Sample records for xanthine-guanine phosphoribosyl transferase

  1. Plasma Hypoxanthine-Guanine Phosphoribosyl Transferase Activity in Bottlenose Dolphins Contributes to Avoiding Accumulation of Non-recyclable Purines

    PubMed Central

    López-Cruz, Roberto I.; Crocker, Daniel E.; Gaxiola-Robles, Ramón; Bernal, Jaime A.; Real-Valle, Roberto A.; Lugo-Lugo, Orlando; Zenteno-Savín, Tania

    2016-01-01

    Marine mammals are exposed to ischemia/reperfusion and hypoxia/reoxygenation during diving. During oxygen deprivation, adenosine triphosphate (ATP) breakdown implies purine metabolite accumulation, which in humans is associated with pathological conditions. Purine recycling in seals increases in response to prolonged fasting and ischemia. Concentrations of metabolites and activities of key enzymes in purine metabolism were examined in plasma and red blood cells from bottlenose dolphins (Tursiops truncatus) and humans. Hypoxanthine and inosine monophosphate concentrations were higher in plasma from dolphins than humans. Plasma hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity in dolphins suggests an elevated purine recycling rate, and a mechanism for avoiding accumulation of non-recyclable purines (xanthine and uric acid). Red blood cell concentrations of hypoxanthine, adenosine diphosphate, ATP and guanosine triphosphate were lower in dolphins than in humans; adenosine monophosphate and nicotinamide adenine dinucleotide concentrations were higher in dolphins. HGPRT activity in red blood cells was higher in humans than in dolphins. The lower concentrations of purine catabolism and recycling by-products in plasma from dolphins could be beneficial in providing substrates for recovery of ATP depleted during diving or vigorous swimming. These results suggest that purine salvage in dolphins could be a mechanism for delivering nucleotide precursors to tissues with high ATP and guanosine triphosphate requirements. PMID:27375492

  2. Plasma Hypoxanthine-Guanine Phosphoribosyl Transferase Activity in Bottlenose Dolphins Contributes to Avoiding Accumulation of Non-recyclable Purines.

    PubMed

    López-Cruz, Roberto I; Crocker, Daniel E; Gaxiola-Robles, Ramón; Bernal, Jaime A; Real-Valle, Roberto A; Lugo-Lugo, Orlando; Zenteno-Savín, Tania

    2016-01-01

    Marine mammals are exposed to ischemia/reperfusion and hypoxia/reoxygenation during diving. During oxygen deprivation, adenosine triphosphate (ATP) breakdown implies purine metabolite accumulation, which in humans is associated with pathological conditions. Purine recycling in seals increases in response to prolonged fasting and ischemia. Concentrations of metabolites and activities of key enzymes in purine metabolism were examined in plasma and red blood cells from bottlenose dolphins (Tursiops truncatus) and humans. Hypoxanthine and inosine monophosphate concentrations were higher in plasma from dolphins than humans. Plasma hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity in dolphins suggests an elevated purine recycling rate, and a mechanism for avoiding accumulation of non-recyclable purines (xanthine and uric acid). Red blood cell concentrations of hypoxanthine, adenosine diphosphate, ATP and guanosine triphosphate were lower in dolphins than in humans; adenosine monophosphate and nicotinamide adenine dinucleotide concentrations were higher in dolphins. HGPRT activity in red blood cells was higher in humans than in dolphins. The lower concentrations of purine catabolism and recycling by-products in plasma from dolphins could be beneficial in providing substrates for recovery of ATP depleted during diving or vigorous swimming. These results suggest that purine salvage in dolphins could be a mechanism for delivering nucleotide precursors to tissues with high ATP and guanosine triphosphate requirements.

  3. The use of primary rat hepatocytes to achieve metabolic activation of promutagens in the Chinese hamster ovary/hypoxanthine-guanine phosphoribosyl transferase mutational assay.

    PubMed

    Bermudez, E; Couch, D B; Tillery, D

    1982-01-01

    A method is described in which primary rat hepatocytes have been cocultured with Chinese hamster ovary (CHO) cells to provide metabolic activation of promutagens in the Chinese hamster ovary/hypoxanthine-guanine phosphoribosyl transferase (CHO/HGPRT) mutational assay. Single cell hepatocyte suspensions were prepared from male Fischer-344 rats using the in situ collagenase perfusion technique. Hepatocytes were allowed to attach for 1.5 hours in tissue culture dishes containing an approximately equal number of CHO cells in log growth. The cocultures were exposed to promutagens for up to 20 hours in serum-free medium. The survival and 6-thioguanine-resistant fraction of treated CHO cells were then determined as in the standard CHO/HGPRT assay. Aflatoxin B1 (AFB1) 7,12-dimethylbenz(a)anthracene (DMBA) and benzo(a)pyrene (B(A)P) were found to produce increases in the mutant fractions of treated CHO cells as a function of concentration. The time required for optimum expression of the mutant phenotype following exposure to DMBA and AFB1 was approximately 8 days. Primary cell-mediated mutagenesis may be useful in elucidating metabolic pathways important in the production and detoxification of genotoxic products in vivo.

  4. Slow ligand-induced conformational switch increases the catalytic rate in Plasmodium falciparum hypoxanthine guanine xanthine phosphoribosyltransferase.

    PubMed

    Roy, Sourav; Karmakar, Tarak; Prahlada Rao, Vasudeva S; Nagappa, Lakshmeesha K; Balasubramanian, Sundaram; Balaram, Hemalatha

    2015-05-01

    P. falciparum (Pf) hypoxanthine guanine xanthine phosphoribosyltransferase (HGXPRT) exhibits a unique mechanism of activation where the enzyme switches from a low activity (unactivated) to a high activity (activated) state upon pre-incubation with substrate/products. Xanthine phosphoribosylation by unactivated PfHGXPRT exhibits a lag phase, the duration of which reduces with an increase in concentration of the enzyme or substrate, PRPP·Mg(2+). Activated PfHGXPRT does not display the lag phase and exhibits a ten-fold drop in the Km value for PRPP·Mg(2+). These observations suggest the involvement of ligand-mediated oligomerization and conformational changes in the process of activation. The dipeptide Leu-Lys in the PPi binding site of human and T. gondii HG(X)PRT that facilitates PRPP·Mg(2+) binding by isomerization from trans to cis conformation is conserved in PfHGXPRT. Free energy calculations using the well-tempered metadynamics technique show the ligand-free enzyme to be more stable when this dipeptide is in the trans conformation than in the cis conformation. The high rotational energy barrier observed for the conformational change from experimental and computational studies permits delineation of the activation mechanism.

  5. Genetic Separation of Hypoxanthine and Guanine-Xanthine Phosphoribosyltransferase Activities by Deletion Mutations in Salmonella typhimurium

    PubMed Central

    Gots, Joseph S.; Benson, Charles E.; Shumas, Susan R.

    1972-01-01

    Certain proAB deletion mutants of Salmonella typhimurium were found to be simultaneously deleted in a gene required for the utilization of guanine and xanthine (designated gxu). These mutants were resistant to 8-azaguanine and when carrying an additional pur mutation were unable to use guanine or xanthine as a purine source. The defect was correlated with deficiencies in the uptake and phosphoribosyltransferase activities for guanine and xanthine. Hypoxanthine and adenine activities were unaltered. The deficiency was restored to normal by transduction to pro+ and in F′ merodiploids. PMID:4563984

  6. Scaffold-hopping from xanthines to tricyclic guanines: A case study of dipeptidyl peptidase 4 (DPP4) inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pissarnitski, Dmitri A.; Zhao, Zhiqiang; Cole, David

    2016-11-01

    Molecular modeling of unbound tricyclic guanine scaffolds indicated that they can serve as effective bioisosteric replacements of xanthines. This notion was further confirmed by a combination of X-ray crystallography and SAR studies, indicating that tricyclic guanine DPP4 inhibitors mimic the binding mode of xanthine inhibitors, exemplified by linagliptin. Realization of the bioisosteric relationship between these scaffolds potentially will lead to a wider application of cyclic guanines as xanthine replacements in drug discovery programs for a variety of biological targets. Newly designed DPP4 inhibitors achieved sub-nanomolar potency range and demonstrated oral activity in vivo in mouse glucose tolerance test.

  7. Acyclic phosph(on)ate inhibitors of Plasmodium falciparum hypoxanthine-guanine-xanthine phosphoribosyltransferase

    PubMed Central

    Clinch, Keith; Crump, Douglas R.; Evans, Gary B.; Hazleton, Keith Z.; Mason, Jennifer M.; Schramm, Vern L.

    2013-01-01

    The pathogenic protozoa responsible for malaria lack enzymes for the de novo synthesis of purines and rely on purine salvage from the host. In Plasmodium falciparum (Pf), hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT) converts hypoxanthine to inosine monophosphate and is essential for purine salvage making the enzyme an anti-malarial drug target. We have synthesized a number of simple acyclic aza-C- nucleosides and shown that some are potent inhibitors of Pf HGXPRT while showing excellent selectivity for the Pf versus the human enzyme. PMID:23810424

  8. Genetic evidence for the essential role of PfNT1 in the transport and utilization of xanthine, guanine, guanosine and adenine by Plasmodium falciparum.

    PubMed

    El Bissati, Kamal; Downie, Megan J; Kim, Seong-Kyoun; Horowitz, Michael; Carter, Nicola; Ullman, Buddy; Ben Mamoun, Choukri

    2008-10-01

    The malaria parasite, Plasmodium falciparum, is unable to synthesize the purine ring de novo and is therefore wholly dependent upon purine salvage from the host for survival. Previous studies have indicated that a P. falciparum strain in which the purine transporter PfNT1 had been disrupted was unable to grow on physiological concentrations of adenosine, inosine and hypoxanthine. We have now used an episomally complemented pfnt1Delta knockout parasite strain to confirm genetically the functional role of PfNT1 in P. falciparum purine uptake and utilization. Episomal complementation by PfNT1 restored the ability of pfnt1Delta parasites to transport and utilize adenosine, inosine and hypoxanthine as purine sources. The ability of wild-type and pfnt1Delta knockout parasites to transport and utilize the other physiologically relevant purines adenine, guanine, guanosine and xanthine was also examined. Unlike wild-type and complemented P. falciparum parasites, pfnt1Delta parasites could not proliferate on guanine, guanosine or xanthine as purine sources, and no significant transport of these substrates could be detected in isolated parasites. Interestingly, whereas isolated pfnt1Delta parasites were still capable of adenine transport, these parasites grew only when adenine was provided at high, non-physiological concentrations. Taken together these results demonstrate that, in addition to hypoxanthine, inosine and adenosine, PfNT1 is essential for the transport and utilization of xanthine, guanine and guanosine.

  9. Acyclic Immucillin Phosphonates. Second-Generation Inhibitors of Plasmodium falciparum Hypoxanthine- Guanine-Xanthine Phosphoribosyltransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazelton, Keith Z.; Ho, Meng-Chaio; Cassera, Maria B.

    We found that Plasmodium falciparum is the primary cause of deaths from malaria. It is a purine auxotroph and relies on hypoxanthine salvage from the host purine pool. Purine starvation as an antimalarial target has been validated by inhibition of purine nucleoside phosphorylase. Hypoxanthine depletion kills Plasmodium falciparum in cell culture and in Aotus monkey infections. Hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT) from P. falciparum is required for hypoxanthine salvage by forming inosine 5'-monophosphate, a branchpoint for all purine nucleotide synthesis in the parasite. We present a class of HGXPRT inhibitors, the acyclic immucillin phosphonates (AIPs), and cell permeable AIP prodrugs. The AIPsmore » are simple, potent, selective, and biologically stable inhibitors. The AIP prodrugs block proliferation of cultured parasites by inhibiting the incorporation of hypoxanthine into the parasite nucleotide pool and validates HGXPRT as a target in malaria.« less

  10. Genetics Home Reference: Lesch-Nyhan syndrome

    MedlinePlus

    ... Potier MC, Dauphinot L, Shirley TL, Torero-Ibad R, Fuchs J, Jinnah HA. Hypoxanthine-guanine phosphoribosyl transferase regulates early developmental programming of dopamine neurons: implications for Lesch-Nyhan disease ...

  11. Orotate phosphoribosyl transferase mRNA expression and the response of cholangiocarcinoma to 5-fluorouracil

    PubMed Central

    Hahnvajanawong, Chariya; Chaiyagool, Jariya; Seubwai, Wunchana; Bhudhisawasdi, Vajarabhongsa; Namwat, Nisana; Khuntikeo, Narong; Sripa, Banchob; Pugkhem, Ake; Tassaneeyakul, Wichittra

    2012-01-01

    AIM: To determine whether expression of certain enzymes related to 5-fluorouracil (5-FU) metabolism predicts 5-FU chemosensitivity in cholangiocarcinoma (CCA). METHODS: The histoculture drug response assay (HDRA) was performed using surgically resected CCA tissues. Tumor cell viability was determined morphologically with hematoxylin and eosin- and terminal deoxynucleotide transferase-mediated dUTP nick-end labeling-stained tissues. The mRNA expression of thymidine phosphorylase (TP), orotate phosphoribosyl transferase (OPRT), thymidylate synthase (TS), and dihydropyrimidine dehydrogenase (DPD) was determined with real-time reverse transcriptase-polymerase chain reaction. The levels of gene expression and the sensitivity to 5-FU were evaluated. RESULTS: Twenty-three CCA tissues were obtained from patients who had been diagnosed with intrahepatic CCA and who underwent surgical resection at Srinagarind Hospital, Khon Kaen University from 2007 to 2009. HDRA was used to determine the response of these CCA tissues to 5-FU. Based on the dose-response curve, 200 μg/mL 5-FU was selected as the test concentration. The percentage of inhibition index at the median point was selected as the cut-off point to differentiate the responding and non-responding tumors to 5-FU. When the relationship between TP, OPRT, TS and DPD mRNA expression levels and the sensitivity of CCA tissues to 5-FU was examined, only OPRT mRNA expression was significantly correlated with the response to 5-FU. The mean expression level of OPRT was significantly higher in the responder group compared to the non-responder group (0.41 ± 0.25 vs 0.22 ± 0.12, P < 0.05). CONCLUSION: OPRT mRNA expression may be a useful predictor of 5-FU chemosensitivity of CCA. Whether OPRT mRNA could be used to predict the success of 5-FU chemotherapy in CCA patients requires confirmation in patients. PMID:22912546

  12. Orotate phosphoribosyl transferase MoPyr5 is involved in uridine 5'-phosphate synthesis and pathogenesis of Magnaporthe oryzae.

    PubMed

    Qi, Zhongqiang; Liu, Muxing; Dong, Yanhan; Yang, Jie; Zhang, Haifeng; Zheng, Xiaobo; Zhang, Zhengguang

    2016-04-01

    Orotate phosphoribosyl transferase (OPRTase) plays an important role in de novo and salvage pathways of nucleotide synthesis and is widely used as a screening marker in genetic transformation. However, the function of OPRTase in plant pathogens remains unclear. In this study, we characterized an ortholog of Saccharomyces cerevisiae Ura5, the OPRTase MoPyr5, from the rice blast fungus Magnaporthe oryzae. Targeted gene disruption revealed that MoPyr5 is required for mycelial growth, appressorial turgor pressure and penetration into plant tissues, invasive hyphal growth, and pathogenicity. Interestingly, the ∆Mopyr5 mutant is also involved in mycelial surface hydrophobicity. Exogenous uridine 5'-phosphate (UMP) restored vegetative growth and rescued the defect in pathogenicity on detached barley and rice leaf sheath. Collectively, our results show that MoPyr5 is an OPRTase for UMP biosynthesis in M. oryzae and indicate that UTP biosynthesis is closely linked with vegetative growth, cell wall integrity, and pathogenicity of fungus. Our results also suggest that UMP biosynthesis would be a good target for the development of novel fungicides against M. oryzae.

  13. Catalysis in human hypoxanthine-guanine phosphoribosyltransferase: Asp 137 acts as a general acid/base.

    PubMed

    Xu, Y; Grubmeyer, C

    1998-03-24

    Hypoxanthine-guanine phosphoribosyltransferase (HGPRTase) catalyzes the reversible formation of IMP and GMP from their respective bases hypoxanthine (Hx) and guanine (Gua) and the phosphoribosyl donor 5-phosphoribosyl-1-pyrophosphate (PRPP). The net formation and cleavage of the nucleosidic bond requires removal/addition of a proton at the purine moiety, allowing enzymic catalysis to reduce the energy barrier associated with the reaction. The pH profile of kcat for IMP pyrophosphorolysis revealed an essential acidic group with pKa of 7.9 whereas those for IMP or GMP formation indicated involvement of essential basic groups. Based on the crystal structure of human HGPRTase, protonation/deprotonation is likely to occur at N7 of the purine ring, and Lys 165 or Asp 137 are each candidates for the general base/acid. We have constructed, purified, and kinetically characterized two mutant HGPRTases to test this hypothesis. D137N displayed an 18-fold decrease in kcat for nucleotide formation with Hx as substrate, a 275-fold decrease in kcat with Gua, and a 500-fold decrease in kcat for IMP pyrophosphorolysis. D137N also showed lower KD values for nucleotides and PRPP. The pH profiles of kcat for D137N were severely altered. In contrast to D137N, the kcat for K165Q was decreased only 2-fold in the forward reaction and was slightly increased in the reverse reaction. The Km and KD values showed that K165Q interacts with substrates more weakly than does the wild-type enzyme. Pre-steady-state experiments with K165Q indicated that the phosphoribosyl transfer step was fast in the forward reaction, as observed with the wild type. In contrast, D137N showed slower phosphoribosyl transfer chemistry, although guanine (3000-fold reduction) was affected much more than hypoxanthine (32-fold reduction). In conclusion, Asp137 acts as a general catalytic acid/base for HGPRTase and Lys165 makes ground-state interactions with substrates.

  14. Method for protection against genotoxic mutagenesis

    DOEpatents

    Grdina, David J.

    1996-01-01

    A method and pharmaceutical for protecting against genotoxic damage in irradiated cells. Reduction of mutations at the hypoxanthine-guanine phosphoribosyl transferase locus is accomplished by administering an effective dose of a compound having protected sulfhydryl groups which metabolize in vivo to produce both free sulfhydryl groups and disulfides.

  15. Method for protection against genotoxic mutagenesis

    DOEpatents

    Grdina, D.J.

    1996-01-30

    A method and pharmaceutical for protecting against genotoxic damage in irradiated cells are disclosed. Reduction of mutations at the hypoxanthine-guanine phosphoribosyl transferase locus is accomplished by administering an effective dose of a compound having protected sulfhydryl groups which metabolize in vivo to produce both free sulfhydryl groups and disulfides. 10 figs.

  16. Design and synthesis of novel adenine fluorescence probe based on Eu(III) complexes with dtpa-bis(guanine) ligand

    NASA Astrophysics Data System (ADS)

    Tian, Fengyun; Jiang, Xiaoqing; Dou, Xuekai; Wu, Qiong; Wang, Jun; Song, Youtao

    2017-05-01

    A novel adenine (Ad) fluorescence probe (EuIII-dtpa-bis(guanine)) was designed and synthesized by improving experimental method based on the Eu(III) complex and dtpa-bis(guanine) ligand. The dtpa-bis(guanine) ligand was first synthesized by the acylation action between dtpaa and guanine (Gu), and the corresponding Eu(III) complex was successfully prepared through heat-refluxing method with dtpa-bis(guanine) ligand. As a novel fluorescence probe, the EuIII-dtpa-bis(guanine) complex can detect adenine (Ad) with characteristics of strong targeting, high specificity and high recognition ability. The detection mechanism of the adenine (Ad) using this probe in buffer solution was studied by ultraviolet-visible (UV-vis) and fluorescence spectroscopy. When the EuIII-dtpa-bis(guanine) was introduced to the adenine (Ad) solution, the fluorescence emission intensity was significantly enhanced. However, adding other bases such as guanine (Gu), xanthine (Xa), hypoxanthine (Hy) and uric acid (Ur) with similar composition and structure to that of adenine (Ad) to the EuIII-dtpa-bis(guanine) solution, the fluorescence emission intensities are nearly invariable. Meanwhile, the interference of guanine (Gu), xanthine (Xa), hypoxanthine (Hy) and uric acid (Ur) on the detection of the adenine using EuIII-dtpa-bis(guanine) probe was also studied. It was found that presence of these bases does not affect the detection of adenine (Ad). A linear response of fluorescence emission intensities of EuIII-dtpa-bis(guanine) at 570 nm as a function of adenine (Ad) concentration in the range of 0.00-5.00 × 10- 5 mol L- 1 was observed. The detection limit is about 4.70 × 10- 7 mol L- 1.

  17. Prolonged fasting increases purine recycling in post-weaned northern elephant seals.

    PubMed

    Soñanez-Organis, José Guadalupe; Vázquez-Medina, José Pablo; Zenteno-Savín, Tania; Aguilar, Andres; Crocker, Daniel E; Ortiz, Rudy M

    2012-05-01

    Northern elephant seals are naturally adapted to prolonged periods (1-2 months) of absolute food and water deprivation (fasting). In terrestrial mammals, food deprivation stimulates ATP degradation and decreases ATP synthesis, resulting in the accumulation of purines (ATP degradation byproducts). Hypoxanthine-guanine phosphoribosyl transferase (HGPRT) salvages ATP by recycling the purine degradation products derived from xanthine oxidase (XO) metabolism, which also promotes oxidant production. The contributions of HGPRT to purine recycling during prolonged food deprivation in marine mammals are not well defined. In the present study we cloned and characterized the complete and partial cDNA sequences that encode for HGPRT and xanthine oxidoreductase (XOR) in northern elephant seals. We also measured XO protein expression and circulating activity, along with xanthine and hypoxanthine plasma content in fasting northern elephant seal pups. Blood, adipose and muscle tissue samples were collected from animals after 1, 3, 5 and 7 weeks of their natural post-weaning fast. The complete HGPRT and partial XOR cDNA sequences are 771 and 345 bp long and encode proteins of 218 and 115 amino acids, respectively, with conserved domains important for their function and regulation. XOR mRNA and XO protein expression increased 3-fold and 1.7-fold with fasting, respectively, whereas HGPRT mRNA (4-fold) and protein (2-fold) expression increased after 7 weeks in adipose tissue and muscle. Plasma xanthine (3-fold) and hypoxanthine (2.5-fold) levels, and XO (1.7- to 20-fold) and HGPRT (1.5- to 1.7-fold) activities increased during the last 2 weeks of fasting. Results suggest that prolonged fasting in elephant seal pups is associated with increased capacity to recycle purines, which may contribute to ameliorating oxidant production and enhancing the supply of ATP, both of which would be beneficial during prolonged food deprivation and appear to be adaptive in this species.

  18. Prolonged fasting increases purine recycling in post-weaned northern elephant seals

    PubMed Central

    Soñanez-Organis, José Guadalupe; Vázquez-Medina, José Pablo; Zenteno-Savín, Tania; Aguilar, Andres; Crocker, Daniel E.; Ortiz, Rudy M.

    2012-01-01

    SUMMARY Northern elephant seals are naturally adapted to prolonged periods (1–2 months) of absolute food and water deprivation (fasting). In terrestrial mammals, food deprivation stimulates ATP degradation and decreases ATP synthesis, resulting in the accumulation of purines (ATP degradation byproducts). Hypoxanthine-guanine phosphoribosyl transferase (HGPRT) salvages ATP by recycling the purine degradation products derived from xanthine oxidase (XO) metabolism, which also promotes oxidant production. The contributions of HGPRT to purine recycling during prolonged food deprivation in marine mammals are not well defined. In the present study we cloned and characterized the complete and partial cDNA sequences that encode for HGPRT and xanthine oxidoreductase (XOR) in northern elephant seals. We also measured XO protein expression and circulating activity, along with xanthine and hypoxanthine plasma content in fasting northern elephant seal pups. Blood, adipose and muscle tissue samples were collected from animals after 1, 3, 5 and 7 weeks of their natural post-weaning fast. The complete HGPRT and partial XOR cDNA sequences are 771 and 345 bp long and encode proteins of 218 and 115 amino acids, respectively, with conserved domains important for their function and regulation. XOR mRNA and XO protein expression increased 3-fold and 1.7-fold with fasting, respectively, whereas HGPRT mRNA (4-fold) and protein (2-fold) expression increased after 7 weeks in adipose tissue and muscle. Plasma xanthine (3-fold) and hypoxanthine (2.5-fold) levels, and XO (1.7- to 20-fold) and HGPRT (1.5- to 1.7-fold) activities increased during the last 2 weeks of fasting. Results suggest that prolonged fasting in elephant seal pups is associated with increased capacity to recycle purines, which may contribute to ameliorating oxidant production and enhancing the supply of ATP, both of which would be beneficial during prolonged food deprivation and appear to be adaptive in this species. PMID

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albertini, R.J.

    This work has focused on the development of in vitro T-cell mutation assays. Conditions have been defined to measure the in vitro induction of mutations at the hypoxanthine-guanine phosphoribosyl transferase (hprt) locus in human T-lymphocytes. This assay is a parallel to our in vivo hprt assay, in that the same cells are utilized. However, the in vitro assay allows for carefully controlled dose response studies. 21 refs., 16 figs., 13 tabs.

  20. Cloning and expression of the hypoxanthine-guanine phosphoribosyltransferase gene from Trypanosoma brucei.

    PubMed Central

    Allen, T E; Ullman, B

    1993-01-01

    The hypoxanthine-guanine phosphoribosyltransferase (HGPRT) enzyme of Trypanosoma brucei and related parasites provides a rational target for the treatment of African sleeping sickness and several other parasitic diseases. To characterize the T. brucei HGPRT enzyme in detail, the T. brucei hgprt was isolated within a 4.2 kb SalI-KpnI genomic insert and sequenced. Nucleotide sequence analysis revealed an open reading frame of 630 bp that encoded a protein of 210 amino acids with a M(r) = 23.4 kd. After gap alignment, the T. brucei HGPRT exhibited 21-23% amino acid sequence identity, mostly in three clustered regions, with the HGPRTs from human, S. mansoni, and P falciparum, indicating that the trypanosome enzyme was the most divergent of the group. Surprisingly, the T. brucei HGPRT was more homologous to the hypoxanthine phosphoribosyltransferase (HPRT) from the prokaryote V. harveyi than to the eukaryotic HGPRTs. Northern blot analysis revealed two trypanosome transcripts of 1.4 and 1.9 kb, each expressed to equivalent degrees in insect vector and mammalian forms of the parasite. The T. brucei hgprt was inserted into an expression plasmid and transformed into S phi 606 E. coli that are deficient in both HPRT and xanthine-guanine phosphoribosyltransferase activities. Soluble, enzymatically active recombinant T. brucei HGPRT was expressed to high levels and purified to homogeneity by GTP-agarose affinity chromatography. The purified recombinant enzyme recognized hypoxanthine, guanine, and allopurinol, but not xanthine or adenine, as substrates and was inhibited by a variety of nucleotide effectors. The availability of a molecular clone encoding the T. brucei hgprt and large quantities of homogeneous recombinant HGPRT enzyme provides an experimentally manipulable molecular and biochemical system for the rational design of novel therapeutic agents for the treatment of African sleeping sickness and other diseases of parasitic origin. Images PMID:8265360

  1. Purine metabolism in response to hypoxic conditions associated with breath-hold diving and exercise in erythrocytes and plasma from bottlenose dolphins (Tursiops truncatus).

    PubMed

    Del Castillo Velasco-Martínez, Iris; Hernández-Camacho, Claudia J; Méndez-Rodríguez, Lía C; Zenteno-Savín, Tania

    2016-01-01

    In mammalian tissues under hypoxic conditions, ATP degradation results in accumulation of purine metabolites. During exercise, muscle energetic demand increases and oxygen consumption can exceed its supply. During breath-hold diving, oxygen supply is reduced and, although oxygen utilization is regulated by bradycardia (low heart rate) and peripheral vasoconstriction, tissues with low blood flow (ischemia) may become hypoxic. The goal of this study was to evaluate potential differences in the circulating levels of purine metabolism components between diving and exercise in bottlenose dolphins (Tursiops truncatus). Blood samples were taken from captive dolphins following a swimming routine (n=8) and after a 2min dive (n=8). Activity of enzymes involved in purine metabolism (hypoxanthine guanine phosphoribosyl transferase (HGPRT), inosine monophosphate deshydrogenase (IMPDH), xanthine oxidase (XO), purine nucleoside phosphorylase (PNP)), and purine metabolite (hypoxanthine (HX), xanthine (X), uric acid (UA), inosine monophosphate (IMP), inosine, nicotinamide adenine dinucleotide (NAD(+)), adenosine, adenosine monophosphate (AMP), adenosine diphosphate (ADP), ATP, guanosine diphosphate (GDP), guanosine triphosphate (GTP)) concentrations were quantified in erythrocyte and plasma samples. Enzymatic activity and purine metabolite concentrations involved in purine synthesis and degradation, were not significantly different between diving and exercise. Plasma adenosine concentration was higher after diving than exercise (p=0.03); this may be related to dive-induced ischemia. In erythrocytes, HGPRT activity was higher after diving than exercise (p=0.007), suggesting an increased capacity for purine recycling and ATP synthesis from IMP in ischemic tissues of bottlenose dolphins during diving. Purine recycling and physiological adaptations may maintain the ATP concentrations in bottlenose dolphins after diving and exercise. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Inverting the G-Tetrad Polarity of a G-Quadruplex by Using Xanthine and 8-Oxoguanine.

    PubMed

    Cheong, Vee Vee; Lech, Christopher Jacques; Heddi, Brahim; Phan, Anh Tuân

    2016-01-04

    G-quadruplexes are four-stranded nucleic acid structures that are built from consecutively stacked guanine tetrad (G-tetrad) assemblies. The simultaneous incorporation of two guanine base lesions, xanthine (X) and 8-oxoguanine (O), within a single G-tetrad of a G-quadruplex was recently shown to lead to the formation of a stable G⋅G⋅X⋅O tetrad. Herein, a judicious introduction of X and O into a human telomeric G-quadruplex-forming sequence is shown to reverse the hydrogen-bond polarity of the modified G-tetrad while preserving the original folding topology. The control exerted over G-tetrad polarity by joint X⋅O modification will be valuable for the design and programming of G-quadruplex structures and their properties. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The route of non-enzymic and enzymic breakdown of 5-phosphoribosyl 1-pyrophosphate to ribose 1-phosphate.

    PubMed Central

    Trembacz, H; Jezewska, M M

    1990-01-01

    Spontaneous decomposition of 5-phosphoribosyl 1-pyrophosphate at pH 5.5 was established to occur as follows: 5-Phosphoribosyl 1-pyrophosphate----5-phosphoribosyl 1,2-(cyclic)phosphate----ribose 1-phosphate----ribose Enzymic degradation of 5-phosphoribosyl 1-pyrophosphate by alkaline phosphatase from calf intestine and by acid phosphatases from potato and Aspergillus niger was found to proceed according to this pathway within the pH range 2.5-7.4 with accumulation of ribose 1-phosphate. In the case of alkaline phosphatase, Mg2+ ions inhibit the pyrophosphorolysis of 5-phosphoribosyl 1-pyrophosphate and stimulate the hydrolysis of ribose 1-phosphate. PMID:1700897

  4. Purine salvage in the apicomplexan Sarcocystis neurona, and generation of hypoxanthine-xanthine-guanine phosphoribosyltransferase-deficient clones for positive-negative selection of transgenic parasites.

    PubMed

    Dangoudoubiyam, Sriveny; Zhang, Zijing; Howe, Daniel K

    2014-09-01

    Sarcocystis neurona is an apicomplexan parasite that causes severe neurological disease in horses and marine mammals. The Apicomplexa are all obligate intracellular parasites that lack purine biosynthesis pathways and rely on the host cell for their purine requirements. Hypoxanthine-xanthine-guanine phosphoribosyltransferase (HXGPRT) and adenosine kinase (AK) are key enzymes that function in two complementary purine salvage pathways in apicomplexans. Bioinformatic searches of the S. neurona genome revealed genes encoding HXGPRT, AK and all of the major purine salvage enzymes except purine nucleoside phosphorylase. Wild-type S. neurona were able to grow in the presence of mycophenolic acid (MPA) but were inhibited by 6-thioxanthine (6-TX), suggesting that the pathways involving either HXGPRT or AK are functional in this parasite. Prior work with Toxoplasma gondii demonstrated the utility of HXGPRT as a positive-negative selection marker. To enable the use of HXGPRT in S. neurona, the SnHXGPRT gene sequence was determined and a gene-targeting plasmid was transfected into S. neurona. SnHXGPRT-deficient mutants were selected with 6-TX, and single-cell clones were obtained. These Sn∆HXG parasites were susceptible to MPA and could be complemented using the heterologous T. gondii HXGPRT gene. In summary, S. neurona possesses both purine salvage pathways described in apicomplexans, thus allowing the use of HXGPRT as a positive-negative drug selection marker in this parasite.

  5. Decaffeination and measurement of caffeine content by addicted Escherichia coli with a refactored N-demethylation operon from Pseudomonas putida CBB5.

    PubMed

    Quandt, Erik M; Hammerling, Michael J; Summers, Ryan M; Otoupal, Peter B; Slater, Ben; Alnahhas, Razan N; Dasgupta, Aurko; Bachman, James L; Subramanian, Mani V; Barrick, Jeffrey E

    2013-06-21

    The widespread use of caffeine (1,3,7-trimethylxanthine) and other methylxanthines in beverages and pharmaceuticals has led to significant environmental pollution. We have developed a portable caffeine degradation operon by refactoring the alkylxanthine degradation (Alx) gene cluster from Pseudomonas putida CBB5 to function in Escherichia coli. In the process, we discovered that adding a glutathione S-transferase from Janthinobacterium sp. Marseille was necessary to achieve N 7 -demethylation activity. E. coli cells with the synthetic operon degrade caffeine to the guanine precursor, xanthine. Cells deficient in de novo guanine biosynthesis that contain the refactored operon are ″addicted″ to caffeine: their growth density is limited by the availability of caffeine or other xanthines. We show that the addicted strain can be used as a biosensor to measure the caffeine content of common beverages. The synthetic N-demethylation operon could be useful for reclaiming nutrient-rich byproducts of coffee bean processing and for the cost-effective bioproduction of methylxanthine drugs.

  6. Bisphenol A 3,4-quinone induces the conversion of xanthine dehydrogenase into oxidase in vitro.

    PubMed

    Sakuma, Satoru; Nakanishi, Masahiko; Morinaga, Kazuhiro; Fujitake, Mihoyo; Wada, Shun-ichi; Fujimoto, Yohko

    2010-01-01

    In the present study, we assessed the influence of bisphenol A (BPA) and bisphenol A 3,4-quinone (BPAQ) on the conversion of xanthine dehydrogenase (XD) into xanthine oxidase (XO) in the rat liver in vitro. BPA up to 100 micromol/L did not affect the XO and XD activities in the partially purified cytosolic fraction from rat liver, whereas BPAQ (2-10 micromol/L) dose-dependently enhanced the XO activity concomitant with a decrease in the XD activity, implying that BPAQ, but not BPA, can convert XD into the reactive oxygen species (ROS) producing the form XO. Furthermore, it was found that BPAQ could increase the generation of ROS and oxidize the guanine moiety of deoxyguanosine in the DNA of primary rat hepatocyte cultures. These results suggest that BPAQ has the potential to convert XD into XO in the liver, which in turn may lead to ROS generation and oxidative DNA damage in this region. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  7. Evaluation of Chloropentafluorobenzene in a Battery of in vitro Short Term Assays

    DTIC Science & Technology

    1986-01-01

    metabolic activation. The CHO/HGPRT assay measures the ability of a test agent to induce forward mutations at the enzyme hypoxanthine-guanine...phosphoribosyl transferase (HGPRT) locus of Chinese hamster ovary cells on the basis- that presumptive mutants defective in the enzyme HGPRT are unable to...10 0 4.) $4 coc H4 0 o uE p- ’-’ coQ i u ,q10 t GD 4- r ) c41 uH 0 0 41GD c t Ia) U, 40 r. 4 coV P-1- 41 E-4 0 .Z ~-H 1 0) N Cu I0 m : L0 0 z4v- +10

  8. Vasoactive intestinal peptide prevents lung injury due to xanthine/xanthine oxidase.

    PubMed

    Berisha, H; Foda, H; Sakakibara, H; Trotz, M; Pakbaz, H; Said, S I

    1990-08-01

    Reactive oxygen species mediate injury and inflammation in many tissues. The addition of xanthine and xanthine oxidase to perfused rat lungs led to increases in peak airway pressure and perfusion pressure, pulmonary edema, and increased protein content in bronchoalveolar lavage fluid. Treatment with 1-10 micrograms.kg-1.min-1 of vasoactive intestinal peptide (VIP), a widely distributed neuropeptide, markedly reduced or totally prevented all signs of injury. Simultaneously, VIP also diminished or abolished the associated generation of arachidonate products. Similar protection was provided by catalase (100 micrograms/ml) but not by the VIP-related peptides secretin or glucagon. The pulmonary vasodilator papaverine (0.15 mg/ml) was also ineffective. Injured lungs that were not treated with VIP released large amounts of this peptide in the perfusate. The results indicate that VIP has potent protective activity against injury triggered by xanthine/xanthine oxidase and may be a physiological modulator of inflammatory tissue damage associated with toxic oxygen metabolites.

  9. The 1.25 Å resolution structure of phosphoribosyl-ATP pyrophosphohydrolase from Mycobacterium tuberculosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Javid-Majd, Farah; Yang, Dong; Ioerger, Thomas R.

    2008-06-01

    The crystal structure of M. tuberculosis phosphoribosyl-ATP pyrophosphohydrolase, the second enzyme in the histidine-biosynthetic pathway, is presented. The structural and inferred functional relationships between M. tuberculosis phosphoribosyl-ATP pyrophosphohydrolase and other members of the nucleoside-triphosphate pyrophosphatase-fold family are described. Phosphoribosyl-ATP pyrophosphohydrolase is the second enzyme in the histidine-biosynthetic pathway, irreversibly hydrolyzing phosphoribosyl-ATP to phosphoribosyl-AMP and pyrophosphate. It is encoded by the hisE gene, which is present as a separate gene in many bacteria and archaea but is fused to hisI in other bacteria, fungi and plants. Because of its essentiality for growth in vitro, HisE is a potential drug target formore » tuberculosis. The crystal structures of two native (uncomplexed) forms of HisE from Mycobacterium tuberculosis have been determined to resolutions of 1.25 and 1.79 Å. The structure of the apoenzyme reveals that the protein is composed of five α-helices with connecting loops and is a member of the α-helical nucleoside-triphosphate pyrophosphatase superfamily. The biological unit of the protein is a homodimer, with an active site on each subunit composed of residues exclusively from that subunit. A comparison with the Campylobacter jejuni dUTPase active site allowed the identification of putative metal- and substrate-binding sites in HisE, including four conserved glutamate and glutamine residues in the sequence that are consistent with a motif for pyrophosphohydrolase activity. However, significant differences between family members are observed in the loop region between α-helices H1 and H3. The crystal structure of M. tuberculosis HisE provides insights into possible mechanisms of substrate binding and the diversity of the nucleoside-triphosphate pyrophosphatase superfamily.« less

  10. Novel repair activities of AlkA (3-methyladenine DNA glycosylase II) and endonuclease VIII for xanthine and oxanine, guanine lesions induced by nitric oxide and nitrous acid

    PubMed Central

    Terato, Hiroaki; Masaoka, Aya; Asagoshi, Kenjiro; Honsho, Akiko; Ohyama, Yoshihiko; Suzuki, Toshinori; Yamada, Masaki; Makino, Keisuke; Yamamoto, Kazuo; Ide, Hiroshi

    2002-01-01

    Nitrosation of guanine in DNA by nitrogen oxides such as nitric oxide (NO) and nitrous acid leads to formation of xanthine (Xan) and oxanine (Oxa), potentially cytotoxic and mutagenic lesions. In the present study, we have examined the repair capacity of DNA N-glycosylases from Escherichia coli for Xan and Oxa. The nicking assay with the defined substrates containing Xan and Oxa revealed that AlkA [in combination with endonuclease (Endo) IV] and Endo VIII recognized Xan in the tested enzymes. The activity (Vmax/Km) of AlkA for Xan was 5-fold lower than that for 7-methylguanine, and that of Endo VIII was 50-fold lower than that for thymine glycol. The activity of AlkA and Endo VIII for Xan was further substantiated by the release of [3H]Xan from the substrate. The treatment of E.coli with N-methyl-N′-nitro-N-nitrosoguanidine increased the Xan-excising activity in the cell extract from alkA+ but not alkA– strains. The alkA and nei (the Endo VIII gene) double mutant, but not the single mutants, exhibited increased sensitivity to nitrous acid relative to the wild type strain. AlkA and Endo VIII also exhibited excision activity for Oxa, but the activity was much lower than that for Xan. PMID:12434002

  11. Hydrogen peroxide generated by xanthine/xanthine oxidase system represses the proliferation of colorectal cancer cell line Caco-2.

    PubMed

    Sakuma, Satoru; Abe, Muneyuki; Kohda, Tetsuya; Fujimoto, Yohko

    2015-01-01

    The twin character of reactive oxygen species is substantiated by a growing body of evidence that reactive oxygen species within cells act as inducers and accelerators of the oncogenic phenotype of cancer cells, while reactive oxygen species can also induce cancer cell death and can therefore function as anti-tumorigenic species. The aim of this study was to assess a possible influence of xanthine/xanthine oxidase on the proliferation of colorectal cancer cell line Caco-2. xanthine/xanthine oxidase (2.5 µM/0.25 mU/ml-25 µM/2.5 mU/ml) dose-dependently inhibited the proliferation of Caco-2 cells. Experiments utilizing reactive oxygen species scavengers (superoxide dismutase, catalase and mannitol) and exogenous hydrogen peroxide revealed a major role of hydrogen peroxide in the xanthine/xanthine oxidase effect. Investigations utilizing annexin V-fluorescein/PI assay using flow cytometry, and the lactate dehydrogenase extracellular release assay indicated that hydrogen peroxide induced necrosis, but not apoptosis, in Caco-2 cells. These results suggest that hydrogen peroxide generated by xanthine/xanthine oxidase has the potential to suppress colorectal cancer cell proliferation.

  12. Crystallization and preliminary X-ray diffraction study of phosphoribosyl pyrophosphate synthetase from E. Coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timofeev, V. I., E-mail: inna@ns.crys.ras.ru; Abramchik, Yu. A., E-mail: tostars@mail.ru; Zhukhlistova, N. E., E-mail: ugama@yandex.ru

    2015-09-15

    Enzymes of the phosphoribosyl pyrophosphate synthetase family (PRPPS, EC 2.7.6.1) catalyze the formation of 5-phosphoribosyl pyrophosphate (5-PRPP) from adenosine triphosphate and ribose 5-phosphate. 5-Phosphoribosyl pyrophosphate is an important intermediate in the synthesis of purine, pyrimidine, and pyridine nucleotides, as well as of the amino acids histidine and tryptophan. The crystallization conditions for E. coli PRPPS were found by the vapor-diffusion technique and were optimized to apply the capillary counter-diffusion technique. The X-ray diffraction data set was collected from the crystals grown by the counter-diffusion technique using a synchrotron radiation source to 3.1-Å resolution. The crystals of PRPPS belong to sp.more » gr. P6{sub 3}22 and have the following unit-cell parameters: a = b = 104.44 Å, c = 124.98 Å, α = β = 90°, γ = 120°. The collected X-ray diffraction data set is suitable for the solution of the three-dimensional structure of PRPPS at 3.1-Å resolution.« less

  13. IRON REGULATES XANTHINE OXIDASE ACTIVITY IN THE LUNG

    EPA Science Inventory

    The iron chelator deferoxamine has been reported to inhibit both xanthine oxidase (XO) and xanthine dehydrogenase activity, but the relationship of this effect to the availability of iron in the cellular and tissue environment remains unexplored. XO and total xanthine oxidoreduct...

  14. Xanthine oxidase biosensor for monitoring meat spoilage

    NASA Astrophysics Data System (ADS)

    Vanegas, D. C.; Gomes, C.; McLamore, E. S.

    2014-05-01

    In this study, we have designed an electrochemical biosensor for real-time detection of specific biomarkers of bacterial metabolism related to meat spoilage (hypoxanthine and xanthine). The selective biosensor was developed by assembling a `sandwich' of nanomaterials and enzymes on a platinum-iridium electrode (1.6 mm tip diameter). The materials deposited on the sensor tip include amorphous platinum nanoclusters (i.e. Pt black), reduced graphene oxide, nanoceria, and xanthine oxidase. Xanthine oxidase was encapsulated in laponite hydrogel and used for the biorecognition of hypoxanthine and xanthine (two molecules involved in the rotting of meat by spoilage microorganisms). The developed biosensor demonstrated good electrochemical performance toward xanthine with sensitivity of 2.14 +/- 1.48 μA/mM, response time of 5.2 +/- 1.5 sec, lower detection limit of 150 +/- 39 nM, and retained at least 88% of its activity after 7 days of continuous use.

  15. Estimates of cellular mutagenesis from cosmic rays

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.

    1994-01-01

    A parametric track structure model is used to estimate the cross section as a function of particle velocity and charge for mutations at the hypoxanthine guanine phosphoribosyl transferase (HGPRT) locus in human fibroblast cell cultures. Experiments that report the fraction of mutations per surviving cell for human lung and skin fibroblast cells indicate small differences in the mutation cross section for these two cell lines when differences in inactivation rates between these cell lines are considered. Using models of cosmic ray transport, the mutation rate at the HGPRT locus is estimated for cell cultures in space flight and rates of about 2 to 10 x 10(exp -6) per year are found for typical spacecraft shielding. A discussion of how model assumptions may alter the predictions is also presented.

  16. A kinetic study of hypoxanthine oxidation by milk xanthine oxidase.

    PubMed Central

    Escribano, J; Garcia-Canovas, F; Garcia-Carmona, F

    1988-01-01

    The course of the reaction sequence hypoxanthine----xanthine----uric acid catalysed by xanthine:oxygen oxidoreductase from milk was investigated on the basis of u.v. spectra taken during the course of hypoxanthine and xanthine oxidations. It was found that xanthine accumulated in the reaction mixture when hypoxanthine was used as a substrate. The time course of the concentrations of hypoxanthine, xanthine intermediate and uric acid product was simulated numerically. The mathematical model takes into account the competition of substrate, intermediate and product and the accumulation of the intermediate at the enzyme. This type of analysis permits the kinetic parameters of the enzyme for hypoxanthine and xanthine to be obtained. PMID:3196295

  17. A Proteomic Approach to Investigating Gene Cluster Expression and Secondary Metabolite Functionality in Aspergillus fumigatus

    PubMed Central

    Owens, Rebecca A.; Hammel, Stephen; Sheridan, Kevin J.; Jones, Gary W.; Doyle, Sean

    2014-01-01

    A combined proteomics and metabolomics approach was utilised to advance the identification and characterisation of secondary metabolites in Aspergillus fumigatus. Here, implementation of a shotgun proteomic strategy led to the identification of non-redundant mycelial proteins (n = 414) from A. fumigatus including proteins typically under-represented in 2-D proteome maps: proteins with multiple transmembrane regions, hydrophobic proteins and proteins with extremes of molecular mass and pI. Indirect identification of secondary metabolite cluster expression was also achieved, with proteins (n = 18) from LaeA-regulated clusters detected, including GliT encoded within the gliotoxin biosynthetic cluster. Biochemical analysis then revealed that gliotoxin significantly attenuates H2O2-induced oxidative stress in A. fumigatus (p>0.0001), confirming observations from proteomics data. A complementary 2-D/LC-MS/MS approach further elucidated significantly increased abundance (p<0.05) of proliferating cell nuclear antigen (PCNA), NADH-quinone oxidoreductase and the gliotoxin oxidoreductase GliT, along with significantly attenuated abundance (p<0.05) of a heat shock protein, an oxidative stress protein and an autolysis-associated chitinase, when gliotoxin and H2O2 were present, compared to H2O2 alone. Moreover, gliotoxin exposure significantly reduced the abundance of selected proteins (p<0.05) involved in de novo purine biosynthesis. Significantly elevated abundance (p<0.05) of a key enzyme, xanthine-guanine phosphoribosyl transferase Xpt1, utilised in purine salvage, was observed in the presence of H2O2 and gliotoxin. This work provides new insights into the A. fumigatus proteome and experimental strategies, plus mechanistic data pertaining to gliotoxin functionality in the organism. PMID:25198175

  18. The 1.25 Å resolution structure of phosphoribosyl-ATP pyrophosphohydrolase from Mycobacterium tuberculosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Javid-Majd, Farah; Yang, Dong; Ioerger, Thomas R.

    2008-06-23

    Phosphoribosyl-ATP pyrophosphohydrolase is the second enzyme in the histidine-biosynthetic pathway, irreversibly hydrolyzing phosphoribosyl-ATP to phosphoribosyl-AMP and pyrophosphate. It is encoded by the hisE gene, which is present as a separate gene in many bacteria and archaea but is fused to hisI in other bacteria, fungi and plants. Because of its essentiality for growth in vitro, HisE is a potential drug target for tuberculosis. The crystal structures of two native (uncomplexed) forms of HisE from Mycobacterium tuberculosis have been determined to resolutions of 1.25 and 1.79 {angstrom}. The structure of the apoenzyme reveals that the protein is composed of five -helicesmore » with connecting loops and is a member of the {alpha}-helical nucleoside-triphosphate pyrophosphatase superfamily. The biological unit of the protein is a homodimer, with an active site on each subunit composed of residues exclusively from that subunit. A comparison with the Campylobacter jejuni dUTPase active site allowed the identification of putative metal- and substrate-binding sites in HisE, including four conserved glutamate and glutamine residues in the sequence that are consistent with a motif for pyrophosphohydrolase activity. However, significant differences between family members are observed in the loop region between {alpha}-helices H1 and H3. The crystal structure of M. tuberculosis HisE provides insights into possible mechanisms of substrate binding and the diversity of the nucleoside-triphosphate pyrophosphatase superfamily.« less

  19. Xanthine and 8-oxoguanine in G-quadruplexes: formation of a G·G·X·O tetrad

    PubMed Central

    Cheong, Vee Vee; Heddi, Brahim; Lech, Christopher Jacques; Phan, Anh Tuân

    2015-01-01

    G-quadruplexes are four-stranded structures built from stacked G-tetrads (G·G·G·G), which are planar cyclical assemblies of four guanine bases interacting through Hoogsteen hydrogen bonds. A G-quadruplex containing a single guanine analog substitution, such as 8-oxoguanine (O) or xanthine (X), would suffer from a loss of a Hoogsteen hydrogen bond within a G-tetrad and/or potential steric hindrance. We show that a proper arrangement of O and X bases can reestablish the hydrogen-bond pattern within a G·G·X·O tetrad. Rational incorporation of G·G·X·O tetrads in a (3+1) G-quadruplex demonstrated a similar folding topology and thermal stability to that of the unmodified G-quadruplex. pH titration conducted on X·O-modified G-quadruplexes indicated a protonation-deprotonation equilibrium of X with a pKa ∼6.7. The solution structure of a G-quadruplex containing a G·G·X·O tetrad was determined, displaying the same folding topology in both the protonated and deprotonated states. A G-quadruplex containing a deprotonated X·O pair was shown to exhibit a more electronegative groove compared to that of the unmodified one. These differences are likely to manifest in the electronic properties of G-quadruplexes and may have important implications for drug targeting and DNA-protein interactions. PMID:26400177

  20. Three-dimensional structure of phosphoribosyl pyrophosphate synthetase from E. coli at 2.71 Å resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timofeev, V. I., E-mail: inna@ns.crys.ras.ru, E-mail: tostars@mail.ru, E-mail: ugama@yandex.ru; Abramchik, Yu. A.; Zhukhlistova, N. E.

    2016-01-15

    Phosphoribosyl pyrophosphate synthetase from Escherichia coli was cloned, purified, and crystallized. Single crystals of the enzyme were grown under microgravity. The X-ray diffraction data set was collected at the Spring-8 synchrotron facility and used to determine the three-dimensional structure of the enzyme by the molecular-replacement method at 2.71 Å resolution. The active and regulatory sites in the molecule of E. coli phosphoribosyl pyrophosphate synthetase were revealed by comparison with the homologous protein from Bacillus subtilis, the structure of which was determined in a complex with functional ligands. The conformations of polypeptide-chain fragments surrounding and composing the active and regulatory sitesmore » were shown to be identical in both proteins.« less

  1. 21 CFR 73.2329 - Guanine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2329 Guanine. (a) Identity and specifications. (1) The color additive guanine shall conform in identity and specifications to the requirements of § 73.1329 (a)(1) and (b). (2) Color additive mixtures of guanine may contain the following diluents: (i) For...

  2. Phospholipid alterations in cardiac sarcoplasmic reticulum induced by xanthine oxidase: contamination of commercial preparations of xanthine oxidase by phospholipase A/sub 2/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamache, D.A.; Kornberg, L.J.; Bartolf, M.

    1986-05-01

    Incubation of cardiac sarcoplasmic reticulum with xanthine oxidase alone at pH 7.0 resulted in a loss of lipid phosphorus that was potentiated by the addition of xanthine. Using autoclaved E.coli with 1-/sup 14/C-oleate in the 2-acyl position of membrane phospholipids, the authors demonstrate that many, but not all, commercial preparations of xanthine oxidase contain significant phospholipase A/sub 2/ (PLA/sub 2/) activity (64.3-545.6 nmols/min/mg). The PLA/sub 2/ was maximally active in the neutral-alkaline pH range, was Ca/sup 2 +/-dependent, and was unaffected by the addition of xanthine. PLA/sub 2/ activity was totally inhibited by 1mM EDTA whereas radical production by optimalmore » concentrations of xanthine/xanthine oxidase (X/XO) was unaffected by EDTA. Chromatographically purified xanthine oxidase (Sigma Grade III) contained high levels of PLA/sub 2/ activity (64.3 nmols/min/mg) compared to endogenous levels of neutral-active, Ca/sup 2 +/-dependent PLA/sub 2/ measured in various tissue homogenates (less than or equal to 0.5 nmols/ min/mg). Because X/XO mixtures are used extensively to study oxygen free radical-induced cell injury and membrane phospholipid alterations, the presence of a potent extracellular PLA/sub 2/ may have influenced previously published reports, and such studies should be interpreted cautiously.« less

  3. Next generation tools for high-throughput promoter and expression analysis employing single-copy knock-ins at the Hprt1 locus.

    PubMed

    Yang, G S; Banks, K G; Bonaguro, R J; Wilson, G; Dreolini, L; de Leeuw, C N; Liu, L; Swanson, D J; Goldowitz, D; Holt, R A; Simpson, E M

    2009-03-01

    We have engineered a set of useful tools that facilitate targeted single copy knock-in (KI) at the hypoxanthine guanine phosphoribosyl transferase 1 (Hprt1) locus. We employed fine scale mapping to delineate the precise breakpoint location at the Hprt1(b-m3) locus allowing allele specific PCR assays to be established. Our suite of tools contains four targeting expression vectors and a complementing series of embryonic stem cell lines. Two of these vectors encode enhanced green fluorescent protein (EGFP) driven by the human cytomegalovirus immediate-early enhancer/modified chicken beta-actin (CAG) promoter, whereas the other two permit flexible combinations of a chosen promoter combined with a reporter and/or gene of choice. We have validated our tools as part of the Pleiades Promoter Project (http://www.pleiades.org), with the generation of brain-specific EGFP positive germline mouse strains.

  4. Xanthine crystals induced by topiroxostat, a xanthine oxidoreductase inhibitor, in rats, cause transitional cell tumors.

    PubMed

    Shimo, Takeo; Moto, Mitsuyoshi; Ashizawa, Naoki; Matsumoto, Koji; Iwanaga, Takashi; Saito, Kazuhiro

    2014-04-01

    The present study was performed to elucidate the underlying mechanism of transitional cell tumors found in the carcinogenicity testing of topiroxostat, a xanthine oxidoreductase inhibitor, in which topiroxostat was orally given to F344 rats at 0.3, 1, and 3 mg/kg for 2 years. In the urinary bladder, transitional cell papillomas and/or carcinomas were seen in males receiving 0.3, 1, and 3 mg/kg (1/49, 3/49, and 10/50, respectively). In the kidney, transitional cell papillomas and/or carcinomas in the pelvis were seen in 2/50 males and 1/50 females receiving 3 mg/kg. In the mechanistic study by 52-week oral treatment with topiroxostat at 3 mg/kg to F344 male rats, with and without citrate, simple and papillary transitional cell hyperplasias of the urinary bladder epithelium were observed in 5/17 in the topiroxostat-alone treatment group, along with xanthine-induced nephropathy, in contrast to neither xanthine crystals nor lesions in urinary organs by co-treatment group with citrate. As for sex differences of urinary bladder tumors, the BrdU labeling index for epithelial cells of the urinary bladder by 5-week oral treatment with topiroxostat at 10 mg/kg to F344 rats was increased in males only, showing consistency with histopathological findings. Therefore, the present study indicates that transitional cell tumors induced by topiroxostat in rats were due to physical stimulation to transitional cells of xanthine crystals/calculi and provides that other factors were not implicated in this tumorigenesis. Furthermore, the present study suggests that such tumors do not predict for humans since topiroxostat-induced xanthine deposition is a rodent-specific event.

  5. 21 CFR 73.1329 - Guanine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Guanine. 73.1329 Section 73.1329 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1329 Guanine. (a) Identity. (1) The color additive guanine is...

  6. 21 CFR 73.1329 - Guanine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Guanine. 73.1329 Section 73.1329 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1329 Guanine. (a) Identity. (1) The color additive guanine is...

  7. 21 CFR 73.1329 - Guanine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Guanine. 73.1329 Section 73.1329 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1329 Guanine. (a) Identity. (1) The color additive guanine is...

  8. Immobilization of xanthine oxidase on a polyaniline silicone support.

    PubMed

    Nadruz, W; Marques, E T; Azevedo, W M; Lima-Filho, J L; Carvalho, L B

    1996-03-01

    A polyaniline silicone support to immobilize xanthine oxidase is proposed as a reactor coil to monitor the action of xanthine oxidase on hypoxanthine, xanthine and 6-mercaptopurine. A purified xanthine oxidase immobilized on this support lost 80% of the initial activity after 12 min of use. Co-immobilization of superoxide dismutase and catalase increased the stability of immobilized xanthine oxidase so that the derivative maintained 79% of its initial activity after 4.6 h of continuous use in which 1.5 mumol purine bases were converted by the immobilized enzyme system. There is no evidence of either polyaniline or protein leaching from the coil during 3 h of continuous use. When solutions (10 ml) of hypoxanthine, xanthine and 6-mercaptopurine were circulated individually through the xanthine oxidase-superoxide dismutase-catalase-polyaniline coil (1 mm internal diameter and 3 m in length, 3 ml internal volume) activities of 8.12, 11.17 and 1.09 nmol min-1 coil-1, respectively, were obtained. The advantages of the reactor configuration and the redox properties of the polymer, particularly with respect to immobilized oxidoreductases, make this methodology attractive for similar enzyme systems. This immobilized enzyme system using polyaniline-silicone as support converted 6-mercaptopurine to 6-thiouric acid with equal efficiency as resins based on polyacrylamide and polyamide 11.

  9. Xanthine and 8-oxoguanine in G-quadruplexes: formation of a G·G·X·O tetrad.

    PubMed

    Cheong, Vee Vee; Heddi, Brahim; Lech, Christopher Jacques; Phan, Anh Tuân

    2015-12-02

    G-quadruplexes are four-stranded structures built from stacked G-tetrads (G·G·G·G), which are planar cyclical assemblies of four guanine bases interacting through Hoogsteen hydrogen bonds. A G-quadruplex containing a single guanine analog substitution, such as 8-oxoguanine (O) or xanthine (X), would suffer from a loss of a Hoogsteen hydrogen bond within a G-tetrad and/or potential steric hindrance. We show that a proper arrangement of O and X bases can reestablish the hydrogen-bond pattern within a G·G·X·O tetrad. Rational incorporation of G·G·X·O tetrads in a (3+1) G-quadruplex demonstrated a similar folding topology and thermal stability to that of the unmodified G-quadruplex. pH titration conducted on X·O-modified G-quadruplexes indicated a protonation-deprotonation equilibrium of X with a pKa ∼6.7. The solution structure of a G-quadruplex containing a G·G·X·O tetrad was determined, displaying the same folding topology in both the protonated and deprotonated states. A G-quadruplex containing a deprotonated X·O pair was shown to exhibit a more electronegative groove compared to that of the unmodified one. These differences are likely to manifest in the electronic properties of G-quadruplexes and may have important implications for drug targeting and DNA-protein interactions. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Xanthine urolithiasis in a cat: a case report and evaluation of a candidate gene for xanthine dehydrogenase.

    PubMed

    Tsuchida, Shuichi; Kagi, Akiko; Koyama, Hidekazu; Tagawa, Masahiro

    2007-12-01

    Xanthine urolithiasis was found in a 4-year-old spayed female Himalayan cat with a 10-month history of intermittent haematuria and dysuria. Ultrasonographs indicated the existence of several calculi in the bladder that were undetectable by survey radiographic examination. Four bladder stones were removed by cystotomy. The stones were spherical brownish-yellow and their surface was smooth and glossy. Quantitative mineral analysis showed a representative urolith to be composed of more than 95% xanthine. Ultrasonographic examination of the bladder 4.5 months postoperatively indicated the recurrence of urolithiasis. Analysis of purine concentration in urine and blood showed that the cat excreted excessive amounts of xanthine. In order to test the hypothesis that xanthinuria was caused by a homozygote of the inherited mutant allele of a gene responsible for deficiency of enzyme activity in purine degradation pathway, the allele composition of xanthine dehydrogenase (XDH) gene (one of the candidate genes for hereditary xanthinuria) was evaluated. The cat with xanthinuria was a heterozygote of the polymorphism. A single nucleotide polymorphism analysis of the cat XDH gene strongly indicated that the XDH gene of the patient cat was composed of two kinds of alleles and ruled out the hypothesis that the cat inherited the same recessive XDH allele suggesting no activity from a single ancestor.

  11. A unique deubiquitinase that deconjugates phosphoribosyl-linked protein ubiquitination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Jiazhang; Yu, Kaiwen; Fei, Xiaowen

    Ubiquitination regulates many aspects of host immunity and thus is a common target for infectious agents. Recent studies revealed that members of the SidE effector family of the bacterial pathogen Legionella pneumophila attacked several small GTPases associated with the endoplasmic reticulum by a novel ubiquitination mechanism that does not require the E1 and E2 enzymes of the host ubiquitination machinery. Following ubiquitin activation by ADP- ribosylation via a mono-ADP-ribosylation motif, ADP-ribosylated ubiquitin is cleaved by a phosphodiesterasedomainwithinSdeA,whichisconcomitantwiththelinkof phosphoribosylated ubiquitin to serine residues in the substrate. Here we demonstrate that the activity of SidEs is regulated by SidJ, another effector encodedmore » by a gene situated in the locus coding for three members of the SidE family (SdeC, SdeB and SdeA). SidJ functions to remove ubiquitin from SidEs-modified substrates by cleaving the phosphodiester bond that links phosphoribosylated ubiquitin to protein substrates. Further, the deubiquitinase activity of SidJ is essential for its role in L. pneumophila infection. Finally, the activity of SidJ is required for efficiently reducing the abundance of ubiquitinated Rab33b in infected cells within a few hours after bacterial uptake. Our results establish SidJ as a deubiquitinase that functions to impose temporal regulation of the activity of the SidE effectors. The identification of SidJ may shed light on future study of signaling cascades mediated by this unique ubiquitination that also potentially regulates cellular processes in eukaryotic cells.« less

  12. 21 CFR 73.1329 - Guanine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... in this subpart as safe and suitable for use in color additive mixtures for coloring externally... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1329 Guanine. (a) Identity. (1) The color additive guanine is the crystalline material obtained from fish scales and consists principally of the two purines...

  13. Simple, high-yield purification of xanthine oxidase from bovine milk.

    PubMed

    Ozer, N; Müftüoglu, M; Ataman, D; Ercan, A; Ogüs, I H

    1999-05-13

    Xanthine oxidase, a commercially important enzyme with a wide area of application, was extracted from fresh milk, without added preservatives, using toluene and heat. The short purification procedure, with high yield, consisted of extraction, ammonium sulfate fractionation, and DEAE-Sepharose (fast flow) column chromatography. Xanthine oxidase was eluted as a single activity peak from the column using a buffer gradient. The purification fold, specific activity and yield for the purified xanthine oxidase were 328, 10.161 U/mg and 69%, respectively. The enzyme was concentrated by ultrafiltration, although 31% of the activity was lost during concentration, no change in specific activity was observed. Activity and protein gave coincident staining bands on native polyacrylamide gels. The intensity and the number of bands were dependent on the oxidative state(s) of the enzyme; reduction by 2-mercaptoethanol decreased the intensity of the slow-moving bands and increased the intensity of the fastest-moving band. Following sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), two major bands (molecular masses of 152 and 131 kDa) were observed, accounting for > or = 95% of xanthine oxidase. Native- and SDS-PAGE showed that the purified xanthine oxidase becomes a heterodimer due to endogenous proteases.

  14. Lack of evidence for an association between the frequency of mutants or translocations in circulating lymphocytes and exposure to radon gas in the home.

    PubMed

    Cole, J; Green, M H; Bridges, B A; Waugh, A P; Beare, D M; Henshaw, D; Last, R; Liu, Y; Cortopassi, G

    1996-01-01

    Radon measurements in the living room and main bedroom of 41 houses in the town of Street, Somerset, England have been made. Exposure levels, weighted using the formula of the UK National Radiological Protection Board, of 19-484 Bq m-3 (about half > 100 Bq m-3) were found. Blood samples were obtained from a total of 66 occupants in these homes, and the frequency of genetic alterations in lymphocytes was estimated using two different end points. Gene mutations at the hypoxanthine guanine phosphoribosyl transferase locus were determined in T lymphocytes for 65 subjects using a clonal assay, and the frequency of the BCL-2 t(14;18) translocation, a chromosomal event associated with leukemia/lymphoma, was estimated in lymphocytes using a polymerase chain reaction-based technique for 64 subjects. In neither case was a significant correlation with radon levels in the home found, in contrast to our earlier observation with a smaller series.

  15. Xanthine Oxidase Induces Foam Cell Formation through LOX-1 and NLRP3 Activation.

    PubMed

    Dai, Yao; Cao, Yongxiang; Zhang, Zhigao; Vallurupalli, Srikanth; Mehta, Jawahar L

    2017-02-01

    Xanthine oxidase catalyzes the oxidation of xanthine to uric acid. This process generates excessive reactive oxygen species (ROS) that play an important role in atherogenesis. Recent studies show that LRR and PYD domains-containing protein 3 (NLRP3), a component of the inflammasome, may be involved in the formation of foam cells, a hallmark of atherosclerosis. This study was designed to study the role of various scavenger receptors and NLRP3 inflammasome in xanthine oxidase and uric acid-induced foam cell formation. Human vascular smooth muscle cells (VSMCs) and THP-1 macrophages were treated with xanthine oxidase or uric acid. Xanthine oxidase treatment (of both VSMCs and THP-1 cells) resulted in foam cell formation in concert with generation of ROS and expression of cluster of differentiation 36 (CD36) and oxidized low density lipoprotein (lectin-like) receptor 1 (LOX-1), but not of scavenger receptor A (SRA). Uric acid treatment resulted in foam cell formation, ROS generation and expression of CD36, but not of LOX-1 or SRA. Further, treatment of cells with xanthine oxidase, but not uric acid, activated NLRP3 and its downstream pro-inflammatory signals- caspase-1, interleukin (IL)-1β and IL-18. Blockade of LOX-1 or NLRP3 inflammasome with specific siRNAs reduced xanthine oxidase-induced foam cell formation, ROS generation and activation of NLRP3 and downstream signals. Xanthine oxidase induces foam cell formation in large part through activation of LOX-1 - NLRP3 pathway in both VSMCs and THP-1 cells, but uric acid-induced foam cell formation is exclusively through CD36 pathway. Further, LOX-1 activation is upstream of NLRP3 activation. Graphical Abstract Steps in the formation of foam cells in response to xanthine oxidase and uric acid. Xanthine oxidase stimulates LOX-1 expression on the cell membrane of macrophages and vascular smooth muscle cells (VSMCs) and increases generation of ROS, which activate NLRP3 inflammasome and downstream pro

  16. Purine metabolism in Toxoplasma gondii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krug, E.C.; Marr, J.J.; Berens, R.L.

    1989-06-25

    We have studied the incorporation and interconversion of purines into nucleotides by freshly isolated Toxoplasma gondii. They did not synthesize nucleotides from formate, glycine, or serine. The purine bases hypoxanthine, xanthine, guanine, and adenine were incorporated at 9.2, 6.2, 5.1, and 4.3 pmol/10(7) cells/h, respectively. The purine nucleosides adenosine, inosine, guanosine, and xanthosine were incorporated at 110, 9.0, 2.7, and 0.3 pmol/10(7) cells/h, respectively. Guanine, xanthine, and their respective nucleosides labeled only guanine nucleotides. Inosine, hypoxanthine, and adenine labeled both adenine and guanine nucleotide pools at nearly equal ratios. Adenosine kinase was greater than 10-fold more active than the nextmore » most active enzyme in vitro. This is consistent with the metabolic data in vivo. No other nucleoside kinase or phosphotransferase activities were found. Phosphorylase activities were detected for guanosine and inosine; no other cleavage activities were detected. Deaminases were found for adenine and guanine. Phosphoribosyltransferase activities were detected for all four purine nucleobases. Interconversion occurs only in the direction of adenine to guanine nucleotides.« less

  17. Tryptophan biosynthetic enzymes of Staphylococcus aureus.

    PubMed

    Proctor, A R; Kloos, W E

    1973-04-01

    Tryptophan biosynthetic enzymes were assayed in various tryptophan mutants of Staphylococcus aureus strain 655 and the wild-type parent. All mutants, except trpB mutants, lacked only the activity corresponding to the particular biosynthetic block, as suggested previously by analysis of accumulated intermediates and auxonography. Tryptophan synthetase A was not detected in extracts of either trpA or trpB mutants but appeared normal in other mutants. Mutants in certain other classes exhibited partial loss of another particular tryptophan enzyme activity. Tryptophan synthetase B activity was not detected in cell extract preparations but was detected in whole cells. The original map order proposed for the S. aureus tryptophan gene cluster was clarified by the definition of trpD (phosphoribosyl transferase(-)) and trpF (phosphoribosyl anthranilate isomerase(-)) mutants. These mutants were previously unresolved and designated as trp(DF) mutants (anthranilate accumulators). Phosphoribosyl anthranilate isomerase and indole-3-glycerol phosphate synthetase enzymes were separable by molecular sieve chromatography, suggesting that these functions are coded by separate loci. Molecular sieve chromatography failed to reveal aggregates involving anthranilate synthetase, phosphoribosyl transferase, phosphoribosyl anthranilate isomerase, and indole-3-glycerol phosphate synthetase, and this procedure provided an estimate of the molecular weights of these enzymes. Tryptophan was shown to repress synthesis of all six tryptophan biosynthetic enzymes, and derepression of all six activities was incident upon tryptophan starvation. Tryptophan inhibited the activity of anthranilate synthetase, the first enzyme of the pathway.

  18. Xanthine oxidoreductase and its inhibitors: relevance for gout.

    PubMed

    Day, Richard O; Kamel, Bishoy; Kannangara, Diluk R W; Williams, Kenneth M; Graham, Garry G

    2016-12-01

    Xanthine oxidoreductase (XOR) is the rate-limiting enzyme in purine catabolism and converts hypoxanthine to xanthine, and xanthine into uric acid. When concentrations of uric acid exceed its biochemical saturation point, crystals of uric acid, in the form of monosodium urate, emerge and can predispose an individual to gout, the commonest form of inflammatory arthritis in men aged over 40 years. XOR inhibitors are primarily used in the treatment of gout, reducing the formation of uric acid and thereby, preventing the formation of monosodium urate crystals. Allopurinol is established as first-line therapy for gout; a newer alternative, febuxostat, is used in patients unable to tolerate allopurinol. This review provides an overview of gout, a detailed analysis of the structure and function of XOR, discussion on the pharmacokinetics and pharmacodynamics of XOR inhibitors-allopurinol and febuxostat, and the relevance of XOR in common comorbidities of gout. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  19. Design, synthesis and molecular modeling of aloe-emodin derivatives as potent xanthine oxidase inhibitors.

    PubMed

    Shi, Da-Hua; Huang, Wei; Li, Chao; Liu, Yu-Wei; Wang, Shi-Fan

    2014-03-21

    A series of aloe-emodin derivatives were synthesized and evaluated as xanthine oxidase inhibitors. Among them, four aloe-emodin derivatives showed significant inhibitory activities against xanthine oxidase. The compound 4,5-dihydroxy-9,10-dioxo-9,10-dihydroanthracene-2-carbaldehyde (A1) possessed the best xanthine oxidase inhibitory activity with IC50 of 2.79 μM. Lineweaver-Burk plot analysis revealed that A1 acted as a mixed-type inhibitor for xanthine oxidase. The docking study revealed that the molecule A1 had strong interactions with the active site of xanthine oxidase and this result was in agreement with kinetic study. Consequently, compound A1 is a new-type candidate for further development for the treatment of gout. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  20. Xanthine derivatives without PDE effect stimulate voltage-activated chloride conductance of toad skin.

    PubMed

    Nagel, Wolfram; Katz, Uri

    2003-02-01

    The effect of xanthine derivatives on the voltage-activated Cl(-) conductance (G(Cl)) of amphibian skin was analyzed. 3-Isobutyl-1-methylxanthine (IBMX) and the recently synthesized xanthine derivatives 3,7-dimethyl-1-propyl xanthine (X-32) and 3,7-dimethyl-1-isobutyl xanthine (X-33), which lack inhibitory effects on phosphodiesterases in CHO and Calu-3 cells, increased voltage-activated G(Cl) without effect on baseline conductance at inactivating voltage. Half-maximal stimulation of G(Cl) occurred at 108 +/- 9 microM for X-32 and X-33 after apical or basolateral application. The stimulation of G(Cl), which occurs only in the presence of Cl(-) in the mucosal solution, is caused by a shift of the voltage sensitivity to lower clamp potentials and an increase of the maximally activated level. Furosemide reversed both the shift of sensitivity and the increase in magnitude. These patterns are fundamentally different from those seen after application of membrane-permeant, nonmetabolized analogs of cAMP, and they indicate that the xanthines stimulate G(Cl) directly. This notion is strengthened by the lack of influence on intracellular cAMP content, which is consistent with the observations in CHO and Calu-3 cells. We propose that the xanthine derivatives increase the voltage sensitivity of a regulative component in the conductive Cl(-) pathway across amphibian skin.

  1. Genetic control of enzyme formation. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, S. E.

    1978-07-26

    Research progress is reported on work on tryptophan biosynthesis in Euglena gracilis and higher plants. The experimental data provide an outline of the general evolution of the pathway. Structural analyses of the pathway proteins by quantitative immunochemical methods have been completed; this was done with the anthranilate synthase-1 phosphoribosyl transferase complex in Escherichia coli. An examination of the evolution, in the Enterobacteriaceae, of the enzyme activities anthranilate synthase and anthranilate-5-1 phosphoribosyl-1-pyrophosphate phosphoribosyltransferase has been begun. (ACR)

  2. Inhibition of purine phosphoribosyltransferases of Ehrlich ascites-tumour cells by 6-mercaptopurine

    PubMed Central

    Atkinson, M. R.; Murray, A. W.

    1965-01-01

    1. The formation of adenosine 5′-phosphate, guanosine 5′-phosphate and inosine 5′-phosphate from [8-14C]adenine, [8-14C]guanine and [8-14C]hypoxanthine respectively in the presence of 5-phosphoribosyl pyrophosphate and an extract from Ehrlich ascites-tumour cells was assayed by a method involving liquid-scintillation counting of the radioactive nucleotides on diethylaminoethylcellulose paper. The results obtained with guanine were confirmed by a spectrophotometric assay which was also used to assay the conversion of 6-mercaptopurine and 5-phosphoribosyl pyrophosphate into 6-thioinosine 5′-phosphate in the presence of 6-mercaptopurine phosphoribosyltransferase from these cells. 2. At pH 7·8 and 25° the Michaelis constants for adenine, guanine and hypoxanthine were 0·9 μm, 2·9 μm and 11·0 μm in the assay with radioactive purines; the Michaelis constant for guanine in the spectrophotometric assay was 2·6 μm. At pH 7·9 the Michaelis constant for 6-mercaptopurine was 10·9 μm. 3. 25 μm-6-Mercaptopurine did not inhibit adenine phosphoribosyltransferase. 6-Mercaptopurine is a competitive inhibitor of guanine phosphoribosyltransferase (Ki 4·7 μm) and hypoxanthine phosphoribosyltransferase (Ki 8·3 μm). Hypoxanthine is a competitive inhibitor of guanine phosphoribosyltransferase (Ki 3·4 μm). 4. Differences in kinetic parameters and in the distribution of phosphoribosyltransferase activities after electrophoresis in starch gel indicate that different enzymes are involved in the conversion of adenine, guanine and hypoxanthine into their nucleotides. 5. From the low values of Ki for 6-mercaptopurine, and from published evidence that ascites-tumour cells require supplies of purines from the host tissues, it is likely that inhibition of hypoxanthine and guanine phosphoribosyltransferases by free 6-mercaptopurine is involved in the biological activity of this drug. PMID:14342250

  3. Xanthine oxidase functionalized Ta2O5 nanostructures as a novel scaffold for highly sensitive SPR based fiber optic xanthine sensor.

    PubMed

    Kant, Ravi; Tabassum, Rana; Gupta, Banshi D

    2018-01-15

    Fabrication and characterization of a surface plasmon resonance based fiber optic xanthine sensor using entrapment of xanthine oxidase (XO) enzyme in several nanostructures of tantalum (v) oxide (Ta 2 O 5 ) have been reported. Chemical route was adopted for synthesizing Ta 2 O 5 nanoparticles, nanorods, nanotubes and nanowires while Ta 2 O 5 nanofibers were prepared by electrospinning technique. The synthesized Ta 2 O 5 nanostructures were characterized by photoluminescence, scanning electron microscopy, UV-Visible spectra and X-ray diffraction pattern. The probes were fabricated by coating an unclad core of the fiber with silver layer followed by the deposition of XO entrapped Ta 2 O 5 nanostructures. The crux of sensing mechanism relies on the modification of dielectric function of sensing layer upon exposure to xanthine solution of diverse concentrations, reflected in terms of shift in resonance wavelength. The sensing probe coated with XO entrapped Ta 2 O 5 nanofibers has been turned out to possess maximum sensitivity amongst the synthesized nanostructures. The probe was optimized in terms of pH of the sample and the concentration of XO entrapped in Ta 2 O 5 nanofibers. The optimized sensing probe possesses a remarkably good sensitivity of 26.2nm/µM in addition to linear range from 0 to 3µM with an invincible LOD value of 0.0127µM together with a response time of 1min. Furthermore, probe selectivity with real sample analysis ensure the usage of the sensor for practical scenario. The results reported open a novel perspective towards a sensitive, rapid, reliable and selective detection of xanthine. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Antioxidant effect of naturally occurring xanthines on the oxidative damage of DNA bases

    NASA Astrophysics Data System (ADS)

    Vieira, A. J. S. C.; Telo, J. P.; Pereira, H. F.; Patrocínio, P. F.; Dias, R. M. B.

    1999-01-01

    The repair of the oxidised radicals of adenine and guanosine by several naturally occurring xanthines was studied. Each pair of DNA purine/xanthine was made to react with the sulphate radical and the decrease of the concentration of both compounds was measured by HPLC as a function of irradiation time. The results show that xanthine efficiently prevents the oxidation of the two DNA purines. Theophyline and paraxanthine repair the oxidised radical of adenine but not the one from guanosine. Theobromine and caffeine do not show any protecting effect. An order of the oxidation potentials of all the purines studied is proposed. La réparation des radicaux oxydés de l'adénine et de la guanosine par des xanthines naturelles a été étudiée en soumettant chaque paire base de l'ADN/xanthine à l'oxydation par le radical sulfate et en mesurant par HPLC la disparition des deux composés en fonction du temps d'irradiation. Les résultats montrent que la xanthine joue un rôle protecteur efficace contre l'oxydation des deux purines de l'ADN. La théophyline et la paraxanthine réparent le radical oxydé de l'adénine mais pas celui de la guanosine. La théobromine et la cafeíne n'ont pas d'effet protecteur. Un ordre de potentiels d'oxydation des purines étudiées est proposé.

  5. Mechanisms of the Formation of Adenine, Guanine, and Their Analogues in UV-Irradiated Mixed NH3:H2O Molecular Ices Containing Purine

    NASA Astrophysics Data System (ADS)

    Bera, Partha P.; Stein, Tamar; Head-Gordon, Martin; Lee, Timothy J.

    2017-08-01

    We investigated the formation mechanisms of the nucleobases adenine and guanine and the nucleobase analogues hypoxanthine, xanthine, isoguanine, and 2,6-diaminopurine in a UV-irradiated mixed 10:1 H2O:NH3 ice seeded with precursor purine by using ab initio and density functional theory computations. Our quantum chemical investigations suggest that a multistep reaction mechanism involving purine cation, hydroxyl and amino radicals, together with water and ammonia, explains the experimentally obtained products in an independent study. The relative abundances of these products appear to largely follow from relative thermodynamic stabilities. The key role of the purine cation is likely to be the reason why purine is not functionalized in pure ammonia ice, where cations are promptly neutralized by free electrons from NH3 ionization. Amine group addition to purine is slightly favored over hydroxyl group attachment based on energetics, but hydroxyl is much more abundant due to higher abundance of H2O. The amino group is preferentially attached to the 6 position, giving 6-aminopurine, that is, adenine, while the hydroxyl group is preferentially attached to the 2 position, leading to 2-hydroxypurine. A second substitution by hydroxyl or amino group occurs at either the 6 or the 2 position depending on the first substitution. Given that H2O is far more abundant than NH3 in the experimentally studied ices (as well as based on interstellar abundances), xanthine and isoguanine are expected to be the most abundant bi-substituted photoproducts.

  6. Design, synthesis and biological evaluation of novel xanthine oxidase inhibitors bearing a 2-arylbenzo[b]furan scaffold.

    PubMed

    Tang, Hong-Jin; Li, Wei; Zhou, Mei; Peng, Li-Ying; Wang, Jin-Xin; Li, Jia-Huang; Chen, Jun

    2018-05-10

    Xanthine oxidase, which catalyzes the oxidative reaction of hypoxanthine and xanthine into uric acid, is a key enzyme to the pathogenesis of hyperuricemia and gout. In this study, for the purpose of discovering novel xanthine oxidase (XO) inhibitors, a series of 2-arylbenzo[b]furan derivatives (3a-3d, 4a-4o and 6a-6d) were designed and synthesized. All these compounds were evaluated their xanthine oxidase inhibitory and antioxidant activities by using in vitro enzymatic assay and cellular model. The results showed that a majority of the designed compounds exhibited potent xanthine oxidase inhibitory effects and antioxidant activities, and compound 4a emerged as the most potent xanthine oxidase inhibitor (IC 50  = 4.45 μM). Steady-state kinetic measurements of the inhibitor 4a with the bovine milk xanthine oxidase indicated a mixed type inhibition with 3.52 μM K i and 13.14 μM K is , respectively. The structure-activity relationship analyses have also been presented. Compound 4a exhibited the potent hypouricemic effect in the potassium oxonate-induced hyperuricemic mice model. A molecular docking study of compound 4a was performed to gain an insight into its binding mode with xanthine oxidase. These results highlight the identification of a new class of xanthine oxidase inhibitors that have potential to be more efficacious in treatment of gout. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  7. Phosphoribosyl diphosphate synthetase-independent NAD de novo synthesis in Escherichia coli: a new phenotype of phosphate regulon mutants.

    PubMed Central

    Hove-Jensen, B

    1996-01-01

    Phosphoribosyl diphosphate-lacking (delta prs) mutant strains of Escherichia coli require NAD, guanosine, uridine, histidine, and tryptophan for growth. NAD is required by phosphoribosyl diphosphate-lacking mutants because of lack of one of the substrates for the quinolinate phosphoribosyltransferase reaction, an enzyme of the NAD de novo pathway. Several NAD-independent mutants of a host from which prs had been deleted were isolated; all of them were shown to have lesions in the pstSCAB-phoU operon, in which mutations lead to derepression of the Pho regulon. In addition NAD-independent growth was dependent on a functional quinolinate phosphoribosyltransferase. The prs suppressor mutations led to the synthesis of a new phosphoryl compound that may act as a precursor for a new NAD biosynthetic pathway. This compound may be synthesized by the product of an unknown phosphate starvation-inducible gene of the Pho regulon because the ability of pst or phoU mutations to suppress the NAD requirement requires PhoB, the transcriptional activator of the Pho regulon. PMID:8550505

  8. Capturing Transient Endoperoxide in the Singlet Oxygen Oxidation of Guanine.

    PubMed

    Lu, Wenchao; Liu, Jianbo

    2016-02-24

    The chemistry of singlet O2 toward the guanine base of DNA is highly relevant to DNA lesion, mutation, cell death, and pathological conditions. This oxidative damage is initiated by the formation of a transient endoperoxide through the Diels-Alder cycloaddition of singlet O2 to the guanine imidazole ring. However, no endoperoxide formation was directly detected in native guanine or guanosine, even at -100 °C. Herein, gas-phase ion-molecule scattering mass spectrometry was utilized to capture unstable endoperoxides in the collisions of hydrated guanine ions (protonated or deprotonated) with singlet O2 at ambient temperature. Corroborated by results from potential energy surface exploration, kinetic modeling, and dynamics simulations, various aspects of endoperoxide formation and transformation (including its dependence on guanine ionization and hydration states, as well as on collision energy) were determined. This work has pieced together reaction mechanisms, kinetics, and dynamics data concerning the early stage of singlet O2 induced guanine oxidation, which is missing from conventional condensed-phase studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. An updated patent review: xanthine oxidase inhibitors for the treatment of hyperuricemia and gout (2011-2015).

    PubMed

    Ojha, Ritu; Singh, Jagjeet; Ojha, Anu; Singh, Harbinder; Sharma, Sahil; Nepali, Kunal

    2017-03-01

    Xanthine oxidase (XO) is a versatile molybdoflavoprotein, widely distributed, occurring in milk, kidney, lung, heart, and vascular endothelium. Catalysis by XO to produce uric acid and reactive oxygen species leads to many diseases. Anti hyperuricemic therapy by xanthine oxidase inhibitors has been mainly employed for the treatment of gout. Area covered: This review covers the patent literature (2011-2015) and also presents the interesting strategies/rational approaches employed for the design of xanthine oxidase inhibitors reported recently. Expert opinion: Recent literature indicates that various non purine scaffolds have been extensively investigated for xanthine oxidase inhibition. The significant potential endowed by heteroaryl based compounds, in particularly fused heterocycles clearly highlights their clinical promise and the need for detailed investigation. Studies by various research groups have also revealed that the flavone framework is open for isosteric replacements and structural modifications for yielding potent non purine xanthine oxidase inhibitors. In addition, various plant extracts recently reported to possess significant xanthine oxidase inhibitory potential presents enough promise to initiate a screening program for the identification of other plant extracts and phytoconstituents possessing inhibitory potential towards the enzyme.

  10. Computational Study of Oxidation of Guanine by Singlet Oxygen (1 Δg ) and Formation of Guanine:Lysine Cross-Links.

    PubMed

    Thapa, Bishnu; Munk, Barbara H; Burrows, Cynthia J; Schlegel, H Bernhard

    2017-04-27

    Oxidation of guanine in the presence of lysine can lead to guanine-lysine cross-links. The ratio of the C4, C5 and C8 crosslinks depends on the manner of oxidation. Type II photosensitizers such as Rose Bengal and methylene blue can generate singlet oxygen, which leads to a different ratio of products than oxidation by type I photosensitizers or by one electron oxidants. Modeling reactions of singlet oxygen can be quite challenging. Reactions have been explored using CASSCF, NEVPT2, DFT, CCSD(T), and BD(T) calculations with SMD implicit solvation. The spin contamination in open-shell calculations were corrected by Yamaguchi's approximate spin projection method. The addition of singlet oxygen to guanine to form guanine endo- peroxide proceeds step-wise via a zwitterionic peroxyl intermediate. The subsequent barrier for ring closure is smaller than the initial barrier for singlet oxygen addition. Ring opening of the endoperoxide by protonation at C4-O is followed by loss of a proton from C8 and dehydration to produce 8-oxoG ox . The addition of lysine (modelled by methylamine) or water across the C5=N7 double bond of 8-oxoG ox is followed by acyl migration to form the final spiro products. The barrier for methylamine addition is significantly lower than for water addition and should be the dominant reaction channel. These results are in good agreement with the experimental results for the formation of guanine-lysine cross-links by oxidation by type II photosensitizers. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Electron detachment of the hydrogen-bonded amino acid side-chain guanine complexes

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Gu, Jiande; Leszczynski, Jerzy

    2007-07-01

    The photoelectron spectra of the hydrogen-bonded amino acid side-chain-guanine complexes has been studied at the partial third order (P3) self-energy approximation of the electron propagator theory. The correlation between the vertical electron detachment energy and the charge distributions on the guanine moiety reveals that the vertical electron detachment energy (VDE) increases as the positive charge distribution on the guanine increases. The low VDE values determined for the negatively charged complexes of the guanine-side-chain-group of Asp/Glu suggest that the influence of the H-bonded anionic groups on the VDE of guanine could be more important than that of the anionic backbone structure. The even lower vertical electron detachment energy for guanine is thus can be expected in the H-bonded protein-DNA systems.

  12. The xanthine oxidase activity in different of secondary transformed peat-moorsh soils

    NASA Astrophysics Data System (ADS)

    Styła, Katarzyna; Wojciech Szajdak, Lech

    2010-05-01

    The investigations were carried out on the transect of peatland 4.5 km long, located in the Agroecological Landscape Park host D. Chlapowski in Turew (40 km South-West of Poznań, West Polish Lowland). The sites investigation were located along Wyskoć ditch. The following material was taken from four chosen sites marked as Zbęchy, Bridge, Shelterbelt and Hirudo in two layers: acrotelm (0-50 cm) and catotelm (50-100 cm). The object of this study was to characterize the biochemical properties by the determination of the xanthine oxidase activity in two layers (acrotelm and catotelm) of the four different peat-moorsh soils used as meadow. The xanthine oxidase activity was determined spectrophotometrically by measuring uric acid formation at λmax=290 nm with xanthine as substrate. In peat-moorsh soil the highest activities of xanthine oxidasewas observed in the Shelterbelt and whereas the lowest - in Zbęchy, Bridge and Hirudo. Activities of this enzyme in peat-moorsh soil ranged from 5.96 to 19.51 μmol h-1g d.m soil. Increased activities of xanthine oxidase have been recorded on the depth 50-100 cm - catotelm (from 11.71 to 19.51 μmol h-1g d.m soil) in comparison with the depth 0-50 cm - acrotelm (from 5.96 to 14.64 μmol h-1g d.m soil). This work was supported by a grant No. N N305 3204 36 founded by Polish Ministry of Education.

  13. Effects of Site-Specific Guanine C8-Modifications on an Intramolecular DNA G-Quadruplex

    PubMed Central

    Lech, Christopher Jacques; Cheow Lim, Joefina Kim; Wen Lim, Jocelyn Mei; Amrane, Samir; Heddi, Brahim; Phan, Anh Tuân

    2011-01-01

    Understanding the fundamentals of G-quadruplex formation is important both for targeting G-quadruplexes formed by natural sequences and for engineering new G-quadruplexes with desired properties. Using a combination of experimental and computational techniques, we have investigated the effects of site-specific substitution of a guanine with C8-modified guanine derivatives, including 8-bromo-guanine, 8-O-methyl-guanine, 8-amino-guanine, and 8-oxo-guanine, within a well-defined (3 + 1) human telomeric G-quadruplex platform. The effects of substitutions on the stability of the G-quadruplex were found to depend on the type and position of the modification among different guanines in the structure. An interesting modification-dependent NMR chemical-shift effect was observed across basepairing within a guanine tetrad. This effect was reproduced by ab initio quantum mechanical computations, which showed that the observed variation in imino proton chemical shift is largely influenced by changes in hydrogen-bond geometry within the guanine tetrad. PMID:22004753

  14. Hypouricaemic action of mangiferin results from metabolite norathyriol via inhibiting xanthine oxidase activity.

    PubMed

    Niu, Yanfen; Liu, Jia; Liu, Hai-Yang; Gao, Li-Hui; Feng, Guo-Hua; Liu, Xu; Li, Ling

    2016-09-01

    Context Mangiferin has been reported to possess a potential hypouricaemic effect. However, the pharmacokinetic studies in rats showed that its oral bioavailability was only 1.2%, suggesting that mangiferin metabolites might exert the action. Objective The hypouricaemic effect and the xanthine oxidase inhibition of mangiferin and norathyriol, a mangiferin metabolite, were investigated. Inhibition of norathyriol analogues (compounds 3-9) toward xanthine oxidase was also evaluated. Materials and methods For a dose-dependent study, mangiferin (1.5-6.0 mg/kg) and norathyriol (0.92-3.7 mg/kg) were administered intragastrically to mice twice daily for five times. For a time-course study, mice received mangiferin and norathyriol both at a single dose of 7.1 μmol/kg. In vitro, inhibition of test compounds (2.4-2.4 mM) against xanthine oxidase activity was evaluated by the spectrophotometrical method. The inhibition type was identified from Lineweaver-Burk plots. Results Norathyriol (0.92, 1.85 and 3.7 mg/kg) dose dependently decreased the serum urate levels by 27.0, 33.6 and 37.4%, respectively. The action was more potent than that of mangiferin at the low dose, but was equivalent at the higher doses. Additionally, the hypouricaemic action of them exhibited a time dependence. In vitro, norathyriol markedly inhibited the xanthine oxidase activities, with the IC50 value of 44.6 μM, but mangiferin did not. The kinetic studies showed that norathyriol was an uncompetitive inhibitor by Lineweaver-Burk plots. The structure-activity relationships exhibited that three hydroxyl groups in norathyriol at the C-1, C-3 and C-6 positions were essential for maintaining xanthine oxidase inhibition. Discussion and conclusion Norathyriol was responsible for the hypouricaemic effect of mangiferin via inhibiting xanthine oxidase activity.

  15. Identification of the S-transferase like superfamily bacillithiol transferases encoded by Bacillus subtilis

    PubMed Central

    Perera, Varahenage R.; Lapek, John D.; Newton, Gerald L.; Gonzalez, David J.; Pogliano, Kit

    2018-01-01

    Bacillithiol is a low molecular weight thiol found in Firmicutes that is analogous to glutathione, which is absent in these bacteria. Bacillithiol transferases catalyze the transfer of bacillithiol to various substrates. The S-transferase-like (STL) superfamily contains over 30,000 putative members, including bacillithiol transferases. Proteins in this family are extremely divergent and are related by structural rather than sequence similarity, leaving it unclear if all share the same biochemical activity. Bacillus subtilis encodes eight predicted STL superfamily members, only one of which has been shown to be a bacillithiol transferase. Here we find that the seven remaining proteins show varying levels of metal dependent bacillithiol transferase activity. We have renamed the eight enzymes BstA-H. Mass spectrometry and gene expression studies revealed that all of the enzymes are produced to varying levels during growth and sporulation, with BstB and BstE being the most abundant and BstF and BstH being the least abundant. Interestingly, several bacillithiol transferases are induced in the mother cell during sporulation. A strain lacking all eight bacillithiol transferases showed normal growth in the presence of stressors that adversely affect growth of bacillithiol-deficient strains, such as paraquat and CdCl2. Thus, the STL bacillithiol transferases represent a new group of proteins that play currently unknown, but potentially significant roles in bacillithiol-dependent reactions. We conclude that these enzymes are highly divergent, perhaps to cope with an equally diverse array of endogenous or exogenous toxic metabolites and oxidants. PMID:29451913

  16. Electronic Structure Contributions to Reactivity in Xanthine Oxidase Family Enzymes

    PubMed Central

    Stein, Benjamin W.; Kirk, Martin L.

    2016-01-01

    We review the xanthine oxidase (XO) family of pyranopterin molybdenum enzymes with a specific emphasis on electronic structure contributions to reactivity. In addition to xanthine and aldehyde oxidoreductases, which catalyze the 2-electron oxidation of aromatic heterocycles and aldehyde substrates, this mini-review highlights recent work on the closely related carbon monoxide dehydrogenase (CODH) that catalyzes the oxidation of CO using a unique Mo-Cu heterobimetallic active site. A primary focus of this mini-review relates to how spectroscopy and computational methods have been used to develop an understanding of critical relationships between geometric structure, electronic structure, and catalytic function. PMID:25425163

  17. Electronic structure contributions to reactivity in xanthine oxidase family enzymes.

    PubMed

    Stein, Benjamin W; Kirk, Martin L

    2015-03-01

    We review the xanthine oxidase (XO) family of pyranopterin molybdenum enzymes with a specific emphasis on electronic structure contributions to reactivity. In addition to xanthine and aldehyde oxidoreductases, which catalyze the two-electron oxidation of aromatic heterocycles and aldehyde substrates, this mini-review highlights recent work on the closely related carbon monoxide dehydrogenase (CODH) that catalyzes the oxidation of CO using a unique Mo-Cu heterobimetallic active site. A primary focus of this mini-review relates to how spectroscopy and computational methods have been used to develop an understanding of critical relationships between geometric structure, electronic structure, and catalytic function.

  18. The substrate specificity of purine phosphoribosyltransferases in Schizosaccharomyces pombe

    PubMed Central

    De Groodt, A.; Whitehead, E. P.; Heslot, H.; Poirier, L.

    1971-01-01

    1. The activities of the purine phosphoribosyltransferases (EC 2.4.2.7 and 2.4.2.8) in purine-analogue-resistant mutants of Schizosaccharomyces pombe were checked. An 8-azathioxanthine-resistant mutant lacked hypoxanthine phosphoribosyltransferase, xanthine phosphoribosyltransferase and guanine phosphoribosyltransferase activities (EC 2.4.2.8) and appeared to carry a single mutation. Two 2,6-diaminopurine-resistant mutants retained these activities but lacked adenine phosphoribosyltransferase activity (EC 2.4.2.7). This evidence, together with data on purification and heat-inactivation patterns of phosphoribosyltransferase activities towards the various purines, strongly suggests that there are two phosphoribosyltransferase enzymes for purine bases in Schiz. pombe, one active with adenine, the other with hypoxanthine, xanthine and guanine. 2. Neither growth-medium supplements of purines nor mutations on genes involved in the pathway for new biosynthesis of purine have any influence on the amount of hypoxanthine–xanthine–guanine phosphoribosyltransferase produced by this organism. PMID:5123876

  19. N-Sulfomethylation of guanine, adenine and cytosine with formaldehyde-bisulfite. A selective modification of guanine in DNA.

    PubMed

    Hayatsu, H; Yamashita, Y; Yui, S; Yamagata, Y; Tomita, K; Negishi, K

    1982-10-25

    When guanine-, adenine- and cytosine-nucleosides and nucleotides were treated with formaldehyde and then with bisulfite, stable N-sulfomethyl compounds were formed. N2-Sulfomethylguanine, N6-sulfomethyladenine, N4-sulfomthylcytosine and N6-sulfomethyl-9-beta-D-arabinofuranosyladenine were isolated as crystals and characterized. A guanine-specific sulfomethylation was brought about by treatment and denatured single-stranded DNA with formaldehyde and then with bisulfite at pH 7 and 4 degrees C. Since native double-stranded DNA was not modified by this treatment, this new method of modification is expected to be useful as a conformational probe for polynucleotides.

  20. N-Sulfomethylation of guanine, adenine and cytosine with formaldehyde-bisulfite. A selective modification of guanine in DNA.

    PubMed Central

    Hayatsu, H; Yamashita, Y; Yui, S; Yamagata, Y; Tomita, K; Negishi, K

    1982-01-01

    When guanine-, adenine- and cytosine-nucleosides and nucleotides were treated with formaldehyde and then with bisulfite, stable N-sulfomethyl compounds were formed. N2-Sulfomethylguanine, N6-sulfomethyladenine, N4-sulfomthylcytosine and N6-sulfomethyl-9-beta-D-arabinofuranosyladenine were isolated as crystals and characterized. A guanine-specific sulfomethylation was brought about by treatment and denatured single-stranded DNA with formaldehyde and then with bisulfite at pH 7 and 4 degrees C. Since native double-stranded DNA was not modified by this treatment, this new method of modification is expected to be useful as a conformational probe for polynucleotides. PMID:7177848

  1. Efficacy and safety profile of xanthines in COPD: a network meta-analysis.

    PubMed

    Cazzola, Mario; Calzetta, Luigino; Barnes, Peter J; Criner, Gerard J; Martinez, Fernando J; Papi, Alberto; Gabriella Matera, Maria

    2018-06-30

    Theophylline can still have a role in the management of stable chronic obstructive pulmonary disease (COPD), but its use remains controversial, mainly due to its narrow therapeutic window. Doxofylline, another xanthine, is an effective bronchodilator and displays a better safety profile than theophylline. Therefore, we performed a quantitative synthesis to compare the efficacy and safety profile of different xanthines in COPD.The primary end-point of this meta-analysis was the impact of xanthines on lung function. In addition, we assessed the risk of adverse events by normalising data on safety as a function of person-weeks. Data obtained from 998 COPD patients were selected from 14 studies and meta-analysed using a network approach.The combined surface under the cumulative ranking curve (SUCRA) analysis of efficacy (change from baseline in forced expiratory volume in 1 s) and safety (risk of adverse events) showed that doxofylline was superior to aminophylline (comparable efficacy and significantly better safety), bamiphylline (significantly better efficacy and comparable safety), and theophylline (comparable efficacy and significantly better safety).Considering the overall efficacy/safety profile of the investigated agents, the results of this quantitative synthesis suggest that doxofylline seems to be the best xanthine for the treatment of COPD. Copyright ©ERS 2018.

  2. Hydroxychavicol: a potent xanthine oxidase inhibitor obtained from the leaves of betel, Piper betle.

    PubMed

    Murata, Kazuya; Nakao, Kikuyo; Hirata, Noriko; Namba, Kensuke; Nomi, Takao; Kitamura, Yoshihisa; Moriyama, Kenzo; Shintani, Takahiro; Iinuma, Munekazu; Matsuda, Hideaki

    2009-07-01

    The screening of Piperaceous plants for xanthine oxidase inhibitory activity revealed that the extract of the leaves of Piper betle possesses potent activity. Activity-guided purification led us to obtain hydroxychavicol as an active principle. Hydroxychavicol is a more potent xanthine oxidase inhibitor than allopurinol, which is clinically used for the treatment of hyperuricemia.

  3. Monochloramine produces reactive oxygen species in liver by converting xanthine dehydrogenase into xanthine oxidase.

    PubMed

    Sakuma, Satoru; Miyoshi, Emi; Sadatoku, Namiko; Fujita, Junko; Negoro, Miki; Arakawa, Yukio; Fujimoto, Yohko

    2009-09-15

    In the present study, we assessed the influence of monochloramine (NH(2)Cl) on the conversion of xanthine dehydrogenase (XD) into xanthine oxidase (XO) in rat liver in vitro. When incubated with the partially purified cytosolic fraction from rat liver, NH(2)Cl (2.5-20 microM) dose-dependently enhanced XO activity concomitant with a decrease in XD activity, implying that NH(2)Cl can convert XD into the reactive oxygen species (ROS) producing form XO. The NH(2)Cl (5 microM)-induced XD/XO interconversion in the rat liver cytosol was completely inhibited when added in combination with an inhibitor of NH(2)Cl methionine (25 microM). A sulfhydryl reducing agent, dithiothreitol at concentrations of 0.1, 1 and 5 mM also dose-dependently reversed the NH(2)Cl (5 microM)-induced XD/XO interconversion. These imply that NH(2)Cl itself acts on the XD/XO interconversion, and that this conversion occurs at the cysteine residues in XD. Furthermore, using the fluorescent probe 2',7'-dichlorodihydrofluorescein diacetate, it was found that NH(2)Cl could increase ROS generation in the cytoplasm of rat primary hepatocyte cultures, and that this increase might be reversed by an XO inhibitor, allopurinol. These results suggest that NH(2)Cl has the potential to convert XD into XO in the liver, which in turn may induce the ROS generation in this region.

  4. Xanthine urolithiasis causing bilateral ureteral obstruction in a 10-month-old cat.

    PubMed

    Mestrinho, Lisa A; Gonçalves, Tiago; Parreira, Pedro B; Niza, Maria M R E; Hamaide, Annick J

    2013-10-01

    Xanthine urolithiasis was diagnosed in a 10-month-old intact female domestic shorthair cat presented with acute renal failure due to bilateral ureteral obstruction. Ultrasonography revealed the presence of multiple uroliths in both kidneys and ureters that were not detectable on previous survey radiographs. Medical management failed and ureteral obstruction persisted with no evidence of stone migration into the bladder. Bilateral ureterotomy with urolith removal was performed in order to relieve the obstruction. The cat recovered from surgery, and blood urea nitrogen and creatinine values decreased within normal limits 6 days postoperatively. Urolith analysis by infrared spectrometry determined xanthine composition, and a higher blood and urine concentration of hypoxanthine and xanthine was also found. At 1-year follow-up, the cat was free of clinical signs. However, ultrasonography of the abdomen revealed small-size calculi in both kidneys, despite the low protein diet intake. The very young age of the animal suggests a possible congenital xanthinuria.

  5. Vibrational spectral investigation on xanthine and its derivatives—theophylline, caffeine and theobromine

    NASA Astrophysics Data System (ADS)

    Gunasekaran, S.; Sankari, G.; Ponnusamy, S.

    2005-01-01

    A normal coordinate analysis has been carried out on four compounds having a similar ring structure with different side chain substitutions, which are xanthine, caffeine, theophylline, and theobromine. Xanthine is chemically known as 2,6-dihydroxy purine. Caffeine, theophylline and theobromine are methylated xanthines. Considering the methyl groups as point mass, the number of normal modes of vibrations can be distributed as Γ vib=27 A'+12 A″ based on C s point group symmetry associated with the structures. In the present work 15 A' and 12 A″ normal modes are considered. A new set of orthonormal symmetry co-ordinates have been constructed. Wilson's F- G matrix method has been adopted for the normal coordinate analysis. A satisfactory vibrational band assignment has been made by employing the FTIR and FT Raman spectra of the compounds. The potential energy distribution is calculated with the arrived values of the force constants and hence the agreement of the frequency assignment has been checked.

  6. Mouse mutants from chemically mutagenized embryonic stem cells

    PubMed Central

    Munroe, Robert J.; Bergstrom, Rebecca A.; Zheng, Qing Yin; Libby, Brian; Smith, Richard; John, Simon W.M.; Schimenti, Kerry J.; Browning, Victoria L.; Schimenti, John C.

    2010-01-01

    The drive to characterize functions of human genes on a global scale has stimulated interest in large-scale generation of mouse mutants. Conventional germ-cell mutagenesis with N-ethyl-N-nitrosourea (ENU) is compromised by an inability to monitor mutation efficiency, strain1 and interlocus2 variation in mutation induction, and extensive husbandry requirements. To overcome these obstacles and develop new methods for generating mouse mutants, we devised protocols to generate germline chi-maeric mice from embryonic stem (ES) cells heavily mutagenized with ethylmethanesulphonate (EMS). Germline chimaeras were derived from cultures that underwent a mutation rate of up to 1 in 1,200 at the Hprt locus (encoding hypoxanthine guanine phosphoribosyl transferase). The spectrum of mutations induced by EMS and the frameshift mutagen ICR191 was consistent with that observed in other mammalian cells. Chimaeras derived from ES cells treated with EMS transmitted mutations affecting several processes, including limb development, hair growth, hearing and gametogenesis. This technology affords several advantages over traditional mutagenesis, including the ability to conduct shortened breeding schemes and to screen for mutant phenotypes directly in ES cells or their differentiated derivatives. PMID:10700192

  7. Preferential inhibition of xanthine oxidase by 2-amino-6-hydroxy-8-mercaptopurine and 2-amino-6-purine thiol

    PubMed Central

    Kalra, Sukirti; Jena, Gopabandhu; Tikoo, Kulbhushan; Mukhopadhyay, Anup Kumar

    2007-01-01

    Background The anticancer drug, 6-mercaptopurine (6MP) is subjected to metabolic clearance through xanthine oxidase (XOD) mediated hydroxylation, producing 6-thiouric acid (6TUA), which is excreted in urine. This reduces the effective amount of drug available for therapeutic efficacy. Co-administration of allopurinol, a suicide inhibitor of XOD, which blocks the hydroxylation of 6MP inadvertently enhances the 6MP blood level, counters this reduction. However, allopurinol also blocks the hydroxylation of hypoxanthine, xanthine (released from dead cancer cells) leading to their accumulation in the body causing biochemical complications such as xanthine nephropathy. This necessitates the use of a preferential XOD inhibitor that selectively inhibits 6MP transformation, but leaves xanthine metabolism unaffected. Results Here, we have characterized two such unique inhibitors namely, 2-amino-6-hydroxy-8-mercaptopurine (AHMP) and 2-amino-6-purinethiol (APT) on the basis of IC50 values, residual activity in bi-substrate simulative reaction and the kinetic parameters like Km, Ki, kcat. The IC50 values of AHMP for xanthine and 6MP as substrate are 17.71 ± 0.29 μM and 0.54 ± 0.01 μM, respectively and the IC50 values of APT for xanthine and 6MP as substrates are 16.38 ± 0.21 μM and 2.57 ± 0.08 μM, respectively. The Ki values of XOD using AHMP as inhibitor with xanthine and 6MP as substrate are 5.78 ± 0.48 μM and 0.96 ± 0.01 μM, respectively. The Ki values of XOD using APT as inhibitor with xanthine and 6MP as substrate are 6.61 ± 0.28 μM and 1.30 ± 0.09 μM. The corresponding Km values of XOD using xanthine and 6MP as substrate are 2.65 ± 0.02 μM and 6.01 ± 0.03 μM, respectively. The results suggest that the efficiency of substrate binding to XOD and its subsequent catalytic hydroxylation is much superior for xanthine in comparison to 6MP. In addition, the efficiency of the inhibitor binding to XOD is much more superior when 6MP is the substrate instead of

  8. Preferential inhibition of xanthine oxidase by 2-amino-6-hydroxy-8-mercaptopurine and 2-amino-6-purine thiol.

    PubMed

    Kalra, Sukirti; Jena, Gopabandhu; Tikoo, Kulbhushan; Mukhopadhyay, Anup Kumar

    2007-05-18

    The anticancer drug, 6-mercaptopurine (6MP) is subjected to metabolic clearance through xanthine oxidase (XOD) mediated hydroxylation, producing 6-thiouric acid (6TUA), which is excreted in urine. This reduces the effective amount of drug available for therapeutic efficacy. Co-administration of allopurinol, a suicide inhibitor of XOD, which blocks the hydroxylation of 6MP inadvertently enhances the 6MP blood level, counters this reduction. However, allopurinol also blocks the hydroxylation of hypoxanthine, xanthine (released from dead cancer cells) leading to their accumulation in the body causing biochemical complications such as xanthine nephropathy. This necessitates the use of a preferential XOD inhibitor that selectively inhibits 6MP transformation, but leaves xanthine metabolism unaffected. Here, we have characterized two such unique inhibitors namely, 2-amino-6-hydroxy-8-mercaptopurine (AHMP) and 2-amino-6-purinethiol (APT) on the basis of IC50 values, residual activity in bi-substrate simulative reaction and the kinetic parameters like Km, Ki, kcat. The IC50 values of AHMP for xanthine and 6MP as substrate are 17.71 +/- 0.29 microM and 0.54 +/- 0.01 microM, respectively and the IC50 values of APT for xanthine and 6MP as substrates are 16.38 +/- 0.21 microM and 2.57 +/- 0.08 microM, respectively. The Ki values of XOD using AHMP as inhibitor with xanthine and 6MP as substrate are 5.78 +/- 0.48 microM and 0.96 +/- 0.01 microM, respectively. The Ki values of XOD using APT as inhibitor with xanthine and 6MP as substrate are 6.61 +/- 0.28 microM and 1.30 +/- 0.09 microM. The corresponding Km values of XOD using xanthine and 6MP as substrate are 2.65 +/- 0.02 microM and 6.01 +/- 0.03 microM, respectively. The results suggest that the efficiency of substrate binding to XOD and its subsequent catalytic hydroxylation is much superior for xanthine in comparison to 6MP. In addition, the efficiency of the inhibitor binding to XOD is much more superior when 6MP is the

  9. Tissue- and cell-specific expression of mouse xanthine oxidoreductase gene in vivo: regulation by bacterial lipopolysaccharide.

    PubMed Central

    Kurosaki, M; Li Calzi, M; Scanziani, E; Garattini, E; Terao, M

    1995-01-01

    The expression of the xanthine oxidoreductase gene was studied in various mouse organs and tissues, under basal conditions and on treatment with bacterial lipopolysaccharide. Levels of xanthine oxidoreductase protein and mRNA were compared in order to understand the molecular mechanisms regulating the expression of this enzyme system. The highest amounts of xanthine oxidoreductase and the respective mRNA are observed in the duodenum and jejunum, where the protein is present in an unusual form because of a specific proteolytic cleavage of the primary translation product present in all locations. Under basal conditions, multiple tissue-specific mechanisms of xanthine oxidoreductase regulation are evident. Lipopolysaccharide increases enzyme activity in some, but not all tissues, mainly via modulation of the respective transcript, although translational and post-translational mechanisms are also active. In situ hybridization studies on tissue sections obtained from mice under control conditions or with lipopolysaccharide treatment demonstrate that xanthine oxidoreductase is present in hepatocytes, predominantly in the proximal tubules of the kidney, epithelial layer of the gastrointestinal mucosa, the alveolar compartment of the lung, the pulpar region of the spleen and the vascular component of the heart. Images Figure 1 Figure 2 Figure 4 Figure 5 Figure 6 PMID:7864814

  10. Endogenous melatonin and oxidatively damaged guanine in DNA

    PubMed Central

    Davanipour, Zoreh; Poulsen, Henrik E; Weimann, Allan; Sobel, Eugene

    2009-01-01

    Background A significant body of literature indicates that melatonin, a hormone primarily produced nocturnally by the pineal gland, is an important scavenger of hydroxyl radicals and other reactive oxygen species. Melatonin may also lower the rate of DNA base damage resulting from hydroxyl radical attack and increase the rate of repair of that damage. This paper reports the results of a study relating the level of overnight melatonin production to the overnight excretion of the two primary urinary metabolites of the repair of oxidatively damaged guanine in DNA. Methods Mother-father-daughter(s) families (n = 55) were recruited and provided complete overnight urine samples. Total overnight creatinine-adjusted 6-sulphatoxymelatonin (aMT6s/Cr) has been shown to be highly correlated with total overnight melatonin production. Urinary 8-oxo-7,8-dihydro-guanine (8-oxoGua) results from the repair of DNA or RNA guanine via the nucleobase excision repair pathway, while urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) may possibly result from the repair of DNA guanine via the nucleotide excision repair pathway. Total overnight urinary levels of 8-oxodG and 8-oxoGua are therefore a measure of total overnight guanine DNA damage. 8-oxodG and 8-oxoGua were measured using a high-performance liquid chromatography-electrospray ionization tandem mass spectrometry assay. The mother, father, and oldest sampled daughter were used for these analyses. Comparisons between the mothers, fathers, and daughters were calculated for aMT6s/Cr, 8-oxodG, and 8-oxoGua. Regression analyses of 8-oxodG and 8-oxoGua on aMT6s/Cr were conducted for mothers, fathers, and daughters separately, adjusting for age and BMI (or weight). Results Among the mothers, age range 42-80, lower melatonin production (as measured by aMT6s/CR) was associated with significantly higher levels of 8-oxodG (p < 0.05), but not with 8-oxoGua. Among the fathers, age range 46-80, lower melatonin production was associated with

  11. Endogenous melatonin and oxidatively damaged guanine in DNA.

    PubMed

    Davanipour, Zoreh; Poulsen, Henrik E; Weimann, Allan; Sobel, Eugene

    2009-10-18

    A significant body of literature indicates that melatonin, a hormone primarily produced nocturnally by the pineal gland, is an important scavenger of hydroxyl radicals and other reactive oxygen species. Melatonin may also lower the rate of DNA base damage resulting from hydroxyl radical attack and increase the rate of repair of that damage. This paper reports the results of a study relating the level of overnight melatonin production to the overnight excretion of the two primary urinary metabolites of the repair of oxidatively damaged guanine in DNA. Mother-father-daughter(s) families (n = 55) were recruited and provided complete overnight urine samples. Total overnight creatinine-adjusted 6-sulphatoxymelatonin (aMT6s/Cr) has been shown to be highly correlated with total overnight melatonin production. Urinary 8-oxo-7,8-dihydro-guanine (8-oxoGua) results from the repair of DNA or RNA guanine via the nucleobase excision repair pathway, while urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) may possibly result from the repair of DNA guanine via the nucleotide excision repair pathway. Total overnight urinary levels of 8-oxodG and 8-oxoGua are therefore a measure of total overnight guanine DNA damage. 8-oxodG and 8-oxoGua were measured using a high-performance liquid chromatography-electrospray ionization tandem mass spectrometry assay. The mother, father, and oldest sampled daughter were used for these analyses. Comparisons between the mothers, fathers, and daughters were calculated for aMT6s/Cr, 8-oxodG, and 8-oxoGua. Regression analyses of 8-oxodG and 8-oxoGua on aMT6s/Cr were conducted for mothers, fathers, and daughters separately, adjusting for age and BMI (or weight). Among the mothers, age range 42-80, lower melatonin production (as measured by aMT6s/CR) was associated with significantly higher levels of 8-oxodG (p < 0.05), but not with 8-oxoGua. Among the fathers, age range 46-80, lower melatonin production was associated with marginally higher levels of

  12. Posttranslational ruling of xanthine oxidase activity in bovine milk by its substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silanikove, Nissim; Shapiro, Fira; Leitner, Gabriel

    The aims of this study were to test the hypothesis that the substrates of xanthine oxidase (XO), xanthine and hypoxanthine, are consumed while the milk is stored in the gland between milkings, and to explore how XO activity responds to bacteria commonly associated with subclinical infections in the mammary gland. Freshly secreted milk was obtained following complete evacuation of the gland and induction of milk ejection with oxytocin. In bacteria-free fresh milk xanthine and hypoxanthine were converted to uric acid within 30 min (T{sub 1/2} {approx} 10 min), which in turn provides electrons for formation of hydrogen peroxide and endowsmore » the alveolar lumen with passive protection against invading bacteria. On the other hand, the longer residence time of milk in the cistern compartment was not associated with oxidative stress as a result of XO idleness caused by exhaustion of its physiological fuels. The specific response of XO to bacteria species and the resulting bacteria-dependent nitrosative stress further demonstrates that it is part of the gland immune system.« less

  13. Screening, separation, and evaluation of xanthine oxidase inhibitors from Paeonia lactiflora using chromatography combined with a multi-mode microplate reader.

    PubMed

    Wang, Jing; Shi, Dongfang; Zheng, Meizhu; Ma, Bing; Cui, Jing; Liu, Chunming; Liu, Chengyu

    2017-11-01

    Natural products have become one of the most important resources for discovering novel xanthine oxidase inhibitors, which are commonly employed in the treatment of hyperuricemia and gout. However, to date, few reports exist regarding the use of monoterpene glycosides as xanthine oxidase inhibitors. Thus, we herein report the use of ultrafiltration coupled with liquid chromatography in the screening of monoterpene glycoside xanthine oxidase inhibitors from the extract of Paeonia lactiflora (P. lactiflora), and both high-performance counter-current chromatography and medium-pressure liquid chromatography were employed to separate the main constituents. Furthermore, the xanthine oxidase inhibitory activities and the mechanisms of inhibition of the isolated compounds were evaluated using a multi-mode microplate reader by Molecular Devices. As a result, three monoterpene glycosides were separated by combined high-performance counter-current chromatography and medium-pressure liquid chromatography in purities of 90.4, 98.0, and 86.3%, as determined by liquid chromatography. These three compounds were identified as albiflorin, paeoniflorin, and 1-O-β-ᴅ-glucopyranosyl-8-O-benzoylpaeonisuffrone by electrospray ionization tandem mass spectrometry, and albiflorin and paeoniflorin were screened as potential xanthine oxidase inhibitors by ultrafiltration with liquid chromatography. The evaluation results of xanthine oxidase inhibitory activity corresponded with the screening results, as only albiflorin and paeoniflorin exhibited xanthine oxidase inhibitory activity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Guanine base stacking in G-quadruplex nucleic acids

    PubMed Central

    Lech, Christopher Jacques; Heddi, Brahim; Phan, Anh Tuân

    2013-01-01

    G-quadruplexes constitute a class of nucleic acid structures defined by stacked guanine tetrads (or G-tetrads) with guanine bases from neighboring tetrads stacking with one another within the G-tetrad core. Individual G-quadruplexes can also stack with one another at their G-tetrad interface leading to higher-order structures as observed in telomeric repeat-containing DNA and RNA. In this study, we investigate how guanine base stacking influences the stability of G-quadruplexes and their stacked higher-order structures. A structural survey of the Protein Data Bank is conducted to characterize experimentally observed guanine base stacking geometries within the core of G-quadruplexes and at the interface between stacked G-quadruplex structures. We couple this survey with a systematic computational examination of stacked G-tetrad energy landscapes using quantum mechanical computations. Energy calculations of stacked G-tetrads reveal large energy differences of up to 12 kcal/mol between experimentally observed geometries at the interface of stacked G-quadruplexes. Energy landscapes are also computed using an AMBER molecular mechanics description of stacking energy and are shown to agree quite well with quantum mechanical calculated landscapes. Molecular dynamics simulations provide a structural explanation for the experimentally observed preference of parallel G-quadruplexes to stack in a 5′–5′ manner based on different accessible tetrad stacking modes at the stacking interfaces of 5′–5′ and 3′–3′ stacked G-quadruplexes. PMID:23268444

  15. Hibiscus cannabinus feruloyl-coa:monolignol transferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkerson, Curtis; Ralph, John; Withers, Saunia

    The invention relates to isolated nucleic acids encoding a feruloyl-CoA:monolignol transferase and feruloyl-CoA:monolignol transferase enzymes. The isolated nucleic acids and/or the enzymes enable incorporation of monolignol ferulates into the lignin of plants, where such monolignol ferulates include, for example, p-coumaryl ferulate, coniferyl ferulate, and/or sinapyl ferulate. The invention also includes methods and plants that include nucleic acids encoding a feruloyl-CoA:monolignol transferase enzyme and/or feruloyl-CoA:monolignol transferase enzymes.

  16. Complex-formation between reduced xanthine oxidase and purine substrates demonstrated by electron paramagnetic resonance

    PubMed Central

    Pick, Frances M.; Bray, R. C.

    1969-01-01

    The origin of the Rapid molybdenum electron-paramagnetic-resonance signals, which are obtained on reducing xanthine oxidase with purine or with xanthine, and whose parameters were measured by Bray & Vänngård (1969), was studied. It is concluded that these signals represent complexes of reduced enzyme with substrate molecules. Xanthine forms one complex at high concentrations and a different one at low concentrations. Purine forms a complex indistinguishable from the low-concentration xanthine complex. There are indications that some other substrates also form complexes, but uric acid, a reaction product, does not appear to do so. The possible significance of the complexes in the catalytic cycle of the enzyme is discussed and it is suggested that they represent substrate molecules bound at the reduced active site, waiting their turn to react there, when the enzyme has been reoxidized. Support for this role for the complexes was deduced from experiments in which frozen samples of enzyme–xanthine mixtures, prepared by the rapid-freezing method, were warmed until the signals began to change. Under these conditions an increase in amplitude of the Very Rapid signal took place. Data bearing on the origin of the Slow molybdenum signal are also discussed. This signal disappears only slowly in the presence of oxygen, and its appearance rate is unaffected by change in the concentration of dithionite. It is concluded that, like other signals from the enzyme, it is due to Mov but that a slow change of ligand takes place before it is seen. The Slow species, like the Rapid, seems capable of forming complexes with purines. PMID:4310056

  17. Construction of novel xanthine biosensor by using polymeric mediator/MWCNT nanocomposite layer for fish freshness detection.

    PubMed

    Dervisevic, Muamer; Custiuc, Esma; Çevik, Emre; Şenel, Mehmet

    2015-08-15

    A novel nanocomposite host matrix for enzyme immobilization of xanthine oxidase was developed by incorporating MWCNT in poly(GMA-co-VFc) copolymer film. In the food industry fish is a product with a very low commercial life, and a high variability as well elevated level of xanthine is an important biomarker as a sign of spoilage. The fabricated process was characterized by scanning electron microscopy (SEM), and the electrochemical behaviors of the biosensor were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The prepared enzyme electrodes exhibited maximum response at pH 7.0 and 45°C +0.35 V and reached 95% of steady-state current in about ∼ 4 s and its sensitivity was 16 mAM(-1). Linear ranges (2-28 μM, 28-46 and 46-86 μM), analytical performance and a low detection limit 0.12 μM obtained from the xanthine biosensor gives reliable results in measuring xanthine concentration in the fish meat. All the results indicating that the resulting biosensor exhibited a good response to xanthine that was related to the addition of MWCNT in the polymeric mediator film which played an important role in the biosensor performance. In addition, the biosensor exhibited high good storage stability and satisfactory anti-interference ability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. 21 CFR 73.2329 - Guanine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2329 Guanine. (a) Identity and specifications. (1) The... coloring cosmetics generally, only those diluents listed under § 73.1001(a)(1); (ii) For coloring externally applied cosmetics, only those diluents listed in § 73.1001(b) and, in addition, nitrocellulose. (b...

  19. 21 CFR 73.2329 - Guanine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2329 Guanine. (a) Identity and specifications. (1) The... coloring cosmetics generally, only those diluents listed under § 73.1001(a)(1); (ii) For coloring externally applied cosmetics, only those diluents listed in § 73.1001(b) and, in addition, nitrocellulose. (b...

  20. 21 CFR 73.2329 - Guanine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2329 Guanine. (a) Identity and specifications. (1) The... coloring cosmetics generally, only those diluents listed under § 73.1001(a)(1); (ii) For coloring externally applied cosmetics, only those diluents listed in § 73.1001(b) and, in addition, nitrocellulose. (b...

  1. Enzymatic Glycosylation by Transferases

    NASA Astrophysics Data System (ADS)

    Blixt, Ola; Razi, Nahid

    Glycosyltransferases are important biological catalysts in cellular systems generating complex cell surface glycans involved in adhesion and signaling processes. Recent advances in glycoscience have increased the demands to access significant amount of glycans representing the glycome. Glycosyltransferases are now playing a key role for in vitro synthesis of oligosaccharides and the bacterial genome are increasingly utilized for cloning and over expression of active transferases in glycosylation reactions. This chapter highlights the recent progress towards preparative synthesis of oligosaccharides representing terminal sequences of glycoproteins and glycolipids using recombinant transferases. Transferases are also being explored in the context of solid-phase synthesis, immobilized on resins and over expression in vivo by engineered bacteria.

  2. 21 CFR 73.2329 - Guanine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Guanine. 73.2329 Section 73.2329 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR... coloring cosmetics generally, only those diluents listed under § 73.1001(a)(1); (ii) For coloring...

  3. Identification of a xanthine oxidase-inhibitory component from Sophora flavescens using NMR-based metabolomics.

    PubMed

    Suzuki, Ryuichiro; Hasuike, Yuka; Hirabayashi, Moeka; Fukuda, Tatsuo; Okada, Yoshihito; Shirataki, Yoshiaki

    2013-10-01

    We demonstrate that NMR-based metabolomics studies can be used to identify xanthine oxidase-inhibitory compounds in the diethyl ether soluble fraction prepared from a methanolic extract of Sophora flavescens. Loading plot analysis, accompanied by direct comparison of 1H NMR spectraexhibiting characteristic signals, identified compounds exhibiting inhibitory activity. NMR analysis indicated that these characteristic signals were attributed to flavanones such as sophoraflavanone G and kurarinone. Sophoraflavanone G showed inhibitory activity towards xanthine oxidase in an in vitro assay.

  4. Purification and Characterization of the FeII- and α-Ketoglutarate-Dependent Xanthine Hydroxylase from Aspergillus nidulans†

    PubMed Central

    Montero-Morán, Gabriela M.; Li, Meng; Rendòn-Huerta, Erika; Jourdan, Fabrice; Lowe, David J.; Stumpff-Kane, Andrew W.; Feig, Michael; Scazzocchio, Claudio; Hausinger, Robert P.

    2008-01-01

    His6-tagged xanthine/α-ketoglutarate (αKG) dioxygenase (XanA) of Aspergillus nidulans was purified from both the fungal mycelium and recombinant Escherichia coli cells, and the properties of the two forms of the protein were compared. Evidence was obtained for both N- and O-linked glycosylation on the fungus-derived XanA, which aggregates into an apparent dodecamer, while bacteria-derived XanA is free of glycosylation and behaves as a monomer. Immunological methods identify phosphothreonine in both forms of XanA, with phosphoserine also detected in the bacteria-derived protein. Mass spectrometric analysis confirms glycosylation and phosphorylation of the fungus-derived sample, which also undergoes extensive truncation at its amino terminus. Despite the major differences in properties of these proteins, their kinetic parameters are similar (kcat 30-70 s-1, Km of αKG 31-50 μM, Km of xanthine ∼45 μM, and pH optima at 7.0 to 7.4). The enzyme exhibits no significant isotope effect when using 8-2H-xanthine; however, it demonstrates a two-fold solvent deuterium isotope effect. CuII and ZnII potently inhibit the FeII-specific enzyme, whereas CoII, MnII, and NiII are weaker inhibitors. NaCl decreases the kcat and increases the Km of both αKG and xanthine. The αKG cosubstrate can be substituted by α-ketoadipate (9-fold decrease in kcat and 5-fold increase in the Km compared to the normal α-keto acid), while the αKG analogue N-oxalylglycine is a competitive inhibitor (Ki 0.12 μM). No alternative purines effectively substitute for xanthine as a substrate, and only one purine analogue (6,8-dihydroxypurine) results in significant inhibition. Quenching of the endogenous fluorescence of the two enzyme forms by xanthine, αKG, and DHP was used to characterize their binding properties. A XanA homology model was generated on the basis of the structure of the related enzyme TauD (PDB code 1OS7) and provided insights into the sites of posttranslational modification and

  5. Time dependent inhibition of xanthine oxidase in irradiated solutions of folic acid, aminopterin and methotrexate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, K.; Pilot, T.F.; Meany, J.E.

    1990-01-01

    The xanthine oxidase catalyzed oxidation of hypoxanthine was followed by monitoring the formation of uric acid at 290 nm. Inhibition of xanthine oxidase occurs in aqueous solutions of folic acid methotrexate and aminopterin. These compounds are known to dissociate upon exposure to ultraviolet light resulting in the formation of their respective 6-formylpteridine derivatives. The relative rates of dissociation were monitored spectrophotometrically by determining the absorbance of their 2,4-dinitrophenylhydrazine derivatives at 500 nm. When aqueous solutions of folic acid, aminopterin and methotrexate were exposed to uv light, a direct correlation was observed between the concentrations of the 6-formylpteridine derivatives existing inmore » solution and the ability of these solutions to inhibit xanthine oxidase. The relative potency of the respective photolysis products were estimated.« less

  6. Theoretical study of hydrated copper(II) interactions with guanine: a computational density functional theory study.

    PubMed

    Pavelka, Matej; Shukla, Manoj K; Leszczynski, Jerzy; Burda, Jaroslav V

    2008-01-17

    Optimization of the hydrated Cu(II)(N7-guanine) structures revealed a number of minima on the potential energy surface. For selected structures, energy decompositions together with the determination of electronic properties (partial charges and electron spin densities) were performed. In the complexes of guanine with the bare copper cation and that with the monoaqua ligated cation, an electron transfer from guanine to Cu(II) was observed, resulting in a Cu(I)-guanine(+) type of complex. Conformers with two aqua ligands are borderline systems characterized by a Cu partial charge of +0.7e and a similar value of the spin density (0.6e) localized on guanine. When tetracoordination of copper was achieved, only then the prevailing electron spin density is unambiguously localized on copper. The energetic preference of diaqua-Cu-(N7,O6-guanine) over triaqua-Cu-(N7-guanine) was found for the four-coordinate structures. However, the energy difference between these two conformations decreases with the number of water molecules present in the systems, and in complexes with five water molecules this preference is preserved only at DeltaG level where thermal and entropy terms are included.

  7. Study on the activity of non-purine xanthine oxidase inhibitor by 3D-QSAR modeling and molecular docking

    NASA Astrophysics Data System (ADS)

    Li, Peizhen; Tian, Yueli; Zhai, Honglin; Deng, Fangfang; Xie, Meihong; Zhang, Xiaoyun

    2013-11-01

    Non-purine derivatives have been shown to be promising novel drug candidates as xanthine oxidase inhibitors. Based on three-dimensional quantitative structure-activity relationship (3D-QSAR) methods including comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA), two 3D-QSAR models for a series of non-purine xanthine oxidase (XO) inhibitors were established, and their reliability was supported by statistical parameters. Combined 3D-QSAR modeling and the results of molecular docking between non-purine xanthine oxidase inhibitors and XO, the main factors that influenced activity of inhibitors were investigated, and the obtained results could explain known experimental facts. Furthermore, several new potential inhibitors with higher activity predicted were designed, which based on our analyses, and were supported by the simulation of molecular docking. This study provided some useful information for the development of non-purine xanthine oxidase inhibitors with novel structures.

  8. A novel colorimetric method based on copper nanoclusters with intrinsic peroxidase-like for detecting xanthine in serum samples

    NASA Astrophysics Data System (ADS)

    Yan, Zhengyu; Niu, Qianqian; Mou, Mingyao; Wu, Yi; Liu, Xiaoxuan; Liao, Shenghua

    2017-07-01

    A facile strategy for detecting xanthine in serum samples by copper nanocluster (CuNCs) with high intrinsic peroxidase-like activity was reported. Firstly, a simple, mild and time-saving method for preparing CuNCs was developed, in which dithiothreitol (DTT) and bovine serum albumin (BSA) were used as reductant and stabilizer, respectively. The as-prepared CuNCs exhibited a fluorescence emission at 590 nm with a quantum yield (QY) of approximately 5.29%, the fluorescence intensity of the as-prepared CuNCs exhibited no considerable change when stored under ambient condition with the lifetime is 1.75 μs. Moreover, the as-prepared CuNCs exhibited high intrinsic peroxidase-like activity with lower K m ( K m = 8.90 × 10-6 mol L-1) for H2O2, which indicated that CuNCs have a higher affinity for H2O2. Compared with natural enzyme, the as-synthesized CuNCs are more catalytic stable over a wide range of pH (4.0 13.0) and temperature (4 80 °C). Finally, an indirect method for sensing xanthine was established because xanthine oxidase can catalyse the oxidation of xanthine to produce H2O2. Xanthine could be detected as low as 3.8 × 10-7 mol L-1 with a linear range from 5.0 × 10-7 to 1.0 × 10-4 mol L-1. These results proved that the proposed method is sensitive and accurate and could be successfully applied to the determination of xanthine in the serum sample with satisfaction.

  9. In vitro xanthine oxidase inhibitory and in vivo hypouricemic activity of herbal coded formulation (Gouticin).

    PubMed

    Akram, Muhammad; Usmanghani, Khan; Ahmed, Iqbal; Azhar, Iqbal; Hamid, Abdul

    2014-05-01

    Currently, natural products have been used in treating gouty arthritis and are recognized as xanthine oxidase inhibitors. Current study was designed to evaluate in vitro xanthine oxidase inhibitory potential of Gouticin and its ingredients extracts and in vivo hypouricemic activity of gouticin tablet 500 mg twice daily. Ethanol extracts of Gouticin and its ingredients were evaluated in vitro, at 200, 100, 50, 25 μ g/ml concentrations for xanthine oxidase inhibitory activity. IC(50) values of Gouticin and its ingredients were estimated. Further, in vivo therapeutic effect of Gouticin was investigated in comparison with allopathic medicine (Allopurinol) to treat gout. Total patients were 200 that were divided into test and control group. Herbal coded medicine (Gouticin) was given to test group and allopathic medicine allopurinol was administered to control group. In vitro, Gouticin has the highest percent inhibition at 96% followed by Allopurinol with 93% inhibition. In vivo study, mean serum uric acid level of patients was 4.62 mg/dl and 5.21mg/dl by use of Gouticin and Allopurinol at end of therapy. The study showed that herbal coded formulation gouticin and its ingredients are potential sources of natural xanthine oxidase inhibitors. Gouticin 500 mg twice daily is more effective than the allopurinol 300mg once daily in the management of gout.

  10. Application of HPLC to study the kinetics of a branched bi-enzyme system consisting of hypoxanthine-guanine phosphoribosyltransferase and xanthine oxidase--an important biochemical system to evaluate the efficiency of the anticancer drug 6-mercaptopurine in ALL cell line.

    PubMed

    Kalra, Sukirti; Paul, Manash K; Balaram, Hemalatha; Mukhopadhyay, Anup Kumar

    2007-05-01

    The thiopurine antimetabolite 6-mercaptopurine (6MP) is an important chemotherapeutic drug in the conventional treatment of childhood acute lymphoblastic leukemia (ALL). 6MP is mainly catabolized by both hypoxanthine-guanine phosphoribosyltransferase (HGPRT) and xanthine oxidase (XOD) to form thioinosinic monophosphate (TIMP) (therapeutically active metabolite) and 6-thiouric acid (6TUA) (inactive metabolite), respectively. The activity of both the enzymes varies among ALL patients governing the active and the inactive metabolite profile within the immature lymphocytes. Therefore, an attempt was made to study the kinetic nature of the branched bi-enzyme system acting on 6MP and to quantitate TIMP and 6TUA formed when the two enzymes are present in equal and variable ratios. The quantification of the branched kinetics using spectrophotometric method presents problem due to the closely apposed lambda(max) of the substrates and products. Hence, employing an HPLC method, the quantification of the products was done with the progress of time. The limit of quantification (LOQ) of substrate was found to be 10nM and for products as 50 nM. The limit of detection (LOD) was found to be 1 nM for the substrate and the products. The method exhibited linearity in the range of 0.01-100 microM for 6MP and 0.05-100 microM for both 6TUA and TIMP. The amount of TIMP formed was higher than that of 6TUA in the bi-enzyme system when both the enzymes were present in equivalent enzymatic ratio. It was further found that enzymatic ratios play an important role in determining the amounts of TIMP and 6TUA. This method was further validated using actively growing T-ALL cell line (Jurkat) to study the branched kinetics, wherein it was observed that treatment of 50 microM 6MP led to the generation of 12 microM TIMP and 0.8 microM 6TUA in 6 h at 37 degrees C.

  11. Rapid and simple G-quadruplex DNA aptasensor with guanine chemiluminescence detection.

    PubMed

    Cho, Sandy; Park, Lucienne; Chong, Richard; Kim, Young Teck; Lee, Ji Hoon

    2014-02-15

    Cost-effective and sensitive aptasensor with guanine chemiluminescence detection capable of simply quantifying thrombin in human serum was developed using thrombin aptamer (TBA), one of the G-quadruplex DNA aptamers, without expensive nanoparticles and complicated procedures. Guanines of G-quadruplex TBA-conjugated carboxyfluorescein (6-FAM) bound with thrombin do not react with 3,4,5-trimethoxylphenylglyoxal (TMPG) in the presence of tetra-n-propylammonium hydroxide (TPA), whereas guanines of free TBA- and TBA-conjugated 6-FAM immobilized on the surface of graphene oxide rapidly react with TMPG to emit light. Thus, guanine chemiluminescence in 5% human serum with thrombin was lower than that without thrombin when TBA-conjugated 6-FAM was added in two samples and incubated for 20 min. In other words, the brightness of guanine chemiluminescence was quenched due to the formation of G-quadruplex TBA-conjugated 6-FAM bound with thrombin in a sample. High-energy intermediate, capable of emitting dim light by itself, formed from the reaction between guanines of TBA and TMPG in the presence of TPA, transfers energy to 6-FAM to emit bright light based on the principle of chemiluminescence energy transfer (CRET). G-quadruplex TBA aptasensor devised using the rapid interaction between TBA-conjugated 6-FAM and thrombin quantified trace levels of thrombin without complicated procedures. The limit of detection (LOD = background + 3 × standard deviation) of G-quadruplex TBA aptasensor with good linear calibration curve, accuracy, precision, and recovery was as low as 12.3 nM in 5% human serum. Using the technology reported in this research, we expect that various types of G-quadruplex DNA aptasensors capable of specifically sensing a target molecule such as ATP, HIV, ochratoxin, potassium ions, and thrombin can be developed. © 2013 Elsevier B.V. All rights reserved.

  12. Protein Conformational Gating of Enzymatic Activity in Xanthine Oxidoreductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishikita, Hiroshi; Eger, Bryan T.; Okamoto, Ken

    2012-05-24

    In mammals, xanthine oxidoreductase can exist as xanthine dehydrogenase (XDH) and xanthine oxidase (XO). The two enzymes possess common redox active cofactors, which form an electron transfer (ET) pathway terminated by a flavin cofactor. In spite of identical protein primary structures, the redox potential difference between XDH and XO for the flavin semiquinone/hydroquinone pair (E{sub sq/hq}) is {approx}170 mV, a striking difference. The former greatly prefers NAD{sup +} as ultimate substrate for ET from the iron-sulfur cluster FeS-II via flavin while the latter only accepts dioxygen. In XDH (without NAD{sup +}), however, the redox potential of the electron donor FeS-IImore » is 180 mV higher than that for the acceptor flavin, yielding an energetically uphill ET. On the basis of new 1.65, 2.3, 1.9, and 2.2 {angstrom} resolution crystal structures for XDH, XO, the NAD{sup +}- and NADH-complexed XDH, E{sub sq/hq} were calculated to better understand how the enzyme activates an ET from FeS-II to flavin. The majority of the E{sub sq/hq} difference between XDH and XO originates from a conformational change in the loop at positions 423-433 near the flavin binding site, causing the differences in stability of the semiquinone state. There was no large conformational change observed in response to NAD{sup +} binding at XDH. Instead, the positive charge of the NAD{sup +} ring, deprotonation of Asp429, and capping of the bulk surface of the flavin by the NAD{sup +} molecule all contribute to altering E{sub sq/hq} upon NAD{sup +} binding to XDH.« less

  13. Feruloyl-CoA:monolignol transferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkerson, Curtis; Ralph, John; Withers, Saunia

    The invention relates to nucleic acids encoding a feruloyl-CoA:monolignol transferase and the feruloyl-CoA:monolignol transferase enzyme that enables incorporation of monolignol ferulates, for example, including p-coumaryl ferulate, coniferyl ferulate, and sinapyl ferulate, into the lignin of plants.

  14. Inhibition of chrysin on xanthine oxidase activity and its inhibition mechanism.

    PubMed

    Lin, Suyun; Zhang, Guowen; Liao, Yijing; Pan, Junhui

    2015-11-01

    Chrysin, a bioactive flavonoid, was investigated for its potential to inhibit the activity of xanthine oxidase (XO), a key enzyme catalyzing xanthine to uric acid and finally causing gout. The kinetic analysis showed that chrysin possessed a strong inhibition on XO ability in a reversible competitive manner with IC50 value of (1.26±0.04)×10(-6)molL(-1). The results of fluorescence titrations indicated that chrysin bound to XO with high affinity, and the interaction was predominately driven by hydrogen bonds and van der Waals forces. Analysis of circular dichroism demonstrated that chrysin induced the conformational change of XO with increases in α-helix and β-sheet and reductions in β-turn and random coil structures. Molecular simulation revealed that chrysin interacted with the amino acid residues Leu648, Phe649, Glu802, Leu873, Ser876, Glu879, Arg880, Phe1009, Thr1010, Val1011 and Phe1013 located within the active cavity of XO. The mechanism of chrysin on XO activity may be the insertion of chrysin into the active site occupying the catalytic center of XO to avoid the entrance of xanthine and causing conformational changes in XO. Furthermore, the interaction assays indicated that chrysin and its structural analog apigenin exhibited an additive effect on inhibition of XO. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Increased mobility and on/off ratio in organic field-effect transistors using low-cost guanine-pentacene multilayers

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Zheng, Yifan; Taylor, André D.; Yu, Junsheng; Katz, Howard E.

    2017-07-01

    Layer-by-layer deposited guanine and pentacene in organic field-effect transistors (OFETs) is introduced. Through adjusting the layer thickness ratio of guanine and pentacene, the tradeoff of two electronic parameters in OFETs, charge carrier mobility and current on/off ratio, was controlled. The charge mobility was enhanced by depositing pentacene over and between guanine layers and by increasing the proportion of pentacene in the layer-by-layer system, while the current on/off ratio was increased via the decreased off current induced by the guanine layers. The tunable device performance was mainly ascribed to the trap and dopant neutralizing properties of the guanine layers, which would decrease the density of free hydroxyl groups in the OFETs. Furthermore, the cost of the devices could be reduced remarkably via the adoption of low-cost guanine.

  16. In Vitro Oxidative Metabolism of 6-Mercaptopurine in Human Liver: Insights into the Role of the Molybdoflavoenzymes Aldehyde Oxidase, Xanthine Oxidase, and Xanthine Dehydrogenase

    PubMed Central

    Choughule, Kanika V.; Barnaba, Carlo; Joswig-Jones, Carolyn A.

    2014-01-01

    Anticancer agent 6-mercaptopurine (6MP) has been in use since 1953 for the treatment of childhood acute lymphoblastic leukemia (ALL) and inflammatory bowel disease. Despite being available for 60 years, several aspects of 6MP drug metabolism and pharmacokinetics in humans are unknown. Molybdoflavoenzymes such as aldehyde oxidase (AO) and xanthine oxidase (XO) have previously been implicated in the metabolism of this drug. In this study, we investigated the in vitro metabolism of 6MP to 6-thiouric acid (6TUA) in pooled human liver cytosol. We discovered that 6MP is metabolized to 6TUA through sequential metabolism via the 6-thioxanthine (6TX) intermediate. The role of human AO and XO in the metabolism of 6MP was established using the specific inhibitors raloxifene and febuxostat. Both AO and XO were involved in the metabolism of the 6TX intermediate, whereas only XO was responsible for the conversion of 6TX to 6TUA. These findings were further confirmed using purified human AO and Escherichia coli lysate containing expressed recombinant human XO. Xanthine dehydrogenase (XDH), which belongs to the family of xanthine oxidoreductases and preferentially reduces nicotinamide adenine dinucleotide (NAD+), was shown to contribute to the overall production of the 6TX intermediate as well as the final product 6TUA in the presence of NAD+ in human liver cytosol. In conclusion, we present evidence that three enzymes, AO, XO, and XDH, contribute to the production of 6TX intermediate, whereas only XO and XDH are involved in the conversion of 6TX to 6TUA in pooled HLC. PMID:24824603

  17. In vitro oxidative metabolism of 6-mercaptopurine in human liver: insights into the role of the molybdoflavoenzymes aldehyde oxidase, xanthine oxidase, and xanthine dehydrogenase.

    PubMed

    Choughule, Kanika V; Barnaba, Carlo; Joswig-Jones, Carolyn A; Jones, Jeffrey P

    2014-08-01

    Anticancer agent 6-mercaptopurine (6MP) has been in use since 1953 for the treatment of childhood acute lymphoblastic leukemia (ALL) and inflammatory bowel disease. Despite being available for 60 years, several aspects of 6MP drug metabolism and pharmacokinetics in humans are unknown. Molybdoflavoenzymes such as aldehyde oxidase (AO) and xanthine oxidase (XO) have previously been implicated in the metabolism of this drug. In this study, we investigated the in vitro metabolism of 6MP to 6-thiouric acid (6TUA) in pooled human liver cytosol. We discovered that 6MP is metabolized to 6TUA through sequential metabolism via the 6-thioxanthine (6TX) intermediate. The role of human AO and XO in the metabolism of 6MP was established using the specific inhibitors raloxifene and febuxostat. Both AO and XO were involved in the metabolism of the 6TX intermediate, whereas only XO was responsible for the conversion of 6TX to 6TUA. These findings were further confirmed using purified human AO and Escherichia coli lysate containing expressed recombinant human XO. Xanthine dehydrogenase (XDH), which belongs to the family of xanthine oxidoreductases and preferentially reduces nicotinamide adenine dinucleotide (NAD(+)), was shown to contribute to the overall production of the 6TX intermediate as well as the final product 6TUA in the presence of NAD(+) in human liver cytosol. In conclusion, we present evidence that three enzymes, AO, XO, and XDH, contribute to the production of 6TX intermediate, whereas only XO and XDH are involved in the conversion of 6TX to 6TUA in pooled HLC. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  18. Possible association between mutant frequency in peripheral lymphocytes and domestic radon concentrations.

    PubMed

    Bridges, B A; Cole, J; Arlett, C F; Green, M H; Waugh, A P; Beare, D; Henshaw, D L; Last, R D

    1991-05-18

    To investigate whether previously found geographical correlations between leukaemia incidence and exposure to radon are reflected in a detectable mutagenic effect on individuals, the frequency of mutations in the hypoxanthine guanine phosphoribosyl transferase gene (hprt) in peripheral blood T lymphocytes was measured in subjects with known domestic radon concentrations. These concentrations were measured in December, 1989, in houses in Street, Somerset, UK, by passive alpha-track radon detectors. 20 non-smoking subjects aged 36-55 years were selected from the patient list at the local health centre on the basis of the radon concentrations in their homes--the range selected varied by a factor of ten. Blood samples for preparation of T lymphocytes were taken in July, 1990. There was a significant association between the log mutant frequency and radon concentration (t = 3.47, p less than 0.01). A second analysis of a further set of radon measurements (October, 1990, to January, 1991), in both living rooms and bedrooms, and repeated mutant frequency determinations also showed a significant relation, which remained significant even after exclusion of the highest frequency and adjustment for subject's age and cloning efficiency. These data must be regarded as preliminary and further more extensive studies should be done to determine whether the observed association is causal.

  19. [Triplet expansion cytosine-guanine-guanine: Three cases of OMIM syndrome in the same family].

    PubMed

    González-Pérez, Jesús; Izquierdo-Álvarez, Silvia; Fuertes-Rodrigo, Cristina; Monge-Galindo, Lorena; Peña-Segura, José Luis; López-Pisón, Francisco Javier

    2016-04-01

    The dynamic increase in the number of triplet repeats of cytosine-guanine-guanine (CGG) in the FMR1 gene mutation is responsible for three OMIM syndromes with a distinct clinical phenotype: Fragile X syndrome (FXS) and two pathologies in adult carriers of the premutation (55-200 CGG repeats): Primary ovarian insufficiency (FXPOI) and tremor-ataxia syndrome (FXTAS) associated with FXS. CGG mutation dynamics of the FMR1 gene were studied in DNA samples from peripheral blood from the index case and other relatives of first, second and third degree by TP-PCR, and the percentage methylation. Diagnosis of FXS was confirmed in three patients (21.4%), eight patients (57.1%) were confirmed in the premutation range transmitters, one male patient with full mutation/permutation mosaicism (7.1%) and two patients (14.3%) with normal study. Of the eight permutated patients, three had FXPOI and one male patient had FXTAS. Our study suggests the importance of making an early diagnosis of SXF in order to carry out a family study and genetic counselling, which allow the identification of new cases or premutated patients with FMR1 gene- associated syndromes (FXTAS, FXPOI). Copyright © 2015 Elsevier España, S.L.U. All rights reserved.

  20. Spectral characterization of guanine C4-OH adduct: a radiation and quantum chemical study.

    PubMed

    Phadatare, Suvarna D; Sharma, Kiran Kumar K; Rao, B S M; Naumov, S; Sharma, Geeta K

    2011-11-24

    The reaction of hydroxyl radical ((•)OH) with guanine was investigated under restricted pH condition (pH 4.6) using pulse radiolysis technique. The time-resolved optical transient absorption spectra showed two peaks centered at 300 and 330 nm at 4 μs after the pulse which exhibited different reactivity toward molecular oxygen (O(2)). The peak at 300 nm was found to be relatively more stable than the peak at 330 nm. The peak corresponding to 330 nm decayed within 20 μs having a first order rate constant 4-7 × 10(4) s(-1) and was pH dependent. On longer time scale, the species decayed by a bimolecular process. The presence of O(2) did not affect its decay rate constant. The (•)OH reacts with guanine at pH 4.6 with a diffusion-controlled second order rate constant of ≥1 × 10(10) mol(-1) dm(3) s(-1). The reaction of Br(2)(•-), O(2)(•-), and 2-hydroxy-2-propyl radical with guanine was also investigated to differentiate among the one-electron oxidized, one-electron reduced species of guanine and the guanine-OH adducts formed in the reaction of (•)OH at pH 4.6. On the basis of the spectral characteristics and reactivity toward O(2), two guanine-OH adduct species were identified (i) the C4-OH adduct species absorbing at 330 nm which has not been reported so far and (ii) the C8-OH adduct species absorbing at 300 nm in agreement with the known literature absorption features. Quantum chemical calculations using BHandHLYP with 6-31+G(d,p) basis set and excited state calculations using TDDFT for all possible transients complement the assignment of the observed spectral peak at 330 nm to the C4-OH adduct of guanine. Furthermore, steady state radiolysis revealed the formation of 8-hydroxy-guanine whose precursor is known to be the C8-OH adduct species. © 2011 American Chemical Society

  1. Hypoxanthine-guanine phosophoribosyltransferase (HPRT) deficiency: Lesch-Nyhan syndrome

    PubMed Central

    Torres, Rosa J; Puig, Juan G

    2007-01-01

    Deficiency of hypoxanthine-guanine phosphoribosyltransferase (HPRT) activity is an inborn error of purine metabolism associated with uric acid overproduction and a continuum spectrum of neurological manifestations depending on the degree of the enzymatic deficiency. The prevalence is estimated at 1/380,000 live births in Canada, and 1/235,000 live births in Spain. Uric acid overproduction is present inall HPRT-deficient patients and is associated with lithiasis and gout. Neurological manifestations include severe action dystonia, choreoathetosis, ballismus, cognitive and attention deficit, and self-injurious behaviour. The most severe forms are known as Lesch-Nyhan syndrome (patients are normal at birth and diagnosis can be accomplished when psychomotor delay becomes apparent). Partial HPRT-deficient patients present these symptoms with a different intensity, and in the least severe forms symptoms may be unapparent. Megaloblastic anaemia is also associated with the disease. Inheritance of HPRT deficiency is X-linked recessive, thus males are generally affected and heterozygous female are carriers (usually asymptomatic). Human HPRT is encoded by a single structural gene on the long arm of the X chromosome at Xq26. To date, more than 300 disease-associated mutations in the HPRT1 gene have been identified. The diagnosis is based on clinical and biochemical findings (hyperuricemia and hyperuricosuria associated with psychomotor delay), and enzymatic (HPRT activity determination in haemolysate, intact erythrocytes or fibroblasts) and molecular tests. Molecular diagnosis allows faster and more accurate carrier and prenatal diagnosis. Prenatal diagnosis can be performed with amniotic cells obtained by amniocentesis at about 15–18 weeks' gestation, or chorionic villus cells obtained at about 10–12 weeks' gestation. Uric acid overproduction can be managed by allopurinol treatment. Doses must be carefully adjusted to avoid xanthine lithiasis. The lack of precise

  2. Silver (I) as DNA glue: Ag+-mediated guanine pairing revealed by removing Watson-Crick constraints

    PubMed Central

    Swasey, Steven M.; Leal, Leonardo Espinosa; Lopez-Acevedo, Olga; Pavlovich, James; Gwinn, Elisabeth G.

    2015-01-01

    Metal ion interactions with DNA have far-reaching implications in biochemistry and DNA nanotechnology. Ag+ is uniquely interesting because it binds exclusively to the bases rather than the backbone of DNA, without the toxicity of Hg2+. In contrast to prior studies of Ag+ incorporation into double-stranded DNA, we remove the constraints of Watson-Crick pairing by focusing on homo-base DNA oligomers of the canonical bases. High resolution electro-spray ionization mass spectrometry reveals an unanticipated Ag+-mediated pairing of guanine homo-base strands, with higher stability than canonical guanine-cytosine pairing. By exploring unrestricted binding geometries, quantum chemical calculations find that Ag+ bridges between non-canonical sites on guanine bases. Circular dichroism spectroscopy shows that the Ag+-mediated structuring of guanine homobase strands persists to at least 90 °C under conditions for which canonical guanine-cytosine duplexes melt below 20 °C. These findings are promising for DNA nanotechnology and metal-ion based biomedical science. PMID:25973536

  3. Silver (I) as DNA glue: Ag(+)-mediated guanine pairing revealed by removing Watson-Crick constraints.

    PubMed

    Swasey, Steven M; Leal, Leonardo Espinosa; Lopez-Acevedo, Olga; Pavlovich, James; Gwinn, Elisabeth G

    2015-05-14

    Metal ion interactions with DNA have far-reaching implications in biochemistry and DNA nanotechnology. Ag(+) is uniquely interesting because it binds exclusively to the bases rather than the backbone of DNA, without the toxicity of Hg(2+). In contrast to prior studies of Ag(+) incorporation into double-stranded DNA, we remove the constraints of Watson-Crick pairing by focusing on homo-base DNA oligomers of the canonical bases. High resolution electro-spray ionization mass spectrometry reveals an unanticipated Ag(+)-mediated pairing of guanine homo-base strands, with higher stability than canonical guanine-cytosine pairing. By exploring unrestricted binding geometries, quantum chemical calculations find that Ag(+) bridges between non-canonical sites on guanine bases. Circular dichroism spectroscopy shows that the Ag(+)-mediated structuring of guanine homobase strands persists to at least 90 °C under conditions for which canonical guanine-cytosine duplexes melt below 20 °C. These findings are promising for DNA nanotechnology and metal-ion based biomedical science.

  4. Isolation, Identification, and Xanthine Oxidase Inhibition Activity of Alkaloid Compound from Peperomia pellucida

    NASA Astrophysics Data System (ADS)

    Fachriyah, E.; Ghifari, M. A.; Anam, K.

    2018-04-01

    The research of the isolation and xanthine oxidation inhibition activity of alkaloid compound from Peperomia pellucida has been carried out. Alkaloid extract is isolated by column chromatography and preparative TLC. Alkaloid isolate is identified spectroscopically by UV-Vis spectrophotometer, FT-IR, and LC-MS/MS. Xanthine oxidase inhibition activity is carried out by in vitro assay. The result showed that the alkaloid isolated probably has piperidine basic structure. The alkaloid isolate has N-H, C-H, C = C, C = O, C-N, C-O-C groups and the aromatic ring. The IC50 values of ethanol and alkaloid extract are 71.6658 ppm and 76.3318 ppm, respectively. Alkaloid extract of Peperomia pellucida showed higher activity than ethanol extract.

  5. Novel electrochemical sensor based on functionalized graphene for simultaneous determination of adenine and guanine in DNA.

    PubMed

    Huang, Ke-Jing; Niu, De-Jun; Sun, Jun-Yong; Han, Cong-Hui; Wu, Zhi-Wei; Li, Yan-Li; Xiong, Xiao-Qin

    2011-02-01

    A nano-material carboxylic acid functionalized graphene (graphene-COOH) was prepared and used to construct a novel biosensor for the simultaneous detection of adenine and guanine. The direct electrooxidation behaviors of adenine and guanine on the graphene-COOH modified glassy carbon electrode (graphene-COOH/GCE) were carefully investigated by cyclic voltammetry and differential pulse voltammetry. The results indicated that both adenine and guanine showed the increase of the oxidation peak currents with the negative shift of the oxidation peak potentials in contrast to that on the bare glassy carbon electrode. The electrochemical parameters of adenine and guanine on the graphene-COOH/GCE were calculated and a simple and reliable electroanalytical method was developed for the detection of adenine and guanine, respectively. The modified electrode exhibited good behaviors in the simultaneous detection of adenine and guanine with the peak separation as 0.334V. The detection limit for individual determination of guanine and adenine was 5.0×10(-8)M and 2.5×10(-8)M (S/N=3), respectively. Furthermore, the measurements of thermally denatured single-stranded DNA were carried out and the value of (G+C)/(A+T) of single-stranded DNA was calculated as 0.80. The biosensor exhibited some advantages, such as simplicity, rapidity, high sensitivity, good reproducibility and long-term stability. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Design and synthesis of chalcone derivatives as potential non-purine xanthine oxidase inhibitors.

    PubMed

    Bui, Trung Huu; Nguyen, Nhan Trung; Dang, Phu Hoang; Nguyen, Hai Xuan; Nguyen, Mai Thanh Thi

    2016-01-01

    Based on some previous research, the chalcone derivatives exhibited potent xanthine oxidase inhibitory activity, e.g. sappanchalcone ( 7 ), with IC 50 value of 3.9 μM, was isolated from Caesalpinia sappan . Therefore, objectives of this research are design and synthesis of 7 and other chalcone derivatives by Claisen-Schmidt condensation and then evaluate their XO inhibitory activity. Fifteen chalcone derivatives were synthesized by Claisen-Schmidt condensation, and were evaluated for XO inhibitory activity. Nine out of 15 synthetic chalcones showed inhibitory activity ( 3 ; 5 - 8 ; 10 - 13 ). Sappanchalcone derivatives ( 11 ) (IC 50 , 2.5 μM) and a novel chalcone ( 13 ) (IC 50 , 2.4 μM) displayed strong xanthine oxidase inhibitory activity that is comparable to allopurinol (IC 50 , 2.5 μM). The structure-activity relationship of these chalcone derivatives was also presented. It is the first research on synthesis sappanchalcone ( 7 ) by Claisen-Schmidt condensation. The overall yield of this procedure was 6.6 %, higher than that of reported procedure (4 %). Design, synthesis, and evaluation of chalcone derivatives were carried out. This result suggests that the chalcone derivative can be used as potential non-purine XO inhibitors.Graphical abstractThe chalcone derivatives as potential non-purine xanthine oxidase inhibitors.

  7. A DFT investigation on interactions between asymmetric derivatives of cisplatin and nucleobase guanine

    NASA Astrophysics Data System (ADS)

    Tai, Truong Ba; Nhat, Pham Vu

    2017-07-01

    The interactions of hydrolysis products of cisplatin and its asymmetric derivatives cis- and trans-[PtCl2(iPram)(Mepz)] with guanine were studied using DFT methods. These interactions are dominated by electrostatic effects, namely hydrogen bond contributions and there exists a charge flow from H-atoms of ligands to the O-atoms of guanine. The replacement of NH3 moieties by larger functional groups accompanies with a moderate reaction between PtII and guanine molecule, diminishing the cytotoxicity of the drug. The asymmetric and symmetric NH2 stretching modes of complexes having strong hydrogen bond interactions are red shifted importantly as compared to complexes without presence of hydrogen bond interactions.

  8. Inhibition of xanthine oxidase reduces oxidative stress and improves skeletal muscle function in response to electrically stimulated isometric contractions in aged mice

    PubMed Central

    Ryan, Michael J.; Jackson, Janna R.; Hao, Yanlei; Leonard, Stephen S.; Alway, Stephen E.

    2012-01-01

    Oxidative stress is a putative factor responsible for reducing function and increasing apoptotic signaling in skeletal muscle with aging. This study examined the contribution and functional significance of the xanthine oxidase enzyme as a potential source of oxidant production in aged skeletal muscle during repetitive in situ electrically stimulated isometric contractions. Xanthine oxidase activity was inhibited in young adult and aged mice via a subcutaneously placed time release (2.5 mg/day) allopurinol pellet, 7 days prior to the start of in situ electrically stimulated isometric contractions. Gastrocnemius muscles were electrically activated with 20 maximal contractions for three consecutive days. Xanthine oxidase activity was 65% greater in the gastrocnemius muscle of aged mice compared to young mice. Xanthine oxidase activity also increased after in situ electrically stimulated isometric contractions in muscles from both young (33%) and aged (28%) mice, relative to contralateral non-contracted muscles. Allopurinol attenuated the exercise-induced increase in oxidative stress, but it did not affect the elevated basal levels of oxidative stress that was associated with aging. In addition, inhibition of xanthine oxidase activity decreased caspase 3 activity, but it had no effect on other markers of mitochondrial associated apoptosis. Our results show that compared to control conditions, suppression of xanthine oxidase activity by allopurinol reduced xanthine oxidase activity, H2O2 levels, lipid peroxidation and caspase-3 activity, prevented the in situ electrically stimulated isometric contraction-induced loss of glutathione, prevented the increase of catalase and copper-zinc superoxide dismutase activities, and increased maximal isometric force in the plantar flexor muscles of aged mice after repetitive electrically evoked contractions. PMID:21530649

  9. Oxidation kinetics of guanine in DNA molecules adsorbed onto indium tin oxide electrodes.

    PubMed

    Armistead, P M; Thorp, H H

    2001-02-01

    Oligonucleotides containing the guanine nucleobase were adsorbed onto ITO electrodes from mixtures of DMF and acetate buffer. Chronocoulometry and chronoamperometry were performed on the modified electrodes in both phosphate buffer and buffer containing low concentrations of the inorganic complex Ru(bpy)3(2+) (bpy = 2,2' bipyridine), which catalyzes guanine oxidation. The charge and current evolution with and without the catalyst were compared to the charge and current evolution for electrodes that were treated with identical oligonucleotides that were substituted at every guanine with the electrochemically inert nucleobase hypoxanthine. Chronocoulometry over 2.5 s shows that roughly 2 electrons per guanine were transferred to the electrode in both the presence and absence of Ru(bpy)3(2+), although at a slower rate for the uncatalyzed process. Chronoamperograms measured over 250 ms can be fit to a double exponential decay, with the intensity of the fast component roughly 6-20 times greater than that of the slow component. First- and second-order rate constants for catalytic and direct guanine oxidation were determined from the fast component. The maximum catalytic enhancement for immobilized guanine was found to be i(cat)/i(d) = 4 at 25 microM Ru(bpy)3(2+). The second-order rate constant for the catalyzed reaction was 1.3 x 10(7) M(-1) s(-1), with an apparent dissociation constant of 8.8 microM. When compared to parallel studies in solution, a smaller value of the dissociation constant and a larger value of the second-order rate constant are observed, probably due to distortion of the immobilized DNA, an increase in the local negative charge due to the oxygen sites on the ITO surface, and redox cycling of the catalyst, which maintains the surface concentration of the active form.

  10. Vascular oxidative stress and endothelial dysfunction in patients with chronic heart failure: role of xanthine-oxidase and extracellular superoxide dismutase.

    PubMed

    Landmesser, Ulf; Spiekermann, Stephan; Dikalov, Sergey; Tatge, Helma; Wilke, Ragna; Kohler, Christoph; Harrison, David G; Hornig, Burkhard; Drexler, Helmut

    2002-12-10

    Impaired flow-dependent, endothelium-mediated vasodilation (FDD) in patients with chronic heart failure (CHF) results, at least in part, from accelerated degradation of nitric oxide by oxygen radicals. The mechanisms leading to increased vascular radical formation, however, remain unclear. Therefore, we determined endothelium-bound activities of extracellular superoxide dismutase (ecSOD), a major vascular antioxidant enzyme, and xanthine-oxidase, a potent radical producing enzyme, and their relation to FDD in patients with CHF. ecSOD and xanthine-oxidase activities, released from endothelium into plasma by heparin bolus injection, were determined in 14 patients with CHF and 10 control subjects. FDD of the radial artery was measured using high-resolution ultrasound and was assessed before and after administration of the antioxidant vitamin C (25 mg/min; IA). In patients with CHF, endothelium-bound ecSOD activity was substantially reduced (5.0+/-0.7 versus 14.4+/-2.6 U x mL(-1) x min(-1); P<0.01) and closely related to FDD (r=0.61). Endothelium-bound xanthine-oxidase activity was increased by >200% (38+/-10 versus 12+/-4 nmol O2*- x microL(-1); P<0.05) and inversely related to FDD (r=-0.35) in patients with CHF. In patients with low ecSOD and high xanthine-oxidase activity, a greater benefit of vitamin C on FDD was observed, ie, the portion of FDD inhibited by radicals correlated negatively with ecSOD (r=-0.71) but positively with xanthine-oxidase (r=0.75). These results demonstrate that both increased xanthine-oxidase and reduced ecSOD activity are closely associated with increased vascular oxidative stress in patients with CHF. This loss of vascular oxidative balance likely represents a novel mechanism contributing to endothelial dysfunction in CHF.

  11. Improved bioactivity of G-rich triplex-forming oligonucleotides containing modified guanine bases

    PubMed Central

    Rogers, Faye A; Lloyd, Janice A; Tiwari, Meetu Kaushik

    2014-01-01

    Triplex structures generated by sequence-specific triplex-forming oligonucleotides (TFOs) have proven to be promising tools for gene targeting strategies. In addition, triplex technology has been highly utilized to study the molecular mechanisms of DNA repair, recombination and mutagenesis. However, triplex formation utilizing guanine-rich oligonucleotides as third strands can be inhibited by potassium-induced self-association resulting in G-quadruplex formation. We report here that guanine-rich TFOs partially substituted with 8-aza-7-deaza-guanine (PPG) have improved target site binding in potassium compared with TFOs containing the natural guanine base. We designed PPG-substituted TFOs to bind to a polypurine sequence in the supFG1 reporter gene. The binding efficiency of PPG-substituted TFOs to the target sequence was analyzed using electrophoresis mobility gel shift assays. We have determined that in the presence of potassium, the non-substituted TFO, AG30 did not bind to its target sequence, however binding was observed with the PPG-substituted AG30 under conditions with up to 140 mM KCl. The PPG-TFOs were able to maintain their ability to induce genomic modifications as measured by an assay for gene-targeted mutagenesis. In addition, these compounds were capable of triplex-induced DNA double strand breaks, which resulted in activation of apoptosis. PMID:25483840

  12. A novel multi-hyphenated analytical method to simultaneously determine xanthine oxidase inhibitors and superoxide anion scavengers in natural products.

    PubMed

    Qi, Jin; Sun, Li-Qiong; Qian, Steven Y; Yu, Bo-Yang

    2017-09-01

    Natural products, such as rosmarinic acid and apigenin, can act as xanthine oxidase inhibitors (XOIs) as well as superoxide anion scavengers, and have potential for treatment of diseases associated with high uric acid levels and oxidative stress. However, efficient simultaneous screening of these two bioactivities in natural products has been challenging. We have developed a novel method by assembling a multi-hyphenated high performance liquid chromatography (HPLC) system that combines a photo-diode array, chemiluminescence detector and a HPLC system with a variable wavelength detector, to simultaneously detect components that act as both XOIs and superoxide anion scavengers in natural products. Superoxide anion scavenging activity in the analyte was measured by on-line chemiluminescence chromatography based on pyrogallol-luminol oxidation, while xanthine oxidase inhibitory activity was determined by semi-on-line HPLC analysis. After optimizing multiple elements, including chromatographic conditions (e.g., organic solvent concentration and mobile phase pH), concentrations of xanthine/xanthine oxidase and reaction temperature, our validated analytical method was capable of mixed sample analysis. The final results from our method are presented in an easily understood visual format including comprehensive bioactivity data of natural products. Copyright © 2017. Published by Elsevier B.V.

  13. Xanthine-Catechin Mixture Enhances Lithium-Induced Anti-Inflammatory Response in Activated Macrophages In Vitro

    PubMed Central

    Barbisan, Fernanda; Azzolin, Verônica Farina; Teixeira, Cibele Ferreira; Mastella, Moisés Henrique; Ribeiro, Euler Esteves; do Prado-Lima, Pedro Antonio Schmidt; Praia, Raquel de Souza; Medeiros Frescura Duarte, Marta Maria

    2017-01-01

    Lithium (Li) is a chemical element used for treating and preventing bipolar disorder (BD) and exerts positive effects such as anti-inflammatory effects as well as undesirable side effects. These effects of Li can be influenced by interaction with some nutritional elements. Therefore, we investigated the potential effects of xanthine (caffeine and theobromine) and catechin molecules present in some food beverages broadly consumed worldwide, such as coffee and tea, on Li-induced anti-inflammatory effects. In the present study, we concomitantly exposed RAW 264.7 macrophages to Li, isolated xanthine and catechin molecules, and a xanthine-catechin mixture (XC mixture). We evaluated the effects of these treatments on cell proliferation, cell cycle progression, oxidative and antioxidant marker expression, cytokine levels, gene expression, and GSK-3β enzyme expression. Treatment with the XC mixture potentialized Li-induced anti-inflammatory effects by intensification of the following: GSK-3β inhibitory action, lowering effect on proinflammatory cytokines (IL-1β, IL-6, and TNFα), and increase in the levels of IL-10 that is an anti-inflammatory cytokine. Despite the controversial nature of caffeine consumption by BD patients, these results suggested that consumption of caffeine, in low concentrations, mixed with other bioactive molecules along with Li may be safe. PMID:29250539

  14. Brain purine metabolism and xanthine dehydrogenase/oxidase conversion in hyperammonemia are under control of NMDA receptors and nitric oxide.

    PubMed

    Kaminsky, Yury; Kosenko, Elena

    2009-10-19

    In hyperammonemia, a decrease in brain ATP can be a result of adenine nucleotide catabolism. Xanthine dehydrogenase (XD) and xanthine oxidase (XO) are the end steps in the purine catabolic pathway and directly involved in depletion of the adenylate pool in the cell. Besides, XD can easily be converted to XO to produce reactive oxygen species in the cell. In this study, the effects of acute ammonia intoxication in vivo on brain adenine nucleotide pool and xanthine and hypoxanthine, the end degradation products of adenine nucleotides, during the conversion of XD to XO were studied. Injection of rats with ammonium acetate was shown to lead to the dramatic decrease in the ATP level, adenine nucleotide pool size and adenylate energy charge and to the great increase in hypoxanthine and xanthine 11 min after the lethal dose indicating rapid degradation of adenylates. Conversion of XD to XO in hyperammonemic rat brain was evidenced by elevated XO/XD activity ratio. Injection of MK-801, a NMDA receptor blocker, prevented ammonia-induced catabolism of adenine nucleotides and conversion of XD to XO suggesting that in vivo these processes are mediated by activation of NMDA receptors. The in vitro dose-dependent effects of sodium nitroprusside, a NO donor, on XD and XO activities are indicative of the direct modification of the enzymes by nitric oxide. This is the first report evidencing the increase in brain xanthine and hypoxanthine levels and adenine nucleotide breakdown in acute ammonia intoxication and NMDA receptor-mediated prevention of these alterations.

  15. NADH oxidase activity of rat and human liver xanthine oxidoreductase: potential role in superoxide production.

    PubMed

    Maia, Luisa; Duarte, Rui O; Ponces-Freire, Ana; Moura, José J G; Mira, Lurdes

    2007-08-01

    To characterise the NADH oxidase activity of both xanthine dehydrogenase (XD) and xanthine oxidase (XO) forms of rat liver xanthine oxidoreductase (XOR) and to evaluate the potential role of this mammalian enzyme as an O2*- source, kinetics and electron paramagnetic resonance (EPR) spectroscopic studies were performed. A steady-state kinetics study of XD showed that it catalyses NADH oxidation, leading to the formation of one O2*- molecule and half a H(2)O(2) molecule per NADH molecule, at rates 3 times those observed for XO (29.2 +/- 1.6 and 9.38 +/- 0.31 min(-1), respectively). EPR spectra of NADH-reduced XD and XO were qualitatively similar, but they were quantitatively quite different. While NADH efficiently reduced XD, only a great excess of NADH reduced XO. In agreement with reductive titration data, the XD specificity constant for NADH (8.73 +/- 1.36 microM(-1) min(-1)) was found to be higher than that of the XO specificity constant (1.07 +/- 0.09 microM(-1) min(-1)). It was confirmed that, for the reducing substrate xanthine, rat liver XD is also a better O2*- source than XO. These data show that the dehydrogenase form of liver XOR is, thus, intrinsically more efficient at generating O2*- than the oxidase form, independently of the reducing substrate. Most importantly, for comparative purposes, human liver XO activity towards NADH oxidation was also studied, and the kinetics parameters obtained were found to be very similar to those of the XO form of rat liver XOR, foreseeing potential applications of rat liver XOR as a model of the human liver enzyme.

  16. Design and synthesis of novel 2-(indol-5-yl)thiazole derivatives as xanthine oxidase inhibitors.

    PubMed

    Song, Jeong Uk; Choi, Sung Pil; Kim, Tae Hun; Jung, Cheol-Kyu; Lee, Joo-Youn; Jung, Sang-Hun; Kim, Geun Tae

    2015-03-15

    Xanthine oxidase (XO) inhibitors have been widely used for the treatment of gout. Indole rings are frequently used as active scaffold in designing inhibitors for enzymes. Herein, we describe the structure-activity relationship for novel xanthine oxidase inhibitors based on indole scaffold. A series of novel tri-substituted 2-(indol-5-yl)thiazole derivatives were synthesized, and their in vitro inhibitory activities against xanthine oxidase and in vivo efficacy lowering uric acid level in blood were measured. Among them, 2-(3-cyano-2-isopropylindol-5-yl)-4-methylthiazole-5-carboxylic acid exhibits the most potent XO inhibitory activity (IC50 value: 3.5nM) and the excellent plasma uric acid lowering activity. Study of structure activity relationship indicated that hydrophobic moiety (e.g., isopropyl) at 1-position and electron withdrawing group (e.g., CN) at 3-position of indole ring and small hydrophobic group (CH3) at 4-position of the thiazole ring enhanced the XO inhibitory activity. Hydrophobic substitution such as isopropyl at 1-position of the indole moiety without any substitution at 2-position has an essential role for enhancing bioavailability and therefore for high in vivo efficacy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Electron spin resonance characterization of vascular xanthine and NAD(P)H oxidase activity in patients with coronary artery disease: relation to endothelium-dependent vasodilation.

    PubMed

    Spiekermann, Stephan; Landmesser, Ulf; Dikalov, Sergey; Bredt, Martin; Gamez, Graciela; Tatge, Helma; Reepschläger, Nina; Hornig, Burkhard; Drexler, Helmut; Harrison, David G

    2003-03-18

    Increased inactivation of nitric oxide by superoxide (O2*-) contributes to endothelial dysfunction in patients with coronary disease (CAD). We therefore characterized the vascular activities of xanthine oxidase and NAD(P)H oxidase, 2 major O2*--producing enzyme systems, and their relationship with flow-dependent, endothelium-mediated vasodilation (FDD) in patients with CAD. Xanthine- and NAD(P)H-mediated O*.- formation was determined in coronary arteries from 10 patients with CAD and 10 controls by using electron spin resonance spectroscopy. Furthermore, activity of endothelium-bound xanthine oxidase in vivo and FDD of the radial artery were determined in 21 patients with CAD and 10 controls. FDD was measured before and after infusion of the antioxidant vitamin C (25 mg/min i.a.) to determine the portion of FDD inhibited by radicals. In coronary arteries from patients with CAD, xanthine- and NAD(P)H-mediated O2*- formation was increased compared with controls (xanthine: 12+/-2 versus 7+/-1 nmol O2*-/ microg protein; NADH: 11+/-1 versus 7+/-1 nmol O2*-/ microg protein; and NADPH: 12+/-2 versus 9+/-1 nmol O2*-/ microg protein; each P<0.05). Endothelium-bound xanthine oxidase activity was increased by >200% in patients with CAD (25+/-4 versus 9+/-1 nmol O2*-/ microL plasma per min; P<0.05) and correlated inversely with FDD (r=-0.55; P<0.05) and positively with the effect of vitamin C on FDD (r=0.54; P<0.05). The present study represents the first electron spin resonance measurements of xanthine and NAD(P)H oxidase activity in human coronary arteries and supports the concept that increased activities of both enzymes contribute to increased vascular oxidant stress in patients with CAD. Furthermore, the present study suggests that increased xanthine oxidase activity contributes to endothelial dysfunction in patients with CAD and may thereby promote the atherosclerotic process.

  18. Structure-wise discrimination of adenine and guanine by proteins on the basis of their nonbonded interactions.

    PubMed

    Usha, S; Selvaraj, S

    2015-01-01

    We have analyzed the nonbonded interactions of the structurally similar moieties, adenine and guanine forming complexes with proteins. The results comprise (a) the amino acid-ligand atom preferences, (b) solvent accessibility of ligand atoms before and after complex formation with proteins, and (c) preferred amino acid residue atoms involved in the interactions. We have observed that the amino acid preferences involved in the hydrogen bonding interactions vary for adenine and guanine. The structural variation between the purine atoms is clearly reflected by their burial tendency in the solvent environment. Correlation of the mean amino acid preference values show the variation that exists between adenine and guanine preferences of all the amino acid residues. All our observations provide evidence for the discriminating nature of the proteins in recognizing adenine and guanine.

  19. Increased xanthine oxidase-related ROS production and TRPV1 synthesis preceding DOMS post-eccentric exercise in rats.

    PubMed

    Retamoso, Leandro T; Silveira, Mauro E P; Lima, Frederico D; Busanello, Guilherme L; Bresciani, Guilherme; Ribeiro, Leandro R; Chagas, Pietro M; Nogueira, Cristina W; Braga, Ana Claudia M; Furian, Ana Flávia; Oliveira, Mauro S; Fighera, Michele R; Royes, Luiz Fernando F

    2016-05-01

    It is well-known that unaccustomed exercise, especially eccentric exercise, is associated to delayed onset muscle soreness (DOMS). Whether DOMS is associated with reactive oxygen species (ROS) and the transient receptor potential vanilloid 1 (TRPV1) is still an open question. Thus, the aim of this study was to investigate the association between TRPV1 and xanthine oxidase-related ROS production in muscle and DOMS after a bout of eccentric exercise. Male Wistar rats performed a downhill running exercise on a treadmill at a -16° tilt and a constant speed for 90min (5min/bout separated by 2min of rest). Mechanical allodynia and grip force tests were performed before and 1, 3, 6, 9, 12, 24, 48 and 72h after the downhill running. Biochemical assays probing oxidative stress, purine degradation, xanthine oxidase activity, Ca(2+) ATPase activity and TRPV1 protein content were performed in gastrocnemius muscle at 12, 24, and 48h after the downhill running. Our statistical analysis showed an increase in mechanical allodynia and a loss of strength after the downhill running. Similarly, an increase in carbonyl, xanthine oxidase activity, uric acid levels and TRPV1 immunoreactivity were found 12h post-exercise. On the other hand, Ca(2+) ATPase activity decreased in all analyzed times. Our results suggest that a possible relationship between xanthine oxidase-related ROS and TRPV1 may exist during the events preceding eccentric exercise-related DOMS. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Phosphoribosyl Diphosphate (PRPP): Biosynthesis, Enzymology, Utilization, and Metabolic Significance

    PubMed Central

    Andersen, Kasper R.; Kilstrup, Mogens; Martinussen, Jan; Switzer, Robert L.; Willemoës, Martin

    2016-01-01

    SUMMARY Phosphoribosyl diphosphate (PRPP) is an important intermediate in cellular metabolism. PRPP is synthesized by PRPP synthase, as follows: ribose 5-phosphate + ATP → PRPP + AMP. PRPP is ubiquitously found in living organisms and is used in substitution reactions with the formation of glycosidic bonds. PRPP is utilized in the biosynthesis of purine and pyrimidine nucleotides, the amino acids histidine and tryptophan, the cofactors NAD and tetrahydromethanopterin, arabinosyl monophosphodecaprenol, and certain aminoglycoside antibiotics. The participation of PRPP in each of these metabolic pathways is reviewed. Central to the metabolism of PRPP is PRPP synthase, which has been studied from all kingdoms of life by classical mechanistic procedures. The results of these analyses are unified with recent progress in molecular enzymology and the elucidation of the three-dimensional structures of PRPP synthases from eubacteria, archaea, and humans. The structures and mechanisms of catalysis of the five diphosphoryltransferases are compared, as are those of selected enzymes of diphosphoryl transfer, phosphoryl transfer, and nucleotidyl transfer reactions. PRPP is used as a substrate by a large number phosphoribosyltransferases. The protein structures and reaction mechanisms of these phosphoribosyltransferases vary and demonstrate the versatility of PRPP as an intermediate in cellular physiology. PRPP synthases appear to have originated from a phosphoribosyltransferase during evolution, as demonstrated by phylogenetic analysis. PRPP, furthermore, is an effector molecule of purine and pyrimidine nucleotide biosynthesis, either by binding to PurR or PyrR regulatory proteins or as an allosteric activator of carbamoylphosphate synthetase. Genetic analyses have disclosed a number of mutants altered in the PRPP synthase-specifying genes in humans as well as bacterial species. PMID:28031352

  1. Crosslinking reactions of 4-amino-6-oxo-2-vinylpyrimidine with guanine derivatives and structural analysis of the adducts

    PubMed Central

    Kusano, Shuhei; Ishiyama, Shogo; Lam, Sik Lok; Mashima, Tsukasa; Katahira, Masato; Miyamoto, Kengo; Aida, Misako; Nagatsugi, Fumi

    2015-01-01

    DNA interstrand crosslinks (ICLs) are the primary mechanism for the cytotoxic activity of many clinical anticancer drugs, and numerous strategies for forming ICLs have been developed. One such method is using crosslink-forming oligonucleotides (CFOs). In this study, we designed a 4-amino-6-oxo-2-vinylpyrimidine (AOVP) derivative with an acyclic spacer to react selectively with guanine. The AOVP CFO exhibited selective crosslinking reactivity with guanine and thymine in DNA, and with guanine in RNA. These crosslinking reactions with guanine were accelerated in the presence of CoCl2, NiCl2, ZnCl2 and MnCl2. In addition, we demonstrated that the AOVP CFO was reactive toward 8-oxoguanine opposite AOVP in the duplex DNA. The structural analysis of each guanine and 8-oxoguanine adduct in the duplex DNA was investigated by high-resolution NMR. The results suggested that AOVP reacts at the N2 amine in guanine and at the N1 or N2 amines in 8-oxoguanine in the duplex DNA. This study demonstrated the first direct determination of the adduct structure in duplex DNA without enzyme digestion. PMID:26245348

  2. Development of 2-(Substituted Benzylamino)-4-Methyl-1, 3-Thiazole-5-Carboxylic Acid Derivatives as Xanthine Oxidase Inhibitors and Free Radical Scavengers.

    PubMed

    Ali, Md Rahmat; Kumar, Suresh; Afzal, Obaid; Shalmali, Nishtha; Sharma, Manju; Bawa, Sandhya

    2016-04-01

    A series of 2-(substituted benzylamino)-4-methylthiazole-5-carboxylic acid was designed and synthesized as structural analogue of febuxostat. A methylene amine spacer was incorporated between the phenyl ring and thiazole ring in contrast to febuxostat in which the phenyl ring was directly linked with the thiazole moiety. The purpose of incorporating methylene amine was to provide a heteroatom which is expected to favour hydrogen bonding within the active site residues of the enzyme xanthine oxidase. The structure of all the compounds was established by the combined use of FT-IR, NMR and MS spectral data. All the compounds were screened in vitro for their ability to inhibit the enzyme xanthine oxidase as per the reported procedure along with DPPH free radical scavenging assay. Compounds 5j, 5k and 5l demonstrated satisfactory potent xanthine oxidase inhibitory activities with IC50 values, 3.6, 8.1 and 9.9 μm, respectively, whereas compounds 5k, 5n and 5p demonstrated moderate antioxidant activities having IC50 15.3, 17.6 and 19.6 μm, respectively, along with xanthine oxidase inhibitory activity. Compound 5k showed moderate xanthine oxidase inhibitory activity as compared with febuxostat along with antioxidant activity. All the compounds were also studied for their binding affinity in active site of enzyme (PDB ID-1N5X). © 2015 John Wiley & Sons A/S.

  3. Calculation of Heavy Ion Inactivation and Mutation Rates in Radial Dose Model of Track Structure

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.; Shavers, Mark R.; Katz, Robert

    1997-01-01

    In the track structure model, the inactivation cross section is found by summing an inactivation probability over all impact parameters from the ion to the sensitive sites within the cell nucleus. The inactivation probability is evaluated by using the dose response of the system to gamma rays and the radial dose of the ions and may be equal to unity at small impact parameters. We apply the track structure model to recent data with heavy ion beams irradiating biological samples of E. Coli, B. Subtilis spores, and Chinese hamster (V79) cells. Heavy ions have observed cross sections for inactivation that approach and sometimes exceed the geometric size of the cell nucleus. We show how the effects of inactivation may be taken into account in the evaluation of the mutation cross sections in the track structure model through correlation of sites for gene mutation and cell inactivation. The model is fit to available data for HPRT (hypoxanthine guanine phosphoribosyl transferase) mutations in V79 cells, and good agreement is found. Calculations show the high probability for mutation by relativistic ions due to the radial extension of ions track from delta rays. The effects of inactivation on mutation rates make it very unlikely that a single parameter such as LET (linear energy transfer) can be used to specify radiation quality for heavy ion bombardment.

  4. Lifetimes and reaction pathways of guanine radical cations and neutral guanine radicals in an oligonucleotide in aqueous solutions.

    PubMed

    Rokhlenko, Yekaterina; Geacintov, Nicholas E; Shafirovich, Vladimir

    2012-03-14

    The exposure of guanine in the oligonucleotide 5'-d(TCGCT) to one-electron oxidants leads initially to the formation of the guanine radical cation G(•+), its deptotonation product G(-H)(•), and, ultimately, various two- and four-electron oxidation products via pathways that depend on the oxidants and reaction conditions. We utilized single or successive multiple laser pulses (308 nm, 1 Hz rate) to generate the oxidants CO(3)(•-) and SO(4)(•-) (via the photolysis of S(2)O(8)(2-) in aqueous solutions in the presence and absence of bicarbonate, respectively) at concentrations/pulse that were ∼20-fold lower than the concentration of 5'-d(TCGCT). Time-resolved absorption spectroscopy measurements following single-pulse excitation show that the G(•+) radical (pK(a) = 3.9) can be observed only at low pH and is hydrated within 3 ms at pH 2.5, thus forming the two-electron oxidation product 8-oxo-7,8-dihydroguanosine (8-oxoG). At neutral pH, and single pulse excitation, the principal reactive intermediate is G(-H)(•), which, at best, reacts only slowly with H(2)O and lives for ∼70 ms in the absence of oxidants/other radicals to form base sequence-dependent intrastrand cross-links via the nucleophilic addition of N3-thymidine to C8-guanine (5'-G*CT* and 5'-T*CG*). Alternatively, G(-H)(•) can be oxidized further by reaction with CO(3)(•-), generating the two-electron oxidation products 8-oxoG (C8 addition) and 5-carboxamido-5-formamido-2-iminohydantoin (2Ih, by C5 addition). The four-electron oxidation products, guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp), appear only after a second (or more) laser pulse. The levels of all products, except 8-oxoG, which remains at a low constant value, increase with the number of laser pulses.

  5. Guanine- Formation During the Thermal Polymerization of Amino Acids

    NASA Technical Reports Server (NTRS)

    Mc Caw, B. K.; Munoz, E. F.; Ponnamperuma, C.; Young, R. S.

    1964-01-01

    The action of heat on a mixture of amino acids was studied as a possible abiological pathway for the synthesis of purines and pyrimidines. Guanine was detected. This result is significant in the context of chemical evolution.

  6. Levels and interactions of plasma xanthine oxidase, catalase and liver function parameters in Nigerian children with Plasmodium falciparum infection.

    PubMed

    Iwalokun, B A; Bamiro, S B; Ogunledun, A

    2006-12-01

    Elevated plasma levels of xanthine oxidase and liver function parameters have been associated with inflammatory events in several human diseases. While xanthine oxidase provides in vitro protection against malaria, its pathophysiological functions in vivo and interactions with liver function parameters remain unclear. This study examined the interactions and plasma levels of xanthine oxidase (XO) and uric acid (UA), catalase (CAT) and liver function parameters GOT, GPT and bilirubin in asymptomatic (n=20), uncomplicated (n=32), and severe (n=18) falciparum malaria children aged 3-13 years. Compared to age-matched control (n=16), significant (p<0.05) elevation in xanthine oxidase by 100-550%, uric acid by 15.4-153.8%, GOT and GPT by 22.1-102.2%, and total bilirubin by 2.3-86% according to parasitaemia (geometric mean parasite density (GMPD)=850-87100 parasites/microL) was observed in the malarial children. Further comparison with control revealed higher CAT level (16.2+/-0.5 vs 14.6+/-0.4 U/L; p<0.05) lacking significant (p>0.05) correlation with XO, but lower CAT level (13.4-5.4 U/L) with improved correlations (r=-0.53 to -0.91; p<0.05) with XO among the asymptomatic and symptomatic malaria children studied. 75% of control, 45% of asymptomatic, 21.9% of uncomplicated, and none of severe malaria children had Hb level>11.0 g/dL. Multivariate analyses further revealed significant (p<0.05) correlations between liver function parameters and xanthine oxidase (r=0.57-0.64) only in the severe malaria group. We conclude that elevated levels of XO and liver enzymes are biochemical features of Plasmodium falciparum parasitaemia in Nigerian children, with both parameters interacting differently to modulate the catalase response in asymptomatic and symptomatic falciparum malaria.

  7. N7-(carboxymethyl)guanine-Lithium Crystalline Complex: A Bioinspired Solid Electrolyte

    PubMed Central

    Dutta, Dipak; Nagapradeep, N.; Zhu, Haijin; Forsyth, Maria; Verma, Sandeep; Bhattacharyya, Aninda J.

    2016-01-01

    Electrochemical device with components having direct significance to biological life processes is a potent futuristic strategy for the realization of all-round green and sustainable development. We present here synthesis design, structural analysis and ion transport of a novel solid organic electrolyte (G7Li), a compound reminiscent of ion channels, derived from regioisomeric N7-guanine-carboxylate conjugate and Li-ions. G7Li, with it’s in-built supply of Li+-ions, exhibited remarkably high lithium-ion transference number (= 0.75) and tunable room temperature ionic conductivity spanning three decades (≈10−7 to 10−3 Ω−1 cm−1) as a function of moisture content. The ionic conductivity show a distinct reversible transition around 80–100 °C, from a dual Li+ and H+ (<100 °C) to a pure Li+ conductor (>100 °C). Systematic studies reveal a transition from water-assisted Li-ion transport to Li hopping-like mechanism involving guanine-Li coordination. While as-synthesized G7Li has potential in humidity sensors, the anhydrous G7Li is attractive for rechargeable batteries. PMID:27091631

  8. Guanine-based amphiphiles: synthesis, ion transport properties and biological activity.

    PubMed

    Musumeci, Domenica; Irace, Carlo; Santamaria, Rita; Milano, Domenico; Tecilla, Paolo; Montesarchio, Daniela

    2015-03-01

    Novel amphiphilic guanine derivatives, here named Gua1 and Gua2, have been prepared through few, simple and efficient synthetic steps. In ion transport experiments through phospholipid bilayers, carried out to evaluate their ability to mediate H(+) transport, Gua2 showed high activity. When this compound was investigated for ion-selective transport activities, no major differences were observed in the behaviour with cations while, in the case of anions, selective activity was observed in the series I(-)>Br(-)>Cl(-)>F(-). The bioactivity of these guanine analogues has been evaluated on a panel of human tumour and non-tumour cell lines in preliminary in vitro cytotoxicity assays, showing a relevant antiproliferative profile for Gua2. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Thermal properties of milk fat, xanthine oxidase, caseins and whey proteins in pulsed electric field-treated bovine whole milk.

    PubMed

    Sharma, Pankaj; Oey, Indrawati; Everett, David W

    2016-09-15

    Thermodynamics of milk components (milk fat, xanthine oxidase, caseins and whey proteins) in pulsed electric field (PEF)-treated milk were compared with thermally treated milk (63 °C for 30 min and 73 °C for 15s). PEF treatments were applied at 20 or 26 kV cm(-1) for 34 μs with or without pre-heating of milk (55 °C for 24s), using bipolar square wave pulses in a continuous mode of operation. PEF treatments did not affect the final temperatures of fat melting (Tmelting) or xanthine oxidase denaturation (Tdenaturation), whereas thermal treatments increased both the Tmelting of milk fat and the Tdenaturation for xanthine oxidase by 2-3 °C. Xanthine oxidase denaturation was ∼13% less after PEF treatments compared with the thermal treatments. The enthalpy change (ΔH of denaturation) of whey proteins decreased in the treated-milk, and denaturation increased with the treatment intensity. New endothermic peaks in the calorimetric thermograms of treated milk revealed the formation of complexes due to interactions between MFGM (milk fat globule membrane) proteins and skim milk proteins. Evidence for the adsorption of complexes onto the MFGM surface was obtained from the increase in surface hydrophobicity of proteins, revealing the presence of unfolded hydrophobic regions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Xanthine oxido-reductase activity in ischemic human and rat intestine.

    PubMed

    Bianciardi, Paola; Scorza, Roberto; Ghilardi, Giorgio; Samaja, Michele

    2004-09-01

    We measured time course and extent of xanthine dehydrogenase (XD) to xanthine oxidase (XO) conversion in ischemic human and rat intestine. To model normothermic no-flow ischemia, we incubated fresh biopsies for 0, 2, 4, 8 and 16h. At t = 0h, XO was less in humans than in rats (P < 0.0004), while XD was essentially the same (P = NS). After 16h incubation at 37 degrees C, there was no appreciable XD-to-XO conversion and no change in neither XO nor XD activity in human intestine. In contrast, the rat intestine had XO/(XO + XD) ratio doubled in the first 2h and then maintained that value until t = 16 h. In conclusion, no XO-to-XD conversion was appreciable after 16 h no-flow normothermic ischemia in human intestine; in contrast, XO activity in rats increased sharply after the onset of ischemia. An immunohistochemical labelling study shows that, whereas XO + XD expression in liver tissue is localised in both hepatocytes and endothelial cells, in the intestine that expression is mostly localised in epithelial cells. We conclude that XO may be considered as a major source of reactive oxygen species in rats but not in humans.

  11. Amperometric biosensor based on prussian blue and nafion modified screen-printed electrode for screening of potential xanthine oxidase inhibitors from medicinal plants.

    PubMed

    El Harrad, Loubna; Amine, Aziz

    2016-04-01

    A simple and sensitive amperometric biosensor was developed for the screening of potential xanthine oxidase inhibitors from medicinal plants. This biosensor was prepared by immobilization of xanthine oxidase on the surface of prussian blue modified screen-printed electrodes using nafion and glutaraldehyde. The developed biosensor showed a linear amperometric response at an applied potential of +0.05 V toward the detection of hypoxanthine from 5 μM to 45 μM with a detection limit of 0.4 μM (S/N=3) and its sensitivity was found to be 600 mA M(-1) cm(-2). In addition, the biosensor exhibited a good storage stability. The inhibition of xanthine oxidase by allopurinol was studied under the optimized conditions. The linear range of allopurinol concentration is obtained up to 2.5 μM with an estimated 50% of inhibitionI50=1.8 μM. The developed biosensor was successfully applied to the screening of xanthine oxidase inhibitors from 13 medicinal plants belonging to different families. Indeed, Moroccan people traditionally use these plants as infusion for the treatment of gout and its related symptoms. For this purpose, water extracts obtained from the infusion of these plants were used for the experiments. In this work, 13 extracts were assayed and several of them demonstrated xanthine oxidase inhibitory effect, with an inhibition greater than 50% compared to spectrophotometry measurements that only few extracts showed an inhibition greater than 50%. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Coupling of guanine nucleotide inhibitory protein to somatostatin receptors on pancreatic acinar membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakamoto, C.; Matozaki, T.; Nagao, M.

    1987-09-01

    Guanine nucleotides and pertussis toxin were used to investigate whether somatostatin receptors interact with the guanine nucleotide inhibitory protein (NI) on pancreatic acinar membranes in the rat. Guanine nucleotides reduced /sup 125/I-(Tyr/sup 1/)somatostatin binding to acinar membranes up to 80%, with rank order of potency being 5'-guanylyl imidodiphosphate (Gpp(NH)p)>GTP>TDP>GMP. Scatchard analysis revealed that the decrease in somatostatin binding caused by Gpp(NH)p was due to the decrease in the maximum binding capacity without a significant change in the binding affinity. The inhibitory effect of Gpp(NH)p was partially abolished in the absence of Mg/sup 2 +/. When pancreatic acini were treated withmore » 1 ..mu..g/ml pertussis toxin for 4 h, subsequent /sup 125/I-(Tyr/sup 1/)somatostatin binding to acinar membranes was reduced. Pertussis toxin treatment also abolished the inhibitory effect of somatostatin on vasoactive intestinal peptide-stimulated increase in cellular content of adenosine 3',5'-cyclic monophosphate (cAMP) in the acini. The present results suggest that 1) somatostatin probably functions in the pancreas to regulate adenylate cyclase enzyme system via Ni, 2) the extent of modification of Ni is correlated with the ability of somatostatin to inhibit cAMP accumulation in acini, and 3) guanine nucleotides also inhibit somatostatin binding to its receptor.« less

  13. Quantitative Analysis of Guanine Nucleotide Exchange Factors (GEFs) as Enzymes

    PubMed Central

    Randazzo, Paul A; Jian, Xiaoying; Chen, Pei-Wen; Zhai, Peng; Soubias, Olivier; Northup, John K

    2014-01-01

    The proteins that possess guanine nucleotide exchange factor (GEF) activity, which include about ~800 G protein coupled receptors (GPCRs),1 15 Arf GEFs,2 81 Rho GEFs,3 8 Ras GEFs,4 and others for other families of GTPases,5 catalyze the exchange of GTP for GDP on all regulatory guanine nucleotide binding proteins. Despite their importance as catalysts, relatively few exchange factors (we are aware of only eight for ras superfamily members) have been rigorously characterized kinetically.5–13 In some cases, kinetic analysis has been simplistic leading to erroneous conclusions about mechanism (as discussed in a recent review14). In this paper, we compare two approaches for determining the kinetic properties of exchange factors: (i) examining individual equilibria, and; (ii) analyzing the exchange factors as enzymes. Each approach, when thoughtfully used,14,15 provides important mechanistic information about the exchange factors. The analysis as enzymes is described in further detail. With the focus on the production of the biologically relevant guanine nucleotide binding protein complexed with GTP (G•GTP), we believe it is conceptually simpler to connect the kinetic properties to cellular effects. Further, the experiments are often more tractable than those used to analyze the equilibrium system and, therefore, more widely accessible to scientists interested in the function of exchange factors. PMID:25332840

  14. Mechanism of xanthine oxidase catalyzed biotransformation of HMX under anaerobic conditions.

    PubMed

    Bhushan, Bharat; Paquet, Louise; Halasz, Annamaria; Spain, Jim C; Hawari, Jalal

    2003-06-27

    Enzyme catalyzed biotransformation of the energetic chemical octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) is not known. The present study describes a xanthine oxidase (XO) catalyzed biotransformation of HMX to provide insight into the biodegradation pathway of this energetic chemical. The rates of biotransformation under aerobic and anaerobic conditions were 1.6+/-0.2 and 10.5+/-0.9 nmolh(-1)mgprotein(-1), respectively, indicating that anaerobic conditions favored the reaction. The biotransformation rate was about 6-fold higher using NADH as an electron-donor compared to xanthine. During the course of reaction, the products obtained were nitrite (NO(2)(-)), methylenedinitramine (MDNA), 4-nitro-2,4-diazabutanal (NDAB), formaldehyde (HCHO), nitrous oxide (N(2)O), formic acid (HCOOH), and ammonium (NH(4)(+)). The product distribution gave carbon and nitrogen mass-balances of 91% and 88%, respectively. A comparative study with native-, deflavo-, and desulfo-XO and the site-specific inhibition studies showed that HMX biotransformation occurred at the FAD-site of XO. Nitrite stoichiometry revealed that an initial single N-denitration step was sufficient for the spontaneous decomposition of HMX.

  15. Magnetic Control of the Light Reflection Anisotropy in a Biogenic Guanine Microcrystal Platelet.

    PubMed

    Iwasaka, Masakazu; Mizukawa, Yuri; Roberts, Nicholas W

    2016-01-12

    Bioinspired but static optical devices such as lenses, retarders, and reflectors have had a significant impact on the designs of many man-made optical technologies. However, while numerous adaptive and flexible optical mechanisms are found throughout the animal kingdom, highly desirable biomimetic copies of these remarkable smart systems remain, in many cases, a distant dream. Many aquatic animals have evolved highly efficient reflectors based on multilayer stacks of the crystallized nucleic acid base guanine. With exceptional levels of spectral and intensity control, these reflectors represent an interesting design pathway towards controllable micromirror structures. Here we show that individual guanine crystals, with dimensions of 5 μm × 20 μm × 70 nm, can be magnetically controlled to act as individual micromirrors. By applying magnetic fields of 500 mT, the reflectivity of these crystals can be switched off and on for the change in reflectivity. Overall, the use of guanine represents a novel design scheme for a highly efficient and controllable synthetic organic micromirror array.

  16. The dual actions of Paederia scandens extract as a hypouricemic agent: xanthine oxidase inhibitory activity and uricosuric effect.

    PubMed

    Yan, Haiyan; Ma, Ying; Liu, Mei; Zhou, Lanlan

    2008-09-01

    Hyperuricemia is associated with a number of pathological conditions, such as gout. Lowering of elevated uric acid levels in the blood could be achieved by xanthine oxidase inhibitors and inhibitors of renal urate reabsorption. Some natural compounds isolated from herbs used in traditional Chinese medicine have been previously demonstrated to act as xanthine oxidase inhibitors. In the present investigation, Paederia scandens (Lour.) Merrill (Rubiaceae) extract (PSE; 4.5, 2.25, and 1.125 g/kg) orally for 14 days was demonstrated to possess in vivo potent hypouricemic activity in hyperuricemic rats pretreated with potassium oxonate. In addition, PSE was also demonstrated to be an inhibitor of xanthine oxidase. Lineweaver-Burk analysis of the enzyme kinetics indicated that the inhibition of PSE was of a mixed type. Using an oxonate-induced hyperuricemic rat model, PSE was indeed shown to exhibit uricosuric action in vivo, which could explain, at least in part, the observed hypouricemic effect of PSE in these rats. The potential application of this compound in the treatment of conditions associated with hyperuricemia is discussed.

  17. Phosphorescent inner filter effect-based sensing of xanthine oxidase and its inhibitors with Mn-doped ZnS quantum dots.

    PubMed

    Tang, Dandan; Zhang, Jinyi; Zhou, Rongxin; Xie, Ya-Ni; Hou, Xiandeng; Xu, Kailai; Wu, Peng

    2018-05-10

    Overexpression and crystallization of uric acid have been recognized as the course of hyperuricemia and gout, which is produced via xanthine oxidase (XOD)-catalyzed oxidation of xanthine. Therefore, the medicinal therapy of hyperuricemia and gout is majorly based on the inhibition of the XOD enzymatic pathway. The spectroscopic nature of xanthine and uric acid, namely both absorption (near the ultraviolet region) and emission (non-fluorescent) characteristics, hinders optical assay development for XOD analysis. Therefore, the state-of-the-art analysis of XOD and the screening of XOD inhibitors are majorly based on chromatography. Here, we found the near ultraviolet absorption of uric acid overlapped well with the absorption of a large bandgap semiconductor quantum dots, ZnS. On the other hand, the intrinsic weak fluorescence of ZnS QDs can be substantially improved via transition metal ion doping. Therefore, herein, we developed an inner filter effect-based assay for XOD analysis and inhibitor screening with Mn-doped ZnS QDs. The phosphorescence of Mn-doped ZnS QDs could be quenched by uric acid generated from xanthine catabolism by XOD, leading to the phosphorescence turn-off detection of XOD with a limit of detection (3σ) of 0.02 U L-1. Furthermore, the existence of XOD inhibitors could inhibit the XOD enzymatic reaction, resulting in weakened phosphorescence quenching. Therefore, the proposed assay could also be explored for the facile screening analysis of XOD inhibitors, which is important for the potential medicinal therapy of hyperuricemia and gout.

  18. Inhibitory effects of cardols and related compounds on superoxide anion generation by xanthine oxidase.

    PubMed

    Masuoka, Noriyoshi; Nihei, Ken-ichi; Maeta, Ayami; Yamagiwa, Yoshiro; Kubo, Isao

    2015-01-01

    5-Pentadecatrienylresorcinol, isolated from cashew nuts and commonly known as cardol (C₁₅:₃), prevented the generation of superoxide radicals catalysed by xanthine oxidase without the inhibition of uric acid formation. The inhibition kinetics did not follow the Michelis-Menten equation, but instead followed the Hill equation. Cardol (C₁₀:₀) also inhibited superoxide anion generation, but resorcinol and cardol (C₅:₀) did not inhibit superoxide anion generation. The related compounds 3,5-dihydroxyphenyl alkanoates and alkyl 2,4-dihydroxybenzoates, had more than a C9 chain, cooperatively inhibited but alkyl 3,5-dihydroxybenzoates, regardless of their alkyl chain length, did not inhibit the superoxide anion generation. These results suggested that specific inhibitors for superoxide anion generation catalysed by xanthine oxidase consisted of an electron-rich resorcinol group and an alkyl chain having longer than C9 chain. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Capturing the radical ion-pair intermediate in DNA guanine oxidation

    PubMed Central

    Jie, Jialong; Liu, Kunhui; Wu, Lidan; Zhao, Hongmei; Song, Di; Su, Hongmei

    2017-01-01

    Although the radical ion pair has been frequently invoked as a key intermediate in DNA oxidative damage reactions and photoinduced electron transfer processes, the unambiguous detection and characterization of this species remain formidable and unresolved due to its extremely unstable nature and low concentration. We use the strategy that, at cryogenic temperatures, the transient species could be sufficiently stabilized to be detectable spectroscopically. By coupling the two techniques (the cryogenic stabilization and the time-resolved laser flash photolysis spectroscopy) together, we are able to capture the ion-pair transient G+•⋯Cl− in the chlorine radical–initiated DNA guanine (G) oxidation reaction, and provide direct evidence to ascertain the intricate type of addition/charge separation mechanism underlying guanine oxidation. The unique spectral signature of the radical ion-pair G+•⋯Cl− is identified, revealing a markedly intense absorption feature peaking at 570 nm that is distinctive from G+• alone. Moreover, the ion-pair spectrum is found to be highly sensitive to the protonation equilibria within guanine-cytosine base pair (G:C), which splits into two resolved bands at 480 and 610 nm as the acidic proton transfers along the central hydrogen bond from G+• to C. We thus use this exquisite sensitivity to track the intrabase-pair proton transfer dynamics in the double-stranded DNA oligonucleotides, which is of critical importance for the description of the proton-coupled charge transfer mechanisms in DNA. PMID:28630924

  20. Synthesis and pharmacological characterization of novel xanthine carboxylate amides as A2A adenosine receptor ligands exhibiting bronchospasmolytic activity.

    PubMed

    Yadav, Rakesh; Bansal, Ranju; Rohilla, Suman; Kachler, Sonja; Klotz, Karl-Norbert

    2016-04-01

    The carboxylate amides of 8-phenyl-1,3-dimethylxanthine described herein represent a new series of selective ligands of the adenosine A2A receptors exhibiting bronchospasmolytic activity. The effects of location of 8-phenyl substitutions on the adenosine receptor (AR) binding affinities of the newly synthesized xanthines have also been studied. The compounds displayed moderate to potent binding affinities toward various adenosine receptor subtypes when evaluated through radioligand binding studies. However, most of the compounds showed the maximum affinity for the A2A subtype, some with high selectivity versus all other subtypes. Xanthine carboxylate amide 13b with a diethylaminoethylamino moiety at the para-position of the 8-phenylxanthine scaffold was identified as the most potent A2A adenosine receptor ligand with Ki=0.06μM. Similarly potent and highly A2A-selective are the isovanillin derivatives 16a and 16d. In addition, the newly synthesized xanthine derivatives showed good in vivo bronchospasmolytic activity when tested in guinea pigs. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Design, synthesis and inhibitory activities of 8-(substituted styrol-formamido)phenyl-xanthine derivatives on monoamine oxidase B.

    PubMed

    Hu, Suwen; Nian, Siyun; Qin, Kuiyou; Xiao, Tong; Li, Lingna; Qi, Xiaolu; Ye, Faqing; Liang, Guang; Hu, Guoxin; He, Jincai; Yu, Yinfei; Song, Bo

    2012-01-01

    The design and synthesis of two series of 8-(substituted styrol-formamido)phenyl-xanthine derivatives are described. Their in vitro monoamine oxidase B (MAO-B) inhibition were tested and the effect of substituents on the N-7, phenyl and the substituted positions are discussed. It was observed that compound 9b displayed significant MAO-B inhibition activity and selectivity, fluorine substitution plays a key role in the selectivity of MAO-B inhibition, and the styrol-formamido group at position-3' may enhance the activity and selectivity of 8-phenyl-xanthine analogues. These results suggest that such compounds may be utilized for the development of new candidate MAO-B inhibitors for treatment of Parkinson's disease.

  2. Biocatalytic separation of N-7/N-9 guanine nucleosides.

    PubMed

    Singh, Sunil K; Sharma, Vivek K; Olsen, Carl E; Wengel, Jesper; Parmar, Virinder S; Prasad, Ashok K

    2010-11-19

    Vorbrüggen coupling of trimethylsilylated 2-N-isobutanoylguanine with peracetylated pentofuranose derivatives generally gives inseparable N-7/N-9 glycosyl mixtures. We have shown that the two isomers can be separated biocatalytically by Novozyme-435-mediated selective deacetylation of the 5'-O-acetyl group of peracetylated N-9 guanine nucleosides.

  3. The solute specificity profiles of nucleobase cation symporter 1 (NCS1) from Zea mays and Setaria viridis illustrate functional flexibility.

    PubMed

    Rapp, Micah; Schein, Jessica; Hunt, Kevin A; Nalam, Vamsi; Mourad, George S; Schultes, Neil P

    2016-03-01

    The solute specificity profiles (transport and binding) for the nucleobase cation symporter 1 (NCS1) proteins, from the closely related C4 grasses Zea mays and Setaria viridis, differ from that of Arabidopsis thaliana and Chlamydomonas reinhardtii NCS1. Solute specificity profiles for NCS1 from Z. mays (ZmNCS1) and S. viridis (SvNCS1) were determined through heterologous complementation studies in NCS1-deficient Saccharomyces cerevisiae strains. The four Viridiplantae NCS1 proteins transport the purines adenine and guanine, but unlike the dicot and algal NCS1, grass NCS1 proteins fail to transport the pyrimidine uracil. Despite the high level of amino acid sequence similarity, ZmNCS1 and SvNCS1 display distinct solute transport and recognition profiles. SvNCS1 transports adenine, guanine, hypoxanthine, cytosine, and allantoin and competitively binds xanthine and uric acid. ZmNCS1 transports adenine, guanine, and cytosine and competitively binds, 5-fluorocytosine, hypoxanthine, xanthine, and uric acid. The differences in grass NCS1 profiles are due to a limited number of amino acid alterations. These amino acid residues do not correspond to amino acids essential for overall solute and cation binding or solute transport, as previously identified in bacterial and fungal NCS1, but rather may represent residues involved in subtle solute discrimination. The data presented here reveal that within Viridiplantae, NCS1 proteins transport a broad range of nucleobase compounds and that the solute specificity profile varies with species.

  4. Effect of ethanol on metabolism of purine bases (hypoxanthine, xanthine, and uric acid).

    PubMed

    Yamamoto, Tetsuya; Moriwaki, Yuji; Takahashi, Sumio

    2005-06-01

    There are many factors that contribute to hyperuricemia, including obesity, insulin resistance, alcohol consumption, diuretic use, hypertension, renal insufficiency, genetic makeup, etc. Of these, alcohol (ethanol) is the most important. Ethanol enhances adenine nucleotide degradation and increases lactic acid level in blood, leading to hyperuricemia. In beer, purines also contribute to an increase in plasma uric acid. Although rare, dehydration and ketoacidosis (due to ethanol ingestion) are associated with the ethanol-induced increase in serum uric acid levels. Ethanol also increases the plasma concentrations and urinary excretion of hypoxanthine and xanthine via the acceleration of adenine nucleotide degradation and a possible weak inhibition of xanthine dehydrogenase activity. Since many factors such as the ALDH2*1 gene and ADH2*2 gene, daily drinking habits, exercise, and dehydration enhance the increase in plasma concentration of uric acid induced by ethanol, it is important to pay attention to these factors, as well as ingested ethanol volume, type of alcoholic beverage, and the administration of anti-hyperuricemic agents, to prevent and treat ethanol-induced hyperuricemia.

  5. Increased xanthine oxidase during labour--implications for oxidative stress.

    PubMed

    Many, A; Roberts, J M

    1997-11-01

    Xanthine dehydrogenase/oxidase (XDH/XO) produces uric acid. When in the oxidase form, this production is coupled with the generation of free radicals. Hypoxia-reperfusion enhances conversion of XDH to XO. Since the placenta is exposed to short periods of hypoxia reperfusion during labour, 17 placentae of pregnancy terminated by elective caesarean section and five placentae of pregnancies terminated by caesarean section during labour were examined for XDH/XO activity. It was found that XO activity was higher in the placentae of labouring women (P = 0.003), which suggests that labour enhances conversion of XDH to XO, facilitating free radical production.

  6. 21 CFR 862.1535 - Ornithine carbamyl transferase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Test Systems § 862.1535 Ornithine carbamyl transferase test system. (a) Identification. An ornithine carbamyl transferase test system is a device intended to measure the activity of the enzyme ornithine... and treatment of liver diseases, such as infectious hepatitis, acute cholecystitis (inflammation of...

  7. Mutagenic and cytotoxic properties of 6-thioguanine, S6-methylthioguanine, and guanine-S6-sulfonic acid.

    PubMed

    Yuan, Bifeng; Wang, Yinsheng

    2008-08-29

    Thiopurine drugs, including 6-thioguanine ((S)G), 6-mercaptopurine, and azathioprine, are widely employed anticancer agents and immunosuppressants. The formation of (S)G nucleotides from the thiopurine prodrugs and their subsequent incorporation into nucleic acids are important for the drugs to exert their cytotoxic effects. (S)G in DNA can be methylated by S-adenosyl-l-methionine to give S(6)-methylthioguanine (S(6)mG) and oxidized by UVA light to render guanine-S(6)-sulfonic acid ((SO3H)G). Here, we constructed single-stranded M13 shuttle vectors carrying a (S)G, S(6)mG, or (SO3H)G at a unique site and allowed the vectors to propagate in wild-type and bypass polymerase-deficient Escherichia coli cells. Analysis of the replication products by using the competitive replication and adduct bypass and a slightly modified restriction enzyme digestion and post-labeling assays revealed that, although none of the three thionucleosides considerably blocked DNA replication in all transfected E. coli cells, both S(6)mG and (SO3H)G were highly mutagenic, which resulted in G-->A mutation at frequencies of 94 and 77%, respectively, in wild-type E. coli cells. Deficiency in bypass polymerases does not result in alteration of mutation frequencies of these two lesions. In contrast to what was found from previous steady-state kinetic analysis, our data demonstrated that 6-thioguanine is mutagenic, with G-->A transition occurring at a frequency of approximately 10%. The mutagenic properties of 6-thioguanine and its derivatives revealed in the present study offered important knowledge about the biological implications of these thionucleosides.

  8. Investigation of toxicity and mutagenicity of cold atmospheric argon plasma.

    PubMed

    Maisch, T; Bosserhoff, A K; Unger, P; Heider, J; Shimizu, T; Zimmermann, J L; Morfill, G E; Landthaler, M; Karrer, S

    2017-04-01

    Cold atmospheric argon plasma is recognized as a new contact free approach for the decrease of bacterial load on chronic wounds in patients. So far very limited data are available on its toxicity and mutagenicity on eukaryotic cells. Thus, the toxic/mutagenic potential of cold atmospheric argon plasma using the MicroPlaSter β ® , which has been used efficiently in humans treating chronic and acute wounds, was investigated using the XTT assay in keratinocytes and fibroblasts and the HGPRT (hypoxanthine guanine phosphoribosyl transferase) assay with V79 Chinese hamster cells. The tested clinical parameter of a 2 min cold atmospheric argon plasma treatment revealed no relevant toxicity on keratinocytes (viability: 76% ± 0.17%) and on fibroblasts (viability: 81.8 ± 0.10) after 72 hr as compared to the untreated controls. No mutagenicity was detected in the HGPRT assay with V79 cells even after repetitive CAP treatments of 2-10 min every 24 hr for up to 5 days. In contrast, UV-C irradiation of V79 cells, used as a positive control in the HGPRT test, led to DNA damage and mutagenic effects. Our findings indicate that cold atmospheric plasma using the MicroPlaSter β ® shows negligible effects on keratinocytes and fibroblasts but no mutagenic potential in the HGPRT assay, indicating a new contact free safe technology. Environ. Mol. Mutagen. 58:172-177, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Mutation induction by charged particles of defined linear energy transfer.

    PubMed

    Hei, T K; Chen, D J; Brenner, D J; Hall, E J

    1988-07-01

    The mutagenic potential of charged particles of defined linear energy transfer (LET) was assessed using the hypoxanthine-guanine phosphoribosyl transferase locus (HGPRT) in primary human fibroblasts. Exponentially growing cultures of early passaged fibroblasts were grown as monolayers on thin mylar sheets and were irradiated with accelerated protons, deuterons or helium-3 ions. The mutation rates were compared with those generated by 137Cs gamma-rays. LET values for charged particles accelerated at the Radiological Research Accelerator Facility, using the track segment mode, ranged from 10 to 150 keV/micron. After irradiation, cells were trypsinized, subcultured and assayed for both cytotoxicity and 6-thioguanine resistance. For gamma-rays, and for the charged particles of lower LET, the dose-response curves for cell survival were characterized by a marked initial shoulder, but approximated to an exponential function of dose for higher LETs. Mutation frequencies, likewise, showed a direct correlation to LET over the dose range examined. Relative biological effectiveness (RBE) for mutagenesis, based on the initial slopes of the dose-response curves, ranged from 1.30 for 10 keV/micron protons to 9.40 for 150 keV/micron helium-3 ions. Results of the present studies indicate that high-LET radiations, apart from being efficient inducers of cell lethality, are even more efficient in mutation induction as compared to low-LET ionizing radiation. These data are consistent with results previously obtained with both rodent and human fibroblast cell lines.

  10. The physiology of endothelial xanthine oxidase: from urate catabolism to reperfusion injury to inflammatory signal transduction.

    PubMed

    Meneshian, Avedis; Bulkley, Gregory B

    2002-07-01

    Xanthine oxidoreductase (XOR) is a ubiquitous metalloflavoprotein that appears in two interconvertible yet functionally distinct forms: xanthine dehydrogenase (XD), which is constitutively expressed in vivo; and xanthine oxidase (XO), which is generated by the posttranslational modification of XD, either through the reversible, incremental thiol oxidation of sulfhydryl residues on XD or the irreversible proteolytic cleavage of a segment of XD, which occurs at low oxygen tension and in the presence of several proinflammatory mediators. Functionally, both XD and XO catalyze the oxidation of purines to urate. However, whereas XD requires NAD+ as an electron acceptor for these redox reactions, thereby generating the stable product NADH, XO is unable to use NAD+ as an electron acceptor, requiring instead the reduction of molecular oxygen for this purine oxidation and generating the highly reactive superoxide free radical. Nearly 100 years of study has documented the physiologic role of XD in urate catabolism. However, the rapid, posttranslational conversion of XD to the oxidant-generating form XO provides a possible physiologic mechanism for rapid, posttranslational, oxidant-mediated signaling. XO-generated reactive oxygen species (ROS) have been implicated in various clinicopathologic entities, including ischemia/reperfusion injury and multisystem organ failure. More recently, the concept of physiologic signal transduction mediated by ROS has been proposed, and the possibility of XD to XO conversion, with subsequent ROS generation, serving as the trigger of the microvascular inflammatory response in vivo has been hypothesized. This review presents the evidence and basis for this hypothesis.

  11. 21 CFR 862.1535 - Ornithine carbamyl transferase test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ornithine carbamyl transferase test system. 862.1535 Section 862.1535 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Test Systems § 862.1535 Ornithine carbamyl transferase test system. (a) Identification. An ornithine...

  12. 21 CFR 862.1535 - Ornithine carbamyl transferase test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ornithine carbamyl transferase test system. 862.1535 Section 862.1535 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Test Systems § 862.1535 Ornithine carbamyl transferase test system. (a) Identification. An ornithine...

  13. Polymorphisms of glutathione S-transferase Mu 1, glutathione S-transferase theta 1 and glutathione S-transferase Pi 1 genes in Hodgkin's lymphoma susceptibility and progression.

    PubMed

    Lourenço, Gustavo J; Néri, Iramaia A; Sforni, Vitor C S; Kameo, Rodolfo; Lorand-Metze, Irene; Lima, Carmen S P

    2009-06-01

    We tested in this study whether the polymorphisms of the glutathione S-transferase Mu1 (GSTM1), glutathione S-transferase Theta 1 (GSTT1) and glutathione S-transferase Pi 1 (GSTP1), involved in metabolism of chemical agents, cell proliferation and cell survival, alter the risk for Hodgkin lymphoma (HL). Genomic DNA from 110 consecutive patients with HL and 226 controls was analysed by polymerase chain reaction and restriction digestion for the polymorphism analyses. Similar frequencies of the GSTM1 and GSTT1 genotypes were seen in patients and controls. In contrast, the frequency of the GSTP1 wild genotype (59.1%versus 36.3%, P = 0.004) was higher in patients than in controls. Individuals with the wild genotype had a 2.68 (95%CI: 1.38-5.21)-fold increased risk for the disease than others. An excess of the GSTP1 wild genotype was also observed in patients with tumors of stages III + IV when compared with those with tumors of stages I + II (39.1%versus 20.0%, P = 0.03). These results suggest that the wild allele of the GSTP1 gene is linked to an increased risk and high aggressiveness of the HL in our cases but they should be confirmed by further studies with larger cohorts of patients and controls.

  14. Structural and Functional Insights into the Catalytic Inactivity of the Major Fraction of Buffalo Milk Xanthine Oxidoreductase

    PubMed Central

    Gadave, Kaustubh S.; Panda, Santanu; Singh, Surender; Kalra, Shalini; Malakar, Dhruba; Mohanty, Ashok K.; Kaushik, Jai K.

    2014-01-01

    Background Xanthine oxidoreductase (XOR) existing in two interconvertible forms, xanthine dehydrogenase (XDH) and xanthine oxidase (XO), catabolises xanthine to uric acid that is further broken down to antioxidative agent allantoin. XOR also produces free radicals serving as second messenger and microbicidal agent. Large variation in the XO activity has been observed among various species. Both hypo and hyper activity of XOR leads to pathophysiological conditions. Given the important nutritional role of buffalo milk in human health especially in south Asia, it is crucial to understand the functional properties of buffalo XOR and the underlying structural basis of variations in comparison to other species. Methods and Findings Buffalo XO activity of 0.75 U/mg was almost half of cattle XO activity. Enzymatic efficiency (k cat/K m) of 0.11 sec−1 µM−1 of buffalo XO was 8–10 times smaller than that of cattle XO. Buffalo XOR also showed lower antibacterial activity than cattle XOR. A CD value (Δε430 nm) of 46,000 M−1 cm−1 suggested occupancy of 77.4% at Fe/S I centre. Buffalo XOR contained 0.31 molybdenum atom/subunit of which 48% existed in active sulfo form. The active form of XO in buffalo was only 16% in comparison to ∼30% in cattle. Sequencing revealed 97.4% similarity between buffalo and cattle XOR. FAD domain was least conserved, while metal binding domains (Fe/S and Molybdenum) were highly conserved. Homology modelling of buffalo XOR showed several variations occurring in clusters, especially close to FAD binding pocket which could affect NAD+ entry in the FAD centre. The difference in XO activity seems to be originating from cofactor deficiency, especially molybdenum. Conclusion A major fraction of buffalo milk XOR exists in a catalytically inactive form due to high content of demolybdo and desulfo forms. Lower Fe/S content and structural factors might be contributing to lower enzymatic efficiency of buffalo XOR in a minor way. PMID:24498153

  15. Genetic and physiological characterization of the purine salvage pathway in the archaebacterium Methanobacterium thermoautotrophicum Marburg.

    PubMed Central

    Worrell, V E; Nagle, D P

    1990-01-01

    The enzymes involved in the purine interconversion pathway of wild-type and purine analog-resistant strains of Methanobacterium thermoautotrophicum Marburg were assayed by radiometric and spectrophotometric methods. Wild-type cells incorporated labeled adenine, guanine, and hypoxanthine, whereas mutant strains varied in their ability to incorporate these bases. Adenine, guanine, hypoxanthine, and xanthine were activated by phosphoribosyltransferase activities present in wild-type cell extracts. Some mutant strains simultaneously lost the ability to convert both guanine and hypoxanthine to the respective nucleotide, suggesting that the same enzyme activates both bases. Adenosine, guanosine, and inosine phosphorylase activities were detected for the conversion of base to nucleoside. Adenine deaminase activity was detected at low levels. Guanine deaminase activity was not detected. Nucleoside kinase activities for the conversion of adenosine, guanosine, and inosine to the respective nucleotides were detected by a new assay. The nucleotide-interconverting enzymes AMP deaminase, succinyl-AMP synthetase, succinyl-AMP lyase, IMP dehydrogenase, and GMP synthetase were present in extracts; GMP reductase was not detected. The results indicate that this autotrophic methanogen has a complex system for the utilization of exogenous purines. PMID:2345148

  16. Electron microscopic visualization of complementary labeled DNA with platinum-containing guanine derivative.

    PubMed

    Loukanov, Alexandre; Filipov, Chavdar; Mladenova, Polina; Toshev, Svetlin; Emin, Saim

    2016-04-01

    The object of the present report is to provide a method for a visualization of DNA in TEM by complementary labeling of cytosine with guanine derivative, which contains platinum as contrast-enhanced heavy element. The stretched single-chain DNA was obtained by modifying double-stranded DNA. The labeling method comprises the following steps: (i) stretching and adsorption of DNA on the support film of an electron microscope grid (the hydrophobic carbon film holding negative charged DNA); (ii) complementary labeling of the cytosine bases from the stretched single-stranded DNA pieces on the support film with platinum containing guanine derivative to form base-specific hydrogen bond; and (iii) producing a magnified image of the base-specific labeled DNA. Stretched single-stranded DNA on a support film is obtained by a rapid elongation of DNA pieces on the surface between air and aqueous buffer solution. The attached platinum-containing guanine derivative serves as a high-dense marker and it can be discriminated from the surrounding background of support carbon film and visualized by use of conventional TEM observation at 100 kV accelerated voltage. This method allows examination of specific nucleic macromolecules through atom-by-atom analysis and it is promising way toward future DNA-sequencing or molecular diagnostics of nucleic acids by electron microscopic observation. © 2016 Wiley Periodicals, Inc.

  17. Investigation of base pairs containing oxidized guanine using ab initio method and ABEEMσπ polarizable force field.

    PubMed

    Liu, Cui; Wang, Yang; Zhao, Dongxia; Gong, Lidong; Yang, Zhongzhi

    2014-02-01

    The integrity of the genetic information is constantly threatened by oxidizing agents. Oxidized guanines have all been linked to different types of cancers. Theoretical approaches supplement the assorted experimental techniques, and bring new sight and opportunities to investigate the underlying microscopic mechanics. Unfortunately, there is no specific force field to DNA system including oxidized guanines. Taking high level ab initio calculations as benchmark, we developed the ABEEMσπ fluctuating charge force field, which uses multiple fluctuating charges per atom. And it was applied to study the energies, structures and mutations of base pairs containing oxidized guanines. The geometries were obtained in reference to other studies or using B3LYP/6-31+G* level optimization, which is more rational and timesaving among 24 quantum mechanical methods selected and tested by this work. The energies were determined at MP2/aug-cc-pVDZ level with BSSE corrections. Results show that the constructed potential function can accurately simulate the change of H-bond and the buckled angle formed by two base planes induced by oxidized guanine, and it provides reliable information of hydrogen bonding, stacking interaction and the mutation processes. The performance of ABEEMσπ polarizable force field in predicting the bond lengths, bond angles, dipole moments etc. is generally better than those of the common force fields. And the accuracy of ABEEMσπ PFF is close to that of the MP2 method. This shows that ABEEMσπ model is a reliable choice for further research of dynamics behavior of DNA fragment including oxidized guanine. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. The A2 Adenosine Receptor: Guanine Nucleotide Modulation of Agonist Binding Is Enhanced by Proteolysis

    PubMed Central

    NANOFF, CHRISTIAN; JACOBSON, KENNETH A.; STILES, GARY L.

    2012-01-01

    SUMMARY Agonist binding to the A2 adenosine receptor (A2AR) and its regulation by guanine nucleotides was studied using the newly developed radioligand 125l-2-[4-(2-{2-[(4-ammnophenyl)methylcarbonylamino]ethylaminnocarbonyl}ethyl)phenyl]ethylamino-5′-N-ethylcarboxamidoadenosine (1251-PAPA-APEC) and its photoaffinity analog 125l-azido-PAPA-APEC. A single protein of Mr 45,000, displaying the appropriate A2AR pharmacology, is Iabeled in membranes from bovine striatum, PC12 cells, and frog erythrocytes. In DDT1 MF2 cells the labeled protein has a slightly lower molecular weight. Incorporation of 125l-azido-PAPA-APEC into membranes from rabbit striatum, however, reveals two specifically labeled peptides (Mr ~47,O00 and 38,000), both of which display A2AR pharmacology. Inhibition of protease activity leads to a decrease in the amount of the Mr 38,000 protein, with only the Mr 47,000 protein remaining. This suggests that the Mr 38,000 peptide is a proteolytic product of the Mr 47,000 A2AR protein. In membranes containing the intact undigested A2AR protein, guanine nucleotides induce a small to insignificant decrease in agonist binding, which is atypical of stimulatory Gs-coupled receptors. This minimal effect is observed in rabbit striatal membranes prepared in the presence of protease inhibitors, as well as in the other tissues studied. Binding to rabbit stnatal membranes that possess the partially digested receptor protein, however, reveals a 50% reduction in maximal specific agonist binding upon addition of guanine nucleotides. Inhibition of proteolysis in rabbit striatum, on the other hand, results in a diminished ability of guanine nucleotides to regulate agonist binding. Thus, the enhanced effectiveness of guanine nucleotides in rabbit striatal membranes is associated with the generation of the Mr 38,000 peptide fragment. Guanosine 5′-(β,γ-imido)triphosphate reduces photoaffinity labeling by 55% in the Mr 38,000 protein, whereas the labeling is decreased by

  19. Control of biofouling by xanthine oxidase on seawater reverse osmosis membranes from a desalination plant: enzyme production and screening of bacterial isolates from the full-scale plant.

    PubMed

    Nagaraj, V; Skillman, L; Li, D; Xie, Z; Ho, G

    2017-07-01

    Control of biofouling on seawater reverse osmosis (SWRO) membranes is a major challenge as treatments can be expensive, damage the membrane material and often biocides do not remove the polymers in which bacteria are embedded. Biological control has been largely ignored for biofouling control. The objective of this study was to demonstrate the effectiveness of xanthine oxidase enzyme against complex fouling communities and then identify naturally occurring bacterial strains that produce the free radical generating enzyme. Initially, 64 bacterial strains were isolated from different locations of the Perth Seawater Desalination Plant. In our preceding study, 25/64 isolates were selected from the culture collection as models for biofouling studies, based on their prevalence in comparison to the genomic bacterial community. In this study, screening of these model strains was performed using a nitroblue tetrazolium assay in the presence of hypoxanthine as substrate. Enzyme activity was measured by absorbance. Nine of 25 strains tested positive for xanthine oxidase production, of which Exiguobacterium from sand filters and Microbacterium from RO membranes exhibited significant levels of enzyme production. Other genera that produced xanthine oxidase were Marinomonas, Pseudomonas, Bacillus, Pseudoalteromonas and Staphylococcus. Strain variations were observed between members of the genera Microbacterium and Bacillus. Xanthine oxidase, an oxidoreductase enzyme that generates reactive oxygen species, is endogenously produced by many bacterial species. In this study, production of the enzyme by bacterial isolates from a full-scale desalination plant was investigated for potential use as biological control of membrane fouling in seawater desalination. We have previously demonstrated that free radicals generated by a commercially available xanthine oxidase in the presence of a hypoxanthine substrate, effectively dispersed biofilm polysaccharides on industrially fouled membranes

  20. Influence of Glutathione and Glutathione S-transferases on DNA Interstrand Cross-Link Formation by 1,2-Bis(methylsulfonyl)-1-(2-chloroethyl)hydrazine, the Active Anticancer Moiety Generated by Laromustine

    PubMed Central

    2015-01-01

    Prodrugs of 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)hydrazine (90CE) are promising anticancer agents. The 90CE moiety is a readily latentiated, short-lived (t1/2 ∼ 30 s) chloroethylating agent that can generate high yields of oxophilic electrophiles responsible for the chloroethylation of the O-6 position of guanine in DNA. These guanine O-6 alkylations are believed to be responsible for the therapeutic effects of 90CE and its prodrugs. Thus, 90CE demonstrates high selectivity toward tumors with diminished levels of O6-alkylguanine-DNA alkyltransferase (MGMT), the resistance protein responsible for O6-alkylguanine repair. The formation of O6-(2-chloroethyl)guanine lesions ultimately leads to the generation of highly cytotoxic 1-(N3-cytosinyl),-2-(N1-guaninyl)ethane DNA interstrand cross-links via N1,O6-ethanoguanine intermediates. The anticancer activity arising from this sequence of reactions is thus identical to this component of the anticancer activity of the clinically used chloroethylnitrosoureas. Herein, we evaluate the ability of glutathione (GSH) and other low molecular weight thiols, as well as GSH coupled with various glutathione S-transferase enzymes (GSTs) to attenuate the final yields of cross-links generated by 90CE when added prior to or immediately following the initial chloroethylation step to determine the major point(s) of interaction. In contrast to studies utilizing BCNU as a chloroethylating agent by others, GSH (or GSH/GST) did not appreciably quench DNA interstrand cross-link precursors. While thiols alone offered little protection at either alkylation step, the GSH/GST couple was able to diminish the initial yields of cross-link precursors. 90CE exhibited a very different GST isoenzyme susceptibility to that reported for BCNU, this could have important implications in the relative resistance of tumor cells to these agents. The protection afforded by GSH/GST was compared to that produced by MGMT. PMID:25012050

  1. Influence of glutathione and glutathione S-transferases on DNA interstrand cross-link formation by 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)hydrazine, the active anticancer moiety generated by laromustine.

    PubMed

    Penketh, Philip G; Patridge, Eric; Shyam, Krishnamurthy; Baumann, Raymond P; Zhu, Rui; Ishiguro, Kimiko; Sartorelli, Alan C

    2014-08-18

    Prodrugs of 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)hydrazine (90CE) are promising anticancer agents. The 90CE moiety is a readily latentiated, short-lived (t1/2 ∼ 30 s) chloroethylating agent that can generate high yields of oxophilic electrophiles responsible for the chloroethylation of the O-6 position of guanine in DNA. These guanine O-6 alkylations are believed to be responsible for the therapeutic effects of 90CE and its prodrugs. Thus, 90CE demonstrates high selectivity toward tumors with diminished levels of O(6)-alkylguanine-DNA alkyltransferase (MGMT), the resistance protein responsible for O(6)-alkylguanine repair. The formation of O(6)-(2-chloroethyl)guanine lesions ultimately leads to the generation of highly cytotoxic 1-(N(3)-cytosinyl),-2-(N(1)-guaninyl)ethane DNA interstrand cross-links via N(1),O(6)-ethanoguanine intermediates. The anticancer activity arising from this sequence of reactions is thus identical to this component of the anticancer activity of the clinically used chloroethylnitrosoureas. Herein, we evaluate the ability of glutathione (GSH) and other low molecular weight thiols, as well as GSH coupled with various glutathione S-transferase enzymes (GSTs) to attenuate the final yields of cross-links generated by 90CE when added prior to or immediately following the initial chloroethylation step to determine the major point(s) of interaction. In contrast to studies utilizing BCNU as a chloroethylating agent by others, GSH (or GSH/GST) did not appreciably quench DNA interstrand cross-link precursors. While thiols alone offered little protection at either alkylation step, the GSH/GST couple was able to diminish the initial yields of cross-link precursors. 90CE exhibited a very different GST isoenzyme susceptibility to that reported for BCNU, this could have important implications in the relative resistance of tumor cells to these agents. The protection afforded by GSH/GST was compared to that produced by MGMT.

  2. Disulfide S-monoxides convert xanthine dehydrogenase into oxidase in rat liver cytosol more potently than their respective disulfides.

    PubMed

    Sakuma, Satoru; Fujita, Junko; Nakanishi, Masahiko; Wada, Shun-ich; Fujimoto, Yohko

    2008-05-01

    Xanthine oxidase (XO)/xanthine dehydrogenase (XD) oxidizes oxypurines to uric acid, with only the XO form producing reactive oxygen species. In the present study, the effects of cystamine S-monoxide and cystine S-monoxide (disulfide S-monoxides) on the conversion of XD to XO in rat liver were examined. A partially purified enzyme fraction from the rat liver was incubated with xanthine in the presence or absence of NAD+, and the uric acid formed was measured by HPLC. Under basal conditions, XO activity represented about 15% of the total XO plus XD activity. Cystamine S-monoxide and cystine S-monoxide converted XD into XO in a dose-dependent manner, and the concentrations required to increase XO activity by 50% were approximately 1 and 2 microM, respectively. Their respective thiols (cysteamine and cysteine) and disulfides (cystamine and cystine) up to 10 microM showed weak or no effects on the activities of XO and XD and their conversion. Experiments utilizing a sulfhydryl reducing reagent (dithiothreitol) and sulfhydryl modifiers (4,4'-dithiodipyridine and 1-fluoro-2,4-dinitrobenzene) indicated that disulfide S-monoxides-induced conversion of XD to XO occurs via disulfide bridge formation in XD, but not the modification of sulfhydryl groups. These results suggest that disulfide S-monoxides have the potential to increase the generation of reactive oxygen species through the conversion of XD to XO in liver.

  3. New investigations of the guanine trichloro cuprate(II) complex crystal

    NASA Astrophysics Data System (ADS)

    Fabijanić, Ivana; Matković-Čalogović, Dubravka; Pilepić, Viktor; Ivanišević, Irena; Mohaček-Grošev, Vlasta; Sanković, Krešimir

    2017-01-01

    Crystals of the guanine trichloro cuprate(II) complex, (HGua)2[Cu2Cl6]·2H2O (HGua = protonated guanine), were prepared and analysed by spectroscopic (IR, Raman) and computational methods. A new single-crystal X-ray diffraction analysis was conducted to obtain data with lower standard uncertainties than those in the previously published structure. Raman and IR spectroscopy and quantum-mechanical analysis gave us new insight into the vibrational states of the (HGua)2[Cu2Cl6]·2H2O crystal. The vibrational spectra of the crystal were assigned by performing a normal coordinate analysis for a free dimer with a centre of inversion as the only symmetry element. The stretching vibration observed at 279 cm-1 in the infrared spectrum corresponds to the N-Cu bond. The noncovalent interaction (NCI) plots and quantum theory of atoms in molecules (QTAIM) analysis of the electron density obtained from periodic DFT calculations elucidated the interactions that exist within the crystal structure. Closed-shell ionic attractions, as well as weak and medium strength hydrogen bonds, prevailed in the crystal packing.

  4. 9-Benzoyl 9-deazaguanines as potent xanthine oxidase inhibitors.

    PubMed

    Rodrigues, Marili V N; Barbosa, Alexandre F; da Silva, Júlia F; dos Santos, Deborah A; Vanzolini, Kenia L; de Moraes, Marcela C; Corrêa, Arlene G; Cass, Quezia B

    2016-01-15

    A novel potent xanthine oxidase inhibitor, 3-nitrobenzoyl 9-deazaguanine (LSPN451), was selected from a series of 10 synthetic derivatives. The enzymatic assays were carried out using an on-flow bidimensional liquid chromatography (2D LC) system, which allowed the screening¸ the measurement of the kinetic inhibition constant and the characterization of the inhibition mode. This compound showed a non-competitive inhibition mechanism with more affinity for the enzyme-substrate complex than for the free enzyme, and inhibition constant of 55.1±9.80 nM, about thirty times more potent than allopurinol. Further details of synthesis and enzymatic studies are presented herein. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Stable isotope labeling-mass spectrometry analysis of methyl- and pyridyloxobutyl-guanine adducts of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in p53-derived DNA sequences.

    PubMed

    Rajesh, Mathur; Wang, Gang; Jones, Roger; Tretyakova, Natalia

    2005-02-15

    The p53 tumor suppressor gene is a primary target in smoking-induced lung cancer. Interestingly, p53 mutations observed in lung tumors of smokers are concentrated at guanine bases within endogenously methylated (Me)CG dinucleotides, e.g., codons 157, 158, 245, 248, and 273 ((Me)C = 5-methylcytosine). One possible mechanism for the increased mutagenesis at these sites involves targeted binding of metabolically activated tobacco carcinogens to (Me)CG sequences. In the present work, a stable isotope labeling HPLC-ESI(+)-MS/MS approach was employed to analyze the formation of guanine lesions induced by the tobacco-specific lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) within DNA duplexes representing p53 mutational "hot spots" and surrounding sequences. Synthetic DNA duplexes containing p53 codons 153-159, 243-250, and 269-275 were prepared, where (Me)C was incorporated at all physiologically methylated CG sites. In each duplex, one of the guanine bases was replaced with [1,7,NH(2)-(15)N(3)-2-(13)C]-guanine, which served as an isotope "tag" to enable specific quantification of guanine lesions originating from that position. After incubation with NNK diazohydroxides, HPLC-ESI(+)-MS/MS analysis was used to determine the yields of NNK adducts at the isotopically labeled guanine and at unlabeled guanine bases elsewhere in the sequence. We found that N7-methyl-2'-deoxyguanosine and N7-[4-oxo-4-(3-pyridyl)but-1-yl]guanine lesions were overproduced at the 3'-guanine bases within polypurine runs, while the formation of O(6)-methyl-2'-deoxyguanosine and O(6)-[4-oxo-4-(3-pyridyl)but-1-yl]-2'-deoxyguanosine adducts was specifically preferred at the 3'-guanine base of 5'-GG and 5'-GGG sequences. In contrast, the presence of 5'-neighboring (Me)C inhibited O(6)-guanine adduct formation. These results indicate that the N7- and O(6)-guanine adducts of NNK are not overproduced at the endogenously methylated CG dinucleotides within the p53 tumor suppressor gene

  6. The flash-quench technique in protein-DNA electron transfer: reduction of the guanine radical by ferrocytochrome c.

    PubMed

    Stemp, E D; Barton, J K

    2000-08-21

    Electron transfer from a protein to oxidatively damaged DNA, specifically from ferrocytochrome c to the guanine radical, was examined using the flash-quench technique. Ru(phen)2dppz2+ (dppz = dipyridophenazine) was employed as the photosensitive intercalator, and ferricytochrome c (Fe3+ cyt c), as the oxidative quencher. Using transient absorption and time-resolved luminescence spectroscopies, we examined the electron-transfer reactions following photoexcitation of the ruthenium complex in the presence of poly(dA-dT) or poly(dG-dC). The luminescence-quenching titrations of excited Ru(phen)2dppz2+ by Fe3+ cyt c are nearly identical for the two DNA polymers. However, the spectral characteristics of the long-lived transient produced by the quenching depend strongly upon the DNA. For poly(dA-dT), the transient has a spectrum consistent with formation of a [Ru(phen)2dppz3+, Fe2+ cyt c] intermediate, indicating that the system regenerates itself via electron transfer from the protein to the Ru(III) metallointercalator for this polymer. For poly(dG-dC), however, the transient has the characteristics expected for an intermediate of Fe2+ cyt c and the neutral guanine radical. The characteristics of the transient formed with the GC polymer are consistent with rapid oxidation of guanine by the Ru(III) complex, followed by slow electron transfer from Fe2+ cyt c to the guanine radical. These experiments show that electron holes on DNA can be repaired by protein and demonstrate how the flash-quench technique can be used generally in studying electron transfer from proteins to guanine radicals in duplex DNA.

  7. Functional analysis and localisation of a delta-class glutathione S-transferase from Sarcoptes scabiei.

    PubMed

    Pettersson, Eva U; Ljunggren, Erland L; Morrison, David A; Mattsson, Jens G

    2005-01-01

    The mite Sarcoptes scabiei causes sarcoptic mange, or scabies, a disease that affects both animals and humans worldwide. Our interest in S. scabiei led us to further characterise a glutathione S-transferase. This multifunctional enzyme is a target for vaccine and drug development in several parasitic diseases. The S. scabiei glutathione S-transferase open reading frame reported here is 684 nucleotides long and yields a protein with a predicted molecular mass of 26 kDa. Through phylogenetic analysis the enzyme was classified as a delta-class glutathione S-transferase, and our paper is the first to report that delta-class glutathione S-transferases occur in organisms other than insects. The recombinant S. scabiei glutathione S-transferase was expressed in Escherichia coli via three different constructs and purified for biochemical analysis. The S. scabiei glutathione S-transferase was active towards the substrate 1-chloro-2,4-dinitrobenzene, though the positioning of fusion partners influenced the kinetic activity of the enzyme. Polyclonal antibodies raised against S. scabiei glutathione S-transferase specifically localised the enzyme to the integument of the epidermis and cavities surrounding internal organs in adult parasites. However, some minor staining of parasite intestines was observed. No staining was seen in host tissues, nor could we detect any antibody response against S. scabiei glutathione S-transferase in sera from naturally S. scabiei infected dogs or pigs. Additionally, the polyclonal sera raised against recombinant S. scabiei glutathione S-transferase readily detected a protein from mites, corresponding to the predicted size of native glutathione S-transferase.

  8. Covalent Bonding of Pyrrolobenzodiazepines (PBDs) to Terminal Guanine Residues within Duplex and Hairpin DNA Fragments

    PubMed Central

    Mantaj, Julia; Jackson, Paul J. M.; Karu, Kersti; Rahman, Khondaker M.; Thurston, David E.

    2016-01-01

    Pyrrolobenzodiazepines (PBDs) are covalent-binding DNA-interactive agents with growing importance as payloads in Antibody Drug Conjugates (ADCs). Until now, PBDs were thought to covalently bond to C2-NH2 groups of guanines in the DNA-minor groove across a three-base-pair recognition sequence. Using HPLC/MS methodology with designed hairpin and duplex oligonucleotides, we have now demonstrated that the PBD Dimer SJG-136 and the C8-conjugated PBD Monomer GWL-78 can covalently bond to a terminal guanine of DNA, with the PBD skeleton spanning only two base pairs. Control experiments with the non-C8-conjugated anthramycin along with molecular dynamics simulations suggest that the C8-substituent of a PBD Monomer, or one-half of a PBD Dimer, may provide stability for the adduct. This observation highlights the importance of PBD C8-substituents, and also suggests that PBDs may bind to terminal guanines within stretches of DNA in cells, thus representing a potentially novel mechanism of action at the end of DNA strand breaks. PMID:27055050

  9. Structure-activity relationships of 4-hydroxyalkenals in the conjugation catalysed by mammalian glutathione transferases.

    PubMed Central

    Danielson, U H; Esterbauer, H; Mannervik, B

    1987-01-01

    The substrate specificities of 15 cytosolic glutathione transferases from rat, mouse and man have been explored by use of a homologous series of 4-hydroxyalkenals, extending from 4-hydroxypentenal to 4-hydroxypentadecenal. Rat glutathione transferase 8-8 is exceptionally active with the whole range of 4-hydroxyalkenals, from C5 to C15. Rat transferase 1-1, although more than 10-fold less efficient than transferase 8-8, is the second most active transferase with the longest chain length substrates. Other enzyme forms showing high activities with these substrates are rat transferase 4-4 and human transferase mu. The specificity constants, kcat./Km, for the various enzymes have been determined with the 4-hydroxyalkenals. From these constants the incremental Gibbs free energy of binding to the enzyme has been calculated for the homologous substrates. The enzymes responded differently to changes in the length of the hydrocarbon side chain and could be divided into three groups. All glutathione transferases displayed increased binding energy in response to increased hydrophobicity of the substrate. For some of the enzymes, steric limitations of the active site appear to counteract the increase in binding strength afforded by increased chain length of the substrate. Comparison of the activities with 4-hydroxyalkenals and other activated alkenes provides information about the active-site properties of certain glutathione transferases. The results show that the ensemble of glutathione transferases in a given species may serve an important physiological role in the conjugation of the whole range of 4-hydroxyalkenals. In view of its high catalytic efficiency with all the homologues, rat glutathione transferase 8-8 appears to have evolved specifically to serve in the detoxication of these reactive compounds of oxidative metabolism. PMID:3426557

  10. Human glutathione transferases catalyzing the bioactivation of anticancer thiopurine prodrugs.

    PubMed

    Eklund, Birgitta I; Gunnarsdottir, Sjofn; Elfarra, Adnan A; Mannervik, Bengt

    2007-06-01

    cis-6-(2-Acetylvinylthio)purine (cAVTP) and trans-6-(2-acetylvinylthio)guanine (tAVTG) are thiopurine prodrugs provisionally inactivated by an alpha,beta-unsaturated substituent on the sulfur of the parental thiopurines 6-mercaptopurine (6-MP) and 6-thioguanine (6-TG). The active thiopurines are liberated intracellularly by glutathione (GSH) in reactions catalyzed by glutathione transferases (GSTs) (EC 2.5.1.18). Catalytic activities of 13 human GSTs representing seven distinct classes of soluble GSTs have been determined. The bioactivation of cAVTP and tAVTG occurs via a transient addition of GSH to the activated double bond of the S-substituent of the prodrug, followed by elimination of the thiopurine. The first of these consecutive reactions is rate-limiting for thiopurine release, but GST-activation of this first addition is shifting the rate limitation to the subsequent elimination. Highly active GSTs reveal the transient intermediate, which is detectable by UV spectroscopy and HPLC analysis. LC/MS analysis of the reaction products demonstrates that the primary GSH conjugate, 4-glutathionylbuten-2-one, can react with a second GSH molecule to form the 4-(bis-glutathionyl)butan-2-one. GST M1-1 and GST A4-4 were the most efficient enzymes with tAVTG, and GST M1-1 and GST M2-2 had highest activity with cAVTP. The highly efficient GST M1-1 is polymorphic and is absent in approximately half of the human population. GST P1-1, which is overexpressed in many cancer cells, had no detectable activity with cAVTP and only minor activity with tAVTG. Other GST-activated prodrugs have targeted GST P1-1-expressing cancer cells. Tumors expressing high levels of GST M1-1 or GST A4-4 can be predicted to be particularly vulnerable to chemotherapy with cAVTP or tAVTG.

  11. Evaluation of anticancer effects and enhanced doxorubicin cytotoxicity of xanthine derivatives using canine hemangiosarcoma cell lines.

    PubMed

    Motegi, Tomoki; Katayama, Masaaki; Uzuka, Yuji; Okamura, Yasuhiko

    2013-10-01

    Methylxanthine derivatives increase cAMP and are known to have diuretic, cardiac, and central nervous system stimulatory effects. Moreover, caffeine inhibits the development of tumors induced by various carcinogens. The aim of this work was to elucidate the anticancer effects on apoptosis of xanthine derivatives alone and with doxorubicin in canine hemangiosarcoma cells. Xanthine derivatives with or without doxorubicin were administered to cells, and the effects were investigated by measuring tumor cell proliferation, cell death (cytotoxicity) induction, and apoptosis by the expression of annexin V or caspase 3/7. Both caffeine and theophylline induced apoptosis, and the treated cells expressed annexin V and caspase 3/7. Both drugs enhanced doxorubicin-induced cytotoxicity; however, hypoxanthine showed no effect. These results indicate that theophylline is similar to caffeine; both drugs may enhance doxorubicin-induced cytotoxicity by inhibiting ATM/ATR kinases. Our data suggest that caffeine and theophylline have anticancer effects and can improve the treatment effect in canine hemangiosarcoma patients. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. A structure-based catalytic mechanism for the xanthine oxidase family of molybdenum enzymes.

    PubMed Central

    Huber, R; Hof, P; Duarte, R O; Moura, J J; Moura, I; Liu, M Y; LeGall, J; Hille, R; Archer, M; Romão, M J

    1996-01-01

    The crystal structure of the xanthine oxidase-related molybdenum-iron protein aldehyde oxido-reductase from the sulfate reducing anaerobic Gram-negative bacterium Desulfovibrio gigas (Mop) was analyzed in its desulfo-, sulfo-, oxidized, reduced, and alcohol-bound forms at 1.8-A resolution. In the sulfo-form the molybdenum molybdopterin cytosine dinucleotide cofactor has a dithiolene-bound fac-[Mo, = O, = S, ---(OH2)] substructure. Bound inhibitory isopropanol in the inner compartment of the substrate binding tunnel is a model for the Michaelis complex of the reaction with aldehydes (H-C = O,-R). The reaction is proposed to proceed by transfer of the molybdenum-bound water molecule as OH- after proton transfer to Glu-869 to the carbonyl carbon of the substrate in concert with hydride transfer to the sulfido group to generate [MoIV, = O, -SH, ---(O-C = O, -R)). Dissociation of the carboxylic acid product may be facilitated by transient binding of Glu-869 to the molybdenum. The metal-bound water is replenished from a chain of internal water molecules. A second alcohol binding site in the spacious outer compartment may cause the strong substrate inhibition observed. This compartment is the putative binding site of large inhibitors of xanthine oxidase. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:8799115

  13. Synthesis, crystal structures, fluorescence and xanthine oxidase inhibitory activity of pyrazole-based 1,3,4-oxadiazole derivatives

    NASA Astrophysics Data System (ADS)

    Qi, De-Qiang; Yu, Chuan-Ming; You, Jin-Zong; Yang, Guang-Hui; Wang, Xue-Jie; Zhang, Yi-Ping

    2015-11-01

    A series of pyrazole-based 1,3,4-oxadiazole derivatives were rationally designed and synthesized in good yields by following a convenient route. All the newly synthesized molecules were fully characterized by IR, 1H NMR and elemental analysis. Eight compounds were structurally determined by single crystal X-ray diffraction analysis. The fluorescence properties of all the compounds were investigated in dimethyl sulfoxide media. In addition, these newly synthesized compounds were evaluated for in vitro inhibitory activity against commercial enzyme xanthine oxidase (XO) by measuring the formation of uric acid from xanthine. Among the compounds synthesized and tested, 3d and 3e were found to be moderate inhibitory activity against commercial XO with IC50 = 72.4 μM and 75.6 μM. The studies gave a new insight in further optimization of pyrazole-based 1,3,4-oxadiazole derivatives with excellent fluorescence properties and XO inhibitory activity.

  14. Mapping the binding site of aflatoxin B/sub 1/ in DNA: systematic analysis of the reactivity of aflatoxin B/sub 1/ with guanines in different DNA sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benasutti, M.; Ejadi, S.; Whitlow, M.D.

    The mutagenic and carcinogenic chemical aflatoxin B/sub 1/ (AFB/sub 1/) reacts almost exclusively at the N(7)-position of guanine following activation to its reactive form, the 8,9-epoxide (AFB/sub 1/ oxide). In general N(7)-guanine adducts yield DNA strand breaks when heated in base, a property that serves as the basis for the Maxam-Gilbert DNA sequencing reaction specific for guanine. Using DNA sequencing methods, other workers have shown that AFB/sub 1/ oxide gives strand breaks at positions of guanines; however, the guanine bands varied in intensity. This phenomenon has been used to infer that AFB/sub 1/ oxide prefers to react with guanines inmore » some sequence contexts more than in others and has been referred to as sequence specificity of binding. Herein, data on the reaction of AFB/sub 1/ oxide with several synthetic DNA polymers with different sequences are presented, and (following hydrolysis) adduct levels are determine by high-pressure liquid chromatography. These results reveal that for AFB/sub 1/ oxide (1) the N(7)-guanine adduct is the major adduct found in all of the DNA polymers, (2) adduct levels vary in different sequences, and, thus, sequence specificity is also observed by this more direct method, and (3) the intensity of bands in DNA sequencing gels is likely to reflect adduct levels formed at the N(7)-position of guanine. Knowing this, a reinvestigation of the reactivity of guanines in different DNA sequences using DNA sequencing methods was undertaken. Methods are developed to determine the X (5'-side) base and the Y (3'-side) base are most influential in determining guanine reactivity. These rules in conjunction with molecular modeling studies were used to assess the binding sites that might be utilized by AFB/sub 1/ oxide in its reaction with DNA.« less

  15. Spectrofluorimetric assay method for glutathione and glutathione transferase using monobromobimane.

    PubMed

    Yakubu, S I; Yakasai, I A; Musa, A

    2011-06-01

    The primary role of glutathione transferase is to defend an organism from toxicities through catalyzing the reaction of glutathione (GSH) with potentially toxic compounds or metabolites to their chemically and biologically inert conjugates. The objective of the study was to develop a simple and sensitive spectrofluorimetric assay method for glutathione transferase using monobromobimane (MBB), a non fluorescent compound with electrophilic site. MBB slowly reacted with glutathione to form fluorescent glutathione conjugate and that the reaction was catalysed by glutathione transferase. Both non-enzymatic and enzymatic reaction products of MBB, in presence of GSH in phosphate buffer (pH 6.5), were measured by following increase of fluorescence at wavelength of 475nm. For validation of the assay method, the kinetic parameters such as the apparent Michaelis-Mente constants and maximum rates of conjugate formation as well as the specific activity of rat hepatic glutathione transferase were determined. The method was found to be sensitive, thus, applied to measure glutathione contents of crude preparation of rat hepatic cytosol fraction.

  16. Rat lung glutathione S-transferases. Evidence for two distinct types of 22000-Mr subunits.

    PubMed Central

    Singh, S V; Partridge, C A; Awasthi, Y C

    1984-01-01

    Two immunologically distinct types of 22000-Mr subunits are present in rat lung glutathione S-transferases. One of these subunits is probably similar to Ya subunits of rat liver glutathione S-transferases, whereas the other subunit Ya' is immunologically distinct. Glutathione S-transferase II (pI7.2) of rat lung is a heterodimer (YaYa') of these subunits, and glutathione S-transferase VI (pI4.8) of rat lung is a homodimer of Ya' subunits. On hybridization in vitro of the subunits of glutathione S-transferase II of rat lung three active dimers having pI values 9.4, 7.2 and 4.8 are obtained. Immunological properties and substrate specificities indicate that the hybridized enzymes having pI7.2 and 4.8 correspond to glutathione S-transferases II and VI of rat lung respectively. Images Fig. 1. Fig. 5. PMID:6433888

  17. Detection of xanthine oxidase and immunologically related proteins in fractions from bovine mammary tissue and milk after electrophoresis in polyacrylamide gels containing sodium dodecyl sulphate.

    PubMed Central

    Mather, I H; Sullivan, C H; Madara, P J

    1982-01-01

    A solid-phase immunoassay was used to detect xanthine oxidase in fractions from bovine mammary glands after electrophoresis in polyacrylamide gels containing sodium dodecyl sulphate. Under these conditions the major proportion of xanthine oxidase in either mammary tissue or mild could be recovered as a protein of mol.wt. 150 000. In mammary tissue approx. 80% of the enzyme was in a soluble form and the remainder was accounted for in either 'mitochondrial' or microsomal fractions after tissue homogenization and fractionation. Affinity chromatography of either detergent-solubilized microsomal membranes or postmicrosomal supernatants on immobilized antibody to xanthine oxidase yielded a single protein that cross-reacted with antibody to the enzyme. In milk presumptive degradation products of the enzyme were detected in minor quantities with mol.wts. of 43 000 in the whey fraction and 90 000 in fat-globule membrane. Only the undegraded enzyme was present in the skim-milk membrane fraction. Xanthine oxidase is therefore synthesized and secreted as a protein with a monomeric mol.wt. of 150 000 and is not subjected to extensive proteolytic degradation during the storage of milk in mammary alveoli. The significance of the results is discussed in relation to the overall protein composition of the membranes of milk-fat globules and skim milk. Images Fig. 1. Fig. 2. Fig. 3. PMID:7046730

  18. Mould-devouring mites differ in guanine excretion from dust-eating Acari, a possible error source in mite allergen exposure studies.

    PubMed

    Kort, H S; Schober, G; Koren, L G; Scharringa, J

    1997-08-01

    Measurement of guanine in dust proved a good assessment of mite allergen exposure. Exposure to mite allergens may lead to atopic inflictions. In a semi-natural test system the development of Dermatophagoides pteronyssinus (Trouessart) and Glycyphagus domesticus (De Geer), and the presence of their guanine excretion, was examined in a dust-soiled and mouldy environment. Mites were counted after heat-escape, and guanine was detected by means of capillary zone electrophoresis. For each species, 50 mites randomly taken, were inoculated on soiled test-surfaces of 10 x 10 cm. Rough wooden board, gypsum board, tufted carpet, and a self-made mattress representing wall surfaces and home-textiles, respectively, were used. Eight weeks after inoculation with mites only, the surfaces were all mould ridden, and mite and guanine measurements were taken. The Spearman rank correlation test and the Mann-Whitney U-test were used in statistical analysis. The confidence limit was set at 1%. Among the various test-surfaces, no differences were found regarding total mite numbers and amount of guanine present (P > 0.01). For the dust-eating mite D. pteronyssinus, total mite numbers correlated with the amount of guanine present (P = 0.002) on all inoculated surfaces, indicating feeding on the protein-rich dust. For the mould devouring mite G. domesticus, however, no such correlation was found (P = 0.72). Apparently, they mainly consumed fungal carbohydrates during this experiment. The allergological relevance of storage mites has been under discussion for the last 25 years. In humid homes, these mites will feed almost exclusively on fungi and may produce allergenic or irritating substances different from those arising on protein-rich laboratory media used in allergen extract production or present in carpets, bedding and furniture.

  19. Pressure-tuning infrared and Raman microscopy study of the DNA bases: adenine, guanine, cytosine, and thymine.

    PubMed

    Yang, Seung Yun; Butler, Ian S

    2013-12-01

    Diamond-anvil cell, pressure-tuning infrared (IR), and Raman microspectroscopic measurements have been undertaken to examine the effects of high pressures up to about 45 kbar on the vibrational spectra of the four DNA bases, adenine, cytosine, guanine, and thymine. Small structural changes were evident for all the four bases, viz., for adenine and cytosine at 28-31 kbar; for guanine at 16-19 kbar; and for thymine at 25-26 kbar. These changes are most likely associated with alterations in the intermolecular hydrogen-bonding interactions. The pressure dependences of the main peaks observed in the IR spectra of the two phases of guanine lie in the -0.07-0.66 (low-pressure phase) and 0.06-0.91 (high-pressure phase) cm⁻¹/kbar ranges. Also, in the Raman spectra of this nucleoside base, the dν/dP values range from -0.07-0.31 (low-pressure phase) to 0.08-0.50 (high-pressure phase) cm⁻¹/kbar. Similar ranges of dν/dP values were obtained for the other three nucleoside bases.

  20. Rates of Chemical Cleavage of DNA and RNA Oligomers Containing Guanine Oxidation Products

    PubMed Central

    2016-01-01

    The nucleobase guanine in DNA (dG) and RNA (rG) has the lowest standard reduction potential of the bases, rendering it a major site of oxidative damage in these polymers. Mapping the sites at which oxidation occurs in an oligomer via chemical reagents utilizes hot piperidine for cleaving oxidized DNA and aniline (pH 4.5) for cleaving oxidized RNA. In the present studies, a series of time-dependent cleavages of DNA and RNA strands containing various guanine lesions were examined to determine the strand scission rate constants. The guanine base lesions 8-oxo-7,8-dihydroguanine (OG), spiroiminodihydantoin (Sp), 5-guanidinohydantoin (Gh), 2,2,4-triamino-2H-oxazol-5-one (Z), and 5-carboxamido-5-formamido-2-iminohydantoin (2Ih) were evaluated in piperidine-treated DNA and aniline-treated RNA. These data identified wide variability in the chemical lability of the lesions studied in both DNA and RNA. Further, the rate constants for cleaving lesions in RNA were generally found to be significantly smaller than for lesions in DNA. The OG nucleotides were poorly cleaved in DNA and RNA; Sp nucleotides were slowly cleaved in DNA and did not cleave significantly in RNA; Gh and Z nucleotides cleaved in both DNA and RNA at intermediate rates; and 2Ih oligonucleotides cleaved relatively quickly in both DNA and RNA. The data are compared and contrasted with respect to future experimental design. PMID:25853314

  1. A multi-functional guanine derivative for studying the DNA G-quadruplex structure.

    PubMed

    Ishizuka, Takumi; Zhao, Pei-Yan; Bao, Hong-Liang; Xu, Yan

    2017-10-23

    In the present study, we developed a multi-functional guanine derivative, 8F G, as a G-quadruplex stabilizer, a fluorescent probe for the detection of G-quadruplex formation, and a 19 F sensor for the observation of the G-quadruplex. We demonstrate that the functional nucleoside bearing a 3,5-bis(trifluoromethyl)benzene group at the 8-position of guanine stabilizes the DNA G-quadruplex structure and fluoresces following the G-quadruplex formation. Furthermore, we show that the functional sensor can be used to directly observe DNA G-quadruplexes by 19 F-NMR in living cells. To our knowledge, this is the first study showing that the nucleoside derivative simultaneously allows for three kinds of functions at a single G-quadruplex DNA. Our results suggest that the multi-functional nucleoside derivative can be broadly used for studying the G-quadruplex structure and serves as a powerful tool for examining the molecular basis of G-quadruplex formation in vitro and in living cells.

  2. Molecular and biochemical characterization of tomato farnesyl-protein transferase.

    PubMed

    Schmitt, D; Callan, K; Gruissem, W

    1996-10-01

    The prenylation of membrane-associated proteins involved in the regulation of eukaryotic cell growth and signal transduction is critically important for their subcellular localization and biological activity. In contrast to mammalian cells and yeast, however, the function of protein prenylation in plants is not well understood and only a few prenylated proteins have been identified. We partially purified and characterized farnesyl-protein transferase from tomato (Lycopersicon esculentum, LeFTase) to analyze its biochemical and molecular properties. Using Ras- and G gamma-specific peptide substrates and competition assays we showed that tomato protein extracts have both farnesyl-protein transferase and geranylgeranyl-protein transferase 1 activities. Compared with the heterologous synthetic peptide substrates, the plant-specific CaaX sequence of the ANJ1 protein is a less efficient substrate for LeFTase in vitro. LeFTase activity profiles and LeFTase beta-subunit protein (LeFTB) levels differ significantly in various tissues and are regulated during fruit development. Partially purified LeFTase requires Zn2+ and Mg2+ for enzymatic activity and has an apparent molecular mass of 100 kD Immunoprecipitation experiments using anti-alpha LeFTB antibodies confirmed that LeFTB is a component of LeFTase but not of tomato geranylgeranyl-protein transferase 1. Based on their conserved bio-chemical activities, we expect that prenyltransferases are likely integrated with the sterol biosynthesis pathway in the control of plant cell growth.

  3. Ligand Selectivity Mechanism and Conformational Changes in Guanine Riboswitch by Molecular Dynamics Simulations and Free Energy Calculations.

    PubMed

    Hu, Guodong; Ma, Aijing; Wang, Jihua

    2017-04-24

    Riboswitches regulate gene expression through direct and specific interactions with small metabolite molecules. Binding of a ligand to its RNA target is high selectivity and affinity and induces conformational changes of the RNA's secondary and tertiary structure. The structural difference of two purine riboswitches aptamers is caused by only one single mutation, where cytosine 74 in the guanine riboswitch is corresponding to a uracil 74 in adenine riboswitch. Here we employed molecular dynamics (MD) simulation, molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) and thermodynamic integration computational methodologies to evaluate the energetic and conformational changes of ligands binding to purine riboswitches. The snapshots used in MM-PBSA calculation were extracted from ten 50 ns MD simulation trajectories for each complex. These free energy results are in consistent with the experimental data and rationalize the selectivity of the riboswitches for different ligands. In particular, it is found that the loss in binding free energy upon mutation is mainly electrostatic in guanine (GUA) and riboswitch complex. Furthermore, new hydrogen bonds are found in mutated complexes. To reveal the conformational properties of guanine riboswitch, we performed a total of 6 μs MD simulations in both the presence and the absence of the ligand GUA. The MD simulations suggest that the conformation of guanine riboswitch depends on the distance of two groups in the binding pocket of ligand. The conformation is in a close conformation when U51-A52 is close to C74-U75.

  4. Phytochemical Composition, Antioxidant and Xanthine Oxidase Inhibitory Activities of Amaranthus cruentus L. and Amaranthus hybridus L. Extracts

    PubMed Central

    Nana, Fernand W.; Hilou, Adama; Millogo, Jeanne F.; Nacoulma, Odile G.

    2012-01-01

    This paper describes a preliminary assessment of the nutraceutical value of Amaranthus cruentus (A. cruentus) and Amaranthus hybridus (A. hybridus), two food plant species found in Burkina Faso. Hydroacetonic (HAE), methanolic (ME), and aqueous extracts (AE) from the aerial parts were screened for in vitro antioxidant and xanthine oxidase inhibitory activities. Phytochemical analyses revealed the presence of polyphenols, tannins, flavonoids, steroids, terpenoids, saponins and betalains. Hydroacetonic extracts have shown the most diversity for secondary metabolites. The TLC analyses of flavonoids from HAE extracts showed the presence of rutin and other unidentified compounds. The phenolic compound contents of the HAE, ME and AE extracts were determined using the Folin–Ciocalteu method and ranged from 7.55 to 10.18 mg Gallic acid equivalent GAE/100 mg. Tannins, flavonoids, and flavonols ranged from 2.83 to 10.17 mg tannic acid equivalent (TAE)/100 mg, 0.37 to 7.06 mg quercetin equivalent (QE) /100 mg, and 0.09 to 1.31 mg QE/100 mg, respectively. The betacyanin contents were 40.42 and 6.35 mg Amaranthin Equivalent/100 g aerial parts (dry weight) in A. cruentus and A. hybridus, respectively. Free-radical scavenging activity expressed as IC50 (DPPH method) and iron reducing power (FRAP method) ranged from 56 to 423 µg/mL and from 2.26 to 2.56 mmol AAE/g, respectively. Xanthine oxidase inhibitory activities of extracts of A. cruentus and A. hybridus were 3.18% and 38.22%, respectively. The A. hybridus extract showed the best antioxidant and xanthine oxidase inhibition activities. The results indicated that the phytochemical contents of the two species justify their traditional uses as nutraceutical food plants. PMID:24281664

  5. hprt mutant frequencies, nonpulmonary malignancies, and domestic radon exposure: "postmortem" analysis of an interesting hypothesis.

    PubMed

    Ruttenber, A J; Harrison, L T; Baron, A; McClure, D; Glanz, J; Quillin, R; O'Neill, J P; Sullivan, L; Campbell, J; Nicklas, J A

    2001-01-01

    The hypothesis that exposure to domestic radon raises the risk for leukemia and other nonpulmonary cancers has been proposed and tested in a number of epidemiologic studies over the past decade. During this period, interest in this hypothesis was heightened by evidence of increased frequencies of mutations at the hypoxanthine guanine phosphoribosyl transferase (hprt) gene in persons exposed to domestic radon (Bridges BA et al. [1991]: Lancet 337:1187-1189). An extension of this study (Cole J et al. [lsqb[1996]: Radiat Res 145:61-69) and two independent studies (Albering HJ et al. [1992[: Lancet 340:739; Albering HJ et al. [1994[: Lancet 344:750-751) found that hprt mutant frequency was not correlated with domestic radon exposure, and two well-designed epidemiologic studies showed no evidence of a relation between radon exposure and leukemia in children or adults. In this report, we present additional data from a study of Colorado high school students showing no correlation between domestic radon exposure and hprt mutant frequency. We use reanalyses of previous studies of radon and hprt mutant frequency to identify problems with this assay as a biomarker for domestic radon exposure and to illustrate difficulties in interpreting the statistical data. We also show with analyses of combined data sets that there is no support for the hypothesis that domestic radon exposure elevates hprt mutant frequency. Taken together, the scientific evidence provides a useful example of the problems associated with analyzing and interpreting data that link environmental exposures, biomarkers, and diseases in epidemiologic studies. Copyright 2001 Wiley-Liss, Inc.

  6. Quantitative mammalian cell genetic toxicology: study of the cytotoxicity and mutagenicity of 70 individual environmental agents related to energy technologies and 3 subfractions of a crude synthetic oil in the CHO/HGPRT system. [Hamsters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsie, A W; ,; Neill, J P

    1978-01-01

    Conditions necessary for quantifying mutation-induction to 6-thioguanine resistance, which selects for >98% mutants deficient in the activity of hypoxanthine-guanine phosphoribosyl transferase (HGPRT) in a near-diploid Chinese hamster ovary (CHO) cell line, referred to as CHO/HGPRT system, have been defined. Employing this mutation assay, we have determined the mutagenicity of diversified agents including 11 direct-acting alkylating agents, 16 nitrosamines, 10 heterocyclic nitrogen mustards, 15 metallic compounds, 5 quinolines, 5 aromatic amines, 27 polycyclic hydrocarbons, 13 miscellaneous chemicals, 7 ionizing and non-ionizing physical agents. The direct-acting carcinogen N-methyl-N'-nitro-N-nitrosoguanidine is mutagenic while its noncarcinogenic analogue N-methyl-N'-nitro-N-nitroguanidine is not. Coupled with the rat livermore » S/sub 9/-activation system, procarcinogens such as nitrosopyrrolidine, benzo(a)pyrene, and 2-acetylaminofluorene are mutagenic while their analogues 2,5-dimethylnitrosopyrrolidine, pyrene and fluorene are not. The assay appears to be applicable for monitoring the genetic toxicity of crude organic mixtures in addition to diverse individual chemical and physical agents. The quantitative nature of the assay enables a study of EMS exposure dose: the mutagenic potential of EMS can be described as 310 x 10/sup -6/ mutants (cell mg ml/sup -1/ h)./sup -1/ It is also feasible to expand the CHO/HGPRT system for quantifying cytotoxicity and mutagenicity to determination of chromosomal aberrations and sister chromatid exchanges in cells treated under identical conditions which allows a simultaneous study of these four distinctive biological effects.« less

  7. Charged-particle mutagenesis II. Mutagenic effects of high energy charged particles in normal human fibroblasts

    NASA Technical Reports Server (NTRS)

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-01-01

    The biological effects of high LET charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/micrometer to 975 KeV/micrometer with particle energy (on the cells) between 94-603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/micrometer. The inactivation cross-section (alpha i) and the action cross-section for mutant induction (alpha m) ranged from 2.2 to 92.0 micrometer2 and 0.09 to 5.56 x 10(-3) micrometer2, respectively. The maximum values were obtained by 56Fe with an LET of 200 keV/micrometer. The mutagenicity (alpha m/alpha i) ranged from 2.05 to 7.99 x 10(-5) with the maximum value at 150 keV/micrometer. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  8. In vitro study of 6-mercaptopurine oxidation catalysed by aldehyde oxidase and xanthine oxidase.

    PubMed

    Rashidi, Mohammad-Reza; Beedham, Christine; Smith, John S; Davaran, Soodabeh

    2007-08-01

    In spite of over 40 years of clinical use of 6-mercaptopurine, many aspects of complex pharmacology and metabolism of this drug remain unclear. It is thought that 6-mercaptopurine is oxidized to 6-thiouric acid through 6-thioxanthine or 8-oxo-6-mercaptopurine by one of two molybdenum hydroxylases, xanthine oxidase (XO), however, the role of other molybdenum hydroxylase, aldehyde oxidase (AO), in the oxidation of 6-mercaptopurine and possible interactions of AO substrates and inhibitors has not been investigated in more details. In the present study, the role of AO and XO in the oxidation of 6- mercaptopurine has been investigated. 6-mercaptopurine was incubated with bovine milk xanthine oxidase or partially purified guinea pig liver molybdenum hydroxylase fractions in the absence and presence of XO and AO inhibitor/substrates, and the reactions were monitored by spectrophotometric and HPLC methods. According to the results obtained from the inhibition studies, it is more likely that 6- mercaptopurine is oxidized to 6-thiouric acid via 6-thioxanthine rather than 8-oxo-6-mercaptopurine. The first step which is the rate limiting step is catalyzed solely by XO, whereas both XO and AO are involved in the oxidation of 6-thioxanthine to 6-thiouric acid.

  9. Functional specialization of one copy of glutamine phosphoribosyl pyrophosphate amidotransferase in ureide production from symbiotically fixed nitrogen in Phaseolus vulgaris.

    PubMed

    Coleto, Inmaculada; Trenas, Almudena T; Erban, Alexander; Kopka, Joachim; Pineda, Manuel; Alamillo, Josefa M

    2016-08-01

    Purines are essential molecules formed in a highly regulated pathway in all organisms. In tropical legumes, the nitrogen fixed in the nodules is used to generate ureides through the oxidation of de novo synthesized purines. Glutamine phosphoribosyl pyrophosphate amidotransferase (PRAT) catalyses the first committed step of de novo purine synthesis. In Phaseolus vulgaris there are three genes coding for PRAT. The three full-length sequences, which are intron-less genes, were cloned, and their expression levels were determined under conditions that affect the synthesis of purines. One of the three genes, PvPRAT3, is highly expressed in nodules and protein amount and enzymatic activity in these tissues correlate with nitrogen fixation activity. Inhibition of PvPRAT3 gene expression by RNAi-silencing and subsequent metabolomic analysis of the transformed roots shows that PvPRAT3 is essential for the synthesis of ureides in P. vulgaris nodules. © 2016 John Wiley & Sons Ltd.

  10. Effect of mitochondrial complex I inhibition on Fe-S cluster protein activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mena, Natalia P.; Millennium Institute of Cell Dynamics and Biotechnology, Santiago; Bulteau, Anne Laure

    2011-06-03

    Highlights: {yields} Mitochondrial complex I inhibition resulted in decreased activity of Fe-S containing enzymes mitochondrial aconitase and cytoplasmic aconitase and xanthine oxidase. {yields} Complex I inhibition resulted in the loss of Fe-S clusters in cytoplasmic aconitase and of glutamine phosphoribosyl pyrophosphate amidotransferase. {yields} Consistent with loss of cytoplasmic aconitase activity, an increase in iron regulatory protein 1 activity was found. {yields} Complex I inhibition resulted in an increase in the labile cytoplasmic iron pool. -- Abstract: Iron-sulfur (Fe-S) clusters are small inorganic cofactors formed by tetrahedral coordination of iron atoms with sulfur groups. Present in numerous proteins, these clusters aremore » involved in key biological processes such as electron transfer, metabolic and regulatory processes, DNA synthesis and repair and protein structure stabilization. Fe-S clusters are synthesized mainly in the mitochondrion, where they are directly incorporated into mitochondrial Fe-S cluster-containing proteins or exported for cytoplasmic and nuclear cluster-protein assembly. In this study, we tested the hypothesis that inhibition of mitochondrial complex I by rotenone decreases Fe-S cluster synthesis and cluster content and activity of Fe-S cluster-containing enzymes. Inhibition of complex I resulted in decreased activity of three Fe-S cluster-containing enzymes: mitochondrial and cytosolic aconitases and xanthine oxidase. In addition, the Fe-S cluster content of glutamine phosphoribosyl pyrophosphate amidotransferase and mitochondrial aconitase was dramatically decreased. The reduction in cytosolic aconitase activity was associated with an increase in iron regulatory protein (IRP) mRNA binding activity and with an increase in the cytoplasmic labile iron pool. Since IRP activity post-transcriptionally regulates the expression of iron import proteins, Fe-S cluster inhibition may result in a false iron deficiency signal. Given

  11. Study of Drug Metabolism by Xanthine Oxidase

    PubMed Central

    Zhao, Jing; He, Xiaolin; Yang, Nana; Sun, Lizhou; Li, Genxi

    2012-01-01

    In this work, we report the studies of drug metabolism by xanthine oxidase (XOD) with electrochemical techniques. Firstly, a pair of stable, well-defined and quasi-reversible oxidation/reduction peaks is obtained with the formal potential at −413.1 mV (vs. SCE) after embedding XOD in salmon sperm DNA membrane on the surface of pyrolytic graphite electrode. Then, a new steady peak can be observed at −730 mV (vs. SCE) upon the addition of 6-mercaptopurine (6-MP) to the electrochemical system, indicating the metabolism of 6-MP by XOD. Furthermore, the chronoamperometric response shows that the current of the catalytic peak located at −730 mV increases with addition of 6-MP in a concentration-dependent manner, and the increase of the chronoamperometric current can be inhibited by an XOD inhibitor, quercetin. Therefore, our results prove that XOD/DNA modified electrode can be efficiently used to study the metabolism of 6-MP, which may provide a convenient approach for in vitro studies on enzyme-catalyzed drug metabolism. PMID:22606015

  12. Examination of the effect of the annealing cation on higher order structures containing guanine or isoguanine repeats

    PubMed Central

    Pierce, Sarah E.; Wang, Junmei; Jayawickramarajah, Janarthanan; Hamilton, Andrew D.; Brodbelt, Jennifer S.

    2010-01-01

    Isoguanine (2-oxo-6-amino-guanine), a natural but non-standard base, exhibits unique self-association properties compared to its isomer, guanine, and results in formation of different higher order DNA structures. In this work, the higher order structures formed by oligonucleotides containing guanine repeats or isoguanine repeats after annealing in solutions containing various cations are evaluated by electrospray ionization mass spectrometry (ESI-MS) and circular dichroism (CD) spectroscopy. The guanine-containing strand (G9) consistently formed quadruplexes upon annealing, whereas the isoguanine strand (Ig9) formed both pentaplexes and quadruplexes depending on the annealing cation. Quadruplex formation with G9 showed some dependence on the identity of the cation present during annealing with high relative quadruplex formation detected with six of ten cations. Analogous annealing experiments with Ig9 resulted in complex formation with all ten cations, and the majority of the resulting complexes were pentaplexes. CD results indicated most of the original complexes survived the desalting process necessary for ESI-MS analysis. In addition, several complexes, especially the pentaplexes, were found to be capable of cation exchange with ammonium ions. Ab initio calculations were conducted for isoguanine tetrads and pentads coordinated with all ten cations to predict the most energetically stable structures of the complexes in the gas phase. The observed preference of forming quadruplexes versus pentaplexes as a function of the coordinated cation can be interpreted by the calculated reaction energies of both the tetrads and pentads in combination with the distortion energies of tetrads. PMID:19746468

  13. Trichomonas vaginalis NTPDase and ecto-5'-nucleotidase hydrolyze guanine nucleotides and increase extracellular guanosine levels under serum restriction.

    PubMed

    Menezes, Camila Braz; Durgante, Juliano; de Oliveira, Rafael Rodrigues; Dos Santos, Victor Hugo Jacks Mendes; Rodrigues, Luiz Frederico; Garcia, Solange Cristina; Dos Santos, Odelta; Tasca, Tiana

    2016-05-01

    Trichomonas vaginalis is the aethiologic agent of trichomoniasis, the most common non-viral sexually transmitted disease in the world. The purinergic signaling pathway is mediated by extracellular nucleotides and nucleosides that are involved in many biological effects as neurotransmission, immunomodulation and inflammation. Extracellular nucleotides can be hydrolyzed by a family of enzymes known as ectonucleotidases including the ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) family which hydrolyses nucleosides triphosphate and diphosphate as preferential substrates and ecto-5'-nucleotidase which catalyzes the conversion of monophosphates into nucleosides. In T. vaginalis the E-NTPDase and ecto-5'-nucleotidase activities upon adenine nucleotides have already been characterized in intact trophozoites but little is known concerning guanine nucleotides and nucleoside. These enzymes may exert a crucial role on nucleoside generation, providing the purine sources for the synthesis de novo of these essential nutrients, sustaining parasite growth and survival. In this study, we investigated the hydrolysis profile of guanine-related nucleotides and nucleoside in intact trophozoites from long-term-grown and fresh clinical isolates of T. vaginalis. Knowing that guanine nucleotides are also substrates for T. vaginalis ectoenzymes, we evaluated the profile of nucleotides consumption and guanosine uptake in trophozoites submitted to a serum limitation condition. Results show that guanine nucleotides (GTP, GDP, GMP) were substrates for T. vaginalis ectonucleotidases, with expected kinetic parameters for this enzyme family. Different T. vaginalis isolates (two from the ATCC and nine fresh clinical isolates) presented a heterogeneous hydrolysis profile. The serum culture condition increased E-NTPDase and ecto-5'-nucleotidase activities with high consumption of extracellular GTP generating enhanced GDP, GMP and guanosine levels as demonstrated by HPLC, with final

  14. Ball with hair: modular functionalization of highly stable G-quadruplex DNA nano-scaffolds through N2-guanine modification

    PubMed Central

    Lech, Christopher Jacques

    2017-01-01

    Abstract Functionalized nanoparticles have seen valuable applications, particularly in the delivery of therapeutic and diagnostic agents in biological systems. However, the manufacturing of such nano-scale systems with the consistency required for biological application can be challenging, as variation in size and shape have large influences in nanoparticle behavior in vivo. We report on the development of a versatile nano-scaffold based on the modular functionalization of a DNA G-quadruplex. DNA sequences are functionalized in a modular fashion using well-established phosphoramidite chemical synthesis with nucleotides containing modification of the amino (N2) position of the guanine base. In physiological conditions, these sequences fold into well-defined G-quadruplex structures. The resulting DNA nano-scaffolds are thermally stable, consistent in size, and functionalized in a manner that allows for control over the density and relative orientation of functional chemistries on the nano-scaffold surface. Various chemistries including small modifications (N2-methyl-guanine), bulky aromatic modifications (N2-benzyl-guanine), and long chain-like modifications (N2-6-amino-hexyl-guanine) are tested and are found to be generally compatible with G-quadruplex formation. Furthermore, these modifications stabilize the G-quadruplex scaffold by 2.0–13.3 °C per modification in the melting temperature, with concurrent modifications producing extremely stable nano-scaffolds. We demonstrate the potential of this approach by functionalizing nano-scaffolds for use within the biotin–avidin conjugation approach. PMID:28499037

  15. HIV1 V3 loop hypermutability is enhanced by the guanine usage bias in the part of env gene coding for it.

    PubMed

    Khrustalev, Vladislav Victorovich

    2009-01-01

    Guanine is the most mutable nucleotide in HIV genes because of frequently occurring G to A transitions, which are caused by cytosine deamination in viral DNA minus strands catalyzed by APOBEC enzymes. Distribution of guanine between three codon positions should influence the probability for G to A mutation to be nonsynonymous (to occur in first or second codon position). We discovered that nucleotide sequences of env genes coding for third variable regions (V3 loops) of gp120 from HIV1 and HIV2 have different kinds of guanine usage biases. In the HIV1 reference strain and 100 additionally analyzed HIV1 strains the guanine usage bias in V3 loop coding regions (2G>1G>3G) should lead to elevated nonsynonymous G to A transitions occurrence rates. In the HIV2 reference strain and 100 other HIV2 strains guanine usage bias in V3 loop coding regions (3G>2G>1G) should protect V3 loops from hypermutability. According to the HIV1 and HIV2 V3 alignment, insertion of the sequence enriched with 2G (21 codons in length) occurred during the evolution of HIV1 predecessor, while insertion of the different sequence enriched with 3G (19 codons in length) occurred during the evolution of HIV2 predecessor. The higher is the level of 3G in the V3 coding region, the lower should be the immune escaping mutation occurrence rates. This hypothesis was tested in this study by comparing the guanine usage in V3 loop coding regions from HIV1 fast and slow progressors. All calculations have been performed by our algorithms "VVK In length", "VVK Dinucleotides" and "VVK Consensus" (www.barkovsky.hotmail.ru).

  16. Nitrite-derived nitric oxide protects the rat kidney against ischemia/reperfusion injury in vivo: role for xanthine oxidoreductase.

    PubMed

    Tripatara, Pinpat; Patel, Nimesh S A; Webb, Andrew; Rathod, Krishnaraj; Lecomte, Florence M J; Mazzon, Emanuela; Cuzzocrea, Salvatore; Yaqoob, Mohammed M; Ahluwalia, Amrita; Thiemermann, Christoph

    2007-02-01

    In normal conditions, nitric oxide (NO) is oxidized to the anion nitrite, but in hypoxia, this nitrite may be reduced back to NO by the nitrite reductase action of deoxygenated hemoglobin, acidic disproportionation, or xanthine oxidoreductase (XOR). Herein, is investigated the effects of topical sodium nitrite administration in a rat model of renal ischemia/reperfusion (I/R) injury. Rats were subjected to 60 min of bilateral renal ischemia and 6 h of reperfusion in the absence or presence of sodium nitrite (30 nmol) administered topically 1 min before reperfusion. Serum creatinine, serum aspartate aminotransferase, creatinine clearance, fractional excretion of Na(+), and plasma nitrite/nitrate concentrations were measured. The nitrite-derived NO-generating capacity of renal tissue was determined under acidic and hypoxic conditions by ozone chemiluminescence in homogenates of kidneys that were subjected to sham, ischemia-only, and I/R conditions. Nitrite significantly attenuated renal dysfunction and injury, an effect that was abolished by previous treatment of rats with the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazole-1-oxyl-3-oxide (2.5 mumol intravenously 5 min before ischemia and 50 nmol topically 6 min before reperfusion). Renal tissue homogenates produced significant amounts of NO from nitrite, an effect that was attenuated significantly by the xanthine oxidoreductase inhibitor allopurinol. Taken together, these findings demonstrate that topically administered sodium nitrite protects the rat kidney against I/R injury and dysfunction in vivo via the generation, in part, of xanthine oxidoreductase-catalyzed NO production. These observations suggest that nitrite therapy might prove beneficial in protecting kidney function and integrity during periods of I/R such as those encountered in renal transplantation.

  17. Functional expression and characterization of a purine nucleobase transporter gene from Leishmania major.

    PubMed

    Sanchez, Marco A; Tryon, Rob; Pierce, Steven; Vasudevan, Gayatri; Landfear, Scott M

    2004-01-01

    Leishmania major, like all the other kinetoplastid protozoa, are unable to synthesize purines and rely on purine nucleobase and nucleoside acquisition across the parasite plasma membrane by specific permeases. Although, several genes have been cloned that encode nucleoside transporters in Leishmania and Trypanosoma brucei, much less progress has been made on nucleobase transporters, especially at the molecular level. The studies reported here have cloned and expressed the first gene for a L. major nucleobase transporter, designated LmaNT3. The LmaNT3 permease shows 33% identity to L. donovani nucleoside transporter 1.1 (LdNT1.1) and is, thus, a member of the equilibrative nucleoside transporter (ENT) family. ENT family members identified to date are nucleoside transporters, some of which also transport one or several nucleobases. Functional expression studies in Xenopus laevis oocytes revealed that LmaNT3 mediates high levels of uptake of hypoxanthine, xanthine, adenine and guanine. Moreover, LmaNT3 is an high affinity transporter with K(m) values for hypoxanthine, xanthine, adenine and guanine of 16.5 +/- 1.5, 8.5 +/- 0.6, 8.5 +/- 1.1, and 8.8 +/- 4.0 microM, respectively. LmaNT3 is, thus, the first member of the ENT family identified in any organism that functions as a nucleobase rather than nucleoside or nucleoside/nucleobase transporter.

  18. Stimulation of nicotinamide adenine dinucleotide biosynthetic pathways delays axonal degeneration after axotomy.

    PubMed

    Sasaki, Yo; Araki, Toshiyuki; Milbrandt, Jeffrey

    2006-08-16

    Axonal degeneration occurs in many neurodegenerative diseases and after traumatic injury and is a self-destructive program independent from programmed cell death. Previous studies demonstrated that overexpression of nicotinamide mononucleotide adenylyltransferase 1 (Nmnat1) or exogenous application of nicotinamide adenine dinucleotide (NAD) can protect axons of cultured dorsal root ganglion (DRG) neurons from degeneration caused by mechanical or neurotoxic injury. In mammalian cells, NAD can be synthesized from multiple precursors, including tryptophan, nicotinic acid, nicotinamide, and nicotinamide riboside (NmR), via multiple enzymatic steps. To determine whether other components of these NAD biosynthetic pathways are capable of delaying axonal degeneration, we overexpressed each of the enzymes involved in each pathway and/or exogenously administered their respective substrates in DRG cultures and assessed their capacity to protect axons after axotomy. Among the enzymes tested, Nmnat1 had the strongest protective effects, whereas nicotinamide phosphoribosyl transferase and nicotinic acid phosphoribosyl transferase showed moderate protective activity in the presence of their substrates. Strong axonal protection was also provided by Nmnat3, which is predominantly located in mitochondria, and an Nmnat1 mutant localized to the cytoplasm, indicating that the subcellular location of NAD production is not crucial for protective activity. In addition, we showed that exogenous application of the NAD precursors that are the substrates of these enzymes, including nicotinic acid mononucleotide, nicotinamide mononucleotide, and NmR, can also delay axonal degeneration. These results indicate that stimulation of NAD biosynthetic pathways via a variety of interventions may be useful in preventing or delaying axonal degeneration.

  19. Polymerase recognition of 2-thio-iso-guanine·5-methyl-4-pyrimidinone (iGs·P)--A new DD/AA base pair.

    PubMed

    Lee, Dong-Kye; Switzer, Christopher

    2016-02-15

    Polymerase specificity is reported for a previously unknown base pair with a non-standard DD/AA hydrogen bonding pattern: 2-thio-iso-guanine·5-methyl-4-pyrimidinone. Our findings suggest that atomic substitution may provide a solution for low fidelity previously associated with enzymatic copying of iso-guanine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. A label-free electrochemical sensor for detection of mercury(II) ions based on the direct growth of guanine nanowire.

    PubMed

    Huang, Yan Li; Gao, Zhong Feng; Jia, Jing; Luo, Hong Qun; Li, Nian Bing

    2016-05-05

    A simple, sensitive and label-free electrochemical sensor is developed for detection of Hg(2+) based on the strong and stable T-Hg(2+)-T mismatches. In the presence of Mg(2+), the parallel G-quadruplex structures could be specifically recognized and precipitated in parallel conformation. Therefore, the guanine nanowire was generated on the electrode surface, triggering the electrochemical H2O2-mediated oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). In this research, a new method of signal amplification for the quantitative detection of Hg(2+) was described based on the direct growth of guanine nanowire via guanine nanowire. Under optimum conditions, Hg(2+) was detected in the range of 100 pM-100 nM, and the detection limit is 33 pM. Compared to the traditional single G-quadruplex label unit, this electrochemical sensor showed high sensitivity and selectivity for detecting Hg(2+). Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Simultaneous protection of organic p- and n-channels in complementary inverter from aging and bias-stress by DNA-base guanine/Al2O3 double layer.

    PubMed

    Lee, Junyeong; Hwang, Hyuncheol; Min, Sung-Wook; Shin, Jae Min; Kim, Jin Sung; Jeon, Pyo Jin; Lee, Hee Sung; Im, Seongil

    2015-01-28

    Although organic field-effect transistors (OFETs) have various advantages of lightweight, low-cost, mechanical flexibility, and nowadays even higher mobility than amorphous Si-based FET, stability issue under bias and ambient condition critically hinder its practical application. One of the most detrimental effects on organic layer comes from penetrated atmospheric species such as oxygen and water. To solve such degradation problems, several molecular engineering tactics are introduced: forming a kinetic barrier, lowering the level of molecule orbitals, and increasing the band gap. However, direct passivation of organic channels, the most promising strategy, has not been reported as often as other methods. Here, we resolved the ambient stability issues of p-type (heptazole)/or n-type (PTCDI-C13) OFETs and their bias-stability issues at once, using DNA-base small molecule guanine (C5H5N5O)/Al2O3 bilayer. The guanine protects the organic channels as buffer/and H getter layer between the channels and capping Al2O3, whereas the oxide capping resists ambient molecules. As a result, both p-type and n-type OFETs are simultaneously protected from gate-bias stress and 30 days-long ambient aging, finally demonstrating a highly stable, high-gain complementary-type logic inverter.

  2. Methods for the synthesis of aza(deaza)xanthines as a basis of biologically active compounds

    NASA Astrophysics Data System (ADS)

    Babkov, D. A.; Geisman, A. N.; Khandazhinskaya, A. L.; Novikov, M. S.

    2016-03-01

    The review covers methods for the synthesis of aza(deaza)xanthines, i.e., fused pyrrolo-, pyrazolo- and triazolopyrimidine heterocyclic systems, which are common core structures of various biologically active compounds. The extensive range of modern synthetic approaches is organized according to target structures and starting building blocks. The presented material is intended to benefit broad audience of specialists in the fields of organic, medicinal and pharmaceutical chemistry. The bibliography includes 195 references.

  3. GLUTATHIONE S-TRANSFERASE-MEDIATED METABOLISM OF BROMODICHLOROMETHANE

    EPA Science Inventory

    GLUTATHIONE s-TRANSFERASE-MEDIATED METABOLISM OF BROMODICHLOROMETHANE. M K Ross1 and R A Pegram2. 1Curriculum in Toxicology, University of North Carolina at Chapel Hill; 2Experimental Toxicology Division, NHEERL/ORD, United States Environmental Protection Agency, Research Triangl...

  4. Fluorescent techniques for discovery and characterization of phosphopantetheinyl transferase inhibitors

    PubMed Central

    Kosa, Nicolas M.; Foley, Timothy L.; Burkart, Michael D.

    2016-01-01

    Phosphopantetheinyl transferase (E.C. 2.7.8.-) activates biosynthetic pathways that synthesize both primary and secondary metabolites in bacteria. Inhibitors of these enzymes have the potential to serve as antibiotic compounds that function through a unique mode of action and possess clinical utility. Here we report a direct and continuous assay for this enzyme class based upon monitoring polarization of a fluorescent phosphopantetheine analog as it is transferred from a low molecular weight coenzyme A substrate to higher molecular weight protein acceptor. We demonstrate the utility of this method for the biochemical characterization of phosphopantetheinyl transferase Sfp, a canonical representative from this class. We also establish the portability of this technique to other homologs by adapting the assay to function with the human phosphopantetheinyl transferase, a target for which a microplate detection method does not currently exist. Comparison of these targets provides a basis to predict therapeutic index of inhibitor candidates and offers a valuable characterization of enzyme activity. PMID:24192555

  5. Development of an ultra performance LC/MS method to quantify cisplatin 1,2 intrastrand guanine-guanine adducts

    PubMed Central

    Baskerville-Abraham, Irene M.; Boysen, Gunnar; Troutman, J. Mitchell; Mutlu, Esra; Collins, Leonard; deKrafft, Kathryn E.; Lin, Wenbin; King, Candice; Chaney, Stephen G.; Swenberg, James A.

    2009-01-01

    Platinum chemotherapeutic agents have been widely used in the treatment of cancer. Cisplatin was the first of the platinum based chemotherapeutic agents and therefore has been extensively studied as an anti-tumor agent since the late 1960s. Because this agent forms several DNA adducts, a highly sensitive and specific quantitative assay is needed to correlate the molecular dose of individual adducts with the effects of treatment. An ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) assay for quantification of 1,2 guanine-guanine intrastrand cisplatin adducts [CP-d(GpG)], using 15N10 CP-d(GpG) as an internal standard, was developed. The internal standard was characterized by MS/MS and its concentration was validated by ICP-MS. Samples containing CP-d(GpG) in DNA were purified by enzyme hydrolysis , centrifugal filtration and HPLC with fraction collection prior to quantification by UPLC-MS/MS in the selective reaction monitoring (SRM) mode (m/z 412.5→248.1 for CP-d(GpG); m/z 417.5→253.1 for [15N10] CP-d(GpG)). Recovery of standards was >90% and quantification was unaffected by increasing concentrations of calf thymus DNA. This method utilizes 25 μg of DNA per injection. The limit of quantification was 3 fmol or 3.7 adducts per 108 nucleotides, which approaches the sensitivity of the 32P postlabeling method for this adduct. These data suggested that this method is suitable for in vitro and in vivo assessment of CP-d(GpG) adducts formed by cisplatin and carboplatin. Subsequently the method was applied to studies using ovarian carcinoma cell lines and C57/BL6 mice to illustrate that this method is capable of quantifying CP-d(GpG) adducts using biologically relevant systems and doses. The development of biomarkers to determine tissue-specific molecular dosimetry during treatment will lead to a more complete understanding of both therapeutic and adverse effects of cisplatin and carboplatin. This will support the refinement of therapeutic

  6. Ball with hair: modular functionalization of highly stable G-quadruplex DNA nano-scaffolds through N2-guanine modification.

    PubMed

    Lech, Christopher Jacques; Phan, Anh Tuân

    2017-06-20

    Functionalized nanoparticles have seen valuable applications, particularly in the delivery of therapeutic and diagnostic agents in biological systems. However, the manufacturing of such nano-scale systems with the consistency required for biological application can be challenging, as variation in size and shape have large influences in nanoparticle behavior in vivo. We report on the development of a versatile nano-scaffold based on the modular functionalization of a DNA G-quadruplex. DNA sequences are functionalized in a modular fashion using well-established phosphoramidite chemical synthesis with nucleotides containing modification of the amino (N2) position of the guanine base. In physiological conditions, these sequences fold into well-defined G-quadruplex structures. The resulting DNA nano-scaffolds are thermally stable, consistent in size, and functionalized in a manner that allows for control over the density and relative orientation of functional chemistries on the nano-scaffold surface. Various chemistries including small modifications (N2-methyl-guanine), bulky aromatic modifications (N2-benzyl-guanine), and long chain-like modifications (N2-6-amino-hexyl-guanine) are tested and are found to be generally compatible with G-quadruplex formation. Furthermore, these modifications stabilize the G-quadruplex scaffold by 2.0-13.3 °C per modification in the melting temperature, with concurrent modifications producing extremely stable nano-scaffolds. We demonstrate the potential of this approach by functionalizing nano-scaffolds for use within the biotin-avidin conjugation approach. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Exploring the Use of a Guanine-Rich Catalytic DNA for Sulfoxide Preparation

    PubMed Central

    Dellafiore, María A.; Montserrat, Javier M.; Iribarren, Adolfo M.

    2015-01-01

    A guanine-rich DNA oligonucleotide complexed with hemin was used to catalyze controlled oxygen transfer reactions to different sulfides for sulfoxide preparation in the presence of H2O2. Comparable activities were obtained when using fully modified L-DNA. In addition, oligonucleotide immobilization led to an active catalyst which could be successfully recovered and reused without loss of activity. PMID:26066510

  8. Molecular Cloning of Adenosinediphosphoribosyl Transferase.

    DTIC Science & Technology

    1987-09-08

    nature of the blocking group is unknown, except its identity with pyroglutamic acid was ruled out by its insensitivity to pyroglutaminase (not shown...AdenosinediphosphoribOSyl Transferase (ADPRT) is: 1) the complete amino acid sequence of this large protein is best determined -from the DNA !equence of the gene, 2...enzyme (I), determination of its peptide structure (II) and application of synthetic DNA probes (III) derived from amino acid sequences, resulting in the

  9. Antidepressant-like effects of the xanthine oxidase enzyme inhibitor allopurinol in rats. A comparison with fluoxetine.

    PubMed

    Gürbüz Özgür, Börte; Aksu, Hatice; Birincioğlu, Mustafa; Dost, Turhan

    2015-11-01

    Allopurinol is a xanthine oxidase enzyme inhibitor that is widely used for the treatment of hyperuricemia and gout. The activity of tryptophan 2,3-dioxygenase, which metabolizes tryptophan (TRP), is decreased by xanthine oxidase inhibitors, causing TRP levels in the body to be increased. Increases in TRP levels in the brain might have antidepressant effects. The purpose of this study is to evaluate the antidepressant effects of allopurinol compared to those of fluoxetine, which is a proven antidepressant. Thirty-two Wistar albino male rats were divided into four groups (control, 10mg/kg fluoxetine, 50mg/kg allopurinol, 50mg/kg allopurinol+10 mg/kg fluoxetine; n=8 per group), and forced swimming tests were performed before and after 14days of drug administration. Serotonin, 5-hydroxyindolacetic acid and uric acid levels were measured in blood samples after the final treatment. When allopurinol and fluoxetine were administered separately, a decrease in the duration of immobility and an increased duration of swimming were observed in the forced swimming test. The results showed similar antidepressant efficacies between allopurinol and fluoxetine. However, we found no statistically significant difference in the antidepressant effect of the combined therapy versus single drug therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Monitoring one-electron photo-oxidation of guanine in DNA crystals using ultrafast infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Hall, James P.; Poynton, Fergus E.; Keane, Páraic M.; Gurung, Sarah P.; Brazier, John A.; Cardin, David J.; Winter, Graeme; Gunnlaugsson, Thorfinnur; Sazanovich, Igor V.; Towrie, Michael; Cardin, Christine J.; Kelly, John M.; Quinn, Susan J.

    2015-12-01

    To understand the molecular origins of diseases caused by ultraviolet and visible light, and also to develop photodynamic therapy, it is important to resolve the mechanism of photoinduced DNA damage. Damage to DNA bound to a photosensitizer molecule frequently proceeds by one-electron photo-oxidation of guanine, but the precise dynamics of this process are sensitive to the location and the orientation of the photosensitizer, which are very difficult to define in solution. To overcome this, ultrafast time-resolved infrared (TRIR) spectroscopy was performed on photoexcited ruthenium polypyridyl-DNA crystals, the atomic structure of which was determined by X-ray crystallography. By combining the X-ray and TRIR data we are able to define both the geometry of the reaction site and the rates of individual steps in a reversible photoinduced electron-transfer process. This allows us to propose an individual guanine as the reaction site and, intriguingly, reveals that the dynamics in the crystal state are quite similar to those observed in the solvent medium.

  11. Monitoring one-electron photo-oxidation of guanine in DNA crystals using ultrafast infrared spectroscopy.

    PubMed

    Hall, James P; Poynton, Fergus E; Keane, Páraic M; Gurung, Sarah P; Brazier, John A; Cardin, David J; Winter, Graeme; Gunnlaugsson, Thorfinnur; Sazanovich, Igor V; Towrie, Michael; Cardin, Christine J; Kelly, John M; Quinn, Susan J

    2015-12-01

    To understand the molecular origins of diseases caused by ultraviolet and visible light, and also to develop photodynamic therapy, it is important to resolve the mechanism of photoinduced DNA damage. Damage to DNA bound to a photosensitizer molecule frequently proceeds by one-electron photo-oxidation of guanine, but the precise dynamics of this process are sensitive to the location and the orientation of the photosensitizer, which are very difficult to define in solution. To overcome this, ultrafast time-resolved infrared (TRIR) spectroscopy was performed on photoexcited ruthenium polypyridyl-DNA crystals, the atomic structure of which was determined by X-ray crystallography. By combining the X-ray and TRIR data we are able to define both the geometry of the reaction site and the rates of individual steps in a reversible photoinduced electron-transfer process. This allows us to propose an individual guanine as the reaction site and, intriguingly, reveals that the dynamics in the crystal state are quite similar to those observed in the solvent medium.

  12. Structural outline of the detailed mechanism for elongation factor Ts-mediated guanine nucleotide exchange on elongation factor Tu.

    PubMed

    Thirup, Søren S; Van, Lan Bich; Nielsen, Tine K; Knudsen, Charlotte R

    2015-07-01

    Translation elongation factor EF-Tu belongs to the superfamily of guanine-nucleotide binding proteins, which play key cellular roles as regulatory switches. All G-proteins require activation via exchange of GDP for GTP to carry out their respective tasks. Often, guanine-nucleotide exchange factors are essential to this process. During translation, EF-Tu:GTP transports aminoacylated tRNA to the ribosome. GTP is hydrolyzed during this process, and subsequent reactivation of EF-Tu is catalyzed by EF-Ts. The reaction path of guanine-nucleotide exchange is structurally poorly defined for EF-Tu and EF-Ts. We have determined the crystal structures of the following reaction intermediates: two structures of EF-Tu:GDP:EF-Ts (2.2 and 1.8Å resolution), EF-Tu:PO4:EF-Ts (1.9Å resolution), EF-Tu:GDPNP:EF-Ts (2.2Å resolution) and EF-Tu:GDPNP:pulvomycin:Mg(2+):EF-Ts (3.5Å resolution). These structures provide snapshots throughout the entire exchange reaction and suggest a mechanism for the release of EF-Tu in its GTP conformation. An inferred sequence of events during the exchange reaction is presented. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Guanine limitation results in CodY-dependent and -independent alteration of Staphylococcus aureus physiology and gene expression.

    PubMed

    King, Alyssa N; Borkar, Samiksha; Samuels, David J; Batz, Zachary; Bulock, Logan; Sadykov, Marat R; Bayles, Kenneth W; Brinsmade, Shaun R

    2018-04-30

    In Staphylococcus aureus , the global transcriptional regulator CodY modulates the expression of hundreds of genes in response to the availability of GTP and the branched-chain amino acids isoleucine, leucine, and valine (ILV). CodY DNA-binding activity is high when GTP and ILV are abundant. When GTP and ILV are limited, CodY's affinity for DNA drops, altering expression of CodY regulated targets. In this work, we investigated the impact of guanine nucleotides on S. aureus physiology and CodY activity by constructing a guaA null mutant (Δ guaA ). De novo biosynthesis of guanine monophosphate is abolished due to the guaA mutation; thus, the mutant cells require exogenous guanosine for growth. We also found that CodY activity was reduced when we knocked out guaA , activating the Agr two-component system and increasing secreted protease activity. Notably, in a rich, complex medium, we detected an increase in alternative sigma factor B activity in the Δ guaA mutant, which results in a 5-fold increase in production of the antioxidant pigment staphyloxanthin. Under biologically relevant flow conditions, Δ guaA cells failed to form robust biofilms when limited for guanine or guanosine. RNA-seq analysis of S. aureus transcriptome during growth in guanosine-limited chemostats revealed substantial CodY-dependent and -independent alteration of gene expression profiles. Importantly, these changes increase production of proteases and δ-toxin, suggesting that S. aureus exhibits a more invasive lifestyle when limited for guanosine. Further, gene-products upregulated under GN limitation, including those necessary for lipoic acid biosynthesis and sugar transport, may prove to be useful drug targets for treating Gram-positive infections. Importance Staphylococcus aureus infections impose a serious economic burden on healthcare facilities and patients because of the emergence of strains resistant to last-line antibiotics. Understanding the physiological processes governing

  14. Identification of crypto- and neochlorogenic lactones as potent xanthine oxidase inhibitors in roasted coffee beans.

    PubMed

    Honda, Sari; Miura, Yukari; Masuda, Akiko; Masuda, Toshiya

    2014-01-01

    Xanthine oxidase (XO) inhibitory activity has been found in boiling water extracts from roasted coffee beans. Therefore, assay-guided purification of the extracts was performed using size-exclusion column chromatography, and subsequently with reversed phase HPLC to afford lactone derivatives of chlorogenic acids. Among the tested lactones, crypto- and neochlorogenic lactones showed potent XO inhibitory activities compared with three major chlorogenic acids found in coffee beans. These XO inhibitory lactones may ameliorate gout and hyperuricemia in humans who drink coffee.

  15. The dual actions of morin (3,5,7,2',4'-pentahydroxyflavone) as a hypouricemic agent: uricosuric effect and xanthine oxidase inhibitory activity.

    PubMed

    Yu, Zhifeng; Fong, Wing Ping; Cheng, Christopher H K

    2006-01-01

    Hyperuricemia is associated with a number of pathological conditions such as gout. Lowering of elevated uric acid level in the blood could be achieved by xanthine oxidase inhibitors and inhibitors of renal urate reabsorption. Some natural compounds isolated from herbs used in traditional Chinese medicine have been previously demonstrated to possess xanthine oxidase inhibitory activities. In the present investigation, morin (3,5,7,2',4'-pentahydroxyflavone), which occurs in the twigs of Morus alba L. documented in traditional Chinese medicinal literature to treat conditions akin to gout, was demonstrated to exert potent inhibitory action on urate uptake in rat renal brush-border membrane vesicles, indicating that this compound acts on the kidney to inhibit urate reabsorption. Lineweaver-Burk transformation of the inhibition kinetics data demonstrated that the inhibition of urate uptake was of a competitive type, with a K(i) value of 17.4 microM. In addition, morin was also demonstrated to be an inhibitor of xanthine oxidase. Lineweaver-Burk analysis of the enzyme kinetics indicated that the mode of inhibition was of a mixed type, with K(i) and K(ies) values being 7.9 and 35.1 microM, respectively. Using an oxonate-induced hyperuricemic rat model, morin was indeed shown to exhibit an in vivo uricosuric action, which could explain, in part at least, the observed hypouricemic effect of morin in these rats. The potential application of this compound in the treatment of conditions associated with hyperuricemia was discussed.

  16. Genetic analysis of mouse embryonic stem cells bearing Msh3 and Msh2 single and compound mutations.

    PubMed

    Abuin, A; Zhang, H; Bradley, A

    2000-01-01

    We have previously described the use of homologous recombination and CRE-loxP-mediated marker recycling to generate mouse embryonic stem (ES) cell lines homozygous for mutations at the Msh3, Msh2, and both Msh3 and Msh2 loci (2). In this study, we describe the analysis of these ES cells with respect to processes known to be affected by DNA mismatch repair. ES cells homozygous for the Msh2 mutation displayed increased resistance to killing by the cytotoxic drug 6-thioguanine (6TG), indicating that the 6TG cytotoxic mechanism is mediated by Msh2. The mutation rate of the herpes simplex virus thymidine kinase 1 (HSV-tk1) gene was unchanged in Msh3-deficient ES cell lines but markedly elevated in Msh2-deficient and Msh3 Msh2 double-mutant cells. Notably, the HSV-tk1 mutation rate was 11-fold higher, on average, than that of the hypoxanthine-guanine phosphoribosyl transferase (Hprt) locus in Msh2-deficient cells. Sequence analysis of HSV-tk1 mutants from these cells indicated the presence of a frameshift hotspot within the HSV-tk1 coding region. Msh3-deficient cells displayed a modest (16-fold) elevation in the instability of a dinucleotide repeat, whereas Msh2-deficient and Msh2 Msh3 double-mutant cells displayed markedly increased levels of repeat instability. Targeting frequencies of nonisogenic vectors were elevated in Msh2-deficient ES cell lines, confirming the role of Msh2 in blocking recombination between diverged sequences (homeologous recombination) in mammalian cells. These results are consistent with accumulating data from other laboratories and support the current model of DNA mismatch repair in mammalian cells.

  17. Genetic changes in progeny of bystander human fibroblasts after microbeam irradiation with X-rays, protons or carbon ions: the relevance to cancer risk.

    PubMed

    Autsavapromporn, Narongchai; Plante, Ianik; Liu, Cuihua; Konishi, Teruaki; Usami, Noriko; Funayama, Tomoo; Azzam, Edouard I; Murakami, Takeshi; Suzuki, Masao

    2015-01-01

    Radiation-induced bystander effects have important implications in radiotherapy. Their persistence in normal cells may contribute to risk of health hazards, including cancer. This study investigates the role of radiation quality and gap junction intercellular communication (GJIC) in the propagation of harmful effects in progeny of bystander cells. Confluent human skin fibroblasts were exposed to microbeam radiations with different linear energy transfer (LET) at mean absorbed doses of 0.4 Gy by which 0.036-0.4% of the cells were directly targeted by radiation. Following 20 population doublings, the cells were harvested and assayed for micronucleus formation, gene mutation and protein oxidation. Our results showed that expression of stressful effects in the progeny of bystander cells is dependent on LET. The progeny of bystander cells exposed to X-rays (LET ∼6 keV/μm) or protons (LET ∼11 keV/μm) showed persistent oxidative stress, which correlated with increased micronucleus formation and mutation at the hypoxanthine-guanine phosphoribosyl-transferase (HPRT) locus. Such effects were not observed after irradiation by carbon ions (LET ∼103 keV/μm). Interestingly, progeny of bystander cells from cultures exposed to protons or carbon ions under conditions where GJIC was inhibited harbored reduced oxidative and genetic damage. This mitigating effect was not detected when the cultures were exposed to X-rays. These findings suggest that cellular exposure to proton and heavy charged particle with LET properties similar to those used here can reduce the risk of lesions associated with cancer. The ability of cells to communicate via gap junctions at the time of irradiation appears to impact residual damage in progeny of bystander cells.

  18. Charged-particle mutagenesis 2. Mutagenic effects of high energy charged particles in normal human fibroblasts

    NASA Technical Reports Server (NTRS)

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-01-01

    The biological effects of high Linear Energy Transfer (LET) charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/micrometer to 975 KeV/micrometer with particle energy (on the cells) between 94-603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/micrometer. The inactivation cross-section (alpha i) and the action cross-section for mutant induction (alpha m) ranged from 2.2 to 92.0 sq micrometer and 0.09 to 5.56 x 10(exp -3) sq micrometer respectively. The maximum values were obtained by Fe-56 with an LET of 200 keV/micrometer. The mutagenicity (alpha m/alpha i) ranged from 2.05 to 7.99 x 10(exp -5) with the maximum value at 150 keV/micrometer. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  19. Role of xanthine oxidoreductase and NAD(P)H oxidase in endothelial superoxide production in response to oscillatory shear stress

    NASA Technical Reports Server (NTRS)

    McNally, J. Scott; Davis, Michael E.; Giddens, Don P.; Saha, Aniket; Hwang, Jinah; Dikalov, Sergey; Jo, Hanjoong; Harrison, David G.

    2003-01-01

    Oscillatory shear stress occurs at sites of the circulation that are vulnerable to atherosclerosis. Because oxidative stress contributes to atherosclerosis, we sought to determine whether oscillatory shear stress increases endothelial production of reactive oxygen species and to define the enzymes responsible for this phenomenon. Bovine aortic endothelial cells were exposed to static, laminar (15 dyn/cm2), and oscillatory shear stress (+/-15 dyn/cm2). Oscillatory shear increased superoxide (O2.-) production by more than threefold over static and laminar conditions as detected using electron spin resonance (ESR). This increase in O2*- was inhibited by oxypurinol and culture of endothelial cells with tungsten but not by inhibitors of other enzymatic sources. Oxypurinol also prevented H2O2 production in response to oscillatory shear stress as measured by dichlorofluorescin diacetate and Amplex Red fluorescence. Xanthine-dependent O2*- production was increased in homogenates of endothelial cells exposed to oscillatory shear stress. This was associated with decreased xanthine dehydrogenase (XDH) protein levels and enzymatic activity resulting in an elevated ratio of xanthine oxidase (XO) to XDH. We also studied endothelial cells lacking the p47phox subunit of the NAD(P)H oxidase. These cells exhibited dramatically depressed O2*- production and had minimal XO protein and activity. Transfection of these cells with p47phox restored XO protein levels. Finally, in bovine aortic endothelial cells, prolonged inhibition of the NAD(P)H oxidase with apocynin decreased XO protein levels and prevented endothelial cell stimulation of O2*- production in response to oscillatory shear stress. These data suggest that the NAD(P)H oxidase maintains endothelial cell XO levels and that XO is responsible for increased reactive oxygen species production in response to oscillatory shear stress.

  20. Measurement of xanthine oxidase inhibition activity of phenolics and flavonoids with a modified cupric reducing antioxidant capacity (CUPRAC) method.

    PubMed

    Ozyürek, Mustafa; Bektaşoğlu, Burcu; Güçlü, Kubilay; Apak, Reşat

    2009-03-16

    Various dietary polyphenolics have been found to show an inhibitory effect on xanthine oxidase (XO) which mediates oxidative stress-originated diseases because of its ability to generate reactive oxygen species (ROS), including superoxide anion radical (O(2)(-)) and hydrogen peroxide. XO activity has usually been determined by following the rate of uric acid formation from xanthine-xanthine oxidase (X-XO) system using the classical XO activity assay (UV-method) at 295nm. Since some polyphenolics have strong absorption from the UV to visible region, XO-inhibitory activity of polyphenolics was alternatively determined without interference by directly measuring the formation of uric acid and hydrogen peroxide using the modified CUPRAC (cupric reducing antioxidant capacity) spectrophotometric method at 450nm. The CUPRAC absorbance of the incubation solution due to the reduction of Cu(II)-neocuproine reagent by the products of the X-XO system decreased in the presence of polyphenolics, the difference being proportional to the XO inhibition ability of the tested compound. The structure-activity relationship revealed that the flavones and flavonols with a 7-hydroxyl group such as apigenin, luteolin, kaempferol, quercetin, and myricetin inhibited XO-inhibitory activity at low concentrations (IC(50) values from 1.46 to 1.90microM), while the flavan-3-ols and naringin were less inhibitory. The findings of the developed method for quercetin and catechin in the presence of catalase were statistically alike with those of HPLC. In addition to polyphenolics, five kinds of herbs were evaluated for their XO-inhibitory activity using the developed method. The proposed spectrophotometric method was practical, low-cost, rapid, and could reliably assay uric acid and hydrogen peroxide in the presence of polyphenols (flavonoids, simple phenolic acids and hydroxycinnamic acids), and less open to interferences by UV-absorbing substances.

  1. Biosynthesis of 2-Hydroxyacid-Containing Polyhydroxyalkanoates by Employing butyryl-CoA Transferases in Metabolically Engineered Escherichia coli.

    PubMed

    David, Yokimiko; Joo, Jeong Chan; Yang, Jung Eun; Oh, Young Hoon; Lee, Sang Yup; Park, Si Jae

    2017-11-01

    The authors previously reported the production of polyhydroxyalkanoates (PHAs) containing 2-hydroxyacid monomers by expressing evolved Pseudomonas sp. 6-19 PHA synthase and Clostridium propionicum propionyl-CoA transferase in engineered microorganisms. Here, the authors examined four butyryl-CoA transferases from Roseburia sp., Eubacterium hallii, Faecalibacterium prausnitzii, and Anaerostipes caccae as potential CoA-transferases to support synthesis of polymers having 2HA monomer. In vitro activity analyses of the four butyryl-CoA transferases suggested that each butyryl-CoA transferase has different activities towards 2-hydroxybutyrate (2HB), 3-hydroxybutyrate (3HB), and lactate (LA). When Escherichia coli XL1-Blue expressing Pseudomonas sp. 6-19 PhaC1437 along with one butyryl-CoA transferase is cultured in chemically defined MR medium containing 20 g L -1 of glucose, 2 g L -1 of sodium 3-hydroxybutyrate, and various concentrations of sodium 2-hydroxybutyrate, PHAs consisting of 3HB, 2HB, and LA are produced. The monomer composition of PHAs agreed well with the substrate specificities of butyryl-CoA transferases from E. hallii, F. prausnitzii, and A. caccae, but not Roseburia sp. When E. coli XL1-Blue expressing PhaC1437 and E. hallii butyryl-CoA transferase is cultured in MR medium containing 20 g L -1 of glucose and 2 g L -1 of sodium 2-hydroxybutyrate, P(65.7 mol% 2HB-co-34.3 mol% LA) is produced with the highest PHA content of 30 wt%. Butyryl-CoA transferases also supported the production of P(3HB-co-2HB-co-LA) from glucose as the sole carbon source in E. coli XL1-Blue strains when one of these bct genes is expressed with phaC1437, cimA3.7, leuBCD, panE, and phaAB genes. Butyryl-CoA transferases characterized in this study can be used for engineering of microorganisms that produce PHAs containing novel 2-hydroxyacid monomers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Investigation of solvent polarity effect on molecular structure and vibrational spectrum of xanthine with the aid of quantum chemical computations.

    PubMed

    Polat, Turgay; Yıldırım, Gurcan

    2014-04-05

    The main scope of this study is to determine the effects of 8 solvents on the geometric structure and vibrational spectra of the title compound, xanthine, by means of the DFT/B3LYP level of theory in the combination with the polarizable conductor continuum model (CPCM) for the first time. After determination of the most-steady state (favored structure) of the xanthine molecule, the role of the solvent polarity on the SCF energy (for the molecule stability), atomic charges (for charge distribution) and dipole moments (for molecular charge transfer) belonging to tautomer is discussed in detail. The results obtained indicate not only the presence of the hydrogen bonding and strong intra-molecular charge transfer (ICT) in the compound but the increment of the molecule stability with the solvent polarity, as well. Moreover, it is noted that the optimized geometric parameters and the theoretical vibrational frequencies are in good agreement with the available experimental results found in the literature. In fact, the correlations between the experimental and theoretical findings for the molecular structures improve with the enhancement of the solvent polarity. At the same time, the dimer forms of the xanthine compound are simulated to describe the effect of intermolecular hydrogen bonding on the molecular geometry and vibrational frequencies. It is found that the CO and NH stretching vibrations shift regularly to lower frequency value with higher IR intensity as the dielectric medium enhances systematically due to the intermolecular NH⋯O hydrogen bonds. Theoretical vibrational spectra are also assigned based on the potential energy distribution (PED) using the VEDA 4 program. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Guanine nucleotide binding to the Bateman domain mediates the allosteric inhibition of eukaryotic IMP dehydrogenases

    NASA Astrophysics Data System (ADS)

    Buey, Rubén M.; Ledesma-Amaro, Rodrigo; Velázquez-Campoy, Adrián; Balsera, Mónica; Chagoyen, Mónica; de Pereda, José M.; Revuelta, José L.

    2015-11-01

    Inosine-5'-monophosphate dehydrogenase (IMPDH) plays key roles in purine nucleotide metabolism and cell proliferation. Although IMPDH is a widely studied therapeutic target, there is limited information about its physiological regulation. Using Ashbya gossypii as a model, we describe the molecular mechanism and the structural basis for the allosteric regulation of IMPDH by guanine nucleotides. We report that GTP and GDP bind to the regulatory Bateman domain, inducing octamers with compromised catalytic activity. Our data suggest that eukaryotic and prokaryotic IMPDHs might have developed different regulatory mechanisms, with GTP/GDP inhibiting only eukaryotic IMPDHs. Interestingly, mutations associated with human retinopathies map into the guanine nucleotide-binding sites including a previously undescribed non-canonical site and disrupt allosteric inhibition. Together, our results shed light on the mechanisms of the allosteric regulation of enzymes mediated by Bateman domains and provide a molecular basis for certain retinopathies, opening the door to new therapeutic approaches.

  4. Nitrosamine-induced carcinogenesis. The alkylation of N-7 of guanine of nucleic acids of the rat by diethylnitrosamine, N-ethyl-N-nitrosourea and ethyl methanesulphonate

    PubMed Central

    Swann, P. F.; Magee, P. N.

    1971-01-01

    1. The extent of ethylation of N-7 of guanine in the nucleic acids of rat tissue in vivo by diethylnitrosamine, N-ethyl-N-nitrosourea and ethyl methanesulphonate was measured. 2. All compounds produced measurable amounts of 7-ethyl-guanine. 3. A single dose of diethylnitrosamine or N-ethyl-N-nitrosourea produced tumours of the kidney in the rat. Three doses of ethyl methanesulphonate produced kidney tumours, but a single dose did not. 4. A single dose of diethylnitrosamine produced twice as much ethylation of N-7 of guanine in DNA of kidney as did N-ethyl-N-nitrosourea. A single dose of both compounds induced kidney tumours, although of a different histological type. 5. A single dose of ethyl methanesulphonate produced ten times as much ethylation of N-7 of guanine in kidney DNA as did N-ethyl-N-nitrosourea without producing tumours. 6. The relevance of these findings to the hypothesis that alkylation of a cellular component is the mechanism of induction of tumours by nitroso compounds is discussed. PMID:5145908

  5. Mapping three guanine oxidation products along DNA following exposure to three types of reactive oxygen species.

    PubMed

    Matter, Brock; Seiler, Christopher L; Murphy, Kristopher; Ming, Xun; Zhao, Jianwei; Lindgren, Bruce; Jones, Roger; Tretyakova, Natalia

    2018-06-01

    Reactive oxygen and nitrogen species generated during respiration, inflammation, and immune response can damage cellular DNA, contributing to aging, cancer, and neurodegeneration. The ability of oxidized DNA bases to interfere with DNA replication and transcription is strongly influenced by their chemical structures and locations within the genome. In the present work, we examined the influence of local DNA sequence context, DNA secondary structure, and oxidant identity on the efficiency and the chemistry of guanine oxidation in the context of the Kras protooncogene. A novel isotope labeling strategy developed in our laboratory was used to accurately map the formation of 2,2-diamino-4-[(2-deoxy-β-D-erythropentofuranosyl)amino]- 5(2 H)-oxazolone (Z), 8-oxo-7,8-dihydro-2'-deoxyguanosine (OG), and 8-nitroguanine (8-NO 2 -G) lesions along DNA duplexes following photooxidation in the presence of riboflavin, treatment with nitrosoperoxycarbonate, and oxidation in the presence of hydroxyl radicals. Riboflavin-mediated photooxidation preferentially induced OG lesions at 5' guanines within GG repeats, while treatment with nitrosoperoxycarbonate targeted 3'-guanines within GG and AG dinucleotides. Little sequence selectivity was observed following hydroxyl radical-mediated oxidation. However, Z and 8-NO 2 -G adducts were overproduced at duplex ends, irrespective of oxidant identity. Overall, our results indicate that the patterns of Z, OG, and 8-NO 2 -G adduct formation in the genome are distinct and are influenced by oxidant identity and the secondary structure of DNA. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Xanthine Oxidase Inhibition by Febuxostat Attenuates Experimental Atherosclerosis in Mice

    PubMed Central

    Nomura, Johji; Busso, Nathalie; Ives, Annette; Matsui, Chieko; Tsujimoto, Syunsuke; Shirakura, Takashi; Tamura, Mizuho; Kobayashi, Tsunefumi; So, Alexander; Yamanaka, Yoshihiro

    2014-01-01

    Atherosclerosis is a chronic inflammatory disease due to lipid deposition in the arterial wall. Multiple mechanisms participate in the inflammatory process, including oxidative stress. Xanthine oxidase (XO) is a major source of reactive oxygen species (ROS) and has been linked to the pathogenesis of atherosclerosis, but the underlying mechanisms remain unclear. Here, we show enhanced XO expression in macrophages in the atherosclerotic plaque and in aortic endothelial cells in ApoE−/− mice, and that febuxostat, a highly potent XO inhibitor, suppressed plaque formation, reduced arterial ROS levels and improved endothelial dysfunction in ApoE−/− mice without affecting plasma cholesterol levels. In vitro, febuxostat inhibited cholesterol crystal-induced ROS formation and inflammatory cytokine release in murine macrophages. These results demonstrate that in the atherosclerotic plaque, XO-mediated ROS formation is pro-inflammatory and XO-inhibition by febuxostat is a potential therapy for atherosclerosis. PMID:24686534

  7. The ura5 gene of the ascomycete Sordaria macrospora: molecular cloning, characterization and expression in Escherichia coli.

    PubMed

    Le Chevanton, L; Leblon, G

    1989-04-15

    We cloned the ura5 gene coding for the orotate phosphoribosyl transferase from the ascomycete Sordaria macrospora by heterologous probing of a Sordaria genomic DNA library with the corresponding Podospora anserina sequence. The Sordaria gene was expressed in an Escherichia coli pyrE mutant strain defective for the same enzyme, and expression was shown to be promoted by plasmid sequences. The nucleotide sequence of the 1246-bp DNA fragment encompassing the region of homology with the Podospora gene has been determined. This sequence contains an open reading frame of 699 nucleotides. The deduced amino acid sequence shows 72% similarity with the corresponding Podospora protein.

  8. Mapping Structurally Defined Guanine Oxidation Products along DNA Duplexes: Influence of Local Sequence Context and Endogenous Cytosine Methylation

    PubMed Central

    2015-01-01

    DNA oxidation by reactive oxygen species is nonrandom, potentially leading to accumulation of nucleobase damage and mutations at specific sites within the genome. We now present the first quantitative data for sequence-dependent formation of structurally defined oxidative nucleobase adducts along p53 gene-derived DNA duplexes using a novel isotope labeling-based approach. Our results reveal that local nucleobase sequence context differentially alters the yields of 2,2,4-triamino-2H-oxal-5-one (Z) and 8-oxo-7,8-dihydro-2′-deoxyguanosine (OG) in double stranded DNA. While both lesions are overproduced within endogenously methylated MeCG dinucleotides and at 5′ Gs in runs of several guanines, the formation of Z (but not OG) is strongly preferred at solvent-exposed guanine nucleobases at duplex ends. Targeted oxidation of MeCG sequences may be caused by a lowered ionization potential of guanine bases paired with MeC and the preferential intercalation of riboflavin photosensitizer adjacent to MeC:G base pairs. Importantly, some of the most frequently oxidized positions coincide with the known p53 lung cancer mutational “hotspots” at codons 245 (GGC), 248 (CGG), and 158 (CGC) respectively, supporting a possible role of oxidative degradation of DNA in the initiation of lung cancer. PMID:24571128

  9. Reactions of guanine with methyl chloride and methyl bromide: O6-methylation versus charge transfer complex formation

    NASA Astrophysics Data System (ADS)

    Shukla, P. K.; Mishra, P. C.; Suhai, S.

    Density functional theory (DFT) at the B3LYP/6-31+G* and B3LYP/AUG-cc-pVDZ levels was employed to study O6-methylation of guanine due to its reactions with methyl chloride and methyl bromide and to obtain explanation as to why the methyl halides cause genotoxicity and possess mutagenic and carcinogenic properties. Geometries of the various isolated species involved in the reactions, reactant complexes (RCs), and product complexes (PCs) were optimized in gas phase. Transition states connecting the reactant complexes with the product complexes were also optimized in gas phase at the same levels of theory. The reactant complexes, product complexes, and transition states were solvated in aqueous media using the polarizable continuum model (PCM) of the self-consistent reaction field theory. Zero-point energy (ZPE) correction to total energy and the corresponding thermal energy correction to enthalpy were made in each case. The reactant complexes of the keto form of guanine with methyl chloride and methyl bromide in water are appreciably more stable than the corresponding complexes involving the enol form of guanine. The nature of binding in the product complexes was found to be of the charge transfer type (O6mG+ · X-, X dbond Cl, Br). Binding of HCl, HBr, and H2O molecules to the PCs obtained with the keto form of guanine did not alter the positions of the halide anions in the PCs, and the charge transfer character of the PCs was also not modified due to this binding. Further, the complexes obtained due to the binding of HCl, HBr, and H2O molecules to the PCs had greater stability than the isolated PCs. The reaction barriers involved in the formation of PCs were found to be quite high (?50 kcal/mol). Mechanisms of genotoxicity, mutagenesis and carcinogenesis caused by the methyl halides appear to involve charge transfer-type complex formation. Thus the mechanisms of these processes involving the methyl halides appear to be quite different from those that involve the

  10. High-performance liquid chromatography coupled with post-column dual-bioactivity assay for simultaneous screening of xanthine oxidase inhibitors and free radical scavengers from complex mixture.

    PubMed

    Li, D Q; Zhao, J; Li, S P

    2014-06-06

    Xanthine oxidase (XO) can catalyze hypoxanthine and xanthine to generate uric acid and reactive oxygen species (ROS), including superoxide anion radical (O₂(•-)) and hydrogen peroxide. XO inhibitors and free radical scavengers are beneficial to the treatment of gout and many related diseases. In the present study, an on-line high-performance liquid chromatography (HPLC) coupled with post-column dual-bioactivity assay was established and successfully applied to simultaneously screening of XO inhibitors and free radical scavengers from a complex mixture, Oroxylum indicum extract. The integrated system of HPLC separation, bioactivity screening and mass spectrometry identification was proved to be simple and effective for rapid and sensitive screening of individual bioactive compounds in complex mixtures. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Curcumin modulates free radical quenching in myocardial ischaemia in rats.

    PubMed

    Manikandan, Panchatcharam; Sumitra, Miriyala; Aishwarya, Srinivasan; Manohar, Bhakthavatsalam Murali; Lokanadam, Beema; Puvanakrishnan, Rengarajulu

    2004-10-01

    This study was designed to investigate the protective effect of curcumin (CUR) against isoprenaline induced myocardial ischaemia in rat myocardium. The effect of single oral dose of curcumin (15 mg kg(-1)), administered 30 min before and/or after the onset of ischaemia, was investigated by assessing oxidative stress related biochemical parameters in rat myocardium. Curcumin pre and post-treatment (PPT) was shown to decrease the levels of xanthine oxidase, superoxide anion, lipid peroxides (LPs) and myeloperoxidase while the levels of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) activities were significantly increased after curcumin PPT. Histopathological and transmission electron microscopical studies also confirmed the severe myocardial damage occurring as a consequence of isoprenaline induced ischaemia and they also showed the significant improvement effected by curcumin PPT. These findings provided evidence that curcumin was found to protect rat myocardium against ischaemic insult and the protective effect could be attributed to its antioxidant properties as well as its inhibitory effects on xanthine dehydrogenase/xanthine oxidase (XD/XO) conversion and resultant superoxide anion production.

  12. Pharmacophore modeling, molecular docking and molecular dynamics studies on natural products database to discover novel skeleton as non-purine xanthine oxidase inhibitors.

    PubMed

    Peng, Jiale; Li, Yaping; Zhou, Yeheng; Zhang, Li; Liu, Xingyong; Zuo, Zhili

    2018-05-29

    Gout is a common inflammatory arthritis caused by the deposition of urate crystals within joints. It is increasingly in prevalence during the past few decades as shown by the epidemiological survey results. Xanthine oxidase (XO) is a key enzyme to transfer hypoxanthine and xanthine to uric acid, whose overproduction leads to gout. Therefore, inhibiting the activity of xanthine oxidase is an important way to reduce the production of urate. In the study, in order to identify the potential natural products targeting XO, pharmacophore modeling was employed to filter databases. Here, two methods, pharmacophore based on ligand and pharmacophore based on receptor-ligand, were constructed by Discovery Studio. Then GOLD was used to refine the potential compounds with higher fitness scores. Finally, molecular docking and dynamics simulations were employed to analyze the interactions between compounds and protein. The best hypothesis was set as a 3D query to screen database, returning 785 and 297 compounds respectively. A merged set of the above 1082 molecules was subjected to molecular docking, which returned 144 hits with high-fitness scores. These molecules were clustered in four main kinds depending on different backbones. What is more, molecular docking showed that the representative compounds established key interactions with the amino acid residues in the protein, and the RMSD and RMSF of molecular dynamics results showed that these compounds can stabilize the protein. The information represented in the study confirmed previous reports. And it may assist to discover and design new backbones as potential XO inhibitors based on natural products.

  13. Phosphodiester-mediated reaction of cisplatin with guanine in oligodeoxyribonucleotides.

    PubMed

    Campbell, Meghan A; Miller, Paul S

    2008-12-02

    The cancer chemotherapeutic agent cis-diamminedichloroplatinum(II) or cisplatin reacts primarily with guanines in DNA to form 1,2-Pt-GG and 1,3-Pt-GNG intrastrand cross-links and, to a lesser extent, G-G interstrand cross-links. Recent NMR evidence has suggested that cisplatin can also form a coordination complex with the phosphodiester internucleotide linkage of DNA. We have examined the effects of the phosphodiester backbone on the reactions of cisplatin with oligodeoxyribonucleotides that lack or contain a GTG sequence. Cisplatin forms a stable adduct with TpT that can be isolated by reversed phase HPLC. The cis-Pt-TpT adduct contains a single Pt, as determined by atomic absorption spectroscopy (AAS) and by electrospray ionization mass spectrometry (ESI-MS), and is resistant to digestion by snake venom phosphodiesterase. Treatment of the adduct with sodium cyanide regenerates TpT. Similar adduct formation was observed when T(pT)(8) was treated with cisplatin, but not when the phosphodiester linkages of T(pT)(8) were replaced with methylphosphonate groups. These results suggest that the platinum may be coordinated with the oxygens of the thymine and possibly with those of the phosphodiester group. As expected, reaction of a 9-mer containing a GTG sequence with cisplatin yielded an adduct that contained a 1,3-Pt-GTG intrastrand cross-link. However, we found that the number and placement of phosphodiesters surrounding a GTG sequence significantly affected intrastrand cross-link formation. Increasing the number of negatively charged phosphodiesters in the oligonucleotide increased the amount of GTG platination. Surrounding the GTG sequence with nonionic methylphosphonate linkages inhibited or eliminated cross-link formation. These observations suggest that interactions between cisplatin and the negatively charged phosphodiester backbone may play an important role in facilitating platination of guanine nucleotides in DNA.

  14. Detection of Guanine and Adenine Using an Aminated Reduced Graphene Oxide Functional Membrane-Modified Glassy Carbon Electrode

    PubMed Central

    Li, Di; Yang, Xiao-Lu; Xiao, Bao-Lin; Geng, Fang-Yong; Hong, Jun; Sheibani, Nader; Moosavi-Movahedi, Ali Akbar

    2017-01-01

    A new electrochemical sensor based on a Nafion, aminated reduced graphene oxide and chitosan functional membrane-modified glassy carbon electrode was proposed for the simultaneous detection of adenine and guanine. Fourier transform-infrared spectrometry (FTIR), transmission electron microscopy (TEM), and electrochemical methods were utilized for the additional characterization of the membrane materials. The prepared electrode was utilized for the detection of guanine (G) and adenine (A). The anodic peak currents to G and A were linear in the concentrations ranging from 0.1 to 120 μM and 0.2 to 110 μM, respectively. The detection limits were found to be 0.1 μM and 0.2 μM, respectively. Moreover, the modified electrode could also be used to determine G and A in calf thymus DNA. PMID:28718793

  15. Hydroxyl Radical (OH•) Reaction with Guanine in an Aqueous Environment: A DFT Study

    PubMed Central

    Kumar, Anil; Pottiboyina, Venkata; Sevilla, Michael D.

    2011-01-01

    The reaction of hydroxyl radical (OH•) with DNA accounts for about half of radiation-induced DNA damage in living systems. Previous literature reports point out that the reaction of OH• with DNA proceeds mainly through the addition of OH• to the C=C bond of the DNA bases. However, recently it has been reported that the principal reaction of OH• with dGuo (deoxyguanosine) is the direct hydrogen atom abstraction from its exocyclic amine group rather than addition of OH• to the C=C bond. In the present work, these two reaction pathways of OH• attack on guanine (G) in the presence of water molecules (aqueous environment) are investigated using the density functional theory (DFT) B3LYP method with 6-31G* and 6-31++G** basis sets. The calculations show that the initial addition of the OH• at C4=C5 double bond of guanine is barrier free and the adduct radical (G-OH•) has only a small activation barrier of ca. 1 – 6 kcal/mol leading to the formation of a metastable ion-pair intermediate (G•+---OH−). The formation of ion-pair is a result of the highly oxidizing nature of the OH• in aqueous media. The resulting ion-pair (G•+---OH−) deprotonates to form H2O and neutral G radicals favoring G(N1-H)• with an activation barrier of ca. 5 kcal/mol. The overall process from the G(C4)-OH• (adduct) to G(N1-H)• and water is found to be exothermic in nature by more than 13 kcal/mol. (G-OH•), (G•+---OH−), and G(N1-H)• were further characterized by the CAM-B3LYP calculations of their UV-visible spectra and good agreement between theory and experiment is achieved. Our calculations for the direct hydrogen abstraction pathway from N1 and N2 sites of guanine by the OH• show that this is also a competitive route to produce G(N2-H)•, G(N1-H)• and H2O. PMID:22050033

  16. 35 GHz ENDOR characterization of the "very rapid" signal of xanthine oxidase reacted with 2-hydroxy-6-methylpurine (13C8): evidence against direct Mo-C8 interaction.

    PubMed

    Manikandan, P; Choi, E Y; Hille, R; Hoffman, B M

    2001-03-21

    Xanthine oxidase is a molybdenum-containing enzyme that catalyzes the hydroxylation of xanthine and a wide variety of other aromatic heterocycles. In the course of the reaction with xanthine and substrates such as 2-hydroxy-6-methylpurine (HMP), the enzyme gives rise to a Mo(V) EPR signal, denoted "very rapid", that arises from an authentic catalytic intermediate. The two alternative catalytic mechanisms proposed for this enzyme differ critically in whether the distance between Mo and C8 of the purine nucleus in this intermediate is short enough to admit a direct bonding interaction. To examine this distance, we have performed 13C ENDOR measurements of the "very rapid" EPR signal generated by xanthine oxidase during reaction with 13C8-HMP. The resulting (13)C8 hyperfine tensor, A = [10.2(1), 7.0(1), 6.5(1)] MHz, is discussed in the framework of a detailed consideration of factors involved in extracting metrical parameters from an anisotropic hyperfine interaction composed of contributions from multiple sources, in particular, the effect of the local contributions from spin density on (13)C8. The analysis presented here gives a Mo...C distance whose value is expected to be ca. 2.7-2.9 A in the "very rapid" intermediates formed with both xanthine and HMP, consistent with plausible bond lengths for a Mo-O-C8 fragment where C8 is a trigonal-planar aromatic carbon. The difference from earlier conclusions is explained. The data thus do not support the existence of a direct Mo-C bond in the signal-giving species. This conclusion supports a mechanism that does not involve such an interaction and which begins with base-assisted nucleophilic attack of the Mo(VI)-OH group on the C-8 of substrate, with concomitant hydride transfer to the Mo=S group to give Mo(IV)-SH; the EPR-active "very rapid" species then forms by one-electron oxidation and deprotonation to yield the EPR-detectable Mo(V)OS(OR) species. We further discuss the complexities and limitations of the semiempirical

  17. Mechanisms of formation of 8-oxoguanine due to reactions of one and two OH* radicals and the H2O2 molecule with guanine: A quantum computational study.

    PubMed

    Jena, N R; Mishra, P C

    2005-07-28

    Mechanisms of formation of the mutagenic product 8-oxoguanine (8OG) due to reactions of guanine with two separate OH* radicals and with H2O2 were investigated at the B3LYP/6-31G, B3LYP/6-311++G, and B3LYP/AUG-cc-pVDZ levels of theory. Single point energy calculations were carried out with the MP2/AUG-cc-pVDZ method employing the optimized geometries at the B3LYP/AUG-cc-pVDZ level. Solvent effect was treated using the PCM and IEF-PCM models. Reactions of two separate OH* radicals and H2O2 with the C2 position of 5-methylimidazole (5MI) were investigated taking 5MI as a model to study reactions at the C8 position of guanine. The addition reaction of an OH* radical at the C8 position of guanine is found to be nearly barrierless while the corresponding adduct is quite stable. The reaction of a second OH* radical at the C8 position of guanine leading to the formation of 8OG complexed with a water molecule can take place according to two different mechanisms, involving two steps each. According to one mechanism, at the first step, 8-hydroxyguanine (8OHG) complexed with a water molecule is formed ,while at the second step, 8OHG is tautomerized to 8OG. In the other mechanism, at the first step, an intermediate complexed (IC) with a water molecule is formed, the five-membered ring of which is open, while at the second step, the five-membered ring is closed and a hydrogen bonded complex of 8OG with a water molecule is formed. The reaction of H2O2 with guanine leading to the formation of 8OG complexed with a water molecule can also take place in accordance with two different mechanisms having two steps each. At the first step of one mechanism, H2O2 is dissociated into two OH* groups that react with guanine to form the same IC as that formed in the reaction with two separate OH* radicals, and the subsequent step of this mechanism is also the same as that of the reaction of guanine with two separate OH* radicals. At the first step of the other mechanism of the reaction of

  18. Cloning and expression of clostridium acetobutylicum ATCC 824 acetoacetyl-coenzyme A:acetate/butyrate:coenzyme A-transferase in Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cary, J.W.; Petersen, D.J.; Bennett, G.N.

    1990-06-01

    Coenzyme A (CoA)-transferase (acetoacetyl-CoA:acetate/butyrate:CoA-transferase (butyrate-acetoacetate CoA-transferase) (EC 2.8.3.9)) of Clostridium acetobutylicum ATCC 824 is an important enzyme in the metabolic shift between the acid-producing and solvent-forming states of this organism. The genes encoding the two subunits of this enzyme have been cloned and subsequent subcloning experiments established the position of the structural genes for CoA-transferase. Complementation of Escherichia coli ato mutants with the recombinant plasmid pCoAT4 (pUC19 carrying a 1.8-kilobase insert of C. acetobutylicum DNA encoding CoA-transferase activity) enabled the transformants to grow on butyrate as a sole carbon source. Despite the ability of CoA-transferase to complement the ato defectmore » in E. coli mutants, Southern blot and Western blot (immunoblot) analyses showed showed that neither the C. acetobutylicum genes encoding CoA-transferase nor the enzyme itself shared any apparent homology with its E. coli counterpart. Polypeptides of M{sub r} of the purified CoA-transferase subunits were observed by Western blot and maxicell analysis of whole-cell extracts of E.coli harboring pCoAT4. The proximity and orientation of the genes suggest that the genes encoding the two subunits of CoA-transferase may form an operon similar to that found in E. coli. In the plasmid, however, transcription appears to be primarily from the lac promoter of the vector.« less

  19. Mutagenicity of food-derived carcinogens and the effect of antioxidant vitamins.

    PubMed

    Montgomery, Beverly A; Murphy, Jessica; Chen, James J; Desai, Varsha G; McGarrity, Lynda; Morris, Suzanne M; Casciano, Daniel A; Aidoo, Anane

    2002-01-01

    The food-derived heterocyclic amines (HCAs) 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) are mutagenic in the Ames test and produce tumors in laboratory animals, including monkeys. These HCAs have also been shown to induce gene mutations in vivo. To assess the antimutagenic effects of dietary antioxidant vitamins, beta-carotene, ascorbic acid (vitamin C), and alpha-tocopherol (vitamin E), on food-borne mutagenes/carcinogens, we evaluated the mutagenic activity of the compounds alone or combined with antioxidant vitamins. We utilized the rat lymphocyte mutation assay at the hypoxanthine guanine phosphoribosyl transferase (Hprt) locus. Female Fischer 344 rats treated with different doses (0, 2.5, 5.0, 25.0, and 50.0 mg/kg) of the carcinogens were sacrificed 5 wk after mutagen treatment. Although IQ and MeIQ slightly increased mutation frequency (MF) at some doses, a significant (P < 0.0009) increase in MF was found in animals exposed to MeIQx at 25 mg/kg. PhIP was the most mutagenic of the HCAs, with increases (P < 0.0001) in MF detected at all dose levels compared with controls. Because PhIP was the most mutagenic, it was selected for studies using the dietary antioxidant vitamins. Addition of antioxidant vitamins, singly or in a mixture, caused a significant (P < 0.0001) decrease in PhIP-induced Hprt MF. Vitamin E was the most effective at decreasing Hprt MF. In addition, we determined whether carcinogen metabolism would be affected by ingestion of vitamins. The activities of endogenous detoxification enzymes, glutathione S-transferase and glutathione peroxidase (GPx), were thus examined. Intake of beta-carotene and vitamin C without the carcinogen resulted in an increase (P < 0.05) in GPx activity. Also a modest increase in GPx activity was seen in animals that received the antioxidant mixture alone

  20. The Guanine Cation Radical: Investigation of Deprotonation States by ESR and DFT

    PubMed Central

    Adhikary, Amitava; Kumar, Anil; Becker, David; Sevilla, Michael D.

    2008-01-01

    This work reports ESR studies that identify the favored site of deprotonation of the guanine cation radical (G•+) in an aqueous medium at 77 K. Using ESR and UV-visible spectroscopy, one-electron oxidized guanine is investigated in frozen aqueous D2O solutions of 2′-deoxyguanosine (dGuo) at low temperatures at various pHs at which the guanine cation, G•+ (pH 3–5), singly deprotonated species, G(-H)• (pH 7–9) and doubly deprotonated species, G(-2H)•− (pH>11) are found. C-8-deuteration of dGuo to give 8-D-dGuo removes the major proton hyperfine coupling at C-8. This isolates the anisotropic nitrogen couplings for each of the three species and aids our analyses. These anisotropic nitrogen couplings were assigned to specific nitrogen sites by use of 15N substituted derivatives at N1, N2 N3 atoms in dGuo. Both ESR and UV-visible spectra are reported for each of the species: G•+, G(-H)•, and G(-2H)•−. The experimental anisotropic ESR hyperfine couplings are compared to those obtained from DFT calculations for the various tautomers of G(-H)•. Using the B3LYP/6–31G(d) method, the geometries and energies of G•+ and its singly deprotonated state in its two tautomeric forms, G(N1-H)• and G(N2-H)•, were investigated. In a non-hydrated state G(N2-H)• is found to be more stable than G(N1-H)• but on hydration with 7 water molecules G(N1-H)• is found to be more stable than G(N2-H)•. The theoretically calculated hyperfine coupling constants (HFCC) of G•+, G(N1-H)• and G(-2H)•− match the experimentally observed HFCCs best on hydration with 7 or more waters. For G(-2H)•−, the hyperfine coupling constant (HFCC) at the exocyclic nitrogen atom (N2) is especially sensitive to the number of hydrating water molecules; good agreement with experiment is not obtained until 9 or 10 waters of hydration are included. PMID:17125389

  1. Structure of Radicals from X-irradiated Guanine Derivatives: An Experimental and Computational Study of Sodium Guanosine Dihydrate Single Crystals

    PubMed Central

    Jayatilaka, Nayana; Nelson, William H.

    2008-01-01

    In sodium guanosine dihydrate single crystals, the guanine moiety is deprotonated at N1 due to growth from high-pH (>12) solutions. EPR and ENDOR study of crystals x-irradiated at 10 K detected evidence for three radical forms. Radical R1,characterized by two proton and two nitrogen hyperfine interactions, was identified as the product of net hydrogenation at N7 of the N1-deprotonated guanine unit. R1 exhibited an unusually distorted structure leading to net positive isotropic components of the hydrogen couplings. Radical R2, characterized by one proton and one nitrogen hyperfine coupling was identified as the primary electron loss product. This product is equivalent to that of deprotonation at N1 by the guanine cation and represents the first ENDOR characterization of that product. Radical R3, characterized by a single hydrogen hyperfine coupling, was identified as the product of net dehydrogenation at C1 of the ribose moiety. The identification of radicals R1-R3 was supported by DFT calculations on several possible structures using the B3LYP/6-311G(2df,p)//6-31G(d,p) approach. Radical R4, detected after warming the crystals to room temperature, was identified as the well-known product of net hydrogenation of C8 of the (N1-deprotonated) guanine component. Radical R1, evidently formed by protonation of the primary electron addition product, was present as roughly 60% of the total radicals detected at 10 K. Radical R2 was present as roughly 27% of the total yield, and the concentration of R3 contributed the remaining 13%. R3 is evidently the product of oneelectron oxidation followed by deprotonation; thus, the balance of oxidation and reduction products is approximately equal within experimental uncertainty. PMID:17249824

  2. A novel amperometric enzyme inhibition biosensor based on xanthine oxidase immobilised onto glassy carbon electrodes for bisphenol A determination.

    PubMed

    Ben Messaoud, Najib; Ghica, Mariana Emilia; Dridi, Cherif; Ben Ali, Mounir; Brett, Christopher M A

    2018-07-01

    A novel and simple biosensor for the determination of bisphenol A (BPA) based on xanthine oxidase (XOD) enzymatic inhibition has been developed. The biosensor was prepared from xanthine oxidase immobilised by crosslinking with glutaraldehyde, with hypoxanthine as enzyme substrate, and was successfully applied to the determination of BPA using fixed potential amperometry. Biosensor performance was optimised with respect to the applied potential, influence of pH of the electrolyte solution, XOD loading and the substrate concentration. The enzyme inhibition mechanism was evaluated from Cornish-Bowden plus Dixon plots and was found to be reversible and competitive with an apparent inhibition constant of 8.15 nM. Under optimised conditions, the determination of BPA can be achieved in the linear range up to 41 nM with a detection limit of 1.0 nM, which is equal to the lowest reported in the literature, with very good repeatability and reproducibility. The selectivity of the biosensor was evaluated by performing an interference study and found to be excellent; and stability was investigated. It was successfully applied to the detection of BPA in mineral water and in river water. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Purification and properties of a novel ferricyanide-linked xanthine dehydrogenase from Pseudomonas putida 40.

    PubMed Central

    Woolfolk, C A

    1985-01-01

    The isolation of a xanthine dehydrogenase from Pseudomonas putida 40 which utilizes ferricyanide as an electron acceptor at high efficiency is presented. The new activity is separate from the NAD+ and oxygen-utilizing activities of the same organism but displays a broad pattern for reducing substrates typical of those of previously studied xanthine-oxidizing enzymes. Unlike the previously studied enzymes, the new enzyme appears to lack flavin but possess heme and is resistant to cyanide treatment. However, sensitivity of the purified enzyme to methanol and the selective elimination of the activity when tungstate is added to certain growth media suggest a role for molybdenum. The enzyme is subject to a selective proteolytic action during processing which is not accompanied by denaturation or loss of activity and which is minimized by the continuous exposure of the activity to EDTA and phenylmethylsulfonyl fluoride. Electrophoresis of the denatured enzyme in the presence of sodium dodecyl sulfate suggests that the enzyme is constructed of subunits with a molecular weight of approximately 72,000. Electrophoresis under native conditions of a purified enzyme previously exposed to magnesium ion reveals a series of major and minor activity bands which display some selectivity toward both electron donors and acceptors. An analysis of the effect of gel concentration on this pattern suggests that the enzyme forms a series of charge and size isomers with a pair of trimeric forms predominating. Comparison of the rate of sedimentation of the enzyme in sucrose gradients with its elution profile from standardized Sepharose 6B columns suggests a molecular weight of 255,000 for the major form of the native enzyme. Images PMID:3860496

  4. In vitro antioxidant, lipoxygenase and xanthine oxidase inhibitory activities of fractions from Cienfuegosia digitata Cav., Sida alba L. and Sida acuta Burn f. (Malvaceae).

    PubMed

    Konaté, K; Souza, A; Coulibaly, A Y; Meda, N T R; Kiendrebeogo, M; Lamien-Meda, A; Millogo-Rasolodimby, J; Lamidi, M; Nacoulma, O G

    2010-11-15

    In this study polyphenol content, antioxidant activity, lipoxygenase (LOX) and Xanthine Oxidase (XO) inhibitory effects of n-hexane, dichloromethane, ethyl acetate and n-butanol fractions of aqueous acetone extracts from S. alba L., S. acuta Burn f and Cienfuegosia digitata Cav. were investigated. The total phenolics, flavonoids, flavonols and total tannins were determined by spectrophotometric methods using Folin-ciocalteu, AlCl3 reagents and tannic acid, respectively. The antioxidant potential was evaluated using three methods: inhibition of free radical 2,2-diphenyl-1-picrylhydramzyl (DPPH), ABTS radical cation decolorization assay and Iron (III) to iron (II) reduction activity (FRAP). For enzymatic activity, lipoxygenase and xanthine oxidase inhibitory activities were used. This study shows a relationship between polyphenol contents, antioxidant and enzymatic activities. Present results showed that ethyl acetate and dichloromethane fractions elicit the highest polyphenol content, antioxidant and enzymatic activities.

  5. Role of host xanthine oxidase in infection due to enteropathogenic and Shiga-toxigenic Escherichia coli.

    PubMed

    Crane, John K; Naeher, Tonniele M; Broome, Jacqueline E; Boedeker, Edgar C

    2013-04-01

    Xanthine oxidase (XO), also known as xanthine oxidoreductase, has long been considered an important host defense molecule in the intestine and in breastfed infants. Here, we present evidence that XO is released from and active in intestinal tissues and fluids in response to infection with enteropathogenic Escherichia coli (EPEC) and Shiga-toxigenic E. coli (STEC), also known as enterohemorrhagic E. coli (EHEC). XO is released into intestinal fluids in EPEC and STEC infection in a rabbit animal model. XO activity results in the generation of surprisingly high concentrations of uric acid in both cultured cell and animal models of infection. Hydrogen peroxide (H(2)O(2)) generated by XO activity triggered a chloride secretory response in intestinal cell monolayers within minutes but decreased transepithelial electrical resistance at 6 to 22 h. H(2)O(2) generated by XO activity was effective at killing laboratory strains of E. coli, commensal microbiotas, and anaerobes, but wild-type EPEC and STEC strains were 100 to 1,000 times more resistant to killing or growth inhibition by this pathway. Instead of killing pathogenic bacteria, physiologic concentrations of XO increased virulence by inducing the production of Shiga toxins from STEC strains. In vivo, exogenous XO plus the substrate hypoxanthine did not protect and instead worsened the outcome of STEC infection in the rabbit ligated intestinal loop model of infection. XO released during EPEC and STEC infection may serve as a virulence-inducing signal to the pathogen and not solely as a protective host defense.

  6. Studies by Near Edge X-ray Absorption Spectroscopies of Bonding Dynamics at the Graphene/Guanine Interface - A Proposal for High Mobility, Organic Graphene Field Effect Transistors

    DTIC Science & Technology

    2015-07-01

    AFRL-AFOSR-UK-TR-2015-0034 Studies by Near Edge X-ray Absorption Spectroscopies of Bonding Dynamics at the Graphene /Guanine...Interface – A Proposal for High Mobility, Organic Graphene Field Effect Transistors Eva Campo BANGOR UNIVERSITY COLLEGE ROAD BANGOR...April 2015 4. TITLE AND SUBTITLE Studies by Near Edge X-ray Absorption Spectroscopies of Bonding Dynamics at the Graphene /Guanine Interface - A

  7. Amperometric biosensors based on deposition of gold and platinum nanoparticles on polyvinylferrocene modified electrode for xanthine detection.

    PubMed

    Baş, Salih Zeki; Gülce, Handan; Yıldız, Salih; Gülce, Ahmet

    2011-12-15

    In this study, new xanthine biosensors, XO/Au/PVF/Pt and XO/Pt/PVF/Pt, based on electroless deposition of gold(Au) and platinum(Pt) nanoparticles on polyvinylferrocene(PVF) coated Pt electrode for detection of xanthine were presented. The amperometric responses of the enzyme electrodes were measured at the constant potential, which was due to the electrooxidation of enzymatically produced H(2)O(2). Compared with XO/PVF/Pt electrode, XO/Au/PVF/Pt and XO/Pt/PVF/Pt exhibited excellent electrocatalytic activity towards the oxidation of the analyte. Effect of Au and Pt nanoparticles was investigated by monitoring the response currents at the different deposition times and the different concentrations of KAuCl(4) and PtBr(2). Under the optimal conditions, the calibration curves of XO/Au/PVF/Pt and XO/Pt/PVF/Pt were obtained over the range of 2.5 × 10(-3) to 0.56 mM and 2.0 × 10(-3) to 0.66 mM, respectively. The detection limits were 7.5 × 10(-4)mM for XO/Au/PVF/Pt and 6.0 × 10(-4)mM for XO/Pt/PVF/Pt. The effects of interferents, the operational and the storage stabilities of the biosensors and the applicabilities of the proposed biosensors to the drug samples analysis were also evaluated. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Cytosolic Na+ Controls an Epithelial Na+ Channel Via the Go Guanine Nucleotide-Binding Regulatory Protein

    NASA Astrophysics Data System (ADS)

    Komwatana, P.; Dinudom, A.; Young, J. A.; Cook, D. I.

    1996-07-01

    In tight Na+-absorbing epithelial cells, the rate of Na+ entry through amiloride-sensitive apical membrane Na+ channels is matched to basolateral Na+ extrusion so that cell Na+ concentration and volume remain steady. Control of this process by regulation of apical Na+ channels has been attributed to changes in cytosolic Ca2+ concentration or pH, secondary to changes in cytosolic Na+ concentration, although cytosolic Cl- seems also to be involved. Using mouse mandibular gland duct cells, we now demonstrate that increasing cytosolic Na+ concentration inhibits apical Na+ channels independent of changes in cytosolic Ca2+, pH, or Cl-, and the effect is blocked by GDP-β -S, pertussis toxin, and antibodies against the α -subunits of guanine nucleotide-binding regulatory proteins (Go). In contrast, the inhibitory effect of cytosolic anions is blocked by antibodies to inhibitory guanine nucleotide-binding regulatory proteins (Gi1/Gi2. It thus appears that apical Na+ channels are regulated by Go and Gi proteins, the activities of which are controlled, respectively, by cytosolic Na+ and Cl-.

  9. pH-Dependent Singlet O2 Oxidation Kinetics of Guanine and 9-Methylguanine: An Online Mass Spectrometry and Spectroscopy Study Combined with Theoretical Exploration.

    PubMed

    Lu, Wenchao; Sun, Yan; Zhou, Wenjing; Liu, Jianbo

    2018-01-11

    We report a kinetic and mechanistic study on the title reactions, in which 1 O 2 was generated by the reaction of H 2 O 2 with Cl 2 and bubbled into an aqueous solution of guanine and 9-methylguanine (9MG) at different pH values. Oxidation kinetics and product branching ratios were measured using online electrospray ionization mass spectrometry coupled with absorption and emission spectrophotometry, and product structures were determined by collision-induced dissociation (CID) tandem mass spectrometry. Experiments revealed strong pH dependence of the reactions. The oxidation of guanine is noticeable only in basic solution, while the oxidation of 9MG is weak in acidic solution, increases in neutral solution, and becomes intensive in basic solution. 5-Guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp) were detected as the major oxidation products of guanine and 9MG, and Sp became dominant in basic solution. A reaction intermediate was captured in mass spectra, and assigned to gem-diol on the basis of CID measurements. This intermediate served as the precursor for the formation of Gh. After taking into account solution compositions at each pH, first-order oxidation rate constants were extracted for individual species: that is, 3.2-3.6 × 10 7 M -1 s -1 for deprotonated guanine, and 1.2 × 10 6 and 4.6-4.9 × 10 7 M -1 s -1 for neutral and deprotonated 9MG, respectively. Guided by approximately spin-projected density-functional-theory-calculated reaction potential energy surfaces, the kinetics for the initial 1 O 2 addition to guanine and 9MG was evaluated using transition state theory (TST). The comparison between TST modeling and experiment confirms that 1 O 2 addition is rate-limiting for oxidation, which forms endoperoxide and peroxide intermediates as determined in previous measurements of the same systems in the gas phase.

  10. Reaction of rat liver glutathione S-transferases and bacterial dichloromethane dehalogenase with dihalomethanes.

    PubMed

    Blocki, F A; Logan, M S; Baoli, C; Wackett, L P

    1994-03-25

    Dichloromethane dehalogenase from Methylophilus sp. DM11 is a glutathione S-transferase homolog that is specifically active with dihalomethane substrates. This bacterial enzyme and rat liver glutathione S-transferases were purified to investigate their relative reactivity with CH2Cl2 and related substrates. Rat liver alpha class glutathione transferases were inactive and mu class enzymes showed low activity (7-23 nmol/min/mg of protein) with CH2Cl2. theta class glutathione transferase 5-5 from rat liver and Methylophilus sp. dichloromethane dehalogenase showed specific activities of > or = 1 mumol/min/mg of protein. Apparent Kcat/Km were determined to be 3.3 x 10(4) and 6.0 x 10(4) L M-1 S-1 for the two enzymes, respectively. Dideutero-dichloromethane was processed to dideutereo-formaldehyde, consistent with a nucleophilic halide displacement mechanism. The possibility of a GSCH2X reaction intermediate (GS, glutathione; X, halide) was probed using CH2ClF to generate a more stable halomethylglutathione species (GSCH2F). The reaction of CH2ClF with dichloromethane dehalogenase produced a kinetically identifiable intermediate that decomposed to formaldehyde at a similar rate to synthetic HOCH2CH2SCH2F. 19F-NMR revealed the transient formation of an intermediate identified as GSCH2F by its chemical shift, its triplet resonance, and H-F coupling constant consistent with a fluoromethylthioether. Its decomposition was matched by a stoichiometric formation of fluoride. These studies indicated that the bacterial dichloromethane dehalogenase directs a nucleophilic attack of glutathione on CH2Cl2 to produce a halomethylthioether intermediate. This focuses attention on the mechanism used by theta class glutathione transferases to generate a halomethylthioeter from relatively unreactive dihalomethanes.

  11. Guanine Plus Cytosine Contents of the Deoxyribonucleic Acids of Some Sulfate-Reducing Bacteria: a Reassessment

    PubMed Central

    Skyring, G. W.; Jones, H. E.

    1972-01-01

    Guanine plus cytosine (GC) contents of the deoxyribonucleic acids of Desulfovibrio and Desulfotomaculum have been used as a basis for classification. Some of these data have been incorrectly calculated, resulting in errors of as much as 5% GC. This situation has been corrected by a reanalysis of existing data and by the contribution of new data. PMID:5011245

  12. CYTOLOGICAL STUDIES ON THE ANTIMETABOLITE ACTION OF 2,6-DIAMINOPURINE IN VICIA FABA ROOTS

    PubMed Central

    Setterfield, George; Duncan, Robert E.

    1955-01-01

    At a concentration of 9.6 x 10–5 M, 2,6-diaminopurine (DAP) completely inhibited cell enlargement, cell division, and DNA synthesis (determined by microphotometric measurement of Feulgen dye) in Vicia faba roots. Inhibition of cell enlargement was partially reversed by adenine, guanine, xanthine, adenosine, and desoxyadenosine. Guanine and the nucleosides gave the greatest reversal, suggesting that one point of DAP action upon cell enlargement is a disruption of nucleoside or nucleotide metabolism, possibly during pentosenucleic acid synthesis. DAP inhibited cell division by preventing onset of prophase. At the concentrations used it had no significant effect on the rate or appearance of mitoses in progress. Inhibition of entrance into prophase was not directly due to inhibition of DNA synthesis since approximately half of the inhibited nuclei had the doubled (4C) amount of DNA. Adenine competitively reversed DAP inhibition of cell division, giving an inhibition index of about 0.5. Guanine gave a slight reversal while xanthine, hypoxanthine, adenosine, and desoxyadenosine were inactive. A basic need for free adenine for the onset of mitosis was suggested by this reversal pattern. Meristems treated with DAP contained almost no nuclei with intermediate amounts of DNA, indicating that DAP prevented the onset of DNA synthesis while allowing that underway to reach completion. The inhibition of DNA synthesis was reversed by adenine, adenosine, and desoxyadenosine although synthesis appeared to proceed at a slower rate in reversals than in controls. Inhibition of DNA synthesis by DAP is probably through nucleoside or nucleotide metabolism. A small general depression of DNA content of nuclei in the reversal treatments was observed. This deviation from DNA "constancy" cannot be adequately explained at present although it may be a result of direct incorporation of DAP into DNA. The possible purine precursor, 4-amino-5-imidazolecarboxamide gave no reversal of DAP inhibition

  13. Design, synthesis, and molecular docking studies of N-(9,10-anthraquinone-2-carbonyl)amino acid derivatives as xanthine oxidase inhibitors.

    PubMed

    Zhang, Ting-Jian; Li, Song-Ye; Yuan, Wei-Yan; Zhang, Yi; Meng, Fan-Hao

    2018-04-01

    A series of N-(9,10-anthraquinone-2-carbonyl)amino acid derivatives (1a-j) was designed and synthesized as novel xanthine oxidase inhibitors. Among them, the L/D-phenylalanine derivatives (1d and 1i) and the L/D-tryptophan derivatives (1e and 1j) were effective with micromolar level potency. In particular, the L-phenylalanine derivative 1d (IC 50  = 3.0 μm) and the D-phenylalanine derivative 1i (IC 50  = 2.9 μm) presented the highest potency and were both more potent than the positive control allopurinol (IC 50  = 8.1 μm). Preliminary SAR analysis pointed that an aromatic amino acid fragment, for example, phenylalanine or tryptophan, was essential for the inhibition; the D-amino acid derivative presented equal or greater potency compared to its L-enantiomer; and the 9,10-anthraquinone moiety was welcome for the inhibition. Molecular simulations provided rational binding models for compounds 1d and 1i in the xanthine oxidase active pocket. As a result, compounds 1d and 1i could be promising lead compounds for further investigation. © 2017 John Wiley & Sons A/S.

  14. Characterization of Affinity-Purified Isoforms of Acinetobacter calcoaceticus Y1 Glutathione Transferases

    PubMed Central

    Chee, Chin-Soon; Tan, Irene Kit-Ping; Alias, Zazali

    2014-01-01

    Glutathione transferases (GST) were purified from locally isolated bacteria, Acinetobacter calcoaceticus Y1, by glutathione-affinity chromatography and anion exchange, and their substrate specificities were investigated. SDS-polyacrylamide gel electrophoresis revealed that the purified GST resolved into a single band with a molecular weight (MW) of 23 kDa. 2-dimensional (2-D) gel electrophoresis showed the presence of two isoforms, GST1 (pI 4.5) and GST2 (pI 6.2) with identical MW. GST1 was reactive towards ethacrynic acid, hydrogen peroxide, 1-chloro-2,4-dinitrobenzene, and trans,trans-hepta-2,4-dienal while GST2 was active towards all substrates except hydrogen peroxide. This demonstrated that GST1 possessed peroxidase activity which was absent in GST2. This study also showed that only GST2 was able to conjugate GSH to isoproturon, a herbicide. GST1 and GST2 were suggested to be similar to F0KLY9 (putative glutathione S-transferase) and F0KKB0 (glutathione S-transferase III) of Acinetobacter calcoaceticus strain PHEA-2, respectively. PMID:24892084

  15. Glutathione S - transferases class Pi and Mi and their significance in oncology.

    PubMed

    Marchewka, Zofia; Piwowar, Agnieszka; Ruzik, Sylwia; Długosz, Anna

    2017-06-19

    In this article the current data, which shows that glutathione S-transferases (GST) class Pi and Mi are interesting and promising biomarkers in acute and chronic inflammatory processes as well as in the oncology, were presented based on the review of the latest experimental and clinical studies. The article shows their characteristics, functions and participation (direct - GST Pi, indirect - GST Mi) in the regulation of signaling pathways of JNK kinases, which are involved in cell differentiation. Overexpression of glutathione S-transferases class Pi and Mi in many cancer cells plays a key role in cancer treatment, making them resistant to chemotherapy. GST isoenzymes are involved in the metabolism of various types of xenobiotics and endogenous substrates, so their altered expression in cancer tissues as well as in serum and urine could be an important potential marker of the cancer and an indicator of oxidative stress. The study shows the role of glutathione S-transferases in redox homeostasis of tumor cells and in the mechanism of resistance to anticancer drugs.

  16. Proteomic profiling reveals that resveratrol inhibits HSP27 expression and sensitizes breast cancer cells to doxorubicin therapy.

    PubMed

    Díaz-Chávez, José; Fonseca-Sánchez, Miguel A; Arechaga-Ocampo, Elena; Flores-Pérez, Ali; Palacios-Rodríguez, Yadira; Domínguez-Gómez, Guadalupe; Marchat, Laurence A; Fuentes-Mera, Lizeth; Mendoza-Hernández, Guillermo; Gariglio, Patricio; López-Camarillo, César

    2013-01-01

    The use of chemopreventive natural compounds represents a promising strategy in the search for novel therapeutic agents in cancer. Resveratrol (3,4',5-trans-trihydroxystilbilene) is a dietary polyphenol found in fruits, vegetables and medicinal plants that exhibits chemopreventive and antitumor effects. In this study, we searched for modulated proteins with preventive or therapeutic potential in MCF-7 breast cancer cells exposed to resveratrol. Using two-dimensional electrophoresis we found significant changes (FC >2.0; p≤0.05) in the expression of 16 proteins in resveratrol-treated MCF-7 cells. Six down-regulated proteins were identified by tandem mass spectrometry (ESI-MS/MS) as heat shock protein 27 (HSP27), translationally-controlled tumor protein, peroxiredoxin-6, stress-induced-phosphoprotein-1, pyridoxine-5'-phosphate oxidase-1 and hypoxanthine-guanine phosphoribosyl transferase; whereas one up-regulated protein was identified as triosephosphate isomerase. Particularly, HSP27 overexpression has been associated to apoptosis inhibition and resistance of human cancer cells to therapy. Consistently, we demonstrated that resveratrol induces apoptosis in MCF-7 cells. Apoptosis was associated with a significant increase in mitochondrial permeability transition, cytochrome c release in cytoplasm, and caspases -3 and -9 independent cell death. Then, we evaluated the chemosensitization effect of increasing concentrations of resveratrol in combination with doxorubicin anti-neoplastic agent in vitro. We found that resveratrol effectively sensitize MCF-7 cells to cytotoxic therapy. Next, we evaluated the relevance of HSP27 targeted inhibition in therapy effectiveness. Results evidenced that HSP27 inhibition using RNA interference enhances the cytotoxicity of doxorubicin. In conclusion, our data indicate that resveratrol may improve the therapeutic effects of doxorubicin in part by cell death induction. We propose that potential modulation of HSP27 levels using natural

  17. Genetic Analysis of Mouse Embryonic Stem Cells Bearing Msh3 and Msh2 Single and Compound Mutations

    PubMed Central

    Abuin, Alejandro; Zhang, HeJu; Bradley, Allan

    2000-01-01

    We have previously described the use of homologous recombination and CRE-loxP-mediated marker recycling to generate mouse embryonic stem (ES) cell lines homozygous for mutations at the Msh3, Msh2, and both Msh3 and Msh2 loci (2). In this study, we describe the analysis of these ES cells with respect to processes known to be affected by DNA mismatch repair. ES cells homozygous for the Msh2 mutation displayed increased resistance to killing by the cytotoxic drug 6-thioguanine (6TG), indicating that the 6TG cytotoxic mechanism is mediated by Msh2. The mutation rate of the herpes simplex virus thymidine kinase 1 (HSV-tk1) gene was unchanged in Msh3-deficient ES cell lines but markedly elevated in Msh2-deficient and Msh3 Msh2 double-mutant cells. Notably, the HSV-tk1 mutation rate was 11-fold higher, on average, than that of the hypoxanthine-guanine phosphoribosyl transferase (Hprt) locus in Msh2-deficient cells. Sequence analysis of HSV-tk1 mutants from these cells indicated the presence of a frameshift hotspot within the HSV-tk1 coding region. Msh3-deficient cells displayed a modest (16-fold) elevation in the instability of a dinucleotide repeat, whereas Msh2-deficient and Msh2 Msh3 double-mutant cells displayed markedly increased levels of repeat instability. Targeting frequencies of nonisogenic vectors were elevated in Msh2-deficient ES cell lines, confirming the role of Msh2 in blocking recombination between diverged sequences (homeologous recombination) in mammalian cells. These results are consistent with accumulating data from other laboratories and support the current model of DNA mismatch repair in mammalian cells. PMID:10594017

  18. Low dopamine activity in Lesch Nyhan Disease. An 18-fluorodopa PET study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernst, M.; Zametkin, A.; Matochik, J.

    1996-05-01

    Lesch-Nyhan Disease (LND) is a rare devastating X-linked recessive disorder characterized by the virtual absence of hypoxanthine guanine phosphoribosyl transferase (HPRT), a major enzyme of the salvage pathway of purine metabolism. The clinical presentation includes hyperuricemia choreoathetosis, dystonia, aggression and self-injurious behavior. The genetic and biochemical abnormalities are fully identified. However, the neuropathophysiological process by which the lack of HPRT produces the neuropsychiatric syndrome of LND in unclear. Presynaptic uptake of 18-Fluorodopa (FD) in basal ganglia, substantia nigra, and frontal and occipital cortices was measured by PET in 12 patients with LND, 10 to 20 years old, and 15 healthmore » controls, 12 to 23 years old. Radioactive counts (mCi/cc), recorded between 90 and 130 minutes after tracer injection, were measured in regions of interest by a rater blind to subjects` identities. Results were expressed as ratios of FD uptake in specific to non-specific (occipital cortex) brain areas. Presynaptic dopamine activity was significantly lower by 69% in putamen (p<0.0001), 61% in caudate (p<0.0001), 56% in frontal cortex (p=0.003) and 43% in substantiat nigra (p<0.016) in LND patients than in control subjects. Absolute FD measures in occipital regions did not differ between the two groups. Activity of FD in the basal ganglia was stable over time in the LND group and tended to increase in the control group (r=0.50, n=15, p=0.060). In the LND group, aggressive behavior was worse as FD activity was higher (r=0.60, n=12, p=0.40). LND is associated with a striking reduction of presynaptic dopamine activity that is not region-specific. The temporal stability of FD measures and of the severity of LND symptomatology is consistent with a developmental rather than degenerative process.« less

  19. Assessment of mercaptopurine (6MP) metabolites and 6MP metabolic key-enzymes in childhood acute lymphoblastic leukemia.

    PubMed

    Wojtuszkiewicz, Anna; Barcelos, Ana; Dubbelman, Boas; De Abreu, Ronney; Brouwer, Connie; Bökkerink, Jos P; de Haas, Valerie; de Groot-Kruseman, Hester; Jansen, Gerrit; Kaspers, Gertjan L; Cloos, Jacqueline; Peters, G J

    2014-01-01

    Pediatric acute lymphoblastic leukemia (ALL) is treated with combination chemotherapy including mercaptopurine (6MP) as an important component. Upon its uptake, 6MP undergoes a complex metabolism involving many enzymes and active products. The prognostic value of all the factors engaged in this pathway still remains unclear. This study attempted to determine which components of 6MP metabolism in leukemic blasts and red blood cells are important for 6MP's sensitivity and toxicity. In addition, changes in the enzymatic activities and metabolite levels during the treatment were analyzed. In a cohort (N=236) of pediatric ALL patients enrolled in the Dutch ALL-9 protocol, we studied the enzymes inosine-5'-monophosphate dehydrogenase (IMPDH), thiopurine S-methyltransferase (TPMT), hypoxanthine guanine phosphoribosyl transferase (HGPRT), and purine nucleoside phosphorylase (PNP) as well as thioguanine nucleotides (TGN) and methylthioinosine nucleotides (meTINs). Activities of selected enzymes and levels of 6MP derivatives were measured at various time points during the course of therapy. The data obtained and the toxicity related parameters available for these patients were correlated with each other. We found several interesting relations, including high concentrations of two active forms of 6MP--TGN and meTIN--showing a trend toward association with better in vitro antileukemic effect of 6MP. High concentrations of TGN and elevated activity of HGPRT were found to be significantly associated with grade III/IV leucopenia. However, a lot of data of enzymatic activities and metabolite concentrations as well as clinical toxicity were missing, thereby limiting the number of assessed relations. Therefore, although a complex study of 6MP metabolism in ALL patients is feasible, it warrants more robust and strict data collection in order to be able to draw more reliable conclusions.

  20. 21 CFR 862.1315 - Galactose-1-phosphate uridyl transferase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... of the enzyme galactose-1-phosphate uridyl transferase in erythrocytes (red blood cells... hereditary disease galactosemia (disorder of galactose metabolism) in infants. (b) Classification. Class II. ...

  1. 21 CFR 862.1315 - Galactose-1-phosphate uridyl transferase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1315 Galactose-1-phosphate uridyl transferase test system. (a) Identification...

  2. 21 CFR 862.1315 - Galactose-1-phosphate uridyl transferase test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1315 Galactose-1-phosphate uridyl transferase test system. (a) Identification...

  3. 21 CFR 862.1535 - Ornithine carbamyl transferase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ornithine carbamyl transferase test system. 862.1535 Section 862.1535 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  4. Rationale and design of a multicenter randomized study for evaluating vascular function under uric acid control using the xanthine oxidase inhibitor, febuxostat: the PRIZE study.

    PubMed

    Oyama, Jun-Ichi; Tanaka, Atsushi; Sato, Yasunori; Tomiyama, Hirofumi; Sata, Masataka; Ishizu, Tomoko; Taguchi, Isao; Kuroyanagi, Takanori; Teragawa, Hiroki; Ishizaka, Nobukazu; Kanzaki, Yumiko; Ohishi, Mitsuru; Eguchi, Kazuo; Higashi, Yukihito; Yamada, Hirotsugu; Maemura, Koji; Ako, Junya; Bando, Yasuko K; Ueda, Shinichiro; Inoue, Teruo; Murohara, Toyoaki; Node, Koichi

    2016-06-18

    Xanthine oxidase inhibitors are anti-hyperuricemic drugs that decrease serum uric acid levels by inhibiting its synthesis. Xanthine oxidase is also recognized as a pivotal enzyme in the production of oxidative stress. Excess oxidative stress induces endothelial dysfunction and inflammatory reactions in vascular systems, leading to atherosclerosis. Many experimental studies have suggested that xanthine oxidase inhibitors have anti-atherosclerotic effects by decreasing in vitro and in vivo oxidative stress. However, there is only limited evidence on the clinical implications of xanthine oxidase inhibitors on atherosclerotic cardiovascular disease in patients with hyperuricemia. We designed the PRIZE study to evaluate the effects of febuxostat on a surrogate marker of cardiovascular disease risk, ultrasonography-based intima-media thickness of the carotid artery in patients with hyperuricemia. The study is a multicenter, prospective, randomized, open-label and blinded-endpoint evaluation (PROBE) design. A total of 500 patients with asymptomatic hyperuricemia (uric acid >7.0 mg/dL) and carotid intima-media thickness ≥1.1 mm will be randomized centrally to receive either febuxostat (10-60 mg/day) or non-pharmacological treatment. Randomization is carried out using the dynamic allocation method stratified according to age (<65, ≥65 year), gender, presence or absence of diabetes mellitus, serum uric acid (<8.0, ≥8.0 mg/dL), and carotid intima-media thickness (<1.3, ≥1.3 mm). In addition to administering the study drug, we will also direct lifestyle modification in all participants, including advice on control of body weight, sleep, exercise and healthy diet. Carotid intima-media thickness will be evaluated using ultrasonography performed by skilled technicians at a central laboratory. Follow-up will be continued for 24 months. The primary endpoint is percentage change in mean intima-media thickness of the common carotid artery 24 months after baseline, measured by

  5. Homogentisate solanesyl transferase (HST) cDNA’s in maize

    USDA-ARS?s Scientific Manuscript database

    Maize white seedling 3 (w3) has served as a model albino-seedling mutant since its discovery in 1923. We show that the w3 phenotype is caused by disruptions in homogentisate solanesyl transferase (HST), an enzyme that catalyzes the committed step in plastoquinone-9 (PQ9) biosynthesis. This reaction ...

  6. Reversal of hypermethylation and reactivation of glutathione S-transferase pi 1 gene by curcumin in breast cancer cell line.

    PubMed

    Kumar, Umesh; Sharma, Ujjawal; Rathi, Garima

    2017-02-01

    One of the mechanisms for epigenetic silencing of tumor suppressor genes is hypermethylation of cytosine residue at CpG islands at their promoter region that contributes to malignant progression of tumor. Therefore, activation of tumor suppressor genes that have been silenced by promoter methylation is considered to be very attractive molecular target for cancer therapy. Epigenetic silencing of glutathione S-transferase pi 1, a tumor suppressor gene, is involved in various types of cancers including breast cancer. Epigenetic silencing of tumor suppressor genes can be reversed by several molecules including natural compounds such as polyphenols that can act as a hypomethylating agent. Curcumin has been found to specifically target various tumor suppressor genes and alter their expression. To check the effect of curcumin on the methylation pattern of glutathione S-transferase pi 1 gene in MCF-7 breast cancer cell line in dose-dependent manner. To check the reversal of methylation pattern of hypermethylated glutathione S-transferase pi 1, MCF-7 breast cancer cell line was treated with different concentrations of curcumin for different time periods. DNA and proteins of treated and untreated cell lines were isolated, and methylation status of the promoter region of glutathione S-transferase pi 1 was analyzed using methylation-specific polymerase chain reaction assay, and expression of this gene was analyzed by immunoblotting using specific antibodies against glutathione S-transferase pi 1. A very low and a nontoxic concentration (10 µM) of curcumin treatment was able to reverse the hypermethylation and led to reactivation of glutathione S-transferase pi 1 protein expression in MCF-7 cells after 72 h of treatment, although the IC 50 value of curcumin was found to be at 20 µM. However, curcumin less than 3 µM of curcumin could not alter the promoter methylation pattern of glutathione S-transferase pi 1. Treatment of breast cancer MCF-7 cells with curcumin

  7. Xanthine oxidase inhibitory activity of natural and hemisynthetic flavonoids from Gardenia oudiepe (Rubiaceae) in vitro and molecular docking studies.

    PubMed

    Santi, M D; Paulino Zunini, M; Vera, B; Bouzidi, C; Dumontet, V; Abin-Carriquiry, A; Grougnet, R; Ortega, M G

    2018-01-01

    Xanthine oxidase (XO), an enzyme widely distributed among mammalian tissues, is associated with the oxidation of xanthine and hypoxanthine to form uric acid. Reactive oxygen species are also released during this process, leading to oxidative damages and to the pathology called gout. Available treatments mainly based on allopurinol cause serious side effects. Natural products such as flavonoids may represent an alternative. Thus, a series of polymethoxyflavones isolated and hemisynthesized from the bud exudates of Gardenia oudiepe has been evaluated for in vitro XO inhibitory activity. Compounds 1, 2 and 3 were more active than the reference inhibitor, Allopurinol (IC 50  = 0.25 ± 0.004 μM) with IC 50 values of (0.004 ± 0.001) μM, (0.05 ± 0.01) μM and (0.09 ± 0.003) μM, respectively. Structure-activity relationships were established. Additionally, a molecular docking study using MOE™ tool was carried out to establish the binding mode of the most active flavones with the enzyme, showing important interactions with its catalytic residues. These promising results, suggest the use of these compounds as potential leads for the design and development of novel XO inhibitors. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Molecular characterization of human xanthine oxidoreductase: the enzyme is grossly deficient in molybdenum and substantially deficient in iron-sulphur centres

    PubMed Central

    2005-01-01

    XOR (xanthine oxidoreductase) purified from human milk was shown to contain 0.04 atom of Mo and 0.09 molecule of molybdopterin/subunit. On the basis of UV/visible and CD spectra, the human enzyme was approx. 30% deficient in iron-sulphur centres. Mo(V) EPR showed the presence of a weak rapid signal corresponding to the enzyme of low xanthine oxidase activity and a slow signal indicating a significant content of desulpho-form. Resulphuration experiments, together with calculations based on enzymic activity and Mo content, led to an estimate of 50–60% desulpho-form. Fe/S EPR showed, in addition to the well-known Fe/S I and Fe/S II species, the presence of a third Fe/S signal, named Fe/S III, which appears to replace partially Fe/S I. Comparison is made with similarly prepared bovine milk XOR, which has approx. 15-fold higher enzymic activity and Mo content. Taken along with evidence of low Mo content in the milk of other mammals, these findings add further support to the idea that XOR protein plays a physiological role in milk (e.g. in secretion) equal in importance to its catalytic function as an enzyme. PMID:15679468

  9. The formation of DNA sugar radicals from photoexcitation of guanine cation radicals.

    PubMed

    Shukla, Lata I; Pazdro, Robert; Huang, James; DeVreugd, Christopher; Becker, David; Sevilla, Michael D

    2004-05-01

    In this investigation of radical formation and reaction in gamma- irradiated DNA and model compounds, we report the conversion of the guanine cation radical (one-electron oxidized guanine, G(.+)) to the C1' sugar radical and another sugar radical at the C3' or C4' position (designated C3'(.)/C4'(.)) by visible and UV photolysis. Electron spin resonance (ESR) spectroscopic investigations were performed on salmon testes DNA as well as 5'-dGMP, 3'-dGMP, 2'-deoxyguanosine and other nucleosides/nucleotides as model systems. DNA samples (25- 150 mg/ml D(2)O) were prepared with Tl(3+) or Fe(CN)(3-)(6) as electron scavengers. Upon gamma irradiation of such samples at 77 K, the electron-gain path in the DNA is strongly suppressed and predominantly G(.+) is found; after UV or visible photolysis, the fraction of the C1' sugar radical increases with a concomitant reduction in the fraction of G(.+). In model systems, 3'- dGMP(+.) and 5'-dGMP(+.) were produced by attack of Cl(.-)(2) on the parent nucleotide in 7 M LiCl glass. Subsequent visible photolysis of the 3'-dGMP(+.) (77 K) results predominantly in formation of C1'(.) whereas photolysis of 5'-dGMP(+.) results predominantly in formation of C3'(.)/C4'(.). We propose that sugar radical formation is a result of delocalization of the hole in the electronically excited base cation radical into the sugar ring, followed by deprotonation at specific sites on the sugar.

  10. Effect of ionic strength and cationic DNA affinity binders on the DNA sequence selective alkylation of guanine N7-positions by nitrogen mustards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartley, J.A.; Forrow, S.M.; Souhami, R.L.

    Large variations in alkylation intensities exist among guanines in a DNA sequence following treatment with chemotherapeutic alkylating agents such as nitrogen mustards, and the substituent attached to the reactive group can impose a distinct sequence preference for reaction. In order to understand further the structural and electrostatic factors which determine the sequence selectivity of alkylation reactions, the effect of increase ionic strength, the intercalator ethidium bromide, AT-specific minor groove binders distamycin A and netropsin, and the polyamine spermine on guanine N7-alkylation by L-phenylalanine mustard (L-Pam), uracil mustard (UM), and quinacrine mustard (QM) was investigated with a modification of the guanine-specificmore » chemical cleavage technique for DNA sequencing. The result differed with both the nitrogen mustard and the cationic agent used. The effect, which resulted in both enhancement and suppression of alkylation sites, was most striking in the case of netropsin and distamycin A, which differed from each other. DNA footprinting indicated that selective binding to AT sequences in the minor groove of DNA can have long-range effects on the alkylation pattern of DNA in the major groove.« less

  11. Functional Dissection of the Bipartite Active Site of the Class I Coenzyme A (CoA)-Transferase Succinyl-CoA:Acetate CoA-Transferase.

    PubMed

    Murphy, Jesse R; Mullins, Elwood A; Kappock, T Joseph

    2016-01-01

    Coenzyme A (CoA)-transferases catalyze the reversible transfer of CoA from acyl-CoA thioesters to free carboxylates. Class I CoA-transferases produce acylglutamyl anhydride intermediates that undergo attack by CoA thiolate on either the internal or external carbonyl carbon atoms, forming distinct tetrahedral intermediates <3 Å apart. In this study, crystal structures of succinyl-CoA:acetate CoA-transferase (AarC) from Acetobacter aceti are used to examine how the Asn347 carboxamide stabilizes the internal oxyanion intermediate. A structure of the active mutant AarC-N347A bound to CoA revealed both solvent replacement of the missing contact and displacement of the adjacent Glu294, indicating that Asn347 both polarizes and orients the essential glutamate. AarC was crystallized with the nonhydrolyzable acetyl-CoA (AcCoA) analog dethiaacetyl-CoA (1a) in an attempt to trap a closed enzyme complex containing a stable analog of the external oxyanion intermediate. One active site contained an acetylglutamyl anhydride adduct and truncated 1a, an unexpected result hinting at an unprecedented cleavage of the ketone moiety in 1a. Solution studies confirmed that 1a decomposition is accompanied by production of near-stoichiometric acetate, in a process that seems to depend on microbial contamination but not AarC. A crystal structure of AarC bound to the postulated 1a truncation product (2a) showed complete closure of one active site per dimer but no acetylglutamyl anhydride, even with acetate added. These findings suggest that an activated acetyl donor forms during 1a decomposition; a working hypothesis involving ketone oxidation is offered. The ability of 2a to induce full active site closure furthermore suggests that it subverts a system used to impede inappropriate active site closure on unacylated CoA.

  12. Functional Dissection of the Bipartite Active Site of the Class I Coenzyme A (CoA)-Transferase Succinyl-CoA:Acetate CoA-Transferase

    PubMed Central

    Murphy, Jesse R.; Mullins, Elwood A.; Kappock, T. Joseph

    2016-01-01

    Coenzyme A (CoA)-transferases catalyze the reversible transfer of CoA from acyl-CoA thioesters to free carboxylates. Class I CoA-transferases produce acylglutamyl anhydride intermediates that undergo attack by CoA thiolate on either the internal or external carbonyl carbon atoms, forming distinct tetrahedral intermediates <3 Å apart. In this study, crystal structures of succinyl-CoA:acetate CoA-transferase (AarC) from Acetobacter aceti are used to examine how the Asn347 carboxamide stabilizes the internal oxyanion intermediate. A structure of the active mutant AarC-N347A bound to CoA revealed both solvent replacement of the missing contact and displacement of the adjacent Glu294, indicating that Asn347 both polarizes and orients the essential glutamate. AarC was crystallized with the nonhydrolyzable acetyl-CoA (AcCoA) analog dethiaacetyl-CoA (1a) in an attempt to trap a closed enzyme complex containing a stable analog of the external oxyanion intermediate. One active site contained an acetylglutamyl anhydride adduct and truncated 1a, an unexpected result hinting at an unprecedented cleavage of the ketone moiety in 1a. Solution studies confirmed that 1a decomposition is accompanied by production of near-stoichiometric acetate, in a process that seems to depend on microbial contamination but not AarC. A crystal structure of AarC bound to the postulated 1a truncation product (2a) showed complete closure of one active site per dimer but no acetylglutamyl anhydride, even with acetate added. These findings suggest that an activated acetyl donor forms during 1a decomposition; a working hypothesis involving ketone oxidation is offered. The ability of 2a to induce full active site closure furthermore suggests that it subverts a system used to impede inappropriate active site closure on unacylated CoA. PMID:27242998

  13. Functional dissection of the bipartite active site of the class I coenzyme A (CoA)-transferase succinyl-CoA:acetate CoA-transferase

    DOE PAGES

    Murphy, Jesse R.; Mullins, Elwood A.; Kappock, T. Joseph

    2016-05-23

    Coenzyme A (CoA)-transferases catalyze the reversible transfer of CoA from acyl-CoA thioesters to free carboxylates. Class I CoA-transferases produce acylglutamyl anhydride intermediates that undergo attack by CoA thiolate on either the internal or external carbonyl carbon atoms, forming distinct tetrahedral intermediates <3 Å apart. Here in this study, crystal structures of succinyl-CoA:acetate CoA-transferase (AarC) from Acetobacter aceti are used to examine how the Asn347 carboxamide stabilizes the internal oxyanion intermediate. A structure of the active mutant AarC-N347A bound to CoA revealed both solvent replacement of the missing contact and displacement of the adjacent Glu294, indicating that Asn347 both polarizes andmore » orients the essential glutamate. AarC was crystallized with the nonhydrolyzable acetyl-CoA (AcCoA) analog dethiaacetyl-CoA (1a) in an attempt to trap a closed enzyme complex containing a stable analog of the external oxyanion intermediate. One active site contained an acetylglutamyl anhydride adduct and truncated 1a, an unexpected result hinting at an unprecedented cleavage of the ketone moiety in 1a. Solution studies confirmed that 1a decomposition is accompanied by production of near-stoichiometric acetate, in a process that seems to depend on microbial contamination but not AarC. A crystal structure of AarC bound to the postulated 1a truncation product (2a) showed complete closure of one active site per dimer but no acetylglutamyl anhydride, even with acetate added. These findings suggest that an activated acetyl donor forms during 1a decomposition; a working hypothesis involving ketone oxidation is offered. Finally, the ability of 2a to induce full active site closure furthermore suggests that it subverts a system used to impede inappropriate active site closure on unacylated CoA.« less

  14. Effect of Soy Sauce on Serum Uric Acid Levels in Hyperuricemic Rats and Identification of Flazin as a Potent Xanthine Oxidase Inhibitor.

    PubMed

    Li, Huipin; Zhao, Mouming; Su, Guowan; Lin, Lianzhu; Wang, Yong

    2016-06-15

    This is the first report on the ability of soy sauce to effectively reduce the serum uric acid levels and xanthine oxidase (XOD) activities of hyperuricemic rats. Soy sauce was partitioned sequentially into ethyl acetate and water fractions. The ethyl acetate fraction with strong XOD inhibition effect was purified further. On the basis of xanthine oxidase inhibitory (XOI) activity-guided purification, nine compounds including 3,4-dihydroxy ethyl cinnamate, diisobutyl terephthalate, harman, daidzein, flazin, catechol, thymine, genistein, and uracil were obtained. It was the first time that 3,4-dihydroxy ethyl cinnamate and diisobutyl terephthalate had been identified from soy sauce. Flazin with hydroxymethyl furan ketone group at C-1 and carboxyl at C-3 exhibited the strongest XOI activity (IC50 = 0.51 ± 0.05 mM). According to fluorescence quenching and molecular docking experiments, flazin could enter into the catalytic center of XOD to interact with Lys1045, Gln1194, and Arg912 mainly by hydrophobic forces and hydrogen bonds. Flazin, catechol, and genistein not only were potent XOD inhibitors but also held certain antioxidant activities. According to ADME (absorption, distribution, metabolism, and excretion) simulation in silico, flazin had good oral bioavailability in vivo.

  15. Xanthine oxidase inhibiting effects of noni (Morinda citrifolia) fruit juice.

    PubMed

    Palu, Afa; Deng, Shixin; West, Brett; Jensen, Jarakae

    2009-12-01

    Morinda citrifolia L. (noni), family Rubiaceae, has been used in Polynesia for over 2000 years for its reputed health benefits, one of which is its therapeutic effects on gout (langa e hokotanga hui). However, its healing mechanism has not been elucidated. This study showed that in an in vitro bioassay that Tahitian Noni Juice (TNJ) inhibited xanthine oxidase (XO) concentration dependently. Concentrations of 1, 5 and 10 mg/mL of TNJ inhibited XO by 11%, 113% and 148%, respectively, with an IC50 of 3.8 mg compared with an IC50 of 2.4 microm for allopurinol. Noni fruit juice concentrate (NFJC) also inhibited XO concentration dependently. Concentrations of 1 and 5 mg/mL NFJC inhibited XO in vitro by 184% and 159%, respectively. A 0.1 mg/mL methanol extract (NFJME) from the fractionation of noni fruit puree inhibited XO by 64%. It was elucidated that the noni fruit juice inhibitory effect on XO enzymes is the mechanism by which noni ameliorates gout and gout-like diseases. Further, the results also support the traditional usage of noni in the treatment of gout. Copyright (c) 2009 John Wiley & Sons, Ltd.

  16. Crystal Structures of Two Archaeal 8-Oxoguanine DNA Glycosylases Provide Structural Insight into Guanine/8-Oxoguanine Distinction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faucher, Frédérick; Duclos, Stéphanie; Bandaru, Viswanath

    Among the four DNA bases, guanine is particularly vulnerable to oxidative damage and the most common oxidative product, 7,8-dihydro-8-oxoguanine (8-oxoG), is the most prevalent lesion observed in DNA molecules. Fortunately, 8-oxoG is recognized and excised by the 8-oxoguanine DNA glycosylase (Ogg) of the base excision repair pathway. Ogg enzymes are divided into three separate families, namely, Ogg1, Ogg2, and archaeal GO glycosylase (AGOG). To date, structures of members of both Ogg1 and AGOG families are known but no structural information is available for members of Ogg2. Here we describe the first crystal structures of two archaeal Ogg2: Methanocaldococcus janischii Oggmore » and Sulfolobus solfataricus Ogg. A structural comparison with OGG1 and AGOG suggested that the C-terminal lysine of Ogg2 may play a key role in discriminating between guanine and 8-oxoG. This prediction was substantiated by measuring the glycosylase/lyase activity of a C-terminal deletion mutant of MjaOgg.« less

  17. Rotation of Guanine Amino Groups in G-Quadruplexes: A Probe for Local Structure and Ligand Binding.

    PubMed

    Adrian, Michael; Winnerdy, Fernaldo Richtia; Heddi, Brahim; Phan, Anh Tuân

    2017-08-22

    Nucleic acids are dynamic molecules whose functions may depend on their conformational fluctuations and local motions. In particular, amino groups are dynamic components of nucleic acids that participate in the formation of various secondary structures such as G-quadruplexes. Here, we present a cost-efficient NMR method to quantify the rotational dynamics of guanine amino groups in G-quadruplex nucleic acids. An isolated spectrum of amino protons from a specific tetrad-bound guanine can be extracted from the nuclear Overhauser effect spectroscopy spectrum based on the close proximity between the intra-residue imino and amino protons. We apply the method in different structural contexts of G-quadruplexes and their complexes. Our results highlight the role of stacking and hydrogen-bond interactions in restraining amino-group rotation. The measurement of the rotation rate of individual amino groups could give insight into the dynamic processes occurring at specific locations within G-quadruplex nucleic acids, providing valuable probes for local structure, dynamics, and ligand binding. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Rat L (long interspersed repeated DNA) elements contain guanine-rich homopurine sequences that induce unpairing of contiguous duplex DNA.

    PubMed Central

    Usdin, K; Furano, A V

    1988-01-01

    The L family (long interspersed repeated DNA) of mobile genetic elements is a persistent feature of the mammalian genome. In rats, this family contains approximately equal to 40,000 members and accounts for approximately equal to 10% of the haploid genome. We demonstrate here that the guanine-rich homopurine stretches located at the right end of L-DNA induce oligonucleotide uptake by contiguous duplex DNA. The uptake is dependent on negative supercoiling and the length of the homopurine stretch and occurs even when the L-DNA homopurine stretches are introduced into a different DNA environment. The bound oligomer primes DNA synthesis when DNA polymerase and deoxyribonucleoside triphosphates are added, resulting in a faithful copy of the template to which the oligonucleotide had bound. The implications of this property of the L-DNA guanine-rich homopurine stretches in the amplification, recombination, and dispersal of L elements is discussed. Images PMID:2837766

  19. Electron attachment to the guanine-cytosine nucleic acid base pair and the effects of monohydration and proton transfer.

    PubMed

    Gupta, Ashutosh; Jaeger, Heather M; Compaan, Katherine R; Schaefer, Henry F

    2012-05-17

    The guanine-cytosine (GC) radical anion and its interaction with a single water molecule is studied using ab initio and density functional methods. Z-averaged second-order perturbation theory (ZAPT2) was applied to GC radical anion for the first time. Predicted spin densities show that the radical character is localized on cytosine. The Watson-Crick monohydrated GC anion is compared to neutral GC·H2O, as well as to the proton-transferred analogue on the basis of structural and energetic properties. In all three systems, local minima are identified that correspond to water positioned in the major and minor grooves of macromolecular DNA. On the anionic surface, two novel structures have water positioned above or below the GC plane. On the neutral and anionic surfaces, the global minimum can be described as water interacting with the minor groove. These structures are predicted to have hydration energies of 9.7 and 11.8 kcal mol(-1), respectively. Upon interbase proton-transfer (PT), the anionic global minimum has water positioned in the major groove, and the hydration energy increases to 13.4 kcal mol(-1). PT GC·H2O(•-) has distonic character; the radical character resides on cytosine, while the negative charge is localized on guanine. The effects of proton transfer are further investigated through the computed adiabatic electron affinities (AEA) of GC and monohydrated GC, and the vertical detachment energies (VDE) of the corresponding anions. Monohydration increases the AEAs and VDEs by only 0.1 eV, while proton-transfer increases the VDEs substantially (0.8 eV). The molecular charge distribution of monohydrated guanine-cytosine radical anion depends heavily on interbase proton transfer.

  20. 21 CFR 573.130 - Aminoglycoside 3′-phospho- transferase II.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.130 Aminoglycoside 3′-phospho- transferase II. The food additive aminoglycoside 3′-phosphotransferase II may be safely used in the development of...

  1. 21 CFR 573.130 - Aminoglycoside 3′-phospho- transferase II.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.130 Aminoglycoside 3′-phospho- transferase II. The food additive aminoglycoside 3′-phosphotransferase II may be safely used in the development of...

  2. 21 CFR 573.130 - Aminoglycoside 3′-phospho- transferase II.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.130 Aminoglycoside 3′-phospho- transferase II. The food additive aminoglycoside 3′-phosphotransferase II may be safely used in the development of...

  3. 21 CFR 573.130 - Aminoglycoside 3′-phospho- transferase II.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.130 Aminoglycoside 3′-phospho- transferase II. The food additive aminoglycoside 3′-phosphotransferase II may be safely used in the development of...

  4. 21 CFR 573.130 - Aminoglycoside 3′-phospho- transferase II.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.130 Aminoglycoside 3′-phospho- transferase II. The food additive aminoglycoside 3′-phosphotransferase II may be safely used in the development of...

  5. The role of xanthine oxidoreductase and uric acid in metabolic syndrome.

    PubMed

    Battelli, Maria Giulia; Bortolotti, Massimo; Polito, Letizia; Bolognesi, Andrea

    2018-08-01

    Xanthine oxidoreductase (XOR) could contribute to the pathogenesis of metabolic syndrome through the oxidative stress and the inflammatory response induced by XOR-derived reactive oxygen species and uric acid. Hyperuricemia is strongly linked to hypertension, insulin resistance, obesity and hypertriglyceridemia. The serum level of XOR is correlated to triglyceride/high density lipoprotein cholesterol ratio, fasting glycemia, fasting insulinemia and insulin resistance index. Increased activity of endothelium-linked XOR may promote hypertension. In addition, XOR is implicated in pre-adipocyte differentiation and adipogenesis. XOR and uric acid play a role in cell transformation and proliferation as well as in the progression and metastatic process. Collected evidences confirm the contribution of XOR and uric acid in metabolic syndrome. However, in some circumstances XOR and uric acid may have anti-oxidant protective outcomes. The dual-face role of both XOR and uric acid explains the contradictory results obtained with XOR inhibitors and suggests caution in their therapeutic use. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Comparative study of binding interactions between porphyrin systems and aromatic compounds of biological importance by multiple spectroscopic techniques: A review

    NASA Astrophysics Data System (ADS)

    Makarska-Bialokoz, Magdalena

    2018-07-01

    The specific spectroscopic and redox properties of porphyrins predestine them to fulfill the role of sensors during interacting with different biologically active substances. Monitoring of binding interactions in the systems porphyrin-biologically active compound is a key question not only in the field of physiological functions of living organisms, but also in environmental protection, notably in the light of the rapidly growing drug consumption and concurrently the production of drug effluents. Not always beneficial action of drugs on natural porphyrin systems induces to further studies, with commercially available porphyrins as the model systems. Therefore the binding process between several water-soluble porphyrins and a series of biologically active compounds (e.g. caffeine, guanine, theophylline, theobromine, xanthine, uric acid) has been studied in different aqueous solutions analyzing their absorption and steady-state fluorescence spectra, the porphyrin fluorescence lifetimes and their quantum yields. The magnitude of the binding and fluorescence quenching constants values for particular quenchers decreases in a series: uric acid > guanine > caffeine > theophylline > theobromine > xanthine. In all the systems studied there are characters of static quenching, as a consequence of the π-π-stacked non-covalent and non-fluorescent complexes formation between porphyrins and interacting compounds, accompanied simultaneously by the additional specific binding interactions. The porphyrin fluorescence quenching can be explain by the photoinduced intermolecular electron transfer from aromatic compound to the center of the porphyrin molecule, playing the role of the binding site. Presented results can be valuable for designing of new fluorescent porphyrin chemosensors or monitoring of drug traces in aqueous solutions. The obtained outcomes have also the toxicological and medical importance, providing insight into the interactions of the water-soluble porphyrins with

  7. Succinyl-CoA:(R)-Benzylsuccinate CoA-Transferase: an Enzyme of the Anaerobic Toluene Catabolic Pathway in Denitrifying Bacteria†

    PubMed Central

    Leutwein, Christina; Heider, Johann

    2001-01-01

    Anaerobic microbial toluene catabolism is initiated by addition of fumarate to the methyl group of toluene, yielding (R)-benzylsuccinate as first intermediate, which is further metabolized via β-oxidation to benzoyl-coenzyme A (CoA) and succinyl-CoA. A specific succinyl-CoA:(R)-benzylsuccinate CoA-transferase activating (R)-benzylsuccinate to the CoA-thioester was purified and characterized from Thauera aromatica. The enzyme is fully reversible and forms exclusively the 2-(R)-benzylsuccinyl-CoA isomer. Only some close chemical analogs of the substrates are accepted by the enzyme: succinate was partially replaced by maleate or methylsuccinate, and (R)-benzylsuccinate was replaced by methylsuccinate, benzylmalonate, or phenylsuccinate. In contrast to all other known CoA-transferases, the enzyme consists of two subunits of similar amino acid sequences and similar sizes (44 and 45 kDa) in an α2β2 conformation. Identity of the subunits with the products of the previously identified toluene-induced bbsEF genes was confirmed by determination of the exact masses via electrospray-mass spectrometry. The deduced amino acid sequences resemble those of only two other characterized CoA-transferases, oxalyl-CoA:formate CoA-transferase and (E)-cinnamoyl-CoA:(R)-phenyllactate CoA-transferase, which represent a new family of CoA-transferases. As suggested by kinetic analysis, the reaction mechanism of enzymes of this family apparently involves formation of a ternary complex between the enzyme and the two substrates. PMID:11418570

  8. Role of guanine nucleotides in the vinblastine-induced self-association of tubulin: effects of guanosine alpha,beta-methylenetriphosphate and guanosine alpha,beta-methylenediphosphate.

    PubMed

    Vulevic, B; Lobert, S; Correia, J J

    1997-10-21

    It is now well established that guanine nucleotides are allosteric effectors of the vinca alkaloid-induced self-association of tubulin. GDP enhances self-association for vinblastine-, vincristine- and vinorelbine-induced spiral assembly relative to GTP by 0.90 +/- 0.17 kcal/mol [Lobert et al. (1996) Biochemistry 35, 6806-6814]. Since chemical modifications of the vinca alkaloid structure are known to modulate the overall affinity of drug binding, it is very likely that, by Wyman linkage, chemical modifications of guanine nucleotide allosteric effectors also modulate drug binding. Here we compare the effects of the GTP and GDP alpha,beta-methylene analogues GMPCPP and GMPCP on vinblastine-induced tubulin association in 10 and 100 mM piperazine-N,N'-bis(2-ethanesulfonic acid) (Pipes), 1 mM MgSO4, and 2 mM [ethylenebis(oxyethylenenitrilo)]tetraacetic acid (EGTA), pH 6. 9, at different temperatures. We found that GMPCPP perfectly mimics GTP in its effect on spiral assembly under all ionic strength and temperature conditions. However, GMPCP in 10 mM Pipes behaves not as a GDP analogue, but as a GTP analogue. In 100 mM Pipes, GMPCP has characteristics that are intermediate between GDP and GTP. These data suggest that the alpha,beta methylene group in GMPCP and GMPCPP is sufficient to produce a GTP-like effect on vinblastine-induced tubulin self-assembly. This is consistent with previous observations that GMPCP-tubulin will assemble into microtubules in a 2 M glycerol and 100 mM Pipes buffer [Vulevic & Correia (1997) Biophys. J. 72, 1357-1375]. Our results demonstrate that an alpha,beta methylene modification of the guanine nucleotide phosphate moiety can induce a salt-dependent conformational change in the tubulin heterodimer that favors the GTP-tubulin structure. This has important implications for understanding allosteric interactions that occur in the binding of guanine nucleotides to tubulin.

  9. Azathioprine and 6-mercaptopurine (6-MP) suppress the human mixed lymphocyte reaction (MLR) by different mechanisms.

    PubMed Central

    Al-Safi, S A; Maddocks, J L

    1984-01-01

    6-MP inhibitory effects on the MLR were reversed by AIC (46%), adenine (32%), hypoxanthine (89%), adenosine (86%) and inosine (93%). AIC, adenine, hypoxanthine and inosine had no effect on azathioprine inhibition of the MLR. Adenosine at 10 microM caused 29% reversal and had no effect at 100-400 microM on azathioprine inhibition of the MLR. Reversal of 6-MP suppression of the MLR was decreased with the delay of adenosine addition. Guanine, xanthine and guanosine caused no reversal of 6-MP or azathioprine inhibitory effects on the MLR. These results show that azathioprine and 6-MP suppress the MLR by different mechanisms. PMID:6232936

  10. Transmutation of human glutathione transferase A2-2 with peroxidase activity into an efficient steroid isomerase.

    PubMed

    Pettersson, Par L; Johansson, Ann-Sofie; Mannervik, Bengt

    2002-08-16

    A major goal in protein engineering is the tailor-making of enzymes for specified chemical reactions. Successful attempts have frequently been based on directed molecular evolution involving libraries of random mutants in which variants with desired properties were identified. For the engineering of enzymes with novel functions, it would be of great value if the necessary changes of the active site could be predicted and implemented. Such attempts based on the comparison of similar structures with different substrate selectivities have previously met with limited success. However, the present work shows that the knowledge-based redesign restricted to substrate-binding residues in human glutathione transferase A2-2 can introduce high steroid double-bond isomerase activity into the enzyme originally characterized by glutathione peroxidase activity. Both the catalytic center activity (k(cat)) and catalytic efficiency (k(cat)/K(m)) match the values of the naturally evolved glutathione transferase A3-3, the most active steroid isomerase known in human tissues. The substrate selectivity of the mutated glutathione transferase was changed 7000-fold by five point mutations. This example demonstrates the functional plasticity of the glutathione transferase scaffold as well as the potential of rational active-site directed mutagenesis as a complement to DNA shuffling and other stochastic methods for the redesign of proteins with novel functions.

  11. Honey as an apitherapic product: its inhibitory effect on urease and xanthine oxidase.

    PubMed

    Sahin, Huseyin

    2016-01-01

    The aim of this study was to evaluate new natural inhibitor sources for the enzymes urease and xanthine oxidase (XO). Chestnut, oak and polyfloral honey extracts were used to determine inhibition effects of both enzymes. In addition to investigate inhibition, the antioxidant capacities of these honeys were determined using total phenolic content (TPC), ferric reducing antioxidant power (FRAP), and DPPH radical scavenging activity assays. Due to their high phenolic content, chestnut and oak honeys are found to be a powerful source for inhibition of both enzymes. Especially, oak honeys were efficient for urease inhibition with 0.012-0.021 g/mL IC50 values, and also chestnut honeys were powerful for XO inhibition with 0.028-0.039 g/mL IC50 values. Regular daily consumption of these honeys can prevent gastric ulcers deriving from Helicobacter pylori and pathological disorders mediated by reactive oxygen species.

  12. A role for xanthine oxidase in the control of fetal cardiovascular function in late gestation sheep

    PubMed Central

    Herrera, E A; Kane, A D; Hansell, J A; Thakor, A S; Allison, B J; Niu, Y; Giussani, D A

    2012-01-01

    Virtually nothing is known about the effects on fetal physiology of xanthine oxidase inhibition. This is despite maternal treatment with the xanthine oxidase inhibitor allopurinol being considered in human complicated pregnancy to protect the infant's brain from excessive generation of ROS. We investigated the in vivo effects of maternal treatment with allopurinol on fetal cardiovascular function in ovine pregnancy in late gestation. Under anaesthesia, pregnant ewes and their singleton fetus were instrumented with vascular catheters and flow probes around an umbilical and a fetal femoral artery at 118 ± 1 dGA (days of gestational age; term ca. 145 days). Five days later, mothers were infused i.v. with either vehicle (n= 11) or allopurinol (n= 10). Fetal cardiovascular function was stimulated with increasing bolus doses of phenylephrine (PE) following maternal vehicle or allopurinol. The effects of maternal allopurinol on maternal and fetal cardiovascular function were also investigated following fetal NO blockade (n= 6) or fetal β1-adrenergic antagonism (n= 7). Maternal allopurinol led to significant increases in fetal heart rate, umbilical blood flow and umbilical vascular conductance, effects abolished by fetal β1-adrenergic antagonism but not by fetal NO blockade. Maternal allopurinol impaired fetal α1-adrenergic pressor and femoral vasopressor responses and enhanced the gain of the fetal cardiac baroreflex. These effects of maternal allopurinol were restored to control levels during fetal NO blockade. Maternal treatment with allopurinol induced maternal hypotension, tachycardia and acid–base disturbance. We conclude that maternal treatment with allopurinol alters in vivo maternal, umbilical and fetal vascular function via mechanisms involving NO and β1-adrenergic stimulation. The evidence suggests that the use of allopurinol in clinical practice should be approached with caution. PMID:22331413

  13. Pleiotrophin-induced endothelial cell migration is regulated by xanthine oxidase-mediated generation of reactive oxygen species.

    PubMed

    Tsirmoula, Sotiria; Lamprou, Margarita; Hatziapostolou, Maria; Kieffer, Nelly; Papadimitriou, Evangelia

    2015-03-01

    Pleiotrophin (PTN) is a heparin-binding growth factor that induces cell migration through binding to its receptor protein tyrosine phosphatase beta/zeta (RPTPβ/ζ) and integrin alpha v beta 3 (ανβ3). In the present work, we studied the effect of PTN on the generation of reactive oxygen species (ROS) in human endothelial cells and the involvement of ROS in PTN-induced cell migration. Exogenous PTN significantly increased ROS levels in a concentration and time-dependent manner in both human endothelial and prostate cancer cells, while knockdown of endogenous PTN expression in prostate cancer cells significantly down-regulated ROS production. Suppression of RPTPβ/ζ through genetic and pharmacological approaches, or inhibition of c-src kinase activity abolished PTN-induced ROS generation. A synthetic peptide that blocks PTN-ανβ3 interaction abolished PTN-induced ROS generation, suggesting that ανβ3 is also involved. The latter was confirmed in CHO cells that do not express β3 or over-express wild-type β3 or mutant β3Y773F/Y785F. PTN increased ROS generation in cells expressing wild-type β3 but not in cells not expressing or expressing mutant β3. Phosphoinositide 3-kinase (PI3K) or Erk1/2 inhibition suppressed PTN-induced ROS production, suggesting that ROS production lays down-stream of PI3K or Erk1/2 activation by PTN. Finally, ROS scavenging and xanthine oxidase inhibition completely abolished both PTN-induced ROS generation and cell migration, while NADPH oxidase inhibition had no effect. Collectively, these data suggest that xanthine oxidase-mediated ROS production is required for PTN-induced cell migration through the cell membrane functional complex of ανβ3 and RPTPβ/ζ and activation of c-src, PI3K and ERK1/2 kinases. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Stability of the guanine endoperoxide intermediate: a computational challenge for density functional theory.

    PubMed

    Grüber, Raymond; Monari, Antonio; Dumont, Elise

    2014-12-11

    The addition of singlet molecular oxygen (1)O2 onto guanine is a most important and deleterious reaction in biological damage. We assess the efficiency of density functional theory for evaluating the respective stabilities of two intermediates that can form upon (1)O2 addition: a charge-separated adduct with a peroxide anion at the C8 position of guanine, and the corresponding cyclic endoperoxide across the 4,8-bond, of the imidazole ring. The reference post Hartree-Fock SCS-MP3/aug-cc-pVTZ//MP2/DZP++ level of theory provides an unambiguous assignment in favor of the endoperoxide intermediate, based on implicitly solvated structures, by -8.0 kcal·mol(-1). This value is taken as the reference for a systematic and extended benchmarck performed on 58 exchange--correlation functionals. While B3LYP remains commonly used for studying oxidative DNA lesions, we prove that the stability of the peroxide anion is overestimated by this functional, but also by other commonly used exchange-correlation functionals. The significant error (ca. +3 kcal·mol(-1) over a representative set of 58 functionals) arises from overdelocalization but also from the description of the dynamic correlation by the density functional. The significantly improved performance of several recently proposed functionals, including range-separated hybrids such as LC-BLYP, is outlined. We believe that our results will be of great help to further studies on the versatile chemistry of singlet oxygen-induced DNA damage, where complex reaction mechanisms are required to be depicted at a quantum level.

  15. Guanine nucleotide regulatory protein co-purifies with the D/sub 2/-dopamine receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senogles, S.E.; Caron, M.G.

    1986-05-01

    The D/sub 2/-dopamine receptor from bovine anterior pituitary was purified approx.1000 fold by affinity chromatography on CMOS-Sepharose. Reconstitution of the affinity-purified receptor into phospholipid vesicles revealed the presence of high and low affinity agonist sites as detected by N-n-propylnorapomorphine (NPA) competition experiments with /sup 3/H-spiperone. High affinity agonist binding could be converted to the low affinity form by guanine nucleotides, indicating the presence of an endogenous guanine nucleotide binding protein (N protein) in the affinity-purified D/sub 2/ receptor preparations. Furthermore, this preparation contained an agonist-sensitive GTPase activity which was stimulated 2-3 fold over basal by 10 ..mu..M NPA. /sup 35/S-GTP..gamma..Smore » binding to these preparations revealed a stoichiometry of 0.4-0.7 mole N protein/mole receptor, suggesting the N protein may be specifically coupled with the purified D/sub 2/-dopamine receptor and not present as a contaminant. Pertussis toxin treatment of the affinity purified receptor preparations prevented high affinity agonist binding, as well as agonist stimulation of the GTPase activity, presumably by inactivating the associated N protein. Pertussis toxin lead to the ADP-ribosylation of a protein of 39-40K on SDS-PAGE. These findings indicate that an endogenous N protein, N/sub i/ or N/sub o/, co-purifies with the D/sub 2/-dopamine receptor which may reflect a precoupling of this receptor with an N protein within the membranes.« less

  16. Purification and Biochemical Characterization of Glutathione S-Transferase from Down Syndrome and Normal Children Erythrocytes: A Comparative Study

    ERIC Educational Resources Information Center

    Hamed, Ragaa R.; Maharem, Tahany M.; Abdel-Meguid, Nagwa; Sabry, Gilane M.; Abdalla, Abdel-Monem; Guneidy, Rasha A.

    2011-01-01

    Down syndrome (DS) is the phenotypic manifestation of trisomy 21. Our study was concerned with the characterization and purification of glutathione S-transferase enzyme (GST) from normal and Down syndrome (DS) erythrocytes to illustrate the difference in the role of this enzyme in the cell. Glutathione S-transferase and glutathione (GSH) was…

  17. Enzymatic production of dietary nucleotides from low-soluble purine bases by an efficient, thermostable and alkali-tolerant biocatalyst.

    PubMed

    Del Arco, J; Cejudo-Sanches, J; Esteban, I; Clemente-Suárez, V J; Hormigo, D; Perona, A; Fernández-Lucas, J

    2017-12-15

    Traditionally, enzymatic synthesis of nucleoside-5'-monophosphates (5'-NMPs) using low water-soluble purine bases has been described as less efficient due to their low solubility in aqueous media. The use of enzymes from extremophiles, such as thermophiles or alkaliphiles, offers the potential to increase solubilisation of these bases by employing high temperatures or alkaline pH. This study describes the cloning, expression and purification of hypoxanthine-guanine-xanthine phosphoribosyltransferase from Thermus thermophilus (TtHGXPRT). Biochemical characterization indicates TtHGXPRT as a homotetramer with excellent activity and stability across a broad range of temperatures (50-90°C) and ionic strengths (0-500mMNaCl), but it also reveals an unusually high activity and stability under alkaline conditions (pH range 8-11). In order to explore the potential of TtHGXPRT as an industrial biocatalyst, enzymatic production of several dietary 5'-NMPs, such as 5'-GMP and 5'-IMP, was carried out at high concentrations of guanine and hypoxanthine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. An experimental and theoretical core-level study of tautomerism in guanine.

    PubMed

    Plekan, Oksana; Feyer, Vitaliy; Richter, Robert; Coreno, Marcello; Vall-Llosera, Gemma; Prince, Kevin C; Trofimov, Alexander B; Zaytseva, Irina L; Moskovskaya, Tatyana E; Gromov, Evgeniy V; Schirmer, Jochen

    2009-08-20

    The core level photoemission and near edge X-ray photoabsorption spectra of guanine in the gas phase have been measured and the results interpreted with the aid of high level ab initio calculations. Tautomers are clearly identified spectroscopically, and their relative free energies and Boltzmann populations at the temperature of the experiment (600 K) have been calculated and compared with the experimental results and with previous calculations. We obtain good agreement between experiment and the Boltzmann weighted theoretical photoemission spectra, which allows a quantitative determination of the ratio of oxo to hydroxy tautomer populations. For the photoabsorption spectra, good agreement is found for the C 1s and O 1s spectra but only fair agreement for the N 1s edge.

  19. The NEXT-A (N-terminal EXtension with Transferase and ARS) reaction.

    PubMed

    Taki, Masumi; Kuroiwa, Hiroyuki; Sisido, Masahiko

    2009-01-01

    L/F-transferase is known to catalyze transfer of hydrophobic amino acids from aminoacyl tRNA to the N-terminus of a protein possessing lysine or arginine as the N-terminus. Combining L/F-transferase with E. coli phenylalanyl-tRNA synthetase (ARS), we achieved non-ribosomal N-terminal-specific introduction of various kinds of nonnatural amino acids to a protein. A nonnatural amino acid is once charged onto an E. coli tRNA(Phe) by a mutant ARS in situ, and successively transferred from the tRNA to a target protein, namely the NEXT-A reaction. Besides alphaA294G mutation on the ARS, alphaT251A, betaG318W, or betaA356W double-mutation were effective to increase the introduction efficiency through the NEXT-A reaction. Protein specific fluorescence labelling via the NEXT-A reaction followed by Huisgen cycloaddition was also demonstrated.

  20. Age-related guanine nucleotide exchange factor, mouse Zizimin2, induces filopodia in bone marrow-derived dendritic cells

    PubMed Central

    2012-01-01

    Background We recently isolated and identified Zizimin2 as a functional factor that is highly expressed in murine splenic germinal center B cells after immunization with T-cell-dependent antigen. Zizimin2 was revealed to be a new family member of Dock (dedicator of cytokinesis), Dock11, which is the guanine nucleotide exchange factor for Cdc42, a low-molecular-weight GTPase. However, the molecular function of Zizimin2 in acquired immunity has not been elucidated. Results In this study, we show that the protein expression of Zizimin2, which is also restricted to lymphoid tissues and lymphocytes, is reduced in aged mice. Over-expression of full-length Zizimin2 induced filopodial formation in 293T cells, whereas expression of CZH2 domain inhibited it. Stimulation of Fcγ receptor and Toll-like receptor 4 triggered Zizimin2 up-regulation and Cdc42 activation in bone marrow-derived dendritic cells. Conclusions These data suggest that Zizimin2 is an immune-related and age-regulated guanine nucleotide exchange factor, which facilitates filopodial formation through activation of Cdc42, which results in activation of cell migration. PMID:22494997

  1. Glutathione transferases, regulators of cellular metabolism and physiology.

    PubMed

    Board, Philip G; Menon, Deepthi

    2013-05-01

    The cytosolic glutathione transferases (GSTs) comprise a super family of proteins that can be categorized into multiple classes with a mixture of highly specific and overlapping functions. The review covers the genetics, structure and function of the human cytosolic GSTs with particular attention to their emerging roles in cellular metabolism. All the catalytically active GSTs contribute to the glutathione conjugation or glutathione dependant-biotransformation of xenobiotics and many catalyze glutathione peroxidase or thiol transferase reactions. GSTs also catalyze glutathione dependent isomerization reactions required for the synthesis of several prostaglandins and steroid hormones and the catabolism of tyrosine. An increasing body of work has implicated several GSTs in the regulation of cell signaling pathways mediated by stress-activated kinases like Jun N-terminal kinase. In addition, some members of the cytosolic GST family have been shown to form ion channels in intracellular membranes and to modulate ryanodine receptor Ca(2+) channels in skeletal and cardiac muscle. In addition to their well established roles in the conjugation and biotransformation of xenobiotics, GSTs have emerged as significant regulators of pathways determining cell proliferation and survival and as regulators of ryanodine receptors that are essential for muscle function. This article is part of a Special Issue entitled Cellular functions of glutathione. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Oxidative generation of guanine radicals by carbonate radicals and their reactions with nitrogen dioxide to form site specific 5-guanidino-4-nitroimidazole lesions in oligodeoxynucleotides.

    PubMed

    Joffe, Avrum; Mock, Steven; Yun, Byeong Hwa; Kolbanovskiy, Alexander; Geacintov, Nicholas E; Shafirovich, Vladimir

    2003-08-01

    A simple photochemical approach is described for synthesizing site specific, stable 5-guanidino-4-nitroimidazole (NIm) adducts in single- and double-stranded oligodeoxynucleotides containing single and multiple guanine residues. The DNA sequences employed, 5'-d(ACC CG(1)C G(2)TC CG(3)C G(4)CC) and 5'-d(ACC CG(1)C G(2)TC C), were a portion of exon 5 of the p53 tumor suppressor gene, including the codons 157 (G(2)) and 158 (G(3)) mutation hot spots in the former sequence with four Gs and the codon 157 (G(2)) mutation hot spot in the latter sequence with two Gs. The nitration of oligodeoxynucleotides was initiated by the selective photodissociation of persulfate anions to sulfate radicals induced by UV laser pulses (308 nm). In aqueous solutions, of bicarbonate and nitrite anions, the sulfate radicals generate carbonate anion radicals and nitrogen dioxide radicals by one electron oxidation of the respective anions. The guanine residue in the oligodeoxynucleotide is oxidized by the carbonate anion radical to form the neutral guanine radical. While the nitrogen dioxide radicals do not react with any of the intact DNA bases, they readily combine with the guanine radicals at either the C8 or the C5 positions. The C8 addition generates the well-known 8-nitroguanine (8-nitro-G) lesions, whereas the C5 attack produces unstable adducts, which rapidly decompose to NIm lesions. The maximum yields of the nitro products (NIm + 8-nitro-G) were typically in the range of 20-40%, depending on the number of guanine residues in the sequence. The ratio of the NIm to 8-nitro-G lesions gradually decreases from 3.4 in the model compound, 2',3',5'-tri-O-acetylguanosine, to 2.1-2.6 in the single-stranded oligodeoxynucleotides and to 0.8-1.1 in the duplexes. The adduct of the 5'-d(ACC CG(1)C G(2)TC C) oligodeoxynucleotide containing the NIm lesion in codon 157 (G(2)) was isolated in HPLC-pure form. The integrity of this adduct was established by a detailed analysis of exonuclease digestion

  3. Binding effects of Mn²⁺ and Zn²⁺ ions on the vibrational properties of guanine-cytosine base pairs in the Watson-Crick and Hoogsteen configurations.

    PubMed

    Morari, Cristian; Bogdan, Diana; Muntean, Cristina M

    2012-11-01

    The binding effects of Mn²⁺ and Zn²⁺ ions on the vibrational properties of guanine-cytosine base pairs have been performed using density functional theory investigations. The calculations were carried out on Watson-Crick and Hoogsteen configurations of the base pairs. We have found, that in Watson-Crick configuration, the metal is coordinated to N7 atom of guanine while, in the case of Hoogsteen configuration, the coordination is at N3 atom of guanine. We have pointed out the vibrational bands that can be used to detect the presence of metallic ions in the Watson-Crick and Hoogsteen structures. Our results show that the vibrational amplitudes of metallic atoms are strong for wavenumbers lower than 600 cm⁻¹. Also, we predict that the distinction between Watson-Crick and Hoogsteen configurations can be seen around 85, 170 and 310 cm⁻¹.

  4. Higher order structural effects stabilizing the reverse Watson–Crick Guanine-Cytosine base pair in functional RNAs

    PubMed Central

    Chawla, Mohit; Abdel-Azeim, Safwat; Oliva, Romina; Cavallo, Luigi

    2014-01-01

    The G:C reverse Watson–Crick (W:W trans) base pair, also known as Levitt base pair in the context of tRNAs, is a structurally and functionally important base pair that contributes to tertiary interactions joining distant domains in functional RNA molecules and also participates in metabolite binding in riboswitches. We previously indicated that the isolated G:C W:W trans base pair is a rather unstable geometry, and that dicationic metal binding to the Guanine base or posttranscriptional modification of the Guanine can increase its stability. Herein, we extend our survey and report on other H-bonding interactions that can increase the stability of this base pair. To this aim, we performed a bioinformatics search of the PDB to locate all the occurencies of G:C trans base pairs. Interestingly, 66% of the G:C trans base pairs in the PDB are engaged in additional H-bonding interactions with other bases, the RNA backbone or structured water molecules. High level quantum mechanical calculations on a data set of representative crystal structures were performed to shed light on the structural stability and energetics of the various crystallographic motifs. This analysis was extended to the binding of the preQ1 metabolite to a preQ1-II riboswitch. PMID:24121683

  5. Uric acid, an important screening tool to detect inborn errors of metabolism: a case series.

    PubMed

    Jasinge, Eresha; Kularatnam, Grace Angeline Malarnangai; Dilanthi, Hewa Warawitage; Vidanapathirana, Dinesha Maduri; Jayasena, Kandana Liyanage Subhashinie Priyadarshika Kapilani Menike; Chandrasiri, Nambage Dona Priyani Dhammika; Indika, Neluwa Liyanage Ruwan; Ratnayake, Pyara Dilani; Gunasekara, Vindya Nandani; Fairbanks, Lynette Dianne; Stiburkova, Blanka

    2017-09-06

    Uric acid is the metabolic end product of purine metabolism in humans. Altered serum and urine uric acid level (both above and below the reference ranges) is an indispensable marker in detecting rare inborn errors of metabolism. We describe different case scenarios of 4 Sri Lankan patients related to abnormal uric acid levels in blood and urine. CASE 1: A one-and-half-year-old boy was investigated for haematuria and a calculus in the bladder. Xanthine crystals were seen in microscopic examination of urine sediment. Low uric acid concentrations in serum and low urinary fractional excretion of uric acid associated with high urinary excretion of xanthine and hypoxanthine were compatible with xanthine oxidase deficiency. CASE 2: An 8-month-old boy presented with intractable seizures, feeding difficulties, screaming episodes, microcephaly, facial dysmorphism and severe neuro developmental delay. Low uric acid level in serum, low fractional excretion of uric acid and radiological findings were consistent with possible molybdenum cofactor deficiency. Diagnosis was confirmed by elevated levels of xanthine, hypoxanthine and sulfocysteine levels in urine. CASE 3: A 3-year-10-month-old boy presented with global developmental delay, failure to thrive, dystonia and self-destructive behaviour. High uric acid levels in serum, increased fractional excretion of uric acid and absent hypoxanthine-guanine phosphoribosyltransferase enzyme level confirmed the diagnosis of Lesch-Nyhan syndrome. CASE 4: A 9-year-old boy was investigated for lower abdominal pain, gross haematuria and right renal calculus. Low uric acid level in serum and increased fractional excretion of uric acid pointed towards hereditary renal hypouricaemia which was confirmed by genetic studies. Abnormal uric acid level in blood and urine is a valuable tool in screening for clinical conditions related to derangement of the nucleic acid metabolic pathway.

  6. Hydroxylated chalcones with dual properties: xanthine oxidase inhibitors and radical scavengers

    PubMed Central

    Hofmann, Emily; Webster, Jonathan; Do, Thuy; Kline, Reid; Snider, Lindsey; Hauser, Quintin; Higginbottom, Grace; Campbell, Austin; Ma, Lili; Paula, Stefan

    2016-01-01

    In this study, we evaluated the abilities of a series of chalcones to inhibit the activity of the enzyme xanthine oxidase (XO) and to scavenge radicals. 20 mono- and polyhydroxylated chalcone derivatives were synthesized by Claisen-Schmidt condensation reactions and then tested for inhibitory potency against XO, a known generator of reactive oxygen species (ROS). In parallel, the ability of the synthesized chalcones to scavenge a stable radical was determined. Structure-activity relationship analysis in conjunction with molecular docking indicated that the most active XO inhibitors carried a minimum of three hydroxyl groups. Moreover, the most effective radical scavengers had two neighboring hydroxyl groups on at least one of the two phenyl rings. Since it has been proposed previously that XO inhibition and radical scavenging could be useful properties for reduction of ROS-levels in tissue, we determined the chalcones’ effects to rescue neurons subjected to ROS-induced stress created by the addition of β-amyloid peptide. Best protection was provided by chalcones that combined good inhibitory potency with high radical scavenging ability in a single molecule, an observation that points to a potential therapeutic value of this compound class. PMID:26762836

  7. Longevity and aging. Role of free radicals and xanthine oxidase. A review.

    PubMed

    Labat-Robert, J; Robert, L

    2014-04-01

    Longevity and aging are differently regulated. Longevity has an important part of genetic determinants, aging is essentially post-genetic. Among the genes involved in longevity determination, sirtuins, activated also by calorie restriction and some others as the TOR pathway, attracted special interest after the insulin–IGF pathway first shown to regulate longevity in model organisms. For most of these genes, postponement of life-threatening diseases is the basis of their action which never exceeds about 35% of all determinants, in humans. Among the post-genetic mechanisms responsible for age-related decline of function, free radicals attracted early interest as well as the Maillard reaction, generating also free radicals. Most attempts to remediate to free radical damage failed however, although different scavenger mechanisms and protective substances are present in the organism. Synthetic protectors were also tested without success. The only example of a successful treatment of a free radical mediated pathology is the case of xanthine oxidase, involved in cardiovascular pathology, essentially during the ischemia-reperfusion process. Its inhibition by allopurinol is currently used to fight this deadly syndrome.

  8. Regulation of Endothelial Permeability by Glutathione S-Transferase Pi Against Actin Polymerization.

    PubMed

    Yang, Yang; Yin, Fangyuan; Hang, Qiyun; Dong, Xiaoliang; Chen, Jiao; Li, Ling; Cao, Peng; Yin, Zhimin; Luo, Lan

    2018-01-01

    Inflammation-induced injury of the endothelial barrier occurs in several pathological conditions, including atherosclerosis, ischemia, and sepsis. Endothelial cytoskeleton rearrangement is an important pathological mechanism by which inflammatory stimulation triggers an increase of vascular endothelial permeability. However, the mechanism maintaining endothelial cell barrier function against inflammatory stress is not fully understood. Glutathione S-transferase pi (GSTpi) exists in various types of cells and protects them against different stresses. In our previous study, GSTpi was found to act as a negative regulator of inflammatory responses. We used a Transwell permeability assay to test the influence of GSTpi and its transferase activity on the increase of endothelial permeability induced by tumor necrosis factor alpha (TNF-α). TNF-α-induced actin remodeling and the influence of GSTpi were observed by using laser confocal microscopy. Western blotting was used to test the influence of GSTpi on TNF-α-activated p38 mitogen-activated protein kinase (MAPK)/MK2/heat shock protein 27 (HSP27). GSTpi reduced TNF-α-induced stress fiber formation and endothelial permeability increase by restraining actin cytoskeleton rearrangement, and this reduction was unrelated to its transferase activity. We found that GSTpi inhibited p38MAPK phosphorylation by directly binding p38 and influenced downstream substrate HSP27-induced actin remodeling. GSTpi inhibited TNF-α-induced actin remodeling, stress fiber formation and endothelial permeability increase by inhibiting the p38MAPK/HSP27 signaling pathway. © 2018 The Author(s). Published by S. Karger AG, Basel.

  9. Elevated Nicotinamide Phosphoribosyl Transferase in Skeletal Muscle Augments Exercise Performance and Mitochondrial Respiratory Capacity Following Exercise Training

    PubMed Central

    Brouwers, Bram; Stephens, Natalie A.; Costford, Sheila R.; Hopf, Meghan E.; Ayala, Julio E.; Yi, Fanchao; Xie, Hui; Li, Jian-Liang; Gardell, Stephen J.; Sparks, Lauren M.; Smith, Steven R.

    2018-01-01

    Mice overexpressing NAMPT in skeletal muscle (NamptTg mice) develop higher exercise endurance and maximal aerobic capacity (VO2max) following voluntary exercise training compared to wild-type (WT) mice. Here, we aimed to investigate the mechanisms underlying by determining skeletal muscle mitochondrial respiratory capacity in NamptTg and WT mice. Body weight and body composition, tissue weight (gastrocnemius, quadriceps, soleus, heart, liver, and epididymal white adipose tissue), skeletal muscle and liver glycogen content, VO2max, skeletal muscle mitochondrial respiratory capacity (measured by high-resolution respirometry), skeletal muscle gene expression (measured by microarray and qPCR), and skeletal muscle protein content (measured by Western blot) were determined following 6 weeks of voluntary exercise training (access to running wheel) in 13-week-old male NamptTg (exercised NamptTg) mice and WT (exercised WT) mice. Daily running distance and running time during the voluntary exercise training protocol were recorded. Daily running distance (p = 0.51) and running time (p = 0.85) were not significantly different between exercised NamptTg mice and exercised WT mice. VO2max was higher in exercised NamptTg mice compared to exercised WT mice (p = 0.02). Body weight (p = 0.92), fat mass (p = 0.49), lean mass (p = 0.91), tissue weight (all p > 0.05), and skeletal muscle (p = 0.72) and liver (p = 0.94) glycogen content were not significantly different between exercised NamptTg mice and exercised WT mice. Complex I oxidative phosphorylation (OXPHOS) respiratory capacity supported by fatty acid substrates (p < 0.01), maximal (complex I+II) OXPHOS respiratory capacity supported by glycolytic (p = 0.02) and fatty acid (p < 0.01) substrates, and maximal uncoupled respiratory capacity supported by fatty acid substrates (p < 0.01) was higher in exercised NamptTg mice compared to exercised WT mice. Transcriptomic analyses revealed differential expression for genes involved in oxidative metabolism in exercised NamptTg mice compared to exercised WT mice, specifically, enrichment for the gene set related to the SIRT3-mediated signaling pathway. SIRT3 protein content correlated with NAMPT protein content (r = 0.61, p = 0.04). In conclusion, NamptTg mice develop higher exercise capacity following voluntary exercise training compared to WT mice, which is paralleled by higher mitochondrial respiratory capacity in skeletal muscle. The changes in SIRT3 targets suggest that these effects are due to remodeling of mitochondrial function. PMID:29942262

  10. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  11. 21 CFR 862.1100 - Aspartate amino transferase (AST/SGOT) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Aspartate amino transferase (AST/SGOT) test system. 862.1100 Section 862.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  12. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  13. 21 CFR 862.1100 - Aspartate amino transferase (AST/SGOT) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Aspartate amino transferase (AST/SGOT) test system. 862.1100 Section 862.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  14. 21 CFR 862.1100 - Aspartate amino transferase (AST/SGOT) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Aspartate amino transferase (AST/SGOT) test system. 862.1100 Section 862.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  15. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  16. 21 CFR 862.1100 - Aspartate amino transferase (AST/SGOT) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Aspartate amino transferase (AST/SGOT) test system. 862.1100 Section 862.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  17. 21 CFR 862.1100 - Aspartate amino transferase (AST/SGOT) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Aspartate amino transferase (AST/SGOT) test system. 862.1100 Section 862.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  18. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  19. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  20. The reductive half-reaction of xanthine dehydrogenase from Rhodobacter capsulatus: the role of Glu232 in catalysis.

    PubMed

    Hall, James; Reschke, Stefan; Cao, Hongnan; Leimkühler, Silke; Hille, Russ

    2014-11-14

    The kinetic properties of an E232Q variant of the xanthine dehydrogenase from Rhodobacter capsulatus have been examined to ascertain whether Glu(232) in wild-type enzyme is protonated or unprotonated in the course of catalysis at neutral pH. We find that kred, the limiting rate constant for reduction at high [xanthine], is significantly compromised in the variant, a result that is inconsistent with Glu(232) being neutral in the active site of the wild-type enzyme. A comparison of the pH dependence of both kred and kred/Kd from reductive half-reaction experiments between wild-type and enzyme and the E232Q variant suggests that the ionized Glu(232) of wild-type enzyme plays an important role in catalysis by discriminating against the monoanionic form of substrate, effectively increasing the pKa of substrate by two pH units and ensuring that at physiological pH the neutral form of substrate predominates in the Michaelis complex. A kinetic isotope study of the wild-type R. capsulatus enzyme indicates that, as previously determined for the bovine and chicken enzymes, product release is principally rate-limiting in catalysis. The disparity in rate constants for the chemical step of the reaction and product release, however, is not as great in the bacterial enzyme as compared with the vertebrate forms. The results indicate that the bacterial and bovine enzymes catalyze the chemical step of the reaction to the same degree and that the faster turnover observed with the bacterial enzyme is due to a faster rate constant for product release than is seen with the vertebrate enzyme. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Xanthine oxidoreductase mediates membrane docking of milk-fat droplets but is not essential for apocrine lipid secretion.

    PubMed

    Monks, Jenifer; Dzieciatkowska, Monika; Bales, Elise S; Orlicky, David J; Wright, Richard M; McManaman, James L

    2016-10-15

    Xanthine oxidoreductase (XOR) modulates milk lipid secretion and lactation initiation. XOR is required for butyrophilin1a1 clustering in the membrane during milk lipid secretion. XOR mediates apical membrane reorganization during milk lipid secretion. Loss of XOR delays milk fat globule secretion. XOR loss alters the proteome of milk fat globules. Apocrine secretion is utilized by epithelial cells of exocrine glands. These cells bud off membrane-bound particles into the lumen of the gland, losing a portion of the cytoplasm in the secretion product. The lactating mammary gland secretes milk lipid by this mechanism, and xanthine oxidoreductase (XOR) has long been thought to be functionally important. We generated mammary-specific XOR knockout (MGKO) mice, expecting lactation to fail. Histology of the knockout glands showed very large lipid droplets enclosed in the mammary alveolar cells, but milk analysis showed that these large globules were secreted. Butyrophilin, a membrane protein known to bind to XOR, was clustered at the point of contact of the cytoplasmic lipid droplet with the apical plasma membrane, in the wild-type gland but not in the knockout, suggesting that XOR mediates 'docking' to this membrane. Secreted milk fat globules were isolated from mouse milk of wild-type and XOR MGKO dams, and subjected to LC-MS/MS for analysis of protein component. Proteomic results showed that loss of XOR leads to an increase in cytoplasmic, cytoskeletal, Golgi apparatus and lipid metabolism proteins associated with the secreted milk fat globule. Association of XOR with the lipid droplet results in membrane docking and more efficient retention of cytoplasmic components by the secretory cell. Loss of XOR then results in a reversion to a more rudimentary, less efficient, apocrine secretion mechanism, but does not prevent milk fat globule secretion. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  2. Aptamer/Au nanoparticles/cobalt sulfide nanosheets biosensor for 17β-estradiol detection using a guanine-rich complementary DNA sequence for signal amplification.

    PubMed

    Huang, Ke-Jing; Liu, Yu-Jie; Zhang, Ji-Zong; Cao, Jun-Tao; Liu, Yan-Ming

    2015-05-15

    We have developed a sensitive sensing platform for 17β-estradiol by combining the aptamer probe and hybridization reaction. In this assay, 2-dimensional cobalt sulfide nanosheet (CoS) was synthesized by a simple hydrothermal method with L-cysteine as sulfur donor. An electrochemical aptamer biosensor was constructed by assembling a thiol group tagged 17β-estradiol aptamer on CoS and gold nanoparticles (AuNPs) modified electrode. Methylene blue was applied as a tracer and a guanine-rich complementary DNA sequence was designed to bind with the unbound 17β-estradiol aptamer for signal amplification. The binding of guanine-rich DNA to the aptamer was inhibited when the aptamer captured 17β-estradiol. Using guanine-rich DNA in the assay greatly amplified the redox signal of methylene blue bound to the detection probe. The CoS/AuNPs film formed on the biosensor surface appeared to be a good conductor for accelerating the electron transfer. The method demonstrated a high sensitivity of detection with the dynamic concentration range spanning from 1.0×10(-9) to 1.0×10(-12) M and a detection limit of 7.0×10(-13) M. Besides, the fabricated biosensor exhibited good selectivity toward 17β-estradiol even when interferents were presented at 100-fold concentrations. Our attempt will extend the application of the CoS nanosheet and this signal amplification assay to biosensing areas. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Fluorescent Sensing of Guanine and Guanosine Monophosphate with Conjugated Receptors Incorporating Aniline and Naphthyridine Moieties.

    PubMed

    Lu, Shao-Hung; Phang, Riping; Fang, Jim-Min

    2016-04-15

    Ethyne-linked naphthyridine-aniline conjugated molecules are selective sensors of decylguanine in dichloromethane and guanosine monophosphate in water (Kass = 16,000 M(-1)). The 2-acetamido-1,8-naphthyridine moiety binds with guanine in a DAA-ADD triply hydrogen-bonded motif. The aniline moiety enhances an electron-donating effect, and the substituent is tuned to attain extra hydrogen bonds, π-π stacking, and electrostatic interactions. The proposed binding modes are supported by a Job plot, ESI-MS, (1)H NMR, UV-vis, and fluorescence spectral analyses.

  4. Endogenous 5-methylcytosine protects neighboring guanines from N7 and O6-methylation and O6-pyridyloxobutylation by the tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone.

    PubMed

    Ziegel, Rebecca; Shallop, Anthony; Upadhyaya, Pramod; Jones, Roger; Tretyakova, Natalia

    2004-01-20

    All CG dinucleotides along exons 5-8 of the p53 tumor suppressor gene contain endogenous 5-methylcytosine (MeC). These same sites (e.g., codons 157, 158, 245, 248, and 273) are mutational hot spots in smoking-induced lung cancer. Several groups used the UvrABC endonuclease incision assay to demonstrate that methylated CG dinucleotides of the p53 gene are the preferred binding sites for the diol epoxides of bay region polycyclic aromatic hydrocarbons (PAH). In contrast, effects of endogenous cytosine methylation on the distribution of DNA lesions induced by tobacco-specific nitrosamines, e.g., 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), have not been elucidated. In the work presented here, a stable isotope labeling HPLC-ESI-MS/MS approach was employed to analyze the reactivity of the N7 and O6 positions of guanines within hemimethylated and fully methylated CG dinucleotides toward NNK-derived methylating and pyridyloxobutylating species. 15N3-labeled guanine bases were placed within synthetic DNA sequences representing endogenously methylated p53 codons 154, 157, and 248, followed by treatment with acetylated precursors to NNK diazohydroxides. HPLC-ESI-MS/MS analysis was used to determine the relative yields of N7- and O6-guanine adducts at the 15N3-labeled position. In all cases, the presence of MeC inhibited the formation of N7-methylguanine, O6-methylguanine, and O6-pyridyloxobutylguanine at a neighboring G, with the greatest decrease observed in fully methylated dinucleotides and at guanines preceded by MeC. Furthermore, the O6-Me-dG/N7-Me-G molar ratios were decreased in the presence of the 5'-neighboring MeC, suggesting that the observed decline in O6-alkylguanine adduct yields is, at least partially, a result of an altered reactivity pattern in methylated CG dinucleotides. These results indicate that, unlike N2-guanine adducts of PAH diol epoxides, NNK-induced N7- and O6-alkylguanine adducts are not preferentially formed at the endogenously

  5. Role of a guanine nucleotide-binding protein in. cap alpha. /sub 1/-adrenergic receptor-mediated Ca/sup 2 +/ mobilization in DDT/sub 1/ MF-2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cornett, L.E.; Norris, J.S.

    1987-11-01

    In this study the mechanisms involved in ..cap alpha../sub 1/-adrenergic receptor-mediated Ca/sup 2 +/ mobilization at the level of the plasma membrane were investigated. Stimulation of /sup 45/Ca/sup 2 +/ efflux from saponin-permeabilized DDT/sub 1/ MF-2 cells was observed with the addition of either the ..cap alpha../sub 1/-adrenergic agonist phenylephrine and guanosine-5'-triphosphate or the nonhydrolyzable guanine nucleotide guanylyl-imidodiphosphate. In the presence of (/sup 32/P) NAD, pertussis toxin was found to catalyze ADP-ribosylation of a M/sub r/ = 40,500 (n = 8) peptide in membranes prepared from DDT/sub 1/, MF-2 cells, possibly the ..cap alpha..-subunit of N/sub i/. However, stimulation ofmore » unidirectional /sup 45/Ca/sup 2 +/ efflux by phenylephrine was not affected by previous treatment of cells with 100 ng/ml pertussis toxin. These data suggest that the putative guanine nucleotide-binding protein which couples the ..cap alpha../sub 1/-adrenergic receptor to Ca/sup 2 +/ mobilization in DDT/sub 1/ MF-2 cells is not a pertussis toxin substrate and may possibly be an additional member of guanine nucleotide binding protein family.« less

  6. A 4'-phosphopantetheinyl transferase mediates non-ribosomal peptide synthetase activation in Aspergillus fumigatus.

    PubMed

    Neville, Claire; Murphy, Alan; Kavanagh, Kevin; Doyle, Sean

    2005-04-01

    Aspergillus fumigatus is a significant human pathogen. Non-ribosomal peptide (NRP) synthesis is thought to be responsible for a significant proportion of toxin and siderophore production in the organism. Furthermore, it has been shown that 4'-phosphopantetheinylation is required for the activation of key enzymes involved in non-ribosomal peptide synthesis in other species. Here we report the cloning, recombinant expression and functional characterisation of a 4'-phosphopantetheinyl transferase from A. fumigatus and the identification of an atypical NRP synthetase (Afpes1), spanning 14.3 kb. Phylogenetic analysis has shown that the NRP synthetase exhibits greatest identity to NRP synthetases from Metarhizium anisolpiae (PesA) and Alternaria brassicae (AbrePsy1). Northern hybridisation and RT-PCR analysis have confirmed that both genes are expressed in A. fumigatus. A 120 kDa fragment of the A. fumigatus NRP synthetase, containing a putative thiolation domain, was cloned and expressed in the baculovirus expression system. Detection of a 4'-phosphopantetheinylated peptide (SFSAMK) from this protein, by MALDI-TOF mass spectrometric analysis after coincubation of the 4'-phosphopantetheinyl transferase with the recombinant NRP synthetase fragment and acetyl CoA, confirms that it is competent to play a role in NRP synthetase activation in A. fumigatus. The 4'-phosphopantetheinyl transferase also activates, by 4'-phosphopantetheinylation, recombinant alpha-aminoadipate reductase (Lys2p) from Candida albicans, a key enzyme involved in lysine biosynthesis.

  7. Structural snapshots along the reaction pathway of Yersinia pestis RipA, a putative butyryl-CoA transferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torres, Rodrigo; Lan, Benson; Latif, Yama

    2014-04-01

    The crystal structures of Y. pestis RipA mutants were determined to provide insights into the CoA transferase reaction pathway. Yersinia pestis, the causative agent of bubonic plague, is able to survive in both extracellular and intracellular environments within the human host, although its intracellular survival within macrophages is poorly understood. A novel Y. pestis three-gene rip (required for intracellular proliferation) operon, and in particular ripA, has been shown to be essential for survival and replication in interferon γ-induced macrophages. RipA was previously characterized as a putative butyryl-CoA transferase proposed to yield butyrate, a known anti-inflammatory shown to lower macrophage-produced NOmore » levels. RipA belongs to the family I CoA transferases, which share structural homology, a conserved catalytic glutamate which forms a covalent CoA-thioester intermediate and a flexible loop adjacent to the active site known as the G(V/I)G loop. Here, functional and structural analyses of several RipA mutants are presented in an effort to dissect the CoA transferase mechanism of RipA. In particular, E61V, M31G and F60M RipA mutants show increased butyryl-CoA transferase activities when compared with wild-type RipA. Furthermore, the X-ray crystal structures of E61V, M31G and F60M RipA mutants, when compared with the wild-type RipA structure, reveal important conformational changes orchestrated by a conserved acyl-group binding-pocket phenylalanine, Phe85, and the G(V/I)G loop. Binary structures of M31G RipA and F60M RipA with two distinct CoA substrate conformations are also presented. Taken together, these data provide CoA transferase reaction snapshots of an open apo RipA, a closed glutamyl-anhydride intermediate and an open CoA-thioester intermediate. Furthermore, biochemical analyses support essential roles for both the catalytic glutamate and the flexible G(V/I)G loop along the reaction pathway, although further research is required to fully

  8. Xanthine Oxidoreductase Function Contributes to Normal Wound Healing.

    PubMed

    Madigan, Michael C; McEnaney, Ryan M; Shukla, Ankur J; Hong, Guiying; Kelley, Eric E; Tarpey, Margaret M; Gladwin, Mark; Zuckerbraun, Brian S; Tzeng, Edith

    2015-04-14

    Chronic, nonhealing wounds result in patient morbidity and disability. Reactive oxygen species (ROS) and nitric oxide (NO) are both required for normal wound repair, and derangements of these result in impaired healing. Xanthine oxidoreductase (XOR) has the unique capacity to produce both ROS and NO. We hypothesize that XOR contributes to normal wound healing. Cutaneous wounds were created in C57Bl6 mice. XOR was inhibited with dietary tungsten or allopurinol. Topical hydrogen peroxide (H2O2, 0.15%) or allopurinol (30 μg) was applied to wounds every other day. Wounds were monitored until closure or collected at d 5 to assess XOR expression and activity, cell proliferation and histology. The effects of XOR, nitrite, H2O2 and allopurinol on keratinocyte cell (KC) and endothelial cell (EC) behavior were assessed. We identified XOR expression and activity in the skin and wound edges as well as granulation tissue. Cultured human KCs also expressed XOR. Tungsten significantly inhibited XOR activity and impaired healing with reduced ROS production with reduced angiogenesis and KC proliferation. The expression and activity of other tungsten-sensitive enzymes were minimal in the wound tissues. Oral allopurinol did not reduce XOR activity or alter wound healing but topical allopurinol significantly reduced XOR activity and delayed healing. Topical H2O2 restored wound healing in tungsten-fed mice. In vitro, nitrite and H2O2 both stimulated KC and EC proliferation and EC migration. These studies demonstrate for the first time that XOR is abundant in wounds and participates in normal wound healing through effects on ROS production.

  9. Mechanism of epoxide hydrolysis in microsolvated nucleotide bases adenine, guanine and cytosine: a DFT study.

    PubMed

    Vijayalakshmi, Kunduchi P; Mohan, Neetha; Ajitha, Manjaly J; Suresh, Cherumuttathu H

    2011-07-21

    Six water molecules have been used for microsolvation to outline a hydrogen bonded network around complexes of ethylene epoxide with nucleotide bases adenine (EAw), guanine (EGw) and cytosine (ECw). These models have been developed with the MPWB1K-PCM/6-311++G(3df,2p)//MPWB1K/6-31+G(d,p) level of DFT method and calculated S(N)2 type ring opening of the epoxide due to amino group of the nucleotide bases, viz. the N6 position of adenine, N2 position of guanine and N4 position of cytosine. Activation energy (E(act)) for the ring opening was found to be 28.06, 28.64, and 28.37 kcal mol(-1) respectively for EAw, EGw and ECw. If water molecules were not used, the reactions occurred at considerably high value of E(act), viz. 53.51 kcal mol(-1) for EA, 55.76 kcal mol(-1) for EG and 56.93 kcal mol(-1) for EC. The ring opening led to accumulation of negative charge on the developing alkoxide moiety and the water molecules around the charge localized regions showed strong hydrogen bond interactions to provide stability to the intermediate systems EAw-1, EGw-1 and ECw-1. This led to an easy migration of a proton from an activated water molecule to the alkoxide moiety to generate a hydroxide. Almost simultaneously, a proton transfer chain reaction occurred through the hydrogen bonded network of water molecules and resulted in the rupture of one of the N-H bonds of the quaternized amino group. The highest value of E(act) for the proton transfer step of the reaction was 2.17 kcal mol(-1) for EAw, 2.93 kcal mol(-1) for EGw and 0.02 kcal mol(-1) for ECw. Further, the overall reaction was exothermic by 17.99, 22.49 and 13.18 kcal mol(-1) for EAw, EGw and ECw, respectively, suggesting that the reaction is irreversible. Based on geometric features of the epoxide-nucleotide base complexes and the energetics, the highest reactivity is assigned for adenine followed by cytosine and guanine. Epoxide-mediated damage of DNA is reported in the literature and the present results suggest that

  10. A compositional segmentation of the human mitochondrial genome is related to heterogeneities in the guanine mutation rate

    PubMed Central

    Samuels, David C.; Boys, Richard J.; Henderson, Daniel A.; Chinnery, Patrick F.

    2003-01-01

    We applied a hidden Markov model segmentation method to the human mitochondrial genome to identify patterns in the sequence, to compare these patterns to the gene structure of mtDNA and to see whether these patterns reveal additional characteristics important for our understanding of genome evolution, structure and function. Our analysis identified three segmentation categories based upon the sequence transition probabilities. Category 2 segments corresponded to the tRNA and rRNA genes, with a greater strand-symmetry in these segments. Category 1 and 3 segments covered the protein- coding genes and almost all of the non-coding D-loop. Compared to category 1, the mtDNA segments assigned to category 3 had much lower guanine abundance. A comparison to two independent databases of mitochondrial mutations and polymorphisms showed that the high substitution rate of guanine in human mtDNA is largest in the category 3 segments. Analysis of synonymous mutations showed the same pattern. This suggests that this heterogeneity in the mutation rate is partly independent of respiratory chain function and is a direct property of the genome sequence itself. This has important implications for our understanding of mtDNA evolution and its use as a ‘molecular clock’ to determine the rate of population and species divergence. PMID:14530452

  11. Sensitive detection of mercury and copper ions by fluorescent DNA/Ag nanoclusters in guanine-rich DNA hybridization

    NASA Astrophysics Data System (ADS)

    Peng, Jun; Ling, Jian; Zhang, Xiu-Qing; Bai, Hui-Ping; Zheng, Liyan; Cao, Qiu-E.; Ding, Zhong-Tao

    2015-02-01

    In this work, we designed a new fluorescent oligonucleotides-stabilized silver nanoclusters (DNA/AgNCs) probe for sensitive detection of mercury and copper ions. This probe contains two tailored DNA sequence. One is a signal probe contains a cytosine-rich sequence template for AgNCs synthesis and link sequence at both ends. The other is a guanine-rich sequence for signal enhancement and link sequence complementary to the link sequence of the signal probe. After hybridization, the fluorescence of hybridized double-strand DNA/AgNCs is 200-fold enhanced based on the fluorescence enhancement effect of DNA/AgNCs in proximity of guanine-rich DNA sequence. The double-strand DNA/AgNCs probe is brighter and stable than that of single-strand DNA/AgNCs, and more importantly, can be used as novel fluorescent probes for detecting mercury and copper ions. Mercury and copper ions in the range of 6.0-160.0 and 6-240 nM, can be linearly detected with the detection limits of 2.1 and 3.4 nM, respectively. Our results indicated that the analytical parameters of the method for mercury and copper ions detection are much better than which using a single-strand DNA/AgNCs.

  12. Quantitative analysis of the interactions between prenyl Rab9, GDP dissociation inhibitor-alpha, and guanine nucleotides.

    PubMed

    Shapiro, A D; Pfeffer, S R

    1995-05-12

    Rab9 is a Ras-like GTPase required for the transport of mannose 6-phosphate receptors between late endosomes and the trans Golgi network. Rab9 occurs in the cytosol as a complex with GDP dissociation inhibitor (GDI), which we have shown delivers prenyl Rab9 to late endosomes in a functional form. We report here basal rate constants for guanine nucleotide dissociation and GTP hydrolysis for prenyl Rab9. Both rate constants were influenced in part by the hydrophobic environment of the prenyl group. Guanine nucleotide dissociation and GTP hydrolysis rates were lower in the presence of lipid; detergent stimulated intrinsic nucleotide exchange. GDI-alpha inhibited GDP dissociation from prenyl Rab9 by 2.4-fold. GDI-alpha associated with prenyl Rab9 with a KD of 60 nM in 0.1% Lubrol and 23 nM in 0.02% Lubrol. In 0.1% Lubrol, GDI-alpha inhibited GDP dissociation half maximally at 72 +/- 18 nM, consistent with the KD determinations. These data suggest that GDI-alpha associates with prenyl Rab9 with a KD of < or = 23 nM under physiological conditions. Finally, a previously uncharacterized minor form of GDI-alpha inhibited GDP dissociation from prenyl Rab9 by 1.9-fold and bound prenyl Rab9 with a KD of 67 nM in 0.1% Lubrol.

  13. BIG1, a brefeldin A-inhibited guanine nucleotide-exchange protein modulates ABCA1 trafficking and function

    PubMed Central

    Lin, Sisi; Zhou, Chun; Neufeld, Edward; Wang, Yu-Hua; Xu, Suo-Wen; Lu, Liang; Wang, Ying; Liu, Zhi-Ping; Li, Dong; Li, Cuixian; Chen, Shaorui; Le, Kang; Huang, Heqing; Liu, Peiqing; Moss, Joel; Vaughan, Martha; Shen, Xiaoyan

    2013-01-01

    Objective Cell surface localization and intracellular trafficking of ATP-binding cassette transporter A-1 (ABCA1) are essential for its function. However, regulation of these activities is still largely unknown. Brefeldin A (BFA), a uncompetitive inhibitor of brefeldin A-inhibited guanine nucleotide-exchange proteins (BIGs), disturbs the intracellular distribution of ABCA1, and thus inhibits cholesterol efflux. This study aimed to define the possible roles of BIGs in regulating ABCA1 trafficking and cholesterol efflux, and further to explore the potential mechanism. Methods and Results By vesicle immunoprecipitation, we found that BIG1 was associated with ABCA1 in vesicles preparation from rat liver. BIG1 depletion reduced surface ABCA1 on HepG2 cells and inhibited by 60% cholesterol release. In contrast, BIG1 over-expression increased surface ABCA1 and cholesterol secretion. With partial restoration of BIG1 through over-expression in BIG1-depleted cells, surface ABCA1 was also restored. Biotinylation and glutathione cleavage revealed that BIG1 siRNA dramatically decreased the internalization and recycling of ABCA1. This novel function of BIG1 was dependent on the guanine nucleotide-exchange activity and achieved through activation of ADP-ribosylation factor 1 (ARF1). Conclusions BIG1, through its ability to activate ARF1, regulates cell surface levels and function of ABCA1, indicating a transcription-independent mechanism for controlling ABCA1 action. PMID:23220274

  14. Charge splitters and charge transport junctions based on guanine quadruplexes

    NASA Astrophysics Data System (ADS)

    Sha, Ruojie; Xiang, Limin; Liu, Chaoren; Balaeff, Alexander; Zhang, Yuqi; Zhang, Peng; Li, Yueqi; Beratan, David N.; Tao, Nongjian; Seeman, Nadrian C.

    2018-04-01

    Self-assembling circuit elements, such as current splitters or combiners at the molecular scale, require the design of building blocks with three or more terminals. A promising material for such building blocks is DNA, wherein multiple strands can self-assemble into multi-ended junctions, and nucleobase stacks can transport charge over long distances. However, nucleobase stacking is often disrupted at junction points, hindering electric charge transport between the two terminals of the junction. Here, we show that a guanine-quadruplex (G4) motif can be used as a connector element for a multi-ended DNA junction. By attaching specific terminal groups to the motif, we demonstrate that charges can enter the structure from one terminal at one end of a three-way G4 motif, and can exit from one of two terminals at the other end with minimal carrier transport attenuation. Moreover, we study four-way G4 junction structures by performing theoretical calculations to assist in the design and optimization of these connectors.

  15. Mechanistic insights into the inhibition of quercetin on xanthine oxidase.

    PubMed

    Zhang, Cen; Wang, Rui; Zhang, Guowen; Gong, Deming

    2018-06-01

    Quercetin, one of the most abundant flavonoid in the daily diet, was found to reversibly inhibit the generation of uric acid and superoxide radicals (O 2 - )catalyzed by xanthine oxidase (XOD) in a mixed-type manner with IC 50 values of (2.74±0.04)×10 -6 and (2.90±0.03)×10 -6 molL -1 , respectively, and the inhibition of quercetin on O 2 - generation may be ascribed to the reduced form of XOD by a ping-pong mechanism. XOD had one high affinity binding site for quercetin with a binding constant of 4.28×10 4 Lmol -1 at 298K, and the binding process was predominately driven by van der Waals forces and hydrogen bonds on account of the negative enthalpy and entropy changes. Moreover, molecular docking confirmed that the binding site for quercetin located in the isoalloxazine ring of the flavin adenine dinucleotide (FAD) domain of XOD, then the diffusion of O 2 - out of the FAD site was blocked in favor of another electron transferred from FADH 2 to O 2 - to form hydrogen peroxide (H 2 O 2 ). This study may clarify the role of quercetin on inhibiting XOD catalysis and provide a potential nutritional supplement for preventing gout and peroxidative damage. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Determination of serum adenosine deaminase and xanthine oxidase activity in Kangal dogs with maternal cannibalism.

    PubMed

    Ercan, N; Koçkaya, M; Kapancik, S; Bakir, D

    2017-11-01

    Kangal dogs, known as guard dogs in many countries of the world, have been found to eat their own puppies during their first 24 h following birth, which is called as maternal cannibalism. Adenosine deaminase (ADA) and xanthine oxidase (XO) are important enzymes for purine metabolism. In this study, the aim is to evaluate ADA and XO activities in Kangal dogs with maternal cannibalism. The material of the study consists of the blood sera of Kangal dog breed with and without maternal cannibalism in the breeders around Sivas city and its districts. ADA and XO activities in blood serum of these animals were investigated by spectrophotometric method. ADA activities in Kangal dogs with maternal cannibalism were increased to the control group without maternal cannibalism (p<0.01). Postnatal measurement of ADA activity in dogs may be useful in assessing maternal cannibalism.

  17. Different inhibitory potency of febuxostat towards mammalian and bacterial xanthine oxidoreductases: insight from molecular dynamics

    PubMed Central

    Kikuchi, Hiroto; Fujisaki, Hiroshi; Furuta, Tadaomi; Okamoto, Ken; Leimkühler, Silke; Nishino, Takeshi

    2012-01-01

    Febuxostat, a drug recently approved in the US, European Union and Japan for treatment of gout, inhibits xanthine oxidoreductase (XOR)-mediated generation of uric acid during purine catabolism. It inhibits bovine milk XOR with a Ki in the picomolar-order, but we found that it is a much weaker inhibitor of Rhodobacter capsulatus XOR, even though the substrate-binding pockets of mammalian and bacterial XOR are well-conserved as regards to catalytically important residues and three-dimensional structure, and both permit the inhibitor to be accommodated in the active site, as indicated by computational docking studies. To clarify the reason for the difference of inhibitory potency towards the two XORs, we performed molecular dynamics simulations. The results indicate that differences in mobility of hydrophobic residues that do not directly interact with the substrate account for the difference in inhibitory potency. PMID:22448318

  18. Polymorphism in the intron 20 of porcine O-linked N-acetylglucosamine transferase

    USDA-ARS?s Scientific Manuscript database

    Objective: O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) catalyzes the addition of O-GlcNAc and GlcNAcylation has extensive crosstalk with phosphorylation to regulate signaling and transcription. Pig OGT is located near the region of chromosome X that affects follicle stimulating hormone...

  19. Genomic organization of plant aminopropyl transferases.

    PubMed

    Rodríguez-Kessler, Margarita; Delgado-Sánchez, Pablo; Rodríguez-Kessler, Gabriela Theresia; Moriguchi, Takaya; Jiménez-Bremont, Juan Francisco

    2010-07-01

    Aminopropyl transferases like spermidine synthase (SPDS; EC 2.5.1.16), spermine synthase and thermospermine synthase (SPMS, tSPMS; EC 2.5.1.22) belong to a class of widely distributed enzymes that use decarboxylated S-adenosylmethionine as an aminopropyl donor and putrescine or spermidine as an amino acceptor to form in that order spermidine, spermine or thermospermine. We describe the analysis of plant genomic sequences encoding SPDS, SPMS, tSPMS and PMT (putrescine N-methyltransferase; EC 2.1.1.53). Genome organization (including exon size, gain and loss, as well as intron number, size, loss, retention, placement and phase, and the presence of transposons) of plant aminopropyl transferase genes were compared between the genomic sequences of SPDS, SPMS and tSPMS from Zea mays, Oryza sativa, Malus x domestica, Populus trichocarpa, Arabidopsis thaliana and Physcomitrella patens. In addition, the genomic organization of plant PMT genes, proposed to be derived from SPDS during the evolution of alkaloid metabolism, is illustrated. Herein, a particular conservation and arrangement of exon and intron sequences between plant SPDS, SPMS and PMT genes that clearly differs with that of ACL5 genes, is shown. The possible acquisition of the plant SPMS exon II and, in particular exon XI in the monocot SPMS genes, is a remarkable feature that allows their differentiation from SPDS genes. In accordance with our in silico analysis, functional complementation experiments of the maize ZmSPMS1 enzyme (previously considered to be SPDS) in yeast demonstrated its spermine synthase activity. Another significant aspect is the conservation of intron sequences among SPDS and PMT paralogs. In addition the existence of microsynteny among some SPDS paralogs, especially in P. trichocarpa and A. thaliana, supports duplication events of plant SPDS genes. Based in our analysis, we hypothesize that SPMS genes appeared with the divergence of vascular plants by a processes of gene duplication and the

  20. Characterization of glutathione transferases involved in the pathogenicity of Alternaria brassicicola.

    PubMed

    Calmes, Benoit; Morel-Rouhier, Mélanie; Bataillé-Simoneau, Nelly; Gelhaye, Eric; Guillemette, Thomas; Simoneau, Philippe

    2015-06-18

    Glutathione transferases (GSTs) represent an extended family of multifunctional proteins involved in detoxification processes and tolerance to oxidative stress. We thus anticipated that some GSTs could play an essential role in the protection of fungal necrotrophs against plant-derived toxic metabolites and reactive oxygen species that accumulate at the host-pathogen interface during infection. Mining the genome of the necrotrophic Brassica pathogen Alternaria brassicicola for glutathione transferase revealed 23 sequences, 17 of which could be clustered into the main classes previously defined for fungal GSTs and six were 'orphans'. Five isothiocyanate-inducible GSTs from five different classes were more thoroughly investigated. Analysis of their catalytic properties revealed that two GSTs, belonging to the GSTFuA and GTT1 classes, exhibited GSH transferase activity with isothiocyanates (ITC) and peroxidase activity with cumene hydroperoxide, respectively. Mutant deficient for these two GSTs were however neither more susceptible to ITC nor less aggressive than the wild-type parental strain. By contrast mutants deficient for two other GSTs, belonging to the Ure2pB and GSTO classes, were distinguished by their hyper-susceptibility to ITC and low aggressiveness against Brassica oleracea. In particular AbGSTO1 could participate in cell tolerance to ITC due to its glutathione-dependent thioltransferase activity. The fifth ITC-inducible GST belonged to the MAPEG class and although it was not possible to produce the soluble active form of this protein in a bacterial expression system, the corresponding deficient mutant failed to develop normal symptoms on host plant tissues. Among the five ITC-inducible GSTs analyzed in this study, three were found essential for full aggressiveness of A. brassicicola on host plant. This, to our knowledge is the first evidence that GSTs might be essential virulence factors for fungal necrotrophs.

  1. Global deletion of glutathione S-Transferase A4 exacerbates developmental nonalcoholic steatohepatitis

    USDA-ARS?s Scientific Manuscript database

    We established a mouse model of developmental nonalcoholic steatohepatitis (NASH) by feeding a high polyunsaturated fat liquid diet to female glutathione-S-transferase 4-4 (Gsta4-/-)/peroxisome proliferator activated receptor a (Ppara-/-) double knockout 129/SvJ mice for 12 weeks from weaning. We us...

  2. The xanthine oxidase inhibitor Febuxostat reduces tissue uric acid content and inhibits injury-induced inflammation in the liver and lung

    PubMed Central

    Kataoka, Hiroshi; Yang, Ke; Rock, Kenneth L.

    2014-01-01

    Necrotic cell death in vivo induces a robust neutrophilic inflammatory response and the resulting inflammation can cause further tissue damage and disease. Dying cells induce this inflammation by releasing pro-inflammatory intracellular components, one of which is uric acid. Cells contain high levels of intracellular uric acid, which is produced when purines are oxidized by the enzyme xanthine oxidase. Here we test whether a non-nucleoside xanthine oxidase inhibitor, Febuxostat (FBX), can reduce intracellular uric acid levels and inhibit cell death-induced inflammation in two different murine tissue injury models; acid-induced acute lung injury and acetaminophen liver injury. Infiltration of inflammatory cells induced by acid injection into lungs or peritoneal administration of acetaminophen was evaluated by quantification with flow cytometry and tissue myeloperoxidase activity in the presence or absence of FBX treatment. Uric acid levels in serum and tissue were measured before giving the stimuli and during inflammation. The impact of FBX treatment on the peritoneal inflammation caused by the microbial stimulus, zymosan, was also analyzed to see whether FBX had a broad anti-inflammatory effect. We found that FBX reduced uric acid levels in acid-injured lung tissue and inhibited acute pulmonary inflammation triggered by lung injury. Similarly, FBX reduced uric acid levels in the liver and inhibited inflammation in response to acetaminophen-induced hepatic injury. In contrast, FBX did not reduce inflammation to zymosan, and therefore is not acting as a general anti-inflammatory agent. These results point to the potential of using agents like FBX to treat cell death-induced inflammation. PMID:25449036

  3. Investigation of the interaction between benzaldehyde thiosemicarbazone compounds and xanthine oxidase

    NASA Astrophysics Data System (ADS)

    Li, Mengrong; Yu, Yanying; Liu, Jing; Chen, Zelu; Cao, Shuwen

    2018-05-01

    A series of substituted benzaldehyde thiosemicarbazide compounds (1-7) were synthesized as xanthine oxidase (XO) inhibitors, and the interactions between substituted benzaldehyde thiosemicarbazide compounds (1-7) and XO were studied by ultraviolet spectroscopy, fluorescence spectroscopy, and molecular docking. It was found that the hydrogen bond and hydrophobicity were the main interactions between substituted benzaldehyde thiosemicarbazide compounds and XO, and introducing sbnd OH at the para position of the benzene ring and a Ph- or Me-group at the amino terminal of compound 4 increased the modifier's inhibitory activity. The results suggest that the newly introduced benzene ring interacted with the hydrophobic cavity of XO by means of the π-π stacking force between the newly introduced benzene ring and the aromatic amino acid residues, such as the Phe residue, which greatly increased the modifier's inhibitory activity. We conclude that introducing the Ph-group at the amino terminal of compound 4 and the sbnd OH group at the para position of the benzene ring was a good route to obtain novel XO inhibitors. Fluorescence spectroscopy assisted by 8-anilino-1-naphthalenesulfonic acid fluorescence probing and molecular docking were helpful for achieving a preliminary and relatively clear understanding of the interactions between target compounds and XO, which deserve further study.

  4. Determination of Flavonoids, Phenolic Acids, and Xanthines in Mate Tea (Ilex paraguariensis St.-Hil.)

    PubMed Central

    Bojić, Mirza; Simon Haas, Vicente; Maleš, Željan

    2013-01-01

    Raw material, different formulations of foods, and dietary supplements of mate demands control of the content of bioactive substances for which high performance thin layer chromatography (TLC), described here, presents simple and rapid approach for detections as well as quantification. Using TLC densitometry, the following bioactive compounds were identified and quantified: chlorogenic acid (2.1 mg/g), caffeic acid (1.5 mg/g), rutin (5.2 mg/g), quercetin (2.2 mg/g), and kaempferol (4.5 mg/g). The results obtained with TLC densitometry for caffeine (5.4 mg/g) and theobromine (2.7 mg/g) show no statistical difference to the content of total xanthines (7.6 mg/g) obtained by UV-Vis spectrophotometry. Thus, TLC remains a technique of choice for simple and rapid analysis of great number of samples as well as a primary screening technique in plant analysis. PMID:23841023

  5. Antioxidant, xanthine oxidase and lipoxygenase inhibitory activities and phenolics of Bauhinia rufescens Lam. (Caesalpiniaceae).

    PubMed

    Compaoré, M; Lamien, C E; Lamien-Meda, A; Vlase, L; Kiendrebeogo, M; Ionescu, C; Nacoulma, O G

    2012-01-01

    An aqueous acetone extract of the stem with the leaves of Bauhinia rufescens and its fractions were analysed for their antioxidant and enzyme-inhibitory activities, as well as their phytochemical composition. For measurement of the antioxidant activities, the 2,2-diphenyl-1-picrylhydrazyl, 2,2'-azinobis(3-ethylbenzoline-6-sulphonate) and the ferric-reducing methods were used. The results indicated that the aqueous acetone, its ethyl acetate and n-butanol fractions possessed considerable antioxidant activity. Further, the xanthine oxidase and lipoxygenase inhibitory assays showed that the n-butanol fraction possessed compounds that can inhibit both these enzymes. In the phytochemical analysis, the ethyl acetate and the n-butanol fractions of the aqueous acetone extract were screened by HPLC-MS for their phenolic content. The results indicated the presence of hyperoside, isoquercitrin, rutin quercetin, quercitrin, p-coumaric and ferulic acids in the non-hydrolysed fractions. In the hydrolysed fractions, kaempferol, p-coumaric and ferulic acids were identified.

  6. Defective Guanine Nucleotide Exchange in the Elongation Factor-like 1 (EFL1) GTPase by Mutations in the Shwachman-Diamond Syndrome Protein*

    PubMed Central

    García-Márquez, Adrián; Gijsbers, Abril; de la Mora, Eugenio; Sánchez-Puig, Nuria

    2015-01-01

    Ribosome biogenesis is orchestrated by the action of several accessory factors that provide time and directionality to the process. One such accessory factor is the GTPase EFL1 involved in the cytoplasmic maturation of the ribosomal 60S subunit. EFL1 and SBDS, the protein mutated in the Shwachman-Diamond syndrome (SBDS), release the anti-association factor eIF6 from the surface of the ribosomal subunit 60S. Here we report a kinetic analysis of fluorescent guanine nucleotides binding to EFL1 alone and in the presence of SBDS using fluorescence stopped-flow spectroscopy. Binding kinetics of EFL1 to both GDP and GTP suggests a two-step mechanism with an initial binding event followed by a conformational change of the complex. Furthermore, the same behavior was observed in the presence of the SBDS protein irrespective of the guanine nucleotide evaluated. The affinity of EFL1 for GTP is 10-fold lower than that calculated for GDP. Association of EFL1 to SBDS did not modify the affinity for GTP but dramatically decreased that for GDP by increasing the dissociation rate of the nucleotide. Thus, SBDS acts as a guanine nucleotide exchange factor (GEF) for EFL1 promoting its activation by the release of GDP. Finally, fluorescence anisotropy measurements showed that the S143L mutation present in the Shwachman-Diamond syndrome altered a surface epitope for EFL1 and largely decreased the affinity for it. These results suggest that loss of interaction between these proteins due to mutations in the disease consequently prevents the nucleotide exchange regulation the SBDS exerts on EFL1. PMID:25991726

  7. Constructing a novel 8-hydroxy-2'-deoxyguanosine electrochemical sensor and application in evaluating the oxidative damages of DNA and guanine.

    PubMed

    Guo, Zhipan; Liu, Xiuhui; Liu, Yuelin; Wu, Guofan; Lu, Xiaoquan

    2016-12-15

    8-Hydroxy-2'-deoxyguanosine (8-OHdG) is commonly identified as a biomarker of oxidative DNA damage. In this work, a novel and facile 8-OHdG sensor was developed based on the multi-walled carbon nanotubes (MWCNTs) modified glassy carbon electrode (GCE). It exhibited good electrochemical responses toward the oxidation of 8-OHdG, and the linear ranges were 5.63×10(-8)-6.08×10(-6)M and 6.08×10(-6)-1.64×10(-5)M, with the detection limit of 1.88×10(-8)M (S/N=3). Moreover, the fabricated sensor was applied for the determination of 8-OHdG generated from damaged DNA and guanine, respectively, and the oxidation currents of 8-OHdG increased along with the damaged DNA and guanine within certain concentrations. These results could be used to evaluate the DNA damage, and provide useful information on diagnosing diseases caused by mutation and deficiency of the immunity system. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Increased plasma xanthine oxidoreductase activity deteriorates coronary artery spasm.

    PubMed

    Watanabe, Ken; Shishido, Tetsuro; Otaki, Yoichiro; Watanabe, Tetsu; Sugai, Takayuki; Toshima, Taku; Takahashi, Tetsuya; Yokoyama, Miyuki; Kinoshita, Daisuke; Murase, Takayo; Nakamura, Takashi; Wanezaki, Masahiro; Tamura, Harutoshi; Nishiyama, Satoshi; Takahashi, Hiroki; Arimoto, Takanori; Yamauchi, So; Yamanaka, Tamon; Miyamoto, Takuya; Kubota, Isao; Watanabe, Masafumi

    2018-06-23

    Increased reactive oxygen species (ROS) contributes to the development of endothelial dysfunction, which is involved in coronary artery spasm (CAS). Xanthine oxidoreductase (XOR) plays a pivotal role in producing both uric acid and ROS. However, the association between plasma XOR activity and CAS has not been elucidated. The aim of this study was to investigate whether plasma XOR activity is associated with CAS. We measured XOR activity in 104 patients suspected for CAS, who presented without significant coronary artery stenosis and underwent intracoronary acetylcholine provocation tests. CAS was provoked in 44 patients and they had significantly higher XOR activity as compared with those without CAS. The patients were divided into three groups based on the XOR activity. The prevalence rate of CAS was increased with increasing XOR activity. A multivariate logistic regression analysis showed that the 3rd tertile group exhibited a higher incidence of CAS as compared with the 1st tertile group [odds ratio (OR) 6.9, P = 0.001) and the 2nd tertile group (OR 3.2, P = 0.033) after adjustment for conventional CAS risk factors, respectively. The C index was significantly improved by the addition of XOR activity to the baseline model based on CAS risk factors. Furthermore, the 3rd tertile group had the highest incidence of severe spasm defined as total obstruction, flow-limiting stenosis, diffuse spasm, multivessel spasm, and/or lethal arrhythmia. This is a first report to elucidate the association of plasma XOR activity with CAS. Increased plasma XOR activity is significantly associated with CAS.

  9. Synthesis of bis-Phosphate Iminoaltritol Enantiomers and Structural Characterization with Adenine Phosphoribosyltransferase.

    PubMed

    Harris, Lawrence D; Harijan, Rajesh K; Ducati, Rodrigo G; Evans, Gary B; Hirsch, Brett M; Schramm, Vern L

    2018-01-19

    Phosphoribosyl transferases (PRTs) are essential in nucleotide synthesis and salvage, amino acid, and vitamin synthesis. Transition state analysis of several PRTs has demonstrated ribocation-like transition states with a partial positive charge residing on the pentose ring. Core chemistry for synthesis of transition state analogues related to the 5-phospho-α-d-ribosyl 1-pyrophosphate (PRPP) reactant of these enzymes could be developed by stereospecific placement of bis-phosphate groups on an iminoaltritol ring. Cationic character is provided by the imino group and the bis-phosphates anchor both the 1- and 5-phosphate binding sites. We provide a facile synthetic path to these molecules. Cyclic-nitrone redox methodology was applied to the stereocontrolled synthesis of three stereoisomers of a selectively monoprotected diol relevant to the synthesis of transition-state analogue inhibitors. These polyhydroxylated pyrrolidine natural product analogues were bis-phosphorylated to generate analogues of the ribocationic form of 5-phosphoribosyl 1-phosphate. A safe, high yielding synthesis of the key intermediate represents a new route to these transition state mimics. An enantiomeric pair of iminoaltritol bis-phosphates (L-DIAB and D-DIAB) was prepared and shown to display inhibition of Plasmodium falciparum orotate phosphoribosyltransferase and Saccharomyces cerevisiae adenine phosphoribosyltransferase (ScAPRT). Crystallographic inhibitor binding analysis of L- and D-DIAB bound to the catalytic sites of ScAPRT demonstrates accommodation of both enantiomers by altered ring geometry and bis-phosphate catalytic site contacts.

  10. Freeze-Quench Magnetic Circular Dichroism Spectroscopic Study of the "Very Rapid" Intermediate in Xanthine Oxidase.

    PubMed

    Jones, Robert M.; Inscore, Frank E.; Hille, Russ; Kirk, Martin L.

    1999-11-01

    Freeze-quench magnetic circular dichroism spectroscopy (MCD) has been used to trap and study the excited-state electronic structure of the Mo(V) active site in a xanthine oxidase intermediate generated with substoichiometric concentrations of the slow substrate 2-hydroxy-6-methylpurine. EPR spectroscopy has shown that the intermediate observed in the MCD experiment is the "very rapid" intermediate, which lies on the main catalytic pathway. The low-energy (< approximately 30 000 cm(-1)) C-term MCD of this intermediate is remarkably similar to that of the model compound LMoO(bdt) (L = hydrotris(3,5-dimethyl-1-pyrazolyl)borate; bdt = 1,2-benzenedithiolate), and the MCD bands have been assigned as dithiolate S(ip) --> Mo d(xy) and S(op) --> Mo d(xz,yz) LMCT transitions. These transitions result from a coordination geometry of the intermediate where the Mo=O bond is oriented cis to the ene-1,2-dithiolate of the pyranopterin. Since X-ray crystallography has indicated that a terminal sulfido ligand is oriented cis to the ene-1,2-dithiolate in oxidized xanthine oxidase related Desulfovibrio gigas aldehyde oxidoreductase, we have suggested that a conformational change occurs upon substrate binding. The substrate-mediated conformational change is extremely significant with respect to electron-transfer regeneration of the active site, as covalent interactions between the redox-active Mo d(xy) orbital and the S(ip) orbitals of the ene-1,2-dithiolate are maximized when the oxo ligand is oriented cis to the dithiolate plane. This underlies the importance of the ene-1,2-dithiolate portion of the pyranopterin in providing an efficient superexchange pathway for electron transfer. The results of this study indicate that electron-transfer regeneration of the active site may be gated by the orientation of the Mo=O bond relative to the ene-1,2-dithiolate chelate. Poor overlap between the Mo d(xy) orbital and the S(ip) orbitals of the dithiolate in the oxidized enzyme geometry may

  11. Glutathione S-transferase P1 (GSTP1) directly influences platinum drug chemosensitivity in ovarian tumour cell lines.

    PubMed

    Sawers, L; Ferguson, M J; Ihrig, B R; Young, H C; Chakravarty, P; Wolf, C R; Smith, G

    2014-09-09

    Chemotherapy response in ovarian cancer patients is frequently compromised by drug resistance, possibly due to altered drug metabolism. Platinum drugs are metabolised by glutathione S-transferase P1 (GSTP1), which is abundantly, but variably expressed in ovarian tumours. We have created novel ovarian tumour cell line models to investigate the extent to which differential GSTP1 expression influences chemosensitivity. Glutathione S-transferase P1 was stably deleted in A2780 and expression significantly reduced in cisplatin-resistant A2780DPP cells using Mission shRNA constructs, and MTT assays used to compare chemosensitivity to chemotherapy drugs used to treat ovarian cancer. Differentially expressed genes in GSTP1 knockdown cells were identified by Illumina HT-12 expression arrays and qRT-PCR analysis, and altered pathways predicted by MetaCore (GeneGo) analysis. Cell cycle changes were assessed by FACS analysis of PI-labelled cells and invasion and migration compared in quantitative Boyden chamber-based assays. Glutathione S-transferase P1 knockdown selectively influenced cisplatin and carboplatin chemosensitivity (2.3- and 4.83-fold change in IC50, respectively). Cell cycle progression was unaffected, but cell invasion and migration was significantly reduced. We identified several novel GSTP1 target genes and candidate platinum chemotherapy response biomarkers. Glutathione S-transferase P1 has an important role in cisplatin and carboplatin metabolism in ovarian cancer cells. Inter-tumour differences in GSTP1 expression may therefore influence response to platinum-based chemotherapy in ovarian cancer patients.

  12. Probing the structure of RecA-DNA filaments. Advantages of a fluorescent guanine analog.

    PubMed

    Singleton, Scott F; Roca, Alberto I; Lee, Andrew M; Xiao, Jie

    2007-04-23

    The RecA protein of Escherichia coli plays a crucial roles in DNA recombination and repair, as well as various aspects of bacterial pathogenicity. The formation of a RecA-ATP-ssDNA complex initiates all RecA activities and yet a complete structural and mechanistic description of this filament has remained elusive. An analysis of RecA-DNA interactions was performed using fluorescently labeled oligonucleotides. A direct comparison was made between fluorescein and several fluorescent nucleosides. The fluorescent guanine analog 6-methylisoxanthopterin (6MI) demonstrated significant advantages over the other fluorophores and represents an important new tool for characterizing RecA-DNA interactions.

  13. Inherited glutathione-S-transferase deficiency is a risk factor for pulmonary asbestosis.

    PubMed

    Smith, C M; Kelsey, K T; Wiencke, J K; Leyden, K; Levin, S; Christiani, D C

    1994-09-01

    Pulmonary diseases attributable to asbestos exposure constitute a significant public health burden, yet few studies have investigated potential genetic determinants of susceptibility to asbestos-related diseases. The glutathione-S-transferases are a family of conjugating enzymes that both catalyze the detoxification of a variety of potentially cytotoxic electrophilic agents and act in the generation of sulfadipeptide leukotriene inflammatory mediators. The gene encoding glutathione-S-transferase class mu (GSTM-1) is polymorphic; approximately 50% of Caucasian individuals have a homozygous deletion of this gene and do not produce functional enzyme. Glutathione-S-transferase mu (GST-mu) deficiency has been previously reported to be associated with smoking-induced lung cancer. We conducted a cross-sectional study to examine the prevalence of the homozygous deletion for the GSTM-1 gene in members of the carpentry trade occupationally exposed to asbestos. Members of the United Brotherhood of Carpenters and Joiners of America attending their 1991 National Union conference were invited to participate. Each participant was offered a chest X-ray and was asked to complete a comprehensive questionnaire and have their blood drawn. All radiographs were assessed for the presence of pneumoconiosis in a blinded fashion by a National Institute for Occupational Safety and Health-certified International Labor Office "B" reader. Individual GSTM-1 status was determined using polymerase chain reaction methods. Six hundred fifty-eight workers were studied. Of these, 80 (12.2%) had X-ray abnormalities associated with asbestos exposure. Individuals genetically deficient in GST-mu were significantly more likely to have radiographic evidence of nonmalignant asbestos-related disease than those who were not deficient (chi 2 = 5.0; P < 0.03).(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Free terminal amines in DNA-binding peptides alter the product distribution from guanine radicals produced by single electron oxidation.

    PubMed

    Konigsfeld, Katie M; Lee, Melissa; Urata, Sarah M; Aguilera, Joe A; Milligan, Jamie R

    2012-03-01

    Electron deficient guanine radical species are major intermediates produced in DNA by the direct effect of ionizing irradiation. There is evidence that they react with amine groups in closely bound ligands to form covalent crosslinks. Crosslink formation is very poorly characterized in terms of quantitative rate and yield data. We sought to address this issue by using oligo-arginine ligands to model the close association of DNA and its binding proteins in chromatin. Guanine radicals were prepared in plasmid DNA by single electron oxidation. The product distribution derived from them was assayed by strand break formation after four different post-irradiation incubations. We compared the yields of DNA damage produced in the presence of four ligands in which neither, one, or both of the amino and carboxylate termini were blocked with amides. Free carboxylate groups were unreactive. Significantly higher yields of heat labile sites were observed when the amino terminus was unblocked. The rate of the reaction was characterized by diluting the unblocked amino group with its amide blocked derivative. These observations provide a means to develop quantitative estimates for the yields in which these labile sites are formed in chromatin by exposure to ionizing irradiation.

  15. Studies on the mechanism of action of 6-mercaptopurine. Interaction with copper and xanthine oxidase.

    PubMed

    Kela, U; Vijayvargiya, R

    1981-03-01

    Interaction between 6-mercaptopurine, Cu2+ and the enzyme xanthine oxidase (EC 1.2.3.2.) was examined. Whereas Cu2+ was found to inhibit the enzyme, 6-mercaptopurine could protect as well as reverse the enzyme inhibition produced by the metal ion. The formation of a complex between 6-mercaptopurine and Cu2+ seems to be responsible for the observed effect. Job's [(1928) Ann. Chem. 9, 113] method has shown the composition of the complex to be 1:1. The apparent stability constant (log K value), as determined by Subhrama Rao & Raghav Rao's [(1955) J. Sci. Chem. Ind. Res. 143, 278], method is found to be 6.74. It is suggested that the formation of a stable complex between 6-mercaptopurine molecules and Cu2+ may be an additional mechanism of action of 6-mercaptopurine, particularly with reference to its anti-inflammatory properties.

  16. Therapeutic Effects of Xanthine Oxidase Inhibitors: Renaissance Half a Century after the Discovery of Allopurinol

    PubMed Central

    PACHER, PÁL; NIVOROZHKIN, ALEX; SZABÓ, CSABA

    2008-01-01

    The prototypical xanthine oxidase (XO) inhibitor allopurinol, has been the cornerstone of the clinical management of gout and conditions associated with hyperuricemia for several decades. More recent data indicate that XO also plays an important role in various forms of ischemic and other types of tissue and vascular injuries, inflammatory diseases, and chronic heart failure. Allopurinol and its active metabolite oxypurinol showed considerable promise in the treatment of these conditions both in experimental animals and in small-scale human clinical trials. Although some of the beneficial effects of these compounds may be unrelated to the inhibition of the XO, the encouraging findings rekindled significant interest in the development of additional, novel series of XO inhibitors for various therapeutic indications. Here we present a critical overview of the effects of XO inhibitors in various pathophysiological conditions and also review the various emerging therapeutic strategies offered by this approach. PMID:16507884

  17. Studies on the mechanism of action of 6-mercaptopurine. Interaction with copper and xanthine oxidase.

    PubMed Central

    Kela, U; Vijayvargiya, R

    1981-01-01

    Interaction between 6-mercaptopurine, Cu2+ and the enzyme xanthine oxidase (EC 1.2.3.2.) was examined. Whereas Cu2+ was found to inhibit the enzyme, 6-mercaptopurine could protect as well as reverse the enzyme inhibition produced by the metal ion. The formation of a complex between 6-mercaptopurine and Cu2+ seems to be responsible for the observed effect. Job's [(1928) Ann. Chem. 9, 113] method has shown the composition of the complex to be 1:1. The apparent stability constant (log K value), as determined by Subhrama Rao & Raghav Rao's [(1955) J. Sci. Chem. Ind. Res. 143, 278], method is found to be 6.74. It is suggested that the formation of a stable complex between 6-mercaptopurine molecules and Cu2+ may be an additional mechanism of action of 6-mercaptopurine, particularly with reference to its anti-inflammatory properties. PMID:6895465

  18. Effects of long-term experimental diabetes on adrenal gland growth and phosphoribosyl pyrophosphate formation in growth hormone-deficient dwarf rats.

    PubMed

    Kunjara, Sirilaksana; Greenbaum, A Leslie; McLean, Patricia; Grønbaek, Henning; Flyvbjerg, Allan

    2012-06-01

    The availability of growth hormone (GH)-deficient dwarf rats with otherwise normal pituitary function provides a powerful tool to examine the relative role of hyperglycaemia and the reordering of hormonal factors in the hypertrophy-hyperfunction of the adrenal gland that is seen in experimental diabetes. Here, we examine the effects of long-term (6 months) experimental diabetes on the growth of the adrenal glands; their content of phosphoribosyl pyrophosphate (PRPP); and the activity of the PRPP synthetase, G6P dehydrogenase and 6PG dehydrogenase enzymes in GH-deficient dwarf rats compared to heterozygous controls. These parameters were selected in view of the known role of PRPP in both de novo and salvage pathways of purine and pyrimidine synthesis and in the formation of NAD, and in view of the role of the oxidative enzymes of the pentose phosphate pathway in both R5P formation and the generation of the NADPH that is required in reductive synthetic reactions. This study shows that GH deficiency prevents the increase in adrenal gland weight, PRPP synthetase, PRPP content and G6P dehydrogenase and 6PG dehydrogenase. This contrasts sharply with the heterozygous group that showed the expected increase in these parameters. The blood glucose levels of the groups of long-term diabetic rats, both GH-deficient and heterozygous, remained at an elevated level throughout the experiment. These results are fully in accord with earlier evidence from studies with somatostatin analogues which showed that the GH-insulin-like growth factor I (IGF-I)-axis plays a key role in the adrenal diabetic hypertrophy-hyperfunction syndrome. © 2012 The Authors. International Journal of Experimental Pathology © 2012 International Journal of Experimental Pathology.

  19. Development of a novel biosensing system based on the structural change of a polymerized guanine-quadruplex DNA nanostructure.

    PubMed

    Morita, Yo; Yoshida, Wataru; Savory, Nasa; Han, Sung Woong; Tera, Masayuki; Nagasawa, Kazuo; Nakamura, Chikashi; Sode, Koji; Ikebukuro, Kazunori

    2011-08-15

    By inserting an adenosine aptamer into an aptamer that forms a G-quadruplex, we developed an adaptor molecule, named the Gq-switch, which links an electrode with flavin adenine dinucleotide-dependent glucose dehydrogenase (FADGDH) that is capable of transferring electron to a electrode directly. First, we selected an FADGDH-binding aptamer and identified that its sequence is composed of two blocks of consecutive six guanine bases and it forms a polymerized G-quadruplex structure. Then, we inserted a sequence of an adenosine aptamer between the two blocks of consecutive guanine bases, and we found it also bound to adenosine. Then we named it as Gq-switch. In the absence of adenosine, the Gq-switch-FADGDH complex forms a 30-nm high bulb-shaped structure that changes in the presence of adenosine to give an 8-nm high wire-shaped structure. This structural change brings the FADGDH sufficiently close to the electrode for electron transfer to occur, and the adenosine can be detected from the current produced by the FADGDH. Adenosine was successfully detected with a concentration dependency using the Gq-switch-FADGDH complex immobilized Au electrode by measuring response current to the addition of glucose. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Guanine oxidation signal enhancement in DNA via a polyacrylonitrile nanofiber-coated and cyclic voltammetry-treated pencil graphite electrode

    NASA Astrophysics Data System (ADS)

    Aladag Tanik, Nilay; Demirkan, Elif; Aykut, Yakup

    2018-07-01

    This study investigated the electrochemical detection of specific nucleic acid hybridization sequences using a nanofiber-coated pencil graphite biosensor. The biosensor was developed to detect Val66Met single point mutations in the brain-derived neurotrophic factor gene, which is frequently observed in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and bipolar disorder. The oxidation signal of the most electroactive and stable DNA base, i.e., guanine, was used at approximately +1.0 V. Pencil graphite electrode (PGE) surfaces were coated with polyacrylonitrile nanofibers by electrospinning. Cyclic voltammetry was applied to the nanofiber-coated PGE to pretreat its surfaces. The application of cyclic voltammetry to the nanofiber-coated PGE surfaces before attaching the probe yielded a four fold increase in the oxidation signal for guanine compared with that using the untreated and uncoated PGE surface. The signal reductions were 70% for hybridization, 10% for non-complementary binding, and 14% for a single mismatch compared with the probe. The differences in full match, non-complementary, and mismatch binding indicated that the biosensor selectively detected the target, and that it was possible to determine hybridization in about 65 min. The detection limit was 0.19 μg/ml at a target concentration of 10 ppm.

  1. Characterizing mutagenesis in the hprt gene of rat alveolar epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Driscoll, K.E.; Deyo, L.C.; Howard, B.W.

    1995-12-31

    A clonal selection assay was developed for mutation in the hypoxanthine-guanine phosphoribosyl transferase (hprt) gene of rat alveolar epithelial cells. Studies were conducted to establish methods for isolation and long-term culture of rat alveolar epithelial cells. When isolated by pronase digestion purified on a Nycodenz gradient and cultured in media containing 7.5% fetal bovine serum (FBS), pituitary extract, EGF, insulin, and IGF-1, rat alveolar epithelial cells could be maintained in culture for several weeks with cell doubling times of 2-4 days. The rat alveolar epithelial cell cultures were exposed in vitro to the mutagens ethylnitrosourea (ENU) and H{sub 2}O{sub 2},more » and mutation in the hprt gene was selected for by culture in the presence of the toxic purine analog, 6-thioguanine (6TG). In vitro exposure to ENU or H{sub 2}O produced a dose-dependent increase in hprt mutation frequency in the alveolar epithelial cells. To determine if the assay system could be used to evaluate mutagenesis in alveolar type II cells after in vivo mutagen or carcinogen exposure, cells were isolated from rats treated previously with ENU or {alpha}-quartz. A significant increase in hprt mutation frequency was detected in alveolar epithelial cells obtained from rats exposed to ENU or {alpha}-quartz; the latter observation is the first demonstration that crystalline silica exposure is mutagenic in vivo. In summary, these studies show that rat alveolar epithelial cells isolated by pronase digestion and Nycodenz separation techniques and cultured in a defined media can be used in a clonal selection assay for mutation in the hprt gene. This assay demonstrates that ENU and H{sub 2}O{sub 2} in vitro and ENU and {alpha}-quartz in vivo are mutagenic for rat alveolar epithelial cells. This model should be useful for investigating the genotoxic effects of chemical and physical agents on an important lung cell target for neoplastic transformation. 41 refs., 4 figs., 3 tabs.« less

  2. Effect of carbon monoxide on gene expression in cerebrocortical astrocytes: Validation of reference genes for quantitative real-time PCR.

    PubMed

    Oliveira, Sara R; Vieira, Helena L A; Duarte, Carlos B

    2015-09-15

    Quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) is a widely used technique to characterize changes in gene expression in complex cellular and tissue processes, such as cytoprotection or inflammation. The accurate assessment of changes in gene expression depends on the selection of adequate internal reference gene(s). Carbon monoxide (CO) affects several metabolic pathways and de novo protein synthesis is crucial in the cellular responses to this gasotransmitter. Herein a selection of commonly used reference genes was analyzed to identify the most suitable internal control genes to evaluate the effect of CO on gene expression in cultured cerebrocortical astrocytes. The cells were exposed to CO by treatment with CORM-A1 (CO releasing molecule A1) and four different algorithms (geNorm, NormFinder, Delta Ct and BestKeeper) were applied to evaluate the stability of eight putative reference genes. Our results indicate that Gapdh (glyceraldehyde-3-phosphate dehydrogenase) together with Ppia (peptidylpropyl isomerase A) is the most suitable gene pair for normalization of qRT-PCR results under the experimental conditions used. Pgk1 (phosphoglycerate kinase 1), Hprt1 (hypoxanthine guanine phosphoribosyl transferase I), Sdha (Succinate Dehydrogenase Complex, Subunit A), Tbp (TATA box binding protein), Actg1 (actin gamma 1) and Rn18s (18S rRNA) genes presented less stable expression profiles in cultured cortical astrocytes exposed to CORM-A1 for up to 60 min. For validation, we analyzed the effect of CO on the expression of Bdnf and bcl-2. Different results were obtained, depending on the reference genes used. A significant increase in the expression of both genes was found when the results were normalized with Gapdh and Ppia, in contrast with the results obtained when the other genes were used as reference. These findings highlight the need for a proper and accurate selection of the reference genes used in the quantification of qRT-PCR results

  3. Bilirubin UDP-Glucuronosyltransferase 1A1 (UGT1A1) Gene Promoter Polymorphisms and HPRT, Glycophorin A, and Micronuclei Mutant Frequencies in Human Blood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant, D; Hall, I J; Eastmond, D

    2004-10-06

    A dinucleotide repeat polymorphism (5-, 6-, 7-, or 8-TA units) has been identified within the promoter region of UDP-glucuronosyltransferase 1A1 gene (UGT1A1). The 7-TA repeat allele has been associated with elevated serum bilirubin levels that cause a mild hyperbilirubinemia (Gilbert's syndrome). Studies suggest that promoter transcriptional activity of UGT1A1 is inversely related to the number of TA repeats and that unconjugated bilirubin concentration increases directly with the number of TA repeat elements. Because bilirubin is a known antioxidant, we hypothesized that UGT1A1 repeats associated with higher bilirubin may be protective against oxidative damage. We examined the effect of UGT1A1 genotypemore » on somatic mutant frequency in the hypoxanthine-guanine phosphoribosyl-transferase (HPRT) gene in human lymphocytes and the glycophorin A (GPA) gene of red blood cells (both N0, NN mutants), and the frequency of lymphocyte micronuclei (both kinetochore (K) positive or micronuclei K negative) in 101 healthy smoking and nonsmoking individuals. As hypothesized, genotypes containing 7-TA and 8-TA displayed marginally lower GPA{_}NN mutant frequency relative to 5/5, 5/6, 6/6 genotypes (p<0.05). In contrast, our analysis showed that lower expressing UGT1A1 alleles (7-TA and 8-TA) were associated with modestly increased HPRT mutation frequency (p<0.05) while the same low expression genotypes were not significantly associated with micronuclei frequencies (K-positive or K-negative) when compared to high expression genotypes (5-TA and 6-TA). We found weak evidence that UGT1A1 genotypes containing 7-TA and 8-TA were associated with increased GPA{_}N0 mutant frequency relative to 5/5, 5/6, 6/6 genotypes (p<0.05). These data suggest that UGT1A1 genotype may modulate somatic mutation of some types, in some cell lineages, by a mechanism not involving bilirubin antioxidant activity. More detailed studies examining UGT1A1 promoter variation, oxidant/antioxidant balance and

  4. CD26: A Prognostic Marker of Acute Lymphoblastic Leukemia in Children in the Post Remission Induction Phase.

    PubMed

    Mehde, Atheer Awad; Yusof, Faridah; Adel Mehdi, Wesen; Zainulabdeen, Jwan Abdulmohsin

    2015-01-01

    ALL is an irredeemable disease due to the resistance to treatment. There are several influences which are involved in such resistance to chemotherapy, including oxidative stress as a result of the generation of reactive oxygen species (ROS) and presence of hypodiploid cells. Cluster of differentiation 26 (CD26), also known as dipeptidyl peptidase-4, is a 110 kDa, multifunctional, membrane-bound glycoprotein. The aim of this study was to evaluate the clinical significance of serum CD26 in patients with acute lymphoblastic leukaemia patients in the post remission induction phase, as well as the relationship between CD26 activity and the oxidative stress status. CD26, total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI), in addition to activity of related enzymes myeloperoxidase, glutathione- s-transferase and xanthine oxidase, were analysed in sixty children with acute lymphoblastic leukaemia in the post remission induction phase. The study showed significant elevation in CD26, TOS and OSI levels in patients with acute lymphoblastic leukaemia in the post remission induction phase in comparison to healthy control samples. In contrast, myeloperoxidase, glutathione-s-transferase and xanthine oxidase activities were decreased significantly. A significant correlation between CD26 concentration and some oxidative stress parameters was evident in ALL patients. Serum levels of CD26 appear to be useful as a new biomarker of oxidative stress in children with acute lymphoblastic leukaemia in the post remission induction phase, and levels of antioxidants must be regularly estimated during the treatment of children with ALL.

  5. GLUTATHIONE S-TRANSFERASE THETA 1-1-DEPENDENT METABOLISM OF THE DISINFECTION BYPRODUCT BROMODICHLOROMETHANE

    EPA Science Inventory

    ABSTRACT
    Bromodichloromethane (BDCM), a prevalent drinking water disinfection by-product, was previously shown to be mutagenic in Salmonella expressing glutathione S-transferase (GST) theta 1-1 (GST T1-1). In the present study, in vitro experiments were performed to study the...

  6. Periodic variation in bile acids controls circadian changes in uric acid via regulation of xanthine oxidase by the orphan nuclear receptor PPARα.

    PubMed

    Kanemitsu, Takumi; Tsurudome, Yuya; Kusunose, Naoki; Oda, Masayuki; Matsunaga, Naoya; Koyanagi, Satoru; Ohdo, Shigehiro

    2017-12-29

    Xanthine oxidase (XOD), also known as xanthine dehydrogenase, is a rate-limiting enzyme in purine nucleotide degradation, which produces uric acid. Uric acid concentrations in the blood and liver exhibit circadian oscillations in both humans and rodents; however, the underlying mechanisms remain unclear. Here, we demonstrate that XOD expression and enzymatic activity exhibit circadian oscillations in the mouse liver. We found that the orphan nuclear receptor peroxisome proliferator-activated receptor-α (PPARα) transcriptionally activated the mouse XOD gene and that bile acids suppressed XOD transactivation. The synthesis of bile acids is known to be under the control of the circadian clock, and we observed that the time-dependent accumulation of bile acids in hepatic cells interfered with the recruitment of the co-transcriptional activator p300 to PPARα, thereby repressing XOD expression. This time-dependent suppression of PPARα-mediated transactivation by bile acids caused an oscillation in the hepatic expression of XOD, which, in turn, led to circadian alterations in uric acid production. Finally, we also demonstrated that the anti-hyperuricemic effect of the XOD inhibitor febuxostat was enhanced by administering it at the time of day before hepatic XOD activity increased. These results suggest an underlying mechanism for the circadian alterations in uric acid production and also underscore the importance of selecting an appropriate time of day for administering XOD inhibitors. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Nature and position of functional group on thiopurine substrates influence activity of xanthine oxidase--enzymatic reaction pathways of 6-mercaptopurine and 2-mercaptopurine are different.

    PubMed

    Tamta, Hemlata; Kalra, Sukirti; Thilagavathi, Ramasamy; Chakraborti, Asit K; Mukhopadhyay, Anup K

    2007-02-01

    Xanthine oxidase-catalyzed hydroxylation reactions of the anticancer drug 6-mercaptopurine (6-MP) and its analog 2-mercaptopurine (2-MP) as well as 6-thioxanthine (6-TX) and 2-thioxanthine (2-TX) have been studied using UV-spectroscopy, high pressure liquid chromatography, photodiode array, and liquid chromatography-based mass spectral analysis. It is shown that 6-MP and 2-MP are oxidatively hydroxylated through different pathways. Enzymatic hydroxylation of 6-MP forms 6-thiouric acid in two steps involving 6-TX as the intermediate, whereas 2-MP is converted to 8-hydroxy-2-mercaptopurine as the expected end product in one step. Surprisingly, in contrast to the other thiopurines, enzymatic hydroxylation of 2-MP showed a unique hyperchromic effect at 264 nm as the reaction proceeded. However, when 2-TX is used as the substrate, it is hydroxylated to 2-thiouric acid. The enzymatic hydroxylation of 2-MP is considerably faster than that of 6-MP, while 6-TX and 2-TX show similar rates under identical reaction conditions. The reason why 2-MP is a better substrate than 6-MP and how the chemical nature and position of the functional groups present on the thiopurine substrates influence xanthine oxidase activity are discussed.

  8. DNA BINDING POTENTIAL OF BROMODICHLOROMETHANE MEDIATED BY GLUTATHIONE S-TRANSFERASE THETA 1-1

    EPA Science Inventory


    DNA BINDING POTENTIAL OF BROMODICHLOROMETHANE MEDIATED BY GLUTATHIONE S-TRANSFERASE THETA 1-1. R A Pegram1 and M K Ross2. 2Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC; 1Pharmacokinetics Branch, NHEERL, ORD, United States Environmental Protection Ag...

  9. GM-CSF treatment is not effective in congenital neutropenia patients due to its inability to activate NAMPT signaling.

    PubMed

    Koch, Corinna; Samareh, Bardia; Morishima, Tatsuya; Mir, Perihan; Kanz, Lothar; Zeidler, Cornelia; Skokowa, Julia; Welte, Karl

    2017-03-01

    Severe congenital neutropenia (CN) is a bone marrow failure syndrome characterized by an absolute neutrophil count (ANC) below 500 cells/μL and recurrent, life-threatening bacterial infections. Treatment with granulocyte colony-stimulating factor (G-CSF) increases the ANC in the majority of CN patients. In contrary, granulocyte-monocyte colony-stimulating factor (GM-CSF) fails to increase neutrophil numbers in CN patients in vitro and in vivo, suggesting specific defects in signaling pathways downstream of GM-CSF receptor. Recently, we detected that G-CSF induces granulopoiesis in CN patients by hyperactivation of nicotinamide phosphoribosyl transferase (NAMPT)/Sirtuin 1 signaling in myeloid cells. Here, we demonstrated that, in contrast to G-CSF, GM-CSF failed to induce NAMPT-dependent granulopoiesis in CN patients. We further identified NAMPT signaling as an essential downstream effector of the GM-CSF pathway in myelopoiesis.

  10. Glutathione S-transferase P1 (GSTP1) directly influences platinum drug chemosensitivity in ovarian tumour cell lines

    PubMed Central

    Sawers, L; Ferguson, M J; Ihrig, B R; Young, H C; Chakravarty, P; Wolf, C R; Smith, G

    2014-01-01

    Background: Chemotherapy response in ovarian cancer patients is frequently compromised by drug resistance, possibly due to altered drug metabolism. Platinum drugs are metabolised by glutathione S-transferase P1 (GSTP1), which is abundantly, but variably expressed in ovarian tumours. We have created novel ovarian tumour cell line models to investigate the extent to which differential GSTP1 expression influences chemosensitivity. Methods: Glutathione S-transferase P1 was stably deleted in A2780 and expression significantly reduced in cisplatin-resistant A2780DPP cells using Mission shRNA constructs, and MTT assays used to compare chemosensitivity to chemotherapy drugs used to treat ovarian cancer. Differentially expressed genes in GSTP1 knockdown cells were identified by Illumina HT-12 expression arrays and qRT–PCR analysis, and altered pathways predicted by MetaCore (GeneGo) analysis. Cell cycle changes were assessed by FACS analysis of PI-labelled cells and invasion and migration compared in quantitative Boyden chamber-based assays. Results: Glutathione S-transferase P1 knockdown selectively influenced cisplatin and carboplatin chemosensitivity (2.3- and 4.83-fold change in IC50, respectively). Cell cycle progression was unaffected, but cell invasion and migration was significantly reduced. We identified several novel GSTP1 target genes and candidate platinum chemotherapy response biomarkers. Conclusions: Glutathione S-transferase P1 has an important role in cisplatin and carboplatin metabolism in ovarian cancer cells. Inter-tumour differences in GSTP1 expression may therefore influence response to platinum-based chemotherapy in ovarian cancer patients. PMID:25010864

  11. Surface-Enhanced Hyper-Raman Spectra of Adenine, Guanine, Cytosine, Thymine, and Uracil

    PubMed Central

    2016-01-01

    Using picosecond excitation at 1064 nm, surface-enhanced hyper-Raman scattering (SEHRS) spectra of the nucleobases adenine, guanine, cytosine, thymine, and uracil with two different types of silver nanoparticles were obtained. Comparing the SEHRS spectra with SERS data from the identical samples excited at 532 nm and with known infrared spectra, the major bands in the spectra are assigned. Due to the different selection rules for the one- and two-photon excited Raman scattering, we observe strong variation in relative signal strengths of many molecular vibrations obtained in SEHRS and SERS spectra. The two-photon excited spectra of the nucleobases are found to be very sensitive with respect to molecule–nanoparticle interactions. Using both the SEHRS and SERS data, a comprehensive vibrational characterization of the interaction of nucleobases with silver nanostructures can be achieved. PMID:28077982

  12. Anti-herpesvirus activity profile of 4'-thioarabinofuranosyl purine and uracil nucleosides and activity of 1-beta-D-2'-fluoro-4'-thioarabinofuranosyl guanine and 2,6-diaminopurine against clinical isolates of human cytomegalovirus.

    PubMed

    Machida, H; Ashida, N; Miura, S; Endo, M; Yamada, K; Kitano, K; Yoshimura, Y; Sakata, S; Ijichi, O; Eizuru, Y

    1998-08-01

    Newly synthesized 4'-thio- and 2'-fluoro-4'-thioarabinofuranosyl purine and pyrimidine nucleosides were compared with the corresponding 4'-oxo type arabinosyl nucleosides for anti-herpesvirus and anti-cell proliferative potencies. 4'-Thioarabinosyl- and 2'-fluoro-4'-thioarabinofuranosyl 5-substituted uracils had selective antiviral activities, but were not superior to 4'-oxo nucleosides, except for the activity of 5-ethyl-uracil 4'-thio nucleosides against herpes simplex virus. Furthermore, 4'-thio substituted derivatives of sorivudine (BV-araU) and related compounds, and 2'-fluoro-5-methyl-arabinosyluracil exhibited reduced activity against varicella-zoster virus compared with the parent compounds. The 4'-thioarabinosyluracils, except for 5-methyluracil derivatives, were inactive against human cytomegalovirus (HCMV). 4'-Thioarabinofuranosyl guanine and diaminopurine had the most potent anti-HCMV and anti-proliferative activities, whereas arabinosyl guanine and diaminopurine had only marginal antiviral activity. 2'-Fluoro-4'-thioarabinofuranosyl derivatives of guanine (4'-thio-FaraG) and 2,6-diaminopurine (4'-thio-FaraDAP), however, had particularly high activity against all herpesviruses tested with anti-proliferative activity equipotent to that of arabinosyl guanine and diaminopurine. 4'-Thio- and 2'-fluoro-4'-thioarabinofuranosyladenines exhibited biological activities similar to that of arabinosyladenine. Both 4'-thio-FaraG and 4'-thio-FaraDAP had a 6-fold lower ED50 than ganciclovir against clinical isolates of HCMV. A ganciclovir-resistant isolate, obtained from a patient who had received long-term ganciclovir-treatment, was susceptible to 4'-thio-FaraG and 4'-thio-FaraDAP.

  13. Characterization of a Bvg-regulated fatty acid methyl-transferase in Bordetella pertussis.

    PubMed

    Rivera-Millot, Alex; Lesne, Elodie; Solans, Luis; Coutte, Loic; Bertrand-Michel, Justine; Froguel, Philippe; Dhennin, Véronique; Hot, David; Locht, Camille; Antoine, Rudy; Jacob-Dubuisson, Françoise

    2017-01-01

    The whooping cough agent Bordetella pertussis controls the expression of its large virulence regulon in a coordinated manner through the two-component signal transduction system BvgAS. In addition to the genes coding for bona fide virulence factors, the Bvg regulon comprises genes of unknown function. In this work, we characterized a new Bvg-activated gene called BP2936. Homologs of BP2936 are found in other pathogenic Bordetellae and in several other species, including plant pathogens and environmental bacteria. We showed that the gene product of BP2936 is a membrane-associated methyl-transferase of free fatty acids. We thus propose to name it FmtB, for fatty acid methyl-transferase of Bordetella. The role of this protein was tested in cellular and animal models of infection, but the loss of BP2936 did not appear to affect host-pathogen interactions in those assays. The high level of conservation of BP2936 among B. pertussis isolates nevertheless argues that it probably plays a role in the life cycle of this pathogen.

  14. The role of endoxyloglucan transferase in the organization of plant cell walls.

    PubMed

    Nishitani, K

    1997-01-01

    The plant cell wall plays a central role in morphogenesis as well as responsiveness to environmental signals. Xyloglucans are the principal component of the plant cell wall matrix and serve as cross-links between cellulose microfibrils to form the cellulose-xyloglucan framework. Endoxyloglucan transferase (EXGT), which was isolated and characterized in 1992, is an enzyme that mediates molecular grafting reaction between xyloglucan molecules. Structural studies on cDNAs encoding EXGT and its related proteins have disclosed the ubiquitous presence in the plant kingdom of a large multigene family of xyloglucan-related proteins (XRPs). Each XRP functions as either hydrolase or transferase acting on xyloglucans and is considered to be responsible for rearrangement of the cellulose-xyloglucan framework, the processes essential for the construction, modification, and degradation of plant cell walls. Different XRP genes exhibit potentially different expression profiles with respect to tissue specificity and responsiveness to hormonal and mechanical signals. The molecular approach to individual XRP genes will open a new path for exploring the controlling mechanisms by which the plant cell wall is constructed and reformed during plant growth and development.

  15. Characterization of a Bvg-regulated fatty acid methyl-transferase in Bordetella pertussis

    PubMed Central

    Rivera-Millot, Alex; Lesne, Elodie; Solans, Luis; Coutte, Loic; Bertrand-Michel, Justine; Froguel, Philippe; Dhennin, Véronique; Hot, David; Locht, Camille; Antoine, Rudy

    2017-01-01

    The whooping cough agent Bordetella pertussis controls the expression of its large virulence regulon in a coordinated manner through the two-component signal transduction system BvgAS. In addition to the genes coding for bona fide virulence factors, the Bvg regulon comprises genes of unknown function. In this work, we characterized a new Bvg-activated gene called BP2936. Homologs of BP2936 are found in other pathogenic Bordetellae and in several other species, including plant pathogens and environmental bacteria. We showed that the gene product of BP2936 is a membrane-associated methyl-transferase of free fatty acids. We thus propose to name it FmtB, for fatty acid methyl-transferase of Bordetella. The role of this protein was tested in cellular and animal models of infection, but the loss of BP2936 did not appear to affect host-pathogen interactions in those assays. The high level of conservation of BP2936 among B. pertussis isolates nevertheless argues that it probably plays a role in the life cycle of this pathogen. PMID:28493897

  16. Assessment of Antioxidant and Phenolic Compound Concentrations as well as Xanthine Oxidase and Tyrosinase Inhibitory Properties of Different Extracts of Pleurotus citrinopileatus Fruiting Bodies

    PubMed Central

    Alam, Nuhu; Yoon, Ki Nam; Lee, Kyung Rim; Kim, Hye Young; Shin, Pyung Gyun; Cheong, Jong Chun; Yoo, Young Bok; Shim, Mi Ja; Lee, Min Woong

    2011-01-01

    Cellular damage caused by reactive oxygen species has been implicated in several diseases, thus establishing a significant role for antioxidants in maintaining human health. Acetone, methanol, and hot water extracts of Pleurotus citrinopileatus were evaluated for their antioxidant activities against β-carotene-linoleic acid and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals, reducing power, ferrous ion-chelating abilities, and xanthine oxidase inhibitory activities. In addition, the tyrosinase inhibitory effects and phenolic compound contents of the extracts were also analyzed. Methanol and acetone extracts of P. citrinopileatus showed stronger inhibition of β-carotene-linoleic acid compared to the hot water extract. Methanol extract (8 mg/mL) showed a significantly high reducing power of 2.92 compared to the other extracts. The hot water extract was more effective than the acetone and methanole extracts for scavenging DPPH radicals. The strongest chelating effect (92.72%) was obtained with 1.0 mg/mL of acetone extract. High performance liquid chromatography analysis detected eight phenolic compounds, including gallic acid, protocatechuic acid, chlorogenic acid, ferulic acid, naringenin, hesperetin, formononetin, and biochanin-A, in an acetonitrile and hydrochloric acid (5 : 1) solvent extract. Xanthine oxidase and tyrosinase inhibitory activities of the acetone, methanol, and hot water extracts increased with increasing concentration. This study suggests that fruiting bodies of P. citrinopileatus can potentially be used as a readily accessible source of natural antioxidants. PMID:22783067

  17. A Tyrosine-Reactive Irreversible Inhibitor for Glutathione S-Transferase Pi (GSTP1)

    PubMed Central

    Crawford, L. A.; Weerapana, E.

    2016-01-01

    Glutathione S-Transferase Pi (GSTP1) mediates cellular defense against reactive electrophiles. Here, we report LAS17, a dichlorotriazine-containing compound that irreversibly inhibits GSTP1 and is selective for GSTP1 within cellular proteomes. Mass spectrometry and mutational studies identified Y108 as the site of modification, providing a unique mode of GSTP1 inhibition. PMID:27113843

  18. A tyrosine-reactive irreversible inhibitor for glutathione S-transferase Pi (GSTP1).

    PubMed

    Crawford, L A; Weerapana, E

    2016-05-24

    Glutathione S-transferase Pi (GSTP1) mediates cellular defense against reactive electrophiles. Here, we report LAS17, a dichlorotriazine-containing compound that irreversibly inhibits GSTP1 and is selective for GSTP1 within cellular proteomes. Mass spectrometry and mutational studies identified Y108 as the site of modification, providing a unique mode of GSTP1 inhibition.

  19. Development of a method to screen and isolate potential xanthine oxidase inhibitors from Panax japlcus var via ultrafiltration liquid chromatography combined with counter-current chromatography.

    PubMed

    Li, Sainan; Tang, Ying; Liu, Chunming; Li, Jing; Guo, Liping; Zhang, Yuchi

    2015-03-01

    Panax japlcus var is a typical Chinese herb with a large number of saponins existing in all parts of it. The common methods of screening and isolating saponins are mostly labor-intensive and time-consuming. In this study, a new assay based on ultrafiltration-liquid chromatography-mass spectrometry (UF-LC-MS) was developed for the rapid screening and identifying of the ligands for xanthine oxidase from the extract of P. japlcus. Six saponins were identified as xanthine oxidase inhibitors from the extract. Subsequently, the specific binding ligands, namely, 24 (R)-majoroside R1, chikusetsusaponin IVa, oleanolic acid-28-O-β-D-glucopyranoside, notoginsenoside Fe, ginsenoside Rb2 and ginsenoside Rd (the purities of them were 95.74%, 96.12%, 93.19%, 94.83%, 95.07% and 94.62%, respectively) were separated by high-speed counter-current chromatography (HSCCC). The component ratio of the solvent system of HSCCC was calculated with the help of a multiexponential function model was optimized. The partition coefficient (K) values of the target compounds and resolutions of peaks were employed as the research indicators, and exponential function and binomial formulas were used to optimize the solvent system and flow rate of the mobile phases in a two-stage separation. An optimized two-phase solvent system composed of ethyl acetate, isopropanol, 0.1% aqueous formic acid (1.9:1.0:1.3, v/v/v, for the first-stage) and that composed of methylene chloride, acetonitrile, isopropanol, 0.1% aqueous formic acid (5.6:1.0:2.4:5.2, v/v/v/v, for the second-stage) were used to isolate the six compounds from P. japlcus. The targeted compounds isolated, collected and purified by HSCCC were analyzed by high performance liquid chromatography (UPLC), and the chemical structures of all the six compounds were identified by UV, MS and NMR. The results demonstrate that UF-LC-MS combined with HSCCC might provide not only a powerful tool for screening and isolating xanthine oxidase inhibitors in complex

  20. Multiscale QM/MM molecular dynamics study on the first steps of guanine damage by free hydroxyl radicals in solution.

    PubMed

    Abolfath, Ramin M; Biswas, P K; Rajnarayanam, R; Brabec, Thomas; Kodym, Reinhard; Papiez, Lech

    2012-04-19

    Understanding the damage of DNA bases from hydrogen abstraction by free OH radicals is of particular importance to understanding the indirect effect of ionizing radiation. Previous studies address the problem with truncated DNA bases as ab initio quantum simulations required to study such electronic-spin-dependent processes are computationally expensive. Here, for the first time, we employ a multiscale and hybrid quantum mechanical-molecular mechanical simulation to study the interaction of OH radicals with a guanine-deoxyribose-phosphate DNA molecular unit in the presence of water, where all of the water molecules and the deoxyribose-phosphate fragment are treated with the simplistic classical molecular mechanical scheme. Our result illustrates that the presence of water strongly alters the hydrogen-abstraction reaction as the hydrogen bonding of OH radicals with water restricts the relative orientation of the OH radicals with respect to the DNA base (here, guanine). This results in an angular anisotropy in the chemical pathway and a lower efficiency in the hydrogen-abstraction mechanisms than previously anticipated for identical systems in vacuum. The method can easily be extended to single- and double-stranded DNA without any appreciable computational cost as these molecular units can be treated in the classical subsystem, as has been demonstrated here. © 2012 American Chemical Society

  1. Quadruplexes of human telomere dG{sub 3}(TTAG{sub 3}){sub 3} sequences containing guanine abasic sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skolakova, Petra; Bednarova, Klara; Vorlickova, Michaela

    Research highlights: {yields} Loss of a guanine base does not hinder the formation of G-quadruplex of human telomere sequence. {yields} Each depurination strongly destabilizes the quadruplex of dG{sub 3}(TTAG{sub 3}){sub 3} in NaCl and KCl. {yields} Conformational change of the abasic analogs of dG{sub 3}(TTAG{sub 3}){sub 3} is inhibited in KCl. {yields} The effects abasic sites may affect telomere-end structures in vivo. -- Abstract: This study was performed to evaluate how the loss of a guanine base affects the structure and stability of the three-tetrad G-quadruplex of 5'-dG{sub 3}(TTAG{sub 3}){sub 3}, the basic quadruplex-forming unit of the human telomere DNA.more » None of the 12 possible abasic sites hindered the formation of quadruplexes, but all reduced the thermodynamic stability of the parent quadruplex in both NaCl and KCl. The base loss did not change the Na{sup +}-stabilized intramolecular antiparallel architecture, based on CD spectra, but held up the conformational change induced in dG{sub 3}(TTAG{sub 3}){sub 3} in physiological concentration of KCl. The reduced stability and the inhibited conformational transitions observed here in vitro for the first time may predict that unrepaired abasic sites in G-quadruplexes could lead to changes in the chromosome's terminal protection in vivo.« less

  2. Electrochemical estrogen screen method based on the electrochemical behavior of MCF-7 cells.

    PubMed

    Li, Jinlian; Song, Jia; Bi, Sheng; Zhou, Shi; Cui, Jiwen; Liu, Jiguang; Wu, Dongmei

    2016-08-05

    It was an urgent task to develop quick, cheap and accurate estrogen screen method for evaluating the estrogen effect of the booming chemicals. In this study, the voltammetric behavior between the estrogen-free and normal fragmented MCF-7 cell suspensions were compared, and the electrochemical signal (about 0.68V attributed by xanthine and guanine) of the estrogen-free fragmented MCF-7 cell suspension was obviously lower than that of the normal one. The electrochemistry detection of ex-secretion purines showed that the ability of ex-secretion purines of cells sharp decreased due to the removing of endogenous estrogen. The results indicated that the electrochemical signal of MCF-7 cells was related to the level of intracellular estrogen. When the level of intracellular estrogen was down-regulated, the concentrations of the xanthine and hypoxanthine decreased, which led to the electrochemical signal of MCF-7 cells fall. Based on the electrochemical signal, the electrochemical estrogen screen method was established. The estrogen effect of estradiol, nonylphenol and bisphenol A was evaluated with the electrochemical method, and the result was accordant with that of MTT assay. The electrochemical estrogen screen method was simple, quickly, cheap, objective, and it exploits a new way for the evaluation of estrogenic effects of chemicals. Copyright © 2016. Published by Elsevier B.V.

  3. Trisubstituted barbiturates and thiobarbiturates: Synthesis and biological evaluation as xanthine oxidase inhibitors, antioxidants, antibacterial and anti-proliferative agents.

    PubMed

    Figueiredo, Joana; Serrano, João L; Cavalheiro, Eunice; Keurulainen, Leena; Yli-Kauhaluoma, Jari; Moreira, Vânia M; Ferreira, Susana; Domingues, Fernanda C; Silvestre, Samuel; Almeida, Paulo

    2018-01-01

    Barbituric and thiobarbituric acid derivatives have become progressively attractive to medicinal chemists due to their wide range of biological activities. Herein, different series of 1,3,5-trisubstituted barbiturates and thiobarbiturates were prepared in moderate to excellent yields and their activity as xanthine oxidase inhibitors, antioxidants, antibacterial agents and as anti-proliferative compounds was evaluated in vitro. Interesting bioactive barbiturates were found namely, 1,3-dimethyl-5-[1-(2-phenylhydrazinyl)ethylidene]pyrimidine-2,4,6(1H,3H,5H)-trione (6c) and 1,3-dimethyl-5-[1-[2-(4-nitrophenyl)hydrazinyl]ethylidene]pyrimidine-2,4,6(1H,3H,5H)-trione (6e), which showed concomitant xanthine oxidase inhibitory effect (IC 50 values of 24.3 and 27.9 μM, respectively), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity (IC 50 values of 18.8 and 23.8 μM, respectively). In addition, 5-[1-(2-phenylhydrazinyl)ethylidene]pyrimidine-2,4,6(1H,3H,5H)-trione (6d) also revealed DPPH radical scavenger effect, with an IC 50 value of 20.4 μM. Moreover, relevant cytotoxicity against MCF-7 cells (IC 50  = 13.3 μM) was observed with 5-[[(2-chloro-4-nitrophenyl)amino]methylene]-2-thioxodihydropyrimidine-4,6(1H,5H)-dione (7d). Finally, different 5-hydrazinylethylidenepyrimidines revealed antibacterial activity against Acinetobacter baumannii (MIC values between 12.5 and 25.0 μM) which paves the way for developing new treatments for infections caused by this Gram-negative coccobacillus bacterium, known to be an opportunistic pathogen in humans with high relevance in multidrug-resistant nosocomial infections. The most promising bioactive barbiturates were studied in silico with emphasis on compliance with the Lipinski's rule of five as well as several pharmacokinetics and toxicity parameters. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Structural Transformation of Guanine Coordination Motifs in Water Induced by Metal ions and Temperature.

    PubMed

    Li, Wei; Jin, Jing; Liu, Xiaoqing; Wang, Li

    2018-06-15

    The transformation effects of metal ions and temperature on the DNA bases guanine (G) metal-organic coordination motifs in water have been investigated by scanning tunneling microcopy (STM). The G molecules form an ordered hydrogen-bonded structure at the water- highly oriented pyrolytic graphite (HOPG) interface. The STM observations reveal that the canonical G/9H form can be transformed into the G/(3H, 7H) tautomer by increasing the temperature of the G solution to 38.6oC. Moreover, metal ions bind with G molecules to form G4Fe13+, G3Fe32+ and the heterochiral intermixed G4Na1+ metal-organic networks after the introduction of the alkali-metal ions in cellular environment.

  5. Electronic structure of some adenosine receptor antagonists. III. Quantitative investigation of the electronic absorption spectra of alkyl xanthines

    NASA Astrophysics Data System (ADS)

    Moustafa, H.; Shalaby, Samia H.; El-sawy, K. M.; Hilal, Rifaat

    2002-07-01

    Quantitative and comparative investigation of the electronic absorption spectra of theophylline, caffeine and their derivatives is reported. The spectra of theophylline, caffeine and theobromine were compared to establish the predominant tautomeric species in solution. This comparison, analysis of solvent effects and assignments of the observed transitions via MO computations indicate the exits of only one tautomeric species in solution that is the N7 form. A low-lying triplet state was identified which corresponds to a HOMO-LUMO transition. This relatively long-lived T 1 state is always less polar than the ground state and may very well underlie the photochemical reactivity of alkyl xanthines. Substituents of different electron donating or withdrawing strengths and solvent effects are investigated and analyzed. The present analysis is facilitated via computer deconvolution of the observed spectra and MO computation.

  6. Drug resistance in epithelial ovarian cancer: P-glycoprotein and glutation S-transferase. Can they play an important role in detecting response to platinum-based chemotherapy as a first-line therapy.

    PubMed

    Simşek, T; Ozbilim, G; Gülkesen, H; Kaya, H; Sargin, F; Karaveli, S

    2001-01-01

    Drug resistance is important for the treatment of ovarian cancer. P-glycoprotein and glutation S-transferase as resistance markers play an important role in the effectivity of chemotherapeutical agents. The role of P-glycoprotein and glutation S-transferase in the treatment of epithelial ovarian cancer is not well understood. We investigated the relation between P-glycoprotein and glutation S-transferase level for response to platinum-based chemotherapy in epithelial ovarian cancer. We reviewed 30 cases diagnosed as epithelial ovarian cancer and treated with platinum-based chemotherapy in the Department of Obstetrics and Gynecology, Akdeniz University School of Medicine. The material was attained from initial parafin-embeded blocks stained for P-glycoprotein and glutation S-transferase. The cases that were diagnosed and treated before attending our clinic were not enrolled in the study. Mean age was 58.2 (25-70) and mean gravida 4.1 (0-10). Twenty-four patients (80%) were glutation S-transferase positive. Three cases (10%) out of 30 had positive reaction for P-glycoprotein. No difference was revealed regarding chemotherapy response rate among the cases showing glutation S-transferase positivity and P-glycoprotein negativity. Detection of glutation S-transferase and P-glycoprotein levels in epithelial ovarian cancer tissue is not important for response to platinum-based chemotherapy as a first line.

  7. Nitrite reductase activity of rat and human xanthine oxidase, xanthine dehydrogenase, and aldehyde oxidase: evaluation of their contribution to NO formation in vivo.

    PubMed

    Maia, Luisa B; Pereira, Vânia; Mira, Lurdes; Moura, José J G

    2015-01-27

    Nitrite is presently considered a NO "storage form" that can be made available, through its one-electron reduction, to maintain NO formation under hypoxia/anoxia. The molybdoenzymes xanthine oxidase/dehydrogenase (XO/XD) and aldehyde oxidase (AO) are two of the most promising mammalian nitrite reductases, and in this work, we characterized NO formation by rat and human XO/XD and AO. This is the first characterization of human enzymes, and our results support the employment of rat liver enzymes as suitable models of the human counterparts. A comprehensive kinetic characterization of the effect of pH on XO and AO-catalyzed nitrite reduction showed that the enzyme's specificity constant for nitrite increase 8-fold, while the Km(NO2(-)) decrease 6-fold, when the pH decreases from 7.4 to 6.3. These results demonstrate that the ability of XO/AO to trigger NO formation would be greatly enhanced under the acidic conditions characteristic of ischemia. The dioxygen inhibition was quantified, and the Ki(O2) values found (24.3-48.8 μM) suggest that in vivo NO formation would be fine-tuned by dioxygen availability. The potential in vivo relative physiological relevance of XO/XD/AO-dependent pathways of NO formation was evaluated using HepG2 and HMEC cell lines subjected to hypoxia. NO formation by the cells was found to be pH-, nitrite-, and dioxygen-dependent, and the relative contribution of XO/XD plus AO was found to be as high as 50%. Collectively, our results supported the possibility that XO/XD and AO can contribute to NO generation under hypoxia inside a living human cell. Furthermore, the molecular mechanism of XO/AO-catalyzed nitrite reduction was revised.

  8. β(1,3)-Glucanosyl-Transferase Activity Is Essential for Cell Wall Integrity and Viability of Schizosaccharomyces pombe

    PubMed Central

    de Medina-Redondo, María; Arnáiz-Pita, Yolanda; Clavaud, Cécile; Fontaine, Thierry; del Rey, Francisco; Latgé, Jean Paul; Vázquez de Aldana, Carlos R.

    2010-01-01

    Background The formation of the cell wall in Schizosaccharomyces pombe requires the coordinated activity of enzymes involved in the biosynthesis and modification of β-glucans. The β(1,3)-glucan synthase complex synthesizes linear β(1,3)-glucans, which remain unorganized until they are cross-linked to other β(1,3)-glucans and other cell wall components. Transferases of the GH72 family play important roles in cell wall assembly and its rearrangement in Saccharomyces cerevisiae and Aspergillus fumigatus. Four genes encoding β(1,3)-glucanosyl-transferases -gas1+, gas2+, gas4+ and gas5+- are present in S. pombe, although their function has not been analyzed. Methodology/Principal Findings Here, we report the characterization of the catalytic activity of gas1p, gas2p and gas5p together with studies directed to understand their function during vegetative growth. From the functional point of view, gas1p is essential for cell integrity and viability during vegetative growth, since gas1Δ mutants can only grow in osmotically supported media, while gas2p and gas5p play a minor role in cell wall construction. From the biochemical point of view, all of them display β(1,3)-glucanosyl-transferase activity, although they differ in their specificity for substrate length, cleavage point and product size. In light of all the above, together with the differences in expression profiles during the life cycle, the S. pombe GH72 proteins may accomplish complementary, non-overlapping functions in fission yeast. Conclusions/Significance We conclude that β(1,3)-glucanosyl-transferase activity is essential for viability in fission yeast, being required to maintain cell integrity during vegetative growth. PMID:21124977

  9. Bisubstrate Kinetics of Glutathione S-Transferase: A Colorimetric Experiment for the Introductory Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Stefanidis, Lazaros; Scinto, Krystal V.; Strada, Monica I.; Alper, Benjamin J.

    2018-01-01

    Most biochemical transformations involve more than one substrate. Bisubstrate enzymes catalyze multiple chemical reactions in living systems and include members of the transferase, oxidoreductase, and ligase enzyme classes. Working knowledge of bisubstrate enzyme kinetic models is thus of clear importance to the practicing biochemist. However,…

  10. Identification of Glutathione S-Transferase Pi as a Protein Involved in Parkinson Disease Progression

    PubMed Central

    Shi, Min; Bradner, Joshua; Bammler, Theo K.; Eaton, David L.; Zhang, JianPeng; Ye, ZuCheng; Wilson, Angela M.; Montine, Thomas J.; Pan, Catherine; Zhang, Jing

    2009-01-01

    Parkinson disease (PD) typically affects the cortical regions during the later stages of disease, with neuronal loss, gliosis, and formation of diffuse cortical Lewy bodies in a significant portion of patients with dementia. To identify novel proteins involved in PD progression, we prepared synaptosomal fractions from the frontal cortices of pathologically verified PD patients at different stages along with age-matched controls. Protein expression profiles were compared using a robust quantitative proteomic technique. Approximately 100 proteins displayed significant differences in their relative abundances between PD patients at various stages and controls; three of these proteins were validated using independent techniques. One of the confirmed proteins, glutathione S-transferase Pi, was further investigated in cellular models of PD, demonstrating that its level was intimately associated with several critical cellular processes that are directly related to neurodegeneration in PD. These results have, for the first time, suggested that the levels of glutathione S-transferase Pi may play an important role in modulating the progression of PD. PMID:19498008

  11. The structure of a zeta class glutathione S-transferase from Arabidopsis thaliana: characterisation of a GST with novel active-site architecture and a putative role in tyrosine catabolism.

    PubMed

    Thom, R; Dixon, D P; Edwards, R; Cole, D J; Lapthorn, A J

    2001-05-18

    The cis-trans isomerisation of maleylacetoacetate to fumarylacetoacetate is the penultimate step in the tyrosine/phenylalanine catabolic pathway and has recently been shown to be catalysed by glutathione S-transferase enzymes belonging to the zeta class. Given this primary metabolic role it is unsurprising that zeta class glutathione S-transferases are well conserved over a considerable period of evolution, being found in vertebrates, plants, insects and fungi. The structure of this glutathione S-transferase, cloned from Arabidopsis thaliana, has been solved by single isomorphous replacement with anomalous scattering and refined to a final crystallographic R-factor of 19.6% using data from 25.0 A to 1.65 A. The zeta class enzyme adopts the canonical glutathione S-transferase fold and forms a homodimer with each subunit consisting of 221 residues. In agreement with structures of glutathione S-transferases from the theta and phi classes, a serine residue (Ser17) is present in the active site, at a position that would allow it to stabilise the thiolate anion of glutathione. Site-directed mutagenesis of this residue confirms its importance in catalysis. In addition, the role of a highly conserved cysteine residue (Cys19) present in the active site of the zeta class glutathione S-transferase enzymes is discussed. Copyright 2001 Academic Press.

  12. Magnetically-assembled micro/mesopixels exhibiting light intensity enhancement in the (012) planes of fish guanine crystals

    NASA Astrophysics Data System (ADS)

    Chikashige, T.; Iwasaka, M.

    2018-05-01

    In this study, a new method was investigated to form light-reflecting dots at the micrometer scale using the magnetic orientations of biogenic guanine crystals obtained from fish skin and scales. The crystal platelets, possessing average dimensions of 5 μm×20 μm×100 nm, were dispersed in water and observed during exposure to vertical magnetic fields up to 5 T. The magnetic field direction was parallel to Earth's gravity, and allowed the narrowest edges of the crystals to be observed at the micrometer scale for the first time. The magnetic orientation process was initiated under conditions where the crystal platelets in water were laid on a glass substrate or where the platelets had random orientations. In the former case, the crystal platelets followed a two-stage magnetic orientation process where, in the first step, the platelet widths were aligned in the magnetic field direction. The second step required rotation of the ˜20-μm-long plates with respect to the Earth's gravity, where application of a 5 T magnetic field enabled their orientation. Real-time images of the magnetically aligning platelets provided new evidence that the crystal platelets also emitted reflected light from a very narrow window at two crystal planes (i.e., (0 1 ¯ 2 ¯ ) and (0 1 ¯ 2 )). In the latter case with random platelet orientation, spatially-condensed light-reflecting dots appeared while the guanine crystal platelets were floating and maintaining their orientation. The technique developed for controlling light-reflecting microscale objects in an aqueous medium can be applied to produce a type of microfluidic optical tool.

  13. Imidazopyridine and Pyrazolopiperidine Derivatives as Novel Inhibitors of Serine Palmitoyl Transferase.

    PubMed

    Genin, Michael J; Gonzalez Valcarcel, Isabel C; Holloway, William G; Lamar, Jason; Mosior, Marian; Hawkins, Eric; Estridge, Thomas; Weidner, Jeffrey; Seng, Thomas; Yurek, David; Adams, Lisa A; Weller, Jennifer; Reynolds, Vincent L; Brozinick, Joseph T

    2016-06-23

    To develop novel treatments for type 2 diabetes and dyslipidemia, we pursued inhibitors of serine palmitoyl transferase (SPT). To this end compounds 1 and 2 were developed as potent SPT inhibitors in vitro. 1 and 2 reduce plasma ceramides in rodents, have a slight trend toward enhanced insulin sensitization in DIO mice, and reduce triglycerides and raise HDL in cholesterol/cholic acid fed rats. Unfortunately these molecules cause a gastric enteropathy after chronic dosing in rats.

  14. DAMGO binding to mouse brain membranes: influence of salts, guanine nucleotides, substance P, and substance P fragments.

    PubMed

    Krumins, S A; Kim, D C; Igwe, O J; Larson, A A

    1993-01-01

    Substance P (SP) appears to mediate many processes of the central nervous system, including pain. This report deals with modulation of opioid binding in the mouse brain by SP and SP fragments, as well as by salts and guanine nucleotides. Binding studies of the selective mu opioid receptor agonist [D-Ala2, MePhe4,Gly(ol)5]enkephalin (DAMGO) to mouse brain membrane preparations demonstrated that guanine nucleotide modulation of DAMGO binding affinity was modified by SP. However, SP had little or no influence on inhibition of DAMGO binding induced by salts, such as MgCl2, CaCl2, or NaCl. By replacing GTP with GppNHp, SP (0.1 nM) produced multiple affinity forms of the DAMGO receptor, while at a higher concentration (10 nM), SP lost its influence on DAMGO binding. Furthermore, 0.1 nM SP changed DAMGO binding parameters in a medium containing NaCl, CaCl2, and GppNHp such that the high- and low-affinity conformations of the receptor converted to a single site following the addition of SP to the incubation medium. While the C-terminal SP fragment SP(5-11) was without effect, the N-terminal SP fragments SP(1-9) and SP(1-7) appeared to imitate SP in modifying GppNHp-modulated DAMGO binding. These results suggest that SP functions as a modulator of opioid binding at the mu receptor and it appears that the N-terminus of SP plays a role in the modulatory process.

  15. Xanthine oxidase inhibitors beyond allopurinol and febuxostat; an overview and selection of potential leads based on in silico calculated physico-chemical properties, predicted pharmacokinetics and toxicity.

    PubMed

    Šmelcerović, Andrija; Tomović, Katarina; Šmelcerović, Žaklina; Petronijević, Živomir; Kocić, Gordana; Tomašič, Tihomir; Jakopin, Žiga; Anderluh, Marko

    2017-07-28

    Xanthine oxidase (XO), a versatile metalloflavoprotein enzyme, catalyzes the oxidative hydroxylation of hypoxanthine and xanthine to uric acid in purine catabolism while simultaneously producing reactive oxygen species. Both lead to the gout-causing hyperuricemia and oxidative damage of the tissues where overactivity of XO is present. Over the past years, significant progress and efforts towards the discovery and development of new XO inhibitors have been made and we believe that not only experts in the field, but also general readership would benefit from a review that addresses this topic. Accordingly, the aim of this article was to overview and select the most potent recently reported XO inhibitors and to compare their structures, mechanisms of action, potency and effectiveness of their inhibitory activity, in silico calculated physico-chemical properties as well as predicted pharmacokinetics and toxicity. Derivatives of imidazole, 1,3-thiazole and pyrimidine proved to be more potent than febuxostat while also displaying/possessing favorable predicted physico-chemical, pharmacokinetic and toxicological properties. Although being structurally similar to febuxostat, these optimized inhibitors bear some structural freshness and could be adopted as hits for hit-to-lead development and further evaluation by in vivo studies towards novel drug candidates, and represent valuable model structures for design of novel XO inhibitors. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Molecular mimicry between cockroach and helminth glutathione S-transferases promotes cross-reactivity and cross-sensitization

    USDA-ARS?s Scientific Manuscript database

    The extensive similarities between helminth proteins and allergens are thought to contribute to helminth-driven allergic sensitization. We investigated the molecular and structural similarities between Bla g 5, a major glutathione-S transferase (GST) allergen of cockroaches, and the GST of Wucherer...

  17. Glutathione S-transferase M1 and glutathione S-transferase T1 genotype in chronic pancreatitis: a meta-analysis.

    PubMed

    Zhong, Yanjun; Zou, Runmei; Cao, Jie; Peng, Mou

    2015-02-01

    A meta-analysis to determine the association between chronic pancreatitis and glutathione-S transferase (GST) mu 1 (GSTM1) and theta 1 (GSTT1) deletions. Case-control studies concerning the relationship between chronic pancreatitis and GSTM1 or GSTT1 deletions were identified (up to October 2013). Meta-analyses of the association between GSTM1 and GSTT1 genotype and chronic pancreatitis or alcoholic chronic pancreatitis (ACP) were performed. Seven studies were included in the meta-analysis (650 patients/1382 controls for GSTM1 and 536 patients/1304 controls for GSTT1). There were no significant relationships between GSTM1/GSTT1 and chronic pancreatitis or GSTT1 and ACP. There was a significant association between GSTM1 null genotype and ACP (odds ratio 1.16, 95% confidence intervals 1.03, 1.30). The GSTM1 null genotype was significantly associated with ACP risk. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  18. Pleiotropic Functions of Glutathione S-Transferase P

    PubMed Central

    Zhang, Jie; Grek, Christina; Ye, Zhi-Wei; Manevich, Yefim; Tew, Kenneth D.; Townsend, Danyelle M.

    2016-01-01

    Glutathione S-transferase P (GSTP) is one member of the GST superfamily that is prevalently expressed in mammals. Known to possess catalytic activity through deprotonating glutathione allowing formation of thioether bonds with electrophilic substrates, more recent discoveries have broadened our understanding of the biological roles of this protein. In addition to catalytic detoxification, other properties so far ascribed to GSTP include chaperone functions, regulation of nitric oxide pathways, regulation of a variety of kinase signaling pathways, and participation in the forward reaction of protein S-glutathionylation. The expression of GSTP has been linked with cancer and other human pathologies and more recently even with drug addiction. With respect to human health, polymorphic variants of GSTP may determine individual susceptibility to oxidative stress and/or be critical in the design and development of drugs that have used redox pathways as a discovery platform. PMID:24974181

  19. The glutathione-S-transferase Mu 1 null genotype modulates ozone-induced airway inflammation in humans*

    EPA Science Inventory

    Background: The Glutathione-S-Transferase Mu 1 null genotype has been reported to be a risk factor for acute respiratory disease associated with increases in ambient air ozone. Ozone is known to cause an immediate decrease in lung function and increased airway inflammation. Howev...

  20. Inhibition by 6-mercaptopurine of purine phosphoribosyltransferases from Ehrlich ascites-tumour cells that are resistant to this drug

    PubMed Central

    Atkinson, M. R.; Murray, A. W.

    1965-01-01

    1. A strain of Ehrlich ascites-tumour cells that showed little inhibition of growth in the presence of 6-mercaptopurine accumulated less than 5% as much 6-thioinosine 5′-phosphate in vivo, in the presence of 6-mercaptopurine, as did the sensitive strain from which it was derived. 2. Specific activities of the phosphoribosyltransferases that convert adenine, guanine, hypoxanthine and 6-mercaptopurine into AMP, GMP, IMP and 6-thioinosine 5′-phosphate were similar in extracts of the resistant and the sensitive cells. 3. As found previously with sensitive cells, 6-mercaptopurine is a competitive inhibitor of guanine phosphoribosyltransferase and hypoxanthine phosphoribosyltransferase from the resistant cells and does not inhibit the adenine phosphoribosyltransferase from these cells. Michaelis constants and inhibitor constants of the purine phosphoribosyltransferases from resistant cells did not differ significantly from those measured with the corresponding enzymes from sensitive cells. 4. Resistance to 6-mercaptopurine in this case is probably not due to qualitative or quantitative changes in these transferases. PMID:14342251

  1. Quantitative electron spin resonance (ESR) analysis of antioxidative properties using the acetaldehyde/xanthine oxidase system

    NASA Astrophysics Data System (ADS)

    Souchard, J.-P.; Nepveu, F.

    1998-05-01

    We present a method for the quantitative ESR analysis of the antioxidant properties of drugs using the acetaldhehyde/xanthine oxidase (AC/XOD) superoxide generating system and 5,5-dimethyl-l-pyrroline-N-oxide (DMPO) as spin trap. In stoichiometric conditions (AC/XOD, 60 mM/0.018 U), the resulting paramagnetic DMPO adduct disappeared with superoxide dismutase and remained when catalase or DMSO were used. That adduct was dependent only on superoxide and resulted from the trapping of a carboxyl radical by DMPO (aN = 15.2 G, aH = 18.9 G). Similar results were obtained using 4-pyridyl-l-oxide-N-t-butyl nitrone (POBN) as spin trap. The ESR signal of the DMPO-CO2- adduct was very stable and allowed quantitative analysis of the antioxidative activity of redox molecules from an IC{50} value representing the concentration causing 50% inhibition of its intensity. Among the tested compounds, manganese(II), complexes were the most effective, 25 times as active as ascorbic acid or (+)catechin and 500-fold more antioxidative than Trolox^R. Nous présentons une méthode d'analyse quantitative de l'activité antioxydante de composés d'intérêt pharmaceutique basée sur le système acétaldéhyde/xanthine oxydase (AC/XOD), l'utilisation de la RPE et du piégeage de spin avec le 5,5-diméthyl-l-pyrroline-N-oxyde (DMPO). Dans les conditions stoechiométriques {AC/XOD, 60 mM/0,018 U/ml}, l'adduit radicalaire résultant de ce système disparaît en présence de superoxyde dismutase et persiste en présence de catalase ou de DMSO. Cet adduit ne dépend que de la présence de l'anion superoxyde et provient du piégeage d'un radical carboxyle CO2- sur le DMPO (aN = 15.2 G, aH = 18.9 G). Des résultats similaires ont été obtenus avec le piégeur de spin 4-pyridyl-l-oxyde-N-t-butyl nitrone (POBN). Le signal RPE de l'adduit DMPO-CO2- est très stable et permet la quantification de l'activité antioxydante de pharmacophores redox par la détermination de la CI{50}, concentration qui

  2. Dishevelled3 is a novel arginine methyl transferase substrate.

    PubMed

    Bikkavilli, Rama Kamesh; Avasarala, Sreedevi; Vanscoyk, Michelle; Sechler, Marybeth; Kelley, Nicole; Malbon, Craig C; Winn, Robert A

    2012-01-01

    Dishevelled, a phosphoprotein scaffold, is a central component in all the Wnt-sensitive signaling pathways. In the present study, we report that Dishevelled is post-translationally modified, both in vitro and in vivo, via arginine methylation. We also show protein arginine methyl transferases 1 and 7 as the key enzymes catalyzing Dishevelled methylation. Interestingly, Wnt3a stimulation of F9 teratocarcinoma cells results in reduced Dishevelled methylation. Similarly, the methylation-deficient mutant of Dishevelled, R271K, displayed spontaneous membrane localization and robust activation of Wnt signaling; suggesting that differential methylation of Dishevelled plays an important role in Wnt signaling. Thus arginine methylation is shown to be an important switch in regulation of Dishevelled function and Wnt signaling.

  3. The Role of Aldehyde Oxidase and Xanthine Oxidase in the Biotransformation of a Novel Negative Allosteric Modulator of Metabotropic Glutamate Receptor Subtype 5

    PubMed Central

    Morrison, Ryan D.; Blobaum, Anna L.; Byers, Frank W.; Santomango, Tammy S.; Bridges, Thomas M.; Stec, Donald; Brewer, Katrina A.; Sanchez-Ponce, Raymundo; Corlew, Melany M.; Rush, Roger; Felts, Andrew S.; Manka, Jason; Bates, Brittney S.; Venable, Daryl F.; Rodriguez, Alice L.; Jones, Carrie K.; Niswender, Colleen M.; Conn, P. Jeffrey; Lindsley, Craig W.; Emmitte, Kyle A.

    2012-01-01

    Negative allosteric modulation (NAM) of metabotropic glutamate receptor subtype 5 (mGlu5) represents a therapeutic strategy for the treatment of childhood developmental disorders, such as fragile X syndrome and autism. VU0409106 emerged as a lead compound within a biaryl ether series, displaying potent and selective inhibition of mGlu5. Despite its high clearance and short half-life, VU0409106 demonstrated efficacy in rodent models of anxiety after extravascular administration. However, lack of a consistent correlation in rat between in vitro hepatic clearance and in vivo plasma clearance for the biaryl ether series prompted an investigation into the biotransformation of VU0409106 using hepatic subcellular fractions. An in vitro appraisal in rat, monkey, and human liver S9 fractions indicated that the principal pathway was NADPH-independent oxidation to metabolite M1 (+16 Da). Both raloxifene (aldehyde oxidase inhibitor) and allopurinol (xanthine oxidase inhibitor) attenuated the formation of M1, thus implicating the contribution of both molybdenum hydroxylases in the biotransformation of VU0409106. The use of 18O-labeled water in the S9 experiments confirmed the hydroxylase mechanism proposed, because 18O was incorporated into M1 (+18 Da) as well as in a secondary metabolite (M2; +36 Da), the formation of which was exclusively xanthine oxidase-mediated. This unusual dual and sequential hydroxylase metabolism was confirmed in liver S9 and hepatocytes of multiple species and correlated with in vivo data because M1 and M2 were the principal metabolites detected in rats administered VU0409106. An in vitro-in vivo correlation of predicted hepatic and plasma clearance was subsequently established for VU0409106 in rats and nonhuman primates. PMID:22711749

  4. Molecular cloning, characterization, and expression of human ADP-ribosylation factors: Two guanine nucleotide-dependent activators of cholera toxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobak, D.A.; Nightingale, M.S.; Murtagh, J.J.

    1989-08-01

    ADP-ribosylation factors (ARFs) are small guanine nucleotide-binding proteins that enhance the enzymatic activities of cholera toxin. Two ARF cDNAs, ARF1 and ARF3, were cloned from a human cerebellum library. Based on deduced amino acid sequences and patterns of hybridization of cDNA and oligonucleotide probes with mammalian brain poly(A){sup +} RNA, human ARF1 is the homologue of bovine ARF1. Human ARF3, which differs from bovine ARF1 and bovine ARF2, appears to represent a newly identified third type of ARF. Hybridization patterns of human ARF cDNA and clone-specific oligonucleotides with poly(A){sup +} RNA are consistent with the presence of at least two,more » and perhaps four, separate ARF messages in human brain. In vitro translation of ARF1, ARF2, and ARF3 produced proteins that behaved, by SDS/PAGE, similar to a purified soluble brain ARF. Deduced amino acid sequences of human ARF1 and ARF3 contain regions, similar to those in other G proteins, that are believed to be involved in GTP binding and hydrolysis. ARFS also exhibit a modest degree of homology with a bovine phospholipase C. The observations reported here support the conclusion that the ARFs are members of a multigene family of small guanine nucleotide-binding proteins. Definition of the regulation of ARF mRNAs and of function(s) of recombinant ARF proteins will aid in the elucidation of the physiologic role(s) of ARFs.« less

  5. Altered xanthine oxidase and N-acetyltransferase activity in obese children.

    PubMed

    Chiney, Manoj S; Schwarzenberg, Sarah J; Johnson, L'aurelle A

    2011-07-01

    It is well established that oxidative and conjugative enzyme activity differs between obese and healthy-weight adults. However, the effect of obesity on drug metabolism in children has not been studied extensively. This study examined whether obese and healthy-weight children vary with respect to oxidative enzyme activity of CYP1A2, xanthine oxidase (XO) and conjugative enzyme activity of N-acetyltransferase 2 (NAT2). In vivo CYP1A2, XO and NAT2 activity was assessed in obese (n= 9) and lean (n= 16) children between the ages of 6-10 years using caffeine (118.3 ml Coca Cola®) as probe. Urine samples were collected in 2-h increments over 8 h. Caffeine and metabolites were measured using LC/MS, and urinary metabolic ratios were determined based on reported methods. Sixteen healthy-weight and nine obese children were evaluated. XO activity was elevated in paediatric obese volunteers compared with non-obese paediatric volunteers (XO metabolic ratio of 0.7 ± 0.06 vs. 0.6 ± 0.06, respectively, 95% CI 0.046, 0.154, P < 0.001). NAT2 activity was fivefold higher in the obese (1 ± 0.4) as compared with non-obese children (0.2 ± 0.1), 95% CI 0.26, 1.34, P < 0.05. However, no difference was observed in CYP1A2 activity between the groups (95% CI -2.72, 0.12, P > 0.05). This study provides evidence that obese children have elevated XO and NAT2 enzyme activity when compared with healthy-weight controls. Further studies are needed to determine how this may impact the efficacy of therapeutic agents that may undergo metabolism by these enzymes. © 2011 The Authors. British Journal of Clinical Pharmacology © 2011 The British Pharmacological Society.

  6. Directed evolution of glutathione transferases towards a selective glutathione-binding site and improved oxidative stability.

    PubMed

    Axarli, Irine; Muleta, Abdi W; Chronopoulou, Evangelia G; Papageorgiou, Anastassios C; Labrou, Nikolaos E

    2017-01-01

    Glutathione transferases (GSTs) are a family of detoxification enzymes that catalyze the conjugation of glutathione (GSH) to electrophilic compounds. A library of alpha class GSTs was constructed by DNA shuffling using the DNA encoding the human glutathione transferase A1-1 (hGSTA1-1) and the rat glutathione transferase A1-1 (rGSTA1-1). Activity screening of the library allowed the selection of a chimeric enzyme variant (GSTD4) that displayed high affinity towards GSH and GSH-Sepharose affinity adsorbent, higher k cat /K m and improved thermal stability, compared to the parent enzymes. The crystal structures of the GSTD4 enzyme in free form and in complex with GSH were determined to 1.6Šand 2.3Šresolution, respectively. Analysis of the GSTD4 structure showed subtle conformational changes in the GSH-binding site and in electron-sharing network that may contribute to the increased GSH affinity. The shuffled variant GSTD4 was further optimized for improved oxidative stability employing site-saturation mutagenesis. The Cys112Ser mutation confers optimal oxidative stability and kinetic properties in the GSTD4 enzyme. DNA shuffling allowed the creation of a chimeric enzyme variant with improved properties, compared to the parent enzymes. X-ray crystallography shed light on how recombination of a specific segment from homologous GSTA1-1 together with point mutations gives rise to a new functionally competent enzyme with improved binding, catalytic properties and stability. Such an engineered GST would be useful in biotechnology as affinity tool in affinity chromatography as well as a biocatalytic matrix for the construction of biochips or enzyme biosensors. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Xanthine Oxidoreductase in Drug Metabolism: Beyond a Role as a Detoxifying Enzyme.

    PubMed

    Battelli, Maria Giulia; Polito, Letizia; Bortolotti, Massimo; Bolognesi, Andrea

    2016-01-01

    The enzyme xanthine oxidoreductase (XOR) catalyzes the last two steps of purine catabolism in the highest uricotelic primates. XOR is an enzyme with dehydrogenase activity that, in mammals, may be converted into oxidase activity under a variety of pathophysiologic conditions. XOR activity is highly regulated at the transcriptional and post-translational levels and may generate reactive oxygen and nitrogen species, which trigger different consequences, ranging from cytotoxicity to inflammation. The low specificity for substrates allows XOR to metabolize a number of endogenous metabolites and a variety of exogenous compounds, including drugs. The present review focuses on the role of XOR as a drug-metabolizing enzyme, specifically for drugs with anticancer, antimicrobial, antiviral, immunosuppressive or vasodilator activities, as well as drugs acting on metabolism or inducing XOR expression. XOR has an activating role that is essential to the pharmacological action of quinone drugs, cyadox, antiviral nucleoside analogues, allopurinol, nitrate and nitrite. XOR activity has a degradation function toward thiopurine nucleotides, pyrazinoic acid, methylxanthines and tolbutamide, whose half-life may be prolonged by the use of XOR inhibitors. In conclusion, to avoid potential drug interaction risks, such as a toxic excess of drug bioavailability or a loss of drug efficacy, caution is suggested in the use of XOR inhibitors, as in the case of hyperuricemic patients affected by gout or tumor lysis syndrome, when it is necessary to simultaneously administer therapeutic substances that are activated or degraded by the drug-metabolizing activity of XOR.

  8. Herpes simplex virus-mediated human hypoxanthine-guanine phosphoribosyltransferase gene transfer into neuronal cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palella, T.D.; Silverman, L.J.; Schroll, C.T.

    1988-01-01

    The virtually complete deficiency of the purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT) results in a devastating neurological disease, Lesch-Nyhan syndrome. Transfer of the HPRT gene into fibroblasts and lymphoblasts in vitro and into hematopoietic cells in vivo has been accomplished by other groups with retroviral-derived vectors. It appears to be necessary, however, to transfer the HPRT gene into neuronal cells to correct the neurological dysfunction of this disorder. The neurotropic virus herpes simplex virus type 1 has features that make it suitable for use as a vector to transfer the HPRT gene into neuronal tissue. This report describes the isolationmore » of an HPRT-deficient rat neuroma cell line, designated B103-4C, and the construction of a recombinant herpes simplex virus type 1 that contained human HPRT cDNA. These recombinant viruses were used to infect B103-4C cells. Infected cells expressed HPRT activity which was human in origin.« less

  9. Diverse roles of guanine nucleotide exchange factors in regulating collective cell migration

    PubMed Central

    Tseng, Yun-Yu; Rabadán, M. Angeles; Krishna, Shefali; Hall, Alan

    2017-01-01

    Efficient collective migration depends on a balance between contractility and cytoskeletal rearrangements, adhesion, and mechanical cell–cell communication, all controlled by GTPases of the RHO family. By comprehensive screening of guanine nucleotide exchange factors (GEFs) in human bronchial epithelial cell monolayers, we identified GEFs that are required for collective migration at large, such as SOS1 and β-PIX, and RHOA GEFs that are implicated in intercellular communication. Down-regulation of the latter GEFs differentially enhanced front-to-back propagation of guidance cues through the monolayer and was mirrored by down-regulation of RHOA expression and myosin II activity. Phenotype-based clustering of knockdown behaviors identified RHOA-ARHGEF18 and ARHGEF3-ARHGEF28-ARHGEF11 clusters, indicating that the latter may signal through other RHO-family GTPases. Indeed, knockdown of RHOC produced an intermediate between the two phenotypes. We conclude that for effective collective migration, the RHOA-GEFs → RHOA/C → actomyosin pathways must be optimally tuned to compromise between generation of motility forces and restriction of intercellular communication. PMID:28512143

  10. Seizure activity results in calcium- and mitochondria-independent ROS production via NADPH and xanthine oxidase activation

    PubMed Central

    Kovac, S; Domijan, A-M; Walker, M C; Abramov, A Y

    2014-01-01

    Seizure activity has been proposed to result in the generation of reactive oxygen species (ROS), which then contribute to seizure-induced neuronal damage and eventually cell death. Although the mechanisms of seizure-induced ROS generation are unclear, mitochondria and cellular calcium overload have been proposed to have a crucial role. We aim to determine the sources of seizure-induced ROS and their contribution to seizure-induced cell death. Using live cell imaging techniques in glioneuronal cultures, we show that prolonged seizure-like activity increases ROS production in an NMDA receptor-dependent manner. Unexpectedly, however, mitochondria did not contribute to ROS production during seizure-like activity. ROS were generated primarily by NADPH oxidase and later by xanthine oxidase (XO) activity in a calcium-independent manner. This calcium-independent neuronal ROS production was accompanied by an increase in intracellular [Na+] through NMDA receptor activation. Inhibition of NADPH or XO markedly reduced seizure-like activity-induced neuronal apoptosis. These findings demonstrate a critical role for ROS in seizure-induced neuronal cell death and identify novel therapeutic targets. PMID:25275601

  11. 4,6-Diaryl/heteroarylpyrimidin-2(1H)-ones as a new class of xanthine oxidase inhibitors.

    PubMed

    Shukla, Shiwani; Kumar, Dinesh; Ojha, Ritu; Gupta, Manish K; Nepali, Kunal; Bedi, Preet M S

    2014-07-01

    A series of 4,6-diaryl/heteroarylpyrimidones was synthesized employing silica-supported fluoroboric acid under solvent-free conditions in a microwave reactor. The catalytic influence of HBF4-SiO2 was investigated in detail to optimize the reaction conditions. The synthesized compounds were evaluated for in vitro xanthine oxidase (XO) inhibitory activity for the first time. Structure-activity relationship analyses are also presented. Among the synthesized compounds, VA-5, -9, -10, -12, -22, -23, and -25 were the active inhibitors with IC50 values ranging from 6.45 to 13.46 µM. Compound VA-25 with a pyridinyl ring as ring A and a thiophenyl ring as ring B emerged as the most potent XO inhibitor (IC50 = 6.45 µM) in comparison to allopurinol (IC50 = 12.24 µM). Some of the important interactions of VA-25 with the amino acid residues of the active site of XO were figured out by molecular modeling studies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Distinct Distribution of Purines in CM and CR Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Callahan, Michael P.; Stern, Jennifer C.; Glavin, Daniel P.; Smith, Karen E.; Martin, Mildred G.; Dworkin, Jason P.

    2010-01-01

    Carbonaceous meteorites contain a diverse suite of organic molecules and delivered pre biotic organic compounds, including purines and pyrimidines, to the early Earth (and other planetary bodies), seeding it with the ingredients likely required for the first genetic material. We have investigated the distribution of nucleobases in six different CM and CR type carbonaceous chondrites, including fivc Antarctic meteorites never before analyzed for nucleobases. We employed a traditional formic acid extraction protocol and a recently developed solid phase extraction method to isolate nucleobases. We analyzed these extracts by high performance liquid chromatography with UV absorbance detection and tandem mass spectrometry (HPLC-UV -MS/MS) targeting the five canonical RNAIDNA bases and hypoxanthine and xanthine. We detected parts-per-billion levels of nucleobases in both CM and CR meteorites. The relative abundances of the purines found in Antarctic CM and CR meteorites were clearly distinct from each other suggesting that these compounds are not terrestrial contaminants. One likely source of these purines is formation by HCN oligomerization (with other small molecules) during aqueous alteration inside the meteorite parent body. The detection of the purines adenine (A), guanine (0), hypoxanthine (HX), and xanthine (X) in carbonaceous meteorites indicates that these compounds should have been available on the early Earth prior to the origin of the first genetic material.

  13. Preliminary X-ray crystallographic analysis of glutathione transferase zeta 1 (GSTZ1a-1a)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boone, Christopher D.; Zhong, Guo; Smeltz, Marci

    2014-01-21

    Crystals of glutathione transferase zeta 1 were grown and shown to diffract X-rays to 3.1 Å resolution. They belonged to space group P1, with unit-cell parameters a = 42.0, b = 49.6, c = 54.6 Å, α = 82.9, β = 69.9, γ = 73.4°.

  14. Characterization and Thermodynamic Relationship of Three Polymorphs of a Xanthine Oxidase Inhibitor, Febuxostat.

    PubMed

    Patel, Jinish; Jagia, Moksh; Bansal, Arvind Kumar; Patel, Sarsvatkumar

    2015-11-01

    Febuxostat (FXT), a xanthine oxidase inhibitor, is an interesting and unique molecule, which exhibits extensive polymorphism, with over 15 polymorphic forms reported to date. The primary purpose of the study was to characterize the three polymorphic forms with respect to their thermodynamic quantities and establish thermodynamic relationship between them. The polymorphs were characterized by thermal and powder X-ray diffraction methods. Three different methods were used to calculate the transition temperatures (Ttr) and thereby their thermodynamic relationships. Although the first and second method used calorimetric data (melting point and heat of fusion), the third method employed the use of configurational free energy phase diagram. The onset melting points of three polymorphic forms were found to be 482.89 ± 0.37 K for form I, 476.30 ± 1.21 K for form II, and 474.19 ± 0.11 K for form III. Moreover, the powder X-ray diffraction patterns for each form were also unique. The polymorphic pair of form I and II and of form I and III was found to be enantiotropic, whereas pair of form II and III was monotropic. Besides the relative thermodynamic aspects (free energy differences, enthalpy, entropy contributions) using different methods, the pharmaceutical implications and phase transformation aspects have also been covered. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  15. Fingerprints of Both Watson-Crick and Hoogsteen Isomers of the Isolated (Cytosine-Guanine)H+ Pair.

    PubMed

    Cruz-Ortiz, Andrés F; Rossa, Maximiliano; Berthias, Francis; Berdakin, Matías; Maitre, Philippe; Pino, Gustavo A

    2017-11-16

     Gas phase protonated guanine-cytosine (CGH + ) pair was generated using an electrospray ionization source from solutions at two different pH (5.8 and 3.2). Consistent evidence from MS/MS fragmentation patterns and differential ion mobility spectra (DIMS) point toward the presence of two isomers of the CGH + pair, whose relative populations depend strongly on the pH of the solution. Gas phase infrared multiphoton dissociation (IRMPD) spectroscopy in the 900-1900 cm -1 spectral range further confirms that the Watson-Crick isomer is preferentially produced (91%) at pH = 5.8, while the Hoogsteen isomer predominates (66%) at pH = 3.2). These fingerprint signatures are expected to be useful for the development of new analytical methodologies and to trigger isomer selective photochemical studies of protonated DNA base pairs.

  16. Metabonomics revealed xanthine oxidase-induced oxidative stress and inflammation in the pathogenesis of diabetic nephropathy.

    PubMed

    Liu, Jingping; Wang, Chengshi; Liu, Fang; Lu, Yanrong; Cheng, Jingqiu

    2015-03-01

    Diabetic nephropathy (DN) is a serious complication of diabetes mellitus (DM), which is a major public health problem in the world. To reveal the metabolic changes associated with DN, we analyzed the serum, urine, and renal extracts obtained from control and streptozotocin (STZ)-induced DN rats by (1)H NMR-based metabonomics and multivariate data analysis. A significant difference between control and DN rats was revealed in metabolic profiles, and we identified several important DN-related metabolites including increased levels of allantoin and uric acid (UA) in the DN rats, suggesting that disturbed purine metabolism may be involved in the DN. Combined with conventional histological and biological methods, we further demonstrated that xanthine oxidase (XO), a key enzyme for purine catabolism, was abnormally activated in the kidney of diabetic rats by hyperglycemia. The highly activated XO increased the level of intracellular ROS, which caused renal injury by direct oxidative damage to renal cells, and indirect inducing inflammatory responses via activating NF-κB signaling pathway. Our study highlighted that metabonomics is a promising tool to reveal the metabolic changes and the underlying mechanism involved in the pathogenesis of DN.

  17. [The biochemical mechanisms of the action of N-alkyl-N-nitrosoureas. The possible reasons for drug resistance to these compounds].

    PubMed

    Syrkin, A B; Gorbacheva, L B

    1996-01-01

    N-alkyl-N-nitrosoureas exhibit a wide spectrum of antitumor activity. They react as alkylating agents at nucleophilic sites in purine and pyrimidine moieties of DNA. The predominant site of this alkylation is N7 of guanine, which is followed by the site N3 of adenine and 06 of guanine. The formation and persistence of 0(6)-alkylguanine (0(6)-AG) may be of primary importance in cytotoxicity of the nitrosoureas. 0(6)-AG adducts of DNA of the tumor cells are repaired by protein 0(6)-alkylguanine-DNA transferase (0(6)-AGT) which transfers the alkyl group to internal cysteine residue being the acceptor protein for the alkyl group in an irreversible transfer reaction. 0(6)-AGT can protect the tumor cells against 0(6)-AG adducts by the way of inhibiting the formation of the DNA interstrand cross-links 0(6)-AGT plays an important role in the drug resistance because it repairs the DNA alkyl adducts at the 0(6) position of guanine. The 0(6)-AGT activity inversely correlates with the cytotoxic effect of the nitrosoureas. The agents like 0(6)-methylguanosine, 0(6)-methyl-2'-deoxyguanosine, and some 0(6)-benzylated guanine derivatives are effective inactivators of 0(6)-AGT, and thus can be used to enhance the cytotoxicity of N-nitrosoureas. The activation of 0(6)-AGT and other repairing enzymes such as alpha and beta DNA-polymerases as well as an increase in the level of reduced glutathione may be used in developing the resistance to the nitrosoureas.

  18. Southern Analysis of Genomic Alterations in Gamma-Ray-Induced Aprt- Hamster Cell Mutants

    PubMed Central

    Grosovsky, Andrew J.; Drobetsky, Elliot A.; deJong, Pieter J.; Glickman, Barry W.

    1986-01-01

    The role of genomic alterations in mutagenesis induced by ionizing radiation has been the subject of considerable speculation. By Southern blotting analysis we show here that 9 of 55 (approximately 1/6) gamma-ray-induced mutants at the adenine phosphoribosyl transferase (aprt) locus of Chinese hamster ovary (CHO) cells have a detectable genomic rearrangement. These fall into two classes: intragenic deletions and chromosomal rearrangements. In contrast, no major genomic alterations were detected among 67 spontaneous mutants, although two restriction site loss events were observed. Three gamma-ray-induced mutants were found to be intragenic deletions; all may have identical break-points. The remaining six gamma-ray-induced mutants demonstrating a genomic alteration appear to be the result of chromosomal rearrangements, possibly translocation or inversion events. None of the remaining gamma-ray-induced mutants showed any observable alteration in blotting pattern indicating a substantial role for point mutation in gamma-ray-induced mutagenesis at the aprt locus. PMID:3013724

  19. Cytotoxic and mutagenic properties of shale oil byproducts. II. Comparison of mutagenic effects at five genetic markers induced by retort process water plus near ultraviolet light in Chinese hamster ovary cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, D.J.C.; Strniste, G.F.

    1982-01-01

    A Chinese hamster ovary (CHO) cell line heterozygous at the adenine phosphoribosyl transferase (APRT) locus was used for selection of induced mutants resistant to 8-azaadenine (8AA), 6-thioguanine (6TG), ouabain (OUA), emetine (EMT) and diphtheria toxin (DIP). The expression times necessary for optimizing the number of mutants recovered at the different loci have been determined using the known direct acting mutagen, far ultraviolet light (FUV), and a complex aqueous organic mixture (shale oil process water) activated with near ultraviolet light (NUV). The results indicate that optimal expression times following treatment with either mutagen was between 2 and 8 days. For CHOmore » cells treated with shale oil process water and subsequently exposed to NUV a linear dose response for mutant induction was observed for all five genetic loci. At 10% surviving fraction of cells, between 35- and 130-fold increases above backgound mutation frequencies were observed for the various markers examined.« less

  20. Partial purification and characterization of a mannosyl transferase involved in O -linked mannosylation of glycoproteins in Candida albicans.

    PubMed

    Arroyo-Flores, Blanca L; Calvo-Méndez, Carlos; Flores-Carreón, Arturo; López-Romero, Everardo

    2004-04-01

    Incubation of a mixed membrane fraction of C. albicans with the nonionic detergents Nonidet P-40 or Lubrol solubilized a fraction that catalyzed the transfer of mannose either from endogenously generated or exogenously added dolichol-P-[14C]Man onto endogenous protein acceptors. The protein mannosyl transferase solubilized with Nonidet P-40 was partially purified by a single step of preparative nondenaturing electrophoresis and some of its properties were investigated. Although transfer activity occurred in the absence of exogenous mannose acceptors and thus depended on acceptor proteins isolated along with the enzyme, addition of the protein fraction obtained after chemical de-mannosylation of glycoproteins synthesized in vitro stimulated mannoprotein labeling in a concentration-dependent manner. Other de-mannosylated glycoproteins, such as yeast invertase or glycoproteins extracted from C. albicans, failed to increase the amount of labeled mannoproteins. Mannosyl transfer activity was not influenced by common metal ions such as Mg(2+), Mn(2+) and Ca(2+), but it was stimulated up to 3-fold by EDTA. Common phosphoglycerides such as phosphatidylglycerol and, to a lower extent, phosphatidylinositol and phosphatidylcholine enhanced transfer activity. Interestingly, coupled transfer activity between dolichol phosphate mannose synthase, i.e., the enzyme responsible for Dol-P-Man synthesis, and protein mannosyl transferase could be reconstituted in vitro from the partially purified transferases, indicating that this process can occur in the absence of cell membranes.

  1. Substrate recognition by the hetero-octameric ATP phosphoribosyltransferase from Lactococcus lactis†

    PubMed Central

    Champagne, Karen S.; Piscitelli, Elise; Francklyn, Christopher S.

    2008-01-01

    Two families of ATP phosphoribosyl transferases (ATP-PRT) join ATP and 5-phosphoribosyl-1 pyrophosphate (PRPP) in the first reaction of histidine biosynthesis. These consist of a homohexameric form found in all three kingdoms, and a hetero-octameric form largely restricted to bacteria. Hetero-octameric ATP-PRTs consist of four HisGS catalytic subunits related to periplasmic binding proteins, and four HisZ regulatory subunits that resemble histidyl-tRNA synthetases. To clarify the relationship between the two families of ATP-PRTs, and among phosphoribosyltransferases in general, we determined the steady state kinetics for the hetero-octameric form, and characterized the active site by mutagenesis. The Km PRPP (18.4 ± 3.5 μM) and kcat (2.7 ± 0.3 sec−1) values for the PRPP substrate are similar to those of hexameric ATP-PRTs, but the Km for ATP (2.7 ± 0.3 mM) is 4-fold higher, suggestive of tighter regulation by energy charge. Histidine and AMP were determined to be non-competitive (Ki = 81.1 μM) and competitive (Ki= 1.44 mM) inhibitors, respectively, with values that approximate their intracellular concentrations. Mutagenesis experiments investigating the side chains recognizing PRPP showed that 5′ phosphate contacts (T159A and T162A) had the largest (25- and 155-fold) decreases in kcat/Km, while smaller decreases were seen with mutants making cross subunit contacts (K50A and K8A) to the pyrophosphate moiety, or contacts to the 2′ OH. Despite their markedly different quaternary structures, hexameric and hetero-octameric ATRP-PRTs exhibit similar functional parameters, and employ mechanistic strategies reminiscent of the broader PRT superfamily. PMID:17154531

  2. Quantification of butyryl CoA:acetate CoA-transferase genes reveals different butyrate production capacity in individuals according to diet and age.

    PubMed

    Hippe, Berit; Zwielehner, Jutta; Liszt, Kathrin; Lassl, Cornelia; Unger, Frank; Haslberger, Alexander G

    2011-03-01

    The gastrointestinal microbiota produces short-chain fatty acids, especially butyrate, which affect colonic health, immune function and epigenetic regulation. To assess the effects of nutrition and aging on the production of butyrate, the butyryl-CoA:acetate CoA-transferase gene and population shifts of Clostridium clusters lV and XlVa, the main butyrate producers, were analysed. Faecal samples of young healthy omnivores (24 ± 2.5 years), vegetarians (26 ± 5 years) and elderly (86 ± 8 years) omnivores were evaluated. Diet and lifestyle were assessed in questionnaire-based interviews. The elderly had significantly fewer copies of the butyryl-CoA:acetate CoA-transferase gene than young omnivores (P=0.014), while vegetarians showed the highest number of copies (P=0.048). The thermal denaturation of the butyryl-CoA:acetate CoA-transferase gene variant melting curve related to Roseburia/Eubacterium rectale spp. was significantly more variable in the vegetarians than in the elderly. The Clostridium cluster XIVa was more abundant in vegetarians (P=0.049) and in omnivores (P<0.01) than in the elderly group. Gastrointestinal microbiota of the elderly is characterized by decreased butyrate production capacity, reflecting increased risk of degenerative diseases. These results suggest that the butyryl-CoA:acetate CoA-transferase gene is a valuable marker for gastrointestinal microbiota function. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  3. Tautomeric selectivity of the excited-state lifetime of guanine/cytosine base pairs: The role of electron-driven proton-transfer processes

    PubMed Central

    Sobolewski, Andrzej L.; Domcke, Wolfgang; Hättig, C.

    2005-01-01

    The UV spectra of three different conformers of the guanine/cytosine base pair were recorded recently with UV-IR double-resonance techniques in a supersonic jet [Abo-Riziq, A., Grace, L., Nir, E., Kabelac, M., Hobza, P. & de Vries, M. S. (2005) Proc. Natl. Acad. Sci. USA 102, 20–23]. The spectra provide evidence for a very efficient excited-state deactivation mechanism that is specific for the Watson–Crick structure and may be essential for the photostability of DNA. Here we report results of ab initio electronic-structure calculations for the excited electronic states of the three lowest-energy conformers of the guanine/cytosine base pair. The calculations reveal that electron-driven interbase proton-transfer processes play an important role in the photochemistry of these systems. The exceptionally short lifetime of the UV-absorbing states of the Watson–Crick conformer is tentatively explained by the existence of a barrierless reaction path that connects the spectroscopic 1π π * excited state with the electronic ground state via two electronic curve crossings. For the non-Watson–Crick structures, the photochemically reactive state is located at higher energies, resulting in a barrier for proton transfer and, thus, a longer lifetime of the UV-absorbing 1π π * state. The computational results support the conjecture that the photochemistry of hydrogen bonds plays a decisive role for the photostability of the molecular encoding of the genetic information in isolated DNA base pairs. PMID:16330778

  4. A model to environmental monitoring based on glutathione-S-transferase activity and branchial lesions in catfish

    NASA Astrophysics Data System (ADS)

    Neta, Raimunda Nonata Fortes Carvalho; Torres, Audalio Rebelo

    2017-11-01

    In this work, we validate the glutathione-S-transferase and branchial lesions as biomarkers in catfish Sciades herzbergii to obtain a predictive model of the environmental impact effects in a harbor of Brazil. The catfish were sampled from a port known to be contaminated with heavy metals and organic compounds and from a natural reserve in São Marcos Bay, Maranhão. Two biomarkers, hepatic glutathione S-transferase (GST) activity and branchial lesions were analyzed. The values for GST activity were modeled with the occurrence of branchial lesions by fitting a third order polynomial. Results from the mathematical model indicate that GST activity has a strong polynomial relationship with the occurrence of branchial lesions in both the wet and the dry seasons, but only at the polluted port site. Our mathematic model indicates that when the GST ceases to act, serious branchial lesions are observed in the catfish of the contaminated port area.

  5. Structure-based design and biological evaluation of novel 2-(indol-2-yl) thiazole derivatives as xanthine oxidase inhibitors.

    PubMed

    Song, Jeong Uk; Jang, Jae Wan; Kim, Tae Hun; Park, Heuisul; Park, Wan Su; Jung, Sang-Hun; Kim, Geun Tae

    2016-02-01

    Inhibition of xanthine oxidase (XO) has obviously been a central concept for controlling hyperuricemia, which causes serious and painful inflammatory arthritis disease such as gout. We discovered a series of novel 2-(indol-2-yl)thiazole derivatives as XO inhibitors at the level of nanomolar activity. Structure-guided design using molecular modeling program (Accelrys Software program) provided an excellent basis for optimization of 2-(indol-2-yl)thiazole compounds. Structure-activity relationship indicated that hydrophobic alkoxy group (isopropoxy, cyclopentoxy) at 5-position and hydrogen binding acceptor (NO2, CN) at 7-position of indole ring appear as critical functional groups. Among the compounds, 2-(7-nitro-5-isopropoxy-indol-2-yl)-4-methylthiazole-5-carboxylic acid (9m) exhibits the most potent XO inhibitory activity (IC50 value: 5.1 nM) and the excellent uric acid lowering activity in potassium oxonate induced hyperuricemic rat model. Copyright © 2016. Published by Elsevier Ltd.

  6. Characterization of spermidine hydroxycinnamoyl transferases from eggplant (Solanum melongena L.) and its wild relative Solanum richardii Dunal

    USDA-ARS?s Scientific Manuscript database

    Eggplant produces a variety of hydroxycinnamic acid amides (HCAAs) that play an important role in plant development and adaptation to environmental changes. However, the HCAA pathway remains largely uncharacterized in Solanaceae. In this study, a spermidine hydroxycinnamoyl transferase (SHT) from eg...

  7. Unique spectrum of activity of 9-[(1,3-dihydroxy-2-propoxy)methyl]-guanine against herpesviruses in vitro and its mode of action against herpes simplex virus type 1.

    PubMed Central

    Cheng, Y C; Huang, E S; Lin, J C; Mar, E C; Pagano, J S; Dutschman, G E; Grill, S P

    1983-01-01

    A guanosine analog, 9-[(1,3-dihydroxy-2-propoxy)methyl]guanine (DHPG), was found to inhibit herpes simplex virus type 1 (HSV-1), herpes simplex virus type 2, cytomegalovirus, and Epstein-Barr virus replication by greater than 50% at concentrations that do not inhibit cell growth in culture. The potency of the drug against all of these viruses is greater than that of 9-[(2-hydroxyethoxy)methyl]guanine (acyclovir). DHPG was active against HSV-1 growth during the early phase of virus replication and had no activity when added at a later time after infection. Its antiviral activity was irreversible. Thymidine partially neutralized its action. The anti-HSV-1 activity of DHPG was dependent on the induction and the properties of virus-induced thymidine kinase. Virus variants that induced altered virus thymidine kinase and became resistant to acyclovir were still as sensitive to DHPG as the parental virus. DHPG is active against five different HSV variants with induced altered DNA polymerase and resistance to acyclovir. PMID:6302704

  8. The significance of the measurement of serum xanthine oxidase and oxidation markers in patients with acute organophosphorus pesticide poisoning.

    PubMed

    Zhang, J-W; Lv, G-C; Zhao, Y

    2010-01-01

    This study investigated whether xanthine oxidase (XO) plays an important role in the mechanism of toxicity of acute organophosphorus pesticide poisoning (AOPP). The serum activities of XO, superoxide dismutase (SOD), paraoxonase-1 (PON1), butyrylcholinesterase (BChE) and malondialdehyde (MDA) were compared in 49 patients with AOPP and 50 age- and gender-matched healthy controls. Serum XO and MDA activities were higher and the serum SOD, PON1 and BChE activities were lower in the AOPP patients compared with the controls. Pearson correlation analysis demonstrated a significant negative correlation between XO activity and the SOD, PON1 and BChE activities, but a significant positive correlation between XO activity and MDA. These results suggest that increased activity of XO and decreased antioxidant enzyme activity contribute to the development of oxidative injury in AOPP patients. Thus, effective antioxidant therapy may be a therapeutic option following AOPP.

  9. 6-Mercaptopurine-induced histopathological changes and xanthine oxidase expression in rat placenta.

    PubMed

    Taki, Kenji; Fukushima, Tamio; Ise, Ryota; Horii, Ikuo; Yoshida, Takemi

    2012-01-01

    The placenta secures the embryo and fetus to the endometrium and releases a variety of steroid and peptide hormones that convert the physiology of a female to that of a pregnant female. Chemical-induced alteration or deviation of placental function in the maternal and extraembryonic tissue can ultimately lead to pregnancy loss, congenital malformation and fetal death. The 6-mercaptopurine (6-MP), an anti-leukemic drug, is known to produce undesired effects on some organs, then the placenta/embryo toxicity of 6-MP was investigated in pregnant rats given 60 mg/kg with two intraperitoneal injections on gestation days (GD) 11 and 12. The rats were sacrificed and their placentas were collected on GD13 or 15. On GD15 small and limb-defected embryos were found in the 6-MP-treated rats. Placental weights were significantly reduced on GD15, as well as a reduced number of cells was detected in the labyrinth zone with both the labyrinth and basal zones having thinned. Cleaved caspase-3-positive cells increased in number in the labyrinth zone, while in the basal zone, glycogen cells reduced with cytolysis. The number of spongiotrophoblasts and trophoblastic giant cells also increased by 6-MP treatment. The 6-MP-treatment resulted in the increased xanthine oxidase (Xdh) expression in the placenta, which gene is related to the ischemic condition of tissues. These data suggest that apoptosis of the labyrinth zone cells may lead to decreased materno-fetal exchange. Moreover, subsequent ischemia in the placental tissue may occur and induce Xdh expression.

  10. Polymorphisms of Glutathione S-transferases Omega-1 among ethnic populations in China

    PubMed Central

    Fu, Songbo; Wu, Jie; Chen, Feng; Sun, Dianjun; Fu, Songbin

    2008-01-01

    Background Glutathione S-transferases (GSTs) is a genetic factor for many diseases and exhibits great diversities among various populations. We assessed association of the genotypes of Glutathione S-transferases Omega-1 (GSTO1) A140D with ethnicity in China. Results Peripheral blood samples were obtained from 1314 individuals from 14 ethnic groups. Polymorphisms of GSTO1 A140D were measured using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Logistic regression was employed to adjustment for regional factor. The frequency of GSTO1 140A allele was 15.49% in the total 14 ethnic populations. Compared to Han ethnic group, two ethnic populations were more likely to have AA or CA genotype [odds ratio (OR): 1.77, 95% confidence interval (95% CI): 1.05–2.98 for Uygur and OR: 1.78, 95% CI: 1.18–2.69 for Hui]. However, there were no statistically significant differences across 14 ethnic groups when region factor was adjusted. In Han ethnicity, region was significantly associated with AA or CA genotype. Han individuals who resided in North-west of China were more likely to have these genotypes than those in South of China (OR: 1.63, 95% CI: 1.21–2.20). Conclusion The prevalence of the GSTO1 140A varied significantly among different regional populations in China, which showed that geography played a more important role in the population differentiation for this allele than the ethnicity/race. PMID:18400112

  11. Structure of Low-Lying Excited States of Guanine in DNA and Solution: Combined Molecular Mechanics and High-Level Coupled Cluster Studies

    DOE PAGES

    Kowalski, Karol; Valiev, Marat

    2007-01-01

    High-level ab-initio equation-of-motion coupled-cluster methods with singles, doubles, and noniterative triples are used, in conjunction with the combined quantum mechanical molecular mechanics approach, to investigate the structure of low-lying excited states of the guanine base in DNA and solvated environments. Our results indicate that while the excitation energy of the first excited state is barely changed compared to its gas-phase counterpart, the excitation energy of the second excited state is blue-shifted by 0.24 eV.

  12. Oxidized Guanine Base Lesions Function in 8-Oxoguanine DNA Glycosylase-1-mediated Epigenetic Regulation of Nuclear Factor κB-driven Gene Expression*

    PubMed Central

    Pan, Lang; Hao, Wenjing; Ba, Xueqing

    2016-01-01

    A large percentage of redox-responsive gene promoters contain evolutionarily conserved guanine-rich clusters; guanines are the bases most susceptible to oxidative modification(s). Consequently, 7,8-dihydro-8-oxoguanine (8-oxoG) is one of the most abundant base lesions in promoters and is primarily repaired via the 8-oxoguanine DNA glycosylase-1 (OOG1)-initiated base excision repair pathway. In view of a prompt cellular response to oxidative challenge, we hypothesized that the 8-oxoG lesion and the cognate repair protein OGG1 are utilized in transcriptional gene activation. Here, we document TNFα-induced enrichment of both 8-oxoG and OGG1 in promoters of pro-inflammatory genes, which precedes interaction of NF-κB with its DNA-binding motif. OGG1 bound to 8-oxoG upstream from the NF-κB motif increased its DNA occupancy by promoting an on-rate of both homodimeric and heterodimeric forms of NF-κB. OGG1 depletion decreased both NF-κB binding and gene expression, whereas Nei-like glycosylase-1 and -2 had a marginal effect. These results are the first to document a novel paradigm wherein the DNA repair protein OGG1 bound to its substrate is coupled to DNA occupancy of NF-κB and functions in epigenetic regulation of gene expression. PMID:27756845

  13. The insect repellent DEET (N,N-diethyl-3-methylbenzamide) increases the synthesis of glutathione S-transferase in cultured mosquito cells.

    PubMed

    Hellestad, Vanessa J; Witthuhn, Bruce A; Fallon, Ann M

    2011-04-01

    DEET (N,N-diethyl-3-methylbenzamide) is the active ingredient used in many commonly used insect repellents, but its mode of action remains poorly understood. Efforts to identify properties that could lead to the development of more effective active ingredients have distinguished among DEET's repellent, deterrent, and insecticidal activities. We used an Aedes albopictus mosquito cell line to evaluate DEET's toxicological properties in the absence of sensory input mediated by the olfactory system. When cells were treated with DEET and labeled with [(35)S]methionine/cysteine, a single 25-kDa protein was induced, relative to other proteins, on SDS-polyacrylamide gels. The 25-kDa band from DEET-treated cells was enriched in peptides corresponding to glutathione S-transferase D10 and/or theta in the Aedes aegypti genome. Consistent with the increased expression of the labeled protein, DEET-treated cells had increased glutathione S-transferase activity, and the radiolabeled band bound to Sepharose 4B containing reduced glutathione. By analyzing partial tryptic digests, we established that DEET induces the homolog of A. aegypti glutathione S-transferase, class theta, corresponding to protein XP_001658009.1 in the NCBI database. This specific effect of DEET at the subcellular level suggests that DEET induces physiological responses that extend beyond recognition by the peripheral olfactory system.

  14. In vitro guanine nucleotide exchange activity of DHR-2/DOCKER/CZH2 domains.

    PubMed

    Côté, Jean-François; Vuori, Kristiina

    2006-01-01

    Rho family GTPases regulate a large variety of biological processes, including the reorganization of the actin cytoskeleton. Like other members of the Ras superfamily of small GTP-binding proteins, Rho GTPases cycle between a GDP-bound (inactive) and a GTP-bound (active) state, and, when active, the GTPases relay extracellular signals to a large number of downstream effectors. Guanine nucleotide exchange factors (GEFs) promote the exchange of GDP for GTP on Rho GTPases, thereby activating them. Most Rho-GEFs mediate their effects through their signature domain known as the Dbl Homology-Pleckstrin Homology (DH-PH) module. Recently, we and others identified a family of evolutionarily conserved, DOCK180-related proteins that also display GEF activity toward Rho GTPases. The DOCK180-family of proteins lacks the canonical DH-PH module. Instead, they rely on a novel domain, termed DHR-2, DOCKER, or CZH2, to exchange GDP for GTP on Rho targets. In this chapter, the experimental approach that we used to uncover the exchange activity of the DHR-2 domain of DOCK180-related proteins will be described.

  15. Neuroantibodies (NAB) in African-American Children: Associations with Gender, Glutathione-S-Transferase (GST)Pi Polymorphisms (SNP) and Heavy Metals

    EPA Science Inventory

    CONTACT (NAME ONLY): Hassan El-Fawal Abstract Details PRESENTATION TYPE: Platform or Poster CURRENT CATEGORY: Neurodegenerative Disease | Biomarkers | Neurotoxicity, Metals KEYWORDS: Autoantibodies, Glutathione-S-Transferase, DATE/TIME LAST MODIFIED: DATE/TIME SUBMITTED: Abs...

  16. Arf6 Guanine Nucleotide Exchange Factor Cytohesin-2 Binds to CCDC120 and Is Transported Along Neurites to Mediate Neurite Growth*

    PubMed Central

    Torii, Tomohiro; Miyamoto, Yuki; Tago, Kenji; Sango, Kazunori; Nakamura, Kazuaki; Sanbe, Atsushi; Tanoue, Akito; Yamauchi, Junji

    2014-01-01

    The mechanism of neurite growth is complicated, involving continuous cytoskeletal rearrangement and vesicular trafficking. Cytohesin-2 is a guanine nucleotide exchange factor for Arf6, an Arf family molecular switch protein, controlling cell morphological changes such as neuritogenesis. Here, we show that cytohesin-2 binds to a protein with a previously unknown function, CCDC120, which contains three coiled-coil domains, and is transported along neurites in differentiating N1E-115 cells. Transfection of the small interfering RNA (siRNA) specific for CCDC120 into cells inhibits neurite growth and Arf6 activation. When neurites start to extend, vesicles containing CCDC120 and cytohesin-2 are transported in an anterograde manner rather than a retrograde one. As neurites continue extension, anterograde vesicle transport decreases. CCDC120 knockdown inhibits cytohesin-2 localization into vesicles containing CCDC120 and diffuses cytohesin-2 in cytoplasmic regions, illustrating that CCDC120 determines cytohesin-2 localization in growing neurites. Reintroduction of the wild type CCDC120 construct into cells transfected with CCDC120 siRNA reverses blunted neurite growth and Arf6 activity, whereas the cytohesin-2-binding CC1 region-deficient CCDC120 construct does not. Thus, cytohesin-2 is transported along neurites by vesicles containing CCDC120, and it mediates neurite growth. These results suggest a mechanism by which guanine nucleotide exchange factor for Arf6 is transported to mediate neurite growth. PMID:25326380

  17. Specific replacement of Q base in the anticodon of tRNA by guanine catalyzed by a cell-free extract of rabbit reticulocytes.

    PubMed Central

    Okada, N; Harada, F; Nishimura, S

    1976-01-01

    Guanylation of tRNA by a lysate of rabbit reticulocytes was reported previously by Farkas and Singh. This reaction was investigated further using 18 purified E. coli tRNAs as acceptors.Results showed that only tRNATyr, tRNAHis, tRNAAsn and tRNAAsp which contain the modified nucleoside Q in the anticodon acted as acceptors. Analysis of the nucleotide sequences in the guanylated tRNA showed that guanine specifically replaced Q base in these tRNAs. Images PMID:792816

  18. The crystal structure of xanthine oxidoreductase during catalysis: Implications for reaction mechanism and enzyme inhibition

    PubMed Central

    Okamoto, Ken; Matsumoto, Koji; Hille, Russ; Eger, Bryan T.; Pai, Emil F.; Nishino, Takeshi

    2004-01-01

    Molybdenum is widely distributed in biology and is usually found as a mononuclear metal center in the active sites of many enzymes catalyzing oxygen atom transfer. The molybdenum hydroxylases are distinct from other biological systems catalyzing hydroxylation reactions in that the oxygen atom incorporated into the product is derived from water rather than molecular oxygen. Here, we present the crystal structure of the key intermediate in the hydroxylation reaction of xanthine oxidoreductase with a slow substrate, in which the carbon–oxygen bond of the product is formed, yet the product remains complexed to the molybdenum. This intermediate displays a stable broad charge–transfer band at ≈640 nm. The crystal structure of the complex indicates that the catalytically labile Mo—OH oxygen has formed a bond with a carbon atom of the substrate. In addition, the Mo⋕S group of the oxidized enzyme has become protonated to afford Mo—SH on reduction of the molybdenum center. In contrast to previous assignments, we find this last ligand at an equatorial position in the square-pyramidal metal coordination sphere, not the apical position. A water molecule usually seen in the active site of the enzyme is absent in the present structure, which probably accounts for the stability of this intermediate toward ligand displacement by hydroxide. PMID:15148401

  19. Highly sensitive bacteria quantification using immunomagnetic separation and electrochemical detection of guanine-labeled secondary beads.

    PubMed

    Jayamohan, Harikrishnan; Gale, Bruce K; Minson, Bj; Lambert, Christopher J; Gordon, Neil; Sant, Himanshu J

    2015-05-22

    In this paper, we report the ultra-sensitive indirect electrochemical detection of E. coli O157:H7 using antibody functionalized primary (magnetic) beads for capture and polyguanine (polyG) oligonucleotide functionalized secondary (polystyrene) beads as an electrochemical tag. Vacuum filtration in combination with E. coli O157:H7 specific antibody modified magnetic beads were used for extraction of E. coli O157:H7 from 100 mL samples. The magnetic bead conjugated E. coli O157:H7 cells were then attached to polyG functionalized secondary beads to form a sandwich complex (magnetic bead/E. coli secondary bead). While the use of magnetic beads for immuno-based capture is well characterized, the use of oligonucleotide functionalized secondary beads helps combine amplification and potential multiplexing into the system. The antibody functionalized secondary beads can be easily modified with a different antibody to detect other pathogens from the same sample and enable potential multiplexing. The polyGs on the secondary beads enable signal amplification up to 10⁸ guanine tags per secondary bead (7.5 x 10⁶ biotin-FITC per secondary bead, 20 guanines per oligonucleotide) bound to the target (E. coli). A single-stranded DNA probe functionalized reduced graphene oxide modified glassy carbon electrode was used to bind the polyGs on the secondary beads. Fluorescent imaging was performed to confirm the hybridization of the complex to the electrode surface. Differential pulse voltammetry (DPV) was used to quantify the amount of polyG involved in the hybridization event with tris(2,2'-bipyridine)ruthenium(II) (Ru(bpy)3(2+)) as the mediator. The amount of polyG signal can be correlated to the amount of E. coli O157:H7 in the sample. The method was able to detect concentrations of E. coli O157:H7 down to 3 CFU/100 mL, which is 67 times lower than the most sensitive technique reported in literature. The signal to noise ratio for this work was 3. We also demonstrate the use of the

  20. The selective phosphorylation of a guanine nucleotide-binding regulatory protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, K.E.

    1989-01-01

    Receptor-activated signal transduction pathways regulate the responsiveness of cells to external stimuli. These transduction pathways themselves are subject to regulation, most commonly by phosphorylation. Guanine nucleotide-binding regulatory proteins (G Proteins), as requisite signal transducing elements for many plasma membrane receptors, are considered likely targets for regulation by phosphorylation. Protein kinase C (PKC) has been shown to phosphorylate the {alpha} subunit of G{sub i} and other G proteins in solution. However, the occurrence of the phosphorylation of G{sub 1} within intact cells in response to activation of PKC has not been rigorously demonstrated. In this thesis, the extent to which themore » {alpha} subunits of G{sub i} undergo phosphorylation within human platelets in response to activation of PKC was examined by means of radiolabeling and immunoprecipitation. Incubation of platelets with phorbol-12-myristate-13-acetate (PMA), a potent activator of PKC, promoted the phosphorylation of several proteins within saponin-permeabilized and intact platelets incubated with ({gamma}{sup 32}P)ATP and ({sup 32}P)H{sub 3}PO{sub 4}, respectively. None of the phosphoproteins, however, were precipitated by either of two antisera containing antibodies differing in specificities for epitopes within G{sub i{alpha}}-despite precipitation of a substantial fraction of the subunit itself. In contrast, other antisera, containing antibodies specific for the recently describe G{sub z{alpha}}, or antibodies for both G{sub z{alpha}} and G{sub i{alpha}}, precipitated a 40-kDa phosphoprotein.« less

  1. Glucose-induced expression of MIP-1 genes requires O-GlcNAc transferase in monocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chikanishi, Toshihiro; ERATO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012; Fujiki, Ryoji

    2010-04-16

    O-glycosylation has emerged as an important modification of nuclear proteins, and it appears to be involved in gene regulation. Recently, we have shown that one of the histone methyl transferases (MLL5) is activated through O-glycosylation by O-GlcNAc transferase (OGT). Addition of this monosaccharide is essential for forming a functional complex. However, in spite of the abundance of OGT in the nucleus, the impact of nuclear O-glycosylation by OGT remains largely unclear. To address this issue, the present study was undertaken to test the impact of nuclear O-glycosylation in a monocytic cell line, THP-1. Using a cytokine array, MIP-1{alpha} and -1{beta}more » genes were found to be regulated by nuclear O-glycosylation. Biochemical purification of the OGT interactants from THP-1 revealed that OGT is an associating partner for distinct co-regulatory complexes. OGT recruitment and protein O-glycosylation were observed at the MIP-1{alpha} gene promoter; however, the known OGT partner (HCF-1) was absent when the MIP-1{alpha} gene promoter was not activated. From these findings, we suggest that OGT could be a co-regulatory subunit shared by functionally distinct complexes supporting epigenetic regulation.« less

  2. Glutathione Transferase from Trichoderma virens Enhances Cadmium Tolerance without Enhancing Its Accumulation in Transgenic Nicotiana tabacum

    PubMed Central

    Dixit, Prachy; Mukherjee, Prasun K.; Ramachandran, V.; Eapen, Susan

    2011-01-01

    Background Cadmium (Cd) is a major heavy metal pollutant which is highly toxic to plants and animals. Vast agricultural areas worldwide are contaminated with Cd. Plants take up Cd and through the food chain it reaches humans and causes toxicity. It is ideal to develop plants tolerant to Cd, without enhanced accumulation in the edible parts for human consumption. Glutathione transferases (GST) are a family of multifunctional enzymes known to have important roles in combating oxidative stresses induced by various heavy metals including Cd. Some GSTs are also known to function as glutathione peroxidases. Overexpression/heterologous expression of GSTs is expected to result in plants tolerant to heavy metals such as Cd. Results Here, we report cloning of a glutathione transferase gene from Trichoderma virens, a biocontrol fungus and introducing it into Nicotiana tabacum plants by Agrobacterium-mediated gene transfer. Transgenic nature of the plants was confirmed by Southern blot hybridization and expression by reverse transcription PCR. Transgene (TvGST) showed single gene Mendelian inheritance. When transgenic plants expressing TvGST gene were exposed to different concentrations of Cd, they were found to be more tolerant compared to wild type plants, with transgenic plants showing lower levels of lipid peroxidation. Levels of different antioxidant enzymes such as glutathione transferase, superoxide dismutase, ascorbate peroxidase, guiacol peroxidase and catalase showed enhanced levels in transgenic plants expressing TvGST compared to control plants, when exposed to Cd. Cadmium accumulation in the plant biomass in transgenic plants were similar or lower than wild-type plants. Conclusion The results of the present study suggest that transgenic tobacco plants expressing a Trichoderma virens GST are more tolerant to Cd, without enhancing its accumulation in the plant biomass. It should be possible to extend the present results to crop plants for developing Cd tolerance and

  3. Protein–protein interactions and selection: yeast-based approaches that exploit guanine nucleotide-binding protein signaling.

    PubMed

    Ishii, Jun; Fukuda, Nobuo; Tanaka, Tsutomu; Ogino, Chiaki; Kondo, Akihiko

    2010-05-01

    For elucidating protein–protein interactions, many methodologies have been developed during the past two decades. For investigation of interactions inside cells under physiological conditions, yeast is an attractive organism with which to quickly screen for hopeful candidates using versatile genetic technologies, and various types of approaches are now available.Among them, a variety of unique systems using the guanine nucleotide-binding protein (G-protein) signaling pathway in yeast have been established to investigate the interactions of proteins for biological study and pharmaceutical research. G-proteins involved in various cellular processes are mainly divided into two groups: small monomeric G-proteins,and heterotrimeric G-proteins. In this minireview, we summarize the basic principles and applications of yeast-based screening systems, using these two types of G-protein, which are typically used for elucidating biological protein interactions but are differentiated from traditional yeast two-hybrid systems.

  4. Combined glutathione S transferase M1/T1 null genotypes is associated with type 2 diabetes mellitus

    PubMed Central

    POROJAN, MIHAI D.; BALA, CORNELIA; ILIES, ROXANA; CATANA, ANDREEA; POPP, RADU A.; DUMITRASCU, DAN L.

    2015-01-01

    Background Due to new genetic insights, a considerably large number of genes and polymorphic gene variants are screened and linked with the complex pathogenesis of type 2 diabetes (DM). Our study aimed to investigate the association between the two isoforms of the glutathione S-transferase genes (Glutathione S transferase isoemzyme type M1- GSTM1 and Glutathione S transferase isoemzyme type T1-GSTT1) and the prevalence of DM in the Northern Romanian population. Methods We conducted a cross-sectional, randomized, case-control study evaluating the frequency of GSTM1 and GSTT1 null alleles in patients diagnosed with DM. A total of 106 patients diagnosed with DM and 124 healthy controls were included in the study. GSTM1 and GSTT1 null alleles genotyping was carried out using Multiplex PCR amplification of relevant gene fragments, followed by gel electrophoresis analysis of the resulting amplicons. Results Molecular analysis did not reveal an increased frequency of the null GSTM1 and GSTT1 alleles (mutant genotypes) respectively in the DM group compared to controls (p=0.171, OR=1.444 CI=0.852–2.447; p=0.647, OR=0.854, CI=0.436–1.673). Nevertheless, the combined GSTM1/GSTT1 null genotypes were statistically significantly higher in DM patients compared to control subjects (p=0.0021, OR=0.313, CI=0.149–0.655) Conclusions The main finding of our study is that the combined, double GSTM1/GSTT1 null genotypes are to be considered among the polymorphic genetic risk factors for type 2 DM. PMID:26528065

  5. Fourier transform infrared spectroscopy study on order-disorder transition in Langmuir-Blodgett films of 7-(2-octadecyloxycarbonylethyl)guanine before and after recognition to cytidine

    NASA Astrophysics Data System (ADS)

    Miao, Wangen; Luo, Xuzhong; Wu, Sanxie; Liang, Yingqiu

    2004-01-01

    Order-disorder transitions of 9-monolayer Langmuir-Blodgett (LB) films of 7-(2-octadecyloxycarbonylethyl)guanine (ODCG) before and after recognition to cytidine were investigated by Fourier transform infrared (FTIR) spectroscopy. The different order-disorder transitions suggest that molecular recognition between ODCG and cytidine influence these two LB films on the order-disorder process of alkyl tailchain. Cleavage of the multi-hydrogen bonds was also observed by the infrared spectroscopy at elevated temperature.

  6. Fourier transform infrared spectroscopy study on order-disorder transition in Langmuir-Blodgett films of 7-(2-octadecyloxycarbonylethyl)guanine before and after recognition to cytidine.

    PubMed

    Miao, Wangen; Luo, Xuzhong; Wu, Sanxie; Liang, Yingqiu

    2004-01-01

    Order-disorder transitions of 9-monolayer Langmuir-Blodgett (LB) films of 7-(2-octadecyloxycarbonylethyl)guanine (ODCG) before and after recognition to cytidine were investigated by Fourier transform infrared (FTIR) spectroscopy. The different order-disorder transitions suggest that molecular recognition between ODCG and cytidine influence these two LB films on the order-disorder process of alkyl tailchain. Cleavage of the multi-hydrogen bonds was also observed by the infrared spectroscopy at elevated temperature.

  7. Phosphoethanolamine Transferase LptA in Haemophilus ducreyi Modifies Lipid A and Contributes to Human Defensin Resistance In Vitro.

    PubMed

    Trombley, Michael P; Post, Deborah M B; Rinker, Sherri D; Reinders, Lorri M; Fortney, Kate R; Zwickl, Beth W; Janowicz, Diane M; Baye, Fitsum M; Katz, Barry P; Spinola, Stanley M; Bauer, Margaret E

    2015-01-01

    Haemophilus ducreyi resists the cytotoxic effects of human antimicrobial peptides (APs), including α-defensins, β-defensins, and the cathelicidin LL-37. Resistance to LL-37, mediated by the sensitive to antimicrobial peptide (Sap) transporter, is required for H. ducreyi virulence in humans. Cationic APs are attracted to the negatively charged bacterial cell surface. In other gram-negative bacteria, modification of lipopolysaccharide or lipooligosaccharide (LOS) by the addition of positively charged moieties, such as phosphoethanolamine (PEA), confers AP resistance by means of electrostatic repulsion. H. ducreyi LOS has PEA modifications at two sites, and we identified three genes (lptA, ptdA, and ptdB) in H. ducreyi with homology to a family of bacterial PEA transferases. We generated non-polar, unmarked mutants with deletions in one, two, or all three putative PEA transferase genes. The triple mutant was significantly more susceptible to both α- and β-defensins; complementation of all three genes restored parental levels of AP resistance. Deletion of all three PEA transferase genes also resulted in a significant increase in the negativity of the mutant cell surface. Mass spectrometric analysis revealed that LptA was required for PEA modification of lipid A; PtdA and PtdB did not affect PEA modification of LOS. In human inoculation experiments, the triple mutant was as virulent as its parent strain. While this is the first identified mechanism of resistance to α-defensins in H. ducreyi, our in vivo data suggest that resistance to cathelicidin LL-37 may be more important than defensin resistance to H. ducreyi pathogenesis.

  8. Phosphorylation-dependent Regulation of Connecdenn/DENND1 Guanine Nucleotide Exchange Factors*

    PubMed Central

    Kulasekaran, Gopinath; Nossova, Nadya; Marat, Andrea L.; Lund, Ingrid; Cremer, Christopher; Ioannou, Maria S.; McPherson, Peter S.

    2015-01-01

    Connecdenn 1/2 are DENN (differentially expressed in normal and neoplastic cells) domain-bearing proteins that function as GEFs (guanine nucleotide exchange factors) for the small GTPase Rab35. Disruption of connecdenn/Rab35 function leads to defects in the recycling of multiple cargo proteins from endosomes with altered cell function, yet the regulation of connecdenn GEF activity is unexplored. We now demonstrate that connecdenn 1/2 are autoinhibited such that the purified, full-length proteins have significantly less Rab35 binding and GEF activity than the isolated DENN domain. Both proteins are phosphorylated with prominent phosphorylation sites between residues 500 and 600 of connecdenn 1. A large scale proteomics screen revealed that connecdenn 1 is phosphorylated at residues Ser-536 and Ser-538 in an Akt-dependent manner in response to insulin stimulation of adipocytes. Interestingly, we find that an Akt inhibitor reduces connecdenn 1 interaction with Rab35 after insulin treatment of adipocytes. Remarkably, a peptide flanking Ser-536/Ser-538 binds the DENN domain of connecdenn 1, whereas a phosphomimetic peptide does not. Moreover, connecdenn 1 interacts with 14-3-3 proteins, and this interaction is also disrupted by Akt inhibition and by mutation of Ser-536/Ser-538. We propose that Akt phosphorylation of connecdenn 1 downstream of insulin activation regulates connecdenn 1 function through an intramolecular interaction. PMID:26055712

  9. Mechanism of action and interactions between xanthine oxidase inhibitors derived from natural sources of chlorogenic and ferulic acids.

    PubMed

    Gawlik-Dziki, Urszula; Dziki, Dariusz; Świeca, Michał; Nowak, Renata

    2017-06-15

    The aim of this study was to estimate the phenolic composition and xanthine oxidase (XO) inhibitory activity of green coffee beans (GCB) and wholemeal wheat flour (WF). Additionally, the type and strength of interaction (expressed as the combination index, CI) and mode of XO inhibition were analyzed. The major phenolic in GCB was 5-caffeoylquinic acid (39.92mg/g dw). The main phenolic acids in WF were trans- and cis-ferulic acids (257 and 165.57mg/100g dw, respectively). Both ferulic and chlorogenic acids individually inhibited XO, and for their combination moderate synergism was found. Buffer extractable compounds from GCB and WF demonstrated slight synergism (CI=0.92), while potentially bioaccessible and bioavailable compounds acted synergistically (CI=0.43 and 0.54, respectively). Buffer-extractable and potentially bioavailable phytochemicals from GCB acted uncompetitively, whereas potentially bioaccessible compounds acted as noncompetitive XO inhibitors. The addition of 3-5% of GCB to wheat bread significantly increased XO-inhibitory activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Oxidatively Generated Guanine(C8)-Thymine(N3) Intrastrand Cross-links in Double-stranded DNA Are Repaired by Base Excision Repair Pathways*

    PubMed Central

    Talhaoui, Ibtissam; Shafirovich, Vladimir; Liu, Zhi; Saint-Pierre, Christine; Akishev, Zhiger; Matkarimov, Bakhyt T.; Gasparutto, Didier; Geacintov, Nicholas E.; Saparbaev, Murat

    2015-01-01

    Oxidatively generated guanine radical cations in DNA can undergo various nucleophilic reactions including the formation of C8-guanine cross-links with adjacent or nearby N3-thymines in DNA in the presence of O2. The G*[C8-N3]T* lesions have been identified in the DNA of human cells exposed to oxidative stress, and are most likely genotoxic if not removed by cellular defense mechanisms. It has been shown that the G*[C8-N3]T* lesions are substrates of nucleotide excision repair in human cell extracts. Cleavage at the sites of the lesions was also observed but not further investigated (Ding et al. (2012) Nucleic Acids Res. 40, 2506–2517). Using a panel of eukaryotic and prokaryotic bifunctional DNA glycosylases/lyases (NEIL1, Nei, Fpg, Nth, and NTH1) and apurinic/apyrimidinic (AP) endonucleases (Apn1, APE1, and Nfo), the analysis of cleavage fragments by PAGE and MALDI-TOF/MS show that the G*[C8-N3]T* lesions in 17-mer duplexes are incised on either side of G*, that none of the recovered cleavage fragments contain G*, and that T* is converted to a normal T in the 3′-fragment cleavage products. The abilities of the DNA glycosylases to incise the DNA strand adjacent to G*, while this base is initially cross-linked with T*, is a surprising observation and an indication of the versatility of these base excision repair proteins. PMID:25903131

  11. The Drosophila protein palmitoylome: Characterizing palmitoyl-thioesterases and DHHC palmitoyl-transferases

    PubMed Central

    Bannan, Barbra A.; Van Etten, Jamie; Kohler, John A.; Tsoi, Yui; Hansen, Nicole M.; Sigmon, Stacey; Fowler, Elizabeth; Buff, Haley; Williams, Tiffany S.; Ault, Jeffrey G.; Glaser, Robert L.; Korey, Christopher A.

    2010-01-01

    Palmitoylation is the post-translational addition of a palmitate moiety to a cysteine residue through a covalent thioester bond. The addition and removal of this modification is controlled by both palmitoyl acyl-transferases and thioesterases. Using bioinformatic analysis, we identified 22 DHHC family palmitoyl acyl-transferase homologs in the Drosophila genome. We used in situ hybridization, RT-PCR, and published FlyAtlas microarray data to characterize the expression patterns of all 22 fly homologs. Our results indicate that all are expressed genes, but several, including CG1407, CG4676, CG5620, CG6017/dHIP14, CG6618, CG6627, and CG17257 appear to be enriched in neural tissues suggesting that they are important for neural function. Furthermore, we have found that several may be expressed in a sex-specific manner with adult male-specific expression of CG4483 and CG17195. Using tagged versions of the DHHC genes, we demonstrate that fly DHHC proteins are primarily located in either the Golgi Apparatus or Endoplasmic Reticulum in S2 cells, except for CG1407, which was found on the plasma membrane. We also characterized the subcellular localization and expression of the three known thioesterases: Palmitoyl-protein Thioesterase 1 (Ppt1), Palmitoyl-protein Thioesterase 2 (Ppt2), and Acyl-protein Thioesterase 1 (APT1). Our results indicate that Ppt1 and Ppt2 are the major lysosomal thioesterases while APT1 is the likely cytoplasmic thioesterase. Finally, in vivo rescue experiments show that Ppt2 expression cannot rescue the neural inclusion phenotypes associated with loss of Ppt1, further supporting distinct functions and substrates for these two thioesterases. These results will serve as the basis for a more complete understanding of the protein palmitoylome's normal cellular functions in the fly and will lead to further insights into the molecular etiology of diseases associated with the mis-regulation of palmitoylation. PMID:18719403

  12. Succinyl-CoA:Mesaconate CoA-Transferase and Mesaconyl-CoA Hydratase, Enzymes of the Methylaspartate Cycle in Haloarcula hispanica.

    PubMed

    Borjian, Farshad; Johnsen, Ulrike; Schönheit, Peter; Berg, Ivan A

    2017-01-01

    Growth on acetate or other acetyl-CoA-generating substrates as a sole source of carbon requires an anaplerotic pathway for the conversion of acetyl-CoA into cellular building blocks. Haloarchaea (class Halobacteria ) possess two different anaplerotic pathways, the classical glyoxylate cycle and the novel methylaspartate cycle. The methylaspartate cycle was discovered in Haloarcula spp. and operates in ∼40% of sequenced haloarchaea. In this cycle, condensation of one molecule of acetyl-CoA with oxaloacetate gives rise to citrate, which is further converted to 2-oxoglutarate and then to glutamate. The following glutamate rearrangement and deamination lead to mesaconate (methylfumarate) that needs to be activated to mesaconyl-C1-CoA and hydrated to β-methylmalyl-CoA. The cleavage of β-methylmalyl-CoA results in the formation of propionyl-CoA and glyoxylate. The carboxylation of propionyl-CoA and the condensation of glyoxylate with another acetyl-CoA molecule give rise to two C 4 -dicarboxylic acids, thus regenerating the initial acetyl-CoA acceptor and forming malate, its final product. Here we studied two enzymes of the methylaspartate cycle from Haloarcula hispanica , succinyl-CoA:mesaconate CoA-transferase (mesaconate CoA-transferase, Hah_1336) and mesaconyl-CoA hydratase (Hah_1340). Their genes were heterologously expressed in Haloferax volcanii , and the corresponding enzymes were purified and characterized. Mesaconate CoA-transferase was specific for its physiological substrates, mesaconate and succinyl-CoA, and produced only mesaconyl-C1-CoA and no mesaconyl-C4-CoA. Mesaconyl-CoA hydratase had a 3.5-fold bias for the physiological substrate, mesaconyl-C1-CoA, compared to mesaconyl-C4-CoA, and virtually no activity with other tested enoyl-CoA/3-hydroxyacyl-CoA compounds. Our results further prove the functioning of the methylaspartate cycle in haloarchaea and suggest that mesaconate CoA-transferase and mesaconyl-CoA hydratase can be regarded as

  13. Mutation at a distance caused by homopolymeric guanine repeats in Saccharomyces cerevisiae

    PubMed Central

    McDonald, Michael J.; Yu, Yen-Hsin; Guo, Jheng-Fen; Chong, Shin Yen; Kao, Cheng-Fu; Leu, Jun-Yi

    2016-01-01

    Mutation provides the raw material from which natural selection shapes adaptations. The rate at which new mutations arise is therefore a key factor that determines the tempo and mode of evolution. However, an accurate assessment of the mutation rate of a given organism is difficult because mutation rate varies on a fine scale within a genome. A central challenge of evolutionary genetics is to determine the underlying causes of this variation. In earlier work, we had shown that repeat sequences not only are prone to a high rate of expansion and contraction but also can cause an increase in mutation rate (on the order of kilobases) of the sequence surrounding the repeat. We perform experiments that show that simple guanine repeats 13 bp (base pairs) in length or longer (G13+) increase the substitution rate 4- to 18-fold in the downstream DNA sequence, and this correlates with DNA replication timing (R = 0.89). We show that G13+ mutagenicity results from the interplay of both error-prone translesion synthesis and homologous recombination repair pathways. The mutagenic repeats that we study have the potential to be exploited for the artificial elevation of mutation rate in systems biology and synthetic biology applications. PMID:27386516

  14. The synthesis of ethacrynic acid thiazole derivatives as glutathione S-transferase pi inhibitors.

    PubMed

    Li, Ting; Liu, Guyue; Li, Hongcai; Yang, Xinmei; Jing, Yongkui; Zhao, Guisen

    2012-04-01

    Glutathione S-transferase pi (GSTpi) is a phase II enzyme which protects cells from death and detoxifies chemotherapeutic agents in cancer cells. Ethacrynic acid (EA) is a weak GSTpi inhibitor. Structure modifications were done to improve the ability of EA to inhibit GSTpi activity. Eighteen EA thiazole derivatives were designed and synthesized. Compounds 9a, 9b and 9c with a replacement of carboxyl group of EA by a heterocyclic thiazole exhibited improvement over EA to inhibit GSTpi activity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Activity-Based Probes for Isoenzyme- and Site-Specific Functional Characterization of Glutathione S -Transferases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoddard, Ethan G.; Killinger, Bryan J.; Nair, Reji N.

    Glutathione S-transferases (GSTs) comprise a highly diverse family of phase II drug metabolizing enzymes whose shared function is the conjugation of reduced glutathione to various endo- and xenobiotics. Although the conglomerate activity of these enzymes can be measured by colorimetric assays, measurement of the individual contribution from specific isoforms and their contribution to the detoxification of xenobiotics in complex biological samples has not been possible. For this reason, we have developed two activity-based probes that characterize active glutathione transferases in mammalian tissues. The GST active site is comprised of a glutathione binding “G site” and a distinct substrate binding “Hmore » site”. Therefore, we developed (1) a glutathione-based photoaffinity probe (GSH-ABP) to target the “G site”, and (2) a probe designed to mimic a substrate molecule and show “H site” activity (GST-ABP). The GSH-ABP features a photoreactive moiety for UV-induced covalent binding to GSTs and glutathione-binding enzymes. The GST-ABP is a derivative of a known mechanism-based GST inhibitor that binds within the active site and inhibits GST activity. Validation of probe targets and “G” and “H” site specificity was carried out using a series of competitors in liver homogenates. Herein, we present robust tools for the novel characterization of enzyme- and active site-specific GST activity in mammalian model systems.« less

  16. The xanthine oxidase inhibitor febuxostat suppresses development of nonalcoholic steatohepatitis in a rodent model.

    PubMed

    Nakatsu, Yusuke; Seno, Yasuyuki; Kushiyama, Akifumi; Sakoda, Hideyuki; Fujishiro, Midori; Katasako, Aya; Mori, Keiichi; Matsunaga, Yasuka; Fukushima, Toshiaki; Kanaoka, Ryuhei; Yamamotoya, Takeshi; Kamata, Hideaki; Asano, Tomoichiro

    2015-07-01

    Xanthine oxidase (XO) is an enzyme involved in the production of uric acid (UA) from purine nucleotides. Numerous recent studies have revealed the likelihood of metabolic syndrome including nonalcoholic fatty liver disease (NAFLD) or steatohepatitis (NASH) to be related to hyperuricemia. However, it remains unclear whether elevated serum UA during the development of NAFLD or NASH is a cause or a consequence of these diseases. In this study, the XO inhibitor febuxostat was administered to two types of NASH model mice. Febuxostat exerted a strong protective effect against NASH development induced by a high-fat diet containing trans fatty acid (HFDT). In contrast, methionine choline-deficient-diet-induced NASH development not accompanied by hyperuricemia showed no UA normalization, suggesting that the ameliorating effect of febuxostat occurs via the normalization of hyperuricemia itself and/or accompanying molecular mechanism(s) such as oxidative stress. In the HFDT-fed mice, hyperuricemia, elevated alanine aminotransferase, and increased Tunnel-positive cells in the liver were normalized by febuxostat administration. In addition, upregulation of fatty acid oxidation-related genes, fibrotic change, and increases in collagen deposition, inflammatory cytokine expressions, and lipid peroxidation in the HFDT-fed mice were also normalized by febuxostat administration. Taken together, these observations indicate that administration of febuxostat has a protective effect against HFDT-induced NASH development, suggesting the importance of XO in its pathogenesis. Thus XO inhibitors are potentially potent therapies for patients with NASH, particularly that associated with hyperuricemia. Copyright © 2015 the American Physiological Society.

  17. pH-Modulated Watson-Crick duplex-quadruplex equilibria of guanine-rich and cytosine-rich DNA sequences 140 base pairs upstream of the c-kit transcription initiation site.

    PubMed

    Bucek, Pavel; Jaumot, Joaquim; Aviñó, Anna; Eritja, Ramon; Gargallo, Raimundo

    2009-11-23

    Guanine-rich regions of DNA are sequences capable of forming G-quadruplex structures. The formation of a G-quadruplex structure in a region 140 base pairs (bp) upstream of the c-kit transcription initiation site was recently proposed (Fernando et al., Biochemistry, 2006, 45, 7854). In the present study, the acid-base equilibria and the thermally induced unfolding of the structures formed by a guanine-rich region and by its complementary cytosine-rich strand in c-kit were studied by means of circular dichroism and molecular absorption spectroscopies. In addition, competition between the Watson-Crick duplex and the isolated structures was studied as a function of pH value and temperature. Multivariate data analysis methods based on both hard and soft modeling were used to allow accurate quantification of the various acid-base species present in the mixtures. Results showed that the G-quadruplex and i-motif coexist with the Watson-Crick duplex over the pH range from 3.0 to 6.5, approximately, under the experimental conditions tested in this study. At pH 7.0, the duplex is practically the only species present.

  18. ROLE OF STEROID HORMONES AND DECIDUAL INDUCTION IN THE REGULATION OF ADENOSINE DIPHOSPHORIBOSYL TRANSFERASE ACTIVITY IN RAT ENDOMETRIUM

    EPA Science Inventory

    To assess the effect of ovarian steroid hormones on enzyme activity, adenosine diphosphoribosyl transferase (ADPRT) was measured in endometrial nuclei isolated on estrus and on d 4 from rats ovariectomized on estrus (d 0) and treated d 0-3 with (a) vehicle, (b) 1 ug estrone/d (E)...

  19. BIOTRANSFORMATION AND GENOTOXICITY OF THE DRINKING WATER DISINFECTION BYPRODUCT BROMODICHLOROMETHANE: DNA BINDING MEDIATED BY GLUTATHIONE TRANSFERASE THETA 1-1

    EPA Science Inventory

    The drinking water disinfection byproduct bromodichloromethane (CHBrCl2) was
    previously shown to be mutagenic in Salmonella typhimurium that overexpress rat glutathione
    transferase theta 1-1 (GSTT1-1). Several experimental approaches were undertaken in this study
    to inve...

  20. Dimethyl adenosine transferase (KsgA) deficiency in Salmonella Enteritidis confers susceptibility to high osmolarity and virulence attenuation in chickens

    USDA-ARS?s Scientific Manuscript database

    : Dimethyladenosine transferase (KsgA) performs diverse roles in bacteria including ribosomal maturation, DNA mismatch repair, and synthesis of KsgA is responsive to antibiotics and cold temperature. We previously showed that ksgA mutation in Salmonella Enteritidis results in impaired invasiveness i...

  1. MOF Acetyl Transferase Regulates Transcription and Respiration in Mitochondria.

    PubMed

    Chatterjee, Aindrila; Seyfferth, Janine; Lucci, Jacopo; Gilsbach, Ralf; Preissl, Sebastian; Böttinger, Lena; Mårtensson, Christoph U; Panhale, Amol; Stehle, Thomas; Kretz, Oliver; Sahyoun, Abdullah H; Avilov, Sergiy; Eimer, Stefan; Hein, Lutz; Pfanner, Nikolaus; Becker, Thomas; Akhtar, Asifa

    2016-10-20

    A functional crosstalk between epigenetic regulators and metabolic control could provide a mechanism to adapt cellular responses to environmental cues. We report that the well-known nuclear MYST family acetyl transferase MOF and a subset of its non-specific lethal complex partners reside in mitochondria. MOF regulates oxidative phosphorylation by controlling expression of respiratory genes from both nuclear and mtDNA in aerobically respiring cells. MOF binds mtDNA, and this binding is dependent on KANSL3. The mitochondrial pool of MOF, but not a catalytically deficient mutant, rescues respiratory and mtDNA transcriptional defects triggered by the absence of MOF. Mof conditional knockout has catastrophic consequences for tissues with high-energy consumption, triggering hypertrophic cardiomyopathy and cardiac failure in murine hearts; cardiomyocytes show severe mitochondrial degeneration and deregulation of mitochondrial nutrient metabolism and oxidative phosphorylation pathways. Thus, MOF is a dual-transcriptional regulator of nuclear and mitochondrial genomes connecting epigenetics and metabolism. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Transgenic expression of a maize geranyl geranyl transferase gene sequence in maize callus increases resistance to ear rot pathogens

    USDA-ARS?s Scientific Manuscript database

    Determining the genes responsible for pest resistance in maize can allow breeders to develop varieties with lower losses and less contamination with undesirable toxins. A gene sequence coding for a geranyl geranyl transferase-like protein located in a fungal ear rot resistance quantitative trait loc...

  3. The Structure of RalF, an ADP-Ribosylation Factor Guanine Nucleotide Exchange Factor from Legionella pneumophila, Reveals the Presence of a Cap over the Active Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amor,J.; Swails, J.; Zhu, X.

    2005-01-01

    The Legionella pneumophila protein RalF is secreted into host cytosol via the Dot/Icm type IV transporter where it acts to recruit ADP-ribosylation factor (Arf) to pathogen-containing phagosomes in the establishment of a replicative organelle. The presence in RalF of the Sec7 domain, present in all Arf guanine nucleotide exchange factors, has suggested that recruitment of Arf is an early step in pathogenesis. We have determined the crystal structure of RalF and of the isolated Sec7 domain and found that RalF is made up of two domains. The Sec7 domain is homologous to mammalian Sec7 domains. The C-terminal domain forms amore » cap over the active site in the Sec7 domain and contains a conserved folding motif, previously observed in adaptor subunits of vesicle coat complexes. The importance of the capping domain and of the glutamate in the 'glutamic finger,' conserved in all Sec7 domains, to RalF functions was examined using three different assays. These data highlight the functional importance of domains other than Sec7 in Arf guanine nucleotide exchange factors to biological activities and suggest novel mechanisms of regulation of those activities.« less

  4. Downregulation of glutathione S-transferase pi in asthma contributes to enhanced oxidative stress.

    PubMed

    Schroer, Kathy T; Gibson, Aaron M; Sivaprasad, Umasundari; Bass, Stacey A; Ericksen, Mark B; Wills-Karp, Marsha; Lecras, Tim; Fitzpatrick, Anne M; Brown, Lou Ann S; Stringer, Keith F; Hershey, Gurjit K Khurana

    2011-09-01

    Glutathione S-transferase pi (GSTPi) is the predominant redox regulator in the lung. Although evidence implicates an important role for GSTPi in asthma, the mechanism for this has remained elusive. We sought to determine how GSTPi is regulated in asthma and to elucidate its role in maintaining redox homeostasis. We elucidated the regulation of GSTPi in children with asthma and used murine models of asthma to determine the role of GSTPi in redox homeostasis. Our findings demonstrate that GSTPi transcript levels are markedly downregulated in allergen- and IL-13-treated murine models of asthma through signal transducer and activator of transcription 6-dependent and independent pathways. Nuclear factor erythroid 2-related factor 2 was also downregulated in these models. The decrease in GSTPi expression was associated with decreased total glutathione S-transferase activity in the lungs of mice. Examination of cystine intermediates uncovered a functional role for GSTPi in regulating cysteine oxidation, whereby GSTPi-deficient mice exhibited increased oxidative stress (increase in percentage cystine) compared with wild-type mice after allergen challenge. GSTPi expression was similarly downregulated in children with asthma. These data collectively suggest that downregulation of GSTPi after allergen challenge might contribute to the asthma phenotype because of disruption of redox homeostasis and increased oxidative stress. Furthermore, GSTPi might be an important therapeutic target for asthma, and evaluation of GSTPi expression might prove beneficial in identifying patients who would benefit from therapy targeting this pathway. Copyright © 2011 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  5. Epidermal growth factor regulation of glutathione S-transferase gene expression in the rat is mediated by class Pi glutathione S-transferase enhancer I.

    PubMed

    Matsumoto, M; Imagawa, M; Aoki, Y

    2000-07-01

    Using chloramphenicol acetyltransferase assays we showed that epidermal growth factor (EGF), transforming growth factor alpha (TGF alpha), and 3,3',4,4',5-pentachlorobiphenyl (PenCB) induce class Pi glutathione S-transferase (GSTP1) in primary cultured rat liver parenchymal cells. GSTP1 enhancer I (GPEI), which is required for the stimulation of GSTP1 expression by PenCB, also mediates EGF and TGF alpha stimulation of GSTP1 gene expression. However, hepatocyte growth factor and insulin did not stimulate GPEI-mediated gene expression. On the other hand, the antioxidant reagents butylhydroxyanisole and t-butylhydroquinone, stimulated GPEI-mediated gene expression, but the level of GSTP1 mRNA was not elevated. Our observations suggest that EGF and TGF alpha induce GSTP1 by the same signal transduction pathway as PenCB. Since the sequence of GPEI is similar to that of the antioxidant responsive element (ARE), some factors which bind to ARE might play a role in GPEI-mediated gene expression.

  6. Epidermal growth factor regulation of glutathione S-transferase gene expression in the rat is mediated by class Pi glutathione S-transferase enhancer I.

    PubMed Central

    Matsumoto, M; Imagawa, M; Aoki, Y

    2000-01-01

    Using chloramphenicol acetyltransferase assays we showed that epidermal growth factor (EGF), transforming growth factor alpha (TGF alpha), and 3,3',4,4',5-pentachlorobiphenyl (PenCB) induce class Pi glutathione S-transferase (GSTP1) in primary cultured rat liver parenchymal cells. GSTP1 enhancer I (GPEI), which is required for the stimulation of GSTP1 expression by PenCB, also mediates EGF and TGF alpha stimulation of GSTP1 gene expression. However, hepatocyte growth factor and insulin did not stimulate GPEI-mediated gene expression. On the other hand, the antioxidant reagents butylhydroxyanisole and t-butylhydroquinone, stimulated GPEI-mediated gene expression, but the level of GSTP1 mRNA was not elevated. Our observations suggest that EGF and TGF alpha induce GSTP1 by the same signal transduction pathway as PenCB. Since the sequence of GPEI is similar to that of the antioxidant responsive element (ARE), some factors which bind to ARE might play a role in GPEI-mediated gene expression. PMID:10861232

  7. Sphingobium sp. SYK-6 LigG involved in lignin degradation is structurally and biochemically related to the glutathione transferase ω class.

    PubMed

    Meux, Edgar; Prosper, Pascalita; Masai, Eiji; Mulliert, Guillermo; Dumarçay, Stéphane; Morel, Mélanie; Didierjean, Claude; Gelhaye, Eric; Favier, Frédérique

    2012-11-16

    SpLigG is one of the three glutathione transferases (GSTs) involved in the process of lignin breakdown in the soil bacterium Sphingobium sp. SYK-6. Sequence comparisons showed that SpLigG and several proteobacteria homologues form an independent cluster within cysteine-containing GSTs. The relationship between SpLigG and other GSTs was investigated. The X-ray structure and biochemical properties of SpLigG indicate that this enzyme belongs to the omega class of glutathione transferases. However, the hydrophilic substrate binding site of SpLigG, together with its known ability to stereoselectively deglutathionylate the physiological substrate α-glutathionyl-β-hydroxypropiovanillone, argues for broadening the definition of the omega class. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  8. Oxidatively Generated Guanine(C8)-Thymine(N3) Intrastrand Cross-links in Double-stranded DNA Are Repaired by Base Excision Repair Pathways.

    PubMed

    Talhaoui, Ibtissam; Shafirovich, Vladimir; Liu, Zhi; Saint-Pierre, Christine; Akishev, Zhiger; Matkarimov, Bakhyt T; Gasparutto, Didier; Geacintov, Nicholas E; Saparbaev, Murat

    2015-06-05

    Oxidatively generated guanine radical cations in DNA can undergo various nucleophilic reactions including the formation of C8-guanine cross-links with adjacent or nearby N3-thymines in DNA in the presence of O2. The G*[C8-N3]T* lesions have been identified in the DNA of human cells exposed to oxidative stress, and are most likely genotoxic if not removed by cellular defense mechanisms. It has been shown that the G*[C8-N3]T* lesions are substrates of nucleotide excision repair in human cell extracts. Cleavage at the sites of the lesions was also observed but not further investigated (Ding et al. (2012) Nucleic Acids Res. 40, 2506-2517). Using a panel of eukaryotic and prokaryotic bifunctional DNA glycosylases/lyases (NEIL1, Nei, Fpg, Nth, and NTH1) and apurinic/apyrimidinic (AP) endonucleases (Apn1, APE1, and Nfo), the analysis of cleavage fragments by PAGE and MALDI-TOF/MS show that the G*[C8-N3]T* lesions in 17-mer duplexes are incised on either side of G*, that none of the recovered cleavage fragments contain G*, and that T* is converted to a normal T in the 3'-fragment cleavage products. The abilities of the DNA glycosylases to incise the DNA strand adjacent to G*, while this base is initially cross-linked with T*, is a surprising observation and an indication of the versatility of these base excision repair proteins. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Regulatory Mutants at the his1 Locus of Yeast

    PubMed Central

    Lax, Carol; Fogel, Seymour; Cramer, Carole

    1979-01-01

    The his1 gene in Saccharomyces cerevisiae codes for phosphoribosyl transferase, an allosteric enzyme that catalyzes the initial step in histidine biosynthesis. Mutants that specifically alter the feedback regulatory function were isolated by selecting his1 prototrophic revertants that overproduce and excrete histidine. The prototrophs were obtained from diploids homoallelic for his1–7 and heterozygous for the flanking markers thr3 and arg6. Among six independently derived mutant isolates, three distinct levels of histidine excretion were detected. The mutants were shown to be second-site alterations mapping at the his1 locus by recovery of the original auoxtrophic parental alleles. The double mutants, HIS1–7e, are dominant with respect to catalytic function but recessive in regulatory function. When removed from this his1–7 background, the mutant regulatory site (HIS1–e) still confers prototrophy but not histidine excretion. To yield the excretion phenotype, the primary and altered secondary sites are required in cis array. Differences in histidine excretion levels correlate with resistance to the histidine analogue, triazoalanine. PMID:385447

  10. Function and phylogeny of bacterial butyryl-CoA:acetate transferases and their diversity in the proximal colon of swine

    USDA-ARS?s Scientific Manuscript database

    Studying the host-associated butyrate-producing bacterial community is important because butyrate is essential for colonic homeostasis and gut health. Previous research has identified the butyryl-coA:acetate transferase (2.3.8.3) as a the main gene for butyrate production in intestinal ecosystems; h...

  11. QuadBase2: web server for multiplexed guanine quadruplex mining and visualization

    PubMed Central

    Dhapola, Parashar; Chowdhury, Shantanu

    2016-01-01

    DNA guanine quadruplexes or G4s are non-canonical DNA secondary structures which affect genomic processes like replication, transcription and recombination. G4s are computationally identified by specific nucleotide motifs which are also called putative G4 (PG4) motifs. Despite the general relevance of these structures, there is currently no tool available that can allow batch queries and genome-wide analysis of these motifs in a user-friendly interface. QuadBase2 (quadbase.igib.res.in) presents a completely reinvented web server version of previously published QuadBase database. QuadBase2 enables users to mine PG4 motifs in up to 178 eukaryotes through the EuQuad module. This module interfaces with Ensembl Compara database, to allow users mine PG4 motifs in the orthologues of genes of interest across eukaryotes. PG4 motifs can be mined across genes and their promoter sequences in 1719 prokaryotes through ProQuad module. This module includes a feature that allows genome-wide mining of PG4 motifs and their visualization as circular histograms. TetraplexFinder, the module for mining PG4 motifs in user-provided sequences is now capable of handling up to 20 MB of data. QuadBase2 is a comprehensive PG4 motif mining tool that further expands the configurations and algorithms for mining PG4 motifs in a user-friendly way. PMID:27185890

  12. O-linked-N-acetylglucosamine modification of mammalian Notch receptors by an atypical O-GlcNAc transferase Eogt1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakaidani, Yuta; Ichiyanagi, Naoki; Saito, Chika

    2012-03-02

    Highlights: Black-Right-Pointing-Pointer We characterized A130022J15Rik (Eogt1)-a mouse gene homologous to Drosophila Eogt. Black-Right-Pointing-Pointer Eogt1 encodes EGF domain O-GlcNAc transferase. Black-Right-Pointing-Pointer Expression of Eogt1 in Drosophila rescued the cell-adhesion defect in the Eogt mutant. Black-Right-Pointing-Pointer O-GlcNAcylation reaction in the secretory pathway is conserved through evolution. -- Abstract: O-linked-{beta}-N-acetylglucosamine (O-GlcNAc) modification is a unique cytoplasmic and nuclear protein modification that is common in nearly all eukaryotes, including filamentous fungi, plants, and animals. We had recently reported that epidermal growth factor (EGF) repeats of Notch and Dumpy are O-GlcNAcylated by an atypical O-GlcNAc transferase, EOGT, in Drosophila. However, no study has yet shownmore » whether O-GlcNAcylation of extracellular proteins is limited to insects such as Drosophila or whether it occurs in other organisms, including mammals. Here, we report the characterization of A130022J15Rik, a mouse gene homolog of Drosophila Eogt (Eogt 1). Enzymatic analysis revealed that Eogt1 has a substrate specificity similar to that of Drosophila EOGT, wherein the Thr residue located between the fifth and sixth conserved cysteines of the folded EGF-like domains is modified. This observation is supported by the fact that the expression of Eogt1 in Drosophila rescued the cell-adhesion defect caused by Eogt downregulation. In HEK293T cells, Eogt1 expression promoted modification of Notch1 EGF repeats by O-GlcNAc, which was further modified, at least in part, by galactose to generate a novel O-linked-N-acetyllactosamine structure. These results suggest that Eogt1 encodes EGF domain O-GlcNAc transferase and that O-GlcNAcylation reaction in the secretory pathway is a fundamental biochemical process conserved through evolution.« less

  13. Determination of the kinetics of guanine nucleotide exchange on EF-Tu and EF-Ts: continuing uncertainties.

    PubMed

    Manchester, Keith L

    2004-01-30

    An analysis is made of the rate constants for the reactions involving the interactions of EF-Tu, EF-Ts, GDP, and GTP recently derived by Gromadski et al. [Biochemistry 41 (2002) 162]. Though their measured values appear to allow a reasonable rate of nucleotide exchange sufficient to support rates of protein synthesis in vivo, their data underestimate the thermodynamic barrier involved in nucleotide exchange and therefore cannot be considered definitive. A kinetic scheme consistent with the thermodynamic barrier can be achieved by modification of various rate constants, particularly of those involving the release of EF-Ts from EF-Tu.GTP.EF-Ts, but such constants are markedly different from what are experimentally observed. It thus remains impossible at present satisfactorily to model guanine nucleotide exchange on EF-Tu, catalysed by EF-Ts by a double displacement mechanism, with experimentally derived rate constants. Metabolic control analysis has been applied to determine the degree of flux control of the different steps in the pathway.

  14. Monobromobimane occupies a distinct xenobiotic substrate site in glutathione S-transferase π

    PubMed Central

    Ralat, Luis A.; Colman, Roberta F.

    2003-01-01

    Monobromobimane (mBBr), functions as a substrate of porcine glutathione S-transferase π (GST π): The enzyme catalyzes the reaction of mBBr with glutathione. S-(Hydroxyethyl)bimane, a nonreactive analog of monobromobimane, acts as a competitive inhibitor with respect to mBBr as substrate but does not affect the reaction of GST π with another substrate, 1-chloro-2,4-dinitrobenzene (CDNB). In the absence of glutathione, monobromobimane inactivates GST π at pH 7.0 and 25°C as assayed using mBBr as substrate, with a lesser effect on the enzyme’s use of CDNB as substrate. These results indicate that the sites occupied by CDNB and mBBr are not identical. Inactivation is proportional to the incorporation of 2 moles of bimane/mole of subunit. Modification of GST π with mBBr does not interfere with its binding of 8-anilino-1-naphthalene sulfonate, indicating that this hydrophobic site is not the target of monobromobimane. S-Methylglutathione and S-(hydroxyethyl)bimane each yield partial protection against inactivation and decrease reagent incorporation, while glutathionyl-bimane protects completely against inactivation. Peptide analysis after trypsin digestion indicates that mBBr modifies Cys45 and Cys99 equally. Modification of Cys45 is reduced in the presence of S-methylglutathione, indicating that this residue is at or near the glutathione binding region. In contrast, modification of Cys99 is reduced in the presence of S-(hydroxyethyl)bimane, suggesting that this residue is at or near the mBBr xenobiotic substrate binding site. Modification of Cys99 can best be understood by reaction with monobromobimane while it is bound to its xenobiotic substrate site in an alternate orientation. These results support the concept that glutathione S-transferase accomplishes its ability to react with a diversity of substrates in part by harboring distinct xenobiotic substrate sites. PMID:14573868

  15. Monobromobimane occupies a distinct xenobiotic substrate site in glutathione S-transferase pi.

    PubMed

    Ralat, Luis A; Colman, Roberta F

    2003-11-01

    Monobromobimane (mBBr), functions as a substrate of porcine glutathione S-transferase pi (GST pi): The enzyme catalyzes the reaction of mBBr with glutathione. S-(Hydroxyethyl)bimane, a nonreactive analog of monobromobimane, acts as a competitive inhibitor with respect to mBBr as substrate but does not affect the reaction of GST pi with another substrate, 1-chloro-2,4-dinitrobenzene (CDNB). In the absence of glutathione, monobromobimane inactivates GST pi at pH 7.0 and 25 degrees C as assayed using mBBr as substrate, with a lesser effect on the enzyme's use of CDNB as substrate. These results indicate that the sites occupied by CDNB and mBBr are not identical. Inactivation is proportional to the incorporation of 2 moles of bimane/mole of subunit. Modification of GST pi with mBBr does not interfere with its binding of 8-anilino-1-naphthalene sulfonate, indicating that this hydrophobic site is not the target of monobromobimane. S-Methylglutathione and S-(hydroxyethyl)bimane each yield partial protection against inactivation and decrease reagent incorporation, while glutathionyl-bimane protects completely against inactivation. Peptide analysis after trypsin digestion indicates that mBBr modifies Cys45 and Cys99 equally. Modification of Cys45 is reduced in the presence of S-methylglutathione, indicating that this residue is at or near the glutathione binding region. In contrast, modification of Cys99 is reduced in the presence of S-(hydroxyethyl)bimane, suggesting that this residue is at or near the mBBr xenobiotic substrate binding site. Modification of Cys99 can best be understood by reaction with monobromobimane while it is bound to its xenobiotic substrate site in an alternate orientation. These results support the concept that glutathione S-transferase accomplishes its ability to react with a diversity of substrates in part by harboring distinct xenobiotic substrate sites.

  16. Oxidation-reduction potentials of molybdenum, flavin and iron-sulphur centres in milk xanthine oxidase.

    PubMed Central

    Cammack, R; Barber, M J; Bray, R C

    1976-01-01

    1. The mid-point reduction potentials of the various groups in xanthine oxidase from bovine milk were determined by potentiometric titration with dithionite in the presence of dye mediators, removing samples for quantification of the reduced species by e.p.r. (electron-paramagnetic-resonance) spectroscopy. The values obtained for the functional enzyme in pyrophosphate buffer, pH8.2, are: Fe/S centre I, -343 +/- 15mV; Fe/S II, -303 +/- 15mV; FAD/FADH-; -351 +/- 20mV; FADH/FADH2, -236 +/-mV; Mo(VI)/Mo(V) (Rapid), -355 +/- 20mV; Mo(V) (Rapid)/Mo(IV), -355 +/- 20mV. 2. Behaviour of the functional enzyme is essentially ideal in Tris but less so in pyrophosphate. In Tris, the potential for Mo(VI)/Mo(V) (Rapid) is lowered relative to that in pyrophosphate, but the potential for Fe/S II is raised. The influence of buffer on the potentials was investigated by partial-reduction experiments with six other buffers. 3. Conversion of the enzyme with cyanide into the non-functional form, which gives the Slow molybdenum signal, or alkylation of FAD, has little effect on the mid-point potentials of the other centres. The potentials associated with the Slow signal are: Mo(VI)/Mo(V) (Slow), -440 +/- 25mV; Mo(V) (Slow)/Mo(IV), -480 +/- 25 mV. This signal exhibits very sluggish equilibration with the mediator system. 4. The deviations from ideal behaviour are discussed in terms of possible binding of buffer ions or anti-co-operative interactions amongst the redox centres. PMID:183752

  17. Effects of high hydrostatic pressure or hydrophobic modification on thermal stability of xanthine oxidase.

    PubMed

    Halalipour, Ali; Duff, Michael R; Howell, Elizabeth E; Reyes-De-Corcuera, José I

    2017-08-01

    The effect of high hydrostatic pressure (HHP) on the kinetics of thermal inactivation of xanthine oxidase (XOx) from bovine milk was studied. Inactivation of XOx followed pseudo-first-order kinetics at 0.1-300MPa and 55.0-70.0°C. High pressure up to at least 300MPa stabilized XOx at all the studied temperatures. The highest stabilization effect of HHP on XOx was at 200-300MPa at 55.0 and 58.6°C, and at 250-300MPa at 62.3-70.0°C. The stability of XOx increased 9.5 times at 300MPa and 70.0°C compared to atmospheric pressure at the same temperature. The activation energy of inactivation of XOx decreased with pressure and was 1.9 times less at 300MPa (97.0±8.2kJmol -1 ) than at 0.1MPa (181.7±12.1kJmol -1 ). High pressure decreased the dependence of the rate constant of inactivation to temperature effects compared to atmospheric pressure. The stabilizing effect of HHP on XOx was highest at 70.0°C where the activation volume of inactivation of XOx was 28.9±2.9cm 3 mol -1 . A second approach to try to increase XOx stability involved hydrophobic modification using aniline or benzoate. However, the thermal stability of XOx remained unaffected after 8-14 modifications of carboxyl side groups per XOx monomer with aniline, or 12-17 modifications of amino side groups per XOx monomer with benzoate. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. S-Nitrosation destabilizes glutathione transferase P1-1.

    PubMed

    Balchin, David; Stoychev, Stoyan H; Dirr, Heini W

    2013-12-23

    Protein S-nitrosation is a post-translational modification that regulates the function of more than 500 human proteins. Despite its apparent physiological significance, S-nitrosation is poorly understood at a molecular level. Here, we investigated the effect of S-nitrosation on the activity, structure, stability, and dynamics of human glutathione transferase P1-1 (GSTP1-1), an important detoxification enzyme ubiquitous in aerobes. S-Nitrosation at Cys47 and Cys101 reduces the activity of the enzyme by 94%. Circular dichroism spectroscopy, acrylamide quenching, and amide hydrogen-deuterium exchange mass spectrometry experiments indicate that the loss of activity is caused by the introduction of local disorder at the active site of GSTP1-1. Furthermore, the modification destabilizes domain 1 of GSTP1-1 against denaturation, smoothing the unfolding energy landscape of the protein and introducing a refolding defect. In contrast, S-nitrosation at Cys101 alone introduces a refolding defect in domain 1 but compensates by stabilizing the domain kinetically. These data elucidate the physical basis for the regulation of GSTP1-1 by S-nitrosation and provide general insight into the consequences of S-nitrosation on protein stability and dynamics.

  19. Madumycin II inhibits peptide bond formation by forcing the peptidyl transferase center into an inactive state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osterman, Ilya A.; Khabibullina, Nelli F.; Komarova, Ekaterina S.

    The emergence of multi-drug resistant bacteria is limiting the effectiveness of commonly used antibiotics, which spurs a renewed interest in revisiting older and poorly studied drugs. Streptogramins A is a class of protein synthesis inhibitors that target the peptidyl transferase center (PTC) on the large subunit of the ribosome. In this work, we have revealed the mode of action of the PTC inhibitor madumycin II, an alanine-containing streptogramin A antibiotic, in the context of a functional 70S ribosome containing tRNA substrates. Madumycin II inhibits the ribosome prior to the first cycle of peptide bond formation. It allows binding of themore » tRNAs to the ribosomal A and P sites, but prevents correct positioning of their CCA-ends into the PTC thus making peptide bond formation impossible. We also revealed a previously unseen drug-induced rearrangement of nucleotides U2506 and U2585 of the 23S rRNA resulting in the formation of the U2506•G2583 wobble pair that was attributed to a catalytically inactive state of the PTC. The structural and biochemical data reported here expand our knowledge on the fundamental mechanisms by which peptidyl transferase inhibitors modulate the catalytic activity of the ribosome.« less

  20. Pharmacological Basis for Use of Selaginella moellendorffii in Gouty Arthritis: Antihyperuricemic, Anti-Inflammatory, and Xanthine Oxidase Inhibition

    PubMed Central

    Zhao, Ping; Chen, Ke-li; Zhang, Guo-li

    2017-01-01

    This study was aimed at evaluating the effects of Selaginella moellendorffii Hieron. (SM) on gouty arthritis and getting an insight of the possible mechanisms. HPLC method was developed for chemical analysis. The paw oedema, the neutrophil accumulation, inflammatory mediators, lipid peroxidation, and histopathological changes of the joints were analyzed in gouty arthritis rat model, and the kidney injury and serum urate were detected in hyperuricemic mice. Pharmacokinetic result demonstrated that the main apigenin glycosides might be quantitatively transformed into apigenin in the mammalian body. Among these compounds, the apigenin exhibited the strongest effect on xanthine oxidase (XOD). SM aqueous extract has proved to be active in reducing hyperuricemia in dose-dependent manner, and the levels of blood urea nitrogen (BUN) and creatinine (Cr) in high dose group were decreased significantly as compared with hyperuricemic control group (P < 0.01). The high dose of SM extract could significantly prevent the paw swelling, reduce gouty joint inflammatory features, reduce the release of IL-1β and TNF-α, lower malondialdehyde (MDA) and myeloperoxidase (MPO) levels, and increase superoxide dismutase (SOD) level (P < 0.01). For the first time, this study provides a rational basis for the traditional use of SM aqueous extract against gout in folk medicine. PMID:28250791