Sample records for xanthomonas oryzae pathovar

  1. Differentiation in MALDI-TOF MS and FTIR spectra between two pathovars of Xanthomonas oryzae

    NASA Astrophysics Data System (ADS)

    Ge, Mengyu; Li, Bin; Wang, Li; Tao, Zhongyun; Mao, Shengfeng; Wang, Yangli; Xie, Guanlin; Sun, Guochang

    2014-12-01

    Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc) strains are closely related phenotypically and genetically, which make it difficult to differentiate between the two pathovars based on phenotypic and DNA-based methods. In this study, a fast and accurate method was developed based on the differences in MALDI-TOF MS and FTIR spectra between the two pathovars. MALDI-TOF MS analysis revealed that 9 and 10 peaks are specific to Xoo and Xoc, respectively, which can be used as biomarkers to identify and differentiate the two closely related pathovars. Furthermore, FTIR analysis showed that there is a significant difference in both the band frequencies and absorption intensity of various functional groups between the two pathovars. In particular, the 6 peaks at 3433, 2867, 1273, 1065, 983 and 951 cm-1 were specific to the Xoo strains, while one peak at 1572 cm-1 was specific to the Xoc strains. Overall, this study gives the first attempt to identify and differentiate the two pathovars of X. oryzae based on mass and FTIR spectra, which will be helpful for the early detection and prevention of the two rice diseases caused by both X. oryzae pathovars.

  2. Sensitive Detection of Xanthomonas oryzae Pathovars oryzae and oryzicola by Loop-Mediated Isothermal Amplification

    PubMed Central

    Lang, Jillian M.; Langlois, Paul; Nguyen, Marian Hanna R.; Triplett, Lindsay R.; Purdie, Laura; Holton, Timothy A.; Djikeng, Appolinaire; Vera Cruz, Casiana M.; Verdier, Valérie

    2014-01-01

    Molecular diagnostics for crop diseases can enhance food security by enabling the rapid identification of threatening pathogens and providing critical information for the deployment of disease management strategies. Loop-mediated isothermal amplification (LAMP) is a PCR-based tool that allows the rapid, highly specific amplification of target DNA sequences at a single temperature and is thus ideal for field-level diagnosis of plant diseases. We developed primers highly specific for two globally important rice pathogens, Xanthomonas oryzae pv. oryzae, the causal agent of bacterial blight (BB) disease, and X. oryzae pv. oryzicola, the causal agent of bacterial leaf streak disease (BLS), for use in reliable, sensitive LAMP assays. In addition to pathovar distinction, two assays that differentiate X. oryzae pv. oryzae by African or Asian lineage were developed. Using these LAMP primer sets, the presence of each pathogen was detected from DNA and bacterial cells, as well as leaf and seed samples. Thresholds of detection for all assays were consistently 104 to 105 CFU ml−1, while genomic DNA thresholds were between 1 pg and 10 fg. Use of the unique sequences combined with the LAMP assay provides a sensitive, accurate, rapid, simple, and inexpensive protocol to detect both BB and BLS pathogens. PMID:24837384

  3. DNA Barcoding for Efficient Species- and Pathovar-Level Identification of the Quarantine Plant Pathogen Xanthomonas

    PubMed Central

    Tian, Qian; Zhao, Wenjun; Lu, Songyu; Zhu, Shuifang; Li, Shidong

    2016-01-01

    Genus Xanthomonas comprises many economically important plant pathogens that affect a wide range of hosts. Indeed, fourteen Xanthomonas species/pathovars have been regarded as official quarantine bacteria for imports in China. To date, however, a rapid and accurate method capable of identifying all of the quarantine species/pathovars has yet to be developed. In this study, we therefore evaluated the capacity of DNA barcoding as a digital identification method for discriminating quarantine species/pathovars of Xanthomonas. For these analyses, 327 isolates, representing 45 Xanthomonas species/pathovars, as well as five additional species/pathovars from GenBank (50 species/pathovars total), were utilized to test the efficacy of four DNA barcode candidate genes (16S rRNA gene, cpn60, gyrB, and avrBs2). Of these candidate genes, cpn60 displayed the highest rate of PCR amplification and sequencing success. The tree-building (Neighbor-joining), ‘best close match’, and barcode gap methods were subsequently employed to assess the species- and pathovar-level resolution of each gene. Notably, all isolates of each quarantine species/pathovars formed a monophyletic group in the neighbor-joining tree constructed using the cpn60 sequences. Moreover, cpn60 also demonstrated the most satisfactory results in both barcoding gap analysis and the ‘best close match’ test. Thus, compared with the other markers tested, cpn60 proved to be a powerful DNA barcode, providing a reliable and effective means for the species- and pathovar-level identification of the quarantine plant pathogen Xanthomonas. PMID:27861494

  4. Contribution of OxyR towards differential sensitivity to antioxidants in Xanthomonas oryzae pathovars oryzae and oryzicola.

    PubMed

    Pan, Xiayan; Wu, Jian; Xu, Shu; Duan, Tingting; Duan, Yabing; Wang, Jianxin; Zhang, Feng; Zhou, Mingguo

    2018-06-15

    OxyR and SoxR are two transcriptional regulators in response to oxidative stress in most bacteria, and SoxR has been reported to be activated by the endogenous redox-cycling compound phenazines in phenazine-producing organisms. However, which transcriptional regulator is activated in pathogens treated with the antibiotic phenazine-1-carboxylic acid (PCA) has not been determined. In this study, we found that PCA treatment activated OxyR rather than SoxR in the phytopathogenic bacteria Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc). We also found Xoo was much sensitive to PCA and H2O2 and had a defective antioxidant system, i.e., less of total antioxidant capacity and total catalase activity than Xoc, although Xoo and Xoc are very closely related. Based on KEGG sequences, OxyR differs in 10 amino acids in Xoo vs. Xoc. By exchanging OxyR between Xoo and Xoc, we elucidated that OxyR contributed to the differences in antioxidant capacity, total catalase activity, and sensitivity to PCA and H2O2. We also found that OxyR affected Xoo and Xoc growth in a nutrient-poor medium, virulence on host plants (rice), and the hypersensitive response (HR) on non-host plants (Nicotiana benthamiana). Thus, OxyR is a critical regulator that relates to the differences in anti-oxidative stress between Xoo and Xoc and contributes to the differences in survival of them against oxidative stress.

  5. Molecular detection of Xanthomonas oryzae pv. oryzae, Xanthomonas oryzae pv. oryzicola, and Burkholderia glumae in infected rice seeds and leaves

    USDA-ARS?s Scientific Manuscript database

    Polymerase chain reaction (PCR) is particularly useful for plant pathogen detection. In the present study, multiplex PCR and SYBR green real-time PCR were developed to facilitate simultaneous detection of three important rice pathogens, Xanthomonas oryzae pv. oryzae, X. oryzae pv. oryzicola, and Bur...

  6. New Multilocus Variable-Number Tandem-Repeat Analysis Tool for Surveillance and Local Epidemiology of Bacterial Leaf Blight and Bacterial Leaf Streak of Rice Caused by Xanthomonas oryzae

    PubMed Central

    Poulin, L.; Grygiel, P.; Magne, M.; Rodriguez-R, L. M.; Forero Serna, N.; Zhao, S.; El Rafii, M.; Dao, S.; Tekete, C.; Wonni, I.; Koita, O.; Pruvost, O.; Verdier, V.; Vernière, C.

    2014-01-01

    Multilocus variable-number tandem-repeat analysis (MLVA) is efficient for routine typing and for investigating the genetic structures of natural microbial populations. Two distinct pathovars of Xanthomonas oryzae can cause significant crop losses in tropical and temperate rice-growing countries. Bacterial leaf streak is caused by X. oryzae pv. oryzicola, and bacterial leaf blight is caused by X. oryzae pv. oryzae. For the latter, two genetic lineages have been described in the literature. We developed a universal MLVA typing tool both for the identification of the three X. oryzae genetic lineages and for epidemiological analyses. Sixteen candidate variable-number tandem-repeat (VNTR) loci were selected according to their presence and polymorphism in 10 draft or complete genome sequences of the three X. oryzae lineages and by VNTR sequencing of a subset of loci of interest in 20 strains per lineage. The MLVA-16 scheme was then applied to 338 strains of X. oryzae representing different pathovars and geographical locations. Linkage disequilibrium between MLVA loci was calculated by index association on different scales, and the 16 loci showed linear Mantel correlation with MLSA data on 56 X. oryzae strains, suggesting that they provide a good phylogenetic signal. Furthermore, analyses of sets of strains for different lineages indicated the possibility of using the scheme for deeper epidemiological investigation on small spatial scales. PMID:25398857

  7. Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99A

    PubMed Central

    Salzberg, Steven L; Sommer, Daniel D; Schatz, Michael C; Phillippy, Adam M; Rabinowicz, Pablo D; Tsuge, Seiji; Furutani, Ayako; Ochiai, Hirokazu; Delcher, Arthur L; Kelley, David; Madupu, Ramana; Puiu, Daniela; Radune, Diana; Shumway, Martin; Trapnell, Cole; Aparna, Gudlur; Jha, Gopaljee; Pandey, Alok; Patil, Prabhu B; Ishihara, Hiromichi; Meyer, Damien F; Szurek, Boris; Verdier, Valerie; Koebnik, Ralf; Dow, J Maxwell; Ryan, Robert P; Hirata, Hisae; Tsuyumu, Shinji; Won Lee, Sang; Ronald, Pamela C; Sonti, Ramesh V; Van Sluys, Marie-Anne; Leach, Jan E; White, Frank F; Bogdanove, Adam J

    2008-01-01

    Background Xanthomonas oryzae pv. oryzae causes bacterial blight of rice (Oryza sativa L.), a major disease that constrains production of this staple crop in many parts of the world. We report here on the complete genome sequence of strain PXO99A and its comparison to two previously sequenced strains, KACC10331 and MAFF311018, which are highly similar to one another. Results The PXO99A genome is a single circular chromosome of 5,240,075 bp, considerably longer than the genomes of the other strains (4,941,439 bp and 4,940,217 bp, respectively), and it contains 5083 protein-coding genes, including 87 not found in KACC10331 or MAFF311018. PXO99A contains a greater number of virulence-associated transcription activator-like effector genes and has at least ten major chromosomal rearrangements relative to KACC10331 and MAFF311018. PXO99A contains numerous copies of diverse insertion sequence elements, members of which are associated with 7 out of 10 of the major rearrangements. A rapidly-evolving CRISPR (clustered regularly interspersed short palindromic repeats) region contains evidence of dozens of phage infections unique to the PXO99A lineage. PXO99A also contains a unique, near-perfect tandem repeat of 212 kilobases close to the replication terminus. Conclusion Our results provide striking evidence of genome plasticity and rapid evolution within Xanthomonas oryzae pv. oryzae. The comparisons point to sources of genomic variation and candidates for strain-specific adaptations of this pathogen that help to explain the extraordinary diversity of Xanthomonas oryzae pv. oryzae genotypes and races that have been isolated from around the world. PMID:18452608

  8. Evolution of Transcription Activator-Like Effectors in Xanthomonas oryzae

    PubMed Central

    Erkes, Annett; Reschke, Maik; Boch, Jens

    2017-01-01

    Abstract Transcription activator-like effectors (TALEs) are secreted by plant–pathogenic Xanthomonas bacteria into plant cells where they act as transcriptional activators and, hence, are major drivers in reprogramming the plant for the benefit of the pathogen. TALEs possess a highly repetitive DNA-binding domain of typically 34 amino acid (AA) tandem repeats, where AA 12 and 13, termed repeat variable di-residue (RVD), determine target specificity. Different Xanthomonas strains possess different repertoires of TALEs. Here, we study the evolution of TALEs from the level of RVDs determining target specificity down to the level of DNA sequence with focus on rice-pathogenic Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc) strains. We observe that codon pairs coding for individual RVDs are conserved to a similar degree as the flanking repeat sequence. We find strong indications that TALEs may evolve 1) by base substitutions in codon pairs coding for RVDs, 2) by recombination of N-terminal or C-terminal regions of existing TALEs, or 3) by deletion of individual TALE repeats, and we propose possible mechanisms. We find indications that the reassortment of TALE genes in clusters is mediated by an integron-like mechanism in Xoc. We finally study the effect of the presence/absence and evolutionary modifications of TALEs on transcriptional activation of putative target genes in rice, and find that even single RVD swaps may lead to considerable differences in activation. This correlation allowed a refined prediction of TALE targets, which is the crucial step to decipher their virulence activity. PMID:28637323

  9. A homolog of an Escherichia coli phosphate-binding protein gene from Xanthomonas oryzae pv. oryzae

    NASA Technical Reports Server (NTRS)

    Hopkins, C. M.; White, F. F.; Heaton, L. A.; Guikema, J. A.; Leach, J. E.; Spooner, B. S. (Principal Investigator)

    1995-01-01

    A Xanthomonas oryzae pv. oryzae gene with sequence similarity to an Escherichia coli phosphate-binding protein gene (phoS) produces a periplasmic protein of apparent M(r) 35,000 when expressed in E. coli. Amino terminal sequencing revealed that a signal peptide is removed during transport to the periplasm in E. coli.

  10. A resistance locus in the American heirloom rice variety Carolina Gold Select is triggered by TAL effectors with diverse predicted targets and is effective against African strains of Xanthomonas oryzae pv. oryzicola.

    PubMed

    Triplett, Lindsay R; Cohen, Stephen P; Heffelfinger, Christopher; Schmidt, Clarice L; Huerta, Alejandra I; Tekete, Cheick; Verdier, Valerie; Bogdanove, Adam J; Leach, Jan E

    2016-09-01

    The rice pathogens Xanthomonas oryzae pathovar (pv.) oryzae and pv. oryzicola produce numerous transcription activator-like (TAL) effectors that increase bacterial virulence by activating expression of host susceptibility genes. Rice resistance mechanisms against TAL effectors include polymorphisms that prevent effector binding to susceptibility gene promoters, or that allow effector activation of resistance genes. This study identifies, in the heirloom variety Carolina Gold Select, a third mechanism of rice resistance involving TAL effectors. This resistance manifests through strong suppression of disease development in response to diverse TAL effectors from both X. oryzae pathovars. The resistance can be triggered by an effector with only 3.5 central repeats, is independent of the composition of the repeat variable di-residues that determine TAL effector binding specificity, and is independent of the transcriptional activation domain. We determined that the resistance is conferred by a single dominant locus, designated Xo1, that maps to a 1.09 Mbp fragment on chromosome 4. The Xo1 interval also confers complete resistance to the strains in the African clade of X. oryzae pv. oryzicola, representing the first dominant resistance locus against bacterial leaf streak in rice. The strong phenotypic similarity between the TAL effector-triggered resistance conferred by Xo1 and that conferred by the tomato resistance gene Bs4 suggests that monocots and dicots share an ancient or convergently evolved mechanism to recognize analogous TAL effector epitopes. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  11. A resistance locus in the American heirloom rice variety Carolina Gold Select is triggered by TAL effectors with diverse predicted targets and is effective against African strains of Xanthomonas oryzae pv. oryzicola

    PubMed Central

    Triplett, Lindsay R.; Cohen, Stephen P.; Heffelfinger, Christopher; Schmidt, Clarice L.; Huerta, Alejandra; Tekete, Cheick; Verdier, Valerie; Bogdanove, Adam J.; Leach, Jan E.

    2016-01-01

    Summary The rice pathogens Xanthomonas oryzae pathovar (pv.) oryzae and pv. oryzicola produce numerous transcription activator-like (TAL) effectors that increase bacterial virulence by activating expression of host susceptibility genes. Rice resistance mechanisms against TAL effectors include polymorphisms that prevent effector binding to susceptibility gene promoters, or that allow effector activation of resistance genes. This study identifies, in the heirloom variety Carolina Gold Select, a third mechanism of rice resistance involving TAL effectors. This resistance manifests through strong suppression of disease development in response to diverse TAL effectors from both X. oryzae pathovars. The resistance can be triggered by an effector with only 3.5 central repeats, is independent of the composition of the repeat variable diresidues that determine TAL effector binding specificity, and is independent of the transcriptional activation domain. We determined that the resistance is conferred by a single dominant locus, designated Xo1, that maps to a 1.09 Mbp fragment on chromosome 4. The Xo1 interval also confers complete resistance to the strains in the African clade of X. oryzae pv. oryzicola, representing the first dominant resistance locus against bacterial leaf streak in rice. The strong phenotypic similarity between the TAL effector triggered resistance conferred by Xo1 and that conferred by the tomato resistance gene Bs4 suggests that monocots and dicots share an ancient or convergently evolved mechanism to recognize analogous TAL effector epitopes. PMID:27197779

  12. An efficient method for visualization and growth of fluorescent Xanthomonas oryzae pv. oryzae in planta

    PubMed Central

    Han, Sang-Wook; Park, Chang-Jin; Lee, Sang-Won; Ronald, Pamela C

    2008-01-01

    Background Xanthomonas oryzae pv. oryzae, the causal agent of bacterial blight disease, is a serious pathogen of rice. Here we describe a fluorescent marker system to study virulence and pathogenicity of X. oryzae pv. oryzae. Results A fluorescent X. oryzae pv. oryzae Philippine race 6 strain expressing green fluorescent protein (GFP) (PXO99GFP) was generated using the gfp gene under the control of the neomycin promoter in the vector, pPneo-gfp. The PXO99GFPstrain displayed identical virulence and avirulence properties as the wild type control strain, PXO99. Using fluorescent microscopy, bacterial multiplication and colonization were directly observed in rice xylem vessels. Accurate and rapid determination of bacterial growth was assessed using fluoremetry and an Enzyme-Linked ImmunoSorbant Assay (ELISA). Conclusion Our results indicate that the fluorescent marker system is useful for assessing bacterial infection and monitoring bacterial multiplication in planta. PMID:18826644

  13. An operon for production of bioactive gibberellin A4 phytohormone with wide distribution in the bacterial rice leaf streak pathogen Xanthomonas oryzae pv. oryzicola

    PubMed Central

    Nagel, Raimund; Turrini, Paula C. G.; Nett, Ryan S.; Leach, Jan E.; Verdier, Valérie; Van Sluys, Marie-Anne; Peters, Reuben J.

    2016-01-01

    Summary Phytopathogens have developed elaborate mechanisms to attenuate the defense response of their host plants, including convergent evolution of complex pathways for production of the gibberellin (GA) phytohormones, which were actually first isolated from the rice fungal pathogen Gibberella fujikuroi. The rice bacterial pathogen Xanthomonas oryzae pv. oryzicola (Xoc) has been demonstrated to contain a biosynthetic operon with cyclases capable of producing the universal GA precursor ent-kaurene. Genetic (knock-out) studies indicate that the derived diterpenoid serves as a virulence factor for this rice leaf streak pathogen, serving to reduce the jasmonic acid (JA) mediated defense response.Here the function of the remaining genes in the Xoc operon are elucidated and the distribution of the operon in X. oryzae investigated in over 100 isolates.The Xoc operon leads to production of the bioactive GA4, an additional step beyond production of the penultimate precursor GA9 mediated by the homologous operons recently characterized from rhizobia. Moreover, this GA biosynthetic operon was found to be widespread in Xoc (>90%), but absent in the other major oryzae pathovar.These results indicate selective pressure for production of GA4 in the distinct lifestyle of Xoc, and the importance of GA to both fungal and bacterial pathogens of rice. PMID:28134995

  14. An operon for production of bioactive gibberellin A4 phytohormone with wide distribution in the bacterial rice leaf streak pathogen Xanthomonas oryzae pv. oryzicola.

    PubMed

    Nagel, Raimund; Turrini, Paula C G; Nett, Ryan S; Leach, Jan E; Verdier, Valérie; Van Sluys, Marie-Anne; Peters, Reuben J

    2017-05-01

    Phytopathogens have developed elaborate mechanisms to attenuate the defense response of their host plants, including convergent evolution of complex pathways for production of the GA phytohormones, which were actually first isolated from the rice fungal pathogen Gibberella fujikuroi. The rice bacterial pathogen Xanthomonas oryzae pv. oryzicola (Xoc) has been demonstrated to contain a biosynthetic operon with cyclases capable of producing the universal GA precursor ent-kaurene. Genetic (knock-out) studies indicate that the derived diterpenoid serves as a virulence factor for this rice leaf streak pathogen, serving to reduce the jasmonic acid-mediated defense response. Here the functions of the remaining genes in the Xoc operon are elucidated and the distribution of the operon in X. oryzae is investigated in over 100 isolates. The Xoc operon leads to production of the bioactive GA 4 , an additional step beyond production of the penultimate precursor GA 9 mediated by the homologous operons recently characterized from rhizobia. Moreover, this GA biosynthetic operon was found to be widespread in Xoc (> 90%), but absent in the other major X. oryzae pathovar. These results indicate selective pressure for production of GA 4 in the distinct lifestyle of Xoc, and the importance of GA to both fungal and bacterial pathogens of rice. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  15. Melanogenic actinomycetes from rhizosphere soil-antagonistic activity against Xanthomonas oryzae and plant-growth-promoting traits.

    PubMed

    Muangham, Supattra; Pathom-Aree, Wasu; Duangmal, Kannika

    2015-02-01

    A total of 210 melanogenic actinomycetes were isolated from 75 rhizospheric soils using ISP6 and ISP7 agar supplemented with antifungal and antibacterial agents. Their morphological characteristics and the presence of ll-diaminopimelic acid in whole-cell hydrolyzates revealed that all isolates belonged to the genus Streptomyces. Their ability to inhibit the growth of 2 pathogenic rice bacteria, Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola, was observed using the agar overlay method. The results indicated that 61.9% of the isolates could inhibit at least one of the tested rice pathogens. Among these, isolate TY68-3 showed the highest antibacterial activity and siderophore production. The 16S rRNA gene sequence analysis of 46 representative isolates revealed that isolates with high similarity to Streptomyces bungoensis were frequently found. The present study indicated the potential of melanogenic actinomycetes for use as biocontrol agents against X. oryzae as well as their diversity in rhizospheric soils.

  16. Development and Application of Pathovar-Specific Monoclonal Antibodies That Recognize the Lipopolysaccharide O Antigen and the Type IV Fimbriae of Xanthomonas hyacinthi

    PubMed Central

    van Doorn, J.; Ojanen-Reuhs, T.; Hollinger, T. C.; Reuhs, B. L.; Schots, A.; Boonekamp, P. M.; Oudega, B.

    1999-01-01

    The objective of this study was to develop a specific immunological diagnostic assay for yellow disease in hyacinths, using monoclonal antibodies (MAbs). Mice were immunized with a crude cell wall preparation (shear fraction) from Xanthomonas hyacinthi and with purified type IV fimbriae. Hybridomas were screened for a positive reaction with X. hyacinthi cells or fimbriae and for a negative reaction with X. translucens pv. graminis or Erwinia carotovora subsp. carotovora. Nine MAbs recognized fimbrial epitopes, as shown by immunoblotting, immunofluorescence, enzyme-linked immunosorbent assay (ELISA), and immunoelectron microscopy; however, three of these MAbs had weak cross-reactions with two X. translucens pathovars in immunoblotting experiments. Seven MAbs reacted with lipopolysaccharides and yielded a low-mobility ladder pattern on immunoblots. Subsequent analysis of MAb 2E5 showed that it specifically recognized an epitope on the O antigen, which was found to consist of rhamnose and fucose in a 2:1 molar ratio. The cross-reaction of MAb 2E5 with all X. hyacinthi strains tested showed that this O antigen is highly conserved within this species. MAb 1B10 also reacted with lipopolysaccharides. MAbs 2E5 and 1B10 were further tested in ELISA and immunoblotting experiments with cells and extracts from other pathogens. No cross-reaction was found with 27 other Xanthomonas pathovars tested or with 14 other bacterial species from other genera, such as Erwinia and Pseudomonas, indicating the high specificity of these antibodies. MAbs 2E5 and 1B10 were shown to be useful in ELISA for the detection of X. hyacinthi in infected hyacinths. PMID:10473431

  17. OsSERK1 regulates rice development but not immunity to Xanthomonas oryzae pv. oryzae or Magnaporthe oryzae.

    PubMed

    Zuo, Shimin; Zhou, Xiaogang; Chen, Mawsheng; Zhang, Shilu; Schwessinger, Benjamin; Ruan, Deling; Yuan, Can; Wang, Jing; Chen, Xuewei; Ronald, Pamela C

    2014-12-01

    Somatic embryogenesis receptor kinase (SERK) proteins play pivotal roles in regulation of plant development and immunity. The rice genome contains two SERK genes, OsSerk1 and OsSerk2. We previously demonstrated that OsSerk2 is required for rice Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae (Xoo) and for normal development. Here we report the molecular characterization of OsSerk1. Overexpression of OsSerk1 results in a semi-dwarf phenotype whereas silencing of OsSerk1 results in a reduced angle of the lamina joint. OsSerk1 is not required for rice resistance to Xoo or Magnaporthe oryzae. Overexpression of OsSerk1 in OsSerk2-silenced lines complements phenotypes associated with brassinosteroid (BR) signaling defects, but not the disease resistance phenotype mediated by Xa21. In yeast, OsSERK1 interacts with itself forming homodimers, and also interacts with the kinase domains of OsSERK2 and BRI1, respectively. OsSERK1 is a functional protein kinase capable of auto-phosphorylation in vitro. We conclude that, whereas OsSERK2 regulates both rice development and immunity, OsSERK1 functions in rice development but not immunity to Xoo and M. oryzae. © 2014 Institute of Botany, Chinese Academy of Sciences.

  18. DgcA, a diguanylate cyclase from Xanthomonas oryzae pv. oryzae regulates bacterial pathogenicity on rice

    PubMed Central

    Su, Jianmei; Zou, Xia; Huang, Liangbo; Bai, Tenglong; Liu, Shu; Yuan, Meng; Chou, Shan-Ho; He, Ya-Wen; Wang, Haihong; He, Jin

    2016-01-01

    Xanthomonas oryzae pv. oryzae (Xoo) is the causal agent of rice blight disease as well as a serious phytopathogen worldwide. It is also one of the model organisms for studying bacteria-plant interactions. Current progress in bacterial signal transduction pathways has identified cyclic di-GMP as a major second messenger molecule in controlling Xanthomonas pathogenicity. However, it still remains largely unclear how c-di-GMP regulates the secretion of bacterial virulence factors in Xoo. In this study, we focused on the important roles played by DgcA (XOO3988), one of our previously identified diguanylate cyclases in Xoo, through further investigating the phenotypes of several dgcA-related mutants, namely, the dgcA-knockout mutant ΔdgcA, the dgcA overexpression strain OdgcA, the dgcA complemented strain CdgcA and the wild-type strain. The results showed that dgcA negatively affected virulence, EPS production, bacterial autoaggregation and motility, but positively triggered biofilm formation via modulating the intracellular c-di-GMP levels. RNA-seq data further identified 349 differentially expressed genes controlled by DgcA, providing a foundation for a more solid understanding of the signal transduction pathways in Xoo. Collectively, the present study highlights DgcA as a major regulator of Xoo virulence, and can serve as a potential target for preventing rice blight diseases. PMID:27193392

  19. EcpA, an extracellular protease, is a specific virulence factor required by Xanthomonas oryzae pv. oryzicola but not by X. oryzae pv. oryzae in rice

    USDA-ARS?s Scientific Manuscript database

    Previously, twelve protease-deficient mutants of Xanthomonas oryzae pv. oryzicola (Xoc) RS105 strain were recovered from a Tn5-tagged mutant library. In the current study, the Tn5 insertion site in each mutant was mapped. Mutations in genes encoding components of the type II secretion apparatus, cAM...

  20. Proposal of Xanthomonas translucens pv. pistaciae pv. nov., pathogenic to pistachio (Pistacia vera).

    PubMed

    Giblot-Ducray, Danièle; Marefat, Alireza; Gillings, Michael R; Parkinson, Neil M; Bowman, John P; Ophel-Keller, Kathy; Taylor, Cathy; Facelli, Evelina; Scott, Eileen S

    2009-12-01

    Strains of Xanthomonas translucens have caused dieback in the Australian pistachio industry for the last 15 years. Such pathogenicity to a dicotyledonous woody host contrasts with that of other pathovars of X. translucens, which are characterized by their pathogenicity to monocotyledonous plant families. Further investigations, using DNA-DNA hybridization, gyrB gene sequencing and integron screening, were conducted to confirm the taxonomic status of the X. translucens pathogenic to pistachio. DNA-DNA hybridization provided a clear classification, at the species level, of the pistachio pathogen as a X. translucens. In the gyrB-based phylogeny, strains of the pistachio pathogen clustered among the X. translucens pathovars as two distinct lineages. Integron screening revealed that the cassette arrays of strains of the pistachio pathogen were different from those of other Xanthomonas species, and again distinguished two groups. Together with previously reported pathogenicity data, these results confirm that the pistachio pathogen is a new pathovar of X. translucens and allow hypotheses about its origin. The proposed name is Xanthomonas translucens pv. pistaciae pv. nov.

  1. Genomic Insights into the Evolutionary Origin of Xanthomonas axonopodis pv. citri and Its Ecological Relatives

    PubMed Central

    Midha, Samriti

    2014-01-01

    Xanthomonas axonopodis pv. citri (Xac) is the causal agent of citrus bacterial canker (CBC) and is a serious problem worldwide. Like CBC, several important diseases in other fruits, such as mango, pomegranate, and grape, are also caused by Xanthomonas pathovars that display remarkable specificity toward their hosts. While citrus and mango diseases were documented more than 100 years ago, the pomegranate and grape diseases have been known only since the 1950s and 1970s, respectively. Interestingly, diseases caused by all these pathovars were noted first in India. Our genome-based phylogenetic studies suggest that these diverse pathogens belong to a single species and these pathovars may be just a group of rapidly evolving strains. Furthermore, the recently reported pathovars, such as those infecting grape and pomegranate, form independent clonal lineages, while the citrus and mango pathovars that have been known for a long time form one clonal lineage. Such an understanding of their phylogenomic relationship has further allowed us to understand major and unique variations in the lineages that give rise to these pathovars. Whole-genome sequencing studies including ecological relatives from their putative country of origin has allowed us to understand the evolutionary history of Xac and other pathovars that infect fruits. PMID:25085494

  2. CatB is Critical for Total Catalase Activity and Reduces Bactericidal Effects of Phenazine-1-Carboxylic Acid on Xanthomonas oryzae pv. oryzae and X. oryzae pv. oryzicola.

    PubMed

    Pan, Xiayan; Wu, Jian; Xu, Shu; Duan, Yabing; Zhou, Mingguo

    2017-02-01

    Rice bacterial leaf blight, caused by Xanthomonas oryzae pv. oryzae, and rice bacterial leaf streak, caused by X. oryzae pv. oryzicola, are major diseases of rice. Phenazine-1-carboxylic acid (PCA) is a natural product that is isolated from Pseudomonas spp. and is used to control many important rice diseases in China. We previously reported that PCA disturbs the redox balance, which results in the accumulation of reactive oxygen species in X. oryzae pv. oryzae. In this study, we found that PCA significantly upregulated the transcript levels of catB and katE, which encode catalases, and that PCA sensitivity was reduced when X. oryzae pvs. oryzae and oryzicola were cultured with exogenous catalase. Furthermore, catB deletion mutants of X. oryzae pvs. oryzae and oryzicola showed dramatically decreased total catalase activity, increased sensitivity to PCA, and reduced virulence in rice. In contrast, deletion mutants of srpA and katG, which also encode catalases, exhibited little change in PCA sensitivity. The results indicate that catB in both X. oryzae pvs. oryzae and oryzicola encodes a catalase that helps protect the bacteria against PCA-induced stress.

  3. Pathotype profile of Xanthomonas oryzae pv. oryzae isolates from North Sumatera

    NASA Astrophysics Data System (ADS)

    Noer, Z.; Hasanuddin; Lisnawita; Suryanto, D.

    2018-02-01

    The Bacterial blight disease caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most important diseases and has caused crop failure in rice crops. This pathogen infects the leaves in all plant growth phases. The purpose of this study is to investigation 10 Xoo isolates pathotype obtained from North Sumatra based on their interactions with 10 near-isogenic rice lines (NIL) of IRRI. The results showed that there are 6 pathotypes of virulence in North Sumatra, they are; pathotype I with incompatible interaction to all Xa genes, pathotype II with compatible interaction to Xa1 and Xa3 genes, while it has incompatible interaction to other genes, pathotype III with compatible interaction to Xa1, Xa5, Xa7, Xa8, Xa10 and Xa11 genes, but it has incompatible interaction to other genes, pathotype IV with compatible interaction to all Xa genes, pathotype V with compatible interaction to Xa1 gene and incompatible interaction to other genes, and pathotype VI with compatible interaction to Xa3 gene and incompatible interaction to other genes. Based on the resistant genes in each individual Xa2, Xa4, and Xa21 genes are the combination of Xa genes which are most suitable for use in the development of rice cultivars in North Sumatra.

  4. Niclosamide inhibits leaf blight caused by Xanthomonas oryzae in rice

    PubMed Central

    Kim, Sung-Il; Song, Jong Tae; Jeong, Jin-Yong; Seo, Hak Soo

    2016-01-01

    Rice leaf blight, which is caused by the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo), results in huge losses in grain yield. Here, we show that Xoo-induced rice leaf blight is effectively controlled by niclosamide, an oral antihelminthic drug and molluscicide, which also functions as an anti-tumor agent. Niclosamide directly inhibited the growth of the three Xoo strains PXO99, 10208 and K3a. Niclosamide moved long distances from the site of local application to distant rice tissues. Niclosamide also increased the levels of salicylate and induced the expression of defense-related genes such as OsPR1 and OsWRKY45, which suppressed Xoo-induced leaf wilting. Niclosamide had no detrimental effects on vegetative/reproductive growth and yield. These combined results indicate that niclosamide can be used to block bacterial leaf blight in rice with no negative side effects. PMID:26879887

  5. Crystallization and preliminary crystallographic studies of LipA, a secretory lipase/esterase from Xanthomonas oryzae pv. oryzae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aparna, Gudlur; Chatterjee, Avradip; Jha, Gopaljee

    2007-08-01

    The crystallization and preliminary crystallographic studies of LipA, a lipase/esterase secreted by X. oryzae pv. oryzae during its infection of rice plants, are reported. Xanthomonas oryzae pv. oryzae is the causal agent of bacterial leaf blight, a serious disease of rice. Several enzymes that are secreted through the type II secretion system of this bacterium play an important role in the plant–microbe interaction, being important for virulence and also being able to induce potent host defence responses. One of these enzymes is a secretory lipase/esterase, LipA, which shows a very weak homology to other bacterial lipases and gives a positivemore » tributyrin plate assay. In this study, LipA was purified from the culture supernatant of an overexpressing clone of X. oryzae pv. oryzae and two types of crystals belonging to space group C2 but with two different unit-cell parameters were obtained using the hanging-drop vapour-diffusion method. Type I crystals diffract to a maximum resolution of 1.89 Å and have unit-cell parameters a = 93.1, b = 62.3, c = 66.1 Å, β = 90.8°. Type II crystals have unit-cell parameters a = 103.6, b = 54.6, c = 66.3 Å, β = 92.6° and diffract to 1.86 Å. Solvent-content analysis shows one monomer in the asymmetric unit in both the crystal forms.« less

  6. A new function of graphene oxide emerges: inactivating phytopathogenic bacterium Xanthomonas oryzae pv. Oryzae

    NASA Astrophysics Data System (ADS)

    Chen, Juanni; Wang, Xiuping; Han, Heyou

    2013-05-01

    Xanthomonas oryzae pv. oryzae ( Xoo) is one representative phytopathogenic bacterium causing bacteria infections in rice. The antibacterial activity of graphene suspended in different dispersants against Xoo was first investigated. Bacteriological test data, fluorescence microscope and transmission electron microscopy images are provided, which yield insight into the antibacterial action of the nanoscale materials. Surprisingly, the results showed graphene oxide (GO) exhibits superior bactericidal effect even at extremely low dose in water (250 μg/mL), almost killing 94.48 % cells, in comparison to common bactericide bismerthiazol with only 13.3 % mortality. The high efficiency in inactivating the bacteria on account of considerable changes in the cell membranes caused by the extremely sharp edges of graphene oxide and generation of reactive oxygen species, which may be the fatal factor for bacterial inactivation. Given the superior antibacterial effect of GO and the fact that GO can be mass-produced with low cost, we expect a new application could be developed as bactericide for controlling plant disease, which may be a matter of great importance for agricultural development.

  7. Designer TAL effectors induce disease susceptibility and resistance to Xanthomonas oryzae pv. oryzae in rice.

    PubMed

    Li, Ting; Huang, Sheng; Zhou, Junhui; Yang, Bing

    2013-05-01

    TAL (transcription activator-like) effectors from Xanthomonas bacteria activate the cognate host genes, leading to disease susceptibility or resistance dependent on the genetic context of host target genes. The modular nature and DNA recognition code of TAL effectors enable custom-engineering of designer TAL effectors (dTALE) for gene activation. However, the feasibility of dTALEs as transcription activators for gene functional analysis has not been demonstrated. Here, we report the use of dTALEs, as expressed and delivered by the pathogenic Xanthomonas oryzae pv. oryzae (Xoo), in revealing the new function of two previously identified disease-related genes and the potential of one developmental gene for disease susceptibility in rice/Xoo interactions. The dTALE gene dTALE-xa27, designed to target the susceptible allele of the resistance gene Xa27, elicited a resistant reaction in the otherwise susceptible rice cultivar IR24. Four dTALE genes were made to induce the four annotated Xa27 homologous genes in rice cultivar Nipponbare, but none of the four induced Xa27-like genes conferred resistance to the dTALE-containing Xoo strains. A dTALE gene was also generated to activate the recessive resistance gene xa13, an allele of the disease-susceptibility gene Os8N3 (also named Xa13 or OsSWEET11, a member of sucrose efflux transporter SWEET gene family). The induction of xa13 by the dTALE rendered the resistant rice IRBB13 (xa13/xa13) susceptible to Xoo. Finally, OsSWEET12, an as-yet uncharacterized SWEET gene with no corresponding naturally occurring TAL effector identified, conferred susceptibility to the Xoo strains expressing the corresponding dTALE genes. Our results demonstrate that dTALEs can be delivered through the bacterial secretion system to activate genes of interest for functional analysis in plants.

  8. Investigation of cellular fatty acid composition of Xanthomonas spp. as chemical markers of productivity and quality of xanthan gum.

    PubMed

    Miranda, Andrea Lobo; Costa, Samantha Serra; Assis, Denilson de Jesus; Andrade, Bianca Bomfim; de Souza, Carolina Oliveira; Oliveira, Maria Beatriz Prior Pinto; Guimarães, Alaíse Gil; Druzian, Janice Izabel

    2018-07-15

    In this study, we investigated the cellular fatty acid profiles of different Xanthomonas pathovars producing xanthan gum and explored the fatty acid composition to identify chemical markers of xanthan gum productivity and quality. Three Xanthomonas pathovars were studied. The fermentation was conducted for 168 h. Samples from the fermented medium were collected for extraction, quantification, and characterization of xanthan. The unsaturated/saturated (U/S) fatty acid ratio in Xanthomonas cells during fermentation was correlated with production, viscosity, and molecular weight of the gum obtained at each 24 h. The Xanthomonas axonopodis pv manihotis 290 strain showed a higher U/S ratio for major cell fatty acids (C16:1ω7/C16:0) as compared with the other two strains; this high ratio was directly associated with xanthan production. No correlation was observed between cellular fatty acid composition and characteristics of xanthan synthesized. Thus, it was possible to determine a production chemical marker for xanthan gum in Xanthomonas strains. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Synthesis, characterization, and antibacterial activity of chitosan/TiO2 nanocomposite against Xanthomonas oryzae pv. oryzae.

    PubMed

    Li, Bin; Zhang, Yang; Yang, Yingzi; Qiu, Wen; Wang, Xiaoxuan; Liu, Baoping; Wang, Yanli; Sun, Guochang

    2016-11-05

    This present study deals with synthesis, characterization and antibacterial activity of chitosan/TiO2 nanocomposites. Results indicated that chitosan/TiO2 nanocomposite at the ratio of 1:5 showed the strongest inhibition in growth of rice bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo). Furthermore, the antibacterial activity of chitosan/TiO2 nanocomposite against Xoo is significantly higher than that of the two individual components under both light and dark conditions. Regardless of the presence or absence of extracellular polymeric substances, chitosan/TiO2 nanocomposite showed strong antibacterial activity, however, the absence increased the sensitivity of Xoo to chitosan/TiO2 nanocomposite. In addition, the surface morphology and physicochemical properties of chitosan/TiO2 nanocomposite is different from the two individual components based on scanning electron microscopic observation, fourier transform infrared spectra, and X-ray diffraction pattern, as well as elemental and thermo gravimetric analysis. Overall, this study indicated that this synthesized chitosan/TiO2 nanocomposite is promising to be developed as a new antibacterial material. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Pathological and Molecular Characterization of Xanthomonas campestris Strains Causing Diseases of Cassava (Manihot esculenta)

    PubMed Central

    Verdier, Valérie; Boher, Bernard; Maraite, Henri; Geiger, Jean-Paul

    1994-01-01

    Fifty-one strains representing Xanthomonas campestris pv. manihotis and cassavae and different pathovars occurring on plants of the family Euphorbiaceae were characterized by ribotyping with a 16S+23S rRNA probe of Escherichia coli and by restriction fragment length polymorphism analysis with a plasmid probe from X. campestris pv. manihotis. Pathogenicity tests were performed on cassava (Manihot esculenta). Histological comparative studies were conducted on strains of two pathovars of X. campestris (vascular and mesophyllic) that attack cassava. Our results indicated that X. campestris pv. manihotis and cassavae have different modes of action in the host and supplemented the taxonomic data on restriction fragment length polymorphism that clearly separate the two pathovars. The plasmid probe could detect multiple restriction fragment length polymorphisms among strains of the pathovar studied. Ribotyping provides a useful tool for rapid identification of X. campestris pathovars on cassava. Images PMID:16349463

  11. Label-free quantitative secretome analysis of Xanthomonas oryzae pv. oryzae highlights the involvement of a novel cysteine protease in its pathogenicity.

    PubMed

    Wang, Yiming; Gupta, Ravi; Song, Wei; Huh, Hyun-Hye; Lee, So Eui; Wu, Jingni; Agrawal, Ganesh Kumar; Rakwal, Randeep; Kang, Kyu Young; Park, Sang-Ryeol; Kim, Sun Tae

    2017-10-03

    Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is one of the most devastating diseases resulting in a huge loss of the total rice productivity. The initial interaction between rice and Xoo takes place in the host apoplast and is mediated primarily by secretion of various proteins from both partners. Yet, such secretory proteins remain to be largely identified and characterized. This study employed a label-free quantitative proteomics approach and identified 404 and 323 Xoo-secreted proteins from in vitro suspension-cultured cells and in planta systems, respectively. Gene Ontology analysis showed their involvement primarily in catalytic, transporter, and ATPase activities. Of a particular interest was a Xoo cysteine protease (XoCP), which showed dramatic increase in its protein abundance in planta upon Xoo interaction with a susceptible rice cultivar. Knock-out mutants of XoCP showed reduced pathogenicity on rice, highlighting its potential involvement in Xoo virulence. Besides, a parallel analysis of in planta rice-secreted proteins resulted in identification of 186 secretory proteins mainly associated with the catalytic, antioxidant, and electron carrier activities. Identified secretory proteins were exploited to shed light on their possible role in the rice-Xoo interaction, and that further deepen our understanding of such interaction. Xanthomonas oryzae pv. oryzae (Xoo), causative agent of bacterial blight disease, results in a huge loss of the total rice productivity. Using a label-free quantitative proteomics approach, we identified 727 Xoo- and 186 rice-secreted proteins. Functional annotation showed Xoo secreted proteins were mainly associated with the catalytic, transporter, and ATPase activities while the rice secreted proteins were mainly associated with the catalytic, antioxidant, and electron carrier activities. A novel Xoo cysteine protease (XoCP) was identified, showing dramatic increase in its protein abundance in planta upon Xoo

  12. Identification of Isolates that Cause a Leaf Spot Disease of Brassicas as Xanthomonas campestris pv. raphani and Pathogenic and Genetic Comparison with Related Pathovars.

    PubMed

    Vicente, J G; Everett, B; Roberts, S J

    2006-07-01

    ABSTRACT Twenty-five Xanthomonas isolates, including some isolates received as either X. campestris pv. armoraciae or pv. raphani, caused discrete leaf spot symptoms when spray-inoculated onto at least one Brassica oleracea cultivar. Twelve of these isolates and four other Xanthomonas isolates were spray- and pin-inoculated onto 21 different plant species/cultivars including horseradish (Armoracia rusticana), radish (Raphanus sativus), and tomato (Lycopersicon esculentum). The remaining 13 leaf spot isolates were spray-inoculated onto a subset of 10 plant species/cultivars. The leaf spot isolates were very aggressive on several Brassica spp., radish, and tomato causing leaf spots and dark sunken lesions on the middle vein, petiole, and stem. Based on the differential reactions of several Brassica spp. and radish cultivars, the leaf spot isolates were divided into three races, with races 1 and 3 predominating. A differential series was established to determine the race-type of isolates and a gene-for-gene model based on the interaction of two avirulence genes in the pathogen races and two matching resistance genes in the differential hosts is proposed. Repetitive-DNA polymerase chain reaction-based fingerprinting was used to assess the genetic diversity of the leaf spot isolates and isolates of closely related Xanthomonas pathovars. Although there was variability within each race, the leaf spot isolates were clustered separately from the X. campestris pv. campestris isolates. We propose that X. campestris isolates that cause a nonvascular leaf spot disease on Brassica spp. should be identified as pv. raphani and not pv. armoraciae. Race-type strains and a neopathotype strain for X. campestris pv. raphani are proposed.

  13. The Xanthomonas oryzae pv. oryzae PhoPQ Two-Component System Is Required for AvrXA21 Activity, hrpG Expression, and Virulence▿ †

    PubMed Central

    Lee, Sang-Won; Jeong, Kyu-Sik; Han, Sang-Wook; Lee, Seung-Eun; Phee, Bong-Kwan; Hahn, Tae-Ryong; Ronald, Pamela

    2008-01-01

    The rice pathogen recognition receptor, XA21, confers resistance to Xanthomonas oryzae pv. oryzae strains producing the type one system-secreted molecule, AvrXA21. X. oryzae pv. oryzae requires a regulatory two-component system (TCS) called RaxRH to regulate expression of eight rax (required for AvrXA21 activity) genes and to sense population cell density. To identify other key components in this critical regulatory circuit, we assayed proteins expressed in a raxR gene knockout strain. This survey led to the identification of the phoP gene encoding a response regulator that is up-regulated in the raxR knockout strain. Next we generated a phoP knockout strain and found it to be impaired in X. oryzae pv. oryzae virulence and no longer able to activate the response regulator HrpG (hypersensitive reaction and pathogenicity G) in response to low levels of Ca2+. The impaired virulence of the phoP knockout strain can be partially complemented by constitutive expression of hrpG, indicating that PhoP controls a key aspect of X. oryzae pv. oryzae virulence through regulation of hrpG. A gene encoding the cognate putative histidine protein kinase, phoQ, was also isolated. Growth curve analysis revealed that AvrXA21 activity is impaired in a phoQ knockout strain as reflected by enhanced growth of this strain in rice lines carrying XA21. These results suggest that the X. oryzae pv. oryzae PhoPQ TCS functions in virulence and in the production of AvrXA21 in partnership with RaxRH. PMID:18203830

  14. Direct suppression of a rice bacterial blight (Xanthomonas oryzae pv. oryzae) by monoterpene (S)-limonene.

    PubMed

    Lee, Gun Woong; Chung, Moon-Soo; Kang, Mihyung; Chung, Byung Yeoup; Lee, Sungbeom

    2016-05-01

    Rice bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is a severe disease of rice plants. Upon pathogen infection, rice biosynthesizes phytoalexins, including diterpenoids such as momilactones, phytocassanes, and oryzalexins. However, information on headspace volatiles in response to Xoo infection is limited. We have examined headspace volatile terpenes, induced by the infection of Xoo, and investigated their biological roles in the rice plant. Monoterpenes α-thujene, α-pinene, sabinene, myrcene, α-terpene, and (S)-limonene and sesquiterpenes cyclosativene, α-copaene, and β-elemene were detected from 1-week-old Xoo-infected rice seedlings, by solid-phase microextraction-gas chromatography-mass spectrometry. All monoterpenes were constitutively released from rice seedlings before Xoo infection. However, (S)-limonene emission was further elicited after exposure of the seedlings to Xoo in coincidence with upregulation of limonene synthase gene (OsTPS20) transcripts. Only the stereospecific (S)-limonene [and not (R)-limonene or other monoterpenes] severely inhibited Xoo growth, as confirmed by disc diffusion and liquid culture assays. Rice seedlings showed suppressed pathogenic symptoms suggestive of resistance to Xoo infection after foliar treatment with (S)-limonene. Collectively, our findings suggest that (S)-limonene is a volatile phytoanticipin, which plays a significant role in suppressing Xoo growth in rice seedlings.

  15. A cell wall-degrading esterase of Xanthomonas oryzae requires a unique substrate recognition module for pathogenesis on rice.

    PubMed

    Aparna, Gudlur; Chatterjee, Avradip; Sonti, Ramesh V; Sankaranarayanan, Rajan

    2009-06-01

    Xanthomonas oryzae pv oryzae (Xoo) causes bacterial blight, a serious disease of rice (Oryza sativa). LipA is a secretory virulence factor of Xoo, implicated in degradation of rice cell walls and the concomitant elicitation of innate immune responses, such as callose deposition and programmed cell death. Here, we present the high-resolution structural characterization of LipA that reveals an all-helical ligand binding module as a distinct functional attachment to the canonical hydrolase catalytic domain. We demonstrate that the enzyme binds to a glycoside ligand through a rigid pocket comprising distinct carbohydrate-specific and acyl chain recognition sites where the catalytic triad is situated 15 A from the anchored carbohydrate. Point mutations disrupting the carbohydrate anchor site or blocking the pocket, even at a considerable distance from the enzyme active site, can abrogate in planta LipA function, exemplified by loss of both virulence and the ability to elicit host defense responses. A high conservation of the module across genus Xanthomonas emphasizes the significance of this unique plant cell wall-degrading function for this important group of plant pathogenic bacteria. A comparison with the related structural families illustrates how a typical lipase is recruited to act on plant cell walls to promote virulence, thus providing a remarkable example of the emergence of novel functions around existing scaffolds for increased proficiency of pathogenesis during pathogen-plant coevolution.

  16. OxyR-regulated catalase CatB promotes the virulence in rice via detoxifying hydrogen peroxide in Xanthomonas oryzae pv. oryzae.

    PubMed

    Yu, Chao; Wang, Nu; Wu, Maosen; Tian, Fang; Chen, Huamin; Yang, Fenghuan; Yuan, Xiaochen; Yang, Ching-Hong; He, Chenyang

    2016-11-08

    To facilitate infection, Xanthomonas oryzae pv. oryzae (Xoo), the bacterial blight pathogen of rice, needs to degrade hydrogen peroxide (H 2 O 2 ) generated by the host defense response via a mechanism that is mediated by the transcriptional regulator OxyR. The catalase (CAT) gene catB has previously been shown to belong to the OxyR regulon in Xoo. However, its expression patterns and function in H 2 O 2 detoxification and bacterial pathogenicity on rice remain to be elucidated. The catB gene encodes a putative catalase and is highly conserved in the sequenced strains of Xanthomonas spp. β-galactosidase analysis and electrophoretic mobility shift assays (EMSA) showed that OxyR positively regulated the transcription of catB by directly binding to its promoter region. The quantitative real-time PCR (qRT-PCR) assays revealed that the expression levels of catB and oxyR were significantly induced by H 2 O 2 . Deletion of catB or oxyR drastically impaired bacterial viability in the presence of extracellular H 2 O 2 and reduced CAT activity, demonstrating that CatB and OxyR contribute to H 2 O 2 detoxification in Xoo. In addition, ΔcatB and ΔoxyR displayed shorter bacterial blight lesions and reduced bacterial growth in rice compared to the wild-type stain, indicating that CatB and OxyR play essential roles in the virulence of Xoo. Transcription of catB is enhanced by OxyR in response to exogenous H 2 O 2 . CatB functions as an active catalase that is required for the full virulence of Xoo in rice.

  17. The rice XA21 ectodomain fused to the Arabidopsis EFR cytoplasmic domain confers resistance to Xanthomonas oryzae pv. oryzae.

    PubMed

    Thomas, Nicholas C; Oksenberg, Nir; Liu, Furong; Caddell, Daniel; Nalyvayko, Alina; Nguyen, Yen; Schwessinger, Benjamin; Ronald, Pamela C

    2018-01-01

    Rice ( Oryza sativa ) plants expressing the XA21 cell-surface receptor kinase are resistant to Xanthomonas oryzae pv. oryzae (Xoo) infection. We previously demonstrated that expressing a chimeric protein containing the ELONGATION FACTOR Tu RECEPTOR (EFR) ectodomain and the XA21 endodomain (EFR:XA21) in rice does not confer robust resistance to Xoo . To test if the XA21 ectodomain is required for Xoo resistance, we produced transgenic rice lines expressing a chimeric protein consisting of the XA21 ectodomain and EFR endodomain (XA21:EFR) and inoculated these lines with Xoo . We also tested if the XA21:EFR rice plants respond to a synthetic sulfated 21 amino acid derivative (RaxX21-sY) of the activator of XA21-mediated immunity, RaxX. We found that five independently transformed XA21:EFR rice lines displayed resistance to Xoo as measured by lesion length analysis, and showed that five lines share characteristic markers of the XA21 defense response (generation of reactive oxygen species and defense response gene expression) after treatment with RaxX21-sY. Our results indicate that expression of the XA21:EFR chimeric receptor in rice confers resistance to Xoo . These results suggest that the endodomain of the EFR and XA21 immune receptors are interchangeable and the XA21 ectodomain is the key determinant conferring robust resistance to Xoo .

  18. Effector Mimics and Integrated Decoys, the Never-Ending Arms Race between Rice and Xanthomonas oryzae.

    PubMed

    Zuluaga, Paola; Szurek, Boris; Koebnik, Ralf; Kroj, Thomas; Morel, Jean-Benoit

    2017-01-01

    Plants are constantly challenged by a wide range of pathogens and have therefore evolved an array of mechanisms to defend against them. In response to these defense systems, pathogens have evolved strategies to avoid recognition and suppress plant defenses (Brown and Tellier, 2011). Three recent reports dealing with the resistance of rice to Xanthomonas oryzae have added a new twist to our understanding of this fascinating co-evolutionary arms race (Ji et al., 2016; Read et al., 2016; Triplett et al., 2016). They show that pathogens also develop sophisticated effector mimics to trick recognition.

  19. Development and application of pathovar-specific monoclonal antibodies that recognize the lipopolysaccharide O antigen and the type IV fimbriae of Xanthomonas hyacinthi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doorn, J. van; Ojanen-Reuhs, T.; Hollinger, T.C.

    1999-09-01

    The objective of this study was to develop a specific immunological diagnostic assay for yellow disease in hyacinths, using monoclonal antibodies (MAbs). Mice were immunized with a crude cell wall preparation (shear fraction) from Xanthomonas hyacinthi and with purified type IV fimbriae. Hybridomas were screened for a positive reaction with X. hyacinthi cells or fimbriae and for a negative reaction with X. translucens pv. graminis or Erwinia carotovora subsp. carotovora. Nine MAbs recognized fimbrial epitopes, as shown by immunoblotting, immunofluorescence, enzyme-linked immunosorbent assay (ELISA), and immunoelectron microscopy; however, three of these MAbs had weak cross-reactions with two X. translucens pathovarsmore » in immunoblotting experiments. Seven MAbs reacted with lipopolysaccharides and yielded a low-mobility ladder pattern on immunoblots. Subsequent analysis of MAb 2E5 showed that it specifically recognized an epitope on the O antigen, which was found to consist of rhamnose and fucose in a 2:1 molar ratio. The cross-reaction of MAb 2E5 with all X. hyacinthi strains tested showed that this O antigen is highly conserved within this species. MAb 1B10 also reacted with lipopolysaccharides. MAbs 2E5 and 1B10 were further tested in ELISA and immunoblotting experiments with cells and extracts from other pathogens. No cross-reaction was found with 27 other Xanthomonas pathovars tested or with 14 other bacterial species from other genera, such as Erwinia and Pseudomonas, indicating the high specificity of these antibodies. MAbs 2E5 and 1B10 were shown to be useful in ELISA for the detection of X. hyacinthi in infected hyacinths.« less

  20. A Xanthomonas oryzae pv. oryzae effector, XopR, associates with receptor-like cytoplasmic kinases and suppresses PAMP-triggered stomatal closure.

    PubMed

    Wang, Shuangfeng; Sun, Jianhang; Fan, Fenggui; Tan, Zhaoyun; Zou, Yanmin; Lu, Dongping

    2016-09-01

    Receptor-like kinases (RLKs) play important roles in plant immunity signaling; thus, many are hijacked by pathogen effectors to promote successful pathogenesis. Xanthomonas oryzae pv. oryzae (Xoo) is the causal agent of rice leaf blight disease. The strain PXO99A has 18 non-TAL (transcription activation-like) effectors; however, their mechanisms of action and host target proteins remain largely unknown. Although the effector XopR from the Xoo strain MAFF311018 was shown to suppress PAMP-triggered immune responses in Arabidopsis, its target has not yet been identified. Here, we show that PXO99A XopR interacts with BIK1 at the plasma membrane. BIK1 is a receptor-like cytoplasmic kinase (RLCK) belonging to the RLK family of proteins and mediates PAMP-triggered stomatal immunity. In turn, BIK1 phosphorylates XopR. Furthermore, XopR suppresses PAMP-triggered stomatal closure in transgenic Arabidopsis expressing XopR. In addition, XopR is able to associate with RLCKs other than BIK1. These results suggest that XopR likely suppresses plant immunity by targeting BIK1 and other RLCKs.

  1. Using the concept of pseudo amino acid composition to predict resistance gene against Xanthomonas oryzae pv. oryzae in rice: an approach from chaos games representation.

    PubMed

    Jingbo, Xia; Silan, Zhang; Feng, Shi; Huijuan, Xiong; Xuehai, Hu; Xiaohui, Niu; Zhi, Li

    2011-09-07

    To evaluate the possibility of an unknown protein to be a resistant gene against Xanthomonas oryzae pv. oryzae, a different mode of pseudo amino acid composition (PseAAC) is proposed to formulate the protein samples by integrating the amino acid composition, as well as the Chaos games representation (CGR) method. Some numerical comparisons of triangle, quadrangle and 12-vertex polygon CGR are carried to evaluate the efficiency of using these fractal figures in classifiers. The numerical results show that among the three polygon methods, triangle method owns a good fractal visualization and performs the best in the classifier construction. By using triangle + 12-vertex polygon CGR as the mathematical feature, the classifier achieves 98.13% in Jackknife test and MCC achieves 0.8462. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Genome mining reveals the genus Xanthomonas to be a promising reservoir for new bioactive non-ribosomally synthesized peptides

    PubMed Central

    2013-01-01

    Background Various bacteria can use non-ribosomal peptide synthesis (NRPS) to produce peptides or other small molecules. Conserved features within the NRPS machinery allow the type, and sometimes even the structure, of the synthesized polypeptide to be predicted. Thus, bacterial genome mining via in silico analyses of NRPS genes offers an attractive opportunity to uncover new bioactive non-ribosomally synthesized peptides. Xanthomonas is a large genus of Gram-negative bacteria that cause disease in hundreds of plant species. To date, the only known small molecule synthesized by NRPS in this genus is albicidin produced by Xanthomonas albilineans. This study aims to estimate the biosynthetic potential of Xanthomonas spp. by in silico analyses of NRPS genes with unknown function recently identified in the sequenced genomes of X. albilineans and related species of Xanthomonas. Results We performed in silico analyses of NRPS genes present in all published genome sequences of Xanthomonas spp., as well as in unpublished draft genome sequences of Xanthomonas oryzae pv. oryzae strain BAI3 and Xanthomonas spp. strain XaS3. These two latter strains, together with X. albilineans strain GPE PC73 and X. oryzae pv. oryzae strains X8-1A and X11-5A, possess novel NRPS gene clusters and share related NRPS-associated genes such as those required for the biosynthesis of non-proteinogenic amino acids or the secretion of peptides. In silico prediction of peptide structures according to NRPS architecture suggests eight different peptides, each specific to its producing strain. Interestingly, these eight peptides cannot be assigned to any known gene cluster or related to known compounds from natural product databases. PCR screening of a collection of 94 plant pathogenic bacteria indicates that these novel NRPS gene clusters are specific to the genus Xanthomonas and are also present in Xanthomonas translucens and X. oryzae pv. oryzicola. Further genome mining revealed other novel NRPS

  3. Mutation of the rice XA21 predicted nuclear localization sequence does not affect resistance to Xanthomonas oryzae pv. oryzae

    DOE PAGES

    Wei, Tong; Chen, Tsung-Chi; Ho, Yuen Ting; ...

    2016-10-05

    Background: The rice receptor kinase XA21 confers robust resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae( Xoo). We previously reported that XA21 is cleaved in transgenic plants overexpressing XA21 with a GFP tag ( Ubi-XA21-GFP) and that the released C-terminal domain is localized to the nucleus. XA21 carries a predicted nuclear localization sequence (NLS) that directs the C-terminal domain to the nucleus in transient assays, whereas alanine substitutions in the NLS disrupt the nuclear localization. Methods: To determine if the predicted NLS is required for XA21-mediated immunity in planta, we generated transgenic plants overexpressing an XA21 variant carrying themore » NLS with the same alanine substitutions ( Ubi-XA21nls-GFP). Results: Ubi- XA21nls-GFP plants displayed slightly longer lesion lengths, higher Xoo bacterial populations after inoculation and lower levels of reactive oxygen species production compared with the Ubi- XA21-GFP control plants. However, the Ubi- XA21nls-GFP plants express lower levels of protein than that observed in Ubi- XA21-GFP. Discussion: These results demonstrate that the predicted NLS is not required for XA21-mediated immunity.« less

  4. Mutation of the rice XA21 predicted nuclear localization sequence does not affect resistance to Xanthomonas oryzae pv. oryzae.

    PubMed

    Wei, Tong; Chen, Tsung-Chi; Ho, Yuen Ting; Ronald, Pamela C

    2016-01-01

    The rice receptor kinase XA21 confers robust resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae ( Xoo ). We previously reported that XA21 is cleaved in transgenic plants overexpressing XA21 with a GFP tag ( Ubi -XA21-GFP) and that the released C-terminal domain is localized to the nucleus. XA21 carries a predicted nuclear localization sequence (NLS) that directs the C-terminal domain to the nucleus in transient assays, whereas alanine substitutions in the NLS disrupt the nuclear localization. To determine if the predicted NLS is required for XA21-mediated immunity in planta , we generated transgenic plants overexpressing an XA21 variant carrying the NLS with the same alanine substitutions ( Ubi -XA21nls-GFP). Ubi- XA21nls-GFP plants displayed slightly longer lesion lengths, higher Xoo bacterial populations after inoculation and lower levels of reactive oxygen species production compared with the Ubi- XA21-GFP control plants. However, the Ubi- XA21nls-GFP plants express lower levels of protein than that observed in Ubi- XA21-GFP. These results demonstrate that the predicted NLS is not required for XA21-mediated immunity.

  5. Mutation of the rice XA21 predicted nuclear localization sequence does not affect resistance to Xanthomonas oryzae pv. oryzae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Tong; Chen, Tsung-Chi; Ho, Yuen Ting

    Background: The rice receptor kinase XA21 confers robust resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae( Xoo). We previously reported that XA21 is cleaved in transgenic plants overexpressing XA21 with a GFP tag ( Ubi-XA21-GFP) and that the released C-terminal domain is localized to the nucleus. XA21 carries a predicted nuclear localization sequence (NLS) that directs the C-terminal domain to the nucleus in transient assays, whereas alanine substitutions in the NLS disrupt the nuclear localization. Methods: To determine if the predicted NLS is required for XA21-mediated immunity in planta, we generated transgenic plants overexpressing an XA21 variant carrying themore » NLS with the same alanine substitutions ( Ubi-XA21nls-GFP). Results: Ubi- XA21nls-GFP plants displayed slightly longer lesion lengths, higher Xoo bacterial populations after inoculation and lower levels of reactive oxygen species production compared with the Ubi- XA21-GFP control plants. However, the Ubi- XA21nls-GFP plants express lower levels of protein than that observed in Ubi- XA21-GFP. Discussion: These results demonstrate that the predicted NLS is not required for XA21-mediated immunity.« less

  6. Effector Mimics and Integrated Decoys, the Never-Ending Arms Race between Rice and Xanthomonas oryzae

    PubMed Central

    Zuluaga, Paola; Szurek, Boris; Koebnik, Ralf; Kroj, Thomas; Morel, Jean-Benoit

    2017-01-01

    Plants are constantly challenged by a wide range of pathogens and have therefore evolved an array of mechanisms to defend against them. In response to these defense systems, pathogens have evolved strategies to avoid recognition and suppress plant defenses (Brown and Tellier, 2011). Three recent reports dealing with the resistance of rice to Xanthomonas oryzae have added a new twist to our understanding of this fascinating co-evolutionary arms race (Ji et al., 2016; Read et al., 2016; Triplett et al., 2016). They show that pathogens also develop sophisticated effector mimics to trick recognition. PMID:28400786

  7. Xanthomonas oryzae pv. oryzae RpfE Regulates Virulence and Carbon Source Utilization without Change of the DSF Production

    PubMed Central

    Cho, Jung-Hee; Yoon, Joo-Mi; Lee, Sang-Won; Noh, Young-Hee; Cha, Jae-Soon

    2013-01-01

    It has been known that most regulation of pathogenicity factor (rpf) genes in xanthomonads regulates virulence in response to the diffusible signal factor, DSF. Although many rpf genes have been functionally characterized, the function of rpfE is still unknown. We cloned the rpfE gene from a Xanthomonas oryzae pv. oryzae (Xoo) Korean race KACC10859 and generated mutant strains to elucidate the role of RpfE with respect to the rpf system. Through experiments using the rpfE-deficient mutant strain, we found that mutation in rpfE gene in Xoo reduced virulence, swarm motility, and production of virulence factors such as cellulase and extracellular polysaccharide. Disease progress by the rpfE-deficient mutant strain was significantly slowed compared to disease progress by the wild type and the number of the rpfE-deficient mutant strain was lower than that of the wild type in the early phase of infection in the inoculated rice leaf. The rpfE mutant strain was unable to utilize sucrose or xylose as carbon sources efficiently in culture. The mutation in rpfE, however, did not affect DSF synthesis. Our results suggest that the rpfE gene regulates the virulence of Xoo under different nutrient conditions without change of DSF production. PMID:25288965

  8. Analysis of the Type IV Fimbrial-Subunit Gene fimA of Xanthomonas hyacinthi: Application in PCR-Mediated Detection of Yellow Disease in Hyacinths

    PubMed Central

    van Doorn, J.; Hollinger, T. C.; Oudega, B.

    2001-01-01

    A sensitive and specific detection method was developed for Xanthomonas hyacinthi; this method was based on amplification of a subsequence of the type IV fimbrial-subunit gene fimA from strain S148. The fimA gene was amplified by PCR with degenerate DNA primers designed by using the N-terminal and C-terminal amino acid sequences of trypsin fragments of FimA. The nucleotide sequence of fimA was determined and compared with the nucleotide sequences coding for the fimbrial subunits in other type IV fimbria-producing bacteria, such as Xanthomonas campestris pv. vesicatoria, Neisseria gonorrhoeae, and Moraxella bovis. In a PCR internal primers JAAN and JARA, designed by using the nucleotide sequences of the variable central and C-terminal region of fimA, amplified a 226-bp DNA fragment in all X. hyacinthi isolates. This PCR was shown to be pathovar specific, as assessed by testing 71 Xanthomonas pathovars and bacterial isolates belonging to other genera, such as Erwinia and Pseudomonas. Southern hybridization experiments performed with the labelled 226-bp DNA amplicon as a probe suggested that there is only one structural type IV fimbrial-gene cluster in X. hyacinthi. Only two Xanthomonas translucens pathovars cross-reacted weakly in PCR. Primers amplifying a subsequence of the fimA gene of X. campestris pv. vesicatoria (T. Ojanen-Reuhs, N. Kalkkinen, B. Westerlund-Wikström, J. van Doorn, K. Haahtela, E.-L. Nurmiaho-Lassila, K. Wengelink, U. Bonas, and T. K. Korhonen, J. Bacteriol. 179: 1280–1290, 1997) were shown to be pathovar specific, indicating that the fimbrial-subunit sequences are more generally applicable in xanthomonads for detection purposes. Under laboratory conditions, approximately 1,000 CFU of X. hyacinthi per ml could be detected. In inoculated leaves of hyacinths the threshold was 5,000 CFU/ml. The results indicated that infected hyacinths with early symptoms could be successfully screened for X. hyacinthi with PCR. PMID:11157222

  9. Comparative Transcriptome Profiling of Rice Near-Isogenic Line Carrying Xa23 under Infection of Xanthomonas oryzae pv. oryzae.

    PubMed

    Tariq, Rezwan; Wang, Chunlian; Qin, Tengfei; Xu, Feifei; Tang, Yongchao; Gao, Ying; Ji, Zhiyuan; Zhao, Kaijun

    2018-03-02

    Bacterial blight, caused by Xanthomonas oryzae pv. oryzae ( Xoo ), is an overwhelming disease in rice-growing regions worldwide. Our previous studies revealed that the executor R gene Xa23 confers broad-spectrum disease resistance to all naturally occurring biotypes of Xoo . In this study, comparative transcriptomic profiling of two near-isogenic lines (NILs), CBB23 (harboring Xa23 ) and JG30 (without Xa23 ), before and after infection of the Xoo strain, PXO99 A , was done by RNA sequencing, to identify genes associated with the resistance. After high throughput sequencing, 1645 differentially expressed genes (DEGs) were identified between CBB23 and JG30 at different time points. Gene Ontlogy (GO) analysis categorized the DEGs into biological process, molecular function, and cellular component. KEGG analysis categorized the DEGs into different pathways, and phenylpropanoid biosynthesis was the most prominent pathway, followed by biosynthesis of plant hormones, flavonoid biosynthesis, and glycolysis/gluconeogenesis. Further analysis led to the identification of differentially expressed transcription factors (TFs) and different kinase responsive genes in CBB23, than that in JG30. Besides TFs and kinase responsive genes, DEGs related to ethylene, jasmonic acid, and secondary metabolites were also identified in both genotypes after PXO99 A infection. The data of DEGs are a precious resource for further clarifying the network of Xa23 -mediated resistance.

  10. Comparative Transcriptome Profiling of Rice Near-Isogenic Line Carrying Xa23 under Infection of Xanthomonas oryzae pv. oryzae

    PubMed Central

    Tariq, Rezwan; Wang, Chunlian; Qin, Tengfei; Xu, Feifei; Tang, Yongchao; Gao, Ying; Ji, Zhiyuan; Zhao, Kaijun

    2018-01-01

    Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is an overwhelming disease in rice-growing regions worldwide. Our previous studies revealed that the executor R gene Xa23 confers broad-spectrum disease resistance to all naturally occurring biotypes of Xoo. In this study, comparative transcriptomic profiling of two near-isogenic lines (NILs), CBB23 (harboring Xa23) and JG30 (without Xa23), before and after infection of the Xoo strain, PXO99A, was done by RNA sequencing, to identify genes associated with the resistance. After high throughput sequencing, 1645 differentially expressed genes (DEGs) were identified between CBB23 and JG30 at different time points. Gene Ontlogy (GO) analysis categorized the DEGs into biological process, molecular function, and cellular component. KEGG analysis categorized the DEGs into different pathways, and phenylpropanoid biosynthesis was the most prominent pathway, followed by biosynthesis of plant hormones, flavonoid biosynthesis, and glycolysis/gluconeogenesis. Further analysis led to the identification of differentially expressed transcription factors (TFs) and different kinase responsive genes in CBB23, than that in JG30. Besides TFs and kinase responsive genes, DEGs related to ethylene, jasmonic acid, and secondary metabolites were also identified in both genotypes after PXO99A infection. The data of DEGs are a precious resource for further clarifying the network of Xa23-mediated resistance. PMID:29498672

  11. GamR, the LysR-Type Galactose Metabolism Regulator, Regulates hrp Gene Expression via Transcriptional Activation of Two Key hrp Regulators, HrpG and HrpX, in Xanthomonas oryzae pv. oryzae.

    PubMed

    Rashid, M Mamunur; Ikawa, Yumi; Tsuge, Seiji

    2016-07-01

    Xanthomonas oryzae pv. oryzae is the causal agent of bacterial leaf blight of rice. For the virulence of the bacterium, the hrp genes, encoding components of the type III secretion system, are indispensable. The expression of hrp genes is regulated by two key hrp regulators, HrpG and HrpX: HrpG regulates hrpX, and HrpX regulates other hrp genes. Several other regulators have been shown to be involved in the regulation of hrp genes. Here, we found that a LysR-type transcriptional regulator that we named GamR, encoded by XOO_2767 of X. oryzae pv. oryzae strain MAFF311018, positively regulated the transcription of both hrpG and hrpX, which are adjacent to each other but have opposite orientations, with an intergenic upstream region in common. In a gel electrophoresis mobility shift assay, GamR bound directly to the middle of the upstream region common to hrpG and hrpX The loss of either GamR or its binding sites decreased hrpG and hrpX expression. Also, GamR bound to the upstream region of either a galactose metabolism-related gene (XOO_2768) or a galactose metabolism-related operon (XOO_2768 to XOO_2771) located next to gamR itself and positively regulated the genes. The deletion of the regulator gene resulted in less bacterial growth in a synthetic medium with galactose as a sole sugar source. Interestingly, induction of the galactose metabolism-related gene was dependent on galactose, while that of the hrp regulator genes was galactose independent. Our results indicate that the LysR-type transcriptional regulator that regulates the galactose metabolism-related gene(s) also acts in positive regulation of two key hrp regulators and the following hrp genes in X. oryzae pv. oryzae. The expression of hrp genes encoding components of the type III secretion system is essential for the virulence of many plant-pathogenic bacteria, including Xanthomonas oryzae pv. oryzae. It is specifically induced during infection. Research has revealed that in this bacterium, hrp gene

  12. Transcription activator-like (TAL) effectors targeting OsSWEET genes enhance virulence on diverse rice (Oryza sativa) varieties when expressed individually in a TAL effector-deficient strain of Xanthomonas oryzae.

    PubMed

    Verdier, Valérie; Triplett, Lindsay R; Hummel, Aaron W; Corral, Rene; Cernadas, R Andres; Schmidt, Clarice L; Bogdanove, Adam J; Leach, Jan E

    2012-12-01

    Genomes of the rice (Oryza sativa) xylem and mesophyll pathogens Xanthomonas oryzae pv. oryzae (Xoo) and pv. oryzicola (Xoc) encode numerous secreted transcription factors called transcription activator-like (TAL) effectors. In a few studied rice varieties, some of these contribute to virulence by activating corresponding host susceptibility genes. Some activate disease resistance genes. The roles of X. oryzae TAL effectors in diverse rice backgrounds, however, are poorly understood. Xoo TAL effectors that promote infection by activating SWEET sucrose transporter genes were expressed in TAL effector-deficient X. oryzae strain X11-5A, and assessed in 21 rice varieties. Some were also tested in Xoc on variety Nipponbare. Several Xoc TAL effectors were tested in X11-5A on four rice varieties. Xoo TAL effectors enhanced X11-5A virulence on most varieties, but to varying extents depending on the effector and variety. SWEET genes were activated in all tested varieties, but increased virulence did not correlate with activation level. SWEET activators also enhanced Xoc virulence on Nipponbare. Xoc TAL effectors did not alter X11-5A virulence. SWEET-targeting TAL effectors contribute broadly and non-tissue-specifically to virulence in rice, and their function is affected by host differences besides target sequences. Further, the utility of X11-5A for characterizing individual TAL effectors in rice was established. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  13. Two overlapping two-component systems in Xanthomonas oryzae pv. oryzae contribute to full fitness in rice by regulating virulence factors expression

    PubMed Central

    Zheng, Dehong; Yao, Xiaoyan; Duan, Meng; Luo, Yufeng; Liu, Biao; Qi, Pengyuan; Sun, Ming; Ruan, Lifang

    2016-01-01

    Two-component signal transduction systems (TCSs) are widely used by bacteria to adapt to the environment. In the present study, StoS (stress tolerance-related oxygen sensor) and SreKRS (salt response kinase, regulator, and sensor) were found to positively regulate extracellular polysaccharide (EPS) production and swarming in the rice pathogen Xanthomonas oryzae pv. oryzae (Xoo). Surprisingly, the absence of stoS or sreKRS did not attenuate virulence. To better understand the intrinsic functions of StoS and SreKRS, quantitative proteomics isobaric tags for relative and absolute quantitation (iTRAQ) was employed. Consistent with stoS and sreK mutants exhibiting a similar phenotype, the signalling circuits of StoS and SreKRS overlapped. Carbohydrate metabolism proteins and chemotaxis proteins, which could be responsible for EPS and swarming regulation, respectively, were reprogrammed in stoS and sreK mutants. Moreover, StoS and SreKRS demonstrated moderate expression of the major virulence factor, hypersensitive response and pathogenicity (Hrp) proteins through the HrpG-HrpX circuit. Most importantly, Xoo equipped with StoS and SreKRS outcompetes strains without StoS or SreKRS in co-infected rice and grows outside the host. Therefore, we propose that StoS and SreKRS adopt a novel strategy involving the moderation of Hrp protein expression and the promotion of EPS and motility to adapt to the environment. PMID:26957113

  14. Identification and fine-mapping of Xa33, a novel gene for resistance to Xanthomonas oryzae pv. oryzae.

    PubMed

    Kumar, P Natraj; Sujatha, K; Laha, G S; Rao, K Srinivasa; Mishra, B; Viraktamath, B C; Hari, Y; Reddy, C S; Balachandran, S M; Ram, T; Madhav, M Sheshu; Rani, N Shobha; Neeraja, C N; Reddy, G Ashok; Shaik, H; Sundaram, R M

    2012-02-01

    Broadening of the genetic base for identification and transfer of genes for resistance to insect pests and diseases from wild relatives of rice is an important strategy in resistance breeding programs across the world. An accession of Oryza nivara, International Rice Germplasm Collection (IRGC) accession number 105710, was identified to exhibit high level and broad-spectrum resistance to Xanthomonas oryzae pv. oryzae. In order to study the genetics of resistance and to tag and map the resistance gene or genes present in IRGC 105710, it was crossed with the bacterial blight (BB)-susceptible varieties 'TN1' and 'Samba Mahsuri' (SM) and then backcrossed to generate backcross mapping populations. Analysis of these populations and their progeny testing revealed that a single dominant gene controls resistance in IRGC 105710. The BC(1)F(2) population derived from the cross IRGC 105710/TN1//TN1 was screened with a set of 72 polymorphic simple-sequence repeat (SSR) markers distributed across the rice genome and the resistance gene was coarse mapped on chromosome 7 between the SSR markers RM5711 and RM6728 at a genetic distance of 17.0 and 19.3 centimorgans (cM), respectively. After analysis involving 49 SSR markers located between the genomic interval spanned by RM5711 and RM6728, and BC(2)F(2) population consisting of 2,011 individuals derived from the cross IRGC 105710/TN1//TN1, the gene was fine mapped between two SSR markers (RMWR7.1 and RMWR7.6) located at a genetic distance of 0.9 and 1.2 cM, respectively, from the gene and flanking it. The linkage distances were validated in a BC(1)F(2) mapping population derived from the cross IRGC 105710/SM//2 × SM. The BB resistance gene present in the O. nivara accession was identified to be novel based on its unique map location on chromosome 7 and wider spectrum of BB resistance; this gene has been named Xa33. The genomic region between the two closely flanking SSR markers was in silico analyzed for putatively expressed

  15. Synthesis of novel quinazolin-4(3H)-one derivatives containing the 7-oxo-1,2,4-triazolo[1,5-a]pyrimidine moiety as effective agricultural bactericides against the pathogen Xanthomonas oryzae pv. oryzae.

    PubMed

    Du, Huan; Fan, Zhijiang; Yang, Lan; Bao, Xiaoping

    2018-02-01

    A series of novel quinazolin-4-one derivatives (7a-7n) bearing the 7-oxo-1,2,4-triazolo[1,5-a]pyrimidine moiety were designed, synthesized and evaluated for their inhibition activities against phytopathogenic bacteria and fungi in vitro. All of the target compounds were fully characterized through [Formula: see text] NMR, [Formula: see text] NMR, HRMS and IR spectra. Among these compounds, the structure of compound 7e was unambiguously confirmed via single-crystal X-ray diffraction analysis. The turbidimetric assays indicated that compounds 7b, 7d, 7g, 7k and 7n exhibited much more potent inhibition activities against the pathogen Xanthomonas oryzae pv. oryzae (Xoo), relative to control Bismerthiazol. Moreover, antibacterial activities of compounds 7j, 7k and 7n against the pathogen Xanthomonas axonopodis pv. citri (Xac) were comparable to that of control Bismerthiazol. As for the pathogen Ralstonia solanacearum (Rs), only compounds 7g and 7i demonstrated inhibition activities similar to control Thiadiazole-copper. Moreover, this class of compounds did not display inhibition activity against three fungi tested. The above findings indicated that quinazolin-4-one derivatives containing the 7-oxo-1,2,4-triazolo[1,5-a]pyrimidine moiety have a potential as promising candidates for the development of new and more efficient agricultural bactericides.

  16. Overexpression of Rice Auxilin-Like Protein, XB21, Induces Necrotic Lesions, up-Regulates Endocytosis-Related Genes, and Confers Enhanced Resistance to Xanthomonas oryzae pv. oryzae.

    PubMed

    Park, Chang-Jin; Wei, Tong; Sharma, Rita; Ronald, Pamela C

    2017-12-01

    The rice immune receptor XA21 confers resistance to the bacterial pathogen, Xanthomonas oryzae pv. oryzae (Xoo). To elucidate the mechanism of XA21-mediated immunity, we previously performed a yeast two-hybrid screening for XA21 interactors and identified XA21 binding protein 21 (XB21). Here, we report that XB21 is an auxilin-like protein predicted to function in clathrin-mediated endocytosis. We demonstrate an XA21/XB21 in vivo interaction using co-immunoprecipitation in rice. Overexpression of XB21 in rice variety Kitaake and a Kitaake transgenic line expressing XA21 confers a necrotic lesion phenotype and enhances resistance to Xoo. RNA sequencing reveals that XB21 overexpression results in the differential expression of 8735 genes (4939 genes up- and 3846 genes down-regulated) (≥2-folds, FDR ≤0.01). The up-regulated genes include those predicted to be involved in 'cell death' and 'vesicle-mediated transport'. These results indicate that XB21 plays a role in the plant immune response and in regulation of cell death. The up-regulation of genes controlling 'vesicle-mediated transport' in XB21 overexpression lines is consistent with a functional role for XB21 as an auxilin.

  17. Overexpression of Thiamin Biosynthesis Genes in Rice Increases Leaf and Unpolished Grain Thiamin Content But Not Resistance to Xanthomonas oryzae pv. oryzae

    PubMed Central

    Dong, Wei; Thomas, Nicholas; Ronald, Pamela C.; Goyer, Aymeric

    2016-01-01

    Thiamin diphosphate (ThDP), also known as vitamin B1, serves as an enzymatic cofactor in glucose metabolism, the Krebs cycle, and branched-chain amino acid biosynthesis in all living organisms. Unlike plants and microorganisms, humans are not able to synthesize ThDP de novo and must obtain it from their diet. Staple crops such as rice are poor sources of thiamin. Hence, populations that mainly consume rice commonly suffer thiamin deficiency. In addition to thiamin’s nutritional function, studies in rice have shown that some thiamin biosynthesis genes are involved in resistance to Xanthomonas oryzae, which causes a serious disease in rice fields. This study shows that overexpression of two thiamin biosynthesis genes, 4-methyl-5-β-hydroxyethylthiazole phosphate synthase and 4-amino-2-methyl-5-hydroxymethylpyrimidine phosphate synthase, involved in the first steps of the thiazole and pyrimidine synthesis branches, respectively, increased thiamin content up to fivefold in unpolished seeds that retain the bran. However, thiamin levels in polished seeds with removed bran were similar to those found in polished control seeds. Plants with higher accumulation of thiamin did not show enhanced resistance to X. oryzae. These results indicate that stacking of two traits can enhance thiamin accumulation in rice unpolished grain. We discuss potential roadblocks that prevent thiamin accumulation in the endosperm. PMID:27242822

  18. Overexpression of Rice Auxilin-Like Protein, XB21, Induces Necrotic Lesions, up-Regulates Endocytosis-Related Genes, and Confers Enhanced Resistance to Xanthomonas oryzae pv. oryzae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Chang-Jin; Wei, Tong; Sharma, Rita

    The rice immune receptor XA21 confers resistance to the bacterial pathogen, Xanthomonas oryzae pv. oryzae (Xoo). To elucidate the mechanism of XA21-mediated immunity, we previously performed a yeast two-hybrid screening for XA21 interactors and identified XA21 binding protein 21 (XB21). Here, we report that XB21 is an auxilin-like protein predicted to function in clathrin-mediated endocytosis. We demonstrate an XA21/XB21 in vivo interaction using co-immunoprecipitation in rice. Overexpression of XB21 in rice variety Kitaake and a Kitaake transgenic line expressing XA21 confers a necrotic lesion phenotype and enhances resistance to Xoo. RNA sequencing reveals that XB21 overexpression results in the differentialmore » expression of 8735 genes (4939 genes up- and 3846 genes down-regulated) (≥2-folds, FDR ≤0.01). The up-regulated genes include those predicted to be involved in ‘cell death’ and ‘vesicle-mediated transport’. These results indicate that XB21 plays a role in the plant immune response and in regulation of cell death. The up-regulation of genes controlling ‘vesicle-mediated transport’ in XB21 overexpression lines is consistent with a functional role for XB21 as an auxilin.« less

  19. Overexpression of Rice Auxilin-Like Protein, XB21, Induces Necrotic Lesions, up-Regulates Endocytosis-Related Genes, and Confers Enhanced Resistance to Xanthomonas oryzae pv. oryzae

    DOE PAGES

    Park, Chang-Jin; Wei, Tong; Sharma, Rita; ...

    2017-06-02

    The rice immune receptor XA21 confers resistance to the bacterial pathogen, Xanthomonas oryzae pv. oryzae (Xoo). To elucidate the mechanism of XA21-mediated immunity, we previously performed a yeast two-hybrid screening for XA21 interactors and identified XA21 binding protein 21 (XB21). Here, we report that XB21 is an auxilin-like protein predicted to function in clathrin-mediated endocytosis. We demonstrate an XA21/XB21 in vivo interaction using co-immunoprecipitation in rice. Overexpression of XB21 in rice variety Kitaake and a Kitaake transgenic line expressing XA21 confers a necrotic lesion phenotype and enhances resistance to Xoo. RNA sequencing reveals that XB21 overexpression results in the differentialmore » expression of 8735 genes (4939 genes up- and 3846 genes down-regulated) (≥2-folds, FDR ≤0.01). The up-regulated genes include those predicted to be involved in ‘cell death’ and ‘vesicle-mediated transport’. These results indicate that XB21 plays a role in the plant immune response and in regulation of cell death. The up-regulation of genes controlling ‘vesicle-mediated transport’ in XB21 overexpression lines is consistent with a functional role for XB21 as an auxilin.« less

  20. XocR, a LuxR solo required for virulence in Xanthomonas oryzae pv. oryzicola.

    PubMed

    Xu, Huiyong; Zhao, Yancun; Qian, Guoliang; Liu, Fengquan

    2015-01-01

    Xanthomonas oryzae pv. oryzicola (Xoc) causes bacterial leaf streak (BLS) in rice, a serious bacterial disease of rice in Asia and parts of Africa. The virulence mechanisms of Xoc are not entirely clear and control measures for BLS are poorly developed. The solo LuxR proteins are widespread and shown to be involved in virulence in some plant associated bacteria (PAB). Here, we have cloned and characterized a PAB LuxR solo from Xoc, named as XocR. Mutation of xocR almost completely impaired the virulence ability of Xoc on host rice, but did not alter the ability to trigger HR (hypersensitive response, a programmed cell death) on non-host (plant) tobacco, suggesting the diversity of function of xocR in host and non-host plants. We also provide evidence to show that xocR is involved in the regulation of growth-independent cell motility in response to a yet-to-be-identified rice signal, as mutation of xocR impaired cell swimming motility of wild-type Rs105 in the presence but not absence of rice macerate. We further found that xocR regulated the transcription of two characterized virulence-associated genes (recN and trpE) in the presence of rice macerate. The promoter regions of recN and trpE possessed a potential binding motif (an imperfect pip box-like element) of XocR, raising the possibility that XocR might directly bind the promoter regions of these two genes to regulate their transcriptional activity. Our studies add a new member of PAB LuxR solos and also provide new insights into the role of PAB LuxR solo in the virulence of Xanthomonas species.

  1. Phylogeny of Plant CAMTAs and Role of AtCAMTAs in Nonhost Resistance to Xanthomonas oryzae pv. oryzae

    PubMed Central

    Rahman, Hafizur; Yang, Juan; Xu, You-Ping; Munyampundu, Jean-Pierre; Cai, Xin-Zhong

    2016-01-01

    regulated the immunity triggered by flg22 and nonhost resistance to Xanthomonas oryzae pv. oryzae via repressing accumulation of reactive oxygen species probably by targeting CBP60G, EDS1, and NDR1 and involving SA pathway. PMID:26973658

  2. Phylogeny of Plant CAMTAs and Role of AtCAMTAs in Nonhost Resistance to Xanthomonas oryzae pv. oryzae.

    PubMed

    Rahman, Hafizur; Yang, Juan; Xu, You-Ping; Munyampundu, Jean-Pierre; Cai, Xin-Zhong

    2016-01-01

    regulated the immunity triggered by flg22 and nonhost resistance to Xanthomonas oryzae pv. oryzae via repressing accumulation of reactive oxygen species probably by targeting CBP60G, EDS1, and NDR1 and involving SA pathway.

  3. Isolation of an insertion sequence (IS1051) from Xanthomonas campestris pv. dieffenbachiae with potential use for strain identification and characterization.

    PubMed Central

    Berthier, Y; Thierry, D; Lemattre, M; Guesdon, J L

    1994-01-01

    A new insertion sequence was isolated from Xanthomonas campestris pv. dieffenbachiae. Sequence analysis showed that this element is 1,158 bp long and has 15-bp inverted repeat ends containing two mismatches. Comparison of this sequence with sequences in data bases revealed significant homology with Escherichia coli IS5. IS1051, which detected multiple restriction fragment length polymorphisms, was used as a probe to characterize strains from the pathovar dieffenbachiae. Images PMID:7906933

  4. Identification of Pectin Degrading Enzymes Secreted by Xanthomonas oryzae pv. oryzae and Determination of Their Role in Virulence on Rice

    PubMed Central

    Tayi, Lavanya; Maku, Roshan V.; Patel, Hitendra Kumar; Sonti, Ramesh V.

    2016-01-01

    Xanthomonas oryzae pv.oryzae (Xoo) causes the serious bacterial blight disease of rice. Xoo secretes a repertoire of plant cell wall degrading enzymes (CWDEs) like cellulases, xylanases, esterases etc., which act on various components of the rice cell wall. The major cellulases and xylanases secreted by Xoo have been identified and their role in virulence has been determined. In this study, we have identified some of the pectin degrading enzymes of Xoo and assessed their role in virulence. Bioinformatics analysis indicated the presence of four pectin homogalacturonan (HG) degrading genes in the genome of Xoo. The four HG degrading genes include one polygalacturonase (pglA), one pectin methyl esterase (pmt) and two pectate lyases (pel and pelL). There was no difference in the expression of pglA, pmt and pel genes by laboratory wild type Xoo strain (BXO43) grown in either nutrient rich PS medium or in plant mimic XOM2 medium whereas the expression of pelL gene was induced in XOM2 medium as indicated by qRT-PCR experiments. Gene disruption mutations were generated in each of these four genes. The polygalacturonase mutant pglA- was completely deficient in degrading the substrate Na-polygalacturonicacid (PGA). Strains carrying mutations in the pmt, pel and pelL genes were as efficient as wild type Xoo (BXO43) in cleaving PGA. These observations clearly indicate that PglA is the major pectin degrading enzyme produced by Xoo. The pectin methyl esterase, Pmt, is the pectin de-esterifying enzyme secreted by Xoo as evident from the enzymatic activity assay performed using pectin as the substrate. Mutations in the pglA, pmt, pel and pelL genes have minimal effects on virulence. This suggests that, as compared to cellulases and xylanases, the HG degrading enzymes may not have a major role in the pathogenicity of Xoo. PMID:27907079

  5. Identification of Pectin Degrading Enzymes Secreted by Xanthomonas oryzae pv. oryzae and Determination of Their Role in Virulence on Rice.

    PubMed

    Tayi, Lavanya; Maku, Roshan V; Patel, Hitendra Kumar; Sonti, Ramesh V

    2016-01-01

    Xanthomonas oryzae pv.oryzae (Xoo) causes the serious bacterial blight disease of rice. Xoo secretes a repertoire of plant cell wall degrading enzymes (CWDEs) like cellulases, xylanases, esterases etc., which act on various components of the rice cell wall. The major cellulases and xylanases secreted by Xoo have been identified and their role in virulence has been determined. In this study, we have identified some of the pectin degrading enzymes of Xoo and assessed their role in virulence. Bioinformatics analysis indicated the presence of four pectin homogalacturonan (HG) degrading genes in the genome of Xoo. The four HG degrading genes include one polygalacturonase (pglA), one pectin methyl esterase (pmt) and two pectate lyases (pel and pelL). There was no difference in the expression of pglA, pmt and pel genes by laboratory wild type Xoo strain (BXO43) grown in either nutrient rich PS medium or in plant mimic XOM2 medium whereas the expression of pelL gene was induced in XOM2 medium as indicated by qRT-PCR experiments. Gene disruption mutations were generated in each of these four genes. The polygalacturonase mutant pglA- was completely deficient in degrading the substrate Na-polygalacturonicacid (PGA). Strains carrying mutations in the pmt, pel and pelL genes were as efficient as wild type Xoo (BXO43) in cleaving PGA. These observations clearly indicate that PglA is the major pectin degrading enzyme produced by Xoo. The pectin methyl esterase, Pmt, is the pectin de-esterifying enzyme secreted by Xoo as evident from the enzymatic activity assay performed using pectin as the substrate. Mutations in the pglA, pmt, pel and pelL genes have minimal effects on virulence. This suggests that, as compared to cellulases and xylanases, the HG degrading enzymes may not have a major role in the pathogenicity of Xoo.

  6. Proteomic analysis reveals novel extracellular virulence-associated proteins and functions regulated by the diffusible signal factor (DSF) in Xanthomonas oryzae pv. oryzicola.

    PubMed

    Qian, Guoliang; Zhou, Yijing; Zhao, Yancun; Song, Zhiwei; Wang, Suyan; Fan, Jiaqin; Hu, Baishi; Venturi, Vittorio; Liu, Fengquan

    2013-07-05

    Quorum sensing (QS) in Xanthomonas oryzae pv. oryzicola (Xoc), the causal agent of bacterial leaf streak, is mediated by the diffusible signal factor (DSF). DSF-mediating QS has been shown to control virulence and a set of virulence-related functions; however, the expression profiles and functions of extracellular proteins controlled by DSF signal remain largely unclear. In the present study, 33 DSF-regulated extracellular proteins, whose functions include small-protein mediating QS, oxidative adaptation, macromolecule metabolism, cell structure, biosynthesis of small molecules, intermediary metabolism, cellular process, protein catabolism, and hypothetical function, were identified by proteomics in Xoc. Of these, 15 protein encoding genes were in-frame deleted, and 4 of them, including three genes encoding type II secretion system (T2SS)-dependent proteins and one gene encoding an Ax21 (activator of XA21-mediated immunity)-like protein (a novel small-protein type QS signal) were determined to be required for full virulence in Xoc. The contributions of these four genes to important virulence-associated functions, including bacterial colonization, extracellular polysaccharide, cell motility, biofilm formation, and antioxidative ability, are presented. To our knowledge, our analysis is the first complete list of DSF-regulated extracellular proteins and functions in a Xanthomonas species. Our results show that DSF-type QS played critical roles in regulation of T2SS and Ax21-mediating QS, which sheds light on the role of DSF signaling in Xanthomonas.

  7. Xanthomonas oryzae pv. oryzae TALE proteins recruit OsTFIIAγ1 to compensate for the absence of OsTFIIAγ5 in bacterial blight in rice.

    PubMed

    Ma, Wenxiu; Zou, Lifang; Ji, Zhiyuan; Xu, Xiameng; Xu, Zhengyin; Yang, Yangyang; Alfano, James R; Chen, Gongyou

    2018-04-28

    Xanthomonas oryzae pv. oryzae (Xoo), causal agent of bacterial blight (BB) of rice, uses transcription activator-like effectors (TALEs) to interact with the basal transcription factor gama subunit OsTFIIAγ5 (Xa5) and activates transcription of host genes. However, how OsTFIIAγ1, the other OsTFIIAγ protein, functions in the presence of TALEs remains unclear. In this study, we show that OsTFIIAγ1 plays a compensatory role in the absence of Xa5. The expression of OsTFIIAγ1, which is activated by TALE PthXo7, increased the expression of host genes targeted by avirulent and virulent TALEs. Defective OsTFIIAγ1 rice lines showed reduced expression of the TALE-targeted susceptibility (S) genes, OsSWEET11 and OsSWEET14, which resulted in increased BB resistance. Selected TALEs (PthXo1, AvrXa7, and AvrXa27) were evaluated for interactions with OsTFIIAγ1, Xa5 and xa5 (naturally-occurring mutant form of Xa5) using biomolecular fluorescence complementation (BiFC) and microscale thermophoresis (MST). BiFC and MST demonstrated that the three TALEs bind Xa5 and OsTFIIAγ1 with a stronger affinity than xa5. These results provide insight into the complex roles of OsTFIIAγ1 and OsTFIIAγ5 in TALE-mediated host gene transcription. This article is protected by copyright. All rights reserved. © 2018 BSPP and John Wiley & Sons Ltd.

  8. Analyses of genetic diversity of bacterial blight pathogen, Xanthomonas oryzae pv. oryzae using IS1112 in Bangladesh.

    PubMed

    Islam, Md Rashidul; Alam, Md Samiul; Khan, Ashik Iqbal; Hossain, Ismail; Adam, Lorne R; Daayf, Fouad

    2016-01-01

    Bacterial blight (BB) is caused by Xanthomonas oryzae pv. oryzae (Xoo), a most destructive disease of rice, mostly in Asia, including Bangladesh. Altogether 96 isolates of Xoo were collected from 19 rice-growing districts of Bangladesh in both the rain-fed and irrigated seasons of 2014 to assess their pathotypic and genetic variation. Pathotypic analyses were carried out on a set of 12 Near Isogenic Lines (NILs) of rice containing a single resistance gene and two check varieties IR24 and TN1 by the leaf clipping inoculation method. A total of 24 pathotypes were identified based on their virulence patterns on the NILs tested. Among these, pathotypes VII, XII and XIV, considered as major, containing a maximum number of isolates (9.38% each), are frequently distributed in seven northern to mid-eastern districts of Bangladesh. The most virulent pathotype I was recorded in the Habiganj and Brahmanbaria districts. The molecular analysis of variability among the isolates was carried out through PCR analysis using multi-locus primers Jel1 and Jel2 (based on the repetitive element IS1112 in the Xoo genome). Using the genotypic data, a dendrogram was constructed with 17 clusters along with 17 molecular haplotypes at the 65% similarity index. Cluster I was composed of 46 isolates considered as major, whereas clusters X, XI, XII and XVII were represented by a single isolate. A phenogram was constructed based on virulence to interpret the relationship between the pathotypes and the molecular haplotypes. At the 50% similarity level, among 10 clusters, cluster I, considered as major, consisted of a maximum of 10 pathotypes out of 24. In case of haplotypes, a maximum of 7 haplotypes were obtained from pathotype XII, whereas pathotypes IX, X, XV, XXII and XXIV were represented by a single haplotype. However, the present study revealed that different isolates belonging to the same pathotypes belonged to different haplotypes. Conversely, genetically similar haplotypes were also

  9. Accumulation of transcription factors and cell signaling-related proteins in the nucleus during citrus-Xanthomonas interaction.

    PubMed

    Rani, T Swaroopa; Durgeshwar, P; Podile, Appa Rao

    2015-07-20

    The nucleus is the maestro of the cell and is involved in the modulation of cell signaling during stress. We performed a comprehensive nuclear proteome analysis of Citrus sinensis during interaction with host (Xanthomonas citri pv. citri-Xcc) and non-host (Xanthomonas oryzae pv. oryzae-Xoo) pathogens. The nuclear proteome was obtained using a sequential method of organelle enrichment and determined by nano-LC-MS/MS analysis. A total of 243 proteins accumulated differentially during citrus-Xanthomonas interaction, belonging to 11 functional groups, with signaling and transcription-related proteins dominating. MADS-box transcription factors, DEAD-box RNA helicase and leucine aminopeptidase, mainly involved in jasmonic acid (JA) responses, were in high abundance during non-host interaction (Xoo). Signaling-related proteins like serine/threonine kinase, histones (H3.2, H2A), phosphoglycerate kinase, dynamin, actin and aldolase showed increased accumulation early during Xoo interaction. Our results suggest that there is a possible involvement of JA-triggered defense responses during non-host resistance, with early recognition of the non-host pathogen. Copyright © 2015. Published by Elsevier GmbH.

  10. Transcriptome analysis of WRKY gene family in Oryza officinalis Wall ex Watt and WRKY genes involved in responses to Xanthomonas oryzae pv. oryzae stress

    PubMed Central

    Jiang, Chunmiao; Shen, Qingxi J.; Wang, Bo; He, Bin; Xiao, Suqin; Chen, Ling; Yu, Tengqiong; Ke, Xue; Zhong, Qiaofang; Fu, Jian; Chen, Yue; Wang, Lingxian; Yin, Fuyou; Zhang, Dunyu; Ghidan, Walid; Huang, Xingqi; Cheng, Zaiquan

    2017-01-01

    Oryza officinalis Wall ex Watt, a very important and special wild rice species, shows abundant genetic diversity and disease resistance features, especially high resistance to bacterial blight. The molecular mechanisms of bacterial blight resistance in O. officinalis have not yet been elucidated. The WRKY transcription factor family is one of the largest gene families involved in plant growth, development and stress response. However, little is known about the numbers, structure, molecular phylogenetics, and expression of the WRKY genes under Xanthomonas oryzae pv. oryzae (Xoo) stress in O. officinalis due to lacking of O. officinalis genome. Therefore, based on the RNA-sequencing data of O. officinalis, we performed a comprehensive study of WRKY genes in O. officinalis and identified 89 OoWRKY genes. Then 89 OoWRKY genes were classified into three groups based on the WRKY domains and zinc finger motifs. Phylogenetic analysis strongly supported that the evolution of OoWRKY genes were consistent with previous studies of WRKYs, and subgroup IIc OoWRKY genes were the original ancestors of some group II and group III OoWRKYs. Among the 89 OoWRKY genes, eight OoWRKYs displayed significantly different expression (>2-fold, p<0.01) in the O. officinalis transcriptome under Xoo strains PXO99 and C5 stress 48 h, suggesting these genes might play important role in PXO99 and C5 stress responses in O. officinalis. QRT-PCR analysis and confirmation of eight OoWRKYs expression patterns revealed that they responded strongly to PXO99 and C5 stress 24 h, 48 h, and 72 h, and the trends of these genes displaying marked changes were consistent with the 48 h RNA-sequencing data, demonstrated these genes played important roles in response to biotic stress and might even involved in the bacterial blight resistance. Tissue expression profiles of eight OoWRKY genes revealed that they were highly expressed in root, stem, leaf, and flower, especially in leaf (except OoWRKY71), suggesting

  11. Transcriptome analysis of WRKY gene family in Oryza officinalis Wall ex Watt and WRKY genes involved in responses to Xanthomonas oryzae pv. oryzae stress.

    PubMed

    Jiang, Chunmiao; Shen, Qingxi J; Wang, Bo; He, Bin; Xiao, Suqin; Chen, Ling; Yu, Tengqiong; Ke, Xue; Zhong, Qiaofang; Fu, Jian; Chen, Yue; Wang, Lingxian; Yin, Fuyou; Zhang, Dunyu; Ghidan, Walid; Huang, Xingqi; Cheng, Zaiquan

    2017-01-01

    Oryza officinalis Wall ex Watt, a very important and special wild rice species, shows abundant genetic diversity and disease resistance features, especially high resistance to bacterial blight. The molecular mechanisms of bacterial blight resistance in O. officinalis have not yet been elucidated. The WRKY transcription factor family is one of the largest gene families involved in plant growth, development and stress response. However, little is known about the numbers, structure, molecular phylogenetics, and expression of the WRKY genes under Xanthomonas oryzae pv. oryzae (Xoo) stress in O. officinalis due to lacking of O. officinalis genome. Therefore, based on the RNA-sequencing data of O. officinalis, we performed a comprehensive study of WRKY genes in O. officinalis and identified 89 OoWRKY genes. Then 89 OoWRKY genes were classified into three groups based on the WRKY domains and zinc finger motifs. Phylogenetic analysis strongly supported that the evolution of OoWRKY genes were consistent with previous studies of WRKYs, and subgroup IIc OoWRKY genes were the original ancestors of some group II and group III OoWRKYs. Among the 89 OoWRKY genes, eight OoWRKYs displayed significantly different expression (>2-fold, p<0.01) in the O. officinalis transcriptome under Xoo strains PXO99 and C5 stress 48 h, suggesting these genes might play important role in PXO99 and C5 stress responses in O. officinalis. QRT-PCR analysis and confirmation of eight OoWRKYs expression patterns revealed that they responded strongly to PXO99 and C5 stress 24 h, 48 h, and 72 h, and the trends of these genes displaying marked changes were consistent with the 48 h RNA-sequencing data, demonstrated these genes played important roles in response to biotic stress and might even involved in the bacterial blight resistance. Tissue expression profiles of eight OoWRKY genes revealed that they were highly expressed in root, stem, leaf, and flower, especially in leaf (except OoWRKY71), suggesting

  12. Fructose-Bisphophate Aldolase Exhibits Functional Roles between Carbon Metabolism and the hrp System in Rice Pathogen Xanthomonas oryzae pv. oryzicola

    PubMed Central

    Li, Yu-rong; Cui, Yi-ping; Ji, Zhi-yuan; Cai, Lu-lu; Zou, Hua-song; Hutchins, William C.; Yang, Ching-hong; Chen, Gong-you

    2012-01-01

    Fructose-bisphophate aldolase (FbaB), is an enzyme in glycolysis and gluconeogenesis in living organisms. The mutagenesis in a unique fbaB gene of Xanthomonas oryzae pv. oryzicola, the causal agent of rice bacterial leaf streak, led the pathogen not only unable to use pyruvate and malate for growth and delayed its growth when fructose was used as the sole carbon source, but also reduced extracellular polysaccharide (EPS) production and impaired bacterial virulence and growth in rice. Intriguingly, the fbaB promoter contains an imperfect PIP-box (plant-inducible promoter) (TTCGT-N9-TTCGT). The expression of fbaB was negatively regulated by a key hrp regulatory HrpG and HrpX cascade. Base substitution in the PIP-box altered the regulation of fbaB with the cascade. Furthermore, the expression of fbaB in X. oryzae pv. oryzicola RS105 strain was inducible in planta rather than in a nutrient-rich medium. Except other hrp-hrc-hpa genes, the expression of hrpG and hrpX was repressed and the transcripts of hrcC, hrpE and hpa3 were enhanced when fbaB was deleted. The mutation in hrcC, hrpE or hpa3 reduced the ability of the pathogen to acquire pyruvate and malate. In addition, bacterial virulence and growth in planta and EPS production in RΔfbaB mutant were completely restored to the wild-type level by the presence of fbaB in trans. This is the first report to demonstrate that carbohydrates, assimilated by X. oryzae pv. oryzicola, play critical roles in coordinating hrp gene expression through a yet unknown regulator. PMID:22384086

  13. A transcription activator-like effector from Xanthomonas oryzae pv. oryzicola elicits dose-dependent resistance in rice.

    PubMed

    Hummel, Aaron W; Wilkins, Katherine E; Wang, Li; Cernadas, R Andres; Bogdanove, Adam J

    2017-01-01

    Xanthomonas spp. reduce crop yields and quality worldwide. During infection of their plant hosts, many strains secrete transcription activator-like (TAL) effectors, which enter the host cell nucleus and activate specific corresponding host genes at effector binding elements (EBEs) in the promoter. TAL effectors may contribute to disease by activating the expression of susceptibility genes or trigger resistance associated with the hypersensitive reaction (HR) by activating an executor resistance (R) gene. The rice bacterial leaf streak pathogen X. oryzae pv. oryzicola (Xoc) is known to suppress host resistance, and no host R gene has been identified against it, despite considerable effort. To further investigate Xoc suppression of host resistance, we conducted a screen of effectors from BLS256 and identified Tal2a as an HR elicitor in rice when delivered heterologously by a strain of the closely related rice bacterial blight pathogen X. oryzae pv. oryzae (Xoo) or by the soybean pathogen X. axonopodis pv. glycines. The HR required the Tal2a activation domain, suggesting an executor R gene. Tal2a activity was differentially distributed among geographically diverse Xoc isolates, being largely conserved among Asian isolates. We identified four genes induced by Tal2a in next-generation RNA sequencing experiments and confirmed them using quantitative real-time reverse transcription-polymerase chain reaction (qPCR). However, neither individual nor collective activation of these genes by designer TAL effectors resulted in HR. A tal2a knockout mutant of BLS256 showed virulence comparable with the wild-type, but plasmid-based overexpression of tal2a at different levels in the wild-type reduced virulence in a directly corresponding way. Overall, the results reveal that host resistance suppression by Xoc plays a critical role in pathogenesis. Further, the dose-dependent avirulence activity of Tal2a and the apparent lack of a single canonical target that accounts for HR point to

  14. Gene Prioritization of Resistant Rice Gene against Xanthomas oryzae pv. oryzae by Using Text Mining Technologies

    PubMed Central

    Xia, Jingbo; Zhang, Xing; Yuan, Daojun; Chen, Lingling; Webster, Jonathan; Fang, Alex Chengyu

    2013-01-01

    To effectively assess the possibility of the unknown rice protein resistant to Xanthomonas oryzae pv. oryzae, a hybrid strategy is proposed to enhance gene prioritization by combining text mining technologies with a sequence-based approach. The text mining technique of term frequency inverse document frequency is used to measure the importance of distinguished terms which reflect biomedical activity in rice before candidate genes are screened and vital terms are produced. Afterwards, a built-in classifier under the chaos games representation algorithm is used to sieve the best possible candidate gene. Our experiment results show that the combination of these two methods achieves enhanced gene prioritization. PMID:24371834

  15. Gene prioritization of resistant rice gene against Xanthomas oryzae pv. oryzae by using text mining technologies.

    PubMed

    Xia, Jingbo; Zhang, Xing; Yuan, Daojun; Chen, Lingling; Webster, Jonathan; Fang, Alex Chengyu

    2013-01-01

    To effectively assess the possibility of the unknown rice protein resistant to Xanthomonas oryzae pv. oryzae, a hybrid strategy is proposed to enhance gene prioritization by combining text mining technologies with a sequence-based approach. The text mining technique of term frequency inverse document frequency is used to measure the importance of distinguished terms which reflect biomedical activity in rice before candidate genes are screened and vital terms are produced. Afterwards, a built-in classifier under the chaos games representation algorithm is used to sieve the best possible candidate gene. Our experiment results show that the combination of these two methods achieves enhanced gene prioritization.

  16. A Xanthomonas uridine 5'-monophosphate transferase inhibits plant immune kinases.

    PubMed

    Feng, Feng; Yang, Fan; Rong, Wei; Wu, Xiaogang; Zhang, Jie; Chen, She; He, Chaozu; Zhou, Jian-Min

    2012-04-15

    Plant innate immunity is activated on the detection of pathogen-associated molecular patterns (PAMPs) at the cell surface, or of pathogen effector proteins inside the plant cell. Together, PAMP-triggered immunity and effector-triggered immunity constitute powerful defences against various phytopathogens. Pathogenic bacteria inject a variety of effector proteins into the host cell to assist infection or propagation. A number of effector proteins have been shown to inhibit plant immunity, but the biochemical basis remains unknown for the vast majority of these effectors. Here we show that the Xanthomonas campestris pathovar campestris type III effector AvrAC enhances virulence and inhibits plant immunity by specifically targeting Arabidopsis BIK1 and RIPK, two receptor-like cytoplasmic kinases known to mediate immune signalling. AvrAC is a uridylyl transferase that adds uridine 5'-monophosphate to and conceals conserved phosphorylation sites in the activation loop of BIK1 and RIPK, reducing their kinase activity and consequently inhibiting downstream signalling.

  17. Single molecule real-time sequencing of Xanthomonas oryzae genomes reveals a dynamic structure and complex TAL (transcription activator-like) effector gene relationships

    PubMed Central

    Booher, Nicholas J.; Carpenter, Sara C. D.; Sebra, Robert P.; Wang, Li; Salzberg, Steven L.; Leach, Jan E.

    2015-01-01

    Pathogen-injected, direct transcriptional activators of host genes, TAL (transcription activator-like) effectors play determinative roles in plant diseases caused by Xanthomonas spp. A large domain of nearly identical, 33–35 aa repeats in each protein mediates DNA recognition. This modularity makes TAL effectors customizable and thus important also in biotechnology. However, the repeats render TAL effector (tal) genes nearly impossible to assemble using next-generation, short reads. Here, we demonstrate that long-read, single molecule real-time (SMRT) sequencing solves this problem. Taking an ensemble approach to first generate local, tal gene contigs, we correctly assembled de novo the genomes of two strains of the rice pathogen X. oryzae completed previously using the Sanger method and even identified errors in those references. Sequencing two more strains revealed a dynamic genome structure and a striking plasticity in tal gene content. Our results pave the way for population-level studies to inform resistance breeding, improve biotechnology and probe TAL effector evolution. PMID:27148456

  18. XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.

    PubMed

    Thomas, Nicholas C; Schwessinger, Benjamin; Liu, Furong; Chen, Huamin; Wei, Tong; Nguyen, Yen P; Shaker, Isaac W F; Ronald, Pamela C

    2016-01-01

    The rice XA21 receptor kinase confers robust resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae ( Xoo ). We developed a detached leaf infection assay to quickly and reliably measure activation of the XA21-mediated immune response using genetic markers. We used RNA sequencing of elf18 treated EFR:XA21:GFP plants to identify candidate genes that could serve as markers for XA21 activation. From this analysis, we identified eight genes that are up-regulated in both in elf18 treated EFR:XA21:GFP rice leaves and Xoo infected XA21 rice leaves. These results provide a rapid and reliable method to assess bacterial-rice interactions.

  19. Extracellular matrix-associated proteome changes during non-host resistance in citrus-Xanthomonas interactions.

    PubMed

    Swaroopa Rani, Tirupaati; Podile, Appa Rao

    2014-04-01

    Non-host resistance (NHR) is a most durable broad-spectrum resistance employed by the plants to restrict majority of pathogens. Plant extracellular matrix (ECM) is a critical defense barrier. Understanding ECM responses during interaction with non-host pathogen will provide insights into molecular events of NHR. In this study, the ECM-associated proteome was compared during interaction of citrus with pathogen Xanthomonas axonopodis pv. citri (Xac) and non-host pathogen Xanthomonas oryzae pv. oryzae (Xoo) at 8, 16, 24 and 48 h post inoculation. Comprehensive analysis of ECM-associated proteins was performed by extracting wall-bound and soluble ECM components using both destructive and non-destructive procedures. A total of 53 proteins was differentially expressed in citrus-Xanthomonas host and non-host interaction, out of which 44 were identified by mass spectrometry. The differentially expressed proteins were related to (1) defense-response (5 pathogenesis-related proteins, 3 miraculin-like proteins (MIR, MIR1 and MIR2) and 2 proteases); (2) enzymes of reactive oxygen species (ROS) metabolism [Cu/Zn superoxide dismutase (SOD), Fe-SOD, ascorbate peroxidase and 2-cysteine-peroxiredoxin]; (3) signaling (lectin, curculin-like lectin and concanavalin A-like lectin kinase); and (4) cell-wall modification (α-xylosidase, glucan 1, 3 β-glucosidase, xyloglucan endotransglucosylase/hydrolase). The decrease in ascorbate peroxidase and cysteine-peroxiredoxin could be involved in maintenance of ROS levels. Increase in defense, cell-wall remodeling and signaling proteins in citrus-Xoo interaction suggests an active involvement of ECM in execution of NHR. Partially compromised NHR in citrus against Xoo, upon Brefeldin A pre-treatment supported the role of non-classical secretory proteins in this phenomenon. © 2013 Scandinavian Plant Physiology Society.

  20. Genomic survey of pathogenicity determinants and VNTR markers in the cassava bacterial pathogen Xanthomonas axonopodis pv. Manihotis strain CIO151.

    PubMed

    Arrieta-Ortiz, Mario L; Rodríguez-R, Luis M; Pérez-Quintero, Álvaro L; Poulin, Lucie; Díaz, Ana C; Arias Rojas, Nathalia; Trujillo, Cesar; Restrepo Benavides, Mariana; Bart, Rebecca; Boch, Jens; Boureau, Tristan; Darrasse, Armelle; David, Perrine; Dugé de Bernonville, Thomas; Fontanilla, Paula; Gagnevin, Lionel; Guérin, Fabien; Jacques, Marie-Agnès; Lauber, Emmanuelle; Lefeuvre, Pierre; Medina, Cesar; Medina, Edgar; Montenegro, Nathaly; Muñoz Bodnar, Alejandra; Noël, Laurent D; Ortiz Quiñones, Juan F; Osorio, Daniela; Pardo, Carolina; Patil, Prabhu B; Poussier, Stéphane; Pruvost, Olivier; Robène-Soustrade, Isabelle; Ryan, Robert P; Tabima, Javier; Urrego Morales, Oscar G; Vernière, Christian; Carrere, Sébastien; Verdier, Valérie; Szurek, Boris; Restrepo, Silvia; López, Camilo; Koebnik, Ralf; Bernal, Adriana

    2013-01-01

    Xanthomonas axonopodis pv. manihotis (Xam) is the causal agent of bacterial blight of cassava, which is among the main components of human diet in Africa and South America. Current information about the molecular pathogenicity factors involved in the infection process of this organism is limited. Previous studies in other bacteria in this genus suggest that advanced draft genome sequences are valuable resources for molecular studies on their interaction with plants and could provide valuable tools for diagnostics and detection. Here we have generated the first manually annotated high-quality draft genome sequence of Xam strain CIO151. Its genomic structure is similar to that of other xanthomonads, especially Xanthomonas euvesicatoria and Xanthomonas citri pv. citri species. Several putative pathogenicity factors were identified, including type III effectors, cell wall-degrading enzymes and clusters encoding protein secretion systems. Specific characteristics in this genome include changes in the xanthomonadin cluster that could explain the lack of typical yellow color in all strains of this pathovar and the presence of 50 regions in the genome with atypical nucleotide composition. The genome sequence was used to predict and evaluate 22 variable number of tandem repeat (VNTR) loci that were subsequently demonstrated as polymorphic in representative Xam strains. Our results demonstrate that Xanthomonas axonopodis pv. manihotis strain CIO151 possesses ten clusters of pathogenicity factors conserved within the genus Xanthomonas. We report 126 genes that are potentially unique to Xam, as well as potential horizontal transfer events in the history of the genome. The relation of these regions with virulence and pathogenicity could explain several aspects of the biology of this pathogen, including its ability to colonize both vascular and non-vascular tissues of cassava plants. A set of 16 robust, polymorphic VNTR loci will be useful to develop a multi-locus VNTR analysis

  1. Genomic Survey of Pathogenicity Determinants and VNTR Markers in the Cassava Bacterial Pathogen Xanthomonas axonopodis pv. Manihotis Strain CIO151

    PubMed Central

    Arrieta-Ortiz, Mario L.; Rodríguez-R, Luis M.; Pérez-Quintero, Álvaro L.; Poulin, Lucie; Díaz, Ana C.; Arias Rojas, Nathalia; Trujillo, Cesar; Restrepo Benavides, Mariana; Bart, Rebecca; Boch, Jens; Boureau, Tristan; Darrasse, Armelle; David, Perrine; Dugé de Bernonville, Thomas; Fontanilla, Paula; Gagnevin, Lionel; Guérin, Fabien; Jacques, Marie-Agnès; Lauber, Emmanuelle; Lefeuvre, Pierre; Medina, Cesar; Medina, Edgar; Montenegro, Nathaly; Muñoz Bodnar, Alejandra; Noël, Laurent D.; Ortiz Quiñones, Juan F.; Osorio, Daniela; Pardo, Carolina; Patil, Prabhu B.; Poussier, Stéphane; Pruvost, Olivier; Robène-Soustrade, Isabelle; Ryan, Robert P.; Tabima, Javier; Urrego Morales, Oscar G.; Vernière, Christian; Carrere, Sébastien; Verdier, Valérie; Szurek, Boris; Restrepo, Silvia; López, Camilo

    2013-01-01

    Xanthomonas axonopodis pv. manihotis (Xam) is the causal agent of bacterial blight of cassava, which is among the main components of human diet in Africa and South America. Current information about the molecular pathogenicity factors involved in the infection process of this organism is limited. Previous studies in other bacteria in this genus suggest that advanced draft genome sequences are valuable resources for molecular studies on their interaction with plants and could provide valuable tools for diagnostics and detection. Here we have generated the first manually annotated high-quality draft genome sequence of Xam strain CIO151. Its genomic structure is similar to that of other xanthomonads, especially Xanthomonas euvesicatoria and Xanthomonas citri pv. citri species. Several putative pathogenicity factors were identified, including type III effectors, cell wall-degrading enzymes and clusters encoding protein secretion systems. Specific characteristics in this genome include changes in the xanthomonadin cluster that could explain the lack of typical yellow color in all strains of this pathovar and the presence of 50 regions in the genome with atypical nucleotide composition. The genome sequence was used to predict and evaluate 22 variable number of tandem repeat (VNTR) loci that were subsequently demonstrated as polymorphic in representative Xam strains. Our results demonstrate that Xanthomonas axonopodis pv. manihotis strain CIO151 possesses ten clusters of pathogenicity factors conserved within the genus Xanthomonas. We report 126 genes that are potentially unique to Xam, as well as potential horizontal transfer events in the history of the genome. The relation of these regions with virulence and pathogenicity could explain several aspects of the biology of this pathogen, including its ability to colonize both vascular and non-vascular tissues of cassava plants. A set of 16 robust, polymorphic VNTR loci will be useful to develop a multi-locus VNTR analysis

  2. A novel antimicrobial protein for plant protection consisting of a Xanthomonas oryzae harpin and active domains of cecropin A and melittin

    PubMed Central

    Che, Yi‐Zhou; Li, Yu‐Rong; Zou, Hua‐Song; Zou, Li‐Fang; Zhang, Bing; Chen, Gong‐You

    2011-01-01

    Summary Discoveries about antimicrobial peptides and plant defence activators have made possible the de novo and rational design of novel peptides for use in crop protection. Here we report a novel chimeric protein, Hcm1, which was made by linking the active domains of cecropin A and melittin to the hypersensitive response (HR)‐elicitor Hpa1 of Xanthomonas oryzae pv. oryzicola, the causal agent of rice bacterial leaf streak. The resulting chimeric protein maintained not only the HR‐inducing property of the harpin, but also the antimicrobial activity of the cecropin A‐melittin hybrid. Hcm1 was purified from engineered Escherichia coli and evaluated in terms of the minimal inhibitory concentration (MIC) and the 50% effective dose (ED50) against important plant pathogenic bacteria and fungi. Importantly, the protein acted as a potential pesticide by inducing disease resistance for viral, bacterial and fungal pathogens. This designed drug can be considered as a lead compound for use in plant protection, either for the development of new broad‐spectrum pesticides or for expression in transgenic plants. PMID:21895994

  3. Rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae produces multiple DSF-family signals in regulation of virulence factor production

    PubMed Central

    2010-01-01

    Background Xanthomonas oryzae pv. oryzae (Xoo) is the causal agent of rice bacterial blight disease. Xoo produces a range of virulence factors, including EPS, extracellular enzyme, iron-chelating siderophores, and type III-secretion dependent effectors, which are collectively essential for virulence. Genetic and genomics evidence suggest that Xoo might use the diffusible signal factor (DSF) type quorum sensing (QS) system to regulate the virulence factor production. However, little is known about the chemical structure of the DSF-like signal(s) produced by Xoo and the factors influencing the signal production. Results Xoo genome harbours an rpf cluster comprising rpfB, rpfF, rpfC and rpfG. The proteins encoded by these genes are highly homologous to their counterparts in X. campestris pv. campestris (Xcc), suggesting that Xcc and Xoo might use similar mechanisms for DSF biosynthesis and autoregulation. Consistent with in silico analysis, the rpfF mutant was DSF-deficient and the rpfC mutant produced about 25 times higher DSF-like activity than the wild type Xoo strain KACC10331. From the supernatants of rpfC mutant, we purified three compounds showing strong DSF-like activity. Mass spectrometry and NMR analysis revealed that two of them were the previously characterized DSF and BDSF; the third one was a novel unsaturated fatty acid with 2 double bonds and was designated as CDSF in this study. Further analysis showed that all the three DSF-family signals were synthesized via the enzyme RpfF encoded by Xoo2868. DSF and BDSF at a final concentration of 3 μM to the rpfF mutant could fully restore its extracellular xylanase activity and EPS production to the wild type level, but CDSF was less active than DSF and BDSF in induction of EPS and xylanase. DSF and CDSF shared a similar cell density-dependent production time course with the maximum production being detected at 42 h after inoculation, whereas the maximum production of BDSF was observed at 36 h after

  4. An Improved Method for TAL Effectors DNA-Binding Sites Prediction Reveals Functional Convergence in TAL Repertoires of Xanthomonas oryzae Strains

    PubMed Central

    Pérez-Quintero, Alvaro L.; Rodriguez-R, Luis M.; Dereeper, Alexis; López, Camilo; Koebnik, Ralf; Szurek, Boris; Cunnac, Sebastien

    2013-01-01

    Transcription Activators-Like Effectors (TALEs) belong to a family of virulence proteins from the Xanthomonas genus of bacterial plant pathogens that are translocated into the plant cell. In the nucleus, TALEs act as transcription factors inducing the expression of susceptibility genes. A code for TALE-DNA binding specificity and high-resolution three-dimensional structures of TALE-DNA complexes were recently reported. Accurate prediction of TAL Effector Binding Elements (EBEs) is essential to elucidate the biological functions of the many sequenced TALEs as well as for robust design of artificial TALE DNA-binding domains in biotechnological applications. In this work a program with improved EBE prediction performances was developed using an updated specificity matrix and a position weight correction function to account for the matching pattern observed in a validation set of TALE-DNA interactions. To gain a systems perspective on the large TALE repertoires from X. oryzae strains, this program was used to predict rice gene targets for 99 sequenced family members. Integrating predictions and available expression data in a TALE-gene network revealed multiple candidate transcriptional targets for many TALEs as well as several possible instances of functional convergence among TALEs. PMID:23869221

  5. A novel antimicrobial protein for plant protection consisting of a Xanthomonas oryzae harpin and active domains of cecropin A and melittin.

    PubMed

    Che, Yi-Zhou; Li, Yu-Rong; Zou, Hua-Song; Zou, Li-Fang; Zhang, Bing; Chen, Gong-You

    2011-11-01

    Discoveries about antimicrobial peptides and plant defence activators have made possible the de novo and rational design of novel peptides for use in crop protection. Here we report a novel chimeric protein, Hcm1, which was made by linking the active domains of cecropin A and melittin to the hypersensitive response (HR)-elicitor Hpa1 of Xanthomonas oryzae pv. oryzicola, the causal agent of rice bacterial leaf streak. The resulting chimeric protein maintained not only the HR-inducing property of the harpin, but also the antimicrobial activity of the cecropin A-melittin hybrid. Hcm1 was purified from engineered Escherichia coli and evaluated in terms of the minimal inhibitory concentration (MIC) and the 50% effective dose (ED(50)) against important plant pathogenic bacteria and fungi. Importantly, the protein acted as a potential pesticide by inducing disease resistance for viral, bacterial and fungal pathogens. This designed drug can be considered as a lead compound for use in plant protection, either for the development of new broad-spectrum pesticides or for expression in transgenic plants. © 2011 The Authors. Microbial Biotechnology © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  6. Comparative Genomic and Phenotypic Characterization of Pathogenic and Non-Pathogenic Strains of Xanthomonas arboricola Reveals Insights into the Infection Process of Bacterial Spot Disease of Stone Fruits

    PubMed Central

    Garita-Cambronero, Jerson; Palacio-Bielsa, Ana; López, María M.

    2016-01-01

    Xanthomonas arboricola pv. pruni is the causal agent of bacterial spot disease of stone fruits, a quarantinable pathogen in several areas worldwide, including the European Union. In order to develop efficient control methods for this disease, it is necessary to improve the understanding of the key determinants associated with host restriction, colonization and the development of pathogenesis. After an initial characterization, by multilocus sequence analysis, of 15 strains of X. arboricola isolated from Prunus, one strain did not group into the pathovar pruni or into other pathovars of this species and therefore it was identified and defined as a X. arboricola pv. pruni look-a-like. This non-pathogenic strain and two typical strains of X. arboricola pv. pruni were selected for a whole genome and phenotype comparative analysis in features associated with the pathogenesis process in Xanthomonas. Comparative analysis among these bacterial strains isolated from Prunus spp. and the inclusion of 15 publicly available genome sequences from other pathogenic and non-pathogenic strains of X. arboricola revealed variations in the phenotype associated with variations in the profiles of TonB-dependent transporters, sensors of the two-component regulatory system, methyl accepting chemotaxis proteins, components of the flagella and the type IV pilus, as well as in the repertoire of cell-wall degrading enzymes and the components of the type III secretion system and related effectors. These variations provide a global overview of those mechanisms that could be associated with the development of bacterial spot disease. Additionally, it pointed out some features that might influence the host specificity and the variable virulence observed in X. arboricola. PMID:27571391

  7. Identification of 17 HrpX-Regulated Proteins Including Two Novel Type III Effectors, XOC_3956 and XOC_1550, in Xanthomonas oryzae pv. oryzicola

    PubMed Central

    Xue, Xiao-bo; Zou, Li-fang; Ma, Wen-xiu; Liu, Zhi-yang; Chen, Gong-you

    2014-01-01

    The function of some hypothetical proteins, possibly regulated by key hrp regulators, in the pathogenicity of phytopathogenic bacteria remains largely unknown. In the present study, in silicon microarray data demonstrated that the expression of 17 HrpX-regulated protein (Xrp) genes of X. oryzae pv. oryzicola (Xoc), which causes bacterial leaf streak in rice, were either positively or negatively regulated by HrpX or/and HrpG. Bioinformatics analysis demonstrated that five Xrps possess a putative type III secretion (T3S) signal in the first 50 N-terminal amino acids, six xrp genes contain a PIP-box-like sequence (TTCGB-NX-TTCGB, 9≤X≤25) in the promoter regions, and two Xrps have both motifs. Twelve Xrps are widely conserved in Xanthomonas spp., whereas four are specific for X. oryzae (Xrp6) or Xoc (Xrp8, Xrp14 and Xrp17). In addition to the regulation by HrpG/HrpX, some of the 17 genes were also modulated by another hrp regulator HrpD6. Mutagenesis of these 17 genes indicated that five Xrps (Xrp1, Xrp2, Xrp5, Xrp8 and Xrp14) were required for full virulence and bacterial growth in planta. Immunoblotting assays and fusion with N-terminally truncated AvrXa10 indicated that Xrp3 and Xrp5 were secreted and translocated into rice cells through the type-III secretion system (T3S), suggesting they are novel T3S effectors. Our results suggest that Xoc exploits an orchestra of proteins that are regulated by HrpG, HrpX and HrpD6, and these proteins facilitate both infection and metabolism. PMID:24675748

  8. Identification of 17 HrpX-regulated proteins including two novel type III effectors, XOC_3956 and XOC_1550, in Xanthomonas oryzae pv. oryzicola.

    PubMed

    Xue, Xiao-bo; Zou, Li-fang; Ma, Wen-xiu; Liu, Zhi-yang; Chen, Gong-you

    2014-01-01

    The function of some hypothetical proteins, possibly regulated by key hrp regulators, in the pathogenicity of phytopathogenic bacteria remains largely unknown. In the present study, in silicon microarray data demonstrated that the expression of 17 HrpX-regulated protein (Xrp) genes of X. oryzae pv. oryzicola (Xoc), which causes bacterial leaf streak in rice, were either positively or negatively regulated by HrpX or/and HrpG. Bioinformatics analysis demonstrated that five Xrps possess a putative type III secretion (T3S) signal in the first 50 N-terminal amino acids, six xrp genes contain a PIP-box-like sequence (TTCGB-NX-TTCGB, 9 ≤ X ≤ 25) in the promoter regions, and two Xrps have both motifs. Twelve Xrps are widely conserved in Xanthomonas spp., whereas four are specific for X. oryzae (Xrp6) or Xoc (Xrp8, Xrp14 and Xrp17). In addition to the regulation by HrpG/HrpX, some of the 17 genes were also modulated by another hrp regulator HrpD6. Mutagenesis of these 17 genes indicated that five Xrps (Xrp1, Xrp2, Xrp5, Xrp8 and Xrp14) were required for full virulence and bacterial growth in planta. Immunoblotting assays and fusion with N-terminally truncated AvrXa10 indicated that Xrp3 and Xrp5 were secreted and translocated into rice cells through the type-III secretion system (T3S), suggesting they are novel T3S effectors. Our results suggest that Xoc exploits an orchestra of proteins that are regulated by HrpG, HrpX and HrpD6, and these proteins facilitate both infection and metabolism.

  9. Induction of Hydrolytic Enzymes in Brassica campestris in Response to Pathovars of Xanthomonas campestris.

    PubMed

    Conrads-Strauch, J; Dow, J M; Milligan, D E; Parra, R; Daniels, M J

    1990-05-01

    Inoculation of mature leaves of turnip (Brassica campestris) with the incompatible Xanthomonas campestris pv vitians resulted in the induction of beta-1,3-glucanase and chitinase/lysozyme (CHL) activity. No increase in the basal activity of beta-1,3-glucanase was observed after inoculation of leaves with heat- or rifampicin-killed X. c. vitians, Escherichia coli, or sterile water. Inoculation with the compatible X. campestris pv campestris resulted in a slower induction of glucanase than that seen with X. c. vitians. In contrast, all bacteria caused an induction of CHL activity. One major beta-1,3-glucanase (molecular mass 36.5 kilodaltons, isoelectric point [pl] ~8.5) was purified from both inoculated and untreated leaves by ion-exchange chromatography. The enzyme degraded laminarin by an endo-glycolytic mechanism. Two major CHL isozymes (CHL 1 and CHL 2, molecular mass 30 kilodaltons and pl 9.4 and 10.2, respectively) were purified from X. c. vitians inoculated leaves by affinity chromatography on a chitin column followed by ion-exchange chromatography. Both enzymes degraded chitin by an endo-glycolytic mechanism although the ratio of lysozyme to chitinase specific activities for CHL 1 and CHL2 were different. The induction of CHL 1 was associated with the hypersensitive reaction caused by X. c. vitians whereas all other treatments induced largely CHL 2.

  10. Transgenic expression of the rice Xa21 pattern-recognition receptor in banana (Musa sp.) confers resistance to Xanthomonas campestris pv. musacearum.

    PubMed

    Tripathi, Jaindra N; Lorenzen, Jim; Bahar, Ofir; Ronald, Pamela; Tripathi, Leena

    2014-08-01

    Banana Xanthomonas wilt (BXW), caused by the bacterium Xanthomonas campestris pv. musacearum (Xcm), is the most devastating disease of banana in east and central Africa. The spread of BXW threatens the livelihood of millions of African farmers who depend on banana for food security and income. There are no commercial chemicals, biocontrol agents or resistant cultivars available to control BXW. Here, we take advantage of the robust resistance conferred by the rice pattern-recognition receptor (PRR), XA21, to the rice pathogen Xanthomonas oryzae pv. oryzae (Xoo). We identified a set of genes required for activation of Xa21-mediated immunity (rax) that were conserved in both Xoo and Xcm. Based on the conservation, we hypothesized that intergeneric transfer of Xa21 would confer resistance to Xcm. We evaluated 25 transgenic lines of the banana cultivar 'Gonja manjaya' (AAB) using a rapid bioassay and 12 transgenic lines in the glasshouse for resistance against Xcm. About 50% of the transgenic lines showed complete resistance to Xcm in both assays. In contrast, all of the nontransgenic control plants showed severe symptoms that progressed to complete wilting. These results indicate that the constitutive expression of the rice Xa21 gene in banana results in enhanced resistance against Xcm. Furthermore, this work demonstrates the feasibility of PRR gene transfer between monocotyledonous species and provides a valuable new tool for controlling the BXW pandemic of banana, a staple food for 100 million people in east Africa. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  11. Transgenic expression of the rice Xa21 pattern recognition receptor in banana (Musa sp.) confers resistance to Xanthomonas campestris pv. musacearum

    PubMed Central

    Tripathi, Jaindra Nath; Lorenzen, Jim; Bahar, Ofir; Ronald, Pamela; Tripathi, Leena

    2014-01-01

    Summary Banana Xanthomonas wilt (BXW), caused by the bacterium Xanthomonas campestris pv. musacearum (Xcm), is the most devastating disease of banana in east and central Africa. The spread of BXW threatens the livelihood of millions of African farmers who depend on banana for food security and income. There are no commercial chemicals, bio-control agents or resistant cultivars available to control BXW. Here we take advantage of the robust resistance conferred by the rice pattern recognition receptor (PRR), XA21, to the rice pathogen Xanthomonas oryzae pv. oryzae (Xoo). We identified a set of genes required for activation of Xa21 mediated immunity (rax) that were conserved in both Xoo and Xcm. Based on the conservation, we hypothesized that intergeneric transfer of Xa21 would confer resistance to Xcm. We evaluated 25 transgenic lines of the banana cultivar ‘Gonja manjaya’ (AAB) using a rapid bioassay and 12 transgenic plants in the glass house for resistance against Xcm. About fifty percent of the transgenic lines showed complete resistance to Xcm in both assays. In contrast, all of the non-transgenic control plants showed severe symptoms that progressed to complete wilting. These results indicate that the constitutive expression of the rice Xa21 gene in banana results in enhanced resistance against Xcm. Furthermore this work demonstrates the feasibility of PRR gene transfer between monocotyledonous species and provides a valuable new tool for controlling the BXW pandemic of banana, a staple food for 100 million people in east Africa. PMID:24612254

  12. Populations of Xanthomonas citri pv. mangiferaeindicae from asymptomatic mango leaves are primarily endophytic.

    PubMed

    Pruvost, Olivier; Savelon, Caroline; Boyer, Claudine; Chiroleu, Frédéric; Gagnevin, Lionel; Jacques, Marie-Agnès

    2009-07-01

    Epiphytic survival of several Xanthomonas pathovars has been reported, but most studies failed to determine whether such populations were resident epiphytes, resulting from latent infections, or casual epiphytes. This study aimed at understanding the nature of Xanthomonas citri pv. mangiferaeindicae populations associated with asymptomatic leaves. When spray-inoculated on mango leaves cv. Maison Rouge, the pathogen multiplied markedly in association with juvenile leaves, but was most often detected as low population sizes (<1 x 10(3) cfu g(-1)) in association with mature leaves. Our results suggest a very low biological significance of biofilm-associated populations of X. citri pv. mangiferaeindicae, while saprophytic microbiota associated with mango leaves survived frequently as biofilms. A chloroform vapor-based disinfestation assay which kills cells specifically located on the leaf surface and not those located within the leaf mesophyll was developed. When applied to spray-inoculated leaves maintained under controlled environmental conditions, 155 out of the 168 analyzed datasets collected over three assessment dates for seven bacterial strains representative of the genetic diversity of the pathogen failed to demonstrate a significant X. citri pv. mangiferaeindicae population decrease on chloroform treated leaves up to 13 days after inoculation. We conclude that an efficient survival of X. citri pv. mangiferaeindicae present on mango leaf surfaces following a limited dissemination event is largely dependent on the availability of juvenile plant tissues. The bacterium gains access to protected sites (e.g., mesophyll) through stomata where it becomes endophytic and eventually causes disease. Chloroform vapor-based disinfestation assays should be useful for further studies aiming at evaluating survival sites of bacteria associated with the phyllosphere.

  13. A TALE of transposition: Tn3-like transposons play a major role in the spread of pathogenicity determinants of Xanthomonas citri and other xanthomonads.

    PubMed

    Ferreira, Rafael Marini; de Oliveira, Amanda Carolina P; Moreira, Leandro M; Belasque, José; Gourbeyre, Edith; Siguier, Patricia; Ferro, Maria Inês T; Ferro, Jesus A; Chandler, Michael; Varani, Alessandro M

    2015-02-17

    Xanthomonas. We propose that several transposition events mediated by a Tn3-like element carrying different sets of passenger genes, such as different type III secretion system effectors (including transcription activation-like effectors [TALEs]), were determinant in the evolution and emergence of Xanthomonas pathogenicity. TALE genes are DNA-binding effectors that modulate plant transcription. We also present a model for generating TALE gene diversity based on fork slippage associated with the replicative transposition mechanism of Tn3-like transposons. This may provide a mechanism for niche adaptation, specialization, host-switching, and other lifestyle changes. These results will also certainly lead to novel insights into the evolution and emergence of the various diseases caused by different Xanthomonas species and pathovars. Copyright © 2015 Marini Ferreira et al.

  14. The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance

    PubMed Central

    Liu, Dongfeng; Chen, Xujun; Liu, Jiqin; Ye, Jianchun; Guo, Zejian

    2012-01-01

    Rice OsERF922, encoding an APETELA2/ethylene response factor (AP2/ERF) type transcription factor, is rapidly and strongly induced by abscisic acid (ABA) and salt treatments, as well as by both virulent and avirulent pathovars of Magnaporthe oryzae, the causal agent of rice blast disease. OsERF922 is localized to the nucleus, binds specifically to the GCC box sequence, and acts as a transcriptional activator in plant cells. Knockdown of OsERF922 by means of RNAi enhanced resistance against M. oryzae. The elevated disease resistance of the RNAi plants was associated with increased expression of PR, PAL, and the other genes encoding phytoalexin biosynthetic enzymes and without M. oryzae infection. In contrast, OsERF922-overexpressing plants showed reduced expression of these defence-related genes and enhanced susceptibility to M. oryzae. In addition, the OsERF922-overexpressing lines exhibited decreased tolerance to salt stress with an increased Na+/K+ ratio in the shoots. The ABA levels were found increased in the overexpressing lines and decreased in the RNAi plants. Expression of the ABA biosynthesis-related genes, 9-cis-epoxycarotenoid dioxygenase (NCED) 3 and 4, was upregulated in the OsERF922-overexpressing plants, and NCED4 was downregulated in the RNAi lines. These results suggest that OsERF922 is integrated into the cross-talk between biotic and abiotic stress-signalling networks perhaps through modulation of the ABA levels. PMID:22442415

  15. Identification of the protein sequence of the type III effector XopD from the B100 strain of Xanthomonas campestris pv campestris

    PubMed Central

    Canonne, Joanne; Pichereaux, Carole; Marino, Daniel; Roby, Dominique; Rossignol, Michel; Rivas, Susana

    2012-01-01

    During evolution, pathogens have developed sophisticated strategies to suppress plant defense responses and promote successful colonization of their hosts. In their attempt to quell host resistance, Gram-negative phytopathogenic bacteria inject type III effectors (T3Es) into plant cells, where they typically target plant components essential for the establishment of defense responses. We have recently shown that the XopD T3E from the strain B100 of Xanthomonas campestris pathovar campestris (XopDXccB100) is able to target AtMYB30, a positive regulator of Arabidopsis defense responses. This protein interaction leads to inhibition of AtMYB30 transcriptional activity and promotion of bacterial virulence. Here, we describe the identification of the complete protein sequence of XopDXccB100, which presents an N-terminal extension of 40 amino acids with respect to the protein annotated in public databases. The implications of this finding are discussed. PMID:22353870

  16. Development of a versatile tool for the simultaneous differential detection of Pseudomonas savastanoi pathovars by End Point and Real-Time PCR

    PubMed Central

    2010-01-01

    Background Pseudomonas savastanoi pv. savastanoi is the causal agent of olive knot disease. The strains isolated from oleander and ash belong to the pathovars nerii and fraxini, respectively. When artificially inoculated, pv. savastanoi causes disease also on ash, and pv. nerii attacks also olive and ash. Surprisingly nothing is known yet about their distribution in nature on these hosts and if spontaneous cross-infections occur. On the other hand sanitary certification programs for olive plants, also including P. savastanoi, were launched in many countries. The aim of this work was to develop several PCR-based tools for the rapid, simultaneous, differential and quantitative detection of these P. savastanoi pathovars, in multiplex and in planta. Results Specific PCR primers and probes for the pathovars savastanoi, nerii and fraxini of P. savastanoi were designed to be used in End Point and Real-Time PCR, both with SYBR® Green or TaqMan® chemistries. The specificity of all these assays was 100%, as assessed by testing forty-four P. savastanoi strains, belonging to the three pathovars and having different geographical origins. For comparison strains from the pathovars phaseolicola and glycinea of P. savastanoi and bacterial epiphytes from P. savastanoi host plants were also assayed, and all of them tested always negative. The analytical detection limits were about 5 - 0.5 pg of pure genomic DNA and about 102 genome equivalents per reaction. Similar analytical thresholds were achieved in Multiplex Real-Time PCR experiments, even on artificially inoculated olive plants. Conclusions Here for the first time a complex of PCR-based assays were developed for the simultaneous discrimination and detection of P. savastanoi pv. savastanoi, pv. nerii and pv. fraxini. These tests were shown to be highly reliable, pathovar-specific, sensitive, rapid and able to quantify these pathogens, both in multiplex reactions and in vivo. Compared with the other methods already available

  17. Classification of Plant Associated Bacteria Using RIF, a Computationally Derived DNA Marker

    PubMed Central

    Schneider, Kevin L.; Marrero, Glorimar; Alvarez, Anne M.; Presting, Gernot G.

    2011-01-01

    A DNA marker that distinguishes plant associated bacteria at the species level and below was derived by comparing six sequenced genomes of Xanthomonas, a genus that contains many important phytopathogens. This DNA marker comprises a portion of the dnaA replication initiation factor (RIF). Unlike the rRNA genes, dnaA is a single copy gene in the vast majority of sequenced bacterial genomes, and amplification of RIF requires genus-specific primers. In silico analysis revealed that RIF has equal or greater ability to differentiate closely related species of Xanthomonas than the widely used ribosomal intergenic spacer region (ITS). Furthermore, in a set of 263 Xanthomonas, Ralstonia and Clavibacter strains, the RIF marker was directly sequenced in both directions with a success rate approximately 16% higher than that for ITS. RIF frameworks for Xanthomonas, Ralstonia and Clavibacter were constructed using 682 reference strains representing different species, subspecies, pathovars, races, hosts and geographic regions, and contain a total of 109 different RIF sequences. RIF sequences showed subspecific groupings but did not place strains of X. campestris or X. axonopodis into currently named pathovars nor R. solanacearum strains into their respective races, confirming previous conclusions that pathovar and race designations do not necessarily reflect genetic relationships. The RIF marker also was sequenced for 24 reference strains from three genera in the Enterobacteriaceae: Pectobacterium, Pantoea and Dickeya. RIF sequences of 70 previously uncharacterized strains of Ralstonia, Clavibacter, Pectobacterium and Dickeya matched, or were similar to, those of known reference strains, illustrating the utility of the frameworks to classify bacteria below the species level and rapidly match unknown isolates to reference strains. The RIF sequence frameworks are available at the online RIF database, RIFdb, and can be queried for diagnostic purposes with RIF sequences obtained

  18. HrpE3 is a type III effector protein required for full virulence of Xanthomonas oryzae pv. oryzicola in rice.

    PubMed

    Cui, Yiping; Zou, Lifang; Zou, Huasong; Li, Yurong; Zakria, Muhammad; Chen, Gongyou

    2013-09-01

    Xanthomonas oryzae pv. oryzicola (Xoc) is the causal agent of bacterial leaf streak, a devastating disease in rice. Xoc uses a type III secretion (T3S) system, which is encoded by the hrp-hrc-hpa (hypersensitive response and pathogenicity, hrp-conserved and hrp-associated) genes, to inject repertoires of T3S effectors (T3Es) into plant cells. Many of the hrp-hrc-hpa genes have roles in pathogenesis, but the role of hrpE3, which shows homology to hpaE in X. campestris pv. vesicatoria (Xcv), is poorly understood. In this study, hrpE3 was shown to be transcribed independent of the hrpD operon, and its expression was dependent on a promoter within hpaB. The expression of hrpE3 was positively regulated by HrpG and HrpX, a finding probably caused by an imperfect plant-inducible promoter (PIP) box (TTCGT-N16 -TTCGA) in the hrpE3 promoter. The secretion of HrpE3 was dependent on T3S, and subcellular localization of HrpE3 was cytoplasmic and nuclear in plant cells. A mutation in hrpE3 reduced the virulence of Xoc by decreasing disease lesion length and bacterial growth in planta. Full virulence was restored to the mutant when Xoc hrpE3, but not Xcv hpaE, was expressed in trans. The differences in transcription, secretion via the T3S system and bacterial virulence in plants were attributed to N-terminal amino acid differences between Xoc HrpE3 and Xcv HpaE. Collectively, the results demonstrate that hrpE3 encodes a T3E protein which is delivered into the plant cell through the T3S system, localizes to the cytoplasm and nucleus, and is required for full virulence in rice. © 2013 BSPP AND JOHN WILEY & SONS LTD.

  19. Evolutionary History of the Plant Pathogenic Bacterium Xanthomonas axonopodis

    PubMed Central

    Mhedbi-Hajri, Nadia; Hajri, Ahmed; Boureau, Tristan; Darrasse, Armelle; Durand, Karine; Brin, Chrystelle; Saux, Marion Fischer-Le; Manceau, Charles; Poussier, Stéphane; Pruvost, Olivier

    2013-01-01

    Deciphering mechanisms shaping bacterial diversity should help to build tools to predict the emergence of infectious diseases. Xanthomonads are plant pathogenic bacteria found worldwide. Xanthomonas axonopodis is a genetically heterogeneous species clustering, into six groups, strains that are collectively pathogenic on a large number of plants. However, each strain displays a narrow host range. We address the question of the nature of the evolutionary processes – geographical and ecological speciation – that shaped this diversity. We assembled a large collection of X. axonopodis strains that were isolated over a long period, over continents, and from various hosts. Based on the sequence analysis of seven housekeeping genes, we found that recombination occurred as frequently as point mutation in the evolutionary history of X. axonopodis. However, the impact of recombination was about three times greater than the impact of mutation on the diversity observed in the whole dataset. We then reconstructed the clonal genealogy of the strains using coalescent and genealogy approaches and we studied the diversification of the pathogen using a model of divergence with migration. The suggested scenario involves a first step of generalist diversification that spanned over the last 25 000 years. A second step of ecology-driven specialization occurred during the past two centuries. Eventually, secondary contacts between host-specialized strains probably occurred as a result of agricultural development and intensification, allowing genetic exchanges of virulence-associated genes. These transfers may have favored the emergence of novel pathotypes. Finally, we argue that the largest ecological entity within X. axonopodis is the pathovar. PMID:23505513

  20. Pan-Genomic Analysis Permits Differentiation of Virulent and Non-virulent Strains of Xanthomonas arboricola That Cohabit Prunus spp. and Elucidate Bacterial Virulence Factors

    PubMed Central

    Garita-Cambronero, Jerson; Palacio-Bielsa, Ana; López, María M.; Cubero, Jaime

    2017-01-01

    Xanthomonas arboricola is a plant-associated bacterial species that causes diseases on several plant hosts. One of the most virulent pathovars within this species is X. arboricola pv. pruni (Xap), the causal agent of bacterial spot disease of stone fruit trees and almond. Recently, a non-virulent Xap-look-a-like strain isolated from Prunus was characterized and its genome compared to pathogenic strains of Xap, revealing differences in the profile of virulence factors, such as the genes related to the type III secretion system (T3SS) and type III effectors (T3Es). The existence of this atypical strain arouses several questions associated with the abundance, the pathogenicity, and the evolutionary context of X. arboricola on Prunus hosts. After an initial characterization of a collection of Xanthomonas strains isolated from Prunus bacterial spot outbreaks in Spain during the past decade, six Xap-look-a-like strains, that did not clustered with the pathogenic strains of Xap according to a multi locus sequence analysis, were identified. Pathogenicity of these strains was analyzed and the genome sequences of two Xap-look-a-like strains, CITA 14 and CITA 124, non-virulent to Prunus spp., were obtained and compared to those available genomes of X. arboricola associated with this host plant. Differences were found among the genomes of the virulent and the Prunus non-virulent strains in several characters related to the pathogenesis process. Additionally, a pan-genomic analysis that included the available genomes of X. arboricola, revealed that the atypical strains associated with Prunus were related to a group of non-virulent or low virulent strains isolated from a wide host range. The repertoire of the genes related to T3SS and T3Es varied among the strains of this cluster and those strains related to the most virulent pathovars of the species, corylina, juglandis, and pruni. This variability provides information about the potential evolutionary process associated to the

  1. A rare sugar, d-allose, confers resistance to rice bacterial blight with upregulation of defense-related genes in Oryza sativa.

    PubMed

    Kano, Akihito; Gomi, Kenji; Yamasaki-Kokudo, Yumiko; Satoh, Masaru; Fukumoto, Takeshi; Ohtani, Kouhei; Tajima, Shigeyuki; Izumori, Ken; Tanaka, Keiji; Ishida, Yutaka; Tada, Yasuomi; Nishizawa, Yoko; Akimitsu, Kazuya

    2010-01-01

    We investigated responses of rice plant to three rare sugars, d-altrose, d-sorbose, and d-allose, due to establishment of mass production methods for these rare sugars. Root growth and shoot growth were significantly inhibited by d-allose but not by the other rare sugars. A large-scale gene expression analysis using a rice microarray revealed that d-allose treatment causes a high upregulation of many defense-related, pathogenesis-related (PR) protein genes in rice. The PR protein genes were not upregulated by other rare sugars. Furthermore, d-allose treatment of rice plants conferred limited resistance of the rice against the pathogen Xanthomonas oryzae pv. oryzae but the other tested sugars did not. These results indicate that d-allose has a growth inhibitory effect but might prove to be a candidate elicitor for reducing disease development in rice.

  2. Pathovars of Pseudomonas syringae Causing Bacterial Brown Spot and Halo Blight in Phaseolus vulgaris L. Are Distinguishable by Ribotyping

    PubMed Central

    González, Ana J.; Landeras, Elena; Mendoza, M. Carmen

    2000-01-01

    Ribotyping was evaluated as a method to differentiate between Pseudomonas syringae pv. phaseolicola and pv. syringae strains causing bacterial brown spot and halo blight diseases in Phaseolus vulgaris L. Ribotyping, with restriction enzymes BglI and SalI and using the Escherichia coli rrnB operon as the probe, differentiated 11 and 14 ribotypes, respectively, and a combination of data from both procedures yielded 19 combined ribotypes. Cluster analysis of the combined ribotypes differentiated the pathovars phaseolicola and syringae, as well as different clonal lineages within these pathovars. The potential of ribotyping to screen for correlations between lineages and factors such as geographical region and/or bean varieties is also reported. PMID:10653764

  3. Molecular Properties of Salmonella enterica Serotype Paratyphi B Distinguish between Its Systemic and Its Enteric Pathovars

    PubMed Central

    Prager, Rita; Rabsch, Wolfgang; Streckel, Wiebke; Voigt, Wolfgang; Tietze, Erhardt; Tschäpe, Helmut

    2003-01-01

    Salmonella enterica serotype O1,4,5,12:Hb:1,2, designated according to the current Kauffmann-White scheme as S. enterica serotype Paratyphi B, is a very diverse serotype with respect to its clinical and microbiological properties. PCR and blot techniques, which identify the presence, polymorphism, and expression of various effector protein genes, help to distinguish between strains with systemic and enteric outcomes of disease. All serotype Paratyphi B strains from systemic infections have been found to be somewhat genetically related with respect to the pattern of their virulence genes sopB, sopD, sopE1, avrA, and sptP as well as other molecular properties (multilocus enzyme electrophoresis type, pulsed-field gel electrophoresis [PFGE] type, ribotype, and IS200 type). They have been classified as members of the systemic pathovar (SPV). All these SPV strains possess a new sopE1-carrying bacteriophage (designated ΦSopE309) with high SopE1 protein expression but lack the commonly occurring avrA determinant. They exhibit normal SopB protein expression but lack SopD protein production. In contrast, strains from enteric infections classified as belonging to the enteric pathovar possess various combinations of the respective virulence genes, PFGE pattern, and ribotypes. We propose that the PCR technique for testing for the presence of the virulence genes sopE1 and avrA be used as a diagnostic tool for identifying both pathovars of S. enterica serotype Paratyphi B. This will be of great public health importance, since strains of serotype Paratyphi B have recently reemerged worldwide. PMID:12958256

  4. High-Resolution Melting Analysis as a Powerful Tool to Discriminate and Genotype Pseudomonas savastanoi Pathovars and Strains

    PubMed Central

    Gori, Andrea; Cerboneschi, Matteo; Tegli, Stefania

    2012-01-01

    Pseudomonas savastanoi is a serious pathogen of Olive, Oleander, Ash, and several other Oleaceae. Its epiphytic or endophytic presence in asymptomatic plants is crucial for the spread of Olive and Oleander knot disease, as already ascertained for P. savastanoi pv. savastanoi (Psv) on Olive and for pv. nerii (Psn) on Oleander, while no information is available for pv. fraxini (Psf) on Ash. Nothing is known yet about the distribution on the different host plants and the real host range of these pathovars in nature, although cross-infections were observed following artificial inoculations. A multiplex Real-Time PCR assay was recently developed to simultaneously and quantitatively discriminate in vitro and in planta these P. savastanoi pathovars, for routine culture confirmation and for epidemiological and diagnostical studies. Here an innovative High-Resolution Melting Analysis (HRMA)-based assay was set up to unequivocally discriminate Psv, Psn and Psf, according to several single nucleotide polymorphisms found in their Type Three Secretion System clusters. The genetic distances among 56 P. savastanoi strains belonging to these pathovars were also evaluated, confirming and refining data previously obtained by fAFLP. To our knowledge, this is the first time that HRMA is applied to a bacterial plant pathogen, and one of the few multiplex HRMA-based assays developed so far. This protocol provides a rapid, sensitive, specific tool to differentiate and detect Psv, Psn and Psf strains, also in vivo and against other related bacteria, with lower costs than conventional multiplex Real-Time PCR. Its application is particularly suitable for sanitary certification programs for P. savastanoi, aimed at avoiding the spreading of this phytopathogen through asymptomatic plants. PMID:22295075

  5. A Highly-Conserved Single-Stranded DNA-Binding Protein in Xanthomonas Functions as a Harpin-Like Protein to Trigger Plant Immunity

    PubMed Central

    Che, Yi-Zhou; Zou, Li-Fang; Zakria, Muhammad; Zou, Hua-Song; Chen, Gong-You

    2013-01-01

    Harpins are produced by Gram-negative phytopathogenic bacteria and typically elicit hypersensitive response (HR) in non-host plants. The characterization of harpins in Xanthomonas species is largely unexplored. Here we demonstrate that Xanthomonas produce a highly conserved single-stranded DNA-binding protein (SSBX) that elicits HR in tobacco as by harpin Hpa1. SSBX, like Hpa1, is an acidic, glycine-rich, heat-stable protein that lacks cysteine residues. SSBX-triggered HR in tobacco, as by Hpa1, is characterized by the oxidative burst, the expression of HR markers (HIN1, HSR203J), pathogenesis-related genes, and callose deposition. Both SSBX- and Hpa1-induced HRs can be inhibited by general metabolism inhibitors actinomycin D, cycloheximide, and lanthanum chloride. Furthermore, those HRs activate the expression of BAK1 and BIK1 genes that are essential for induction of mitogen-activated protein kinase (MAPK) and salicylic acid pathways. Once applied to plants, SSBX induces resistance to the fungal pathogen Alternaria alternata and enhances plant growth. When ssbX was deleted in X. oryzae pv. oryzicola, the causal agent of bacterial leaf streak in rice, the resulting ssbXoc mutant was reduced in virulence and bacterial growth in planta, but retained its ability to trigger HR in tobacco. Interestingly, ssbXoc contains an imperfect PIP-box (plant-inducible promoter) and the expression of ssbXoc is regulated by HrpX, which belongs to the AraC family of transcriptional activators. Immunoblotting evidence showed that SSBx secretion requires a functional type-III secretion system as Hpa1 does. This is the first report demonstrating that Xanthomonas produce a highly-conserved SSBX that functions as a harpin-like protein for plant immunity. PMID:23418541

  6. Development and validation of a real-time quantitative PCR assay to detect Xanthomonas axonopodis pv. allii from onion seed.

    PubMed

    Robène, Isabelle; Perret, Marion; Jouen, Emmanuel; Escalon, Aline; Maillot, Marie-Véronique; Chabirand, Aude; Moreau, Aurélie; Laurent, Annie; Chiroleu, Frédéric; Pruvost, Olivier

    2015-07-01

    Bacterial blight of onion is an emerging disease threatening world onion production. The causal agent Xanthomonas axonopodis pv. allii is seed transmitted and a reliable and sensitive tool is needed to monitor seed exchanges. A triplex quantitative real-time PCR assay was developed targeting two X. axonopodis pv. allii-specific markers and an internal control chosen in 5.8S rRNA gene from Alliaceae. Amplification of at least one marker indicates the presence of the bacterium in seed extracts. This real-time PCR assay detected all the 79 X. axonopodis pv. allii strains tested and excluded 85.2% of the 135 non-target strains and particularly all 39 saprophytic and pathogenic bacteria associated with onion. Cross-reactions were mainly obtained for strains assigned to nine phylogenetically related X. axonopodis pathovars. The cycle cut-off was estimated statistically at 36.3 considering a risk of false positive of 1%. The limit of detection obtained in at least 95% of the time (LOD 95%) was 5×10(3) CFU/g (colony forming unit/g). The sensitivity threshold was found to be 1 infected seed in 32,790 seeds. This real-time PCR assay should be useful for preventing the long-distance spread of X. axonopodis pv. allii via contaminated seed lots and determining the epidemiology of the bacterium. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Thickening compositions containing xanthomonas gum and hydroxyalkyl ether of guar gum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, W.A.

    1973-07-24

    Natural and synthetic gums have been used as thickeners for foods, coatings, paints, dyes, explosive slurries, oil-well fluids, and many other applications. Thickening compositions are described which consist of xanthomonas gum and hydroxyalkyl ether of guar gum and are suitable for use in explosive slurries. Aqueous sols of xanthomonas gum are plastic in nature and exhibit higher gel strengths than sols of other gums. Aqueous sols of hydroxyalkyl ether of guar are almost Newtonian and exhibit little or no gel strength. Aqueous sols of the thickening compositions of the present invention are plastic in character. At certain concentrations of themore » thickening compositions in aqueous sols, the sols have higher gel strengths than can be obtained from xanthomonas gum alone. At certain concentrations, the aqueous sols containing the thickening compositions exhibit greater viscosity differentials than do sols containing xanthomonas gum alone. In addition, the aqueous sols exhibit a greater drop in viscosity as the thickening composition concentration is reduced than do aqueous sols of xanthomonas gum alone.(5 claims)« less

  8. Analysis of nucleotide diversity among alleles of the major bacterial blight resistance gene Xa27 in cultivars of rice (Oryza sativa) and its wild relatives.

    PubMed

    Bimolata, Waikhom; Kumar, Anirudh; Sundaram, Raman Meenakshi; Laha, Gouri Shankar; Qureshi, Insaf Ahmed; Reddy, Gajjala Ashok; Ghazi, Irfan Ahmad

    2013-08-01

    Xa27 is one of the important R-genes, effective against bacterial blight disease of rice caused by Xanthomonas oryzae pv. oryzae (Xoo). Using natural population of Oryza, we analyzed the sequence variation in the functionally important domains of Xa27 across the Oryza species. DNA sequences of Xa27 alleles from 27 rice accessions revealed higher nucleotide diversity among the reported R-genes of rice. Sequence polymorphism analysis revealed synonymous and non-synonymous mutations in addition to a number of InDels in non-coding regions of the gene. High sequence variation was observed in the promoter region including the 5'UTR with 'π' value 0.00916 and 'θ w ' = 0.01785. Comparative analysis of the identified Xa27 alleles with that of IRBB27 and IR24 indicated the operation of both positive selection (Ka/Ks > 1) and neutral selection (Ka/Ks ≈ 0). The genetic distances of alleles of the gene from Oryza nivara were nearer to IRBB27 as compared to IR24. We also found the presence of conserved and null UPT (upregulated by transcriptional activator) box in the isolated alleles. Considerable amino acid polymorphism was localized in the trans-membrane domain for which the functional significance is yet to be elucidated. However, the absence of functional UPT box in all the alleles except IRBB27 suggests the maintenance of single resistant allele throughout the natural population.

  9. Comparative analyses of Xanthomonas and Xylella complete genomes.

    PubMed

    Moreira, Leandro M; De Souza, Robson F; Digiampietri, Luciano A; Da Silva, Ana C R; Setubal, João C

    2005-01-01

    Computational analyses of four bacterial genomes of the Xanthomonadaceae family reveal new unique genes that may be involved in adaptation, pathogenicity, and host specificity. The Xanthomonas genus presents 3636 unique genes distributed in 1470 families, while Xylella genus presents 1026 unique genes distributed in 375 families. Among Xanthomonas-specific genes, we highlight a large number of cell wall degrading enzymes, proteases, and iron receptors, a set of energy metabolism genes, second copy of the type II secretion system, type III secretion system, flagella and chemotactic machinery, and the xanthomonadin synthesis gene cluster. Important genes unique to the Xylella genus are an additional copy of a type IV pili gene cluster and the complete machinery of colicin V synthesis and secretion. Intersections of gene sets from both genera reveal a cluster of genes homologous to Salmonella's SPI-7 island in Xanthomonas axonopodis pv citri and Xylella fastidiosa 9a5c, which might be involved in host specificity. Each genome also presents important unique genes, such as an HMS cluster, the kdgT gene, and O-antigen in Xanthomonas axonopodis pv citri; a number of avrBS genes and a distinct O-antigen in Xanthomonas campestris pv campestris, a type I restriction-modification system and a nickase gene in Xylella fastidiosa 9a5c, and a type II restriction-modification system and two genes related to peptidoglycan biosynthesis in Xylella fastidiosa temecula 1. All these differences imply a considerable number of gene gains and losses during the divergence of the four lineages, and are associated with structural genome modifications that may have a direct relation with the mode of transmission, adaptation to specific environments and pathogenicity of each organism.

  10. The release of alginate lyase from growing Pseudomonas syringae pathovar phaseolicola

    NASA Technical Reports Server (NTRS)

    Ott, C. M.; Day, D. F.; Koenig, D. W.; Pierson, D. L.

    2001-01-01

    Pseudomonas syringae pathovar phaseolicola, which produces alginate during stationary growth phase, displayed elevated extracellular alginate lyase activity during both mid-exponential and late-stationary growth phases of batch growth. Intracellular activity remained below 22% of the total activity during exponential growth, suggesting that alginate lyase has an extracellular function for this organism. Extracellular enzyme activity in continuous cultures, grown in either nutrient broth or glucose-simple salts medium, peaked at 60% of the washout rate, although nutrient broth-grown cultures displayed more than twice the activity per gram of cell mass. These results imply that growth rate, nutritional composition, or both initiate a release of alginate lyase from viable P. syringae pv. phaseolicola, which could modify its entrapping biofilm.

  11. The HD-GYP Domain Protein RpfG of Xanthomonas oryzae pv. oryzicola Regulates Synthesis of Extracellular Polysaccharides that Contribute to Biofilm Formation and Virulence on Rice

    PubMed Central

    Zhang, Yuanbao; Wei, Chao; Jiang, Wendi; Wang, Lei; Li, Churui; Wang, Yunyue; Dow, John Maxwell; Sun, Wenxian

    2013-01-01

    Bacterial leaf streak caused by Xanthomonas oryzae pv. oryzicola (Xoc) is one of the most important diseases in rice. However, little is known about the pathogenicity mechanisms of Xoc. Here we have investigated the function of three HD-GYP domain regulatory proteins in biofilm formation, the synthesis of virulence factors and virulence of Xoc. Deletion of rpfG resulted in altered production of extracellular polysaccharides (EPS), abolished virulence on rice and enhanced biofilm formation, but had little effect on the secretion of proteases and motility. In contrast, mutational analysis showed that the other two HD-GYP domain proteins had no effect on virulence factor synthesis and tested phenotypes. Mutation of rpfG led to up-regulation of the type III secretion system and altered expression of three putative glycosyltransferase genes gumD, pgaC and xagB, which are part of operons directing the synthesis of different extracellular polysaccharides. The pgaABCD and xagABCD operons were greatly up-regulated in the Xoc ΔrpfG mutant, whereas the expression of the gum genes was unaltered or slightly enhanced. The elevated biofilm formation of the Xoc ΔrpfG mutant was dramatically reduced upon deletion of gumD, xagA and xagB, but not when pgaA and pgaC were deleted. Interestingly, only the ΔgumD mutant, among these single gene mutants, exhibits multiple phenotype alterations including reduced biofilm and EPS production and attenuated virulence on rice. These data indicate that RpfG is a global regulator that controls biofilm formation, EPS production and bacterial virulence in Xoc and that both gumD- and xagB-dependent EPS contribute to biofilm formation under different conditions. PMID:23544067

  12. A novel bacterial blight resistance gene from Oryza nivara mapped to 38 kb region on chromosome 4L and transferred to Oryza sativa L.

    PubMed

    Cheema, Kuljit K; Grewal, Navjit K; Vikal, Yogesh; Sharma, Rajiv; Lore, Jagjeet S; Das, Aparna; Bhatia, Dharminder; Mahajan, Ritu; Gupta, Vikas; Bharaj, Tajinder S; Singh, Kuldeep

    2008-10-01

    Bacterial blight (BB) of rice caused by Xanthomonas oryzae pv oryzae (Xoo) is one of the major constraints to productivity in South-East Asia. The strategy of using major genes, singly or in combination, continues to be the most effective approach for BB management. Currently, more than two dozen genes have been designated but not all the known genes are effective against all the prevalent pathotypes. The challenge, therefore, is to continue to expand the gene pool of effective and potentially durable resistance genes. Wild species constitute an important reservoir of the resistance genes including BB. An accession of Oryza nivara (IRGC 81825) was found to be resistant to all the seven Xoo pathotypes prevalent in northern states of India. Inheritance and mapping of resistance in O. nivara was studied by using F2, BC2F2, BC3F1 and BC3F2 progenies of the cross involving Oryza sativa cv PR114 and the O. nivara acc. 81825 using the most virulent Xoo pathotype. Genetic analysis of the segregating progenies revealed that the BB resistance in O. nivara was conditioned by a single dominant gene. Bulked segregant analysis (BSA) of F2 population using 191 polymorphic SSR markers identified a approximately 35 centiMorgans (cM) chromosomal region on 4L, bracketed by RM317 and RM562, to be associated with BB resistance. Screening of BC3F1 and BC2F2 progenies and their genotyping with more than 30 polymorphic SSR markers in the region, covering Bacterial artificial chromosome (BAC) clone OSJNBb0085C12, led to mapping of the resistance gene between the STS markers based on annotated genes LOC_Os04g53060 and LOC_Os04g53120, which is approximately 38.4 kb. Since none of the known Xa genes, which are mapped on chromosome 4L, are effective against the Xoo pathotypes tested, the BB resistance gene identified and transferred from O. nivara is novel and is tentatively designated as Xa30(t). Homozygous resistant BC3F3 progenies with smallest introgression region have been identified.

  13. Specific detection of Xanthomonas axonopodis pv. dieffenbachiae in anthurium (Anthurium andreanum) tissues by nested PCR.

    PubMed

    Robène-Soustrade, Isabelle; Laurent, Philippe; Gagnevin, Lionel; Jouen, Emmanuel; Pruvost, Olivier

    2006-02-01

    Efficient control of Xanthomonas axonopodis pv. dieffenbachiae, the causal agent of anthurium bacterial blight, requires a sensitive and reliable diagnostic tool. A nested PCR test was developed from a sequence-characterized amplified region marker identified by randomly amplified polymorphic DNA PCR for the detection of X. axonopodis pv. dieffenbachiae. Serological and pathogenicity tests were performed concurrently with the nested PCR test with a large collection of X. axonopodis pv. dieffenbachiae strains that were isolated worldwide and are pathogenic to anthurium and/or other aroids. The internal primer pair directed amplification of the expected product (785 bp) for all 70 X. axonopodis pv. dieffenbachiae strains pathogenic to anthurium tested and for isolates originating from syngonium and not pathogenic to anthurium. This finding is consistent with previous studies which indicated that there is a high level of relatedness between strains from anthurium and strains from syngonium. Strains originating from the two host genera can be distinguished by restriction analysis of the amplification product. No amplification product was obtained with 98 strains of unrelated phytopathogenic bacteria or saprophytic bacteria from the anthurium phyllosphere, except for a weak signal obtained for one X. axonopodis pv. allii strain. Nevertheless, restriction enzyme analysis permitted the two pathovars to be distinguished. The detection threshold obtained with pure cultures or plant extracts (10(3) CFU ml(-1)) allowed detection of the pathogen from symptomless contaminated plants. This test could be a useful diagnostic tool for screening propagation stock plant material and for monitoring international movement of X. axonopodis pv. dieffenbachiae.

  14. Role of hydroperoxide lyase in white-backed planthopper (Sogatella furcifera Horváth)-induced resistance to bacterial blight in rice, Oryza sativa L.

    PubMed

    Gomi, Kenji; Satoh, Masaru; Ozawa, Rika; Shinonaga, Yumi; Sanada, Sachiyo; Sasaki, Katsutomo; Matsumura, Masaya; Ohashi, Yuko; Kanno, Hiroo; Akimitsu, Kazuya; Takabayashi, Junji

    2010-01-01

    A pre-infestation of the white-backed planthopper (WBPH), Sogatella furcifera Horváth, conferred resistance to bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) in rice (Oryza sativa L.) under both laboratory and field conditions. The infestation of another planthopper species, the brown planthopper (BPH) Nilaparvata lugens Stål, did not significantly reduce the incidence of bacterial blight symptoms. A large-scale screening using a rice DNA microarray and quantitative RT-PCR revealed that WBPH infestation caused the upregulation of more defence-related genes than did BPH infestation. Hydroperoxide lyase 2 (OsHPL2), an enzyme for producing C(6) volatiles, was upregulated by WBPH infestation, but not by BPH infestation. One C(6) volatile, (E)-2-hexenal, accumulated in rice after WBPH infestation, but not after BPH infestation. A direct application of (E)-2-hexenal to a liquid culture of Xoo inhibited the growth of the bacterium. Furthermore, a vapour treatment of rice plants with (E)-2-hexenal induced resistance to bacterial blight. OsHPL2-overexpressing transgenic rice plants exhibited increased resistance to bacterial blight. Based on these data, we conclude that OsHPL2 and its derived (E)-2-hexenal play some role in WBPH-induced resistance in rice.

  15. Antagonistic activity of Bacillus subtilis SB1 and its biocontrol effect on tomato bacterial wilt

    USDA-ARS?s Scientific Manuscript database

    A potential biocontrol agent of bacterial wilt, Bacillus subtilis SB1, isolated from tomato roots, showed a broad-spectrum of antimicrobial activity in in vitro experiments. It inhibited the growth of many plant pathogens, including Ralstonia solanacearum, Xanthomonas oryzae pv. oryzae, Fusarium ox...

  16. Comparative Large-Scale Analysis of Interactions between Several Crop Species and the Effector Repertoires from Multiple Pathovars of Pseudomonas and Ralstonia1[W][OA

    PubMed Central

    Wroblewski, Tadeusz; Caldwell, Katherine S.; Piskurewicz, Urszula; Cavanaugh, Keri A.; Xu, Huaqin; Kozik, Alexander; Ochoa, Oswaldo; McHale, Leah K.; Lahre, Kirsten; Jelenska, Joanna; Castillo, Jose A.; Blumenthal, Daniel; Vinatzer, Boris A.; Greenberg, Jean T.; Michelmore, Richard W.

    2009-01-01

    Bacterial plant pathogens manipulate their hosts by injection of numerous effector proteins into host cells via type III secretion systems. Recognition of these effectors by the host plant leads to the induction of a defense reaction that often culminates in a hypersensitive response manifested as cell death. Genes encoding effector proteins can be exchanged between different strains of bacteria via horizontal transfer, and often individual strains are capable of infecting multiple hosts. Host plant species express diverse repertoires of resistance proteins that mediate direct or indirect recognition of bacterial effectors. As a result, plants and their bacterial pathogens should be considered as two extensive coevolving groups rather than as individual host species coevolving with single pathovars. To dissect the complexity of this coevolution, we cloned 171 effector-encoding genes from several pathovars of Pseudomonas and Ralstonia. We used Agrobacterium tumefaciens-mediated transient assays to test the ability of each effector to induce a necrotic phenotype on 59 plant genotypes belonging to four plant families, including numerous diverse accessions of lettuce (Lactuca sativa) and tomato (Solanum lycopersicum). Known defense-inducing effectors (avirulence factors) and their homologs commonly induced extensive necrosis in many different plant species. Nonhost species reacted to multiple effector proteins from an individual pathovar more frequently and more intensely than host species. Both homologous and sequence-unrelated effectors could elicit necrosis in a similar spectrum of plants, suggesting common effector targets or targeting of the same pathways in the plant cell. PMID:19571308

  17. Comparative analysis of the XopD T3S effector family in plant pathogenic bacteria

    PubMed Central

    Kim, Jung-Gun; Taylor, Kyle W.; Mudgett, Mary Beth

    2011-01-01

    SUMMARY XopD is a type III effector protein that is required for Xanthomonas campestris pathovar vesicatoria (Xcv) growth in tomato. It is a modular protein consisting of an N-terminal DNA-binding domain, two EAR transcriptional repressor motifs, and a C-terminal SUMO protease. In tomato, XopD functions as a transcriptional repressor, resulting in the suppression of defense responses at late stages of infection. A survey of available genome sequences for phytopathogenic bacteria revealed that XopD homologs are limited to species within three Genera of Proteobacteria – Xanthomonas, Acidovorax, and Pseudomonas. While the EAR motif(s) and SUMO protease domain are conserved in all the XopD-like proteins, variation exists in the length and sequence identity of the N-terminal domains. Comparative analysis of the DNA sequences surrounding xopD and xopD-like genes led to revised annotation of the xopD gene. Edman degradation sequence analysis and functional complementation studies confirmed that the xopD gene from Xcv encodes a 760 amino acid protein with a longer N-terminal domain than previously predicted. None of the XopD-like proteins studied complemented Xcv ΔxopD mutant phenotypes in tomato leaves suggesting that the N-terminus of XopD defines functional specificity. Xcv ΔxopD strains expressing chimeric fusion proteins containing the N-terminus of XopD fused to the EAR motif(s) and SUMO protease domain of the XopD-like protein from Xanthomonas campestris pathovar campestris strain B100 were fully virulent in tomato demonstrating that the N-terminus of XopD controls specificity in tomato. PMID:21726373

  18. Biochemical and molecular tools reveal two diverse Xanthomonas groups in bananas.

    PubMed

    Adriko, J; Aritua, V; Mortensen, C N; Tushemereirwe, W K; Mulondo, A L; Kubiriba, J; Lund, O S

    2016-02-01

    Xanthomonas campestris pv. musacearum (Xcm) causing the banana Xanthomonas wilt (BXW) disease has been the main xanthomonad associated with bananas in East and Central Africa based on phenotypic and biochemical characteristics. However, biochemical methods cannot effectively distinguish between pathogenic and non-pathogenic xanthomonads. In this study, gram-negative and yellow-pigmented mucoid bacteria were isolated from BXW symptomatic and symptomless bananas collected from different parts of Uganda. Biolog, Xcm-specific (GspDm), Xanthomonas vasicola species-specific (NZ085) and Xanthomonas genus-specific (X1623) primers in PCR, and sequencing of ITS region were used to identify and characterize the isolates. Biolog tests revealed several isolates as xanthomonads. The GspDm and NZ085 primers accurately identified three isolates from diseased bananas as Xcm and these were pathogenic when re-inoculated into bananas. DNA from more isolates than those amplified by GspDm and NZ085 primers were amplified by the X1623 primers implying they are xanthomonads, these were however non-pathogenic on bananas. In the 16-23 ITS sequence based phylogeny, the pathogenic bacteria clustered together with the Xcm reference strain, while the non-pathogenic xanthomonads isolated from both BXW symptomatic and symptomless bananas clustered with group I xanthomonads. The findings reveal dynamic Xanthomonas populations in bananas, which can easily be misrepresented by only using phenotyping and biochemical tests. A combination of tools provides the most accurate identity and characterization of these plant associated bacteria. The interactions between the pathogenic and non-pathogenic xanthomonads in bananas may pave way to understanding effect of microbial interactions on BXW disease development and offer clues to biocontrol of Xcm. Copyright © 2016. Published by Elsevier GmbH.

  19. Xanthomonas prunicola sp. nov., a novel pathogen that affects nectarine (Prunus persica var. nectarina) trees.

    PubMed

    López, María M; Lopez-Soriano, Pablo; Garita-Cambronero, Jerson; Beltrán, Carmen; Taghouti, Geraldine; Portier, Perrine; Cubero, Jaime; Fischer-Le Saux, Marion; Marco-Noales, Ester

    2018-06-01

    Three isolates obtained from symptomatic nectarine trees (Prunus persica var. nectarina) cultivated in Murcia, Spain, which showed yellow and mucoid colonies similar to Xanthomonas arboricola pv. pruni, were negative after serological and real-time PCR analyses for this pathogen. For that reason, these isolates were characterized following a polyphasic approach that included both phenotypic and genomic methods. By sequence analysis of the 16S rRNA gene, these novel strains were identified as members of the genus Xanthomonas, and by multilocus sequence analysis (MLSA) they were clustered together in a distinct group that showed similarity values below 95 % with the rest of the species of this genus. Whole-genome comparisons of the average nucleotide identity (ANI) of genomes of the strains showed less than 91 % average nucleotide identity with all other species of the genus Xanthomonas. Additionally, phenotypic characterization based on API 20 NE, API 50 CH and BIOLOG tests differentiated the strains from the species of the genus Xanthomonas described previously. Moreover, the three strains were confirmed to be pathogenic on peach (Prunus persica), causing necrotic lesions on leaves. On the basis of these results, the novel strains represent a novel species of the genus Xanthomonas, for which the name Xanthomonas prunicola is proposed. The type strain is CFBP 8353 (=CECT 9404=IVIA 3287.1).

  20. Revealing the inventory of type III effectors in Pantoea agglomerans gall-forming pathovars using draft genome sequences and a machine-learning approach.

    PubMed

    Nissan, Gal; Gershovits, Michael; Morozov, Michael; Chalupowicz, Laura; Sessa, Guido; Manulis-Sasson, Shulamit; Barash, Isaac; Pupko, Tal

    2018-02-01

    Pantoea agglomerans, a widespread epiphytic bacterium, has evolved into a hypersensitive response and pathogenicity (hrp)-dependent and host-specific gall-forming pathogen by the acquisition of a pathogenicity plasmid containing a type III secretion system (T3SS) and its effectors (T3Es). Pantoea agglomerans pv. betae (Pab) elicits galls on beet (Beta vulgaris) and gypsophila (Gypsophila paniculata), whereas P. agglomerans pv. gypsophilae (Pag) incites galls on gypsophila and a hypersensitive response (HR) on beet. Draft genome sequences were generated and employed in combination with a machine-learning approach and a translocation assay into beet roots to identify the pools of T3Es in the two pathovars. The genomes of the sequenced Pab4188 and Pag824-1 strains have a similar size (∼5 MB) and GC content (∼55%). Mutational analysis revealed that, in Pab4188, eight T3Es (HsvB, HsvG, PseB, DspA/E, HopAY1, HopX2, HopAF1 and HrpK) contribute to pathogenicity on beet and gypsophila. In Pag824-1, nine T3Es (HsvG, HsvB, PthG, DspA/E, HopAY1, HopD1, HopX2, HopAF1 and HrpK) contribute to pathogenicity on gypsophila, whereas the PthG effector triggers HR on beet. HsvB, HsvG, PthG and PseB appear to endow pathovar specificities to Pab and Pag, and no homologous T3Es were identified for these proteins in other phytopathogenic bacteria. Conversely, the remaining T3Es contribute to the virulence of both pathovars, and homologous T3Es were found in other phytopathogenic bacteria. Remarkably, HsvG and HsvB, which act as host-specific transcription factors, displayed the largest contribution to disease development. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  1. Comparative genomics of a cannabis pathogen reveals insight into the evolution of pathogenicity in Xanthomonas

    PubMed Central

    Jacobs, Jonathan M.; Pesce, Céline; Lefeuvre, Pierre; Koebnik, Ralf

    2015-01-01

    Pathogenic bacteria in the genus Xanthomonas cause diseases on over 350 plant species, including cannabis (Cannabis sativa L.). Because of regulatory limitations, the biology of the Xanthomonas-cannabis pathosystem remains largely unexplored. To gain insight into the evolution of Xanthomonas strains pathogenic to cannabis, we sequenced the genomes of two geographically distinct Xanthomonas strains, NCPPB 3753 and NCPPB 2877, which were previously isolated from symptomatic plant tissue in Japan and Romania. Comparative multilocus sequence analysis of housekeeping genes revealed that they belong to Group 2, which comprises most of the described species of Xanthomonas. Interestingly, both strains lack the Hrp Type III secretion system and do not contain any of the known Type III effectors. Yet their genomes notably encode two key Hrp pathogenicity regulators HrpG and HrpX, and hrpG and hrpX are in the same genetic organization as in the other Group 2 xanthomonads. Promoter prediction of HrpX-regulated genes suggests the induction of an aminopeptidase, a lipase and two polygalacturonases upon plant colonization, similar to other plant-pathogenic xanthomonads. Genome analysis of the distantly related Xanthomonas maliensis strain 97M, which was isolated from a rice leaf in Mali, similarly demonstrated the presence of HrpG, HrpX, and a HrpX-regulated polygalacturonase, and the absence of the Hrp Type III secretion system and known Type III effectors. Given the observation that some Xanthomonas strains across distinct taxa do not contain hrpG and hrpX, we speculate a stepwise evolution of pathogenicity, which involves (i) acquisition of key regulatory genes and cell wall-degrading enzymes, followed by (ii) acquisition of the Hrp Type III secretion system, which is ultimately accompanied by (iii) successive acquisition of Type III effectors. PMID:26136759

  2. OryzaGenome: Genome Diversity Database of Wild Oryza Species.

    PubMed

    Ohyanagi, Hajime; Ebata, Toshinobu; Huang, Xuehui; Gong, Hao; Fujita, Masahiro; Mochizuki, Takako; Toyoda, Atsushi; Fujiyama, Asao; Kaminuma, Eli; Nakamura, Yasukazu; Feng, Qi; Wang, Zi-Xuan; Han, Bin; Kurata, Nori

    2016-01-01

    The species in the genus Oryza, encompassing nine genome types and 23 species, are a rich genetic resource and may have applications in deeper genomic analyses aiming to understand the evolution of plant genomes. With the advancement of next-generation sequencing (NGS) technology, a flood of Oryza species reference genomes and genomic variation information has become available in recent years. This genomic information, combined with the comprehensive phenotypic information that we are accumulating in our Oryzabase, can serve as an excellent genotype-phenotype association resource for analyzing rice functional and structural evolution, and the associated diversity of the Oryza genus. Here we integrate our previous and future phenotypic/habitat information and newly determined genotype information into a united repository, named OryzaGenome, providing the variant information with hyperlinks to Oryzabase. The current version of OryzaGenome includes genotype information of 446 O. rufipogon accessions derived by imputation and of 17 accessions derived by imputation-free deep sequencing. Two variant viewers are implemented: SNP Viewer as a conventional genome browser interface and Variant Table as a text-based browser for precise inspection of each variant one by one. Portable VCF (variant call format) file or tab-delimited file download is also available. Following these SNP (single nucleotide polymorphism) data, reference pseudomolecules/scaffolds/contigs and genome-wide variation information for almost all of the closely and distantly related wild Oryza species from the NIG Wild Rice Collection will be available in future releases. All of the resources can be accessed through http://viewer.shigen.info/oryzagenome/. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  3. AnnoTALE: bioinformatics tools for identification, annotation, and nomenclature of TALEs from Xanthomonas genomic sequences

    PubMed Central

    Grau, Jan; Reschke, Maik; Erkes, Annett; Streubel, Jana; Morgan, Richard D.; Wilson, Geoffrey G.; Koebnik, Ralf; Boch, Jens

    2016-01-01

    Transcription activator-like effectors (TALEs) are virulence factors, produced by the bacterial plant-pathogen Xanthomonas, that function as gene activators inside plant cells. Although the contribution of individual TALEs to infectivity has been shown, the specific roles of most TALEs, and the overall TALE diversity in Xanthomonas spp. is not known. TALEs possess a highly repetitive DNA-binding domain, which is notoriously difficult to sequence. Here, we describe an improved method for characterizing TALE genes by the use of PacBio sequencing. We present ‘AnnoTALE’, a suite of applications for the analysis and annotation of TALE genes from Xanthomonas genomes, and for grouping similar TALEs into classes. Based on these classes, we propose a unified nomenclature for Xanthomonas TALEs that reveals similarities pointing to related functionalities. This new classification enables us to compare related TALEs and to identify base substitutions responsible for the evolution of TALE specificities. PMID:26876161

  4. Characterization of the pigment xanthomonadin in the bacterial genus Xanthomonas using micro- and resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Paret, Mathews L.; Sharma, Shiv K.; Misra, Anupam K.; Acosta, Tayro; deSilva, Asoka S.; Vowell, Tomie; Alvarez, Anne M.

    2012-06-01

    We used micro- and resonance Raman spectroscopy with 785 nm and 514.5 nm laser excitation, respectively, to characterize a plant pathogenic bacteria, Xanthomonas axonopodis pv. dieffenbachiae D150. The bacterial genus Xathomonas is closely related to bacterial genus Stenotrophomonas that causes an infection in humans. This study has identified for the first time the unique Raman spectra of the carotenoid-like pigment xanthomonadin of the Xanthomonas strain. Xanthomonadin is a brominated aryl-polyene pigment molecule similar to carotenoids. Further studies were conducted using resonance Raman spectroscopy with 514.5 nm laser excitation on several strains of the bacterial genus Xanthomonas isolated from numerous plants from various geographical locations. The current study revealed that the Raman bands representing the vibrations (v1, v2, v3) of the polyene chain of xanthomonadin are 1003-1005 (v3), 1135-1138 (v2), and 1530 (v1). Overtone bands representing xanthomonadin were identified as 2264-2275 (2v2), and combinational bands at 2653-2662 (v1+ v2). The findings from this study validate our previous finding that the Raman fingerprints of xanthomonadin are unique for the genus Xanthomonas. This facilitates rapid identification (~5 minutes) of Xanthomonas spp. from bacterial culture plates. The xanthomonadin marker is different from Raman markers of many other bacterial genus including Agrobacterium, Bacillus, Clavibacter, Enterobacter, Erwinia, Microbacterium, Paenibacillus, and Ralstonia. This study also identified Xanthomonas spp. from bacterial strains isolated from a diseased wheat sample on a culture plate.

  5. Phylogenetic diversity of culturable endophytic fungi in Dongxiang wild rice (Oryza rufipogon Griff), detection of polyketide synthase gene and their antagonistic activity analysis.

    PubMed

    Wang, Ya; Gao, Bo Liang; Li, Xi Xi; Zhang, Zhi Bin; Yan, Ri Ming; Yang, Hui Lin; Zhu, Du

    2015-11-01

    The biodiversity of plant endophytic fungi is enormous, numerous competent endophytic fungi are capable of providing different forms of fitness benefits to host plants and also could produce a wide array of bioactive natural products, which make them a largely unexplored source of novel compounds with potential bioactivity. In this study, we provided a first insights into revealing the diversity of culturable endophytic fungi in Dongxiang wild rice (Oryza rufipogon Griff.) from China using rDNA-ITS phylogenetic analysis. Here, the potential of fungi in producing bioactive natural products was estimated based on the beta-ketosynthase detected in the polyketide synthase (PKS) gene cluster and on the bioassay of antagonistic activity against two rice phytopathogens Thanatephorus cucumeris and Xanthomonas oryzae. A total of 229 endophytic fungal strains were validated in 19 genera. Among the 24 representative strains, 13 strains displayedantagonistic activity against the phytopathogens. Furthermore, PKS genes were detected in 9 strains, indicating their potential for synthesising PKS compounds. Our study confirms the phylogenetic diversity of endophytic fungi in O. rufipogon G. and highlights that endophytic fungi are not only promising resources of biocontrol agents against phytopathogens of rice plants, but also of bioactive natural products and defensive secondary metabolites. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  6. The Brown Midrib Leaf (bml) Mutation in Rice (Oryza sativa L.) Causes Premature Leaf Senescence and the Induction of Defense Responses.

    PubMed

    Akhter, Delara; Qin, Ran; Nath, Ujjal Kumar; Alamin, Md; Jin, Xiaoli; Shi, Chunhai

    2018-04-09

    Isolating and characterizing mutants with altered senescence phenotypes is one of the ways to understand the molecular basis of leaf aging. Using ethyl methane sulfonate mutagenesis, a new rice ( Oryza sativa ) mutant, brown midrib leaf ( bml ), was isolated from the indica cultivar 'Zhenong34'. The bml mutants had brown midribs in their leaves and initiated senescence prematurely, at the onset of heading. The mutants had abnormal cells with degraded chloroplasts and contained less chlorophyll compared to the wild type (WT). The bml mutant showed excessive accumulation of reactive oxygen species (ROS), increased activities of superoxide dismutase, catalase, and malondialdehyde, upregulation of senescence-induced STAY-GREEN genes and senescence-related transcription factors, and down regulation of photosynthesis-related genes. The levels of abscisic acid (ABA) and jasmonic acid (JA) were increased in bml with the upregulation of some ABA and JA biosynthetic genes. In pathogen response, bml demonstrated higher resistance against Xanthomonas oryzae pv. oryzae and upregulation of four pathogenesis-related genes compared to the WT. A genetic study confirmed that the bml trait was caused by a single recessive nuclear gene ( BML ). A map-based cloning using insertion/deletion markers confirmed that BML was located in the 57.32kb interval between the L5IS7 and L5IS11 markers on the short arm of chromosome 5. A sequence analysis of the candidate region identified a 1 bp substitution (G to A) in the 5'-UTR (+98) of bml . BML is a candidate gene associated with leaf senescence, ROS regulation, and disease response, also involved in hormone signaling in rice. Therefore, this gene might be useful in marker-assisted backcrossing/gene editing to improve rice cultivars.

  7. Genomic and phenotypic characterization of Xanthomonas cynarae sp. nov., a new species that causes bacterial bract spot of artichoke (Cynara scolymus L.).

    PubMed

    Trébaol, G; Gardan, L; Manceau, C; Tanguy, J L; Tirilly, Y; Boury, S

    2000-07-01

    A bacterial disease of artichoke (Cynara scolymus L.) was first observed in 1954 in Brittany and the Loire Valley, France. This disease causes water-soaked spots on bracts and depreciates marketability of the harvest. Ten strains of the pathogen causing bacterial spot of artichoke, previously identified as a member of the genus Xanthomonas, were characterized and compared with type and pathotype strains of the 20 Xanthomonas species using a polyphasic study including both phenotypic and genomic methods. The ten strains presented general morphological, biochemical and physiological traits and G+C content characteristic of the genus Xanthomonas. Sequencing of the 165 rRNA gene confirmed that this bacterium belongs to the genus Xanthomonas, and more precisely to the Xanthomonas campestris core. DNA-DNA hybridization results showed that the strains that cause bacterial spot of artichoke were 92-100% related to the proposed type strain CFBP 4188T and constituted a discrete DNA homology group that was distinct from the 20 previously described Xanthomonas species. The results of numerical analysis were in accordance with DNA-DNA hybridization data. Strains causing the bacterial bract spot of artichoke exhibited consistent determinative biochemical characteristics, which distinguished them from the 20 other Xanthomonas species previously described. Furthermore, pathogenicity tests allowed specific identification of this new phytopathogenic bacterium. Thus, it is concluded that this bacterium is a new species belonging to the genus Xanthomonas, for which the name Xanthomonas cynarae is proposed. The type strain, CFBP 4188T, has been deposited in the Collection Française des Bactéries Phytopathogènes (CFBP).

  8. Ecological genomics in Xanthomonas: the nature of genetic adaptation with homologous recombination and host shifts.

    PubMed

    Huang, Chao-Li; Pu, Pei-Hua; Huang, Hao-Jen; Sung, Huang-Mo; Liaw, Hung-Jiun; Chen, Yi-Min; Chen, Chien-Ming; Huang, Ming-Ban; Osada, Naoki; Gojobori, Takashi; Pai, Tun-Wen; Chen, Yu-Tin; Hwang, Chi-Chuan; Chiang, Tzen-Yuh

    2015-03-15

    Comparative genomics provides insights into the diversification of bacterial species. Bacterial speciation usually takes place with lasting homologous recombination, which not only acts as a cohering force between diverging lineages but brings advantageous alleles favored by natural selection, and results in ecologically distinct species, e.g., frequent host shift in Xanthomonas pathogenic to various plants. Using whole-genome sequences, we examined the genetic divergence in Xanthomonas campestris that infected Brassicaceae, and X. citri, pathogenic to a wider host range. Genetic differentiation between two incipient races of X. citri pv. mangiferaeindicae was attributable to a DNA fragment introduced by phages. In contrast to most portions of the genome that had nearly equivalent levels of genetic divergence between subspecies as a result of the accumulation of point mutations, 10% of the core genome involving with homologous recombination contributed to the diversification in Xanthomonas, as revealed by the correlation between homologous recombination and genomic divergence. Interestingly, 179 genes were under positive selection; 98 (54.7%) of these genes were involved in homologous recombination, indicating that foreign genetic fragments may have caused the adaptive diversification, especially in lineages with nutritional transitions. Homologous recombination may have provided genetic materials for the natural selection, and host shifts likely triggered ecological adaptation in Xanthomonas. To a certain extent, we observed positive selection nevertheless contributed to ecological divergence beyond host shifting. Altogether, mediated with lasting gene flow, species formation in Xanthomonas was likely governed by natural selection that played a key role in helping the deviating populations to explore novel niches (hosts) or respond to environmental cues, subsequently triggering species diversification.

  9. Addition of transcription activator-like effector binding sites to a pathogen strain-specific rice bacterial blight resistance gene makes it effective against additional strains and against bacterial leaf streak.

    PubMed

    Hummel, Aaron W; Doyle, Erin L; Bogdanove, Adam J

    2012-09-01

    Xanthomonas transcription activator-like (TAL) effectors promote disease in plants by binding to and activating host susceptibility genes. Plants counter with TAL effector-activated executor resistance genes, which cause host cell death and block disease progression. We asked whether the functional specificity of an executor gene could be broadened by adding different TAL effector binding elements (EBEs) to it. We added six EBEs to the rice Xa27 gene, which confers resistance to strains of the bacterial blight pathogen Xanthomonas oryzae pv. oryzae (Xoo) that deliver the TAL effector AvrXa27. The EBEs correspond to three other effectors from Xoo strain PXO99(A) and three from strain BLS256 of the bacterial leaf streak pathogen Xanthomonas oryzae pv. oryzicola (Xoc). Stable integration into rice produced healthy lines exhibiting gene activation by each TAL effector, and resistance to PXO99(A) , a PXO99(A) derivative lacking AvrXa27, and BLS256, as well as two other Xoo and 10 Xoc strains virulent toward wildtype Xa27 plants. Transcripts initiated primarily at a common site. Sequences in the EBEs were found to occur nonrandomly in rice promoters, suggesting an overlap with endogenous regulatory sequences. Thus, executor gene specificity can be broadened by adding EBEs, but caution is warranted because of the possible coincident introduction of endogenous regulatory elements. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  10. Antagonistic, overlapping and distinct responses to biotic stress in rice (Oryza sativa) and interactions with abiotic stress

    PubMed Central

    2013-01-01

    Background Every year, substantial crop loss occurs globally, as a result of bacterial, fungal, parasite and viral infections in rice. Here, we present an in-depth investigation of the transcriptomic response to infection with the destructive bacterial pathogen Xanthomonas oryzae pv. oryzae(Xoo) in both resistant and susceptible varieties of Oryza sativa. A comparative analysis to fungal, parasite and viral infection in rice is also presented. Results Within 24 h of Xoo inoculation, significant reduction of cell wall components and induction of several signalling components, membrane bound receptor kinases and specific WRKY and NAC transcription factors was prominent, providing a framework for how the presence of this pathogen was signalled and response mounted. Extensive comparative analyses of various other pathogen responses, including in response to infection with another bacterium (Xoc), resistant and susceptible parasite infection, fungal, and viral infections, led to a proposed model for the rice biotic stress response. In this way, a conserved induction of calcium signalling functions, and specific WRKY and NAC transcription factors, was identified in response to all biotic stresses. Comparison of these responses to abiotic stress (cold, drought, salt, heat), enabled the identification of unique genes responsive only to bacterial infection, 240 genes responsive to both abiotic and biotic stress, and 135 genes responsive to biotic, but not abiotic stresses. Functional significance of a number of these genes, using genetic inactivation or over-expression, has revealed significant stress-associated phenotypes. While only a few antagonistic responses were observed between biotic and abiotic stresses, e.g. for a number of endochitinases and kinase encoding genes, some of these may be crucial in explaining greater pathogen infection and damage under abiotic stresses. Conclusions The analyses presented here provides a global view of the responses to multiple

  11. Complete Genome Sequences of Six Copper-Resistant Xanthomonas Strains Causing Bacterial Spot of Solaneous Plants, Belonging to X. gardneri, X. euvesicatoria, and X. vesicatoria, Using Long-Read Technology.

    PubMed

    Richard, Damien; Boyer, Claudine; Lefeuvre, Pierre; Canteros, Blanca I; Beni-Madhu, Shyam; Portier, Perrine; Pruvost, Olivier

    2017-02-23

    Xanthomonas vesicatoria , Xanthomonas euvesicatoria , and Xanthomonas gardneri cause bacterial spot disease. Copper has been applied since the 1920s as part of integrated management programs. The first copper-resistant strains were reported some decades later. Here, we fully sequenced six Xanthomonas strains pathogenic to tomato and/or pepper and having a copper-resistant phenotype. Copyright © 2017 Richard et al.

  12. Five Xanthomonas type III effectors suppress cell death induced by components of immunity-associated MAP kinase cascades

    PubMed Central

    Teper, Doron; Sunitha, Sukumaran; Martin, Gregory B; Sessa, Guido

    2015-01-01

    Mitogen-activated protein kinase (MAPK) cascades play a fundamental role in signaling of plant immunity and mediate elicitation of cell death. Xanthomonas spp. manipulate plant signaling by using a type III secretion system to deliver effector proteins into host cells. We examined the ability of 33 Xanthomonas effectors to inhibit cell death induced by overexpression of components of MAPK cascades in Nicotiana benthamiana plants. Five effectors inhibited cell death induced by overexpression of MAPKKKα and MEK2, but not of MAP3Kϵ. In addition, expression of AvrBs1 in yeast suppressed activation of the high osmolarity glycerol MAPK pathway, suggesting that the target of this effector is conserved in eukaryotic organisms. These results indicate that Xanthomonas employs several type III effectors to suppress immunity-associated cell death mediated by MAPK cascades. PMID:26237448

  13. Survival of Xanthomonas fragariae on common materials found in strawberry nurseries

    USDA-ARS?s Scientific Manuscript database

    Xanthomonas fragariae causes strawberry angular leaf spot, an important disease in strawberry nursery production. To identify potential inoculum sources, the ability of X. fragariae to survive was examined on 10 common materials typically associated with strawberry nurseries (cardboard, glass, latex...

  14. Molecular Characterization of Copper Resistance Genes from Xanthomonas citri subsp. citri and Xanthomonas alfalfae subsp. citrumelonis▿

    PubMed Central

    Behlau, Franklin; Canteros, Blanca I.; Minsavage, Gerald V.; Jones, Jeffrey B.; Graham, James H.

    2011-01-01

    Copper sprays have been widely used for control of endemic citrus canker caused by Xanthomonas citri subsp. citri in citrus-growing areas for more than 2 decades. Xanthomonas alfalfae subsp. citrumelonis populations were also exposed to frequent sprays of copper for several years as a protective measure against citrus bacterial spot (CBS) in Florida citrus nurseries. Long-term use of these bactericides has led to the development of copper-resistant (Cur) strains in both X. citri subsp. citri and X. alfalfae subsp. citrumelonis, resulting in a reduction of disease control. The objectives of this study were to characterize for the first time the genetics of copper resistance in X. citri subsp. citri and X. alfalfae subsp. citrumelonis and to compare these organisms to other Cur bacteria. Copper resistance determinants from X. citri subsp. citri strain A44(pXccCu2) from Argentina and X. alfalfae subsp. citrumelonis strain 1381(pXacCu2) from Florida were cloned and sequenced. Open reading frames (ORFs) related to the genes copL, copA, copB, copM, copG, copC, copD, and copF were identified in X. citri subsp. citri A44. The same ORFs, except copC and copD, were also present in X. alfalfae subsp. citrumelonis 1381. Transposon mutagenesis of the cloned copper resistance determinants in pXccCu2 revealed that copper resistance in X. citri subsp. citri strain A44 is mostly due to copL, copA, and copB, which are the genes in the cloned cluster with the highest nucleotide homology (≥92%) among different Cur bacteria. PMID:21515725

  15. Elusive Origins of the Extra Genes in Aspergillus oryzae

    PubMed Central

    Khaldi, Nora; Wolfe, Kenneth H.

    2008-01-01

    The genome sequence of Aspergillus oryzae revealed unexpectedly that this species has approximately 20% more genes than its congeneric species A. nidulans and A. fumigatus. Where did these extra genes come from? Here, we evaluate several possible causes of the elevated gene number. Many gene families are expanded in A. oryzae relative to A. nidulans and A. fumigatus, but we find no evidence of ancient whole-genome duplication or other segmental duplications, either in A. oryzae or in the common ancestor of the genus Aspergillus. We show that the presence of divergent pairs of paralogs is a feature peculiar to A. oryzae and is not shared with A. nidulans or A. fumigatus. In phylogenetic trees that include paralog pairs from A. oryzae, we frequently find that one of the genes in a pair from A. oryzae has the expected orthologous relationship with A. nidulans, A. fumigatus and other species in the subphylum Eurotiomycetes, whereas the other A. oryzae gene falls outside this clade but still within the Ascomycota. We identified 456 such gene pairs in A. oryzae. Further phylogenetic analysis did not however indicate a single consistent evolutionary origin for the divergent members of these pairs. Approximately one-third of them showed phylogenies that are suggestive of horizontal gene transfer (HGT) from Sordariomycete species, and these genes are closer together in the A. oryzae genome than expected by chance, but no unique Sordariomycete donor species was identifiable. The postulated HGTs from Sordariomycetes still leave the majority of extra A. oryzae genes unaccounted for. One possible explanation for our observations is that A. oryzae might have been the recipient of many separate HGT events from diverse donors. PMID:18725939

  16. Analysis of DNA methylation related to rice adult plant resistance to bacterial blight based on methylation-sensitive AFLP (MSAP) analysis.

    PubMed

    Sha, A H; Lin, X H; Huang, J B; Zhang, D P

    2005-07-01

    DNA methylation is known to play an important role in the regulation of gene expression in eukaryotes. The rice cultivar Wase Aikoku 3 becomes resistant to the blight pathogen Xanthomonas oryzae pv. oryzae at the adult stage. Using methylation-sensitive amplified polymorphism (MSAP) analysis, we compared the patterns of cytosine methylation in seedlings and adult plants of the rice cultivar Wase Aikoku 3 that had been inoculated with the pathogen Xanthomonas oryzae pv. oryzae, subjected to mock inoculation or left untreated. In all, 2000 DNA fragments, each representing a recognition site cleaved by either or both of two isoschizomers, were amplified using 60 pairs of selective primers. A total of 380 sites were found to be methylated. Of these, 45 showed differential cytosine methylation among the seedlings and adult plants subjected to different treatments, and overall levels of methylation were higher in adult plants than in seedlings. All polymorphic fragments were sequenced, and six showed homology to genes that code for products of known function. Northern analysis of three fragments indicated that their expression varied with methylation pattern, with hypermethylation being correlated with repression of transcription, as expected. The results suggest that significant differences in cytosine methylation exist between seedlings and adult plants, and that hypermethylation or hypomethylation of specific genes may be involved in the development of adult plant resistance (APR) in rice plants.

  17. Identification of a novel type III secretion-associated outer membrane-bound protein from Xanthomonas campestris pv. campestris

    PubMed Central

    Li, Lei; Li, Rui-Fang; Ming, Zhen-Hua; Lu, Guang-Tao; Tang, Ji-Liang

    2017-01-01

    Many bacterial pathogens employ the type III secretion system (T3SS) to translocate effector proteins into eukaryotic cells to overcome host defenses. To date, most of our knowledge about the T3SS molecular architecture comes from the studies on animal pathogens. In plant pathogens, nine Hrc proteins are believed to be structural components of the T3SS, of which HrcC and HrcJ form the outer and inner rings of the T3SS, respectively. Here, we demonstrated that a novel outer membrane-bound protein (HpaM) of Xanthomonas campestris pv. campestris is critical for the type III secretion and is structurally and functionally conserved in phytopathogenic Xanthomonas spp. We showed that the C-terminus of HpaM extends into the periplasm to interact physically with HrcJ and the middle part of HpaM interacts physically with HrcC. It is clear that the outer and inner rings compose the main basal body of the T3SS apparatus in animal pathogens. Therefore, we presume that HpaM may act as a T3SS structural component, or play a role in assisting assembling or affecting the stability of the T3SS apparatus. HpaM is a highly prevalent and specific protein in Xanthomonas spp., suggesting that the T3SS of Xanthomonas is distinctive in some aspects from other pathogens. PMID:28198457

  18. Advanced Copper Composites Against Copper-Tolerant Xanthomonas perforans and Tomato Bacterial Spot.

    PubMed

    Strayer-Scherer, A; Liao, Y Y; Young, M; Ritchie, L; Vallad, G E; Santra, S; Freeman, J H; Clark, D; Jones, J B; Paret, M L

    2018-02-01

    Bacterial spot, caused by Xanthomonas spp., is a widespread and damaging bacterial disease of tomato (Solanum lycopersicum). For disease management, growers rely on copper bactericides, which are often ineffective due to the presence of copper-tolerant Xanthomonas strains. This study evaluated the antibacterial activity of the new copper composites core-shell copper (CS-Cu), multivalent copper (MV-Cu), and fixed quaternary ammonium copper (FQ-Cu) as potential alternatives to commercially available micron-sized copper bactericides for controlling copper-tolerant Xanthomonas perforans. In vitro, metallic copper from CS-Cu and FQ-Cu at 100 μg/ml killed the copper-tolerant X. perforans strain within 1 h of exposure. In contrast, none of the micron-sized copper rates (100 to 1,000 μg/ml) from Kocide 3000 significantly reduced copper-tolerant X. perforans populations after 48 h of exposure compared with the water control (P < 0.05). All copper-based treatments killed the copper-sensitive X. perforans strain within 1 h. Greenhouse studies demonstrated that all copper composites significantly reduced bacterial spot disease severity when compared with copper-mancozeb and water controls (P < 0.05). Although there was no significant impact on yield, copper composites significantly reduced disease severity when compared with water controls, using 80% less metallic copper in comparison with copper-mancozeb in field studies (P < 0.05). This study highlights the discovery that copper composites have the potential to manage copper-tolerant X. perforans and tomato bacterial spot.

  19. Genomic insights into strategies used by Xanthomonas albilineans with its reduced artillery to spread within sugarcane xylem vessels.

    PubMed

    Pieretti, Isabelle; Royer, Monique; Barbe, Valérie; Carrere, Sébastien; Koebnik, Ralf; Couloux, Arnaud; Darrasse, Armelle; Gouzy, Jérôme; Jacques, Marie-Agnès; Lauber, Emmanuelle; Manceau, Charles; Mangenot, Sophie; Poussier, Stéphane; Segurens, Béatrice; Szurek, Boris; Verdier, Valérie; Arlat, Matthieu; Gabriel, Dean W; Rott, Philippe; Cociancich, Stéphane

    2012-11-21

    Xanthomonas albilineans causes leaf scald, a lethal disease of sugarcane. X. albilineans exhibits distinctive pathogenic mechanisms, ecology and taxonomy compared to other species of Xanthomonas. For example, this species produces a potent DNA gyrase inhibitor called albicidin that is largely responsible for inducing disease symptoms; its habitat is limited to xylem; and the species exhibits large variability. A first manuscript on the complete genome sequence of the highly pathogenic X. albilineans strain GPE PC73 focused exclusively on distinctive genomic features shared with Xylella fastidiosa-another xylem-limited Xanthomonadaceae. The present manuscript on the same genome sequence aims to describe all other pathogenicity-related genomic features of X. albilineans, and to compare, using suppression subtractive hybridization (SSH), genomic features of two strains differing in pathogenicity. Comparative genomic analyses showed that most of the known pathogenicity factors from other Xanthomonas species are conserved in X. albilineans, with the notable absence of two major determinants of the "artillery" of other plant pathogenic species of Xanthomonas: the xanthan gum biosynthesis gene cluster, and the type III secretion system Hrp (hypersensitive response and pathogenicity). Genomic features specific to X. albilineans that may contribute to specific adaptation of this pathogen to sugarcane xylem vessels were also revealed. SSH experiments led to the identification of 20 genes common to three highly pathogenic strains but missing in a less pathogenic strain. These 20 genes, which include four ABC transporter genes, a methyl-accepting chemotaxis protein gene and an oxidoreductase gene, could play a key role in pathogenicity. With the exception of hypothetical proteins revealed by our comparative genomic analyses and SSH experiments, no genes potentially involved in any offensive or counter-defensive mechanism specific to X. albilineans were identified, supposing

  20. Multiplexed lateral flow microarray assay for detection of citrus pathogens Xylella fastidiosa and Xanthomonas axonopodis pv citri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cary,; Bruce, R; Stubben, Christopher J

    The invention provides highly sensitive and specific assays for the major citrus pathogens Xylella fastidiosa and Xanthomonas axonopodis, including a field deployable multiplexed assay capable of rapidly assaying for both pathogens simultaneously. The assays are directed at particular gene targets derived from pathogenic strains that specifically cause the major citrus diseases of citrus variegated chlorosis (Xylella fastidiosa 9a5c) and citrus canker (Xanthomonas axonopodis pv citri). The citrus pathogen assays of the invention offer femtomole sensitivity, excellent linear dynamic range, and rapid and specific detection.

  1. A plant natriuretic peptide-like gene in the bacterial pathogen Xanthomonas axonopodis may induce hyper-hydration in the plant host: a hypothesis of molecular mimicry.

    PubMed

    Nembaware, Victoria; Seoighe, Cathal; Sayed, Muhammed; Gehring, Chris

    2004-03-24

    Plant natriuretic peptides (PNPs) are systemically mobile molecules that regulate homeostasis at nanomolar concentrations. PNPs are up-regulated under conditions of osmotic stress and PNP-dependent processes include changes in ion transport and increases of H2O uptake into protoplasts and whole tissue. The bacterial citrus pathogen Xanthomonas axonopodis pv. Citri str. 306 contains a gene encoding a PNP-like protein. We hypothesise that this bacterial protein can alter plant cell homeostasis and thus is likely to represent an example of molecular mimicry that enables the pathogen to manipulate plant responses in order to bring about conditions favourable to the pathogen such as the induced plant tissue hyper-hydration seen in the wet edged lesions associated with Xanthomonas axonopodis infection. We found a Xanthomonas axonopodis PNP-like protein that shares significant sequence similarity and identical domain organisation with PNPs. We also observed a significant excess of conserved residues between the two proteins within the domain previously identified as being sufficient to induce biological activity. Structural modelling predicts identical six stranded double-psi beta barrel folds for both proteins thus supporting the hypothesis of similar modes of action. No significant similarity between the Xanthomonas axonopodis protein and other bacterial proteins from GenBank was found. Sequence similarity of the Xanthomonas axonopodis PNP-like protein with the Arabidopsis thaliana PNP (AtPNP-A), shared domain organisation and incongruent phylogeny suggest that the PNP-gene may have been acquired by the bacteria in an ancient lateral gene transfer event. Finally, activity of a recombinant Xanthomonas axonopodis protein in plant tissue and changes in symptoms induced by a Xanthomonas axonopodis mutant with a knocked-out PNP-like gene will be experimental proof of molecular mimicry. If the hypothesis is true, it could at least in part explain why the citrus pathogen

  2. The RpfCG two-component system negatively regulates the colonization of sugar cane stalks by Xanthomonas albilineans.

    PubMed

    Rott, Philippe; Fleites, Laura A; Mensi, Imène; Sheppard, Lauren; Daugrois, Jean-Heinrich; Dow, J Maxwell; Gabriel, Dean W

    2013-06-01

    The genome of Xanthomonas albilineans, the causal agent of sugar cane leaf scald, carries a gene cluster encoding a predicted quorum sensing system that is highly related to the diffusible signalling factor (DSF) systems of the plant pathogens Xylella fastidiosa and Xanthomonas campestris. In these latter pathogens, a cluster of regulation of pathogenicity factors (rpf) genes encodes the DSF system and is involved in control of various cellular processes. Mutation of Xanthomonas albilineans rpfF, encoding a predicted DSF synthase, in Florida strain XaFL07-1 resulted in a small reduction of disease severity (DS). Single-knockout mutations of rpfC and rpfG (encoding a predicted DSF sensor and regulator, respectively) had no effect on DS or swimming motility of the pathogen. However, capacity of the pathogen to cause disease was slightly reduced and swimming motility was severely affected when rpfG and rpfC were both deleted. Similar results were obtained when the entire rpfGCF region was deleted. Surprisingly, when the pathogen was mutated in rpfG or rpfC (single or double mutations) it was able to colonize sugar cane spatially more efficiently than the wild-type. Mutation in rpfF alone did not affect the degree of spatial invasion. We conclude that the DSF signal contributes to symptom expression but not to invasion of sugar cane stalks by Xanthomonas albilineans strain XaFL07-1, which is mainly controlled by the RpfCG two-component system.

  3. Cell biology of the Koji mold Aspergillus oryzae.

    PubMed

    Kitamoto, Katsuhiko

    2015-01-01

    Koji mold, Aspergillus oryzae, has been used for the production of sake, miso, and soy sauce for more than one thousand years in Japan. Due to the importance, A. oryzae has been designated as the national micro-organism of Japan (Koku-kin). A. oryzae has been intensively studied in the past century, with most investigations focusing on breeding techniques and developing methods for Koji making for sake brewing. However, the understanding of fundamental biology of A. oryzae remains relatively limited compared with the yeast Saccharomyces cerevisiae. Therefore, we have focused on studying the cell biology including live cell imaging of organelles, protein vesicular trafficking, autophagy, and Woronin body functions using the available genomic information. In this review, I describe essential findings of cell biology of A. oryzae obtained in our study for a quarter of century. Understanding of the basic biology will be critical for not its biotechnological application, but also for an understanding of the fundamental biology of other filamentous fungi.

  4. Molecular recognition of avirulence protein (avrxa5) by eukaryotic transcription factor xa5 of rice (Oryza sativa L.): insights from molecular dynamics simulations.

    PubMed

    Dehury, Budheswar; Maharana, Jitendra; Sahoo, Bikash Ranjan; Sahu, Jagajjit; Sen, Priyabrata; Modi, Mahendra Kumar; Barooah, Madhumita

    2015-04-01

    The avirulence gene avrxa5 of bacterial blight pathogen Xanthomonas oryzae pv. oryzae (Xoo) recognized by the resistant rice lines having corresponding resistance (xa5) gene in a gene-for-gene manner. We used a combinatorial approach involving protein-protein docking, molecular dynamics (MD) simulations and binding free energy calculations to gain novel insights into the gene-for-gene mechanism that governs the direct interaction of R-Avr protein. From the best three binding poses predicted by molecular docking, MD simulations were performed to explore the dynamic binding mechanism of xa5 and avrxa5. Molecular Mechanics/Poisson Boltzmann Surface Area (MM/PBSA) techniques were employed to calculate the binding free energy and to uncover the thriving force behind the molecular recognition of avrxa5 by eukaryotic transcription factor xa5. Binding free energy analysis revealed van der Waals term as the most constructive component that favors the xa5 and avrxa5 interaction. In addition, hydrogen bonds (H-bonds) and essential electrostatic interactions analysis highlighted amino acid residues Lys54/Asp870, Lys56/Ala868, Lys56/Ala866, Lys56/Glu871, Ile59/His862, Gly61/Phe858, His62/Arg841, His62/Leu856, Ser101/Ala872 and Ser105/Asp870 plays pivotal role for the energetically stability of the R-Avr complex. Insights gained from the present study are expected to unveil the molecular mechanisms that define the transcriptional activator mediated transcriptome modification in host plants. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Improved annotation through genome-scale metabolic modeling of Aspergillus oryzae

    PubMed Central

    Vongsangnak, Wanwipa; Olsen, Peter; Hansen, Kim; Krogsgaard, Steen; Nielsen, Jens

    2008-01-01

    Background Since ancient times the filamentous fungus Aspergillus oryzae has been used in the fermentation industry for the production of fermented sauces and the production of industrial enzymes. Recently, the genome sequence of A. oryzae with 12,074 annotated genes was released but the number of hypothetical proteins accounted for more than 50% of the annotated genes. Considering the industrial importance of this fungus, it is therefore valuable to improve the annotation and further integrate genomic information with biochemical and physiological information available for this microorganism and other related fungi. Here we proposed the gene prediction by construction of an A. oryzae Expressed Sequence Tag (EST) library, sequencing and assembly. We enhanced the function assignment by our developed annotation strategy. The resulting better annotation was used to reconstruct the metabolic network leading to a genome scale metabolic model of A. oryzae. Results Our assembled EST sequences we identified 1,046 newly predicted genes in the A. oryzae genome. Furthermore, it was possible to assign putative protein functions to 398 of the newly predicted genes. Noteworthy, our annotation strategy resulted in assignment of new putative functions to 1,469 hypothetical proteins already present in the A. oryzae genome database. Using the substantially improved annotated genome we reconstructed the metabolic network of A. oryzae. This network contains 729 enzymes, 1,314 enzyme-encoding genes, 1,073 metabolites and 1,846 (1,053 unique) biochemical reactions. The metabolic reactions are compartmentalized into the cytosol, the mitochondria, the peroxisome and the extracellular space. Transport steps between the compartments and the extracellular space represent 281 reactions, of which 161 are unique. The metabolic model was validated and shown to correctly describe the phenotypic behavior of A. oryzae grown on different carbon sources. Conclusion A much enhanced annotation of the A

  6. The effector gene xopAE of Xanthomonas euvesicatoria 85-10 is part of an operon and encodes an E3 ubiquitin ligase.

    PubMed

    Popov, Georgy; Majhi, Bharat Bhusan; Sessa, Guido

    2018-05-21

    The type III effector XopAE from the Xanthomonas euvesicatoria strain 85-10 ( Xe 85-10) was previously shown to inhibit plant immunity and enhance pathogen-induced disease symptoms. Evolutionary analysis of 60 xopAE alleles ( AEal ) revealed that the xopAE locus is conserved in multiple Xanthomonas species. The majority of xopAE alleles (55 out of 60) encodes a single ORF ( xopAE ), while in 5 alleles, including AEal 37 of the Xe 85-10 strain, a frame-shift splits the locus into two ORFs ( hpaF and a truncated xopAE ). To test whether the second ORF of AEal 37 ( xopAE 85-10 ) is translated, we examined expression of YFP fused downstream to truncated or mutant forms of the locus in Xanthomonas bacteria. YFP fluorescence was detected at maximal levels when the reporter was in proximity of an internal ribosome-binding site upstream to a rare ATT start codon in the xopAE 85-10 ORF, but severely reduced when these elements were abolished. In agreement with the notion that xopAE 85- 10 is a functional gene, its protein product was translocated into plant cells by the type III secretion system and translocation was dependent on its upstream ORF hpaF. Homology modeling predicted that XopAE 85-10 contains an E3 ligase XL-box domain at the C-terminus, and in vitro assays demonstrated that this domain displays mono-ubiquitination activity. Remarkably, the XL-box was essential for XopAE 85-10 to inhibit PAMP-induced gene expression in Arabidopsis protoplasts. Together, these results indicate that the xopAE 85-10 gene resides in a functional operon, which utilizes the alternative start codon ATT, and encodes a novel XL-box E3 ligase. Importance Xanthomonas bacteria utilize a type III secretion system to cause disease in many crops. This study provides insights into evolution, translocation and biochemical function of the XopAE type III secreted effector contributing to the understanding of Xanthomonas-host interactions. We establish XopAE as core effector of seven Xanthomonas

  7. Characterization of novel virulent broad-host-range phages of Xylella fastidiosa and Xanthomonas.

    PubMed

    Ahern, Stephen J; Das, Mayukh; Bhowmick, Tushar Suvra; Young, Ry; Gonzalez, Carlos F

    2014-01-01

    The xylem-limited bacterium Xylella fastidiosa is the causal agent of several plant diseases, most notably Pierce's disease of grape and citrus variegated chlorosis. We report the isolation and characterization of the first virulent phages for X. fastidiosa, siphophages Sano and Salvo and podophages Prado and Paz, with a host range that includes Xanthomonas spp. Phages propagated on homologous hosts had observed adsorption rate constants of ~4 × 10(-12) ml cell(-1) min(-1) for X. fastidiosa strain Temecula 1 and ~5 × 10(-10) to 7 × 10(-10) ml cell(-1) min(-1) for Xanthomonas strain EC-12. Sano and Salvo exhibit >80% nucleotide identity to each other in aligned regions and are syntenic to phage BcepNazgul. We propose that phage BcepNazgul is the founding member of a novel phage type, to which Sano and Salvo belong. The lysis genes of the Nazgul-like phage type include a gene that encodes an outer membrane lipoprotein endolysin and also spanin gene families that provide insight into the evolution of the lysis pathway for phages of Gram-negative hosts. Prado and Paz, although exhibiting no significant DNA homology to each other, are new members of the phiKMV-like phage type, based on the position of the single-subunit RNA polymerase gene. The four phages are type IV pilus dependent for infection of both X. fastidiosa and Xanthomonas. The phages may be useful as agents for an effective and environmentally responsible strategy for the control of diseases caused by X. fastidiosa.

  8. Characterization of Novel Virulent Broad-Host-Range Phages of Xylella fastidiosa and Xanthomonas

    PubMed Central

    Ahern, Stephen J.; Das, Mayukh; Bhowmick, Tushar Suvra; Young, Ry

    2014-01-01

    The xylem-limited bacterium Xylella fastidiosa is the causal agent of several plant diseases, most notably Pierce's disease of grape and citrus variegated chlorosis. We report the isolation and characterization of the first virulent phages for X. fastidiosa, siphophages Sano and Salvo and podophages Prado and Paz, with a host range that includes Xanthomonas spp. Phages propagated on homologous hosts had observed adsorption rate constants of ∼4 × 10−12 ml cell−1 min−1 for X. fastidiosa strain Temecula 1 and ∼5 × 10−10 to 7 × 10−10 ml cell−1 min−1 for Xanthomonas strain EC-12. Sano and Salvo exhibit >80% nucleotide identity to each other in aligned regions and are syntenic to phage BcepNazgul. We propose that phage BcepNazgul is the founding member of a novel phage type, to which Sano and Salvo belong. The lysis genes of the Nazgul-like phage type include a gene that encodes an outer membrane lipoprotein endolysin and also spanin gene families that provide insight into the evolution of the lysis pathway for phages of Gram-negative hosts. Prado and Paz, although exhibiting no significant DNA homology to each other, are new members of the phiKMV-like phage type, based on the position of the single-subunit RNA polymerase gene. The four phages are type IV pilus dependent for infection of both X. fastidiosa and Xanthomonas. The phages may be useful as agents for an effective and environmentally responsible strategy for the control of diseases caused by X. fastidiosa. PMID:24214944

  9. Convergent Loss of Awn in Two Cultivated Rice Species Oryza sativa and Oryza glaberrima Is Caused by Mutations in Different Loci.

    PubMed

    Furuta, Tomoyuki; Komeda, Norio; Asano, Kenji; Uehara, Kanako; Gamuyao, Rico; Angeles-Shim, Rosalyn B; Nagai, Keisuke; Doi, Kazuyuki; Wang, Diane R; Yasui, Hideshi; Yoshimura, Atsushi; Wu, Jianzhong; McCouch, Susan R; Ashikari, Motoyuki

    2015-09-02

    A long awn is one of the distinct morphological features of wild rice species. This organ is thought to aid in seed dispersal and prevent predation by animals. Most cultivated varieties of Oryza sativa and Oryza glaberrima, however, have lost the ability to form long awns. The causal genetic factors responsible for the loss of awn in these two rice species remain largely unknown. Here, we evaluated three sets of chromosome segment substitution lines (CSSLs) in a common O. sativa genetic background (cv. Koshihikari) that harbor genomic fragments from Oryza nivara, Oryza rufipogon, and Oryza glaberrima donors. Phenotypic analyses of these libraries revealed the existence of three genes, Regulator of Awn Elongation 1 (RAE1), RAE2, and RAE3, involved in the loss of long awns in cultivated rice. Donor segments at two of these genes, RAE1 and RAE2, induced long awn formation in the CSSLs whereas an O. sativa segment at RAE3 induced long awn formation in O. glaberrima. These results suggest that the two cultivated rice species, O. sativa and O. glaberrima, have taken independent paths to become awnless. Copyright © 2015 Furuta et al.

  10. Structure determination of a sugar-binding protein from the phytopathogenic bacterium Xanthomonas citri

    PubMed Central

    Medrano, Francisco Javier; de Souza, Cristiane Santos; Romero, Antonio; Balan, Andrea

    2014-01-01

    The uptake of maltose and related sugars in Gram-negative bacteria is mediated by an ABC transporter encompassing a periplasmic component (the maltose-binding protein or MalE), a pore-forming membrane protein (MalF and MalG) and a membrane-associated ATPase (MalK). In the present study, the structure determination of the apo form of the putative maltose/trehalose-binding protein (Xac-MalE) from the citrus pathogen Xanthomonas citri in space group P6522 is described. The crystals contained two protein molecules in the asymmetric unit and diffracted to 2.8 Å resolution. Xac-MalE conserves the structural and functional features of sugar-binding proteins and a ligand-binding pocket with similar characteristics to eight different orthologues, including the residues for maltose and trehalose interaction. This is the first structure of a sugar-binding protein from a phytopathogenic bacterium, which is highly conserved in all species from the Xanthomonas genus. PMID:24817711

  11. Genetic analysis of conidiation regulatory pathways in koji-mold Aspergillus oryzae.

    PubMed

    Ogawa, Masahiro; Tokuoka, Masafumi; Jin, Feng Jie; Takahashi, Tadashi; Koyama, Yasuji

    2010-01-01

    Conidia of koji-mold Aspergillus oryzae are often used as starters in the fermented food industry. However, little is known about conidiation regulation in A. oryzae. To improve the productivity of conidia in A. oryzae, it is necessary to understand conidiation regulation in the strain. Therefore, we analyzed the conidiation regulatory system in A. oryzae using 10 kinds of conidiation regulatory gene disruptants. The phenotypes of AorfluG, AorflbA, AorflbB, AorflbC, AorflbD, AorflbE, AorbrlA, AorabaA, AorwetA, and AorfadA mutants are almost identical to those of the corresponding mutants in Aspergillus nidulans. The results indicated that the functions of conidiation regulatory genes are almost conserved between A. oryzae and A. nidulans. However, the severely reduced conidiation phenotype of the AorfluG disruptant in A. oryzae differs from the phenotype of the corresponding mutant in Aspergillus fumigatus in air-exposed culture conditions. These results suggest that A. oryzae, A. nidulans, and A. fumigatus have a G-protein signaling pathway and brlA orthologs in common, and only A. fumigatus has particular brlA activation pathways that are independent of the fluG ortholog. Furthermore, the analyses of AorflbA disruptant and AorfadA dominant-active mutants implicated that AorFadA-mediated G-protein signaling suppresses vegetative growth of A. oryzae.

  12. Acquisition and evolution of plant pathogenesis-associated gene clusters and candidate determinants of tissue-specificity in xanthomonas.

    PubMed

    Lu, Hong; Patil, Prabhu; Van Sluys, Marie-Anne; White, Frank F; Ryan, Robert P; Dow, J Maxwell; Rabinowicz, Pablo; Salzberg, Steven L; Leach, Jan E; Sonti, Ramesh; Brendel, Volker; Bogdanove, Adam J

    2008-01-01

    Xanthomonas is a large genus of plant-associated and plant-pathogenic bacteria. Collectively, members cause diseases on over 392 plant species. Individually, they exhibit marked host- and tissue-specificity. The determinants of this specificity are unknown. To assess potential contributions to host- and tissue-specificity, pathogenesis-associated gene clusters were compared across genomes of eight Xanthomonas strains representing vascular or non-vascular pathogens of rice, brassicas, pepper and tomato, and citrus. The gum cluster for extracellular polysaccharide is conserved except for gumN and sequences downstream. The xcs and xps clusters for type II secretion are conserved, except in the rice pathogens, in which xcs is missing. In the otherwise conserved hrp cluster, sequences flanking the core genes for type III secretion vary with respect to insertion sequence element and putative effector gene content. Variation at the rpf (regulation of pathogenicity factors) cluster is more pronounced, though genes with established functional relevance are conserved. A cluster for synthesis of lipopolysaccharide varies highly, suggesting multiple horizontal gene transfers and reassortments, but this variation does not correlate with host- or tissue-specificity. Phylogenetic trees based on amino acid alignments of gum, xps, xcs, hrp, and rpf cluster products generally reflect strain phylogeny. However, amino acid residues at four positions correlate with tissue specificity, revealing hpaA and xpsD as candidate determinants. Examination of genome sequences of xanthomonads Xylella fastidiosa and Stenotrophomonas maltophilia revealed that the hrp, gum, and xcs clusters are recent acquisitions in the Xanthomonas lineage. Our results provide insight into the ancestral Xanthomonas genome and indicate that differentiation with respect to host- and tissue-specificity involved not major modifications or wholesale exchange of clusters, but subtle changes in a small number of genes or

  13. [The extracellular proteases of the phytopathogenic bacterium Xanthomonas campestris].

    PubMed

    Kalashnikova, E E; Chernyshova, M P; Ignatov, V V

    2003-01-01

    The culture liquids of three Xanthomonas campestris pv. campestris strains were found to possess proteolytic activity. The culture liquid of strain B-611 with the highest proteolytic activity was fractionated by salting-out with ammonium sulfate, gel filtration, and ion-exchange chromatography. The electrophoretic analysis of active fractions showed the presence of two proteases in the culture liquid of strain B-611, the major of which being serine protease. The treatment of cabbage seedlings with the proteases augmented the activity of peroxidase in the cabbage roots by 28%.

  14. Molecular characterization of Xanthomonas strains responsible for bacterial leaf spot of tomato in Ethiopia

    USDA-ARS?s Scientific Manuscript database

    Bacterial spot of tomato (BST) is a major constraint to tomato production in Ethiopia and many other countries leading to significant crop losses. In the present study, using pathogenicity tests, sensitivity to copper and streptomycin, and multilocus sequence analysis, a diverse group of Xanthomonas...

  15. The role of type III effectors from Xanthomonas axonopodis pv. manihotis in virulence and suppression of plant immunity.

    PubMed

    Medina, Cesar Augusto; Reyes, Paola Andrea; Trujillo, Cesar Augusto; Gonzalez, Juan Luis; Bejarano, David Alejandro; Montenegro, Nathaly Andrea; Jacobs, Jonathan M; Joe, Anna; Restrepo, Silvia; Alfano, James R; Bernal, Adriana

    2018-03-01

    Xanthomonas axonopodis pv. manihotis (Xam) causes cassava bacterial blight, the most important bacterial disease of cassava. Xam, like other Xanthomonas species, requires type III effectors (T3Es) for maximal virulence. Xam strain CIO151 possesses 17 predicted T3Es belonging to the Xanthomonas outer protein (Xop) class. This work aimed to characterize nine Xop effectors present in Xam CIO151 for their role in virulence and modulation of plant immunity. Our findings demonstrate the importance of XopZ, XopX, XopAO1 and AvrBs2 for full virulence, as well as a redundant function in virulence between XopN and XopQ in susceptible cassava plants. We tested their role in pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) using heterologous systems. AvrBs2, XopR and XopAO1 are capable of suppressing PTI. ETI suppression activity was only detected for XopE4 and XopAO1. These results demonstrate the overall importance and diversity in functions of major virulence effectors AvrBs2 and XopAO1 in Xam during cassava infection. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  16. Tyrosine sulfation in a Gram-negative bacterium

    PubMed Central

    Han, Sang-Wook; Lee, Sang-Won; Bahar, Ofir; Schwessinger, Benjamin; Robinson, Michelle R.; Shaw, Jared B.; Madsen, James A.; Brodbelt, Jennifer S.; Ronald, Pamela C.

    2015-01-01

    Tyrosine sulfation, a well-characterized post-translation modification in eukaryotes, has not previously been reported in prokaryotes. Here we demonstrate that the RaxST protein from the Gram-negative bacterium, Xanthomonas oryzae pv. oryzae, is a tyrosine sulfotransferase. We used a newly developed sulfotransferase assay and ultraviolet photodissociation mass spectrometry (UVPD) to demonstrate that RaxST catalyzes sulfation of tyrosine 22 of the Xoo Ax21 (activator of XA21-mediated immunity). These results demonstrate a previously undescribed post-translational modification in a prokaryotic species with implications extending to host immune response and bacterial cell-cell communication system. PMID:23093190

  17. Ectopic activation of the rice NLR heteropair RGA4/RGA5 confers resistance to bacterial blight and bacterial leaf streak diseases.

    PubMed

    Hutin, Mathilde; Césari, Stella; Chalvon, Véronique; Michel, Corinne; Tran, Tuan Tu; Boch, Jens; Koebnik, Ralf; Szurek, Boris; Kroj, Thomas

    2016-10-01

    Bacterial blight (BB) and bacterial leaf streak (BLS) are important diseases in Oryza sativa caused by Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc), respectively. In both bacteria, transcription activator-like (TAL) effectors are major virulence determinants that act by transactivating host genes downstream of effector-binding elements (EBEs) bound in a sequence-specific manner. Resistance to Xoo is mostly related to the action of TAL effectors, either by polymorphisms that prevent the induction of susceptibility (S) genes or by executor (R) genes with EBEs embedded in their promoter, and that induce cell death and resistance. For Xoc, no resistance sources are known in rice. Here, we investigated whether the recognition of effectors by nucleotide binding and leucine-rich repeat domain immune receptors (NLRs), the most widespread resistance mechanism in plants, is also able to stop BB and BLS. In one instance, transgenic rice lines harboring the AVR1-CO39 effector gene from the rice blast fungus Magnaporthe oryzae, under the control of an inducible promoter, were challenged with transgenic Xoo and Xoc strains carrying a TAL effector designed to transactivate the inducible promoter. This induced AVR1-CO39 expression and triggered BB and BLS resistance when the corresponding Pi-CO39 resistance locus was present. In a second example, the transactivation of an auto-active NLR by Xoo-delivered designer TAL effectors resulted in BB resistance, demonstrating that NLR-triggered immune responses efficiently control Xoo. This forms the foundation for future BB and BLS disease control strategies, whereupon endogenous TAL effectors will target synthetic promoter regions of Avr or NLR executor genes. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  18. Bioconversion of Capsaicin by Aspergillus oryzae.

    PubMed

    Lee, Minji; Cho, Jeong-Yong; Lee, Yu Geon; Lee, Hyoung Jae; Lim, Seong-Il; Park, So-Lim; Moon, Jae-Hak

    2015-07-08

    This study identified metabolites of capsaicin bioconverted by Aspergillus oryzae, which is generally used for mass production of gochujang prepared by fermenting red pepper powder in Korea. A. oryzae was incubated with capsaicin in potato dextrose broth. Capsaicin decreased depending on the incubation period, but new metabolites increased. Five capsaicin metabolites purified from the ethyl acetate fraction of the capsaicin culture were identified as N-vanillylcarbamoylbutyric acid, N-vanillyl-9-hydroxy-8-methyloctanamide, ω-hydroxycapsaicin, 8-methyl-N-vanillylcarbamoyl-6(E)-octenoic acid, and 2-methyl-N-vanillylcarbamoyl-6(Z)-octenoic acid by nuclear magnetic resonance (NMR) and mass spectrometry (MS). The capsaicin metabolites in gochujang were confirmed and quantitated by selective multiple reaction monitoring detection after liquid chromatography electrospray ionization MS using the isolated compounds as external standards. On the basis of the structures of the capsaicin metabolites, it is proposed that capsaicin metabolites were converted by A. oryzae by ω-hydroxylation, alcohol oxidation, hydrogenation, isomerization, and α- and/or β-oxidation.

  19. Morphological and molecular characterization of fungal pathogen, Magnaphorthe oryzae

    NASA Astrophysics Data System (ADS)

    Hasan, Nor'Aishah; Rafii, Mohd Y.; Rahim, Harun A.; Ali, Nusaibah Syd; Mazlan, Norida; Abdullah, Shamsiah

    2016-02-01

    Rice is arguably the most crucial food crops supplying quarter of calories intake. Fungal pathogen, Magnaphorthe oryzae promotes blast disease unconditionally to gramineous host including rice species. This disease spurred an outbreaks and constant threat to cereal production. Global rice yield declining almost 10-30% including Malaysia. As Magnaphorthe oryzae and its host is model in disease plant study, the rice blast pathosystem has been the subject of intense interest to overcome the importance of the disease to world agriculture. Therefore, in this study, our prime objective was to isolate samples of Magnaphorthe oryzae from diseased leaf obtained from MARDI Seberang Perai, Penang, Malaysia. Molecular identification was performed by sequences analysis from internal transcribed spacer (ITS) region of nuclear ribosomal RNA genes. Phylogenetic affiliation of the isolated samples were analyzed by comparing the ITS sequences with those deposited in the GenBank database. The sequence of the isolate demonstrated at least 99% nucleotide identity with the corresponding sequence in GenBank for Magnaphorthe oryzae. Morphological observed under microscope demonstrated that the structure of conidia followed similar characteristic as M. oryzae. Finding in this study provide useful information for breeding programs, epidemiology studies and improved disease management.

  20. Host genotype and hypersensitive reaction influence population levels of Xanthomonas campestris pv. vitians in lettuce

    USDA-ARS?s Scientific Manuscript database

    Population dynamics of Xanthomonas campestris pv. vitians spray inoculated on or infiltrated into lettuce leaves were monitored on cultivars that were well characterized for resistance or susceptibility to the pathogen. In general, population growth was greater for susceptible (Clemente, Salinas 88,...

  1. Two-component signal transduction systems of Xanthomonas spp.: a lesson from genomics.

    PubMed

    Qian, Wei; Han, Zhong-Ji; He, Chaozu

    2008-02-01

    The two-component signal transduction systems (TCSTSs), consisting of a histidine kinase sensor (HK) and a response regulator (RR), are the dominant molecular mechanisms by which prokaryotes sense and respond to environmental stimuli. Genomes of Xanthomonas generally contain a large repertoire of TCSTS genes (approximately 92 to 121 for each genome), which encode diverse structural groups of HKs and RRs. Among them, although a core set of 70 TCSTS genes (about two-thirds in total) which accumulates point mutations with a slow rate are shared by these genomes, the other genes, especially hybrid HKs, experienced extensive genetic recombination, including genomic rearrangement, gene duplication, addition or deletion, and fusion or fission. The recombinations potentially promote the efficiency and complexity of TCSTSs in regulating gene expression. In addition, our analysis suggests that a co-evolutionary model, rather than a selfish operon model, is the major mechanism for the maintenance and microevolution of TCSTS genes in the genomes of Xanthomonas. Genomic annotation, secondary protein structure prediction, and comparative genomic analyses of TCSTS genes reviewed here provide insights into our understanding of signal networks in these important phytopathogenic bacteria.

  2. Induction of Xa10-like Genes in Rice Cultivar Nipponbare Confers Disease Resistance to Rice Bacterial Blight.

    PubMed

    Wang, Jun; Tian, Dongsheng; Gu, Keyu; Yang, Xiaobei; Wang, Lanlan; Zeng, Xuan; Yin, Zhongchao

    2017-06-01

    Bacterial blight of rice, caused by Xanthomonas oryzae pv. oryzae, is one of the most destructive bacterial diseases throughout the major rice-growing regions in the world. The rice disease resistance (R) gene Xa10 confers race-specific disease resistance to X. oryzae pv. oryzae strains that deliver the corresponding transcription activator-like (TAL) effector AvrXa10. Upon bacterial infection, AvrXa10 binds specifically to the effector binding element in the promoter of the R gene and activates its expression. Xa10 encodes an executor R protein that triggers hypersensitive response and activates disease resistance. 'Nipponbare' rice carries two Xa10-like genes in its genome, of which one is the susceptible allele of the Xa23 gene, a Xa10-like TAL effector-dependent executor R gene isolated recently from 'CBB23' rice. However, the function of the two Xa10-like genes in disease resistance to X. oryzae pv. oryzae strains has not been investigated. Here, we designated the two Xa10-like genes as Xa10-Ni and Xa23-Ni and characterized their function for disease resistance to rice bacterial blight. Both Xa10-Ni and Xa23-Ni provided disease resistance to X. oryzae pv. oryzae strains that deliver the matching artificially designed TAL effectors (dTALE). Transgenic rice plants containing Xa10-Ni and Xa23-Ni under the Xa10 promoter provided specific disease resistance to X. oryzae pv. oryzae strains that deliver AvrXa10. Xa10-Ni and Xa23-Ni knock-out mutants abolished dTALE-dependent disease resistance to X. oryzae pv. oryzae. Heterologous expression of Xa10-Ni and Xa23-Ni in Nicotiana benthamiana triggered cell death. The 19-amino-acid residues at the N-terminal regions of XA10 or XA10-Ni are dispensable for their function in inducing cell death in N. benthamiana and the C-terminal regions of XA10, XA10-Ni, and XA23-Ni are interchangeable among each other without affecting their function. Like XA10, both XA10-Ni and XA23-Ni locate to the endoplasmic reticulum (ER) membrane

  3. Transposable element distribution, abundance and role in genome size variation in the genus Oryza.

    PubMed

    Zuccolo, Andrea; Sebastian, Aswathy; Talag, Jayson; Yu, Yeisoo; Kim, HyeRan; Collura, Kristi; Kudrna, Dave; Wing, Rod A

    2007-08-29

    The genus Oryza is composed of 10 distinct genome types, 6 diploid and 4 polyploid, and includes the world's most important food crop - rice (Oryza sativa [AA]). Genome size variation in the Oryza is more than 3-fold and ranges from 357 Mbp in Oryza glaberrima [AA] to 1283 Mbp in the polyploid Oryza ridleyi [HHJJ]. Because repetitive elements are known to play a significant role in genome size variation, we constructed random sheared small insert genomic libraries from 12 representative Oryza species and conducted a comprehensive study of the repetitive element composition, distribution and phylogeny in this genus. Particular attention was paid to the role played by the most important classes of transposable elements (Long Terminal Repeats Retrotransposons, Long interspersed Nuclear Elements, helitrons, DNA transposable elements) in shaping these genomes and in their contributing to genome size variation. We identified the elements primarily responsible for the most strikingly genome size variation in Oryza. We demonstrated how Long Terminal Repeat retrotransposons belonging to the same families have proliferated to very different extents in various species. We also showed that the pool of Long Terminal Repeat Retrotransposons is substantially conserved and ubiquitous throughout the Oryza and so its origin is ancient and its existence predates the speciation events that originated the genus. Finally we described the peculiar behavior of repeats in the species Oryza coarctata [HHKK] whose placement in the Oryza genus is controversial. Long Terminal Repeat retrotransposons are the major component of the Oryza genomes analyzed and, along with polyploidization, are the most important contributors to the genome size variation across the Oryza genus. Two families of Ty3-gypsy elements (RIRE2 and Atlantys) account for a significant portion of the genome size variations present in the Oryza genus.

  4. Complete genome of the cotton bacteria blight pathogen Xanthomonas citri pv. malvacearum strain MSCT

    USDA-ARS?s Scientific Manuscript database

    Xanthomonas citri pv. malvacearum (Xcm) is a major pathogen of Gossypium hirsutum. In this study we report the complete genome of the Xcm strain MSCT assembled from long read DNA sequencing technology. The MSCT genome is the first Xcm genome that has complete coding regions for Xcm transcriptional a...

  5. A genetic screen to isolate type III effectors translocated into pepper cells during Xanthomonas infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Julie Anne Roden, Branids Belt, Jason Barzel Ross, Thomas Tachibana, Joe Vargas, Mary Beth Mudgett

    2004-11-23

    The bacterial pathogen Xanthomonas campestris pv. vesicatoria (Xcv) uses a type III secretion system (TTSS) to translocate effector proteins into host plant cells. The TTSS is required for Xcv colonization, yet the identity of many proteins translocated through this apparatus is not known. We used a genetic screen to functionally identify Xcv TTSS effectors. A transposon 5 (Tn5)-based transposon construct including the coding sequence for the Xcv AvrBs2 effector devoid of its TTSS signal was randomly inserted into the Xcv genome. Insertion of the avrBs2 reporter gene into Xcv genes coding for proteins containing a functional TTSS signal peptide resultedmore » in the creation of chimeric TTSS effector::AvrBs2 fusion proteins. Xcv strains containing these fusions translocated the AvrBs2 reporter in a TTSS-dependent manner into resistant BS2 pepper cells during infection, activating the avrBs2-dependent hypersensitive response (HR). We isolated seven chimeric fusion proteins and designated the identified TTSS effectors as Xanthomonas outer proteins (Xops). Translocation of each Xop was confirmed by using the calmodulin-dependent adenylate cydase reporter assay. Three xop genes are Xanthomonas spp.-specific, whereas homologs for the rest are found in other phytopathogenic bacteria. XopF1 and XopF2 define an effector gene family in Xcv. XopN contains a eukaryotic protein fold repeat and is required for full Xcv pathogenicity in pepper and tomato. The translocated effectors identified in this work expand our knowledge of the diversity of proteins that Xcv uses to manipulate its hosts.« less

  6. Morphological and molecular characterization of fungal pathogen, Magnaphorthe oryzae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasan, Nor’Aishah, E-mail: aishahnh@ns.uitm.edu.my; Rafii, Mohd Y., E-mail: mrafii@upm.edu.my; Department of Crop Science, Universiti Putra Malaysia

    2016-02-01

    Rice is arguably the most crucial food crops supplying quarter of calories intake. Fungal pathogen, Magnaphorthe oryzae promotes blast disease unconditionally to gramineous host including rice species. This disease spurred an outbreaks and constant threat to cereal production. Global rice yield declining almost 10-30% including Malaysia. As Magnaphorthe oryzae and its host is model in disease plant study, the rice blast pathosystem has been the subject of intense interest to overcome the importance of the disease to world agriculture. Therefore, in this study, our prime objective was to isolate samples of Magnaphorthe oryzae from diseased leaf obtained from MARDI Seberangmore » Perai, Penang, Malaysia. Molecular identification was performed by sequences analysis from internal transcribed spacer (ITS) region of nuclear ribosomal RNA genes. Phylogenetic affiliation of the isolated samples were analyzed by comparing the ITS sequences with those deposited in the GenBank database. The sequence of the isolate demonstrated at least 99% nucleotide identity with the corresponding sequence in GenBank for Magnaphorthe oryzae. Morphological observed under microscope demonstrated that the structure of conidia followed similar characteristic as M. oryzae. Finding in this study provide useful information for breeding programs, epidemiology studies and improved disease management.« less

  7. Secretome of Aspergillus oryzae in Shaoxing rice wine koji.

    PubMed

    Zhang, Bo; Guan, Zheng-Bing; Cao, Yu; Xie, Guang-Fa; Lu, Jian

    2012-04-16

    Shaoxing rice wine is the most famous and representative Chinese rice wine. Aspergillus oryzae SU16 is used in the manufacture of koji, the Shaoxing rice wine starter culture. In the current study, a comprehensive analysis of the secretome profile of A. oryzae SU16 in Shaoxing rice wine koji was performed for the first time. The proteomic analysis for the identification of the secretory proteins was done using two-dimensional electrophoresis combined with matrix-assisted laser desorption/ionization-tandem time of flight mass spectrometry based on the annotated A. oryzae genome sequence. A total of 41 unique proteins were identified from the secretome. These proteins included 17 extracellular proteins following the classical secretory pathway, and 10 extracellular proteins putatively secreted by the non-classical secretory pathway. The present secretome profile greatly differed from previous reports on A. oryzae growing in other solid-state nutrient sources. Several new secretory or putative secretory proteins were also found. These proteomic data will significantly aid the advancement of research on the secretome of A. oryzae, especially in solid-state cultures, and in elucidating the production process mechanism of Shaoxing rice wine koji. The findings may promote the technological development and innovation of the Shaoxing rice wine industry. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Presence of Extracellular DNA during Biofilm Formation by Xanthomonas citri subsp. citri Strains with Different Host Range.

    PubMed

    Sena-Vélez, Marta; Redondo, Cristina; Graham, James H; Cubero, Jaime

    2016-01-01

    Xanthomonas citri subsp. citri (Xcc) A strain causes citrus bacterial canker, a serious leaf, fruit and stem spotting disease of several Citrus species. X. alfalfae subsp. citrumelonis (Xac) is the cause of citrus bacterial spot, a minor disease of citrus nursery plants and X. campestris pv. campestris (Xc) is a systemic pathogen that causes black rot of cabbage. Xanthomonas spp. form biofilms in planta that facilitate the host infection process. Herein, the role of extracellular DNA (eDNA) was evaluated in the formation and stabilization of the biofilm matrix at different stages of biofilm development. Fluorescence and light microscopy, as well as DNAse treatments, were used to determine the presence of eDNA in biofilms and bacterial cultures. DNAse treatments of Xcc strains and Xac reduced biofilm formation at the initial stage of development, as well as disrupted preformed biofilm. By comparison, no significant effect of the DNAse was detected for biofilm formation by Xc. DNAse effects on biofilm formation or disruption varied among Xcc strains and Xanthomonas species which suggest different roles for eDNA. Variation in the structure of fibers containing eDNA in biofilms, bacterial cultures, and in twitching motility was also visualized by microscopy. The proposed roles for eDNA are as an adhesin in the early stages of biofilm formation, as an structural component of mature bacterial aggregates, and twitching motility structures.

  9. Overexpression of Rice Wall-Associated Kinase 25 (OsWAK25) Alters Resistance to Bacterial and Fungal Pathogens.

    PubMed

    Harkenrider, Mitch; Sharma, Rita; De Vleesschauwer, David; Tsao, Li; Zhang, Xuting; Chern, Mawsheng; Canlas, Patrick; Zuo, Shimin; Ronald, Pamela C

    2016-01-01

    Wall-associated kinases comprise a sub-family of receptor-like kinases that function in plant growth and stress responses. Previous studies have shown that the rice wall-associated kinase, OsWAK25, interacts with a diverse set of proteins associated with both biotic and abiotic stress responses. Here, we show that wounding and BTH treatments induce OsWAK25 transcript expression in rice. We generated OsWAK25 overexpression lines and show that these lines exhibit a lesion mimic phenotype and enhanced expression of rice NH1 (NPR1 homolog 1), OsPAL2, PBZ1 and PR10. Furthermore, these lines show resistance to the hemibiotrophic pathogens, Xanthomonas oryzae pv. oryzae (Xoo) and Magnaporthe oryzae, yet display increased susceptibility to necrotrophic fungal pathogens, Rhizoctonia solani and Cochliobolus miyabeanus.

  10. Role of N-terminal 28-amino-acid region of Rhizopus oryzae lipase in directing proteins to secretory pathway of Aspergillus oryzae.

    PubMed

    Hama, Shinji; Tamalampudi, Sriappareddy; Shindo, Naoki; Numata, Takao; Yamaji, Hideki; Fukuda, Hideki; Kondo, Akihiko

    2008-07-01

    To develop a new approach for improving heterologous protein production in Aspergillus oryzae, we focused on the functional role of the N-terminal region of Rhizopus oryzae lipase (ROL). Several N-terminal deletion variants of ROL were expressed in A. oryzae. Interestingly, a segment of 28 amino acids from the C-terminal region of the propeptide (N28) was found to be critical for secretion of ROL into the culture medium. To further investigate the role of N28, the ROL secretory process was visualized in vivo using ROL-green fluorescent protein (GFP) fusion proteins. In cells producing ROL with N28, fluorescence observations showed that the fusion proteins are transported through endoplasmic reticulum (ER), Golgi, and cell wall, which is one of the typical secretory processes in a eukaryotic cell. Because the expression of the mature ROL-GFP fusion protein induced fluorescence accumulation without its translocation into the ER, N28 is considered to play a crucial role in protein transport. When N28 was inserted between the secretion signal and GFP, fluorescence observations showed that GFP, which is originally a cytoplasmic protein, was efficiently translocated into the ER of A. oryzae, resulting in an enhanced secretion of mature GFP after proteolytic cleavage of N28. These findings suggest that N28 facilitates protein translocation into ER and can be a promising candidate for improving heterologous protein production in A. oryzae.

  11. Reduced susceptibility to Xanthomonas citri in transgenic citrus expressing the FLS2 receptor from Nicotiana benthamiana

    USDA-ARS?s Scientific Manuscript database

    Overexpression of plant pattern-recognition receptors (PRRs) by genetic engineering provides a novel approach to enhance plant immunity and broad-spectrum disease resistance. The citrus canker disease associated with Xanthomonas citri is one of the important diseases damaging citrus production world...

  12. Antagonism of rice phylloplane fungi against Cercospora oryzae

    NASA Astrophysics Data System (ADS)

    Mardani, A.; Hadiwiyono

    2018-03-01

    Narrow brown leaf spot (NBLS) caused by Cercospora oryzae Miyake is one of the important obstacle in rice cultivation that can decrease the productivity up to 40%. It has been known well that some phylloplane fungi are antagonistic to some leaf diseases. Phylloplane fungi of rice however haven’t been studied much and poorly understood as biological control agent of rice pathogen such C. oryzae. The research aimed to study the antagonism of some phylloplane fungi of rice against C. oryzae. At least 14 isolates of phylloplane fungi were collected which consisted of six pathogenic and eight nonpathogenic variants. All of nonpathogenic isolates were antagonistic against C. oryzae both in vitro and only one isolate could not inhibit the infection of the pathogen in vivo. Some isolates were identified as Aspergillus, Mucor, Penicillium, Fusarium, and Trichoderma. The isolate of Mucor and Fusarium could inhibit the highest growth of pathogen on potato dextrose medium that were at 36.0% and 35.5% respectively. Whereas on artificial inoculation on rice, some isolates such Penicillium and Fusarium could inhibit most effectively and were significantly different to Mencozeb application with dosage 5g L-1.

  13. The Xylella fastidiosa PD1063 protein is secreted in association with outer membrane vesicles.

    PubMed

    Pierce, Brittany K; Voegel, Tanja; Kirkpatrick, Bruce C

    2014-01-01

    Xylella fastidiosa is a gram-negative, xylem-limited plant pathogenic bacterium that causes disease in a variety of economically important agricultural crops including Pierce's disease of grapevines. Xylella fastidiosa biofilms formed in the xylem vessels of plants play a key role in early colonization and pathogenicity by providing a protected niche and enhanced cell survival. Here we investigate the role of Xylella fastidiosa PD1063, the predicted ortholog of Xanthomonas oryzae pv. oryzae PXO_03968, which encodes an outer membrane protein. To assess the function of the Xylella fastidiosa ortholog, we created Xylella fastidiosa mutants deleted for PD1063 and then assessed biofilm formation, cell-cell aggregation and cell growth in vitro. We also assessed disease severity and pathogen titers in grapevines mechanically inoculated with the Xylella fastidiosa PD1063 mutant. We found a significant decrease in cell-cell aggregation among PD1063 mutants but no differences in cell growth, biofilm formation, disease severity or titers in planta. Based on the demonstration that Xanthomonas oryzae pv. oryzae PXO_03968 encodes an outer membrane protein, secreted in association with outer membrane vesicles, we predicted that PD1063 would also be secreted in a similar manner. Using anti-PD1063 antibodies, we found PD1063 in the supernatant and secreted in association with outer membrane vesicles. PD1063 purified from the supernatant, outer membrane fractions and outer membrane vesicles was 19.2 kD, corresponding to the predicted size of the processed protein. Our findings suggest Xylella fastidiosa PD1063 is not essential for development of Pierce's disease in Vitis vinifera grapevines although further research is required to determine the function of the PD1063 outer membrane protein in Xylella fastidiosa.

  14. Rapid diversification of five Oryza AA genomes associated with rice adaptation.

    PubMed

    Zhang, Qun-Jie; Zhu, Ting; Xia, En-Hua; Shi, Chao; Liu, Yun-Long; Zhang, Yun; Liu, Yuan; Jiang, Wen-Kai; Zhao, You-Jie; Mao, Shu-Yan; Zhang, Li-Ping; Huang, Hui; Jiao, Jun-Ying; Xu, Ping-Zhen; Yao, Qiu-Yang; Zeng, Fan-Chun; Yang, Li-Li; Gao, Ju; Tao, Da-Yun; Wang, Yue-Ju; Bennetzen, Jeffrey L; Gao, Li-Zhi

    2014-11-18

    Comparative genomic analyses among closely related species can greatly enhance our understanding of plant gene and genome evolution. We report de novo-assembled AA-genome sequences for Oryza nivara, Oryza glaberrima, Oryza barthii, Oryza glumaepatula, and Oryza meridionalis. Our analyses reveal massive levels of genomic structural variation, including segmental duplication and rapid gene family turnover, with particularly high instability in defense-related genes. We show, on a genomic scale, how lineage-specific expansion or contraction of gene families has led to their morphological and reproductive diversification, thus enlightening the evolutionary process of speciation and adaptation. Despite strong purifying selective pressures on most Oryza genes, we documented a large number of positively selected genes, especially those genes involved in flower development, reproduction, and resistance-related processes. These diversifying genes are expected to have played key roles in adaptations to their ecological niches in Asia, South America, Africa and Australia. Extensive variation in noncoding RNA gene numbers, function enrichment, and rates of sequence divergence might also help account for the different genetic adaptations of these rice species. Collectively, these resources provide new opportunities for evolutionary genomics, numerous insights into recent speciation, a valuable database of functional variation for crop improvement, and tools for efficient conservation of wild rice germplasm.

  15. Rapid diversification of five Oryza AA genomes associated with rice adaptation

    PubMed Central

    Zhang, Qun-Jie; Zhu, Ting; Xia, En-Hua; Shi, Chao; Liu, Yun-Long; Zhang, Yun; Liu, Yuan; Jiang, Wen-Kai; Zhao, You-Jie; Mao, Shu-Yan; Zhang, Li-Ping; Huang, Hui; Jiao, Jun-Ying; Xu, Ping-Zhen; Yao, Qiu-Yang; Zeng, Fan-Chun; Yang, Li-Li; Gao, Ju; Tao, Da-Yun; Wang, Yue-Ju; Bennetzen, Jeffrey L.; Gao, Li-Zhi

    2014-01-01

    Comparative genomic analyses among closely related species can greatly enhance our understanding of plant gene and genome evolution. We report de novo-assembled AA-genome sequences for Oryza nivara, Oryza glaberrima, Oryza barthii, Oryza glumaepatula, and Oryza meridionalis. Our analyses reveal massive levels of genomic structural variation, including segmental duplication and rapid gene family turnover, with particularly high instability in defense-related genes. We show, on a genomic scale, how lineage-specific expansion or contraction of gene families has led to their morphological and reproductive diversification, thus enlightening the evolutionary process of speciation and adaptation. Despite strong purifying selective pressures on most Oryza genes, we documented a large number of positively selected genes, especially those genes involved in flower development, reproduction, and resistance-related processes. These diversifying genes are expected to have played key roles in adaptations to their ecological niches in Asia, South America, Africa and Australia. Extensive variation in noncoding RNA gene numbers, function enrichment, and rates of sequence divergence might also help account for the different genetic adaptations of these rice species. Collectively, these resources provide new opportunities for evolutionary genomics, numerous insights into recent speciation, a valuable database of functional variation for crop improvement, and tools for efficient conservation of wild rice germplasm. PMID:25368197

  16. A Conserved Basal Transcription Factor Is Required for the Function of Diverse TAL Effectors in Multiple Plant Hosts.

    PubMed

    Huang, Renyan; Hui, Shugang; Zhang, Meng; Li, Pei; Xiao, Jinghua; Li, Xianghua; Yuan, Meng; Wang, Shiping

    2017-01-01

    Many Xanthomonas bacteria use transcription activator-like effector (TALE) proteins to activate plant disease susceptibility ( S ) genes, and this activation contributes to disease. We recently reported that rice basal transcription factor IIA gamma subunit, OsTFIIAγ5, is hijacked by TALE-carrying Xanthomonas oryzae infecting the plants. However, whether TFIIAγs are also involved in TALE-carrying Xanthomonas -caused diseases in other plants is unknown. Here, molecular and genetic approaches were used to investigate the role of TFIIAγs in other plants. We found that TFIIAγs are also used by TALE-carrying Xanthomonas to cause disease in other plants. The TALEs of Xanthomonas citri pv. citri ( Xcc ) causing canker in citrus and Xanthomonas campestris pv. vesicatoria ( Xcv ) causing bacterial spot in pepper and tomato interacted with corresponding host TFIIAγs as in rice. Transcriptionally suppressing TFIIAγ led to resistance to Xcc in citrus and Xcv in pepper and tomato. The 39th residue of OsTFIIAγ5 and citrus CsTFIIAγ is vital for TALE-dependent induction of plant S genes. As mutated OsTFIIAγ5 V 39E , CsTFIIAγ V 39E , pepper CaTFIIAγ V 39E , and tomato SlTFIIAγ V 39E also did not interact with TALEs to prevent disease. These results suggest that TALE-carrying bacteria share a common mechanism for infecting plants. Using TFIIAγ V 39E -type mutation could be a general strategy for improving resistance to TALE-carrying pathogens in crops.

  17. Community Analysis of Biofilters Using Fluorescence In Situ Hybridization Including a New Probe for the Xanthomonas Branch of the Class Proteobacteria

    PubMed Central

    Friedrich, Udo; Naismith, Michèle M.; Altendorf, Karlheinz; Lipski, André

    1999-01-01

    Domain-, class-, and subclass-specific rRNA-targeted probes were applied to investigate the microbial communities of three industrial and three laboratory-scale biofilters. The set of probes also included a new probe (named XAN818) specific for the Xanthomonas branch of the class Proteobacteria; this probe is described in this study. The members of the Xanthomonas branch do not hybridize with previously developed rRNA-targeted oligonucleotide probes for the α-, β-, and γ-Proteobacteria. Bacteria of the Xanthomonas branch accounted for up to 4.5% of total direct counts obtained with 4′,6-diamidino-2-phenylindole. In biofilter samples, the relative abundance of these bacteria was similar to that of the γ-Proteobacteria. Actinobacteria (gram-positive bacteria with a high G+C DNA content) and α-Proteobacteria were the most dominant groups. Detection rates obtained with probe EUB338 varied between about 40 and 70%. For samples with high contents of gram-positive bacteria, these percentages were substantially improved when the calculations were corrected for the reduced permeability of gram-positive bacteria when formaldehyde was used as a fixative. The set of applied bacterial class- and subclass-specific probes yielded, on average, 58.5% (± a standard deviation of 23.0%) of the corrected eubacterial detection rates, thus indicating the necessity of additional probes for studies of biofilter communities. The Xanthomonas-specific probe presented here may serve as an efficient tool for identifying potential phytopathogens. In situ hybridization proved to be a practical tool for microbiological studies of biofiltration systems. PMID:10427047

  18. First report of wheat blast caused by magnaporthe oryzae pathotype triticum in Bangladesh

    USDA-ARS?s Scientific Manuscript database

    Wheat blast or ‘brusone’, caused by the ascomycetous fungus Magnaporthe oryzae B.C. Couch (synonym Pyricularia oryzae Cavara), was first identified in 1985 in Brazil. M. oryzae is composed of a range of morphologically identical but genetically different host-specific pathotypes that are specialized...

  19. Rice (Oryza) hemoglobins

    USDA-ARS?s Scientific Manuscript database

    Hemoglobins (Hbs) corresponding to non-symbiotic (nsHb) and truncated (tHb) Hbs have been identified in rice (Oryza). This review discusses the major findings from the current studies on rice Hbs. At the molecular level, a family of the nshb genes, consisting of hb1, hb2, hb3, hb4 and hb5, and a sin...

  20. Expression of Xylella fastidiosa RpfF in citrus disrupts signaling in Xanthomonas citri subsp. citri and thereby its virulence.

    PubMed

    Caserta, R; Picchi, S C; Takita, M A; Tomaz, J P; Pereira, W E L; Machado, M A; Ionescu, M; Lindow, S; De Souza, A A

    2014-11-01

    Xylella fastidiosa and Xanthomonas citri subsp. citri, that cause citrus variegated chlorosis (CVC) and citrus canker diseases, respectively, utilize diffusible signal factor (DSF) for quorum sensing. DSF, produced by RpfF, are similar fatty acids in both organisms, although a different set of genes is regulated by DSF in each species. Because of this similarity, Xylella fastidiosa DSF might be recognized and affect the biology of Xanthomonas citri. Therefore, transgenic Citrus sinensis and Carrizo citrange plants overexpressing the Xylella fastidiosa rpfF were inoculated with Xanthomonas citri and changes in symptoms of citrus canker were observed. X. citri biofilms formed only at wound sites on transgenic leaves and were thicker; however, bacteria were unable to break through the tissue and form pustules elsewhere. Although abundant growth of X. citri occurred at wound sites on inoculated transgenic leaves, little growth was observed on unwounded tissue. Genes in the DFS-responsive core in X. citri were downregulated in bacteria isolated from transgenic leaves. DSF-dependent expression of engA was suppressed in cells exposed to xylem sap from transgenic plants. Thus, altered symptom development appears to be due to reduced expression of virulence genes because of the presence of antagonists of DSF signaling in X. citri in rpfF-expressing plants.

  1. New genes of Xanthomonas citri subsp. citri involved in pathogenesis and adaptation revealed by a transposon-based mutant library

    PubMed Central

    2009-01-01

    Background Citrus canker is a disease caused by the phytopathogens Xanthomonas citri subsp. citri, Xanthomonas fuscans subsp. aurantifolli and Xanthomonas alfalfae subsp. citrumelonis. The first of the three species, which causes citrus bacterial canker type A, is the most widely spread and severe, attacking all citrus species. In Brazil, this species is the most important, being found in practically all areas where citrus canker has been detected. Like most phytobacterioses, there is no efficient way to control citrus canker. Considering the importance of the disease worldwide, investigation is needed to accurately detect which genes are related to the pathogen-host adaptation process and which are associated with pathogenesis. Results Through transposon insertion mutagenesis, 10,000 mutants of Xanthomonas citri subsp. citri strain 306 (Xcc) were obtained, and 3,300 were inoculated in Rangpur lime (Citrus limonia) leaves. Their ability to cause citrus canker was analyzed every 3 days until 21 days after inoculation; a set of 44 mutants showed altered virulence, with 8 presenting a complete loss of causing citrus canker symptoms. Sequencing of the insertion site in all 44 mutants revealed that 35 different ORFs were hit, since some ORFs were hit in more than one mutant, with mutants for the same ORF presenting the same phenotype. An analysis of these ORFs showed that some encoded genes were previously known as related to pathogenicity in phytobacteria and, more interestingly, revealed new genes never implicated with Xanthomonas pathogenicity before, including hypothetical ORFs. Among the 8 mutants with no canker symptoms are the hrpB4 and hrpX genes, two genes that belong to type III secretion system (TTSS), two hypothetical ORFS and, surprisingly, the htrA gene, a gene reported as involved with the virulence process in animal-pathogenic bacteria but not described as involved in phytobacteria virulence. Nucleic acid hybridization using labeled cDNA probes showed

  2. The Potential of Streptomyces as Biocontrol Agents against the Rice Blast Fungus, Magnaporthe oryzae (Pyricularia oryzae).

    PubMed

    Law, Jodi Woan-Fei; Ser, Hooi-Leng; Khan, Tahir M; Chuah, Lay-Hong; Pusparajah, Priyia; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han

    2017-01-01

    Rice is a staple food source for more than three billion people worldwide. However, rice is vulnerable to diseases, the most destructive among them being rice blast, which is caused by the fungus Magnaporthe oryzae (anamorph Pyricularia oryzae ). This fungus attacks rice plants at all stages of development, causing annual losses of approximately 10-30% in various rice producing regions. Synthetic fungicides are often able to effectively control plant diseases, but some fungicides result in serious environmental and health problems. Therefore, there is growing interest in discovering and developing new, improved fungicides based on natural products as well as introducing alternative measures such as biocontrol agents to manage plant diseases. Streptomyce s bacteria appear to be promising biocontrol agents against a wide range of phytopathogenic fungi, which is not surprising given their ability to produce various bioactive compounds. This review provides insight into the biocontrol potential of Streptomyces against the rice blast fungus, M. oryzae . The ability of various S treptomyces spp. to act as biocontrol agents of rice blast disease has been studied by researchers under both laboratory and greenhouse/growth chamber conditions. Laboratory studies have shown that Streptomyces exhibit inhibitory activity against M. oryzae . In greenhouse studies, infected rice seedlings treated with Streptomyces resulted in up to 88.3% disease reduction of rice blast. Studies clearly show that Streptomyces spp. have the potential to be used as highly effective biocontrol agents against rice blast disease; however, the efficacy of any biocontrol agent may be affected by several factors including environmental conditions and methods of application. In order to fully exploit their potential, further studies on the isolation, formulation and application methods of Streptomyces along with field experiments are required to establish them as effective biocontrol agents.

  3. The Potential of Streptomyces as Biocontrol Agents against the Rice Blast Fungus, Magnaporthe oryzae (Pyricularia oryzae)

    PubMed Central

    Law, Jodi Woan-Fei; Ser, Hooi-Leng; Khan, Tahir M.; Chuah, Lay-Hong; Pusparajah, Priyia; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han

    2017-01-01

    Rice is a staple food source for more than three billion people worldwide. However, rice is vulnerable to diseases, the most destructive among them being rice blast, which is caused by the fungus Magnaporthe oryzae (anamorph Pyricularia oryzae). This fungus attacks rice plants at all stages of development, causing annual losses of approximately 10–30% in various rice producing regions. Synthetic fungicides are often able to effectively control plant diseases, but some fungicides result in serious environmental and health problems. Therefore, there is growing interest in discovering and developing new, improved fungicides based on natural products as well as introducing alternative measures such as biocontrol agents to manage plant diseases. Streptomyces bacteria appear to be promising biocontrol agents against a wide range of phytopathogenic fungi, which is not surprising given their ability to produce various bioactive compounds. This review provides insight into the biocontrol potential of Streptomyces against the rice blast fungus, M. oryzae. The ability of various Streptomyces spp. to act as biocontrol agents of rice blast disease has been studied by researchers under both laboratory and greenhouse/growth chamber conditions. Laboratory studies have shown that Streptomyces exhibit inhibitory activity against M. oryzae. In greenhouse studies, infected rice seedlings treated with Streptomyces resulted in up to 88.3% disease reduction of rice blast. Studies clearly show that Streptomyces spp. have the potential to be used as highly effective biocontrol agents against rice blast disease; however, the efficacy of any biocontrol agent may be affected by several factors including environmental conditions and methods of application. In order to fully exploit their potential, further studies on the isolation, formulation and application methods of Streptomyces along with field experiments are required to establish them as effective biocontrol agents. PMID:28144236

  4. Molecular Mechanisms Associated with Xylan Degradation by Xanthomonas Plant Pathogens*

    PubMed Central

    Santos, Camila Ramos; Hoffmam, Zaira Bruna; de Matos Martins, Vanesa Peixoto; Zanphorlin, Leticia Maria; de Paula Assis, Leandro Henrique; Honorato, Rodrigo Vargas; Lopes de Oliveira, Paulo Sérgio; Ruller, Roberto; Murakami, Mario Tyago

    2014-01-01

    Xanthomonas pathogens attack a variety of economically relevant plants, and their xylan CUT system (carbohydrate utilization with TonB-dependent outer membrane transporter system) contains two major xylanase-related genes, xynA and xynB, which influence biofilm formation and virulence by molecular mechanisms that are still elusive. Herein, we demonstrated that XynA is a rare reducing end xylose-releasing exo-oligoxylanase and not an endo-β-1,4-xylanase as predicted. Structural analysis revealed that an insertion in the β7-α7 loop induces dimerization and promotes a physical barrier at the +2 subsite conferring this unique mode of action within the GH10 family. A single mutation that impaired dimerization became XynA active against xylan, and high endolytic activity was achieved when this loop was tailored to match a canonical sequence of endo-β-1,4-xylanases, supporting our mechanistic model. On the other hand, the divergent XynB proved to be a classical endo-β-1,4-xylanase, despite the low sequence similarity to characterized GH10 xylanases. Interestingly, this enzyme contains a calcium ion bound nearby to the glycone-binding region, which is required for catalytic activity and structural stability. These results shed light on the molecular basis for xylan degradation by Xanthomonas and suggest how these enzymes synergistically assist infection and pathogenesis. Our findings indicate that XynB contributes to breach the plant cell wall barrier, providing nutrients and facilitating the translocation of effector molecules, whereas the exo-oligoxylanase XynA possibly participates in the suppression of oligosaccharide-induced immune responses. PMID:25266726

  5. Characterization of recombinant prolyl aminopeptidase from Aspergillus oryzae.

    PubMed

    Matsushita-Morita, M; Furukawa, I; Suzuki, S; Yamagata, Y; Koide, Y; Ishida, H; Takeuchi, M; Kashiwagi, Y; Kusumoto, K-I

    2010-07-01

    Prolyl aminopeptidase (PAP) degrades only amino-terminal proline from peptides. The food-grade fungus Aspergillus oryzae produces this enzyme only in small amounts. In this paper, we present efficient production of recombinant PAP with an overexpression system of A. oryzae and characterization of its biochemical properties. The gene encoding PAP was overexpressed as a His-tag fusion protein under a taka-amylase gene (amyB) promoter with a limited expressing condition in A. oryzae. The PAP activity in the mycelia grown in rich medium containing glucose (repressing condition) was twice that in starch (inducing condition). The enzyme prepared as cell-free extract was partially purified through two-step column chromatography. The PAP was estimated to be a hexameric protein and exhibited salt tolerance against NaCl of up to 4 mol l(-1). Aspergillus oryzae PAP was produced under the repressing condition of amyB promoter in a PAP-overexpressing strain and purified 1800-folds. Overproduction of PAP under promoter-inducing conditions led to an increase in inactive PAP, possibly because of irregular folding. PAP with a high specific activity and salt tolerance may be used effectively in the manufacturing processes of fermented foods. Journal compilation © 2009 The Society for Applied Microbiology. No claim to Japanese Government works.

  6. Could abiotic stress tolerance in wild relatives of rice be used to improve Oryza sativa?

    PubMed

    Atwell, Brian J; Wang, Han; Scafaro, Andrew P

    2014-02-01

    Oryza sativa and Oryza glaberrima have been selected to acquire and partition resources efficiently as part of the process of domestication. However, genetic diversity in cultivated rice is limited compared to wild Oryza species, in spite of 120,000 genotypes being held in gene banks. By contrast, there is untapped diversity in the more than 20 wild species of Oryza, some having been collected from just a few coastal locations (e.g. Oryza schlechteri), while others are widely distributed (e.g. Oryza nivara and Oryza rufipogon). The extent of DNA sequence diversity and phenotypic variation is still being established in wild Oryza, with genetic barriers suggesting a vast range of morphologies and function even within species, such as has been demonstrated for Oryza meridionalis. With increasing climate variability and attempts to make more marginal land arable, abiotic and biotic stresses will be managed over the coming decades by tapping into the genetic diversity of wild relatives of O. sativa. To help create a more targeted approach to sourcing wild rice germplasm for abiotic stress tolerance, we have created a climate distribution map by plotting the natural occurrence of all Oryza species against corresponding temperature and moisture data. We then discuss interspecific variation in phenotype and its significance for rice, followed by a discussion of ways to integrate germplasm from wild relatives into domesticated rice. Crown Copyright © 2013. Published by Elsevier Ireland Ltd. All rights reserved.

  7. Survey of the transcriptome of Aspergillus oryzae via massively parallel mRNA sequencing

    PubMed Central

    Wang, Bin; Guo, Guangwu; Wang, Chao; Lin, Ying; Wang, Xiaoning; Zhao, Mouming; Guo, Yong; He, Minghui; Zhang, Yong; Pan, Li

    2010-01-01

    Aspergillus oryzae, an important filamentous fungus used in food fermentation and the enzyme industry, has been shown through genome sequencing and various other tools to have prominent features in its genomic composition. However, the functional complexity of the A. oryzae transcriptome has not yet been fully elucidated. Here, we applied direct high-throughput paired-end RNA-sequencing (RNA-Seq) to the transcriptome of A. oryzae under four different culture conditions. With the high resolution and sensitivity afforded by RNA-Seq, we were able to identify a substantial number of novel transcripts, new exons, untranslated regions, alternative upstream initiation codons and upstream open reading frames, which provide remarkable insight into the A. oryzae transcriptome. We were also able to assess the alternative mRNA isoforms in A. oryzae and found a large number of genes undergoing alternative splicing. Many genes and pathways that might be involved in higher levels of protein production in solid-state culture than in liquid culture were identified by comparing gene expression levels between different cultures. Our analysis indicated that the transcriptome of A. oryzae is much more complex than previously anticipated, and these results may provide a blueprint for further study of the A. oryzae transcriptome. PMID:20392818

  8. Survey of the transcriptome of Aspergillus oryzae via massively parallel mRNA sequencing.

    PubMed

    Wang, Bin; Guo, Guangwu; Wang, Chao; Lin, Ying; Wang, Xiaoning; Zhao, Mouming; Guo, Yong; He, Minghui; Zhang, Yong; Pan, Li

    2010-08-01

    Aspergillus oryzae, an important filamentous fungus used in food fermentation and the enzyme industry, has been shown through genome sequencing and various other tools to have prominent features in its genomic composition. However, the functional complexity of the A. oryzae transcriptome has not yet been fully elucidated. Here, we applied direct high-throughput paired-end RNA-sequencing (RNA-Seq) to the transcriptome of A. oryzae under four different culture conditions. With the high resolution and sensitivity afforded by RNA-Seq, we were able to identify a substantial number of novel transcripts, new exons, untranslated regions, alternative upstream initiation codons and upstream open reading frames, which provide remarkable insight into the A. oryzae transcriptome. We were also able to assess the alternative mRNA isoforms in A. oryzae and found a large number of genes undergoing alternative splicing. Many genes and pathways that might be involved in higher levels of protein production in solid-state culture than in liquid culture were identified by comparing gene expression levels between different cultures. Our analysis indicated that the transcriptome of A. oryzae is much more complex than previously anticipated, and these results may provide a blueprint for further study of the A. oryzae transcriptome.

  9. Enhanced production of fructosyltransferase in Aspergillus oryzae by genome shuffling.

    PubMed

    Wang, Shenghai; Duan, Mengjie; Liu, Yalan; Fan, Sen; Lin, Xiaoshan; Zhang, Yi

    2017-03-01

    To breed Aspergillus oryzae strains with high fructosyltransferase (FTase) activity using intraspecific protoplast fusion via genome-shuffling. A candidate library was developed using UV/LiCl of the conidia of A. oryzae SBB201. By screening for enzyme activity and cell biomass, two mutants (UV-11 and UV-76) were chosen for protoplast fusion and subsequent genome shuffling. After three rounds of genome recombination, a fusion mutant RIII-7 was obtained. Its FTase activity was 180 U g -1 , approximately double that of the original strain, and RIII-7 was genetically stable. In fermentation culture, FTase activity of the genome-shuffled strain reached a maximum of 353 U g -1 using substrate-feeding method, and this value was approximately 3.4-times higher than that of the original strain A. oryzae SBB201. Intraspecific protoplast fusion of A. oryzae significantly enhanced FTase activity and generated a potentially useful strain for industrial production.

  10. Recent advances in the understanding of Xanthomonas citri ssp. citri pathogenesis and citrus canker disease management.

    PubMed

    Ference, Christopher M; Gochez, Alberto M; Behlau, Franklin; Wang, Nian; Graham, James H; Jones, Jeffrey B

    2018-06-01

    Taxonomic status: Bacteria; Phylum Proteobacteria; Class Gammaproteobacteria; Order Xanthomonadales; Family Xanthomonadaceae; Genus Xanthomonas; Species Xanthomonas citri ssp. citri (Xcc). Host range: Compatible hosts vary in their susceptibility to citrus canker (CC), with grapefruit, lime and lemon being the most susceptible, sweet orange being moderately susceptible, and kumquat and calamondin being amongst the least susceptible. Microbiological properties: Xcc is a rod-shaped (1.5-2.0 × 0.5-0.75 µm), Gram-negative, aerobic bacterium with a single polar flagellum. The bacterium forms yellow colonies on culture media as a result of the production of xanthomonadin. Distribution: Present in South America, the British Virgin Islands, Africa, the Middle East, India, Asia and the South Pacific islands. Localized incidence in the USA, Argentina, Brazil, Bolivia, Uruguay, Senegal, Mali, Burkina Faso, Tanzania, Iran, Saudi Arabia, Yemen and Bangladesh. Widespread throughout Paraguay, Comoros, China, Japan, Malaysia and Vietnam. Eradicated from South Africa, Australia and New Zealand. Absent from Europe. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  11. The pepper Bs4C proteins are localized to the endoplasmic reticulum (ER) membrane and confer disease resistance to bacterial blight in transgenic rice.

    PubMed

    Wang, Jun; Zeng, Xuan; Tian, Dongsheng; Yang, Xiaobei; Wang, Lanlan; Yin, Zhongchao

    2018-03-30

    Transcription activator-like effector (TALE)-dependent dominant disease resistance (R) genes in plants, also referred to as executor R genes, are induced on infection by phytopathogenic bacteria of the genus Xanthomonas harbouring the corresponding TALE genes. Unlike the traditional R proteins, the executor R proteins do not determine the resistance specificity and may function broadly in different plant species. The executor R gene Bs4C-R in the resistant genotype PI 235047 of the pepper species Capsicum pubescens (CpBs4C-R) confers disease resistance to Xanthomonas campestris pv. vesicatoria (Xcv) harbouring the TALE genes avrBsP/avrBs4. In this study, the synthetic genes of CpBs4C-R and two other Bs4C-like genes, the susceptible allele in the genotype PI585270 of C. pubescens (CpBs4C-S) and the CaBs4C-R homologue gene in the cultivar 'CM334' of Capsicum annum (CaBs4C), were characterized in tobacco (Nicotiana benthamiana) and rice (Oryza sativa). The Bs4C genes induced cell death in N. benthamiana. The functional Bs4C-eCFP fusion proteins were localized to the endoplasmic reticulum (ER) membrane in the leaf epidermal cells of N. benthamiana. The Xa10 promoter-Bs4C fusion genes in transgenic rice conferred strain-specific disease resistance to Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial blight in rice, and were specifically induced by the Xa10-incompatible Xoo strain PXO99 A (pHM1avrXa10). The results indicate that the Bs4C proteins from pepper species function broadly in rice and the Bs4C protein-mediated cell death from the ER is conserved between dicotyledonous and monocotyledonous plants, which can be utilized to engineer novel and enhanced disease resistance in heterologous plants. © 2018 TEMASEK LIFE SCIENCES LABORATORY. MOLECULAR PLANT PATHOLOGY © 2018 JOHN WILEY & SONS LTD.

  12. Random Mutagenesis of the Aspergillus oryzae Genome Results in Fungal Antibacterial Activity

    PubMed Central

    Leonard, Cory A.; Brown, Stacy D.; Hayman, J. Russell

    2013-01-01

    Multidrug-resistant bacteria cause severe infections in hospitals and communities. Development of new drugs to combat resistant microorganisms is needed. Natural products of microbial origin are the source of most currently available antibiotics. We hypothesized that random mutagenesis of Aspergillus oryzae would result in secretion of antibacterial compounds. To address this hypothesis, we developed a screen to identify individual A. oryzae mutants that inhibit the growth of Methicillin-resistant Staphylococcus aureus (MRSA) in vitro. To randomly generate A. oryzae mutant strains, spores were treated with ethyl methanesulfonate (EMS). Over 3000 EMS-treated A. oryzae cultures were tested in the screen, and one isolate, CAL220, exhibited altered morphology and antibacterial activity. Culture supernatant from this isolate showed antibacterial activity against Methicillin-sensitive Staphylococcus aureus, MRSA, and Pseudomonas aeruginosa, but not Klebsiella pneumonia or Proteus vulgaris. The results of this study support our hypothesis and suggest that the screen used is sufficient and appropriate to detect secreted antibacterial fungal compounds resulting from mutagenesis of A. oryzae. Because the genome of A. oryzae has been sequenced and systems are available for genetic transformation of this organism, targeted as well as random mutations may be introduced to facilitate the discovery of novel antibacterial compounds using this system. PMID:23983696

  13. Random Mutagenesis of the Aspergillus oryzae Genome Results in Fungal Antibacterial Activity.

    PubMed

    Leonard, Cory A; Brown, Stacy D; Hayman, J Russell

    2013-01-01

    Multidrug-resistant bacteria cause severe infections in hospitals and communities. Development of new drugs to combat resistant microorganisms is needed. Natural products of microbial origin are the source of most currently available antibiotics. We hypothesized that random mutagenesis of Aspergillus oryzae would result in secretion of antibacterial compounds. To address this hypothesis, we developed a screen to identify individual A. oryzae mutants that inhibit the growth of Methicillin-resistant Staphylococcus aureus (MRSA) in vitro. To randomly generate A. oryzae mutant strains, spores were treated with ethyl methanesulfonate (EMS). Over 3000 EMS-treated A. oryzae cultures were tested in the screen, and one isolate, CAL220, exhibited altered morphology and antibacterial activity. Culture supernatant from this isolate showed antibacterial activity against Methicillin-sensitive Staphylococcus aureus, MRSA, and Pseudomonas aeruginosa, but not Klebsiella pneumonia or Proteus vulgaris. The results of this study support our hypothesis and suggest that the screen used is sufficient and appropriate to detect secreted antibacterial fungal compounds resulting from mutagenesis of A. oryzae. Because the genome of A. oryzae has been sequenced and systems are available for genetic transformation of this organism, targeted as well as random mutations may be introduced to facilitate the discovery of novel antibacterial compounds using this system.

  14. The biosynthesis, structure and gelatinization properties of starches from wild and cultivated African rice species (Oryza barthii and Oryza glaberrima).

    PubMed

    Wang, Kai; Wambugu, Peterson W; Zhang, Bin; Wu, Alex Chi; Henry, Robert J; Gilbert, Robert G

    2015-09-20

    The molecular structure and gelatinization properties of starches from domesticated African rice (Oryza glaberrima) and its wild progenitor (Oryza barthii) are determined and comparison made with Asian domesticated rice (Oryza sativa), the commonest commercial rice. This suggests possible enzymatic processes contributing to the unique traits of the African varieties. These have similar starch structures, including smaller amylose molecules, but larger amounts of amylose chains across the whole amylose chain-length distribution, and higher amylose contents, than O. sativa. They also show a higher proportion of two- and three-lamellae spanning amylopectin branch chains (degree of polymerization 34-100) than O. sativa, which contributes to their higher gelatinization temperatures. Fitting amylopectin chain-length distribution with a biosynthesis-based mathematical model suggests that the reason for this difference might be because O. glaberrima and O. barthii have more active SSIIIa and/or less active SBEIIb enzymes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Evidence for Biotrophic Lifestyle and Biocontrol Potential of Dark Septate Endophyte Harpophora oryzae to Rice Blast Disease

    PubMed Central

    Su, Zhen-Zhu; Mao, Li-Juan; Li, Na; Feng, Xiao-Xiao; Yuan, Zhi-Lin; Wang, Li-Wei; Lin, Fu-Cheng; Zhang, Chu-Long

    2013-01-01

    The mutualism pattern of the dark septate endophyte (DSE) Harpophora oryzae in rice roots and its biocontrol potential in rice blast disease caused by Magnaporthe oryzae were investigated. Fluorescent protein-expressing H. oryzae was used to monitor the colonization pattern. Hyphae invaded from the epidermis to the inner cortex, but not into the root stele. Fungal colonization increased with root tissue maturation, showing no colonization in the meristematic zone, slight colonization in the elongation zone, and heavy colonization in the differentiation zone. H. oryzae adopted a biotrophic lifestyle in roots accompanied by programmed cell death. Real-time PCR facilitated the accurate quantification of fungal growth and the respective plant response. The biocontrol potential of H. oryzae was visualized by inoculation with eGFP-tagged M. oryzae in rice. H. oryzae protected rice from M. oryzae root invasion by the accumulation of H2O2 and elevated antioxidative capacity. H. oryzae also induced systemic resistance against rice blast. This systemic resistance was mediated by the OsWRKY45-dependent salicylic acid (SA) signaling pathway, as indicated by the strongly upregulated expression of OsWRKY45. The colonization pattern of H. oryzae was consistent with the typical characteristics of DSEs. H. oryzae enhanced local resistance by reactive oxygen species (ROS) and high antioxidative level and induced OsWRKY45-dependent SA-mediated systemic resistance against rice blast. PMID:23637814

  16. A walk on the wild side: Oryza species as source for rice abiotic stress tolerance.

    PubMed

    Menguer, Paloma Koprovski; Sperotto, Raul Antonio; Ricachenevsky, Felipe Klein

    2017-01-01

    Oryza sativa, the common cultivated rice, is one of the most important crops for human consumption, but production is increasingly threatened by abiotic stresses. Although many efforts have resulted in breeding rice cultivars that are relatively tolerant to their local environments, climate changes and population increase are expected to soon call for new, fast generation of stress tolerant rice germplasm, and current within-species rice diversity might not be enough to overcome such needs. The Oryza genus contains other 23 wild species, with only Oryza glaberrima being also domesticated. Rice domestication was performed with a narrow genetic diversity, and the other Oryza species are a virtually untapped genetic resource for rice stress tolerance improvement. Here we review the origin of domesticated Oryza sativa from wild progenitors, the ecological and genomic diversity of the Oryza genus, and the stress tolerance variation observed for wild Oryza species, including the genetic basis underlying the tolerance mechanisms found. The summary provided here is important to indicate how we should move forward to unlock the full potential of these germplasms for rice improvement.

  17. A walk on the wild side: Oryza species as source for rice abiotic stress tolerance

    PubMed Central

    Menguer, Paloma Koprovski; Sperotto, Raul Antonio; Ricachenevsky, Felipe Klein

    2017-01-01

    Abstract Oryza sativa, the common cultivated rice, is one of the most important crops for human consumption, but production is increasingly threatened by abiotic stresses. Although many efforts have resulted in breeding rice cultivars that are relatively tolerant to their local environments, climate changes and population increase are expected to soon call for new, fast generation of stress tolerant rice germplasm, and current within-species rice diversity might not be enough to overcome such needs. The Oryza genus contains other 23 wild species, with only Oryza glaberrima being also domesticated. Rice domestication was performed with a narrow genetic diversity, and the other Oryza species are a virtually untapped genetic resource for rice stress tolerance improvement. Here we review the origin of domesticated Oryza sativa from wild progenitors, the ecological and genomic diversity of the Oryza genus, and the stress tolerance variation observed for wild Oryza species, including the genetic basis underlying the tolerance mechanisms found. The summary provided here is important to indicate how we should move forward to unlock the full potential of these germplasms for rice improvement. PMID:28323300

  18. The Xylella fastidiosa PD1063 Protein Is Secreted in Association with Outer Membrane Vesicles

    PubMed Central

    Pierce, Brittany K.; Voegel, Tanja; Kirkpatrick, Bruce C.

    2014-01-01

    Xylella fastidiosa is a gram-negative, xylem-limited plant pathogenic bacterium that causes disease in a variety of economically important agricultural crops including Pierce's disease of grapevines. Xylella fastidiosa biofilms formed in the xylem vessels of plants play a key role in early colonization and pathogenicity by providing a protected niche and enhanced cell survival. Here we investigate the role of Xylella fastidiosa PD1063, the predicted ortholog of Xanthomonas oryzae pv. oryzae PXO_03968, which encodes an outer membrane protein. To assess the function of the Xylella fastidiosa ortholog, we created Xylella fastidiosa mutants deleted for PD1063 and then assessed biofilm formation, cell-cell aggregation and cell growth in vitro. We also assessed disease severity and pathogen titers in grapevines mechanically inoculated with the Xylella fastidiosa PD1063 mutant. We found a significant decrease in cell-cell aggregation among PD1063 mutants but no differences in cell growth, biofilm formation, disease severity or titers in planta. Based on the demonstration that Xanthomonas oryzae pv. oryzae PXO_03968 encodes an outer membrane protein, secreted in association with outer membrane vesicles, we predicted that PD1063 would also be secreted in a similar manner. Using anti-PD1063 antibodies, we found PD1063 in the supernatant and secreted in association with outer membrane vesicles. PD1063 purified from the supernatant, outer membrane fractions and outer membrane vesicles was 19.2 kD, corresponding to the predicted size of the processed protein. Our findings suggest Xylella fastidiosa PD1063 is not essential for development of Pierce's disease in Vitis vinifera grapevines although further research is required to determine the function of the PD1063 outer membrane protein in Xylella fastidiosa. PMID:25426629

  19. Comparative Chemistry of Aspergillus oryzae (RIB40) and A. flavus (NRRL 3357)

    PubMed Central

    Rank, Christian; Klejnstrup, Marie Louise; Petersen, Lene Maj; Kildgaard, Sara; Frisvad, Jens Christian; Gotfredsen, Charlotte Held; Larsen, Thomas Ostenfeld

    2012-01-01

    Aspergillus oryzae and A. flavus are important species in industrial biotechnology and food safety and have been some of the first aspergilli to be fully genome sequenced. Bioinformatic analysis has revealed 99.5% gene homology between the two species pointing towards a large coherence in the secondary metabolite production. In this study we report on the first comparison of secondary metabolite production between the full genome sequenced strains of A. oryzae (RIB40) and A. flavus (NRRL 3357). Surprisingly, the overall chemical profiles of the two strains were mostly very different across 15 growth conditions. Contrary to previous studies we found the aflatrem precursor 13-desoxypaxilline to be a major metabolite from A. oryzae under certain growth conditions. For the first time, we additionally report A. oryzae to produce parasiticolide A and two new analogues hereof, along with four new alkaloids related to the A. flavus metabolites ditryptophenalines and miyakamides. Generally the secondary metabolite capability of A. oryzae presents several novel end products likely to result from the domestication process from A. flavus. PMID:24957367

  20. Investigation of a Quadruplex-Forming Repeat Sequence Highly Enriched in Xanthomonas and Nostoc sp.

    PubMed

    Rehm, Charlotte; Wurmthaler, Lena A; Li, Yuanhao; Frickey, Tancred; Hartig, Jörg S

    2015-01-01

    In prokaryotes simple sequence repeats (SSRs) with unit sizes of 1-5 nucleotides (nt) are causative for phase and antigenic variation. Although an increased abundance of heptameric repeats was noticed in bacteria, reports about SSRs of 6-9 nt are rare. In particular G-rich repeat sequences with the propensity to fold into G-quadruplex (G4) structures have received little attention. In silico analysis of prokaryotic genomes show putative G4 forming sequences to be abundant. This report focuses on a surprisingly enriched G-rich repeat of the type GGGNATC in Xanthomonas and cyanobacteria such as Nostoc. We studied in detail the genomes of Xanthomonas campestris pv. campestris ATCC 33913 (Xcc), Xanthomonas axonopodis pv. citri str. 306 (Xac), and Nostoc sp. strain PCC7120 (Ana). In all three organisms repeats are spread all over the genome with an over-representation in non-coding regions. Extensive variation of the number of repetitive units was observed with repeat numbers ranging from two up to 26 units. However a clear preference for four units was detected. The strong bias for four units coincides with the requirement of four consecutive G-tracts for G4 formation. Evidence for G4 formation of the consensus repeat sequences was found in biophysical studies utilizing CD spectroscopy. The G-rich repeats are preferably located between aligned open reading frames (ORFs) and are under-represented in coding regions or between divergent ORFs. The G-rich repeats are preferentially located within a distance of 50 bp upstream of an ORF on the anti-sense strand or within 50 bp from the stop codon on the sense strand. Analysis of whole transcriptome sequence data showed that the majority of repeat sequences are transcribed. The genetic loci in the vicinity of repeat regions show increased genomic stability. In conclusion, we introduce and characterize a special class of highly abundant and wide-spread quadruplex-forming repeat sequences in bacteria.

  1. Investigation of a Quadruplex-Forming Repeat Sequence Highly Enriched in Xanthomonas and Nostoc sp.

    PubMed Central

    Rehm, Charlotte; Wurmthaler, Lena A.; Li, Yuanhao; Frickey, Tancred; Hartig, Jörg S.

    2015-01-01

    In prokaryotes simple sequence repeats (SSRs) with unit sizes of 1–5 nucleotides (nt) are causative for phase and antigenic variation. Although an increased abundance of heptameric repeats was noticed in bacteria, reports about SSRs of 6–9 nt are rare. In particular G-rich repeat sequences with the propensity to fold into G-quadruplex (G4) structures have received little attention. In silico analysis of prokaryotic genomes show putative G4 forming sequences to be abundant. This report focuses on a surprisingly enriched G-rich repeat of the type GGGNATC in Xanthomonas and cyanobacteria such as Nostoc. We studied in detail the genomes of Xanthomonas campestris pv. campestris ATCC 33913 (Xcc), Xanthomonas axonopodis pv. citri str. 306 (Xac), and Nostoc sp. strain PCC7120 (Ana). In all three organisms repeats are spread all over the genome with an over-representation in non-coding regions. Extensive variation of the number of repetitive units was observed with repeat numbers ranging from two up to 26 units. However a clear preference for four units was detected. The strong bias for four units coincides with the requirement of four consecutive G-tracts for G4 formation. Evidence for G4 formation of the consensus repeat sequences was found in biophysical studies utilizing CD spectroscopy. The G-rich repeats are preferably located between aligned open reading frames (ORFs) and are under-represented in coding regions or between divergent ORFs. The G-rich repeats are preferentially located within a distance of 50 bp upstream of an ORF on the anti-sense strand or within 50 bp from the stop codon on the sense strand. Analysis of whole transcriptome sequence data showed that the majority of repeat sequences are transcribed. The genetic loci in the vicinity of repeat regions show increased genomic stability. In conclusion, we introduce and characterize a special class of highly abundant and wide-spread quadruplex-forming repeat sequences in bacteria. PMID:26695179

  2. A novel non-thermostable deuterolysin from Aspergillus oryzae.

    PubMed

    Maeda, Hiroshi; Katase, Toru; Sakai, Daisuke; Takeuchi, Michio; Kusumoto, Ken-Ichi; Amano, Hitoshi; Ishida, Hiroki; Abe, Keietsu; Yamagata, Youhei

    2016-09-01

    Three putative deuterolysin (EC 3.4.24.29) genes (deuA, deuB, and deuC) were found in the Aspergillus oryzae genome database ( http://www.bio.nite.go.jp/dogan/project/view/AO ). One of these genes, deuA, was corresponding to NpII gene, previously reported. DeuA and DeuB were overexpressed by recombinant A. oryzae and were purified. The degradation profiles against protein substrates of both enzymes were similar, but DeuB showed wider substrate specificity against peptidyl MCA-substrates compared with DeuA. Enzymatic profiles of DeuB except for thermostability also resembled those of DeuA. DeuB was inactivated by heat treatment above 80° C, different from thermostable DeuA. Transcription analysis in wild type A. oryzae showed only deuB was expressed in liquid culture, and the addition of the proteinous substrate upregulated the transcription. Furthermore, the NaNO3 addition seems to eliminate the effect of proteinous substrate for the transcription of deuB.

  3. Aspergillus oryzae-based cell factory for direct kojic acid production from cellulose.

    PubMed

    Yamada, Ryosuke; Yoshie, Toshihide; Wakai, Satoshi; Asai-Nakashima, Nanami; Okazaki, Fumiyoshi; Ogino, Chiaki; Hisada, Hiromoto; Tsutsumi, Hiroko; Hata, Yoji; Kondo, Akihiko

    2014-05-18

    Kojic acid (5-Hydroxy-2-(hydroxymethyl)-4-pyrone) is one of the major secondary metabolites in Aspergillus oryzae. It is widely used in food, pharmaceuticals, and cosmetics. The production cost, however, is too high for its use in many applications. Thus, an efficient and cost-effective kojic acid production process would be valuable. However, little is known about the complete set of genes for kojic acid production. Currently, kojic acid is produced from glucose. The efficient production of kojic acid using cellulose as an inexpensive substrate would help establish cost-effective kojic acid production. A kojic acid transcription factor gene over-expressing the A. oryzae strain was constructed. Three genes related to kojic acid production in this strain were transcribed in higher amounts than those found in the wild-type strain. This strain produced 26.4 g/L kojic acid from 80 g/L glucose. Furthermore, this strain was transformed with plasmid harboring 3 cellulase genes. The resultant A. oryzae strain successfully produced 0.18 g/L of kojic acid in 6 days of fermentation from the phosphoric acid swollen cellulose. Kojic acid was produced directly from cellulose material using genetically engineered A. oryzae. Because A. oryzae has efficient protein secretion ability and secondary metabolite productivity, an A. oryzae-based cell factory could be a platform for the production of various kinds of bio-based chemicals.

  4. Efficient formation of heterokaryotic sclerotia in the filamentous fungus Aspergillus oryzae.

    PubMed

    Wada, Ryuta; Jin, Feng Jie; Koyama, Yasuji; Maruyama, Jun-ichi; Kitamoto, Katsuhiko

    2014-01-01

    Heterokaryon formation by hyphal fusion occurs during a sexual/parasexual cycle in filamentous fungi, and therefore, it is biotechnologically important for crossbreeding. In the industrial filamentous fungus Aspergillus oryzae, a parasexual cycle has been reported, and it was recently suggested that sexual reproduction should be possible. However, as A. oryzae enters into hyphal fusion with a much lower frequency than Neurospora crassa, the process of heterokaryon formation has not been extensively characterized in A. oryzae. Here, we developed a detection system for heterokaryon formation by expressing red or green fluorescent proteins in nuclei and conferring uridine/uracil or adenine auxotrophy to MAT1-1 and MAT1-2 strains of A. oryzae. The heterokaryon formation of A. oryzae was investigated in paired culture using the genetically modified strains. No sclerotial formation was observed in the hyphal contact regions of the two strains with the same auxotrophy, whereas numerous sclerotia were formed between the strains with different auxotrophies. In most of the formed sclerotia, the uridine/uracil and adenine auxotrophies were complemented, and both red and green fluorescence were detected, indicating that heterokaryotic fusants were formed by hyphal fusion before or during sclerotial formation. Moreover, overexpressing the sclR gene, which encodes a transcription factor promoting sclerotial formation, increased the number of heterokaryotic sclerotia formed between the two auxotrophic strains. Notably, these effects in sclerotial formation of heterokaryotic fusants were observed independently of the mating type pairing combinations. Taken together, these findings demonstrated that paring of different auxotrophs and sclR overexpression promote the formation of heterokaryotic sclerotia in A. oryzae.

  5. Influence of epidemiological factors on the bioherbicidal efficacy of a Xanthomonas capestris isolate on common cocklebur (Xanthium strumarium)

    USDA-ARS?s Scientific Manuscript database

    Greenhouse and controlled-environment studies were conducted to determine the effects of incubation temperature, dew period temperature and duration, plant growth stage, and cell concentration on the bioherbicidal efficacy of a highly virulent isolate (LVA987) of the bacterial pathogen, Xanthomonas ...

  6. An evaluation of aflatoxin and cyclopiazonic acid production in Aspergillus oryzae.

    PubMed

    Kim, Nam Yeun; Lee, Jin Hee; Lee, Inhyung; Ji, Geun Eog

    2014-06-01

    To date, edible fungi such as Aspergillus flavus var. oryzae (A. oryzae) has been considered as safe. However, some strains can produce mycotoxins. Thus, the biosynthetic ability to produce mycotoxins should be reevaluated to determine the safety of edible fungi. We analyzed the production of aflatoxins and cyclopiazonic acid (CPA) from edible fungi such as A. oryzae isolated from various Korean foods using multiplex PCR, enzyme-linked immunosorbent assay, and high-performance liquid chromatography (HPLC). In the multiplex PCR analysis of aflatoxin biosynthetic genes omtB, aflR, ver-1, and omtA, 5 of 19 Aspergillus strains produced all PCR products. Among them, aflatoxin B1 and aflatoxin B2 were detected from only A. flavus KACC 41403 by HPLC. Aflatoxins were not detected from the other four strains that produced all positive PCR bands. Aflatoxin also was not detected from 12 strains that had PCR patterns without aflR or ver-1 and from 2 strains that did not produce any of the expected PCR products. Only the seven A. oryzae strains that produced all of the positive PCR bands including the CPA biosynthetic genes maoA, dmaT, and pks-nrps produced CPA. CPA and aflatoxin production must be evaluated before A. oryzae strains are used for the development of fermented foods.

  7. Evaluation of commercial soy sauce koji strains of Aspergillus oryzae for γ-aminobutyric acid (GABA) production.

    PubMed

    Ab Kadir, Safuan; Wan-Mohtar, Wan Abd Al Qadr Imad; Mohammad, Rosfarizan; Abdul Halim Lim, Sarina; Sabo Mohammed, Abdulkarim; Saari, Nazamid

    2016-10-01

    In this study, four selected commercial strains of Aspergillus oryzae were collected from soy sauce koji. These A. oryzae strains designated as NSK, NSZ, NSJ and NST shared similar morphological characteristics with the reference strain (A. oryzae FRR 1675) which confirmed them as A. oryzae species. They were further evaluated for their ability to produce γ-aminobutyric acid (GABA) by cultivating the spore suspension in a broth medium containing 0.4 % (w/v) of glutamic acid as a substrate for GABA production. The results showed that these strains were capable of producing GABA; however, the concentrations differed significantly (P < 0.05) among themselves. Based on the A. oryzae strains, highest GABA concentration was obtained from NSK (194 mg/L) followed by NSZ (63 mg/L), NSJ (51.53 mg/L) and NST (31.66 mg/L). Therefore, A. oryzae NSK was characterized and the sequence was found to be similar to A. oryzae and A. flavus with 99 % similarity. The evolutionary distance (K nuc) between sequences of identical fungal species was calculated and a phylogenetic tree prepared from the K nuc data showed that the isolate belonged to the A. oryzae species. This finding may allow the development of GABA-rich ingredients using A. oryzae NSK as a starter culture for soy sauce production.

  8. Aspergillus oryzae-based cell factory for direct kojic acid production from cellulose

    PubMed Central

    2014-01-01

    Background Kojic acid (5-Hydroxy-2-(hydroxymethyl)-4-pyrone) is one of the major secondary metabolites in Aspergillus oryzae. It is widely used in food, pharmaceuticals, and cosmetics. The production cost, however, is too high for its use in many applications. Thus, an efficient and cost-effective kojic acid production process would be valuable. However, little is known about the complete set of genes for kojic acid production. Currently, kojic acid is produced from glucose. The efficient production of kojic acid using cellulose as an inexpensive substrate would help establish cost-effective kojic acid production. Results A kojic acid transcription factor gene over-expressing the A. oryzae strain was constructed. Three genes related to kojic acid production in this strain were transcribed in higher amounts than those found in the wild-type strain. This strain produced 26.4 g/L kojic acid from 80 g/L glucose. Furthermore, this strain was transformed with plasmid harboring 3 cellulase genes. The resultant A. oryzae strain successfully produced 0.18 g/L of kojic acid in 6 days of fermentation from the phosphoric acid swollen cellulose. Conclusions Kojic acid was produced directly from cellulose material using genetically engineered A. oryzae. Because A. oryzae has efficient protein secretion ability and secondary metabolite productivity, an A. oryzae-based cell factory could be a platform for the production of various kinds of bio-based chemicals. PMID:24885968

  9. A loop-mediated isothermal amplification assay and sample preparation procedure for sensitive detection of Xanthomonas fragariae in strawberry

    USDA-ARS?s Scientific Manuscript database

    Xanthomonas fragariae is a bacterium that causes angular leaf spot of strawberry. Asymptomatic infections are common and contribute to the difficulties in disease management. The aim of this study was to develop a loop-mediated isothermal amplification (LAMP) assay with a bacterial enrichment proced...

  10. The race shift of Magnaporthe oryzae occurred within 50 years in the U.S.A.

    USDA-ARS?s Scientific Manuscript database

    Rice blast disease caused by Magnaporthe oryzae is one of the most destructive diseases of rice. Infection of the races of M. oryzae can be prevented by the corresponding major resistance (R) gene in rice. However, the races of M. oryzae in the commercial fields can rapidly change to overcome resis...

  11. A model for predicting Xanthomonas arboricola pv. pruni growth as a function of temperature

    PubMed Central

    Llorente, Isidre; Montesinos, Emilio; Moragrega, Concepció

    2017-01-01

    A two-step modeling approach was used for predicting the effect of temperature on the growth of Xanthomonas arboricola pv. pruni, causal agent of bacterial spot disease of stone fruit. The in vitro growth of seven strains was monitored at temperatures from 5 to 35°C with a Bioscreen C system, and a calibrating equation was generated for converting optical densities to viable counts. In primary modeling, Baranyi, Buchanan, and modified Gompertz equations were fitted to viable count growth curves over the entire temperature range. The modified Gompertz model showed the best fit to the data, and it was selected to estimate the bacterial growth parameters at each temperature. Secondary modeling of maximum specific growth rate as a function of temperature was performed by using the Ratkowsky model and its variations. The modified Ratkowsky model showed the best goodness of fit to maximum specific growth rate estimates, and it was validated successfully for the seven strains at four additional temperatures. The model generated in this work will be used for predicting temperature-based Xanthomonas arboricola pv. pruni growth rate and derived potential daily doublings, and included as the inoculum potential component of a bacterial spot of stone fruit disease forecaster. PMID:28493954

  12. A microbially derived tyrosine-sulfated peptide mimics a plant peptide hormone.

    PubMed

    Pruitt, Rory N; Joe, Anna; Zhang, Weiguo; Feng, Wei; Stewart, Valley; Schwessinger, Benjamin; Dinneny, José R; Ronald, Pamela C

    2017-07-01

    The biotrophic pathogen Xanthomonas oryzae pv. oryzae (Xoo) produces a sulfated peptide named RaxX, which shares similarity to peptides in the PSY (plant peptide containing sulfated tyrosine) family. We hypothesize that RaxX mimics the growth-stimulating activity of PSY peptides. Root length was measured in Arabidopsis and rice treated with synthetic RaxX peptides. We also used comparative genomic analyses and reactive oxygen species burst assays to evaluate the activity of RaxX and PSY peptides. Here we found that a synthetic sulfated RaxX derivative comprising 13 residues (RaxX13-sY), highly conserved between RaxX and PSY, induces root growth in Arabidopsis and rice in a manner similar to that triggered by PSY. We identified residues that are required for activation of immunity mediated by the rice XA21 receptor but that are not essential for root growth induced by PSY. Finally, we showed that a Xanthomonas strain lacking raxX is impaired in virulence. These findings suggest that RaxX serves as a molecular mimic of PSY peptides to facilitate Xoo infection and that XA21 has evolved the ability to recognize and respond specifically to the microbial form of the peptide. © 2017 UT-Battelle LLC. New Phytologist © 2017 New Phytologist Trust.

  13. A microbially derived tyrosine-sulfated peptide mimics a plant peptide hormone

    PubMed Central

    Pruitt, Rory N.; Joe, Anna; Zhang, Weiguo; Feng, Wei; Stewart, Valley; Schwessinger, Benjamin; Dinneny, José R.; Ronald, Pamela C.

    2018-01-01

    Summary The biotrophic pathogen Xanthomonas oryzae pv. oryzae (Xoo) produces a sulfated peptide named RaxX, which shares similarity to peptides in the PSY (plant peptide containing sulfated tyrosine) family. We hypothesize that RaxX mimics the growth-stimulating activity of PSY peptides.Root length was measured in Arabidopsis and rice treated with synthetic RaxX peptides. We also used comparative genomic analyses and reactive oxygen species burst assays to evaluate the activity of RaxX and PSY peptides.Here we found that a synthetic sulfated RaxX derivative comprising 13 residues (RaxX13-sY), highly conserved between RaxX and PSY, induces root growth in Arabidopsis and rice in a manner similar to that triggered by PSY. We identified residues that are required for activation of immunity mediated by the rice XA21 receptor but that are not essential for root growth induced by PSY. Finally, we showed that a Xanthomonas strain lacking raxX is impaired in virulence.These findings suggest that RaxX serves as a molecular mimic of PSY peptides to facilitate Xoo infection and that XA21 has evolved the ability to recognize and respond specifically to the microbial form of the peptide. PMID:28556915

  14. Intercellular and intracellular signalling systems that globally control the expression of virulence genes in plant pathogenic bacteria.

    PubMed

    Ham, Jong Hyun

    2013-04-01

    Plant pathogenic bacteria utilize complex signalling systems to control the expression of virulence genes at the cellular level and within populations. Quorum sensing (QS), an important intercellular communication mechanism, is mediated by different types of small molecules, including N-acyl homoserine lactones (AHLs), fatty acids and small proteins. AHL-mediated signalling systems dependent on the LuxI and LuxR family proteins play critical roles in the virulence of a wide range of Gram-negative plant pathogenic bacteria belonging to the Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria. Xanthomonas spp. and Xylella fastidiosa, members of the Gammaproteobacteria, however, possess QS systems that are mediated by fatty acid-type diffusible signal factors (DSFs). Recent studies have demonstrated that Ax21, a 194-amino-acid protein in Xanthomonas oryzae pv. oryzae, plays dual functions in activating a rice innate immune pathway through binding to the rice XA21 pattern recognition receptor and in regulating bacterial virulence and biofilm formation as a QS signal molecule. In xanthomonads, DSF-mediated QS systems are connected with the signalling pathways mediated by cyclic diguanosine monophosphate (c-di-GMP), which functions as a second messenger for the control of virulence gene expression in these bacterial pathogens. © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  15. Xanthomonas adaptation to common bean is associated with horizontal transfers of genes encoding TAL effectors.

    PubMed

    Ruh, Mylène; Briand, Martial; Bonneau, Sophie; Jacques, Marie-Agnès; Chen, Nicolas W G

    2017-08-30

    Common bacterial blight is a devastating bacterial disease of common bean (Phaseolus vulgaris) caused by Xanthomonas citri pv. fuscans and Xanthomonas phaseoli pv. phaseoli. These phylogenetically distant strains are able to cause similar symptoms on common bean, suggesting that they have acquired common genetic determinants of adaptation to common bean. Transcription Activator-Like (TAL) effectors are bacterial type III effectors that are able to induce the expression of host genes to promote infection or resistance. Their capacity to bind to a specific host DNA sequence suggests that they are potential candidates for host adaption. To study the diversity of tal genes from Xanthomonas strains responsible for common bacterial blight of bean, whole genome sequences of 17 strains representing the diversity of X. citri pv. fuscans and X. phaseoli pv. phaseoli were obtained by single molecule real time sequencing. Analysis of these genomes revealed the existence of four tal genes named tal23A, tal20F, tal18G and tal18H, respectively. While tal20F and tal18G were chromosomic, tal23A and tal18H were carried on plasmids and shared between phylogenetically distant strains, therefore suggesting recent horizontal transfers of these genes between X. citri pv. fuscans and X. phaseoli pv. phaseoli strains. Strikingly, tal23A was present in all strains studied, suggesting that it played an important role in adaptation to common bean. In silico predictions of TAL effectors targets in the common bean genome suggested that TAL effectors shared by X. citri pv. fuscans and X. phaseoli pv. phaseoli strains target the promoters of genes of similar functions. This could be a trace of convergent evolution among TAL effectors from different phylogenetic groups, and comforts the hypothesis that TAL effectors have been implied in the adaptation to common bean. Altogether, our results favour a model where plasmidic TAL effectors are able to contribute to host adaptation by being horizontally

  16. Rhizomucor miehei triglyceride lipase is processed and secreted from transformed Aspergillus oryzae.

    PubMed

    Huge-Jensen, B; Andreasen, F; Christensen, T; Christensen, M; Thim, L; Boel, E

    1989-09-01

    The cDNA encoding the precursor of the Rhizomucor miehei triglyceride lipase was inserted in an Aspergillus oryzae expression vector. In this vector the expression of the lipase cDNA is under control of the Aspergillus oryzae alpha-amylase gene promoter and the Aspergillus niger glucoamylase gene terminator. The recombinant plasmid was introduced into Aspergillus oryzae, and transformed colonies were selected and screened for lipase expression. Lipase-positive transformants were grown in a small fermentor, and recombinant triglyceride lipase was purified from the culture broth. The purified enzymatically active recombinant lipase (rRML) secreted from A. oryzae was shown to have the same characteristics with respect to mobility on reducing SDS-gels and amino acid composition as the native enzyme. N-terminal amino acid sequencing indicated that approximately 70% of the secreted rRML had the same N-terminal sequence as the native Rhizomucor miehei enzyme, whereas 30% of the secreted rRML was one amino acid residue shorter in the N-terminal. The recombinant lipase precursor, which has a 70 amino acid propeptide, is thus processed in and secreted from Aspergillus oryzae. We have hereby demonstrated the utility of this organism as a host for the production of recombinant triglyceride lipases.

  17. Local genetic diversity of Xanthomonas citri subsp. citri in citrus orchards in northwest Paraná state, Brazil

    USDA-ARS?s Scientific Manuscript database

    Xanthomonas citri subsp. citri, causal agent of Asiatic citrus canker, is an important pathogen of citrus in Brazil and elsewhere. The genetic diversity of X. citri subsp. citri pathtype ‘A’ has not been studied in Brazil at a local scale (up to 300 km). A total of 40 isolates were collected from le...

  18. Effect of ozone on infection of wild strawberry by Xanthomonas fragariae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurence, J.A.; Wood, F.A.

    1978-05-01

    Interaction studies were conducted to determine the response of wild strawberry to ozone and the effects of ozone on the infection of wild strawberry by Xanthomonas fragariae. Data from the interaction studies showed that bacterial infection of wild strawberry was inhibited by ozone exposure at concentrations that caused visible injury to the plants. Since wild strawberry was sensitive to ozone exposure and the threshold for symptom development was higher than the current ambient air quality standard for ozone, the possible use of the plant as an indicator of ambient phytotoxic concentrations of ozone was suggested. (7 graphs, 1 photo, 18more » references)« less

  19. L-lactic acid production from starch by simultaneous saccharification and fermentation in a genetically engineered Aspergillus oryzae pure culture.

    PubMed

    Wakai, Satoshi; Yoshie, Toshihide; Asai-Nakashima, Nanami; Yamada, Ryosuke; Ogino, Chiaki; Tsutsumi, Hiroko; Hata, Yoji; Kondo, Akihiko

    2014-12-01

    Lactic acid is a commodity chemical that can be produced biologically. Lactic acid-producing Aspergillus oryzae strains were constructed by genetic engineering. The A. oryzae LDH strain with the bovine L-lactate dehydrogenase gene produced 38 g/L of lactate from 100g/L of glucose. Disruption of the wild-type lactate dehydrogenase gene in A. oryzae LDH improved lactate production. The resulting strain A. oryzae LDHΔ871 produced 49 g/L of lactate from 100g/L of glucose. Because A. oryzae strains innately secrete amylases, A. oryzae LDHΔ871 produced approximately 30 g/L of lactate from various starches, dextrin, or maltose (all at 100 g/L). To our knowledge, this is the first report describing the simultaneous saccharification and fermentation of lactate from starch using a pure culture of transgenic A. oryzae. Our results indicate that A. oryzae could be a promising host for the bioproduction of useful compounds such as lactic acid. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Identification and toxigenic potential of the industrially important fungi, Aspergillus oryzae and Aspergillus sojae.

    PubMed

    Jørgensen, Thomas R

    2007-12-01

    Mold strains belonging to the species Aspergillus oryzae and Aspergillus sojae are highly valued as koji molds in the traditional preparation of fermented foods, such as miso, sake, and shoyu, and as protein production hosts in modern industrial processes. A. oryzae and A. sojae are relatives of the wild molds Aspergillus flavus and Aspergillus parasiticus. All four species are classified to the A. flavus group. Strains of the A. flavus group are characterized by a high degree of morphological similarity. Koji mold species are generally perceived of as being nontoxigenic, whereas wild molds are associated with the carcinogenic aflatoxins. Thus, reliable identification of individual strains is very important for application purposes. This review considers the pheno- and genotypic markers used in the classification of A. flavus group strains and specifically in the identification of A. oryzae and A. sojae strains. Separation of A. oryzae and A. sojae from A. flavus and A. parasiticus, respectively, is inconsistent, and both morphologic and molecular evidence support conspecificity. The high degree of identity is reflected by the divergent identification of reference cultures maintained in culture collections. As close relatives of aflatoxin-producing wild molds, koji molds possess an aflatoxin gene homolog cluster. Some strains identified as A. oryzae and A. sojae have been implicated in aflatoxin production. Identification of a strain as A. oryzae or A. sojae is no guarantee of its inability to produce aflatoxins or other toxic metabolites. Toxigenic potential must be determined specifically for individual strains. The species taxa, A. oryzae and A. sojae, are currently conserved by societal issues.

  1. Aflatoxin B1 Detoxification by Aspergillus oryzae from Meju, a Traditional Korean Fermented Soybean Starter.

    PubMed

    Lee, Kyu Ri; Yang, Sun Min; Cho, Sung Min; Kim, Myunghee; Hong, Sung-Yong; Chung, Soo Hyun

    2016-11-04

    Aflatoxins are classified as Group 1 (carcinogenic to humans) by the International Agency for Research on Cancer (IARC). In this study, a total of 134 fungal strains were isolated from 65 meju samples, and two fungal isolates were selected as potential aflatoxin B₁ (AFB₁)-biodetoxification fungi. These fungi were identified as Aspergillus oryzae MAO103 and A. oryzae MAO104 by sequencing the beta-tubulin gene. The two A. oryzae strains were able to degrade more than 90% of AFB1 (initial concentration: 40 µg/L) in a culture broth in 14 days. The mutagenic effects of AFB₁ treated with A. oryzae MAO103 and MAO104 significantly decreased to 5.7% and 6.4%, respectively, in the frame-shift mutation of Ames tests using Salmonella typhimurium TA 98. The base-substituting mutagenicity of AFB₁ was also decreased by the two fungi. Moreover, AFB1 production by A. flavus was significantly decreased by the two A. oryzae strains on soybean-based agar plates. Our data suggest that the two AFB1-detoxification A. oryzae strains have potential application to control AFB₁ in foods and feeds.

  2. Improvement of heterologous protein production in Aspergillus oryzae by RNA interference with alpha-amylase genes.

    PubMed

    Nemoto, Takashi; Maruyama, Jun-ichi; Kitamoto, Katsuhiko

    2009-11-01

    Aspergillus oryzae RIB40 has three alpha-amylase genes (amyA, amyB, and amyC), and secretes alpha-amylase abundantly. However, large amounts of endogenous secretory proteins such as alpha-amylase can compete with heterologous protein in the secretory pathway and decrease its production yields. In this study, we examined the effects of suppression of alpha-amylase on heterologous protein production in A. oryzae, using the bovine chymosin (CHY) as a reporter heterologous protein. The three alpha-amylase genes in A. oryzae have nearly identical DNA sequences from those promoters to the coding regions. Hence we performed silencing of alpha-amylase genes by RNA interference (RNAi) in the A. oryzae CHY producing strain. The silenced strains exhibited a reduction in alpha-amylase activity and an increase in CHY production in the culture medium. This result suggests that suppression of alpha-amylase is effective in heterologous protein production in A. oryzae.

  3. Efficient expression of a Phanerochaete chrysosporium manganese peroxidase gene in Aspergillus oryzae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, P.; Whitwam, R.E.; Tien, Ming

    1996-03-01

    A manganese peroxidase (mnp1) from Phanerochaete chrysosporium was efficiently expressed in Aspergillus oryzae. Expression was achieved by fusing the mature cDNA of mnp1 with the A. oryzae Taka amylase promoter and secretion signal. The 3{prime} untranslated region of the glucoamylase gene of Asperigillus awamori provided the terminator. The recombinant protein (rMnP) was secreted in an active form, permitting rapid detection and purification. Physical and kinetic properties of rMnP were similar to those of the native protein. The A. oryzae expression system is well suited for both mechanistic and site-directed mutagenesis studies. 34 refs., 7 figs., 1 tab.

  4. Cyclopiazonic Acid Biosynthesis of Aspergillus flavus and Aspergillus oryzae

    PubMed Central

    Chang, Perng-Kuang; Ehrlich, Kenneth C.; Fujii, Isao

    2009-01-01

    Cyclopiazonic acid (CPA) is an indole-tetramic acid neurotoxin produced by some of the same strains of A. flavus that produce aflatoxins and by some Aspergillus oryzae strains. Despite its discovery 40 years ago, few reviews of its toxicity and biosynthesis have been reported. This review examines what is currently known about the toxicity of CPA to animals and humans, both by itself or in combination with other mycotoxins. The review also discusses CPA biosynthesis and the genetic diversity of CPA production in A. flavus/oryzae populations. PMID:22069533

  5. Pathway and rate-limiting step of glyphosate degradation by Aspergillus oryzae A-F02.

    PubMed

    Fu, Gui-Ming; Chen, Yan; Li, Ru-Yi; Yuan, Xiao-Qiang; Liu, Cheng-Mei; Li, Bin; Wan, Yin

    2017-09-14

    Aspergillus oryzae A-F02, a glyphosate-degrading fungus, was isolated from an aeration tank in a pesticide factory. The pathway and rate-limiting step of glyphosate (GP) degradation were investigated through metabolite analysis. GP, aminomethylphosphonic acid (AMPA), and methylamine were detected in the fermentation liquid of A. oryzae A-F02, whereas sarcosine and glycine were not. The pathway of GP degradation in A. oryzae A-F02 was revealed: GP was first degraded into AMPA, which was then degraded into methylamine. Finally, methylamine was further degraded into other products. Investigating the effects of the exogenous addition of substrates and metabolites showed that the degradation of GP to AMPA is the rate-limiting step of GP degradation by A. oryzae A-F02. In addition, the accumulation of AMPA and methylamine did not cause feedback inhibition in GP degradation. Results showed that degrading GP to AMPA was a crucial step in the degradation of GP, which determines the degradation rate of GP by A. oryzae A-F02.

  6. Deletion of creB in Aspergillus oryzae increases secreted hydrolytic enzyme activity.

    PubMed

    Hunter, A J; Morris, T A; Jin, B; Saint, C P; Kelly, J M

    2013-09-01

    Aspergillus oryzae has been used in the food and beverage industry for centuries, and industrial strains have been produced by multiple rounds of selection. Targeted gene deletion technology is particularly useful for strain improvement in such strains, particularly when they do not have a well-characterized meiotic cycle. Phenotypes of an Aspergillus nidulans strain null for the CreB deubiquitinating enzyme include effects on growth and repression, including increased activity levels of various enzymes. We show that Aspergillus oryzae contains a functional homologue of the CreB deubiquitinating enzyme and that a null strain shows increased activity levels of industrially important secreted enzymes, including cellulases, xylanases, amylases, and proteases, as well as alleviated inhibition of spore germination on glucose medium. Reverse transcription-quantitative PCR (RT-qPCR) analysis showed that the increased levels of enzyme activity in both Aspergillus nidulans and Aspergillus oryzae are mirrored at the transcript level, indicating transcriptional regulation. We report that Aspergillus oryzae DAR3699, originally isolated from soy fermentation, has a similar phenotype to that of a creB deletion mutant of the RIB40 strain, and it contains a mutation in the creB gene. Collectively, the results for Aspergillus oryzae, Aspergillus nidulans, Trichoderma reesei, and Penicillium decumbens show that deletion of creB may be broadly useful in diverse fungi for increasing production of a variety of enzymes.

  7. Deletion of creB in Aspergillus oryzae Increases Secreted Hydrolytic Enzyme Activity

    PubMed Central

    Hunter, A. J.; Morris, T. A.; Jin, B.; Saint, C. P.

    2013-01-01

    Aspergillus oryzae has been used in the food and beverage industry for centuries, and industrial strains have been produced by multiple rounds of selection. Targeted gene deletion technology is particularly useful for strain improvement in such strains, particularly when they do not have a well-characterized meiotic cycle. Phenotypes of an Aspergillus nidulans strain null for the CreB deubiquitinating enzyme include effects on growth and repression, including increased activity levels of various enzymes. We show that Aspergillus oryzae contains a functional homologue of the CreB deubiquitinating enzyme and that a null strain shows increased activity levels of industrially important secreted enzymes, including cellulases, xylanases, amylases, and proteases, as well as alleviated inhibition of spore germination on glucose medium. Reverse transcription-quantitative PCR (RT-qPCR) analysis showed that the increased levels of enzyme activity in both Aspergillus nidulans and Aspergillus oryzae are mirrored at the transcript level, indicating transcriptional regulation. We report that Aspergillus oryzae DAR3699, originally isolated from soy fermentation, has a similar phenotype to that of a creB deletion mutant of the RIB40 strain, and it contains a mutation in the creB gene. Collectively, the results for Aspergillus oryzae, Aspergillus nidulans, Trichoderma reesei, and Penicillium decumbens show that deletion of creB may be broadly useful in diverse fungi for increasing production of a variety of enzymes. PMID:23835170

  8. HDT701, a histone H4 deacetylase, negatively regulates plant innate immunity by modulating histone H4 acetylation of defense-related genes in rice.

    PubMed

    Ding, Bo; Bellizzi, Maria del Rosario; Ning, Yuese; Meyers, Blake C; Wang, Guo-Liang

    2012-09-01

    Histone acetylation and deacetylation play an important role in the modification of chromatin structure and regulation of gene expression in eukaryotes. Chromatin acetylation status is modulated antagonistically by histone acetyltransferases and histone deacetylases (HDACs). In this study, we characterized the function of histone deacetylase701 (HDT701), a member of the plant-specific HD2 subfamily of HDACs, in rice (Oryza sativa) innate immunity. Transcription of HDT701 is increased in the compatible reaction and decreased in the incompatible reaction after infection by the fungal pathogen Magnaporthe oryzae. Overexpression of HDT701 in transgenic rice leads to decreased levels of histone H4 acetylation and enhanced susceptibility to the rice pathogens M. oryzae and Xanthomonas oryzae pv oryzae (Xoo). By contrast, silencing of HDT701 in transgenic rice causes elevated levels of histone H4 acetylation and elevated transcription of pattern recognition receptor (PRR) and defense-related genes, increased generation of reactive oxygen species after pathogen-associated molecular pattern elicitor treatment, as well as enhanced resistance to both M. oryzae and Xoo. We also found that HDT701 can bind to defense-related genes to regulate their expression. Taken together, these results demonstrate that HDT701 negatively regulates innate immunity by modulating the levels of histone H4 acetylation of PRR and defense-related genes in rice.

  9. Incorporation of Bacterial Blight Resistance Genes Into Lowland Rice Cultivar Through Marker-Assisted Backcross Breeding.

    PubMed

    Pradhan, Sharat Kumar; Nayak, Deepak Kumar; Pandit, Elssa; Behera, Lambodar; Anandan, Annamalai; Mukherjee, Arup Kumar; Lenka, Srikanta; Barik, Durga Prasad

    2016-07-01

    Bacterial blight (BB) of rice caused by Xanthomonas oryzae pv. oryzae is a major disease of rice in many rice growing countries. Pyramided lines carrying two BB resistance gene combinations (Xa21+xa13 and Xa21+xa5) were developed in a lowland cultivar Jalmagna background through backcross breeding by integrating molecular markers. In each backcross generation, markers closely linked to the disease resistance genes were used to select plants possessing the target genes. Background selection was continued in those plants carrying resistant genes until BC(3) generation. Plants having the maximum contribution from the recurrent parent genome were selected in each generation and hybridized with the recipient parent. The BB-pyramided line having the maximum recipient parent genome recovery of 95% was selected among BC3F1 plants and selfed to isolate homozygous BC(3)F(2) plants with different combinations of BB resistance genes. Twenty pyramided lines with two resistance gene combinations exhibited high levels of tolerance against the BB pathogen. In order to confirm the resistance, the pyramided lines were inoculated with different X. oryzae pv. oryzae strains of Odisha for bioassay. The genotypes with combination of two BB resistance genes conferred high levels of resistance to the predominant X. oryzae pv. oryzae isolates prevalent in the region. The pyramided lines showed similarity with the recipient parent with respect to major agro-morphologic traits.

  10. Aspergillus oryzae NRRL 35191 from coffee, a non-toxigenic endophyte with the ability to synthesize kojic acid

    USDA-ARS?s Scientific Manuscript database

    Aspergillus oryzae was isolated as an endophyte from coffee leaves and found to produce kojic acid in culture. When inoculated in cacao seedlings (Theobroma cacao L.), A. oryzae grew endophytically and synthesize kojic acid in planta. Cacao seedlings inoculated with A. oryzae produced higher levels...

  11. Production of High-Viscosity Whey Broths by a Lactose-Utilizing Xanthomonas campestris Strain.

    PubMed

    Schwartz, R D; Bodie, E A

    1985-12-01

    Xanthomonas campestris BB-1L was isolated by enrichment and selection by serial passage in a lactose-minimal medium. When BB-1L was subsequently grown in medium containing only 4% whey and 0.05% yeast extract, the lactose was consumed and broth viscosities greater than 500 cps at a 12 s shear rate were produced. Prolonged maintenance in whey resulted in the loss of the ability of BB-1L to produce viscous broths in whey, indicating a reversion to preferential growth on whey protein, like the parent strain.

  12. Production of High-Viscosity Whey Broths by a Lactose-Utilizing Xanthomonas campestris Strain

    PubMed Central

    Schwartz, Robert D.; Bodie, Elizabeth A.

    1985-01-01

    Xanthomonas campestris BB-1L was isolated by enrichment and selection by serial passage in a lactose-minimal medium. When BB-1L was subsequently grown in medium containing only 4% whey and 0.05% yeast extract, the lactose was consumed and broth viscosities greater than 500 cps at a 12 s−1 shear rate were produced. Prolonged maintenance in whey resulted in the loss of the ability of BB-1L to produce viscous broths in whey, indicating a reversion to preferential growth on whey protein, like the parent strain. PMID:16346946

  13. Overexpression of BSR1 confers broad-spectrum resistance against two bacterial diseases and two major fungal diseases in rice

    PubMed Central

    Maeda, Satoru; Hayashi, Nagao; Sasaya, Takahide; Mori, Masaki

    2016-01-01

    Broad-spectrum disease resistance against two or more types of pathogen species is desirable for crop improvement. In rice, Xanthomonas oryzae pv. oryzae (Xoo), the causal bacteria of rice leaf blight, and Magnaporthe oryzae, the fungal pathogen causing rice blast, are two of the most devastating pathogens. We identified the rice BROAD-SPECTRUM RESISTANCE 1 (BSR1) gene for a BIK1-like receptor-like cytoplasmic kinase using the FOX hunting system, and demonstrated that BSR1-overexpressing (OX) rice showed strong resistance to the bacterial pathogen, Xoo and the fungal pathogen, M. oryzae. Here, we report that BSR1-OX rice showed extended resistance against two other different races of Xoo, and to at least one other race of M. oryzae. In addition, the rice showed resistance to another bacterial species, Burkholderia glumae, which causes bacterial seedling rot and bacterial grain rot, and to Cochliobolus miyabeanus, another fungal species causing brown spot. Furthermore, BSR1-OX rice showed slight resistance to rice stripe disease, a major viral disease caused by rice stripe virus. Thus, we demonstrated that BSR1-OX rice shows remarkable broad-spectrum resistance to at least two major bacterial species and two major fungal species, and slight resistance to one viral pathogen. PMID:27436950

  14. Overexpression of BSR1 confers broad-spectrum resistance against two bacterial diseases and two major fungal diseases in rice.

    PubMed

    Maeda, Satoru; Hayashi, Nagao; Sasaya, Takahide; Mori, Masaki

    2016-06-01

    Broad-spectrum disease resistance against two or more types of pathogen species is desirable for crop improvement. In rice, Xanthomonas oryzae pv. oryzae (Xoo), the causal bacteria of rice leaf blight, and Magnaporthe oryzae, the fungal pathogen causing rice blast, are two of the most devastating pathogens. We identified the rice BROAD-SPECTRUM RESISTANCE 1 (BSR1) gene for a BIK1-like receptor-like cytoplasmic kinase using the FOX hunting system, and demonstrated that BSR1-overexpressing (OX) rice showed strong resistance to the bacterial pathogen, Xoo and the fungal pathogen, M. oryzae. Here, we report that BSR1-OX rice showed extended resistance against two other different races of Xoo, and to at least one other race of M. oryzae. In addition, the rice showed resistance to another bacterial species, Burkholderia glumae, which causes bacterial seedling rot and bacterial grain rot, and to Cochliobolus miyabeanus, another fungal species causing brown spot. Furthermore, BSR1-OX rice showed slight resistance to rice stripe disease, a major viral disease caused by rice stripe virus. Thus, we demonstrated that BSR1-OX rice shows remarkable broad-spectrum resistance to at least two major bacterial species and two major fungal species, and slight resistance to one viral pathogen.

  15. The rice endophyte Harpophora oryzae genome reveals evolution from a pathogen to a mutualistic endophyte

    PubMed Central

    Xu, Xi-Hui; Su, Zhen-Zhu; Wang, Chen; Kubicek, Christian P.; Feng, Xiao-Xiao; Mao, Li-Juan; Wang, Jia-Ying; Chen, Chen; Lin, Fu-Cheng; Zhang, Chu-Long

    2014-01-01

    The fungus Harpophora oryzae is a close relative of the pathogen Magnaporthe oryzae and a beneficial endosymbiont of wild rice. Here, we show that H. oryzae evolved from a pathogenic ancestor. The overall genomic structures of H. and M. oryzae were found to be similar. However, during interactions with rice, the expression of 11.7% of all genes showed opposing trends in the two fungi, suggesting differences in gene regulation. Moreover, infection patterns, triggering of host defense responses, signal transduction and nutritional preferences exhibited remarkable differentiation between the two fungi. In addition, the H. oryzae genome was found to contain thousands of loci of transposon-like elements, which led to the disruption of 929 genes. Our results indicate that the gain or loss of orphan genes, DNA duplications, gene family expansions and the frequent translocation of transposon-like elements have been important factors in the evolution of this endosymbiont from a pathogenic ancestor. PMID:25048173

  16. Rubisco activity is associated with photosynthetic thermotolerance in a wild rice (Oryza meridionalis)

    USDA-ARS?s Scientific Manuscript database

    Oryza meridionalis is a wild species of rice, endemic to tropical Australia. It shares a significant genome homology with the common domesticated rice Oryza sativa. Exploiting the fact that the two species are highly related but O. meridionalis has superior heat tolerance, experiments were undertake...

  17. Reduction of aflatoxins by Rhizopus oryzae and Trichoderma reesei.

    PubMed

    Hackbart, H C S; Machado, A R; Christ-Ribeiro, A; Prietto, L; Badiale-Furlong, E

    2014-08-01

    This study evaluated the ability of the microorganisms Rhizopus oryzae (CCT7560) and Trichoderma reesei (QM9414), producers of generally recognized as safe (GRAS) enzymes, to reduce the level of aflatoxins B1, B2, G1, G2, and M1. The variables considered to the screening were the initial number of spores in the inoculum and the culture time. The culture was conducted in contaminated 4 % potato dextrose agar (PDA) medium, and the residual mycotoxins were determined every 24 h by HPLC-FL. The fungus R. oryzae has reduced aflatoxins B1, B2, and G1 in the 96 h and aflatoxins M1 and G2 in the range of 120 h of culture by approximately 100 %. The fungus T. reesei has reduced aflatoxins B1, B2, and M1 in the 96 h and aflatoxin G1 in the range of 120 h of culture by approximately 100 %. The highest reduction occurred in the middle of R. oryzae culture.

  18. Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson.

    PubMed

    Thomson, M J; Tai, T H; McClung, A M; Lai, X-H; Hinga, M E; Lobos, K B; Xu, Y; Martinez, C P; McCouch, S R

    2003-08-01

    An advanced backcross population between an accession of Oryza rufipogon (IRGC 105491) and the U.S. cultivar Jefferson (Oryza sativa ssp. japonica) was developed to identify quantitative trait loci (QTLs) for yield, yield components and morphological traits. The genetic linkage map generated for this population consisted of 153 SSR and RFLP markers with an average interval size of 10.3 cM. Thirteen traits were examined, nine of which were measured in multiple environments. Seventy-six QTLs above an experiment-wise significance threshold of P<0.01 (corresponding to an interval mapping LOD>3.6 or a composite interval mapping LOD>3.9) were identified. For the traits measured in multiple environments, 47% of the QTLs were detected in at least two environments. The O. rufipogon allele was favorable for 53% of the yield and yield component QTLs, including loci for yield, grains per panicle, panicle length, and grain weight. Morphological traits related to the domestication process and/or weedy characteristics, including plant height, shattering, tiller type and awns, were found clustered on chromosomes 1 and 4. Comparisons to previous studies involving wild x cultivated crosses revealed O. rufipogon alleles with stable effects in multiple genetic backgrounds and environments, several of which have not been detected in studies between Oryza sativa cultivars, indicating potentially novel alleles from O. rufipogon. Some O. rufipogon-derived QTLs, however, were in similar regions as previously reported QTLs from Oryza sativa cultivars, providing evidence for conservation of these QTLs across the Oryza genus. In addition, several QTLs for grain weight, plant height, and flowering time were localized to putative homeologous regions in maize where QTLs for these traits have been previously reported, supporting the hypothesis of functional conservation of QTLs across the grasses.

  19. Comparison of the genomes and transcriptomes associated with the different protease secretions of Aspergillus oryzae 100-8 and 3.042.

    PubMed

    Zhao, Guozhong; Yao, Yunping; Hou, Lihua; Wang, Chunling; Cao, Xiaohong

    2014-10-01

    Aspergillus oryzae is used to produce traditional fermented foods and beverages. A. oryzae 3.042 produces a neutral protease and an alkaline protease but rarely an acid protease, which is unfavourable to soy-sauce fermentation. A. oryzae 100-8 was obtained by N(+) ion implantation mutagenesis of A. oryzae 3.042, and the protease secretions of these two strains are different. Sequencing the genome of A. oryzae 100-8 and comparing it to the genomes of A. oryzae 100-8 and 3.042 revealed some differences, such as single nucleotide polymorphisms, nucleotide deletion or insertion. Some of these differences may reflect the ability of A. oryzae to secrete proteases. Transcriptional sequencing and analysis of the two strains during the same growth processes provided further insights into the genes and pathways involved in protease secretion.

  20. Measurement and analysis on optical characteristics of Aspergillus oryzae spores in infrared band

    NASA Astrophysics Data System (ADS)

    Li, Le; Hu, Yihua; Gu, Youlin; Chen, Wei; Xu, Shilong; Zhao, Xinying

    2015-10-01

    Spore is an important part of bioaerosols. The optical characteristics of spore is a crucial parameter for study on bioaerosols. The reflection within the waveband of 2.5 to15μm were measured by squash method. Based on the measured data, Complex refractive index of Aspergillus oryzae spores within the waveband of 3 to 5μm and 8 to 14 μm were calculated by using Krames-Kronig (K-K) relationship. Then,the mass extinction coefficient of Aspergillus oryzae spores within the waveband of 3 to 5μm and 8 to 14μm were obtained by utilizing Mie scattering theory, and the results were analyzed and discussed. The average mass extinction coefficient of Aspergillus oryzae spores is 0.51 m2/g in the range of 3 to 5μm and 0.48m2/g in the range of 8 to 14μm. Compared with common inorganic compounds, Aspergillus oryzae spores possesses a good extinction performance in infrared band.

  1. Osa-miR169 Negatively Regulates Rice Immunity against the Blast Fungus Magnaporthe oryzae

    PubMed Central

    Li, Yan; Zhao, Sheng-Li; Li, Jin-Lu; Hu, Xiao-Hong; Wang, He; Cao, Xiao-Long; Xu, Yong-Ju; Zhao, Zhi-Xue; Xiao, Zhi-Yuan; Yang, Nan; Fan, Jing; Huang, Fu; Wang, Wen-Ming

    2017-01-01

    miR169 is a conserved microRNA (miRNA) family involved in plant development and stress-induced responses. However, how miR169 functions in rice immunity remains unclear. Here, we show that miR169 acts as a negative regulator in rice immunity against the blast fungus Magnaporthe oryzae by repressing the expression of nuclear factor Y-A (NF-YA) genes. The accumulation of miR169 was significantly increased in a susceptible accession but slightly fluctuated in a resistant accession upon M. oryzae infection. Consistently, the transgenic lines overexpressing miR169a became hyper-susceptible to different M. oryzae strains associated with reduced expression of defense-related genes and lack of hydrogen peroxide accumulation at the infection site. Consequently, the expression of its target genes, the NF-YA family members, was down-regulated by the overexpression of miR169a at either transcriptional or translational level. On the contrary, overexpression of a target mimicry that acts as a sponge to trap miR169a led to enhanced resistance to M. oryzae. In addition, three of miR169’s target genes were also differentially up-regulated in the resistant accession upon M. oryzae infection. Taken together, our data indicate that miR169 negatively regulates rice immunity against M. oryzae by differentially repressing its target genes and provide the potential to engineer rice blast resistance via a miRNA. PMID:28144248

  2. Autolysis of Aspergillus oryzae Mycelium and Effect on Volatile Flavor Compounds of Soy Sauce.

    PubMed

    Xu, Ning; Liu, Yaqi; Hu, Yong; Zhou, Mengzhou; Wang, Chao; Li, Dongsheng

    2016-08-01

    The autolyzed mycelia of Aspergillus oryzae are rich in proteins, nucleic acids, sugar, and other biomacromolecules, and are one of the main contributors to the flavor profile of commercially important fermented goods, including soy sauce and miso. We induced autolysis of the mycelia of A. oryzae over 1 to 10 d, and found that the maximum dissolved amounts of total protein and nucleic acid ratio accounted for 28.63% and 88.93%, respectively. The organic acid content, such as citric acid, tartaric acid, succinic acid, lactic acid, and acetic acid, initially increased and then decreased as autolysis progressed, corresponding to changes in pH levels. The main characteristic flavor compounds in soy sauce, namely, ethanol, 2-phenylethanol, and 2-methoxy-4-vinylphenol, were all detected in the autolysate. Subsequently, we tested the effect of adding mycelia of A. oryzae during the fermentation process of soy sauce for 60 d, and found that addition of 1.2‰ A. oryzae mycelia provided the richest flavor. Overall, our findings suggest that compounds found in the autolysate of A. oryzae may promote the flavor compounds of soy sauce, such as alcohols, aldehydes, phenols, and esters. © 2016 Institute of Food Technologists®

  3. A novel blast resistance gene, Pi54rh cloned from wild species of rice, Oryza rhizomatis confers broad spectrum resistance to Magnaporthe oryzae.

    PubMed

    Das, Alok; Soubam, D; Singh, P K; Thakur, S; Singh, N K; Sharma, T R

    2012-06-01

    The dominant rice blast resistance gene, Pi54 confers resistance to Magnaporthe oryzae in different parts of India. In our effort to identify more effective forms of this gene, we isolated an orthologue of Pi54 named as Pi54rh from the blast-resistant wild species of rice, Oryza rhizomatis, using allele mining approach and validated by complementation. The Pi54rh belongs to CC-NBS-LRR family of disease resistance genes with a unique Zinc finger (C(3)H type) domain. The 1,447 bp Pi54rh transcript comprises of 101 bp 5'-UTR, 1,083 bp coding region and 263 bp 3'-UTR, driven by pathogen inducible promoter. We showed the extracellular localization of Pi54rh protein and the presence of glycosylation, myristoylation and phosphorylation sites which implicates its role in signal transduction process. This is in contrast to other blast resistance genes that are predicted to be intracellular NBS-LRR-type resistance proteins. The Pi54rh was found to express constitutively at basal level in the leaves, but upregulates 3.8-fold at 96 h post-inoculation with the pathogen. Functional validation of cloned Pi54rh gene using complementation test showed high degree of resistance to seven isolates of M. oryzae collected from different geographical locations of India. In this study, for the first time, we demonstrated that a rice blast resistance gene Pi54rh cloned from wild species of rice provides broad spectrum resistance to M. oryzae hence can be used in rice improvement breeding programme.

  4. Infection processes of xylem-colonizing pathogenic bacteria: possible explanations for the scarcity of qualitative disease resistance genes against them in crops.

    PubMed

    Bae, Chungyun; Han, Sang Wook; Song, Yu-Rim; Kim, Bo-Young; Lee, Hyung-Jin; Lee, Je-Min; Yeam, Inhwa; Heu, Sunggi; Oh, Chang-Sik

    2015-07-01

    Disease resistance against xylem-colonizing pathogenic bacteria in crops. Plant pathogenic bacteria cause destructive diseases in many commercially important crops. Among these bacteria, eight pathogens, Ralstonia solanacearum, Xanthomonas oryzae pv. oryzae, X. campestris pv. campestris, Erwinia amylovora, Pantoea stewartii subsp. stewartii, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. actinidiae, and Xylella fastidiosa, infect their host plants through different infection sites and paths and eventually colonize the xylem tissues of their host plants, resulting in wilting symptoms by blocking water flow or necrosis of xylem tissues. Noticeably, only a relatively small number of resistant cultivars in major crops against these vascular bacterial pathogens except X. oryzae pv. oryzae have been found or generated so far, although these pathogens threaten productivity of major crops. In this review, we summarize the lifestyles of major xylem-colonizing bacterial pathogens and then discuss the progress of current research on disease resistance controlled by qualitative disease resistance genes or quantitative trait loci against them. Finally, we propose infection processes of xylem-colonizing bacterial pathogens as one of possible reasons for why so few qualitative disease resistance genes against these pathogens have been developed or identified so far in crops.

  5. Genetic Transformation of an argB Mutant of Aspergillus oryzae

    PubMed Central

    Hahm, Young Tae; Batt, Carl A.

    1988-01-01

    An argB mutant of Aspergillus oryzae NRRL 492 has been genetically transformed with the Aspergillus nidulans argB gene. Protoplasts were generated with a combination of Novozyme 234 and β-glucuronidase and regenerated on sucrose-stabilized minimal medium without arginine as described for A. nidulans. A frequency of 5 to 10 transformants per μg of DNA was obtained; however, most transformants appeared abortive. The A. nidulans argB gene and vector sequences appeared to be integrated into the A. oryzae chromosome. Images PMID:16347669

  6. The inheritance of resistance to bacterial leaf spot of lettuce caused by Xanthomonas campestris pv. vitians in three lettuce cultivars

    USDA-ARS?s Scientific Manuscript database

    Lettuce yields can be reduced by the disease bacterial leaf spot (BLS) caused by the pathogen Xanthomonas campestris pv. vitians (Xcv) and host resistance is the most feasible method to reduce disease losses. The cultivars La Brillante, Pavane, and Little Gem express an incompatible host-pathogen in...

  7. Gene Ontology annotation of the rice blast fungus, Magnaporthe oryzae

    PubMed Central

    Meng, Shaowu; Brown, Douglas E; Ebbole, Daniel J; Torto-Alalibo, Trudy; Oh, Yeon Yee; Deng, Jixin; Mitchell, Thomas K; Dean, Ralph A

    2009-01-01

    Background Magnaporthe oryzae, the causal agent of blast disease of rice, is the most destructive disease of rice worldwide. The genome of this fungal pathogen has been sequenced and an automated annotation has recently been updated to Version 6 . However, a comprehensive manual curation remains to be performed. Gene Ontology (GO) annotation is a valuable means of assigning functional information using standardized vocabulary. We report an overview of the GO annotation for Version 5 of M. oryzae genome assembly. Methods A similarity-based (i.e., computational) GO annotation with manual review was conducted, which was then integrated with a literature-based GO annotation with computational assistance. For similarity-based GO annotation a stringent reciprocal best hits method was used to identify similarity between predicted proteins of M. oryzae and GO proteins from multiple organisms with published associations to GO terms. Significant alignment pairs were manually reviewed. Functional assignments were further cross-validated with manually reviewed data, conserved domains, or data determined by wet lab experiments. Additionally, biological appropriateness of the functional assignments was manually checked. Results In total, 6,286 proteins received GO term assignment via the homology-based annotation, including 2,870 hypothetical proteins. Literature-based experimental evidence, such as microarray, MPSS, T-DNA insertion mutation, or gene knockout mutation, resulted in 2,810 proteins being annotated with GO terms. Of these, 1,673 proteins were annotated with new terms developed for Plant-Associated Microbe Gene Ontology (PAMGO). In addition, 67 experiment-determined secreted proteins were annotated with PAMGO terms. Integration of the two data sets resulted in 7,412 proteins (57%) being annotated with 1,957 distinct and specific GO terms. Unannotated proteins were assigned to the 3 root terms. The Version 5 GO annotation is publically queryable via the GO site

  8. High infestation levels of Schizotetranychus oryzae severely affects rice metabolism.

    PubMed

    Blasi, Édina A R; Buffon, Giseli; Rativa, Angie G S; Lopes, Mara C B; Berger, Markus; Santi, Lucélia; Lavallée-Adam, Mathieu; Yates, John R; Schwambach, Joséli; Beys-da-Silva, Walter O; Sperotto, Raul A

    2017-12-01

    High levels of Schizotetranychus oryzae phytophagous mite infestation on rice leaves can severely affect productivity. Physiological characterization showed that S. oryzae promotes a decrease in chlorophyll concentration and the establishment of a senescence process in rice leaves. Late-infested leaves also present high levels of superoxide radical and hydrogen peroxide accumulation, along with high levels of membrane integrity loss, which is indicative of cell death. To better understand the rice molecular responses to high levels of mite infestation, we employed the Multidimensional Protein Identification Technology (MudPIT) approach to identify differentially expressed proteins. We identified 83 and 88 proteins uniquely present in control and late-infested leaves, respectively, along with 11 and one proteins more abundant in control and late-infested leaves, respectively. S. oryzae infestation induces a decreased abundance of proteins related to translation, protease inhibition, and photosynthesis. On the other hand, infestation caused increased abundance of proteins involved in protein modification and degradation. Our results also suggest that S. oryzae infestation interferes with intracellular transport, DNA structure maintenance, and amino acid and lipid metabolism in rice leaves. Proteomic data were positively correlated with enzymatic assays and RT-qPCR analysis. Our findings describe the protein expression patterns of late-infested rice leaves and suggest several targets which could be tested in future biotechnological approaches aiming to avoid the population increase of phytophagous mite in rice plants. Copyright © 2017 Elsevier GmbH. All rights reserved.

  9. Draft Genome Sequence of Aspergillus oryzae ATCC 12892

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Shuang; Pomraning, Kyle R.; Bohutskyi, Pavlo

    The draft genome sequence ofAspergillus oryzaeATCC 12892 is presented here.A. oryzaeproduces 3-nitropropionic acid, which has been investigated with regard to understanding the biosynthesis of nitroorganic compounds.

  10. Enhanced Production of Bovine Chymosin by Autophagy Deficiency in the Filamentous Fungus Aspergillus oryzae

    PubMed Central

    Maruyama, Jun-ichi; Kitamoto, Katsuhiko

    2013-01-01

    Aspergillus oryzae has been utilized as a host for heterologous protein production because of its high protein secretory capacity and food-safety properties. However, A. oryzae often produces lower-than-expected yields of target heterologous proteins due to various underlying mechanisms, including degradation processes such as autophagy, which may be a significant bottleneck for protein production. In the present study, we examined the production of heterologous protein in several autophagy (Aoatg) gene disruptants of A. oryzae. We transformed A. oryzae gene disruptants of Aoatg1, Aoatg13, Aoatg4, Aoatg8, or Aoatg15, with a bovine chymosin (CHY) expression construct and found that the production levels of CHY increased up to three fold compared to the control strain. Notably, however, conidia formation by the Aoatg gene disruptants was significantly reduced. As large amounts of conidia are necessary for inoculating large-scale cultures, we also constructed Aoatg gene-conditional expression strains in which the promoter region of the Aoatg gene was replaced with the thiamine-controllable thiA promoter. Conidiation by the resultant transformants was clearly enhanced in the absence of thiamine, while autophagy remained repressed in the presence of thiamine. Moreover, these transformants displayed increased CHY productivity, which was comparable to that of the Aoatg gene disruptants. Consequently, we succeeded in the construction of A. oryzae strains capable of producing high levels of CHY due to defects in autophagy. Our finding suggests that the conditional regulation of autophagy is an effective method for increasing heterologous protein production in A. oryzae. PMID:23658635

  11. Identification and characterization of suppressors of plant cell death (SPD) effectors from Magnaporthe oryzae.

    PubMed

    Sharpee, William; Oh, Yeonyee; Yi, Mihwa; Franck, William; Eyre, Alex; Okagaki, Laura H; Valent, Barbara; Dean, Ralph A

    2017-08-01

    Phytopathogenic microorganisms, including the fungal pathogen Magnaporthe oryzae, secrete a myriad of effector proteins to facilitate infection. Utilizing the transient expression of candidate effectors in the leaves of the model plant Nicotiana benthamiana, we identified 11 suppressors of plant cell death (SPD) effectors from M. oryzae that were able to block the host cell death reaction induced by Nep1. Ten of these 11 were also able to suppress BAX-mediated plant cell death. Five of the 11 SPD genes have been identified previously as either essential for the pathogenicity of M. oryzae, secreted into the plant during disease development, or as suppressors or homologues of other characterized suppressors. In addition, of the remaining six, we showed that SPD8 (previously identified as BAS162) was localized to the rice cytoplasm in invaded and surrounding uninvaded cells during biotrophic invasion. Sequence analysis of the 11 SPD genes across 43 re-sequenced M. oryzae genomes revealed that SPD2, SPD4 and SPD7 have nucleotide polymorphisms amongst the isolates. SPD4 exhibited the highest level of nucleotide diversity of any currently known effector from M. oryzae in addition to the presence/absence polymorphisms, suggesting that this gene is potentially undergoing selection to avoid recognition by the host. Taken together, we have identified a series of effectors, some of which were previously unknown or whose function was unknown, that probably act at different stages of the infection process and contribute to the virulence of M. oryzae. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  12. The Role of RaxST, a Prokaryotic Sulfotransferase, and RaxABC, a Putative Type I Secretion System, in Activation of the Rice XA21-Mediated Immune Response

    PubMed Central

    Ronald, Pamela C.

    2014-01-01

    Tyrosine sulfation is an important posttranslational modification that determines the outcome of serious diseases in plants and animals. We have recently demonstrated that the plant pathogen Xanthomonas oryzae pv. oryzae (Xoo) carries a functional sulfotransferase (RaxST). raxST is required for activation of rice Xa21-mediated immunity indicating the critical, but unknown, function of raxST in mediating the Xoo/rice interaction. The raxST gene resides in the same operon (raxSTAB) as components of a predicted type I secretion and processing system (RaxA and RaxB). These observations suggest a model where RaxST sulfates a molecule that contains a leader peptide, which is cleaved by the peptidase domain of the RaxB protein and secreted outside the bacterial cell by the RaxABC T1SS. PMID:25386383

  13. The Role of RaxST, a Prokaryotic Sulfotransferase, and RaxABC, a Putative Type I Secretion System, in Activation of the Rice XA21-Mediated Immune Response.

    PubMed

    Ronald, Pamela C

    2014-01-01

    Tyrosine sulfation is an important posttranslational modification that determines the outcome of serious diseases in plants and animals. We have recently demonstrated that the plant pathogen Xanthomonas oryzae pv. oryzae (Xoo) carries a functional sulfotransferase (RaxST). raxST is required for activation of rice Xa21-mediated immunity indicating the critical, but unknown, function of raxST in mediating the Xoo/rice interaction. The raxST gene resides in the same operon (raxSTAB) as components of a predicted type I secretion and processing system (RaxA and RaxB). These observations suggest a model where RaxST sulfates a molecule that contains a leader peptide, which is cleaved by the peptidase domain of the RaxB protein and secreted outside the bacterial cell by the RaxABC T1SS.

  14. Overcoming the species hybridization barrier by ploidy manipulation in the genus Oryza.

    PubMed

    Tonosaki, Kaoru; Sekine, Daisuke; Ohnishi, Takayuki; Ono, Akemi; Furuumi, Hiroyasu; Kurata, Nori; Kinoshita, Tetsu

    2018-02-01

    In most eudicot and monocot species, interspecific and interploidy crosses generally display abnormalities in the endosperm that are the major cause of a post-zygotic hybridization barrier. In some eudicot species, however, this type of hybridization barrier can be overcome by the manipulation of ploidy levels of one parental species, suggesting that the molecular mechanisms underlying the species hybridization barrier can be circumvented by genome dosage. We previously demonstrated that endosperm barriers in interspecific and interploidy crosses in the genus Oryza involve overlapping but different mechanisms. This result contrasts with those in the genus Arabidopsis, which shows similar outcomes in both interploidy and interspecific crosses. Therefore, we postulated that an exploration of pathways for overcoming the species hybridization barrier in Oryza endosperm, by manipulating the ploidy levels in one parental species, might provide novel insights into molecular mechanisms. We showed that fertile hybrid seeds could be produced by an interspecific cross of female tetraploid Oryza sativa and male diploid Oryza longistaminata. Although the rate of nuclear divisions did not return to normal levels in the hybrid endosperm, the timing of cellularization, nucellus degeneration and the accumulation of storage products were close to normal levels. In addition, the expression patterns of the imprinted gene MADS87 and YUCCA11 were changed when the species barrier was overcome. These results suggest that the regulatory machinery for developmental transitions and imprinted gene expression are likely to play a central role in overcoming species hybridization barriers by genome dosage in the genus Oryza. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  15. Baby leaf lettuce germplasm enhancement: developing diverse populations with resistance to bacterial leaf spot caused by Xanthomonas campestris pv. vitians

    USDA-ARS?s Scientific Manuscript database

    Baby leaf lettuce cultivars with resistance to bacterial leaf spot (BLS) caused by Xanthomonas campestris pv. vitians (Xcv) are needed to reduce crop losses. The objectives of this research were to assess the genetic diversity for BLS resistance in baby leaf lettuce cultivars and to select early gen...

  16. Aspergillus oryzae nrtA affects kojic acid production.

    PubMed

    Sano, Motoaki

    2016-09-01

    We analyzed the role of the nitrate transporter-encoding gene (nrtA) of Aspergillus oryzae by gene disruption. Southern hybridization analysis indicated that homologous recombination occurred at the resident nrtA locus. Real-time PCR showed that the nrtA gene was strongly inducible by NaNO3. The nrtA disruptant did not exhibit normal growth when nitrate was available as the sole nitrogen source. These results indicate that NrtA is essential for nitrate uptake in A. oryzae. Kojic acid (KA) production was inhibited by the addition of a small amount of sodium nitrate. The nrtA-disrupted strain was deficient in the uptake of nitrate. As a result, KA production in this strain was not considerably affected by the presence of nitrate.

  17. Heterologous Production of a Novel Cyclic Peptide Compound, KK-1, in Aspergillus oryzae.

    PubMed

    Yoshimi, Akira; Yamaguchi, Sigenari; Fujioka, Tomonori; Kawai, Kiyoshi; Gomi, Katsuya; Machida, Masayuki; Abe, Keietsu

    2018-01-01

    A novel cyclic peptide compound, KK-1, was originally isolated from the plant-pathogenic fungus Curvularia clavata . It consists of 10 amino acid residues, including five N -methylated amino acid residues, and has potent antifungal activity. Recently, the genome-sequencing analysis of C. clavata was completed, and the biosynthetic genes involved in KK-1 production were predicted by using a novel gene cluster mining tool, MIDDAS-M. These genes form an approximately 75-kb cluster, which includes nine open reading frames, containing a non-ribosomal peptide synthetase (NRPS) gene. To determine whether the predicted genes were responsible for the biosynthesis of KK-1, we performed heterologous production of KK-1 in Aspergillus oryzae by introduction of the cluster genes into the genome of A. oryzae . The NRPS gene was split in two fragments and then reconstructed in the A. oryzae genome, because the gene was quite large (approximately 40 kb). The remaining seven genes in the cluster, excluding the regulatory gene kkR , were simultaneously introduced into the strain of A. oryzae in which NRPS had already been incorporated. To evaluate the heterologous production of KK-1 in A. oryzae , gene expression was analyzed by RT-PCR and KK-1 productivity was quantified by HPLC. KK-1 was produced in variable quantities by a number of transformed strains, along with expression of the cluster genes. The amount of KK-1 produced by the strain with the greatest expression of all genes was lower than that produced by the original producer, C. clavata . Therefore, expression of the cluster genes is necessary and sufficient for the heterologous production of KK-1 in A. oryzae , although there may be unknown factors limiting productivity in this species.

  18. Heterologous Production of a Novel Cyclic Peptide Compound, KK-1, in Aspergillus oryzae

    PubMed Central

    Yoshimi, Akira; Yamaguchi, Sigenari; Fujioka, Tomonori; Kawai, Kiyoshi; Gomi, Katsuya; Machida, Masayuki; Abe, Keietsu

    2018-01-01

    A novel cyclic peptide compound, KK-1, was originally isolated from the plant-pathogenic fungus Curvularia clavata. It consists of 10 amino acid residues, including five N-methylated amino acid residues, and has potent antifungal activity. Recently, the genome-sequencing analysis of C. clavata was completed, and the biosynthetic genes involved in KK-1 production were predicted by using a novel gene cluster mining tool, MIDDAS-M. These genes form an approximately 75-kb cluster, which includes nine open reading frames, containing a non-ribosomal peptide synthetase (NRPS) gene. To determine whether the predicted genes were responsible for the biosynthesis of KK-1, we performed heterologous production of KK-1 in Aspergillus oryzae by introduction of the cluster genes into the genome of A. oryzae. The NRPS gene was split in two fragments and then reconstructed in the A. oryzae genome, because the gene was quite large (approximately 40 kb). The remaining seven genes in the cluster, excluding the regulatory gene kkR, were simultaneously introduced into the strain of A. oryzae in which NRPS had already been incorporated. To evaluate the heterologous production of KK-1 in A. oryzae, gene expression was analyzed by RT-PCR and KK-1 productivity was quantified by HPLC. KK-1 was produced in variable quantities by a number of transformed strains, along with expression of the cluster genes. The amount of KK-1 produced by the strain with the greatest expression of all genes was lower than that produced by the original producer, C. clavata. Therefore, expression of the cluster genes is necessary and sufficient for the heterologous production of KK-1 in A. oryzae, although there may be unknown factors limiting productivity in this species. PMID:29686660

  19. Analyses of Old “Prokaryotic” Proteins Indicate Functional Diversification in Arabidopsis and Oryza sativa

    PubMed Central

    Singh, Anupama; Jethva, Minesh; Singla-Pareek, Sneh L.; Pareek, Ashwani; Kushwaha, Hemant R.

    2016-01-01

    During evolution, various processes such as duplication, divergence, recombination, and many other events leads to the evolution of new genes with novel functions. These evolutionary events, thus significantly impact the evolution of cellular, physiological, morphological, and other phenotypic trait of organisms. While evolving, eukaryotes have acquired large number of genes from the earlier prokaryotes. This work is focused upon identification of old “prokaryotic” proteins in Arabidopsis and Oryza sativa genome, further highlighting their possible role(s) in the two genomes. Our results suggest that with respect to their genome size, the fraction of old “prokaryotic” proteins is higher in Arabidopsis than in Oryza sativa. The large fractions of such proteins encoding genes were found to be localized in various endo-symbiotic organelles. The domain architecture of the old “prokaryotic” proteins revealed similar distribution in both Arabidopsis and Oryza sativa genomes showing their conserved evolution. In Oryza sativa, the old “prokaryotic” proteins were more involved in developmental processes, might be due to constant man-made selection pressure for better agronomic traits/productivity. While in Arabidopsis, these proteins were involved in metabolic functions. Overall, the analysis indicates the distinct pattern of evolution of old “prokaryotic” proteins in Arabidopsis and Oryza sativa. PMID:27014324

  20. Early diagnosis of blast fungus, Magnaporthe oryzae, in rice plant by using an ultra-sensitive electrically magnetic-controllable electrochemical biosensor.

    PubMed

    Yang, Weijuan; Zhang, Hongyan; Li, Mengxue; Wang, Zonghua; Zhou, Jie; Wang, Shihua; Lu, Guodong; Fu, FengFu

    2014-11-19

    As one of the most destructive and widespread disease of rice, Magnaporthe oryzae (also called Magnaporthe grisea) has a significant negative impact on rice production. Therefore, it is still in high demand to develop extremely sensitive and accurate methods for the early diagnosis of Magnaporthe oryzae (M. oryzae). In this study, we developed a novel magnetic-controllable electrochemical biosensor for the ultra sensitive and specific detection of M. oryzae in rice plant by using M. oryzae's chitinases (Mgchi) as biochemical marker and a rice (Oryza sativa) cDNA encoding mannose-binding jacalin-related lectin (Osmbl) as recognition probe. The proposed biosensor combined with the merits of chronoamperometry, electrically magnetic-controllable gold electrode and magnetic beads (MBs)-based palladium nano-particles (PdNPs) catalysis amplification, has an ultra-high sensitivity and specificity for the detection of trace M. oryzae in rice plant. It could be used to detect M. oryzae in rice plant in the initial infection stage (before any symptomatic lesions were observed) to help farmers timely manage the disease. In comparison with previous methods, the proposed method has notable advantages such as higher sensitivity, excellent specificity, short analysis time, robust resistibility to complex matrix and low cost etc. The success in this study provides a reliable approach for the early diagnosis and fast screening of M. oryzae in rice plant. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Development of an efficient real-time quantitative PCR protocol for detection of Xanthomonas arboricola pv. pruni in Prunus species.

    PubMed

    Palacio-Bielsa, Ana; Cubero, Jaime; Cambra, Miguel A; Collados, Raquel; Berruete, Isabel M; López, María M

    2011-01-01

    Xanthomonas arboricola pv. pruni, the causal agent of bacterial spot disease of stone fruit, is considered a quarantine organism by the European Union and the European and Mediterranean Plant Protection Organization (EPPO). The bacterium can undergo an epiphytic phase and/or be latent and can be transmitted by plant material, but currently, only visual inspections are used to certify plants as being X. arboricola pv. pruni free. A novel and highly sensitive real-time TaqMan PCR detection protocol was designed based on a sequence of a gene for a putative protein related to an ABC transporter ATP-binding system in X. arboricola pv. pruni. Pathogen detection can be completed within a few hours with a sensitivity of 10(2) CFU ml(-1), thus surpassing the sensitivity of the existing conventional PCR. Specificity was assessed for X. arboricola pv. pruni strains from different origins as well as for closely related Xanthomonas species, non-Xanthomonas species, saprophytic bacteria, and healthy Prunus samples. The efficiency of the developed protocol was evaluated with field samples of 14 Prunus species and rootstocks. For symptomatic leaf samples, the protocol was very efficient even when washed tissues of the leaves were directly amplified without any previous DNA extraction. For samples of 117 asymptomatic leaves and 285 buds, the protocol was more efficient after a simple DNA extraction, and X. arboricola pv. pruni was detected in 9.4% and 9.1% of the 402 samples analyzed, respectively, demonstrating its frequent epiphytic or endophytic phase. This newly developed real-time PCR protocol can be used as a quantitative assay, offers a reliable and sensitive test for X. arboricola pv. pruni, and is suitable as a screening test for symptomatic as well as asymptomatic plant material.

  2. The Xanthomonas euvesicatoria type III effector XopAU is an active protein kinase that manipulates plant MAP kinase signaling.

    PubMed

    Teper, Doron; Girija, Anil Madhusoodana; Bosis, Eran; Popov, Georgy; Savidor, Alon; Sessa, Guido

    2018-01-01

    The Gram-negative bacterium Xanthomonas euvesicatoria (Xe) is the causal agent of bacterial spot disease of pepper and tomato. Xe delivers effector proteins into host cells through the type III secretion system to promote disease. Here, we show that the Xe effector XopAU, which is conserved in numerous Xanthomonas species, is a catalytically active protein kinase and contributes to the development of disease symptoms in pepper plants. Agrobacterium-mediated expression of XopAU in host and non-host plants activated typical defense responses, including MAP kinase phosphorylation, accumulation of pathogenesis-related (PR) proteins and elicitation of cell death, that were dependent on the kinase activity of the effector. XopAU-mediated cell death was not dependent on early signaling components of effector-triggered immunity and was also observed when the effector was delivered into pepper leaves by Xanthomonas campestris pv. campestris, but not by Xe. Protein-protein interaction studies in yeast and in planta revealed that XopAU physically interacts with components of plant immunity-associated MAP kinase cascades. Remarkably, XopAU directly phosphorylated MKK2 in vitro and enhanced its phosphorylation at multiple sites in planta. Consistent with the notion that MKK2 is a target of XopAU, silencing of the MKK2 homolog or overexpression of the catalytically inactive mutant MKK2K99R in N. benthamiana plants reduced XopAU-mediated cell death and MAPK phosphorylation. Furthermore, yeast co-expressing XopAU and MKK2 displayed reduced growth and this phenotype was dependent on the kinase activity of both proteins. Together, our results support the conclusion that XopAU contributes to Xe disease symptoms in pepper plants and manipulates host MAPK signaling through phosphorylation and activation of MKK2.

  3. Draft genome of a Xanthomonas perforans strain associated with pith necrosis.

    PubMed

    Torelli, Emanuela; Aiello, Dalia; Polizzi, Giancarlo; Firrao, Giuseppe; Cirvilleri, Gabriella

    2015-02-01

    Xanthomonas perforans causes bacterial spot of tomato and pepper. A genome draft of an unusual isolate (strain 4P1S2), differing in that it was associated with stem pith necrosis, was assembled from Illumina MiSeq sequencing data using the draft of X. perforans strain 91-118 as a reference. The resulting draft (accession number JRWW00000000) largely overlapped with the reference draft. In addition, the reads not mapping on the reference assembly were selected and used for a further assembly, that revealed a large putative plasmid. The analysis of the predicted proteins showed only few gene features that could be potentially implicated in the switch of a phytopathological behavior. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Bacteria-Triggered Systemic Immunity in Barley Is Associated with WRKY and ETHYLENE RESPONSIVE FACTORs But Not with Salicylic Acid1[C][W

    PubMed Central

    Dey, Sanjukta; Wenig, Marion; Langen, Gregor; Sharma, Sapna; Kugler, Karl G.; Knappe, Claudia; Hause, Bettina; Bichlmeier, Marlies; Babaeizad, Valiollah; Imani, Jafargholi; Janzik, Ingar; Stempfl, Thomas; Hückelhoven, Ralph; Kogel, Karl-Heinz; Mayer, Klaus F.X.

    2014-01-01

    Leaf-to-leaf systemic immune signaling known as systemic acquired resistance is poorly understood in monocotyledonous plants. Here, we characterize systemic immunity in barley (Hordeum vulgare) triggered after primary leaf infection with either Pseudomonas syringae pathovar japonica (Psj) or Xanthomonas translucens pathovar cerealis (Xtc). Both pathogens induced resistance in systemic, uninfected leaves against a subsequent challenge infection with Xtc. In contrast to systemic acquired resistance in Arabidopsis (Arabidopsis thaliana), systemic immunity in barley was not associated with NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 or the local or systemic accumulation of salicylic acid. Instead, we documented a moderate local but not systemic induction of abscisic acid after infection of leaves with Psj. In contrast to salicylic acid or its functional analog benzothiadiazole, local applications of the jasmonic acid methyl ester or abscisic acid triggered systemic immunity to Xtc. RNA sequencing analysis of local and systemic transcript accumulation revealed unique gene expression changes in response to both Psj and Xtc and a clear separation of local from systemic responses. The systemic response appeared relatively modest, and quantitative reverse transcription-polymerase chain reaction associated systemic immunity with the local and systemic induction of two WRKY and two ETHYLENE RESPONSIVE FACTOR (ERF)-like transcription factors. Systemic immunity against Xtc was further associated with transcriptional changes after a secondary/systemic Xtc challenge infection; these changes were dependent on the primary treatment. Taken together, bacteria-induced systemic immunity in barley may be mediated in part by WRKY and ERF-like transcription factors, possibly facilitating transcriptional reprogramming to potentiate immunity. PMID:25332505

  5. Bacteria-triggered systemic immunity in barley is associated with WRKY and ETHYLENE RESPONSIVE FACTORs but not with salicylic acid.

    PubMed

    Dey, Sanjukta; Wenig, Marion; Langen, Gregor; Sharma, Sapna; Kugler, Karl G; Knappe, Claudia; Hause, Bettina; Bichlmeier, Marlies; Babaeizad, Valiollah; Imani, Jafargholi; Janzik, Ingar; Stempfl, Thomas; Hückelhoven, Ralph; Kogel, Karl-Heinz; Mayer, Klaus F X; Vlot, A Corina

    2014-12-01

    Leaf-to-leaf systemic immune signaling known as systemic acquired resistance is poorly understood in monocotyledonous plants. Here, we characterize systemic immunity in barley (Hordeum vulgare) triggered after primary leaf infection with either Pseudomonas syringae pathovar japonica (Psj) or Xanthomonas translucens pathovar cerealis (Xtc). Both pathogens induced resistance in systemic, uninfected leaves against a subsequent challenge infection with Xtc. In contrast to systemic acquired resistance in Arabidopsis (Arabidopsis thaliana), systemic immunity in barley was not associated with NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 or the local or systemic accumulation of salicylic acid. Instead, we documented a moderate local but not systemic induction of abscisic acid after infection of leaves with Psj. In contrast to salicylic acid or its functional analog benzothiadiazole, local applications of the jasmonic acid methyl ester or abscisic acid triggered systemic immunity to Xtc. RNA sequencing analysis of local and systemic transcript accumulation revealed unique gene expression changes in response to both Psj and Xtc and a clear separation of local from systemic responses. The systemic response appeared relatively modest, and quantitative reverse transcription-polymerase chain reaction associated systemic immunity with the local and systemic induction of two WRKY and two ETHYLENE RESPONSIVE FACTOR (ERF)-like transcription factors. Systemic immunity against Xtc was further associated with transcriptional changes after a secondary/systemic Xtc challenge infection; these changes were dependent on the primary treatment. Taken together, bacteria-induced systemic immunity in barley may be mediated in part by WRKY and ERF-like transcription factors, possibly facilitating transcriptional reprogramming to potentiate immunity. © 2014 American Society of Plant Biologists. All Rights Reserved.

  6. A novel transformation system using a bleomycin resistance marker with chemosensitizers for Aspergillus oryzae.

    PubMed

    Suzuki, Satoshi; Tada, Sawaki; Fukuoka, Mari; Taketani, Hiroko; Tsukakoshi, Yoshiki; Matsushita, Mayumi; Oda, Kosuke; Kusumoto, Ken-Ichi; Kashiwagi, Yutaka; Sugiyama, Masanori

    2009-05-22

    Aspergillus oryzae is resistant to many kinds of antibiotics, which hampers their use to select transformants. In fact, the fungus is resistant to over 200microg/ml of bleomycin (Bm). By enhancing the susceptibility of A. oryzae to Bm using Triton X-100 as a detergent and an ATP-binding cassette (ABC) pump inhibitor, chlorpromazine, to the growing medium, we established a novel transformation system by Bm selection for A. oryzae. In a medium containing these reagents, A. oryzae showed little growth even in the presence of 30microg Bm/ml. Based on these findings, we constructed a Bm-resistance expression cassette (BmR), in which blmB encoding Bm N-acetyltransferase from Bm-producing Streptomyces verticillus was expressed under the control of a fungal promoter. We obtained a gene knockout mutant efficiently by Bm selection, i.e., the chromosomal ligD coding region was successfully replaced by BmR using ligD disruption cassette consisted of ligD flanking sequence and BmR through homologous recombination.

  7. An overproduction of astellolides induced by genetic disruption of chromatin-remodeling factors in Aspergillus oryzae.

    PubMed

    Shinohara, Yasutomo; Kawatani, Makoto; Futamura, Yushi; Osada, Hiroyuki; Koyama, Yasuji

    2016-01-01

    The filamentous fungus Aspergillus oryzae is an important industrial mold. Recent genomic analysis indicated that A. oryzae has a large number of biosynthetic genes for secondary metabolites (SMs), but many of the SMs they produce have not been identified. For better understanding of SMs production by A. oryzae, we screened a gene-disruption library of transcription factors including chromatin-remodeling factors and found two gene disruptions that show similarly altered SM production profiles. One is a homolog of Aspergillus nidulans cclA, a component of the histone 3 lysine 4 (H3K4) methyltransferase complex of proteins associated with Set1 complex, and the other, sppA, is an ortholog of Saccharomyces cerevisiae SPP1, another component of a complex of proteins associated with Set1 complex. The cclA and sppA disruptions in A. oryzae are deficient in trimethylation of H3K4. Furthermore, one of the SMs that increased in the cclA disruptant was identified as astellolide F (14-deacetyl astellolide B). These data indicate that both cclA and sppA affect production of SMs including astellolides by affecting the methylation status of H3K4 in A. oryzae.

  8. Aspergillus oryzae-Saccharomyces cerevisiae Consortium Allows Bio-Hybrid Fuel Cell to Run on Complex Carbohydrates.

    PubMed

    Jahnke, Justin P; Hoyt, Thomas; LeFors, Hannah M; Sumner, James J; Mackie, David M

    2016-02-04

    Consortia of Aspergillus oryzae and Saccharomyces cerevisiae are examined for their abilities to turn complex carbohydrates into ethanol. To understand the interactions between microorganisms in consortia, Fourier-transform infrared spectroscopy is used to follow the concentrations of various metabolites such as sugars (e.g., glucose, maltose), longer chain carbohydrates, and ethanol to optimize consortia conditions for the production of ethanol. It is shown that with proper design A. oryzae can digest food waste simulants into soluble sugars that S. cerevisiae can ferment into ethanol. Depending on the substrate and conditions used, concentrations of 13% ethanol were achieved in 10 days. It is further shown that a direct alcohol fuel cell (FC) can be coupled with these A. oryzae-enabled S. cerevisiae fermentations using a reverse osmosis membrane. This "bio-hybrid FC" continually extracted ethanol from an ongoing consortium, enhancing ethanol production and allowing the bio-hybrid FC to run for at least one week. Obtained bio-hybrid FC currents were comparable to those from pure ethanol-water mixtures, using the same FC. The A. oryzae-S. cerevisiae consortium, coupled to a bio-hybrid FC, converted food waste simulants into electricity without any pre- or post-processing.

  9. Effect of yeast culture and Aspergillus oryzae fermentation extract on ruminal characteristics and nutrient digestibility.

    PubMed

    Wiedmeier, R D; Arambel, M J; Walters, J L

    1987-10-01

    Four nonpregnant and nonlactating Holstein cows fitted with ruminal fistulas were assigned to each of four diets in a 4 X 4 Latin square design. Dietary treatments were 1) basal diet containing 50% concentrate; 2) basal diet plus 90 g/d yeast culture; 3) basal diet plus 2.63 g/d Aspergillus oryzae fermentation extract; 4) basal diet plus 90 g/d of A. oryzae fermentation extract and yeast culture. Cows were fed diets at a rate of 86 g DM/kg BW.75 for 14 d adaptation followed by an 8-d collection period. Digestibility of dry matter was increased by A. oryzae and A. oryzae and yeast culture combination treatments. Digestibility of CP was increased regardless of fungal culture addition. Hemicellulose digestibility, percent ruminal cellulolytic organisms, and acetate to propionate ratio were increased by the addition of fungal supplements.

  10. Genome-wide Identification and characterization of circular RNAs in the rice blast fungus Magnaporthe oryzae.

    PubMed

    Yuan, Jialan; Wang, Zhao; Xing, Junjie; Yang, Qingyong; Chen, Xiao-Lin

    2018-04-30

    Numerous circRNAs have been identified in different organisms, but little attention has been addressed on fungal circRNAs. Here, we identified a total of 8,848 circRNAs from the model plant pathogenic fungus M. oryzae. 5,840 circRNAs were identified from mycelium, 2,721 circRNAs from conidium, while only 287 circRNAs from both tissues. This indicated that most of the M. oryzae circRNAs were specifically expressed in mycelium or in conidium. Parental genes of circRNAs in mycelium were enriched in basic metabolisms required for normal growth, while in conidium, they were enriched in biogenesis of storages potentially used for infection. M. oryzae circRNAs could also bind to miRNAs, suggesting they may also function as sponges in fungi. This study suggested M. oryzae circRNAs could play important roles in regulation of growth and development.

  11. Terrestrial and marine Antarctic fungi extracts active against Xanthomonas citri subsp. citri.

    PubMed

    Vieira, G; Purić, J; Morão, L G; Dos Santos, J A; Inforsato, F J; Sette, L D; Ferreira, H; Sass, D C

    2018-07-01

    This study aims to obtain secondary metabolites extracts from filamentous fungi isolated from soil and marine sediments from Antarctica and assess its potential antibacterial activity on Xanthomonas citri subsp. citri, the agent of citrus canker. Metabolites production was conducted in Malt 2% broth at 15°C for 20 days after which intracellular and extracellular extracts were obtained. The extracts were evaluated by cell viability assays through Resazurin Microtitre Assay. From 158 fungal extracts, 33 hampered bacterial growth in vitro. The average inhibition of the extracts obtained from terrestrial (soil) and marine (sediments) fungi was 94 and 97% respectively. These inhibition values were close to the average of 90% cell death for the positive control. MIC90 and MBC for the bioactive extracts were established. Isolates that produced active metabolites against the phytopathogen were identified using molecular taxonomy (ITS-rRNA sequencing) as: Pseudogymnoascus, Penicillium, Cadophora, Paraconiothyrium and Toxicocladosporium. Antarctic fungal strains isolated from terrestrial and marine sediments were able to produce secondary metabolites with antimicrobial activity against X. citri subsp. citri, highlighting the importance of these microbial genetic resources. These metabolites have potential to be used as alternatives for the control of this plant pathogen. This manuscript makes an impact on the study of micro-organisms from extreme habitats and their possible contribution in discovering new active molecules against pathogens of agricultural interest. Studies on the Antarctic continent and its communities have attracted the scientific community due to the long period of isolation and low levels of disturbance that surrounds the region. Knowing the potential of fungi in this region to produce active secondary metabolites, we aim to contribute to the discovery of compounds with antibacterial action in Xanthomonas citri subsp. citri, a plant pathogen present in

  12. Genome-scale analysis of the high-efficient protein secretion system of Aspergillus oryzae.

    PubMed

    Liu, Lifang; Feizi, Amir; Österlund, Tobias; Hjort, Carsten; Nielsen, Jens

    2014-06-24

    The koji mold, Aspergillus oryzae is widely used for the production of industrial enzymes due to its particularly high protein secretion capacity and ability to perform post-translational modifications. However, systemic analysis of its secretion system is lacking, generally due to the poorly annotated proteome. Here we defined a functional protein secretory component list of A. oryzae using a previously reported secretory model of S. cerevisiae as scaffold. Additional secretory components were obtained by blast search with the functional components reported in other closely related fungal species such as Aspergillus nidulans and Aspergillus niger. To evaluate the defined component list, we performed transcriptome analysis on three α-amylase over-producing strains with varying levels of secretion capacities. Specifically, secretory components involved in the ER-associated processes (including components involved in the regulation of transport between ER and Golgi) were significantly up-regulated, with many of them never been identified for A. oryzae before. Furthermore, we defined a complete list of the putative A. oryzae secretome and monitored how it was affected by overproducing amylase. In combination with the transcriptome data, the most complete secretory component list and the putative secretome, we improved the systemic understanding of the secretory machinery of A. oryzae in response to high levels of protein secretion. The roles of many newly predicted secretory components were experimentally validated and the enriched component list provides a better platform for driving more mechanistic studies of the protein secretory pathway in this industrially important fungus.

  13. Inferring Roles in Defense from Metabolic Allocation of Rice Diterpenoids.

    PubMed

    Lu, Xuan; Zhang, Juan; Brown, Benjamin; Li, Riqing; Rodríguez-Romero, Julio; Berasategui, Aileen; Liu, Bo; Xu, Meimei; Luo, Dangping; Pan, Zhiqiang; Baerson, Scott; Gershenzon, Jonathan; Li, Zhaohu; Sesma, Ane; Yang, Bing; Peters, Reuben J

    2018-04-24

    Among their responses to microbial infection, plants deploy an arsenal of natural antibiotic products. These historically have been identified on the basis of their antibiotic activity in vitro, which leaves open the question of their relevance to defense in planta. The vast majority of such natural products from the important crop plant rice (Oryza sativa) are diterpenoids whose biosynthesis proceeds via either ent- or syn- copalyl diphosphate (CPP) intermediates, and which were isolated on the basis of their antibiotic activity against the fungal blast pathogen Magnaporthe oryzae. However, rice plants in which the gene for the syn-CPP synthase Os-CPS4 is knocked-out do not exhibit increased susceptibility to M. oryzae. Here we show that knocking-out or knocking-down Os-CPS4 actually decreases susceptibility to the bacterial leaf blight pathogen Xanthomonas oryzae. By contrast, genetic manipulation of the gene for the ent-CPP synthase Os-CPS2 alters susceptibility to both M. oryzae and X. oryzae. Despite the secretion of diterpenoids dependent on Os-CPS2 or Os-CPS4 from roots, neither knock-out exhibited significant changes in the composition of their rhizosphere bacterial communities. Nevertheless, rice plants allocate substantial metabolic resources towards syn- and ent-CPP derived diterpenoids upon infection/induction. Further investigation revealed that Os-CPS4 plays a role in fungal non-host disease resistance. Thus, examination of metabolic allocation provides important clues into physiological function. © 2018 American Society of Plant Biologists. All rights reserved.

  14. Draft Genome Sequence of Xanthomonas arboricola pv. pruni Strain Xap33, Causal Agent of Bacterial Spot Disease on Almond

    PubMed Central

    Garita-Cambronero, J.; Sena-Vélez, M.; Palacio-Bielsa, A.

    2014-01-01

    We report the annotated genome sequence of Xanthomonas arboricola pv. pruni strain Xap33, isolated from almond leaves showing bacterial spot disease symptoms in Spain. The availability of this genome sequence will aid our understanding of the infection mechanism of this bacterium as well as its relationship to other species of the same genus. PMID:24903863

  15. Genome information of Methylobacterium oryzae, a plant-probiotic methylotroph in the phyllosphere.

    PubMed

    Kwak, Min-Jung; Jeong, Haeyoung; Madhaiyan, Munusamy; Lee, Yi; Sa, Tong-Min; Oh, Tae Kwang; Kim, Jihyun F

    2014-01-01

    Pink-pigmented facultative methylotrophs in the Rhizobiales are widespread in the environment, and many Methylobacterium species associated with plants produce plant growth-promoting substances. To gain insights into the life style at the phyllosphere and the genetic bases of plant growth promotion, we determined and analyzed the complete genome sequence of Methylobacterium oryzae CBMB20T, a strain isolated from rice stem. The genome consists of a 6.29-Mb chromosome and four plasmids, designated as pMOC1 to pMOC4. Among the 6,274 coding sequences in the chromosome, the bacterium has, besides most of the genes for the central metabolism, all of the essential genes for the assimilation and dissimilation of methanol that are either located in methylotrophy islands or dispersed. M. oryzae is equipped with several kinds of genes for adaptation to plant surfaces such as defense against UV radiation, oxidative stress, desiccation, or nutrient deficiency, as well as high proportion of genes related to motility and signaling. Moreover, it has an array of genes involved in metabolic pathways that may contribute to promotion of plant growth; they include auxin biosynthesis, cytokine biosynthesis, vitamin B12 biosynthesis, urea metabolism, biosorption of heavy metals or decrease of metal toxicity, pyrroloquinoline quinone biosynthesis, 1-aminocyclopropane-1-carboxylate deamination, phosphate solubilization, and thiosulfate oxidation. Through the genome analysis of M. oryzae, we provide information on the full gene complement of M. oryzae that resides in the aerial parts of plants and enhances plant growth. The plant-associated lifestyle of M. oryzae pertaining to methylotrophy and plant growth promotion, and its potential as a candidate for a bioinoculant targeted to the phyllosphere and focused on phytostimulation are illuminated.

  16. Molecular cloning and characterization of a gene encoding glutaminase from Aspergillus oryzae.

    PubMed

    Koibuchi, K; Nagasaki, H; Yuasa, A; Kataoka, J; Kitamoto, K

    2000-07-01

    A glutaminase from Aspergillus oryzae was purified and its molecular weight was determined to be 82,091 by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Purified glutaminase catalysed the hydrolysis not only of L-glutamine but also of D-glutamine. Both the molecular weight and the substrate specificity of this glutaminase were different from those reported previously [Yano et al. (1998) J Ferment Technol 66: 137-143]. On the basis of its internal amino acid sequences, we have isolated and characterized the glutaminase gene (gtaA) from A. oryzae. The gtaA gene had an open reading frame coding for 690 amino acid residues, including a signal peptide of 20 amino acid residues and a mature protein of 670 amino acid residues. In the 5'-flanking region of the gene, there were three putative CreAp binding sequences and one putative AreAp binding sequence. The gtaA structural gene was introduced into A. oryzae NS4 and a marked increase in activity was detected in comparison with the control strain. The gtaA gene was also isolated from Aspergillus nidulans on the basis of the determined nucleotide sequence of the gtaA gene from A. oryzae.

  17. A new method for determining the mycelial weight of the koji-mold Aspergillus oryzae by measuring its glycosylceramide content.

    PubMed

    Ferdouse, Jannatul; Miyagawa, Miyuki; Hirano, Mikako; Kitajima, Yuka; Inaba, Shigeki; Kitagaki, Hiroshi

    2018-06-21

    At present, the quantitation of the mycelial weight of the industrially important non-pathogenic fungus Aspergillus oryzae, which is used for manufacturing koji, is performed by quantitating N-acetylglucosamine. However, since N-acetylglucosamine is a cell wall component, the extraction procedure is costly and tedious, and its quantitative performance is poor. Here, we report a novel method for the quantitation of A. oryzae mycelial weight. The amount of glycosylceramide significantly correlated with both the mycelial weight of A. oryzae and the amount of N-acetylglucosamine, an established index of the mycelial weight of A. oryzae in koji. This new method is simple and efficient and can be used in the brewing and food industries to determine the mycelial weight of A. oryzae.

  18. Self-affine fractal growth front of Aspergillus oryzae

    NASA Astrophysics Data System (ADS)

    Matsuura, Shu; Miyazima, Sasuke

    1992-12-01

    Aspergillus oryzae have been grown in various environmental conditions and analyzed from the viewpoint of self-affinity. The growth behavior can be described by the Eden model in favorable conditions, and by DLA in unfavorable conditions.

  19. Rice terpene synthase 24 (OsTPS24) encodes a jasmonate-responsive monoterpene synthase that produces an antibacterial γ-terpinene against rice pathogen.

    PubMed

    Yoshitomi, Kayo; Taniguchi, Shiduku; Tanaka, Keiichiro; Uji, Yuya; Akimitsu, Kazuya; Gomi, Kenji

    2016-02-01

    Rice is one of the most important crops worldwide and is widely used as a model plant for molecular studies of monocotyledonous species. The plant hormone jasmonic acid (JA) is involved in rice-pathogen interactions. In addition, volatile compounds, including terpenes, whose production is induced by JA, are known to be involved in the rice defense system. In this study, we analyzed the JA-induced terpene synthase OsTPS24 in rice. We found that OsTPS24 was localized in chloroplasts and produced a monoterpene, γ-terpinene. The amount of γ-terpinene increased after JA treatment. γ-Terpinene had significant antibacterial activity against Xanthomonas oryzae pv. oryzae (Xoo); however, it did not show significant antifungal activity against Magnaporthe oryzae. The antibacterial activity of the γ-terpinene against Xoo was caused by damage to bacterial cell membranes. These results suggest that γ-terpinene plays an important role in JA-induced resistance against Xoo, and that it functions as an antibacterial compound in rice. Copyright © 2015 Elsevier GmbH. All rights reserved.

  20. A host basal transcription factor is a key component for infection of rice by TALE-carrying bacteria.

    PubMed

    Yuan, Meng; Ke, Yinggen; Huang, Renyan; Ma, Ling; Yang, Zeyu; Chu, Zhaohui; Xiao, Jinghua; Li, Xianghua; Wang, Shiping

    2016-07-29

    Transcription activator-like effectors (TALEs) are sequence-specific DNA binding proteins found in a range of plant pathogenic bacteria, where they play important roles in host-pathogen interactions. However, it has been unclear how TALEs, after they have been injected into the host cells, activate transcription of host genes required for infection success. Here, we show that the basal transcription factor IIA gamma subunit TFIIAγ5 from rice is a key component for infection by the TALE-carrying bacterium Xanthomonas oryzae pv. oryzae, the causal agent for bacterial blight. Direct interaction of several TALEs with TFIIAγ5 is required for activation of disease susceptibility genes. Conversely, reduced expression of the TFIIAγ5 host gene limits the induction of susceptibility genes and thus decreases bacterial blight symptoms. Suppression or mutation of TFIIAγ5 can also reduce bacterial streak, another devastating disease of rice caused by TALE-carrying X. oryzae pv. oryzicola. These results have important implications for formulating a widely applicable strategy with which to improve resistance of plants to TALE-carrying pathogens.

  1. Comparative proteomic analysis of Xanthomonas citri ssp. citri periplasmic proteins reveals changes in cellular envelope metabolism during in vitro pathogenicity induction.

    PubMed

    Artier, Juliana; da Silva Zandonadi, Flávia; de Souza Carvalho, Flávia Maria; Pauletti, Bianca Alves; Leme, Adriana Franco Paes; Carnielli, Carolina Moretto; Selistre-de-Araujo, Heloisa Sobreiro; Bertolini, Maria Célia; Ferro, Jesus Aparecido; Belasque Júnior, José; de Oliveira, Julio Cezar Franco; Novo-Mansur, Maria Teresa Marques

    2018-01-01

    Citrus canker is a plant disease caused by Gram-negative bacteria from the genus Xanthomonas. The most virulent species is Xanthomonas citri ssp. citri (XAC), which attacks a wide range of citrus hosts. Differential proteomic analysis of the periplasm-enriched fraction was performed for XAC cells grown in pathogenicity-inducing (XAM-M) and pathogenicity-non-inducing (nutrient broth) media using two-dimensional electrophoresis combined with liquid chromatography-tandem mass spectrometry. Amongst the 40 proteins identified, transglycosylase was detected in a highly abundant spot in XAC cells grown under inducing condition. Additional up-regulated proteins related to cellular envelope metabolism included glucose-1-phosphate thymidylyltransferase, dTDP-4-dehydrorhamnose-3,5-epimerase and peptidyl-prolyl cis-trans-isomerase. Phosphoglucomutase and superoxide dismutase proteins, known to be involved in pathogenicity in other Xanthomonas species or organisms, were also detected. Western blot and quantitative real-time polymerase chain reaction analyses for transglycosylase and superoxide dismutase confirmed that these proteins were up-regulated under inducing condition, consistent with the proteomic results. Multiple spots for the 60-kDa chaperonin and glyceraldehyde-3-phosphate dehydrogenase were identified, suggesting the presence of post-translational modifications. We propose that substantial alterations in cellular envelope metabolism occur during the XAC infectious process, which are related to several aspects, from defence against reactive oxygen species to exopolysaccharide synthesis. Our results provide new candidates for virulence-related proteins, whose abundance correlates with the induction of pathogenicity and virulence genes, such as hrpD6, hrpG, hrpB7, hpa1 and hrpX. The results present new potential targets against XAC to be investigated in further functional studies. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  2. Wind speed effects on the quantity of Xanthomonas citri subsp. citri dispersed downwind from canopies of grapefruit trees infected with citrus canker

    USDA-ARS?s Scientific Manuscript database

    The epidemic of citrus canker (Xanthomonas citri subsp. citri, Xcc) in Florida continues to expand since termination of the eradication program in 2006. Storms are known to be associated with disease spread, but little information exists on the interaction of fundamental physical and biological proc...

  3. Ex-Ante Economic Impact Assessment of Genetically Modified Banana Resistant to Xanthomonas Wilt in the Great Lakes Region of Africa.

    PubMed

    Ainembabazi, John Herbert; Tripathi, Leena; Rusike, Joseph; Abdoulaye, Tahirou; Manyong, Victor

    2015-01-01

    Credible empirical evidence is scanty on the social implications of genetically modified (GM) crops in Africa, especially on vegetatively propagated crops. Little is known about the future success of introducing GM technologies into staple crops such as bananas, which are widely produced and consumed in the Great Lakes Region of Africa (GLA). GM banana has a potential to control the destructive banana Xanthomonas wilt disease. To gain a better understanding of future adoption and consumption of GM banana in the GLA countries which are yet to permit the production of GM crops; specifically, to evaluate the potential economic impacts of GM cultivars resistant to banana Xanthomonas wilt disease. The paper uses data collected from farmers, traders, agricultural extension agents and key informants in the GLA. We analyze the perceptions of the respondents about the adoption and consumption of GM crop. Economic surplus model is used to determine future economic benefits and costs of producing GM banana. On the release of GM banana for commercialization, the expected initial adoption rate ranges from 21 to 70%, while the ceiling adoption rate is up to 100%. Investment in the development of GM banana is economically viable. However, aggregate benefits vary substantially across the target countries ranging from US$ 20 million to 953 million, highest in countries where disease incidence and production losses are high, ranging from 51 to 83% of production. The findings support investment in the development of GM banana resistant to Xanthomonas wilt disease. The main beneficiaries of this technology development are farmers and consumers, although the latter benefit more than the former from reduced prices. Designing a participatory breeding program involving farmers and consumers signifies the successful adoption and consumption of GM banana in the target countries.

  4. Ex-Ante Economic Impact Assessment of Genetically Modified Banana Resistant to Xanthomonas Wilt in the Great Lakes Region of Africa

    PubMed Central

    Ainembabazi, John Herbert; Tripathi, Leena; Rusike, Joseph; Abdoulaye, Tahirou; Manyong, Victor

    2015-01-01

    Background Credible empirical evidence is scanty on the social implications of genetically modified (GM) crops in Africa, especially on vegetatively propagated crops. Little is known about the future success of introducing GM technologies into staple crops such as bananas, which are widely produced and consumed in the Great Lakes Region of Africa (GLA). GM banana has a potential to control the destructive banana Xanthomonas wilt disease. Objective To gain a better understanding of future adoption and consumption of GM banana in the GLA countries which are yet to permit the production of GM crops; specifically, to evaluate the potential economic impacts of GM cultivars resistant to banana Xanthomonas wilt disease. Data Sources The paper uses data collected from farmers, traders, agricultural extension agents and key informants in the GLA. Analysis We analyze the perceptions of the respondents about the adoption and consumption of GM crop. Economic surplus model is used to determine future economic benefits and costs of producing GM banana. Results On the release of GM banana for commercialization, the expected initial adoption rate ranges from 21 to 70%, while the ceiling adoption rate is up to 100%. Investment in the development of GM banana is economically viable. However, aggregate benefits vary substantially across the target countries ranging from US$ 20 million to 953 million, highest in countries where disease incidence and production losses are high, ranging from 51 to 83% of production. Conclusion The findings support investment in the development of GM banana resistant to Xanthomonas wilt disease. The main beneficiaries of this technology development are farmers and consumers, although the latter benefit more than the former from reduced prices. Designing a participatory breeding program involving farmers and consumers signifies the successful adoption and consumption of GM banana in the target countries. PMID:26414379

  5. Xanthomonas TAL effectors hijack host basal transcription factor IIA α and γ subunits for invasion.

    PubMed

    Ma, Ling; Wang, Qiang; Yuan, Meng; Zou, Tingting; Yin, Ping; Wang, Shiping

    2018-02-05

    The Xanthomonas genus includes Gram-negative plant-pathogenic bacteria, which infect a broad range of crops and wild plant species, cause symptoms with leaf blights, streaks, spots, stripes, necrosis, wilt, cankers and gummosis on leaves, stems and fruits in a wide variety of plants via injecting their effector proteins into the host cell during infection. Among these virulent effectors, transcription activator-like effectors (TALEs) interact with the γ subunit of host transcription factor IIA (TFIIAγ) to activate the transcription of host disease susceptibility genes. Functional TFIIA is a ternary complex comprising α, β and γ subunits. However, whether TALEs recruit TFIIAα, TFIIAβ, or both remains unknown. The underlying molecular mechanisms by which TALEs mediate host susceptibility gene activation require full elucidation. Here, we show that TALEs interact with the α+γ binary subcomplex but not the α+β+γ ternary complex of rice TFIIA (holo-OsTFIIA). The transcription factor binding (TFB) regions of TALEs, which are highly conserved in Xanthomonas species, have a dominant role in these interactions. Furthermore, the interaction between TALEs and the α+γ complex exhibits robust DNA binding activity in vitro. These results collectively demonstrate that TALE-carrying pathogens hijack the host basal transcription factors TFIIAα and TFIIAγ, but not TFIIAβ, to enhance host susceptibility during pathogen infection. The uncovered mechanism widens new insights on host-microbe interaction and provide an applicable strategy to breed high-resistance crop varieties. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Short distance dispersal of splashed bacteria of Xanthomonas citri subsp. citri from canker-infected grapefruit tree canopies in turbulent wind

    USDA-ARS?s Scientific Manuscript database

    Citrus canker (Xanthomonas citri subsp citri [Xcc]) can result in yield loss and market restrictions. The pathogen is dispersed in rain splash and spread is promoted by wind. The goal of this study was to gain some insight into the behavior of the downwind plume of Xcc from ~1.5 m-tall canker-affect...

  7. Genome-scale analysis of the high-efficient protein secretion system of Aspergillus oryzae

    PubMed Central

    2014-01-01

    Background The koji mold, Aspergillus oryzae is widely used for the production of industrial enzymes due to its particularly high protein secretion capacity and ability to perform post-translational modifications. However, systemic analysis of its secretion system is lacking, generally due to the poorly annotated proteome. Results Here we defined a functional protein secretory component list of A. oryzae using a previously reported secretory model of S. cerevisiae as scaffold. Additional secretory components were obtained by blast search with the functional components reported in other closely related fungal species such as Aspergillus nidulans and Aspergillus niger. To evaluate the defined component list, we performed transcriptome analysis on three α-amylase over-producing strains with varying levels of secretion capacities. Specifically, secretory components involved in the ER-associated processes (including components involved in the regulation of transport between ER and Golgi) were significantly up-regulated, with many of them never been identified for A. oryzae before. Furthermore, we defined a complete list of the putative A. oryzae secretome and monitored how it was affected by overproducing amylase. Conclusion In combination with the transcriptome data, the most complete secretory component list and the putative secretome, we improved the systemic understanding of the secretory machinery of A. oryzae in response to high levels of protein secretion. The roles of many newly predicted secretory components were experimentally validated and the enriched component list provides a better platform for driving more mechanistic studies of the protein secretory pathway in this industrially important fungus. PMID:24961398

  8. Expression and localization of exocytic and recycling Rabs from Magnaporthe oryzae in mammalian cells

    PubMed Central

    Qi, Yaoyao; Marlin, M. Caleb; Liang, Zhimin; Zhang, Dongmei; Zhou, Jie; Wang, Zonghua; Lu, Guodong; Li, Guangpu

    2018-01-01

    Rab GTPases are master regulators of intracellular membrane trafficking along endocytic and exocytic pathways. In this chapter, we began to characterize the exocytic and recycling Rabs from the filamentous fungus Magnaporthe oryzae (M. oryzae) that causes the rice blast disease. Among the 11 putative Rabs identified from the M. oryzae genome database (MoRabs), MoRab1, MoRab8, and MoRab11 appear orthologs of mammalian Rab1, Rab8, and Rab11 and likely function in exocytosis and endosomal recycling. To test this contention, we cloned, expressed, and determined intracellular localization of the three MoRabs in mammalian cells, in comparison to their human counterparts (hRabs). The MoRabs were well expressed as GFP fusion proteins and colocalized with the tdTomato-labeled hRabs on exocytic and recycling organelles, as determined by immunoblot analysis and confocal fluorescence microscopy. The colocalization supports the contention that the MoRabs are indeed Rab orthologs and may play important roles in the development and pathogenicity of M. oryzae. PMID:26360026

  9. Studying Pellet Formation of a Filamentous Fungus Rhizopus oryzae to Enhance Organic Acid Production

    NASA Astrophysics Data System (ADS)

    Liao, Wei; Liu, Yan; Chen, Shulin

    Using pelletized fungal biomass can effectively improve the fermentation performance for most of fugal strains. This article studied the effects of inoculum and medium compositions such as potato dextrose broth (PDB) as carbon source, soybean peptone, calcium carbonate, and metal ions on pellet formation of Rhizopus oryzae. It has been found that metal ions had significantly negative effects on pellet formation whereas soybean peptone had positive effects. In addition PDB and calcium carbonate were beneficial to R. oryzae for growing small smooth pellets during the culture. The study also demonstrated that an inoculum size of less than 1.5×109 spores/L had no significant influence on pellet formation. Thus, a new approach to form pellets has been developed using only PDB, soybean peptone, and calcium carbonate. Meanwhile, palletized fungal fermentation significantly enhanced organic acid production. Lactic acid concentration reached 65.0 g/L in 30 h using pelletized R. oryzae NRRL 395, and fumeric acid concentration reached 31.0 g/L in 96 h using pelletized R. oryzae ATCC 20344.

  10. Transcriptome Analysis of Oryza sativa Calli Under Microgravity

    NASA Astrophysics Data System (ADS)

    Jin, Jing; Chen, Haiying; Cai, Weiming

    2015-11-01

    The transcriptome of Oryza sativacalli was analyzed on board the Chinese spaceship "Shenzhou 8" to study the effects of microgravity on plant signal transduction and secondary metabolism (as one of the experiments with SIMBOX on Shenzhou 8). Calli of Oryza sativa were pre-cultured for 4 days on ground and then loaded into the stationary platform or the rotating platform of a biological incubator, called SIMBOX, to grow in space under microgravity conditions or 1g-conditions, respectively. The calli were fixed by RNAlater after grew 324 h under microgravity. After 17 days, Shenzhou 8 returned to Earth carrying SIMBOX. Oryza sativa calli were recovered, and the RNA was extracted for transcriptome analysis. After comparing 1 gspaceflight controls-inflight controls with 1 g-ground controls, 157 probe sets with different expression levels (fold change ≥2, p<0.05) were identified. When comparing spaceflight controls to 1 g-ground controls and to 1 g-inflight controls, 678 probe sets with different expression levels (fold change ≥2, p<0.05) were identified. The fact that the same 678 probe sets were identified in these two comparisons suggests that transcription was affected under microgravity conditions. MapMan analysis was used to classify 627 microgravity responsive (MR) transcripts. The MR transcripts were mainly involved in cell wall structure, the TCA cycle, primary metabolism, transcription, protein modification and degradation, hormone metabolism, calcium regulation, receptor like kinase activity and transport.

  11. Soft Rot of Rhizopus oryzae as a Postharvest Pathogen of Banana Fruit in Korea

    PubMed Central

    Ryu, Jae-San; Chi, Tran Thi Phuong; Shen, Shun-Shan; Choi, Okhee

    2012-01-01

    Soft rot on banana fruit caused by Rhizopus oryzae was identified for the first time in Korea. Colonies were white to light brown and formed numerous sporangiospores. Optimum temperature for mycelial growth was 30℃. Sporangia were globose and 30~200 µm. Sporangiophores were usually straight, 8~20 µm, and rhizoids usually in groups of 3~5. Columella were globose to sub-globose and 90~110 µm. Sporangiospores were sub-globose or oval and 4~10 µm. Based on its mycological characteristics, molecular analysis, and pathogenicity to host plants, this fungus was identified as Rhizopus oryzae Went & Prisen Geerligs. This is the first report of soft rot on banana caused by Rhizopus oryzae in Korea. PMID:23115518

  12. Structural analysis of cerebrosides from Aspergillus fungi: the existence of galactosylceramide in A. oryzae.

    PubMed

    Tani, Yasushi; Amaishi, Yasunori; Funatsu, Tori; Ito, Masahiro; Itonori, Saki; Hata, Yoji; Ashida, Hisashi; Yamamoto, Kenji

    2014-12-01

    Glucosylceramide and galactosylceramide were detected in three Aspergillus species: Aspergillus oryzae, Aspergillus sojae and Aspergillus. awamori, using borate-coated TLC. The cerebrosides from A. oryzae were further purified by ion exchange and iatrobeads column chromatographies with or without borate, and determined the composition of sugar, fatty acid and sphingoid base by GC/MS, MALDI-TOF/MS and (1)H-NMR. We identified them as β-glucosylceramide and β-galactosylceramide. The ceramide moiety of both cerebrosides consisted mainly of 2-hydroxystearic acid and either 9-methyl-octadeca-4, 8-sphingadienine or octadeca-4, 8-sphingadienine. To our knowledge, this is the first study to provide evidence for the presence of β-galactosylceramide in A. oryzae.

  13. Genome Characterization of Oleaginous Aspergillus oryzae BCC7051: A Potential Fungal-Based Platform for Lipid Production

    DOE PAGES

    Thammarongtham, Chinae; Nookaew, Intawat; Vorapreeda, Tayvich; ...

    2017-09-01

    The selected robust fungus, Aspergillus oryzae strain BCC7051 is of interest for biotechnological production of lipid-derived products due to its capability to accumulate high amount of intracellular lipids using various sugars and agro-industrial substrates. Here in this paper, we report the genome sequence of the oleaginous A. oryzae BCC7051. The obtained reads were de novo assembled into 25 scaffolds spanning of 38,550,958 bps with predicted 11,456 protein-coding genes. By synteny mapping, a large rearrangement was found in two scaffolds of A. oryzae BCC7051 as compared to the reference RIB40 strain. The genetic relationship between BCC7051 and other strains of A.more » oryzae in terms of aflatoxin production was investigated, indicating that the A. oryzae BCC7051 was categorized into group 2 nonaflatoxin-producing strain. Moreover, a comparative analysis of the structural genes focusing on the involvement in lipid metabolism among oleaginous yeast and fungi revealed the presence of multiple isoforms of metabolic enzymes responsible for fatty acid synthesis in BCC7051. The alternative routes of acetyl-CoA generation as oleaginous features and malate/citrate/pyruvate shuttle were also identified in this A. oryzae strain. The genome sequence generated in this work is a dedicated resource for expanding genome-wide study of microbial lipids at systems level, and developing the fungal-based platform for production of diversified lipids with commercial relevance.« less

  14. Genome Characterization of Oleaginous Aspergillus oryzae BCC7051: A Potential Fungal-Based Platform for Lipid Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thammarongtham, Chinae; Nookaew, Intawat; Vorapreeda, Tayvich

    The selected robust fungus, Aspergillus oryzae strain BCC7051 is of interest for biotechnological production of lipid-derived products due to its capability to accumulate high amount of intracellular lipids using various sugars and agro-industrial substrates. Here in this paper, we report the genome sequence of the oleaginous A. oryzae BCC7051. The obtained reads were de novo assembled into 25 scaffolds spanning of 38,550,958 bps with predicted 11,456 protein-coding genes. By synteny mapping, a large rearrangement was found in two scaffolds of A. oryzae BCC7051 as compared to the reference RIB40 strain. The genetic relationship between BCC7051 and other strains of A.more » oryzae in terms of aflatoxin production was investigated, indicating that the A. oryzae BCC7051 was categorized into group 2 nonaflatoxin-producing strain. Moreover, a comparative analysis of the structural genes focusing on the involvement in lipid metabolism among oleaginous yeast and fungi revealed the presence of multiple isoforms of metabolic enzymes responsible for fatty acid synthesis in BCC7051. The alternative routes of acetyl-CoA generation as oleaginous features and malate/citrate/pyruvate shuttle were also identified in this A. oryzae strain. The genome sequence generated in this work is a dedicated resource for expanding genome-wide study of microbial lipids at systems level, and developing the fungal-based platform for production of diversified lipids with commercial relevance.« less

  15. Genome Information of Methylobacterium oryzae, a Plant-Probiotic Methylotroph in the Phyllosphere

    PubMed Central

    Madhaiyan, Munusamy; Lee, Yi; Sa, Tong-Min; Oh, Tae Kwang; Kim, Jihyun F.

    2014-01-01

    Pink-pigmented facultative methylotrophs in the Rhizobiales are widespread in the environment, and many Methylobacterium species associated with plants produce plant growth-promoting substances. To gain insights into the life style at the phyllosphere and the genetic bases of plant growth promotion, we determined and analyzed the complete genome sequence of Methylobacterium oryzae CBMB20T, a strain isolated from rice stem. The genome consists of a 6.29-Mb chromosome and four plasmids, designated as pMOC1 to pMOC4. Among the 6,274 coding sequences in the chromosome, the bacterium has, besides most of the genes for the central metabolism, all of the essential genes for the assimilation and dissimilation of methanol that are either located in methylotrophy islands or dispersed. M. oryzae is equipped with several kinds of genes for adaptation to plant surfaces such as defense against UV radiation, oxidative stress, desiccation, or nutrient deficiency, as well as high proportion of genes related to motility and signaling. Moreover, it has an array of genes involved in metabolic pathways that may contribute to promotion of plant growth; they include auxin biosynthesis, cytokine biosynthesis, vitamin B12 biosynthesis, urea metabolism, biosorption of heavy metals or decrease of metal toxicity, pyrroloquinoline quinone biosynthesis, 1-aminocyclopropane-1-carboxylate deamination, phosphate solubilization, and thiosulfate oxidation. Through the genome analysis of M. oryzae, we provide information on the full gene complement of M. oryzae that resides in the aerial parts of plants and enhances plant growth. The plant-associated lifestyle of M. oryzae pertaining to methylotrophy and plant growth promotion, and its potential as a candidate for a bioinoculant targeted to the phyllosphere and focused on phytostimulation are illuminated. PMID:25211235

  16. Processess involved in the dispersal of Xanthomonas citri pv. citri from canker-infected citrus canopies, and in the infection of citrus foliage

    USDA-ARS?s Scientific Manuscript database

    Citrus canker (Xanthomonas citri subsp. citri, Xcc) is now considered endemic in Florida, and epidemics result in yield loss and market penalties both in Florida and elsewhere, where the pathogen occurs and susceptible citrus is cultivated. The bacterium is dispersed in rain splash, and storms with...

  17. Processes involved in the dispersal of Xanthomonas citri pv. citri from canker-infectd citrus canopies, and in the infection of citrus foliage

    USDA-ARS?s Scientific Manuscript database

    Citrus canker (Xanthomonas citri subsp. citri, Xcc) is now considered endemic in Florida, and epidemics result in yield loss and market penalties both in Florida, and elsewhere where the pathogen occurs, and susceptible citrus is cultivated. The bacterium is dispersed in rain splash, and storms wit...

  18. Construction of a Shuttle Vector for Heterologous Expression of a Novel Fungal α-Amylase Gene in Aspergillus oryzae.

    PubMed

    Yin, Yanchen; Mao, Youzhi; Yin, Xiaolie; Gao, Bei; Wei, Dongzhi

    2015-07-01

    The filamentous fungus Aspergillus oryzae is a well-known expression host used to express homologous and heterologous proteins in a number of industrial applications. To facilitate higher yields of proteins of interest, we constructed the pAsOP vector to express heterologous proteins in A. oryzae. pAsOP carries a selectable marker, pyrG, derived from Aspergillus nidulans, and a strong promoter and a terminator of the amyB gene derived from A. oryzae. pAsOP transformed A. oryzae efficiently via the PEG-CaCl2-mediated transformation method. As proof of concept, green fluorescent protein (GFP) was successfully expressed in A. oryzae transformed by pAsOP-GFP. Additionally, we identified a novel fungal α-amylase (PcAmy) gene from Penicillium sp. and cloned the gene into the vector. After transformation by pAsOPPcAmy, the α-amylase PcAmy from Penicillium sp. was successfully expressed in a heterologous host system for the first time. The α-amylase activity in the A. oryzae transformant was increased by 62.3% compared with the untransformed A. oryzae control. The PcAmy protein produced in the system had an optimum pH of 5.0 and optimum temperature of 30°C. As a cold-adapted enzyme, PcAmy shows potential value in industrial applications because of its high catalytic activity at low temperature. Furthermore, the expression vector reported in this study provides promising utility for further scientific research and biotechnological applications.

  19. Resistance among U.S. wheat Triticum aestivum cultivars to the wheat pathotype of Magnaporthe oryzae

    USDA-ARS?s Scientific Manuscript database

    Magnaporthe oryzae is the causal agent of blast on several graminaceous plants. The M. oryzae population causing wheat blast has not been found outside South America. U.S. wheat production is at risk to this pathogen if introduced and established. Proactive testing of US wheat cultivars for their re...

  20. Fungal histidine phosphotransferase plays a crucial role in photomorphogenesis and pathogenesis in Magnaporthe oryzae

    NASA Astrophysics Data System (ADS)

    Mohanan, Varsha C.; Chandarana, Pinal M.; Chattoo, Bharat. B.; Patkar, Rajesh N.; Manjrekar, Johannes

    2017-05-01

    Two-component signal transduction (TCST) pathways play crucial roles in many cellular functions such as stress responses, biofilm formation and sporulation. The histidine phosphotransferase (HPt), which is an intermediate phosphotransfer protein in a two-component system, transfers a phosphate group to a phosphorylatable aspartate residue in the target protein(s), and up-regulates stress-activated MAP kinase cascades. Most fungal genomes carry a single copy of the gene coding for HPt, which are potential antifungal targets. However, unlike the histidine kinases (HK) or the downstream response regulators (RR) in two-component system, the HPts have not been well studied in phytopathogenic fungi. In this study, we investigated the role of HPt in the model rice-blast fungal pathogen Magnaporthe oryzae. We found that in M. oryzae an additional isoform of the HPT gene YPD1 was expressed specifically in response to light. Further, the expression of light-regulated genes such as those encoding envoy and blue-light-harvesting protein, and PAS domain containing HKs was significantly reduced upon down-regulation of YPD1 in M. oryzae. Importantly, down-regulation of YPD1 led to a significant decrease in the ability to penetrate the host cuticle and in light-dependent conidiation in M. oryzae. Thus, our results indicate that Ypd1 plays an important role in asexual development and host invasion, and suggest that YPD1 isoforms likely have distinct roles to play in the rice-blast pathogen M. oryzae.

  1. Structure of the OsSERK2 leucine-rich repeat extracellular domain.

    PubMed

    McAndrew, Ryan; Pruitt, Rory N; Kamita, Shizuo G; Pereira, Jose Henrique; Majumdar, Dipali; Hammock, Bruce D; Adams, Paul D; Ronald, Pamela C

    2014-11-01

    Somatic embryogenesis receptor kinases (SERKs) are leucine-rich repeat (LRR)-containing integral membrane receptors that are involved in the regulation of development and immune responses in plants. It has recently been shown that rice SERK2 (OsSERK2) is essential for XA21-mediated resistance to the pathogen Xanthomonas oryzae pv. oryzae. OsSERK2 is also required for the BRI1-mediated, FLS2-mediated and EFR-mediated responses to brassinosteroids, flagellin and elongation factor Tu (EF-Tu), respectively. Here, crystal structures of the LRR domains of OsSERK2 and a D128N OsSERK2 mutant, expressed as hagfish variable lymphocyte receptor (VLR) fusions, are reported. These structures suggest that the aspartate mutation does not generate any significant conformational change in the protein, but instead leads to an altered interaction with partner receptors.

  2. Gene flow between divergent cereal - and grass-specific lineages of the rice blast fungus Magnaporthe oryzae

    USDA-ARS?s Scientific Manuscript database

    Delineating species and epidemic lineages in fungal plant pathogens is critical to our understanding of disease emergence and the structure of fungal biodiversity, and also informs international regulatory decisions. Pyricularia oryzae (syn. Magnaporthe oryzae) is a multi-host pathogen that infects ...

  3. Loss of function of a rice TPR-domain RNA-binding protein confers broad-spectrum disease resistance.

    PubMed

    Zhou, Xiaogang; Liao, Haicheng; Chern, Mawsheng; Yin, Junjie; Chen, Yufei; Wang, Jianping; Zhu, Xiaobo; Chen, Zhixiong; Yuan, Can; Zhao, Wen; Wang, Jing; Li, Weitao; He, Min; Ma, Bingtian; Wang, Jichun; Qin, Peng; Chen, Weilan; Wang, Yuping; Liu, Jiali; Qian, Yangwen; Wang, Wenming; Wu, Xianjun; Li, Ping; Zhu, Lihuang; Li, Shigui; Ronald, Pamela C; Chen, Xuewei

    2018-03-20

    Crops carrying broad-spectrum resistance loci provide an effective strategy for controlling infectious disease because these loci typically confer resistance to diverse races of a pathogen or even multiple species of pathogens. Despite their importance, only a few crop broad-spectrum resistance loci have been reported. Here, we report the identification and characterization of the rice bsr-k1 (broad-spectrum resistance Kitaake-1) mutant, which confers broad-spectrum resistance against Magnaporthe oryzae and Xanthomonas oryzae pv oryzae with no major penalty on key agronomic traits. Map-based cloning reveals that Bsr-k1 encodes a tetratricopeptide repeats (TPRs)-containing protein, which binds to mRNAs of multiple OsPAL ( OsPAL1-7 ) genes and promotes their turnover. Loss of function of the Bsr-k1 gene leads to accumulation of OsPAL1-7 mRNAs in the bsr-k1 mutant. Furthermore, overexpression of OsPAL1 in wild-type rice TP309 confers resistance to M. oryzae , supporting the role of OsPAL1 Our discovery of the bsr-k1 allele constitutes a significant conceptual advancement and provides a valuable tool for breeding broad-spectrum resistant rice. Copyright © 2018 the Author(s). Published by PNAS.

  4. Analysis of extracellular proteins of Aspergillus oryzae grown on soy sauce koji.

    PubMed

    Liang, Yanchang; Pan, Li; Lin, Ying

    2009-01-01

    Aspergillus oryzae AS 3.951 is widely used in Chinese soy sauce manufacture, but little is known about the profiles of the extracellular proteins from the culture of soybean koji. In this study, we carried out MALDI-TOF/TOF MS analysis of extracellular proteins during koji culture. Besides well-known proteins (TAA and Oryzin), a variety of aminopeptidase and proteases were identical at the proteome level. This suggests that A. oryzae AS 3.951 has a powerful capacity to digest soybean protein.

  5. Inheritance of high levels of resistance to common bacterial blight caused by Xanthomonas Axonopodis pv. Phaseoli in common bean (Phaseolus vulgaris L.)

    USDA-ARS?s Scientific Manuscript database

    Common bacterial blight caused by the pathogen Xanthomonas axonopodis pv. phaseoli (Xap) is an important biotic factor limiting common bean (Phaseolus vulgaris L.) production. A few interspecific bean breeding lines such as VAX 6 exhibit a high level of resistance to a wide range of Xap strains repr...

  6. Sequence- and Structure-Based Functional Annotation and Assessment of Metabolic Transporters in Aspergillus oryzae: A Representative Case Study

    PubMed Central

    Raethong, Nachon; Wong-ekkabut, Jirasak; Laoteng, Kobkul; Vongsangnak, Wanwipa

    2016-01-01

    Aspergillus oryzae is widely used for the industrial production of enzymes. In A. oryzae metabolism, transporters appear to play crucial roles in controlling the flux of molecules for energy generation, nutrients delivery, and waste elimination in the cell. While the A. oryzae genome sequence is available, transporter annotation remains limited and thus the connectivity of metabolic networks is incomplete. In this study, we developed a metabolic annotation strategy to understand the relationship between the sequence, structure, and function for annotation of A. oryzae metabolic transporters. Sequence-based analysis with manual curation showed that 58 genes of 12,096 total genes in the A. oryzae genome encoded metabolic transporters. Under consensus integrative databases, 55 unambiguous metabolic transporter genes were distributed into channels and pores (7 genes), electrochemical potential-driven transporters (33 genes), and primary active transporters (15 genes). To reveal the transporter functional role, a combination of homology modeling and molecular dynamics simulation was implemented to assess the relationship between sequence to structure and structure to function. As in the energy metabolism of A. oryzae, the H+-ATPase encoded by the AO090005000842 gene was selected as a representative case study of multilevel linkage annotation. Our developed strategy can be used for enhancing metabolic network reconstruction. PMID:27274991

  7. Sequence- and Structure-Based Functional Annotation and Assessment of Metabolic Transporters in Aspergillus oryzae: A Representative Case Study.

    PubMed

    Raethong, Nachon; Wong-Ekkabut, Jirasak; Laoteng, Kobkul; Vongsangnak, Wanwipa

    2016-01-01

    Aspergillus oryzae is widely used for the industrial production of enzymes. In A. oryzae metabolism, transporters appear to play crucial roles in controlling the flux of molecules for energy generation, nutrients delivery, and waste elimination in the cell. While the A. oryzae genome sequence is available, transporter annotation remains limited and thus the connectivity of metabolic networks is incomplete. In this study, we developed a metabolic annotation strategy to understand the relationship between the sequence, structure, and function for annotation of A. oryzae metabolic transporters. Sequence-based analysis with manual curation showed that 58 genes of 12,096 total genes in the A. oryzae genome encoded metabolic transporters. Under consensus integrative databases, 55 unambiguous metabolic transporter genes were distributed into channels and pores (7 genes), electrochemical potential-driven transporters (33 genes), and primary active transporters (15 genes). To reveal the transporter functional role, a combination of homology modeling and molecular dynamics simulation was implemented to assess the relationship between sequence to structure and structure to function. As in the energy metabolism of A. oryzae, the H(+)-ATPase encoded by the AO090005000842 gene was selected as a representative case study of multilevel linkage annotation. Our developed strategy can be used for enhancing metabolic network reconstruction.

  8. Genome-wide identification of lineage-specific genes in Arabidopsis, Oryza and Populus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaohan; Jawdy, Sara; Tschaplinski, Timothy J

    2009-01-01

    Protein sequences were compared among Arabidopsis, Oryza and Populus to identify differential gene (DG) sets that are in one but not the other two genomes. The DG sets were screened against a plant transcript database, the NR protein database and six newly-sequenced genomes (Carica, Glycine, Medicago, Sorghum, Vitis and Zea) to identify a set of species-specific genes (SS). Gene expression, protein motif and intron number were examined. 192, 641 and 109 SS genes were identified in Arabidopsis, Oryza and Populus, respectively. Some SS genes were preferentially expressed in flowers, roots, xylem and cambium or up-regulated by stress. Six conserved motifsmore » in Arabidopsis and Oryza SS proteins were found in other distant lineages. The SS gene sets were enriched with intronless genes. The results reflect functional and/or anatomical differences between monocots and eudicots or between herbaceous and woody plants. The Populus-specific genes are candidates for carbon sequestration and biofuel research.« less

  9. Active-site-directed inactivation of Aspergillus oryzae beta-galactosidase with beta-D-galactopyranosylmethyl-p-nitrophenyltriazene.

    PubMed

    Mega, T; Nishijima, T; Ikenaka, T

    1990-04-01

    beta-D-Galactopyranosylmethyl-p-nitrophenyltriazene (beta-GalMNT), a specific inhibitor of beta-galactosidase, was isolated as crystals by HPLC and its chemical and physicochemical characteristics were examined. Aspergillus oryzae beta-galactosidase was inactivated by the compound. We studied the inhibition mechanism in detail. The inhibitor was hydrolyzed by the enzyme to p-nitroaniline and an active intermediate (beta-galactopyranosylmethyl carbonium or beta-galactopyranosylmethyldiazonium), which inactivated the enzyme. The efficiency of inactivation of the enzyme (the ratio of moles of inactivated enzyme to moles of beta-GalMNT hydrolyzed by the enzyme) was 3%; the efficiency of Escherichia coli beta-galactosidase was 49%. In spite of the low efficiency, the rate of inactivation of A. oryzae enzyme was not very different from that of the E. coli enzyme, because the former hydrolyzed beta-GalMNT faster than the latter did. A. oryzae beta-galactosidase was also inactivated by p-chlorophenyl, p-tolyl, and m-nitrophenyl derivatives of beta-galactopyranosylmethyltriazene. However, E. coli beta-galactosidase was not inactivated by these triazene derivatives. The results showed that the inactivation of A. oryzae and E. coli beta-galactosidases by beta-GalMNT was an enzyme-activated and active-site-directed irreversible inactivation. The possibility of inactivation by intermediates produced nonenzymatically was ruled out for E. coli, but not for the A. oryzae enzyme.

  10. Genomics of Aspergillus oryzae: Learning from the History of Koji Mold and Exploration of Its Future

    PubMed Central

    Machida, Masayuki; Yamada, Osamu; Gomi, Katsuya

    2008-01-01

    At a time when the notion of microorganisms did not exist, our ancestors empirically established methods for the production of various fermentation foods: miso (bean curd seasoning) and shoyu (soy sauce), both of which have been widely used and are essential for Japanese cooking, and sake, a magical alcoholic drink consumed at a variety of ritual occasions, are typical examples. A filamentous fungus, Aspergillus oryzae, is the key organism in the production of all these traditional foods, and its solid-state cultivation (SSC) has been confirmed to be the secret for the high productivity of secretory hydrolases vital for the fermentation process. Indeed, our genome comparison and transcriptome analysis uncovered mechanisms for effective degradation of raw materials in SSC: the extracellular hydrolase genes that have been found only in the A. oryzae genome but not in A. fumigatus are highly induced during SSC but not in liquid cultivation. Also, the temperature reduction process empirically adopted in the traditional soy-sauce fermentation processes has been found to be important to keep strong expression of the A. oryzae-specific extracellular hydrolases. One of the prominent potentials of A. oryzae is that it has been successfully applied to effective degradation of biodegradable plastic. Both cutinase, responsible for the degradation of plastic, and hydrophobin, which recruits cutinase on the hydrophobic surface to enhance degradation, have been discovered in A. oryzae. Genomic analysis in concert with traditional knowledge and technology will continue to be powerful tools in the future exploration of A. oryzae. PMID:18820080

  11. Characterization of field isolates of Magnaporthe oryzae with mating type, DNA fingerprinting, and pathogenicity assays

    USDA-ARS?s Scientific Manuscript database

    Due to the harmful nature of the rice blast fungus, Magnaporthe oryzae, it is beneficial to characterize field isolates to help aid in the deployment of resistance (R) genes in rice. In the present study, 190 field isolates of M. oryzae, collected from rice fields of Yunnan province in China, were a...

  12. Development of a genome editing technique using the CRISPR/Cas9 system in the industrial filamentous fungus Aspergillus oryzae.

    PubMed

    Katayama, Takuya; Tanaka, Yuki; Okabe, Tomoya; Nakamura, Hidetoshi; Fujii, Wataru; Kitamoto, Katsuhiko; Maruyama, Jun-Ichi

    2016-04-01

    To develop a genome editing method using the CRISPR/Cas9 system in Aspergillus oryzae, the industrial filamentous fungus used in Japanese traditional fermentation and for the production of enzymes and heterologous proteins. To develop the CRISPR/Cas9 system as a genome editing technique for A. oryzae, we constructed plasmids expressing the gene encoding Cas9 nuclease and single guide RNAs for the mutagenesis of target genes. We introduced these into an A. oryzae strain and obtained transformants containing mutations within each target gene that exhibited expected phenotypes. The mutational rates ranged from 10 to 20 %, and 1 bp deletions or insertions were the most commonly induced mutations. We developed a functional and versatile genome editing method using the CRISPR/Cas9 system in A. oryzae. This technique will contribute to the use of efficient targeted mutagenesis in many A. oryzae industrial strains.

  13. The rice immune receptor XA21 recognizes a tyrosine-sulfated protein from a Gram-negative bacterium.

    PubMed

    Pruitt, Rory N; Schwessinger, Benjamin; Joe, Anna; Thomas, Nicholas; Liu, Furong; Albert, Markus; Robinson, Michelle R; Chan, Leanne Jade G; Luu, Dee Dee; Chen, Huamin; Bahar, Ofir; Daudi, Arsalan; De Vleesschauwer, David; Caddell, Daniel; Zhang, Weiguo; Zhao, Xiuxiang; Li, Xiang; Heazlewood, Joshua L; Ruan, Deling; Majumder, Dipali; Chern, Mawsheng; Kalbacher, Hubert; Midha, Samriti; Patil, Prabhu B; Sonti, Ramesh V; Petzold, Christopher J; Liu, Chang C; Brodbelt, Jennifer S; Felix, Georg; Ronald, Pamela C

    2015-07-01

    Surveillance of the extracellular environment by immune receptors is of central importance to eukaryotic survival. The rice receptor kinase XA21, which confers robust resistance to most strains of the Gram-negative bacterium Xanthomonas oryzae pv. oryzae (Xoo), is representative of a large class of cell surface immune receptors in plants and animals. We report the identification of a previously undescribed Xoo protein, called RaxX, which is required for activation of XA21-mediated immunity. Xoo strains that lack RaxX, or carry mutations in the single RaxX tyrosine residue (Y41), are able to evade XA21-mediated immunity. Y41 of RaxX is sulfated by the prokaryotic tyrosine sulfotransferase RaxST. Sulfated, but not nonsulfated, RaxX triggers hallmarks of the plant immune response in an XA21-dependent manner. A sulfated, 21-amino acid synthetic RaxX peptide (RaxX21-sY) is sufficient for this activity. Xoo field isolates that overcome XA21-mediated immunity encode an alternate raxX allele, suggesting that coevolutionary interactions between host and pathogen contribute to RaxX diversification. RaxX is highly conserved in many plant pathogenic Xanthomonas species. The new insights gained from the discovery and characterization of the sulfated protein, RaxX, can be applied to the development of resistant crop varieties and therapeutic reagents that have the potential to block microbial infection of both plants and animals.

  14. The rice immune receptor XA21 recognizes a tyrosine-sulfated protein from a Gram-negative bacterium

    PubMed Central

    Pruitt, Rory N.; Schwessinger, Benjamin; Joe, Anna; Thomas, Nicholas; Liu, Furong; Albert, Markus; Robinson, Michelle R.; Chan, Leanne Jade G.; Luu, Dee Dee; Chen, Huamin; Bahar, Ofir; Daudi, Arsalan; De Vleesschauwer, David; Caddell, Daniel; Zhang, Weiguo; Zhao, Xiuxiang; Li, Xiang; Heazlewood, Joshua L.; Ruan, Deling; Majumder, Dipali; Chern, Mawsheng; Kalbacher, Hubert; Midha, Samriti; Patil, Prabhu B.; Sonti, Ramesh V.; Petzold, Christopher J.; Liu, Chang C.; Brodbelt, Jennifer S.; Felix, Georg; Ronald, Pamela C.

    2015-01-01

    Surveillance of the extracellular environment by immune receptors is of central importance to eukaryotic survival. The rice receptor kinase XA21, which confers robust resistance to most strains of the Gram-negative bacterium Xanthomonas oryzae pv. oryzae (Xoo), is representative of a large class of cell surface immune receptors in plants and animals. We report the identification of a previously undescribed Xoo protein, called RaxX, which is required for activation of XA21-mediated immunity. Xoo strains that lack RaxX, or carry mutations in the single RaxX tyrosine residue (Y41), are able to evade XA21-mediated immunity. Y41 of RaxX is sulfated by the prokaryotic tyrosine sulfotransferase RaxST. Sulfated, but not nonsulfated, RaxX triggers hallmarks of the plant immune response in an XA21-dependent manner. A sulfated, 21–amino acid synthetic RaxX peptide (RaxX21-sY) is sufficient for this activity. Xoo field isolates that overcome XA21-mediated immunity encode an alternate raxX allele, suggesting that coevolutionary interactions between host and pathogen contribute to RaxX diversification. RaxX is highly conserved in many plant pathogenic Xanthomonas species. The new insights gained from the discovery and characterization of the sulfated protein, RaxX, can be applied to the development of resistant crop varieties and therapeutic reagents that have the potential to block microbial infection of both plants and animals. PMID:26601222

  15. The Production of Biodiesel from Cottonseed Oil Using Rhizopus oryzae Whole Cell Biocatalysts

    NASA Astrophysics Data System (ADS)

    Athalye, Sneha Kishor

    Biodiesel is an environmentally friendly alternative to fossil fuels which have become increasingly expensive in recent times. An alternate approach to alkaline biodiesel production is needed as catalyst miscibility with the glycerol by-product, generation of large amounts of waste water, and saponification of the feedstock are major disadvantages associated with the process. Lipases are water soluble enzymes which act as catalysts in many lipid based reactions. Reuse of lipases can significantly reduce cost of enzymatic biodiesel production; however retention of lipolytic activity still remains a challenge. Use of microbial cells immobilized on various surfaces like sponge, foam and plastics as biocatalysts instead of extracted enzyme could help overcome this problem. A novel, rigid biomass support with high surface area made from recyclable polyethylene (Bioblok(TM)) was used in this study. Several fungal and bacterial species have been reported to possess appreciable levels of lipase activity. The biomass production and immobilization as well as lipase activity of three different species; Candida rugosa (ATCC #38772), Aspergillus oryzae (ATCC #58299), and Rhizopus oryzae (ATTC #34612) were tested. C. rugosa did not attach well to the support particles while A.oryzae had lower biomass accumulation of 6.1 g (dry cell wt)/L compared to 11.8 g (dry cell wt)/L for R.oryzae. Hence Rhizopus oryzae, fungal specie with cell surface bound lipase was selected for the current study. The study investigated the influence of media composition and growth time of the R.oryzae whole cell biocatalysts, immobilized on the BSPs, for FAME production from cottonseed oil. R.oryzae BSPs grown in basal media supplemented with 1% (w/v) of glucose or oil or both for 48 h, 72 h or 90 h were used in a 36 h transesterification reaction with cottonseed oil and methanol. BSPs grown in both glucose and oil supplemented medium for 72 h had the highest conversion of 22.4% (wt/wt) and a biomass

  16. Structural analysis and involvement in plant innate immunity of Xanthomonas axonopodis pv. citri lipopolysaccharide.

    PubMed

    Casabuono, Adriana; Petrocelli, Silvana; Ottado, Jorgelina; Orellano, Elena G; Couto, Alicia S

    2011-07-22

    Xanthomonas axonopodis pv. citri (Xac) causes citrus canker, provoking defoliation and premature fruit drop with concomitant economical damage. In plant pathogenic bacteria, lipopolysaccharides are important virulence factors, and they are being increasingly recognized as major pathogen-associated molecular patterns for plants. In general, three domains are recognized in a lipopolysaccharide: the hydrophobic lipid A, the hydrophilic O-antigen polysaccharide, and the core oligosaccharide, connecting lipid A and O-antigen. In this work, we have determined the structure of purified lipopolysaccharides obtained from Xanthomonas axonopodis pv. citri wild type and a mutant of the O-antigen ABC transporter encoded by the wzt gene. High pH anion exchange chromatography and matrix-assisted laser desorption/ionization mass spectrum analysis were performed, enabling determination of the structure not only of the released oligosaccharides and lipid A moieties but also the intact lipopolysaccharides. The results demonstrate that Xac wild type and Xacwzt LPSs are composed mainly of a penta- or tetra-acylated diglucosamine backbone attached to either two pyrophosphorylethanolamine groups or to one pyrophosphorylethanolamine group and one phosphorylethanolamine group. The core region consists of a branched oligosaccharide formed by Kdo₂Hex₆GalA₃Fuc3NAcRha₄ and two phosphate groups. As expected, the presence of a rhamnose homo-oligosaccharide as O-antigen was determined only in the Xac wild type lipopolysaccharide. In addition, we have examined how lipopolysaccharides from Xac function in the pathogenesis process. We analyzed the response of the different lipopolysaccharides during the stomata aperture closure cycle, the callose deposition, the expression of defense-related genes, and reactive oxygen species production in citrus leaves, suggesting a functional role of the O-antigen from Xac lipopolysaccharides in the basal response.

  17. Draft genome sequence for virulent and avirulent strains of Xanthomonas arboricola isolated from Prunus spp. in Spain.

    PubMed

    Garita-Cambronero, Jerson; Palacio-Bielsa, Ana; López, María M; Cubero, Jaime

    2016-01-01

    Xanthomonas arboricola is a species in genus Xanthomonas which is mainly comprised of plant pathogens. Among the members of this taxon, X. arboricola pv. pruni, the causal agent of bacterial spot disease of stone fruits and almond, is distributed worldwide although it is considered a quarantine pathogen in the European Union. Herein, we report the draft genome sequence, the classification, the annotation and the sequence analyses of a virulent strain, IVIA 2626.1, and an avirulent strain, CITA 44, of X. arboricola associated with Prunus spp. The draft genome sequence of IVIA 2626.1 consists of 5,027,671 bp, 4,720 protein coding genes and 50 RNA encoding genes. The draft genome sequence of strain CITA 44 consists of 4,760,482 bp, 4,250 protein coding genes and 56 RNA coding genes. Initial comparative analyses reveals differences in the presence of structural and regulatory components of the type IV pilus, the type III secretion system, the type III effectors as well as variations in the number of the type IV secretion systems. The genome sequence data for these strains will facilitate the development of molecular diagnostics protocols that differentiate virulent and avirulent strains. In addition, comparative genome analysis will provide insights into the plant-pathogen interaction during the bacterial spot disease process.

  18. Robustness and Strategies of Adaptation among Farmer Varieties of African Rice (Oryza glaberrima) and Asian Rice (Oryza sativa) across West Africa

    PubMed Central

    Maat, Harro; Richards, Paul; Struik, Paul C.

    2013-01-01

    This study offers evidence of the robustness of farmer rice varieties (Oryza glaberrima and O. sativa) in West Africa. Our experiments in five West African countries showed that farmer varieties were tolerant of sub-optimal conditions, but employed a range of strategies to cope with stress. Varieties belonging to the species Oryza glaberrima – solely the product of farmer agency – were the most successful in adapting to a range of adverse conditions. Some of the farmer selections from within the indica and japonica subspecies of O. sativa also performed well in a range of conditions, but other farmer selections from within these two subspecies were mainly limited to more specific niches. The results contradict the rather common belief that farmer varieties are only of local value. Farmer varieties should be considered by breeding programmes and used (alongside improved varieties) in dissemination projects for rural food security. PMID:23536754

  19. Robustness and strategies of adaptation among farmer varieties of African Rice (Oryza glaberrima) and Asian Rice (Oryza sativa) across West Africa.

    PubMed

    Mokuwa, Alfred; Nuijten, Edwin; Okry, Florent; Teeken, Béla; Maat, Harro; Richards, Paul; Struik, Paul C

    2013-01-01

    This study offers evidence of the robustness of farmer rice varieties (Oryza glaberrima and O. sativa) in West Africa. Our experiments in five West African countries showed that farmer varieties were tolerant of sub-optimal conditions, but employed a range of strategies to cope with stress. Varieties belonging to the species Oryza glaberrima - solely the product of farmer agency - were the most successful in adapting to a range of adverse conditions. Some of the farmer selections from within the indica and japonica subspecies of O. sativa also performed well in a range of conditions, but other farmer selections from within these two subspecies were mainly limited to more specific niches. The results contradict the rather common belief that farmer varieties are only of local value. Farmer varieties should be considered by breeding programmes and used (alongside improved varieties) in dissemination projects for rural food security.

  20. Transcriptome Analysis of Early Responsive Genes in Rice during Magnaporthe oryzae Infection.

    PubMed

    Wang, Yiming; Kwon, Soon Jae; Wu, Jingni; Choi, Jaeyoung; Lee, Yong-Hwan; Agrawal, Ganesh Kumar; Tamogami, Shigeru; Rakwal, Randeep; Park, Sang-Ryeol; Kim, Beom-Gi; Jung, Ki-Hong; Kang, Kyu Young; Kim, Sang Gon; Kim, Sun Tae

    2014-12-01

    Rice blast disease caused by Magnaporthe oryzae is one of the most serious diseases of cultivated rice (Oryza sativa L.) in most rice-growing regions of the world. In order to investigate early response genes in rice, we utilized the transcriptome analysis approach using a 300 K tilling microarray to rice leaves infected with compatible and incompatible M. oryzae strains. Prior to the microarray experiment, total RNA was validated by measuring the differential expression of rice defense-related marker genes (chitinase 2, barwin, PBZ1, and PR-10) by RT-PCR, and phytoalexins (sakuranetin and momilactone A) with HPLC. Microarray analysis revealed that 231 genes were up-regulated (>2 fold change, p < 0.05) in the incompatible interaction compared to the compatible one. Highly expressed genes were functionally characterized into metabolic processes and oxidation-reduction categories. The oxidative stress response was induced in both early and later infection stages. Biotic stress overview from MapMan analysis revealed that the phytohormone ethylene as well as signaling molecules jasmonic acid and salicylic acid is important for defense gene regulation. WRKY and Myb transcription factors were also involved in signal transduction processes. Additionally, receptor-like kinases were more likely associated with the defense response, and their expression patterns were validated by RT-PCR. Our results suggest that candidate genes, including receptor-like protein kinases, may play a key role in disease resistance against M. oryzae attack.

  1. Local differentiation amidst extensive allele sharing in Oryza nivara and O. rufipogon

    PubMed Central

    Banaticla-Hilario, Maria Celeste N; van den Berg, Ronald G; Hamilton, Nigel Ruaraidh Sackville; McNally, Kenneth L

    2013-01-01

    Genetic variation patterns within and between species may change along geographic gradients and at different spatial scales. This was revealed by microsatellite data at 29 loci obtained from 119 accessions of three Oryza series Sativae species in Asia Pacific: Oryza nivara Sharma and Shastry, O. rufipogon Griff., and O. meridionalis Ng. Genetic similarities between O. nivara and O. rufipogon across their distribution are evident in the clustering and ordination results and in the large proportion of shared alleles between these taxa. However, local-level species separation is recognized by Bayesian clustering and neighbor-joining analyses. At the regional scale, the two species seem more differentiated in South Asia than in Southeast Asia as revealed by FST analysis. The presence of strong gene flow barriers in smaller spatial units is also suggested in the analysis of molecular variance (AMOVA) results where 64% of the genetic variation is contained among populations (as compared to 26% within populations and 10% among species). Oryza nivara (HE = 0.67) exhibits slightly lower diversity and greater population differentiation than O. rufipogon (HE = 0.70). Bayesian inference identified four, and at a finer structural level eight, genetically distinct population groups that correspond to geographic populations within the three taxa. Oryza meridionalis and the Nepalese O. nivara seemed diverged from all the population groups of the series, whereas the Australasian O. rufipogon appeared distinct from the rest of the species. PMID:24101993

  2. Establishment of a new method to quantitatively evaluate hyphal fusion ability in Aspergillus oryzae.

    PubMed

    Tsukasaki, Wakako; Maruyama, Jun-Ichi; Kitamoto, Katsuhiko

    2014-01-01

    Hyphal fusion is involved in the formation of an interconnected colony in filamentous fungi, and it is the first process in sexual/parasexual reproduction. However, it was difficult to evaluate hyphal fusion efficiency due to the low frequency in Aspergillus oryzae in spite of its industrial significance. Here, we established a method to quantitatively evaluate the hyphal fusion ability of A. oryzae with mixed culture of two different auxotrophic strains, where the ratio of heterokaryotic conidia growing without the auxotrophic requirements reflects the hyphal fusion efficiency. By employing this method, it was demonstrated that AoSO and AoFus3 are required for hyphal fusion, and that hyphal fusion efficiency of A. oryzae was increased by depleting nitrogen source, including large amounts of carbon source, and adjusting pH to 7.0.

  3. Targeted gene disruption in Koji mold Aspergillus oryzae.

    PubMed

    Maruyama, Jun-Ichi; Kitamoto, Katsuhiko

    2011-01-01

    Filamentous fungi have received attentions as hosts for heterologous protein production because of their high secretion capability and eukaryotic post-translational modifications. One of the safest hosts for heterologous protein production is Koji mold Aspergillus oryzae since it has been used in the production of Japanese fermented foods for over 1,000 years. The production levels of proteins from higher eukaryotes are much lower than those of homologous (fungal) proteins. Bottlenecks in the heterologous protein production are suggested to be proteolytic degradation of the produced protein in the medium and the secretory pathway. For construction of excellent host strains, many genes causing the bottlenecks should be disrupted rapidly and efficiently. We developed a marker recycling system with the highly efficient gene-targeting background in A. oryzae. By employing this technique, we performed multiple gene disruption of the ten protease genes. The decuple protease gene disruptant showed fourfold production level of a heterologous protein compared with the wild-type strain.

  4. Transcriptome and Proteome Expression Analysis of the Metabolism of Amino Acids by the Fungus Aspergillus oryzae in Fermented Soy Sauce

    PubMed Central

    Zhao, Guozhong; Yao, Yunping; Wang, Chunling; Tian, Fengwei; Liu, Xiaoming; Hou, Lihua; Yang, Zhen; Zhao, Jianxin; Zhang, Hao

    2015-01-01

    Amino acids comprise the majority of the flavor compounds in soy sauce. A portion of these amino acids are formed from the biosynthesis and metabolism of the fungus Aspergillus oryzae; however, the metabolic pathways leading to the formation of these amino acids in A. oryzae remain largely unknown. We sequenced the transcriptomes of A. oryzae 100-8 and A. oryzae 3.042 under similar soy sauce fermentation conditions. 2D gel electrophoresis was also used to find some differences in protein expression. We found that many amino acid hydrolases (endopeptidases, aminopeptidases, and X-pro-dipeptidyl aminopeptidase) were expressed at much higher levels (mostly greater than double) in A. oryzae 100-8 than in A. oryzae 3.042. Our results indicated that glutamate dehydrogenase may activate the metabolism of amino acids. We also found that the expression levels of some genes changed simultaneously in the metabolic pathways of tyrosine and leucine and that these conserved genes may modulate the function of the metabolic pathway. Such variation in the metabolic pathways of amino acids is important as it can significantly alter the flavor of fermented soy sauce. PMID:25945335

  5. Transcriptome and Proteome Expression Analysis of the Metabolism of Amino Acids by the Fungus Aspergillus oryzae in Fermented Soy Sauce.

    PubMed

    Zhao, Guozhong; Yao, Yunping; Wang, Chunling; Tian, Fengwei; Liu, Xiaoming; Hou, Lihua; Yang, Zhen; Zhao, Jianxin; Zhang, Hao; Cao, Xiaohong

    2015-01-01

    Amino acids comprise the majority of the flavor compounds in soy sauce. A portion of these amino acids are formed from the biosynthesis and metabolism of the fungus Aspergillus oryzae; however, the metabolic pathways leading to the formation of these amino acids in A. oryzae remain largely unknown. We sequenced the transcriptomes of A. oryzae 100-8 and A. oryzae 3.042 under similar soy sauce fermentation conditions. 2D gel electrophoresis was also used to find some differences in protein expression. We found that many amino acid hydrolases (endopeptidases, aminopeptidases, and X-pro-dipeptidyl aminopeptidase) were expressed at much higher levels (mostly greater than double) in A. oryzae 100-8 than in A. oryzae 3.042. Our results indicated that glutamate dehydrogenase may activate the metabolism of amino acids. We also found that the expression levels of some genes changed simultaneously in the metabolic pathways of tyrosine and leucine and that these conserved genes may modulate the function of the metabolic pathway. Such variation in the metabolic pathways of amino acids is important as it can significantly alter the flavor of fermented soy sauce.

  6. Mannitol and Mannitol Dehydrogenases in Conidia of Aspergillus oryzae

    PubMed Central

    Horikoshi, Koki; Iida, Shigeji; Ikeda, Yonosuke

    1965-01-01

    Horikoshi, Koki (The Institute of Physical and Chemical Research, Tokyo, Japan), Shigeji Iida, and Yonosuke Ikeda. Mannitol and mannitol dehydrogenases in conidia of Aspergillus oryzae. J. Bacteriol. 89:326–330. 1965.—A sugar alcohol was isolated from the conidia of Aspergillus oryzae and identified as d-mannitol. Two types of d-mannitol dehydrogenases, nicotinamide adenine dinucleotide phosphate-linked and nicotinamide adenine dinucleotide-linked, were found in the conidia. Substrate specificities, pH optima, Michaelis-Menton constants, and the effects of inhibitors were studied. d-Mannitol was converted to fructose by the dehydrogenases. Synthesis of d-mannitol dehydrogenases was not observed during germination; the content of d-mannitol decreased at an early stage of germination. It was assumed, therefore, that d-mannitol might be used as the source of endogenous respiration and provide energy for the germination. PMID:14255698

  7. Morphological and molecular characterization of Magnaporthe oryzae (fungus) from infected rice leaf samples

    NASA Astrophysics Data System (ADS)

    Muni, Nurulhidayah Mat; Nadarajah, Kalaivani

    2014-09-01

    Magnaporthe oryzae is a plant-pathogenic fungus that causes a serious disease affecting rice called rice blast. Outbreaks of rice blast have been a threat to the global production of rice. This fungal disease is estimated to cause production losses of US55 million each year in South and Southeast Asia. It has been used as a primary model for elucidating various aspects of the host-pathogen interaction with its host. We have isolated five isolates of Magnaporthe oryzae from diseased leaf samples obtained from the field at Kompleks Latihan MADA, Kedah, Malaysia. We have identified the isolates using morphological and microscopic studies on the fungal spores and the lesions on the diseased leaves. Amplification of the internal transcribed spacer (ITS) was carried out with universal primers ITS1 and ITS4. The sequence of each isolates showed at least 99% nucleotide identity with the corresponding sequence in GenBank for Magnaporthe oryzae.

  8. Small protein-mediated quorum sensing in a gram-negative bacterium: novel targets for control of infectious disease.

    PubMed

    Ronald, Pamela C

    2011-12-01

    Control of Gram-negative bacterial infections of plants and animals remains a major challenge because conventional approaches are often not sufficient to eradicate these infections. One major reason for their persistence seems to be the capability of the bacteria to grow within biofilms that protect them from adverse environmental factors. Quorum sensing (QS) plays an important role in the formation of biofilms. In QS, small molecules serve as signals to recognize bacterial cell population size, leading to changes in expression of specific genes when a signal has accumulated to some threshold concentration. The small protein Ax21 (Activator of XA21-mediated immunity), serves as a QS factor that regulates biofilm formation and virulence in the Gram-negative bacterium, Xanthomonas oryzae pv. oryzae. Knowledge of small protein-mediated QS in Gram-negative bacteria can be used to develop new methods to control persistent Gram-negative infections. © Discovery Medicine

  9. Jasmonate induction of the monoterpene linalool confers resistance to rice bacterial blight and its biosynthesis is regulated by JAZ protein in rice.

    PubMed

    Taniguchi, Shiduku; Hosokawa-Shinonaga, Yumi; Tamaoki, Daisuke; Yamada, Shoko; Akimitsu, Kazuya; Gomi, Kenji

    2014-02-01

    Jasmonic acid (JA) is involved in the regulation of host immunity in plants. Recently, we demonstrated that JA signalling has an important role in resistance to rice bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) in rice. Here, we report that many volatile compounds accumulate in response to exogenous application of JA, including the monoterpene linalool. Expression of linalool synthase was up-regulated by JA. Vapour treatment with linalool induced resistance to Xoo, and transgenic rice plants overexpressing linalool synthase were more resistance to Xoo, presumably due to the up-regulation of defence-related genes in the absence of any treatment. JA-induced accumulation of linalool was regulated by OsJAZ8, a rice jasmonate ZIM-domain protein involving the JA signalling pathway at the transcriptional level, suggesting that linalool plays an important role in JA-induced resistance to Xoo in rice. © 2013 John Wiley & Sons Ltd.

  10. Pyramiding transgenes for multiple resistance in rice against bacterial blight, yellow stem borer and sheath blight.

    PubMed

    Datta, K; Baisakh, N; Thet, K Maung; Tu, J; Datta, S K

    2002-12-01

    Here we describe the development of transgene-pyramided stable elite rice lines resistant to disease and insect pests by conventional crossing of two transgenic parental lines transformed independently with different genes. The Xa21 gene (resistance to bacterial blight), the Bt fusion gene (for insect resistance) and the chitinase gene (for tolerance of sheath blight) were combined in a single rice line by reciprocal crossing of two transgenic homozygous IR72 lines. F4 plant lines carrying all the genes of interest stably were identified using molecular methods. The identified lines, when exposed to infection caused by Xanthomonas oryzae pv oryzae, showed resistance to bacterial blight. Neonate larval mortality rates of yellow stem borer ( Scirpophaga incertulas) in an insect bioassay of the same identified lines were 100%. The identified line pyramided with different genes to protect against yield loss showed high tolerance of sheath blight disease caused by Rhizoctonia solani.

  11. Multiple Rice MicroRNAs Are Involved in Immunity against the Blast Fungus Magnaporthe oryzae1[C][W][OPEN

    PubMed Central

    Li, Yan; Lu, Yuan-Gen; Shi, Yi; Wu, Liang; Xu, Yong-Ju; Huang, Fu; Guo, Xiao-Yi; Zhang, Yong; Fan, Jing; Zhao, Ji-Qun; Zhang, Hong-Yu; Xu, Pei-Zhou; Zhou, Jian-Min; Wu, Xian-Jun; Wang, Ping-Rong; Wang, Wen-Ming

    2014-01-01

    MicroRNAs (miRNAs) are indispensable regulators for development and defense in eukaryotes. However, the miRNA species have not been explored for rice (Oryza sativa) immunity against the blast fungus Magnaporthe oryzae, the most devastating fungal pathogen in rice production worldwide. Here, by deep sequencing small RNA libraries from susceptible and resistant lines in normal conditions and upon M. oryzae infection, we identified a group of known rice miRNAs that were differentially expressed upon M. oryzae infection. They were further classified into three classes based on their expression patterns in the susceptible japonica line Lijiangxin Tuan Hegu and in the resistant line International Rice Blast Line Pyricularia-Kanto51-m-Tsuyuake that contains a single resistance gene locus, Pyricularia-Kanto 51-m (Pikm), within the Lijiangxin Tuan Hegu background. RNA-blot assay of nine of them confirmed sequencing results. Real-time reverse transcription-polymerase chain reaction assay showed that the expression of some target genes was negatively correlated with the expression of miRNAs. Moreover, transgenic rice plants overexpressing miR160a and miR398b displayed enhanced resistance to M. oryzae, as demonstrated by decreased fungal growth, increased hydrogen peroxide accumulation at the infection site, and up-regulated expression of defense-related genes. Taken together, our data indicate that miRNAs are involved in rice immunity against M. oryzae and that overexpression of miR160a or miR398b can enhance rice resistance to the disease. PMID:24335508

  12. Structural Analysis and Involvement in Plant Innate Immunity of Xanthomonas axonopodis pv. citri Lipopolysaccharide*

    PubMed Central

    Casabuono, Adriana; Petrocelli, Silvana; Ottado, Jorgelina; Orellano, Elena G.; Couto, Alicia S.

    2011-01-01

    Xanthomonas axonopodis pv. citri (Xac) causes citrus canker, provoking defoliation and premature fruit drop with concomitant economical damage. In plant pathogenic bacteria, lipopolysaccharides are important virulence factors, and they are being increasingly recognized as major pathogen-associated molecular patterns for plants. In general, three domains are recognized in a lipopolysaccharide: the hydrophobic lipid A, the hydrophilic O-antigen polysaccharide, and the core oligosaccharide, connecting lipid A and O-antigen. In this work, we have determined the structure of purified lipopolysaccharides obtained from Xanthomonas axonopodis pv. citri wild type and a mutant of the O-antigen ABC transporter encoded by the wzt gene. High pH anion exchange chromatography and matrix-assisted laser desorption/ionization mass spectrum analysis were performed, enabling determination of the structure not only of the released oligosaccharides and lipid A moieties but also the intact lipopolysaccharides. The results demonstrate that Xac wild type and Xacwzt LPSs are composed mainly of a penta- or tetra-acylated diglucosamine backbone attached to either two pyrophosphorylethanolamine groups or to one pyrophosphorylethanolamine group and one phosphorylethanolamine group. The core region consists of a branched oligosaccharide formed by Kdo2Hex6GalA3Fuc3NAcRha4 and two phosphate groups. As expected, the presence of a rhamnose homo-oligosaccharide as O-antigen was determined only in the Xac wild type lipopolysaccharide. In addition, we have examined how lipopolysaccharides from Xac function in the pathogenesis process. We analyzed the response of the different lipopolysaccharides during the stomata aperture closure cycle, the callose deposition, the expression of defense-related genes, and reactive oxygen species production in citrus leaves, suggesting a functional role of the O-antigen from Xac lipopolysaccharides in the basal response. PMID:21596742

  13. Biosorption of Cr(VI) in Aqueous Solution using Microorganisms: Comparison of the Use of Rhizopus oryzae, Bacillus firmus, and Trichoderma viride

    NASA Astrophysics Data System (ADS)

    Safitri, Anna; Mahardini, Putri; Prasetyawan, Sasangka; Roosdiana, Anna

    2018-01-01

    In this work, the study of biosorption of Cr(VI) from aqueous solution was conducted using Rhizopus oryzae, Bacillus firmus, and Trichoderma viride as microorganisms that can absorb Cr(VI). The research is focused on determination of optimum conditions including pH, the number of R. oryzae, B. firmus, and T. viride (inoculums), and initial concentrations of Cr(VI) used. Optimum pH was obtained at pH 5, 4.5 and 6, for biosorption of Cr(VI) with R. oryzae, B. firmus, and T. viride, respectively, in the capacity of 45.3%, 24.5%, and 90.3%. The highest amount of Cr(VI) adsorbed for biosorption with R. oryzae, B. firmus, and T. viride, were 55.4%, 18.5%, and 74.5%, respectively, using 6-mL inoculums. The equilibrium concentrations achieved for R. oryzae, B. firmus, and T. viride were 60 mg/mL, 40 mg/mL, and 40 mg/mL, with the amount of Cr(VI) adsorbed were 32.4%, 28.2%, and 89.3%, respectively. The adsorption capacity for R. oryzae, B. firmus, and T. viride were 45.3 mg/1×106 colonies, 36.2 mg/1×106 cells, and 77.8 mg/1×106 colonies, respectively. Overall, the biosorbents effectivity order in the biosorption process of Cr(VI) are T. viride > R. oryzae > B. firmus.

  14. Characterization of Citrus sinensis transcription factors closely associated with the non-host response to Xanthomonas campestris pv. vesicatoria.

    PubMed

    Daurelio, Lucas D; Romero, María S; Petrocelli, Silvana; Merelo, Paz; Cortadi, Adriana A; Talón, Manuel; Tadeo, Francisco R; Orellano, Elena G

    2013-07-01

    Plants, when exposed to certain pathogens, may display a form of genotype-independent resistance, known as non-host response. In this study, the response of Citrus sinensis (sweet orange) leaves to Xanthomonas campestris pv. vesicatoria (Xcv), a pepper and tomato pathogenic bacterium, was analyzed through biochemical assays and cDNA microarray hybridization and compared with Asiatic citrus canker infection caused by Xanthomonas citri subsp. citri. Citrus leaves exposed to the non-host bacterium Xcv showed hypersensitive response (HR) symptoms (cell death), a defense mechanism common in plants but poorly understood in citrus. The HR response was accompanied by differentially expressed genes that are associated with biotic stress and cell death. Moreover, 58 transcription factors (TFs) were differentially regulated by Xcv in citrus leaves, including 26 TFs from the stress-associated families AP2-EREBP, bZip, Myb and WRKY. Remarkably, in silico analysis of the distribution of expressed sequence tags revealed that 10 of the 58 TFs, belonging to C2C2-GATA, C2H2, CCAAT, HSF, NAC and WRKY gene families, were specifically over-represented in citrus stress cDNA libraries. This study identified candidate TF genes for the regulation of key steps during the citrus non-host HR. Furthermore, these TFs might be useful in future strategies of molecular breeding for citrus disease resistance. Copyright © 2013 Elsevier GmbH. All rights reserved.

  15. The oryza map alignment project: the golden path to unlocking the genetic potential of wild rice species.

    PubMed

    Wing, Rod A; Ammiraju, Jetty S S; Luo, Meizhong; Kim, Hyeran; Yu, Yeisoo; Kudrna, Dave; Goicoechea, Jose L; Wang, Wenming; Nelson, Will; Rao, Kiran; Brar, Darshan; Mackill, Dave J; Han, Bin; Soderlund, Cari; Stein, Lincoln; SanMiguel, Phillip; Jackson, Scott

    2005-09-01

    The wild species of the genus Oryza offer enormous potential to make a significant impact on agricultural productivity of the cultivated rice species Oryza sativa and Oryza glaberrima. To unlock the genetic potential of wild rice we have initiated a project entitled the 'Oryza Map Alignment Project' (OMAP) with the ultimate goal of constructing and aligning BAC/STC based physical maps of 11 wild and one cultivated rice species to the International Rice Genome Sequencing Project's finished reference genome--O. sativa ssp. japonica c. v. Nipponbare. The 11 wild rice species comprise nine different genome types and include six diploid genomes (AA, BB, CC, EE, FF and GG) and four tetrapliod genomes (BBCC, CCDD, HHKK and HHJJ) with broad geographical distribution and ecological adaptation. In this paper we describe our strategy to construct robust physical maps of all 12 rice species with an emphasis on the AA diploid O. nivara--thought to be the progenitor of modern cultivated rice.

  16. Analysis of an acyl-CoA binding protein in Aspergillus oryzae that undergoes unconventional secretion.

    PubMed

    Kwon, Hee Su; Kawaguchi, Kouhei; Kikuma, Takashi; Takegawa, Kaoru; Kitamoto, Katsuhiko; Higuchi, Yujiro

    2017-11-04

    Acyl-CoA binding protein (ACBP) plays important roles in the metabolism of lipids in eukaryotic cells. In the industrially important filamentous fungus Aspergillus oryzae, although we have previously demonstrated that the A. oryzae ACBP (AoACBP) localizes to punctate structures and exhibits long-range motility, which is dependent on autophagy-related proteins, the physiological role of AoACBP remains elusive. Here, we describe identification and characterization of another ACBP from A. oryzae; we named this ACBP as AoAcb2 and accordingly renamed AoACBP as AoAcb1. The deduced amino acid sequence of AoAcb2 lacked a signal peptide. Phylogenetic analysis classified AoAcb2 into a clade that was same as the ACBP Acb1 of the model yeast Saccharomyces cerevisiae, but was different from that of AoAcb1. In contrast to punctate localization of AoAcb1, AoAcb2 was found to be dispersedly distributed in the cytoplasm, as was previously observed for the S. cerevisiae Acb1. Since we could not generate an Aoacb2 disruptant, we created an Aoacb2 conditional mutant that exhibited less growth under Aoacb2-repressed condition, suggesting that Aoacb2 is an essential gene for growth. Moreover, we observed that A. oryzae AoAcb2, but not A. oryzae AoAcb1, was secreted under carbon-starved condition, suggesting that AoAcb2 might be secreted via the unconventional protein secretion (UPS) pathway, just like S. cerevisiae Acb1. We also demonstrated that the unconventional secretion of AoAcb2 was dependent on the t-SNARE AoSso1, but was independent of the autophagy-related protein AoAtg1, suggesting that the unconventional secretion of AoAcb2, unlike that of S. cerevisiae Acb1, via the UPS pathway, is not regulated by the autophagy machinery. Thus, the filamentous fungus A. oryzae harbors two types of ACBPs, one of which appears to be essential for growth and undergoes unconventional secretion. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Microarray analysis of the semi-compatible pathogenic response and recovery of leafy spurge inoculated with the Cassava bacterial blight pathogen Xanthomonas axonopodis pv. manihotis

    USDA-ARS?s Scientific Manuscript database

    Infection by Xanthomonas axonopodis pv. manihotis (Xam)of the model perennial range land weed leafy spurge was tested to see if Xam might serve a potential biological control agent for this invasive weed. Although leafy spurge was susceptible to Xam infection, it recovered with 21 days after inocula...

  18. rFTR1 is Required for Pathogenesis, and appears to be an Essential Gene, of Rhizopus oryzae

    USDA-ARS?s Scientific Manuscript database

    BACKGROUND: Rhizopus oryzae is a multinucleated fungus responsible for the majority of cases of mucormycosis. The high affinity iron permease gene (rFTR1) is required for R. oryzae iron transport in iron-limited environments. We sought to disrupt the gene to define its role in virulence. METHODS: ...

  19. CBS domain-containing proteins are Rhizopus oryzae ferrioxamine receptors

    USDA-ARS?s Scientific Manuscript database

    Background: Iron-overload patients treated with deferoxamine are uniquely susceptible to mucormycosis, because Rhizopus spp. can obtain iron from ferrioxamine (deferoxamine + Fe**3+). Previously we have identified two closely related, ferrioxamine-inducible R. oryzae genes (FOB1 and FOB2) in which ...

  20. OsMADS26 Negatively Regulates Resistance to Pathogens and Drought Tolerance in Rice1[OPEN

    PubMed Central

    Khong, Giang Ngan; Richaud, Frédérique; Parizot, Boris; Mai, Chung Duc; Bès, Martine; Bourrié, Isabelle; Meynard, Donaldo; Beeckman, Tom; Selvaraj, Michael Gomez; Manabu, Ishitani; Brugidou, Christophe; Nang Do, Vinh; Guiderdoni, Emmanuel; Morel, Jean-Benoit; Gantet, Pascal

    2015-01-01

    Functional analyses of MADS-box transcription factors in plants have unraveled their role in major developmental programs (e.g. flowering and floral organ identity) as well as stress-related developmental processes, such as abscission, fruit ripening, and senescence. Overexpression of the rice (Oryza sativa) MADS26 gene in rice has revealed a possible function related to stress response. Here, we show that OsMADS26-down-regulated plants exhibit enhanced resistance against two major rice pathogens: Magnaporthe oryzae and Xanthomonas oryzae. Despite this enhanced resistance to biotic stresses, OsMADS26-down-regulated plants also displayed enhanced tolerance to water deficit. These phenotypes were observed in both controlled and field conditions. Interestingly, alteration of OsMADS26 expression does not have a strong impact on plant development. Gene expression profiling revealed that a majority of genes misregulated in overexpresser and down-regulated OsMADS26 lines compared with control plants are associated to biotic or abiotic stress response. Altogether, our data indicate that OsMADS26 acts as an upstream regulator of stress-associated genes and thereby, a hub to modulate the response to various stresses in the rice plant. PMID:26424158

  1. A host basal transcription factor is a key component for infection of rice by TALE-carrying bacteria

    PubMed Central

    Yuan, Meng; Ke, Yinggen; Huang, Renyan; Ma, Ling; Yang, Zeyu; Chu, Zhaohui; Xiao, Jinghua; Li, Xianghua; Wang, Shiping

    2016-01-01

    Transcription activator-like effectors (TALEs) are sequence-specific DNA binding proteins found in a range of plant pathogenic bacteria, where they play important roles in host-pathogen interactions. However, it has been unclear how TALEs, after they have been injected into the host cells, activate transcription of host genes required for infection success. Here, we show that the basal transcription factor IIA gamma subunit TFIIAγ5 from rice is a key component for infection by the TALE-carrying bacterium Xanthomonas oryzae pv. oryzae, the causal agent for bacterial blight. Direct interaction of several TALEs with TFIIAγ5 is required for activation of disease susceptibility genes. Conversely, reduced expression of the TFIIAγ5 host gene limits the induction of susceptibility genes and thus decreases bacterial blight symptoms. Suppression or mutation of TFIIAγ5 can also reduce bacterial streak, another devastating disease of rice caused by TALE-carrying X. oryzae pv. oryzicola. These results have important implications for formulating a widely applicable strategy with which to improve resistance of plants to TALE-carrying pathogens. DOI: http://dx.doi.org/10.7554/eLife.19605.001 PMID:27472897

  2. Protein-enriched pea flour extract protects stored milled rice against the rice weevil, Sitophilus oryzae.

    PubMed

    Pretheep-Kumar, P; Mohan, S; Ramaraju, K

    2004-01-01

    Studies were conducted to evaluate the effect of a protein-enriched pea (Pisum sativum var. Bonneville) flour extract against the rice weevil, Sitophilus oryzae in its repellency, toxicity, effect on fecundity, stability and sensory properties. Milled rice admixed with pea flour extract at 1% concentration significantly repelled S. oryzae. Mortality of S. oryzae was found to increase and fecundity was markedly suppressed, in rice treated with 1% pea flour extract. The toxicity and reproductive effects of the pea protein-enriched rice were found to be stable for a period of 5 months. The sensory characteristics of stored rice when eaten were not affected by the treatment with pea flour extract. This study indicates that the protein-enriched flour extract obtained from the Bonneville pea may be feasible to protect stored milled rice from insect attack.

  3. Agmatine Production by Aspergillus oryzae is Elevated by Low pH During Solid-State Cultivation.

    PubMed

    Akasaka, Naoki; Kato, Saori; Kato, Saya; Hidese, Ryota; Wagu, Yutaka; Sakoda, Hisao; Fujiwara, Shinsuke

    2018-05-25

    Sake (rice wine) produced by multiple parallel fermentation (MPF) involving Aspergillus oryzae (strain RW) and Saccharomyces cerevisiae under solid-state cultivation conditions contained 3.5 mM agmatine, while that produced from enzymatically saccharified rice syrup by S. cerevisiae contained <0.01 mM agmatine. Agmatine was also produced in ethanol-free rice syrup prepared with A. oryzae under solid-state cultivation (3.1 mM) but not under submerged cultivation, demonstrating that A. oryzae in solid-state culture produces agmatine. The effect of cultivation conditions on agmatine production was examined. Agmatine production was boosted at 30°C and reached the highest level (6.3 mM) at pH 5.3. The addition of l-lactic, succinic, and citric acids reduced the initial culture pH to 3.0, 3.5, and 3.2, respectively, resulting in further increase in agmatine accumulation (8.2, 8.7, and 8.3 mM, respectively). Homogenate from a solid-state culture exhibited a maximum l-arginine decarboxylase (ADC) activity (74 pmol min -1 μg -1 ) at pH 3.0 at 30°C; that from a submerged culture exhibited an extremely low activity (<0.3 pmol min -1 μg -1 ) under all conditions tested. These observations indicated that efficient agmatine production in ethanol-free rice syrup is achieved by an unidentified low pH-dependent ADC induced during solid-state cultivation of A. oryzae , even though A. oryzae lacks ADC orthologs and, instead, possesses four ornithine decarboxylases (ODC1-4). Recombinant ODC1 and ODC2 exhibited no ADC activity at acidic pH (pH 4.0>), suggesting that other decarboxylases or an unidentified ADC is involved in agmatine production. IMPORTANCE It has been speculated that, in general, fungi do not synthesize agmatine from l-arginine because they do not possess genes encoding for arginine decarboxylase. Numerous preclinical studies have shown that agmatine exerts pleiotropic effects on various molecular targets, leading to an improved quality of life. In the present study

  4. Isolation of a novel promoter for efficient protein expression by Aspergillus oryzae in solid-state culture.

    PubMed

    Bando, Hiroki; Hisada, Hiromoto; Ishida, Hiroki; Hata, Yoji; Katakura, Yoshio; Kondo, Akihiko

    2011-11-01

    A novel promoter from a hemolysin-like protein encoding the gene, hlyA, was characterized for protein overexpression in Aspergillus oryzae grown in solid-state culture. Using endo-1,4-β-glucanase from A. oryzae (CelA) as the reporter, promoter activity was found to be higher than that of the α-amylase (amyA) and manganese superoxide dismutase (sodM) genes not only in wheat bran solid-state culture but also in liquid culture. Expression of the A. oryzae endoglucanase CelB and two heterologous endoglucanases (TrEglI and TrEglIII from Trichoderma reesei) under the control of the hlyA promoter were also found to be stronger than under the control of the amyA promoter in A. oryzae grown in wheat bran solid-state culture, suggesting that the hlyA promoter may be useful for the overproduction of other proteins as well. In wheat bran solid-state culture, the productivity of the hlyA promoter in terms of protein produced was high when the cultivation temperature was 30°C or 37°C, when the water content was 0.6 or 0.8 ml/g wheat bran, and from 48 to 72 h after inoculation. Because A. oryzae sporulated actively under these conditions and because hemolysin has been reported to play a role in fungal fruiting body formation, high-level expression of hlyA may be related to sporulation.

  5. The rare sugar d-allose acts as a triggering molecule of rice defence via ROS generation

    PubMed Central

    Akimitsu, Kazuya

    2013-01-01

    Only d-allose, among various rare monosaccharides tested, induced resistance to Xanthomonas oryzae pv. oryzae in susceptible rice leaves with defence responses: reactive oxygen species, lesion mimic formation, and PR-protein gene expression. These responses were suppressed by ascorbic acid or diphenylene iodonium. Transgenic rice plants overexpressing OsrbohC, encoding NADPH oxidase, were enhanced in sensitivity to d-allose. d-Allose-mediated defence responses were suppressed by the presence of a hexokinase inhibitor. 6-Deoxy-d-allose, a structural derivative of d-allose unable to be phosphorylated, did not confer resistance. Transgenic rice plants expressing Escherichia coli AlsK encoding d-allose kinase to increase d-allose 6-phosphate synthesis were more sensitive to d-allose, but E. coli AlsI encoding d-allose 6-phosphate isomerase expression to decrease d-allose 6-phosphate reduced sensitivity. A d-glucose 6-phosphate dehydrogenase-defective mutant was also less sensitive, and OsG6PDH1 complementation restored full sensitivity. These results reveal that a monosaccharide, d-allose, induces rice resistance to X. oryzae pv. oryzae by activating NADPH oxidase through the activity of d-glucose 6-phosphate dehydrogenase, initiated by hexokinase-mediated conversion of d-allose to d-allose 6-phosphate, and treatment with d-allose might prove to be useful for reducing disease development in rice. PMID:24014866

  6. The rare sugar D-allose acts as a triggering molecule of rice defence via ROS generation.

    PubMed

    Kano, Akihito; Fukumoto, Takeshi; Ohtani, Kouhei; Yoshihara, Akihide; Ohara, Toshiaki; Tajima, Shigeyuki; Izumori, Ken; Tanaka, Keiji; Ohkouchi, Takeo; Ishida, Yutaka; Nishizawa, Yoko; Ichimura, Kazuya; Tada, Yasuomi; Gomi, Kenji; Akimitsu, Kazuya

    2013-11-01

    Only D-allose, among various rare monosaccharides tested, induced resistance to Xanthomonas oryzae pv. oryzae in susceptible rice leaves with defence responses: reactive oxygen species, lesion mimic formation, and PR-protein gene expression. These responses were suppressed by ascorbic acid or diphenylene iodonium. Transgenic rice plants overexpressing OsrbohC, encoding NADPH oxidase, were enhanced in sensitivity to D-allose. D-Allose-mediated defence responses were suppressed by the presence of a hexokinase inhibitor. 6-Deoxy-D-allose, a structural derivative of D-allose unable to be phosphorylated, did not confer resistance. Transgenic rice plants expressing Escherichia coli AlsK encoding D-allose kinase to increase D-allose 6-phosphate synthesis were more sensitive to D-allose, but E. coli AlsI encoding D-allose 6-phosphate isomerase expression to decrease D-allose 6-phosphate reduced sensitivity. A D-glucose 6-phosphate dehydrogenase-defective mutant was also less sensitive, and OsG6PDH1 complementation restored full sensitivity. These results reveal that a monosaccharide, D-allose, induces rice resistance to X. oryzae pv. oryzae by activating NADPH oxidase through the activity of D-glucose 6-phosphate dehydrogenase, initiated by hexokinase-mediated conversion of D-allose to D-allose 6-phosphate, and treatment with D-allose might prove to be useful for reducing disease development in rice.

  7. The effect of wind on dispersal of splash-borne Xanthomonas citri subsp citri at different heights and distances downwind of canker-infected grapefruit trees

    USDA-ARS?s Scientific Manuscript database

    Xanthomonas citri subsp citri (Xcc), which causes citrus canker, is a major pathogen of grapefruit and other canker-susceptible citrus species and cultivars grown in Florida and elsewhere. It is dispersed by rain splash, and wind promotes the dispersal of the pathogen. The aim of this study was to e...

  8. Fungicide sensitivity in the wild rice pathogen Bipolaris oryzae

    USDA-ARS?s Scientific Manuscript database

    In recent years the occurrence of fungal brown spot, caused by Bipolaris oryzae has increased in cultivated wild rice (Zizania palustris) paddies in spite of the use of fungicides. To implement an efficient integrated disease management system, we are exploring whether field isolates have developed ...

  9. South-East Asia is the center of origin, diversity and dispersion of the rice blast fungus, Magnaporthe oryzae

    PubMed Central

    Saleh, Dounia; Milazzo, Joëlle; Adreit, Henri; Fournier, Elisabeth; Tharreau, Didier

    2014-01-01

    Inferring invasion routes and identifying reservoirs of diversity of plant pathogens are essential in proposing new strategies for their control. Magnaporthe oryzae, the fungus responsible for rice blast disease, has invaded all rice growing areas. Virulent genotypes regularly (re)emerge, causing rapid resistance breakdowns. However, the world-wide genetic subdivision of M. oryzae populations on rice and its past history of invasion have never been elucidated. In order to investigate the centers of diversity, origin and migration of M. oryzae on rice, we analyzed the genetic diversity of 55 populations from 15 countries. Three genetic clusters were identified world-wide. Asia was the center of diversity and the origin of most migrations to other continents. In Asia, two centers of diversity were revealed in the Himalayan foothills: South China–Laos–North Thailand, and western Nepal. Sexual reproduction persisted only in the South China–Laos–North Thailand region, which was identified as the putative center of origin of all M. oryzae populations on rice. Our results suggest a scenario of early evolution of M. oryzae on rice that matches the past history of rice domestication. This study confirms that crop domestication may have considerable influence on the pestification process of natural enemies. PMID:24320224

  10. Damage to Aspergillus fumigatus and Rhizopus oryzae Hyphae by Oxidative and Nonoxidative Microbicidal Products of Human Neutrophils In Vitro

    PubMed Central

    Diamond, Richard D.; Clark, Robert A.

    1982-01-01

    Our previous studies established that human neutrophils could damage and probably kill hyphae of Aspergillus fumigatus and Rhizopus oryzae in vitro, primarily by oxygen-dependent mechanisms active at the cell surface. These studies were extended, again quantitating hyphal damage by reduction in uptake of 14C-labeled uracil or glutamine. Neither A. fumigatus nor R. oryzae hyphae were damaged by neutrophils from patients with chronic granulomatous disease, confirming the importance of oxidative mechanisms in damage to hyphae. In contrast, neutrophils from one patient with hereditary myeloperoxidase deficiency damaged R. oryzae but not A. fumigatus hyphae. Cell-free, in vitro systems were then used to help determine the relative importance of several potentially fungicidal products of neutrophils. Both A. fumigatus and R. oryzae hyphae were damaged by the myeloperoxidase-hydrogen peroxide-halide system either with reagent hydrogen peroxide or enzymatic systems for generating hydrogen peroxide (glucose oxidase with glucose, or xanthine oxidase with either hypoxanthine or acetaldehyde). Iodide with or without chloride supported the reaction, but damage was less with chloride alone as the halide cofactor. Hydrogen peroxide alone damaged hyphae only in concentrations ≥1 mM, but 0.01 mM hypochlorous acid, a potential product of the myeloperoxidase system, significantly damaged R. oryzae hyphae (a 1 mM concentration was required for significant damage to A. fumigatus hyphae). Damage to hyphae by the myeloperoxidase system was inhibited by azide, cyanide, catalase, histidine, and tryptophan, but not by superoxide dismutase, dimethyl sulfoxide, or mannitol. Photoactivation of the dye rose bengal resulted in hyphal damage which was inhibited by histidine, tryptophan, and 1,4-diazobicyclo(2,2,2)octane. Lysates of neutrophils or separated neutrophil granules did not affect A. fumigatus hyphae, but did damage R. oryzae hyphae. Similarly, three preparations of cationic proteins

  11. Complete Genome Sequences of Six Copper-Resistant Xanthomonas citri pv. citri Strains Causing Asiatic Citrus Canker, Obtained Using Long-Read Technology.

    PubMed

    Richard, Damien; Boyer, Claudine; Vernière, Christian; Canteros, Blanca I; Lefeuvre, Pierre; Pruvost, Olivier

    2017-03-23

    The gammaproteobacterium Xanthomonas citri pv .  citri causes Asiatic citrus canker. Pathotype A strains have a broad host range, which includes most commercial citrus species, and they cause important economic losses worldwide. Control often relies on frequent copper sprays. We present here the complete genomes of six X. citri pv .  citri copper-resistant strains. Copyright © 2017 Richard et al.

  12. Direct microbial conversion of wheat straw into lipid by a cellulolytic fungus of Aspergillus oryzae A-4 in solid-state fermentation.

    PubMed

    Lin, Hui; Cheng, Wan; Ding, Hai-tao; Chen, Xue-jiao; Zhou, Qi-fa; Zhao, Yu-hua

    2010-10-01

    Direct microbial conversion of wheat straw into lipid by a cellulolytic fungus of Aspergillus oryzae A-4 in solid-state fermentation (SSF) was investigated. In submerged fermentation, A. oryzae A-4 accumulated lipid to 15-18.15% of biomass when pure cellulose was utilized as the sole substrate. In SSF of the wheat straw and bran mixture, A. oryzae A-4 yielded lipid of 36.6mg/g dry substrate (gds), and a cellulase activity of 1.82 FPU/gds with 25.25% of holocellulose utilization in the substrates were detected on the 6th day. The lipid yield reached 62.87 mg/gds in SSF on the 6th day under the optimized conditions from Plackett-Burman design (PBD). Cellulase secretion of A. oryzae A-4 was found to influence the lipid yield. Dilute acid pretreatment of the straw and addition of some agro-industrial wastes to the straw could enhance lipid production of A. oryzae A-4. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. Induction of salicylic acid-mediated defense response in perennial ryegrass against infection by Magnaporthe oryzae.

    PubMed

    Rahman, Alamgir; Kuldau, Gretchen A; Uddin, Wakar

    2014-06-01

    Incorporation of plant defense activators is an innovative approach to development of an integrated strategy for the management of turfgrass diseases. The effects of salicylic acid (SA), benzothiadiazole (BTH, chemical analog of SA), jasmonic acid (JA), and ethephon (ET, an ethylene-releasing compound) on development of gray leaf spot in perennial ryegrass (Lolium perenne L.) caused by Magnaporthe oryzae were evaluated. Gray leaf spot disease incidence and severity were significantly decreased when plants were treated prior to inoculation with SA, BTH, and partially by ET but not by JA. Accumulation of endogenous SA and elevated expression of pathogenesis-related (PR)-1, PR-3.1, and PR-5 genes were associated with inoculation of plants by M. oryzae. Treatment of plants with SA enhanced expression levels of PR-3.1 and PR-5 but did not affect the PR-1 level, whereas BTH treatment enhanced relative expression levels of all three PR genes. Microscopic observations of leaves inoculated with M. oryzae revealed higher frequencies of callose deposition at the penetration sites in SA- and BTH-treated plants compared with the control plants (treated with water). These results suggest that early and higher induction of these genes by systemic resistance inducers may provide perennial ryegrass with a substantial advantage to defend against infection by M. oryzae.

  14. Transgenic expression of antimicrobial peptide D2A21 confers resistance to diseases incited by Pseudomonas syringae pv. tabaci and Xanthomonas citri, but not Candidatus Liberibacter asiaticus

    USDA-ARS?s Scientific Manuscript database

    Citrus Huanglongbing (HLB) associated with ‘Candidatus Liberibacter asiaticus’ (Las) and citrus canker disease incited by Xanthomonas citri are the most devastating citrus diseases worldwide. To control citrus HLB and canker disease, we previously screened over forty antimicrobial peptides (AMPs) in...

  15. Recombinant expression, purification, and characterization of an acyl-CoA binding protein from Aspergillus oryzae.

    PubMed

    Hao, Qing; Liu, Xiaoguang; Zhao, Guozhong; Jiang, Lu; Li, Ming; Zeng, Bin

    2016-03-01

    To characterize biochemically the lipid metabolism-regulating acyl-CoA binding protein (ACBP) from the industrially-important fungus Aspergillus oryzae. A full-length cDNA encoding a candidate ACBP from A. oryzae (AoACBP) was cloned and expressed in Escherichia coli as a maltose-binding protein (MBP) fusion protein. The MBP-AoACBP protein was purified by an amylose resin chromatography column. SDS-PAGE showed that MBP-AoACBP has an estimated molecular weight of 82 kDa. Microscale thermophoresis binding assay showed that the recombinant AoACBP displayed much greater affinity for palmitoyl-CoA (K d = 80 nM) than for myristoyl-CoA (K d = 510 nM), thus demonstrating the preference of AoACBP for long-chain acyl-CoA. The data support the identification of AoACBP as a long-chain ACBP in A. oryzae.

  16. Protein-enriched pea flour extract protects stored milled rice against the rice weevil, Sitophilus oryzae

    PubMed Central

    Pretheep-Kumar, P.; Mohan, S.; Ramaraju, K.

    2004-01-01

    Studies were conducted to evaluate the effect of a protein-enriched pea (Pisum sativum var. Bonneville) flour extract against the rice weevil, Sitophilus oryzae in its repellency, toxicity, effect on fecundity, stability and sensory properties. Milled rice admixed with pea flour extract at 1% concentration significantly repelled S. oryzae. Mortality of S. oryzae was found to increase and fecundity was markedly suppressed, in rice treated with 1% pea flour extract. The toxicity and reproductive effects of the pea protein-enriched rice were found to be stable for a period of 5 months. The sensory characteristics of stored rice when eaten were not affected by the treatment with pea flour extract. This study indicates that the protein-enriched flour extract obtained from the Bonneville pea may be feasible to protect stored milled rice from insect attack. PMID:15861241

  17. Comparative Genome Analysis Between Aspergillus oryzae Strains Reveals Close Relationship Between Sites of Mutation Localization and Regions of Highly Divergent Genes among Aspergillus Species

    PubMed Central

    Umemura, Myco; Koike, Hideaki; Yamane, Noriko; Koyama, Yoshinori; Satou, Yuki; Kikuzato, Ikuya; Teruya, Morimi; Tsukahara, Masatoshi; Imada, Yumi; Wachi, Youji; Miwa, Yukino; Yano, Shuichi; Tamano, Koichi; Kawarabayasi, Yutaka; Fujimori, Kazuhiro E.; Machida, Masayuki; Hirano, Takashi

    2012-01-01

    Aspergillus oryzae has been utilized for over 1000 years in Japan for the production of various traditional foods, and a large number of A. oryzae strains have been isolated and/or selected for the effective fermentation of food ingredients. Characteristics of genetic alterations among the strains used are of particular interest in studies of A. oryzae. Here, we have sequenced the whole genome of an industrial fungal isolate, A. oryzae RIB326, by using a next-generation sequencing system and compared the data with those of A. oryzae RIB40, a wild-type strain sequenced in 2005. The aim of this study was to evaluate the mutation pressure on the non-syntenic blocks (NSBs) of the genome, which were previously identified through comparative genomic analysis of A. oryzae, Aspergillus fumigatus, and Aspergillus nidulans. We found that genes within the NSBs of RIB326 accumulate mutations more frequently than those within the SBs, regardless of their distance from the telomeres or of their expression level. Our findings suggest that the high mutation frequency of NSBs might contribute to maintaining the diversity of the A. oryzae genome. PMID:22912434

  18. Comparative genome analysis between Aspergillus oryzae strains reveals close relationship between sites of mutation localization and regions of highly divergent genes among Aspergillus species.

    PubMed

    Umemura, Myco; Koike, Hideaki; Yamane, Noriko; Koyama, Yoshinori; Satou, Yuki; Kikuzato, Ikuya; Teruya, Morimi; Tsukahara, Masatoshi; Imada, Yumi; Wachi, Youji; Miwa, Yukino; Yano, Shuichi; Tamano, Koichi; Kawarabayasi, Yutaka; Fujimori, Kazuhiro E; Machida, Masayuki; Hirano, Takashi

    2012-10-01

    Aspergillus oryzae has been utilized for over 1000 years in Japan for the production of various traditional foods, and a large number of A. oryzae strains have been isolated and/or selected for the effective fermentation of food ingredients. Characteristics of genetic alterations among the strains used are of particular interest in studies of A. oryzae. Here, we have sequenced the whole genome of an industrial fungal isolate, A. oryzae RIB326, by using a next-generation sequencing system and compared the data with those of A. oryzae RIB40, a wild-type strain sequenced in 2005. The aim of this study was to evaluate the mutation pressure on the non-syntenic blocks (NSBs) of the genome, which were previously identified through comparative genomic analysis of A. oryzae, Aspergillus fumigatus, and Aspergillus nidulans. We found that genes within the NSBs of RIB326 accumulate mutations more frequently than those within the SBs, regardless of their distance from the telomeres or of their expression level. Our findings suggest that the high mutation frequency of NSBs might contribute to maintaining the diversity of the A. oryzae genome.

  19. Secretory expression of the non-secretory-type Lentinula edodes laccase by Aspergillus oryzae.

    PubMed

    Yano, Akira; Kikuchi, Sayaka; Nakagawa, Yuko; Sakamoto, Yuichi; Sato, Toshitsugu

    2009-01-01

    The shiitake mushroom, Lentinula edodes, has an extracelluar secretory-type laccase, Lcc1, and a fruiting-body-accumulation-type laccase, Lcc4. We previously reported the production of Lcc1 by plant cells, but had difficulty producing Lcc4. Here, we report the production of Lcc1 and Lcc4 by Aspergillus oryzae and the extracellular secretory production of Lcc4 using a modified secretion signal peptide (SP) from Lcc1. Sp-Lcc4 produced by A. oryzae had biochemical activities similar to Lcc4 produced by L. edodes. Lcc1 did not react with beta-(3,4-dihydroxyphenol) alanine (DOPA), but Lcc4 from L. edodes and A. oryzae could oxidize DOPA. K(M) values for the substrates 2,2'-azino-di-(3-ethylbenzthiazolinsulfonate), 2,6-dimethoxyphenol, guaiacol, pyrogallol, and catechol were similar for Lcc4 and Sp-Lcc4. In conclusion, a non-secretory-type fungal laccase is secreted into the culture media with its original enzymatic properties by exploiting modified secretory signal peptide. 2008 Elsevier GmbH.

  20. Control of brown spot pathogen of rice (Bipolaris oryzae) using some phenolic antioxidants

    PubMed Central

    Shabana, Y.M.; Abdel-Fattah, G.M.; Ismail, A.E.; Rashad, Y.M.

    2008-01-01

    Bipolaris oryzae is the causal agent of rice brown spot disease and is responsible for significant economic losses. In order to control this disease, three phenolic antioxidants were tested (salicylic acid, benzoic acid and hydroquinone). The antifungal activity of the tested substances were investigated against B. oryzae at different concentrations in vitro, as well as the efficacy of their exogenous application in controlling rice brown spot disease under field conditions. In vitro, benzoic acid or salicylic acid at 9 mM completely inhibited the growth of B. oryzae. Under field conditions, spraying of benzoic acid at 20 mM led to a significant reduction in disease severity (DS) and disease incidence (DI) on the plant leaves, in addition to a significant increase in the grain yield and its components. Some biochemical responses were also detected, where the application of the previous treatment led to a significant increase in the total photosynthetic pigments (chlorophyll a and b and carotenoids) in rice leaves and in the total carbohydrate and protein contents of the yielded grains. PMID:24031243

  1. Subtractive cloning of cDNA from Aspergillus oryzae differentially regulated between solid-state culture and liquid (submerged) culture.

    PubMed

    Akao, Takeshi; Gomi, Katsuya; Goto, Kuniyasu; Okazaki, Naoto; Akita, Osamu

    2002-07-01

    In solid-state cultures (SC), Aspergillus oryzae shows characteristics such as high-level production and secretion of enzymes and hyphal differentiation with asexual development which are absent in liquid (submerged) culture (LC). It was predicted that many of the genes involved in the characteristics of A. oryzae in SC are differentially expressed between SC and LC. We generated two subtracted cDNA libraries with bi-directional cDNA subtractive hybridizations to isolate and identify such genes. Among them, we identified genes upregulated in or specific to SC, such as the AOS ( A. oryzae SC-specific gene) series, and those downregulated or not expressed in SC, such as the AOL ( A. oryzae LC-specific) series. Sequencing analyses revealed that the AOS series and the AOL series contain genes encoding extra- and intracellular enzymes and transport proteins. However, half were functionally unclassified by nucleotide sequences. Also, by expression profile, the AOS series comprised two groups. These gene products' molecular functions and physiological roles in SC await further investigation.

  2. Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato

    PubMed Central

    Tai, Thomas H.; Dahlbeck, Douglas; Clark, Eszter T.; Gajiwala, Paresh; Pasion, Romela; Whalen, Maureen C.; Stall, Robert E.; Staskawicz, Brian J.

    1999-01-01

    The Bs2 resistance gene of pepper specifically recognizes and confers resistance to strains of Xanthomonas campestris pv. vesicatoria that contain the corresponding bacterial avirulence gene, avrBs2. The involvement of avrBs2 in pathogen fitness and its prevalence in many X. campestris pathovars suggests that the Bs2 gene may be durable in the field and provide resistance when introduced into other plant species. Employing a positional cloning strategy, the Bs2 locus was isolated and the gene was identified by coexpression with avrBs2 in an Agrobacterium-mediated transient assay. A single candidate gene, predicted to encode motifs characteristic of the nucleotide binding site–leucine-rich repeat class of resistance genes, was identified. This gene specifically controlled the hypersensitive response when transiently expressed in susceptible pepper and tomato lines and in a nonhost species, Nicotiana benthamiana, and was designated as Bs2. Functional expression of Bs2 in stable transgenic tomatoes supports its use as a source of resistance in other Solanaceous plant species. PMID:10570214

  3. Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato.

    PubMed

    Tai, T H; Dahlbeck, D; Clark, E T; Gajiwala, P; Pasion, R; Whalen, M C; Stall, R E; Staskawicz, B J

    1999-11-23

    The Bs2 resistance gene of pepper specifically recognizes and confers resistance to strains of Xanthomonas campestris pv. vesicatoria that contain the corresponding bacterial avirulence gene, avrBs2. The involvement of avrBs2 in pathogen fitness and its prevalence in many X. campestris pathovars suggests that the Bs2 gene may be durable in the field and provide resistance when introduced into other plant species. Employing a positional cloning strategy, the Bs2 locus was isolated and the gene was identified by coexpression with avrBs2 in an Agrobacterium-mediated transient assay. A single candidate gene, predicted to encode motifs characteristic of the nucleotide binding site-leucine-rich repeat class of resistance genes, was identified. This gene specifically controlled the hypersensitive response when transiently expressed in susceptible pepper and tomato lines and in a nonhost species, Nicotiana benthamiana, and was designated as Bs2. Functional expression of Bs2 in stable transgenic tomatoes supports its use as a source of resistance in other Solanaceous plant species.

  4. High Variation in Pathogenicity of Genetically Closely Related Strains of Xanthomonas albilineans, the Sugarcane Leaf Scald Pathogen, in Guadeloupe.

    PubMed

    Champoiseau, P; Daugrois, J-H; Pieretti, I; Cociancich, S; Royer, M; Rott, P

    2006-10-01

    ABSTRACT Pathogenicity of 75 strains of Xanthomonas albilineans from Guadeloupe was assessed by inoculation of sugarcane cv. B69566, which is susceptible to leaf scald, and 19 of the strains were selected as representative of the variation in pathogenicity observed based on stalk colonization. In vitro production of albicidin varied among these 19 strains, but the restriction fragment length polymorphism pattern of their albicidin biosynthesis genes was identical. Similarly, no genomic variation was found among strains by pulsed-field gel electrophoresis. Some variation among strains was found by amplified fragment length polymorphism, but no relationship between this genetic variation and variation in pathogenicity was found. Only 3 (pilB, rpfA, and xpsE) of 40 genes involved in pathogenicity of bacterial species closely related to X. albilineans could be amplified by polymerase chain reaction from total genomic DNA of all nine strains tested of X. albilineans differing in pathogenicity in Guadeloupe. Nucleotide sequences of these genes were 100% identical among strains, and a phylogenetic study with these genes and housekeeping genes efp and ihfA suggested that X. albilineans is on an evolutionary road between the X. campestris group and Xylella fastidiosa, another vascular plant pathogen. Sequencing of the complete genome of Xanthomonas albilineans could be the next step in deciphering molecular mechanisms involved in pathogenicity of X. albilineans.

  5. A MLVA Genotyping Scheme for Global Surveillance of the Citrus Pathogen Xanthomonas citri pv. citri Suggests a Worldwide Geographical Expansion of a Single Genetic Lineage

    PubMed Central

    Boyer, Karine; Leduc, Alice; Tourterel, Christophe; Drevet, Christine; Ravigné, Virginie; Gagnevin, Lionel; Guérin, Fabien; Chiroleu, Frédéric; Koebnik, Ralf; Verdier, Valérie; Vernière, Christian

    2014-01-01

    MultiLocus Variable number of tandem repeat Analysis (MLVA) has been extensively used to examine epidemiological and evolutionary issues on monomorphic human pathogenic bacteria, but not on bacterial plant pathogens of agricultural importance albeit such tools would improve our understanding of their epidemiology, as well as of the history of epidemics on a global scale. Xanthomonas citri pv. citri is a quarantine organism in several countries and a major threat for the citrus industry worldwide. We screened the genomes of Xanthomonas citri pv. citri strain IAPAR 306 and of phylogenetically related xanthomonads for tandem repeats. From these in silico data, an optimized MLVA scheme was developed to assess the global diversity of this monomorphic bacterium. Thirty-one minisatellite loci (MLVA-31) were selected to assess the genetic structure of 129 strains representative of the worldwide pathological and genetic diversity of X. citri pv. citri. Based on Discriminant Analysis of Principal Components (DAPC), four pathotype-specific clusters were defined. DAPC cluster 1 comprised strains that were implicated in the major geographical expansion of X. citri pv. citri during the 20th century. A subset of 12 loci (MLVA-12) resolved 89% of the total diversity and matched the genetic structure revealed by MLVA-31. MLVA-12 is proposed for routine epidemiological identification of X. citri pv. citri, whereas MLVA-31 is proposed for phylogenetic and population genetics studies. MLVA-31 represents an opportunity for international X. citri pv. citri genotyping and data sharing. The MLVA-31 data generated in this study was deposited in the Xanthomonas citri genotyping database (http://www.biopred.net/MLVA/). PMID:24897119

  6. Purification and characterization of a thermostable hypothetical xylanase from Aspergillus oryzae HML366.

    PubMed

    He, Haiyan; Qin, Yongling; Li, Nan; Chen, Guiguang; Liang, Zhiqun

    2015-03-01

    In the current study, fermentation broth of Aspergillus oryzae HML366 in sugar cane bagasse was subjected to ultrafiltration and ion exchange chromatography, and two xylanases, XynH1 and XynH2, were purified. Time-of-flight mass spectrometry coupled with SDS-PAGE analysis revealed that XynH1 is identical to the hypothetical A. oryzae RIB40 protein XP_001826985.1, with a molecular weight of 33.671 kDa. Likewise, XynH2 was identified as xylanase XynF1 with a molecular weight of 35.402 kDa. Sequence analysis indicated that XynH1 belongs to glycosyl hydrolases family 10. The specific activity of XynH1 was measured at 476.9 U/mg. Optimal xylanase activity was observed at pH 6.0, and enzyme remained active within pH 4.0-10.0 and at a temperature below 70 °C. Mg(2+), Mn(2+), Ca(2+), and K(+) enhanced the XynH1 xylanase activity to 146, 122, 114, and 108%, respectively. XynH1 hydrolyzed Birchwood xylan and Larchwood xylan effectively. The K m and V max of XynH1 values determined were 1.16 mM and 336 μmol/min/mg with Birchwood xylan as the substrate. A. oryzae HML366 xylanase XynH1 showed superior heat and pH tolerance, therefore may have significant applications in paper and biofuel industries. These studies constitute the first investigation of the xylanase activities of the hypothetical protein XP_001826985.1 form A. oryzae.

  7. Cyclopiazonic Acid Biosynthesis of Aspergillus flavus and Aspergillus oryzae

    USDA-ARS?s Scientific Manuscript database

    Cyclopiazonic acid (CPA) is an indole-tetramic acid neurotoxin produced by some of the same strains of A. flavus that produce aflatoxins and by some Aspergillus oryzae strains. Despite its discovery 40 years ago, few reviews of its toxicity and biosynthesis have been reported. This review examines w...

  8. 21 CFR 173.130 - Carbohydrase derived from Rhizopus oryzae.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Carbohydrase derived from Rhizopus oryzae. 173.130 Section 173.130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Enzyme Preparations and...

  9. Ethylene Biosynthesis and Signaling Is Required for Rice Immune Response and Basal Resistance Against Magnaporthe oryzae Infection.

    PubMed

    Helliwell, Emily E; Wang, Qin; Yang, Yinong

    2016-11-01

    Recent studies have suggested that ethylene enhances host resistance to fungal pathogen Magnaporthe oryzae, the causal agent of rice blast disease. Among the six 1-aminocyclopropane-1-carboxylic acid synthase genes in rice, OsACS1 and OsACS2 are induced within 24 h of inoculation by M. oryzae. This induction occurs simultaneously with an increase in ethylene production that is noticeable 12 h postinoculation. The purpose of this study was to examine the dynamics of ethylene production and signaling in wild type and RNA interference-mediated suppression lines deficient in ethylene production (acs2) or signaling (eil1) after challenge with M. oryzae as well as fungal cell-wall elicitors. Ethylene-insensitive mutant lines show an attenuated basal defense response including lower basal expression of the genes encoding a chitin-binding receptor, pathogenesis-related (PR) proteins, and the enzymes involved in the synthesis of diterprenoid phytoalexins, a reduction on early hypersensitive response (HR)-like cell death, and reduced incidence of callose deposition. Ethylene-deficient mutants showed an intermediate phenotype, with a significant reduction in expression of defense-related genes and callose deposition, but only a slight reduction in HR-like cell death. As a result, all ethylene-insensitive mutants show increased susceptibility to M. oryzae, whereas the ethylene-deficient lines show a slight but less significant increase in disease severity. These results show that ethylene signaling and, to some extent, ethylene production are required for rice basal resistance against the blast fungus Magnaporthe oryzae.

  10. High-level expression and characterization of a chimeric lipase from Rhizopus oryzae for biodiesel production

    PubMed Central

    2013-01-01

    Background Production of biodiesel from non-edible oils is receiving increasing attention. Tung oil, called “China wood oil” is one kind of promising non-edible biodiesel oil in China. To our knowledge, tung oil has not been used to produce biodiesel by enzymatic method. The enzymatic production of biodiesel has been investigated extensively by using Rhizopus oryzae lipase as catalyst. However, the high cost of R. oryzae lipase remains a barrier for its industrial applications. Through different heterologous expression strategies and fermentation techniques, the highest expression level of the lipase from R. oryzae reached 1334 U/mL in Pichia pastoris, which is still not optimistic for industry applications. Results The prosequence of lipases from Rhizopus sp. is very important for the folding and secretion of an active lipase. A chimeric lipase from R. oryzae was constructed by replacing the prosequence with that from the R. chinensis lipase and expressed in P. pastoris. The maximum activity of the chimera reached 4050 U/mL, which was 11 fold higher than that of the parent. The properties of the chimera were studied. The immobilized chimera was used successfully for biodiesel production from tung oil, which achieved higher FAME yield compared with the free chimeric lipase, non-chimeric lipase and mature lipase. By response surface methodology, three variables, water content, methanol to tung oil molar ratio and enzyme dosage were proved to be crucial parameters for biosynthesis of FAME and the FAME yield reached 91.9±2.5% at the optimized conditions by adding 5.66 wt.% of the initial water based on oil weight, 3.88 of methanol to tung oil molar ratio and 13.24 wt.% of enzyme concentration based on oil weight at 40°C. Conclusions This is the first report on improving the expression level of the lipase from R. oryzae by replacing prosequences. The immobilized chimera was used successfully for biodiesel production from tung oil. Using tung oil as non-edible raw

  11. High-level expression and characterization of a chimeric lipase from Rhizopus oryzae for biodiesel production.

    PubMed

    Yu, Xiao-Wei; Sha, Chong; Guo, Yong-Liang; Xiao, Rong; Xu, Yan

    2013-02-21

    Production of biodiesel from non-edible oils is receiving increasing attention. Tung oil, called "China wood oil" is one kind of promising non-edible biodiesel oil in China. To our knowledge, tung oil has not been used to produce biodiesel by enzymatic method. The enzymatic production of biodiesel has been investigated extensively by using Rhizopus oryzae lipase as catalyst. However, the high cost of R. oryzae lipase remains a barrier for its industrial applications. Through different heterologous expression strategies and fermentation techniques, the highest expression level of the lipase from R. oryzae reached 1334 U/mL in Pichia pastoris, which is still not optimistic for industry applications. The prosequence of lipases from Rhizopus sp. is very important for the folding and secretion of an active lipase. A chimeric lipase from R. oryzae was constructed by replacing the prosequence with that from the R. chinensis lipase and expressed in P. pastoris. The maximum activity of the chimera reached 4050 U/mL, which was 11 fold higher than that of the parent. The properties of the chimera were studied. The immobilized chimera was used successfully for biodiesel production from tung oil, which achieved higher FAME yield compared with the free chimeric lipase, non-chimeric lipase and mature lipase. By response surface methodology, three variables, water content, methanol to tung oil molar ratio and enzyme dosage were proved to be crucial parameters for biosynthesis of FAME and the FAME yield reached 91.9±2.5% at the optimized conditions by adding 5.66 wt.% of the initial water based on oil weight, 3.88 of methanol to tung oil molar ratio and 13.24 wt.% of enzyme concentration based on oil weight at 40°C. This is the first report on improving the expression level of the lipase from R. oryzae by replacing prosequences. The immobilized chimera was used successfully for biodiesel production from tung oil. Using tung oil as non-edible raw material and a chimeric lipase

  12. Construction of a genetic linkage map for identification of molecular markers associated with resistance to Xanthomonas arboriciola pv. pruni in peach [Prunus persica (L.) Batsch

    USDA-ARS?s Scientific Manuscript database

    Bacterial spot, caused by Xanthomonas campestris pv. pruni, is a serious disease that can affect peach fruit quality and production. The molecular basis of its tolerance and susceptibility is yet to be understood. To study the genetics of the peach in response to bacterial spot, an F2 population of ...

  13. Characterizing virulence phenotypes among U.S. isolates of Magnaporthe oryzae using IRRI NILs, US germplasm, and NERICA lines

    USDA-ARS?s Scientific Manuscript database

    Rice blast disease, caused by Magnaporthe oryzae, is a major constraint to rice production in most rice production areas, including the Southern U.S. In continued efforts to evaluate the effectiveness of resistance (R) genes, a total of 33 field and 12 U.S. reference isolates of M. oryzae were eval...

  14. Histidine kinases mediate differentiation, stress response, and pathogenicity in Magnaporthe oryzae

    PubMed Central

    Jacob, Stefan; Foster, Andrew J; Yemelin, Alexander; Thines, Eckhard

    2014-01-01

    The aim of this study is a functional characterization of 10 putative histidine kinases (HIKs)-encoding genes in the phytopathogenic fungus Magnaporthe oryzae. Two HIKs were found to be required for pathogenicity in the fungus. It was found that the mutant strains ΔMohik5 and ΔMohik8 show abnormal conidial morphology and furthermore ΔMohik5 is unable to form appressoria. Both HIKs MoHik5p and MoHik8p appear to be essential for pathogenicity since the mutants fail to infect rice plants. MoSln1p and MoHik1p were previously reported to be components of the HOG pathway in M. oryzae. The ΔMosln1 mutant is more susceptible to salt stress compared to ΔMohik1, whereas ΔMohik1 appears to be stronger affected by osmotic or sugar stress. In contrast to yeast, the HOG signaling cascade in phytopathogenic fungi apparently comprises more elements. Furthermore, vegetative growth of the mutants ΔMohik5 and ΔMohik9 was found to be sensitive to hypoxia-inducing NaNO2-treatment. Additionally, it was monitored that NaNO2-treatment resulted in MoHog1p phosphorylation. As a consequence we assume a first simplified model for hypoxia signaling in M. oryzae including the HOG pathway and the HIKs MoHik5p and MoHik9p. PMID:25103193

  15. Molecular functions of Xanthomonas type III effector AvrBsT and its plant interactors in cell death and defense signaling.

    PubMed

    Han, Sang Wook; Hwang, Byung Kook

    2017-02-01

    Xanthomonas effector AvrBsT interacts with plant defense proteins and triggers cell death and defense response. This review highlights our current understanding of the molecular functions of AvrBsT and its host interactor proteins. The AvrBsT protein is a member of a growing family of effector proteins in both plant and animal pathogens. Xanthomonas type III effector AvrBsT, a member of the YopJ/AvrRxv family, suppresses plant defense responses in susceptible hosts, but triggers cell death signaling leading to hypersensitive response (HR) and defense responses in resistant plants. AvrBsT interacts with host defense-related proteins to trigger the HR cell death and defense responses in plants. Here, we review and discuss recent progress in understanding the molecular functions of AvrBsT and its host interactor proteins in pepper (Capsicum annuum). Pepper arginine decarboxylase1 (CaADC1), pepper aldehyde dehydrogenase1 (CaALDH1), pepper heat shock protein 70a (CaHSP70a), pepper suppressor of the G2 allele of skp1 (CaSGT1), pepper SNF1-related kinase1 (SnRK1), and Arabidopsis acetylated interacting protein1 (ACIP1) have been identified as AvrBsT interactors in pepper and Arabidopsis. Gene expression profiling, virus-induced gene silencing, and transient transgenic overexpression approaches have advanced the functional characterization of AvrBsT-interacting proteins in plants. AvrBsT is localized in the cytoplasm and forms protein-protein complexes with host interactors. All identified AvrBsT interactors regulate HR cell death and defense responses in plants. Notably, CaSGT1 physically binds to both AvrBsT and pepper receptor-like cytoplasmic kinase1 (CaPIK1) in the cytoplasm. During infection with Xanthomonas campestris pv. vesicatoria strain Ds1 (avrBsT), AvrBsT is phosphorylated by CaPIK1 and forms the active AvrBsT-CaSGT1-CaPIK1 complex, which ultimately triggers HR cell death and defense responses. Collectively, the AvrBsT interactor proteins are involved in plant

  16. Development of Novel Microsatellite Markers for the BBCC Oryza Genome (Poaceae) Using High-Throughput Sequencing Technology

    PubMed Central

    Peng, Suotang; Xu, Qun; Yuan, Xiaoping; Feng, Yue; Yu, Hanyong; Wang, Yiping; Wei, Xinghua

    2014-01-01

    Wild species of Oryza are extremely valuable sources of genetic material that can be used to broaden the genetic background of cultivated rice, and to increase its resistance to abiotic and biotic stresses. Until recently, there was no sequence information for the BBCC Oryza genome; therefore, no special markers had been developed for this genome type. The lack of suitable markers made it difficult to search for valuable genes in the BBCC genome. The aim of this study was to develop microsatellite markers for the BBCC genome. We obtained 13,991 SSR-containing sequences and designed 14,508 primer pairs. The most abundant was hexanuclelotide (31.39%), followed by trinucleotide (27.67%) and dinucleotide (19.04%). 600 markers were selected for validation in 23 accessions of Oryza species with the BBCC genome. A set of 495 markers produced clear amplified fragments of the expected sizes. The average number of alleles per locus (Na) was 2.5, ranging from 1 to 9. The genetic diversity per locus (He) ranged from 0 to 0.844 with a mean of 0.333. The mean polymorphism information content (PIC) was 0.290, and ranged from 0 to 0.825. Of the 495 markers, 12 were only found in the BB genome, 173 were unique to the CC genome, and 198 were also present in the AA genome. These microsatellite markers could be used to evaluate the phylogenetic relationships among different Oryza genomes, and to construct a genetic linkage map for locating and identifying valuable genes in the BBCC genome, and would also for marker-assisted breeding programs that included accessions with the AA genome, especially Oryza sativa. PMID:24632997

  17. Korean Ginseng Berry Fermented by Mycotoxin Non-producing Aspergillus niger and Aspergillus oryzae: Ginsenoside Analyses and Anti-proliferative Activities.

    PubMed

    Li, Zhipeng; Ahn, Hyung Jin; Kim, Nam Yeon; Lee, Yu Na; Ji, Geun Eog

    2016-01-01

    To transform ginsenosides, Korean ginseng berry (KGB) was fermented by mycotoxin non-producing Aspergillus niger and Aspergillus oryzae. Changes of ginsenoside profile and anti-proliferative activities were observed. Results showed that A. niger tended to efficiently transform protopanaxadiol (PPD) type ginsenosides such as Rb1, Rb2, Rd to compound K while A. oryzae tended to efficiently transform protopanaxatriol (PPT) type ginsenoside Re to Rh1 via Rg1. Butanol extracts of fermented KGB showed high cytotoxicity on human adenocarcinoma HT-29 cell line and hepatocellular carcinoma HepG2 cell line while that of unfermented KGB showed little. The minimum effective concentration of niger-fermented KGB was less than 2.5 µg/mL while that of oryzae-fermented KGB was about 5 µg/mL. As A. niger is more inclined to transform PPD type ginsenosides, niger-fermented KGB showed stronger anti-proliferative activity than oryzae-fermented KGB.

  18. Jewelry boxes contaminated by Aspergillus oryzae: an occupational health risk?

    PubMed

    Bellanger, Anne-Pauline; Roussel, Anaïs; Millon, Laurence; Delaforge, Marcel; Reboux, Gabriel

    2012-01-01

    In 2009, 100,000 jewelry boxes, manufactured in China, were delivered to a jewelry manufacturer in Besançon, France. All the boxes were contaminated by mold. Because the workers refused to handle these jewelry boxes, the company contacted our laboratory to determine how to deal with the problem. Three choices were available: (1) decontaminate the boxes, (2) return the boxes to the Chinese manufacturer, or (3) destroy the entire shipment. Based on microscopic identification, the culture analysis was positive for A. oryzae. This could not be confirmed by molecular techniques because of the genetic proximity of A. oryzae and A. flavus. Because A. flavus can produce aflatoxins, we tested for them using mass spectrometry. Aflatoxins B1, B2, G1, G2, and M1 were not detected; however, given the specifics of this situation, we could not discard the possibility of the presence of other aflatoxins, such as P1, B3, GM2, and ethoxyaflatoxin B2. We concluded that the contamination by A. oryzae was probably due to food products. However, because of the possible presence of aflatoxins, occupational health risks could not be entirely ruled out. The decision was therefore taken to destroy all the jewelry boxes by incineration. To avoid a similar situation we propose: (1) to maintain conditions limiting mold contamination during production (not eating on the work site, efficient ventilation systems); (2) to desiccate the products before sending them; and (3) to closely control the levels of dampness during storage and transport.

  19. The Xanthomonas campestris type III effector XopJ proteolytically degrades proteasome subunit RPT6.

    PubMed

    Üstün, Suayib; Börnke, Frederik

    2015-05-01

    Many animal and plant pathogenic bacteria inject type III effector (T3E) proteins into their eukaryotic host cells to suppress immunity. The Yersinia outer protein J (YopJ) family of T3Es is a widely distributed family of effector proteins found in both animal and plant pathogens, and its members are highly diversified in virulence functions. Some members have been shown to possess acetyltransferase activity; however, whether this is a general feature of YopJ family T3Es is currently unknown. The T3E Xanthomonas outer protein J (XopJ), a YopJ family effector from the plant pathogen Xanthomonas campestris pv vesicatoria, interacts with the proteasomal subunit Regulatory Particle AAA-ATPase6 (RPT6) in planta to suppress proteasome activity, resulting in the inhibition of salicylic acid-related immune responses. Here, we show that XopJ has protease activity to specifically degrade RPT6, leading to reduced proteasome activity in the cytoplasm as well as in the nucleus. Proteolytic degradation of RPT6 was dependent on the localization of XopJ to the plasma membrane as well as on its catalytic triad. Mutation of the Walker B motif of RPT6 prevented XopJ-mediated degradation of the protein but not XopJ interaction. This indicates that the interaction of RPT6 with XopJ is dependent on the ATP-binding activity of RPT6, but proteolytic cleavage additionally requires its ATPase activity. Inhibition of the proteasome impairs the proteasomal turnover of Nonexpressor of Pathogenesis-Related1 (NPR1), the master regulator of salicylic acid responses, leading to the accumulation of ubiquitinated NPR1, which likely interferes with the full induction of NPR1 target genes. Our results show that YopJ family T3Es are not only highly diversified in virulence function but also appear to possess different biochemical activities. © 2015 American Society of Plant Biologists. All Rights Reserved.

  20. Complete chloroplast and ribosomal sequences for 30 accessions elucidate evolution of Oryza AA genome species

    PubMed Central

    Kim, Kyunghee; Lee, Sang-Choon; Lee, Junki; Yu, Yeisoo; Yang, Kiwoung; Choi, Beom-Soon; Koh, Hee-Jong; Waminal, Nomar Espinosa; Choi, Hong-Il; Kim, Nam-Hoon; Jang, Woojong; Park, Hyun-Seung; Lee, Jonghoon; Lee, Hyun Oh; Joh, Ho Jun; Lee, Hyeon Ju; Park, Jee Young; Perumal, Sampath; Jayakodi, Murukarthick; Lee, Yun Sun; Kim, Backki; Copetti, Dario; Kim, Soonok; Kim, Sunggil; Lim, Ki-Byung; Kim, Young-Dong; Lee, Jungho; Cho, Kwang-Su; Park, Beom-Seok; Wing, Rod A.; Yang, Tae-Jin

    2015-01-01

    Cytoplasmic chloroplast (cp) genomes and nuclear ribosomal DNA (nR) are the primary sequences used to understand plant diversity and evolution. We introduce a high-throughput method to simultaneously obtain complete cp and nR sequences using Illumina platform whole-genome sequence. We applied the method to 30 rice specimens belonging to nine Oryza species. Concurrent phylogenomic analysis using cp and nR of several of specimens of the same Oryza AA genome species provides insight into the evolution and domestication of cultivated rice, clarifying three ambiguous but important issues in the evolution of wild Oryza species. First, cp-based trees clearly classify each lineage but can be biased by inter-subspecies cross-hybridization events during speciation. Second, O. glumaepatula, a South American wild rice, includes two cytoplasm types, one of which is derived from a recent interspecies hybridization with O. longistminata. Third, the Australian O. rufipogan-type rice is a perennial form of O. meridionalis. PMID:26506948

  1. Discovery and analysis of an active long terminal repeat-retrotransposable element in Aspergillus oryzae.

    PubMed

    Jie Jin, Feng; Hara, Seiichi; Sato, Atsushi; Koyama, Yasuji

    2014-01-01

    Wild-type Aspergillus oryzae RIB40 contains two copies of the AO090005001597 gene. We previously constructed A. oryzae RIB40 strain, RKuAF8B, with multiple chromosomal deletions, in which the AO090005001597 copy number was found to be increased significantly. Sequence analysis indicated that AO090005001597 is part of a putative 6,000-bp retrotransposable element, flanked by two long terminal repeats (LTRs) of 669 bp, with characteristics of retroviruses and retrotransposons, and thus designated AoLTR (A. oryzae LTR-retrotransposable element). AoLTR comprised putative reverse transcriptase, RNase H, and integrase domains. The deduced amino acid sequence alignment of AoLTR showed 94% overall identity with AFLAV, an A. flavus Tf1/sushi retrotransposon. Quantitative real-time RT-PCR showed that AoLTR gene expression was significantly increased in the RKuAF8B, in accordance with the increased copy number. Inverse PCR indicated that the full-length retrotransposable element was randomly integrated into multiple genomic locations. However, no obvious phenotypic changes were associated with the increased AoLTR gene copy number.

  2. The Role of Iron Competition in the Antagonistic Action of the Rice Endophyte Streptomyces sporocinereus OsiSh-2 Against the Pathogen Magnaporthe oryzae.

    PubMed

    Zeng, Jiarui; Xu, Ting; Cao, Lidan; Tong, Chunyi; Zhang, Xuan; Luo, Dingyi; Han, Shuping; Pang, Pei; Fu, Weibin; Yan, Jindong; Liu, Xuanming; Zhu, Yonghua

    2018-04-20

    Rice blast caused by Magnaporthe oryzae severely impacts global rice yield stability. The rice endophyte Streptomyces sporocinereus OsiSh-2, with strong antagonistic activity towards M. oryzae, has been reported in our previous study. To decipher the model of the antagonistic action of OsiSh-2 towards M. oryzae, we compared the iron-capturing abilities of these two strains. The cultivation of OsiSh-2 and a M. oryzae strain under iron-rich and iron-starved conditions showed that M. oryzae depended more on iron supplementation for growth and development than did OsiSh-2. Genomic analysis of the S. sporocinereus and M. oryzae species strains revealed that they might possess different iron acquisition strategies. The actinobacterium OsiSh-2 is likely to favor siderophore utilization compared to the fungus M. oryzae. In addition, protein annotations found that OsiSh-2 contains the highest number of the siderophore biosynthetic gene clusters among the 13 endophytic actinomycete strains and 13 antifungal actinomycete strains that we compared, indicating the prominent siderophore production potential of OsiSh-2. Additionally, we verified that OsiSh-2 could excrete considerably more siderophores than Guy11 under iron-restricted conditions and displayed greater Fe 3+ -reducing activity during iron-supplemental conditions. Measurements of the iron mobilization between the antagonistic OsiSh-2 and Guy11 showed that the iron concentration is higher around OsiSh-2 than around Guy11. In addition, adding iron near OsiSh-2 could decrease the antagonism of OsiSh-2 towards Guy11. Our study revealed that the antagonistic capacity displayed by OsiSh-2 towards M. oryzae was related to the competition for iron. The highly efficient iron acquisition system of OsiSh-2 may offer valuable insight for the biocontrol of rice blast.

  3. Increased metabolite production by deletion of an HDA1-type histone deacetylase in the phytopathogenic fungi, Magnaporthe oryzae (Pyricularia oryzae) and Fusarium asiaticum.

    PubMed

    Maeda, K; Izawa, M; Nakajima, Y; Jin, Q; Hirose, T; Nakamura, T; Koshino, H; Kanamaru, K; Ohsato, S; Kamakura, T; Kobayashi, T; Yoshida, M; Kimura, M

    2017-11-01

    Histone deacetylases (HDACs) play an important role in the regulation of chromatin structure and gene expression. We found that dark pigmentation of Magnaporthe oryzae (anamorph Pyricularia oryzae) ΔMohda1, a mutant strain in which an orthologue of the yeast HDA1 was disrupted by double cross-over homologous recombination, was significantly stimulated in liquid culture. Analysis of metabolites in a ΔMohda1 mutant culture revealed that the accumulation of shunt products of the 1,8-dihydroxynaphthalene melanin and ergosterol pathways were significantly enhanced compared to the wild-type strain. Northern blot analysis of the ΔMohda1 mutant revealed transcriptional activation of three melanin genes that are dispersed throughout the genome of M. oryzae. The effect of deletion of the yeast HDA1 orthologue was also observed in Fusarium asiaticum from the Fusarium graminearum species complex; the HDF2 deletion mutant produced increased levels of nivalenol-type trichothecenes. These results suggest that histone modification via HDA1-type HDAC regulates the production of natural products in filamentous fungi. Natural products of fungi have significant impacts on human welfare, in both detrimental and beneficial ways. Although HDA1-type histone deacetylase is not essential for vegetative growth, deletion of the gene affects the expression of clustered secondary metabolite genes in some fungi. Here, we report that such phenomena are also observed in physically unlinked genes required for melanin biosynthesis in the rice blast fungus. In addition, production of Fusarium trichothecenes, previously reported to be unaffected by HDA1 deletion, was significantly upregulated in another Fusarium species. Thus, the HDA1-inactivation strategy may be regarded as a general approach for overproduction and/or discovery of fungal metabolites. © 2017 The Society for Applied Microbiology.

  4. Rice diversity panels available through the genetic stocks oryza collection

    USDA-ARS?s Scientific Manuscript database

    The Genetic Stocks Oryza (GSOR) Collection was established in 2004 at the USDA-ARS, Dale Bumpers National Rice Research Center (DBNRRC) located in Stuttgart, AR. The mission of GSOR is to provide unique genetic resources to the rice research community for genetic and genomics related research. GSOR ...

  5. Metalaxyl Degradation by Mucorales Strains Gongronella sp. and Rhizopus oryzae.

    PubMed

    Martins, Maria Rosário; Santos, Cledir; Pereira, Pablo; Cruz-Morais, Júlio; Lima, Nelson

    2017-12-14

    In this study, the degradation of metalaxyl was investigated in the presence of two Mucorales strains, previously isolated from soil subjected to repeated treatments with this fungicide and selected after enrichment technique. Fungal strains were characterised by a polyphasic approach using phylogenetic analysis of the Internal Transcribed Spacer (ITS) gene region, phenotypic characterisation by Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) spectral analysis, and growth kinetics experiments. The strains were identified as Gongronella sp. and Rhizopus oryzae . The fungal growth kinetics in liquid cultures containing metalaxyl fits with Haldane model. Under laboratory conditions, the ability of Gongronella sp. and R. oryzae cultures to degrade metalaxyl was evaluated in liquid cultures and soil experiments. Both species were able to: (a) use metalaxyl as the main carbon and energy source; and (b) degrade metalaxyl in polluted soils, with rates around 1.0 mg kg - ¹ d - ¹. This suggests these strains could degrade metalaxyl in soils contaminated with this fungicide.

  6. Lateral flow immunoassay for on-site detection of Xanthomonas arboricola pv. pruni in symptomatic field samples

    PubMed Central

    López-Soriano, Pablo; Noguera, Patricia; Gorris, María Teresa; Puchades, Rosa; Maquieira, Ángel; Marco-Noales, Ester; López, María M.

    2017-01-01

    Xanthomonas arboricola pv. pruni is a quarantine pathogen and the causal agent of the bacterial spot disease of stone fruits and almond, a major threat to Prunus species. Rapid and specific detection methods are essential to improve disease management, and therefore a prototype of a lateral flow immunoassay (LFIA) was designed for the detection of X. arboricola pv. pruni in symptomatic field samples. It was developed by producing polyclonal antibodies which were then combined with carbon nanoparticles and assembled on nitrocellulose strips. The specificity of the LFIA was tested against 87 X. arboricola pv. pruni strains from different countries worldwide, 47 strains of other Xanthomonas species and 14 strains representing other bacterial genera. All X. arboricola pv. pruni strains were detected and cross-reactions were observed only with four strains of X. arboricola pv. corylina, a hazelnut pathogen that does not share habitat with X. arboricola pv. pruni. The sensitivity of the LFIA was assessed with suspensions from pure cultures of three X. arboricola pv. pruni strains and with spiked leaf extracts prepared from four hosts inoculated with this pathogen (almond, apricot, Japanese plum and peach). The limit of detection observed with both pure cultures and spiked samples was 104 CFU ml-1. To demonstrate the accuracy of the test, 205 samples naturally infected with X. arboricola pv. pruni and 113 samples collected from healthy plants of several different Prunus species were analyzed with the LFIA. Results were compared with those obtained by plate isolation and real time PCR and a high correlation was found among techniques. Therefore, we propose this LFIA as a screening tool that allows a rapid and reliable diagnosis of X. arboricola pv. pruni in symptomatic plants. PMID:28448536

  7. Draft Genome Sequence of Two Strains of Xanthomonas arboricola Isolated from Prunus persica Which Are Dissimilar to Strains That Cause Bacterial Spot Disease on Prunus spp.

    PubMed Central

    Garita-Cambronero, Jerson; Palacio-Bielsa, Ana; López, María M.

    2016-01-01

    The draft genome sequences of two strains of Xanthomonas arboricola, isolated from asymptomatic peach trees in Spain, are reported here. These strains are avirulent and do not belong to the same phylogroup as X. arboricola pv. pruni, a causal agent of bacterial spot disease of stone fruits and almonds. PMID:27609931

  8. Rapid cell death in Xanthomonas campestris pv. glycines.

    PubMed

    Gautam, Satyendra; Sharma, Arun

    2002-04-01

    Xanthomonas campestris pv. glycines strain AM2 (XcgAM2), the etiological agent of bacterial pustule disease of soybean, exhibited post-exponential rapid cell death (RCD) in LB medium. X. campestris pv. malvacearum NCIM 2310 and X. campestris NCIM 2961 also displayed RCD, though less pronouncedly than XcgAM2. RCD was not observed in Pseudomonas syringae pv. glycines, or Escherichia coli DH5alpha. Incubation of the post-exponential LB-grown XcgAM2 cultures at 4 degrees C arrested the RCD. RCD was also inhibited by the addition of starch during the exponential phase of LB-growing XcgAM2. Protease negative mutants of XcgAM2 were found to be devoid of RCD behavior observed in the wild type XcgAM2. While undergoing RCD, the organism was found to transform to spherical membrane bodies. The presence of membrane bodies was confirmed by using a membrane specific fluorescent label, 1,6-diphenyl 1,3,5-hexatriene (DPH), and also by visualizing these structures under microscope. The membrane bodies of XcgAM2 were found to contain DNA, which was devoid of the indigenous plasmids of the organism. The membrane bodies were found to bind annexin V indicative of the externalization of membrane phosphatidyl serine. Nicking of DNA in XcgAM2 cultures undergoing RCD in LB medium was also detected using a TUNEL assay. The RCD in XcgAM2 appeared to have features similar to the programmed cell death in eukaryotes.

  9. Lysin Motif–Containing Proteins LYP4 and LYP6 Play Dual Roles in Peptidoglycan and Chitin Perception in Rice Innate Immunity[W][OA

    PubMed Central

    Liu, Bing; Li, Jian-Feng; Ao, Ying; Qu, Jinwang; Li, Zhangqun; Su, Jianbin; Zhang, Yang; Liu, Jun; Feng, Dongru; Qi, Kangbiao; He, Yanming; Wang, Jinfa; Wang, Hong-Bin

    2012-01-01

    Plant innate immunity relies on successful detection of microbe-associated molecular patterns (MAMPs) of invading microbes via pattern recognition receptors (PRRs) at the plant cell surface. Here, we report two homologous rice (Oryza sativa) lysin motif–containing proteins, LYP4 and LYP6, as dual functional PRRs sensing bacterial peptidoglycan (PGN) and fungal chitin. Live cell imaging and microsomal fractionation consistently revealed the plasma membrane localization of these proteins in rice cells. Transcription of these two genes could be induced rapidly upon exposure to bacterial pathogens or diverse MAMPs. Both proteins selectively bound PGN and chitin but not lipopolysaccharide (LPS) in vitro. Accordingly, silencing of either LYP specifically impaired PGN- or chitin- but not LPS-induced defense responses in rice, including reactive oxygen species generation, defense gene activation, and callose deposition, leading to compromised resistance against bacterial pathogen Xanthomonas oryzae and fungal pathogen Magnaporthe oryzae. Interestingly, pretreatment with excess PGN dramatically attenuated the alkalinization response of rice cells to chitin but not to flagellin; vice versa, pretreatment with chitin attenuated the response to PGN, suggesting that PGN and chitin engage overlapping perception components in rice. Collectively, our data support the notion that LYP4 and LYP6 are promiscuous PRRs for PGN and chitin in rice innate immunity. PMID:22872757

  10. AoS28D, a proline-Xaa carboxypeptidase secreted by Aspergillus oryzae.

    PubMed

    Salamin, Karine; Eugster, Philippe J; Jousson, Olivier; Waridel, Patrice; Grouzmann, Eric; Monod, Michel

    2017-05-01

    Prolyl peptidases of the MEROPS S28 family are of particular interest because they are key enzymes in the digestion of proline-rich peptides. A BLAST analysis of the Aspergillus oryzae genome revealed sequences coding for four proteases of the S28 family. Three of these proteases, AoS28A, AoS28B, and AoS28C, were previously characterized as acidic prolyl endopeptidases. The fourth protease, AoS28D, showed high sequence divergence with other S28 proteases and belongs to a phylogenetically distinct cluster together with orthologous proteases from other Aspergillus species. The objective of the present paper was to characterize AoS28D protease in terms of substrate specificity and activity. AoS28D produced by gene overexpression in A. oryzae and in Pichia pastoris was a 70-kDa glycoprotein with a 10-kDa sugar moiety. In contrast with other S28 proteases, AoS28D did not hydrolyze internal Pro-Xaa bonds of several tested peptides. Similarly, to human lysosomal Pro-Xaa carboxypeptidase, AoS28D demonstrated selectivity for cleaving C-terminal Pro-Xaa bonds which are resistant to carboxypeptidases of the S10 family concomitantly secreted by A. oryzae. Therefore, AoS28D could act in synergy with these enzymes during sequential degradation of a peptide from its C-terminus.

  11. Deciphering Genome Content and Evolutionary Relationships of Isolates from the Fungus Magnaporthe oryzae Attacking Different Host Plants

    PubMed Central

    Chiapello, Hélène; Mallet, Ludovic; Guérin, Cyprien; Aguileta, Gabriela; Amselem, Joëlle; Kroj, Thomas; Ortega-Abboud, Enrique; Lebrun, Marc-Henri; Henrissat, Bernard; Gendrault, Annie; Rodolphe, François; Tharreau, Didier; Fournier, Elisabeth

    2015-01-01

    Deciphering the genetic bases of pathogen adaptation to its host is a key question in ecology and evolution. To understand how the fungus Magnaporthe oryzae adapts to different plants, we sequenced eight M. oryzae isolates differing in host specificity (rice, foxtail millet, wheat, and goosegrass), and one Magnaporthe grisea isolate specific of crabgrass. Analysis of Magnaporthe genomes revealed small variation in genome sizes (39–43 Mb) and gene content (12,283–14,781 genes) between isolates. The whole set of Magnaporthe genes comprised 14,966 shared families, 63% of which included genes present in all the nine M. oryzae genomes. The evolutionary relationships among Magnaporthe isolates were inferred using 6,878 single-copy orthologs. The resulting genealogy was mostly bifurcating among the different host-specific lineages, but was reticulate inside the rice lineage. We detected traces of introgression from a nonrice genome in the rice reference 70-15 genome. Among M. oryzae isolates and host-specific lineages, the genome composition in terms of frequencies of genes putatively involved in pathogenicity (effectors, secondary metabolism, cazome) was conserved. However, 529 shared families were found only in nonrice lineages, whereas the rice lineage possessed 86 specific families absent from the nonrice genomes. Our results confirmed that the host specificity of M. oryzae isolates was associated with a divergence between lineages without major gene flow and that, despite the strong conservation of gene families between lineages, adaptation to different hosts, especially to rice, was associated with the presence of a small number of specific gene families. All information was gathered in a public database (http://genome.jouy.inra.fr/gemo). PMID:26454013

  12. Antifungal activity of colistin against mucorales species in vitro and in a murine model of Rhizopus oryzae pulmonary infection.

    PubMed

    Ben-Ami, Ronen; Lewis, Russell E; Tarrand, Jeffrey; Leventakos, Konstantinos; Kontoyiannis, Dimitrios P

    2010-01-01

    In immunosuppressed hosts, mucormycosis is a life-threatening infection with few treatment options. We studied the activity of colistin (polymyxin E) against Mucorales species in vitro and in a murine model of pulmonary Rhizopus oryzae infection. Colistin exhibited fungicidal activity in vitro against Mucorales spores and mycelia. At the colistin MIC, initial R. oryzae hyphal damage was followed by rapid regrowth; however, regrowth was prevented by combining colistin with a subinhibitory concentration of amphotericin B. Using electron microscopy and FM4-64 staining, we demonstrated that colistin disrupts R. oryzae cytoplasmic and vacuolar membranes, resulting in the leakage of intracellular contents. The prophylactic intranasal treatment of immunosuppressed mice with colistimethate significantly reduced the mortality rate and pulmonary fungal burden resulting from inhalational challenge with R. oryzae spores, whereas intraperitoneal colistimethate treatment had no effect. We conclude that colistin has modest in vitro and in vivo fungicidal activity against Mucorales spp. Further studies are warranted to assess the use of this drug in the prevention and treatment of mucormycosis.

  13. Antifungal Activity of Colistin against Mucorales Species In Vitro and in a Murine Model of Rhizopus oryzae Pulmonary Infection▿

    PubMed Central

    Ben-Ami, Ronen; Lewis, Russell E.; Tarrand, Jeffrey; Leventakos, Konstantinos; Kontoyiannis, Dimitrios P.

    2010-01-01

    In immunosuppressed hosts, mucormycosis is a life-threatening infection with few treatment options. We studied the activity of colistin (polymyxin E) against Mucorales species in vitro and in a murine model of pulmonary Rhizopus oryzae infection. Colistin exhibited fungicidal activity in vitro against Mucorales spores and mycelia. At the colistin MIC, initial R. oryzae hyphal damage was followed by rapid regrowth; however, regrowth was prevented by combining colistin with a subinhibitory concentration of amphotericin B. Using electron microscopy and FM4-64 staining, we demonstrated that colistin disrupts R. oryzae cytoplasmic and vacuolar membranes, resulting in the leakage of intracellular contents. The prophylactic intranasal treatment of immunosuppressed mice with colistimethate significantly reduced the mortality rate and pulmonary fungal burden resulting from inhalational challenge with R. oryzae spores, whereas intraperitoneal colistimethate treatment had no effect. We conclude that colistin has modest in vitro and in vivo fungicidal activity against Mucorales spp. Further studies are warranted to assess the use of this drug in the prevention and treatment of mucormycosis. PMID:19858263

  14. Identification of Pseudomonas mosselii BS011 gene clusters required for suppression of Rice Blast Fungus Magnaporthe oryzae.

    PubMed

    Wu, Lijuan; Xiao, Wei; Chen, Guoqing; Song, Dawei; Khaskheli, Maqsood Ahmed; Li, Pei; Zhang, Shiying; Feng, Guozhong

    2018-04-25

    Pseudomonas is a Gram-negative, rod-shaped bacteria. Many members of this genus displayed remarkable physiological and metabolic activity against different plant pathogens. However, Pseudomonas mosselii has not yet been characterized in biocontrol against plant disease. Here we isolated a strain of P. mosselii BS011 from the rhizosphere soil of rice plants, and the isolate showed strong inhibitory activity against the rice blast fungus Magnaporthe oryzae. Further we sequenced the complete genome of BS011, which consist of 5.75 Mb with a circular chromosome, 5,170 protein-coding genes, 23 rRNA and 78 tRNA operons. Bioinformatic analysis revealed that seven gene clusters may be involved in the biosynthesis of metabolites. Gene deletion experiments demonstrated that the gene cluster c-xtl is required for inhibitory activity against M. oryzae. Bioassay showed that the crude extract from BS011 fermentation sample significantly inhibited the development of M. oryzae at a concentration of 10 μg/ml. Besides, we illustrated that the crude extract of BS011 impaired the appressorial formation in a dose dependent manner. Collectively our results revealed that P. mosselii BS011 is a promising biocontrol agent and the gene cluster c-xtl is essential for inhibiting the development of M. oryzae. Copyright © 2018. Published by Elsevier B.V.

  15. Proteomic changes associated with deletion of the Magnaporthe oryzae conidial morphology-regulating gene COM1

    PubMed Central

    2010-01-01

    Background The rice blast disease caused by Magnaporthe oryzae is a major constraint on world rice production. The conidia produced by this fungal pathogen are the main source of disease dissemination. The morphology of conidia may be a critical factor in the spore dispersal and virulence of M. oryzae in the field. Deletion of a conidial morphology regulating gene encoding putative transcriptional regulator COM1 in M. oryzae resulted in aberrant conidial shape, reduced conidiation and attenuated virulence. Results In this study, a two-dimensional gel electrophoresis/matrix assisted laser desorption ionization- time of flight mass spectrometry (2-DE/MALDI-TOF MS) based proteomics approach was employed to identify the cellular and molecular components regulated by the COM1 protein (COM1p) that might contribute to the aberrant phenotypes in M. oryzae. By comparing the conidial proteomes of COM1 deletion mutant and its isogenic wild-type strain P131, we identified a potpourri of 31 proteins that exhibited statistically significant alterations in their abundance levels. Of these differentially regulated proteins, the abundance levels of nine proteins were elevated and twelve were reduced in the Δcom1 mutant. Three proteins were detected only in the Δcom1 conidial proteome, whereas seven proteins were apparently undetectable. The data obtained in the study suggest that the COM1p plays a key role in transcriptional reprogramming of genes implicated in melanin biosynthesis, carbon and energy metabolism, structural organization of cell, lipid metabolism, amino acid metabolism, etc. Semi-quantitative RT-PCR analysis revealed the down-regulation of genes encoding enzymes involved in melanin biosynthesis in the COM1 mutant. Conclusions Our results suggest that the COM1p may regulate the transcription of genes involved in various cellular processes indispensable for conidial development and appressorial penetration. These functions are likely to contribute to the effects of

  16. Impact of tricyclazole and azoxystrobin on growth, sporulation and secondary infection of the rice blast fungus, Magnaporthe oryzae.

    PubMed

    Kunova, Andrea; Pizzatti, Cristina; Cortesi, Paolo

    2013-02-01

    Rice blast, caused by Magnaporthe oryzae B. Couch sp. nov., is one of the most destructive rice diseases worldwide, causing substantial yield losses every year. In Italy, its management is based mainly on the use of two fungicides, azoxystrobin and tricyclazole, that restrain the disease progress. The aim of this study was to investigate and compare the inhibitory effects of the two fungicides on the growth, sporulation and secondary infection of M. oryzae. Magnaporthe oryzae mycelium growth was inhibited at low concentrations of azoxystrobin and relatively high concentrations of tricyclazole, while sporulation was more sensitive to both fungicides and was affected at similarly low doses. Furthermore, infection efficiency of conidia obtained from mycelia exposed to tricyclazole was affected to a higher extent than for conidia produced on azoxystrobin-amended media, even though germination of such conidia was reduced after azoxystrobin treatment. This study presents for the first time detailed azoxystrobin and tricyclazole growth-response curves for M. oryzae mycelium growth and sporulation. Furthermore, high efficacy of tricyclazole towards inhibition of sporulation and secondary infection indicates an additional possible mode of action of this fungicide that is different from inhibition of melanin biosynthesis. Copyright © 2012 Society of Chemical Industry.

  17. Comparative analysis of the root transcriptomes of cultivated and wild rice varieties in response to Magnaporthe oryzae infection revealed both common and species-specific pathogen responses.

    PubMed

    Tian, Lei; Shi, Shaohua; Nasir, Fahad; Chang, Chunling; Li, Weiqiang; Tran, Lam-Son Phan; Tian, Chunjie

    2018-04-20

    Magnaporthe oryzae, the causal fungus of rice blast disease, negatively impacts global rice production. Wild rice (Oryza rufipogon), a relative of cultivated rice (O. sativa), possesses unique attributes that enable it to resist pathogen invasion. Although wild rice represents a major resource for disease resistance, relative to current cultivated rice varieties, no prior studies have compared the immune and transcriptional responses in the roots of wild and cultivated rice to M. oryzae. In this study, we showed that M. oryzae could act as a typical root-infecting pathogen in rice, in addition to its common infection of leaves, and wild rice roots were more resistant to M. oryzae than cultivated rice roots. Next, we compared the differential responses of wild and cultivated rice roots to M. oryzae using RNA-sequencing (RNA-seq) to unravel the molecular mechanisms underlying the enhanced resistance of the wild rice roots. Results indicated that both common and genotype-specific mechanisms exist in both wild and cultivated rice that are associated with resistance to M. oryzae. In wild rice, resistance mechanisms were associated with lipid metabolism, WRKY transcription factors, chitinase activities, jasmonic acid, ethylene, lignin, and phenylpropanoid and diterpenoid metabolism; while the pathogen responses in cultivated rice were mainly associated with phenylpropanoid, flavone and wax metabolism. Although modulations in primary metabolism and phenylpropanoid synthesis were common to both cultivated and wild rice, the modulation of secondary metabolism related to phenylpropanoid synthesis was associated with lignin synthesis in wild rice and flavone synthesis in cultivated rice. Interestingly, while the expression of fatty acid and starch metabolism-related genes was altered in both wild and cultivated rice in response to the pathogen, changes in lipid acid synthesis and lipid acid degradation were dominant in cultivated and wild rice, respectively. The response

  18. Physiological and molecular alterations promoted by Schizotetranychus oryzae mite infestation in rice leaves

    PubMed Central

    Buffon, Giseli; Blasi, Édina A. R.; Adamski, Janete M.; Ferla, Noeli J.; Berger, Markus; Santi, Lucélia; Lavallée-Adam, Mathieu; Yates, John R.; Beys-da-Silva, Walter O.; Sperotto, Raul A.

    2016-01-01

    Infestation of phytophagous mite Schizotetranychus oryzae in rice causes critical yield losses. To better understand this interaction, we employed Multidimensional Protein Identification Technology (MudPIT) approach to identify differentially expressed proteins. We detected 18 unique proteins in control and 872 in infested leaves, respectively, along with 32 proteins more abundant in control leaves. S. oryzae infestation caused decreased abundance of proteins related to photosynthesis (mostly photosystem II-related), carbon assimilation and energy production, chloroplast detoxification, defense, fatty acid and gibberellin synthesis. On the other hand, infestation caused increased abundance of proteins involved in protein modification and degradation, gene expression at the translation level, protein partitioning to different organelles, lipid metabolism, actin cytoskeleton remodeling, and synthesis of jasmonate, amino acid and molecular chaperones. Our results also suggest that S. oryzae infestation promotes cell wall remodeling and interferes with ethylene biosynthesis in rice leaves. Proteomic data were positively correlated with enzymatic assays and RT-qPCR analysis. Our findings describe the protein expression patterns of infested rice leaves, and suggest that the acceptor side of PSII is probably the major damaged target in the photosynthetic apparatus. These data will be useful in future biotechnological approaches aiming to induce phytophagous mite resistance in rice. PMID:26667653

  19. Enzymatic synthesis of novel oligosaccharides from N-acetylsucrosamine using β-fructofuranosidase from Aspergillus oryzae.

    PubMed

    Nishio, Toshiyuki; Juami, Mai; Wada, Toru; Sugimoto, Yuta; Senou, Hiroki; Komori, Wataru; Sakuma, Chiseko; Hirano, Takako; Hakamata, Wataru; Tashiro, Mitsuru

    2013-12-15

    Mycelia of Aspergillus oryzae NBRC100959 contain 2 types of β-fructofuranosidases, transfructosylation-catalyzing enzyme (βFFaseI), and hydrolysis-catalyzing enzyme (βFFaseII). Using βFFaseI extracted from the mycelia of strain NBRC100959, two novel oligosaccharides consisting of GlcNAc and fructose, β-d-fructofuranosyl-(2→1)-β-d-fructofuranosyl-(2↔1)-2-acetamido-2-deoxy-α-d-glucopyranoside (N-acetyl-1-kestosamine, 1-KesNAc) and β-d-fructofuranosyl-(2→1)-β-d-fructofuranosyl-(2→1)-β-d-fructofuranosyl-(2↔1)-2-acetamido-2-deoxy-α-d-glucopyranoside (N-acetylnystosamine, NysNAc), were synthesized from β-d-fructofuranosyl-(2↔1)-2-acetamido-2-deoxy-α-d-glucopyranoside (N-acetylsucrosamine, SucNAc). We next planned to synthesize 1-KesNAc and NysNAc using A. oryzae mycelia. However, it was thought that the presence of βFFaseII is disadvantageous for the production of these oligosaccharides by βFFaseI, because βFFaseII hydrolyzed 1-KesNAc and NysNAc. We succeeded to produce A. oryzae mycelia containing βFFaseI as the major β-fructofuranosidase, by increasing sucrose concentration in the culture medium. Then, using a dried sample of these A. oryzae mycelia, reaction for the oligosaccharide production was performed. As the results, 190mg of 1-KesNAc and 60mg of NysNAc were obtained from 0.6g of SucNAc. This whole-cell catalysis method facilitates the synthesis of 1-KesNAc and NysNAc because extraction and purification of βFFaseI from mycelia are unnecessary. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. In vitro antifungal susceptibility of clinical species belonging to Aspergillus genus and Rhizopus oryzae.

    PubMed

    Kachuei, R; Khodavaisy, S; Rezaie, S; Sharifynia, S

    2016-03-01

    Among filamentous fungal pathogens, Aspergillus spp. and zygomycetes account for highest rates of morbidity and mortality among immunocompromised patients. Recently developed antifungal drugs offer the potential to improve management and therapeutic outcomes of fungal infections. The aim of this study was to analyse the in vitro activities of voriconazole, itraconazole, amphotericin B and caspofungin against clinical isolates of Aspergillus spp. and Rhizopus oryzae. The in vitro antifungal susceptibility of 54 isolates belonging to different clinical isolates of Aspergillus spp. and R. oryzae was tested for four antifungal agents using a microdilution reference method (CLSI, M38-A2). All isolates were identified by typical colony and microscopic characteristics, and also characterized by molecular methods. Caspofungin (MEC range: 0.008-0.25 and MEC50: 0.0023μg/mL) was the most active drug in vitro against Aspergillus spp., followed by voriconazole (MIC range: 0.031-8 and MIC50: 0.5μg/mL), itraconazole (MIC range: 0.031-16 and MIC50: 0.25μg/mL), and amphotericin B (MIC range: 0.125-4 and MIC50: 0.5μg/mL), in order of decreasing activity. The caspofungin, voriconazole, and itraconazole demonstrated poor in vitro activity against R. oryzae isolates evaluated, followed by amphotericin B. This study demonstrates that caspofungin had good antifungal activity and azole agents had better activity than amphotericin B against Aspergillus species. Although, azole drugs are considered ineffective against R. oryzae. This result is just from a small scale in vitro susceptibility study and we did not take other factors into consideration. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Transposable Elements as Stress Adaptive Capacitors Induce Genomic Instability in Fungal Pathogen Magnaporthe oryzae

    PubMed Central

    Chadha, Sonia; Sharma, Mradul

    2014-01-01

    A fundamental problem in fungal pathogenesis is to elucidate the evolutionary forces responsible for genomic rearrangements leading to races with fitter genotypes. Understanding the adaptive evolutionary mechanisms requires identification of genomic components and environmental factors reshaping the genome of fungal pathogens to adapt. Herein, Magnaporthe oryzae, a model fungal plant pathogen is used to demonstrate the impact of environmental cues on transposable elements (TE) based genome dynamics. For heat shock and copper stress exposed samples, eight TEs belonging to class I and II family were employed to obtain DNA profiles. Stress induced mutant bands showed a positive correlation with dose/duration of stress and provided evidences of TEs role in stress adaptiveness. Further, we demonstrate that genome dynamics differ for the type/family of TEs upon stress exposition and previous reports of stress induced MAGGY transposition has underestimated the role of TEs in M. oryzae. Here, we identified Pyret, MAGGY, Pot3, MINE, Mg-SINE, Grasshopper and MGLR3 as contributors of high genomic instability in M. oryzae in respective order. Sequencing of mutated bands led to the identification of LTR-retrotransposon sequences within regulatory regions of psuedogenes. DNA transposon Pot3 was identified in the coding regions of chromatin remodelling protein containing tyrosinase copper-binding and PWWP domains. LTR-retrotransposons Pyret and MAGGY are identified as key components responsible for the high genomic instability and perhaps these TEs are utilized by M. oryzae for its acclimatization to adverse environmental conditions. Our results demonstrate how common field stresses change genome dynamics of pathogen and provide perspective to explore the role of TEs in genome adaptability, signalling network and its impact on the virulence of fungal pathogens. PMID:24709911

  2. Volatiles Mediated Interactions Between Aspergillus oryzae Strains Modulate Morphological Transition and Exometabolomes.

    PubMed

    Singh, Digar; Lee, Choong H

    2018-01-01

    Notwithstanding its mitosporic nature, an improbable morpho-transformation state i. e., sclerotial development (SD), is vaguely known in Aspergillus oryzae . Nevertheless an intriguing phenomenon governing mold's development and stress response, the effects of exogenous factors engendering SD, especially the volatile organic compounds (VOCs) mediated interactions (VMI) pervasive in microbial niches have largely remained unexplored. Herein, we examined the effects of intra-species VMI on SD in A. oryzae RIB 40, followed by comprehensive analyses of associated growth rates, pH alterations, biochemical phenotypes, and exometabolomes. We cultivated A. oryzae RIB 40 (S1 VMI : KACC 44967) opposite a non-SD partner strain, A. oryzae (S2: KCCM 60345), conditioning VMI in a specially designed "twin plate assembly." Notably, SD in S1 VMI was delayed relative to its non-conditioned control (S1) cultivated without partner strain (S2) in twin plate. Selectively evaluating A. oryzae RIB 40 (S1 VMI vs. S1) for altered phenotypes concomitant to SD, we observed a marked disparity for corresponding growth rates (S1 VMI < S1) 7days , media pH (S1 VMI > S1) 7days , and biochemical characteristics viz ., protease (S1 VMI > S1) 7days , amylase (S1 VMI > nS1) 3-7 days , and antioxidants (S1 VMI > S1) 7days levels. The partial least squares-discriminant analysis (PLS-DA) of gas chromatography-time of flight-mass spectrometry (GC-TOF-MS) datasets for primary metabolites exhibited a clustered pattern (PLS1, 22.04%; PLS2, 11.36%), with 7 days incubated S1 VMI extracts showed higher abundance of amino acids, sugars, and sugar alcohols with lower organic acids and fatty acids levels, relative to S1. Intriguingly, the higher amino acid and sugar alcohol levels were positively correlated with antioxidant activity, likely impeding SD in S1 VMI . Further, the PLS-DA (PLS1, 18.11%; PLS2, 15.02%) based on liquid chromatography-mass spectrometry (LC-MS) datasets exhibited a notable disparity for post

  3. Volatiles Mediated Interactions Between Aspergillus oryzae Strains Modulate Morphological Transition and Exometabolomes

    PubMed Central

    Singh, Digar; Lee, Choong H.

    2018-01-01

    Notwithstanding its mitosporic nature, an improbable morpho-transformation state i. e., sclerotial development (SD), is vaguely known in Aspergillus oryzae. Nevertheless an intriguing phenomenon governing mold's development and stress response, the effects of exogenous factors engendering SD, especially the volatile organic compounds (VOCs) mediated interactions (VMI) pervasive in microbial niches have largely remained unexplored. Herein, we examined the effects of intra-species VMI on SD in A. oryzae RIB 40, followed by comprehensive analyses of associated growth rates, pH alterations, biochemical phenotypes, and exometabolomes. We cultivated A. oryzae RIB 40 (S1VMI: KACC 44967) opposite a non-SD partner strain, A. oryzae (S2: KCCM 60345), conditioning VMI in a specially designed “twin plate assembly.” Notably, SD in S1VMI was delayed relative to its non-conditioned control (S1) cultivated without partner strain (S2) in twin plate. Selectively evaluating A. oryzae RIB 40 (S1VMI vs. S1) for altered phenotypes concomitant to SD, we observed a marked disparity for corresponding growth rates (S1VMI < S1)7days, media pH (S1VMI > S1)7days, and biochemical characteristics viz., protease (S1VMI > S1)7days, amylase (S1VMI > nS1)3–7days, and antioxidants (S1VMI > S1)7days levels. The partial least squares—discriminant analysis (PLS-DA) of gas chromatography—time of flight—mass spectrometry (GC-TOF-MS) datasets for primary metabolites exhibited a clustered pattern (PLS1, 22.04%; PLS2, 11.36%), with 7 days incubated S1VMI extracts showed higher abundance of amino acids, sugars, and sugar alcohols with lower organic acids and fatty acids levels, relative to S1. Intriguingly, the higher amino acid and sugar alcohol levels were positively correlated with antioxidant activity, likely impeding SD in S1VMI. Further, the PLS-DA (PLS1, 18.11%; PLS2, 15.02%) based on liquid chromatography—mass spectrometry (LC-MS) datasets exhibited a notable disparity for post-SD (9

  4. Can rice (Oryza sativa) mitigate pesticides and nutrients in agricultural runoff?

    USDA-ARS?s Scientific Manuscript database

    Phytoremediation of nutrients and pesticides in runoff is a growing conservation effort, particularly in agriculturally intensive areas such as the lower Mississippi River Valley. In the current study, rice (Oryza sativa) was examined for its mitigation capacity of nitrogen, phosphorus, diazinon, a...

  5. A new and efficient approach for construction of uridine/uracil auxotrophic mutants in the filamentous fungus Aspergillus oryzae using Agrobacterium tumefaciens-mediated transformation.

    PubMed

    Nguyen, Khuyen Thi; Ho, Quynh Ngoc; Do, Loc Thi Binh Xuan; Mai, Linh Thi Dam; Pham, Duc-Ngoc; Tran, Huyen Thi Thanh; Le, Diep Hong; Nguyen, Huy Quang; Tran, Van-Tuan

    2017-06-01

    Aspergillus oryzae is a filamentous fungus widely used in food industry and as a microbial cell factory for recombinant protein production. Due to the inherent resistance of A. oryzae to common antifungal compounds, genetic transformation of this mold usually requires auxotrophic mutants. In this study, we show that Agrobacterium tumefaciens-mediated transformation (ATMT) method is very efficient for deletion of the pyrG gene in different Aspergillus oryzae wild-type strains to generate uridine/uracil auxotrophic mutants. Our data indicated that all the obtained uridine/uracil auxotrophic transformants, which are 5- fluoroorotic acid (5-FOA) resistant, exist as the pyrG deletion mutants. Using these auxotrophic mutants and the pyrG selectable marker for genetic transformation via A. tumefaciens, we could get about 1060 transformants per 10 6 fungal spores. In addition, these A. oryzae mutants were also used successfully for expression of the DsRed fluorescent reporter gene under control of the A. oryzae amyB promoter by the ATMT method, which resulted in obvious red transformants on agar plates. Our work provides a new and effective approach for constructing the uridine/uracil auxotrophic mutants in the importantly industrial fungus A. oryzae. This strategy appears to be applicable to other filamentous fungi to develop similar genetic transformation systems based on auxotrophic/nutritional markers for food-grade recombinant applications.

  6. In silico Analysis of 3′-End-Processing Signals in Aspergillus oryzae Using Expressed Sequence Tags and Genomic Sequencing Data

    PubMed Central

    Tanaka, Mizuki; Sakai, Yoshifumi; Yamada, Osamu; Shintani, Takahiro; Gomi, Katsuya

    2011-01-01

    To investigate 3′-end-processing signals in Aspergillus oryzae, we created a nucleotide sequence data set of the 3′-untranslated region (3′ UTR) plus 100 nucleotides (nt) sequence downstream of the poly(A) site using A. oryzae expressed sequence tags and genomic sequencing data. This data set comprised 1065 sequences derived from 1042 unique genes. The average 3′ UTR length in A. oryzae was 241 nt, which is greater than that in yeast but similar to that in plants. The 3′ UTR and 100 nt sequence downstream of the poly(A) site is notably U-rich, while the region located 15–30 nt upstream of the poly(A) site is markedly A-rich. The most frequently found hexanucleotide in this A-rich region is AAUGAA, although this sequence accounts for only 6% of all transcripts. These data suggested that A. oryzae has no highly conserved sequence element equivalent to AAUAAA, a mammalian polyadenylation signal. We identified that putative 3′-end-processing signals in A. oryzae, while less well conserved than those in mammals, comprised four sequence elements: the furthest upstream U-rich element, A-rich sequence, cleavage site, and downstream U-rich element flanking the cleavage site. Although these putative 3′-end-processing signals are similar to those in yeast and plants, some notable differences exist between them. PMID:21586533

  7. Glycogen Metabolic Genes Are Involved in Trehalose-6-Phosphate Synthase-Mediated Regulation of Pathogenicity by the Rice Blast Fungus Magnaporthe oryzae

    PubMed Central

    Wilson, Richard A.; Wang, Zheng-Yi; Kershaw, Michael J.; Talbot, Nicholas J.

    2013-01-01

    The filamentous fungus Magnaporthe oryzae is the causal agent of rice blast disease. Here we show that glycogen metabolic genes play an important role in plant infection by M. oryzae. Targeted deletion of AGL1 and GPH1, which encode amyloglucosidase and glycogen phosphorylase, respectively, prevented mobilisation of glycogen stores during appressorium development and caused a significant reduction in the ability of M. oryzae to cause rice blast disease. By contrast, targeted mutation of GSN1, which encodes glycogen synthase, significantly reduced the synthesis of intracellular glycogen, but had no effect on fungal pathogenicity. We found that loss of AGL1 and GPH1 led to a reduction in expression of TPS1 and TPS3, which encode components of the trehalose-6-phosphate synthase complex, that acts as a genetic switch in M. oryzae. Tps1 responds to glucose-6-phosphate levels and the balance of NADP/NADPH to regulate virulence-associated gene expression, in association with Nmr transcriptional inhibitors. We show that deletion of the NMR3 transcriptional inhibitor gene partially restores virulence to a Δagl1Δgph1 mutant, suggesting that glycogen metabolic genes are necessary for operation of the NADPH-dependent genetic switch in M. oryzae. PMID:24098112

  8. The inheritance of resistance to bacterial leaf spot of lettuce caused by Xanthomonas campestris pv. vitians in three lettuce cultivars

    PubMed Central

    Hayes, Ryan J; Trent, Mark A; Truco, Maria Jose; Antonise, Rudie; Michelmore, Richard W; Bull, Carolee T

    2014-01-01

    Lettuce yields can be reduced by the disease bacterial leaf spot (BLS) caused by the pathogen Xanthomonas campestris pv. vitians (Xcv) and host resistance is the most feasible method to reduce disease losses. The cultivars La Brillante, Pavane and Little Gem express an incompatible host–pathogen interaction as a hypersensitive response (HR) to California strains of Xcv resulting in resistance. Little was known about the inheritance of resistance; however, resistance to other lettuce pathogens is often determined by resistance gene candidates (RGCs) encoding nucleotide-binding leucine-rich repeat (NB-LRR) proteins. Therefore, we determined the inheritance of BLS resistance in the cultivars La Brillante, Little Gem and Pavane and mapped it relative to RGCs. The reaction to Xcv was analyzed in nine F1, F2 and recombinant inbred line populations of lettuce from HR×compatible or HR×HR crosses. The HR in La Brillante, Pavane and Little Gem is conditioned by single dominant genes, which are either allelic or closely linked genes. The resistance gene in La Brillante was designated Xanthomonas resistance 1 (Xar1) and mapped to lettuce linkage group 2. Xar1 is present in a genomic region that contains numerous NB-LRR encoding RGCs and functional pathogen resistance loci in the RGC2 family. The Xar1 gene confers a high level of BLS resistance in the greenhouse and field that can be introgressed into commercial lettuce cultivars to reduce BLS losses using molecular markers. PMID:26504558

  9. Carbohydrate-active enzymes from the zygomycete fungus Rhizopus oryzae: a highly specialized approach to carbohydrate degradation depicted at genome level

    PubMed Central

    2011-01-01

    Background Rhizopus oryzae is a zygomycete filamentous fungus, well-known as a saprobe ubiquitous in soil and as a pathogenic/spoilage fungus, causing Rhizopus rot and mucomycoses. Results Carbohydrate Active enzyme (CAZy) annotation of the R. oryzae identified, in contrast to other filamentous fungi, a low number of glycoside hydrolases (GHs) and a high number of glycosyl transferases (GTs) and carbohydrate esterases (CEs). A detailed analysis of CAZy families, supported by growth data, demonstrates highly specialized plant and fungal cell wall degrading abilities distinct from ascomycetes and basidiomycetes. The specific genomic and growth features for degradation of easily digestible plant cell wall mono- and polysaccharides (starch, galactomannan, unbranched pectin, hexose sugars), chitin, chitosan, β-1,3-glucan and fungal cell wall fractions suggest specific adaptations of R. oryzae to its environment. Conclusions CAZy analyses of the genome of the zygomycete fungus R. oryzae and comparison to ascomycetes and basidiomycete species revealed how evolution has shaped its genetic content with respect to carbohydrate degradation, after divergence from the Ascomycota and Basidiomycota. PMID:21241472

  10. Phototrophy and starvation-based induction of autophagy upon removal of Gcn5-catalyzed acetylation of Atg7 in Magnaporthe oryzae.

    PubMed

    Zhang, Shulin; Liang, Meiling; Naqvi, Naweed I; Lin, Chaoxiang; Qian, Wanqiang; Zhang, Lian-Hui; Deng, Yi Zhen

    2017-08-03

    Magnaporthe oryzae, the ascomycete fungus that causes rice blast disease, initiates conidiation in response to light when grown on Prune-Agar medium containing both carbon and nitrogen sources. Macroautophagy/autophagy was shown to be essential for M. oryzae conidiation and induced specifically upon exposure to light but is undetectable in the dark. Therefore, it is inferred that autophagy is naturally induced by light, rather than by starvation during M. oryzae conidiation. However, the signaling pathway(s) involved in such phototropic induction of autophagy remains unknown. We identified an M. oryzae ortholog of GCN5 (MGG_03677), encoding a histone acetyltransferase (HAT) that negatively regulates light- and nitrogen-starvation-induced autophagy, by acetylating the autophagy protein Atg7. Furthermore, we unveiled novel regulatory mechanisms on Gcn5 at both transcriptional and post-translational levels, governing its function associated with the unique phototropic response of autophagy in this pathogenic fungus. Thus, our study depicts a signaling network and regulatory mechanism underlying the autophagy induction by important environmental clues such as light and nutrients.

  11. Structural and physiological analyses of the alkanesulphonate-binding protein (SsuA) of the citrus pathogen Xanthomonas citri.

    PubMed

    Tófoli de Araújo, Fabiano; Bolanos-Garcia, Victor M; Pereira, Cristiane T; Sanches, Mario; Oshiro, Elisa E; Ferreira, Rita C C; Chigardze, Dimitri Y; Barbosa, João Alexandre Gonçalves; de Souza Ferreira, Luís Carlos; Benedetti, Celso E; Blundell, Tom L; Balan, Andrea

    2013-01-01

    The uptake of sulphur-containing compounds plays a pivotal role in the physiology of bacteria that live in aerobic soils where organosulfur compounds such as sulphonates and sulphate esters represent more than 95% of the available sulphur. Until now, no information has been available on the uptake of sulphonates by bacterial plant pathogens, particularly those of the Xanthomonas genus, which encompasses several pathogenic species. In the present study, we characterised the alkanesulphonate uptake system (Ssu) of Xanthomonas axonopodis pv. citri 306 strain (X. citri), the etiological agent of citrus canker. A single operon-like gene cluster (ssuEDACB) that encodes both the sulphur uptake system and enzymes involved in desulphurisation was detected in the genomes of X. citri and of the closely related species. We characterised X. citri SsuA protein, a periplasmic alkanesulphonate-binding protein that, together with SsuC and SsuB, defines the alkanesulphonate uptake system. The crystal structure of SsuA bound to MOPS, MES and HEPES, which is herein described for the first time, provides evidence for the importance of a conserved dipole in sulphate group coordination, identifies specific amino acids interacting with the sulphate group and shows the presence of a rather large binding pocket that explains the rather wide range of molecules recognised by the protein. Isolation of an isogenic ssuA-knockout derivative of the X. citri 306 strain showed that disruption of alkanesulphonate uptake affects both xanthan gum production and generation of canker lesions in sweet orange leaves. The present study unravels unique structural and functional features of the X. citri SsuA protein and provides the first experimental evidence that an ABC uptake system affects the virulence of this phytopathogen.

  12. Structural and Physiological Analyses of the Alkanesulphonate-Binding Protein (SsuA) of the Citrus Pathogen Xanthomonas citri

    PubMed Central

    Tófoli de Araújo, Fabiano; Bolanos-Garcia, Victor M.; Pereira, Cristiane T.; Sanches, Mario; Oshiro, Elisa E.; Ferreira, Rita C. C.; Chigardze, Dimitri Y.; Barbosa, João Alexandre Gonçalves; de Souza Ferreira, Luís Carlos; Benedetti, Celso E.; Blundell, Tom L.; Balan, Andrea

    2013-01-01

    Background The uptake of sulphur-containing compounds plays a pivotal role in the physiology of bacteria that live in aerobic soils where organosulfur compounds such as sulphonates and sulphate esters represent more than 95% of the available sulphur. Until now, no information has been available on the uptake of sulphonates by bacterial plant pathogens, particularly those of the Xanthomonas genus, which encompasses several pathogenic species. In the present study, we characterised the alkanesulphonate uptake system (Ssu) of Xanthomonas axonopodis pv. citri 306 strain (X. citri), the etiological agent of citrus canker. Methodology/Principal Findings A single operon-like gene cluster (ssuEDACB) that encodes both the sulphur uptake system and enzymes involved in desulphurisation was detected in the genomes of X. citri and of the closely related species. We characterised X. citri SsuA protein, a periplasmic alkanesulphonate-binding protein that, together with SsuC and SsuB, defines the alkanesulphonate uptake system. The crystal structure of SsuA bound to MOPS, MES and HEPES, which is herein described for the first time, provides evidence for the importance of a conserved dipole in sulphate group coordination, identifies specific amino acids interacting with the sulphate group and shows the presence of a rather large binding pocket that explains the rather wide range of molecules recognised by the protein. Isolation of an isogenic ssuA-knockout derivative of the X. citri 306 strain showed that disruption of alkanesulphonate uptake affects both xanthan gum production and generation of canker lesions in sweet orange leaves. Conclusions/Significance The present study unravels unique structural and functional features of the X. citri SsuA protein and provides the first experimental evidence that an ABC uptake system affects the virulence of this phytopathogen. PMID:24282519

  13. Characterization of bacteriophages Cp1 and Cp2, the strain-typing agents for Xanthomonas axonopodis pv. citri.

    PubMed

    Ahmad, Abdelmonim Ali; Ogawa, Megumi; Kawasaki, Takeru; Fujie, Makoto; Yamada, Takashi

    2014-01-01

    The strains of Xanthomonas axonopodis pv. citri, the causative agent of citrus canker, are historically classified based on bacteriophage (phage) sensitivity. Nearly all X. axonopodis pv. citri strains isolated from different regions in Japan are lysed by either phage Cp1 or Cp2; Cp1-sensitive (Cp1(s)) strains have been observed to be resistant to Cp2 (Cp2(r)) and vice versa. In this study, genomic and molecular characterization was performed for the typing agents Cp1 and Cp2. Morphologically, Cp1 belongs to the Siphoviridae. Genomic analysis revealed that its genome comprises 43,870-bp double-stranded DNA (dsDNA), with 10-bp 3'-extruding cohesive ends, and contains 48 open reading frames. The genomic organization was similar to that of Xanthomonas phage phiL7, but it lacked a group I intron in the DNA polymerase gene. Cp2 resembles morphologically Escherichia coli T7-like phages of Podoviridae. The 42,963-bp linear dsDNA genome of Cp2 contained terminal repeats. The Cp2 genomic sequence has 40 open reading frames, many of which did not show detectable homologs in the current databases. By proteomic analysis, a gene cluster encoding structural proteins corresponding to the class III module of T7-like phages was identified on the Cp2 genome. Therefore, Cp1 and Cp2 were found to belong to completely different virus groups. In addition, we found that Cp1 and Cp2 use different molecules on the host cell surface as phage receptors and that host selection of X. axonopodis pv. citri strains by Cp1 and Cp2 is not determined at the initial stage by binding to receptors.

  14. Fob1 and Fob2 Proteins Are Virulence Determinants of Rhizopus oryzae via Facilitating Iron Uptake from Ferrioxamine

    PubMed Central

    Liu, Mingfu; Lin, Lin; Gebremariam, Teclegiorgis; Luo, Guanpingsheng; Skory, Christopher D.; French, Samuel W.; Chou, Tsui-Fen; Edwards, John E.; Ibrahim, Ashraf S.

    2015-01-01

    Dialysis patients with chronic renal failure receiving deferoxamine for treating iron overload are uniquely predisposed for mucormycosis, which is most often caused by Rhizopus oryzae. Although the deferoxamine siderophore is not secreted by Mucorales, previous studies established that Rhizopus species utilize iron from ferrioxamine (iron-rich form of deferoxamine). Here we determined that the CBS domain proteins of Fob1 and Fob2 act as receptors on the cell surface of R. oryzae during iron uptake from ferrioxamine. Fob1 and Fob2 cell surface expression was induced in the presence of ferrioxamine and bound radiolabeled ferrioxamine. A R. oryzae strain with targeted reduced Fob1/Fob2 expression was impaired for iron uptake, germinating, and growing on medium with ferrioxamine as the sole source of iron. This strain also exhibited reduced virulence in a deferoxamine-treated, but not the diabetic ketoacidotic (DKA), mouse model of mucormycosis. The mechanism by which R. oryzae obtains iron from ferrioxamine involves the reductase/permease uptake system since the growth on ferrioxamine supplemented medium is associated with elevated reductase activity and the use of the ferrous chelator bathophenanthroline disulfonate abrogates iron uptake and growth on medium supplemented with ferrioxamine as a sole source of iron. Finally, R. oryzae mutants with reduced copies of the high affinity iron permease (FTR1) or with decreased FTR1 expression had an impaired iron uptake from ferrioxamine in vitro and reduced virulence in the deferoxamine-treated mouse model of mucormycosis. These two receptors appear to be conserved in Mucorales, and can be the subject of future novel therapy to maintain the use of deferoxamine for treating iron-overload. PMID:25974051

  15. Rewiring the reductive tricarboxylic acid pathway and L-malate transport pathway of Aspergillus oryzae for overproduction of L-malate.

    PubMed

    Liu, Jingjing; Xie, Zhipeng; Shin, Hyun-Dong; Li, Jianghua; Du, Guocheng; Chen, Jian; Liu, Long

    2017-07-10

    Aspergillus oryzae finds wide application in the food, feed, and wine industries, and is an excellent cell factory platform for production of organic acids. In this work, we achieved the overproduction of L-malate by rewiring the reductive tricarboxylic acid (rTCA) pathway and L-malate transport pathway of A. oryzae NRRL 3488. First, overexpression of native pyruvate carboxylase and malate dehydrogenase in the rTCA pathway improved the L-malate titer from 26.1gL -1 to 42.3gL -1 in shake flask culture. Then, the oxaloacetate anaplerotic reaction was constructed by heterologous expression of phosphoenolpyruvate carboxykinase and phosphoenolpyruvate carboxylase from Escherichia coli, increasing the L-malate titer to 58.5gL -1 . Next, the export of L-malate from the cytoplasm to the external medium was strengthened by overexpression of a C4-dicarboxylate transporter gene from A. oryzae and an L-malate permease gene from Schizosaccharomyces pombe, improving the L-malate titer from 58.5gL -1 to 89.5gL -1 . Lastly, guided by transcription analysis of the expression profile of key genes related to L-malate synthesis, the 6-phosphofructokinase encoded by the pfk gene was identified as a potential limiting step for L-malate synthesis. Overexpression of pfk with the strong sodM promoter increased the L-malate titer to 93.2gL -1 . The final engineered A. oryzae strain produced 165gL -1 L-malate with a productivity of 1.38gL -1 h -1 in 3-L fed-batch culture. Overall, we constructed an efficient L-malate producer by rewiring the rTCA pathway and L-malate transport pathway of A. oryzae NRRL 3488, and the engineering strategy adopted here may be useful for the construction of A. oryzae cell factories to produce other organic acids. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Production and biochemical characterization of an alkaline protease from Aspergillus oryzae CH93.

    PubMed

    Salihi, Ahsan; Asoodeh, Ahmad; Aliabadian, Mansour

    2017-01-01

    In this study, Aspergillus oryzae CH93 was isolated from soil sample and examined using molecular analysis. Following culture of A. oryzae CH93 under optimal enzyme production, a 47.5kDa extracellular protease was purified using ammonium sulfate precipitation and Q-Sepharose chromatography. The optimal pH 8 and temperature of 50°C obtained for the isolated protease. Sodium dodecyl sulfate (SDS), cetyltrimethyl ammonium bromide (CTAB), H 2 O 2 decreased activity, while Triton X-100 and phenylmethanesulfonyl fluoride (PMSF) had no inhibitory effect on the enzyme activity; meanwhile, 2-mercaptoethanol and ethylenediaminetetraacetic acid (EDTA) declined the protease activity. Isoamyl alcohol and acetone (30%) enhanced activity whereas 2-propanol, isopropanol and dimethyl sulfoxide (DMSO) (30%) reduced protease activity. The enzyme exhibited a half-life of 100min at its optimum temperature. Among five substrates of bovine serum albumin (BSA), N-acetyl-l-tyrosine ethyl ester monohydrate (ATEE), casein, azocasein and gelatin results showed that casein is the best substrate with V max of 0.1411±0.004μg/min and K m of 2.432±0.266μg/ml. In conclusion, the extracted protease from A. oryzae CH93 as a fungal source possessed biochemical features which could be useful in some application usages. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Biodegradation of thermally treated low density polyethylene by fungus Rhizopus oryzae NS 5.

    PubMed

    Awasthi, Shraddha; Srivastava, Neha; Singh, Tripti; Tiwary, D; Mishra, Pradeep Kumar

    2017-05-01

    Polythene is considered as one of the important object used in daily life. Being versatile in nature and resistant to microbial attack, they effectively cause environmental pollution. In the present study, biodegradation of low-density polyethylene (LDPE) have been performed using fungal lab isolate Rhizopus oryzae NS5. Lab isolate fungal strain capable of adhering to LDPE surface was used for the biodegradation of LDPE. This strain was identified as Rhizopus oryzae NS5 (Accession No. KT160362). Fungal growth was observed on the surface of the polyethylene when cultured in potato dextrose broth at 30 °C and 120 rpm, for 1 month. LDPE film was characterized before and after incubation by Fourier transform infrared spectroscopy, scanning electron microscopy, atomic force microscopy and universal tensile machine. About 8.4 ± 3% decrease (gravimetrically) in weight and 60% reduction in tensile strength of polyethylene was observed. Scanning electron microscope analysis showed hyphal penetration and degradation on the surface of polyethylene. Atomic force microscope analysis showed increased surface roughness after treatment with fungal isolate. A thick network of fungal hyphae forming a biofilm was also observed on the surface of the polyethylene pieces. Present study shows the potential of Rhizopus oryzae NS5 in polyethylene degradation in eco friendly and sustainable manner.

  18. High-efficiency l-lactic acid production by Rhizopus oryzae using a novel modified one-step fermentation strategy.

    PubMed

    Fu, Yong-Qian; Yin, Long-Fei; Zhu, Hua-Yue; Jiang, Ru

    2016-10-01

    In this study, lactic acid fermentation by Rhizopus oryzae was investigated using the two different fermentation strategies of one-step fermentation (OSF) and conventional fermentation (CF). Compared to CF, OSF reduced the demurrage of the production process and increased the production of lactic acid. However, the qp was significantly lower than during CF. Based on analysis of μ, qs and qp, a novel modified OSF strategy was proposed. This strategy aimed to achieve a high final concentration of lactic acid, and a high qp by R. oryzae. In this strategy, the maximum lactic acid concentration and productivity of the lactic acid production stage reached 158g/l and 5.45g/(lh), which were 177% and 366% higher, respectively, than the best results from CF. Importantly, the qp and yield did not decrease. This strategy is a convenient and economical method for l-lactic acid fermentation by R. oryzae. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Isolation of industrial strains of Aspergillus oryzae lacking ferrichrysin by disruption of the dffA gene.

    PubMed

    Watanabe, Hisayuki; Hatakeyama, Makoto; Sakurai, Hiroshi; Uchimiya, Hirofumi; Sato, Toshitsugu

    2008-11-01

    Based on studies using laboratory strains, the efficiency of gene disruption in Aspergillus oryzae, commonly known as koji mold, is low; thus, gene disruption has rarely been applied to the breeding of koji mold. To evaluate the efficiency of gene disruption in industrial strains of A. oryzae, we produced ferrichrysin biosynthesis gene (dffA) disruptants using three different industrial strains as hosts. PCR analysis of 438 pyrithiamine-resistant transformants showed dffA gene disruption efficiency of 42.9%-64.1%, which is much higher than previously reported. Analysis of the physiological characteristics of the disruptants indicated that dffA gene disruption results in hypersensitivity to hydrogen peroxide. To investigate the industrial characteristics of dffA gene disruptants, two strains were used to make rice koji and their properties were compared to those of the host strains. No differences were found between the dffA gene disruptants and the host strains, except that the disruptants did not produce ferrichrysin. Thus, this gene disruption technique is much more effective than conventional mutagenesis for A. oryzae breeding.

  20. MoSfl1 Is Important for Virulence and Heat Tolerance in Magnaporthe oryzae

    PubMed Central

    Li, Guotian; Zhou, Xiaoying; Kong, Lingan; Wang, Yuling; Zhang, Haifeng; Zhu, Heng; Mitchell, Thomas K.; Dean, Ralph A.; Xu, Jin-Rong

    2011-01-01

    The formation of appressoria, specialized plant penetration structures of Magnaporthe oryzae, is regulated by the MST11-MST7-PMK1 MAP kinase cascade. One of its downstream transcription factor, MST12, is important for penetration and invasive growth but dispensable for appressorium formation. To identify additional downstream targets that are regulated by Pmk1, in this study we performed phosphorylation assays with a protein microarray composed of 573 M. oryzae transcription factor (TF) genes. Three of the TF genes phosphorylated by Pmk1 in vitro were further analyzed by coimmunoprecipitation assays. One of them, MoSFL1, was found to interact with Pmk1 in vivo. Like other Sfl1 orthologs, the MoSfl1 protein has the HSF-like domain. When expressed in yeast, MoSFL1 functionally complemented the flocculation defects of the sfl1 mutant. In M. oryzae, deletion of MoSFl1 resulted in a significant reduction in virulence on rice and barley seedlings. Consistent with this observation, the Mosfl1 mutant was defective in invasive growth in penetration assays with rice leaf sheaths. In comparison with that of vegetative hyphae, the expression level of MoSFL1 was increased in appressoria and infected rice leaves. The Mosfl1 mutant also had increased sensitivity to elevated temperatures. In CM cultures of the Mosfl1 and pmk1 mutants grown at 30°C, the production of aerial hyphae and melanization were reduced but their growth rate was not altered. When assayed by qRT-PCR, the transcription levels of the MoHSP30 and MoHSP98 genes were reduced 10- and 3-fold, respectively, in the Mosfl1 mutant. SFL1 orthologs are conserved in filamentous ascomycetes but none of them have been functionally characterized in non-Saccharomycetales fungi. MoSfl1 has one putative MAPK docking site and three putative MAPK phosphorylation sites. Therefore, it may be functionally related to Pmk1 in the regulation of invasive growth and stress responses in M. oryzae. PMID:21625508

  1. High-yields heterologous production of the novel Aspergillus fumigatus elastase inhibitor AFUEI in Aspergillus oryzae.

    PubMed

    Yamashita, Nobuo; Komori, Yumiko; Okumura, Yoshiyuki; Uchiya, Kei-Ichi; Matsui, Takeshi; Nishimura, Akira; Ogawa, Kenji; Nikai, Toshiaki

    2011-08-01

    AFUEI, an elastase inhibitor produced by Aspergillus fumigatus strongly inhibits the elastolytic activity of A. fumigatus etc. To purify AFUEI, we constructed a strain that overproduces AFUEI by introducing the gene encoding AFUEI (Genbank accession no. AB546725) under control of the amyB promoter into the heterologous host Aspergillus oryzae. A. oryzae TF-4 displayed strong elastase inhibitory activity and produced considerably more AFUEI than that of A. fumigatus. Furthermore, AFUEI could be purified using culture broth and single ultrafiltration (UF) treatment, allowing for the effective production of AFUEI for use in clinical trials. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Contribution of aerial hyphae of Aspergillus oryzae to respiration in a model solid-state fermentation system.

    PubMed

    Rahardjo, Yovita S P; Weber, Frans J; le Comte, E Paul; Tramper, Johannes; Rinzema, Arjen

    2002-06-05

    Oxygen transfer is for two reasons a major concern in scale-up and process control in industrial application of aerobic fungal solid-state fermentation (SSF): 1) heat production is proportional to oxygen uptake and it is well known that heat removal is one of the main problems in scaled-up fermenters, and 2) oxygen supply to the mycelium on the surface of or inside the substrate particles may be hampered by diffusion limitation. This article gives the first experimental evidence that aerial hyphae are important for fungal respiration in SSF. In cultures of A. oryzae on a wheat-flour model substrate, aerial hyphae contributed up to 75% of the oxygen uptake rate by the fungus. This is due to the fact that A. oryzae forms very abundant aerial mycelium and diffusion of oxygen in the gas-filled pores of the aerial hyphae layer is rapid. It means that diffusion limitation in the densely packed mycelium layer that is formed closer to the substrate surface and that has liquid-filled pores is much less important for A. oryzae than was previously reported for R. oligosporus and C. minitans. It also means that the overall oxygen uptake rate for A. oryzae is much higher than the oxygen uptake rate that can be predicted in the densely packed mycelium layer for R. oligosporus and C. minitans. This would imply that cooling problems become more pronounced. Therefore, it is very important to clarify the physiological role of aerial hyphae in SSF. Copyright 2002 Wiley Periodicals, Inc. Biotechnol Bioeng 78: 539-544, 2002.

  3. Non-aflatoxigenicity of commercial Aspergillus oryzae strains due to genetic defects compared to aflatoxigenic Aspergillus flavus.

    PubMed

    Tao, Lin; Chung, Soo Hyun

    2014-08-01

    Aspergillus oryzae is generally recognized as safe, but it is closely related to A. flavus in morphology and genetic characteristics. In this study, we tested the aflatoxigenicity and genetic analysis of nine commercial A. oryzae strains that were used in Korean soybean fermented products. Cultural and HPLC analyses showed that none of the commercial strains produced detectable amount of aflatoxins. According to the molecular analysis of 17 genes in the aflatoxin (AF) biosynthetic pathway, the commercial strains could be classified into three groups. The group I strains contained all the 17 AF biosynthetic genes tested in this study; the group II strains deleted nine AF biosynthetic genes and possessed eight genes, including aflG, aflI, aflK, aflL, aflM, aflO, aflP, and aflQ; the group III strains only had six AF biosynthetic genes, including aflG, aflI, aflK, aflO, aflP, and aflQ. With the reverse transcription polymerase chain reaction, the group I A. oryzae strains showed no expression of aflG, aflQ and/or aflM genes, which resulted in the lack of AF-producing ability. Group II and group III strains could not produce AF owing to the deletion of more than half of the AF biosynthetic genes. In addition, the sequence data of polyketide synthase A (pksA) of group I strains of A. oryzae showed that there were three point mutations (two silent mutations and one missense mutation) compared with aflatoxigenic A. flavus used as the positive control in this study.

  4. Silencing of the Rice Gene LRR1 Compromises Rice Xa21 Transcript Accumulation and XA21-Mediated Immunity.

    PubMed

    Caddell, Daniel F; Park, Chang-Jin; Thomas, Nicholas C; Canlas, Patrick E; Ronald, Pamela C

    2017-12-01

    The rice immune receptor XA21 confers resistance to Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial leaf blight. We previously demonstrated that an auxilin-like protein, XA21 BINDING PROTEIN 21 (XB21), positively regulates resistance to Xoo. To further investigate the function of XB21, we performed a yeast two-hybrid screen. We identified 22 unique XB21 interacting proteins, including LEUCINE-RICH REPEAT PROTEIN 1 (LRR1), which we selected for further analysis. Silencing of LRR1 in the XA21 genetic background (XA21-LRR1Ri) compromises resistance to Xoo compared with control XA21 plants. XA21-LRR1Ri plants have reduced Xa21 transcript levels and reduced expression of genes that serve as markers of XA21-mediated activation. Overexpression of LRR1 is insufficient to alter resistance to Xoo in rice lines lacking XA21. Taken together, our results indicate that LRR1 is required for wild-type Xa21 transcript expression and XA21-mediated immunity.

  5. Integrating marker-assisted background analysis with foreground selection for pyramiding bacterial blight resistance genes into Basmati rice.

    PubMed

    Baliyan, Nikita; Malik, Rekha; Rani, Reema; Mehta, Kirti; Vashisth, Urvashi; Dhillon, Santosh; Boora, Khazan Singh

    2018-01-01

    Bacterial leaf blight (BB), caused by the bacterium Xanthomonas oryzae pv. Oryzae (Xoo), is the major constraint amongst rice diseases in India. CSR-30 is a very popular high-yielding, salt-tolerant Basmati variety widely grown in Haryana, India, but highly susceptible to BB. In the present study, we have successfully introgressed three BB resistance genes (Xa21, xa13 and xa5) from BB-resistant donor variety IRBB-60 into the BB-susceptible Basmati variety CSR-30 through marker-assisted selection (MAS) exercised with stringent phenotypic selection without compromising the Basmati traits. Background analysis using 131 polymorphic SSR markers revealed that recurrent parent genome (RPG) recovery ranged up to 97.1% among 15 BC 3 F 1 three-gene-pyramided genotypes. Based on agronomic evaluation, BB reaction, aroma, percentage recovery of RPG, and grain quality evaluation, four genotypes, viz., IC-R28, IC-R68, IC-R32, and IC-R42, were found promising and advanced to BC 3 F 2 generation. Copyright © 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  6. Molecular mimicry modulates plant host responses to pathogens.

    PubMed

    Ronald, Pamela; Joe, Anna

    2018-01-25

    Pathogens often secrete molecules that mimic those present in the plant host. Recent studies indicate that some of these molecules mimic plant hormones required for development and immunity. This Viewpoint reviews the literature on microbial molecules produced by plant pathogens that functionally mimic molecules present in the plant host. This article includes examples from nematodes, bacteria and fungi with emphasis on RaxX, a microbial protein produced by the bacterial pathogen Xanthomonas oryzae pv. oryzae. RaxX mimics a plant peptide hormone, PSY (plant peptide containing sulphated tyrosine). The rice immune receptor XA21 detects sulphated RaxX but not the endogenous peptide PSY. Studies of the RaxX/XA21 system have provided insight into both host and pathogen biology and offered a framework for future work directed at understanding how XA21 and the PSY receptor(s) can be differentially activated by RaxX and endogenous PSY peptides. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Development of a pyrG Mutant of Aspergillus oryzae Strain S1 as a Host for the Production of Heterologous Proteins

    PubMed Central

    Ling, Selina Oh Siew; Storms, Reginald; Zheng, Yun; Rodzi, Mohd Rohaizad Mohd; Mahadi, Nor Muhammad; Illias, Rosli Md

    2013-01-01

    The ease with which auxotrophic strains and genes that complement them can be manipulated, as well as the stability of auxotrophic selection systems, are amongst the advantages of using auxotrophic markers to produce heterologous proteins. Most auxotrophic markers in Aspergillus oryzae originate from chemical or physical mutagenesis that may yield undesirable mutations along with the mutation of interest. An auxotrophic A. oryzae strain S1 was generated by deleting the orotidine-5′-monophosphate decarboxylase gene (pyrG) by targeted gene replacement. The uridine requirement of the resulting strain GR6 pyrGΔ0 was complemented by plasmids carrying a pyrG gene from either Aspergillus nidulans or A. oryzae. β-Galactosidase expression by strain GR6 pyrGΔ0 transformed with an A. niger plasmid encoding a heterologous β-galactosidase was at least 150 times more than that obtained with the untransformed strain. Targeted gene replacement is thus an efficient way of developing auxotrophic mutants in A. oryzae and the auxotrophic strain GR6 pyrGΔ0 facilitated the production of a heterologous protein in this fungus. PMID:24381522

  8. What Does Genetic Diversity of Aspergillus flavus Tell Us About Aspergillus oryzae?

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus and Aspergillus oryzae belong to Aspergillus section Flavi. They are closely related and are of significant economic importance. The former species has the ability to produce harmful aflatoxins while the latter is widely used in food fermentation and industrial enzyme production. ...

  9. Colonization and Movement of Xanthomonas fragariae in Strawberry Tissues.

    PubMed

    Wang, Hehe; McTavish, Christine; Turechek, William W

    2018-06-01

    Xanthomonas fragariae causes angular leaf spot of strawberry, an important disease in strawberry growing regions worldwide. To better understand how X. fragariae multiplies and moves in strawberry plants, a green fluorescent protein (GFP)-labeled strain was constructed and used to monitor the pathogen's presence in leaf, petiole, and crown tissue with fluorescence microscopy following natural and wound inoculation in three strawberry cultivars. Taqman PCR was used to quantify bacterial densities in these same tissues regardless of the presence of GFP signal. Results showed X. fragariae colonized leaf mesophyll, the top 1 cm portion of the petiole adjacent to the leaf blade, and was occasionally found colonizing xylem vessels down to the middle of the petioles. The colonization of vascular bundles and the limited systemic movement that was observed appeared to be a passive process, of which the frequency increased with wounding and direct infiltration of bacteria into leaf veins. X. fragariae was able to directly enter petioles and colonize the space under the epidermis. Systemic movement of the bacteria into crown and other uninoculated tissues was not detected visually by GFP. However, X. fragariae was occasionally detected in these tissues by qPCR, but at quantities very near the qPCR detection limit. Petiole tissue harboring bacteria introduced either by direct entry through natural openings or wounds, or by systemic movement from infected foliar tissue, likely serves as a main source of initial inoculum in field plantings.

  10. Genetic diversity of weedy red rice (Oryza sativa) in Arkansas, USA

    USDA-ARS?s Scientific Manuscript database

    Weedy red rice (Oryza sativa L.) is a problematic weed in rice. About 50% of US rice is produced in Arkansas and 60% of these fields have some red rice infestation. Red rice populations are morphologically and phenologically diverse. We hypothesize that red rice in Arkansas has high genetic diversit...

  11. Improved production of kojic acid by mutagenesis of Aspergillus flavus HAk1 and Aspergillus oryzae HAk2 and their potential antioxidant activity.

    PubMed

    Ammar, Hala A M; Ezzat, Saeid M; Houseny, Asmaa M

    2017-10-01

    Two wild-type (WT) Aspergillus strains, A. flavus HAk1 and A. oryzae HAk2, were selected for kojic acid (KA) biosynthesis. Malt extract sucrose culture medium (MES) was the best culture medium for maximum production of KA. The maximum production of KA has been estimated at pH 4 after 7 days of incubation at 30 °C. Overproduction of KA was attained by mutagenesis of both A. flavus HAk1 and A. oryzae HAk2 through their exposer to different doses of gamma irradiation. The mutant strains (MT) A. flavus HAk1-M2 and A. oryzae HAk2-M26 were the most stable mutants for maximum production of KA through four generations. Yield of KA by A. oryzae HAk2-M26 and A. flavus HAk1-M2 has been 2.03-fold and 1.9-fold, respectively, higher than their wild-type strains. All WT and MT strains were used for KA production from different agricultural raw materials. Apple peel was the best waste for KA production by WT strains of A. flavus and A. oryzae, while orange peel and rice stalk are best material for KA production by MT strains, A. flavus HAk1-M2 and A. oryzae HAk2-M26, respectively. All experimental strains have the ability to produce considerable amounts of KA from sugarcane molasse (SCM) and sugar-beet molasse (SBM). SBM was better than SCM for KA production by all strains. The antioxidant activity of biosynthesizing KA was strongly affected with production conditions, where the highest antioxidant activity of all strains was recorded at the optimum environmental and nutritional conditions for KA production.

  12. Range expansion and habitat shift triggered elevated diversification of the rice genus (Oryza, Poaceae) during the Pleistocene.

    PubMed

    Lin, Li; Tang, Liang; Bai, Yun-Jun; Tang, Zhi-Yao; Wang, Wei; Chen, Zhi-Duan

    2015-09-03

    The rice genus (Oryza) contains many wild genetic resources that are vital to the well-being of humans. However, little is known about the process by which the genus diversified or the factors that drove its speciation. Here, we integrated the phylogenetic, molecular dating and biogeographic methods to investigate the spatial-temporal patterns of Oryza diversification, and used a series of model tests to examine whether intercontinental migrations and/or key innovations were associated with significant changes in diversification rates in the genus. Oryza became differentiated in tropical Asia in the Miocene. There were two migrations from the ancestral area into Africa and Australia during the Miocene. We inferred at least 10 migration events out of tropical Asia since the Pleistocene, mainly involving the species adapting open habitat. A rapid increase in diversification rates of the whole Oryza occurred during the Pleistocene. Intercontinental migrations from tropical Asia to other tropical regions were positively correlated with shift in habitat, but not with changes in life history. A habitat preference shift from shade tolerant to open habitat predated the burst in diversification rates. Rice species may have been pre-adapted to invade open habitat. Significant increase in diversification rates occurred during the Pleistocene and is associated with range expansion and habitat shift, but not with life history. The rice genus provides an excellent case supporting the idea that range expansion and invasion of novel habitats can drive the diversification of a group.

  13. Pyogenic liver abscess and peritonitis due to Rhizopus oryzae in a child with Papillon-Lefevre syndrome.

    PubMed

    Dalgic, Buket; Bukulmez, Aysegul; Sari, Sinan

    2011-06-01

    Papillon-Lefevre syndrome (PLS) is an autosomal recessive disease that is characterized by symmetric palmoplantar keratodermatitis and severe periodontal destruction. Mutations in the cathepsin C gene (CTSC) have recently been detected in PLS. Immune dysregulation, due to a mutation in CTSC, increases the risk of pyogenic infections in PLS patients. A child with PLS is presented here with liver abscesses and peritonitis caused by Rhizopus oryzae. His liver abscess and peritonitis were cured with amphotericin B without surgical care. This is the first case in the literature liver abscess due to Rhizopus oryzae in a child with PLS.

  14. Rice, Japonica (Oryza sativa L.).

    PubMed

    Main, Marcy; Frame, Bronwyn; Wang, Kan

    2015-01-01

    The importance of rice, as a food crop, is reflected in the extensive global research being conducted in an effort to improve and better understand this particular agronomic plant. In regard to biotechnology, this has led to the development of numerous genetic transformation protocols. Over the years, many of these methods have become increasingly straightforward, rapid, and efficient, thereby making rice valuable as a model crop for scientific research and functional genomics. The focus of this chapter is on one such protocol that uses Agrobacterium-mediated transformation of Oryza sativa L. ssp. Japonica cv. Nipponbare with an emphasis on tissue desiccation. The explants consist of callus derived from mature seeds which are cocultivated on filter paper postinfection. Hygromycin selection is used for the recovery of subsequent genetically engineered events.

  15. Induction of defense responses against Magnaporthe oryzae in rice seedling by a new potential biocontrol agent Streptomyces JD211.

    PubMed

    Shao, Zhengying; Li, Zhang; Fu, Yanhui; Wen, Yangping; Wei, Saijin

    2018-06-14

    The induced resistance against plant pathogens via biocontrol agents is considered as an eco-friendly and promising strategy. In this study, the induced resistance against Magnaporthe oryzae (M. oryzae) in rice seedling by a new potential biocontrol agent Streptomyces JD211 (JD211) was evaluated. The effects of JD211 on defense-related enzymes activities and defense genes expression were investigated. The biocontrol efficacy of different JD211 concentrations was different, and the treatment of 10 g kg -1 JD211 achieved the highest biocontrol efficacy. Activities of catalase, phenylalanine ammonia-lyase (PAL) and β-1,3-glucanase significantly increased in the presence of JD211. The gene expression level of both PAL and pathogenesis related protein 1 increased when rice seedlings were inoculated with JD211 alone or co-inoculated with M. oryzae, and the expression level of chitinase gene was enhanced by JD211 in the later stage. All results suggested that JD211 could increase the rice resistance by stimulating a series of defense responses, which was the result of induced systemic resistance by JD211. This work will provide a new biocontrol agent against Magnaporthe oryzae in rice seedling. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Three extracellular dipeptidyl peptidases found in Aspergillus oryzae show varying substrate specificities.

    PubMed

    Maeda, Hiroshi; Sakai, Daisuke; Kobayashi, Takuji; Morita, Hiroto; Okamoto, Ayako; Takeuchi, Michio; Kusumoto, Ken-Ichi; Amano, Hitoshi; Ishida, Hiroki; Yamagata, Youhei

    2016-06-01

    Three extracellular dipeptidyl peptidase genes, dppB, dppE, and dppF, were unveiled by sequence analysis of the Aspergillus oryzae genome. We investigated their differential enzymatic profiles, in order to gain an understanding of the diversity of these genes. The three dipeptidyl peptidases were expressed using Aspergillus nidulans as the host. Each recombinant enzyme was purified and subsequently characterized. The enzymes displayed similar optimum pH values, but optimum temperatures, pH stabilities, and substrate specificities varied. DppB was identified as a Xaa-Prolyl dipeptidyl peptidase, while DppE scissile substrates were similar to the substrates for Aspergillus fumigatus DPPV (AfDPPV). DppF was found to be a novel enzyme that could digest both substrates for A. fumigatus DPPIV and AfDPPV. Semi-quantitative PCR revealed that the transcription of dppB in A. oryzae was induced by protein substrates and repressed by the addition of an inorganic nitrogen source, despite the presence of protein substrates. The transcription of dppE depended on its growth time, while the transcription of dppF was not affected by the type of the nitrogen source in the medium, and it started during the early stage of the fungal growth. Based on these results, we conclude that these enzymes may represent the nutrition acquisition enzymes. Additionally, DppF may be one of the sensor peptidases responsible for the detection of the protein substrates in A. oryzae environment. DppB may be involved in nitrogen assimilation control, since the transcription of dppB was repressed by NaNO3, despite the presence of protein substrates.

  17. Cooperative role of calnexin and TigA in Aspergillus oryzae glycoprotein folding.

    PubMed

    Wang, Ning; Seko, Akira; Takeda, Yoichi; Kikuma, Takashi; Ito, Yukishige

    2015-10-01

    Calnexin (CNX), known as a lectin chaperone located in the endoplasmic reticulum (ER), specifically recognizes G1M9GN2-proteins and facilitates their proper folding with the assistance of ERp57 in mammalian cells. However, it has been left unidentified how CNX works in Aspergillus oryzae, which is a filamentous fungus widely exploited in biotechnology. In this study, we found that a protein disulfide isomerase homolog TigA can bind with A. oryzae CNX (AoCNX), which was revealed to specifically recognize monoglucosylated glycans, similarly to CNX derived from other species, and accelerate the folding of G1M9GN2-ribonuclease (RNase) in vitro. For refolding experiments, a homogeneous monoglucosylated high-mannose-type glycoprotein G1M9GN2-RNase was chemoenzymatically synthesized from G1M9GN-oxazoline and GN-RNase. Denatured G1M9GN2-RNase was refolded with highest efficiency in the presence of both soluble form of AoCNX and TigA. TigA contains two thioredoxin domains with CGHC motif, mutation analysis of which revealed that the one in N-terminal regions is involved in binding to AoCNX, while the other in catalyzing protein refolding. The results suggested that in glycoprotein folding process of A. oryzae, TigA plays a similar role as ERp57 in mammalian cells, as a partner protein of AoCNX. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Characteristics of immobilized aminoacylase from Aspergillus oryzae on macroporous copolymers.

    PubMed

    He, B L; Jiang, P; Qiu, Y B

    1990-01-01

    Aminoacylase from Aspergillus oryzae was adsorbed on functionallized macroporous copolymers where the enzyme showed excellent catalyzing activity and operation stability. Various factors which effect the activity of the immobilized aminoacylase such as temperature, pH and ionic strength were investigated. The continuous operation of the enzyme immobilized on macroporous copolymers was compared with that of the enzyme immobilized on DEAE-Sephadex.

  19. WRKY transcription factor genes in wild rice Oryza nivara

    PubMed Central

    Xu, Hengjian; Watanabe, Kenneth A.; Zhang, Liyuan; Shen, Qingxi J.

    2016-01-01

    The WRKY transcription factor family is one of the largest gene families involved in plant development and stress response. Although many WRKY genes have been studied in cultivated rice (Oryza sativa), the WRKY genes in the wild rice species Oryza nivara, the direct progenitor of O. sativa, have not been studied. O. nivara shows abundant genetic diversity and elite drought and disease resistance features. Herein, a total of 97 O. nivara WRKY (OnWRKY) genes were identified. RNA-sequencing demonstrates that OnWRKY genes were generally expressed at higher levels in the roots of 30-day-old plants. Bioinformatic analyses suggest that most of OnWRKY genes could be induced by salicylic acid, abscisic acid, and drought. Abundant potential MAPK phosphorylation sites in OnWRKYs suggest that activities of most OnWRKYs can be regulated by phosphorylation. Phylogenetic analyses of OnWRKYs support a novel hypothesis that ancient group IIc OnWRKYs were the original ancestors of only some group IIc and group III WRKYs. The analyses also offer strong support that group IIc OnWRKYs containing the HVE sequence in their zinc finger motifs were derived from group Ia WRKYs. This study provides a solid foundation for the study of the evolution and functions of WRKY genes in O. nivara. PMID:27345721

  20. Efficient heterologous expression and secretion in Aspergillus oryzae of a llama variable heavy-chain antibody fragment V(HH) against EGFR.

    PubMed

    Okazaki, Fumiyoshi; Aoki, Jun-ichi; Tabuchi, Soichiro; Tanaka, Tsutomu; Ogino, Chiaki; Kondo, Akihiko

    2012-10-01

    We have constructed a filamentous fungus Aspergillus oryzae that secretes a llama variable heavy-chain antibody fragment (V(HH)) that binds specifically to epidermal growth factor receptor (EGFR) in a culture medium. A major improvement in yield was achieved by fusing the V(HH) with a Taka-amylase A signal sequence (sTAA) and a segment of 28 amino acids from the N-terminal region of Rhizopus oryzae lipase (N28). The yields of secreted, immunologically active anti-EGFR V(HH) reached 73.8 mg/1 in a Sakaguchi flask. The V(HH) fragments were released from the sTAA or N28 proteins by an indigenous A. oryzae protease during cultivation. The purified recombinant V(HH) fragment was specifically recognized and could bind to the EGFR with a high affinity.

  1. Presence and Functionality of Mating Type Genes in the Supposedly Asexual Filamentous Fungus Aspergillus oryzae

    PubMed Central

    Wada, Ryuta; Maruyama, Jun-ichi; Yamaguchi, Haruka; Yamamoto, Nanase; Wagu, Yutaka; Paoletti, Mathieu; Archer, David B.; Dyer, Paul S.

    2012-01-01

    The potential for sexual reproduction in Aspergillus oryzae was assessed by investigating the presence and functionality of MAT genes. Previous genome studies had identified a MAT1-1 gene in the reference strain RIB40. We now report the existence of a complementary MAT1-2 gene and the sequencing of an idiomorphic region from A. oryzae strain AO6. This allowed the development of a PCR diagnostic assay, which detected isolates of the MAT1-1 and MAT1-2 genotypes among 180 strains assayed, including industrial tane-koji isolates. Strains used for sake and miso production showed a near-1:1 ratio of the MAT1-1 and MAT1-2 mating types, whereas strains used for soy sauce production showed a significant bias toward the MAT1-2 mating type. MAT1-1 and MAT1-2 isogenic strains were then created by genetic manipulation of the resident idiomorph, and gene expression was compared by DNA microarray and quantitative real-time PCR (qRT-PCR) methodologies under conditions in which MAT genes were expressed. Thirty-three genes were found to be upregulated more than 10-fold in either the MAT1-1 host strain or the MAT1-2 gene replacement strain relative to each other, showing that both the MAT1-1 and MAT1-2 genes functionally regulate gene expression in A. oryzae in a mating type-dependent manner, the first such report for a supposedly asexual fungus. MAT1-1 expression specifically upregulated an α-pheromone precursor gene, but the functions of most of the genes affected were unknown. The results are consistent with a heterothallic breeding system in A. oryzae, and prospects for the discovery of a sexual cycle are discussed. PMID:22327593

  2. Gibberellin 20-oxidase gene OsGA20ox3 regulates plant stature and disease development in rice.

    PubMed

    Qin, Xue; Liu, Jun Hua; Zhao, Wen Sheng; Chen, Xu Jun; Guo, Ze Jian; Peng, You Liang

    2013-02-01

    Gibberellin (GA) 20-oxidase (GA20ox) catalyses consecutive steps of oxidation in the late part of the GA biosynthetic pathway. A T-DNA insertion mutant (17S-14) in rice, with an elongated phenotype, was isolated. Analysis of the flanking sequences of the T-DNA insertion site revealed that an incomplete T-DNA integration resulted in enhanced constitutively expression of downstream OsGA20ox3 in the mutant. The accumulation of bioactive GA(1) and GA(4) were increased in the mutant in comparison with the wild-type plant. Transgenic plants overexpressing OsGA20ox3 showed phenotypes similar to those of the 17S-14 mutant, and the RNA interference (RNAi) lines that had decreased OsGA20ox3 expression exhibited a semidwarf phenotype. Expression of OsGA20ox3 was detected in the leaves and roots of young seedlings, immature panicles, anthers, and pollens, based on β-glucuronidase (GUS) activity staining in transgenic plants expressing the OsGA20ox3 promoter fused to the GUS gene. The OsGA20ox3 RNAi lines showed enhanced resistance against rice pathogens Magnaporthe oryzae (causing rice blast) and Xanthomonas oryzae pv. oryzae (causing bacterial blight) and increased expression of defense-related genes. Conversely, OsGA20ox3-overexpressing plants were more susceptible to these pathogens comparing with the wild-type plants. The susceptibility of wild-type plants to X. oryzae pv. oryzae was increased by exogenous application of GA(3) and decreased by S-3307 treatment. Together, the results provide direct evidence for a critical role of OsGA20ox3 in regulating not only plant stature but also disease resistance in rice.

  3. Penicillin biosynthesis in Aspergillus oryzae and its overproduction by genetic engineering.

    PubMed

    Marui, Junichiro; Ohashi-Kunihiro, Sumiko; Ando, Tomohiro; Nishimura, Marie; Koike, Hideaki; Machida, Masayuki

    2010-07-01

    Aspergillus oryzae penicillin biosynthetic genes were clustered. The penicillin production was positively regulated by VeA, a global gene regulator required for transcriptional expression of the penicillin biosynthetic genes. Overexpression of the biosynthetic genes by a strong promoter yielded a greater than 100-fold increase in penicillin production. 2010 Elsevier B.V. All rights reserved.

  4. Sugar homeostasis mediated by cell wall invertase GRAIN INCOMPLETE FILLING 1 (GIF1) plays a role in pre-existing and induced defence in rice.

    PubMed

    Sun, Li; Yang, Dong-lei; Kong, Yu; Chen, Ying; Li, Xiao-Zun; Zeng, Long-Jun; Li, Qun; Wang, Er-Tao; He, Zu-Hua

    2014-02-01

    Sugar metabolism and sugar signalling are not only critical for plant growth and development, but are also important for stress responses. However, how sugar homeostasis is involved in plant defence against pathogen attack in the model crop rice remains largely unknown. In this study, we observed that the grains of gif1, a loss-of-function mutant of the cell wall invertase gene GRAIN INCOMPLETE FILLING 1 (GIF1), were hypersusceptible to postharvest fungal pathogens, with decreased levels of sugars and a thinner glume cell wall in comparison with the wild-type. Interestingly, constitutive expression of GIF1 enhanced resistance to both the rice bacterial pathogen Xanthomonas oryzae pv. oryzae and the fungal pathogen Magnaporthe oryzae. The GIF1-overexpressing (GIF1-OE) plants accumulated higher levels of glucose, fructose and sucrose compared with the wild-type plants. More importantly, higher levels of callose were deposited in GIF1-OE plants during pathogen infection. Moreover, the cell wall was much thicker in the infection sites of the GIF1-OE plants when compared with the wild-type plants. We also found that defence-related genes were constitutively activated in the GIF1-OE plants. Taken together, our study reveals that sugar homeostasis mediated by GIF1 plays an important role in constitutive and induced physical and chemical defence. © 2013 BSPP AND JOHN WILEY & SONS LTD.

  5. XA23 is an executor R protein and confers broad-spectrum disease resistance in rice.

    PubMed

    Wang, Chunlian; Zhang, Xiaoping; Fan, Yinglun; Gao, Ying; Zhu, Qinlong; Zheng, Chongke; Qin, Tengfei; Li, Yanqiang; Che, Jinying; Zhang, Mingwei; Yang, Bing; Liu, Yaoguang; Zhao, Kaijun

    2015-02-01

    The majority of plant disease resistance (R) genes encode proteins that share common structural features. However, the transcription activator-like effector (TALE)-associated executor type R genes show no considerable sequence homology to any known R genes. We adopted a map-based cloning approach and TALE-based technology to isolate and characterize Xa23, a new executor R gene derived from wild rice (Oryza rufipogon) that confers an extremely broad spectrum of resistance to bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo). Xa23 encodes a 113 amino acid protein that shares 50% identity with the known executor R protein XA10. The predicted transmembrane helices in XA23 also overlap with those of XA10. Unlike Xa10, however, Xa23 transcription is specifically activated by AvrXa23, a TALE present in all examined Xoo field isolates. Moreover, the susceptible xa23 allele has an identical open reading frame of Xa23 but differs in promoter region by lacking the TALE binding element (EBE) for AvrXa23. XA23 can trigger a strong hypersensitive response in rice, tobacco, and tomato. Our results provide the first evidence that plant genomes have an executor R gene family of which members execute their function and spectrum of disease resistance by recognizing the cognate TALEs in the pathogen. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  6. Optimization of L(+)-Lactic Acid Production from Xylose with Rhizopus Oryzae Mutant RLC41-6 Breeding by Low-Energy Ion Implantation

    NASA Astrophysics Data System (ADS)

    Yang, Yingge; Fan, Yonghong; Li, Wen; Wang, Dongmei; Wu, Yuejin; Zheng, Zhiming; Yu, Zengliang

    2007-10-01

    In order to obtain an industrial strain with a higher L(+)-lactic acid yield, the strain Rhizopus oryzae PW352 was mutated by means of nitrogen ion beam implantation and the mutant strain Rhizopus oryzae RLC41-6 was obtained. An experimental finding was made in surprise that Rhizopus oryzae mutant RLC41-6 is not only an L(+)-lactic acid producer from corn starch but also an efficient producer of L(+)-lactic acid from xylose. Under optimal conditions, the production of L(+)-lactic acid from 100 g/L xylose reached 77.39 g/L after 144 h fed-batch fermentation. A high mutation rate and a wide mutation spectrum of low-energy ion implantation were observed in the experiment.

  7. Rice Blast Fungus (Magnaporthe oryzae) Infects Arabidopsis via a Mechanism Distinct from That Required for the Infection of Rice1[W][OA

    PubMed Central

    Park, Ju-Young; Jin, Jianming; Lee, Yin-Won; Kang, Seogchan; Lee, Yong-Hwan

    2009-01-01

    Magnaporthe oryzae is a hemibiotrophic fungal pathogen that causes rice (Oryza sativa) blast. Although M. oryzae as a whole infects a wide variety of monocotyledonous hosts, no dicotyledonous plant has been reported as a host. We found that two rice pathogenic strains of M. oryzae, KJ201 and 70-15, interacted differentially with 16 ecotypes of Arabidopsis (Arabidopsis thaliana). Strain KJ201 infected all ecotypes with varying degrees of virulence, whereas strain 70-15 caused no symptoms in certain ecotypes. In highly susceptible ecotypes, small chlorotic lesions appeared on infected leaves within 3 d after inoculation and subsequently expanded across the affected leaves. The fungus produced spores in susceptible ecotypes but not in resistant ecotypes. Fungal cultures recovered from necrotic lesions caused the same symptoms in healthy plants, satisfying Koch's postulates. Histochemical analyses showed that infection by the fungus caused an accumulation of reactive oxygen species and eventual cell death. Similar to the infection process in rice, the fungus differentiated to form appressorium and directly penetrated the leaf surface in Arabidopsis. However, the pathogenic mechanism in Arabidopsis appears distinct from that in rice; three fungal genes essential for pathogenicity in rice played only limited roles in causing disease symptoms in Arabidopsis, and the fungus seems to colonize Arabidopsis as a necrotroph through the secretion of phytotoxic compounds, including 9,12-octadecadienoic acid. Expression of PR-1 and PDF1.2 was induced in response to infection by the fungus, suggesting the activation of salicylic acid- and jasmonic acid/ethylene-dependent signaling pathways. However, the roles of these signaling pathways in defense against M. oryzae remain unclear. In combination with the wealth of genetic and genomic resources available for M. oryzae, this newly established pathosystem allows comparison of the molecular and cellular mechanisms underlying

  8. Autophagy-associated alpha-arrestin signaling is required for conidiogenous cell development in Magnaporthe oryzae.

    PubMed

    Dong, Bo; Xu, Xiaojin; Chen, Guoqing; Zhang, Dandan; Tang, Mingzhi; Xu, Fei; Liu, Xiaohong; Wang, Hua; Zhou, Bo

    2016-08-08

    Conidiation patterning is evolutionarily complex and mechanism concerning conidiogenous cell differentiation remains largely unknown. Magnaporthe oryzae conidiates in a sympodial way and uses its conidia to infect host and disseminate blast disease. Arrestins are multifunctional proteins that modulate receptor down-regulation and scaffold components of intracellular trafficking routes. We here report an alpha-arrestin that regulates patterns of conidiation and contributes to pathogenicity in M. oryzae. We show that disruption of ARRDC1 generates mutants which produce conidia in an acropetal array and ARRDC1 significantly affects expression profile of CCA1, a virulence-related transcription factor required for conidiogenous cell differentiation. Although germ tubes normally develop appressoria, penetration peg formation is dramatically impaired and Δarrdc1 mutants are mostly nonpathogenic. Fluorescent analysis indicates that EGFP-ARRDC1 puncta are well colocalized with DsRed2-Atg8, and this distribution profile could not be altered in Δatg9 mutants, suggesting ARRDC1 enters into autophagic flux before autophagosome maturation. We propose that M. oryzae employs ARRDC1 to regulate specific receptors in response to conidiation-related signals for conidiogenous cell differentiation and utilize autophagosomes for desensitization of conidiogenous receptor, which transmits extracellular signal to the downstream elements of transcription factors. Our investigation extends novel significance of autophagy-associated alpha-arrestin signaling to fungal parasites.

  9. Comparative proteome analysis of Aspergillus oryzae 3.042 and A. oryzae 100-8 strains: Towards the production of different soy sauce flavors.

    PubMed

    Zhao, Guozhong; Hou, Lihua; Yao, Yunping; Wang, Chunling; Cao, Xiaohong

    2012-07-16

    Aspergillus oryzae plays a central role in soybean fermentation, particularly in its contribution to the flavor of soy sauce. We present a comparative assessment of the intracellular differences between wild-type strain 3.042 and mutant strain A100-8, at the proteome level. 522 different protein spots were identified by MALDI-TOF MS, with 134 spots being confirmed by MALDI-TOF MS/MS. Of these, 451 were differentially expressed proteins (DEPs). There was at least a two-fold increase for 288 spots, and at least a two-fold decrease for 163 spots, in strain A100-8 when compared to 3.042. Further analysis showed that 63 of the more abundant proteins were involved in glycolysis and the citrate cycle; 43 more abundant proteins and 10 less abundant proteins were related to amino acid biosynthesis and metabolism; two of the more abundant proteins were involved in vitamin biosynthesis; and five of the more abundant proteins and four of the less abundant proteins were related to secondary metabolites. Moreover, quantitative real time PCR showed that the mRNA expression levels of six typical genes we selected were consistent with changes in protein expression. We postulate that there may be a relationship between DEPs and the flavor formation mechanism in A. oryzae. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  10. Genome-wide association mapping of virulence gene in rice blast fungus Magnaporthe oryzae using a genotyping by sequencing approach.

    PubMed

    Korinsak, Siripar; Tangphatsornruang, Sithichoke; Pootakham, Wirulda; Wanchana, Samart; Plabpla, Anucha; Jantasuriyarat, Chatchawan; Patarapuwadol, Sujin; Vanavichit, Apichart; Toojinda, Theerayut

    2018-05-15

    Magnaporthe oryzae is a fungal pathogen causing blast disease in many plant species. In this study, seventy three isolates of M. oryzae collected from rice (Oryza sativa) in 1996-2014 were genotyped using a genotyping-by-sequencing approach to detect genetic variation. An association study was performed to identify single nucleotide polymorphisms (SNPs) associated with virulence genes using 831 selected SNP and infection phenotypes on local and improved rice varieties. Population structure analysis revealed eight subpopulations. The division into eight groups was not related to the degree of virulence. Association mapping showed five SNPs associated with fungal virulence on chromosome 1, 2, 3, 4 and 7. The SNP on chromosome 1 was associated with virulence against RD6-Pi7 and IRBL7-M which might be linked to the previously reported AvrPi7. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  11. The ultrasound-enhanced bioscouring performance of four polygalacturonase enzymes obtained from rhizopus oryzae

    USDA-ARS?s Scientific Manuscript database

    An analytical and statistical method has been developed to measure the ultrasound-enhanced bioscouring performance of milligram quantities of endo- and exo-polygalacturonase enzymes obtained from Rhizopus oryzae fungi. UV-Vis spectrophotometric data and a general linear mixed models procedure indic...

  12. The construction and use of versatile binary vectors carrying pyrG auxotrophic marker and fluorescent reporter genes for Agrobacterium-mediated transformation of Aspergillus oryzae.

    PubMed

    Nguyen, Khuyen Thi; Ho, Quynh Ngoc; Pham, Thu Ha; Phan, Tuan-Nghia; Tran, Van-Tuan

    2016-12-01

    Aspergillus oryzae is a safe mold widely used in food industry. It is also considered as a microbial cell factory for production of recombinant proteins and enzymes. Currently, genetic manipulation of filamentous fungi is achieved via Agrobacterium tumefaciens-mediated transformation methods usually employing antibiotic resistance markers. These methods are hardly usable for A. oryzae due to its strong resistance to the common antifungal compounds used for fungal transformation. In this study, we have constructed two binary vectors carrying the pyrG gene from A. oryzae as a biochemical marker than an antibiotic resistance marker, and an expression cassette for GFP or DsRed reporter gene under control of the constitutive gpdA promoter from Aspergillus nidulans. All components of these vectors are changeable to generate new versions for specific research purposes. The developed vectors are fully functional for heterologous expression of the GFP and DsRed fluorescent proteins in the uridine/uracil auxotrophic A. oryzae strain. Our study provides a new approach for A. oryzae transformation using pyrG as the selectable auxotrophic marker, A. tumefaciens as the DNA transfer tool and fungal spores as the transformation material. The binary vectors constructed can be used for gene expression studies in this industrially important filamentous fungus.

  13. Construction of brewing-wine Aspergillus oryzae pyrG- mutant by pyrG gene deletion and its application in homology transformation.

    PubMed

    Du, Yu; Xie, Guizhen; Yang, Chunfa; Fang, Baishan; Chen, Hongwen

    2014-06-01

    pyrG(-) host cells are indispensable for pyrG(-) based transformation system. Isolations of pyrG(-) host cells by random mutations are limited by time-consuming, unclear genetic background and potential interferences of homogenous recombination. The purpose of this study was to construct brewing-wine Aspergillus oryzae pyrG(-) mutant by site-directed mutation of pyrG gene deletion which would be used as a host for further transformation. pMD-pyrGAB, a vector carrying pyrG deletion cassette, was used to construct pyrG(-) mutant of A. oryzae. Three stable pyrG deletion mutants of A. oryzae were isolated by resistant to 5-fluoroorotic acid and confirmed by polymerase chain reaction analysis, indicating that pyrG was completely excised. The ΔpyrG mutants were applied as pyrG(-) host cells to disrupt xdh gene encoding xylitol dehydrogenase, which involves in xylitol production of A. oryzae. The xdh disruption mutants were efficiently constructed by transforming a pMD-pyrG-xdh disruption plasmid carrying pyrG, and the produced xylitol concentration of the Δxdh mutant was three times as much as that of the ΔpyrG recipient. Site-directed pyrG gene deletion is thus an effective way for the isolation of pyrG(-) host cells, and the established host-vector system could be applied in further functional genomics analysis and molecular breeding of A. oryzae. © The Author 2014. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

  14. Genetic diversity associated with conservation of endangered Dongxiang wild rice (Oryza rufipogon)

    USDA-ARS?s Scientific Manuscript database

    The wild progenitor species (Oryza rufipogon) of Asian cultivated rice (O. sativa) is located in Dongxiang county, China where it is considered the northernmost range worldwide. Nine ex situ and three in situ populations of the Dongxiang wild rice (DXWR) and four groups of modern cultivars were geno...

  15. Host-Induced Gene Silencing of Rice Blast Fungus Magnaporthe oryzae Pathogenicity Genes Mediated by the Brome Mosaic Virus.

    PubMed

    Zhu, Lin; Zhu, Jian; Liu, Zhixue; Wang, Zhengyi; Zhou, Cheng; Wang, Hong

    2017-09-26

    Magnaporthe oryzae is a devastating plant pathogen, which has a detrimental impact on rice production worldwide. Despite its agronomical importance, some newly-emerging pathotypes often overcome race-specific disease resistance rapidly. It is thus desirable to develop a novel strategy for the long-lasting resistance of rice plants to ever-changing fungal pathogens. Brome mosaic virus (BMV)-induced RNA interference (RNAi) has emerged as a useful tool to study host-resistance genes for rice blast protection. Planta-generated silencing of targeted genes inside biotrophic pathogens can be achieved by expression of M. oryzae -derived gene fragments in the BMV-mediated gene silencing system, a technique termed host-induced gene silencing (HIGS). In this study, the effectiveness of BMV-mediated HIGS in M. oryzae was examined by targeting three predicted pathogenicity genes, MoABC1, MoMAC1 and MoPMK1 . Systemic generation of fungal gene-specific small interfering RNA (siRNA) molecules induced by inoculation of BMV viral vectors inhibited disease development and reduced the transcription of targeted fungal genes after subsequent M. oryzae inoculation. Combined introduction of fungal gene sequences in sense and antisense orientation mediated by the BMV silencing vectors significantly enhanced the efficiency of this host-generated trans-specific RNAi, implying that these fungal genes played crucial roles in pathogenicity. Collectively, our results indicated that BMV-HIGS system was a great strategy for protecting host plants against the invasion of pathogenic fungi.

  16. Bilateral endogenous necrotizing scleritis due to Aspergillus oryzae.

    PubMed

    Stenson, S; Brookner, A; Rosenthal, S

    1982-01-01

    A case of bilateral necrotizing scleritis due to Aspergillus oryzae is reported. The patient was a former addict of intravenous narcotics treated five years previously for meningitis due to the same organism. A seeding focus in the thoracic spine was eventually found. The patient responded well to combined local and systemic therapy with amphotericin B, flucytosine, and natamycin. This represents, to the best of our knowledge, both the first reported case of ocular disease due to this species of Aspergillus and of isolated scleral, nonintraocular involvement in endogenous oculomycosis.

  17. The proportion of non-aflatoxigenic strains of the Aspergillus flavus/oryzae complex from meju by analyses of the aflatoxin biosynthetic genes.

    PubMed

    Hong, Seung-Beom; Lee, Mina; Kim, Dae-Ho; Chung, Soo-Hyun; Shin, Hyeon-Dong; Samson, Robert A

    2013-12-01

    Strains of the Aspergillus flavus/oryzae complex are frequently isolated from meju, a fermented soybean product, that is used as the starting material for ganjang (soy sauce) and doenjang (soybean paste) production. In this study, we examined the aflatoxin producing capacity of A. flavus/oryzae strains isolated from meju. 192 strains of A. flavus/oryzae were isolated from more than 100 meju samples collected from diverse regions of Korea from 2008 to 2011, and the norB-cypA, omtA, and aflR genes in the aflatoxin biosynthesis gene cluster were analyzed. We found that 178 strains (92.7%) belonged to non-aflatoxigenic group (Type I of norB-cypA, IB-L-B-, IC-AO, or IA-L-B- of omtA, and AO type of aflR), and 14 strains (7.3%) belonged to aflatoxin-producible group (Type II of norB-cypA, IC-L-B+/B- or IC-L-B+ of omtA, and AF type of aflR). Only 7 strains (3.6%) in the aflatoxin-producible group produced aflatoxins on Czapek yeast-extract medium. The aflatoxin-producing capability of A. flavus/oryzae strains from other sources in Korea were also investigated, and 92.9% (52/56) strains from air, 93.9% (31/33) strains from rice straw, 91.7% (11/12) strains from soybean, 81.3% (13/16) strains from corn, 82% (41/50) strains from peanut, and 73.2% (41/56) strains from arable soil were included in the non-aflatoxigenic group. The proportion of non-aflatoxigenicity of meju strains was similar to that of strains from soybean, air and rice straw, all of which have an effect on the fermentation of meju. The data suggest that meju does not have a preference for non-aflatoxigenic or aflatoxin-producible strains of A. flavus/oryzae from the environment of meju. The non-aflatoxigenic meju strains are proposed to be named A. oryzae, while the meju strains that can produce aflatoxins should be referred to A. flavus in this study.

  18. Kinetic properties of Rhizopus oryzae RPG1 endo-polygalacturonase hydrolyzing galacturonic acid oligomers

    USDA-ARS?s Scientific Manuscript database

    Future fuel and specialty chemical production will benefit from the use of agricultural biomass. Efficient and effective use of agricultural biomass requires conversion to simple sugars by chemical pre-treatments and enzymes into simple sugars. Rhizopus oryzae, a filamentous fungus, makes enzymes ca...

  19. Specific binding of the Xanthomonas campestris pv. vesicatoria AraC-type transcriptional activator HrpX to plant-inducible promoter boxes.

    PubMed

    Koebnik, Ralf; Krüger, Antje; Thieme, Frank; Urban, Alexander; Bonas, Ulla

    2006-11-01

    The pathogenicity of the plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria depends on a type III secretion system which is encoded by the 23-kb hrp (hypersensitive response and pathogenicity) gene cluster. Expression of the hrp operons is strongly induced in planta and in a special minimal medium and depends on two regulatory proteins, HrpG and HrpX. In this study, DNA affinity enrichment was used to demonstrate that the AraC-type transcriptional activator HrpX binds to a conserved cis-regulatory element, the plant-inducible promoter (PIP) box (TTCGC-N(15)-TTCGC), present in the promoter regions of four hrp operons. No binding of HrpX was observed when DNA fragments lacking a PIP box were used. HrpX also bound to a DNA fragment containing an imperfect PIP box (TTCGC-N(8)-TTCGT). Dinucleotide replacements in each half-site of the PIP box strongly decreased binding of HrpX, while simultaneous dinucleotide replacements in both half-sites completely abolished binding. Based on the complete genome sequence of Xanthomonas campestris pv. vesicatoria, putative plant-inducible promoters consisting of a PIP box and a -10 promoter motif were identified in the promoter regions of almost all HrpX-activated genes. Bioinformatic analyses and reverse transcription-PCR experiments revealed novel HrpX-dependent genes, among them a NUDIX hydrolase gene and several genes with a predicted role in the degradation of the plant cell wall. We conclude that HrpX is the most downstream component of the hrp regulatory cascade, which is proposed to directly activate most genes of the hrpX regulon via binding to corresponding PIP boxes.

  20. Toxic effect of Atalantia monophylla essential oil on Callosobruchus maculatus and Sitophilus oryzae.

    PubMed

    Nattudurai, Gopal; Baskar, Kathirvelu; Paulraj, Micheal Gabrial; Islam, Villianur Ibrahim Hairul; Ignacimuthu, Savarimuthu; Duraipandiyan, Veeramuthu

    2017-01-01

    The hydrodistillated essential oil of Atalantia monophylla was subjected to GC-MS. Forty compounds were presented in the essential oil. Eugenol (19.76 %), sabinene (19.57 %), 1,2-dimethoxy-4-(2-methoxyethenyl) benzene (9.84 %), beta-asarone (7.02 %) and methyl eugenol (5.52 %) were found the predominant compounds. The oil was tested for fumigant toxicity and repellent activity against Callosobruchus maculatus and Sitophilus oryzae. The development stage of C. maculatus fecundity, adult emergence and also ovicidal activities were studied by the treatment of A. monophylla oil. The oil exhibited considerable fumigation toxicity (70.22 %), repellent activity (85.24 %) and ovicidal activity (100 %) against C. maculatus. The oil significantly reduced the protein, esterase, acetylcholinesterase and glutathione S-transferase on C. maculatus and S. oryzae. It can be considered that A. monophylla has a potential insecticide against stored product pests.

  1. Fungal Endocarditis Due to Aspergillus oryzae: The First Case Reported in the Literature.

    PubMed

    Mazza, Andrea; Luciani, Nicola; Luciani, Marco; Cammertoni, Federico; Giaquinto, Alessia; Pavone, Natalia; Bruno, Piergiorgio; Massetti, Massimo

    2017-03-01

    Infective endocarditis (IE) is a severe disease with high mortality and morbidity. Prosthetic valve endocarditis is a life-threatening complication which can occur in less than 10% of patients with valve prosthesis. A fungal etiology of IE is rare and accounts for only 2-4% of all case of endocarditis, but is associated with a higher mortality and morbidity. Herein is reported the first case of fungal endocarditis of aortic valve prosthesis due to Aspergillus oryzae in a 67-year-old caucasian man who nine years previously underwent mitral and aortic valve replacement with mechanical prostheses, and tricuspid annuloplasty for acute IE due to Enterococcus spp. Seven months previously, the patient also underwent a redo cardiac procedure to replace a mitral valve prosthesis with a new mechanical device due to a leakage. Aspergillus oryzae showed impressive growth with strong and unexpected virulence in both local and systemic settings.

  2. Characterization of hypersensitive resistance to bacterial spot race T3 (Xanthomonas perforans) from tomato accession PI 128216.

    PubMed

    Robbins, Matthew D; Darrigues, Audrey; Sim, Sung-Chur; Masud, Mohammed Abu Taher; Francis, David M

    2009-09-01

    Bacterial spot of tomato is caused by four species of Xanthomonas. The accession PI 128216 (Solanum pimpinellifolium) displays a hypersensitive reaction (HR) to race T3 strains (predominantely Xanthomonas perforans). We developed an inbred backcross (IBC) population (BC(2)S(5), 178 families) derived from PI 128216 and OH88119 (S. lycopersicum) as the susceptible recurrent parent for simultaneous introgression and genetic analysis of the HR response. These IBC families were evaluated in the greenhouse for HR to race T3 strain Xcv761. The IBC population was genotyped with molecular markers distributed throughout the genome in order to identify candidate loci conferring resistance. We treated the IBC population as a hypothesis forming generation to guide validation in subsequent crosses. Nonparametric analysis identified an association between HR and markers clustered on chromosome 11 (P < 0.05 to 0.0001) and chromosome 6 (0.04 > P > 0.002). Further analysis of the IBC population suggested that markers on chromosome 6 and 11 failed to assort independently, a phenomenon known as gametic phase disequilibrium. Therefore, to validate marker-trait linkages, resistant IBC plants were crossed with OH88119 and BC(3)F(2) progeny were evaluated for HR in the greenhouse. In these subsequent populations, the HR response was associated with the chromosome 11 markers (P < 0.0002) but not with the markers on chromosome 6 (P > 0.25). Independent F(2) families were developed by crossing resistant IBC lines to OH8245, OH88119, and OH7530. These populations were genotyped, organized into classes based on chromosome 11 markers, and evaluated for resistance in the field. The PI 128216 locus on chromosome 11 provided resistance that was dependent on gene dosage and genetic background. These results define a single locus, Rx-4, from PI 128216, which provides resistance to bacterial spot race T3, has additive gene action, and is located on chromosome 11.

  3. WRKY transcription factor genes in wild rice Oryza nivara.

    PubMed

    Xu, Hengjian; Watanabe, Kenneth A; Zhang, Liyuan; Shen, Qingxi J

    2016-08-01

    The WRKY transcription factor family is one of the largest gene families involved in plant development and stress response. Although many WRKY genes have been studied in cultivated rice (Oryza sativa), the WRKY genes in the wild rice species Oryza nivara, the direct progenitor of O. sativa, have not been studied. O. nivara shows abundant genetic diversity and elite drought and disease resistance features. Herein, a total of 97 O. nivara WRKY (OnWRKY) genes were identified. RNA-sequencing demonstrates that OnWRKY genes were generally expressed at higher levels in the roots of 30-day-old plants. Bioinformatic analyses suggest that most of OnWRKY genes could be induced by salicylic acid, abscisic acid, and drought. Abundant potential MAPK phosphorylation sites in OnWRKYs suggest that activities of most OnWRKYs can be regulated by phosphorylation. Phylogenetic analyses of OnWRKYs support a novel hypothesis that ancient group IIc OnWRKYs were the original ancestors of only some group IIc and group III WRKYs. The analyses also offer strong support that group IIc OnWRKYs containing the HVE sequence in their zinc finger motifs were derived from group Ia WRKYs. This study provides a solid foundation for the study of the evolution and functions of WRKY genes in O. nivara. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  4. New type III effectors from Xanthomonas campestris pv. vesicatoria trigger plant reactions dependent on a conserved N-myristoylation motif.

    PubMed

    Thieme, Frank; Szczesny, Robert; Urban, Alexander; Kirchner, Oliver; Hause, Gerd; Bonas, Ulla

    2007-10-01

    Pathogenicity of the gram-negative plant pathogen Xanthomonas campestris pv. vesicatoria depends on a type III secretion system, which translocates bacterial effector proteins into the plant cell. In this study, we identified two novel type III effectors, XopE1 and XopE2 (Xanthomonas outer proteins), using the AvrBs3 effector domain as reporter. XopE1 and XopE2 belong to the HopX family and possess a conserved putative N-myristoylation motif that is also present in the effector XopJ from X. campestris pv. vesicatoria 85-10. XopJ is a member of the YopJ/AvrRxv family of acetyltransferases. Confocal laser scanning microscopy and immunocytochemistry revealed that green fluorescent protein fusions of XopE1, XopE2, and XopJ localized to the plant cell plasma membrane. Targeting to the membrane is probably due to N-myristoylation, because a point mutation in the putative myristoylated glycine residue G2 in XopE1, XopE2, and XopJ resulted in cytoplasmic localization of the mutant proteins. Results of hydroxylamine treatments of XopE2 protein extracts suggest that the proteins are additionally anchored in the host cell plasma membrane by palmitoylation. The membrane localization of the effectors strongly influences the phenotypes they trigger in the plant. Agrobacterium-mediated expression of xopE1 and xopJ in Nicotiana benthamiana led to cell-death reactions that, for xopJ, were dependent on the N-myristoylation motif. In the case of xopE1(G2A), cell death was more pronounced with the mutant than with the wild-type protein. In addition, XopE2 has an avirulence activity in Solanum pseudocapsicum.

  5. Intercellular production of tamavidin 1, a biotin-binding protein from Tamogitake mushroom, confers resistance to the blast fungus Magnaporthe oryzae in transgenic rice.

    PubMed

    Takakura, Yoshimitsu; Oka, Naomi; Suzuki, Junko; Tsukamoto, Hiroshi; Ishida, Yuji

    2012-05-01

    The blast fungus Magnaporthe oryzae, one of the most devastating rice pathogens in the world, shows biotin-dependent growth. We have developed a strategy for creating disease resistance to M. oryzae whereby intercellular production of tamavidin 1, a biotin-binding protein from Pleurotus cornucopiae occurs in transgenic rice plants. The gene that encodes tamavidin 1, fused to the sequence for a secretion signal peptide derived from rice chitinase gene, was connected to the Cauliflower mosaic virus 35S promoter, and the resultant construct was introduced into rice. The tamavidin 1 was accumulated at levels of 0.1-0.2% of total soluble leaf proteins in the transgenic rice and it was localized in the intercellular space of rice leaves. The tamavidin 1 purified from the transgenic rice was active, it bound to biotin and inhibited in vitro growth of M. oryzae by causing biotin deficiency. The transgenic rice plants showed a significant resistance to M. oryzae. This study shows the possibility of a new strategy to engineer disease resistance in higher plants by taking advantage of a pathogen's auxotrophy.

  6. Structural features of PhoX, one of the phosphate-binding proteins from Pho regulon of Xanthomonas citri

    PubMed Central

    Pegos, Vanessa R.; Santos, Rodrigo M. L.; Medrano, Francisco J.

    2017-01-01

    In Escherichia coli, the ATP-Binding Cassette transporter for phosphate is encoded by the pstSCAB operon. PstS is the periplasmic component responsible for affinity and specificity of the system and has also been related to a regulatory role and chemotaxis during depletion of phosphate. Xanthomonas citri has two phosphate-binding proteins: PstS and PhoX, which are differentially expressed under phosphate limitation. In this work, we focused on PhoX characterization and comparison with PstS. The PhoX three-dimensional structure was solved in a closed conformation with a phosphate engulfed in the binding site pocket between two domains. Comparison between PhoX and PstS revealed that they originated from gene duplication, but despite their similarities they show significant differences in the region that interacts with the permeases. PMID:28542513

  7. Magnaporthe oryzae Induces the Expression of a MicroRNA to Suppress the Immune Response in Rice.

    PubMed

    Zhang, Xin; Bao, Yalin; Shan, Deqi; Wang, Zhihui; Song, Xiaoning; Wang, Zhaoyun; Wang, Jiansheng; He, Liqiang; Wu, Liang; Zhang, Zhengguang; Niu, Dongdong; Jin, Hailing; Zhao, Hongwei

    2018-05-01

    MicroRNAs play crucial roles in plant responses to pathogen infections. The rice blast disease, caused by the fungus Magnaporthe oryzae , is the most important disease of rice ( Oryza sativa ). To explore the microRNA species that participate in rice immunity against the rice blast disease, we compared the expression of small RNAs between mock- and M. oryzae -treated rice. We found that infection by M. oryzae strain Guy11 specifically induced the expression of rice miR319 and, consequently, suppressed its target gene TEOSINTE BRANCHED/CYCLOIDEA/PROLIFERATING CELL FACTOR1 ( OsTCP21 ), which encodes a transcription factor. Using transgenic rice that overexpresses miR319b (OE) or expresses OsTCP21 -Res (which is resistant to miR319-mediated silencing), we found that OsTCP21 is a positive regulator of the rice defense response against the blast disease. When wild-type and miR319b-OE rice were infected by Guy11, multiple jasmonic acid (JA) synthetic and signaling components were suppressed, indicating that Guy11 suppresses JA signaling through inducing miR319. In particular, we found that LIPOXYGENASE2 ( LOX2 ) and LOX5 were specifically suppressed by miR319 overexpression or by Guy11 infection. LOXs are the key enzymes of JA synthesis, which catalyze the conversion of α-linoleic acid to hydroperoxy-octadecadienoic acid. The application of α-linoleic acid rescued disease symptoms on the OsTCP21 -Res rice but not wild-type rice, supporting our hypothesis that OsLOX2 and OsLOX5 are the key JA synthesis genes hijacked by Guy11 to subvert host immunity and facilitate pathogenicity. We propose that induced expression of OsLOX2/5 may improve resistance to the rice blast disease. © 2018 American Society of Plant Biologists. All Rights Reserved.

  8. Characterization of endo-1,3-1,4-β-glucanases in GH family 12 from Magnaporthe oryzae.

    PubMed

    Takeda, Takumi; Takahashi, Machiko; Nakanishi-Masuno, Tsugumi; Nakano, Yuki; Saitoh, Hiromasa; Hirabuchi, Akiko; Fujisawa, Shizuko; Terauchi, Ryohei

    2010-11-01

    We have cloned three putative endoglucanase cDNAs, designated MoCel12A, MoCel12B, and MoCel12C, from Magnaporthe oryzae. The deduced peptide sequences of both MoCel12A and MoCel12B contain secretion signal peptides and a catalytic core domain that classify them into GH subfamily 12-1. In contrast, the deduced peptide sequence of MoCel12C consists of a signal peptide, a catalytic core domain, and a fungal-type carbohydrate binding module belonging to GH subfamily 12-2. Although most GH family 12 endoglucanases hydrolyze β-1,4-glucans such as carboxymethylcellulose or phosphoric acid-swollen cellulose, MoCel12A that was prepared by overexpression in M. oryzae and Brevibacillus choshinensis hydrolyzed specifically 1,3-1,4-β-glucans, such as barley β-glucan and lichenan. The specific activity of MoCel12A overexpressed in M. oryzae was about 20 times higher than that prepared from B. choshinensis. Furthermore, MoCel12B prepared by overexpression in B. choshinensis also revealed preferential hydrolysis of endo-1,3-1,4-β-glucans with limited hydrolysis on carboxymethylcellulose. In comparison with MoCel12A, the activity of MoCel12B was more stable under alkaline conditions. Levels of mRNA encoding MoCel12A were constitutively high during infection and spore formation. The overexpression and disruption of the MoCel12A gene did not affect germination, appressorium formation, or invasion rate; however, M. oryzae overexpressing MoCel12A produced larger numbers of spores than the wild type or a mutant in which the MoCel12A gene was disrupted. These results suggest that MoCel12A functions in part to hydrolyze 1,3-1,4-β-glucan during infection and spore formation.

  9. Orotate phosphoribosyl transferase MoPyr5 is involved in uridine 5'-phosphate synthesis and pathogenesis of Magnaporthe oryzae.

    PubMed

    Qi, Zhongqiang; Liu, Muxing; Dong, Yanhan; Yang, Jie; Zhang, Haifeng; Zheng, Xiaobo; Zhang, Zhengguang

    2016-04-01

    Orotate phosphoribosyl transferase (OPRTase) plays an important role in de novo and salvage pathways of nucleotide synthesis and is widely used as a screening marker in genetic transformation. However, the function of OPRTase in plant pathogens remains unclear. In this study, we characterized an ortholog of Saccharomyces cerevisiae Ura5, the OPRTase MoPyr5, from the rice blast fungus Magnaporthe oryzae. Targeted gene disruption revealed that MoPyr5 is required for mycelial growth, appressorial turgor pressure and penetration into plant tissues, invasive hyphal growth, and pathogenicity. Interestingly, the ∆Mopyr5 mutant is also involved in mycelial surface hydrophobicity. Exogenous uridine 5'-phosphate (UMP) restored vegetative growth and rescued the defect in pathogenicity on detached barley and rice leaf sheath. Collectively, our results show that MoPyr5 is an OPRTase for UMP biosynthesis in M. oryzae and indicate that UTP biosynthesis is closely linked with vegetative growth, cell wall integrity, and pathogenicity of fungus. Our results also suggest that UMP biosynthesis would be a good target for the development of novel fungicides against M. oryzae.

  10. Improvement of L(+)-Lactic Acid Production of Rhizopus Oryzae by Low-Energy Ions and Analysis of Its Mechanism

    NASA Astrophysics Data System (ADS)

    Ge, Chunmei; Yang, Yingge; Fan, Yonghong; Li, Wen; Pan, Renrui; Zheng, Zhiming; Yu, Zengliang

    2008-02-01

    The wild type strain Rhizopus oryzae PW352 was mutated by means of nitrogen ion implantation (15 keV, 7.8 × 1014 ~ 2.08 × 1015 ions/cm2) to find an industrial strain with a higher L(+)-lactic acid yield, and two mutants RE3303 and RF9052 were isolated. In order to discuss the mechanism primarily, Lactate Dehydrogenase of Rhizopus oryzae was studied. While the two mutants produced L(+)-lactic acid by 75% more than the wild strain did, their specific activity of Lactate Dehydrogenase was found to be higher than that in the wild strain. The optimum temperature of Lactate Dehydrogenase in Rhizopus oryzae RF9052 was higher. Compared to the wild strain, the Michaelis constant (Km) value of Lactate Dehydrogenase in the mutants was changed. All these changes show that L(+)-lactic acid production has a correlation with the specific activity of Lactate Dehydrogenase. The low-energy ions, implanted into the strain, may improve the specific activity of Lactate Dehydrogenase by influencing its gene structure and protein structure.

  11. Identification of insecticidal constituents of the essential oils of Dahlia pinnata Cav. against Sitophilus zeamais and Sitophilus oryzae.

    PubMed

    Wang, Da-Cheng; Qiu, Da-Ren; Shi, Li-Na; Pan, Hong-Yu; Li, Ya-Wei; Sun, Jin-Zhu; Xue, Ying-Jie; Wei, Dong-Sheng; Li, Xiang; Zhang, Ya-Mei; Qin, Jian-Chun

    2015-01-01

    The aim of this research was to determine the chemical composition of the essential oils of Dahlia pinnata, their insecticidal activity against Sitophilus zeamais and Sitophilusoryzae and to isolate insecticidal constituents. Based on bioactivity-guided fractionation, active constituents were isolated and identified as D-limonene, 4-terpineol and α-terpineol. Essential oils and active compounds tested exhibited contact toxicity, with LD50 values ranging from 132.48 to 828.79 μg/cm(2) against S. zeamais and S. oryzae. Essential oils possessed fumigant toxicity against S. zeamais and S. oryzae with LC50 from 14.10 to 73.46 mg/L. d-Limonene (LC50 = 4.55 and 7.92 mg/L) showed stronger fumigant toxicity against target insects. 4-Terpineol (88 ± 8%) and d-limonene (87 ± 5%) showed the strongest repellency against S. zeamais and S. oryzae, respectively. The results indicate that essential oils and insecticidal constituents have potential for development into natural fumigants, insecticides or repellents for control of the stored-product insect pests.

  12. Basil oil fumigation increases radiation sensitivity in adult Sitophilus oryzae (Coleoptera: Curculionidae).

    USDA-ARS?s Scientific Manuscript database

    The biological activity of basil (Ocimum basilicum L.) oil was tested against the stored product pest rice weevil, Sitophilus oryzae(L.). Adult weevils were exposed to seven different concentrations of basil oil ranging from 0.12 µl/ml-0.60 µl/ml in Petri dishes and mortality was assessed at 3,4 and...

  13. The Complete Chloroplast Genome of Wild Rice (Oryza minuta) and Its Comparison to Related Species.

    PubMed

    Asaf, Sajjad; Waqas, Muhammad; Khan, Abdul L; Khan, Muhammad A; Kang, Sang-Mo; Imran, Qari M; Shahzad, Raheem; Bilal, Saqib; Yun, Byung-Wook; Lee, In-Jung

    2017-01-01

    Oryza minuta , a tetraploid wild relative of cultivated rice (family Poaceae), possesses a BBCC genome and contains genes that confer resistance to bacterial blight (BB) and white-backed (WBPH) and brown (BPH) plant hoppers. Based on the importance of this wild species, this study aimed to understand the phylogenetic relationships of O. minuta with other Oryza species through an in-depth analysis of the composition and diversity of the chloroplast (cp) genome. The analysis revealed a cp genome size of 135,094 bp with a typical quadripartite structure and consisting of a pair of inverted repeats separated by small and large single copies, 139 representative genes, and 419 randomly distributed microsatellites. The genomic organization, gene order, GC content and codon usage are similar to those of typical angiosperm cp genomes. Approximately 30 forward, 28 tandem and 20 palindromic repeats were detected in the O . minuta cp genome. Comparison of the complete O. minuta cp genome with another eleven Oryza species showed a high degree of sequence similarity and relatively high divergence of intergenic spacers. Phylogenetic analyses were conducted based on the complete genome sequence, 65 shared genes and matK gene showed same topologies and O. minuta forms a single clade with parental O. punctata . Thus, the complete O . minuta cp genome provides interesting insights and valuable information that can be used to identify related species and reconstruct its phylogeny.

  14. Influence of rice straw-derived dissolved organic matter on lactic acid fermentation by Rhizopus oryzae.

    PubMed

    Chen, Xingxuan; Wang, Xiahui; Xue, Yiyun; Zhang, Tian-Ao; Li, Yuhao; Hu, Jiajun; Tsang, Yiu Fai; Zhang, Hongsheng; Gao, Min-Tian

    2018-06-01

    Rice straw can be used as carbon sources for lactic acid fermentation. However, only a small amount of lactic acid is produced even though Rhizopus oryzae can consume glucose in rice straw-derived hydrolysates. This study correlated the inhibitory effect of rice straw with rice straw-derived dissolved organic matter (DOM). Lactic acid fermentations with and without DOM were conducted to investigate the effect of DOM on lactic acid fermentation by R. oryzae. Fermentation using control medium with DOM showed a similar trend to fermentation with rice straw-derived hydrolysates, showing that DOM contained the major inhibitor of rice straw. DOM assay indicated that it mainly consisted of polyphenols and polysaccharides. The addition of polyphenols and polysaccharides derived from rice straw confirmed that lactic acid fermentation was promoted by polysaccharides and significantly inhibited by polyphenols. The removal of polyphenols also improved lactic acid production. However, the loss of polysaccharides during the removal of polyphenols resulted in low glucose consumption. This study is the first to investigate the effects of rice straw-derived DOM on lactic acid fermentation by R. oryzae. The results may provide a theoretical basis for identifying inhibitors and promoters associated with lactic acid fermentation and for establishing suitable pretreatment methods. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. Detailed analysis of targeted gene mutations caused by the Platinum-Fungal TALENs in Aspergillus oryzae RIB40 strain and a ligD disruptant.

    PubMed

    Mizutani, Osamu; Arazoe, Takayuki; Toshida, Kenji; Hayashi, Risa; Ohsato, Shuichi; Sakuma, Tetsushi; Yamamoto, Takashi; Kuwata, Shigeru; Yamada, Osamu

    2017-03-01

    Transcription activator-like effector nucleases (TALENs), which can generate DNA double-strand breaks at specific sites in the desired genome locus, have been used in many organisms as a tool for genome editing. In Aspergilli, including Aspergillus oryzae, however, the use of TALENs has not been validated. In this study, we performed genome editing of A. oryzae wild-type strain via error of nonhomologous end-joining (NHEJ) repair by transient expression of high-efficiency Platinum-Fungal TALENs (PtFg TALENs). Targeted mutations were observed as various mutation patterns. In particular, approximately half of the PtFg TALEN-mediated deletion mutants had deletions larger than 1 kb in the TALEN-targeting region. We also conducted PtFg TALEN-based genome editing in A. oryzae ligD disruptant (ΔligD) lacking the ligD gene involved in the final step of the NHEJ repair and found that mutations were still obtained as well as wild-type. In this case, the ratio of the large deletions reduced compared to PtFg TALEN-based genome editing in the wild-type. In conclusion, we demonstrate that PtFg TALENs are sufficiently functional to cause genome editing via error of NHEJ in A. oryzae. In addition, we reveal that genome editing using TALENs in A. oryzae tends to cause large deletions at the target region, which were partly suppressed by deletion of ligD. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. A study of the metabolism of l-αγ-diaminobutyric acid in a Xanthomonas species

    PubMed Central

    Rao, D. Rajagopal; Hariharan, K.; Vijayalakshmi, K. R.

    1969-01-01

    1. l-αγ-Diaminobutyric acid is metabolized in Xanthomonas sp. to aspartic β-semialdehyde, aspartic acid and oxaloacetic acid. 2. Aspartic β-semialdehyde is formed from diaminobutyric acid by a pyruvate-dependent γ-transamination. 3. The transaminase has a pH optimum of 9 and exhibits a high degree of substrate specificity, as analogues of diaminobutyric acid and pyruvate are inert in the system. The transaminase is inhibited by carbonyl-binding agents such as hydroxylamine. 4. Aspartic acid is formed from aspartic β-semialdehyde by an NAD+-dependent dehydrogenation. 5. The dehydrogenase has a pH optimum of 8·5 and is a thiol enzyme. It is specific for aspartic β-semialdehyde but analogues of NAD+ such as 3-acetylpyridine–adenine dinucleotide and deamino-NAD are partly active in the system. 6. The significance of these reactions is discussed in relation to diaminobutyric acid metabolism in plants and mammalian systems. PMID:4390206

  17. Common and distant structural characteristics of feruloyl esterase families from Aspergillus oryzae.

    PubMed

    Udatha, D B R K Gupta; Mapelli, Valeria; Panagiotou, Gianni; Olsson, Lisbeth

    2012-01-01

    Feruloyl esterases (FAEs) are important biomass degrading accessory enzymes due to their capability of cleaving the ester links between hemicellulose and pectin to aromatic compounds of lignin, thus enhancing the accessibility of plant tissues to cellulolytic and hemicellulolytic enzymes. FAEs have gained increased attention in the area of biocatalytic transformations for the synthesis of value added compounds with medicinal and nutritional applications. Following the increasing attention on these enzymes, a novel descriptor based classification system has been proposed for FAEs resulting into 12 distinct families and pharmacophore models for three FAE sub-families have been developed. The feruloylome of Aspergillus oryzae contains 13 predicted FAEs belonging to six sub-families based on our recently developed descriptor-based classification system. The three-dimensional structures of the 13 FAEs were modeled for structural analysis of the feruloylome. The three genes coding for three enzymes, viz., A.O.2, A.O.8 and A.O.10 from the feruloylome of A. oryzae, representing sub-families with unknown functional features, were heterologously expressed in Pichia pastoris, characterized for substrate specificity and structural characterization through CD spectroscopy. Common feature-based pharamacophore models were developed according to substrate specificity characteristics of the three enzymes. The active site residues were identified for the three expressed FAEs by determining the titration curves of amino acid residues as a function of the pH by applying molecular simulations. Our findings on the structure-function relationships and substrate specificity of the FAEs of A. oryzae will be instrumental for further understanding of the FAE families in the novel classification system. The developed pharmacophore models could be applied for virtual screening of compound databases for short listing the putative substrates prior to docking studies or for post

  18. List of new names of plant pathogenic bacteria (2011-2012)

    USDA-ARS?s Scientific Manuscript database

    The International Society of Plant Pathology Committee on the Taxonomy of Plant Pathogenic Bacteria has responsibility to evaluate the names of newly proposed pathovars for adherence to the International Standards for Naming Pathovars of Phytopathogenic Bacteria. Currently, the Comprehensive List of...

  19. A long natural-antisense RNA is accumulated in the conidia of Aspergillus oryzae.

    PubMed

    Tsujii, Masaru; Okuda, Satoshi; Ishi, Kazutomo; Madokoro, Kana; Takeuchi, Michio; Yamagata, Youhei

    2016-01-01

    Analysis of expressed sequence tag libraries from various culture conditions revealed the existence of conidia-specific transcripts assembled to putative conidiation-specific reductase gene (csrA) in Aspergillus oryzae. However, the all transcripts were transcribed with opposite direction to the gene csrA. The sequence analysis of the transcript revealed that the RNA overlapped mRNA of csrA with 3'-end, and did not code protein longer than 60 amino acid residues. We designated the transcript Conidia Specific Long Natural-antisense RNA (CSLNR). The real-time PCR analysis demonstrated that the CSLNR is conidia-specific transcript, which cannot be transcribed in the absence of brlA, and the amount of CSLNR was much more than that of the transcript from csrA in conidia. Furthermore, the csrA deletion, also lacking coding region of CSLNR in A. oryzae reduced the number of conidia. Overexpression of CsrA demonstrated the inhibition of growth and conidiation, while CSLNR did not affect conidiation.

  20. Xanthomonas campestris cell–cell signalling molecule DSF (diffusible signal factor) elicits innate immunity in plants and is suppressed by the exopolysaccharide xanthan

    PubMed Central

    Kakkar, Akanksha; Nizampatnam, Narasimha Rao; Kondreddy, Anil; Pradhan, Binod Bihari; Chatterjee, Subhadeep

    2015-01-01

    Several secreted and surface-associated conserved microbial molecules are recognized by the host to mount the defence response. One such evolutionarily well-conserved bacterial process is the production of cell–cell signalling molecules which regulate production of multiple virulence functions by a process known as quorum sensing. Here it is shown that a bacterial fatty acid cell–cell signalling molecule, DSF (diffusible signal factor), elicits innate immunity in plants. The DSF family of signalling molecules are highly conserved among many phytopathogenic bacteria belonging to the genus Xanthomonas as well as in opportunistic animal pathogens. Using Arabidopsis, Nicotiana benthamiana, and rice as model systems, it is shown that DSF induces a hypersensitivity reaction (HR)-like response, programmed cell death, the accumulation of autofluorescent compounds, hydrogen peroxide production, and the expression of the PATHOGENESIS-RELATED1 (PR-1) gene. Furthermore, production of the DSF signalling molecule in Pseudomonas syringae, a non-DSF-producing plant pathogen, induces the innate immune response in the N. benthamiana host plant and also affects pathogen growth. By pre- and co-inoculation of DSF, it was demonstrated that the DSF-induced plant defence reduces disease severity and pathogen growth in the host plant. In this study, it was further demonstrated that wild-type Xanthomonas campestris suppresses the DSF-induced innate immunity by secreting xanthan, the main component of extracellular polysaccharide. The results indicate that plants have evolved to recognize a widely conserved bacterial communication system and may have played a role in the co-evolution of host recognition of the pathogen and the communication machinery. PMID:26248667

  1. Identification of the Gene Encoding Isoprimeverose-producing Oligoxyloglucan Hydrolase in Aspergillus oryzae*

    PubMed Central

    Matsuzawa, Tomohiko; Mitsuishi, Yasushi; Kameyama, Akihiko

    2016-01-01

    Aspergillus oryzae produces a unique β-glucosidase, isoprimeverose-producing oligoxyloglucan hydrolase (IPase), that recognizes and releases isoprimeverose (α-d-xylopyranose-(1→6)-d-glucopyranose) units from the non-reducing ends of oligoxyloglucans. A gene encoding A. oryzae IPase, termed ipeA, was identified and expressed in Pichia pastoris. With the exception of cellobiose, IpeA hydrolyzes a variety of oligoxyloglucans and is a member of the glycoside hydrolase family 3. Xylopyranosyl branching at the non-reducing ends was vital for IPase activity, and galactosylation at a α-1,6-linked xylopyranosyl side chain completely abolished IpeA activity. Hepta-oligoxyloglucan saccharide (Xyl3Glc4) substrate was preferred over tri- (Xyl1Glc2) and tetra- (Xyl2Glc2) oligoxyloglucan saccharides substrates. IpeA transferred isoprimeverose units to other saccharides, indicating transglycosylation activity. The ipeA gene was expressed in xylose and xyloglucan media and was strongly induced in the presence of xyloglucan endo-xyloglucanase-hydrolyzed products. This is the first study to report the identification of a gene encoding IPase in eukaryotes. PMID:26755723

  2. Production of 8-hydroxydaidzein from soybean extract by Aspergillus oryzae KACC 40247.

    PubMed

    Seo, Min-Ho; Kim, Bi-Na; Kim, Kyoung-Rok; Lee, Ki Won; Lee, Choong-Hwan; Oh, Deok-Kun

    2013-01-01

    Aspergillus oryzae KACC 40247 was selected from among 60 fungal strains as an effective 7,8,4'-trihydroxyisoflavone (8-hydroxydaidzein)-producing fungus. The optimal culture conditions for production by this strain in a 7-L fermentor were found to be 30 °C, pH 6, and 300 rpm. Under these conditions, A. oryzae KACC 40247 produced 62 mg/L of 8-hydroxydaidzein from soybean extract in 30 h, with a productivity of 2.1 mg/L/h. These are the highest production and productivity for 8-hydroxydaidzein ever reported. To increase production, several concentrations of daidzin and of daidzein as precursor were added at several culture times. The optimal addition time and concentration for daidzin were 12 h and 1,248 mg/L, and those for daidzein were 12 h and 254 mg/L respectively. Maximum production and productivity for 8-hydroxydaidzein with the addition of daidzein were 95 mg/L and 3.2 mg/L/h respectively, and those with the addition of daidzin were 160 mg/L and 4.4 mg/L/h respectively.

  3. Fine mapping of S37, a locus responsible for pollen and embryo sac sterility in hybrids between Oryza sativa L. and O. glaberrima Steud.

    PubMed

    Shen, Yumin; Zhao, Zhigang; Ma, Hongyang; Bian, Xiaofeng; Yu, Yang; Yu, Xiaowen; Chen, Haiyuan; Liu, Linglong; Zhang, Wenwei; Jiang, Ling; Zhou, Jiawu; Tao, Dayun; Wan, Jianmin

    2015-11-01

    Hybrid sterility locus S37 between Oryza glaberrima and Oryza sativa results in both pollen and embryo sac sterility. Interspecific crossing between African cultivated rice Oryza glaberrima and Oryza sativa cultivars is hindered by hybrid sterility. To dissect the mechanism of interspecific hybrid sterility, we developed a near-isogenic line (NIL)-S37 using Dianjingyou1 (DJY1) as the recipient parent and an African cultivated rice variety as the donor parent. Empty pollen and embryo sac sterility were observed in F1 hybrids between DJY1 and NIL-S37. Cytological analyses showed that pollen abortion in the F1 hybrids occurred at the late binucleate stage due to a failure of starch accumulation in pollen grains. In addition, partial abortion of the embryo sac in the F1 hybrid was observed during function megaspore developing into mature embryo sac. Molecular analysis revealed that the semi-sterility was largely caused by the abortion of male and female gametophytes carrying the S37 allele from DJY1. A population of 25,600 plants derived from the hybrid DJY1/NIL-S37 was developed to fine map S37. Based on the physical location of molecular markers, S37 locus was finally delimited to a region of 205 kb on the short arm of chromosome 1 in terms of reference sequences of cv. Nipponbare. Interestingly, an about 97-kb DNA segment was deleted in the NIL-S37 based on BAC clone information of O. glaberrima. Fifty-four open reading frames (ORF) were predicted in this 205-kb region of DJY1, whereas only 31 ORFs were in that of NIL-S37. These results are valuable for cloning of S37 gene and further breaking reproductive isolation between Oryza glaberrima and Oryza sativa cultivars, as well as marker-assisted transferring of the corresponding neutral allele in rice breeding programs.

  4. Protection of Grain Products from Sitophilus oryzae (L.) Contamination by Anti-Insect Pest Repellent Sachet Containing Allyl Mercaptan Microcapsule.

    PubMed

    Chang, Yoonjee; Lee, Soo-Hyun; Na, Ja Hyun; Chang, Pahn-Shick; Han, Jaejoon

    2017-11-01

    The purpose of this study was to develop an anti-insect pest repellent sachet to prevent Sitophilus oryzae (L.) (Coleoptera: Curculionidae) contamination in grain packaging. The anti-insect pest activities of essential oils (EOs) from garlic (Allium Sativum), ginger (Zingiber Officinalis), black pepper (Piper nigrum), onion (Allium cepa), and fennel (Foeniculum vulgare) as well as major compounds (allyl disulfide, AD; allyl mercaptan, AM) isolated from of garlic and onion (AD and AM) were measured against S. oryzae. The results revealed that garlic EO, onion EO, AD, and AM showed strong fumigant insecticidal activities. Among these, AM showed the highest acetylcholinesterase (AChE) inhibition rate, indicating that the fumigation insecticidal efficacy of AM is related with its AChE inhibition ability. Subsequently, the microcapsules were produced with a high efficiency (80.02%) by using AM as a core material and rice flour as a wall material. Finally, sachet composed of rice flour microcapsule containing 2% AM (RAM) was produced. Repellent assay was performed to measure anti-insect pest ability of the RAM sachet, showed remarkable repelling effect within 48 h both in the presence or absence of attractant. In a release profile of RAM sachet, it was expected to last over 20 mo during the distribution period of brown rice. Moreover, RAM sachet showed no undesirable changes to the sensory properties of the rice both before and after cooking. Taken together, these results suggest that the newly developed RAM sachet could be used as a packaging material to protect grain products from S. oryzae contamination. The rice weevil, Sitophilus oryzae (L.) (Coleoptera: Curculionidae), causes damages to stored products and its contamination in grain products has become a major problem in cereal market. To preserve brown rice, an anti-insect pest repellent sachet containing 2% allyl mercaptan was newly developed and it showed remarkable repellent abilities against S. oryzae. It

  5. Proteomic analysis of seed storage proteins in wild rice species of the Oryza genus.

    PubMed

    Jiang, Chunmiao; Cheng, Zaiquan; Zhang, Cheng; Yu, Tengqiong; Zhong, Qiaofang; Shen, J Qingxi; Huang, Xingqi

    2014-01-01

    The total protein contents of rice seeds are significantly higher in the three wild rice species (Oryza rufipogon Grill., Oryza officinalis Wall. and Oryza meyeriana Baill.) than in the cultivated rice (Oryza sativa L.). However, there is still no report regarding a systematic proteomic analysis of seed proteins in the wild rice species. Also, the relationship between the contents of seed total proteins and rice nutritional quality has not been thoroughly investigated. The total seed protein contents, especially the glutelin contents, of the three wild rice species were higher than those of the two cultivated rice materials. Based on the protein banding patterns of SDS-PAGE, O. rufipogon was similar to the two cultivated rice materials, followed by O. officinalis, while O. meyeriana exhibited notable differences. Interestingly, O. meyeriana had high contents of glutelin and low contents of prolamine, and lacked 26 kDa globulin band and appeared a new 28 kDa protein band. However, for O. officinali a 16 kDa protein band was absent and a row of unique 32 kDa proteins appeared. In addition, we found that 13 kDa prolamine band disappeared while special 14 kDa and 12 kDa protein bands were present in O. officinalis. Two-dimensional gel electrophoresis (2-DE) analysis revealed remarkable differences in protein profiles of the wild rice species and the two cultivated rice materials. Also, the numbers of detected protein spots of the three wild rice species were significantly higher than those of two cultivated rice. A total of 35 differential protein spots were found for glutelin acidic subunits, glutelin precursors and glutelin basic subunits in wild rice species. Among those, 18 protein spots were specific and 17 major spots were elevated. Six differential protein spots for glutelin acidic subunits were identified, including a glutelin type-A 2 precursor and five hypothetical proteins. This was the first report on proteomic analysis of the three wild rice species

  6. Xanthomonas campestris pv. campestris (cause of black rot of crucifers) in the genomic era is still a worldwide threat to brassica crops.

    PubMed

    Vicente, Joana G; Holub, Eric B

    2013-01-01

    Xanthomonas campestris pv. campestris (Xcc) (Pammel) Dowson is a Gram-negative bacterium that causes black rot, the most important disease of vegetable brassica crops worldwide. Intensive molecular investigation of Xcc is gaining momentum and several whole genome sequences are available. Bacteria; Phylum Proteobacteria; Class Gammaproteobacteria; Order Xanthomonadales; Family Xanthomonadacea; Genus Xanthomonas; Species X. campestris. Xcc can cause disease in a large number of species of Brassicaceae (ex-Cruciferae), including economically important vegetable Brassica crops and a number of other cruciferous crops, ornamentals and weeds, including the model plant Arabidopsis thaliana. Black rot is a systemic vascular disease. Typical disease symptoms include V-shaped yellow lesions starting from the leaf margins and blackening of the veins. Collections of Xcc isolates have been differentiated into physiological races based on the response of several brassica species lines. Black rot is a seed-borne disease. The disease is favoured by warm, humid conditions and can spread rapidly from rain dispersal and irrigation water. The control of black rot is difficult and relies on the use of pathogen-free planting material and the elimination of other potential inoculum sources (infected crop debris and cruciferous weeds). Major gene resistance is very rare in B. oleracea (brassica C genome). Resistance is more readily available in other species, including potentially useful sources of broad-spectrum resistance in B. rapa and B. carinata (A and BC genomes, respectively) and in the wild relative A. thaliana. The reference genomes of three isolates have been released. The genome consists of a single chromosome of approximately 5 100 000 bp, with a GC content of approximately 65% and an average predicted number of coding DNA sequences (CDS) of 4308. Three different secretion systems have been identified and studied in Xcc. The gene clusters xps and xcs encode a type II

  7. Methionine biosynthesis is essential for infection in the rice blast fungus Magnaporthe oryzae.

    PubMed

    Saint-Macary, Marie Emmanuelle; Barbisan, Crystel; Gagey, Marie Josèphe; Frelin, Océane; Beffa, Roland; Lebrun, Marc Henri; Droux, Michel

    2015-01-01

    Methionine is a sulfur amino acid standing at the crossroads of several biosynthetic pathways. In fungi, the last step of methionine biosynthesis is catalyzed by a cobalamine-independent methionine synthase (Met6, EC 2.1.1.14). In the present work, we studied the role of Met6 in the infection process of the rice blast fungus, Magnaporthe oryzae. To this end MET6 null mutants were obtained by targeted gene replacement. On minimum medium, MET6 null mutants were auxotrophic for methionine. Even when grown in presence of excess methionine, these mutants displayed developmental defects, such as reduced mycelium pigmentation, aerial hypha formation and sporulation. They also displayed characteristic metabolic signatures such as increased levels of cysteine, cystathionine, homocysteine, S-adenosylmethionine, S-adenosylhomocysteine while methionine and glutathione levels remained unchanged. These metabolic perturbations were associated with the over-expression of MgCBS1 involved in the reversed transsulfuration pathway that metabolizes homocysteine into cysteine and MgSAM1 and MgSAHH1 involved in the methyl cycle. This suggests a physiological adaptation of M. oryzae to metabolic defects induced by the loss of Met6, in particular an increase in homocysteine levels. Pathogenicity assays showed that MET6 null mutants were non-pathogenic on both barley and rice leaves. These mutants were defective in appressorium-mediated penetration and invasive infectious growth. These pathogenicity defects were rescued by addition of exogenous methionine and S-methylmethionine. These results show that M. oryzae cannot assimilate sufficient methionine from plant tissues and must synthesize this amino acid de novo to fulfill its sulfur amino acid requirement during infection.

  8. Methionine Biosynthesis is Essential for Infection in the Rice Blast Fungus Magnaporthe oryzae

    PubMed Central

    Gagey, Marie Josèphe; Frelin, Océane; Beffa, Roland; Lebrun, Marc Henri; Droux, Michel

    2015-01-01

    Methionine is a sulfur amino acid standing at the crossroads of several biosynthetic pathways. In fungi, the last step of methionine biosynthesis is catalyzed by a cobalamine-independent methionine synthase (Met6, EC 2.1.1.14). In the present work, we studied the role of Met6 in the infection process of the rice blast fungus, Magnaporthe oryzae. To this end MET6 null mutants were obtained by targeted gene replacement. On minimum medium, MET6 null mutants were auxotrophic for methionine. Even when grown in presence of excess methionine, these mutants displayed developmental defects, such as reduced mycelium pigmentation, aerial hypha formation and sporulation. They also displayed characteristic metabolic signatures such as increased levels of cysteine, cystathionine, homocysteine, S-adenosylmethionine, S-adenosylhomocysteine while methionine and glutathione levels remained unchanged. These metabolic perturbations were associated with the over-expression of MgCBS1 involved in the reversed transsulfuration pathway that metabolizes homocysteine into cysteine and MgSAM1 and MgSAHH1 involved in the methyl cycle. This suggests a physiological adaptation of M. oryzae to metabolic defects induced by the loss of Met6, in particular an increase in homocysteine levels. Pathogenicity assays showed that MET6 null mutants were non-pathogenic on both barley and rice leaves. These mutants were defective in appressorium-mediated penetration and invasive infectious growth. These pathogenicity defects were rescued by addition of exogenous methionine and S-methylmethionine. These results show that M. oryzae cannot assimilate sufficient methionine from plant tissues and must synthesize this amino acid de novo to fulfill its sulfur amino acid requirement during infection. PMID:25856162

  9. Integration of hybridization-based markers (overgos) into physical maps for comparative and evolutionary explorations in the genus Oryza and in Sorghum

    PubMed Central

    Hass-Jacobus, Barbara L; Futrell-Griggs, Montona; Abernathy, Brian; Westerman, Rick; Goicoechea, Jose-Luis; Stein, Joshua; Klein, Patricia; Hurwitz, Bonnie; Zhou, Bin; Rakhshan, Fariborz; Sanyal, Abhijit; Gill, Navdeep; Lin, Jer-Young; Walling, Jason G; Luo, Mei Zhong; Ammiraju, Jetty Siva S; Kudrna, Dave; Kim, Hye Ran; Ware, Doreen; Wing, Rod A; Miguel, Phillip San; Jackson, Scott A

    2006-01-01

    Background With the completion of the genome sequence for rice (Oryza sativa L.), the focus of rice genomics research has shifted to the comparison of the rice genome with genomes of other species for gene cloning, breeding, and evolutionary studies. The genus Oryza includes 23 species that shared a common ancestor 8–10 million years ago making this an ideal model for investigations into the processes underlying domestication, as many of the Oryza species are still undergoing domestication. This study integrates high-throughput, hybridization-based markers with BAC end sequence and fingerprint data to construct physical maps of rice chromosome 1 orthologues in two wild Oryza species. Similar studies were undertaken in Sorghum bicolor, a species which diverged from cultivated rice 40–50 million years ago. Results Overgo markers, in conjunction with fingerprint and BAC end sequence data, were used to build sequence-ready BAC contigs for two wild Oryza species. The markers drove contig merges to construct physical maps syntenic to rice chromosome 1 in the wild species and provided evidence for at least one rearrangement on chromosome 1 of the O. sativa versus Oryza officinalis comparative map. When rice overgos were aligned to available S. bicolor sequence, 29% of the overgos aligned with three or fewer mismatches; of these, 41% gave positive hybridization signals. Overgo hybridization patterns supported colinearity of loci in regions of sorghum chromosome 3 and rice chromosome 1 and suggested that a possible genomic inversion occurred in this syntenic region in one of the two genomes after the divergence of S. bicolor and O. sativa. Conclusion The results of this study emphasize the importance of identifying conserved sequences in the reference sequence when designing overgo probes in order for those probes to hybridize successfully in distantly related species. As interspecific markers, overgos can be used successfully to construct physical maps in species which

  10. Genomic Analysis of the Basal Lineage Fungus Rhizopus oryzae Reveals a Whote-Genome Duplication

    USDA-ARS?s Scientific Manuscript database

    Rhizopus oryzae is the primary etiologic agent of mucormycosis, an emerging lifethreatening infection. The rapid growth and angioinvasive nature of mucormycotic infections in humans result in an overall mortality rate that exceeds 50%, even with combined surgical and antifungal therapies. As part ...

  11. Omics-based approaches reveal phospholipids remodeling of Rhizopus oryzae responding to furfural stress for fumaric acid-production from xylose.

    PubMed

    Pan, Xinrong; Liu, Huanhuan; Liu, Jiao; Wang, Cheng; Wen, Jianping

    2016-12-01

    In order to relieve the toxicity of furfural on Rhizopus oryzae fermentation, the molecular mechanism of R. oryzae responding to furfural stress for fumaric acid-production was investigated by omics-based approaches. In metabolomics analysis, 29 metabolites including amino acid, sugars, polyols and fatty acids showed significant changes for maintaining the basic cell metabolism at the cost of lowering fumaric acid production. To further uncover the survival mechanism, lipidomics was carried out, revealing that phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol and polyunsaturated acyl chains might be closely correlated with R. oryzae's adapting to furfural stress. Based on the above omics analysis, lecithin, inositol and soybean oil were exogenously supplemented separately with an optimized concentration in the presence of furfural, which increased fumaric acid titer from 5.78g/L to 10.03g/L, 10.05g/L and 12.13g/L (increased by 73.5%, 73.8% and 110%, respectively). These findings provide a methodological guidance for hemicellulose-fumaric acid development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Large-Scale Gene Disruption in Magnaporthe oryzae Identifies MC69, a Secreted Protein Required for Infection by Monocot and Dicot Fungal Pathogens

    PubMed Central

    Saitoh, Hiromasa; Fujisawa, Shizuko; Mitsuoka, Chikako; Ito, Akiko; Hirabuchi, Akiko; Ikeda, Kyoko; Irieda, Hiroki; Yoshino, Kae; Yoshida, Kentaro; Matsumura, Hideo; Tosa, Yukio; Win, Joe; Kamoun, Sophien; Takano, Yoshitaka; Terauchi, Ryohei

    2012-01-01

    To search for virulence effector genes of the rice blast fungus, Magnaporthe oryzae, we carried out a large-scale targeted disruption of genes for 78 putative secreted proteins that are expressed during the early stages of infection of M. oryzae. Disruption of the majority of genes did not affect growth, conidiation, or pathogenicity of M. oryzae. One exception was the gene MC69. The mc69 mutant showed a severe reduction in blast symptoms on rice and barley, indicating the importance of MC69 for pathogenicity of M. oryzae. The mc69 mutant did not exhibit changes in saprophytic growth and conidiation. Microscopic analysis of infection behavior in the mc69 mutant revealed that MC69 is dispensable for appressorium formation. However, mc69 mutant failed to develop invasive hyphae after appressorium formation in rice leaf sheath, indicating a critical role of MC69 in interaction with host plants. MC69 encodes a hypothetical 54 amino acids protein with a signal peptide. Live-cell imaging suggested that fluorescently labeled MC69 was not translocated into rice cytoplasm. Site-directed mutagenesis of two conserved cysteine residues (Cys36 and Cys46) in the mature MC69 impaired function of MC69 without affecting its secretion, suggesting the importance of the disulfide bond in MC69 pathogenicity function. Furthermore, deletion of the MC69 orthologous gene reduced pathogenicity of the cucumber anthracnose fungus Colletotrichum orbiculare on both cucumber and Nicotiana benthamiana leaves. We conclude that MC69 is a secreted pathogenicity protein commonly required for infection of two different plant pathogenic fungi, M. oryzae and C. orbiculare pathogenic on monocot and dicot plants, respectively. PMID:22589729

  13. Gene-for-genes interactions between cotton R genes and Xanthomonas campestris pv. malvacearum avr genes.

    PubMed

    De Feyter, R; Yang, Y; Gabriel, D W

    1993-01-01

    Six plasmid-borne avirulence (avr) genes were previously cloned from strain XcmH of the cotton pathogen, Xanthomonas campestris pv. malvacearum. We have now localized all six avr genes on the cloned fragments by subcloning and Tn5-gusA insertional mutagenesis. None of these avr genes appeared to exhibit exclusively gene-for-gene patterns of interactions with cotton R genes, and avrB4 was demonstrated to confer avr gene-for-R genes (plural) avirulence to X. c. pv. malvacearum on congenic cotton lines carrying either of two different resistance loci, B1 or B4. Furthermore, the B1 locus appeared to confer R gene-for-avr genes resistance to cotton against isogenic X. c. pv. malvacearum strains carrying any one of three avr genes: avrB4, avrb6, or avrB102. Restriction enzyme, Southern blot hybridization, and DNA sequence analyses showed that the XcmH avr genes are all highly similar to each other, to avrBs3 and avrBsP from the pepper pathogen X. c. pv. vesicatoria, and to the host-specific virulence gene pthA from the citrus pathogen X. citri. The XcmH avr genes differed primarily in the multiplicity of a tandemly repeated 102-base pair motif within the central portions of the genes, repeated from 14 to 23 times in members of this gene family. The complete nucleotide sequence of avrb6 revealed that it is 97% identical in DNA sequence to avrB4, avrBs3, avrBsP, and pthA and that 62-bp inverted terminal repeats mark the boundaries of homology between avrb6 and all members of this Xanthomonas virulence/avirulence gene family sequenced to date. The terminal 38 bp of both inverted repeats are highly similar to the 38-bp consensus terminal sequence of the Tn3 family of transposons. Up to 11 members of the avr gene family appear to be present in North American strains of X. c. pv. malvacearum, including XcmH. The high level of homology observed among these avr genes and their presence in multiple copies may explain the gene-for-genes interactions and also the observed high

  14. Molecular characterization of intergeneric hybrid between Aspergillus oryzae and Trichoderma harzianum by protoplast fusion.

    PubMed

    Patil, N S; Patil, S M; Govindwar, S P; Jadhav, J P

    2015-02-01

    Protoplast fusion between Aspergillus oryzae and Trichoderma harzianum and application of fusant in degradation of shellfish waste. The filamentous chitinolytic fungal strains A. oryzae NCIM 1272 and T. harzianum NCIM 1185 were selected as parents for protoplast fusion. Viable protoplasts were released from fungal mycelium using enzyme cocktail containing 5 mg ml(-1) lysing enzymes from T. harzianum, 0.06 mg ml(-1) β-glucuronidase from Helix pomatia and 1 mg ml(-1) purified Penicillium ochrochloron chitinase in 0.8 mol l(-1) sorbitol as an osmotic stabilizer. Intergeneric protoplast fusion was carried out using 60% polyethylene glycol as a fusogen. At optimum conditions, the regeneration frequency of the fused protoplasts on colloidal chitin medium and fusion frequency were calculated. Fusant showed higher rate of growth pattern, chitinase activity and protein content than parents. Fusant formation was confirmed by morphological markers, viz. colony morphology and spore size and denaturation gradient gel electrophoresis (DGGE). This study revealed protoplast fusion between A. oryzae and T. harzianum significantly enhanced chitinase activity which ultimately provides potential strain for degradation of shellfish waste. Consistency in the molecular characterization results using DGGE is the major outcome of this study which can be emerged as a fundamental step in fusant identification. Now it is need to provide attention over effective chitin degradation to manage shrimp processing issues. In this aspect, ability of fusant to degrade shellfish waste efficiently in short incubation time revealed discovery of potential strain in the reclamation of seafood processing crustacean bio-waste. © 2014 The Society for Applied Microbiology.

  15. Kinetic analysis of extension of substrate specificity with Xanthomonas maltophilia, Aeromonas hydrophila, and Bacillus cereus metallo-beta-lactamases.

    PubMed Central

    Felici, A; Amicosante, G

    1995-01-01

    Twenty beta-lactam molecules, including penicillins, cephalosporins, penems, carbapenems, and monobactams, were investigated as potential substrates for Xanthomonas maltophilia ULA-511, Aeromonas hydrophila AE036, and Bacillus cereus 5/B/6 metallo-beta-lactamases. A detailed analysis of the kinetic parameters examined confirmed these enzymes to be broad-spectrum beta-lactamases with different ranges of catalytic efficiency. Cefoxitin and moxalactam, substrates for the beta-lactamases from X. maltophilia ULA-511 and B. cereus 5/B/6, behaved as inactivators of the A. hydrophila AE036 metallo-beta-lactamase, which appeared to be unique among the enzymes tested in this study. In addition, we report a new, faster, and reliable purification procedure for the B. cereus 5/B/6 metallo-beta-lactamase, cloned in Escherichia coli HB101. PMID:7695305

  16. Improved heterologous protein production by a tripeptidyl peptidase gene (AosedD) disruptant of the filamentous fungus Aspergillus oryzae.

    PubMed

    Zhu, Lin; Nemoto, Takeshi; Yoon, Jaewoo; Maruyama, Jun-ichi; Kitamoto, Katsuhiko

    2012-01-01

    Proteolytic degradation is one of the serious bottlenecks limiting the yields of heterologous protein production by Aspergillus oryzae. In this study, we selected a tripeptidyl peptidase gene AosedD (AO090166000084) as a candidate potentially degrading the heterologous protein, and performed localization analysis of the fusion protein AoSedD-EGFP in A. oryzae. As a result, the AoSedD-EGFP was observed in the septa and cell walls as well as in the culture medium, suggesting that AoSedD is a secretory enzyme. An AosedD disruptant was constructed to investigate an effect of AoSedD on the production level of heterologous proteins and protease activity. Both of the total protease and tripeptidyl peptidase activities in the culture medium of the AosedD disruptant were decreased as compared to those of the control strain. The maximum yields of recombinant bovine chymosin (CHY) and human lysozyme (HLY) produced by the AosedD disruptants showed approximately 2.9- and 1.7-fold increases, respectively, as compared to their control strains. These results suggest that AoSedD is one of the major proteases involved in the proteolytic degradation of recombinant proteins in A. oryzae.

  17. Construction of six Oryza sativa x O. rufipogon Chromosome Segment Substitution Line (CSSL) Libraries

    USDA-ARS?s Scientific Manuscript database

    Transgressive variation has been observed in rice (Oryza sativa) as an increase in grain yield and attributed to the ancestral parent, O. rufipogon, in mapping populations developed from several adapted rice varieties crossed with a single O. rufipogon accession. To explore this phenomenon of transg...

  18. Development of low temperature germinability markers for evaluation of rice (Oryza sativa L.) germplasm

    USDA-ARS?s Scientific Manuscript database

    Low temperature germinability (LTG) is an important trait for breeding of varieties for use in direct-seeding rice production systems. Although rice (Oryza sativa L.) is generally sensitive to low temperatures, genetic variation for LTG exists and several quantitative trait loci (QTLs) have been rep...

  19. Self-excising Cre/mutant lox marker recycling system for multiple gene integrations and consecutive gene deletions in Aspergillus oryzae.

    PubMed

    Zhang, Silai; Ban, Akihiko; Ebara, Naoki; Mizutani, Osamu; Tanaka, Mizuki; Shintani, Takahiro; Gomi, Katsuya

    2017-04-01

    In this study, we developed a self-excising Cre/loxP-mediated marker recycling system with mutated lox sequences to introduce a number of biosynthetic genes into Aspergillus oryzae. To construct the self-excising marker cassette, both the selectable marker, the Aspergillus nidulans adeA gene, and the Cre recombinase gene (cre), conditionally expressed by the xylanase-encoding gene promoter, were designed to be located between the mutant lox sequences, lox66 and lox71. However, construction of the plasmid failed, possibly owing to a slight expression of cre downstream of the fungal gene promoter in Escherichia coli. Hence, to avoid the excision of the cassette in E. coli, a 71-bp intron of the A. oryzae xynG2 gene was inserted into the cre gene. The A. oryzae adeA deletion mutant was transformed with the resulting plasmid in the presence of glucose, and the transformants were cultured in medium containing xylose as the sole carbon source. PCR analysis of genomic DNA from resultant colonies revealed the excision of both the marker and Cre expression construct, indicating that the self-excising marker cassette was efficient at removing the selectable marker. Using the marker recycling system, hyperproduction of kojic acid could be achieved in A. oryzae by the introduction of two genes that encode oxidoreductase and transporter. Furthermore, we also constructed an alternative marker recycling cassette bearing the A. nidulans pyrithiamine resistant gene (ptrA) as a dominant selectable marker. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Functional analysis of AoAtg11 in selective autophagy in the filamentous fungus Aspergillus oryzae.

    PubMed

    Tadokoro, Takayuki; Kikuma, Takashi; Kitamoto, Katsuhiko

    2015-07-01

    Autophagy is a highly conserved cellular degradation process in eukaryotes and consists of both non-selective and selective types. Selective autophagic processes include pexophagy, mitophagy, and the cytoplasm-to-vacuole targeting (Cvt) pathway of yeast, in which particular vacuolar proteins, such as aminopeptidase I (Ape1), are selectively transported to vacuoles. Although selective autophagy has been mainly studied in the yeasts Saccharomyces cerevisiae and Pichia pastoris, there is evidence for selective autophagy in filamentous fungi; however, the details are poorly understood. In S. cerevisiae, Atg11 is a selective autophagy-specific protein that recognizes and transports substrates to the pre-autophagosomal structure (PAS). Here, we first identified an ATG11 homologue in the filamentous fungus Aspergillus oryzae and analyzed the localization of the corresponding protein, designated AoAtg11, fused to enhanced green fluorescent protein (EGFP). Imaging analysis revealed that AoAtg11-EGFP was localized to PAS-like structures. We next constructed an Aoatg11 disruptant of A. oryzae and showed that AoAtg11 is involved in pexophagy and mitophagy. In addition, AoAtg11 was found to be dispensable for non-selective autophagy and for transporting AoApe1 to vacuoles. Taken together, these results suggest that AoAtg11 is a selective autophagy-specific protein in A. oryzae, and has distinct molecular functions from that of S. cerevisiae Atg11. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.