworms cultivated in the same artificial soil amended with 500 p.p.m. Mg also contain an aragonite. The two techniques, µXRD and µXANES, probe different sample volumes but there is good agreement in the phase maps produced. PMID:24365942

  3. The Valence of Iron in CM Chondrite Serpentine as Measured by Synchrotron Xanes

    NASA Technical Reports Server (NTRS)

    Mikouchi, T.; Zolensky, Michael E.; Satake, W.; Le, L.

    2012-01-01

    Fe-bearing phyllosilicates are the dominant product of aqueous alteration in carbonaceous chondrites, and serpentine is the most abundant phyllosilicate in CM2 chondrites that are the most abundant carbonaceous chondrite. Browning et al. predicted that Fe(3+)/(sum of Fe) ratios of serpentine in CM chondrites should change with progressive alteration. They proposed that progressive CM alteration is best monitored by evaluating the progress of Si and Fe3+ substitutions that necessarily attend the transition from end-member cronstedtite to serpentine. Their proposed Mineralogic Alteration Index, 2-(Fe(3+)/(2-Si)), was intended to highlight and utilize the relevant ex-change information in the stoichiometric phyllosilicate formulas based upon the coupled substitution of 2(Fe(3+), Al) = Si + (Mg, Fe(2+)...) in serpentine. The value of this ratio increases as alteration proceeds. We always wanted to directly test Browning s pre-diction through actual measurements of the Fe3+ con-tent of serpentine at the micron scale appropriate to EPMA analyses (Zega et al. have measured it at much finer scale), and this test can now be made using Synchrotron Radiation X-ray Absorption Near-Edge Structure (SR-XANES). Thus, we have recently begun investigation with CMs that span a large portion of the range of observed aqueous alteration, and we first analyzed Murray, Nogoya, and ALH84029 by SR-XANES. However, we did not find clear correlation between Fe3+/(sum of Fe) ratios of serpentine and their alteration degrees. We thus analyzed serpentine in three more CMs and here report their Fe3+/(sum of Fe) ratios in comparison with our previous results.

  4. Fischer–Tropsch Synthesis: XANES Spectra of Potassium in Promoted Precipitated Iron Catalysts as a Function of Time On-stream

    DOE PAGES

    Jacobs, Gary; Pendyala, Venkat Ramana Rao; Martinelli, Michela; ...

    2017-06-06

    XANES K-edge spectra of potassium promoter in precipitated Fe catalysts were acquired following activation by carburization in CO and as a function of time on-stream during the course of a Fischer–Tropsch synthesis run for a 100Fe:2K catalyst by withdrawing catalysts, sealed in wax product, for analysis. CO-activated and end-of-run spectra of the catalyst were also obtained for a 100Fe:5K catalyst. Peaks representing electronic transitions and multiple scattering were observed and resembled reference spectra for potassium carbonate or potassium formate. The shift in the multiple scattering peak to higher energy was consistent with sintering of potassium promoter during the course ofmore » the reaction test. The catalyst, however, retained its carbidic state, as demonstrated by XANES and EXAFS spectra at the iron K-edge, suggesting that sintering of potassium did not adversely affect the carburization rate, which is important for preventing iron carbides from oxidizing. This method serves as a starting point for developing better understanding of the chemical state and changes in structure occurring with alkali promoter.« less

  5. Speciation of sulfur from filamentous microbial mats from sulfidic cave springs using X-ray absorption near-edge spectroscopy.

    PubMed

    Engel, Annette Summers; Lichtenberg, Henning; Prange, Alexander; Hormes, Josef

    2007-04-01

    Most transformations within the sulfur cycle are controlled by the biosphere, and deciphering the abiotic and biotic nature and turnover of sulfur is critical to understand the geochemical and ecological changes that have occurred throughout the Earth's history. Here, synchrotron radiation-based sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy is used to examine sulfur speciation in natural microbial mats from two aphotic (cave) settings. Habitat geochemistry, microbial community compositions, and sulfur isotope systematics were also evaluated. Microorganisms associated with sulfur metabolism dominated the mats, including members of the Epsilonproteobacteria and Gammaproteobacteria. These groups have not been examined previously by sulfur K-edge XANES. All of the mats consisted of elemental sulfur, with greater contributions of cyclo-octasulfur (S8) compared with polymeric sulfur (Smicro). While this could be a biological fingerprint for some bacteria, the signature may also indicate preferential oxidation of Smicro and S8 accumulation. Higher sulfate content correlated to less S8 in the presence of Epsilonproteobacteria. Sulfur isotope compositions confirmed that sulfur content and sulfur speciation may not correlate to microbial metabolic processes in natural samples, thereby complicating the interpretation of modern and ancient sulfur records.

  6. X-ray absorption and Raman spectroscopy studies of molybdenum environments in borosilicate waste glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKeown, David A.; Gan, Hao; Pegg, Ian L.

    2017-05-01

    Mo-containing high-level nuclear waste borosilicate glasses were investigated as part of an effort to improve Mo loading while avoiding yellow phase crystallization. Previous work showed that additions of vanadium decrease yellow phase formation and increases Mo solubility. X-ray absorption spectroscopy (XAS) and Raman spectroscopy were used to characterize Mo environments in HLW borosilicate glasses and to investigate possible structural relationships between Mo and V. Mo XAS spectra for the glasses indicate isolated tetrahedral Mo6+O4 with Mo-O distances near 1.75 Å. V XANES indicate tetrahedral V5+O4 as the dominant species. Raman spectra show composition dependent trends, where Mo-O symmetrical stretch modemore » frequencies (ν1) are sensitive to the mix of alkali and alkaline earth cations, decreasing by up to 10 cm-1 for glasses that change from Li+ to Na+ as the dominant network-modifying species. This indicates that MoO4 tetrahedra are isolated from the borosilicate network and are surrounded, at least partly, by Na+ and Li+. Secondary ν1 frequency effects, with changes up to 7 cm-1, were also observed with increasing V2O5 and MoO3 content. These secondary trends may indicate MoO4-MoO4 and MoO4-VO4 clustering, suggesting that V additions may stabilize Mo in the matrix with respect to yellow phase formation.« less

  7. Investigation of the Structural Stability of Ion-Implanted Gd 2Ti 2-xSn xO 7 Pyrochlore-Type Oxides by Glancing Angle X-ray Absorption Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aluri, Esther Rani; Hayes, John R.; Walker, James D.S.

    2016-03-24

    Rare-earth titanate and stannate pyrochlore-type oxides have been investigated in the past for the sequestration of nuclear waste elements because of their resistance to radiation-induced structural damage. In order to enhance this property, it is necessary to understand the effect of radioactive decay of the incorporated actinide elements on the local chemical environment. In this study, Gd 2Ti 2–xSn xO 7 materials have been implanted with Au– ions to simulate radiation-induced structural damage. Glancing angle X-ray absorption near-edge spectroscopy (GA-XANES), glancing angle X-ray absorption fine structure (GA-EXAFS) analysis, and powder X-ray diffraction have been used to investigate changes in themore » local coordination environment of the metal atoms in the damaged surface layer. Examination of GA-XANES/EXAFS spectra from the implanted Gd 2Ti 2–xSn xO 7 materials collected at various glancing angles allowed for an investigation of how the local coordination environment around the absorbing atoms changed at different depths in the damaged surface layer. This study has shown the usefulness of GA-XANES to the examination of ion-implanted materials and has suggested that Gd 2Ti 2–xSn xO 7 becomes more susceptible to ion-beam-induced structural damage with increasing Sn concentration.« less

  8. Speciation of metal(loid)s in environmental samples by X-ray absorption spectroscopy: a critical review.

    PubMed

    Gräfe, Markus; Donner, Erica; Collins, Richard N; Lombi, Enzo

    2014-04-25

    Element specificity is one of the key factors underlying the widespread use and acceptance of X-ray absorption spectroscopy (XAS) as a research tool in the environmental and geo-sciences. Independent of physical state (solid, liquid, gas), XAS analyses of metal(loid)s in complex environmental matrices over the past two decades have provided important information about speciation at environmentally relevant interfaces (e.g. solid-liquid) as well as in different media: plant tissues, rhizosphere, soils, sediments, ores, mineral process tailings, etc. Limited sample preparation requirements, the concomitant ability to preserve original physical and chemical states, and independence from crystallinity add to the advantages of using XAS in environmental investigations. Interpretations of XAS data are founded on sound physical and statistical models that can be applied to spectra of reference materials and mixed phases, respectively. For spectra collected directly from environmental matrices, abstract factor analysis and linear combination fitting provide the means to ascertain chemical, bonding, and crystalline states, and to extract quantitative information about their distribution within the data set. Through advances in optics, detectors, and data processing, X-ray fluorescence microprobes capable of focusing X-rays to micro- and nano-meter size have become competitive research venues for resolving the complexity of environmental samples at their inherent scale. The application of μ-XANES imaging, a new combinatorial approach of X-ray fluorescence spectrometry and XANES spectroscopy at the micron scale, is one of the latest technological advances allowing for lateral resolution of chemical states over wide areas due to vastly improved data processing and detector technology. Copyright © 2014. Published by Elsevier B.V.

  9. Solid state synthesis of layered sodium manganese oxide for sodium-ion battery by in-situ high energy X-ray diffraction and X-ray absorption near edge spectroscopy [Solid state synthesis of layered sodium manganese oxide for sodium-ion battery by in-situ HEXRD and XANES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Tianyuan; Xu, Gui -Liang; Zeng, Xiaoqiao

    In situ high energy X-ray diffraction (HEXRD) and in situ X-ray absorption near edge spectroscopy (XANES) were carried out to understand the soild state synthesis of Na xMnO 2, with particular interest on the synthesis of P2 type Na 2/3MnO 2. It was found that there were multi intermediate phases formed before NaMnO 2 appeared at about 600 °C. And the final product after cooling process is a combination of O'3 NaMnO 2 with P2 Na 2/3MnO 2. A P2 type Na 2/3MnO 2 was synthesized at reduced temperature (600 °C). The influence of Na 2CO 3 impurity on themore » electrochemical performance of P2 Na 2/3MnO 2 was thoroughly investigated in our work. It was found that the content of Na 2CO 3 can be reduced by optimizing Na 2CO 3/MnCO 3 ratio during the solid state reaction or other post treatment such as washing with water. Lastly, we expected our results could provide a good guide for future development of high performance cathode materials for sodium-ion batteries.« less

  10. Solid state synthesis of layered sodium manganese oxide for sodium-ion battery by in-situ high energy X-ray diffraction and X-ray absorption near edge spectroscopy [Solid state synthesis of layered sodium manganese oxide for sodium-ion battery by in-situ HEXRD and XANES

    DOE PAGES

    Ma, Tianyuan; Xu, Gui -Liang; Zeng, Xiaoqiao; ...

    2016-12-07

    In situ high energy X-ray diffraction (HEXRD) and in situ X-ray absorption near edge spectroscopy (XANES) were carried out to understand the soild state synthesis of Na xMnO 2, with particular interest on the synthesis of P2 type Na 2/3MnO 2. It was found that there were multi intermediate phases formed before NaMnO 2 appeared at about 600 °C. And the final product after cooling process is a combination of O'3 NaMnO 2 with P2 Na 2/3MnO 2. A P2 type Na 2/3MnO 2 was synthesized at reduced temperature (600 °C). The influence of Na 2CO 3 impurity on themore » electrochemical performance of P2 Na 2/3MnO 2 was thoroughly investigated in our work. It was found that the content of Na 2CO 3 can be reduced by optimizing Na 2CO 3/MnCO 3 ratio during the solid state reaction or other post treatment such as washing with water. Lastly, we expected our results could provide a good guide for future development of high performance cathode materials for sodium-ion batteries.« less

  11. XPS and Ag L3-edge XANES characterization of silver and silver-gold sulfoselenides

    NASA Astrophysics Data System (ADS)

    Mikhlin, Yuri L.; Pal'yanova, Galina A.; Tomashevich, Yevgeny V.; Vishnyakova, Elena A.; Vorobyev, Sergey A.; Kokh, Konstantin A.

    2018-05-01

    Gold and silver sulfoselenides are of interest as materials with high ionic conductivity and promising magnetoresistive, thermoelectric, optical, and other physico-chemical properties, which are strongly dependent on composition and structure. Here, we applied X-ray photoelectron spectroscopy and Ag L3 X-ray absorption near-edge structure (XANES) to study the electronic structures of low-temperature compounds and solid solutions Ag2SxSe1-x (0 < x < 1), AgAuS, and Ag3AuSxSe2-x (x = 0, 1, 2). Upon substitution of Se with S, a steady increase in the positive charge at Ag(I) sites and only minor changes in the local charge at chalcogen atoms were found from the photoelectron Ag 3d, S 2p, Se 3d, and Ag M4,5VV Auger spectra. The intensity of the Ag L3-edge peak, which is known to correlate with hole counts in the Ag 4d shell having a formal d10 configuration, was enhanced by 20-25% from Ag2Se to Ag2S and from Ag3AuSe2 to Ag3AuS2. The effect of gold is more pronounced, and the number of Ag d holes and the negative charge of S and Se notably decreased for Au-containing compounds; in particular, the Ag L3-edge peak is about 35% lower for AgAuS relative to Ag2S. At the same time, the Au 4f binding energy and, therefore, charge at Au(I) sites increase with increasing S content due to the transfer of electron density from Au to Ag atoms. It was concluded that the effects mainly originate from shortening of the metal-chalcogen and especially the Ausbnd Ag interatomic distances in substances having similar coordination geometry.

  12. Synchrotron Micro-XANES Measurements of Vanadium Oxidation State in Glasses as a Function of Oxygen Fugacity: Experimental Calibration of Data Relevant to Partition Coefficient Determination

    NASA Technical Reports Server (NTRS)

    Delaney, J. S.; Sutton, S. R.; Newville, M.; Jones, J. H.; Hanson, B.; Dyar, M. D.; Schreiber, H.

    2000-01-01

    Oxidation state microanalyses for V in glass have been made by calibrating XANES spectral features with optical spectroscopic measurements. The oxidation state change with fugacity of O2 will strongly influence partitioning results.

  13. Using X-ray Microscopy and Hg L3 XANES to study Hg Binding in the Rhizosphere of Spartina Cordgrass

    PubMed Central

    Patty, Cynthia; Barnett, Brandy; Mooney, Bridget; Kahn, Amanda; Levy, Silvio; Liu, Yijin; Pianetta, Piero; Andrews, Joy C

    2009-01-01

    San Francisco Bay has been contaminated historically by mercury from mine tailings as well as contemporary industrial sources. Native Spartina foliosa and non-native S. alterniflora-hybrid cordgrasses are dominant florae within the SF Bay estuary environment. Understanding mercury uptake and transformations in these plants will help to characterize the significance of their roles in mercury biogeochemical cycling in the estuarine environment. Methylated mercury can be biomagnified up the food web, resulting in levels in sport fish up to one million times greater than in surrounding waters and resulting in advisories to limit fish intake. Understanding the uptake and methylation of mercury in the plant rhizosphere can yield insight into ways to manage mercury contamination. The transmission x-ray microscope on beamline 6-2 at the Stanford Synchrotron Radiation Lightsource (SSRL) was used to obtain absorption contrast images and 3D tomography of Spartina foliosa roots that were exposed to 1 ppm Hg (as HgCl2) hydroponically for one week. Absorption contrast images of micron-sized roots from S. foliosa revealed dark particles, and dark channels within the root, due to Hg absorption. 3D tomography showed that the particles are on the root surface, and slices from the tomographic reconstruction revealed that the particles are hollow, consistent with microorganisms with a thin layer of Hg on the surface. Hg L3 XANES of ground-up plant roots and Hg L3 micro-XANES from microprobe analysis of micron-sized roots (60–120 microns in size) revealed three main types of speciation in both Spartina species: Hg-S ligation in a form similar to Hg(II) cysteine, Hg-S bonding as in cinnabar and metacinnabar, and methylmercury-carboxyl bonding in a form similar to methylmercury acetate. These results are interpreted within the context of obtaining a “snapshot” of mercury methylation in progress. PMID:19848152

  14. Using X-ray microscopy and Hg L3 XANES to study Hg binding in the rhizosphere of Spartina cordgrass.

    PubMed

    Patty, Cynthia; Barnett, Brandy; Mooney, Bridget; Kahn, Amanda; Levy, Silvio; Liu, Yijin; Pianetta, Piero; Andrews, Joy C

    2009-10-01

    San Francisco Bay has been contaminated historically by mercury from mine tailings as well as contemporary industrial sources. Native Spartina foliosa and non-native S. alterniflora-hybrid cordgrasses are dominant florae within the SF Bay estuary environment. Understanding mercury uptake and transformations in these plants will help to characterize the significance of their roles in mercury biogeochemical cycling in the estuarine environment. Methylated mercury can be biomagnified up the food web, resulting in levels in sport fish up to 1 million times greater than in surrounding waters and resulting in advisories to limit fish intake. Understanding the uptake and methylation of mercury in the plant rhizosphere can yield insight into ways to manage mercury contamination. The transmission X-ray microscope on beamline 6-2 at the Stanford Synchrotron Radiation Lightsource (SSRL) was used to obtain absorption contrast images and 3D tomography of Spartina foliosa roots that were exposed to 1 ppm Hg (as HgCl2) hydroponically for 1 week. Absorption contrast images of micrometer-sized roots from S. foliosa revealed dark particles, and dark channels within the root, due to Hg absorption. 3D tomography showed that the particles are on the root surface, and slices from the tomographic reconstruction revealed that the particles are hollow, consistent with microorganisms with a thin layer of Hg on the surface. Hg L3 XANES of ground-up plant roots and Hg L3 micro-XANES from microprobe analysis of micrometer-sized roots (60-120 microm in size) revealed three main types of speciation in both Spartina species: Hg-S ligation in a form similar to Hg(II) cysteine, Hg-S bonding as in cinnabar and metacinnabar, and methylmercury-carboxyl bonding in a form similar to methylmercury acetate. These results are interpreted within the context of obtaining a "snapshot" of mercury methylation in progress.

  15. Investigation of arsenic species in tailings and windblown dust from a gold mining area.

    PubMed

    Ono, F B; Tappero, R; Sparks, D; Guilherme, L R G

    2016-01-01

    Research has shown the presence of high levels of arsenic (up to 2666 mg As kg(-1)) in tailings from a gold mining area of Brazil. This is an important point of attention, generating concerns about impacts on human health. Yet, a recent study showed that As bioaccessibility in the same area was very low (<4.4%). Thus, determination of the direct solid-phase speciation of As in the mine tailings and windblown dust is needed to explain this low bioaccessibility. Mine samples were collected from four subareas and windblown dust from eight sites. Synchrotron-based bulk-X-ray absorption near-edge structure (bulk-XANES) spectroscopy, micro-X-ray absorption near-edge structure (μ-XANES), and μ-X-ray fluorescence (μ-SXRF) spectroscopy were applied to determine As speciation. Bulk-XANES spectra indicated that As occurs as the As(V) oxidation state. Micro-XANES and μ-SXRF analyses revealed that As was also present as arsenopyrite (FeAsS) and its weathering products, but mostly it was As(V) as poorly crystalline ferric arsenate. This supports the findings of low bioaccessible As and highlights the importance of Fe oxides in immobilizing As in the terrestrial environment. All air particulate samples exhibited As-rich particles (up to 313 mg As kg(-1)). The air particulates exhibited solid-phase As species very similar to those found in the mine samples, which indicates that As in the windblown dust is not easily available.

  16. Speciation and distribution of copper in a mining soil using multiple synchrotron-based bulk and microscopic techniques.

    PubMed

    Yang, Jianjun; Liu, Jin; Dynes, James J; Peak, Derek; Regier, Tom; Wang, Jian; Zhu, Shenhai; Shi, Jiyan; Tse, John S

    2014-02-01

    Molecular-level understanding of soil Cu speciation and distribution assists in management of Cu contamination in mining sites. In this study, one soil sample, collected from a mining site contaminated since 1950s, was characterized complementarily by multiple synchrotron-based bulk and spatially resolved techniques for the speciation and distribution of Cu as well as other related elements (Fe, Ca, Mn, K, Al, and Si). Bulk X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy revealed that soil Cu was predominantly associated with Fe oxides instead of soil organic matter. This agreed with the closest association of Cu to Fe by microscopic X-ray fluorescence (U-XRF) and scanning transmission X-ray microscopy (STXM) nanoanalysis, along with the non-occurrence of photoreduction of soil Cu(II) by quick Cu L3,2-edge XANES spectroscopy (Q-XANES) which often occurs when Cu organic complexes are present. Furthermore, bulk-EXAFS and STXM-coupled Fe L3,2-edge nano-XANES analysis revealed soil Cu adsorbed primarily to Fe(III) oxides by inner-sphere complexation. Additionally, Cu K-edge μ-XANES, L3,2-edge bulk-XANES, and successive Q-XANES results identified the presence of Cu2S rather than radiation-damage artifacts dominant in certain microsites of the mining soil. This study demonstrates the great benefits in use of multiple combined synchrotron-based techniques for comprehensive understanding of Cu speciation in heterogeneous soil matrix, which facilitates our prediction of Cu reactivity and environmental fate in the mining site.

  17. Nanoparticulate mackinawite formation; a stopped and continuous flow XANES and EXAFS investigation

    NASA Astrophysics Data System (ADS)

    Butler, I. B.; Bell, A. M.; Charnock, J. M.; Rickard, D.; Vaughan, D. J.; Oldroyd, A.

    2009-12-01

    The sequestration of sulfur and iron within sedimentary iron sulfides, and ultimately as pyrite, is a major sink in global biogeochemical cycles of those elements and has impacts on global carbon and oxygen cycles. The formation of the metastable black iron (II) monosulfide mackinawite is a key process because mackinawite forms in aqueous solutions where the Fe(II) and S(-II) IAP exceeds mackinawite’s Ksp. Mackinawite is the first formed iron sulfide phase, a consequence of Ostwald’s step rule and is a reactant phase during the formation of thermodynamically stable sedimentary iron sulfide minerals such as pyrite. The reaction of dissolved Fe(II) and sulfide is extremely fast and reactions in the environmentally significant near-neutral pH range tend to completion in <1 second. We have combined stopped and continuous flow techniques with X-ray absorption spectroscopy to evaluate the products of the fast precipitation kinetics of mackinawite over millisecond timescales. EXAFS spectra and data collected during flow experiments were compared with those from a well characterised freeze-dried nanoparticulate mackinawite standard and with published data. Published work has used Rietveld crystal structure refinement to determine bond distances of 2.2558 and 2.5976Å for Fe-S and Fe-Fe respectively. In our experiments Fe K edge XANES is consistent with tetrahedrally coordinated Fe in the precipitated sulfide phase. EXAFS data show that local Fe-S and Fe-Fe coordination and interatomic distances (Fe-S = 2.24Å; Fe-Fe = 2.57Å) are consistent with those determined for the standard mackinawite and published data. The coordination and spacing are developed in the precipitated phase after <10ms reaction at pH5, and considerably faster in experiments at near neutral to alkaline pH. No evidence for phases structurally intermediate between hexaqua Fe(II) and precipitated mackinawite was observed. Aqueous FeS° cluster complexes previously identified as intermediates during

  18. Electrosynthesis of ZnO nanorods and nanotowers: Morphology and X-ray Absorption Near Edge Spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Sigircik, Gokmen; Erken, Ozge; Tuken, Tunc; Gumus, Cebrail; Ozkendir, Osman M.; Ufuktepe, Yuksel

    2015-06-01

    Deposition mechanism of nano-structured ZnO films has been investigated in the absence and presence of chloride ions from aqueous solution. The resulting opto-electronic properties were interpreted extensively, using X-ray diffraction (XRD), X-ray Absorption Near Edge Spectroscopy (XANES), field emission scanning electron microscopy (FE-SEM), UV-Visible spectroscopy and four probe techniques. The ZnO deposition is mass transport controlled process and the interaction of chloride ions with the surface has great influence on diffusion kinetics, considering the substantial species (Zn2+ and OH-) involved in the construction of ZnO film. This effect does not change major lattice parameters, as shown with detailed analysis of XRD data. However, the texture coefficient (Tc) (0 0 2) value is higher in presence of chloride ions containing synthesis solution which gave vertically aligned, well defined and uniformly dispersed nanorods structure. The calculated Eg values are in the range 3.28-3.41 eV and 3.22-3.31 eV for ZnO nanorods and nanotowers synthesized at different deposition periods, respectively. Furthermore, the charge mobility values regarding the deposition periods were measured to be in the ranges from 130.4 to 449.2 cm2 V-1 s-1 and 126.2 to 204.7 cm2 V-1 s-1 for nanorods and nanotowers, respectively. From XANES results, it was shown that the Zn K-edge spectrum is dominated by the transition of Zn 1s core electrons into the unoccupied Zn 4p states of the conduction band. Comparing the rod and tower nano-structured ZnO thin films, the excitation behavior of valence band electrons is different. Moreover, the density states of Zn 4p are higher for ZnO nanorods.

  19. Investigating the local structure of B-site cations in (1-x)BaTiO3-xBiScO3 and (1-x)PbTiO3-xBiScO3 using X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Blanchard, Peter E. R.; Grosvenor, Andrew P.

    2018-05-01

    The structural properties of (1-x)BaTiO3-xBiScO3 and (1-x)PbTiO3-xBiScO3 were investigated using powder X-ray diffraction and X-ray absorption spectroscopy. Diffraction measurements confirmed that substituting small amounts of BiScO3 into BaTiO3 initially stabilizes a cubic phase at x = 0.2 before impurity phases begin to form at x = 0.5. BiScO3 substitution also resulted in noticeable changes in the local coordination environment of Ti4+. X-ray absorption near-edge spectroscopy (XANES) analysis showed that replacing Ti4+ with Sc3+ results in an increase in the off-centre displacement of Ti4+ cations. Surprisingly, BiScO3 substitution has no effect on the displacement of the Ti4+ cation in the (1-x)PbTiO3-xBiScO3 solid solution.

  20. Growth of block copolymer stabilized metal nanoparticles probed simultaneously by in situ XAS and UV-Vis spectroscopy.

    PubMed

    Nayak, C; Bhattacharyya, D; Jha, S N; Sahoo, N K

    2016-01-01

    The growth of Au and Pt nanoparticles from their respective chloride precursors using block copolymer-based reducers has been studied by simultaneous in situ measurement of XAS and UV-Vis spectroscopy at the energy-dispersive EXAFS beamline (BL-08) at INDUS-2 SRS at RRCAT, Indore, India. While the XANES spectra of the precursor give real-time information on the reduction process, the EXAFS spectra reveal the structure of the clusters formed at the intermediate stages of growth. The growth kinetics of both types of nanoparticles are found to be almost similar and are found to follow three stages, though the first stage of nucleation takes place earlier in the case of Au than in the case of Pt nanoparticles due to the difference in the reduction potential of the respective precursors. The first two stages of the growth of Au and Pt nanoparticles as obtained by in situ XAS measurements could be corroborated by simultaneous in situ measurement of UV-Vis spectroscopy also.

  1. Change in Localizations of Arsenic in Rice Grains After Cooking with High Arsenic Waters - µXRF and XANES studies

    NASA Astrophysics Data System (ADS)

    Datta, S.; Ryan, B.; Kumar, N.; Bortz, T.; Bolen, Z. T.

    2016-12-01

    Threats of Arsenic (As) through food uptake, via consumption of rice, is a potential pathway that presents a concern not only for the millions of inhabitants who reside in river valleys and irrigate their soil with contaminated water, but the global rice market as well. This study focuses on high As rice from India and Bangladesh grown in such soils, and the effect of boiling rice with As-contaminated water in preparation for dietary intake. Husked and unhusked rice grains were boiled with >500 µg/L As-bearing water from the field to simulate local cooking methods. The resulting cooked water was analyzed using iCAP low limit detection via ICP-MS to understand the changes in dissolved elemental concentrations before and after cooking, and HPLC was introduced to measure for changes in As speciation in the waters. Using spectroscopic methods such as µXRF mapping associated with µXANES, distribution/localization and speciation changes of As in rice grains were identified. Further, with Linear Combination Fitting (LCF) of XANES spectra utilizing relevant reference compounds (As-S, AsIII, AsV, MMA and DMA), organic and inorganic As species were able to be mapped within rice grains. The results for uncooked/raw grains showed that predominantly As-S combined with AsIII and AsV accounted for 90% of speciation in most samples, localized in areas such as the outer aleurone layer. When analyzing cooked rice grains, the speciation appears to be an unidentified As species while the best LCF shows between 63-93% of As as MMA. Arsenic was found less localized throughout the cooked grains but rather heterogeneously distributed when compared to the uncooked/raw samples. The analyses of boiled/cooked water resulted in a significant decrease in dissolved As post-cooking (90%), but a subsequent increase in elements such as K, La, Li, Mo, Na, Ni, and Zr was observed; As-V was shown to be the main in-As species in the cooked water. The impact that this study portrays is consuming rice

  2. Time-resolved x-ray absorption spectroscopy: Watching atoms dance

    NASA Astrophysics Data System (ADS)

    Milne, Chris J.; Pham, Van-Thai; Gawelda, Wojciech; van der Veen, Renske M.; El Nahhas, Amal; Johnson, Steven L.; Beaud, Paul; Ingold, Gerhard; Lima, Frederico; Vithanage, Dimali A.; Benfatto, Maurizio; Grolimund, Daniel; Borca, Camelia; Kaiser, Maik; Hauser, Andreas; Abela, Rafael; Bressler, Christian; Chergui, Majed

    2009-11-01

    The introduction of pump-probe techniques to the field of x-ray absorption spectroscopy (XAS) has allowed the monitoring of both structural and electronic dynamics of disordered systems in the condensed phase with unprecedented accuracy, both in time and in space. We present results on the electronically excited high-spin state structure of an Fe(II) molecular species, [FeII(bpy)3]2+, in aqueous solution, resolving the Fe-N bond distance elongation as 0.2 Å. In addition an analysis technique using the reduced χ2 goodness of fit between FEFF EXAFS simulations and the experimental transient absorption signal in energy space has been successfully tested as a function of excited state population and chemical shift, demonstrating its applicability in situations where the fractional excited state population cannot be determined through other measurements. Finally by using a novel ultrafast hard x-ray 'slicing' source the question of how the molecule relaxes after optical excitation has been successfully resolved using femtosecond XANES.

  3. SUT-NANOTEC-SLRI beamline for X-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klysubun, Wantana; Kidkhunthod, Pinit; Tarawarakarn, Pongjakr

    2017-04-04

    The SUT-NANOTEC-SLRI beamline was constructed in 2012 as the flagship of the SUT-NANOTEC-SLRI Joint Research Facility for Synchrotron Utilization, co-established by Suranaree University of Technology (SUT), National Nanotechnology Center (NANOTEC) and Synchrotron Light Research Institute (SLRI). It is an intermediate-energy X-ray absorption spectroscopy (XAS) beamline at SLRI. The beamline delivers an unfocused monochromatic X-ray beam of tunable photon energy (1.25–10 keV). The maximum normal incident beam size is 13 mm (width) × 1 mm (height) with a photon flux of 3 × 10 8to 2 × 10 10 photons s -1(100 mA) -1varying across photon energies. Details of the beamlinemore » and XAS instrumentation are described. To demonstrate the beamline performance,K-edge XANES spectra of MgO, Al 2O 3, S 8, FeS, FeSO 4, Cu, Cu 2O and CuO, and EXAFS spectra of Cu and CuO are presented.« less

  4. STXM-XANES Analysis of Organic Matter in Dark Clasts and Halite Crystals in Zag and Monahans Meteorites

    NASA Technical Reports Server (NTRS)

    Kebukawa, Y.; Zolensky, M. E.; Fries, M.; Nakato, A.; Kilcoyne, A. L. D.; Takeichi, Y.; Suga, H.; Miyamoto, C.; Rahman, Z.; Kobayashi, K.; hide

    2016-01-01

    Zag and Monahans meteorites (H5) contains xenolithic dark clasts and halite (NaCl) crystals [e.g., 1]. The proposed source of the H chondrites is asteroid 6 Hebe [2]. The modern orbits of 1 Ceres and 6 Hebe essentially cross, with aphelion/perihelion of Ceres and Hebe of 2.99/2.55 and 2.91/1.94 AU (Astronomical Units), respectively. Therefore, Ceres might be the source of the clasts and halite in Zag and Monahans meteorites. Recent results from NASA's Dawn mission shows that bright spots in Ceres's crater may be hydrated magnesium sulfate with some water ice, and an average global surface contains ammoniated phyllosilicates that is likely of outer Solar System origin. One dark clast and all halite crystals in Zag and Monahans meteorites contain carbon-rich particles. We report organic analyses of these carbon-rich particles using carbon, nitrogen, and oxygen X-ray absorption near edge structure (C-, N-, and O-XANES), in order to constrain the origin of the clast and halite crystals.

  5. Site-selective XAFS spectroscopy tuned to surface active sites of Cu/ZnO and Cr/SiO2 catalysts.

    PubMed

    Izumi, Y; Nagamori, H; Kiyotaki, F; Minato, T

    2001-03-01

    XAFS (X-ray absorption fine structure) spectra were measured by using the fluorescence spectrometer for the emitted X-ray from sample. The chemical shifts between Cu0 and Cu1 and between CrIII and CrVI were evaluated. Tuning the fluorescence spectrometer to each energy, the Cu0 and CuI site-selective XANES for Cu/ZnO catalyst were measured. The first one was similar to the XANES of Cu metal and the second one was the 5 : 5 average of XANES for CuI sites + Cu metal. The population ratio of copper site of the Cu/ZnO catalyst was found to be Cu metal: Cu2O : CuI atomically dispersed on surface = 70(+/-23) : 22(+/-14) : 8(+/-5). Site-selective XANES for CrIII site of Cr/SiO2 catalyst was also studied.

  6. First X-Ray absorption spectroscopy results on Aeolian dust archived in Antarctica and Alpine firn cores

    NASA Astrophysics Data System (ADS)

    Marcelli, A.; Maggi, V.; Cibin, G.; Sala, M.; Marino, F.; Delmonte, B.

    2006-12-01

    We present the first x-ray absorption spectroscopy (XAS) data at the Fe K-edge collected on insoluble mineral dust from Talos Dome firn core (TDC, 159°04'E, 72°46'S, 2316 m a.s.l., mean accumulation rate 8 g cm-2 yr- 1), drilled in the framework of the International Trans Antarctic Scientific Expedition (ITASE), and from a Colle del Lys 2003 firn core (CDL03, 45°92'N, 7°86'E, 4248m a.s.l., mean accumulation rate 134 g cm-2 yr-1, Lys Glacier, Mt. Rosa, Italy). The low concentration of mineral particles, obtained by filtering each firn core melted samples on Nuclepore membranes in a 1000 class clean room, required a specific procedure to prepare the samples necessary to the successful collection of the XAS data. The firn samples were decontaminated in clean room under laminar flow bench by means of a ceramic knife and discarding the external part of the cores. Analyses of the insoluble particle content were performed by particle counter Beckman CounterãMultisizer III in order to defined concentration and size distribution of particles in each samples. A dedicated HV experimental chamber, devoted to the realization of XAS experiments on very low absorber concentration samples, was developed and realized in the framework of the CryoAlp collaboration at IMONT, the Italian National Institute for Mountains. The original experimental setup, thanks to the presence of an in-vacuum sample micromanipulator and special sample alignment and docking system installed for these experiments at the Stanford Synchrotron Radiation Laboratory at the beamline 6-2, allows both normal-incidence X-ray Fluorescence detection using a Ketek SDD detector having an energy resolution of about 150 eV and extremely low energy detection limit, and Total X-ray Reflection Fluorescence and Absorption Spectroscopy measurements. The high quality of the XANES experiments performed, using both normal incidence and Total Reflection XAS measurements, allowed recognizing iron-inclusion mineral fractions

  7. XANES: observation of quantum confinement in the conduction band of colloidal PbS quantum dots

    NASA Astrophysics Data System (ADS)

    Demchenko, I. N.; Chernyshova, M.; He, X.; Minikayev, R.; Syryanyy, Y.; Derkachova, A.; Derkachov, G.; Stolte, W. C.; Piskorska-Hommel, E.; Reszka, A.; Liang, H.

    2013-04-01

    The presented investigations aimed at development of inexpensive method for synthesized materials suitable for utilization of solar energy. This important issue was addressed by focusing, mainly, on electronic local structure studies with supporting x-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis of colloidal galena nano-particles (NPs) and quantum dots (QDs) synthesized using wet chemistry under microwave irradiation. Performed x-ray absorption near edge structure (XANES) analysis revealed an evidence of quantum confinement for the sample with QDs, where the bottom of the conduction band was shifted to higher energy. The QDs were found to be passivated with oxides at the surface. Existence of sulfate/sulfite and thiosulfate species in pure PbS and QDs, respectively, was identified.

  8. From lapis lazuli to ultramarine blue: investigating Cennino Cennini’s recipe using sulfur K-edge XANES

    DOE PAGES

    Ganio, Monica; Pouyet, Emeline S.; Webb, Samuel M.; ...

    2017-09-22

    As one of the most desired and expensive artists’ materials throughout history, there has long been interest in studying natural lapis lazuli. The traditional method of extracting the blue component, lazurite, from lapis lazuli, as outlined in Cennini’s Il Libro dell’Arte, involves a lengthy purification process: (1) finely grind the rock; (2) mix with pine rosin, gum mastic, and beeswax; (3) massage in water to collect the lazurite. Repeating the process produces several grades of the pigment, typically referred to as ultramarine blue. Here, we investigate the sulfur environment within the aluminosilicate framework of lazurite during its extraction from lapismore » lazuli. The sulfur XANES fingerprint from samples taken at the different stages in Cennini’s extraction method were examined. All spectra contain a strong absorption peak at 2483 eV, attributable to sulfate present in the lazurite structure. However, intensity variations appear in the broad envelope of peaks between 2470 and 2475 eV and the pre-peak at 2469.1 eV, indicating a variation in the content of trisulfur (S 3 –˙) radicals. By studying the effect of each step of Cennini’s process, this study elucidates the changes occurring during the extraction and the variability within different grades of the precious coloring material. The increasing application of XANES to the study of artist’s materials and works of art motivated extending the research to assess the possibility of X-ray induced damage. Direct comparison of micro-focused and unfocused beam experiments suggests an increase of the S 3 –˙ radicals with prolonged exposure. Furthermore, analysis indicates that induced damage follows first-order kinetics, providing a first assessment on the acceptable amount of radiation exposure to define the optimal acquisition parameters to allow safe analyses of lapis lazuli and ultramarine pigments.« less

  9. From lapis lazuli to ultramarine blue: investigating Cennino Cennini’s recipe using sulfur K-edge XANES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganio, Monica; Pouyet, Emeline S.; Webb, Samuel M.

    As one of the most desired and expensive artists’ materials throughout history, there has long been interest in studying natural lapis lazuli. The traditional method of extracting the blue component, lazurite, from lapis lazuli, as outlined in Cennini’s Il Libro dell’Arte, involves a lengthy purification process: (1) finely grind the rock; (2) mix with pine rosin, gum mastic, and beeswax; (3) massage in water to collect the lazurite. Repeating the process produces several grades of the pigment, typically referred to as ultramarine blue. Here, we investigate the sulfur environment within the aluminosilicate framework of lazurite during its extraction from lapismore » lazuli. The sulfur XANES fingerprint from samples taken at the different stages in Cennini’s extraction method were examined. All spectra contain a strong absorption peak at 2483 eV, attributable to sulfate present in the lazurite structure. However, intensity variations appear in the broad envelope of peaks between 2470 and 2475 eV and the pre-peak at 2469.1 eV, indicating a variation in the content of trisulfur (S 3 –˙) radicals. By studying the effect of each step of Cennini’s process, this study elucidates the changes occurring during the extraction and the variability within different grades of the precious coloring material. The increasing application of XANES to the study of artist’s materials and works of art motivated extending the research to assess the possibility of X-ray induced damage. Direct comparison of micro-focused and unfocused beam experiments suggests an increase of the S 3 –˙ radicals with prolonged exposure. Furthermore, analysis indicates that induced damage follows first-order kinetics, providing a first assessment on the acceptable amount of radiation exposure to define the optimal acquisition parameters to allow safe analyses of lapis lazuli and ultramarine pigments.« less

  10. High resolution x-ray fluorescence spectroscopy - a new technique for site- and spin-selectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xin

    1996-12-01

    X-ray spectroscopy has long been used to elucidate electronic and structural information of molecules. One of the weaknesses of x-ray absorption is its sensitivity to all of the atoms of a particular element in a sample. Through out this thesis, a new technique for enhancing the site- and spin-selectivity of the x-ray absorption has been developed. By high resolution fluorescence detection, the chemical sensitivity of K emission spectra can be used to identify oxidation and spin states; it can also be used to facilitate site-selective X-ray Absorption Near Edge Structure (XANES) and site-selective Extended X-ray Absorption Fine Structure (EXAFS). Themore » spin polarization in K fluorescence could be used to generate spin selective XANES or spin-polarized EXAFS, which provides a new measure of the spin density, or the nature of magnetic neighboring atoms. Finally, dramatic line-sharpening effects by the combination of absorption and emission processes allow observation of structure that is normally unobservable. All these unique characters can enormously simplify a complex x-ray spectrum. Applications of this novel technique have generated information from various transition-metal model compounds to metalloproteins. The absorption and emission spectra by high resolution fluorescence detection are interdependent. The ligand field multiplet model has been used for the analysis of K{alpha} and K{beta} emission spectra. First demonstration on different chemical states of Fe compounds has shown the applicability of site selectivity and spin polarization. Different interatomic distances of the same element in different chemical forms have been detected using site-selective EXAFS.« less

  11. Supervised Machine-Learning-Based Determination of Three-Dimensional Structure of Metallic Nanoparticles

    DOE PAGES

    Timoshenko, Janis; Lu, Deyu; Lin, Yuewei; ...

    2017-09-29

    Tracking the structure of heterogeneous catalysts under operando conditions remains a challenge due to the paucity of experimental techniques that can provide atomic-level information for catalytic metal species. Here we report on the use of X-ray absorption near edge structure (XANES) spectroscopy and supervised machine learning (SML) for refining the three-dimensional geometry of metal catalysts. SML is used to unravel the hidden relationship between the XANES features and catalyst geometry. To train our SML method, we rely on ab-initio XANES simulations. Our approach allows one to solve the structure of a metal catalyst from its experimental XANES, as demonstrated heremore » by reconstructing the average size, shape and morphology of well-defined platinum nanoparticles. This method is applicable to the determination of the nanoparticle structure in operando studies and can be generalized to other nanoscale systems. In conclusion, it also allows on-the-fly XANES analysis, and is a promising approach for high-throughput and time-dependent studies.« less

  12. Supervised Machine-Learning-Based Determination of Three-Dimensional Structure of Metallic Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timoshenko, Janis; Lu, Deyu; Lin, Yuewei

    Tracking the structure of heterogeneous catalysts under operando conditions remains a challenge due to the paucity of experimental techniques that can provide atomic-level information for catalytic metal species. Here we report on the use of X-ray absorption near edge structure (XANES) spectroscopy and supervised machine learning (SML) for refining the three-dimensional geometry of metal catalysts. SML is used to unravel the hidden relationship between the XANES features and catalyst geometry. To train our SML method, we rely on ab-initio XANES simulations. Our approach allows one to solve the structure of a metal catalyst from its experimental XANES, as demonstrated heremore » by reconstructing the average size, shape and morphology of well-defined platinum nanoparticles. This method is applicable to the determination of the nanoparticle structure in operando studies and can be generalized to other nanoscale systems. In conclusion, it also allows on-the-fly XANES analysis, and is a promising approach for high-throughput and time-dependent studies.« less

  13. Characterization of pentavalent and hexavalent americium complexes in nitric acid using X-ray absorption fine structure spectroscopy and first-principles modeling

    DOE PAGES

    Riddle, Catherine; Czerwinski, Kenneth; Kim, Eunja; ...

    2016-01-18

    We studied the speciation of pentavalent and hexavalent americium (Am) complexes in nitric acidicby X-ray absorption fine structure spectroscopy (XAFS), UV-visible spectroscopy, and density functional theory (DFT). Extended x-ray absorption fine structure (EXAFS) and x-ray absorption near edge structure (XANES) results were consistent with the presence of a mixture of AmO 2 + and AmO 2 2+ with only a small amount AmO 2 present. The resulting average bond distances we found were 1.71 Å for Am=O and 2.44 Å for Am-O. All-electron scalar relativistic calculations were also carried out using DFT to predict the equilibrium geometries and properties ofmore » the AmO 2 + and AmO 2 2+ aquo complexes. Calculated bond distances for the Am(VI) complex are in reasonable agreement with EXAFS data and the computed energy gaps between frontier molecular orbitals suggest a slightly higher kinetic stability and chemical hardness of Am(VI) compared to Am(V).« less

  14. Noninvasive Synchrotron-Based X-ray Raman Scattering Discriminates Carbonaceous Compounds in Ancient and Historical Materials [ In situ synchrotron-based X-Ray Raman scattering discriminates carbonaceous compounds in ancient and historical materials

    DOE PAGES

    Gueriau, Pierre; Rueff, Jean -Pascal; Bernard, Sylvain; ...

    2017-09-13

    Carbon compounds are ubiquitous and occur in a diversity of chemical forms in many systems including ancient and historic materials ranging from cultural heritage to paleontology. Determining their speciation cannot only provide unique information on their origin but may also elucidate degradation processes. Synchrotron-based X-ray absorption near-edge structure (XANES) spectroscopy at the carbon K-edge (280–350 eV) is a very powerful method to probe carbon speciation. However, the short penetration depth of soft X-rays imposes stringent constraints on sample type, preparation, and analytical environment. A hard X-ray probe such as X-ray Raman scattering (XRS) can overcome many of these difficulties. Heremore » we report the use of XRS at ~6 keV incident energy to collect carbon K-edge XANES data and probe the speciation of organic carbon in several specimens relevant to cultural heritage and natural history. This methodology enables the measurement to be done in a nondestructive way, in air, and provides information that is not compromised by surface contamination by ensuring that the dominant signal contribution is from the bulk of the probed material. Using the backscattering geometry at large photon momentum transfer maximizes the XRS signal at the given X-ray energy and enhances nondipole contributions compared to conventional XANES, thereby augmenting the speciation sensitivity. The capabilities and limitations of the technique are discussed. As a result, we show that despite its small cross section, for a range of systems the XRS method can provide satisfactory signals at realistic experimental conditions. XRS constitutes a powerful complement to FT-IR, Raman, and conventional XANES spectroscopy, overcoming some of the limitations of these techniques.« less

  15. The darkening of zinc yellow: XANES speciation of chromium in artist;s paints after light and chemical exposures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zanella, Luciana; Casadio, Francesca; Gray, Kimberly A.

    2012-03-14

    The color darkening of selected brushstrokes of the masterpiece A Sunday on La Grande Jatte - 1884 (by Georges Seurat) has been attributed to the alteration of the chromate pigment zinc yellow. The pigment originally displays a bright greenish-yellow color but may undergo, after aging, darkening to a dull, ocher tone. We used XANES to probe the oxidation state of Cr on paint reconstructions, and show that color changes are associated with the reduction of Cr(VI) to Cr(III). Paint mixtures containing the pigment and linseed oil to mimic mixtures used in La Grande Jatte were subjected to artificial aging inmore » the presence of light, SO{sub 2}, and variable air humidity - 50 and 90% relative humidity. High relative humidity led to the largest degree of Cr(VI) reduction whereas low relative humidity promoted light-induced alterations. These results are corroborated by visible reflectance measurements on the same laboratory samples and contribute to a better understanding of the chemical reactivity of chromate pigments, which are present in many historical works of art.« less

  16. Characterization of Sb-doped Bi(2)UO(6) solid solutions by X-ray diffraction and X-ray absorption spectroscopy.

    PubMed

    Misra, N L; Yadav, A K; Dhara, Sangita; Mishra, S K; Phatak, Rohan; Poswal, A K; Jha, S N; Sinha, A K; Bhattacharyya, D

    2013-01-01

    The preparation and characterization of Sb-doped Bi(2)UO(6) solid solutions, in a limited composition range, is reported for the first time. The solid solutions were prepared by solid-state reactions of Bi(2)O(3), Sb(2)O(3) and U(3)O(8) in the required stoichiometry. The reaction products were characterized by X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) measurements at the Bi and U L(3) edges. The XRD patterns indicate the precipitation of additional phases in the samples when Sb doping exceeds 4 at%. The chemical shifts of the Bi absorption edges in the samples, determined from the XANES spectra, show a systematic variation only up to 4 at% of Sb doping and support the results of XRD measurements. These observations are further supported by the local structure parameters obtained by analysis of the EXAFS spectra. The local structure of U is found to remain unchanged upon Sb doping indicating that Sb(+3) ions replace Bi(+3) during the doping of Bi(2)UO(6) by Sb.

  17. Structure of assemblies of metal nanowires in mesoporous alumina membranes studied by EXAFS, XANES, X-ray diffraction and SAXS.

    PubMed

    Benfield, Robert E; Grandjean, Didier; Dore, John C; Esfahanian, Hamid; Wu, Zhonghua; Kröll, Michael; Geerkens, Marcus; Schmid, Günter

    2004-01-01

    Mesoporous alumina membranes ("anodic aluminium oxide", or "AAO") are made by anodic oxidation of aluminium metal. These membranes contain hexagonal arrays of parallel non-intersecting cylindrical pores perpendicular to the membrane surface. By varying the anodisation voltage, the pore diameters are controllable within the range 5-250 nm. We have used AAO membranes as templates for the electrochemical deposition of metals within the pores to produce nanowires. These represent assemblies of one-dimensional quantum wires with prospective applications in electronic, optoelectronic and magnetic devices. Detailed characterisation of the structures of these nanowire assemblies on a variety of length scales is essential to understand their physical properties and evaluate their possible applications. We have used EXAFS, XANES, WAXS, high energy X-ray diffraction and SAXS to study their structure and bonding. In this paper we report the results of our studies of four different nanowire systems supported in AAO membranes. These are the ferromagnetic metals iron and cobalt, the superconducting metal tin, and the semiconductor gallium nitride. Iron nanowires in pores of diameter over the range 12 nm-72 nm are structurally very similar to bcc bulk iron. They have a strong preferred orientation within the alumina pores. Their XANES shows significant differences from that of bulk iron, showing that the electronic structure of the iron nanowires depends systematically on their diameter. Cobalt nanowires are composed of a mixture of hcp and fcc phases, but the ratio of the two phases does not depend in a simple way on the pore diameter or preparation conditions. In bulk cobalt, the fcc beta-phase is normally stable only at high temperatures. Strong preferred orientation of the c-axis in the pores was found. Tin nanowires in alumina membranes with pores diameters between 12 nm and 72 nm have a tetragonal beta-structure at ambient temperature and also at 80 K. Magnetic

  18. Time-resolved X-Ray Absorption Spectroscopy of a Cobalt-Based Hydrogen Evolution System for Artificial Photosynthesis

    NASA Astrophysics Data System (ADS)

    Moonshiram, Dooshaye; Gimbert, Carolina; Lehmann, Carl; Southworth, Stephen; Llobet, Antoni; Argonne National Laboratory Team; Institut Català d'Investigació Química Collaboration

    2015-03-01

    Production of cost-effective hydrogen gas through solar power is an important challenge of the Department of Energy among other global industry initiatives. In natural photosynthesis, the oxygen evolving complex(OEC) can carry out four-electron water splitting to hydrogen with an efficiency of around 60%. Although, much progress has been carried out in determining mechanistic pathways of the OEC, biomimetic approaches have not duplicated Nature's efficiency in function. Over the past years, we have witnessed progress in developments of light harvesting modules, so called chromophore/catalytic assemblies. In spite of reportedly high catalytic activity of these systems, quantum yields of hydrogen production are below 40 % when using monochromatic light. Proper understanding of kinetics and bond making/breaking steps has to be achieved to improve efficiency of hydrogen evolution systems. This project shows the timing implementation of ultrafast X-ray absorption spectroscopy to visualize in ``real time'' the photo-induced kinetics accompanying a sequence of redox reactions in a cobalt-based molecular photocatalytic system. Formation of a Co(I) species followed by a Co(III) hydride species all the way towards hydrogen evolution is shown through time-resolved XANES.

  19. Local Structure Determination of Carbon/Nickel Ferrite Composite Nanofibers Probed by X-ray Absorption Spectroscopy.

    PubMed

    Nilmoung, Sukunya; Kidkhunthod, Pinit; Maensiri, Santi

    2015-11-01

    Carbon/NiFe2O4 composite nanofibers have been successfully prepared by electrospinning method using a various concentration solution of Ni and Fe nitrates dispersed into polyacrylonitride (PAN) solution in N,N' dimethylformamide. The phase and mophology of PAN/NiFe2O4 composite samples were characterized and investigated by X-ray diffraction and scanning electron microscopy. The magnetic properties of the prepared samples were measured at ambient temperature by a vibrating sample magnetometer. It is found that all composite samples exhibit ferromagnetism. This could be local-structurally explained by the existed oxidation states of Ni2+ and Fe3+ in the samples. Moreover, local environments around Ni and Fe ions could be revealed by X-ray absorption spectroscopy (XAS) measurement including X-ray absorption near edge structure (XANES) and Extended X-ray absorption fine structure (EXAFS).

  20. Arsenic speciation in tissues of the hyperaccumulator P. calomelanos var. austroamericana using X-ray absorption spectroscopy.

    PubMed

    Kachenko, Anthony G; Gräfe, Markus; Singh, Balwant; Heald, Steve M

    2010-06-15

    The fate and chemical speciation of arsenic (As) during uptake, translocation, and storage by the As hyperaccumulating fern Pityrogramma calomelanos var. austroamericana (Pteridaceae) were examined using inductively coupled plasma-atomic emission spectrometry (ICP-AES) and synchrotron-based micro-X-ray absorption near edge structure (micro-XANES) and micro-X-ray fluorescence (micro-XRF) spectroscopies. Chemical analysis revealed total As concentration was ca. 6.5 times greater in young fronds (5845 mg kg(-1) dry weight (DW)) than in old fronds (903 mg kg(-1) DW). In pinnae, As concentration decreased from the base (6822 mg kg(-1) DW) to the apex (4301 mg kg(-1) DW) of the fronds. The results from micro-XANES and micro-XRF of living tissues suggested that more than 60% of arsenate (As(V)) absorbed was reduced to arsenite (As(III)) in roots, prior to transport through vascular tissues as As(V) and As(III). In pinnules, As(III) was the predominant redox species (72-90%), presumably as solvated, oxygen coordinated compounds. The presence of putative As(III)-sulphide (S(2-)) coordination throughout the fern tissues (4-25%) suggests that S(2-) functional groups may contribute in the biochemical reduction of As(V) to As(III) during uptake and transport at a whole-plant level. Organic arsenicals and thiol-rich compounds were not detected in the species and are unlikely to play a role in As hyperaccumulation in this fern. The study provides important insights into homeostatic regulation of As following As uptake in P. calomelanos var. austroamericana.

  1. Triple point fcc-hcp-liquid in the Fe phase diagram determined by in-situ XANES diagnostic and post-mortem XRD and FIB-SEM analysis.

    NASA Astrophysics Data System (ADS)

    Morard, G.; Boccato, S.; Rosa, A. D.; Anzellini, S.; Miozzi Ferrini, F.; Laura, H.; Garbarino, G.; Harmand, M.; Guyot, F. J.; Boulard, E.; Kantor, I.; Irifune, T.; Torchio, R.

    2017-12-01

    Iron is the main constituent of planetary cores. Studying its phase diagram under high pressure is necessary to constrain properties of planetary interiors, and to model key parameters such as the generation of magnetic field. Though, strong controversy on the melting curve of pure Fe still remains. Recently, Aquilanti et al, (PNAS, 2015) reported a Fe melting curved based on XANES measurements which is in open disagreement with previous X-ray diffraction results (Anzellini et al, Science, 2013). Discrepancies in the melting temperature exceed several hundred degrees close to Mbar pressures, which may be related to differences in temperature measurement techniques, melting diagnostics, or to chemical reactions of the sample with the surrounding medium. We therefore performed new in situ high P/T XANES experiments on pure Fe (up to 115 GPa and 4000 K) at the ESRF beamline ID24, combining the energy dispersive absorption set up with laser heated diamond anvil cells. X-ray diffraction maps were collected from all recovered samples in order to identify and characterize laser-heated spots. The XANES melting criterion was further cross checked by analyzing the recovered sample textures using FIB cutting techniques and SEM imaging. We found systematically that low melting temperatures are related to the presence of Fe3C, implying that in those cases chemical reactions occurred during heating resulting in carbon contamination from the diamonds. These low melting points fall onto the melting line reported by Aquilanti et al, (2015). Uncontaminated points are in agreement with the melting curve of Anzellini et al, (2013) within their uncertainties. Moreover, this data set allowed us to refine the location of the triple point in the Fe phase diagram at 105 (±10) GPa and 3600 (±200) K, which may imply a small kink in the melting curve around this point. This refined Fe phase diagram could be then used to compute thermodynamic models for planetary cores.

  2. XAS study of TiO2-based nanomaterials

    NASA Astrophysics Data System (ADS)

    Schneider, K.; Zajac, D.; Sikora, M.; Kapusta, Cz.; Michalow-Mauke, K.; Graule, Th.; Rekas, M.

    2015-07-01

    X-Ray Absorption Spectroscopy studies of the W (0-1 at% W) and Mo-doped TiO2 (0-1 at% Mo) nanoparticle specimens at the K edges of titanium and molybdenum as well as at the L2 L3 edges of tungsten are presented. The materials were prepared with Flame Spray Synthesis process by oxidation of metal-organic precursors. The Ti:K edge spectra in the XANES range show pre-edge and post-edge features characteristic for anatase. A decrease of the amplitude of the EXAFS function with doping is observed and attributed to a softening of the crystal lattice. The Mo EXAFS functions show a considerable decrease of the second-neighbour-shell peak with increasing Mo content, which is attributed to an increased number of cation vacancies. For tungsten a less pronounced effect is observed. The Mo and W XANES spectra do not show noticeable changes with doping level, which indicates their unchanged oxidation states.

  3. Coupling CP-MD simulations and X-ray absorption spectroscopy: exploring the structure of oxaliplatin in aqueous solution.

    PubMed

    Beret, Elizabeth C; Provost, Karine; Müller, Diane; Marcos, Enrique Sánchez

    2009-09-10

    A combined experimental-theoretical approach applying X-ray absorption spectroscopy and ab initio molecular dynamics (CP-MD) simulations is used to get insight into the structural determination of oxaliplatin, a third-generation anticancer drug of the cisplatin family, in aqueous solution. Experimental Pt L(III)-edge EXAFS and XANES spectra of oxaliplatin in water are compared with theoretical XAS spectra. The latter are obtained as statistically averaged spectra computed for a set of selected snapshots extracted from the MD trajectory of ethyldiamineoxalatoplatinum(II) (EDO-Pt) in liquid water. This compound is a simplified structure of oxaliplatin, where the outer part of the cyclohexane ring contained in the cyclohexanediamine ligand of oxaliplatin has been removed. We show that EDO-Pt is an appropriate model to simulate the spectroscopical properties of oxaliplatin given that the cyclohexane ring does not generate particular features in neither the EXAFS nor the XANES spectra. The computation of average EXAFS spectra using structures from the MD simulation in which atoms are selected according to different cutoff radii around the Pt center allows the assignment of spectral features to particular structural motifs, both in k and R-spaces. The outer oxygen atoms of the oxalate ligand (R(Pt-O(II)) = 3.97 +/- 0.03 A) are responsible for a well-defined hump at around 6.5 A(-1) in the k(2)-weighted EXAFS spectrum. The conventional EXAFS analysis data procedure is reexamined by its application to the simulated average EXAFS spectra. The structural parameters resulting from the fit may then be compared with those obtained from the simulation, providing an estimation of the methodological error associated with the global fitting procedure. A thorough discussion on the synergy between the experimental and theoretical XAS approaches is presented, and evidence for the detection of a slight hydration structure around the Pt complex is shown, leading to the suggestion of a

  4. Transport Measurements and Synchrotron-Based X-Ray Absorption Spectroscopy of Iron Silicon Germanide Grown by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Elmarhoumi, Nader; Cottier, Ryan; Merchan, Greg; Roy, Amitava; Lohn, Chris; Geisler, Heike; Ventrice, Carl, Jr.; Golding, Terry

    2009-03-01

    Some of the iron-based metal silicide and germanide phases have been predicted to be direct band gap semiconductors. Therefore, they show promise for use as optoelectronic materials. We have used synchrotron-based x-ray absorption spectroscopy to study the structure of iron silicon germanide films grown by molecular beam epitaxy. A series of Fe(Si1-xGex)2 thin films (2000 -- 8000å) with a nominal Ge concentration of up to x = 0.04 have been grown. X-ray absorption near edge structure (XANES) and extended x-ray absorption fine structure (EXAFS) measurements have been performed on the films. The nearest neighbor co-ordination corresponding to the β-FeSi2 phase of iron silicide provides the best fit with the EXAFS data. Temperature dependent (20 < T < 350 K) magneto transport measurements were done on the Fe(Si1-xGex)2 thin films via Van Der Paw (VDP) Hall configuration using a 0.5-1T magnetic field and a current of 10-200 μA through indium ohmic contacts, the Hall coefficient was calculated. Results suggest semiconducting behavior of the films which is consistent with the EXAFS results.

  5. Formation of Environmentally Persistent Free Radical (EPFR) in Iron(III) Cation-Exchanged Smectite Clay

    PubMed Central

    Nwosu, Ugwumsinachi G.; Roy, Amitava; dela Cruz, Albert Leo N.; Dellinger, Barry; Cook, Robert

    2016-01-01

    Environmentally persistent free radicals (EPFRs) have been found at a number of Superfund sites, with EPFRs being formed via a proposed redox process at ambient environmental conditions. The possibility of such a redox process taking place at ambient environmental conditions is studied utilizing a surrogate soil system of phenol and iron(III)-exchanged calcium montmorillonite clay, Fe(III)CaM. Sorption of phenol by the Fe(III)CaM is demonstrated by Fourier-transformed infra-red (FT-IR) spectroscopy, as evidenced by the peaks between 1345 cm−1 and 1595 cm−1, and at lower frequencies between 694 cm−1 and 806 cm−1, as well as X-ray diffraction (XRD) spectroscopy, as shown by an increase in interlayer spacing within Fe(III)CaM. The formation and characterization of the EPFRs is determined by electron paramagnetic resonance (EPR) spectroscopy, showing phenoxyl-type radical with a g-factor of 2.0034 and ΔHp-p of 6.1 G at an average concentration of 7.5 × 1017 spins/g. EPFRs lifetime data are indicative of oxygen and water molecules being responsible for EPFR decay. The change in the oxidation state of the iron redox center is studied by X-ray absorption near-edge structure (XANES) spectroscopy, showing that 23% of the Fe(III) is reduced to Fe(II). X-ray photoemission spectroscopy (XPS) results confirm the XANES results. These findings, when combined with the EPFR concentration data, demonstrate that the stoichiometry of the EPFR formation under the conditions of this study is 1.5 × 10−2 spins/Fe(II) atom. PMID:26647158

  6. Formation of environmentally persistent free radical (EPFR) in iron(III) cation-exchanged smectite clay.

    PubMed

    Nwosu, Ugwumsinachi G; Roy, Amitava; dela Cruz, Albert Leo N; Dellinger, Barry; Cook, Robert

    2016-01-01

    Environmentally persistent free radicals (EPFRs) have been found at a number of Superfund sites, with EPFRs being formed via a proposed redox process at ambient environmental conditions. The possibility of such a redox process taking place at ambient environmental conditions is studied utilizing a surrogate soil system of phenol and iron(III)-exchanged calcium montmorillonite clay, Fe(III)CaM. Sorption of phenol by the Fe(III)CaM is demonstrated by Fourier-transformed infra-red (FT-IR) spectroscopy, as evidenced by the peaks between 1345 cm(-1) and 1595 cm(-1), and at lower frequencies between 694 cm(-1) and 806 cm(-1), as well as X-ray diffraction (XRD) spectroscopy, as shown by an increase in interlayer spacing within Fe(III)CaM. The formation and characterization of the EPFRs is determined by electron paramagnetic resonance (EPR) spectroscopy, showing phenoxyl-type radical with a g-factor of 2.0034 and ΔHP-P of 6.1 G at an average concentration of 7.5 × 10(17) spins per g. EPFRs lifetime data are indicative of oxygen and water molecules being responsible for EPFR decay. The change in the oxidation state of the iron redox center is studied by X-ray absorption near-edge structure (XANES) spectroscopy, showing that 23% of the Fe(III) is reduced to Fe(II). X-ray photoemission spectroscopy (XPS) results confirm the XANES results. These findings, when combined with the EPFR concentration data, demonstrate that the stoichiometry of the EPFR formation under the conditions of this study is 1.5 × 10(-2) spins per Fe(II) atom.

  7. Redox chemistry of a binary transition metal oxide (AB2O4): a study of the Cu(2+)/Cu(0) and Fe(3+)/Fe(0) interconversions observed upon lithiation in a CuFe2O4 battery using X-ray absorption spectroscopy.

    PubMed

    Cama, Christina A; Pelliccione, Christopher J; Brady, Alexander B; Li, Jing; Stach, Eric A; Wang, Jiajun; Wang, Jun; Takeuchi, Esther S; Takeuchi, Kenneth J; Marschilok, Amy C

    2016-06-22

    Copper ferrite, CuFe2O4, is a promising candidate for application as a high energy electrode material in lithium based batteries. Mechanistic insight on the electrochemical reduction and oxidation processes was gained through the first X-ray absorption spectroscopic study of lithiation and delithiation of CuFe2O4. A phase pure tetragonal CuFe2O4 material was prepared and characterized using laboratory and synchrotron X-ray diffraction, Raman spectroscopy, and transmission electron microscopy. Ex situ X-ray absorption spectroscopy (XAS) measurements were used to study the battery redox processes at the Fe and Cu K-edges, using X-ray absorption near-edge structure (XANES), extended X-ray absorption fine structure (EXAFS), and transmission X-ray microscopy (TXM) spectroscopies. EXAFS analysis showed upon discharge, an initial conversion of 50% of the copper(ii) to copper metal positioned outside of the spinel structure, followed by a migration of tetrahedral iron(iii) cations to octahedral positions previously occupied by copper(ii). Upon charging to 3.5 V, the copper metal remained in the metallic state, while iron metal oxidation to iron(iii) was achieved. The results provide new mechanistic insight regarding the evolution of the local coordination environments at the iron and copper centers upon discharging and charging.

  8. Operando characterization of batteries using x-ray absorption spectroscopy: advances at the beamline XAFS at synchrotron Elettra

    NASA Astrophysics Data System (ADS)

    Aquilanti, Giuliana; Giorgetti, Marco; Dominko, Robert; Stievano, Lorenzo; Arčon, Iztok; Novello, Nicola; Olivi, Luca

    2017-02-01

    X-ray absorption spectroscopy is a synchrotron radiation based technique that is able to provide information on both local structure and electronic properties in a chemically selective manner. It can be used to characterize the dynamic processes that govern the electrochemical energy storage in batteries, and to shed light on the redox chemistry and changes in structure during galvanostatic cycling to design cathode materials with improved properties. Operando XAS studies have been performed at beamline XAFS at Elettra on different systems. For Li-ion batteries, a multiedge approach revealed the role of the different cathode components during the charge and discharge of the battery. In addition, Li-S batteries for automotive applications were studied. Operando sulfur K-edge XANES and EXAFS analysis was used to characterize the redox chemistry of sulfur, and to relate the electrochemical mechanism to its local structure.

  9. A high pressure La K-edge X-ray absorption fine structure spectroscopy investigation of La1/3NbO3

    NASA Astrophysics Data System (ADS)

    Marini, C.; Joseph, B.; Noked, O.; Shuker, R.; Kennedy, B. J.; Mathon, O.; Pascarelli, S.; Sterer, E.

    2018-01-01

    La K-edge X-ray absorption spectroscopy has been used to elucidate the changes in the local electronic and lattice structure that occur in the A-site deficient double perovskite La?NbO? up to 6 GPa. The pressure evolution of the oxygen dodecahedrum around the A-site has been examined. XANES (X-ray absorption near edge structure) data show modifications ascribed to the increase of bands overlapping as a consequence of the bond distance contraction, which has been directly probed by EXAFS (extended x-ray absorption fine structure) spectra. The La-O Debye Waller factors (DWFs) tend to increase whereas the La-Nb bond DWFs show only a tendency to decrease indicating the robustness of the crystal lattice structure, even in presence of the oxygen disordering. This permits the system to reverse back to its original conditions in this pressure range as evident from the measurements upon pressure release. The present results have been interpreted in the light of charge transfer related to the two-step reduction mechanism acting at the Nb site (with niobium ions passing from Nb? to Nb?) which also results in the elongation of the Nb-O bond distances in the octahedra, in agreement with the Nb K-edge results reported earlier.

  10. The redox state of iron in the matrix of CI, CM and metamorphosed CM chondrites by XANES spectroscopy

    NASA Astrophysics Data System (ADS)

    Beck, P.; De Andrade, V.; Orthous-Daunay, F.-R.; Veronesi, G.; Cotte, M.; Quirico, E.; Schmitt, B.

    2012-12-01

    Carbonaceous chondrites record the action of water at some point of their petrological history. These meteorites are usually connected to low albedo asteroid, which present visible/near-IR absorption explained by iron related absorption within phyllosilicates and oxides. In order to obtain quantitative insight into the mineralogy of iron-bearing phases, we have measured X-ray absorption near-edge spectroscopy at the iron K-edge of matrix from carbonaceous chondrites. This method enables to constrain the redox state and environment of iron in these meteorites. For this study, we selected seven CM chondrites and the CI Orgueil, expected to span a range of aqueous alteration degrees. Our analysis of the pre-edge features show that the redox state of Orgueil (CI) is dominated by octahedral Fe and that the Fe3+/(Fe3++Fe2+) atomic ratio is above 80%. Full-inversion of the spectra suggests that the iron budget is dominated by iron oxides, with additional contributions from phyllosilicate. In the case of the CM, the iron speciation appears different that in the case of Orgueil. Cronstedtite is identified from the inversion of the spectra, and suggested by the presence of significant amount of tetrahedral Fe3+. Within the CM chondrites, a trend of aqueous alteration appears presents, and which is roughly correlated to the scheme defined by Rubin et al. (2007). This trend is characterized by an increase in the amount of iron oxides. Two shock metamorphosed CM are present in our dataset (PCA 91008, WIS 91600). If WIS 91600 does not appear distinguishable, from the CM trend, in the case of PCA 91008, shock metamorphism did impact the pre-edge intensity and an increased amount of anhydrous silicates is found. Although the matrix was dehydrated, significant amount of Fe3+ is still present, providing a memory of the aqueous alteration.

  11. Coordinated Analyses of Mineral-organic Matter Associations in Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Nakamura-Messenger, K.; Herzog, G. F.; Smith, T.; Keller, L. P.; Flynn, G. J.; Khodja, H.; Taylor, S.; Wirick, S.; Messenger, S.

    2012-01-01

    Little is known about the timing and processes involved in the incorporation of organic matter with inorganic materials in early Solar System bodies. Recently, X-ray absorption near-edge spectroscopy (XANES) studies showed carbon-rich rims surrounding individual mineral grains in anhydrous IDPs [1,2]. These carbonaceous rims are believed to have formed prior to parent body formation and likely served to bond mineral grains during accretion into larger aggregates. We are exploring the nature of these carbonaceous rims through coordinated analyses of their chemistry, mineralogy, spectroscopy and isotopic characteristics. Here we report our preliminary mineralogical observations.

  12. Speciation and Elemental Mapping of Metal Containing Aerosols

    NASA Astrophysics Data System (ADS)

    Fraund, M. W.; Moffet, R.; Harder, T.; Williams, G.; Chen-Wiegart, Y. C. K.; Laskin, A.; Gilles, M. K.; Schoonen, M. A.; Thieme, J.

    2017-12-01

    Transition metals play a key roles in biogeochemical processes and health effects of aerosols. The Submicron Resolution X-ray (SRX) beamline at the second National Synchrotron Light Source (NSLS-II) can be used to obtain spatially resolved elemental composition using X-ray fluorescence (XRF) as well as element specific molecular information through X-ray absorption near edge structure (XANES) spectroscopy. Here, XANES spectroscopy was used to identify the oxidation state of iron-rich particles collected from the Cape Hedo Observatory on the island of Okinawa, Japan which is subject to aerosols from both biogenic (Gobi desert) and anthropogenic sources (e.g. Beijing and Shanghai). This data was compared with standards to help classify the minerology and source of these aerosol particles with regards to their potential solubility and bioavailability. In another application of the XRF/XANES measurements from NSLS-II, Pb rich particles from Mexico City were probed for distribution and speciation of Pb. Prior study has indicated that elevated concentrations of Pb occur in an industrialized section of northern Mexico City. It has been established that Pb and Zn are internally mixed in atmospheric aerosol and that Zn primarily exists as ZnCl2 and Zn(NO3)2. Based on these observations, it is hypothesized that Pb also exists as PbCl2 and Pb(NO3)­2. In this study it is shown that X-ray absorption near edge structure (XANES) spectroscopy at the Pb L-edge supports Pb being present as PbCl2 and Pb(NO3)2. Submicron resolution X-ray fluorescence mapping is also used to provide complimentary information on the collocation of other high-Z elements.

  13. Speciation of Mg in biogenic calcium carbonates

    NASA Astrophysics Data System (ADS)

    Farges, F.; Meibom, A.; Flank, A.-M.; Lagarde, P.; Janousch, M.; Stolarski, J.

    2009-11-01

    A selection of marine biominerals, mostly aragonitic coral skeletons were probed at the Mg K-edge by XANES spectroscopy coupled to μXRF methods and compared to an extensive set of relevant model compounds (silicates, carbonates, oxides and organic). Extensive methodologies are required to better describe the speciation of Mg in those minerals. A combination of ab-initio XANES calculations for defective clusters around Mg in aragonite together with wavelets analyzes of the XANES region are required to robustly interpret the spectra. When using those methodologies, the speciation of Mg ranges from a magnesite-type environment in some scleractinian corals to an organic-type environment. In all environments, the Mg-domains probed appear to be less than 1 nm in size.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacold, J. I.; Altman, A. B.; Donald, S B

    Materials of interest for nuclear forensic science are often highly heterogeneous, containing complex mixtures of actinide compounds in a wide variety of matrices. Scanning transmission X-ray microscopy (STXM) is ideally suited to study such materials, as it can be used to chemically image specimens by acquiring X-ray absorption near-edge spectroscopy (XANES) data with 25 nm spatial resolution. In particular, STXM in the soft X-ray synchrotron radiation regime (approximately 120 – 2000 eV) can collect spectroscopic information from the actinides and light elements in a single experiment. Thus, STXM combines the chemical sensitivity of X-ray absorption spectroscopy with high spatial resolutionmore » in a single non-destructive characterization method. This report describes the application of STXM to a broad range of nuclear materials. Where possible, the spectroscopic images obtained by STXM are compared with information derived from other analytical methods, and used to make inferences about the process history of each material. STXM measurements can yield information including the morphology of a sample, “elemental maps” showing the spatial distribution of major chemical constituents, and XANES spectra from localized regions of a sample, which may show spatial variations in chemical composition.« less

  15. Effect of iron oxide reductive dissolution on the transformation and immobilization of arsenic in soils: New insights from X-ray photoelectron and X-ray absorption spectroscopy.

    PubMed

    Fan, Jian-Xin; Wang, Yu-Jun; Liu, Cun; Wang, Li-Hua; Yang, Ke; Zhou, Dong-Mei; Li, Wei; Sparks, Donald L

    2014-08-30

    The geochemical behavior and speciation of arsenic (As) in paddy soils is strongly controlled by soil redox conditions and the sequestration by soil iron oxyhydroxides. Hence, the effects of iron oxide reductive dissolution on the adsorption, transformation and precipitation of As(III) and As(V) in soils were investigated using batch experiments and synchrotron based techniques to gain a deeper understanding at both macroscopic and microscopic scales. The results of batch sorption experiments revealed that the sorption capacity of As(V) on anoxic soil was much higher than that on control soil. Synchrotron based X-ray fluorescence (μ-XRF) mapping studies indicated that As was heterogeneously distributed and was mainly associated with iron in the soil. X-ray absorption near edge structure (XANES), micro-X-ray absorption near edge structure (μ-XANES) and X-ray photoelectron spectroscopy (XPS) analyses revealed that the primary speciation of As in the soil is As(V). These results further suggested that, when As(V) was introduced into the anoxic soil, the rapid coprecipitation of As(V) with ferric/ferrous ion prevented its reduction to As(III), and was the main mechanism controlling the immobilization of As. This research could improve the current understanding of soil As chemistry in paddy and wetland soils. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. X-ray absorption near-edge spectroscopy in bioinorganic chemistry: Application to M–O2 systems

    PubMed Central

    Sarangi, Ritimukta

    2012-01-01

    Metal K-edge X-ray absorption spectroscopy (XAS) has been extensively applied to bioinorganic chemistry to obtain geometric structure information on metalloprotein and biomimetic model complex active sites by analyzing the higher energy extended X-ray absorption fine structure (EXAFS) region of the spectrum. In recent years, focus has been on developing methodologies to interpret the lower energy K-pre-edge and rising-edge regions (XANES) and using it for electronic structure determination in complex bioinorganic systems. In this review, the evolution and progress of 3d-transition metal K-pre-edge and rising-edge methodology development is presented with particular focus on applications to bioinorganic systems. Applications to biomimetic transition metal–O2 intermediates (M = Fe, Co, Ni and Cu) are reviewed, which demonstrate the power of the method as an electronic structure determination technique and its impact in understanding the role of supporting ligands in tuning the electronic configuration of transition metal–O2 systems. PMID:23525635

  17. Stoichiometry of mercury-thiol complexes on bacterial cell envelopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Bhoopesh; Shoenfelt, Elizabeth; Yu, Qiang

    We have examined the speciation of Hg(II) complexed with intact cell suspensions (1013 cells L- 1) of Bacillus subtilis, a common gram-positive soil bacterium, Shewanella oneidensis MR-1, a facultative gram-negative aquatic organism, and Geobacter sulfurreducens, a gram-negative anaerobic bacterium capable of Hg-methylation at Hg(II) loadings spanning four orders of magnitude (120 nM to 350 μM) at pH 5.5 (± 0.2). The coordination environments of Hg on bacterial cells were analyzed using synchrotron based X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy at the Hg LIII edge. The abundance of thiols on intact cells wasmore » determined by a fluorescence-spectroscopy based method using a soluble bromobimane, monobromo(trimethylammonio)bimane (qBBr) to block thiol sites, and potentiometric titrations of biomass with and without qBBr treatment. The chemical forms of S on intact bacterial cells were determined using S k-edge XANES spectroscopy.« less

  18. Redox chemistry of a binary transition metal oxide (AB 2 O 4 ): a study of the Cu 2+ /Cu 0 and Fe 3+ /Fe 0 interconversions observed upon lithiation in a CuFe 2 O 4 battery using X-ray absorption spectroscopy

    DOE PAGES

    Cama, Christina A.; Pelliccione, Christopher J.; Brady, Alexander B.; ...

    2016-06-06

    Copper ferrite, CuFe 2 O 4, is a promising candidate for application as a high energy electrode material in lithium based batteries. Mechanistic insight on the electrochemical reduction and oxidation processes was gained through the first X-ray absorption spectroscopic study of lithiation and delithiation of CuFe 2 O 4. A phase pure tetragonal CuFe 2 O 4 material was prepared and characterized using laboratory and synchrotron X-ray diffraction, Raman spectroscopy, and transmission electron microscopy. We used ex situ X-ray absorption spectroscopy (XAS) measurements to study the battery redox processes at the Fe and Cu K-edges, using X-ray absorption near-edge structuremore » (XANES), extended X-ray absorption fine structure (EXAFS), and transmission X-ray microscopy (TXM) spectroscopies. EXAFS analysis showed upon discharge, an initial conversion of 50% of the copper(II) to copper metal positioned outside of the spinel structure, followed by a migration of tetrahedral iron(III) cations to octahedral positions previously occupied by copper(II). Then, upon charging to 3.5 V, the copper metal remained in the metallic state, while iron metal oxidation to iron(III) was achieved. Our results provide new mechanistic insight regarding the evolution of the local coordination environments at the iron and copper centers upon discharging and charging.« less

  19. Ionic gold in calcrete revealed by LA-ICP-MS, SXRF and XANES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lintern, Melvyn J.; Hough, Robert M.; Ryan, Chris G.

    2009-04-02

    Highly anomalous Au concentrations in calcrete were discovered in 1987 at the Bounty Gold Deposit, Western Australia. A strong correlation was noted between the Ca, Mg, Sr and Au in soil profiles which have not only attracted the interest of mineral explorers but also chemists, soil scientists, metallurgists and climatologists. Gold has been considered an inert element and so its strong association with the alkaline earth group of relatively mobile elements is both remarkable and intriguing. Despite widespread interest, there have been few published papers on the Au-calcrete phenomenon. Here, we present work conducted on calcareous soil samples from abovemore » the Bounty mineralization in Western Australia, prior to mining. Using SXRF (synchrotron X-ray fluorescence) and XANES (micro-X-ray absorption near-edge structure), we have shown for the first time the distribution of Au in calcrete and that it occurs in both particulate and ionic form. Much of the ionic Au associated with Br is found in a root tubule. The observations are consistent with an evapotranspiration model for the formation of Au in the calcrete; Au has been mobilized then precipitated as vadose water has been removed from the soil by trees and shrubs. While the association between Au and Ca is very strong in bulk sample analyses down the soil profile, other detailed analyses on sub-samples using wet chemical, LA-ICP-MS (laser ablation inductively coupled mass spectrometry) and SXRF techniques show that it is not apparent at the sub-millimeter scale. This suggests that the Au and Ca are behaving similarly but independently and they do not (at the {micro}m scale) co-precipitate with carbonate minerals. These results corroborate other studies that suggest biotic influences can affect the mobilization and distribution of Au in surficial materials. Water-extractable Au in calcrete has been reported previously and the ionic Au described in this study likely represents that soluble component. The

  20. Integrated experimental and theoretical approach for the structural characterization of Hg2+ aqueous solutions

    NASA Astrophysics Data System (ADS)

    D'Angelo, Paola; Migliorati, Valentina; Mancini, Giordano; Barone, Vincenzo; Chillemi, Giovanni

    2008-02-01

    The structural and dynamic properties of the solvated Hg2+ ion in aqueous solution have been investigated by a combined experimental-theoretical approach employing x-ray absorption spectroscopy and molecular dynamics (MD) simulations. This method allows one to perform a quantitative analysis of the x-ray absorption near-edge structure (XANES) spectra of ionic solutions using a proper description of the thermal and structural fluctuations. XANES spectra have been computed starting from the MD trajectory, without carrying out any minimization in the structural parameter space. The XANES experimental data are accurately reproduced by a first-shell heptacoordinated cluster only if the second hydration shell is included in the calculations. These results confirm at the same time the existence of a sevenfold first hydration shell for the Hg2+ ion in aqueous solution and the reliability of the potentials used in the MD simulations. The combination of MD and XANES is found to be very helpful to get important new insights into the quantitative estimation of structural properties of disordered systems.

  1. Enhanced Air Stability in REPb3 (RE = Rare Earths) by Dimensional Reduction Mediated Valence Transition.

    PubMed

    Subbarao, Udumula; Sarkar, Sumanta; Jana, Rajkumar; Bera, Sourav S; Peter, Sebastian C

    2016-06-06

    We conceptually selected the compounds REPb3 (RE = Eu, Yb), which are unstable in air, and converted them to the stable materials in ambient conditions by the chemical processes of "nanoparticle formation" and "dimensional reduction". The nanoparticles and the bulk counterparts were synthesized by the solvothermal and high-frequency induction furnace heating methods, respectively. The reduction of the particle size led to the valence transition of the rare earth atom, which was monitored through magnetic susceptibility and X-ray absorption near edge spectroscopy (XANES) measurements. The stability was checked by X-ray diffraction and thermogravimetric analysis over a period of seven months in oxygen and argon atmospheres and confirmed by XANES. The nanoparticles showed outstanding stability toward aerial oxidation over a period of seven months compared to the bulk counterpart, as the latter one is more prone to the oxidation within a few days.

  2. Light, Molecules, Action: Using Ultrafast Uv-Visible and X-Ray Spectroscopy to Probe Excited State Dynamics in Photoactive Molecules

    NASA Astrophysics Data System (ADS)

    Sension, R. J.

    2017-06-01

    Light provides a versatile energy source capable of precise manipulation of material systems on size scales ranging from molecular to macroscopic. Photochemistry provides the means for transforming light energy from photon to process via movement of charge, a change in shape, a change in size, or the cleavage of a bond. Photochemistry produces action. In the work to be presented here ultrafast UV-Visible pump-probe, and pump-repump-probe methods have been used to probe the excited state dynamics of stilbene-based molecular motors, cyclohexadiene-based switches, and polyene-based photoacids. Both ultrafast UV-Visible and X-ray absorption spectroscopies have been applied to the study of cobalamin (vitamin B_{12}) based compounds. Optical measurements provide precise characterization of spectroscopic signatures of the intermediate species on the S_{1} surface, while time-resolved XANES spectra at the Co K-edge probe the structural changes that accompany these transformations.

  3. Direct deconvolution of two-state pump-probe X-ray absorption spectra and the structural changes in a 100 ps transient of Ni(II)-tetramesitylporphyrin.

    PubMed

    Della-Longa, S; Chen, L X; Frank, P; Hayakawa, K; Hatada, K; Benfatto, M

    2009-05-04

    Full multiple scattering (FMS) Minuit XANES (MXAN) has been combined with laser pump-probe K-edge X-ray absorption spectroscopy (XAS) to determine the structure of photoexcited Ni(II)tetramesitylporphyrin, Ni(II)TMP, in dilute toluene solution. It is shown that an excellent simulation of the XANES spectrum is obtained, excluding the lowest-energy bound-state transitions. In ground-state Ni(II)TMP, the first-shell and second-shell distances are, respectively, d(Ni-N) = (1.93 +/- 0.02) A and d(Ni-C) = (2.94 +/- 0.03) A, in agreement with a previous EXAFS result. The time-resolved XANES difference spectrum was obtained (1) from the spectra of Ni(II)TMP in its photoexcited T(1) state and its ground state, S(0). The XANES difference spectrum has been analyzed to obtain both the structure and the fraction of the T(1) state. If the T(1) fraction is kept fixed at the value (0.37 +/- 0.10) determined by optical transient spectroscopy, a 0.07 A elongation of the Ni-N and Ni-C distances [d(Ni-N) and d(Ni-C)] is found, in agreement with the EXAFS result. However, an evaluation of both the distance elongation and the T(1) fraction can also be obtained using XANES data only. According to experimental evidence, and MXAN simulations, the T(1) fraction is (0.60 +/- 0.15) with d(Ni-N) = (1.98 +/- 0.03) A (0.05 A elongation). The overall uncertainty of these results depends on the statistical correlation between the distances and T(1) fraction, and the chemical shift of the ionization energy because of subtle changes of metal charge between the T(1) and S(0) states. The T(1) excited-state structure results, independently obtained without the excited-state fraction from optical transient spectroscopy, are still in agreement with previous EXAFS investigations. Thus, full multiple scattering theory applied through the MXAN formalism can be used to provide structural information, not only on the ground-state molecules but also on very short-lived excited states through differential

  4. Electrochemically-Induced Redox Reactions in Basalt at High Pressure and Temperature: An Iron and Vanadium K-edge XANES Study

    NASA Astrophysics Data System (ADS)

    Kavner, A.; Walker, D.; Newville, M.; Sutton, S. R.

    2005-12-01

    An applied electric field across a silicate sample at high pressures and temperatures in a piston cylinder apparatus can generate a wide range of oxidation states of polyvalent cations within a single experiment. If two or more polyvalent cations are included, this technique can be used to cross-calibrate oxybarometers within a single experiment. The redox state of Fe and V within a partially melted basaltic silicate was manipulated in situ in a piston-cylinder experiment with a DC power supply providing a source and sink of electrons to the sample. A 1V electrical potential differential was applied across vanadium-doped and Fe-bearing synthetic basalt samples for 24 hrs. at 20 kbar and 1400°C in a specially-designed piston cylinder sample assembly. Three experiments were performed: a control sample with no applied voltage, one with bottom cathode and top anode, and a third with top cathode and bottom anode. Synchrotron-based x-ray absorption near edge structure (XANES) spectroscopy was used to provide spot analysis of iron and vanadium oxidation states with 5μm x 5μm spatial resolution throughout the recovered samples. Systematic spatial changes of increasing oxidation states of V and Fe were observed approaching the anode. The differences in oxidation states were mapped to a corresponding local effective oxygen fugacity by comparison and extension of a calibration of vanadium oxidation states as a function of controlled oxygen fugacity from a previous study (Sutton et al., 2005, GCA, vol. 69, pp. 2333-2348). The vanadium mapping indicates that a 1V potential drop across the sample induces effective oxygen fugacity perturbations in excess of ten orders of magnitude. The presence of both Fe and V within the same sample provides a wide range of oxygen fugacity cross-calibration in these recovered samples. A relationship between oxygen fugacity and electrochemical driving force is derived. The experimental results are in good agreement with the derived

  5. Ligand Noninnocence in Iron Corroles: Insights from Optical and X-ray Absorption Spectroscopies and Electrochemical Redox Potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganguly, Sumit; Giles, Logan J.; Thomas, Kolle E.

    Two new series of iron meso-tris(para-X-phenyl)corrole (TpXPC) complexes, Fe[TpXPC]Ph and Fe[TpXPC]Tol, in which X=CF 3, H, Me, and OMe, and Tol=p-methylphenyl (p-tolyl), have been synthesized, allowing a multitechnique electronic–structural comparison with the corresponding FeCl, FeNO, and Fe 2(μ-O) TpXPC derivatives. Optical spectroscopy revealed that the Soret maxima of the FePh and FeTol series are insensitive to the phenyl para substituent, consistent with the presumed innocence of the corrole ligand in these compounds. Accordingly, we may be increasingly confident in the ability of the substituent effect criterion to serve as a probe of corrole noninnocence. Furthermore, four complexes—Fe[TPC]Cl, Fe[TPC](NO), {Fe[TPC]} 2O,more » and Fe[TPC]Ph—were selected for a detailed XANES investigation of the question of ligand noninnocence. The intensity-weighted average energy (IWAE) positions were found to exhibit rather modest variations (0.8 eV over the series of corroles). The integrated Fe-K pre-edge intensities, on the other hand, vary considerably, with a 2.5 fold increase for Fe[TPC]Ph relative to Fe[TPC]Cl and Fe[TPC](NO). Given the approximately C 4v local symmetry of the Fe in all the complexes, the large increase in intensity for Fe[TPC]Ph may be attributed to a higher number of 3d holes, consistent with an expected Fe IV-like description, in contrast to Fe[TPC]Cl and Fe[TPC](NO), in which the Fe is thought to be Fe III-like. In conclusion, these results afford strong validation of XANES as a probe of ligand noninnocence in metallocorroles. Electrochemical redox potentials, on the other hand, were found not to afford a simple probe of ligand noninnocence in Fe corroles.« less

  6. Ligand Noninnocence in Iron Corroles: Insights from Optical and X-ray Absorption Spectroscopies and Electrochemical Redox Potentials

    DOE PAGES

    Ganguly, Sumit; Giles, Logan J.; Thomas, Kolle E.; ...

    2017-10-06

    Two new series of iron meso-tris(para-X-phenyl)corrole (TpXPC) complexes, Fe[TpXPC]Ph and Fe[TpXPC]Tol, in which X=CF 3, H, Me, and OMe, and Tol=p-methylphenyl (p-tolyl), have been synthesized, allowing a multitechnique electronic–structural comparison with the corresponding FeCl, FeNO, and Fe 2(μ-O) TpXPC derivatives. Optical spectroscopy revealed that the Soret maxima of the FePh and FeTol series are insensitive to the phenyl para substituent, consistent with the presumed innocence of the corrole ligand in these compounds. Accordingly, we may be increasingly confident in the ability of the substituent effect criterion to serve as a probe of corrole noninnocence. Furthermore, four complexes—Fe[TPC]Cl, Fe[TPC](NO), {Fe[TPC]} 2O,more » and Fe[TPC]Ph—were selected for a detailed XANES investigation of the question of ligand noninnocence. The intensity-weighted average energy (IWAE) positions were found to exhibit rather modest variations (0.8 eV over the series of corroles). The integrated Fe-K pre-edge intensities, on the other hand, vary considerably, with a 2.5 fold increase for Fe[TPC]Ph relative to Fe[TPC]Cl and Fe[TPC](NO). Given the approximately C 4v local symmetry of the Fe in all the complexes, the large increase in intensity for Fe[TPC]Ph may be attributed to a higher number of 3d holes, consistent with an expected Fe IV-like description, in contrast to Fe[TPC]Cl and Fe[TPC](NO), in which the Fe is thought to be Fe III-like. In conclusion, these results afford strong validation of XANES as a probe of ligand noninnocence in metallocorroles. Electrochemical redox potentials, on the other hand, were found not to afford a simple probe of ligand noninnocence in Fe corroles.« less

  7. The Development of Molybdenum Speciation as a Paleoredox Tool

    NASA Astrophysics Data System (ADS)

    Rodley, J.; Peacock, C.; Mosselmans, J. F. W.; Poulton, S.

    2017-12-01

    The redox state of the oceans has changed throughout geological time and an understanding of these changes is essential to elucidate links between ocean chemistry, climate and life. Due to its abundance in seawater and redox-sensitive nature, molybdenum has enormous potential as a paleoredox proxy. Although a significant amount of research has been done on molybdenum in ancient and modern sediments in terms of its concentrations and isotopic ratios there remains a limited understanding of the drawdown mechanisms of molybdenum under different redox conditions restricting its use in identifying a range of redox states. In order to address these uncertainties, we have developed a novel sequential extraction technique to examine molybdenum concentrations in six sediment fractions from modern samples that represent oxic, nitrogenous, ferruginous and euxinic environments. In addition we use µ-XRF and µ-XANES synchrotron spectroscopy to examine the molybdenum speciation within these fractions and environments. To interpret our µ-XANES data we have developed an extensive library of molybdenum XANES standards that represent molybdenum sequestration by the sediment fractions identified from the sequential extraction. To further verify our synchrotron results we developed a series of µ-XANES micro-column experiments to examine preferential uptake pathways of molybdenum to different sediment phases under a euxinic water column. The initial data from both the sequential extraction and µ-XANES methods indicate that molybdenum is not limited to a single burial pathway in any of the redox environments. We find that each of the redox environments can be characterised by a limited set of molybdenum phase associations, with molybdenum adsorption to pyrite likely the dominant burial pathway. These findings agree with existing research for molybdenum speciation in euxinic environments suggesting that both pyrite and sulphidised organic matter act as important molybdenum sinks. Our

  8. Delocalization and occupancy effects of 5f orbitals in plutonium intermetallics using L3-edge resonant X-ray emission spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booth, C. H.; Medling, S. A.; Jiang, Yu

    2014-06-24

    Although actinide (An) L3 -edge X-ray absorption near-edge structure (XANES) spectroscopy has been very effective in determining An oxidation states in insulating, ionically bonded materials, such as in certain coordination compounds and mineral systems, the technique fails in systems featuring more delocalized 5f orbitals, especially in metals. Recently, actinide L3-edge resonant X-ray emission spec- troscopy (RXES) has been shown to be an effective alternative. This technique is further demonstrated here using a parameterized partial unoccupied density of states method to quantify both occupancy and delocalization of the 5f orbital in ?-Pu, ?-Pu, PuCoGa5 , PuCoIn5 , and PuSb2. These newmore » results, supported by FEFF calculations, highlight the effects of strong correlations on RXES spectra and the technique?s ability to differentiate between f-orbital occupation and delocalization.« less

  9. ICE CHEMISTRY ON OUTER SOLAR SYSTEM BODIES: ELECTRON RADIOLYSIS OF N{sub 2}-, CH{sub 4}-, AND CO-CONTAINING ICES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Materese, Christopher K.; Cruikshank, Dale P.; Sandford, Scott A.

    Radiation processing of the surface ices of outer Solar System bodies may be an important process for the production of complex chemical species. The refractory materials resulting from radiation processing of known ices are thought to impart to them a red or brown color, as perceived in the visible spectral region. In this work, we analyzed the refractory materials produced from the 1.2-keV electron bombardment of low-temperature N{sub 2}-, CH{sub 4}-, and CO-containing ices (100:1:1), which simulates the radiation from the secondary electrons produced by cosmic ray bombardment of the surface ices of Pluto. Despite starting with extremely simple icesmore » dominated by N{sub 2}, electron irradiation processing results in the production of refractory material with complex oxygen- and nitrogen-bearing organic molecules. These refractory materials were studied at room temperature using multiple analytical techniques including Fourier-transform infrared spectroscopy, X-ray absorption near-edge structure (XANES) spectroscopy, and gas chromatography coupled with mass spectrometry (GC-MS). Infrared spectra of the refractory material suggest the presence of alcohols, carboxylic acids, ketones, aldehydes, amines, and nitriles. XANES spectra of the material indicate the presence of carboxyl groups, amides, urea, and nitriles, and are thus consistent with the IR data. Atomic abundance ratios for the bulk composition of these residues from XANES analysis show that the organic residues are extremely N-rich, having ratios of N/C ∼ 0.9 and O/C ∼ 0.2. Finally, GC-MS data reveal that the residues contain urea as well as numerous carboxylic acids, some of which are of interest for prebiotic and biological chemistries.« less

  10. Ice Chemistry on Outer Solar System Bodies: Electron Radiolysis of N2-, CH4-, and CO-Containing Ices

    NASA Astrophysics Data System (ADS)

    Materese, Christopher K.; Cruikshank, Dale P.; Sandford, Scott A.; Imanaka, Hiroshi; Nuevo, Michel

    2015-10-01

    Radiation processing of the surface ices of outer Solar System bodies may be an important process for the production of complex chemical species. The refractory materials resulting from radiation processing of known ices are thought to impart to them a red or brown color, as perceived in the visible spectral region. In this work, we analyzed the refractory materials produced from the 1.2-keV electron bombardment of low-temperature N2-, CH4-, and CO-containing ices (100:1:1), which simulates the radiation from the secondary electrons produced by cosmic ray bombardment of the surface ices of Pluto. Despite starting with extremely simple ices dominated by N2, electron irradiation processing results in the production of refractory material with complex oxygen- and nitrogen-bearing organic molecules. These refractory materials were studied at room temperature using multiple analytical techniques including Fourier-transform infrared spectroscopy, X-ray absorption near-edge structure (XANES) spectroscopy, and gas chromatography coupled with mass spectrometry (GC-MS). Infrared spectra of the refractory material suggest the presence of alcohols, carboxylic acids, ketones, aldehydes, amines, and nitriles. XANES spectra of the material indicate the presence of carboxyl groups, amides, urea, and nitriles, and are thus consistent with the IR data. Atomic abundance ratios for the bulk composition of these residues from XANES analysis show that the organic residues are extremely N-rich, having ratios of N/C ∼ 0.9 and O/C ∼ 0.2. Finally, GC-MS data reveal that the residues contain urea as well as numerous carboxylic acids, some of which are of interest for prebiotic and biological chemistries.

  11. Local structural variation with oxygen fugacity in Fe 2SiO 4+x fayalitic iron silicate melts

    DOE PAGES

    Alderman, O.L.G.; Lazareva, L.; Wilding, M. C.; ...

    2017-01-07

    Here, the structure of molten Fe 2SiO 4+x has been studied using both high-energy X-ray diffraction and Fe K-edge X-ray absorption near-edge structure (XANES) spectroscopy, combined with aerodynamic levitation and laser beam heating. A wide range of Fe 3+ contents were accessed by varying the levitation and atmospheric gas composition. Diffraction measurements were made in the temperature ( T) and oxygen partial pressure ranges 1624(21) < T < 2183(94) K (uncertainties in parentheses) and –5.6(3) < ΔFMQ < +2.8(5) log units (relative to the Fayalite-Magnetite-Quartz buffer). Iron K-edge XANES measurements covered the ranges 1557(33) < T < 1994(36) K andmore » –2.1(3) < ΔFMQ < +4.4(3) log units. Fe 3+ contents, x = Fe 3+/ΣFe, estimated directly from the pre-edge peaks of the XANES spectra varied between 0.15(1) and 0.40(2). While these agree in some cases with semi-empirical models, notable discrepancies are discussed in the context of the redox kinetics and the limitations in both the models and in the calibrations used to derive oxidation state from XANES spectra. XANES pre-edge peak areas imply average Fe–O coordination numbers, n FeO, close to 5 for all Fe 3+/ΣFe. Diffraction measurements yielded values of 4.4(2) < n FeO < 4.7(1). There is limited evidence for a linear trend n FeO(x) = 4.46(3) + 0.4(1)x. Asymmetric Fe–O bond length distributions peak at around 1.96 Å and have a shoulder arising from longer interatomic distances. Mean r FeO lie close to 2.06 Å, consistent with n FeO close to 5. These observations suggest that Fe 2+ is less efficient at stabilizing tetrahedral Fe 3+ compared to large monovalent alkali cations. Comparison of in-situ XANES estimates of Fe 3+/ΣFe in the melts to those of the quenched solids obtained from XANES as well as Mössbauer spectroscopy indicate rapid oxidation during cooling, enabled by stirring of the melt by the levitation gas flow. As such, the oxidation state of hot komatiitic and other highly fluid melts

  12. Local structural variation with oxygen fugacity in Fe2SiO4+x fayalitic iron silicate melts

    NASA Astrophysics Data System (ADS)

    Alderman, O. L. G.; Lazareva, L.; Wilding, M. C.; Benmore, C. J.; Heald, S. M.; Johnson, C. E.; Johnson, J. A.; Hah, H.-Y.; Sendelbach, S.; Tamalonis, A.; Skinner, L. B.; Parise, J. B.; Weber, J. K. R.

    2017-04-01

    The structure of molten Fe2SiO4+x has been studied using both high-energy X-ray diffraction and Fe K-edge X-ray absorption near-edge structure (XANES) spectroscopy, combined with aerodynamic levitation and laser beam heating. A wide range of Fe3+ contents were accessed by varying the levitation and atmospheric gas composition. Diffraction measurements were made in the temperature (T) and oxygen partial pressure ranges 1624(21) < T < 2183(94) K (uncertainties in parentheses) and -5.6(3) < ΔFMQ < +2.8(5) log units (relative to the Fayalite-Magnetite-Quartz buffer). Iron K-edge XANES measurements covered the ranges 1557(33) < T < 1994(36) K and -2.1(3) < ΔFMQ < +4.4(3) log units. Fe3+ contents, x = Fe3+/ΣFe, estimated directly from the pre-edge peaks of the XANES spectra varied between 0.15(1) and 0.40(2). While these agree in some cases with semi-empirical models, notable discrepancies are discussed in the context of the redox kinetics and the limitations in both the models and in the calibrations used to derive oxidation state from XANES spectra. XANES pre-edge peak areas imply average Fe-O coordination numbers, nFeO, close to 5 for all Fe3+/ΣFe. Diffraction measurements yielded values of 4.4(2) < nFeO < 4.7(1). There is limited evidence for a linear trend nFeO(x) = 4.46(3) + 0.4(1)x. Asymmetric Fe-O bond length distributions peak at around 1.96 Å and have a shoulder arising from longer interatomic distances. Mean rFeO lie close to 2.06 Å, consistent with nFeO close to 5. These observations suggest that Fe2+ is less efficient at stabilizing tetrahedral Fe3+ compared to large monovalent alkali cations. Comparison of in-situ XANES estimates of Fe3+/ΣFe in the melts to those of the quenched solids obtained from XANES as well as Mössbauer spectroscopy indicate rapid oxidation during cooling, enabled by stirring of the melt by the levitation gas flow. As such, the oxidation state of hot komatiitic and other highly fluid melts may not be retained, even during

  13. THE DISTRIBUTION, SOLID-PHASE SPECIATION, AND DESORPTION/DISSOLUTION OF AS IN IRON-BASED DRINKING WATER TREATMENT MEDIA 1

    EPA Science Inventory

    Arsenic concentrations (Total Recoverable As by EPA Method 3051, soluble, Toxicity Characteristic Leaching Procedure extractable) and solid-phase speciation (by X-ray Absorption Near-Edge Spectroscopy-XANES) were assessed as a function of depth through Fe-media beds for two comme...

  14. THE DISTRIBUTION, SOLID-PHASE SPECIATION, AND DESORPTION/DISSOLUTION OF AS IN IRON-BASED DRINKING WATER TREATMENT MEDIA - JOURNAL

    EPA Science Inventory

    Arsenic concentrations (Total Recoverable As by EPA Method 3051, soluble, Toxicity Characteristic Leaching Procedure extractable) and solid-phase speciation (by X-ray Absorption Near-Edge Spectroscopy-XANES) were assessed as a function of depth through Fe-media beds for two comme...

  15. Elementary Steps of Faujasite Formation Followed by in Situ Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prodinger, Sebastian; Vjunov, Aleksei; Hu, Jian Zhi

    Ex situ and in situ spectroscopy was used to identify the kinetics of processes during the formation of the faujasite (FAU) zeolite lattice from a hydrous gel. Using solid-state 27Al MAS NMR, the autocatalytic transformation from the amorphous gel into the crystalline material was monitored. Al-XANES shows that most Al already adopts a tetrahedral coordination in the X-ray-amorphous aluminosilicate at the beginning of the induction period, which hardly changes throughout the rest of the synthesis. Using 23Na NMR spectroscopy, environments in the growing zeolite crystal were identified and used to define the processes in the stepwise formation of the zeolitemore » lattice. The end of the induction period was accompanied by a narrowing of the 27Al and 23Na MAS NMR peak widths, indicating the increased long-range order. The experiments show conclusively that the formation of faujasite occurs via the continuous formation and subsequent condensation of intermediary sodalite-like units that constitute the key building block of the zeolite. Acknowledgement The authors thank T. Huthwelker for assistance with XAFS experiment setup at the Swiss Light Source (PSI, Switzerland). Further, we would like to acknowledge V. Shutthanandan and B.W. Arey for performing Helium ion microscopy as well as Z. Zhao, N.R. Jaeger, M. Weng, C. Wan and M. Hu for aiding in the NMR experimental procedure. T. Varga is acknowledged for his help with the capillary XRD. A.V., D.M.C., J.H., J.L.F and J.A.L. were supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. S.P. and M.A.D. acknowledge support by the Materials Synthesis and Simulation Across Scales (MS3 Initiative) conducted under Laboratory Directed Research & Development Program at PNNL. The in situ NMR experiments were supported by the U. S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences and Geosciences. Part of the research

  16. Combination of first-principles molecular dynamics and XANES simulations for LiCoO2-electrolyte interfacial reactions in a lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Tamura, Tomoyuki; Kohyama, Masanori; Ogata, Shuji

    2017-07-01

    We performed a first-principles molecular dynamics (FPMD) simulation of the interfacial reactions between a LiCoO2 electrode and a liquid ethylene carbonate (EC) electrolyte. For configurations during the FPMD simulation, we also performed first-principles Co K-edge x-ray absorption near-edge structure (XANES) simulations, which can properly reproduce the bulk and surface spectra of LiCoO2. We observed strong absorption of an EC molecule on the LiCoO2 {110} surface, involving ring opening of the molecule, bond formation between oxygen atoms in the molecule and surface Co ions, and emission of one surface Li ion, while all the surface Co ions remain Co3 +. The surface Co ions having the bond with an oxygen atom in the molecule showed remarkable changes in simulated K-edge spectra which are similar to those of the in situ observation under electrolyte soaking [D. Takamatsu et al., Angew. Chem., Int. Ed. 51, 11597 (2012), 10.1002/anie.201203910]. Thus, the local environmental changes of surface Co ions due to the reactions with an EC molecule can explain the experimental spectrum changes.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unuigbe, David M.; Harting, Margit; Jonah, Emmanuel O.

    The presence of native oxide on the surface of silicon nanoparticles is known to inhibit charge transport on the surfaces. Scanning electron microscopy (SEM) studies reveal that the particles in the printed silicon network have a wide range of sizes and shapes. High-resolution transmission electron microscopy reveals that the particle surfaces have mainly the (111)- and (100)-oriented planes which stabilizes against further oxidation of the particles. X-ray absorption spectroscopy (XANES) and X-ray photoelectron spectroscopy (XPS) measurements at the O 1s-edge have been utilized to study the oxidation and local atomic structure of printed layers of silicon nanoparticles which were milledmore » for different times. XANES results reveal the presence of the +4 (SiO 2) oxidation state which tends towards the +2 (SiO) state for higher milling times. Si 2pXPS results indicate that the surfaces of the silicon nanoparticles in the printed layers are only partially oxidized and that all three sub-oxide, +1 (Si 2O), +2 (SiO) and +3 (Si 2O 3), states are present. The analysis of the change in the sub-oxide peaks of the silicon nanoparticles shows the dominance of the +4 state only for lower milling times.« less

  18. Biosorption of Cr(VI) by coconut coir: spectroscopic investigation on the reaction mechanism of Cr(VI) with lignocellulosic material.

    PubMed

    Shen, Ying-Shuian; Wang, Shan-Li; Huang, Shiuh-Tsuen; Tzou, Yu-Min; Huang, Jang-Hung

    2010-07-15

    In this study, the removal mechanism of Cr(VI) from water by coconut coir (CC) was investigated using X-ray photoelectron spectroscopy (XPS), Cr K-edge X-ray absorption near edge structure (XANES) and FTIR spectroscopy. The results showed that, upon reaction with CC at pH 3, Cr(VI) was reduced to Cr(III), which was either bound to CC or released back into solution. As revealed by the FTIR spectra of CC before and after reacting with Cr(VI), the phenolic methoxyl and hydroxyl groups of lignin in CC are the dominant drivers of Cr(VI) reduction, giving rise to carbonyl and carboxyl groups on CC. These functional groups can subsequently provide binding sites for Cr(III) resulting from Cr(VI) reduction. In conjunction with forming complexes with carbonyl and carboxyl groups, the formation of Cr(III) hydroxide precipitate could also readily occur as revealed by the linear combination fitting of the Cr K-edge XANES spectrum using a set of reference compounds. The phenolic groups in lignin are responsible for initiating Cr(VI) reduction, so lignocellulosic materials containing a higher amount of phenolic groups are expected to be more effective scavengers for removal of Cr(VI) from the environment. 2010 Elsevier B.V. All rights reserved.

  19. Microanalysis (micro-XRF, micro-XANES, and micro-XRD) of a tertiary sediment using microfocused synchrotron radiation.

    PubMed

    Denecke, Melissa A; Somogyi, Andrea; Janssens, Koen; Simon, Rolf; Dardenne, Kathy; Noseck, Ulrich

    2007-06-01

    Micro-focused synchrotron radiation techniques to investigate actinide elements in geological samples are becoming an increasingly used tool in nuclear waste disposal research. In this article, results using mu-focus techniques are presented from a bore core section of a U-rich tertiary sediment collected from Ruprechtov, Czech Republic, a natural analog to nuclear waste repository scenarios in deep geological formations. Different methods are applied to obtain various, complementary information. Elemental and element chemical state distributions are obtained from micro-XRF measurements, oxidation states of As determined from micro-XANES, and the crystalline structure of selected regions are studied by means of micro-XRD. We find that preparation of the thin section created an As oxidation state artifact; it apparently changed the As valence in some regions of the sample. Results support our previously proposed hypothesis of the mechanism for U-enrichment in the sediment. AsFeS coating on framboid Fe nodules in the sediment reduced mobile groundwater-dissolved U(VI) to less-soluble U(IV), thereby immobilizing the uranium in the sediment.

  20. The photodegradation of cadmium yellow paints in Henri Matisse's Le Bonheur de vivre (1905-1906)

    NASA Astrophysics Data System (ADS)

    Mass, Jennifer L.; Opila, Robert; Buckley, Barbara; Cotte, Marine; Church, Jonathan; Mehta, Apurva

    2013-04-01

    Evidence for the alteration of the yellow paints in Henri Matisse's Le Bonheur de vivre (1905-1906, The Barnes Foundation) has been observed since the 1990s. The changes in this iconic work of Matisse's Fauvist period include lightening, darkening, and flaking of the yellow paints. Handheld X-ray fluorescence (XRF) and multispectral imaging surveys reveal that the degradation is confined to cadmium yellow (CdS) paints. The discoloration of cadmium yellow paints in Impressionist, Post-Impressionist and early modernist work from the 1880s through the 1920s has been ascribed to the photo-oxidative degradation of CdS. Preliminary investigations of the degraded yellow paints in this work involved Cd LIII-edge X-ray Absorption Near Edge Spectroscopy (XANES) at the Stanford Synchrotron Radiation Light Source (SSRL Menlo Park, California) and Scanning Electron Microscopy-energy dispersive X-ray analysis (SEM-EDS) at the Winterthur Museum Scientific Research and Analysis Laboratory. To determine if the visual changes in the paints did in fact indicate photo-oxidative degradation and if different chemistries could be observed for the lightened versus darkened regions, synchrotron radiation-micro Fourier Transform InfraRed (SR-μFTIR) spectroscopy, X-ray Fluorescence (SR-μXRF) mapping and micro X-ray Absorption Near Edge SpectroscopyXANES) mapping at the Cd LIII-edge of the altered paint cross-sections were carried out at the European synchrotron radiation facility (ESRF, Grenoble, France) beamline ID-21. The goal is to elucidate the discoloration mechanisms observed in the paint using elemental and speciation mapping. The μXANES mapping and SR-FTIR imaging showed a substantial enrichment of CdCO3 in the off-white surface crust of the faded/discolored CdS paint. This suggests that the CdCO3 is present as an insoluble photodegradation product rather than solely a paint filler or starting reagent. Additionally, oxalates and sulfates were found to be concentrated at the

  1. Understanding of sub-band gap absorption of femtosecond-laser sulfur hyperdoped silicon using synchrotron-based techniques

    PubMed Central

    Limaye, Mukta V.; Chen, S. C.; Lee, C. Y.; Chen, L. Y.; Singh, Shashi B.; Shao, Y. C.; Wang, Y. F.; Hsieh, S. H.; Hsueh, H. C.; Chiou, J. W.; Chen, C. H.; Jang, L. Y.; Cheng, C. L.; Pong, W. F.; Hu, Y. F.

    2015-01-01

    The correlation between sub-band gap absorption and the chemical states and electronic and atomic structures of S-hyperdoped Si have been extensively studied, using synchrotron-based x-ray photoelectron spectroscopy (XPS), x-ray absorption near-edge spectroscopy (XANES), extended x-ray absorption fine structure (EXAFS), valence-band photoemission spectroscopy (VB-PES) and first-principles calculation. S 2p XPS spectra reveal that the S-hyperdoped Si with the greatest (~87%) sub-band gap absorption contains the highest concentration of S2− (monosulfide) species. Annealing S-hyperdoped Si reduces the sub-band gap absorptance and the concentration of S2− species, but significantly increases the concentration of larger S clusters [polysulfides (Sn2−, n > 2)]. The Si K-edge XANES spectra show that S hyperdoping in Si increases (decreased) the occupied (unoccupied) electronic density of states at/above the conduction-band-minimum. VB-PES spectra evidently reveal that the S-dopants not only form an impurity band deep within the band gap, giving rise to the sub-band gap absorption, but also cause the insulator-to-metal transition in S-hyperdoped Si samples. Based on the experimental results and the calculations by density functional theory, the chemical state of the S species and the formation of the S-dopant states in the band gap of Si are critical in determining the sub-band gap absorptance of hyperdoped Si samples. PMID:26098075

  2. Characterizing phosphorus speciation of Chesapeake Bay sediments using chemical extraction, 31P NMR, and X-ray absorption fine structure spectroscopy.

    PubMed

    Li, Wei; Joshi, Sunendra R; Hou, Guangjin; Burdige, David J; Sparks, Donald L; Jaisi, Deb P

    2015-01-06

    Nutrient contamination has been one of the lingering issues in the Chesapeake Bay because the bay restoration is complicated by temporally and seasonally variable nutrient sources and complex interaction between imported and regenerated nutrients. Differential reactivity of sedimentary phosphorus (P) pools in response to imposed biogeochemical conditions can record past sediment history and therefore a detailed sediment P speciation may provide information on P cycling particularly the stability of a P pool and the formation of one pool at the expense of another. This study examined sediment P speciation from three sites in the Chesapeake Bay: (i) a North site in the upstream bay, (ii) a middle site in the central bay dominated by seasonally hypoxic bottom water, and (iii) a South site at the bay-ocean boundary using a combination of sequential P extraction (SEDEX) and spectroscopic techniques, including (31)P NMR, P X-ray absorption near edge structure spectroscopy (XANES), and Fe extended X-ray absorption fine structure (EXAFS). Results from sequential P extraction reveal that sediment P is composed predominantly of ferric Fe-bound P and authigenic P, which was further confirmed by solid-state (31)P NMR, XANES, and EXAFS analyses. Additionally, solution (31)P NMR results show that the sediments from the middle site contain high amounts of organic P such as monoesters and diesters, compared to the other two sites, but that these compounds rapidly decrease with sediment depth indicating remineralized P could have precipitated as authigenic P. Fe EXAFS enabled to identify the changes in Fe mineral composition and P sinks in response to imposed redox condition in the middle site sediments. The presence of lepidocrocite, vermiculite, and Fe smectite in the middle site sediments indicates that some ferric Fe minerals can still be present along with pyrite and vivianite, and that ferric Fe-bound P pool can be a major P sink in anoxic sediments. These results provide

  3. Micron to Mine: Synchrotron Science for Mineral Exploration, Production, and Remediation

    NASA Astrophysics Data System (ADS)

    Banerjee, N.; Van Loon, L.; Flynn, T.

    2017-12-01

    Synchrotron science for mineral exploration, production, and remediation studies is a powerful tool that provides industry with relevant micron to macro geochemical information. Synchrotron micro X-ray fluorescence (SR-µXRF) offers a direct, high-resolution, rapid, and cost-effective chemical analysis while preserving the context of the sample by mapping ore minerals with ppm detection limits. Speciation of trace and deleterious elements can then be probed using X-ray absorption near-edge structure (XANES) spectroscopy. Large-scale (tens of cm) µXRF mapping and XANES analysis of samples collected at various mine locations have been undertaken to address questions regarding mineralization history to develop novel trace element exploration vectors. This information provides integral insights into trace element associations with ore minerals, local redox conditions responsible for mineralization, and mineralizing mechanisms. Gold is commonly intimately associated with sulfide mineralization (e.g., pyrite, arsenopyrite, etc.) and is present both as inclusions and filling fractures in sulfide grains. Gold may also occur as nanoparticles and/or in the sulfide mineral crystal lattice, known as "invisible gold". Understanding the nature and distribution of invisible gold in ore is integral to processing efficiency. The high flux and energy of a synchrotron light source allows for the detection of invisible gold by µXRF, and can probe its nature (metallic Au0 vs. lattice bound Au1+) using XANES spectroscopy. The long-term containment and management of arsenic is necessary to protect the health of both humans and the environment. Understanding the relationship of arsenic mineralization to gold deposits can lead to more sophisticated planning for mineral processing and the eventual storage of gangue materials. µXANES spectroscopy is an excellent tool for determining arsenic speciation within the context of the sample. Mineral phases such as arsenopyrite, scorodite, and

  4. X-ray absorption spectroscopy study of parent misfit-layered cobalt oxide [Sr₂O₂] q}CoO₂

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Ta-Lei; Chan, Ting-Shan; Chen, Jin-Ming

    Here we present a comprehensive X-ray absorption spectroscopy study carried out at Co-L₂,₃, Co-K, O-K and Sr-K edges for the parent misfit-layered cobalt oxide phase [Sr₂O₂]₀.₅₂CoO₂; comparison is made to another misfit-layered oxide [CoCa₂O₃]₀.₆₂CoO₂ and the perovskite oxide LaCoO₃. A high-quality sample of [Sr₂O₂]₀.₅₂CoO₂ was obtained through ultra-high-pressure synthesis using Sr₃Co₂O₆ and Sr(OH)₂∙8H₂O as starting materials. Different dosages of KClO₃ were mixed with the raw materials as an oxygen source and tested, but it was found that the window for the redox control of [Sr₂O₂]₀.₅₂CoO₂ is rather narrow. From Co-K and Co-L₂,₃ spectra a mixed III/IV valence state is revealedmore » for cobalt in [Sr₂O₂]₀.₅₂}CoO₂, but the average valence value is a little lower than in [CoCa₂O₃]₀.₆₂CoO₂. Then, Sr-K spectrum indicates that the [Sr₂O₂] double-layer block in [Sr₂O₂]₀.₅₂CoO₂ clearly deviates from the cubic SrO rock-salt structure, suggesting a more complicated coordination environment for strontium. This together with a somewhat low Co-valence value and the fact that the phase formation of [Sr₂O₂]₀.₅₂CoO₂ required the presence of Sr(OH)₂∙8H₂O in the high-pressure synthesis suggest that the [Sr₂O₂] block contains ---OH groups, i.e. [Sr₂(O,OH)₂]₀.₅₂CoO₂. - Graphical abstract: [Sr₂O₂]₀.₅₂CoO₂ obtained through high-pressure synthesis is a parent of misfit-layered cobalt oxides, such as [CoCa₂O₃]₀.₆₂CoO₂ or [M mA₂O 2+m] qCoO₂ in general. Our comprehensive X-ray absorption spectroscopy study shows that both [Sr₂O₂]₀.₅₂CoO₂ and [CoCa₂O₃]₀.₆₂CoO₂ possess mixed III/IV valence cobalt, but the average Co-valence is a little lower in the former. This is tentatively believed to be due to OH --- groups replacing part of O²⁻ ions in the [Sr₂O₂] layer block. Highlights: • [Sr

  5. Low toxic maghemite nanoparticles for theranostic applications.

    PubMed

    Kuchma, Elena A; Zolotukhin, Peter V; Belanova, Anna A; Soldatov, Mikhail A; Lastovina, Tatiana A; Kubrin, Stanislav P; Nikolsky, Anatoliy V; Mirmikova, Lidia I; Soldatov, Alexander V

    2017-01-01

    Iron oxide nanoparticles have numerous and versatile biological properties, ranging from direct and immediate biochemical effects to prolonged influences on tissues. Most applications have strict requirements with respect to the chemical and physical properties of such agents. Therefore, developing rational design methods of synthesis of iron oxide nanoparticles remains of vital importance in nanobiomedicine. Low toxic superparamagnetic iron oxide nanoparticles (SPIONs) for theranostic applications in oncology having spherical shape and maghemite structure were produced using the fast microwave synthesis technique and were fully characterized by several complementary methods (transmission electron microscopy [TEM], X-ray diffraction [XRD], dynamic light scattering [DLS], X-ray photoelectron spectroscopy [XPS], X-ray absorption near edge structure [XANES], Mossbauer spectroscopy, and HeLa cells toxicity testing). TEM showed that the majority of the obtained nanoparticles were almost spherical and did not exceed 20 nm in diameter. The averaged DLS hydrodynamic size was found to be ~33 nm, while that of nanocrystallites estimated by XRD waŝ16 nm. Both XRD and XPS studies evidenced the maghemite (γ-Fe 2 O 3 ) atomic and electronic structure of the synthesized nanoparticles. The XANES data analysis demonstrated the structure of the nanoparticles being similar to that of macroscopic maghemite. The Mossbauer spectroscopy revealed the γ-Fe 2 O 3 phase of the nanoparticles and vibration magnetometry study showed that reactive oxygen species in HeLa cells are generated both in the cytoplasm and the nucleus. Quasispherical Fe 3+ SPIONs having the maghemite structure with the average size of 16 nm obtained by using the fast microwave synthesis technique are expected to be of great value for theranostic applications in oncology and multimodal anticancer therapy.

  6. Experimental and theoretical studies of dipole and quadrupole contributions to the vanadium K-edge XANES for VOPO4.2H2O xerogel

    NASA Astrophysics Data System (ADS)

    Poumellec, B.; Kraizman, V.; Aifa, Y.; Cortès, R.; Novakovich, A.; Vedrinskii, R.

    1998-09-01

    Angular dependence of the vanadium K-edge x-ray appearance near-edge structure (XANES) for the VOPO4.2H2O xerogel is thoroughly studied both experimentally and theoretically. The main attention is paid to the pre-edge fine structure (PEFS) of the spectra which was shown earlier to be a useful tool for the atomic short order investigations. Good quantitative agreement between theory and experiment obtained for both dipole and quadrupole contributions to the spectra proves validity of the calculation method developed and enables us to ascertain the nature of all the features in the PEFS's. The p-d mixture effect due to distortion of the central coordination octahedron and the quadrupole transitions are proved to be the only mechanisms responsible for the PEFS formation in the case considered. We show that in order to achieve quantitative agreement between experimental and theoretical spectra, it is necessary to include the effect of atomic vibrations, which makes the forbidden transitions to molecular orbitals of the central octahedron (MOCO's) dipole allowed, and to take into account deviation of the crystal layers from the substrate plane, which is not a single crystal but a texture.

  7. THE DISTRIBUTION, SOLID-PHASE SPECIATION, AND DESORPTION/DISSOLUTION OF AS IN IRON-BASED TREATMENT MEDIA

    EPA Science Inventory

    Arsenic concentrations (Total Recoverable As by EPA Method 3051) and solid-phase speciation (by X-ray Absorption Near-Edge Spectroscopy-XANES) were assessed as a function of depth through Fe-media beds for two commercially available products from pilot-scale field tests. These re...

  8. THE DISTRIBUTION AND SOLID-PHASE SPECIATION OF AS IN IRON-BASED TREATMENT MEDIA

    EPA Science Inventory

    Arsenic concentrations (Total Recoverable As by EPA Method 3051) and solid-phase speciation (by X-ray Absorption Near-Edge Spectroscopy-XANES) were assessed as a function of depth through Fe-media beds for two commercially available products from pilot-scale field tests. These r...

  9. Novel Catalytic Mechanisms For The Chemical Reduction Of Carbon Dioxide To Energy-Dense Liquids

    DTIC Science & Technology

    2016-12-14

    spectroscopy and X-ray crystallography . Synchrotron radiation techniques such as EXAFS and XANES are being used to characterize the structure and...Chemistry and Catalysis using Soft X-rays at LCLS” 23rd Congress and General Assembly of the International Union of Crystallography , Montreal (2014). A

  10. Hydrogen-induced structural changes at the nickel site of the regulatory [NiFe] hydrogenase from Ralstonia eutropha detected by X-ray absorption spectroscopy.

    PubMed

    Haumann, Michael; Porthun, Antje; Buhrke, Thorsten; Liebisch, Peter; Meyer-Klaucke, Wolfram; Friedrich, Bärbel; Dau, Holger

    2003-09-23

    For the first time, the nickel site of the hydrogen sensor of Ralstonia eutropha, the regulatory [NiFe] hydrogenase (RH), was investigated by X-ray absorption spectroscopy (XAS) at the nickel K-edge. The oxidation state and the atomic structure of the Ni site were investigated in the RH in the absence (air-oxidized, RH(ox)) and presence of hydrogen (RH(+H2)). Incubation with hydrogen is found to cause remarkable changes in the spectroscopic properties. The Ni-C EPR signal, indicative of Ni(III), is detectable only in the RH(+H2) state. XANES and EXAFS spectra indicate a coordination of the Ni in the RH(ox) and RH(+H2) that pronouncedly differs from the one in standard [NiFe] hydrogenases. Also, the changes induced by exposure to H(2) are unique. A drastic modification in the XANES spectra and an upshift of the K-edge energy from 8339.8 (RH(ox)) to 8341.1 eV (RH(+H2)) is observed. The EXAFS spectra indicate a change in the Ni coordination in the RH upon exposure to H(2). One likely interpretation of the data is the detachment of one sulfur ligand in RH(+H2) and the binding of additional (O,N) or H ligands. The following Ni oxidation states and coordinations are proposed: five-coordinated Ni(II)(O,N)(2)S(3) for RH(ox) and six-coordinated Ni((III))(O,N)(3)X(1)S(2) [X being either an (O,N) or H ligand] for RH(+H2). Implications of the structural features of the Ni site of the RH in relation to its function, hydrogen sensing, are discussed.

  11. Characterization of local atomic structure in Co/Zn based ZIFs by XAFS

    NASA Astrophysics Data System (ADS)

    Podkovyrina, Yulia; Butova, Vera; Bulanova, Elena; Budnyk, Andriy; Kremennaya, Maria; Soldatov, Alexander; Lamberti, Carlo

    2018-03-01

    The local atomic structure in bimetallic Co/Zn zeolitic imidazolate frameworks (ZIFs) was studied using X-ray Absorption Fine Structure (XAFS) spectroscopy and theoretical calculations. The experimental Co K-edge and Zn K-edge XANES (X-ray Absorption Near Edge Structure) spectra of Zn1-xCoxC8H10N4 samples (x = 0.05, 0.25, 0.75) synthesized by microwave synthesis were compared with the data for the ZIF-67 (x=1) and ZIF-8 (x=0). Theoretical XANES spectra for the bimetallic ZIFs were calculated. It was shown that in bimetallic ZIFs the Co and Zn atoms have the similar local environment.

  12. Optically detected X-ray absorption spectroscopy measurements as a means of monitoring corrosion layers on copper.

    PubMed

    Dowsett, Mark G; Adriaens, Annemie; Jones, Gareth K C; Poolton, Nigel; Fiddy, Steven; Nikitenko, Sergé

    2008-11-15

    XANES and EXAFS information is conventionally measured in transmission through the energy-dependent absorption of X-rays or by observing X-ray fluorescence, but secondary fluorescence processes, such as the emission of electrons and optical photons (e.g., 200-1000 nm), can also be used as a carrier of the XAS signatures, providing complementary information such as improved surface specificity. Where the near-visible photons have a shorter range in a material, the data will be more surface specific. Moreover, optical radiation may escape more readily than X-rays through liquid in an environmental cell. Here, we describe a first test of optically detected X-ray absorption spectroscopy (ODXAS) for monitoring electrochemical treatments on copper-based alloys, for example, heritage metals. Artificially made corrosion products deposited on a copper substrate were analyzed in air and in a 1% (w/v) sodium sesquicarbonate solution to simulate typical conservation methods for copper-based objects recovered from marine environments. The measurements were made on stations 7.1 and 9.2 MF (SRS Daresbury, UK) using the mobile luminescence end station (MoLES), supplemented by XAS measurements taken on DUBBLE (BM26 A) at the ESRF. The ODXAS spectra usually contain fine structure similar to that of XAS spectra measured in X-ray fluorescence. Importantly, for the compounds examined, the ODXAS is significantly more surface specific, and >98% characteristic of thin surface layers of 0.5-1.5-microm thickness in cases where X-ray measurements are dominated by the substrate. However, EXAFS and XANES from broadband optical measurements are superimposed on a high background due to other optical emission modes. This produces statistical fluctuations up to double what would be expected from normal counting statistics because the data retain the absolute statistical fluctuation in the original raw count, while losing up to 70% of their magnitude when background is removed. The problem may be

  13. X-Ray Absorption Spectroscopy of Fe-Substituted Allophane and Imogolite

    NASA Astrophysics Data System (ADS)

    Baker, L. L.; Strawn, D. G.; Nickerson, R. D.; McDaniel, P.

    2011-12-01

    Martian rocks and sediments contain weathering products including clay minerals formed as a result of interaction between rocks and water, and these materials can act as important indicators of past surface conditions on Mars. Weathering of terrestrial volcanic rocks similar to those on Mars produces nano-sized, variably hydrated aluminosilicate and iron oxide minerals, including allophane, imogolite, halloysite, hisingerite, and ferrihydrite. The nanoaluminosilicates can contain isomorphically substituted Fe, which may affect their spectral and physical properties as well as their eventual recrystallization products. Detection and quantification of such minerals in natural environments on Earth is difficult due to their variable chemical composition and lack of long-range crystalline order. Their accurate detection and quantification on Mars requires a better understanding of how composition affects their spectral properties and evolution to more crystalline phases. Aluminosilicate nanoparticles of varying composition were synthesized with isomorphically substituted Fe at Fe:Al ratios of 1:100. Allophanes were synthesized with Al:Si ratios of 2:1, 1:1, and 1:3. The substituted Fe was probed using Fe K-edge X-ray absorption fine structure spectroscopy (XAFS). The XAFS spectrum contains information about the molecular environment surrounding the target atom, and is an ideal technique for studying poorly crystalline materials that are difficult to characterize using bulk methods such as XRD. The near-edge (XANES) and extended (EXAFS) portions of the XAFS spectrum were examined, and allophane backscattering paths were fit using coordinates for a modified nanoball model (1). XANES spectra rule out ferrihydrite in the synthetic samples, suggesting all Fe was incorporated into the aluminosilicate structure. The XAFS results suggest that Fe substituted into the allophane structure is present as Fe(III) in octahedral coordination in a well-ordered sheet. Some Fe

  14. Iron K-edge X-ray absorption near-edge structure spectroscopy of aerodynamically levitated silicate melts and glasses

    DOE PAGES

    Alderman, O. L. G.; Wilding, M. C.; Tamalonis, A.; ...

    2017-01-26

    Here, the local structure about Fe(II) and Fe(III) in silicate melts was investigated in-situ using iron K-edge X-ray absorption near-edge structure (XANES) spectroscopy. An aerodynamic levitation and laser heating system was used to allow access to high temperatures without contamination, and was combined with a chamber and gas mixing system to allow the iron oxidation state, Fe 3+/ΣFe, to be varied by systematic control of the atmospheric oxygen fugacity. Eleven alkali-free, mostly iron-rich and depolymerized base compositions were chosen for the experiments, including pure oxide FeO, olivines (Fe,Mg) 2SiO 4, pyroxenes (Fe,Mg)SiO 3, calcic FeO-CaSiO 3, and a calcium aluminosilicatemore » composition, where total iron content is denoted by FeO for convenience. Melt temperatures varied between 1410 and 2160 K and oxygen fugacities between FMQ – 2.3(3) to FMQ + 9.1(3) log units (uncertainties in parentheses) relative to the fayalite-magnetite-β-quartz (FMQ) buffer.« less

  15. Proton magnetic resonance spectroscopy shows lower intramyocellular lipid accumulation in middle-aged subjects predisposed to familial longevity.

    PubMed

    Wijsman, C A; van Opstal, A M; Kan, H E; Maier, A B; Westendorp, R G J; Slagboom, P E; Webb, A G; Mooijaart, S P; van Heemst, D

    2012-02-01

    Families predisposed to longevity show enhanced glucose tolerance and skeletal muscle insulin sensitivity compared with controls, independent of body composition and physical activity. Intramyocellular lipid (IMCL) accumulation in skeletal muscle has been associated with insulin resistance. Here, we assessed whether subjects enriched for familial longevity have lower IMCL levels. We determined IMCL levels in 48 subjects from the Leiden Longevity Study, comprising 24 offspring of nonagenarian siblings and 24 partners thereof as control subjects. IMCL levels were assessed noninvasively using short echo time proton magnetic resonance spectroscopy ((1)H-MRS) of the tibialis anterior muscle with a 7 Tesla human MR scanner. IMCL levels were calculated relative to the total creatine (tCr) CH3 signal. Physical activity was assessed using the International Physical Activity Questionnaire (IPAQ). After correction for age, sex, BMI, and physical activity, offspring of long-lived nonagenarian siblings tended to show lower IMCL levels compared with controls (IMCL/tCr: 3.1 ± 0.5 vs. 4.5 ± 0.5, respectively, P = 0.051). In a pairwise comparison, this difference reached statistical significance (P = 0.038). We conclude that offspring of nonagenarian siblings predisposed to longevity show lower IMCL levels compared with environmentally matched control subjects. Future research should focus on assessing what mechanisms may explain the lower IMCL levels in familial longevity.

  16. Solvation structure of the halides from x-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antalek, Matthew; Hedman, Britt; Sarangi, Ritimukta, E-mail: ritis@slac.stanford.edu

    2016-07-28

    Three-dimensional models for the aqueous solvation structures of chloride, bromide, and iodide are reported. K-edge extended X-ray absorption fine structure (EXAFS) and Minuit X-ray absorption near edge (MXAN) analyses found well-defined single shell solvation spheres for bromide and iodide. However, dissolved chloride proved structurally distinct, with two solvation shells needed to explain its strikingly different X-ray absorption near edge structure (XANES) spectrum. Final solvation models were as follows: iodide, 8 water molecules at 3.60 ± 0.13 Å and bromide, 8 water molecules at 3.40 ± 0.14 Å, while chloride solvation included 7 water molecules at 3.15 ± 0.10 Å, andmore » a second shell of 7 water molecules at 4.14 ± 0.30 Å. Each of the three derived solvation shells is approximately uniformly disposed about the halides, with no global asymmetry. Time-dependent density functional theory calculations simulating the chloride XANES spectra following from alternative solvation spheres revealed surprising sensitivity of the electronic state to 6-, 7-, or 8-coordination, implying a strongly bounded phase space for the correct structure during an MXAN fit. MXAN analysis further showed that the asymmetric solvation predicted from molecular dynamics simulations using halide polarization can play no significant part in bulk solvation. Classical molecular dynamics used to explore chloride solvation found a 7-water solvation shell at 3.12 (−0.04/+0.3) Å, supporting the experimental result. These experiments provide the first fully three-dimensional structures presenting to atomic resolution the aqueous solvation spheres of the larger halide ions.« less

  17. Admittance spectroscopy or deep level transient spectroscopy: A contrasting juxtaposition

    NASA Astrophysics Data System (ADS)

    Bollmann, Joachim; Venter, Andre

    2018-04-01

    A comprehensive understanding of defects in semiconductors remains of primary importance. In this paper the effectiveness of two of the most commonly used semiconductor defect spectroscopy techniques, viz. deep level transient spectroscopy (DLTS) and admittance spectroscopy (AS) are reviewed. The analysis of defects present in commercially available SiC diodes shows that admittance spectroscopy allows the identification of deep traps with reduced measurement effort compared to deep Level Transient Spectroscopy (DLTS). Besides the N-donor, well-studied intrinsic defects were detected in these diodes. Determination of their activation energy and defect density, using the two techniques, confirm that the sensitivity of AS is comparable to that of DLTS while, due to its well defined peak shape, the spectroscopic resolution is superior. Additionally, admittance spectroscopy can analyze faster emission processes which make the study of shallow defects more practical and even that of shallow dopant levels, possible. A comparative summary for the relevant spectroscopic features of the two capacitance methods are presented.

  18. The Effect of Thermal Reduction on the Photoluminescence and Electronic Structures of Graphene Oxides

    PubMed Central

    Chuang, C.-H.; Wang, Y.-F.; Shao, Y.-C.; Yeh, Y.-C.; Wang, D.-Y.; Chen, C.-W.; Chiou, J. W.; Ray, Sekhar C.; Pong, W. F.; Zhang, L.; Zhu, J. F.; Guo, J. H.

    2014-01-01

    Electronic structures of graphene oxide (GO) and hydro-thermally reduced graphene oxides (rGOs) processed at low temperatures (120–180°C) were studied using X-ray absorption near-edge structure (XANES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). C K-edge XANES spectra of rGOs reveal that thermal reduction restores C = C sp2 bonds and removes some of the oxygen and hydroxyl groups of GO, which initiates the evolution of carbonaceous species. The combination of C K-edge XANES and Kα XES spectra shows that the overlapping π and π* orbitals in rGOs and GO are similar to that of highly ordered pyrolytic graphite (HOPG), which has no band-gap. C Kα RIXS spectra provide evidence that thermal reduction changes the density of states (DOSs) that is generated in the π-region and/or in the gap between the π and π* levels of the GO and rGOs. Two-dimensional C Kα RIXS mapping of the heavy reduction of rGOs further confirms that the residual oxygen and/or oxygen-containing functional groups modify the π and σ features, which are dispersed by the photon excitation energy. The dispersion behavior near the K point is approximately linear and differs from the parabolic-like dispersion observed in HOPG. PMID:24717290

  19. The effect of thermal reduction on the photoluminescence and electronic structures of graphene oxides.

    PubMed

    Chuang, C-H; Wang, Y-F; Shao, Y-C; Yeh, Y-C; Wang, D-Y; Chen, C-W; Chiou, J W; Ray, Sekhar C; Pong, W F; Zhang, L; Zhu, J F; Guo, J H

    2014-04-10

    Electronic structures of graphene oxide (GO) and hydro-thermally reduced graphene oxides (rGOs) processed at low temperatures (120-180°C) were studied using X-ray absorption near-edge structure (XANES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). C K-edge XANES spectra of rGOs reveal that thermal reduction restores C = C sp(2) bonds and removes some of the oxygen and hydroxyl groups of GO, which initiates the evolution of carbonaceous species. The combination of C K-edge XANES and Kα XES spectra shows that the overlapping π and π* orbitals in rGOs and GO are similar to that of highly ordered pyrolytic graphite (HOPG), which has no band-gap. C Kα RIXS spectra provide evidence that thermal reduction changes the density of states (DOSs) that is generated in the π-region and/or in the gap between the π and π* levels of the GO and rGOs. Two-dimensional C Kα RIXS mapping of the heavy reduction of rGOs further confirms that the residual oxygen and/or oxygen-containing functional groups modify the π and σ features, which are dispersed by the photon excitation energy. The dispersion behavior near the K point is approximately linear and differs from the parabolic-like dispersion observed in HOPG.

  20. XAFS STUDIES OF NICKEL AND SULFUR SPECIATION IN RESIDENTIAL OIL FLY-ASH PARTICULATE MATTERS (ROFA PM)

    EPA Science Inventory

    XAFS spectroscopy has been employed to evaluate the effect of fuel compositions and combustion conditions on the amount, form, and distribution of sulfur and nickel in size-fractionated ROFA PM. Analysis of S K-edge XANES establish that sulfate is abundant in all PM. However, dep...

  1. Speciation and characterization of arsenic in gold ores and cyanidation tailings using X-ray absorption spectroscopy

    USGS Publications Warehouse

    Paktunc, D.; Foster, A.; Heald, S.; Laflamme, G.

    2004-01-01

    The knowledge of mineralogy and molecular structure of As is needed to better understand the stability of As in wastes resulting from processing of gold ores. In this study, optical microscopy, scanning electron microscopy, electron microprobe, X-ray diffraction and X-ray absorption fine structure (XAFS) spectroscopy (including both XANES and EXAFS regimes) were employed to determine the mineralogical composition and local coordination environment of As in gold ores and process tailings from bench-scale tests designed to mimic a common plant practice. Arsenic-bearing minerals identified in the ores and tailings include iron (III) oxyhydroxides, scorodite (FeAsO4??2H2O), ferric arsenates, arseniosiderite (Ca2Fe3 (AsO4)3O2??3H2O), Ca-Fe arsenates, pharmacosiderite (KFe4 (AsO4)3(OH)4??6-7H2O), jarosite (K2Fe6(SO4)4 (OH)12) and arsenopyrite (FeAsS). Iron (III) oxyhydroxides contain variable levels of As from trace to about 22 wt% and Ca up to approximately 9 wt%. Finely ground ore and tailings samples were examined by bulk XAFS and selected mineral grains were analyzed by microfocused XAFS (micro-EXAFS) spectroscopy to reconcile the ambiguities of multiple As sources in the complex bulk EXAFS spectra. XANES spectra indicated that As occurs as As5+in all the samples. Micro-EXAFS spectra of individual iron (III) oxyhydroxide grains with varying As concentrations point to inner-sphere bidentate-binuclear arsenate complexes as the predominant form of As. There are indications for the presence of a second Fe shell corresponding to bidentate-mononuclear arrangement. Iron (III) oxyhydroxides with high As concentrations corresponding to maximum adsorption densities probably occur as nanoparticles. The discovery of Ca atoms around As in iron (III) oxyhydroxides at interatomic distances of 4.14-4.17 A?? and the coordination numbers suggest the formation of arseniosiderite-like nanoclusters by coprecipitation rather than simple adsorption of Ca onto iron (III) oxyhydroxides

  2. Speciation and characterization of arsenic in gold ores and cyanidation tailings using X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Paktunc, Dogan; Foster, Andrea; Heald, Steve; Laflamme, Gilles

    2004-03-01

    The knowledge of mineralogy and molecular structure of As is needed to better understand the stability of As in wastes resulting from processing of gold ores. In this study, optical microscopy, scanning electron microscopy, electron microprobe, X-ray diffraction and X-ray absorption fine structure (XAFS) spectroscopy (including both XANES and EXAFS regimes) were employed to determine the mineralogical composition and local coordination environment of As in gold ores and process tailings from bench-scale tests designed to mimic a common plant practice. Arsenic-bearing minerals identified in the ores and tailings include iron (III) oxyhydroxides, scorodite (FeAsO 4·2H 2O), ferric arsenates, arseniosiderite (Ca 2Fe 3(AsO 4) 3O 2·3H 2O), Ca-Fe arsenates, pharmacosiderite (KFe 4(AsO 4) 3(OH) 4·6-7H 2O), jarosite (K 2Fe 6(SO 4) 4(OH) 12) and arsenopyrite (FeAsS). Iron (III) oxyhydroxides contain variable levels of As from trace to about 22 wt% and Ca up to approximately 9 wt%. Finely ground ore and tailings samples were examined by bulk XAFS and selected mineral grains were analyzed by microfocused XAFS (micro-EXAFS) spectroscopy to reconcile the ambiguities of multiple As sources in the complex bulk EXAFS spectra. XANES spectra indicated that As occurs as As 5+in all the samples. Micro-EXAFS spectra of individual iron (III) oxyhydroxide grains with varying As concentrations point to inner-sphere bidentate-binuclear arsenate complexes as the predominant form of As. There are indications for the presence of a second Fe shell corresponding to bidentate-mononuclear arrangement. Iron (III) oxyhydroxides with high As concentrations corresponding to maximum adsorption densities probably occur as nanoparticles. The discovery of Ca atoms around As in iron (III) oxyhydroxides at interatomic distances of 4.14-4.17 Å and the coordination numbers suggest the formation of arseniosiderite-like nanoclusters by coprecipitation rather than simple adsorption of Ca onto iron (III

  3. Depth distribution of secondary phases in kesterite Cu 2ZnSnS 4 by angle-resolved X-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Just, J.; Lützenkirchen-Hecht, D.; Müller, O.

    The depth distribution of secondary phases in the solar cell absorber material Cu 2ZnSnS 4 (CZTS) is quantitatively investigated using X-ray Absorption Near Edge Structure (XANES) analysis at the K-edge of sulfur at varying incidence angles. Varying information depths from several nanometers up to the full thickness is achieved. A quantitative profile of the phase distribution is obtained by a self-consistent fit of a multilayer model to the XANES spectra for different angles. Single step co-evaporated CZTS thin-films are found to exhibit zinc and copper sulfide secondary phases preferentially at the front or back interfaces of the film.

  4. Depth distribution of secondary phases in kesterite Cu 2ZnSnS 4 by angle-resolved X-ray absorption spectroscopy

    DOE PAGES

    Just, J.; Lützenkirchen-Hecht, D.; Müller, O.; ...

    2017-12-12

    The depth distribution of secondary phases in the solar cell absorber material Cu 2ZnSnS 4 (CZTS) is quantitatively investigated using X-ray Absorption Near Edge Structure (XANES) analysis at the K-edge of sulfur at varying incidence angles. Varying information depths from several nanometers up to the full thickness is achieved. A quantitative profile of the phase distribution is obtained by a self-consistent fit of a multilayer model to the XANES spectra for different angles. Single step co-evaporated CZTS thin-films are found to exhibit zinc and copper sulfide secondary phases preferentially at the front or back interfaces of the film.

  5. Investigation of electronic and local structural changes during lithium uptake and release of nano-crystalline NiFe2O4 by X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Dong; Permien, Stefan; Rana, Jatinkumar; Krengel, Markus; Sun, Fu; Schumacher, Gerhard; Bensch, Wolfgang; Banhart, John

    2017-02-01

    Nano-crystalline NiFe2O4 particles were synthesized and used as active electrode material for a lithium ion battery that showed a high discharge capacity of 1534 mAh g-1 and charge capacity of 1170 mAh g-1 during the 1st cycle. X-ray absorption spectroscopy including XANES and EXAFS were used to investigate electronic and local structural changes of NiFe2O4 during the 1st lithiation and de-lithiation process. As lithium is inserted into the structure, tetrahedral site Fe3+ ions are reduced to Fe2+ and moved from tetrahedral sites to empty octahedral sites, while Ni2+ ions are unaffected. As a consequence, the matrix spinel structure collapses and transforms to an intermediate rock-salt monoxide phase. Meanwhile, the inserted Li is partially consumed by the formation of SEI and other side reactions during the conversion reaction. With further lithiation, the monoxide phase is reduced to highly disordered metallic Fe/Ni nanoparticles with a number of nearest neighbors of 6.0(8) and 8.1(4) for Fe and Ni, respectively. During subsequent de-lithiation, the metal particles are individually re-oxidized to Fe2O3 and NiO phases instead to the original NiFe2O4 spinel phase.

  6. Silver binding in argentiferous manganese oxide minerals investigated by synchrotron radiation X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Fan, Chenzi; Li, Qiaoying; Chu, Binbin; Lu, Guohui; Gao, Yuhong; Xu, Lingxiao

    2018-02-01

    The knowledge of the nature of silver occurrence and sites in argentiferous manganese oxides is significant for developing better process to extract silver from manganese-silver ores. Synchrotron radiation has been used to collect Ag K-edge X-ray absorption spectroscopy of three natural and five synthetic samples of silver-containing manganese oxide, basically in the phases of tunnel-type cryptomelane or todorokite and layer-type birnessite or chalcophanite. Data were also gathered on five standards including Ag foil, Ag2O, Ag2SO4, Ag2CO3, and AgNO3 to compare the local environments of Ag atoms with the samples. Ag K-edge XANES studies show that Ag is present in most of the samples in Ag+ oxidation state, except in the Ag-Tod sample through annealing step in the form of Ag0 nanoparticles which are also identified by TEM. The natural samples from Xiangguang manganese-silver ores exhibit similar coordination distances as the corresponding tunnel or layer structured synthetic samples. In the argentiferous cryptomelanes, silver cations do not occupy the tunnel centers like K+, but rather place on the common face sites of the cubic cage formed by MnO6 octahedra, coordinated with about four oxygen anions at 2.4 Å bond distances proved by the EXAFS results. In the silver-exchanged birnessites or natural argentiferous chalcophanite, silver cations probably occupy a tetrahedral coordination to interlayer O atoms and a position located above or below the vacant cavities in the Mn octahedra layers.

  7. Effects of Sulfation Level on the Desulfation Behavior of Presulfated Pt-BaO/Al2O3 Lean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, D.; Szanyi, J; Kwak, J

    2009-01-01

    Desulfation by hydrogen of presulfated Pt (2 wt %)-BaO(20 wt %)/Al2O3 with various sulfur loading (S/Ba = 0.12, 0.31, and 0.62) were investigated by combining H2 temperature programmed reaction (TPRX), X-ray photoelectron spectroscopy (XPS), in situ sulfur K-edge X-ray absorption near-edge spectroscopy (XANES), and synchrotron time-resolved X-ray diffraction (TR-XRD) techniques. We find that the amount of H2S desorbed during the desulfation in the H2 TPRX experiments is not proportional to the amount of initial sulfur loading. The results of both in situ sulfur K-edge XANES and TR-XRD show that at low sulfur loadings, sulfates were transformed to a BaS phasemore » and remained in the catalyst rather than being removed as H2S. On the other hand, when the deposited sulfur level exceeded a certain threshold (at least S/Ba = 0.31) sulfates were reduced to form H2S, and the relative amount of the residual sulfide species in the catalyst was much less than at low sulfur loading. Unlike samples with high sulfur loading (e.g., S/Ba = 0.62), H2O did not promote the desulfation for the sample with S/Ba of 0.12, implying that the formed BaS species originating from the reduction of sulfates at low sulfur loading are more stable to hydrolysis. The results of this combined spectroscopy investigation provide clear evidence to show that sulfates at low sulfur loadings are less likely to be removed as H2S and have a greater tendency to be transformed to BaS on the material, leading to the conclusion that desulfation behavior of Pt-BaO/Al2O3 lean NOx trap catalysts is markedly dependent on the sulfation levels.« less

  8. Low toxic maghemite nanoparticles for theranostic applications

    PubMed Central

    Zolotukhin, Peter V; Belanova, Anna A; Soldatov, Mikhail A; Lastovina, Tatiana A; Kubrin, Stanislav P; Nikolsky, Anatoliy V; Mirmikova, Lidia I

    2017-01-01

    Background Iron oxide nanoparticles have numerous and versatile biological properties, ranging from direct and immediate biochemical effects to prolonged influences on tissues. Most applications have strict requirements with respect to the chemical and physical properties of such agents. Therefore, developing rational design methods of synthesis of iron oxide nanoparticles remains of vital importance in nanobiomedicine. Methods Low toxic superparamagnetic iron oxide nanoparticles (SPIONs) for theranostic applications in oncology having spherical shape and maghemite structure were produced using the fast microwave synthesis technique and were fully characterized by several complementary methods (transmission electron microscopy [TEM], X-ray diffraction [XRD], dynamic light scattering [DLS], X-ray photoelectron spectroscopy [XPS], X-ray absorption near edge structure [XANES], Mossbauer spectroscopy, and HeLa cells toxicity testing). Results TEM showed that the majority of the obtained nanoparticles were almost spherical and did not exceed 20 nm in diameter. The averaged DLS hydrodynamic size was found to be ~33 nm, while that of nanocrystallites estimated by XRD waŝ16 nm. Both XRD and XPS studies evidenced the maghemite (γ-Fe2O3) atomic and electronic structure of the synthesized nanoparticles. The XANES data analysis demonstrated the structure of the nanoparticles being similar to that of macroscopic maghemite. The Mossbauer spectroscopy revealed the γ-Fe2O3 phase of the nanoparticles and vibration magnetometry study showed that reactive oxygen species in HeLa cells are generated both in the cytoplasm and the nucleus. Conclusion Quasispherical Fe3+ SPIONs having the maghemite structure with the average size of 16 nm obtained by using the fast microwave synthesis technique are expected to be of great value for theranostic applications in oncology and multimodal anticancer therapy. PMID:28919740

  9. Evolution of Eu valence and superconductivity in layered Eu0.5La0.5FBiS2 -xSex system

    NASA Astrophysics Data System (ADS)

    Mizuguchi, Y.; Paris, E.; Wakita, T.; Jinno, G.; Puri, A.; Terashima, K.; Joseph, B.; Miura, O.; Yokoya, T.; Saini, N. L.

    2017-02-01

    We have studied the effect of Se substitution on Eu valence in a layered Eu0.5La0.5FBiS2 -xSex superconductor using a combined analysis of x-ray absorption near-edge structure (XANES) and x-ray photoelectron spectroscopy (XPS) measurements. Eu L3-edge XANES spectra reveal that Eu is in the mixed valence state with coexisting Eu2 + and Eu3 +. The average Eu valence decreases sharply from ˜2.3 for x =0.0 to ˜2.1 for x =0.4 . Consistently, Eu 3 d XPS shows a clear decrease in the average valence by Se substitution. Bi 4 f XPS indicates that effective charge carriers in the BiCh2 (Ch = S, Se) layers are slightly increased by Se substitution. On the basis of the present results it has been discussed that the metallic character induced by Se substitution in Eu0.5La0.5FBiS2 -xSex is likely to be due to increased in-plane orbital overlap driven by reduced in-plane disorder that affects the carrier mobility.

  10. Problems with the thermogravimetric determination of oxygen stoichiometries in pure and rare-earth substituted La2RuO5

    NASA Astrophysics Data System (ADS)

    Riegg, S.; Müller, T.; Ebbinghaus, S. G.

    2013-06-01

    The oxygen stoichiometries of pure and rare-earth substituted La2RuO5 have been investigated by thermogravimetry (TG) in reducing atmosphere. Assuming that the observed total weight loss is caused by the reduction of Ru4+ to Ru-metal, remarkable oxygen deficiencies were calculated. These would correspond to ruthenium oxidation states significantly lower than the ones experimentally observed by XANES. To explain this discrepancy we investigated the reduction products by X-ray absorption spectroscopy (XAS). EXAFS measurements at the Ru-K edge revealed the presence of an X-ray amorphous ruthenium oxide, indicating an incomplete reduction. The apparent oxygen deficiencies obtained for pure and rare-earth substituted samples correlate with the amount of remaining ruthenium oxide. The presence of a ruthenium oxide species was furthermore verified by Ru-LIII XANES investigations. Our results show that the determination of oxygen contents by thermogravimetry might fail even for the easily reducable nobel metal oxides and therefore has to be applied with caution if the reaction products cannot be identified unambiguously.

  11. Mobility of rare earth elements in mine drainage: Influence of iron oxides, carbonates, and phosphates.

    PubMed

    Edahbi, Mohamed; Plante, Benoît; Benzaazoua, Mostafa; Ward, Matthew; Pelletier, Mia

    2018-05-01

    The geochemical behavior of rare earth elements (REE) was investigated using weathering cells. The influence of sorption and precipitation on dissolved REE mobility and fractionation is evaluated using synthetic iron-oxides, carbonates, and phosphates. Sorption cell tests are conducted on the main lithologies of the expected waste rocks from the Montviel deposit. The sorbed materials are characterized using a scanning electron microscope (SEM) equipped with a microanalysis system (energy dispersive spectroscopy EDS) (SEM-EDS), X-ray diffraction (XRD), and X-ray absorption near edge structure (XANES) in order to understand the effect of the synthetic minerals on REE mobility. The results confirm that sorption and precipitation control the mobility and fractionation of REE. The main sorbent phases are the carbonates, phosphates (present as accessory minerals in the Montviel waste rocks), and iron oxides (main secondary minerals generated upon weathering of the Montviel lithologies). The XANES results show that REE are present as trivalent species after weathering. Thermodynamic equilibrium calculations results using Visual Minteq suggest that REE could precipitate as secondary phosphates (REEPO 4 ). Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Bone apatite composition of necrotic trabecular bone in the femoral head of immature piglets.

    PubMed

    Aruwajoye, Olumide O; Kim, Harry K W; Aswath, Pranesh B

    2015-04-01

    Ischemic osteonecrosis of the femoral head (IOFH) can lead to excessive resorption of the trabecular bone and collapse of the femoral head as a structure. A well-known mineral component to trabecular bone is hydroxyapatite, which can be present in many forms due to ionic substitution, thus altering chemical composition. Unfortunately, very little is known about the chemical changes to bone apatite following IOFH. We hypothesized that the apatite composition changes in necrotic bone possibly contribute to increased osteoclast resorption and structural collapse of the femoral head. The purpose of this study was to assess the macroscopic and local phosphate composition of actively resorbed necrotic trabecular bone to isolate differences between areas of increased osteoclast resorption and normal bone formation. A piglet model of IOFH was used. Scanning electron microscopy (SEM), histology, X-ray absorbance near edge structure (XANES), and Raman spectroscopy were performed on femoral heads to characterize normal and necrotic trabecular bone. Backscattered SEM, micro-computed tomography and histology showed deformity and active resorption of necrotic bone compared to normal. XANES and Raman spectroscopy obtained from actively resorbed necrotic bone and normal bone showed increased carbonate-to-phosphate content in the necrotic bone. The changes in the apatite composition due to carbonate substitution may play a role in the increased resorption of necrotic bone due to its increase in solubility. Indeed, a better understanding of the apatite composition of necrotic bone could shed light on osteoclast activity and potentially improve therapeutic treatments that target excessive resorption of bone.

  13. Evidence for an unorthodox firing sequence employed by the Berlin Painter. Deciphering ancient ceramic firing conditions through high-resolution material characterization and replication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cianchetta, I.; Trentelman, K.; Maish, J.

    XANES spectroscopy was used to complement the results previously obtained with Raman spectroscopy by the same group to determine the firing conditions used in the production of a single vessel painted by the Berlin Painter in the 5th century B.C. The vessel, part of the collection of the J. Paul Getty Museum, presents a complicated layered architecture of black and red gloss, with different stratigraphies present on the interior and exterior surfaces. The study of two samples, one each from the interior and exterior surface of the vessel, was performed with the complementary analytical techniques of X-ray nano- and micro-spectroscopymore » (X-ray fluorescence spectroscopy (XRF) and full-field transmission X-ray micro-spectroscopy (FF-XANES) across the Fe K edge), and supported by a replication study. The replicates, made in a laboratory furnace providing complete control over the firing temperature and oxygen partial pressure, provided a paradigm for the comparison of the mineralogical phases observed in the ancient samples, which led to a deeper understanding of the firing conditions necessary for the production of the Berlin Painter's vessel. Our results confirm the necessity of multiple firings and painting applications to obtain the Berlin Painter's architecture and provide a further example of the multiplicity of techniques and practices employed by the potters of the Kerameikos in ancient Athens.« less

  14. Evidence for an unorthodox firing sequence employed by the Berlin Painter. Deciphering ancient ceramic firing conditions through high-resolution material characterization and replication

    DOE PAGES

    Cianchetta, I.; Trentelman, K.; Maish, J.; ...

    2014-12-10

    XANES spectroscopy was used to complement the results previously obtained with Raman spectroscopy by the same group to determine the firing conditions used in the production of a single vessel painted by the Berlin Painter in the 5th century B.C. The vessel, part of the collection of the J. Paul Getty Museum, presents a complicated layered architecture of black and red gloss, with different stratigraphies present on the interior and exterior surfaces. The study of two samples, one each from the interior and exterior surface of the vessel, was performed with the complementary analytical techniques of X-ray nano- and micro-spectroscopymore » (X-ray fluorescence spectroscopy (XRF) and full-field transmission X-ray micro-spectroscopy (FF-XANES) across the Fe K edge), and supported by a replication study. The replicates, made in a laboratory furnace providing complete control over the firing temperature and oxygen partial pressure, provided a paradigm for the comparison of the mineralogical phases observed in the ancient samples, which led to a deeper understanding of the firing conditions necessary for the production of the Berlin Painter's vessel. Our results confirm the necessity of multiple firings and painting applications to obtain the Berlin Painter's architecture and provide a further example of the multiplicity of techniques and practices employed by the potters of the Kerameikos in ancient Athens.« less

  15. Synchrotron EXAFS and XANES spectroscopy studies of transition aluminas doped with La and Cr for catalytic applications

    NASA Astrophysics Data System (ADS)

    Glazoff, Michael V.

    2016-04-01

    Transition aluminas doped with Cr find widespread application in the dehydrogenation catalysis industry, while La-stabilized transition aluminas are used extensively for high-temperature application as catalytic supports (Wefers and Misra in Oxides and hydroxides of aluminum, Alcoa Laboratories, Pittsburgh, 1987). In this work, detailed synchrotron XAFS spectroscopy studies were conducted to shed light upon the atomic mechanisms of surface and subsurface reconstructions and/or catalytic support stabilization of doped aluminas. It was demonstrated that in four transition aluminas doped with Cr, it is the atoms which are mostly in the state of oxidation Cr3+ and enter nanoparticles of Cr-bearing phases (Cr2O3 in the case of gamma- and chi-alumina). In the transition series aluminas: "gamma- chi- theta- eta-alumina," the change of properties (in particular, the dramatic increase in dehydrogenation catalytic activity and catalyst longevity and the coloration of samples) takes place because of the reduction in the average size of Cr clusters and their appearance on the Al2O3 surface, probably responsible for change in catalytic activity. It was demonstrated that in the samples of gamma-alumina doped with La any substantial change in the local coordination of the La atoms takes place only upon heating up to 1400 °C. This makes the La-stabilized gamma-alumina a perfect catalytic support for the numerous applications, e.g., catalytic three-way conversion of automobile exhaust gases. This change manifested itself in the form of increased La-O bond lengths and the La coordination number (from 8 to 12). Furthermore, it was demonstrated that the local environment of La in this new La-bearing phase cannot be explained in terms of the LaAlO3 formation. The absence of the La atoms in the second coordination sphere favors monoatomic distribution of La atoms on grain boundaries, proving that only very small amount of this rare earth material is required to achieve full

  16. Synchrotron EXAFS and XANES spectroscopy studies of transition aluminas doped with La and Cr for catalytic applications

    DOE PAGES

    Glazoff, Michael V.

    2016-03-14

    Abstract Transition aluminas doped with Cr find widespread application in the dehydrogenation industry, while La-stabilized transition aluminas are used extensively for high temperature application as catalytic supports. In this work, a detailed synchrotron XAFS-spectroscopy studies were conducted to shed light upon the atomic mechanisms of catalysis and/or catalytic support stabilization. It has been demonstrated that in the samples of different transition aluminas doped with Cr, the atoms of chromium are mostly in the state of oxidation Cr3+ and enter nanoparticles of Cr-bearing phases (Cr2O3 in the case of gamma- and –chi-alumina. In the row “gamma – chi – theta –more » eta-alumina” the change of properties (in particular, of the coloration of different samples) takes place because of dramatic reduction in the average size of Cr clusters and, possibly, their appearance on the Al2O3 surface. It has been also demonstrated that the substantial change in the local coordination of the La atoms in the samples of gamma-alumina doped with La, takes place only upon heating up to 1400°C, thereby making the La-stabilized gamma-alumina a perfect catalytic support for the numerous applications, e.g. catalytic three-way conversion of automobile exhaust gases. This change manifested itself in the form of increased La-O bond lengths and the La coordination number (from 8 to 12). It has been proved that the local environment of La in this new La-bearing phase cannot be explained in terms of the LaAlO3 formation. The absence of the La atoms in the second coordination sphere favors monoatomic distribution of La atoms on grain boundaries, proving that only very small amounts of this expensive rare earth material is required to achieve full stabilization. It is inferred that the tendency of La atoms to get surrounded by oxygen atoms, and also the impossibility of going into the bulk of alumina crystal, could be a major reason of the increased thermal stability of

  17. Synchrotron EXAFS and XANES spectroscopy studies of transition aluminas doped with La and Cr for catalytic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glazoff, Michael V.

    Abstract Transition aluminas doped with Cr find widespread application in the dehydrogenation industry, while La-stabilized transition aluminas are used extensively for high temperature application as catalytic supports. In this work, a detailed synchrotron XAFS-spectroscopy studies were conducted to shed light upon the atomic mechanisms of catalysis and/or catalytic support stabilization. It has been demonstrated that in the samples of different transition aluminas doped with Cr, the atoms of chromium are mostly in the state of oxidation Cr3+ and enter nanoparticles of Cr-bearing phases (Cr2O3 in the case of gamma- and –chi-alumina. In the row “gamma – chi – theta –more » eta-alumina” the change of properties (in particular, of the coloration of different samples) takes place because of dramatic reduction in the average size of Cr clusters and, possibly, their appearance on the Al2O3 surface. It has been also demonstrated that the substantial change in the local coordination of the La atoms in the samples of gamma-alumina doped with La, takes place only upon heating up to 1400°C, thereby making the La-stabilized gamma-alumina a perfect catalytic support for the numerous applications, e.g. catalytic three-way conversion of automobile exhaust gases. This change manifested itself in the form of increased La-O bond lengths and the La coordination number (from 8 to 12). It has been proved that the local environment of La in this new La-bearing phase cannot be explained in terms of the LaAlO3 formation. The absence of the La atoms in the second coordination sphere favors monoatomic distribution of La atoms on grain boundaries, proving that only very small amounts of this expensive rare earth material is required to achieve full stabilization. It is inferred that the tendency of La atoms to get surrounded by oxygen atoms, and also the impossibility of going into the bulk of alumina crystal, could be a major reason of the increased thermal stability of

  18. Influence of point defects on the near edge structure of hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    McDougall, Nicholas L.; Partridge, Jim G.; Nicholls, Rebecca J.; Russo, Salvy P.; McCulloch, Dougal G.

    2017-10-01

    Hexagonal boron nitride (hBN) is a wide-band-gap semiconductor with applications including gate insulation layers in graphene transistors, far-ultraviolet light emitting devices and as hydrogen storage media. Due to its complex microstructure, defects in hBN are challenging to identify. Here, we combine x-ray absorption near edge structure (XANES) spectroscopy with ab initio theoretical modeling to identify energetically favorable defects. Following annealing of hBN samples in vacuum and oxygen, the B and N K edges exhibited angular-dependent peak modifications consistent with in-plane defects. Theoretical calculations showed that the energetically favorable defects all produce signature features in XANES. Comparing these calculations with experiments, the principle defects were attributed to substitutional oxygen at the nitrogen site, substitutional carbon at the boron site, and hydrogen passivated boron vacancies. Hydrogen passivation of defects was found to significantly affect the formation energies, electronic states, and XANES. In the B K edge, multiple peaks above the major 1 s to π* peak occur as a result of these defects and the hydrogen passivated boron vacancy produces the frequently observed doublet in the 1 s to σ* transition. While the N K edge is less sensitive to defects, features attributable to substitutional C at the B site were observed. This defect was also calculated to have mid-gap states in its band structure that may be responsible for the 4.1-eV ultraviolet emission frequently observed from this material.

  19. High-resolution x-ray absorption spectroscopy studies of metal compounds in neurodegenerative brain tissue

    NASA Astrophysics Data System (ADS)

    Collingwood, J. F.; Mikhaylova, A.; Davidson, M. R.; Batich, C.; Streit, W. J.; Eskin, T.; Terry, J.; Barrea, R.; Underhill, R. S.; Dobson, J.

    2005-01-01

    Fluorescence mapping and microfocus X-ray absorption spectroscopy are used to detect, locate and identify iron biominerals and other inorganic metal accumulations in neurodegenerative brain tissue at sub-cellular resolution (<5 microns). Recent progress in developing the technique is reviewed. Synchrotron X-rays are used to map tissue sections for metals of interest, and XANES and XAFS are used to characterise anomalous concentrations of the metals in-situ so that they can be correlated with tissue structures and disease pathology. Iron anomalies associated with biogenic magnetite, ferritin and haemoglobin are located and identified in an avian tissue model with a pixel resolution ~5 microns. Subsequent studies include brain tissue sections from transgenic Huntington's mice, and the first high-resolution mapping and identification of iron biominerals in human Alzheimer's and control autopsy brain tissue. Technical developments include use of microfocus diffraction to obtain structural information about biominerals in-situ, and depositing sample location grids by lithography for the location of anomalies by conventional microscopy. The combined techniques provide a breakthrough in the study of both intra- and extra-cellular iron compounds and related metals in tissue. The information to be gained from this approach has implications for future diagnosis and treatment of neurodegeneration, and for our understanding of the mechanisms involved.

  20. Direct determination of europium valence state by XANES in extraterrestrial merrillite: Implications for REE crystal chemistry and martian magmatism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shearer, C.K.; Papike, J.J.; Burger, P.V.

    2012-03-15

    The relative proportion of divalent and trivalent Eu has proven to be a useful tool for estimating f{sub O{sub 2}} in various magmatic systems. However, in most cases, direct determination of the Eu valence state has not been made. In this study, direct determination of Eu valence by XANES and REE abundance in merrillite provide insights into the crystal chemistry of these phosphates and their ability to record conditions of magmatism. Merrillite strongly prefers Eu{sup 3+} to Eu{sup 2+}, with the average valence state of Eu ranging between 2.9 and 3 over approximately six orders of magnitude in f{sub O{submore » 2}}. The dramatic shift in the REE patterns of merrillite in martian basaltic magmas, from highly LREE-depleted to LREE-enriched, parallels many other trace element and isotopic variations and reflects the sources for these magmas. The behavior of REE in the merrillite directly reflects the relationship between the eightfold-coordinated Ca1 site and adjacent sixfold Na and tetrahedral P sites that enables charge balancing through coupled substitutions.« less

  1. The effect of nitrogen incorporation on the bonding structure of hydrogenated carbon nitride films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camero, M.; Buijnsters, J. G.; Gomez-Aleixandre, C.

    2007-03-15

    This work describes the composition and bonding structure of hydrogenated carbon nitride (a-CN{sub x}:H) films synthesized by electron cyclotron resonance chemical vapor deposition using as precursor gases argon, methane, and nitrogen. The composition of the films was derived from Rutherford backscattering and elastic recoil detection analysis and the bonding structure was examined by infrared (IR) spectroscopy and x-ray absorption near edge spectroscopy (XANES). By varying the nitrogen to methane ratio in the applied gas mixture, polymeric a-CN{sub x}:H films with N/C contents varying from 0.06 to 0.49 were obtained. Remarkably, the H content of the films ({approx}40 at. %) wasmore » rather unaffected by the nitrogenation process. The different bonding states as detected in the measured XANES C(1s) and N(1s) spectra have been correlated with those of a large number of reference samples. The XANES and IR spectroscopy results indicate that N atoms are efficiently incorporated into the amorphous carbon network and can be found in different bonding environments, such as pyridinelike, graphitelike, nitrilelike, and amino groups. The nitrogenation of the films results in the formation of N-H bonding environments at the cost of C-H structures. Also, the insertion of N induces a higher fraction of double bonds in the structure at the expense of the linear polymerlike chains, hence resulting in a more cross-linked solid. The formation of double bonds takes place through complex C=N structures and not by formation of graphitic aromatic rings. Also, the mechanical and tribological properties (hardness, friction, and wear) of the films have been studied as a function of the nitrogen content. Despite the major modifications in the bonding structure with nitrogen uptake, no significant changes in these properties are observed.« less

  2. Synchrotron applications in wood preservation and deterioration

    Treesearch

    Barbara L. Illman

    2003-01-01

    Several non-intrusive synchrotron techniques are being used to detect and study wood decay. The techniques use high intensity synchrotron-generated X-rays to determine the atomic structure of materials with imaging, diffraction, and absorption. Some of the techniques are X-ray absorption near edge structure (XANES), X-ray fluorescence spectroscopy (XFS), X-ray...

  3. Selenium Accumulation, Distribution, and Speciation in Spineless Prickly Pear Cactus: A Drought- and Salt-Tolerant, Selenium-Enriched Nutraceutical Fruit Crop for Biofortified Foods1[OA

    PubMed Central

    Bañuelos, Gary S.; Fakra, Sirine C.; Walse, Spencer S.; Marcus, Matthew A.; Yang, Soo In; Pickering, Ingrid J.; Pilon-Smits, Elizabeth A.H.; Freeman, John L.

    2011-01-01

    The organ-specific accumulation, spatial distribution, and chemical speciation of selenium (Se) were previously unknown for any species of cactus. We investigated Se in Opuntia ficus-indica using inductively coupled plasma mass spectrometry, microfocused x-ray fluorescence elemental and chemical mapping (μXRF), Se K-edge x-ray absorption near-edge structure (XANES) spectroscopy, and liquid chromatography-mass spectrometry (LC-MS). μXRF showed Se concentrated inside small conic, vestigial leaves (cladode tips), the cladode vasculature, and the seed embryos. Se K-edge XANES demonstrated that approximately 96% of total Se in cladode, fruit juice, fruit pulp, and seed is carbon-Se-carbon (C-Se-C). Micro and bulk XANES analysis showed that cladode tips contained both selenate and C-Se-C forms. Inductively coupled plasma mass spectrometry quantification of Se in high-performance liquid chromatography fractions followed by LC-MS structural identification showed selenocystathionine-to-selenomethionine (SeMet) ratios of 75:25, 71:29, and 32:68, respectively in cladode, fruit, and seed. Enzymatic digestions and subsequent analysis confirmed that Se was mainly present in a “free” nonproteinaceous form inside cladode and fruit, while in the seed, Se was incorporated into proteins associated with lipids. μXRF chemical mapping illuminated the specific location of Se reduction and assimilation from selenate accumulated in the cladode tips into the two LC-MS-identified C-Se-C forms before they were transported into the cladode mesophyll. We conclude that Opuntia is a secondary Se-accumulating plant whose fruit and cladode contain mostly free selenocystathionine and SeMet, while seeds contain mainly SeMet in protein. When eaten, the organic Se forms in Opuntia fruit, cladode, and seed may improve health, increase Se mineral nutrition, and help prevent multiple human cancers. PMID:21059825

  4. Selenium Accumulation, Distribution, and Speciation in Spineless Prickly Pear Cactus: A Drought- and Salt-Tolerant, Selenium-Enriched Nutraceutical Fruit Crop for Biofortified Foods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banuelos, Gary S.; Fakra, Sirine C.; Walse, Spencer S.

    The organ-specific accumulation, spatial distribution, and chemical speciation of selenium (Se) were previously unknown for any species of cactus. We investigated Se in Opuntia ficus-indica using inductively coupled plasma mass spectrometry, microfocused x-ray fluorescence elemental and chemical mapping ({micro}XRF), Se K-edge x-ray absorption near-edge structure (XANES) spectroscopy, and liquid chromatography-mass spectrometry (LC-MS). {micro}XRF showed Se concentrated inside small conic, vestigial leaves (cladode tips), the cladode vasculature, and the seed embryos. Se K-edge XANES demonstrated that approximately 96% of total Se in cladode, fruit juice, fruit pulp, and seed is carbon-Se-carbon (C-Se-C). Micro and bulk XANES analysis showed that cladode tipsmore » contained both selenate and C-Se-C forms. Inductively coupled plasma mass spectrometry quantification of Se in high-performance liquid chromatography fractions followed by LC-MS structural identification showed selenocystathionine-to-selenomethionine (SeMet) ratios of 75:25, 71:29, and 32:68, respectively in cladode, fruit, and seed. Enzymatic digestions and subsequent analysis confirmed that Se was mainly present in a 'free' nonproteinaceous form inside cladode and fruit, while in the seed, Se was incorporated into proteins associated with lipids. {micro}XRF chemical mapping illuminated the specific location of Se reduction and assimilation from selenate accumulated in the cladode tips into the two LC-MS-identified C-Se-C forms before they were transported into the cladode mesophyll. We conclude that Opuntia is a secondary Se-accumulating plant whose fruit and cladode contain mostly free selenocystathionine and SeMet, while seeds contain mainly SeMet in protein. When eaten, the organic Se forms in Opuntia fruit, cladode, and seed may improve health, increase Se mineral nutrition, and help prevent multiple human cancers.« less

  5. Influence of oxygen on growth of carbon thin films

    NASA Astrophysics Data System (ADS)

    Kumar, Prabhat; Gupta, Mukul; Phase, D. M.; Stahn, Jochen

    2018-04-01

    In this work we studied the influence of oxygen gas on growth of carbon thin films in a magnetron sputtering process. X-ray absorption spectroscopy (XAS), x-ray and neutron reflectivity techniques were used to probe carbon thin films deposited with and without oxygen at room temperature. XAS in particularly x-ray absorption near edge spectroscopy (XANES) is powerful technique to identify the nature of hybridization of carbon atoms with other elements. In a XANES pattern, presence of C=O and C-O bonds is generally observed in spite of the fact that oxygen has not been deliberately included in the growth process. In order to confirm the presence of such features, we introduced a small amount of oxygen at 1% during the growth of carbon thin films. Though such additions do not affect the number density as observed by x-ray and neutron reflectivity, they severally affect the C K-edge spectra as evidenced by an enhancement in carbon-oxygen hybridization. Observed results are helpful in analyzing the C K-edge spectra more confidently.

  6. Dielectric relaxation spectroscopy shows a sparingly hydrated interface and low counterion mobility in triflate micelles.

    PubMed

    Lima, Filipe S; Chaimovich, Hernan; Cuccovia, Iolanda M; Buchner, Richard

    2013-08-13

    The properties of ionic micelles are affected by the nature of the counterion. Specific ion effects can be dramatic, inducing even shape and phase changes in micellar solutions, transitions apparently related to micellar hydration and counterion binding at the micellar interface. Thus, determining the hydration and dynamics of ions in micellar systems capable of undergoing such transitions is a crucial step in understanding shape and phase changes. For cationic micelles, such transitions are common with large organic anions as counterions. Interestingly, however, phase separation also occurs for dodecyltrimethylammonium triflate (DTATf) micelles in the presence of sodium triflate (NaTf). Specific ion effects for micellar solutions of dodecyltrimethylammonium chloride (DTAC), bromide (DTAB), methanesulfonate (DTAMs), and triflate (DTATf) were studied with dielectric relaxation spectroscopy (DRS), a technique capable of monitoring hydration and counterion dynamics of micellar aggregates. In comparison to DTAB, DTAC, and DTAMs, DTATf micelles were found to be considerably less hydrated and showed reduced counterion mobility at the micellar interface. The obtained DTATf and DTAMs data support the reported central role of the anion's -CF3 moiety with respect to the properties of DTATf micelles. The reduced hydration observed for DTATf micelles was rationalized in terms of the higher packing of this surfactant compared to that of other DTA-based systems. The decreased mobility of Tf(-) anions condensed at the DTATf interface strongly suggests the insertion of Tf(-) in the micellar interface, which is apparently driven by the strong hydrophobicity of -CF3.

  7. X-ray Absorption Spectroscopy Characterization of Electrochemical Processes in Renewable Energy Storage and Conversion Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmand, Maryam

    2013-05-19

    The development of better energy conversion and storage devices, such as fuel cells and batteries, is crucial for reduction of our global carbon footprint and improving the quality of the air we breathe. However, both of these technologies face important challenges. The development of lower cost and better electrode materials, which are more durable and allow more control over the electrochemical reactions occurring at the electrode/electrolyte interface, is perhaps most important for meeting these challenges. Hence, full characterization of the electrochemical processes that occur at the electrodes is vital for intelligent design of more energy efficient electrodes. X-ray absorption spectroscopymore » (XAS) is a short-range order, element specific technique that can be utilized to probe the processes occurring at operating electrode surfaces, as well for studying the amorphous materials and nano-particles making up the electrodes. It has been increasingly used in recent years to study fuel cell catalysts through application of the and #916; and mgr; XANES technique, in combination with the more traditional X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) techniques. The and #916; and mgr; XANES data analysis technique, previously developed and applied to heterogeneous catalysts and fuel cell electrocatalysts by the GWU group, was extended in this work to provide for the first time space resolved adsorbate coverages on both electrodes of a direct methanol fuel cell. Even more importantly, the and #916; and mgr; technique was applied for the first time to battery relevant materials, where bulk properties such as the oxidation state and local geometry of a cathode are followed.« less

  8. Ligand-tailored single-site silica supported titanium catalysts: Synthesis, characterization and towards cyanosilylation reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Wei; Li, Yani; Yu, Bo

    2015-01-15

    A successive anchoring of Ti(NMe{sub 2}){sub 4}, cyclopentadiene and a O-donor ligand, 1-hydroxyethylbenzene (PEA), 1,1′-bi-2-naphthol (Binol) or 2,3-dihydroxybutanedioic acid diethyl ester (Tartrate), on silica was conducted by SOMC strategy in moderate conditions. The silica, monitored by in-situ Fourier transform infrared spectroscopy (in-situ FT-IR), was pretreated at different temperatures (200, 500 and 800 °C). The ligand tailored silica-supported titanium complexes were characterized by in-situ FT-IR, {sup 13}C CP MAS-NMR, X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge structure (XANES) and elemental analysis in detail, verifying that the surface titanium species are single sited. The catalytic activity of the ligand tailored single-sitemore » silica supported titanium complexes was evaluated by a cyanosilylation of benzaldehyde. The results showed that the catalytic activity is dependent strongly on the dehydroxylation temperatures of silica and the configuration of the ligands. - Graphical abstract: The ligand-tailored silica supported “single site” titanium complexes were synthesized by SOMC strategy and fully characterized. Their catalytic activity were evaluated by benzaldehyde silylcyanation. - Highlights: • Single-site silica supported Ti active species was prepared by SOMC technique. • O-donor ligand tailored Ti surface species was synthesized. • The surface species was characterized by XPS, {sup 13}C CP-MAS NMR, XANES etc. • Catalytic activity of the Ti active species in silylcyanation reaction was evaluated.« less

  9. Micro-XANES Measurements on Experimental Spinels and the Oxidation State of Vanadium in Spinel-Melt Pairs

    NASA Technical Reports Server (NTRS)

    Righter, K.; Sutton, S.R.; Newville, M.

    2004-01-01

    Spinel can be a significant host phase for V as well as other transition metals such as Ni and Co. However, vanadium has multiple oxidation states V(2+), V(3+), V(4+) or V(5+) at oxygen fugacities relevant to natural systems. We do know that D(V) spinel/melt is correlated with V and TiO2 content and fO2, but the uncertainty of the oxidation state under the range of natural conditions has made elusive a thorough understanding of D(V) spinel/melt. For example, V(3+) is likely to be stable in spinels, based on exchange with Al in experiments in the CaO-MgO-Al2O3-SiO2 system. On the other hand, it has been argued that V(4+) will be stable across the range of natural oxygen fugacities in nature. In order to gain a better understanding of D(V) spinel/melt we have equilibrated spinel-melt pairs at controlled oxygen fugacities, between HM to NNO, where V is present in the spinel at natural levels (approx. 300 ppm V). These spinel-melt pairs were analyzed using micro-XANES at the Advanced Photon Source at Argonne National Laboratory. The new results will be used together with spinel compositional data (Ti, V content) and oxygen fugacity, to unravel the effects of these variables on D(V) spinel/melt.

  10. Radiation damages during synchrotron X-ray micro-analyses of Prussian blue and zinc white historic paintings: detection, mitigation and integration

    NASA Astrophysics Data System (ADS)

    Gervais, Claire; Thoury, Mathieu; Réguer, Solenn; Gueriau, Pierre; Mass, Jennifer

    2015-11-01

    High-flux synchrotron techniques allow microspectroscopic analyses of artworks that were not feasible even a few years ago, allowing for a more detailed characterization of their constituent materials and a better understanding of their chemistry. However, interaction between high-flux photons and matter at the sub-microscale can generate damages which are not visually detectable. We show here different methodologies allowing to evidence the damages induced by microscopic X-ray absorption near-edge structure spectroscopy analysis (μXANES) at the Fe and Zn K-edges of a painting dating from the turn of the twentieth century containing Prussian blue and zinc white. No significant degradation of the pigments was noticed, in agreement with the excellent condition of the painting. However, synchrotron radiation damages occurred at several levels, from chemical changes of the binder, modification of crystal defects in zinc oxide, to Prussian blue photoreduction. They could be identified by using both the μXANES signal during analysis and with photoluminescence imaging in the deep ultraviolet and visible ranges after analysis. We show that recording accurately damaged areas is a key step to prevent misinterpretation of results during future re-examination of the sample. We conclude by proposing good practices that could help in integrating radiation damage avoidance into the analytical pathway.

  11. Optical spectroscopy of radiotherapy and photodynamic therapy responses in normal rat skin shows vascular breakdown products

    NASA Astrophysics Data System (ADS)

    Teles de Andrade, Cintia; Nogueira, Marcelo S.; Kanick, Stephen C.; Marra, Kayla; Gunn, Jason; Andreozzi, Jacqueline; Samkoe, Kimberley S.; Kurachi, Cristina; Pogue, Brian W.

    2016-03-01

    Photodynamic therapy (PDT) and radiotherapy are non-systemic cancer treatment options with different mechanisms of damage. So combining these techniques has been shown to have some synergy, and can mitigate their limitations such as low PDT light penetration or radiotherapy side effects. The present study monitored the induced tissue changes after PDT, radiotherapy, and a combination protocol in normal rat skin, using an optical spectroscopy system to track the observed biophysical changes. The Wistar rats were treated with one of the protocols: PDT followed by radiotherapy, PDT, radiotherapy and radiotherapy followed by PDT. Reflectance spectra were collected in order to observe the effects of these combined therapies, especially targeting vascular response. From the reflectance, information about oxygen saturation, met-hemoglobin and bilirubin concentration, blood volume fraction (BVF) and vessel radius were extracted from model fitting of the spectra. The rats were monitored for 24 hours after treatment. Results showed that there was no significant variation in the vessel size or BVF after the treatments. However, the PDT caused a significant increase in the met-hemoglobin and bilirubin concentrations, indicating an important blood breakdown. These results may provide an important clue on how the damage establishment takes place, helping to understand the effect of the combination of those techniques in order to verify the existence of a known synergistic effect.

  12. Tracking the Chemical Transformations at the Brønsted Acid Site upon Water-Induced Deprotonation in a Zeolite Pore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vjunov, Aleksei; Wang, Meng; Govind, Niranjan

    We report the structural changes induced by Brønsted acidic site deprotonation in a zeolite with MFI structure as a function of temperature up to 430°C using in situ Al K-edge X-ray absorption fine structure spectroscopy (XAFS). At ambient conditions, the protons are present as hydrated hydronium ions (H3O+(H2O)n) that are ion-paired to the anionic, Al tetrahedral (T) site. At elevated temperatures, loss of water molecules hydrating the hydronium ions leads to an unstable free hydronium ion that disso-ciates to form the hydroxylated T-site. The formation of this (-O3)-Al-(OH-) species leads to the elongation of one of the four Al-O bondsmore » and causes significant distortion of the tetrahedral symmetry about the Al atom. This distortion leads to the appearance of new pre-edge features in the Al K-edge X-ray absorption near edge structure (XANES) spectra. The pre-edge peak assignment is confirmed by time-dependent density functional theory calculation of the XANES spectrum. The XANES spectra are also sensitive to solutes or solvent that are in proximity to the T-site. A second structural transition occurs at about the same temperature, namely the conversion of a minor fraction of extra-framework octahedral Al present in the sample at ambient conditions to a tetrahedral species through the de-coordination of H2O-ligands. Both IR spectroscopy and thermogravimetric analysis (TGA) are further used to confirm the overall chemical transformation of the T-site.« less

  13. Rapid Mapping of Lithiation Dynamics in Transition Metal Oxide Particles with Operando X-ray Absorption Spectroscopy.

    PubMed

    Nowack, Lea; Grolimund, Daniel; Samson, Vallerie; Marone, Federica; Wood, Vanessa

    2016-02-24

    Since the commercialization of lithium ion batteries (LIBs), layered transition metal oxides (LiMO2, where M = Co, Mn, Ni, or mixtures thereof) have been materials of choice for LIB cathodes. During cycling, the transition metals change their oxidation states, an effect that can be tracked by detecting energy shifts in the X-ray absorption near edge structure (XANES) spectrum. X-ray absorption spectroscopy (XAS) can therefore be used to visualize and quantify lithiation kinetics in transition metal oxide cathodes; however, in-situ measurements are often constrained by temporal resolution and X-ray dose, necessitating compromises in the electrochemistry cycling conditions used or the materials examined. We report a combined approach to reduce measurement time and X-ray exposure for operando XAS studies of lithium ion batteries. A highly discretized energy resolution coupled with advanced post-processing enables rapid yet reliable identification of the oxidation state. A full-field microscopy setup provides sub-particle resolution over a large area of battery electrode, enabling the oxidation state within many transition metal oxide particles to be tracked simultaneously. Here, we apply this approach to gain insights into the lithiation kinetics of a commercial, mixed-metal oxide cathode material, nickel cobalt aluminium oxide (NCA), during (dis)charge and its degradation during overcharge.

  14. Rapid Mapping of Lithiation Dynamics in Transition Metal Oxide Particles with Operando X-ray Absorption Spectroscopy

    PubMed Central

    Nowack, Lea; Grolimund, Daniel; Samson, Vallerie; Marone, Federica; Wood, Vanessa

    2016-01-01

    Since the commercialization of lithium ion batteries (LIBs), layered transition metal oxides (LiMO2, where M = Co, Mn, Ni, or mixtures thereof) have been materials of choice for LIB cathodes. During cycling, the transition metals change their oxidation states, an effect that can be tracked by detecting energy shifts in the X-ray absorption near edge structure (XANES) spectrum. X-ray absorption spectroscopy (XAS) can therefore be used to visualize and quantify lithiation kinetics in transition metal oxide cathodes; however, in-situ measurements are often constrained by temporal resolution and X-ray dose, necessitating compromises in the electrochemistry cycling conditions used or the materials examined. We report a combined approach to reduce measurement time and X-ray exposure for operando XAS studies of lithium ion batteries. A highly discretized energy resolution coupled with advanced post-processing enables rapid yet reliable identification of the oxidation state. A full-field microscopy setup provides sub-particle resolution over a large area of battery electrode, enabling the oxidation state within many transition metal oxide particles to be tracked simultaneously. Here, we apply this approach to gain insights into the lithiation kinetics of a commercial, mixed-metal oxide cathode material, nickel cobalt aluminium oxide (NCA), during (dis)charge and its degradation during overcharge. PMID:26908198

  15. Rapid Mapping of Lithiation Dynamics in Transition Metal Oxide Particles with Operando X-ray Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Nowack, Lea; Grolimund, Daniel; Samson, Vallerie; Marone, Federica; Wood, Vanessa

    2016-02-01

    Since the commercialization of lithium ion batteries (LIBs), layered transition metal oxides (LiMO2, where M = Co, Mn, Ni, or mixtures thereof) have been materials of choice for LIB cathodes. During cycling, the transition metals change their oxidation states, an effect that can be tracked by detecting energy shifts in the X-ray absorption near edge structure (XANES) spectrum. X-ray absorption spectroscopy (XAS) can therefore be used to visualize and quantify lithiation kinetics in transition metal oxide cathodes; however, in-situ measurements are often constrained by temporal resolution and X-ray dose, necessitating compromises in the electrochemistry cycling conditions used or the materials examined. We report a combined approach to reduce measurement time and X-ray exposure for operando XAS studies of lithium ion batteries. A highly discretized energy resolution coupled with advanced post-processing enables rapid yet reliable identification of the oxidation state. A full-field microscopy setup provides sub-particle resolution over a large area of battery electrode, enabling the oxidation state within many transition metal oxide particles to be tracked simultaneously. Here, we apply this approach to gain insights into the lithiation kinetics of a commercial, mixed-metal oxide cathode material, nickel cobalt aluminium oxide (NCA), during (dis)charge and its degradation during overcharge.

  16. Acetate- and thiol-capped monodisperse ruthenium nanoparticles: XPS, XAS, and HRTEM studies.

    PubMed

    Chakroune, Nassira; Viau, Guillaume; Ammar, Souad; Poul, Laurence; Veautier, Delphine; Chehimi, Mohamed M; Mangeney, Claire; Villain, Françoise; Fiévet, Fernand

    2005-07-19

    Monodisperse ruthenium nanoparticles were prepared by reduction of RuCl3 in 1,2-propanediol. The mean particle size was controlled by appropriate choice of the reduction temperature and the acetate ion concentration. Colloidal solutions in toluene were obtained by coating the metal particles with dodecanethiol. High-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy (XANES and EXAFS for the Ru K-absorption edge) were performed on particles of two different diameters, 2 and 4 nm, and in different environments, polyol/acetate or thiol. For particles stored in polyol/acetate XPS studies revealed superficial oxidation limited to one monolayer and a surface coating containing mostly acetate ions. Analysis of the EXAFS spectra showed both oxygen and ruthenium atoms around the ruthenium atoms with a Ru-Ru coordination number N smaller than the bulk value, as expected for fine particles. In the case of 2 nm acetate-capped particles N is consistent with particles made up of a metallic core and an oxidized monolayer. For 2 nm thiol-coated particles, a Ru-S bond was evidenced by XPS and XAS. For the 4 nm particles XANES and XPS studies showed that most of the ruthenium atoms are in the zerovalent state. Nevertheless, in both cases, when capped with thiol, the Ru-Ru coordination number inferred from EXAFS is much smaller than for particles of the same size stored in polyol. This is attributed to a structural disorganization of the particles by thiol chemisorption. HRTEM studies confirm the marked dependence of the structural properties of the ruthenium particles on their chemical environment; they show the acetate-coated particles to be single crystals, whereas the thiol-coated particles appear to be polycrystalline.

  17. Origin of luminescence from ZnO/CdS core/shell nanowire arrays

    NASA Astrophysics Data System (ADS)

    Wang, Zhiqiang; Wang, Jian; Sham, Tsun-Kong; Yang, Shaoguang

    2014-07-01

    Chemical imaging, electronic structure and optical properties of ZnO/CdS nano-composites have been investigated using scanning transmission X-ray microscopy (STXM), X-ray absorption near-edge structure (XANES) and X-ray excited optical luminescence (XEOL) spectroscopy. STXM and XANES results confirm that the as-prepared product is ZnO/CdS core/shell nanowires (NWs), and further indicate that ZnS was formed on the surface of ZnO NWs as the interface between ZnO and CdS. The XEOL from ZnO/CdS NW arrays exhibits one weak ultraviolet (UV) emission at 375 nm, one strong green emission at 512 nm, and two broad infrared (IR) emissions at 750 and 900 nm. Combining XANES and XEOL, it is concluded that the UV luminescence is the near band gap emission (BGE) of ZnO; the green luminescence comes from both the BGE of CdS and defect emission (DE, zinc vacancies) of ZnO; the IR luminescence is attributed to the DE (bulk defect related to the S site) of CdS; ZnS contributes little to the luminescence of the ZnO/CdS NW arrays. Interestingly, the BGE and DE from oxygen vacancies of ZnO in the ZnO/CdS nano-composites are almost entirely quenched, while DE from zinc vacancies changes little.Chemical imaging, electronic structure and optical properties of ZnO/CdS nano-composites have been investigated using scanning transmission X-ray microscopy (STXM), X-ray absorption near-edge structure (XANES) and X-ray excited optical luminescence (XEOL) spectroscopy. STXM and XANES results confirm that the as-prepared product is ZnO/CdS core/shell nanowires (NWs), and further indicate that ZnS was formed on the surface of ZnO NWs as the interface between ZnO and CdS. The XEOL from ZnO/CdS NW arrays exhibits one weak ultraviolet (UV) emission at 375 nm, one strong green emission at 512 nm, and two broad infrared (IR) emissions at 750 and 900 nm. Combining XANES and XEOL, it is concluded that the UV luminescence is the near band gap emission (BGE) of ZnO; the green luminescence comes from both the

  18. Highly efficient Cu-decorated iron oxide nanocatalyst for low pressure CO 2 conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halder, Avik; Kilianová, Martina; Yang, Bing

    We report a nanoparticulate iron oxide based catalyst for CO2 conversion with high efficiency at low pressures and on the effect of the presence of copper on the catalyst's restructuring and its catalytic performance. In situ X-ray scattering reveals the restructuring of the catalyst at the nanometer scale. In situ X-ray absorption near edge structure (XANES) shows the evolution of the composition and oxidation state of the iron and copper components under reaction conditions along with the promotional effect of copper on the chemical transformation of the iron component. X-ray diffraction (XRD), XANES and Raman spectroscopy proved that the startingmore » nano catalyst is composed of iron oxides differing in chemical nature (alpha-Fe2O3, Fe3O4, FeO(OH)) and dimensionality, while the catalyst after CO2 conversion was identified as a mixture of alpha-Fe, Fe3C, and traces of Fe5C2. The significant increase of the rate CO2 is turned over in the presence of copper nanoparticles indicates that Cu nanoparticles activate hydrogen, which after spilling over to the neighbouring iron sites, facilitate a more efficient conversion of carbon dioxide.« less

  19. Autobalanced Ramsey Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sanner, Christian; Huntemann, Nils; Lange, Richard; Tamm, Christian; Peik, Ekkehard

    2018-01-01

    We devise a perturbation-immune version of Ramsey's method of separated oscillatory fields. Spectroscopy of an atomic clock transition without compromising the clock's accuracy is accomplished by actively balancing the spectroscopic responses from phase-congruent Ramsey probe cycles of unequal durations. Our simple and universal approach eliminates a wide variety of interrogation-induced line shifts often encountered in high precision spectroscopy, among them, in particular, light shifts, phase chirps, and transient Zeeman shifts. We experimentally demonstrate autobalanced Ramsey spectroscopy on the light shift prone Yb+ 171 electric octupole optical clock transition and show that interrogation defects are not turned into clock errors. This opens up frequency accuracy perspectives below the 10-18 level for the Yb+ system and for other types of optical clocks.

  20. Structure and magnetic properties of Fe-doped ZnO prepared by the sol-gel method.

    PubMed

    Liu, Huilian; Yang, Jinghai; Zhang, Yongjun; Yang, Lili; Wei, Maobin; Ding, Xue

    2009-04-08

    Zn(0.97)Fe(0.03)O nanoparticles were synthesized by the sol-gel method. X-ray diffraction (XRD) and transmission electron microscope (TEM) analysis revealed that the samples had pure ZnO wurtzite structure and Fe ions were well incorporated into the ZnO crystal lattice. X-ray photoelectron spectroscopy (XPS) showed that both Fe(2+) and Fe(3+) existed in Zn(0.97)Fe(0.03)O. The result of x-ray absorption near-edge structure (XANES) further testified that Fe ions took the place of Zn sites in our samples. Magnetic measurements indicated that Zn(0.97)Fe(0.03)O was ferromagnetic at room temperature.

  1. The oxidation state of Fe in MORB glasses and the oxygen fugacity of the upper mantle

    NASA Astrophysics Data System (ADS)

    Cottrell, Elizabeth; Kelley, Katherine A.

    2011-05-01

    Micro-analytical determination of Fe3+/∑Fe ratios in mid-ocean ridge basalt (MORB) glasses using micro X-ray absorption near edge structure (μ-XANES) spectroscopy reveals a substantially more oxidized upper mantle than determined by previous studies. Here, we show that global MORBs yield average Fe3+/∑Fe ratios of 0.16 ± 0.01 (n = 103), which trace back to primary MORB melts equilibrated at the conditions of the quartz-fayalite-magnetite (QFM) buffer. Our results necessitate an upward revision of the Fe3+/∑Fe ratios of MORBs, mantle oxygen fugacity, and the ferric iron content of the mantle relative to previous wet chemical determinations. We show that only 0.01 (absolute, or < 10%) of the difference between Fe3+/∑Fe ratios determined by micro-colorimety and XANES can be attributed to the Mössbauer-based XANES calibration. The difference must instead derive from a bias between micro-colorimetry performed on experimental vs. natural basalts. Co-variations of Fe3+/∑Fe ratios in global MORB with indices of low-pressure fractional crystallization are consistent with Fe3+ behaving incompatibly in shallow MORB magma chambers. MORB Fe3+/∑Fe ratios do not, however, vary with indices of the extent of mantle melting (e.g., Na2O(8)) or water concentration. We offer two hypotheses to explain these observations: The bulk partition coefficient of Fe3+ may be higher during peridotite melting than previously thought, and may vary with temperature, or redox exchange between sulfide and sulfate species could buffer mantle melting at ~ QFM. Both explanations, in combination with the measured MORB Fe3+/∑Fe ratios, point to a fertile MORB source with greater than 0.3 wt.% Fe2O3.

  2. Microbial reduction of uranium (VI) by Bacillus sp. dwc-2: A macroscopic and spectroscopic study.

    PubMed

    Li, Xiaolong; Ding, Congcong; Liao, Jiali; Du, Liang; Sun, Qun; Yang, Jijun; Yang, Yuanyou; Zhang, Dong; Tang, Jun; Liu, Ning

    2017-03-01

    The microbial reduction of U(VI) by Bacillus sp. dwc-2, isolated from soil in Southwest China, was explored using transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge spectroscopy (XANES). Our studies indicated that approximately 16.0% of U(VI) at an initial concentration of 100mg/L uranium nitrate could be reduced by Bacillus sp. dwc-2 at pH8.2 under anaerobic conditions at room temperature. Additionally, natural organic matter (NOM) played an important role in enhancing the bioreduction of U(VI) by Bacillus sp. dwc-2. XPS results demonstrated that the uranium presented mixed valence states (U(VI) and U(IV)) after bioreduction, which was subsequently confirmed by XANES. Furthermore, the TEM and high resolution transmission electron microscopy (HRTEM) analysis suggested that the reduced uranium was bioaccumulated mainly within the cell and as a crystalline structure on the cell wall. These observations implied that the reduction of uranium may have a significant effect on its fate in the soil environment in which these bacterial strains occur. Copyright © 2016. Published by Elsevier B.V.

  3. Damage and annealing recovery of boron-implanted ultra-shallow junction: The correlation between beam current and surface configuration

    NASA Astrophysics Data System (ADS)

    Chang, Feng-Ming; Wu, Zong-Zhe; Lin, Yen-Fu; Kao, Li-Chi; Wu, Cheng-Ta; JangJian, Shiu-Ko; Chen, Yuan-Nian; Lo, Kuang Yao

    2018-03-01

    The condition of the beam current in the implantation process is a key issue in the damage rate and structural evolution in the sequent annealing process, especially for ultra-shallow layers. In this work, we develop a compensative optical method combined with UV Raman, X-ray photoelectron spectroscopy (XPS), and X-ray absorption near edge spectroscopy (XANES) to inspect the influence of the beam current in the implantation process. The optima condition of the beam current in the implantation process is determined by higher effective Si-B bond portion in UV Raman spectra and less the peak of B-B bond in XPS spectra which is caused by B cluster defects. Results of XANES indicate that the B oxide layer is formed on the surface of the ultra-shallow junction. The defects in the ultra-shallow junction after annealing are analyzed by novel optical analyses, which cannot be inspected by a traditional thermal wave and resistance measurement. This work exhibits the structural variation of the ultra-shallow junction via a variant beam current and provides a valuable metrology in examining the chemical states and the effective activation in the implantation technology.

  4. Unraveling the atomic structure of biogenic silica: evidence of the structural association of Al and Si in diatom frustules

    NASA Astrophysics Data System (ADS)

    Gehlen, M.; Beck, L.; Calas, G.; Flank, A.-M.; Van Bennekom, A. J.; Van Beusekom, J. E. E.

    2002-05-01

    We used X-ray absorption spectroscopy at the Al K-edge to investigate the atomic structure of biogenic silica and to assess the effect of Al on its crystal chemistry. Our study provides the first direct evidence for a structural association of Al and Si in biogenic silica. In samples of cultured diatoms, Al is present exclusively in fourfold coordination. The location and relative intensity of X-ray absorption near-edge structure (XANES) features suggests the structural insertion of tetrahedral Al inside the silica framework synthesized by the organism. In diatom samples collected in the marine environment, Al is present in mixed six- and fourfold coordination. The relative intensity of XANES structures indicates the coexistence of structural Al with a clay component, which most likely reflects sample contamination by adhering mineral particles. Extended X-ray absorption fine structure spectroscopy has been used to get Al-O distances in biogenic silica of cultured diatoms, confirming a tetrahedral coordination. Because of its effect on solubility and reaction kinetics of biogenic silica, the structural association between Al and biogenic silica at the stage of biosynthesis has consequences for the use of sedimentary biogenic silica as an indicator of past environmental conditions.

  5. Phosphorus transformations in plant-based and bio-waste materials induced by pyrolysis.

    PubMed

    Robinson, James Stephen; Baumann, Karen; Hu, Yongfeng; Hagemann, Philipp; Kebelmann, Lutz; Leinweber, Peter

    2018-01-01

    Strategies are needed to increase the sustainability of phosphorus (P) fertiliser management in agriculture. This paper reports on the potential of pyrolysis treatment to recycle P from renewable materials previously regarded as wastes. The study used K-edge X-ray absorption near-edge structure (XANES) spectroscopy to examine chemical forms of P in the waste feedstock materials and corresponding biochars (pyrolysis at 480-500 °C) of four ligno-cellulosic, plant-based residues and five relatively P-rich livestock and water-treatment by-products, to acquire information on changes in potential P fertiliser value. Pyrolysis enriched P in the biochars by factors of 1.3-4.3, thus offering wide-ranging P fertiliser potential. XANES spectroscopy revealed hydroxyapatite (HAP) as one of the dominant chemical P compounds in the feedstocks, ranging from 14% (rice husks) to 98% (animal bone) of total P. For most materials, pyrolysis increased the proportion of HAP, and pyrophosphates were generated in several cases. These alterations possibly lead to diversity in the P solubility characteristics of the biochars if used as soil amendments; this is an important property of environmentally sound P fertilisers.

  6. Interface structure in nanoscale multilayers near continuous-to-discontinuous regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pradhan, P. C.; Majhi, A.; Nayak, M., E-mail: mnayak@rrcat.gov.in

    2016-07-28

    Interfacial atomic diffusion, reaction, and formation of microstructure in nanoscale level are investigated in W/B{sub 4}C multilayer (ML) system as functions of thickness in ultrathin limit. Hard x-ray reflectivity (XRR) and x-ray diffuse scattering in conjunction with x-ray absorption near edge spectroscopy (XANES) in soft x-ray and hard x-ray regimes and depth profiling x-ray photoelectron spectroscopy (XPS) have been used to precisely evaluate detailed interfacial structure by systematically varying the individual layer thickness from continuous-to-discontinuous regime. It is observed that the interfacial morphology undergoes an unexpected significant modification as the layer thickness varies from continuous-to-discontinuous regime. The interfacial atomic diffusionmore » increases, the physical density of W layer decreases and that of B{sub 4}C layer increases, and further more interestingly the in-plane correlation length decreases substantially as the layer thickness varies from continuous-to-discontinuous regime. This is corroborated using combined XRR and x-ray diffused scattering analysis. XANES and XPS results show formation of more and more tungsten compounds at the interfaces as the layer thickness decreases below the percolation threshold due to increase in the contact area between the elements. The formation of compound enhances to minimize certain degree of disorder at the interfaces in the discontinuous region that enables to maintain the periodic structure in ML. The degree of interfacial atomic diffusion, interlayer interaction, and microstructure is correlated as a function of layer thickness during early stage of film growth.« less

  7. Structural Changes Correlated with Magnetic Spin State Isomorphism in the S2 State of the Mn4CaO5 Cluster in the Oxygen-Evolving Complex of Photosystem II

    PubMed Central

    Chatterjee, Ruchira; Han, Guangye; Kern, Jan; Gul, Sheraz; Fuller, Franklin D.; Garachtchenko, Anna; Young, Iris; Weng, Tsu-Chien; Nordlund, Dennis; Alonso-Mori, Roberto; Bergmann, Uwe; Sokaras, Dimosthenis; Hatakeyama, Makoto; Yachandra, Vittal K.; Yano, Junko

    2016-01-01

    The Mn4CaO5 cluster in Photosystem II catalyzes the four-electron redox reaction of water oxidation in natural photosynthesis. This catalytic reaction cycles through four intermediate states (Si, i = 0 to 4), involving changes in the redox state of the four Mn atoms in the cluster. Recent studies suggest the presence and importance of isomorphous structures within the same redox/intermediate S-state. It is highly likely that geometric and electronic structural flexibility play a role in the catalytic mechanism. Among the catalytic intermediates that have been identified experimentally thus far, there is clear evidence of such isomorphism in the S2 state, with a high-spin (5/2) (HS) and a low spin (1/2) (LS) form, identified and characterized by their distinct electron paramagnetic resonance (EPR spectroscopy) signals. We studied these two S2 isomers with Mn extended X-ray absorption fine structure (EXAFS) and absorption and emission spectroscopy (XANES/XES) to characterize the structural and electronic structural properties. The geometric and electronic structure of the HS and LS S2 states are different as determined using Mn EXAFS and XANES/XES, respectively. The Mn K-edge XANES and XES for the HS form are different from the LS and indicate a slightly lower positive charge on the Mn atoms compared to the LS form. Based on the EXAFS results which are clearly different, we propose possible structural differences between the two spin states. Such structural and magnetic redox-isomers if present at room temperature, will likely play a role in the mechanism for water-exchange/oxidation in photosynthesis. PMID:28044099

  8. Structural changes correlated with magnetic spin state isomorphism in the S 2 state of the Mn 4CaO 5 cluster in the oxygen-evolving complex of photosystem II

    DOE PAGES

    Chatterjee, Ruchira; Han, Guangye; Kern, Jan; ...

    2016-05-09

    The Mn 4CaO 5 cluster in photosystem II catalyzes the four-electron redox reaction of water oxidation in natural photosynthesis. This catalytic reaction cycles through four intermediate states (S i, i = 0 to 4), involving changes in the redox state of the four Mn atoms in the cluster. Recent studies suggest the presence and importance of isomorphous structures within the same redox/intermediate S-state. It is highly likely that geometric and electronic structural flexibility play a role in the catalytic mechanism. Among the catalytic intermediates that have been identified experimentally thus far, there is clear evidence of such isomorphism in themore » S2 state, with a high-spin (5/2) (HS) and a low spin (1/2) (LS) form, identified and characterized by their distinct electron paramagnetic resonance (EPR spectroscopy) signals. We studied these two S2 isomers with Mn extended X-ray absorption fine structure (EXAFS) and absorption and emission spectroscopy (XANES/XES) to characterize the structural and electronic structural properties. The geometric and electronic structure of the HS and LS S2 states are different as determined using Mn EXAFS and XANES/XES, respectively. The Mn K-edge XANES and XES for the HS form are different from the LS and indicate a slightly lower positive charge on the Mn atoms compared to the LS form. Based on the EXAFS results which are clearly different, we propose possible structural differences between the two spin states. As a result, such structural and magnetic redox-isomers if present at room temperature, will likely play a role in the mechanism for water-exchange/oxidation in photosynthesis.« less

  9. Atomistic nucleation sites of Pt nanoparticles on N-doped carbon nanotubes.

    PubMed

    Sun, Chia-Liang; Pao, Chih-Wen; Tsai, Huang-Ming; Chiou, Jau-Wern; Ray, Sekhar C; Wang, Houng-Wei; Hayashi, Michitoshi; Chen, Li-Chyong; Lin, Hong-Ji; Lee, Jyh-Fu; Chang, Li; Tsai, Min-Hsiung; Chen, Kuei-Hsien; Pong, Way-Faung

    2013-08-07

    The atomistic nucleation sites of Pt nanoparticles (Pt NPs) on N-doped carbon nanotubes (N-CNTs) were investigated using C and N K-edge and Pt L3-edge X-ray absorption near-edge structure (XANES)/extended X-ray absorption fine structure (EXAFS) spectroscopy. Transmission electron microscopy and XANES/EXAFS results revealed that the self-organized Pt NPs on N-CNTs are uniformly distributed because of the relatively high binding energies of the adsorbed Pt atoms at the imperfect sites. During the atomistic nucleation process of Pt NPs on N-CNTs, stable Pt-C and Pt-N bonds are presumably formed, and charge transfer occurs at the surface/interface of the N-CNTs. The findings in this study were consistent with density functional theory calculations performed using cluster models for the undoped, substitutional-N-doped and pyridine-like-N-doped CNTs.

  10. Arsenic Re-Mobilization in Water Treatment Adsorbents Under Reducing Conditions: Part II, XAS and Modeling Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu,S.; Jing, C.; Meng, X.

    2008-01-01

    The mechanism of arsenic re-mobilization in spent adsorbents under reducing conditions was studied using X-ray absorption spectroscopy and surface complexation model calculations. X-ray absorption near edge structure (XANES) spectroscopy demonstrated that As(V) was partially reduced to As(III) in spent granular ferric hydroxide (GFH), titanium dioxide (TiO2), activated alumina (AA) and modified activated alumina (MAA) adsorbents after 2 years of anaerobic incubation. As(V) was completely reduced to As(III) in spent granular ferric oxide (GFO) under 2-year incubation. The extended X-ray absorption fine structure (EXAFS) spectroscopy analysis showed that As(III) formed bidentate binuclear surface complexes on GFO as evidenced by an averagemore » As(III)-O bond distance of 1.78 Angstroms and As(III)-Fe distance of 3.34 Angstroms . The release of As from the spent GFO and TiO2 was simulated using the charge distribution multi-site complexation (CD-MUSIC) model. The observed redox ranges for As release and sulfate mobility were described by model calculations.« less

  11. Rapid reduction of MORB glass in piston cylinder experiments with graphite capsule - a XANES study

    NASA Astrophysics Data System (ADS)

    Ni, P.; Zhang, Y.; Fiege, A.; Newville, M.; Lanzirotti, A.

    2017-12-01

    Graphite capsules have been widely used in high-pressure, high-temperature experiments to prevent iron loss from iron-bearing samples. One common uncertainty with this experimental setup is the oxygen fugacity (fO2) inside the capsule imposed by the presence of graphite. As Holloway et al. (1992) pointed out, the use of graphite capsule places an upper limit on the fO2 in the experiment to be below CCO (graphite-CO-CO2 buffer). More recently, Medard et al. (2015) estimated the fO2 for their experiments using Pt-graphite or graphite-only capsules to be CCO-0.8. Despite the improved understanding on the fO2 using graphite capsule, the mechanism and kinetics of fO2 control in graphite capsule is still poorly understood. Such knowledge is especially important to understand whether equilibrium fO2 is reached in the sample when short experiment durations are needed (e.g. for kinetic experiments). In this study, MORB glasses after olivine dissolution (Chen and Zhang 2008) and plagioclase dissolution (Yu et al. 2016) experiments at 0.5 GPa and 1300 ºC with durations ranging from 10 s to 30 min are analyzed by XANES to obtain Fe3+/Fetotal profiles from their contact with the graphite capsule. The results show rapid Fe reduction away from the graphite-melt interface, causing a decrease of Fe3+/Fetotal from 12% to 3%. In a duration of 30 min, the 1200-µm-thick and 2000-µm-diameter basaltic glass reached near equilibrium in its iron oxidation state, with Fe3+/Fetotal ranging from 3% to 4% throughout the run product. The equilibrium Fe3+/Fetotal ratio corresponds to an fO2 of CCO-1.4, which is within error compared to the result in Medard et al. (2015). Even in the shortest experiment with an effective duration of only 10 s, a 60 µm long reduction profile was detected. Such a rapid fO2 change can be explained by rapid H2 diffusion in melt and its reaction with ferric iron: H2+Fe2O3=2FeO+H2O, which is also supported by the H2O concentration profiles measured along the

  12. Optical Spectroscopy for Noninvasive Monitoring of Stem Cell Differentiation

    PubMed Central

    Downes, Andrew; Mouras, Rabah; Elfick, Alistair

    2010-01-01

    There is a requirement for a noninvasive technique to monitor stem cell differentiation. Several candidates based on optical spectroscopy are discussed in this review: Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, and coherent anti-Stokes Raman scattering (CARS) microscopy. These techniques are briefly described, and the ability of each to distinguish undifferentiated from differentiated cells is discussed. FTIR spectroscopy has demonstrated its ability to distinguish between stem cells and their derivatives. Raman spectroscopy shows a clear reduction in DNA and RNA concentrations during embryonic stem cell differentiation (agreeing with the well-known reduction in the nucleus to cytoplasm ratio) and also shows clear increases in mineral content during differentiation of mesenchymal stem cells. CARS microscopy can map these DNA, RNA, and mineral concentrations at high speed, and Mutliplex CARS spectroscopy/microscopy is highlighted as the technique with most promise for future applications. PMID:20182537

  13. Editorial

    NASA Astrophysics Data System (ADS)

    Musilek, L.; Dunn, W. L.

    2017-08-01

    The selected proceedings of the 13th International Symposium on Radiation Physics (ISRP-13) are presented here across a broad range of important topics including: Fundamental processes in radiation physics, Theoretical investigations, New radiation sources, techniques & detectors, Absorption and fluorescence spectroscopy (XAFS, XANES, XRF Spectroscopy, Raman, Infrared …), Applications of radiation in material science, nano-science & nanotechnology, Applications of radiation in biology & medical science, Applications of radiation in space, earth, energy & environmental sciences, Applications of radiation in cultural heritage & art and Applications of radiation in industry. In total, 48 papers have been accepted for these proceedings.

  14. XAS Studies of Arsenic in the Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charnock, J. M.; School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL; Polya, D. A.

    2007-02-02

    Arsenic is present in low concentrations in much of the Earth's crust and changes in its speciation are vital to understanding its transport and toxicity in the environment. We have used X-ray absorption spectroscopy to investigate the coordination sites of arsenic in a wide variety of samples, including soil and earthworm tissues from arsenic-contaminated land, and human hair and nail samples from people exposed to arsenic in Cambodia. Our results confirm the effectiveness of using X-ray absorption near edge structure (XANES) and X-ray absorption fine structure (EXAFS) spectroscopy to determine speciation changes in environmental samples.

  15. Iron and Arsenic Speciation During As(III) Oxidation by Manganese Oxides in the Presence of Fe(II): Molecular-Level Characterization Using XAFS, Mössbauer, and TEM Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yun; Kukkadapu, Ravi K.; Livi, Kenneth J. T.

    The redox state and speciation of metalloid arsenic (As) determine its toxicity and mobility. Knowledge of biogeochemical processes influencing the As redox state is therefore important to understand and predict its environmental behavior. Many previous studies examined As(III) oxidation by various Mn-oxides, but little is known the environmental influences (e.g. co-existing ions) on such process. In this study, we investigated the mechanisms of As(III) oxidation by a poorly crystalline hexagonal birnessite (δ-MnO2) in the presence of Fe(II) using X-ray absorption spectroscopy (XAS), Mössbauer spectroscopy and transmission electron microscopy (TEM) coupled with energy-dispersive X-ray spectroscopy (EDS). As K-edge X-ray absorption nearmore » edge spectroscopy (XANES) analysis revealed that, at low Fe(II) concentration (100 μM), As(V) was the predominant As species on the solid phase, while at higher Fe(II) concentration (200-1000 μM), both As(III) and As(V) were sorbed on the solid phase. As K-edge extended X-ray absorption fine structure spectroscopy (EXAFS) analysis showed an increasing As-Mn/Fe distance over time, indicating As prefers to bind with the newly formed Fe(III)-(hydr)oxides. As adsorbed on Fe(III)-(hydr)oxides as a bidentate binuclear corner-sharing complex. Both Mössbauer and TEM-EDS investigations demonstrated that the oxidized Fe(III) products formed during Fe(II) oxidation by δ-MnO2 were predominantly ferrihydrite, goethite, and ferric arsenate like compounds. However, Fe EXAFS analysis also suggested the formation of a small amount of lepidocrocite. The Mn K-edge XANES data indicated that As(III) and Fe(II) oxidation occurs as a two electron transfer with δ-MnO2 and the observed Mn(III) is due to conproportionation of surface sorbed Mn(II) with Mn(IV) in δ-MnO2 structure. This study reveals that the mechanisms of As(III) oxidation by δ-MnO2 in the presence of Fe(II) are very complex, involving many simultaneous reactions, and the

  16. X-ray absorption spectroscopy and X-ray photoelectron spectroscopy studies of CaSO 4:Dy thermoluminescent phosphors

    NASA Astrophysics Data System (ADS)

    Bakshi, A. K.; Jha, S. N.; Olivi, L.; Phase, D. M.; Kher, R. K.; Bhattacharyya, D.

    2007-11-01

    Extended X-ray absorption fine structure (EXAFS) measurements have been carried out on CaSO4:Dy phosphor samples at the Dy L3 edge with synchrotron radiation. Measurements were carried out on a set of samples which were subjected to post-preparation annealing at different temperatures and for different cycles. The EXAFS data have been analysed to find the Dy-S and Dy-O bond lengths in the neighbourhood of the Dy atoms in a CaSO4 matrix. The observations from EXAFS measurements were verified with XANES and XPS techniques. On the basis of these measurements, efforts were made to explain the loss of thermoluminescence sensitivity of CaSO4:Dy phosphors after repeated cycles of annealing at 400 °C in air for 1 h.

  17. Arsenic sorption to nanoparticulate mackinawite (FeS): An examination of phosphate competition.

    PubMed

    Niazi, Nabeel Khan; Burton, Edward D

    2016-11-01

    Nanoparticulate mackinawite (FeS) can be an important host-phase for arsenic (As) in sulfidic, subsurface environments. Although not previously investigated, phosphate (PO 4 3- ) may compete with As for available sorption sites on FeS, thereby enhancing As mobility in FeS-bearing soils, sediments and groundwater systems. In this study, we examine the effect of PO 4 3- on sorption of arsenate (As(V)) and arsenite (As(III)) to nanoparticulate FeS at pH 6, 7 and 9. Results show that PO 4 3- (at 0.01-1.0 mM P) did not significantly affect sorption of either As(V) or As(III) to nanoparticulate FeS at initial aqueous As concentrations ranging from 0.01 to 1.0 mM. At pH 9 and 7, sorption of both As(III) and As(V) to nanoparticulate FeS was similar, with distribution coefficient (K d ) values spanning 0.76-15 L g -1 (which corresponds to removal of 87-98% of initial aqueous As(III) and As(V) concentrations). Conversely, at pH 6, the sorption of As(III) was characterized by substantially higher K d values (6.3-93.4 L g -1 ) than those for As(V) (K d  = 0.21-0.96 L g -1 ). Arsenic K-edge X-ray absorption near edge structure (XANES) spectroscopy indicated that up to 52% of the added As(V) was reduced to As(III) in As(V) sorption experiments, as well as the formation of minor amounts of an As 2 S 3 -like species. In As(III) sorption experiments, XANES spectroscopy also demonstrated the formation of an As 2 S 3 -like species and the partial oxidation of As(III) to As(V) (despite the strictly O 2 -free experimental conditions). Overall, the XANES data indicate that As sorption to nanoparticulate FeS involves several redox transformations and various sorbed species, which display a complex dependency on pH and As loading but that are not influenced by the co-occurrence of PO 4 3- . This study shows that nanoparticulate FeS can help to immobilize As(III) and As(V) in sulfidic subsurface environments where As co-exists with PO 4 3- . Copyright © 2016 Elsevier Ltd. All

  18. XAFS studies of nickel and sulfur speciation in residual oil fly-ash particulate matters (ROFA PM).

    PubMed

    Pattanaik, Sidhartha; Huggins, Frank E; Huffman, Gerald P; Linak, William P; Miller, C Andrew

    2007-02-15

    XAFS spectroscopy has been employed to evaluate the effect of fuel compositions and combustion conditions on the amount, form, and distribution of sulfur and nickel in size-fractionated ROFA PM. Analysis of S K-edge XANES establish that sulfate is abundant in all PM. However, depending upon the combustion conditions, lesser amounts of thiophenic sulfur, metal sulfide, and elemental sulfur may also be observed. Least-squares fitting of Ni K-edge XANES reveals that most of the nickel in PM is present as bioavailable NiSO4.nH2O. The insoluble Ni mainly exists as a minor species, as nickel ferrite in PM2.5 (PM < 2.5 microm) and nickel sulfide, Ni(x)SY(y) in PM2.5+ (PM > 2.5 microm). The Ni K-edge XANES results are in agreement with the EXAFS data. Such detailed speciation of Ni and S in PM is needed for determining their mobility, bioavailability, and reactivity, and hence, their role in PM toxicity. This information is also important for understanding the mechanism of PM formation, developing effective remediation measures, and providing criteria for identification of potential emission sources. Transition metals complexing with sulfur is ubiquitous in nature. Therefore, this information on metal sulfur complex can be critical to a large body of environmental literature.

  19. Correlation between bonding structure and microstructure in fullerenelike carbon nitride thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gago, R.; Abendroth, B.; Moeller, W.

    2005-03-15

    The bonding structure of highly ordered fullerenelike (FL) carbon nitride (CN{sub x}) thin films has been assessed by x-ray absorption near-edge spectroscopy (XANES). Samples with different degrees of FL character have been analyzed to discern spectral signatures related to the FL microstructure. The XANES spectra of FL-CN{sub x} films resemble that of graphitic CN{sub x}, evidencing the sp{sup 2} hybridization of both C and N atoms. The FL structure is achieved with the promotion of N in threefold positions over pyridinelike and cyanidelike bonding environments. In addition, the relative {pi}{sup *}/{sigma}* XANES intensity ratio at the C(1s) edge is independentmore » of the FL character, while it decreases {approx}40% at the N(1s) edge with the formation of FL arrangements. This result indicates that there is no appreciable introduction of C-sp{sup 3} hybrids with the development of FL structures and, additionally, that a different spatial localization of {pi} electrons at C and N sites takes place in curved graphitic structures. The latter has implications for the elastic properties of graphene sheets and could, as such, explain the outstanding elastic properties of FL-CN{sub x}.« less

  20. Using X-ray absorption to probe sulfur oxidation states in complex molecules

    NASA Astrophysics Data System (ADS)

    Vairavamurthy, A.

    1998-10-01

    X-ray absorption near-edge structure (XANES) spectroscopy offers an important non-destructive tool for determining oxidation states and for characterizing chemical speciation. The technique was used to experimentally verify the oxidation states of sulfur in different types of complex molecules because there are irregularities and uncertainties in assigning the values traditionally. The usual practice of determining oxidation states involves using a set of conventional rules. The oxidation state is an important control in the chemical speciation of sulfur, ranging from -2 to +6 in its different compounds. Experimental oxidation-state values for various types of sulfur compounds, using their XANES peak-energy positions, were assigned from a scale in which elemental sulfur and sulfate are designated as 0 and +6, respectively. Because these XANES-based values differed considerably from conventionally determined oxidation states for most sulfur compounds, a new term 'oxidation index' was coined to describe them. The experimental values were closer to those conventional values obtained by assigning shared electrons to the more electronegative atoms than to those based on other customary rules for assigning them. Because the oxidation index is distinct and characteristic for each different type of sulfur functionality, it becomes an important parameter for characterizing sulfur species, and for experimentally verifying uncertain oxidation states.

  1. Arsenic speciation in sinter mineralization from a hydrothermal channel of El Tatio geothermal field, Chile

    NASA Astrophysics Data System (ADS)

    Alsina, Marco A.; Zanella, Luciana; Hoel, Cathleen; Pizarro, Gonzalo E.; Gaillard, Jean-François; Pasten, Pablo A.

    2014-10-01

    El Tatio geothermal field is the principal natural source of arsenic for the Loa River, the main surface water resource in the hyper-arid Atacama Desert (Antofagasta Region, Northern Chile). Prior investigations by bulk X-ray absorption spectroscopy have identified hydrous ferric oxides as the principal arsenic-containing phase in sinter material from El Tatio, suggesting sorption as the main mechanism for arsenic scavenging by the solid phases of these hot spring environments. Here we examine siliceous sinter material sampled from a hydrothermal channel using synchrotron based X-ray micro-probe techniques, including As and Fe Kα X-ray fluorescence (μ-XRF), As K-edge X-ray absorption near edge structure (μ-XANES), and X-ray diffraction (μ-XRD). Least-squares linear fitting of μ-XANES spectra shows that arsenic is predominantly present as arsenate sorbed on hydrous ferric oxides (63% molar proportion), but we also identify nodular arsenide micro-mineralizations (37% molar proportion) similar to loellingite (FeAs2), not previously detected during bulk-scale analysis of the sinter material. Presence of arsenide mineralizations indicates development of anoxic environments on the surface of the siliceous sinter, and suggests a more complex biogeochemistry for arsenic than previously observed for circum-neutral pH brine hot spring environments.

  2. X-ray physico-chemical imaging during activation of cobalt-based Fischer-Tropsch synthesis catalysts

    NASA Astrophysics Data System (ADS)

    Beale, Andrew M.; Jacques, Simon D. M.; Di Michiel, Marco; Mosselmans, J. Frederick W.; Price, Stephen W. T.; Senecal, Pierre; Vamvakeros, Antonios; Paterson, James

    2017-11-01

    The imaging of catalysts and other functional materials under reaction conditions has advanced significantly in recent years. The combination of the computed tomography (CT) approach with methods such as X-ray diffraction (XRD), X-ray fluorescence (XRF) and X-ray absorption near-edge spectroscopy (XANES) now enables local chemical and physical state information to be extracted from within the interiors of intact materials which are, by accident or design, inhomogeneous. In this work, we follow the phase evolution during the initial reduction step(s) to form Co metal, for Co-containing particles employed as Fischer-Tropsch synthesis (FTS) catalysts; firstly, working at small length scales (approx. micrometre spatial resolution), a combination of sample size and density allows for transmission of comparatively low energy signals enabling the recording of `multimodal' tomography, i.e. simultaneous XRF-CT, XANES-CT and XRD-CT. Subsequently, we show high-energy XRD-CT can be employed to reveal extent of reduction and uniformity of crystallite size on millimetre-sized TiO2 trilobes. In both studies, the CoO phase is seen to persist or else evolve under particular operating conditions and we speculate as to why this is observed. This article is part of a discussion meeting issue 'Providing sustainable catalytic solutions for a rapidly changing world'.

  3. Synchrotron-based XAS on structure investigation of La0.99-xSrx(Na, K, Ba)0.01MnO3 nanoparticles: Evidence of magnetic properties

    NASA Astrophysics Data System (ADS)

    Daengsakul, Sujittra; Saengplot, Saowalak; Kidkhunthod, Pinit; Pimsawat, Adulphan; Maensiri, Santi

    2018-04-01

    This work presents the structural study of La0.99-xSrx(Na, K, Ba)0.01MnO3 or LSAM nanoparticles synthesized using thermal-hydro decomposition method where A denotes Na, K, Sr and Ba, respectively. The effect of ionic radii size of A dopants or rA from the substitution of A for La and Sr on the MnO6 octrahedral structure, where the average size of the cations occupying in A-site or 〈rA〉 is fixed at ∼ 1.24 Å, is focused. The LSAM nanoparticles are carefully studied using X-ray diffraction (XRD) including Rietveld refinement and X-ray Absorption Spectroscopy (XAS) including X-ray Absorption Near edge Structure (XANES) and X-ray Absorption Fine Structure (EXAFS). The Rietveld refinement shows all nano-powder samples have rhombohedral structure. By XANES technique we found that the effect of A substitutions at A-site causes a slight change of mean oxidation state of Mn between 3.54 and 3.60. Furthermore, the structural distortion of MnO6 octrahedral in samples is analysed and obtained from EXAFS. The observed trend of ferromagnetism for all LSAM samples can be clearly explained by evidences of A-site doping, structural distortion around Mn atoms and mixing Mn3+/Mn4+ valence states.

  4. Coupling MD Simulations and X-ray Absorption Spectroscopy to Study Ions in Solution

    NASA Astrophysics Data System (ADS)

    Marcos, E. Sánchez; Beret, E. C.; Martínez, J. M.; Pappalardo, R. R.; Ayala, R.; Muñoz-Páez, A.

    2007-12-01

    The structure of ionic solutions is a key-point in understanding physicochemical properties of electrolyte solutions. Among the reduced number of experimental techniques which can supply direct information on the ion environment, X-ray Absorption techniques (XAS) have gained importance during the last decades although they are not free of difficulties associated to the data analysis leading to provide reliable structures. Computer simulations of ions in solution is a theoretical alternative to provide information on the solvation structure. Thus, the use of computational chemistry can increase the understanding of these systems although an accurate description of ionic solvation phenomena represents nowadays a significant challenge to theoretical chemistry. We present: (a) the assignment of features in the XANES spectrum to well defined structural motif in the ion environment, (b) MD-based evaluation of EXAFS parameters used in the fitting procedure to make easier the structural resolution, and (c) the use of the agreement between experimental and simulated XANES spectra to help in the choice of a given intermolecular potential for Computer Simulations. Chemical problems examined are: (a) the identification of the second hydration shell in dilute aqueous solutions of highly-charged cations, such as Cr3+, Rh3+, Ir3+, (b) the invisibility by XAS of certain structures characterized by Computer Simulations but exhibiting high dynamical behavior and (c) the solvation of Br- in acetonitrile.

  5. Coupling MD Simulations and X-ray Absorption Spectroscopy to Study Ions in Solution

    NASA Astrophysics Data System (ADS)

    Marcos, E. Sánchez; Beret, E. C.; Martínez, J. M.; Pappalardo, R. R.; Ayala, R.; Muñoz-Páez, A.

    2007-11-01

    The structure of ionic solutions is a key-point in understanding physicochemical properties of electrolyte solutions. Among the reduced number of experimental techniques which can supply direct information on the ion environment, X-ray Absorption techniques (XAS) have gained importance during the last decades although they are not free of difficulties associated to the data analysis leading to provide reliable structures. Computer simulations of ions in solution is a theoretical alternative to provide information on the solvation structure. Thus, the use of computational chemistry can increase the understanding of these systems although an accurate description of ionic solvation phenomena represents nowadays a significant challenge to theoretical chemistry. We present: (a) the assignment of features in the XANES spectrum to well defined structural motif in the ion environment, (b) MD-based evaluation of EXAFS parameters used in the fitting procedure to make easier the structural resolution, and (c) the use of the agreement between experimental and simulated XANES spectra to help in the choice of a given intermolecular potential for Computer Simulations. Chemical problems examined are: (a) the identification of the second hydration shell in dilute aqueous solutions of highly-charged cations, such as Cr3+, Rh3+, Ir3+, (b) the invisibility by XAS of certain structures characterized by Computer Simulations but exhibiting high dynamical behavior and (c) the solvation of Br- in acetonitrile.

  6. Perspectives of shaped pulses for EPR spectroscopy

    NASA Astrophysics Data System (ADS)

    Spindler, Philipp E.; Schöps, Philipp; Kallies, Wolfgang; Glaser, Steffen J.; Prisner, Thomas F.

    2017-07-01

    This article describes current uses of shaped pulses, generated by an arbitrary waveform generator, in the field of EPR spectroscopy. We show applications of sech/tanh and WURST pulses to dipolar spectroscopy, including new pulse schemes and procedures, and discuss the more general concept of optimum-control-based pulses for applications in EPR spectroscopy. The article also describes a procedure to correct for experimental imperfections, mostly introduced by the microwave resonator, and discusses further potential applications and limitations of such pulses.

  7. The incorporation of plutonium in lanthanum zirconate pyrochlore

    NASA Astrophysics Data System (ADS)

    Gregg, Daniel J.; Zhang, Yingjie; Middleburgh, Simon C.; Conradson, Steven D.; Triani, Gerry; Lumpkin, Gregory R.; Vance, Eric R.

    2013-11-01

    The incorporation of plutonium (Pu) within lanthanum zirconate pyrochlore was investigated using air, argon, and N2-3.5%H2 sintering atmospheres together with Ca2+ and Sr2+ incorporation for charge compensation. The samples have been characterised in the first instance by X-ray diffraction (XRD), scanning electron microscopy (SEM) and diffuse reflectance spectroscopy (DRS). The results show Pu can be exchanged for La3+ on the A-site with and without charge compensation and for Zr4+ on the B-site. DRS measurements were made over the wavenumber range of 4000-19,000 cm-1 and the Pu in all air- and argon-sintered samples was found to be present as Pu4+ while that in samples sintered in N2-3.5%H2 was present as Pu3+. The Pu valence was confirmed for three of the samples using X-ray near-edge absorption spectroscopy (XANES). Pu valences >4+ were not observed in any of the samples.

  8. Ligand-tailored single-site silica supported titanium catalysts: Synthesis, characterization and towards cyanosilylation reaction

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Li, Yani; Yu, Bo; Yang, Jindou; Zhang, Ying; Chen, Xi; Zhang, Guofang; Gao, Ziwei

    2015-01-01

    A successive anchoring of Ti(NMe2)4, cyclopentadiene and a O-donor ligand, 1-hydroxyethylbenzene (PEA), 1,1‧-bi-2-naphthol (Binol) or 2,3-dihydroxybutanedioic acid diethyl ester (Tartrate), on silica was conducted by SOMC strategy in moderate conditions. The silica, monitored by in-situ Fourier transform infrared spectroscopy (in-situ FT-IR), was pretreated at different temperatures (200, 500 and 800 °C). The ligand tailored silica-supported titanium complexes were characterized by in-situ FT-IR, 13C CP MAS-NMR, X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge structure (XANES) and elemental analysis in detail, verifying that the surface titanium species are single sited. The catalytic activity of the ligand tailored single-site silica supported titanium complexes was evaluated by a cyanosilylation of benzaldehyde. The results showed that the catalytic activity is dependent strongly on the dehydroxylation temperatures of silica and the configuration of the ligands.

  9. Ferrate (IV) as a Possible Oxidant on the Martian Surface

    NASA Astrophysics Data System (ADS)

    Tsapin, Alexandre; Goldfeld, M. G.; McDonald, G. D.; Nealson, K. H.; Mohnke, J.; Moskovitz, B.; Solheid, P.; Kemner, K. H.; Orlandini, K.

    Viking experiments showed that Martian soil has a very strong oxidant, which could be responsible for the results of experiments performed on Viking landers. These experiments were designed specifically to detect life on Mars. The nature of that oxidant was not determined during Viking mission. Later several groups tried to reconstruct Viking experiments and find out the nature of Martian oxidant. None of these attempts were completely successful. The general perception was that there are several chemically different oxidants on Martian surface. In this study we suggested that potassium ferrate K_2FeO_4 can be Martian oxidant responsible at least partially for the results of experiments on Viking landers. We characterized liquid and powder preparation of Fe (VI) with EPR, optical spectroscopy, Mossbauer spectroscopy, and by Fe-XANES. All properties of our preparations of (FeVI) are consistent with the proposal role of that compound as a strong oxidant on Martian surface.

  10. Phase transitions in biogenic amorphous calcium carbonate.

    PubMed

    Gong, Yutao U T; Killian, Christopher E; Olson, Ian C; Appathurai, Narayana P; Amasino, Audra L; Martin, Michael C; Holt, Liam J; Wilt, Fred H; Gilbert, P U P A

    2012-04-17

    Crystalline biominerals do not resemble faceted crystals. Current explanations for this property involve formation via amorphous phases. Using X-ray absorption near-edge structure (XANES) spectroscopy and photoelectron emission microscopy (PEEM), here we examine forming spicules in embryos of Strongylocentrotus purpuratus sea urchins, and observe a sequence of three mineral phases: hydrated amorphous calcium carbonate (ACC · H(2)O) → dehydrated amorphous calcium carbonate (ACC) → calcite. Unexpectedly, we find ACC · H(2)O-rich nanoparticles that persist after the surrounding mineral has dehydrated and crystallized. Protein matrix components occluded within the mineral must inhibit ACC · H(2)O dehydration. We devised an in vitro, also using XANES-PEEM, assay to identify spicule proteins that may play a role in stabilizing various mineral phases, and found that the most abundant occluded matrix protein in the sea urchin spicules, SM50, stabilizes ACC · H(2)O in vitro.

  11. Characterization of yellow and colorless decorative glasses from the Temple of the Emerald Buddha, Bangkok, Thailand

    NASA Astrophysics Data System (ADS)

    Klysubun, Wantana; Ravel, Bruce; Klysubun, Prapong; Sombunchoo, Panidtha; Deenan, Weeraya

    2013-06-01

    Yellow and colorless ancient glasses, which were once used to decorate the Temple of the Emerald Buddha, Bangkok, Thailand, around 150 years ago, are studied to unravel the long-lost glass-making recipes and manufacturing techniques. Analyses of chemical compositions, using synchrotron x-ray fluorescence (SRXRF), indicate that the Thai ancient glasses are soda lime silica glasses (60 % SiO2; 10 % Na2O; 10 % CaO) bearing lead oxide between 2-16 %. Iron (1.5-9.4 % Fe2O3) and manganese (1.7 % MnO) are present in larger abundance than the other 3 d transition metals detected (0.04-0.2 %). K-edge x-ray absorption near edge spectroscopy (XANES) and extended x-ray absorption fine structure spectroscopy (EXAFS) provide conclusive evidence on the oxidation states of Fe being 3+ and Mn being 2+ and on short-length tetrahedral structures around the cations. This suggests that iron is used as a yellow colorant with manganese as a decolorant. L 3-edge XANES results reveal the oxidation states of lead as 2+. The results from this work provide information crucial for replicating these decorative glasses for the future restoration of the Temple of the Emerald Buddha.

  12. Microresonator soliton dual-comb spectroscopy

    NASA Astrophysics Data System (ADS)

    Suh, Myoung-Gyun; Yang, Qi-Fan; Yang, Ki Youl; Yi, Xu; Vahala, Kerry J.

    2016-11-01

    Measurement of optical and vibrational spectra with high resolution provides a way to identify chemical species in cluttered environments and is of general importance in many fields. Dual-comb spectroscopy has emerged as a powerful approach for acquiring nearly instantaneous Raman and optical spectra with unprecedented resolution. Spectra are generated directly in the electrical domain, without the need for bulky mechanical spectrometers. We demonstrate a miniature soliton-based dual-comb system that can potentially transfer the approach to a chip platform. These devices achieve high-coherence pulsed mode locking. They also feature broad, reproducible spectral envelopes, an essential feature for dual-comb spectroscopy. Our work shows the potential for integrated spectroscopy with high signal-to-noise ratios and fast acquisition rates.

  13. Rapid identification of staphylococci by Raman spectroscopy.

    PubMed

    Rebrošová, Katarína; Šiler, Martin; Samek, Ota; Růžička, Filip; Bernatová, Silvie; Holá, Veronika; Ježek, Jan; Zemánek, Pavel; Sokolová, Jana; Petráš, Petr

    2017-11-01

    Clinical treatment of the infections caused by various staphylococcal species differ depending on the actual cause of infection. Therefore, it is necessary to develop a fast and reliable method for identification of staphylococci. Raman spectroscopy is an optical method used in multiple scientific fields. Recent studies showed that the method has a potential for use in microbiological research, too. Our work here shows a possibility to identify staphylococci by Raman spectroscopy. We present a method that enables almost 100% successful identification of 16 of the clinically most important staphylococcal species directly from bacterial colonies grown on a Mueller-Hinton agar plate. We obtained characteristic Raman spectra of 277 staphylococcal strains belonging to 16 species from a 24-hour culture of each strain grown on the Mueller-Hinton agar plate using the Raman instrument. The results show that it is possible to distinguish among the tested species using Raman spectroscopy and therefore it has a great potential for use in routine clinical diagnostics.

  14. Intrinsic Raman spectroscopy for quantitative biological spectroscopy Part II

    PubMed Central

    Bechtel, Kate L.; Shih, Wei-Chuan; Feld, Michael S.

    2009-01-01

    We demonstrate the effectiveness of intrinsic Raman spectroscopy (IRS) at reducing errors caused by absorption and scattering. Physical tissue models, solutions of varying absorption and scattering coefficients with known concentrations of Raman scatterers, are studied. We show significant improvement in prediction error by implementing IRS to predict concentrations of Raman scatterers using both ordinary least squares regression (OLS) and partial least squares regression (PLS). In particular, we show that IRS provides a robust calibration model that does not increase in error when applied to samples with optical properties outside the range of calibration. PMID:18711512

  15. High-Resolution Electron Energy-Loss Spectroscopy (HREELS) Using a Monochromated TEM/STEM

    NASA Technical Reports Server (NTRS)

    Sai, Z. R.; Bradley, J. P.; Erni, R.; Browning, N.

    2005-01-01

    A 200 keV FEI TF20 XT monochromated (scanning) transmission electron microscope funded by NASA's SRLIDAP program is undergoing installation at Lawrence Livermore National Laboratory. Instrument specifications in STEM mode are Cs =1.0 mm, Cc =1.2 mm, image resolution =0.18 nm, and in TEM mode Cs =1.3 mm, Cc =1.3 mm, information limit =0.14 nm. Key features of the instrument are a voltage-stabilized high tension (HT) supply, a monochromator, a high-resolution electron energy-loss spectrometer/energy filter, a high-resolution annular darkfield detector, and a solid-state x-ray energy-dispersive spectrometer. The high-tension tank contains additional sections for 60Hz and high frequency filtering, resulting in an operating voltage of 200 kV plus or minus 0.005V, a greater than 10-fold improvement over earlier systems. The monochromator is a single Wien filter design. The energy filter is a Gatan model 866 Tridiem-ERS high resolution GIF spec d for less than or equal to 0.15 eV energy resolution with 29 pA of current in a 2 nm diameter probe. 0.13 eV has already been achieved during early installation. The x-ray detector (EDAX/Genesis 4000) has a take-off angle of 20 degrees, an active area of 30 square millimeters, and a solid angle of 0.3 steradians. The higher solid angle is possible because the objective pole-piece allows the detector to be positioned as close as 9.47 mm from the specimen. The voltage-stabilized HT supply, monochromator and GIF enable high-resolution electron energy-loss spectroscopy (HREELS) with energy resolution comparable to synchrotron XANES, but with approximately 100X better spatial resolution. The region between 0 and 100 eV is called the low-loss or valence electron energy-loss spectroscopy (VEELS) region where features due to collective plasma oscillations and single electron transitions of valence electrons are observed. Most of the low-loss VEELS features we are detecting are being observed for the first time in IDPs. A major focus of

  16. Strontium Concentrations in Corrosion Products from Residential Drinking Water Distribution Systems

    DTIC Science & Technology

    2013-04-22

    associated with iron corrosion products that, if disturbed, could increase Sr2+ concentrations above the 0.3 μg L -1 US EPA reporting threshold...water travels through and interacts with the DWDS infrastructure and associated corrosion products.7,8 Starting in 2013, reporting to the US EPA is...techniques, Sr2+ binding mechanisms within the corrosion products were examined using in situ micro X-ray adsorption near edge spectroscopy (μ- XANES

  17. Uranium fate in Hanford sediment altered by simulated acid waste solutions

    DOE PAGES

    Gartman, Brandy N.; Qafoku, Nikolla P.; Szecsody, James E.; ...

    2015-07-31

    Many aspects of U(VI) behavior in sediments that are previously exposed to acidic waste fluids for sufficiently long times to induce significant changes in pH and other physical, mineralogical and chemical properties, are not well documented in the literature. For this reason, we conducted a series of macroscopic batch experiments combined with a variety of bulk characterization studies (Mössbauer and laser spectroscopy), micro-scale inspections (µ-XRF), and molecular scale interrogations (XANES) with the objectives to: i) determine the extent of U(VI) partitioning to Hanford sediments previously exposed to acidic waste simulants (pH = 2 and pH = 5) and under neutralmore » conditions (pH = 8) at varying background solution concentrations (i.e., NaNO 3); ii) determine micron-scale solid phase associated U valence state and phase identity; and iii) provide information for a plausible conceptual model of U(VI) attenuation under waste plume acidic conditions. The results of the batch experiments showed that the acid pre-treated sediment had high affinity for aqueous U(VI), which was removed from solution via two pH dependent and apparently different mechanisms (adsorption at pH = 2 and precipitation at pH = 5). The micro-scale inspections and XANES analyses confirmed that high concentration areas were rich mainly in U(VI), demonstrating that most of the added U(VI) was not reduced to U(IV). The laser spectroscopy data showed that uranyl phosphates {e.g. metaautunite [Ca(UO 2) 2(PO 4) 2•10-12H 2O] and phosphuranylite [KCa(H 3O) 3(UO 2) 7(PO 4) 4O 4•8(H 2O)]} were present in the sediments. They also showed clear differences between the U bearing phases in the experiments conducted in the presence or absence of air. As a result, the data generated from these experiments will help in a better understanding of the reactions and processes that have a significant effect and/or control U mobility.« less

  18. Identification of anisodamine tablets by Raman and near-infrared spectroscopy with chemometrics.

    PubMed

    Li, Lian; Zang, Hengchang; Li, Jun; Chen, Dejun; Li, Tao; Wang, Fengshan

    2014-06-05

    Vibrational spectroscopy including Raman and near-infrared (NIR) spectroscopy has become an attractive tool for pharmaceutical analysis. In this study, effective calibration models for the identification of anisodamine tablet and its counterfeit and the distinguishment of manufacturing plants, based on Raman and NIR spectroscopy, were built, respectively. Anisodamine counterfeit tablets were identified by Raman spectroscopy with correlation coefficient method, and the results showed that the predictive accuracy was 100%. The genuine anisodamine tablets from 5 different manufacturing plants were distinguished by NIR spectroscopy using partial least squares discriminant analysis (PLS-DA) models based on interval principal component analysis (iPCA) method. And the results showed the recognition rate and rejection rate were 100% respectively. In conclusion, Raman spectroscopy and NIR spectroscopy combined with chemometrics are feasible and potential tools for rapid pharmaceutical tablet discrimination. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. A X-Ray Absorption Study of Transition Metal Oxides

    NASA Astrophysics Data System (ADS)

    Bunker, Grant Byrd

    This work is an experimental and theoretical study of the x-ray absorption near-edge structure of selected 3d transition metal compounds. The goal is to understand the physical mechanisms of XANES, using the competing multiple scattering (MS) and single scattering formalisms of Durham et al, and of Muller and Schaich, respectively. Careful experimental measurements of the K edge absorption of Mn oxides and KMnO(,4) at 300(DEGREES)K, 140(DEGREES)K and 80(DEGREES)K were made. These materials were chosen because they exhibit a variety of structures and oxidation states. Computer simulations of the XANES using the formalisms above were also performed. The experimental results show that atoms beyond the first coordination shell significantly affect the XANES near and above the edge; in particular the temperature dependent XANES and the "white line" in MnO establish this. We conclude that XANES, like EXAFS, is primarily sensitive to geometrical structure, except within about 1 Rydberg of the Fermi level. Two types of MS are distinguished: type 1 (forward scattering) is important in both XANES and EXAFS regions; type 2 (large angle scattering) is important only at and below the edge. MS of the photoelectron among the first shell Oxygen atoms in KMnO(,4) is observed experimentally, and found to become negligible above (DBLTURN) 1 Rydberg past the edge. The sharp features in XANES are primarily due to scattering from distant atoms, rather than localized states, except below the edge. This is supported by the observation that (alpha)-Mn(,2)O(,3) and Mn(,3)O(,4) spectra are nearly identical; their structures are the same, but the average oxidation states are different. We find the bond length strongly affects the edge position and the intensity of the 3d absorption in tetrahedrally coordinated transition metals. Other new results are the first shell EXAFS amplitude in MnO shows an anomalous energy dependence, which apparently cannot be explained by current theory. A new

  20. Magnetic properties of Gd T2Zn20 (T =Fe , Co) investigated by x-ray diffraction and spectroscopy

    NASA Astrophysics Data System (ADS)

    Mardegan, J. R. L.; Francoual, S.; Fabbris, G.; Veiga, L. S. I.; Strempfer, J.; Haskel, D.; Ribeiro, R. A.; Avila, M. A.; Giles, C.

    2016-01-01

    We investigate the magnetic and electronic properties of the Gd T2Zn20 (T =Fe and Co) compounds using x-ray resonant magnetic scattering (XRMS), x-ray absorption near-edge structure (XANES), and x-ray magnetic circular dichroism (XMCD). The XRMS measurements reveal that GdCo2Zn20 has a commensurate antiferromagnetic spin structure with a magnetic propagation vector τ ⃗=(1/2 ,1/2 ,1/2 ) below the Néel temperature (TN˜ 5.7 K). Only the Gd ions carry a magnetic moment forming an antiferromagnetic structure with magnetic representation Γ6. For the ferromagnetic GdFe2Zn20 compound, an extensive investigation was performed at low temperature and under magnetic field using XANES and XMCD. A strong XMCD signal of about 12.5 % and 9.7 % is observed below the Curie temperature (TC˜85 K ) at the Gd L2 and L3 edges, respectively. In addition, a small magnetic signal of about 0.06 % of the jump is recorded at the Zn K edge, suggesting that the Zn 4 p states are spin polarized by the Gd 5 d extended orbitals.

  1. Magnetic properties of GdT 2Zn 20 (T = Fe, Co) investigated by x-ray diffraction and spectroscopy

    DOE PAGES

    J. R. L. Mardegan; Fabbris, G.; Francoual, S.; ...

    2016-01-26

    In this study, we investigate the magnetic and electronic properties of the GdT 2Zn 20 (T=Fe and Co) compounds using x-ray resonant magnetic scattering (XRMS), x-ray absorption near-edge structure (XANES), and x-ray magnetic circular dichroism (XMCD). The XRMS measurements reveal that GdCo 2Zn 20 has a commensurate antiferromagnetic spin structure with a magnetic propagation vector →/ τ = (12,12,12) below the Néel temperature (T N ~ 5.7 K). Only the Gd ions carry a magnetic moment forming an antiferromagnetic structure with magnetic representation Γ 6. For the ferromagnetic GdFe 2Zn 20 compound, an extensive investigation was performed at low temperaturemore » and under magnetic field using XANES and XMCD. A strong XMCD signal of about 12.5% and 9.7% is observed below the Curie temperature (T C ~ 85K) at the Gd L 2 and L 3 edges, respectively. In addition, a small magnetic signal of about 0.06% of the jump is recorded at the Zn K edge, suggesting that the Zn 4p states are spin polarized by the Gd 5d extended orbitals.« less

  2. Nb K-edge x-ray absorption investigation of the pressure induced amorphization in A-site deficient double perovskite La1/3NbO3.

    PubMed

    Marini, C; Noked, O; Kantor, I; Joseph, B; Mathon, O; Shuker, R; Kennedy, B J; Pascarelli, S; Sterer, E

    2016-02-03

    Nb K-edge x-ray absorption spectroscopy is utilized to investigate the changes in the local structure of the A-site deficient double perovskite La1/3NbO3 which undergoes a pressure induced irreversible amorphization. EXAFS results show that with increasing pressure up to 7.5 GPa, the average Nb-O bond distance decreases in agreement with the expected compression and tilting of the NbO6 octahedra. On the contrary, above 7.5 GPa, the average Nb-O bond distance show a tendency to increase. Significant changes in the Nb K-edge XANES spectrum with evident low energy shift of the pre-peak and the absorption edge is found to happen in La1/3NbO3 above 6.3 GPa. These changes evidence a gradual reduction of the Nb cations from Nb(5+) towards Nb(4+) above 6.3 GPa. Such a valence change accompanied by the elongation of the average Nb-O bond distances in the octahedra, introduces repulsion forces between non-bonding adjacent oxygen anions in the unoccupied A-sites. Above a critical pressure, the Nb reduction mechanism can no longer be sustained by the changing local structure and amorphization occurs, apparently due to the build-up of local strain. EXAFS and XANES results indicate two distinct pressure regimes having different local and electronic response in the La1/3NbO3 system before the occurence of the pressure induced amorphization at  ∼14.5 GPa.

  3. Direct Synthesis of Novel and Reactive Sulfide-modified Nano Iron through Nanoparticle Seeding for Improved Cadmium-Contaminated Water Treatment

    PubMed Central

    Su, Yiming; Adeleye, Adeyemi S.; Huang, Yuxiong; Zhou, Xuefei; Keller, Arturo A.; Zhang, Yalei

    2016-01-01

    Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) is of great technical and scientific interest because of its promising application in groundwater remediation, although its synthesis is still a challenge. We develop a new nanoparticle seeding method to obtain a novel and reactive nanohybrid, which contains an Fe(0) core covered by a highly sulfidized layer under high extent of sulfidation. Syntheses monitoring experiments show that seeding accelerates the reduction rate from Fe2+ to Fe0 by 19%. X-ray adsorption near edge structure (XANES) spectroscopy and extended X-ray absorption fine structure analyses demonstrate the hexahedral Fe-Fe bond (2.45 and 2.83 Å) formation through breaking down of the 1.99 Å Fe-O bond both in crystalline and amorphous iron oxide. The XANES analysis also shows 24.2% (wt%) of FeS with bond length of 2.4 Å in final nanohybrid. Both X-ray diffraction and Mössbauer analyses further confirm that increased nanoparticle seeding results in formation of more Fe0 crystals. Nano-SiO2 seeding brings down the size of single Fe0 grain from 32.4 nm to 18.7 nm, enhances final Fe0 content from 5.9% to 55.6%, and increases magnetization from 4.7 to 65.5 emu/g. The synthesized nanohybrid has high cadmium removal capacity and holds promising prospects for treatment of metal-contaminated water. PMID:27095387

  4. Direct Synthesis of Novel and Reactive Sulfide-modified Nano Iron through Nanoparticle Seeding for Improved Cadmium-Contaminated Water Treatment

    NASA Astrophysics Data System (ADS)

    Su, Yiming; Adeleye, Adeyemi S.; Huang, Yuxiong; Zhou, Xuefei; Keller, Arturo A.; Zhang, Yalei

    2016-04-01

    Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) is of great technical and scientific interest because of its promising application in groundwater remediation, although its synthesis is still a challenge. We develop a new nanoparticle seeding method to obtain a novel and reactive nanohybrid, which contains an Fe(0) core covered by a highly sulfidized layer under high extent of sulfidation. Syntheses monitoring experiments show that seeding accelerates the reduction rate from Fe2+ to Fe0 by 19%. X-ray adsorption near edge structure (XANES) spectroscopy and extended X-ray absorption fine structure analyses demonstrate the hexahedral Fe-Fe bond (2.45 and 2.83 Å) formation through breaking down of the 1.99 Å Fe-O bond both in crystalline and amorphous iron oxide. The XANES analysis also shows 24.2% (wt%) of FeS with bond length of 2.4 Å in final nanohybrid. Both X-ray diffraction and Mössbauer analyses further confirm that increased nanoparticle seeding results in formation of more Fe0 crystals. Nano-SiO2 seeding brings down the size of single Fe0 grain from 32.4 nm to 18.7 nm, enhances final Fe0 content from 5.9% to 55.6%, and increases magnetization from 4.7 to 65.5 emu/g. The synthesized nanohybrid has high cadmium removal capacity and holds promising prospects for treatment of metal-contaminated water.

  5. The irreversible formation of palladium carbide during hydrogenation of 1-pentyne over silica-supported palladium nanoparticles: in situ Pd K and L3 edge XAS.

    PubMed

    Tew, Min Wei; Nachtegaal, Maarten; Janousch, Markus; Huthwelker, Thomas; van Bokhoven, Jeroen A

    2012-04-28

    The catalytically active phase of silica-supported palladium catalysts in the selective and non-selective hydrogenation of 1-pentyne was determined using in situ X-ray absorption spectroscopy at the Pd K and L(3) edges. Upon exposure to alkyne, a palladium carbide-like phase rapidly forms, which prevents hydrogen to diffuse into the bulk of the nano-sized particles. Both selective and non-selective hydrogenation occur over carbided particles. The palladium carbide-like phase is stable under reaction conditions and only partially decomposes under high hydrogen partial pressure. Non-selective hydrogenation to pentane is not indicative of hydride formation. The palladium carbide phase was detected in the EXAFS analysis and the K edge XANES showed representative features. This journal is © the Owner Societies 2012

  6. Pump-Probe Noise Spectroscopy of Molecular Junctions.

    PubMed

    Ochoa, Maicol A; Selzer, Yoram; Peskin, Uri; Galperin, Michael

    2015-02-05

    The slow response of electronic components in junctions limits the direct applicability of pump-probe type spectroscopy in assessing the intramolecular dynamics. Recently the possibility of getting information on a sub-picosecond time scale from dc current measurements was proposed. We revisit the idea of picosecond resolution by pump-probe spectroscopy from dc measurements and show that any intramolecular dynamics not directly related to charge transfer in the current direction is missed by current measurements. We propose a pump-probe dc shot noise spectroscopy as a suitable alternative. Numerical examples of time-dependent and average responses of junctions are presented for generic models.

  7. Can we trust mass spectrometry for determination of arsenic peptides in plants: comparison of LC-ICP-MS and LC-ES-MS/ICP-MS with XANES/EXAFS in analysis of Thunbergia alata.

    PubMed

    Bluemlein, Katharina; Raab, Andrea; Meharg, Andrew A; Charnock, John M; Feldmann, Jörg

    2008-04-01

    The weakest step in the analytical procedure for speciation analysis is extraction from a biological material into an aqueous solution which undergoes HPLC separation and then simultaneous online detection by elemental and molecular mass spectrometry (ICP-MS/ES-MS). This paper describes a study to determine the speciation of arsenic and, in particular, the arsenite phytochelatin complexes in the root from an ornamental garden plant Thunbergia alata exposed to 1 mg As L(-1) as arsenate. The approach of formic acid extraction followed by HPLC-ES-MS/ICP-MS identified different As(III)-PC complexes in the extract of this plant and made their quantification via sulfur (m/z 32) and arsenic (m/z 75) possible. Although sulfur sensitivity could be significantly increased when xenon was used as collision gas in ICP-qMS, or when HR-ICP-MS was used in medium resolution, the As:S ratio gave misleading results in the identification of As(III)-PC complexes due to the relatively low resolution of the chromatography system in relation to the variety of As-peptides in plants. Hence only the parallel use of ES-MS/ICP-MS was able to prove the occurrence of such arsenite phytochelatin complexes. Between 55 and 64% of the arsenic was bound to the sulfur of peptides mainly as As(III)(PC(2))(2), As(III)(PC(3)) and As(III)(PC(4)). XANES (X-ray absorption near-edge spectroscopy) measurement, using the freshly exposed plant root directly, confirmed that most of the arsenic is trivalent and binds to S of peptides (53% As-S) while 38% occurred as arsenite and only 9% unchanged as arsenate. EXAFS data confirmed that As-S and As-O bonds occur in the plants. This study confirms, for the first time, that As-peptides can be extracted by formic acid and chromatographically separated on a reversed-phase column without significant decomposition or de-novo synthesis during the extraction step.

  8. Mineral associations and character of isotopically anomalous organic material in the Tagish Lake carbonaceous chondrite

    NASA Astrophysics Data System (ADS)

    Zega, Thomas J.; Alexander, Conel M. O.'D.; Busemann, Henner; Nittler, Larry R.; Hoppe, Peter; Stroud, Rhonda M.; Young, Andrea F.

    2010-10-01

    We report a coordinated analytical study of matrix material in the Tagish Lake carbonaceous chondrite in which the same small (⩽20 μm) fragments were measured by secondary ion mass spectrometry (SIMS), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), electron energy-loss spectroscopy (EELS), and X-ray absorption near-edge spectroscopy (XANES). SIMS analysis reveals H and N isotopic anomalies (hotspots), ranging from hundreds to thousands of nanometers in size, which are present throughout the fragments. Although the differences in spatial resolution of the SIMS techniques we have used introduce some uncertainty into the exact location of the hotspots, in general, the H and N isotopic anomalies are spatially correlated with C enrichments, suggesting an organic carrier. TEM analysis, enabled by site-specific extraction using a focused-ion-beam scanning-electron microscope, shows that the hotspots contain an amorphous component, Fe-Ni sulfides, serpentine, and mixed-cation carbonates. TEM imaging reveals that the amorphous component occurs in solid and porous forms, EDS indicates that it contains abundant C, and EELS and XANES at the C K edge reveal that it is largely aromatic. This amorphous component is probably macromolecular C, likely the carrier of the isotopic anomalies, and similar to the material extracted from bulk samples as insoluble organic matter. However, given the large sizes of some of the hotspots, the disparity in spatial resolution among the various techniques employed in our study, and the phases with which they are associated, we cannot entirely rule out that some of the isotopic anomalies are carried by inorganic material, e.g., sheet silicates. The isotopic composition of the organic matter points to an initially primitive origin, quite possibly within cold interstellar clouds or the outer reaches of the solar protoplanetary disk. The association of organic material with secondary phases, e.g., serpentine

  9. Photo-oxidative doping in π-conjugated zig-zag chain of carbon atoms with sulfur-functional group

    NASA Astrophysics Data System (ADS)

    Ikeura-Sekiguchi, Hiromi; Sekiguchi, Tetsuhiro

    2017-12-01

    Photo-oxidative doping processes were studied for the trans-polyacetylene backbone with the -SCH3 side group as a chemically representative of the precisely controlled S-functionalized zig-zag graphene nanoribbon edge. Sulfur K-edge X-ray absorption near edge structure (XANES) spectroscopy indicates that photochemical reaction of S-CH3 with atmospheric O2 forms selectively oxidized products such as -S(O)CH3 and -SO3- bound to the polyacetylene (PA) backbone. Using the correlation between the oxidation states of sulfur and the XANES peak positions, the partial charge distribution of CH3Sδ+-PAδ- has been estimated. Such positively charged sulfur atoms can attract higher electronegative oxygen atoms and expect to enhance the photooxidization capabilities. The formation of the -SO3- side group is evidently responsible for hole doping into the PA backbone. The results can provide some strategy for area-selective and controllable doping processes of atomic-scale molecular systems with the assistance of UV light.

  10. High spin state driven magnetism and thermoelectricity in Mn doped topological insulator Bi2Se3

    NASA Astrophysics Data System (ADS)

    Maurya, V. K.; Dong, C. L.; Chen, C. L.; Asokan, K.; Patnaik, S.

    2018-06-01

    We report on the synthesis, and structural - magnetic characterizations of Mn doped Bi2Se3 towards achieving a magnetically doped topological insulator. High quality single crystals of MnxBi2-xSe3 (x = 0, 0.03, 0.05, 0.1) are grown and analysed by X-ray diffraction (XRD), Low Energy Electron Diffraction (LEED), Scanning electron microscopy (SEM), and X-ray absorption near-edge structure spectroscopy (XANES). Magnetic properties of these samples under ZFC-FC protocol and isothermal magnetization confirm ferromagnetic correlation above x = 0.03 value. XANES measurements confirm that the dopant Mn is in Mn2+ state. This is further reconfirmed to be in high spin state by fitting magnetic data with Brillouin function for J = 5/2. Both Hall and Seebeck measurements indicate a sign change of charge carriers above x = 0.03 value of Mn doping. We propose Mn doped Bi2Se3 to be a potential candidate for electromagnetic and thermoelectric device applications involving topological surface states.

  11. Experimental and theoretical study of the structural environment of magnesium in minerals and silicate glasses using X-ray absorption near-edge structure

    NASA Astrophysics Data System (ADS)

    Trcera, Nicolas; Cabaret, Delphine; Rossano, Stéphanie; Farges, François; Flank, Anne-Marie; Lagarde, Pierre

    2009-05-01

    X-ray absorption spectroscopy at the Mg K-edge is used to obtain information on magnesium environment in minerals, silicate and alumino-silicate glasses. First-principles XANES calculations are performed for minerals using a plane-wave density functional formalism with core-hole effects treated in a supercell approach. The good agreement obtained between experimental and theoretical spectra provides useful information to interpret the spectral features. With the help of calculation, the position of the first peak of XANES spectra is related to both coordination and polyhedron distortion changes. In alumino-silicate glasses, magnesium is found to be mainly 5-fold coordinated to oxygen whatever the aluminum saturation index value. In silicate glasses, magnesium coordination increases from 4 in Cs-, Rb- and K-bearing glasses to 5 in Na- and Li-bearing glasses but remains equal as the polymerization degree of the glass varies. The variation of the C feature (position and intensity) is strongly related to the alkali type providing information on the medium range order.

  12. Phase transitions in biogenic amorphous calcium carbonate

    PubMed Central

    Gong, Yutao U. T.; Killian, Christopher E.; Olson, Ian C.; Appathurai, Narayana P.; Amasino, Audra L.; Martin, Michael C.; Holt, Liam J.; Wilt, Fred H.; Gilbert, P. U. P. A.

    2012-01-01

    Crystalline biominerals do not resemble faceted crystals. Current explanations for this property involve formation via amorphous phases. Using X-ray absorption near-edge structure (XANES) spectroscopy and photoelectron emission microscopy (PEEM), here we examine forming spicules in embryos of Strongylocentrotus purpuratus sea urchins, and observe a sequence of three mineral phases: hydrated amorphous calcium carbonate (ACC·H2O) → dehydrated amorphous calcium carbonate (ACC) → calcite. Unexpectedly, we find ACC·H2O-rich nanoparticles that persist after the surrounding mineral has dehydrated and crystallized. Protein matrix components occluded within the mineral must inhibit ACC·H2O dehydration. We devised an in vitro, also using XANES-PEEM, assay to identify spicule proteins that may play a role in stabilizing various mineral phases, and found that the most abundant occluded matrix protein in the sea urchin spicules, SM50, stabilizes ACC·H2O in vitro. PMID:22492931

  13. Effect of Fe-substitution on the structure and magnetism of single crystals Mn2-xFexBO4

    NASA Astrophysics Data System (ADS)

    Platunov, M. S.; Kazak, N. V.; Knyazev, Yu. V.; Bezmaternykh, L. N.; Moshkina, E. M.; Trigub, A. L.; Veligzhanin, A. A.; Zubavichus, Y. V.; Solovyov, L. A.; Velikanov, D. A.; Ovchinnikov, S. G.

    2017-10-01

    Single crystalline Mn2-xFexBO4 with x = 0.3, 0.5, 0.7 grown by the flux method have been studied by means of X-ray diffraction and X-ray absorption spectroscopy at both Mn and Fe K edges. The compounds were found to crystallize in an orthorhombic warwickite structure (sp. gr. Pnam). The lattice parameters change linearly with x thus obeying the Vegard's law. The Fe3+ substitution for Mn3+ has been deduced from the X-ray absorption near-edge structure (XANES) spectra. Two energy positions of the absorption edges have been observed in Mn K-edge XANES spectra indicating the presence of manganese in two different oxidation states. Extended X-ray absorption fine structure (EXAFS) analysis has shown the reduction of local structural distortions upon Fe substitution. The magnetization data have revealed a spin-glass transition at TSG = 11, 14 and 18 K for x = 0.3, 0.5 and 0.7, respectively.

  14. Speciation of copper diffused in a bi-porous molecular sieve

    NASA Astrophysics Data System (ADS)

    Huang, C.-H.; Paul Wang, H.; Wei, Y.-L.; Chang, J.-E.

    2010-07-01

    To better understand diffusion of copper in the micro- and mesopores, speciation of copper in a bi-porous molecular sieve (BPMS) possessing inter-connecting 3-D micropores (0.50-0.55 nm) and 2-D mesopores (4.1 nm) has been studied by X-ray absorption near edge structure (XANES) spectroscopy. It is found that about 77% (16% of CuO nanoparticles and 61% of CuO clusters) and 23% (CuO ads) of copper can be diffused into the meso- and micropores, respectively, in the BPMS. At least two diffusion steps in the BPMS may be involved: (i) free diffusion of copper in the mesopores and (ii) diffusion-controlled copper migrating into the micropores of the BPMS. The XANES data also indicate that diffusion rate of copper in the BPMS (4.68×10 -5 g/s) is greater than that in the ZSM-5 (1.11×10 -6 g/s) or MCM-41 (1.17×10 -5 g/s).

  15. A multi-technique approach to assess chemical speciation of phosphate in soils

    NASA Astrophysics Data System (ADS)

    Belchior Abdala, Dalton; Rodrigues, Marcos; Herrera, Wilfrand; Pavinato, Paulo Sergio

    2017-04-01

    different P pools considered in the fractionation protocol, (ii) two synchrotron-based X-ray absorption spectroscopic techniques, XANES and EXAFS, for chemical characterization of the P forms and mineralogy of Fe-(hydr)oxides present in a sample, and (iii) Scanning Electron Microscopy and Energy-Dispersive spectroscopy, SEM/EDS, to provide complimentary information to corroborate and aid in the interpretation of our P XANES data. It was shown that the combination of techniques can assist us not only in the determination of the P chemical species present in a given material, but also to better understand the complex and dynamic processes to which P is subjected in soils. The association of spectroscopy (XANES and EXAFS) and microscopy (SEM/EDS) with wet chemistry data in this study was key to shift our understanding of the relationship between P and other soil mineral components from a macroscopic into a microscopic one. This represents a strong driving force to integrate the results of multi-analytical techniques into a more complete understanding of the systems under study. In addition, we provide a library of reference spectra for P K-edge XANES containing P sorbed to single and binary mixtures of mineral analogues intended to assist in the identification of P sorbed species commonly found in soils and sediments. Key-words: P K-edge XANES, Fe K-edge EXAFS, sequential chemical fractionation, soil phosphorus

  16. High resolution infrared spectroscopy: Some new approaches and applications to planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Mumma, M. J.

    1978-01-01

    The principles of spectral line formation and of techniques for retrieval of atmospheric temperature and constituent profiles are discussed. Applications to the atmospheres of Earth, Mars, Venus, and Jupiter are illustrated by results obtained with Fourier transform and infrared heterodyne spectrometers at resolving powers (lambda/delta hyperon lambda of approximately 10,000 and approximately 10 to the seventh power), respectively, showing the high complementarity of spectroscopy at these two widely different resolving powers. The principles of heterodyne spectroscopy are presented and its applications to atmospheric probing and to laboratory spectroscopy are discussed. Direct absorption spectroscopy with tuneable semiconductor lasers is discussed in terms of precision frequency-and line strength-measurements, showing substantial advances in laboratory infrared spectroscopy.

  17. Vibrational spectroscopy

    Treesearch

    Umesh P. Agarwal; Rajai Atalla

    2010-01-01

    Vibrational spectroscopy is an important tool in modern chemistry. In the past two decades, thanks to significant improvements in instrumentation and the development of new interpretive tools, it has become increasingly important for studies of lignin. This chapter presents the three important instrumental methods-Raman spectroscopy, infrared (IR) spectroscopy, and...

  18. Comparison of the Manganese Cluster in Oxygen-Evolving Photosystem II with Distorted Cubane Manganese Compounds through X-ray Absorption Spectroscopy

    PubMed Central

    Cinco, Roehl M.; Rompel, Annette; Visser, Hendrik; Aromí, Guillem; Christou, George; Sauer, Kenneth; Klein, Melvin P.; Yachandra, Vittal K.

    2014-01-01

    X-ray absorption spectroscopy has been employed to assess the degree of similarity between the oxygen-evolving complex (OEC) in photosystem II (PS II) and a family of synthetic manganese complexes containing the distorted cubane [Mn4O3X] core (X = benzoate, acetate, methoxide, hydroxide, azide, fluoride, chloride, or bromide). These [Mn4(μ3-O)3(μ3-X)] cubanes possess C3v symmetry except for the X = benzoate species, which is slightly more distorted with only Cs symmetry. In addition, Mn4O3Cl complexes containing three or six terminal Cl ligands at three of the Mn were included in this study. The Mn K-edge X-ray absorption near edge structure (XANES) from the oxygen-ligated complexes begin to resemble general features of the PS II (S1 state) spectrum, although the second derivatives are distinct from those in PS II. The extended X-ray absorption fine structure (EXAFS) of these Mn compounds also displays superficial resemblance to that of PS II, but major differences emerge on closer examination of the phases and amplitudes. The most obvious distinction is the smaller magnitude of the Fourier transform (FT) of the PS II EXAFS compared to the FTs from the distorted cubanes. Curve fitting of the Mn EXAFS spectra verifies the known core structures of the Mn cubanes, and shows that the number of the crucial 2.7 and 3.3 Å Mn–Mn distances differs from that observed in the OEC. The EXAFS method detects small changes in the core structures as X is varied in this series, and serves to exclude the distorted cubane of C3v symmetry as a topological model for the Mn catalytic cluster of the OEC. Instead, the method shows that even more distortion of the cubane framework, altering the ratio of the Mn–Mn distances, is required to resemble the Mn cluster in PS II. PMID:11671305

  19. In situ X-ray near-edge absorption spectroscopy investigation of the state of charge of all-vanadium redox flow batteries.

    PubMed

    Jia, Chuankun; Liu, Qi; Sun, Cheng-Jun; Yang, Fan; Ren, Yang; Heald, Steve M; Liu, Yadong; Li, Zhe-Fei; Lu, Wenquan; Xie, Jian

    2014-10-22

    Synchrotron-based in situ X-ray near-edge absorption spectroscopy (XANES) has been used to study the valence state evolution of the vanadium ion for both the catholyte and anolyte in all-vanadium redox flow batteries (VRB) under realistic cycling conditions. The results indicate that, when using the widely used charge-discharge profile during the first charge process (charging the VRB cell to 1.65 V under a constant current mode), the vanadium ion valence did not reach V(V) in the catholyte and did not reach V(II) in the anolyte. Consequently, the state of charge (SOC) for the VRB cell was only 82%, far below the desired 100% SOC. Thus, such incompletely charged mix electrolytes results in not only wasting the electrolytes but also decreasing the cell performance in the following cycles. On the basis of our study, we proposed a new charge-discharge profile (first charged at a constant current mode up to 1.65 V and then continuously charged at a constant voltage mode until the capacity was close to the theoretical value) for the first charge process that achieved 100% SOC after the initial charge process. Utilizing this new charge-discharge profile, the theoretical charge capacity and the full utilization of electrolytes has been achieved, thus having a significant impact on the cost reduction of the electrolytes in VRB.

  20. EDITORIAL: Nano Meets Spectroscopy Nano Meets Spectroscopy

    NASA Astrophysics Data System (ADS)

    Birch, David J. S.

    2012-08-01

    event bridged as far as medical application of nanotechnologies. It could have turned out that such a hotchpotch produced an incoherent event that lacked direction and focus, but in truth, as the feedback showed, the delegates revelled in the diversity and depth of quality. Excellent speakers, the common application to biomolecules and common language of spectroscopy were probably the reasons why things worked out so well. I am delighted to bring together in this special feature in Measurement Science and Technology a selection of contributions from the meeting and I thank all the authors for their excellent contributions. Included are papers on nanoparticles, plasmonics, sensing and imaging. This special feature, and indeed similar meetings in the future, will undoubtedly help sustain the 'nanomeeters' message of NMS.

  1. X-Ray absorption spectroscopy quantitative analysis of biomimetic copper(II) complexes with tridentate nitrogen ligands mimicking the tris(imidazole) array of protein centres.

    PubMed

    Borghi, Elena; Casella, Luigi

    2010-02-21

    In this study copper(ii) complexes with the tridentate nitrogen ligand bis[2-(1-methylbenzimidazol-2-yl)ethyl]amine (2-BB) are considered as model compounds for the Cu-tris(imidazole) array found in several copper proteins. 2-BB chelates copper(ii) forming two six-membered rings and the complexes contain methanol, nitrite, azide and water as ancillary ligands; both the coordination numbers and stereochemistries differ in these complexes. Their key structural features were investigated by using full multiple-scattering theoretical analysis of the copper K-edge X-ray absorption spectrum with the MXAN code. We showed that using cluster sizes large enough to include all atoms of the ligand, the analysis of the XANES region can give both a structural model of the metal centre and map the structure of the 2-BB complexes. Complex [Cu(2-BB)(N(3))](+) provided a critical test through the comparison of the XANES simulation results with crystallographic data, thus permitting the extension of the method to the complex [Cu(2-BB)(H(2)O)(n)](+) (n = 1 or 2), for which crystallographic data are not available but is expected to bear a five-coordinated Cu(3N)(2O) core (n = 2). The structural data of [Cu(2-BB)(MeOH)(ClO(4))](+) and [Cu(2-BB)(NO(2))](+), both with a Cu(3N)(2O) core but with a different stereochemistry, were used as the starting parameters for two independent simulations of the XANES region of the [Cu(2-BB)(H(2)O)(2)](+) cation. The two structural models generated by simulation converge towards a structure for the aqua-cation with a lower coordination number. New calculations, where four-coordinated Cu(3N)(O) cores were considered as the starting structures, validated that the structure of the aqua-complex in the powder state has a copper(ii) centre with a four-coordinated Cu(3N)(O) core and a molecular formula [Cu(2-BB)(H(2)O)](ClO(4)).(H(2)O). A water solvation molecule, presumed to be disordered from the simulations with the two Cu(3N)(2O) cores, is present. The

  2. Photoacoustic spectroscopy of man infecting protozoans

    NASA Astrophysics Data System (ADS)

    Acosta-Avalos, D.; Alvarado-Gil, J. J.; Vargas, H.

    1998-08-01

    In this paper the fundamentals of photothermal spectroscopy are presented, special emphasis is done in the obtention of the optical absorption spectra. It is shown that this spectroscopy can be used successfully for the monitoring of protozoans that could infect the human. The usefulness of the technique is illustrated in the special case of Leishmania, where it is possible to find that the stage when the protozoan infect vertebrate cells show important differences in relation to the protozoans infecting insects.

  3. Pressure induced coordination change of Al in silicate melts from Al K edge XANES of high pressure NaAlSi2O6-NaAlSi3O8 glasses

    NASA Astrophysics Data System (ADS)

    Li, Dien; Secco, R. A.; Bancroft, G. M.; Fleet, M. E.

    Aluminum K-edge XANES spectra of high pressure and high temperature (4.4 GPa and 1575°C) glasses along the NaAlSi2O6 (Jd)-NaAlSi3O8 (Ab) join are reported using synchrotron radiation, and shown to provide direct experimental evidence for the pressure-induced coordination change of Al. Five- and six-fold coordinated Al (5Al and 6Al), characterized by Al K-edge positions at 1567.8 and 1568.7 eV, respectively, first appear in glass of composition Jd60Ab40 and increase in proportion progressively with increasing Jd content. The end-member jadeite glass contains about 6% of each of 5Al and 6Al. The present direct measurements confirm literature suggestions for the important role of Al in controlling viscosity and diffusion in mantle melts.

  4. Synthesis of nanocrystalline NiO/ZnO heterostructured composite powders by sol-gel auto combustion method and their characterizations

    NASA Astrophysics Data System (ADS)

    Tangcharoen, Thanit; Klysubun, Wantana; Kongmark, Chanapa

    2018-03-01

    Nanocrystalline NiO/ZnO heterostructured composite powders were prepared by the sol-gel auto combustion method, based on nickel and zinc nitrate precursors and using diethanolamine (DEA) as novel fuel. The composition of different NiO and ZnO ratios, ranging from 100/0, 95/5, 90/10, 80/20, 60/40, 50/50, 40/60, 20/80, 10/90, 5/95 to 0/100, were studied. The structural, chemical bonding, morphological, optical, and fluorescence properties including the local atomic structure of each calcined sample were systematically investigated by means of X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), UV-visible diffuse reflectance spectroscopy (UV-DRS), photoluminescence (PL) spectroscopy, and synchrotron X-ray absorption spectroscopy (XAS), respectively. For the ZnO concentration below 20%, both XRD and Raman spectroscopy results revealed only the NiO phase. This conformed to the observation of Zn K-edge and Ni K-edge X-ray absorption near edge structure (XANES). The Zn ions found in the samples of low ZnO concentration exhibited six-fold coordination with oxygen atoms rather than the four-fold coordination found in the wurtzite (WZ) structure of ZnO. In contrast, the Ni ions which are found in the samples of low NiO concentration (≤10%) are coordinated both tetrahedrally and octahedrally by four or six oxygen atoms, respectively, rather than the six-fold coordination which is usually observed for Ni ions in the rock salt (RS) form of NiO. All analytical results obtained from experimental XANES spectra were verified by the theoretical calculation of absorption spectra using the FEFF9.7 code. The UV-DRS results showed that there was an increase in the reflectance efficiency for both infrared and visible light conditions as the content of ZnO increases; meanwhile, the values for the energy gap (Eg) of all composite samples were higher than that of pure NiO and ZnO. In addition, the PL spectra revealed major blue emission bands observed at 490

  5. Arsenic mobilization in spent nZVI waste residue: Effect of Pantoea sp. IMH.

    PubMed

    Ye, Li; Liu, Wenjing; Shi, Qiantao; Jing, Chuanyong

    2017-11-01

    Nanoscale zero-valent iron (nZVI) is an effective arsenic (As) scavenger. However, spent nZVI may pose a higher environmental risk than our initial thought in the presence of As-reducing bacteria. Therefore, our motivation was to explore the As redox transformation and release in spent nZVI waste residue in contact with Pantoea sp. IMH, an arsC gene container adopting the As detoxification pathway. Our incubation results showed that IMH preferentially reduce soluble As(V), not solid-bound As(V), and was innocent in elevating total dissolved As concentrations. μ-XRF and As μ-XANES spectra clearly revealed the heterogeneity and complexity of the inoculated and control samples. Nevertheless, the surface As local coordination was not affected by the presence of IMH as evidenced by similar As-Fe atomic distance (3.32-3.36 Å) and coordination number (1.9) in control and inoculated samples. The Fe XANES results suggested that magnetite in nZVI residue was partly transformed to ferrihydrite, and the IMH activity slowed down the nZVI aging process. IMH distorted Fe local coordination without change its As adsorption capacity as suggested by Mössbauer spectroscopy. Arsenic retention is not inevitably enhanced by in situ formed secondary Fe minerals, but depends on the relative As affinity between the primary and secondary iron minerals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Tuning Ni-catalyzed CO 2 hydrogenation selectivity via Ni-ceria support interactions and Ni-Fe bimetallic formation

    DOE PAGES

    Winter, Lea R.; Gomez, Elaine; Yan, Binhang; ...

    2017-10-16

    CO 2 hydrogenation over Fe-modified Ni/CeO 2 catalysts was investigated in a batch reactor using time-resolved in situ FTIR spectroscopy. Low loading of Ni/CeO 2 was associated with high selectivity to CO over CH 4, while higher Ni loading improved CO 2 hydrogenation activity with a reduced CO selectivity. X-ray absorption near-edge structure (XANES) analysis revealed Ni to be metallic for all catalysts including the CO-selective low loading 0.5% Ni catalyst, suggesting that the selectivity trend is due to structural rather than oxidation state effects. The loading amount of 1.5% Ni was selected for co-impregnation with Fe, based on themore » significant shift in product selectivity towards CH 4 for that loading amount, in order to shift the selectivity towards CO while maintaining high activity. Temperature programmed reduction (TPR) results indicated bimetallic interactions between Ni and Fe, and XANES analysis showed that about 70% of Fe in the bimetallic catalysts was oxidized. The Ni-Fe catalysts demonstrated improved selectivity towards CO without significantly compromising activity, coupling the high activity of Ni catalysts and the high CO selectivity of Fe. The general trends in Ni loading and bimetallic modification should guide efforts to develop non-precious metal catalysts for the selective production of CO by CO 2 hydrogenation.« less

  7. Inhibition of phosphorus sorption on calcite by dairy manure-sourced DOC.

    PubMed

    Weyers, Eva; Strawn, Daniel G; Peak, Derek; Baker, Leslie L

    2017-10-01

    In confined animal feeding operations, such as dairies, manure is amended to soils at high rates leading to increases in P and organic matter in the soils. Phosphorus reacts with soil-Ca to form Ca-P minerals, which controls P availability for leaching and transport through the watershed. In this research, the effects of manure sourced dissolved organic matter (DOM) on P sorption on calcite were measured at different reaction times and concentrations. Reactions were monitored in 1% and 10% manure-to-water extract solutions spiked with P. When manure-DOM was present, a significant reduction in P sorption occurred (2-90% absolute decrease) compared to samples without manure-DOM. The greatest decrease occurred in the samples reacted in the 10% manure solution. XANES spectroscopic analysis showed that at 1% manure solution, a Ca-P phase similar to hydroxyapatite formed. In the calcite samples reacted in the 10% manure solution, K-edge XANES spectroscopy revealed that P occurred as a Ca-Mg-P phase instead of the less soluble hydroxyapatite-like phase. Results from this study suggest that in manure-amended calcareous soils, increased DOM from manure will decrease P sorption capacity and increase the overall P concentration in solution, which will increase the mobility of P and subsequently pose greater risks for impairment of surface water quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winter, Lea R.; Gomez, Elaine; Yan, Binhang

    CO 2 hydrogenation over Fe-modified Ni/CeO 2 catalysts was investigated in a batch reactor using time-resolved in situ FTIR spectroscopy. Low loading of Ni/CeO 2 was associated with high selectivity to CO over CH 4, while higher Ni loading improved CO 2 hydrogenation activity with a reduced CO selectivity. X-ray absorption near-edge structure (XANES) analysis revealed Ni to be metallic for all catalysts including the CO-selective low loading 0.5% Ni catalyst, suggesting that the selectivity trend is due to structural rather than oxidation state effects. The loading amount of 1.5% Ni was selected for co-impregnation with Fe, based on themore » significant shift in product selectivity towards CH 4 for that loading amount, in order to shift the selectivity towards CO while maintaining high activity. Temperature programmed reduction (TPR) results indicated bimetallic interactions between Ni and Fe, and XANES analysis showed that about 70% of Fe in the bimetallic catalysts was oxidized. The Ni-Fe catalysts demonstrated improved selectivity towards CO without significantly compromising activity, coupling the high activity of Ni catalysts and the high CO selectivity of Fe. The general trends in Ni loading and bimetallic modification should guide efforts to develop non-precious metal catalysts for the selective production of CO by CO 2 hydrogenation.« less

  9. Uranium Redox Transformations after U(VI) Coprecipitation with Magnetite Nanoparticles.

    PubMed

    Pidchenko, Ivan; Kvashnina, Kristina O; Yokosawa, Tadahiro; Finck, Nicolas; Bahl, Sebastian; Schild, Dieter; Polly, Robert; Bohnert, Elke; Rossberg, André; Göttlicher, Jörg; Dardenne, Kathy; Rothe, Jörg; Schäfer, Thorsten; Geckeis, Horst; Vitova, Tonya

    2017-02-21

    Uranium redox states and speciation in magnetite nanoparticles coprecipitated with U(VI) for uranium loadings varying from 1000 to 10 000 ppm are investigated by X-ray absorption spectroscopy (XAS). It is demonstrated that the U M 4 high energy resolution X-ray absorption near edge structure (HR-XANES) method is capable to clearly characterize U(IV), U(V), and U(VI) existing simultaneously in the same sample. The contributions of the three different uranium redox states are quantified with the iterative transformation factor analysis (ITFA) method. U L 3 XAS and transmission electron microscopy (TEM) reveal that initially sorbed U(VI) species recrystallize to nonstoichiometric UO 2+x nanoparticles within 147 days when stored under anoxic conditions. These U(IV) species oxidize again when exposed to air. U M 4 HR-XANES data demonstrate strong contribution of U(V) at day 10 and that U(V) remains stable over 142 days under ambient conditions as shown for magnetite nanoparticles containing 1000 ppm U. U L 3 XAS indicates that this U(V) species is protected from oxidation likely incorporated into octahedral magnetite sites. XAS results are supported by density functional theory (DFT) calculations. Further characterization of the samples include powder X-ray diffraction (pXRD), scanning electron microscopy (SEM) and Fe 2p X-ray photoelectron spectroscopy (XPS).

  10. Na-Ion Intercalation and Charge Storage Mechanism in 2D Vanadium Carbide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bak, Seong-Min; Qiao, Ruimin; Yang, Wanli

    Two-dimensional vanadium carbide MXene containing surface functional groups (denoted as V2CTx, where Tx are surface functional groups) was synthesized and studied as anode material for Na-ion batteries. V2CTx anode exhibits reversible charge storage with good cycling stability and high rate capability through electrochemical test. The charge storage mechanism of V2CTx material during Na+ intercalation/deintercalation and the redox reaction of vanadium were studied using a combination of synchrotron based X-ray diffraction (XRD), hard X-ray absorption near edge spectroscopy (XANES) and soft X-ray absorption spectroscopy (sXAS). Experimental evidence of a major contribution of redox reaction of vanadium to the charge storage andmore » the reversible capacity of V2CTx during sodiation/desodiation process have been provided through V K-edge XANES and V L2,3-edge sXAS results. A correlation between the CO32- content and Na+ intercalation/deintercalation states in the V2CTx electrode observed from C and O K-edge in sXAS results imply that some additional charge storage reactions may take place between the Na+-intercalated V2CTx and the carbonate based non-aqueous electrolyte. The results of this study will provide valuable information for the further studies on V2CTx as anode material for Na-ion batteries and capacitors.« less

  11. Arsenic speciation in biological samples using XAS and mixed oxidation state calibration standards of inorganic arsenic.

    PubMed

    Parsons, J G; Lopez, M L; Castillo-Michel, H; Peralta-Videa, J R; Gardea-Torresdey, J L

    2009-08-01

    The speciation of elements without pre-edge features preformed with X-ray absorption near edge structure (XANES) can lead to problems when the energy difference between two species is small. The speciation of arsenic (As) in plant samples was investigated using the mixtures As2S3/As2O5, As2S3/As2O3, or As2O3/As2O5. The data showed that the energy separation (eV) between As2O5 and As2S3 was 5.8, between As2O3 and As2O5 was 3.6, and between As2S3 and As2O3 was 2.1. From the intensity of the white-line feature and the concentration of As species, calibration curves showing a limit of detection of approximately 10% were generated. In addition, an error of +/-10% was determined for the linear combination-XANES (LC-XANES) fitting technique. The difference between the LC-XANES fittings and calculations from the calibration curves was <10%. The data also showed that the speciation of As in a sample can be determined using EXAFS (extended X-ray absorption fine structure). Finally, it was also shown that both EXAFS and XANES of the sample should be examined to determine the true speciation of an element. Even though there is a difference of 2 eV between As(III) bound to O and As(III) bound to S, in the EXAFS region the As(III)-S and As(III)-O ligands are clearly visible. However, distinction between the As(III)-O and As(V)-O ligands in the EXAFS spectra was not clearly visible in this study.

  12. THz time-domain spectroscopy imaging for mail inspection

    NASA Astrophysics Data System (ADS)

    Zhang, Liquan; Wang, Zhongdong; Ma, Yanmei; Hao, Erjuan

    2011-08-01

    Acquiring messages from the mail but not destroying the envelope is a big challenge in the war of intelligence. If one can read the message of the mail when the envelope is closed, he will benefit from the message asymmetry and be on a good wicket in the competition. In this paper, we presented a transmitted imaging system using THz time-domain spectroscopy technology. We applied the system to image the mail inside an envelope by step-scanning imaging technology. The experimental results show that the THz spectroscopy can image the mail in an envelope. The words in the paper can be identified easily from the background. We also present the THz image of a metal blade in the envelope, in which we can see the metal blade clearly. The results show that it is feasible of THz Time-Domain Spectroscopy Imaging for mail inspection applications.

  13. Formation of ferric oxides from aqueous solutions: A polyhedral approach by X-ray absorption spectroscopy. I. Hydrolysis and formation of ferric gels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Combes, J.M.; Manceau, A.; Calas, G.

    1989-03-01

    X-ray absorption spectroscopy (XAS) was used to follow the evolution of local structural environments around ferric ions during the formation of ferric hydrous oxide gels from 1 M chloride and 0.1 M nitrate solutions. Fe K-XANES and EXAFS confirm that ferric ions remain 6-fold coordinated during this evolution. With increasing OH availability in the solution, Cl{sup {minus}} anions tend gradually to be exchanged for (O, OH, OH{sub 2}) ligands. Below OH/Fe = 1, no structural order is detected beyond the first coordination sphere. Above this ratio, two Fe-Fe distances at 3.05 {angstrom} and 3.44 {angstrom} are observed and correspond tomore » the presence of edge- and vertex-sharing Fe-octahedra. XAS results show that ferric gels and highly polymerized aqueous species are short-range ordered. The main contribution to disorder in the gels arises from the small size of coherently scattering domains also responsible for their X-ray amorphous character. From the initial to the final stage of hydrolysis, particles possess a nearly spherical shape with a minimum average diameter ranging from 10-30 {angstrom} for polymers formed from chloride and nitrate solutions. As polymerization proceeds, the local order extends to several tens of angstroms and the particle structures becomes progressively closer to that of akaganeite ({beta}-FeOOH) or goethite ({alpha}-FeOOH). This local structure is distinct from that of the lepidocrocite ({gamma}-FeOOH)-like structure of ferric gels precipitated after oxidation of divalent Fe solutions. The growth of the crystalline Fe-oxyhydroxides from gels takes place by the progressive long-range ordering in the ferric polymers without modifying the short-range order around Fe.« less

  14. Effects of X-ray irradiation on the Eu3+ → Eu2+ conversion in CaAl2O4 phosphors

    NASA Astrophysics Data System (ADS)

    Gomes, Manassés A.; Carvalho, Jéssica C.; Andrade, Adriano B.; Rezende, Marcos V.; Macedo, Zélia S.; Valerio, Mário E. G.

    2018-01-01

    This paper reports structural and luminescence properties of Eu-doped CaAl2O4 produced by an alternative sol-gel method using coconut water. Results of differential thermal analysis (DTA), thermogravimetric analysis (TGA), and X-ray diffraction (XRD) allowed us to identify the best synthesis conditions for sample preparation. Simultaneous measurements of X-ray absorption spectroscopy (XAS) and X-ray excited optical luminescence (XEOL) were also performed in the X-ray energy range of the Eu LIII edge. Results from photoluminescence (PL) showed only the characteristic Eu3+ emission. However, radioluminescence emission spectra from Eu-doped CaAl2O4 shows a process of conversion of Eu3+ to Eu2+, which is induced by X-ray irradiation and is dependent on the radiation dose energy. X-ray absorption near edge structure (XANES) measurements corroborate Eu reduction due to irradiation, showing that only the Eu3+ ion is present in stable form in the CaAl2O4.

  15. Power quality considerations for nuclear spectroscopy applications: Grounding

    NASA Astrophysics Data System (ADS)

    García-Hernández, J. M.; Ramírez-Jiménez, F. J.; Mondragón-Contreras, L.; López-Callejas, R.; Torres-Bribiesca, M. A.; Peña-Eguiluz, R.

    2013-11-01

    Traditionally the electrical installations are designed for supplying power and to assure the personnel safety. In nuclear analysis laboratories, additional issues about grounding also must be considered for proper operation of high resolution nuclear spectroscopy systems. This paper shows the traditional ways of grounding nuclear spectroscopy systems and through different scenarios, it shows the effects on the more sensitive parameter of these systems: the energy resolution, it also proposes the constant monitoring of a power quality parameter as a way to preserve or to improve the resolution of the systems, avoiding the influence of excessive extrinsic noise.

  16. Examination of Cr(VI) treatment by zero-valent iron using in situ, real-time X-ray absorption spectroscopy and Cr isotope measurements

    NASA Astrophysics Data System (ADS)

    Jamieson-Hanes, Julia H.; Lentz, Adam M.; Amos, Richard T.; Ptacek, Carol J.; Blowes, David W.

    2014-10-01

    A series of replicate flow-through cell experiments was conducted to characterize Cr isotope fractionation during Cr(VI) treatment by granular zero-valent iron (ZVI). Synthetic groundwater containing 50 mg L-1 Cr(VI) was pumped upward through a custom-made cell packed with ZVI under anaerobic conditions. The geochemical evolution of the system was monitored using pH and redox measurements, while aqueous effluent samples were retained for analysis of cations and Cr isotopes. Real-time, in situ X-ray absorption near edge structure (XANES) spectroscopy collected via a Kapton® window in the cell provided additional information on the speciation of the reaction products. Increases in δ53Cr values corresponding to decreases in Cr(VI) concentration suggested the occurrence of redox processes. Spectroscopic results correlated well with the isotope data, indicating reduction of Cr(VI) to Cr(III). The isotope data did not appear to follow a single trend. A two-stage system was proposed to explain the complex isotope trend, where the rapid Cr removal was associated with very little fractionation (ε = -0.2‰), whereas slower removal was associated with a greater degree of fractionation (ε = -1.2‰ to -1.5‰). Reactive transport modeling was used to quantify distinct isotope fractionation values (ε), differentiated by a significant change in the Cr removal rate.

  17. Electronic spectroscopy of diatomic molecules

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.

    1994-01-01

    This article provides an overview of the principal computational approaches and their accuracy for the study of electronic spectroscopy of diatomic molecules. We include a number of examples from our work that illustrate the range of application. We show how full configuration interaction benchmark calculations were instrumental in improving the understanding of the computational requirements for obtaining accurate results for diatomic spectroscopy. With this understanding it is now possible to compute radiative lifetimes accurate to within 10% for systems involving first- and second-row atoms. We consider the determination of the infrared vibrational transition probabilities for the ground states of SiO and NO, based on a globally accurate dipole moment function. We show how we were able to assign the a(sup "5)II state of CO as the upper state in the recently observed emission bands of CO in an Ar matrix. We next discuss the assignment of the photoelectron detachment spectra of NO and the alkali oxide negative ions. We then present several examples illustrating the state-of-the-art in determining radiative lifetimes for valence-valence and valence-Rydberg transitions. We next compare the molecular spectroscopy of the valence isoelectronic B2, Al2, and AlB molecules. The final examples consider systems involving transition metal atoms, which illustrate the difficulty in describing states with different numbers of d electrons.

  18. Ti K-edge EXAFS and XANES study on tektites from different strewnfields

    NASA Astrophysics Data System (ADS)

    Wang, L.; Furuta, T.; Okube, M.; Yoshiasa, A.

    2011-12-01

    The concentration and local structure of each element may have various kinds of information about the asteroid impact and mass extinction. Farges and Brown have discussed about the Ti local structure by XANES, and concluded that Ti in tektite occupies 4-coordinated site. EXAFS can be analyzed to give precise information about the distance from Ti to near neighbors. The XAFS measurement of Ti local structure was preformed at the beamline 9C of the Photon Factory in KEK, Tsukuba, Japan. The specimens of tektites are from different strewnfields, they are: indochinite, bediasite, hainanite, philippinite, australite and moldavite. Sample for comparison are Libya desert glass and suevite. The k3χ(k) function was transformed into the radial structure function (RSF) for Ti K-edge of six tektites. The RSF for the Ti atom in indochinite and bediasite are similar; hainanite, australite and philippinite are similar; and moldavite is discriminated from others. It indicates that they have the same local atomic environmental around the Ti atoms and extended structure respectively. Coordination numbers and radial structure function are determined by EXAFS analyses (Table 1). We classified the tektites in three types: in indochinite and bediasite, Ti occupies 4-coordinated tetrahedral site and Ti-O distances are 1.84-1.81 Å; in hainanite, australite and philippinite, Ti occupies 5-coordinated trigonal bi-pyramidal or tetragonal pyramidal site and Ti-O distances are 1.92-1.87 Å; in moldavite, Ti occupies the 6-coordinated octahedral site and Ti-O distance is 2.00-1.96 Å. Formation of tektites is related to the impact process. It is generally recognized that tektites were formed under higher temperature and high pressure. But through this study, local structures of Ti are differing in three strewnfields and even different locations of the same strewnfield. What caused the various local structures will be another topic of tektite studies. Local structure of Ti may be changed in

  19. Local Structure and Surface Properties of CoxZn1-xO Thin Films for Ozone Gas Sensing.

    PubMed

    Catto, Ariadne C; Silva, Luís F da; Bernardi, Maria Inês B; Bernardini, Sandrine; Aguir, Khalifa; Longo, Elson; Mastelaro, Valmor R

    2016-10-05

    A detailed study of the structural, surface, and gas-sensing properties of nanostructured Co x Zn 1-x O films is presented. X-ray diffraction (XRD) analysis revealed a decrease in the crystallization degree with increasing Co content. The X-ray absorption near-edge structure (XANES) and X-ray photoelectron spectroscopies (XPS) revealed that the Co 2+ ions preferentially occupied the Zn 2+ sites and that the oxygen vacancy concentration increased as the amount of cobalt increased. Electrical measurements showed that the Co dopants not only enhanced the sensor response at low ozone levels (ca. 42 ppb) but also led to a decrease in the operating temperature and improved selectivity. The enhancement in the gas-sensing properties was attributed to the presence of oxygen vacancies, which facilitated ozone adsorption.

  20. Optical Amplification of Spin Noise Spectroscopy via Homodyne Detection

    NASA Astrophysics Data System (ADS)

    Sterin, Pavel; Wiegand, Julia; Hübner, Jens; Oestreich, Michael

    2018-03-01

    Spin noise (SN) spectroscopy measurements on delicate semiconductor spin systems, like single (In,Ga)As quantum dots, are currently not limited by optical shot noise but rather by the electronic noise of the detection system. We report on a realization of homodyne SN spectroscopy enabling shot-noise-limited SN measurements. The proof-of-principle measurements on impurities in an isotopically enriched rubidium atom vapor show that homodyne SN spectroscopy can be utilized even in the low-frequency spectrum, which facilitates advanced semiconductor spin research like higher order SN measurements on spin qubits.

  1. Temperature dependence of pre-edge features in Ti K-edge XANES spectra for ATiO₃ (A = Ca and Sr), A₂TiO₄ (A = Mg and Fe), TiO₂ rutile and TiO₂ anatase.

    PubMed

    Hiratoko, Tatsuya; Yoshiasa, Akira; Nakatani, Tomotaka; Okube, Maki; Nakatsuka, Akihiko; Sugiyama, Kazumasa

    2013-07-01

    XANES (X-ray absorption near-edge structure) spectra of the Ti K-edges of ATiO3 (A = Ca and Sr), A2TiO4 (A = Mg and Fe), TiO2 rutile and TiO2 anatase were measured in the temperature range 20-900 K. Ti atoms for all samples were located in TiO6 octahedral sites. The absorption intensity invariant point (AIIP) was found to be between the pre-edge and post-edge. After the AIIP, amplitudes damped due to Debye-Waller factor effects with temperature. Amplitudes in the pre-edge region increased with temperature normally by thermal vibration. Use of the AIIP peak intensity as a standard point enables a quantitative comparison of the intensity of the pre-edge peaks in various titanium compounds over a wide temperature range.

  2. Comparison of four near-infrared spectroscopy devices shows that they are only suitable for monitoring cerebral oxygenation trends in preterm infants.

    PubMed

    Schneider, Anna; Minnich, Bernd; Hofstätter, Edda; Weisser, Christof; Hattinger-Jürgenssen, Erna; Wald, Martin

    2014-09-01

    Measuring cerebral oxygenation using near-infrared spectroscopy (NIRS) has taken on an increasingly important role in the field of neonatology. Several companies have already developed commercial devices, and more publications are reporting absolute boundary values or percentiles for neonates. We compared four commercially used devices to discover whether they provided consistent results in the same patients. We recruited nine preterm infants and tested them for 2 h, using sensors from two different devices. The measurements were carried out six times on each child, so that all four devices were compared with each other. A total of 54 measurements were conducted. The following devices were compared: the NIRO 200 (Hamamatsu Photonics K.K), the INVOS 5100c (Somanetics), the Fore-Sight (CAS Med.) and the SenSmart X-100 (NONIN). The cerebral tissue oxygenation data yielded by the individual devices differed significantly from each other, ranging from a minimum difference of 2.93% to a maximum difference of 12.66%. The commercially available NIRS devices showed highly significant differences in local cerebral tissue oxygenation levels, to the extent that the industry cannot agree on uniform and reproducible standards. Therefore, NIRS should only be used for trend measurements in preterm infants. ©2014 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  3. Clinical Proton MR Spectroscopy in Central Nervous System Disorders

    PubMed Central

    Alger, Jeffry R.; Barker, Peter B.; Bartha, Robert; Bizzi, Alberto; Boesch, Chris; Bolan, Patrick J.; Brindle, Kevin M.; Cudalbu, Cristina; Dinçer, Alp; Dydak, Ulrike; Emir, Uzay E.; Frahm, Jens; González, Ramón Gilberto; Gruber, Stephan; Gruetter, Rolf; Gupta, Rakesh K.; Heerschap, Arend; Henning, Anke; Hetherington, Hoby P.; Howe, Franklyn A.; Hüppi, Petra S.; Hurd, Ralph E.; Kantarci, Kejal; Klomp, Dennis W. J.; Kreis, Roland; Kruiskamp, Marijn J.; Leach, Martin O.; Lin, Alexander P.; Luijten, Peter R.; Marjańska, Małgorzata; Maudsley, Andrew A.; Meyerhoff, Dieter J.; Mountford, Carolyn E.; Nelson, Sarah J.; Pamir, M. Necmettin; Pan, Jullie W.; Peet, Andrew C.; Poptani, Harish; Posse, Stefan; Pouwels, Petra J. W.; Ratai, Eva-Maria; Ross, Brian D.; Scheenen, Tom W. J.; Schuster, Christian; Smith, Ian C. P.; Soher, Brian J.; Tkáč, Ivan; Vigneron, Daniel B.; Kauppinen, Risto A.

    2014-01-01

    A large body of published work shows that proton (hydrogen 1 [1H]) magnetic resonance (MR) spectroscopy has evolved from a research tool into a clinical neuroimaging modality. Herein, the authors present a summary of brain disorders in which MR spectroscopy has an impact on patient management, together with a critical consideration of common data acquisition and processing procedures. The article documents the impact of 1H MR spectroscopy in the clinical evaluation of disorders of the central nervous system. The clinical usefulness of 1H MR spectroscopy has been established for brain neoplasms, neonatal and pediatric disorders (hypoxia-ischemia, inherited metabolic diseases, and traumatic brain injury), demyelinating disorders, and infectious brain lesions. The growing list of disorders for which 1H MR spectroscopy may contribute to patient management extends to neurodegenerative diseases, epilepsy, and stroke. To facilitate expanded clinical acceptance and standardization of MR spectroscopy methodology, guidelines are provided for data acquisition and analysis, quality assessment, and interpretation. Finally, the authors offer recommendations to expedite the use of robust MR spectroscopy methodology in the clinical setting, including incorporation of technical advances on clinical units. © RSNA, 2014 Online supplemental material is available for this article. PMID:24568703

  4. Retention and chemical speciation of uranium in an oxidized wetland sediment from the Savannah River Site.

    PubMed

    Li, Dien; Seaman, John C; Chang, Hyun-Shik; Jaffe, Peter R; Koster van Groos, Paul; Jiang, De-Tong; Chen, Ning; Lin, Jinru; Arthur, Zachary; Pan, Yuanming; Scheckel, Kirk G; Newville, Matthew; Lanzirotti, Antonio; Kaplan, Daniel I

    2014-05-01

    Uranium speciation and retention mechanisms onto Savannah River Site (SRS) wetland sediments was studied using batch (ad)sorption experiments, sequential extraction, U L3-edge X-ray absorption near-edge structure (XANES) spectroscopy, fluorescence mapping and μ-XANES. Under oxidized conditions, U was highly retained by the SRS wetland sediments. In contrast to other similar but much lower natural organic matter (NOM) sediments, significant sorption of U onto the SRS sediments was observed at pH < 4 and pH > 8. Sequential extraction indicated that the U species were primarily associated with the acid soluble fraction (weak acetic acid extractable) and organic fraction (Na-pyrophosphate extractable). Uranium L3-edge XANES spectra of the U-bound sediments were nearly identical to that of uranyl acetate. Based on fluorescence mapping, U and Fe distributions in the sediment were poorly correlated, U was distributed throughout the sample and did not appear as isolated U mineral phases. The primary oxidation state of U in these oxidized sediments was U(VI), and there was little evidence that the high sorptive capacity of the sediments could be ascribed to abiotic or biotic reduction to the less soluble U(IV) species or to secondary mineral formation. Collectively, this study suggests that U may be strongly bound to wetland sediments, not only under reducing conditions by reductive precipitation, but also under oxidizing conditions through NOM-uranium bonding. Published by Elsevier Ltd.

  5. Fate of zinc in an electroplating sludge during electrokinetic treatments.

    PubMed

    Liu, Shou-Heng; Wang, H Paul

    2008-08-01

    Chemical structure of zinc in the electrokinetic treatments of an electroplating sludge has been studied by in situ extended X-ray absorption fine structural (EXAFS) and X-ray absorption near edge structural (XANES) spectroscopies in the present work. The least-square fitted XANES spectra indicate that the main zinc compounds in the sludge were ZnCO(3) (75%), ZnOSiO(2) (17%) and Zn(OH)(2) (7%). Zinc in the sludge possessed a Zn-O bond distance of 2.07 A with a coordination number (CN) of 5. In the second shells, the bond distance of Zn-(O)-Si was 3.05 A (CN=2). An increase of Zn-(O)-Si (0.05 A) with a decrease of its CN (from 5 to <1) was found in the early stage of the electrokinetic treatment. Prolong the electrokinetic treatment time to 180 min, about 34% of Zn(II) was dissolved into the aqueous phase and about 68% of Zn(II) in the sludge (or 23% of total zinc) was migrated to the cathode under the electric field (5 V cm(-1)). The dissolution and electromigration rates of Zn(II) in the sludge were 1.0 and 0.6 mmol h(-1)g(-1) sludge, respectively during the electrokinetic treatment. This work also exemplifies the utilization of in situ EXAFS and XANES for revealing speciation and possible reaction pathways during the course of zinc recycling from the sludge by electrokinetic treatments.

  6. A re-assessment of the oxidation state of iron in MORB glasses

    NASA Astrophysics Data System (ADS)

    Berry, Andrew J.; Stewart, Glen A.; O'Neill, Hugh St. C.; Mallmann, Guilherme; Mosselmans, J. Fred W.

    2018-02-01

    The oxidation state of Fe, Fe/+3 ΣFe (where ΣFe =Fe2+ +Fe3+), in glass samples of mid-ocean ridge basalt (MORB), from a wide range of localities, was determined by XANES spectroscopy to be 0.10(2) (n = 42). This value is lower than that reported previously by XANES, 0.16 (1) (n = 103), but consistent with the most recent value determined by redox titrations, 0.11 (2) (n = 104), all for similar sets of samples. We attribute the anomalously high XANES value of 0.16 to a calibration error resulting from the interpretation of Mössbauer spectra and the resulting Fe/+3 ΣFe values of the standards. Our alternative interpretation removes the problem of resolving Fe/+3 ΣFe values <∼0.1 in basaltic glasses, produces isomer shift and quadrupole splitting values for Fe3+ that are independent of Fe3+/ΣFe (as is the case for Fe2+), and gives Fe/+3 ΣFe values that are consistent with the thermodynamically expected dependence on oxygen fugacity (fO2). Fe/+3Fe2+ is related to fO2 for our synthetic MORB composition by the temperature independent expression ΔQFM = 4 log ⁡ (Fe3+ /Fe2+) + 4.23 (5), where ΔQFM is the fO2 in log units relative to the quartz-fayalite-magnetite buffer. The average fO2 of natural MORB was estimated to be QFM+0.1.

  7. Investigating Low-Cost Optical Spectroscopy for Sensing Pressure Ulcers

    NASA Astrophysics Data System (ADS)

    Mirchandani, Smruti Suresh

    Diffuse Reflectance Spectroscopy has been used widely to characterize tissue properties for diagnostic and therapeutic applications. This thesis focuses on the use of spectroscopy for early pressure ulcer detection. The most common early diagnosis technique for pressure ulcers is a blanch test. A major issue with a blanch test is that it is purely visual and cannot be visibly observed on dark skinned individuals. Studies have already proven that spectroscopy can be used to detect blanch response in skin across light and dark skinned individuals. The portable reflectance spectroscopy setup showed that pressure changes to the skin can be detected spectroscopically. Some work on an iPhone based spectrometer was also done to have a low-cost spectroscopy alternative to the usual DRS equipment. This study failed to develop an iPhone based spectrometer but various factors that can be changed to better this research have been mentioned in this thesis.

  8. Vibrational spectroscopy with neutrons: Recent developments

    NASA Astrophysics Data System (ADS)

    Parker, Stewart F.; Ramirez-Cuesta, Anibal J.; Daemen, Luke

    2018-02-01

    In this short review, we will briefly summarise the differences between INS spectroscopy and conventional infrared and Raman spectroscopies. We will illustrate these with the current state-of-the art, using C70 as an example. The main focus of the article will be on the key advances in INS spectroscopy over the last ten years or so, that are driving new areas of research. The developments fall into three broad categories: (i) new sources, (ii) new and/or upgraded instrumentation and (iii) novel uses for existing instruments. For (i) we summarise the new neutron sources that are now, or will be, operating. For (ii) we show the capabilities of new or upgraded instruments. These offer unprecedented levels of sensitivity: sub-millimole quantities of hydrogen can be measured and millimole quantities of low cross section materials. Recent work on hexahalo metallates and adsorbed CO2 is used to demonstrate what is now feasible. For (iii), instruments that were designed for studies of magnetism, are now being used for molecular spectroscopy, especially for catalysts. This is illustrated with work on CuH and methanol synthesis catalysts.

  9. Vibrational spectroscopy with neutrons: Recent developments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Stewart F.; Ramirez-Cuesta, Anibal J.; Daemen, Luke L.

    Here in this short review, we will briefly summarise the differences between INS spectroscopy and conventional infrared and Raman spectroscopies. We will illustrate these with the current state-of-the art, using C 70 as an example. The main focus of the article will be on the key advances in INS spectroscopy over the last ten years or so, that are driving new areas of research. The developments fall into three broad categories: (i) new sources, (ii) new and/or upgraded instrumentation and (iii) novel uses for existing instruments. For (i) we summarise the new neutron sources that are now, or will be,more » operating. For (ii) we show the capabilities of new or upgraded instruments. These offer unprecedented levels of sensitivity: sub-millimole quantities of hydrogen can be measured and millimole quantities of low cross section materials. Recent work on hexahalo metallates and adsorbed CO 2 is used to demonstrate what is now feasible. For (iii), instruments that were designed for studies of magnetism, are now being used for molecular spectroscopy, especially for catalysts. This is illustrated with work on CuH and methanol synthesis catalysts.« less

  10. Vibrational spectroscopy with neutrons: Recent developments

    DOE PAGES

    Parker, Stewart F.; Ramirez-Cuesta, Anibal J.; Daemen, Luke L.

    2017-09-21

    Here in this short review, we will briefly summarise the differences between INS spectroscopy and conventional infrared and Raman spectroscopies. We will illustrate these with the current state-of-the art, using C 70 as an example. The main focus of the article will be on the key advances in INS spectroscopy over the last ten years or so, that are driving new areas of research. The developments fall into three broad categories: (i) new sources, (ii) new and/or upgraded instrumentation and (iii) novel uses for existing instruments. For (i) we summarise the new neutron sources that are now, or will be,more » operating. For (ii) we show the capabilities of new or upgraded instruments. These offer unprecedented levels of sensitivity: sub-millimole quantities of hydrogen can be measured and millimole quantities of low cross section materials. Recent work on hexahalo metallates and adsorbed CO 2 is used to demonstrate what is now feasible. For (iii), instruments that were designed for studies of magnetism, are now being used for molecular spectroscopy, especially for catalysts. This is illustrated with work on CuH and methanol synthesis catalysts.« less

  11. High-harmonic spectroscopy of aligned molecules

    NASA Astrophysics Data System (ADS)

    Yun, Hyeok; Yun, Sang Jae; Lee, Gae Hwang; Nam, Chang Hee

    2017-01-01

    High harmonics emitted from aligned molecules driven by intense femtosecond laser pulses provide the opportunity to explore the structural information of molecules. The field-free molecular alignment technique is an expedient tool for investigating the structural characteristics of linear molecules. The underlying physics of field-free alignment, showing the characteristic revival structure specific to molecular species, is clearly explained from the quantum-phase analysis of molecular rotational states. The anisotropic nature of molecules is shown from the harmonic polarization measurement performed with spatial interferometry. The multi-orbital characteristics of molecules are investigated using high-harmonic spectroscopy, applied to molecules of N2 and CO2. In the latter case the two-dimensional high-harmonic spectroscopy, implemented using a two-color laser field, is applied to distinguish harmonics from different orbitals. Molecular high-harmonic spectroscopy will open a new route to investigate ultrafast dynamics of molecules.

  12. Physical properties of superbulky lanthanide metallocenes: synthesis and extraordinary luminescence of [Eu(II)(Cp(BIG))2] (Cp(BIG) = (4-nBu-C6H4)5-cyclopentadienyl).

    PubMed

    Harder, Sjoerd; Naglav, Dominik; Ruspic, Christian; Wickleder, Claudia; Adlung, Matthias; Hermes, Wilfried; Eul, Matthias; Pöttgen, Rainer; Rego, Daniel B; Poineau, Frederic; Czerwinski, Kenneth R; Herber, Rolfe H; Nowik, Israel

    2013-09-09

    The superbulky deca-aryleuropocene [Eu(Cp(BIG))2], Cp(BIG) = (4-nBu-C6H4)5-cyclopentadienyl, was prepared by reaction of [Eu(dmat)2(thf)2], DMAT = 2-Me2N-α-Me3Si-benzyl, with two equivalents of Cp(BIG)H. Recrystallizyation from cold hexane gave the product with a surprisingly bright and efficient orange emission (45% quantum yield). The crystal structure is isomorphic to those of [M(Cp(BIG))2] (M = Sm, Yb, Ca, Ba) and shows the typical distortions that arise from Cp(BIG)⋅⋅⋅Cp(BIG) attraction as well as excessively large displacement parameter for the heavy Eu atom (U(eq) = 0.075). In order to gain information on the true oxidation state of the central metal in superbulky metallocenes [M(Cp(BIG))2] (M = Sm, Eu, Yb), several physical analyses have been applied. Temperature-dependent magnetic susceptibility data of [Yb(Cp(BIG))2] show diamagnetism, indicating stable divalent ytterbium. Temperature-dependent (151)Eu Mössbauer effect spectroscopic examination of [Eu(Cp(BIG))2] was examined over the temperature range 93-215 K and the hyperfine and dynamical properties of the Eu(II) species are discussed in detail. The mean square amplitude of vibration of the Eu atom as a function of temperature was determined and compared to the value extracted from the single-crystal X-ray data at 203 K. The large difference in these two values was ascribed to the presence of static disorder and/or the presence of low-frequency torsional and librational modes in [Eu(Cp(BIG))2]. X-ray absorbance near edge spectroscopy (XANES) showed that all three [Ln(Cp(BIG))2] (Ln = Sm, Eu, Yb) compounds are divalent. The XANES white-line spectra are at 8.3, 7.3, and 7.8 eV, for Sm, Eu, and Yb, respectively, lower than the Ln2O3 standards. No XANES temperature dependence was found from room temperature to 100 K. XANES also showed that the [Ln(Cp(BIG))2] complexes had less trivalent impurity than a [EuI2(thf)x] standard. The complex [Eu(Cp(BIG))2] shows already at room temperature

  13. Real-time multiplexed digital cavity-enhanced spectroscopy

    DOE PAGES

    Boyson, Toby K.; Dagdigian, Paul J.; Pavey, Karl D.; ...

    2015-10-01

    Cavity-enhanced spectroscopy is a sensitive optical absorption technique but one where the practical applications have been limited to studying small wavelength ranges. In addition, this Letter shows that wideband operation can be achieved by combining techniques usually reserved for the communications community with that of cavity-enhanced spectroscopy, producing a multiplexed real-time cavity-enhanced spectrometer. We use multiple collinear laser sources operating asynchronously and simultaneously while being detected on a single photodetector. This is synonymous with radio frequency (RF) cellular systems in which signals are detected on a single antenna but decoded uniquely. Here, we demonstrate results with spectra of methyl salicylatemore » and show parts-per-billion per root hertz sensitivity measured in real-time.« less

  14. Sulfonates: A novel class of organic sulfur compounds in marine sediments

    NASA Astrophysics Data System (ADS)

    Vairavamurthy, Appathurai; Zhou, Weiqing; Eglinton, Timothy; Manowitz, Bernard

    1994-11-01

    X-ray absorption near-edge structure spectroscopy (XANES) used to measure sulfur speciation in a variety of organic-rich marine sediments has established sulfonates as a novel and major component of sedimentary organic sulfur. The origins of sulfonates in sediments are not clear, although both biological and geochemical mechanisms are possible. The accumulation of oxidized sulfonate sulfur in reducing marine sediments was not known previously; hence, a new perspective in sulfur geochemistry is established. The biogeochemical implications of the presence of sulfonates in marine sediments are discussed.

  15. Application of nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, UV-Visible spectroscopy and kinetic modeling for elucidation of adsorption chemistry in uptake of tetracycline by zeolite beta.

    PubMed

    Kang, Jin; Liu, Huijuan; Zheng, Yu-Ming; Qu, Jiuhui; Chen, J Paul

    2011-02-01

    Extensive usage of tetracycline has resulted in its contamination in surface water and groundwater. The adsorption of tetracycline on zeolite beta was systematically investigated for the decontamination of the antibiotic polluted water in this study. Ninety percent of uptake by the zeolite beta occured in 0.25h, and the adsorption equilibrium was obtained within 3h, which was well described by an intraparticle diffusion model. The adsorption generally increased when pH was increased from 4.0 to 5.0, and then decreased significantly as the pH was further increased, which was caused by the pH-dependent speciation of tetracycline and surface charge of zeolite beta. Both Freundlich and Langmuir equations well described the adsorption isotherm. A thermodynamic analysis showed that the sorption process was spontaneous and endothermic. Aluminum atoms in the zeolite played a crucial role in the uptake; the adsorption increased with the increasing aluminum content in zeolite. The UV-Visible spectroscopy study showed that the spectra of tetracycline changed upon the interaction with zeolite beta, which could be ascribed to the formation of complexes of tetracycline and aluminum atoms in the zeolite surface. Nuclear magnetic resonance spectroscopy study further confirmed the participation of Al in the tetracycline adsorption. Fourier transform infrared spectroscopy studies showed that the amino functional groups in tetracycline were involved in the complexation with the zeolite surface. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Versatile silicon-waveguide supercontinuum for coherent mid-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Nader, Nima; Maser, Daniel L.; Cruz, Flavio C.; Kowligy, Abijith; Timmers, Henry; Chiles, Jeff; Fredrick, Connor; Westly, Daron A.; Nam, Sae Woo; Mirin, Richard P.; Shainline, Jeffrey M.; Diddams, Scott

    2018-03-01

    Laser frequency combs, with their unique combination of precisely defined spectral lines and broad bandwidth, are a powerful tool for basic and applied spectroscopy. Here, we report offset-free, mid-infrared frequency combs and dual-comb spectroscopy through supercontinuum generation in silicon-on-sapphire waveguides. We leverage robust fabrication and geometrical dispersion engineering of nanophotonic waveguides for multi-band, coherent frequency combs spanning 70 THz in the mid-infrared (2.5 μm-6.2 μm). Precise waveguide fabrication provides significant spectral broadening with engineered spectra targeted at specific mid-infrared bands. We characterize the relative-intensity-noise of different bands and show that the measured levels do not pose any limitation for spectroscopy applications. Additionally, we use the fabricated photonic devices to demonstrate dual-comb spectroscopy of a carbonyl sulfide gas sample at 5 μm. This work forms the technological basis for applications such as point sensors for fundamental spectroscopy, atmospheric chemistry, trace and hazardous gas detection, and biological microscopy.

  17. The role of the 5f valence orbitals of early actinides in chemical bonding

    PubMed Central

    Vitova, T.; Pidchenko, I.; Fellhauer, D.; Bagus, P. S.; Joly, Y.; Pruessmann, T.; Bahl, S.; Gonzalez-Robles, E.; Rothe, J.; Altmaier, M.; Denecke, M. A.; Geckeis, H.

    2017-01-01

    One of the long standing debates in actinide chemistry is the level of localization and participation of the actinide 5f valence orbitals in covalent bonds across the actinide series. Here we illuminate the role of the 5f valence orbitals of uranium, neptunium and plutonium in chemical bonding using advanced spectroscopies: actinide M4,5 HR-XANES and 3d4f RIXS. Results reveal that the 5f orbitals are active in the chemical bonding for uranium and neptunium, shown by significant variations in the level of their localization evidenced in the spectra. In contrast, the 5f orbitals of plutonium appear localized and surprisingly insensitive to different bonding environments. We envisage that this report of using relative energy differences between the 5fδ/ϕ and 5fπ*/5fσ* orbitals as a qualitative measure of overlap-driven actinyl bond covalency will spark activity, and extend to numerous applications of RIXS and HR-XANES to gain new insights into the electronic structures of the actinide elements. PMID:28681848

  18. Ground-state wave function of plutonium in PuSb as determined via x-ray magnetic circular dichroism

    DOE PAGES

    Janoschek, M.; Haskel, D.; Fernandez-Rodriguez, J.; ...

    2015-01-14

    Measurements of x-ray magnetic circular dichroism (XMCD) and x-ray absorption near-edge structure (XANES) spectroscopy at the Pu M₄,₅ edges of the ferromagnet PuSb are reported. Using bulk magnetization measurements and a sum rule analysis of the XMCD spectra, we determine the individual orbital [μ L = 2.8(1)μ B/Pu] and spin moments [μ S = –2.0(1)μ B/Pu] of the Pu 5f electrons for the first time. Atomic multiplet calculations of the XMCD and XANES spectra reproduce well the experimental data and are consistent with the experimental value of the spin moment. These measurements of L z and S z are inmore » excellent agreement with the values that have been extracted from neutron magnetic form factor measurements, and confirm the local character of the 5f electrons in PuSb. We demonstrate that a split M₅ as well as a narrow M₄ XMCD signal may serve as a signature of 5f electron localization in actinide compounds.« less

  19. The role of the 5f valence orbitals of early actinides in chemical bonding

    NASA Astrophysics Data System (ADS)

    Vitova, T.; Pidchenko, I.; Fellhauer, D.; Bagus, P. S.; Joly, Y.; Pruessmann, T.; Bahl, S.; Gonzalez-Robles, E.; Rothe, J.; Altmaier, M.; Denecke, M. A.; Geckeis, H.

    2017-07-01

    One of the long standing debates in actinide chemistry is the level of localization and participation of the actinide 5f valence orbitals in covalent bonds across the actinide series. Here we illuminate the role of the 5f valence orbitals of uranium, neptunium and plutonium in chemical bonding using advanced spectroscopies: actinide M4,5 HR-XANES and 3d4f RIXS. Results reveal that the 5f orbitals are active in the chemical bonding for uranium and neptunium, shown by significant variations in the level of their localization evidenced in the spectra. In contrast, the 5f orbitals of plutonium appear localized and surprisingly insensitive to different bonding environments. We envisage that this report of using relative energy differences between the 5fδ/φ and 5fπ*/5fσ* orbitals as a qualitative measure of overlap-driven actinyl bond covalency will spark activity, and extend to numerous applications of RIXS and HR-XANES to gain new insights into the electronic structures of the actinide elements.

  20. Comparison of the Organic Composition of Cometary Samples with Residues Formed from the UV Irradiation of Astrophysical Ice Analogs

    NASA Technical Reports Server (NTRS)

    Milam, S. N.; Nuevo, M.; Sandford, S. A.; Cody, G. D.; Kilcoyne, A. L. D.; Stroud, R. M.; DeGregorio, B. T.

    2010-01-01

    The NASA Stardust mission successfully collected material from Comet 81P/Wild 2 [1], including authentic cometary grains [2]. X-ray absorption near-edge structure (XANES) spectroscopy analysis of these samples indicates the presence of oxygen-rich and nitrogen-rich organic materials, which contain a broad variety of functional groups (carbonyls, C=C bonds, aliphatic chains, amines, arnides, etc.) [3]. One component of these organics appears to contain very little aromatic carbon and bears some similarity to the organic residues produced by the irradiation of ices of interstellar/cometary composition, Stardust samples were also recently shown to contain glycine, the smallest biological amino acid [4]. Organic residues produced froth the UV irradiation of astrophysical ice analogs are already known to contain a large suite of organic molecules including amino acids [5-7], amphiphilic compounds (fatty acids) [8], and other complex species. This work presents a comparison between XANES spectra measured from organic residues formed in the laboratory with similar data of cometary samples collected by the Stardust mission

  1. Molecular dynamics simulation of nonlinear spectroscopies of intermolecular motions in liquid water.

    PubMed

    Yagasaki, Takuma; Saito, Shinji

    2009-09-15

    Water is the most extensively studied of liquids because of both its ubiquity and its anomalous thermodynamic and dynamic properties. The properties of water are dominated by hydrogen bonds and hydrogen bond network rearrangements. Fundamental information on the dynamics of liquid water has been provided by linear infrared (IR), Raman, and neutron-scattering experiments; molecular dynamics simulations have also provided insights. Recently developed higher-order nonlinear spectroscopies open new windows into the study of the hydrogen bond dynamics of liquid water. For example, the vibrational lifetimes of stretches and a bend, intramolecular features of water dynamics, can be accurately measured and are found to be on the femtosecond time scale at room temperature. Higher-order nonlinear spectroscopy is expressed by a multitime correlation function, whereas traditional linear spectroscopy is given by a one-time correlation function. Thus, nonlinear spectroscopy yields more detailed information on the dynamics of condensed media than linear spectroscopy. In this Account, we describe the theoretical background and methods for calculating higher order nonlinear spectroscopy; equilibrium and nonequilibrium molecular dynamics simulations, and a combination of both, are used. We also present the intermolecular dynamics of liquid water revealed by fifth-order two-dimensional (2D) Raman spectroscopy and third-order IR spectroscopy. 2D Raman spectroscopy is sensitive to couplings between modes; the calculated 2D Raman signal of liquid water shows large anharmonicity in the translational motion and strong coupling between the translational and librational motions. Third-order IR spectroscopy makes it possible to examine the time-dependent couplings. The 2D IR spectra and three-pulse photon echo peak shift show the fast frequency modulation of the librational motion. A significant effect of the translational motion on the fast frequency modulation of the librational motion is

  2. Changes in local surface structure and Sr depletion in Fe-implanted SrTiO3 (001)

    NASA Astrophysics Data System (ADS)

    Lobacheva, O.; Yiu, Y. M.; Chen, N.; Sham, T. K.; Goncharova, L. V.

    2017-01-01

    Local surface structure of single crystal strontium titanate SrTiO3 (001) samples implanted with Fe in the range of concentrations between 2 × 1014 to 2 × 1016 Fe/cm2 at 30 keV has been investigated. In order to facilitate Fe substitution (doping), implanted samples were annealed in oxygen at 350 °C. Sr depletion was observed from the near-surface layers impacted by the ion-implantation process, as revealed by Rutherford Backscattering Spectrometry (RBS), X-ray photoelectron spectroscopy (XPS), X-ray Absorption Near Edge Spectroscopy (XANES), and Atomic Force Microscopy (AFM). Hydrocarbon contaminations on the surface may contribute to the mechanisms of Sr depletion, which have important implications for Sr(Ti1-xFex)O3-δ materials in gas sensing applications.

  3. Terahertz multiheterodyne spectroscopy using laser frequency combs

    DOE PAGES

    Yang, Yang; Burghoff, David; Hayton, Darren J.; ...

    2014-07-01

    The terahertz region is of great importance for spectroscopy since many molecules have absorption fingerprints there. Frequency combs based on terahertz quantum cascade lasers feature broadband coverage and high output powers in a compact package, making them an attractive option for broadband spectroscopy. Here, we demonstrate the first multiheterodyne spectroscopy using two terahertz quantum cascade laser combs. Over a spectral range of 250 GHz, we achieve average signal-to-noise ratios of 34 dB using cryogenic detectors and 24 dB using room-temperature detectors, all in just 100 μs. As a proof of principle, we use these combs to measure the broadband transmissionmore » spectrum of etalon samples and show that, with proper signal processing, it is possible to extend the multiheterodyne spectroscopy to quantum cascade laser combs operating in pulsed mode. Here, this greatly expands the range of quantum cascade lasers that could be suitable for these techniques and allows for the creation of completely solid-state terahertz laser spectrometers.« less

  4. Micro-Raman spectroscopy for meat type detection

    NASA Astrophysics Data System (ADS)

    De Biasio, M.; Stampfer, P.; Leitner, R.; Huck, C. W.; Wiedemair, V.; Balthasar, D.

    2015-06-01

    The recent horse meat scandal in Europe increased the demand for optical sensors that can identify meat type. Micro-Raman spectroscopy is a promising technique for the discrimination of meat types. Here, we present micro-Raman measurements of chicken, pork, turkey, mutton, beef and horse meat test samples. The data was analyzed with different combinations of data normalization and classification approaches. Our results show that Raman spectroscopy can discriminate between different meat types. Red and white meat are easily discriminated, however a sophisticated chemometric model is required to discriminate species within these groups.

  5. Raman spectroscopy of shocked gypsum from a meteorite impact crater

    NASA Astrophysics Data System (ADS)

    Brolly, Connor; Parnell, John; Bowden, Stephen

    2017-07-01

    Impact craters and associated hydrothermal systems are regarded as sites within which life could originate on Earth, and on Mars. The Haughton impact crater, one of the most well preserved craters on Earth, is abundant in Ca-sulphates. Selenite, a transparent form of gypsum, has been colonized by viable cyanobacteria. Basement rocks, which have been shocked, are more abundant in endolithic organisms, when compared with un-shocked basement. We infer that selenitic and shocked gypsum are more suitable for microbial colonization and have enhanced habitability. This is analogous to many Martian craters, such as Gale Crater, which has sulphate deposits in a central layered mound, thought to be formed by post-impact hydrothermal springs. In preparation for the 2020 ExoMars mission, experiments were conducted to determine whether Raman spectroscopy can distinguish between gypsum with different degrees of habitability. Ca-sulphates were analysed using Raman spectroscopy and results show no significant statistical difference between gypsum that has experienced shock by meteorite impact and gypsum, which has been dissolved and re-precipitated as an evaporitic crust. Raman spectroscopy is able to distinguish between selenite and unaltered gypsum. This shows that Raman spectroscopy can identify more habitable forms of gypsum, and demonstrates the current capabilities of Raman spectroscopy for the interpretation of gypsum habitability.

  6. Na-Ion Intercalation and Charge Storage Mechanism in Two-Dimensional Vanadium Carbide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bak, Seong -Min; Qiao, Ruimin; Yang, W.

    We synthesized two-dimensional vanadium carbide MXene containing surface functional groups (denoted as V 2CT x, where T x are surface functional groups) and studied as anode material for Na-ion batteries. V 2CT x anode exhibits reversible charge storage with good cycling stability and high rate capability through electrochemical test. Furthermore, the charge storage mechanism of V 2CT x material during Na + intercalation/deintercalation and the redox reaction of vanadium were studied using a combination of synchrotron based X-ray diffraction (XRD), hard X-ray absorption near edge spectroscopy (XANES) and soft X-ray absorption spectroscopy (sXAS). Experimental evidence of a major contribution ofmore » redox reaction of vanadium to the charge storage and the reversible capacity of V 2CT x during sodiation/desodiation process have been provided through V K-edge XANES and V L2,3-edge sXAS results. A correlation between the CO 3 2- content and Na + intercalation/deintercalation states in the V 2CT x electrode observed from C and O K-edge in sXAS results imply that some additional charge storage reactions may take place between the Na +-intercalated V 2CT x and the carbonate based non-aqueous electrolyte. Our results of this study will provide valuable information for the further studies on V 2CT x as anode material for Na-ion batteries and capacitors.« less

  7. Evidence for Different Reaction Pathways for Liquid and Granular Micronutrients in a Calcareous Soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hettiarachchi, Ganga M.; McLaughlin, Mike J.; Scheckel, Kirk G.

    2008-06-16

    The benefits of Mn and Zn fluid fertilizers over conventional granular products in calcareous sandy loam soils have been agronomically demonstrated. We hypothesized that the differences in the effectiveness between granular and fluid Mn and Zn fertilizers is due to different Mn and Zn reaction processes in and around fertilizer granules and fluid fertilizer bands. We used a combination of several synchrotron-based x-ray techniques, namely, spatially resolved micro-x-ray fluorescence (?-XRF), micro-x-ray absorption near edge structure spectroscopy (?-XANES), and bulk-XANES and -extended x-ray absorption fine structure (EXAFS) spectroscopy, along with several laboratory-based x-ray techniques to speciate different fertilizer-derived Mn and Znmore » species in highly calcareous soils to understand the chemistry underlying the observed differential behavior of fluid and granular micronutrient forms. Micro-XRF mapping of soil-fertilizer reactions zones indicated that the mobility of Mn and Zn from liquid fertilizer was greater than that observed for equivalent granular sources of these micronutrients in soil. After application of these micronutrient fertilizers to soil, Mn and Zn from liquid fertilizers were found to remain in comparatively more soluble solid forms, such as hydrated Mn phosphate-like, Mn calcite-like, adsorbed Zn-like, and Zn silicate-like phases, whereas Mn and Zn from equivalent granular sources tended to transform into comparatively less soluble solid forms such as Mn oxide-like, Mn carbonate-like, and Zn phosphate-like phases.« less

  8. Na-Ion Intercalation and Charge Storage Mechanism in Two-Dimensional Vanadium Carbide

    DOE PAGES

    Bak, Seong -Min; Qiao, Ruimin; Yang, W.; ...

    2017-07-14

    We synthesized two-dimensional vanadium carbide MXene containing surface functional groups (denoted as V 2CT x, where T x are surface functional groups) and studied as anode material for Na-ion batteries. V 2CT x anode exhibits reversible charge storage with good cycling stability and high rate capability through electrochemical test. Furthermore, the charge storage mechanism of V 2CT x material during Na + intercalation/deintercalation and the redox reaction of vanadium were studied using a combination of synchrotron based X-ray diffraction (XRD), hard X-ray absorption near edge spectroscopy (XANES) and soft X-ray absorption spectroscopy (sXAS). Experimental evidence of a major contribution ofmore » redox reaction of vanadium to the charge storage and the reversible capacity of V 2CT x during sodiation/desodiation process have been provided through V K-edge XANES and V L2,3-edge sXAS results. A correlation between the CO 3 2- content and Na + intercalation/deintercalation states in the V 2CT x electrode observed from C and O K-edge in sXAS results imply that some additional charge storage reactions may take place between the Na +-intercalated V 2CT x and the carbonate based non-aqueous electrolyte. Our results of this study will provide valuable information for the further studies on V 2CT x as anode material for Na-ion batteries and capacitors.« less

  9. Raman Spectroscopy.

    ERIC Educational Resources Information Center

    Gerrard, Donald L.

    1984-01-01

    Reviews literature on Raman spectroscopy from late 1981 to late 1983. Topic areas include: instrumentation and sampling; liquids and solutions; gases and matrix isolation; biological molecules; polymers; high-temperature and high-pressure studies; Raman microscopy; thin films and surfaces; resonance-enhanced and surface-enhanced spectroscopy; and…

  10. Proton MR spectroscopy in the diagnostic evaluation of suspected mitochondrial disease.

    PubMed

    Lin, Doris D M; Crawford, Thomas O; Barker, Peter B

    2003-01-01

    Mitochondrial diseases are a group of inherited disorders caused by a derangement of mitochondrial respiration. The clinical manifestations are heterogeneous, and the diagnosis is often based on information acquired from multiple levels of inquiry. MR spectroscopy has previously been shown to help detect an abnormal accumulation of lactate in brain parenchyma and CSF in association with mitochondrial disorders, but the frequency of detection is largely unknown. We sought to examine the frequency of detectable elevations of CNS lactate by proton MR spectroscopy in a population of children and young adults with suspected mitochondrial disease. MR spectroscopy data evaluated for the presence or absence of abnormal brain or CSF lactate were compared with other clinical indicators of mitochondrial dysfunction for 29 patients with suspected mitochondrial disease during the years 1990 to 2000. Based on an independent review of the final diagnoses, the patients were divided into groups based on the probability of mitochondrial disorder. A total of 32 scans from 29 patients were reviewed. Of eight patients thought to have a definitive mitochondrial disorder on the basis of genetic, biochemical, or pathologic features, five were found to have abnormal brain or CSF lactate levels revealed by MR spectroscopy (for one patient in whom two images were acquired, one was negative and the other positive). Among the studies conducted using a multisection spectroscopic imaging technique, five of six showed elevated lactate in the brain parenchyma, six of six showed elevated lactate in the CSF, and five of six showed elevated lactate in both brain and CSF. Of 16 patients who were highly suspected of having mitochondrial disorders on the basis of clinical grounds alone but who were lacking genetic, biochemical, or pathologic confirmation, four had abnormal lactate levels shown by MR spectroscopy. Mitochondrial disorder was excluded for five patients, none of whom had CNS lactate shown

  11. Speciation and Distribution of Phosphorus in a Fertilized Soil: A Synchrotron-Based Investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lombi, E.; Scheckel, K.G.; Armstrong, R.D.

    2008-06-09

    Phosphorus availability is often a limiting factor for crop production around the world. The efficiency of P fertilizers in calcareous soils is limited by reactions that decrease P availability; however, fluid fertilizers have recently been shown, in highly calcareous soils of southern Australia, to be more efficient for crop (wheat [Triticum aestivum L.]) P nutrition than granular products. To elucidate the mechanisms responsible for this differential response, an isotopic dilution technique (E value) coupled with a synchrotron-based spectroscopic investigation were used to assess the reaction products of a granular (monoammonium phosphate, MAP) and a fluid P (technical-grade monoammonium phosphate, TG-MAP)more » fertilizer in a highly calcareous soil. The isotopic exchangeability of P from the fluid fertilizer, measured with the E-value technique, was higher than that of the granular product. The spatially resolved spectroscopic investigation, performed using nano x-ray fluorescence and nano x-ray absorption near-edge structure (n-XANES), showed that P is heterogeneously distributed in soil and that, at least in this highly calcareous soil, it is invariably associated with Ca rather than Fe at the nanoscale. 'Bulk' XANES spectroscopy revealed that, in the soil surrounding fertilizer granules, P precipitation in the form of octacalcium phosphate and apatite-like compounds is the dominant mechanism responsible for decreases in P exchangeability. This process was less prominent when the fluid P fertilizer was applied to the soil.« less

  12. Proton MR spectroscopy in patients with acute temporal lobe seizures.

    PubMed

    Castillo, M; Smith, J K; Kwock, L

    2001-01-01

    Decreases in N-acetyl aspartate (NAA) as seen by proton MR spectroscopy are found in hippocampal sclerosis, and elevated levels of lipids/lactate have been observed after electroconvulsive therapy. Our purpose was to determine whether increased levels of lipids/lactate are found in patients with acute seizures of hippocampal origin. Seventeen patients with known temporal lobe epilepsy underwent proton MR spectroscopy of the mesial temporal lobes within 24 hours of their last seizure. Four of them were restudied when they were seizure-free. Five healthy individuals were used as control subjects. All MR spectroscopy studies were obtained using a single-voxel technique with TEs of 135 and 270. The relationship between the presence of lipids/lactate and seizures was tested using Fisher's exact test. Mean and standard deviations for NAA/creatine (Cr) were obtained in the hippocampi in patients with seizures on initial and follow-up studies and these values were compared with those in the control subjects. Seizure lateralization was obtained in 15 patients. Of the 17 seizure locations that involved hippocampi, 16 showed lipids/lactate by proton MR spectroscopy. Of the 13 hippocampi not directly affected by seizures, 10 showed no lipids/lactate and three showed lipids/lactate. The relationship between lipids/lactate and seizure location was confirmed. A comparison of NAA/Cr ratios for the involved hippocampi with those in control subjects showed significant differences on initial MR spectroscopy; however, no significant difference was found between acute and follow-up NAA/Cr ratios in hippocampi affected by seizures. Lipids/lactate were present in the hippocampi of patients with acute seizures and decreased when the patients were seizure-free. Thus, lipids/lactate may be a sensitive marker for acute temporal lobe seizures.

  13. Accuracy Enhancement of Raman Spectroscopy Using Complementary Laser-Induced Breakdown Spectroscopy (LIBS) with Geologically Mixed Samples.

    PubMed

    Choi, Soojin; Kim, Dongyoung; Yang, Junho; Yoh, Jack J

    2017-04-01

    Quantitative Raman analysis was carried out with geologically mixed samples that have various matrices. In order to compensate the matrix effect in Raman shift, laser-induced breakdown spectroscopy (LIBS) analysis was performed. Raman spectroscopy revealed the geological materials contained in the mixed samples. However, the analysis of a mixture containing different matrices was inaccurate due to the weak signal of the Raman shift, interference, and the strong matrix effect. On the other hand, the LIBS quantitative analysis of atomic carbon and calcium in mixed samples showed high accuracy. In the case of the calcite and gypsum mixture, the coefficient of determination of atomic carbon using LIBS was 0.99, while the signal using Raman was less than 0.9. Therefore, the geological composition of the mixed samples is first obtained using Raman and the LIBS-based quantitative analysis is then applied to the Raman outcome in order to construct highly accurate univariate calibration curves. The study also focuses on a method to overcome matrix effects through the two complementary spectroscopic techniques of Raman spectroscopy and LIBS.

  14. Ab initio X-ray absorption modeling of Cu-SAPO-34: Characterization of Cu exchange sites under different conditions

    DOE PAGES

    Zhang, Renqin; Helling, Kathy; McEwen, Jean-Sabin

    2016-03-29

    Copper-exchanged SAPO-34 (Cu-SAPO-34) provides excellent catalytic activity and hydrothermal sta-bility in the selective catalytic reduction (SCR) of NOxby using NH3as a reductant. Here, we find that the6-membered ring (6MR) site is the most energetically favorable for a Cu+ion while the 8-memberedring (8MR) sites are less favorable by about 0.5 eV with respect to the 6MR site in Cu-SAPO-34. Uponadsorption of molecular species (H2O, O, OH, O2), the energy differences between Cu in the 8MR and 6MRsites decreases and almost disappears. Further, a thermodynamic phase diagram study shows that a Cu+ion bound to a single H2O molecule is the most stablemore » species at low oxygen potential values while aCu2+ion bound to 2 OH species is more stable when the oxygen chemical potential is sufficiently high. Bycomparing Cu K-edge XANES between Cu-SSZ-13 and Cu-SAPO-34 with Cu in different oxidation states,we conclude that it is difficult to differentiate the simulated XANES of Cu in these structures at a givenoxidation state. By studying the Cu K-edge XANES of several favorable structures in Cu-SAPO-34 in thepresence of adspecies, the simulated XANES results capture the real trend of the edge shift with oxidationstate and gives new insights into the experimentally determined XANES of Cu-SAPO-34 obtained understandard SCR conditions.« less

  15. Bone matrix calcification during embryonic and postembryonic rat calvarial development assessed by SEM-EDX spectroscopy, XRD, and FTIR spectroscopy.

    PubMed

    Henmi, Akiko; Okata, Hiroshi; Anada, Takahisa; Yoshinari, Mariko; Mikami, Yasuto; Suzuki, Osamu; Sasano, Yasuyuki

    2016-01-01

    Bone mineral is constituted of biological hydroxyapatite crystals. In developing bone, the mineral crystal matures and the Ca/P ratio increases. However, how an increase in the Ca/P ratio is involved in maturation of the crystal is not known. The relationships among organic components and mineral changes are also unclear. The study was designed to investigate the process of calcification during rat calvarial bone development. Calcification was evaluated by analyzing the atomic distribution and concentration of Ca, P, and C with scanning electron microscopy (SEM)-energy-dispersive X-ray (EDX) spectroscopy and changes in the crystal structure with X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Histological analysis showed that rat calvarial bone formation started around embryonic day 16. The areas of Ca and P expanded, matching the region of the developing bone matrix, whereas the area of C became localized around bone. X-ray diffraction and FTIR analysis showed that the amorphous-like structure of the minerals at embryonic day 16 gradually transformed into poorly crystalline hydroxyapatite, whereas the proportion of mineral to protein increased until postnatal week 6. FTIR analysis also showed that crystallization of hydroxyapatite started around embryonic day 20, by which time SEM-EDX spectroscopy showed that the Ca/P ratio had increased and the C/Ca and C/P ratios had decreased significantly. The study suggests that the Ca/P molar ratio increases and the proportion of organic components such as proteins of the bone matrix decreases during the early stage of calcification, whereas crystal maturation continues throughout embryonic and postembryonic bone development.

  16. Preparation of γ-LiV2O5 from polyoxovanadate cluster Li7[V15O36(CO3)] as a high-performance cathode material and its reaction mechanism revealed by operando XAFS

    NASA Astrophysics Data System (ADS)

    Wang, Heng; Isobe, Jin; Shimizu, Takeshi; Matsumura, Daiju; Ina, Toshiaki; Yoshikawa, Hirofumi

    2017-08-01

    γ-phase LiV2O5, which shows superior electrochemical performance as cathode material in Li-ion batteries, was prepared by annealing the polyoxovanadate cluster Li7 [V15O36(CO3)]. The reaction mechanism was studied using operando X-ray absorption fine structure (XAFS), powder X-ray diffraction (PXRD), and X-ray photoelectron spectroscopy (XPS) analyses. The X-ray absorption near edge structure (XANES) and XPS results reveal that γ-LiV2O5 undergoes two-electron redox reaction per V2O5 pyramid unit, resulting in a large reversible capacity of 260 Ah/kg. The extended X-ray absorption fine structure (EXAFS) and PXRD analyses also suggest that the V-V distance slightly increases, due to the reduction of V5+ to V4+ during Li ion intercalation as the material structure is maintained. As a result, γ-LixV2O5 shows highly reversible electrochemical reaction with x = 0.1-1.9.

  17. Spectroscopy - so what?

    NASA Astrophysics Data System (ADS)

    Stanley, Matthew

    2010-07-01

    The development of astronomical spectroscopy allowed amazing achievements in investigating the composition and motion of celestial bodies. But even beyond specific measurements and results, the fruitfulness and practice of spectroscopy had important ramifications on a more abstract level. This paper will discuss ways in which spectroscopy inspired or boosted new theories of the atom, life, and the Universe; redrew the boundaries among scientific disciplines; demonstrated the unity of terrestrial and celestial physical laws; changed what counted as scientific knowledge; and even revealed divine mysteries. Scientists and science writers from the first half-century of astronomical spectroscopy will be discussed, including James Clerk Maxwell, William Crookes, John Tyndall, Agnes Clerke, William Huggins and Norman Lockyer.

  18. Spectroscopy - so what?

    NASA Astrophysics Data System (ADS)

    Stanley, Matthew

    2010-01-01

    The development of astronomical spectroscopy allowed amazing achievements in investigating the composition and motion of celestial bodies. But even beyond specific measurements and results, the fruitfulness and practice of spectroscopy had important ramifications on a more abstract level. This paper will discuss ways in which spectroscopy inspired or boosted new theories of the atom, life, and the universe; redrew the boundaries among scientific disciplines; demonstrated the unity of terrestrial and celestial physical laws; changed what counted as scientific knowledge; and even revealed divine mysteries. Scientists and science writers from the first half-century of astronomical spectroscopy will be discussed, including James Clerk Maxwell, William Thomson (Lord Kelvin), John Tyndall, Agnes Clerke, William Huggins, and Norman Lockyer.

  19. High Resolution Optical Spectroscopy of the Classical Nova V5668 Sgr Showing the Presence of Lithium

    NASA Astrophysics Data System (ADS)

    Wagner, R. Mark; Woodward, Charles E.; Starrfield, Sumner; Ilyin, Ilya; Strassmeier, Klaus

    2018-01-01

    The classical nova (CN) V5668 Sgr was discovered on 2015 March 15.634 and initial optical spectra implied it was an Fe II-class CN. We obtained high resolution optical spectroscopy on 30 nights between 2015 April 3 and 2016 June 5 with the 2 x 8.4 m Large Binocular Telescope (LBT) and the 1.8 m Vatican Advanced Technology Telescope (VATT) using the Potsdam Echelle Polarimetric Spectroscopic Instrument (PEPSI). The spectra cover all or part of the 3830-9065 Å spectral region at a spectral resolution of up to 270,000 (1 km/s); the highest resolution currently available on any 8-10 m class telescope. The early spectra are dominated by emission lines of the Balmer and Paschen series of hydrogen, Fe II, Ca II, and Na I with P Cyg-type line profiles as well as emission lines of [O I]. Numerous interstellar lines and bands are readily apparent at high spectral resolution. The permitted line profiles show complex and dramatic variations in the multi-component P Cyg-type line profiles with time. We detect a weak blue-shifted absorption line at a velocity consistent with Li I 6708 Å when compared with the line profiles of Hβ, Fe II 5169 Å, and Na I D. This line is present in spectra obtained on 7 of 8 consecutive nights up to day 21 of the outburst; but absent on day 42 when it is evident that the ionization of the ejecta has significantly increased. The equivalent width of the line converted to a column density, and the resulting mass fraction, imply a significant enrichment of 7Li in the ejecta. 7Li is produced by the decay of unstable 7Be created during the thermonuclear runaway. The discovery of the resonance lines of 7Be II in the optical spectra of the recent CNe V339 Del, V2944 Oph, and V5668 Sgr by Tajitsu et al. (2016) and its subsequent decay to 7Li (half life of 53 days) suggests a significant enrichment of 7Li in the Galaxy from CNe is possible. Our observations of the Li I 6708 Å line in the early optical spectra of V5668 Sgr mark the second direct

  20. Thermal decomposition of ammonium hexachloroosmate.

    PubMed

    Asanova, T I; Kantor, I; Asanov, I P; Korenev, S V; Yusenko, K V

    2016-12-07

    Structural changes of (NH 4 ) 2 [OsCl 6 ] occurring during thermal decomposition in a reduction atmosphere have been studied in situ using combined energy-dispersive X-ray absorption spectroscopy (ED-XAFS) and powder X-ray diffraction (PXRD). According to PXRD, (NH 4 ) 2 [OsCl 6 ] transforms directly to metallic Os without the formation of any crystalline intermediates but through a plateau where no reactions occur. XANES and EXAFS data by means of Multivariate Curve Resolution (MCR) analysis show that thermal decomposition occurs with the formation of an amorphous intermediate {OsCl 4 } x with a possible polymeric structure. Being revealed for the first time the intermediate was subjected to determine the local atomic structure around osmium. The thermal decomposition of hexachloroosmate is much more complex and occurs within a minimum two-step process, which has never been observed before.

  1. Structural reconstruction of the catalytic center of LiPDF through multiple scattering calculation with MXAN

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoyun; Chu, Wangsheng; Ma, Sixuan; Gong, Weimin; Benfatto, Maurizio; Hu, Tiandou; Xie, Yaning; Wu, ZiYu

    2006-11-01

    Peptide deformylase (PDF, EC 3.5.1.27) is essential for the normal growth of eubacterium but not for mammalians. Recently, PDF has been studied as a target for new antibiotics. In this paper, X-ray absorption spectroscopy was employed to determine the local structure around the zinc ion of PDF from Leptospira Interrogans in dry powder, because it is very difficult to obtain the crystallized sample of LiPDF. We performed X-ray absorption near edge structure (XANES) calculation and reconstructed successfully the local geometry of the active center, and the results from calculations show that a water molecule (Wat1) has moved towards the zinc ion and lies in the distance range to coordinate with the zinc ion weakly. In addition, the sensitivity of theoretical spectra to the different ligand bodies was evaluated in terms of goodness-of-fit.

  2. Study of distorted octahedral structure in 3d transition metal complexes using XAFS

    NASA Astrophysics Data System (ADS)

    Gaur, A.; Nitin Nair, N.; Shrivastava, B. D.; Das, B. K.; Chakrabortty, Monideepa; Jha, S. N.; Bhattacharyya, D.

    2018-01-01

    Distortion in octahedral structure of 3d transition metal complexes (Mn, Fe, Co, Ni, Cu, Zn) has been studied using XAFS showing divergent nature of Cu complex. EXAFS analysis showed elongated metal-oxygen bonds for Cu complex leading to more distorted structure. Derivative XANES spectrum at Cu K-edge exhibits splitting of main edge which is correlated to elongated Cu-O bond length. Using these coordination geometry around metal centers, theoretical XANES spectra have been generated and features observed have been correlated to the corresponding metals p-DOS. It has been shown that distorted octahedral field in Cu complex is responsible for splitting of p-DOS.

  3. Electronic Structure of Manganese Corroles Revisited: X-ray Structures, Optical and X-ray Absorption Spectroscopies, and Electrochemistry as Probes of Ligand Noninnocence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganguly, Sumit; MCormick, Laura J.; Conradie, Jeanet

    Presented herein is a detailed multitechnique investigation of ligand noninnocence in S = 3/2 manganese corrole derivatives at the formal Mn IV oxidation state. The Soret maxima of Mn[T pXPC]Cl (T pXPC = meso-tris( p-X-phenyl)corrole, where X = CF 3, H, Me, and OMe) were found to red-shift over a range of 37 nm with increasing electron-donating character of X. For Mn[T pXPC]Ph, in contrast, the complex Soret envelopes were found to be largely independent of X. These observations suggested a noninnocent corrole •2–-like ligand for the MnCl complexes and an innocent corrole 3– ligand for the MnPh complexes. Single-crystalmore » X-ray structures of three Mn[T pXPC]Cl complexes revealed skeletal bond-length alternations indicative of a noninnocent corrole, while no such alternation was observed for Mn[T pOMePC]Ph. B3LYP density functional theory (DFT) calculations on Mn[TPC]Cl yielded strong spatial separation of the α and β spin densities, consistent with an antiferromagnetically coupled Mn III-corrole •2– description. By comparison, relatively little spatial separation of the α and β spin densities was found for Mn[TPC]Ph, consistent with an essentially Mn IV-corrole 3– description. X-ray absorption of near-edge spectroscopy (XANES) revealed a moderate blue shift of 0.6 eV for the Mn K-pre-edge of Mn[T pCF 3PC]Ph and a striking enhancement of the pre-edge intensity, relative to Mn[T pCF 3PC]Cl, consistent with a more oxidized, i.e., Mn IV, center in Mn[T pCF 3PC]Ph. Time-dependent DFT calculations indicated that the enhanced intensity of the Mn K-pre-edge of Mn[T pCF 3PC]Ph results from the extra 3d z2 hole, which mixes strongly with the Mn 4p z orbital. Combined with similar results on Fe[TPC]Cl and Fe[TPC]Ph, the present study underscores the considerable potential of metal K-edge XANES in probing ligand noninnocence in first-row transition-metal corroles. As a result, cyclic voltammetry measurements revealed highly negative first reduction

  4. Electronic Structure of Manganese Corroles Revisited: X-ray Structures, Optical and X-ray Absorption Spectroscopies, and Electrochemistry as Probes of Ligand Noninnocence

    DOE PAGES

    Ganguly, Sumit; MCormick, Laura J.; Conradie, Jeanet; ...

    2018-06-06

    Presented herein is a detailed multitechnique investigation of ligand noninnocence in S = 3/2 manganese corrole derivatives at the formal Mn IV oxidation state. The Soret maxima of Mn[T pXPC]Cl (T pXPC = meso-tris( p-X-phenyl)corrole, where X = CF 3, H, Me, and OMe) were found to red-shift over a range of 37 nm with increasing electron-donating character of X. For Mn[T pXPC]Ph, in contrast, the complex Soret envelopes were found to be largely independent of X. These observations suggested a noninnocent corrole •2–-like ligand for the MnCl complexes and an innocent corrole 3– ligand for the MnPh complexes. Single-crystalmore » X-ray structures of three Mn[T pXPC]Cl complexes revealed skeletal bond-length alternations indicative of a noninnocent corrole, while no such alternation was observed for Mn[T pOMePC]Ph. B3LYP density functional theory (DFT) calculations on Mn[TPC]Cl yielded strong spatial separation of the α and β spin densities, consistent with an antiferromagnetically coupled Mn III-corrole •2– description. By comparison, relatively little spatial separation of the α and β spin densities was found for Mn[TPC]Ph, consistent with an essentially Mn IV-corrole 3– description. X-ray absorption of near-edge spectroscopy (XANES) revealed a moderate blue shift of 0.6 eV for the Mn K-pre-edge of Mn[T pCF 3PC]Ph and a striking enhancement of the pre-edge intensity, relative to Mn[T pCF 3PC]Cl, consistent with a more oxidized, i.e., Mn IV, center in Mn[T pCF 3PC]Ph. Time-dependent DFT calculations indicated that the enhanced intensity of the Mn K-pre-edge of Mn[T pCF 3PC]Ph results from the extra 3d z2 hole, which mixes strongly with the Mn 4p z orbital. Combined with similar results on Fe[TPC]Cl and Fe[TPC]Ph, the present study underscores the considerable potential of metal K-edge XANES in probing ligand noninnocence in first-row transition-metal corroles. As a result, cyclic voltammetry measurements revealed highly negative first reduction

  5. Advanced Spectroscopy Technique for Biomedicine

    NASA Astrophysics Data System (ADS)

    Zhao, Jianhua; Zeng, Haishan

    This chapter presents an overview of the applications of optical spectroscopy in biomedicine. We focus on the optical design aspects of advanced biomedical spectroscopy systems, Raman spectroscopy system in particular. Detailed components and system integration are provided. As examples, two real-time in vivo Raman spectroscopy systems, one for skin cancer detection and the other for endoscopic lung cancer detection, and an in vivo confocal Raman spectroscopy system for skin assessment are presented. The applications of Raman spectroscopy in cancer diagnosis of the skin, lung, colon, oral cavity, gastrointestinal tract, breast, and cervix are summarized.

  6. Oxidized derivatives of Octopus vulgaris and Carcinus aestuarii hemocyanins at pH 7.5 and related models by x-ray absorption spectroscopy.

    PubMed Central

    Borghi, Elena; Solari, Pier Lorenzo; Beltramini, Mariano; Bubacco, Luigi; Di Muro, Paolo; Salvato, Benedetto

    2002-01-01

    The binuclear copper sites of the met and met-azido derivatives of Octopus vulgaris and Carcinus aestuarii hemocyanins at pH 7.5 were characterized by high-resolution x-ray absorption spectroscopy in the low energy region (XANES) and in the higher region (EXAFS). The accuracy of the analysis of the data was tested with two mononuclear and six binuclear copper(II) complexes of the poly(benzimidazole) ligand systems 2-BB, L-5,5 and L-6,6 (Casella et al., 1993, Inorg. Chem. 32:2056-2067; 1996, Inorg. Chem. 35:1101-1113). Their structural and reactivity properties are related to those of the protein's derivatives. The results obtained for those models with resolved x-ray structure (the 2-BB-aquo and azido mononuclear complexes, and the binuclear L-5,5 Cu(II)-bis(hydroxo) (Casella et al., unpublished)), extends the validity of our approach to the other poly(benzimidazole)-containing complexes and to the hemocyanin derivatives. Comparison between the protein's and the complexes' data, support a description of the met-derivatives as a five-coordinated O-bridged binuclear copper(II) center and favors, for both species, a bis(hydroxo) structure with a 3-A Cu-Cu distance. For O. vulgaris met-azido derivative a mu-1,3 bridging mode for the ligand appears the most likely. The structural situation of C. aestuarii met-azido-derivative is less clear: a mu-1,1 mode is favored, but a terminal mode cannot be excluded. PMID:12023249

  7. Application of Raman spectroscopy technology to studying Sudan I

    NASA Astrophysics Data System (ADS)

    Li, Gang; Zhang, Guoping; Chen, Chen

    2006-06-01

    Being an industrial dye, the Sudan I may have a toxic effect after oral intake on the body, and has recently been shown to cause cancer in rats, mice and rabbits. Because China and some other countries have detected the Sudan I in samples of the hot chilli powder and the chilli products, it is necessary to study the characteristics of this dye. As one kind of molecule scattering spectroscopy, Raman spectroscopy is characterized by the frequency excursion caused by interactions of molecules and photons. The frequency excursion reflects the margin between certain two vibrational or rotational energy states, and shows the information of the molecule. Because Raman spectroscopy can provides quick, easy, reproducible, and non-destructive analysis, both qualitative and quantitative, with no sample preparation required, Raman spectroscopy has been a particularly promising technique for analyzing the characteristics and structures of molecules, especially organic ones. Now, it has a broad application in biological, chemical, environmental and industrial applications. This paper firstly introduces Sudan I dye and the Raman spectroscopy technology, and then describes its application to the Sudan I. Secondly, the fingerprint spectra of the Sudan I are respectively assigned and analyzed in detail. Finally, the conclusion that the Raman spectroscopy technology is a powerful tool to determine the Sudan I is drawn.

  8. Comparative investigation of N donor ligand-lanthanide complexes from the metal and ligand point of view

    NASA Astrophysics Data System (ADS)

    Prüßmann, T.; Denecke, M. A.; Geist, A.; Rothe, J.; Lindqvist-Reis, P.; Löble, M.; Breher, F.; Batchelor, D. R.; Apostolidis, C.; Walter, O.; Caliebe, W.; Kvashnina, K.; Jorissen, K.; Kas, J. J.; Rehr, J. J.; Vitova, T.

    2013-04-01

    N-donor ligands such as n-Pr-BTP (2,6-bis(5,6-dipropyl-1,2,4-triazin-3-yl)pyridine) studied here preferentially bind An(III) over Ln(III) in liquid-liquid separation of trivalent ac-tinides from spent nuclear fuel. The chemical and physical processes responsible for this selectivity are not yet well understood. We present systematic comparative near-edge X-ray absorption structure (XANES) spectroscopy investigations at the Gd L3 edge of [GdBTP3](NO3)3, [Gd(BTP)3](OTf)3, Gd(NO3)3, Gd(OTf)3 and N K edge of [Gd(BTP)3](NO3)3, Gd(NO3)3 complexes. The pre-edge absorption resonance in Gd L3 edge high-energy resolution X-ray absorption near edge structure spectra (HR-XANES) is explained as arising from 2p3/2 → 4f/5d electronic transitions by calculations with the FEFF9.5 code. Experimental evidence is found for higher electronic density on Gd in [Gd(BTP)3](NO3)3 and [Gd(BTP)3](OTf)3 compared to Gd in Gd(NO3)3 and Gd(OTf)3, and on N in [Gd(BTP)3](NO3)3 compared to n-Pr-BTP. The origin of the pre-edge structure in the N K edge XANES is explained by density functional theory (DFT) with the ORCA code. Results at the N K edge suggest a change in ligand orbital occupancies and mixing upon complexation but further work is necessary to interpret observed spectral variations.

  9. Ab initio modeling of nonequilibrium electron-ion dynamics of iron in the warm dense matter regime

    NASA Astrophysics Data System (ADS)

    Ogitsu, T.; Fernandez-Pañella, A.; Hamel, S.; Correa, A. A.; Prendergast, D.; Pemmaraju, C. D.; Ping, Y.

    2018-06-01

    The spatiotemporal electron and ion relaxation dynamics of iron induced by femtosecond laser pulses was studied using a one-dimensional two-temperature model (1D-TTM) where electron and ion temperature-dependent thermophysical parameters such as specific heat (C ), electron-phonon coupling (G ), and thermal conductivity (K ) were calculated with ab initio density-functional-theory (DFT) simulations. Based on the simulated time evolutions of electron and ion temperature distributions [Te(x ,t ) and Ti(x ,t ) ], the time evolution of x-ray absorption near-edge spectroscopy (XANES) was calculated and compared with experimental results reported by Fernandez-Pañella et al., where the slope of XANES spectrum at the onset of absorption (s ) was used due to its excellent sensitivity to the electron temperature. Our results indicate that the ion temperature dependence on G and C , which is largely neglected in the past studies, is very important for studying the nonequilibrium electron-ion relaxation dynamics of iron in warm dense matter (WDM) conditions. It is also shown that the 1 /s behavior becomes very sensitive to the thermal gradient profile, in other words, to the values of K in a TTM simulation, for target thickness of about two to four times the mean free path of conduction electrons. Our approach based on 1D-TTM and XANES simulations can be used to determine the optimal combination of target geometry and laser fluence for a given target material, which will enable us to tightly constrain the thermophysical parameters under electron-ion nonequilibrium WDM conditions.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farges, F.; Rossano, S.; Wilke, M.

    A large number (67) of silicate glasses containing variable amounts of iron oxide were studied by high-resolution XANES spectroscopy at the Fe K-edge to determine an accurate method to derive redox information from pre-edge features. The glass compositions studied mimic geological magmas, ranging from basaltic to rhyolitic, dry and hydrous, with variable quench rates. The studied glasses also include more chemically simple calco-sodic silicate glass compositions. The Fe contents range from 30 wt.% to less than 2000 ppm. For most of the series of composition studied, the pre-edge information varies linearly with redox, even under high-resolution conditions. The average coordinationmore » of Fe(II) is often similar to its Fe(III) counterpart except in highly polymerized glasses because of the strong influence exerted by the tetrahedral framework on iron's sites. Natural volcanic glasses (from various volcanoes around the world) show similar variations. The average coordination of Fe(II) is often comprised between 4.5 and 5. Fe(III) shows larger variations in coordination (4 to 6, depending on composition). Bond valence models are proposed to predict the average coordination of Fe based on composition. Molecular dynamics simulations (Born-Mayer-Huggins) potentials were carried out on some compositions to estimate the magnitude of disorder effects (both static and thermal) in the XAFS analysis. XANES calculations based on the MD simulations and FEFF 8.2 show large variations in the local structures around Fe. Also, 5-coordinated Fe(III) is found to be an important moiety in ferrisilicate glasses. For Fe(II), discrepancies between glass and melt are larger and are related to its greater structural relaxation at T{sub g}. Also, a strong destructive interference between network formers and modifiers explain the relatively weak intensity of the next-nearest neighbors contributions in the experimental spectra.« less

  11. Multiscale correlations of iron phases and heavy metals in technogenic magnetic particles from contaminated soils.

    PubMed

    Yu, Xiuling; Lu, Shenggao

    2016-12-01

    Technogenic magnetic particles (TMPs) are carriers of heavy metals and organic contaminants, which derived from anthropogenic activities. However, little information on the relationship between heavy metals and TMP carrier phases at the micrometer scale is available. This study determined the distribution and association of heavy metals and magnetic phases in TMPs in three contaminated soils at the micrometer scale using micro-X-ray fluorescence (μ-XRF) and micro-X-ray absorption near-edge structure (μ-XANES) spectroscopy. Multiscale correlations of heavy metals in TMPs were elucidated using wavelet transform analysis. μ-XRF mapping showed that Fe was enriched and closely correlated with Co, Cr, and Pb in TMPs from steel industrial areas. Fluorescence mapping and wavelet analysis showed that ferroalloy was a major magnetic signature and heavy metal carrier in TMPs, because most heavy metals were highly associated with ferroalloy at all size scales. Multiscale analysis revealed that heavy metals in the TMPs were from multiple sources. Iron K-edge μ-XANES spectra revealed that metallic iron, ferroalloy, and magnetite were the main iron magnetic phases in the TMPs. The relative percentage of these magnetic phases depended on their emission sources. Heatmap analysis revealed that Co, Pb, Cu, Cr, and Ni were mainly derived from ferroalloy particles, while As was derived from both ferroalloy and metallic iron phases. Our results indicated the scale-dependent correlations of magnetic phases and heavy metals in TMPs. The combination of synchrotron based X-ray microprobe techniques and multiscale analysis provides a powerful tool for identifying the magnetic phases from different sources and quantifying the association of iron phases and heavy metals at micrometer scale. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Removal of Ca 2+ from the Oxygen-Evolving Complex in Photosystem II Has Minimal Effect on the Mn 4O 5 Core Structure: A Polarized Mn X-ray Absorption Spectroscopy Study

    DOE PAGES

    Lohmiller, Thomas; Shelby, Megan L.; Long, Xi; ...

    2015-05-19

    We studied Ca 2+ -depleted and Ca 2+ -reconstituted spinach photosystem II using polarized X-ray absorption spectroscopy of oriented PS II preparations to investigate the structural and functional role of the Ca 2+ ion in the Mn 4O 5Ca cluster of the oxygen-evolving complex (OEC). Samples were prepared by low pH/citrate treatment as one-dimensionally ordered membrane layers and poised in the Ca 2+ -depleted S 1 (S 1') and S 2 (S 2') states, the S 2'Y Z• state, at which point the catalytic cycle of water oxidation is inhibited, and the Ca 2+ -reconstituted S 1 state. Polarized Mnmore » K-edge XANES and EXAFS spectra exhibit pronounced dichroism. Polarized EXAFS data of all states of Ca 2+ -depleted PS II investigated show only minor changes in distances and orientations of the Mn-Mn vectors compared to the Ca 2+ -containing OEC, which may be attributed to some loss of rigidity of the core structure. Thus, removal of the Ca 2+ ion does not lead to fundamental distortion or rearrangement of the tetranuclear Mn cluster, which indicates that the Ca 2+ ion in the OEC is not critical for structural maintenance of the cluster, at least in the S 1 and S 2 states, but fulfills a crucial catalytic function in the mechanism of the water oxidation reaction. On the basis of this structural information, reasons for the inhibitory effect of Ca 2+ removal are discussed, attributing to the Ca 2+ ion a fundamental role in organizing the surrounding (substrate) water framework and in proton-coupled electron transfer to Y Z• (D1-Tyr161).« less

  13. Removal of Ca(2+) from the Oxygen-Evolving Complex in Photosystem II Has Minimal Effect on the Mn4O5 Core Structure: A Polarized Mn X-ray Absorption Spectroscopy Study.

    PubMed

    Lohmiller, Thomas; Shelby, Megan L; Long, Xi; Yachandra, Vittal K; Yano, Junko

    2015-10-29

    Ca(2+)-depleted and Ca(2+)-reconstituted spinach photosystem II was studied using polarized X-ray absorption spectroscopy of oriented PS II preparations to investigate the structural and functional role of the Ca(2+) ion in the Mn4O5Ca cluster of the oxygen-evolving complex (OEC). Samples were prepared by low pH/citrate treatment as one-dimensionally ordered membrane layers and poised in the Ca(2+)-depleted S1 (S1') and S2 (S2') states, the S2'YZ(•) state, at which point the catalytic cycle of water oxidation is inhibited, and the Ca(2+)-reconstituted S1 state. Polarized Mn K-edge XANES and EXAFS spectra exhibit pronounced dichroism. Polarized EXAFS data of all states of Ca(2+)-depleted PS II investigated show only minor changes in distances and orientations of the Mn-Mn vectors compared to the Ca(2+)-containing OEC, which may be attributed to some loss of rigidity of the core structure. Thus, removal of the Ca(2+) ion does not lead to fundamental distortion or rearrangement of the tetranuclear Mn cluster, which indicates that the Ca(2+) ion in the OEC is not critical for structural maintenance of the cluster, at least in the S1 and S2 states, but fulfills a crucial catalytic function in the mechanism of the water oxidation reaction. On the basis of this structural information, reasons for the inhibitory effect of Ca(2+) removal are discussed, attributing to the Ca(2+) ion a fundamental role in organizing the surrounding (substrate) water framework and in proton-coupled electron transfer to YZ(•) (D1-Tyr161).

  14. Local atomic and electronic structures of epitaxial strained LaCoO3 thin films

    NASA Astrophysics Data System (ADS)

    Sterbinsky, G. E.; Ryan, P. J.; Kim, J.-W.; Karapetrova, E.; Ma, J. X.; Shi, J.; Woicik, J. C.

    2012-01-01

    We have examined the atomic and electronic structures of perovskite lanthanum cobaltite (LaCoO3) thin films using Co K-edge x-ray absorption fine structure (XAFS) spectroscopy. Extended XAFS (EXAFS) demonstrates that a large difference between in-plane and out-of-plane Co-O bond lengths results from tetragonal distortion in highly strained films. The structural distortions are strongly coupled to the hybridization between atomic orbitals of the Co and O atoms, as shown by x-ray absorption near edge spectroscopy (XANES). Our results indicate that increased hybridization is not the cause of ferromagnetism in strained LaCoO3 films. Instead, we suggest that the strain-induced distortions of the oxygen octahedra increase the population of eg electrons and concurrently depopulate t2g electrons beyond a stabilization threshold for ferromagnetic order.

  15. Photoacoustic Spectroscopy Analysis of Traditional Chinese Medicine

    NASA Astrophysics Data System (ADS)

    Chen, Lu; Zhao, Bin-xing; Xiao, Hong-tao; Tong, Rong-sheng; Gao, Chun-ming

    2013-09-01

    Chinese medicine is a historic cultural legacy of China. It has made a significant contribution to medicine and healthcare for generations. The development of Chinese herbal medicine analysis is emphasized by the Chinese pharmaceutical industry. This study has carried out the experimental analysis of ten kinds of Chinese herbal powder including Fritillaria powder, etc., based on the photoacoustic spectroscopy (PAS) method. First, a photoacoustic spectroscopy system was designed and constructed, especially a highly sensitive solid photoacoustic cell was established. Second, the experimental setup was verified through the characteristic emission spectrum of the light source, obtained by using carbon as a sample in the photoacoustic cell. Finally, as the photoacoustic spectroscopy analysis of Fritillaria, etc., was completed, the specificity of the Chinese herb medicine analysis was verified. This study shows that the PAS can provide a valid, highly sensitive analytical method for the specificity of Chinese herb medicine without preparing and damaging samples.

  16. Examining pharmaceuticals using terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Sulovská, Kateřina; Křesálek, Vojtěch

    2015-10-01

    Pharmaceutical trafficking is common issue in countries where they are under stricter dispensing regime with monitoring of users. Most commonly smuggled pharmaceuticals include trade names Paralen Plus, Modafen, Clarinase repetabs, Aspirin complex, etc. These are transported mainly from Eastern Europe (e.g. Poland, Ukraine, Russia) to countries like Czech Republic, which is said to have one of the highest number of methamphetamine producers in Europe. The aim of this paper is to describe the possibility of terahertz spectroscopy utilization as an examining tool to distinguish between pharmaceuticals containing pseudoephedrine compounds and those without it. Selected medicaments for experimental part contain as an active ingredient pseudoephedrine hydrochloride or pseudoephedrine sulphate. Results show a possibility to find a pseudoephedrine compound spectra in samples according to previously computed and experimentally found ones, and point out that spectra of same brand names pills may vary according to their expiration date, batch, and amount of absorbed water vapours from ambience. Mislead spectrum also occurs during experimental work in a sample without chosen active ingredient, which shows persistent minor inconveniences of terahertz spectroscopy. All measurement were done on the TPS Spectra 3000 instrument.

  17. [System of ns time-resolved spectroscopy diagnosis and radioprotection].

    PubMed

    Yao, Wei-Bo; Guo, Jian-Ming; Zhang, Yong-min; Tang, Jun-Ping; Cheng, Liang; Xu, Qi-fuo

    2014-06-01

    Cathode plasma of high current electron beam diode is an important research on high power microwave and strong pulsed radio accelerator. It is a reliable method to study cathode plasma by diagnosing the cathode plasma parameters with non-contact spectroscopy measurement system. The present paper introduced the work principle, system composition and performance of the nanosecond (ns) time-resolved spectroscopy diagnosis system. Furthermore, it introduced the implementing method and the temporal relation of lower jitter synchronous trigger system. Simultaneously, the authors designed electromagnetic and radio shield room to protect the diagnosis system due to the high electromagnetic and high X-ray and γ-ray radiation, which seriously interferes with the system. Time-resolved spectroscopy experiment on brass (H62) cathode shows that, the element and matter composition of cathode plasma is clearly increase with the increase in the diode pulsed voltage and current magnitude. The spectroscopy diagnosis system could be of up to 10 ns time resolve capability. It's least is 2 ns. Synchronous trigger system's jitter is less than 4 ns. The spectroscopy diagnosis system will open a new way to study the cathode emission mechanism in depth.

  18. Pyrolysis Treatment of Chromite Ore Processing Residue by Biomass: Cellulose Pyrolysis and Cr(VI) Reduction Behavior.

    PubMed

    Zhang, Da-Lei; Zhang, Mei-Yi; Zhang, Chu-Hui; Sun, Ying-Jie; Sun, Xiao; Yuan, Xian-Zheng

    2016-03-15

    The pyrolysis treatment with biomass is a promising technology for the remediation of chromite-ore-processing residue (COPR). However, the mechanism of this process is still unclear. In this study, the behavior of pyrolysis reduction of Cr(VI) by cellulose, the main component of biomass, was elucidated. The results showed that the volatile fraction (VF) of cellulose, ie. gas and tar, was responsible for Cr(VI) reduction. All organic compounds, as well as CO and H2 in VF, potentially reduced Cr(VI). X-ray absorption near-edge structure (XANES) spectroscopy and extended X-ray absorption fine-structure (EXAFS) spectroscopy confirmed the reduction of Cr(VI) to Cr(III) and the formation of amorphous Cr2O3. The remnant Cr(VI) content in COPR can be reduced below the detection limit (2 mg/kg) by the reduction of COPR particle and extension of reaction time between VF and COPR. This study provided a deep insight on the co-pyrolysis of cellulose with Cr(VI) in COPR and an ideal approach by which to characterize and optimize the pyrolysis treatment for COPR by other organics.

  19. Colloidal graphite/graphene nanostructures using collagen showing enhanced thermal conductivity.

    PubMed

    Bhattacharya, Soumya; Dhar, Purbarun; Das, Sarit K; Ganguly, Ranjan; Webster, Thomas J; Nayar, Suprabha

    2014-01-01

    In the present study, the exfoliation of natural graphite (GR) directly to colloidal GR/graphene (G) nanostructures using collagen (CL) was studied as a safe and scalable process, akin to numerous natural processes and hence can be termed "biomimetic". Although the exfoliation and functionalization takes place in just 1 day, it takes about 7 days for the nano GR/G flakes to stabilize. The predominantly aromatic residues of the triple helical CL forms its own special micro and nanoarchitecture in acetic acid dispersions. This, with the help of hydrophobic and electrostatic forces, interacts with GR and breaks it down to nanostructures, forming a stable colloidal dispersion. Surface enhanced Raman spectroscopy, X-ray diffraction, photoluminescence, fluorescence, and X-ray photoelectron spectroscopy of the colloid show the interaction between GR and CL on day 1 and 7. Differential interference contrast images in the liquid state clearly reveal how the GR flakes are entrapped in the CL fibrils, with a corresponding fluorescence image showing the intercalation of CL within GR. Atomic force microscopy of graphene-collagen coated on glass substrates shows an average flake size of 350 nm, and the hexagonal diffraction pattern and thickness contours of the G flakes from transmission electron microscopy confirm ≤ five layers of G. Thermal conductivity of the colloid shows an approximate 17% enhancement for a volume fraction of less than approximately 0.00005 of G. Thus, through the use of CL, this new material and process may improve the use of G in terms of biocompatibility for numerous medical applications that currently employ G, such as internally controlled drug-delivery assisted thermal ablation of carcinoma cells.

  20. Colloidal graphite/graphene nanostructures using collagen showing enhanced thermal conductivity

    PubMed Central

    Bhattacharya, Soumya; Dhar, Purbarun; Das, Sarit K; Ganguly, Ranjan; Webster, Thomas J; Nayar, Suprabha

    2014-01-01

    In the present study, the exfoliation of natural graphite (GR) directly to colloidal GR/graphene (G) nanostructures using collagen (CL) was studied as a safe and scalable process, akin to numerous natural processes and hence can be termed “biomimetic”. Although the exfoliation and functionalization takes place in just 1 day, it takes about 7 days for the nano GR/G flakes to stabilize. The predominantly aromatic residues of the triple helical CL forms its own special micro and nanoarchitecture in acetic acid dispersions. This, with the help of hydrophobic and electrostatic forces, interacts with GR and breaks it down to nanostructures, forming a stable colloidal dispersion. Surface enhanced Raman spectroscopy, X-ray diffraction, photoluminescence, fluorescence, and X-ray photoelectron spectroscopy of the colloid show the interaction between GR and CL on day 1 and 7. Differential interference contrast images in the liquid state clearly reveal how the GR flakes are entrapped in the CL fibrils, with a corresponding fluorescence image showing the intercalation of CL within GR. Atomic force microscopy of graphene-collagen coated on glass substrates shows an average flake size of 350 nm, and the hexagonal diffraction pattern and thickness contours of the G flakes from transmission electron microscopy confirm ≤ five layers of G. Thermal conductivity of the colloid shows an approximate 17% enhancement for a volume fraction of less than approximately 0.00005 of G. Thus, through the use of CL, this new material and process may improve the use of G in terms of biocompatibility for numerous medical applications that currently employ G, such as internally controlled drug-delivery assisted thermal ablation of carcinoma cells. PMID:24648728

  1. High-Iron Biosolids Compost-Induced Changes in Lead and Arsenic Speciation and Bioaccessibility in Co-contaminated Soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Sally L; Clausen, Ingrid; Chappell, Mark A

    2012-10-23

    The safety of urban farming has been questioned due to the potential for contamination in urban soils. A laboratory incubation, a field trial, and a second laboratory incubation were conducted to test the ability of high-Fe biosolids–based composts to reduce the bioaccessibility of soil Pb and As in situ. Lead and As bioaccessibility were evaluated using an in vitro assay. Changes in Pb, As, and Fe speciation were determined on select samples after the second laboratory incubation using μ–X-ray fluorescence mapping followed by μ–X-ray absorption near-edge structure (XANES). A compost with Fe added to wastewater treatment residuals (Fe WTR compost)more » added to soils at 100 g kg -1 decreased Pb bioaccessibility in both laboratory incubations. Mixed results were observed for As. Composts tested in the field trial (Fe added as Fe powder or FeCl 2) did not reduce bioaccessible Pb, and limited reductions were observed in bioaccessible As. These composts had no effect on Pb bioaccessibility during the second laboratory incubation. Bulk XANES showed association of Pb with sulfates and carbonates in the control soil. μ-XANES for three points in the Fe WTR amended soil showed Pb present as Fe-sorbed Pb (88 and 100% of two points) and pyromorphite (12 and 53% of two points). Bulk XANES of the Fe WTR compost showed 97% of total Fe present as Fe 3+. The results of this study indicate that addition of high-Fe biosolids compost is an effective means to reduce Pb accessibility only for certain types of Fe-rich materials.« less

  2. Aluminium X-ray absorption Near Edge Structure in model compounds and Earth's surface minerals

    NASA Astrophysics Data System (ADS)

    Ildefonse, P.; Cabaret, D.; Sainctavit, P.; Calas, G.; Flank, A.-M.; Lagarde, P.

    Aluminium K-edge X-ray absorption near edge spectra (XANES) of a suite of silicate and oxides minerals consist of electronic excitations occurring in the edge region, and multiple scattering resonances at higher energies. The main XANES feature for four-fold Al is at around 2 eV lower energy than the main XANES feature for six-fold Al. This provides a useful probe for coordination numbers in clay minerals, gels, glasses or material with unknown Al-coordination number. Six-fold aluminium yields a large variety of XANES features which can be correlated with octahedral point symmetry, number of aluminium sites and distribution of Al-O distances. These three parameters may act together, and the quantitative interpretation of XANES spectra is difficult. For a low point symmetry (1), variations are mainly related to the number of Al sites and distribution of Al-O distances: pyrophyllite, one Al site, is clearly distinguished from kaolinite and gibbsite presenting two Al sites. For a given number of Al-site (1), variations are controlled by changes in point symmetry, the number of XANES features being increased as point symmetry decreases. For a given point symmetry (1) and a given number of Al site (1), variations are related to second nearest neighbours (gibbsite versus kaolinite). The amplitude of the XANES feature at about 1566 eV is a useful probe for the assessment of AlIV/Altotal ratios in 2/1 phyllosilicates. Al-K XANES has been performed on synthetic Al-bearing goethites which cannot be studied by 27Al NMR. At low Al content, Al-K XANES is very different from that of α-AlOOH but at the highest level, XANES spectrum tends to that of diaspore. Al-K XAS is thus a promising tool for the structural study of poorly ordered materials such as clay minerals and natural alumino-silicate gels together with Al-subsituted Fe-oxyhydroxides.

  3. Modulated Raman Spectroscopy for Enhanced Cancer Diagnosis at the Cellular Level

    PubMed Central

    De Luca, Anna Chiara; Dholakia, Kishan; Mazilu, Michael

    2015-01-01

    Raman spectroscopy is emerging as a promising and novel biophotonics tool for non-invasive, real-time diagnosis of tissue and cell abnormalities. However, the presence of a strong fluorescence background is a key issue that can detract from the use of Raman spectroscopy in routine clinical care. The review summarizes the state-of-the-art methods to remove the fluorescence background and explores recent achievements to address this issue obtained with modulated Raman spectroscopy. This innovative approach can be used to extract the Raman spectral component from the fluorescence background and improve the quality of the Raman signal. We describe the potential of modulated Raman spectroscopy as a rapid, inexpensive and accurate clinical tool to detect the presence of bladder cancer cells. Finally, in a broader context, we show how this approach can greatly enhance the sensitivity of integrated Raman spectroscopy and microfluidic systems, opening new prospects for portable higher throughput Raman cell sorting. PMID:26110401

  4. Fe-doping effects on the structural, vibrational, magnetic, and electronic properties of ceria nanoparticles

    NASA Astrophysics Data System (ADS)

    Aragón, Fermin F. H.; Aquino, Juan C. R.; Ramos, Jesus E.; Coaquira, José A. H.; Gonzalez, Ismael; Macedo, Waldemar A. A.; da Silva, Sebastião W.; Morais, Paulo C.

    2017-11-01

    In this work, we report on a single-pot synthesis route based on a polymeric precursor method used for successfully producing undoped and iron-doped CeO2 nanoparticles with iron contents up to 10.0 mol. %. The formation of high-crystalline nanoparticles with a cubic fluorite structure is determined for all the studied samples. Meanwhile, the magnetic measurements of the undoped ceria nanoparticles revealed the occurrence of ferromagnetism of bound magnetic polarons of a fraction of Ce3+ at room temperature, and only a paramagnetic behavior of Fe3+ ions was determined for Fe-doped ceria nanoparticles. A monotonous reduction of the effective magnetic moment of the Fe3+ ions was determined. It suggests a change from a high-spin to low-spin state of Fe ions as the Fe content is increased. The 3+ valence state of the iron ions has been confirmed by the Fe K-edge X-ray absorption near-edge structure (XANES) and Mössbauer spectroscopy measurements. X-ray photoelectron spectroscopy data analysis evidenced a coexistence of Ce3+ and Ce4+ ions and a decreasing tendency of the relative fraction of Ce3+ ions in the surface region of the particles as the iron content is increased. Although the coexistence of Ce3+ and Ce4+ is confirmed by results obtained via Ce L3-edge XANES measurements, any clear dependence of the relative relation of Ce3+ ions on the iron content is determined, suggesting a homogeneous distribution of Ce3+ and Ce4+-ions in the whole volume of the particles. Ce L3-edge extended X-ray absorption fine structure revealed that the Ce-O bond distance shows a monotonous decrease as the Fe content is increased, which is in good agreement with the shrinking of the unit cell volume with the iron content determined from XRD data analysis, reinforcing the substitutional solution of Ce and Fe ions in the CeO2 matrix.

  5. Ultrafast Laser-Based Spectroscopy and Sensing: Applications in LIBS, CARS, and THz Spectroscopy

    PubMed Central

    Leahy-Hoppa, Megan R.; Miragliotta, Joseph; Osiander, Robert; Burnett, Jennifer; Dikmelik, Yamac; McEnnis, Caroline; Spicer, James B.

    2010-01-01

    Ultrafast pulsed lasers find application in a range of spectroscopy and sensing techniques including laser induced breakdown spectroscopy (LIBS), coherent Raman spectroscopy, and terahertz (THz) spectroscopy. Whether based on absorption or emission processes, the characteristics of these techniques are heavily influenced by the use of ultrafast pulses in the signal generation process. Depending on the energy of the pulses used, the essential laser interaction process can primarily involve lattice vibrations, molecular rotations, or a combination of excited states produced by laser heating. While some of these techniques are currently confined to sensing at close ranges, others can be implemented for remote spectroscopic sensing owing principally to the laser pulse duration. We present a review of ultrafast laser-based spectroscopy techniques and discuss the use of these techniques to current and potential chemical and environmental sensing applications. PMID:22399883

  6. Non-Water-Suppressed 1H MR Spectroscopy with Orientational Prior Knowledge Shows Potential for Separating Intra- and Extramyocellular Lipid Signals in Human Myocardium.

    PubMed

    Fillmer, Ariane; Hock, Andreas; Cameron, Donnie; Henning, Anke

    2017-12-04

    Conditions such as type II diabetes are linked with elevated lipid levels in the heart, and significantly increased risk of heart failure; however, metabolic processes underlying the development of cardiac disease in type II diabetes are not fully understood. Here we present a non-invasive method for in vivo investigation of cardiac lipid metabolism: namely, IVS-McPRESS. This technique uses metabolite-cycled, non-water suppressed 1 H cardiac magnetic resonance spectroscopy with prospective and retrospective motion correction. High-quality IVS-McPRESS data acquired from healthy volunteers allowed us to investigate the frequency shift of extramyocellular lipid signals, which depends on the myocardial fibre orientation. Assuming consistent voxel positioning relative to myofibres, the myofibre angle with the magnetic field was derived from the voxel orientation. For separation and individual analysis of intra- and extramyocellular lipid signals, the angle myocardial fibres in the spectroscopy voxel take with the magnetic field should be within ±24.5°. Metabolite and lipid concentrations were analysed with respect to BMI. Significant correlations between BMI and unsaturated fatty acids in intramyocellular lipids, and methylene groups in extramyocellular lipids were found. The proposed IVS-McPRESS technique enables non-invasive investigation of cardiac lipid metabolism and may thus be a useful tool to study healthy and pathological conditions.

  7. In situ spectroscopic and solution analyses of the reductive dissolution of Mn02 by Fe(II)

    USGS Publications Warehouse

    Villinski, John E.; O'Day, Peggy A.; Corley, Timothy L.; Conklin, Martha H.

    2001-01-01

    The reductive dissolution of MnO2 by Fe(II) under conditions simulating acid mine drainage (pH 3, 100 mM SO42-) was investigated by utilizing a flow-through reaction cell and synchrotron X-ray absorption spectroscopy. This configuration allows collection of in situ, real-time X-ray absorption near-edge structure (XANES) spectra and bulk solution samples. Analysis of the solution chemistry suggests that the reaction mechanism changed (decreased reaction rate) as MnO2 was reduced and Fe(III) precipitated, primarily as ferrihydrite. Simultaneously, we observed an additional phase, with the local structure of jacobsite (MnFe2O4), in the Mn XANES spectra of reactants and products. The X-ray absorbance of this intermediate phase increased during the experiment, implying an increase in concentration. The presence of this phase, which probably formed as a surface coating, helps to explain the reduced rate of dissolution of manganese(IV) oxide. In natural environments affected by acid mine drainage, the formation of complex intermediate solid phases on mineral surfaces undergoing reductive dissolution may likewise influence the rate of release of metals to solution.

  8. Phase Changes of Monosulfoaluminate in NaCl Aqueous Solution

    DOE PAGES

    Yoon, Seyoon; Ha, Juyoung; Chae, Sejung Rosie; ...

    2016-05-21

    Monosulfoaluminate (Ca 4Al 2(SO 4)(OH) 12∙6H 2O) plays an important role in anion binding in Portland cement by exchanging its original interlayer ions (SO 4 2- and OH -) with chloride ions. In this study, scanning transmission X-ray microscope (STXM), X-ray absorption near edge structure (XANES) spectroscopy, and X-ray diffraction (XRD) were used to investigate the phase change of monosulfoaluminate due to its interaction with chloride ions. Pure monosulfoaluminate was synthesized and its powder samples were suspended in 0, 0.1, 1, 3, and 5 M NaCl solutions for seven days. At low chloride concentrations, a partial dissolution of monosulfoaluminate formedmore » ettringite, while, with increasing chloride content, the dissolution process was suppressed. As the NaCl concentration increased, the dominant mechanism of the phase change became ion exchange, resulting in direct phase transformation from monosulfoaluminate to Kuzel’s salt or Friedel’s salt. The phase assemblages of the NaCl-reacted samples were explored using thermodynamic calculations and least-square linear combination (LC) fitting of measured XANES spectra. A comprehensive description of the phase change and its dominant mechanism are discussed.« less

  9. Photoacoustic spectroscopy sample array vessel and photoacoustic spectroscopy method for using the same

    DOEpatents

    Amonette, James E.; Autrey, S. Thomas; Foster-Mills, Nancy S.; Green, David

    2005-03-29

    Methods and apparatus for analysis of multiple samples by photoacoustic spectroscopy are disclosed. Particularly, a photoacoustic spectroscopy sample array vessel including a vessel body having multiple sample cells connected thereto is disclosed. At least one acoustic detector is acoustically coupled with the vessel body. Methods for analyzing the multiple samples in the sample array vessels using photoacoustic spectroscopy are provided.

  10. Imaging of drug loading distributions in individual microspheres of calcium silicate hydrate - an X-ray spectromicroscopy study

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoxuan; Wang, Zhiqiang; Wu, Jin; Wang, Jian; Zhu, Ying-Jie; Sham, Tsun-Kong

    2015-04-01

    Imaging is one of the most direct and ideal ways to track drug loading distributions in drug carriers on the molecular level, which will facilitate the optimization of drug carriers and drug loading capacities. Herein, we report the mapping of an individual mesoporous calcium silicate hydrate (CSH) microsphere before and after the loading of ibuprofen (IBU) and the interactions between drug carriers and drug molecules simultaneously by scanning transmission X-ray microscopy (STXM). Nanoscaled X-ray absorption near edge structure (XANES) spectroscopy clearly indicates that IBU is bonded to calcium and silicate sites via carboxylic acid groups. More importantly, STXM has been successfully used to determine the absolute thickness of IBU, revealing its distribution in the CSH microsphere.Imaging is one of the most direct and ideal ways to track drug loading distributions in drug carriers on the molecular level, which will facilitate the optimization of drug carriers and drug loading capacities. Herein, we report the mapping of an individual mesoporous calcium silicate hydrate (CSH) microsphere before and after the loading of ibuprofen (IBU) and the interactions between drug carriers and drug molecules simultaneously by scanning transmission X-ray microscopy (STXM). Nanoscaled X-ray absorption near edge structure (XANES) spectroscopy clearly indicates that IBU is bonded to calcium and silicate sites via carboxylic acid groups. More importantly, STXM has been successfully used to determine the absolute thickness of IBU, revealing its distribution in the CSH microsphere. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07471h

  11. In situ visualisation and characterisation of the capacity of highly reactive minerals to preserve soil organic matter (SOM) in colloids at submicron scale.

    PubMed

    Xiao, Jian; Wen, Yongli; Li, Huan; Hao, Jialong; Shen, Qirong; Ran, Wei; Mei, Xinlan; He, Xinhua; Yu, Guanghui

    2015-11-01

    Mineral-organo associations (MOAs) are a mixture of identifiable biopolymers associated with highly reactive minerals and microorganisms. However, the in situ characterization and correlation between soil organic matter (SOM) and highly reactive Al and Fe minerals are still unclear for the lack of technologies, particularly in the long-term agricultural soil colloids at submicron scale. We combined several novel techniques, including nano-scale secondary ion mass spectrometry (NanoSIMS), X-ray absorption near edge structure (XANES) and confocal laser scanning microscopy (CLSM) to characterise the capacity of highly reactive Al and Fe minerals to preserve SOM in Ferralic Cambisol in south China. Our results demonstrated that: (1) highly reactive minerals were strongly related to SOM preservation, while SOM had a more significant line correlation with the highly reactive Al minerals than the highly reactive Fe minerals, according to the regions of interest correlation analyses using NanoSIMS; (2) allophane and ferrihydrite were the potential mineral species to determine the SOM preservation capability, which was evaluated by the X-ray photoelectron spectroscopy (XPS) and Fe K-edge XANES spectroscopy techniques; and (3) soil organic biopolymers with dominant compounds, such as proteins, polysaccharides and lipids, were distributed at the rough and clustered surface of MOAs with high chemical and spatial heterogeneity according to the CLSM observation. Our results also promoted the understanding of the roles played by the highly reactive Al and Fe minerals in the spatial distribution of soil organic biopolymers and SOM sequestration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Correlated microanalysis of cometary organic grains returned by Stardust

    NASA Astrophysics Data System (ADS)

    de Gregorio, Bradley T.; Stroud, Rhonda M.; Cody, George D.; Nittler, Larry R.; David Kilcoyne, A. L.; Wirick, Sue

    2011-09-01

    Abstract- Carbonaceous matter in Stardust samples returned from comet 81P/Wild 2 is observed to contain a wide variety of organic functional chemistry. However, some of this chemical variety may be due to contamination or alteration during particle capture in aerogel. We investigated six carbonaceous Stardust samples that had been previously analyzed and six new samples from Stardust Track 80 using correlated transmission electron microscopy (TEM), X-ray absorption near-edge structure spectroscopy (XANES), and secondary ion mass spectroscopy (SIMS). TEM revealed that samples from Track 35 containing abundant aliphatic XANES signatures were predominantly composed of cometary organic matter infilling densified silica aerogel. Aliphatic organic matter from Track 16 was also observed to be soluble in the epoxy embedding medium. The nitrogen-rich samples in this study (from Track 22 and Track 80) both contained metal oxide nanoparticles, and are likely contaminants. Only two types of cometary organic matter appear to be relatively unaltered during particle capture. These are (1) polyaromatic carbonyl-containing organic matter, similar to that observed in insoluble organic matter (IOM) from primitive meteorites, interplanetary dust particles (IDPs), and in other carbonaceous Stardust samples, and (2) highly aromatic refractory organic matter, which primarily constitutes nanoglobule-like features. Anomalous isotopic compositions in some of these samples also confirm their cometary heritage. There also appears to be a significant labile aliphatic component of Wild 2 organic matter, but this material could not be clearly distinguished from carbonaceous contaminants known to be present in the Stardust aerogel collector.

  13. Fourier-transform infrared derivative spectroscopy with an improved signal-to-noise ratio.

    PubMed

    Fetterman, M R

    2005-09-01

    Infrared derivative spectroscopy is a useful technique for finding peaks hidden in broad spectral features. A data acquisition technique is shown that will improve the signal-to-noise ratio (SNR) of Fourier-transform infrared (FTIR) derivative spectroscopy. Typically, in a FTIR measurement one samples each point for the same time interval. The effect of using a graded time interval is studied. The simulations presented show that the SNR of first-derivative FTIR spectroscopy will improve by 15% and that the SNR of second-derivative FTIR will improve by 34%.

  14. Dielectric spectroscopy in agrophysics

    NASA Astrophysics Data System (ADS)

    Skierucha, W.; Wilczek, A.; Szypłowska, A.

    2012-04-01

    The paper presents scientific foundation and some examples of agrophysical applications of dielectric spectroscopy techniques. The aim of agrophysics is to apply physical methods and techniques for studies of materials and processes which occur in agriculture. Dielectric spectroscopy, which describes the dielectric properties of a sample as a function of frequency, may be successfully used for examinations of properties of various materials. Possible test materials may include agrophysical objects such as soil, fruit, vegetables, intermediate and final products of the food industry, grain, oils, etc. Dielectric spectroscopy techniques enable non-destructive and non-invasive measurements of the agricultural materials, therefore providing tools for rapid evaluation of their water content and quality. There is a limited number of research in the field of dielectric spectroscopy of agricultural objects, which is caused by the relatively high cost of the respective measurement equipment. With the fast development of modern technology, especially in high frequency applications, dielectric spectroscopy has great potential of expansion in agrophysics, both in cognitive and utilitarian aspects.

  15. Photoacoustic spectroscopy sample array vessels and photoacoustic spectroscopy methods for using the same

    DOEpatents

    Amonette, James E.; Autrey, S. Thomas; Foster-Mills, Nancy S.

    2006-02-14

    Methods and apparatus for simultaneous or sequential, rapid analysis of multiple samples by photoacoustic spectroscopy are disclosed. Particularly, a photoacoustic spectroscopy sample array vessel including a vessel body having multiple sample cells connected thereto is disclosed. At least one acoustic detector is acoustically positioned near the sample cells. Methods for analyzing the multiple samples in the sample array vessels using photoacoustic spectroscopy are provided.

  16. Combining μX-ray fluorescence, μXANES and μXRD to shed light on Zn2+ cations in cartilage and meniscus calcifications.

    PubMed

    Dessombz, Arnaud; Nguyen, Christelle; Ea, Hang-Korng; Rouzière, Stephan; Foy, Eddy; Hannouche, Didier; Réguer, Solene; Picca, Frederic-Emmanuel; Thiaudière, Dominique; Lioté, Frédéric; Daudon, Michel; Bazin, Dominique

    2013-10-01

    We aimed to examine the presence of Zn, a trace element, in osteoarthritis (OA) cartilage and meniscus from patients undergoing total knee joint replacement for primary OA. We mapped Ca(2+) and Zn(2+) at the mesoscopic scale by X-ray fluorescence microanalysis (μX-ray) to determine the spatial distribution of the 2 elements in cartilage, μX-ray absorption near edge structure spectroscopy to identify the Zn species, and μX-ray diffraction to determine the chemical nature of the calcification. Fourier transform infrared spectroscopy was used to determine the chemical composition of cartilage and meniscus. Ca(2+) showed a heterogeneous spatial distribution corresponding to the calcifications within cartilage (or meniscus) or at their surface. At least 2 Zn(2+) species were present: the first may correspond to Zn embedded in protein (different Zn metalloproteins are known to prevent calcification in biological tissues), and the second may be associated with a Zn trap in or at the surface of the calcification. Calcification present in OA cartilage may significantly modify the spatial distribution of Zn; part of the Zn may be trapped in the calcification and may alter the associated biological function of Zn metalloproteins. Copyright © 2013 Elsevier GmbH. All rights reserved.

  17. [MR spectroscopy of amygdala: investigation of methodology].

    PubMed

    Tang, Hehan; Yue, Qiang; Gong, Qiyong

    2013-08-01

    This study was aimed to optimize the methods of magnetic resonance spectroscopy (MRS) to improve its quality in amygdala. Forty-three volunteers were examined at right and left amygdala using stimulated-echo acquisition mode (STEAM), and point-resolved spectroscopy series (PRESS) with and without saturation bands. The Cr-SNR, water-suppression level, water full width at half maximum (FWHM) and RMS noise of three sequences were compared. The results showed that (1) the Cr-SNR and water-suppression lelvel of PRESS with saturation bands were better than that of PRESS without saturation bands and STEAM (P<0.001); (2) the left and right RMS noise was significantly different both using PRESS with saturation bands and using STEAM (P<0.05); (3) there was a positive, significant correlation between Cr-SNR and voxel size (P<0.05). Therefore, PRESS with saturation bands is better than PRESS without saturation bands or STEAM for the spectroscopy of amygdala. It is also useful to make the voxel as big as possible to improve the spectral quality.

  18. Quantitative analysis of binary polymorphs mixtures of fusidic acid by diffuse reflectance FTIR spectroscopy, diffuse reflectance FT-NIR spectroscopy, Raman spectroscopy and multivariate calibration.

    PubMed

    Guo, Canyong; Luo, Xuefang; Zhou, Xiaohua; Shi, Beijia; Wang, Juanjuan; Zhao, Jinqi; Zhang, Xiaoxia

    2017-06-05

    Vibrational spectroscopic techniques such as infrared, near-infrared and Raman spectroscopy have become popular in detecting and quantifying polymorphism of pharmaceutics since they are fast and non-destructive. This study assessed the ability of three vibrational spectroscopy combined with multivariate analysis to quantify a low-content undesired polymorph within a binary polymorphic mixture. Partial least squares (PLS) regression and support vector machine (SVM) regression were employed to build quantitative models. Fusidic acid, a steroidal antibiotic, was used as the model compound. It was found that PLS regression performed slightly better than SVM regression in all the three spectroscopic techniques. Root mean square errors of prediction (RMSEP) were ranging from 0.48% to 1.17% for diffuse reflectance FTIR spectroscopy and 1.60-1.93% for diffuse reflectance FT-NIR spectroscopy and 1.62-2.31% for Raman spectroscopy. The results indicate that diffuse reflectance FTIR spectroscopy offers significant advantages in providing accurate measurement of polymorphic content in the fusidic acid binary mixtures, while Raman spectroscopy is the least accurate technique for quantitative analysis of polymorphs. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Application of Raman Spectroscopy and Infrared Spectroscopy in the Identification of Breast Cancer.

    PubMed

    Depciuch, Joanna; Kaznowska, Ewa; Zawlik, Izabela; Wojnarowska, Renata; Cholewa, Marian; Heraud, Philip; Cebulski, Józef

    2016-02-01

    Raman spectroscopy and infrared (IR) spectroscopy are both techniques that allow for the investigation of vibrating chemical particles. These techniques provide information not only about chemical particles through the identification of functional groups and spectral analysis of so-called "fingerprints", these methods allow for the qualitative and quantitative analyses of chemical substances in the sample. Both of these spectral techniques are frequently being used in biology and medicine in diagnosing illnesses and monitoring methods of therapy. The type of breast cancer found in woman is often a malignant tumor, causing 1.38 million new cases of breast cancer and 458 000 deaths in the world in 2013. The most important risk factors for breast cancer development are: sex, age, family history, specific benign breast conditions in the breast, ionizing radiation, and lifestyle. The main purpose of breast cancer screening tests is to establish early diagnostics and to apply proper treatment. Diagnoses of breast cancer are based on: (1) physical techniques (e.g., ultrasonography, mammography, elastography, magnetic resonance, positron emission tomography [PET]); (2) histopathological techniques; (3) biological techniques; and (4) optical techniques (e.g., photo acoustic imaging, fluorescence tomography). However, none of these techniques provides unique or especially revealing answers. The aim of our study is comparative spectroscopic measurements on patients with the following: normal non-cancerous breast tissue; breast cancer tissues before chemotherapy; breast cancer tissues after chemotherapy; and normal breast tissues received around the cancerous breast region. Spectra collected from breast cancer patients shows changes in amounts of carotenoids and fats. We also observed changes in carbohydrate and protein levels (e.g., lack of amino acids, changes in the concentration of amino acids, structural changes) in comparison with normal breast tissues. This fact

  20. Manganese(IV) Oxide Production by Acremonium sp. Strain KR21-2 and Extracellular Mn(II) Oxidase Activity

    PubMed Central

    Miyata, Naoyuki; Tani, Yukinori; Maruo, Kanako; Tsuno, Hiroshi; Sakata, Masahiro; Iwahori, Keisuke

    2006-01-01

    Ascomycetes that can deposit Mn(III, IV) oxides are widespread in aquatic and soil environments, yet the mechanism(s) involved in Mn oxide deposition remains unclear. A Mn(II)-oxidizing ascomycete, Acremonium sp. strain KR21-2, produced a Mn oxide phase with filamentous nanostructures. X-ray absorption near-edge structure (XANES) spectroscopy showed that the Mn phase was primarily Mn(IV). We purified to homogeneity a laccase-like enzyme with Mn(II) oxidase activity from cultures of strain KR21-2. The purified enzyme oxidized Mn(II) to yield suspended Mn particles; XANES spectra indicated that Mn(II) had been converted to Mn(IV). The pH optimum for Mn(II) oxidation was 7.0, and the apparent half-saturation constant was 0.20 mM. The enzyme oxidized ABTS [2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)] (pH optimum, 5.5; Km, 1.2 mM) and contained two copper atoms per molecule. Moreover, the N-terminal amino acid sequence (residues 3 to 25) was 61% identical with the corresponding sequence of an Acremonium polyphenol oxidase and 57% identical with that of a Myrothecium bilirubin oxidase. These results provide the first evidence that a fungal multicopper oxidase can convert Mn(II) to Mn(IV) oxide. The present study reinforces the notion of the contribution of multicopper oxidase to microbially mediated precipitation of Mn oxides and suggests that Acremonium sp. strain KR21-2 is a good model for understanding the oxidation of Mn in diverse ascomycetes. PMID:17021194

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yung, M. M.; Cheah, S.; Kuhn, J. N.

    The production of biofuels can proceed via a biomass gasification to produce syngas, which can then undergo catalytic conditioning and reforming reactions prior to being sent to a fuel synthesis reactor. Catalysts used for biomass conditioning are plagued by short lifetimes which are a result of, among other things, poisoning. Syngas produced from biomass gasification may contain between 30-300 ppm H2S, depending on the feedstock and gasification conditions, and H2S is a key catalyst poison. In order to overcome catalyst poisoning, either an H2S-tolerant catalyst or an efficient regeneration protocol should be employed. In this study, sulfur K-edge X-ray absorptionmore » near edge spectroscopy (XANES) was used to monitor sulfur species on spent catalyst samples and the transformation of these species from sulfides to sulfates during steam and air regeneration on a Ni/Mg/K/Al2O3 catalyst used to condition biomass-derived syngas. Additionally, nickel K-edge EXAFS and XANES are used to examine the state of nickel species on the catalysts. Post-reaction samples showed the presence of sulfides on the H2S-poisoned nickel catalyst and although some gaseous sulfur species were observed to leave the catalyst bed during regeneration, sulfur remained on the catalyst and a transformation from sulfides to sulfates was observed. The subsequent H2 reduction led to a partial reduction of sulfates back to sulfides. A proposed reaction sequence is presented and recommended regeneration strategies are discussed.« less

  2. Brief Communication: Ikaite (CaCO3·6H2O) discovered in Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Dieckmann, G. S.; Nehrke, G.; Uhlig, C.; Göttlicher, J.; Gerland, S.; Granskog, M. A.; Thomas, D. N.

    2010-05-01

    We report for the first time on the discovery of calcium carbonate crystals as ikaite (CaCO3·6H2O) in sea ice from the Arctic (Kongsfjorden, Svalbard) as confirmed by morphology and indirectly by X-ray diffraction as well as XANES spectroscopy of its amorophous decomposition product. This finding demonstrates that the precipitation of calcium carbonate during the freezing of sea ice is not restricted to the Antarctic, where it was observed for the first time in 2008. This observation is an important step in the quest to quantify its impact on the sea ice driven carbon cycle.

  3. Optimizing soft X-ray NEXAFS spectroscopy in the laboratory

    NASA Astrophysics Data System (ADS)

    Mantouvalou, I.; Jonas, A.; Witte, K.; Jung, R.; Stiel, H.; Kanngießer, B.

    2017-05-01

    Near edge X-ray absorption fine structure (NEXAFS) spectroscopy in the soft X-ray range is feasible in the laboratory using laser-produced plasma sources. We present a study using seven different target materials for optimized data analysis. The emission spectra of the materials with atomic numbers ranging from Z = 6 to Z = 79 show distinct differences, rendering the adapted selection of a suitable target material for specialized experiments feasible. For NEXAFS spectroscopy a 112.5 nm thick polyimide film is investigated as a reference exemplifying the superiority of quasi-continuum like emission spectra.

  4. Array-based photoacoustic spectroscopy

    DOEpatents

    Autrey, S. Thomas; Posakony, Gerald J.; Chen, Yu

    2005-03-22

    Methods and apparatus for simultaneous or sequential, rapid analysis of multiple samples by photoacoustic spectroscopy are disclosed. A photoacoustic spectroscopy sample array including a body having at least three recesses or affinity masses connected thereto is used in conjunction with a photoacoustic spectroscopy system. At least one acoustic detector is positioned near the recesses or affinity masses for detection of acoustic waves emitted from species of interest within the recesses or affinity masses.

  5. Discrimination of wild-growing and cultivated Lentinus edodes by tri-step infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Lin, Haojian; Liu, Gang; Yang, Weimei; An, Ran; Ou, Quanhong

    2018-01-01

    It's not easy to discriminate dried wild-growing Lentinus edodes (WL) and cultivated Lentinus edodes (CL) by conventional method based on the morphological inspection of fruiting bodies. In this paper, fruiting body samples of WL and CL are discriminated by a tri-step IR spectroscopy method, including Fourier transform infrared (FT-IR) spectroscopy, second derivatives infrared (SD-IR) spectroscopy and two-dimensional correlation infrared (2D-IR) spectroscopy under thermal perturbation. The results show that the FT-IR spectra of WL and CL are similar in holistic spectral profile. More significant differences are exhibited in their SD-IR spectra in the range of 1700 - 900 cm-1. Furthermore, more evident differences have been observed in their synchronous 2D-IR spectra in the range of 2970 - 2900, 1678 - 1390, 1250 -1104 and 1090 - 1030 cm-1. The CL has thirteen auto-peaks at 2958, 2921, 1649, 1563, 1450, 1218, 1192, 1161, 1140, 1110, 1082, 1065 and 1047 cm-1, in which the four strongest auto-peaks are at 2921, 1563, 1192 and 1082 cm-1. The WL shows fifteen auto-peaks at 2960, 2937, 2921, 1650, 1615, 1555, 1458, 1219, 1190, 1138, 1111, 1084, 1068, 1048 and 1033 cm-1, in which the four strongest auto-peaks are at 2921, 1650, 1190 and 1068 cm-1. This study shows the potential of FT-IR spectroscopy and 2D correlation analysis in a simple and quick distinction of wild-growing and cultivated mushrooms.

  6. Selenium speciation in phosphate mine soils and evaluation of a sequential extraction procedure using XAFS.

    PubMed

    Favorito, Jessica E; Luxton, Todd P; Eick, Matthew J; Grossl, Paul R

    2017-10-01

    Selenium is a trace element found in western US soils, where ingestion of Se-accumulating plants has resulted in livestock fatalities. Therefore, a reliable understanding of Se speciation and bioavailability is critical for effective mitigation. Sequential extraction procedures (SEP) are often employed to examine Se phases and speciation in contaminated soils but may be limited by experimental conditions. We examined the validity of a SEP using X-ray absorption spectroscopy (XAS) for both whole and a sequence of extracted soils. The sequence included removal of soluble, PO 4 -extractable, carbonate, amorphous Fe-oxide, crystalline Fe-oxide, organic, and residual Se forms. For whole soils, XANES analyses indicated Se(0) and Se(-II) predominated, with lower amounts of Se(IV) present, related to carbonates and Fe-oxides. Oxidized Se species were more elevated and residual/elemental Se was lower than previous SEP results from ICP-AES suggested. For soils from the SEP sequence, XANES results indicated only partial recovery of carbonate, Fe-oxide and organic Se. This suggests Se was incompletely removed during designated extractions, possibly due to lack of mineral solubilization or reagent specificity. Selenium fractions associated with Fe-oxides were reduced in amount or removed after using hydroxylamine HCl for most soils examined. XANES results indicate partial dissolution of solid-phases may occur during extraction processes. This study demonstrates why precautions should be taken to improve the validity of SEPs. Mineralogical and chemical characterizations should be completed prior to SEP implementation to identify extractable phases or mineral components that may influence extraction effectiveness. Sequential extraction procedures can be appropriately tailored for reliable quantification of speciation in contaminated soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Favorito, Jessica E.; Luxton, Todd P.; Eick, Matthew J.

    Selenium is a trace element found in western US soils, where ingestion of Se-accumulating plants has resulted in livestock fatalities. Therefore, a reliable understanding of Se speciation and bioavailability is critical for effective mitigation. Sequential extraction procedures (SEP) are often employed to examine Se phases and speciation in contaminated soils but may be limited by experimental conditions. We examined the validity of a SEP using X-ray absorption spectroscopy (XAS) for both whole and a sequence of extracted soils. The sequence included removal of soluble, PO4-extractable, carbonate, amorphous Fe-oxide, crystalline Fe-oxide, organic, and residual Se forms. For whole soils, XANES analysesmore » indicated Se(0) and Se(-II) predominated, with lower amounts of Se(IV) present, related to carbonates and Fe-oxides. Oxidized Se species were more elevated and residual/elemental Se was lower than previous SEP results from ICP-AES suggested. For soils from the SEP sequence, XANES results indicated only partial recovery of carbonate, Fe-oxide and organic Se. This suggests Se was incompletely removed during designated extractions, possibly due to lack of mineral solubilization or reagent specificity. Selenium fractions associated with Fe-oxides were reduced in amount or removed after using hydroxylamine HCl for most soils examined. XANES results indicate partial dissolution of solid-phases may occur during extraction processes. This study demonstrates why precautions should be taken to improve the validity of SEPs. Mineralogical and chemical characterizations should be completed prior to SEP implementation to identify extractable phases or mineral components that may influence extraction effectiveness. Sequential extraction procedures can be appropriately tailored for reliable quantification of speciation in contaminated soils.« less

  8. Calculation and Study of Graphene Conductivity Based on Terahertz Spectroscopy

    NASA Astrophysics Data System (ADS)

    Feng, Xiaodong; Hu, Min; Zhou, Jun; Liu, Shenggang

    2017-07-01

    Based on terahertz time-domain spectroscopy system and two-dimensional scanning control system, terahertz transmission and reflection intensity mapping images on a graphene film are obtained, respectively. Then, graphene conductivity mapping images in the frequency range 0.5 to 2.5 THz are acquired according to the calculation formula. The conductivity of graphene at some typical regions is fitted by Drude-Smith formula to quantitatively compare the transmission and reflection measurements. The results show that terahertz reflection spectroscopy has a higher signal-to-noise ratio with less interference of impurities on the back of substrates. The effect of a red laser excitation on the graphene conductivity by terahertz time-domain transmission spectroscopy is also studied. The results show that the graphene conductivity in the excitation region is enhanced while that in the adjacent area is weakened which indicates carriers transport in graphene under laser excitation. This paper can make great contribution to the study on graphene electrical and optical properties in the terahertz regime and help design graphene terahertz devices.

  9. Transition metal oxide as anode interface buffer for impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Xu, Hui; Tang, Chao; Wang, Xu-Liang; Zhai, Wen-Juan; Liu, Rui-Lan; Rong, Zhou; Pang, Zong-Qiang; Jiang, Bing; Fan, Qu-Li; Huang, Wei

    2015-12-01

    Impedance spectroscopy is a strong method in electric measurement, which also shows powerful function in research of carrier dynamics in organic semiconductors when suitable mathematical physical models are used. Apart from this, another requirement is that the contact interface between the electrode and materials should at least be quasi-ohmic contact. So in this report, three different transitional metal oxides, V2O5, MoO3 and WO3 were used as hole injection buffer for interface of ITO/NPB. Through the impedance spectroscopy and PSO algorithm, the carrier mobilities and I-V characteristics of the NPB in different devices were measured. Then the data curves were compared with the single layer device without the interface layer in order to investigate the influence of transitional metal oxides on the carrier mobility. The careful research showed that when the work function (WF) of the buffer material was just between the work function of anode and the HOMO of the organic material, such interface material could work as a good bridge for carrier injection. Under such condition, the carrier mobility measured through impedance spectroscopy should be close to the intrinsic value. Considering that the HOMO (or LUMO) of most organic semiconductors did not match with the work function of the electrode, this report also provides a method for wide application of impedance spectroscopy to the research of carrier dynamics.

  10. Time-resolved fluorescence spectroscopy of human brain tumors

    NASA Astrophysics Data System (ADS)

    Marcu, Laura; Thompson, Reid C.; Garde, Smita; Sedrak, Mark; Black, Keith L.; Yong, William H.

    2002-05-01

    Fluorescence spectroscopy of the endogenous emission of brain tumors has been researched as a potentially important method for the intraoperative localization of brain tumor margins. In this study, we investigate the use of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) for demarcation of primary brain tumors by studying the time-resolved spectra of gliomas of different histologic grades. Time-resolved fluorescence (3 ns, 337 nm excitation) from excised human brain tumor show differences between the time-resolved emission of malignant glioma and normal brain tissue (gray and white matter). Our findings suggest that brain tumors can be differentiated from normal brain tissue based upon unique time-resolved fluorescence signature.

  11. Multiconfigurational nature of 5f orbitals in uranium and plutonium intermetallics

    PubMed Central

    Booth, C.H.; Jiang, Yu; Wang, D.L.; Mitchell, J.N.; Tobash, P.H.; Bauer, E.D.; Wall, M.A.; Allen, P.G.; Sokaras, D.; Nordlund, D.; Weng, T.-C.; Torrez, M.A.; Sarrao, J.L.

    2012-01-01

    Uranium and plutonium’s 5f electrons are tenuously poised between strongly bonding with ligand spd-states and residing close to the nucleus. The unusual properties of these elements and their compounds (e.g., the six different allotropes of elemental plutonium) are widely believed to depend on the related attributes of f-orbital occupancy and delocalization for which a quantitative measure is lacking. By employing resonant X-ray emission spectroscopy (RXES) and X-ray absorption near-edge structure (XANES) spectroscopy and making comparisons to specific heat measurements, we demonstrate the presence of multiconfigurational f-orbital states in the actinide elements U and Pu and in a wide range of uranium and plutonium intermetallic compounds. These results provide a robust experimental basis for a new framework toward understanding the strongly-correlated behavior of actinide materials. PMID:22706643

  12. Single nanowire extinction spectroscopy.

    PubMed

    Giblin, Jay; Vietmeyer, Felix; McDonald, Matthew P; Kuno, Masaru

    2011-08-10

    Here we show the first direct extinction spectra of single one-dimensional (1D) semiconductor nanostructures obtained at room temperature utilizing a spatial modulation approach. (1) For these materials, ensemble averaging in conventional extinction spectroscopy has limited our understanding of the interplay between carrier confinement and their electrostatic interactions. (2-4) By probing individual CdSe nanowires (NWs), we have identified and assigned size-dependent exciton transitions occurring across the visible. In turn, we have revealed the existence of room temperature 1D excitons in the narrowest NWs.

  13. Molecular Spectroscopy by Ab Initio Methods

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry; Arnold, James O. (Technical Monitor)

    1994-01-01

    Due to recent advances in methods and computers, the accuracy of ab calculations has reached a point where these methods can be used to provide accurate spectroscopic constants for small molecules; this will be illustrated with several examples. We will show how ab initio calculations where used to identify the Hermann infrared system in N2 and two band systems in CO. The identification of all three of these band systems relied on very accurate calculations of quintet states. The analysis of the infrared spectra of cool stars requires knowledge of the intensity of vibrational transitions in SiO for high nu and J levels. While experiment can supply very accurate dipole moments for nu = 0 to 3, this is insufficient to construct a global dipole moment function. We show how theory, combined by the experiment, can be used to generate the line intensities up to nu = 40 and J = 250. The spectroscopy of transition metal containing systems is very difficult for both theory and experiment. We will discuss the identification of the ground state of Ti2 and the spectroscopy of AlCu as examples of how theory can contribute to the understanding of these complex systems.

  14. Momentum-resolved spectroscopy of a Fermi liquid

    PubMed Central

    Doggen, Elmer V. H.; Kinnunen, Jami J.

    2015-01-01

    We consider a recent momentum-resolved radio-frequency spectroscopy experiment, in which Fermi liquid properties of a strongly interacting atomic Fermi gas were studied. Here we show that by extending the Brueckner-Goldstone model, we can formulate a theory that goes beyond basic mean-field theories and that can be used for studying spectroscopies of dilute atomic gases in the strongly interacting regime. The model hosts well-defined quasiparticles and works across a wide range of temperatures and interaction strengths. The theory provides excellent qualitative agreement with the experiment. Comparing the predictions of the present theory with the mean-field Bardeen-Cooper-Schrieffer theory yields insights into the role of pair correlations, Tan's contact, and the Hartree mean-field energy shift. PMID:25941948

  15. Optogalvanic photodetachment spectroscopy

    NASA Technical Reports Server (NTRS)

    Mcdermid, I. S.; Webster, C. R.

    1983-01-01

    A new extension to optogalvanic spectroscopy, in which electrons detached from negative ions formed in the discharge are observed as a function of incident laser wavelength, has been developed. The determination of the electron affinities of I(-) and Cl(-) atomic ions is described. The potential of the technique for studying the spectroscopy of molecular negative ions is also discussed.

  16. Micro- to nanostructure and geochemistry of extant crinoidal echinoderm skeletons.

    PubMed

    Gorzelak, P; Stolarski, J; Mazur, M; Meibom, A

    2013-01-01

    This paper reports the results of micro- to nanostructural and geochemical analyses of calcitic skeletons from extant deep-sea stalked crinoids. Fine-scale (SEM, FESEM, AFM) observations show that the crinoid skeleton is composed of carbonate nanograins, about 20-100 nm in diameter, which are partly separated by what appears to be a few nm thick organic layers. Sub-micrometre-scale geochemical mapping of crinoid ossicles using a NanoSIMS ion microprobe, combined with synchrotron high-spatial-resolution X-ray micro-fluorescence (μ-XRF) maps and X-ray absorption near-edge structure spectroscopy (XANES) show that high Mg concentration in the central region of the stereom bars correlates with the distribution of S-sulphate, which is often associated with sulphated polysaccharides in biocarbonates. These data are consistent with biomineralization models suggesting a close association between organic components (including sulphated polysaccharides) and Mg ions. Additionally, geochemical analyses (NanoSIMS, energy dispersive spectroscopy) reveal that significant variations in Mg occur at many levels: within a single stereom trabecula, within a single ossicle and within a skeleton of a single animal. Together, these data suggest that physiological factors play an important role in controlling Mg content in crinoid skeletons and that great care should be taken when using their skeletons to reconstruct, for example, palaeotemperatures and Mg/Ca palaeo-variations of the ocean. © 2012 Blackwell Publishing Ltd.

  17. Oxidative degradation of nalidixic acid by nano-magnetite via Fe2+/O2-mediated reactions.

    PubMed

    Ardo, Sandy G; Nélieu, Sylvie; Ona-Nguema, Georges; Delarue, Ghislaine; Brest, Jessica; Pironin, Elsa; Morin, Guillaume

    2015-04-07

    Organic pollution has become a critical issue worldwide due to the increasing input and persistence of organic compounds in the environment. Iron minerals are potentially able to degrade efficiently organic pollutants sorbed to their surfaces via oxidative or reductive transformation processes. Here, we explored the oxidative capacity of nano-magnetite (Fe3O4) having ∼ 12 nm particle size, to promote heterogeneous Fenton-like reactions for the removal of nalidixic acid (NAL), a recalcitrant quinolone antibacterial agent. Results show that NAL was adsorbed at the surface of magnetite and was efficiently degraded under oxic conditions. Nearly 60% of this organic contaminant was eliminated after 30 min exposure to air bubbling in solution in the presence of an excess of nano-magnetite. X-ray diffraction (XRD) and Fe K-edge X-ray absorption spectroscopy (XANES and EXAFS) showed a partial oxidation of magnetite to maghemite during the reaction, and four byproducts of NAL were identified by liquid chromatography-mass spectroscopy (UHPLC-MS/MS). We also provide evidence that hydroxyl radicals (HO(•)) were involved in the oxidative degradation of NAL, as indicated by the quenching of the degradation reaction in the presence of ethanol. This study points out the promising potentialities of mixed valence iron oxides for the treatment of soils and wastewater contaminated by organic pollutants.

  18. Multiple quantum coherence spectroscopy.

    PubMed

    Mathew, Nathan A; Yurs, Lena A; Block, Stephen B; Pakoulev, Andrei V; Kornau, Kathryn M; Wright, John C

    2009-08-20

    Multiple quantum coherences provide a powerful approach for studies of complex systems because increasing the number of quantum states in a quantum mechanical superposition state increases the selectivity of a spectroscopic measurement. We show that frequency domain multiple quantum coherence multidimensional spectroscopy can create these superposition states using different frequency excitation pulses. The superposition state is created using two excitation frequencies to excite the symmetric and asymmetric stretch modes in a rhodium dicarbonyl chelate and the dynamic Stark effect to climb the vibrational ladders involving different overtone and combination band states. A monochromator resolves the free induction decay of different coherences comprising the superposition state. The three spectral dimensions provide the selectivity required to observe 19 different spectral features associated with fully coherent nonlinear processes involving up to 11 interactions with the excitation fields. The different features act as spectroscopic probes of the diagonal and off-diagonal parts of the molecular potential energy hypersurface. This approach can be considered as a coherent pump-probe spectroscopy where the pump is a series of excitation pulses that prepares a multiple quantum coherence and the probe is another series of pulses that creates the output coherence.

  19. Heterodyne laser spectroscopy system

    DOEpatents

    Wyeth, Richard W.; Paisner, Jeffrey A.; Story, Thomas

    1990-01-01

    A heterodyne laser spectroscopy system utilizes laser heterodyne techniques for purposes of laser isotope separation spectroscopy, vapor diagnostics, processing of precise laser frequency offsets from a reference frequency, and provides spectral analysis of a laser beam.

  20. The Spectroscopy and Thermochemistry of Na and Na2.

    ERIC Educational Resources Information Center

    McSwiney, H. D.; And Others

    1989-01-01

    Presented is an experiment to show the connection between spectroscopy and thermochemistry by examining the spectra of atomic sodium and diatomic sodium. Background information; a description of the apparatus; procedures; calculations; and energy diagrams are included. (CW)