Sample records for xanthomonas spp strains

  1. Draft genome sequence for virulent and avirulent strains of Xanthomonas arboricola isolated from Prunus spp. in Spain.

    PubMed

    Garita-Cambronero, Jerson; Palacio-Bielsa, Ana; López, María M; Cubero, Jaime

    2016-01-01

    Xanthomonas arboricola is a species in genus Xanthomonas which is mainly comprised of plant pathogens. Among the members of this taxon, X. arboricola pv. pruni, the causal agent of bacterial spot disease of stone fruits and almond, is distributed worldwide although it is considered a quarantine pathogen in the European Union. Herein, we report the draft genome sequence, the classification, the annotation and the sequence analyses of a virulent strain, IVIA 2626.1, and an avirulent strain, CITA 44, of X. arboricola associated with Prunus spp. The draft genome sequence of IVIA 2626.1 consists of 5,027,671 bp, 4,720 protein coding genes and 50 RNA encoding genes. The draft genome sequence of strain CITA 44 consists of 4,760,482 bp, 4,250 protein coding genes and 56 RNA coding genes. Initial comparative analyses reveals differences in the presence of structural and regulatory components of the type IV pilus, the type III secretion system, the type III effectors as well as variations in the number of the type IV secretion systems. The genome sequence data for these strains will facilitate the development of molecular diagnostics protocols that differentiate virulent and avirulent strains. In addition, comparative genome analysis will provide insights into the plant-pathogen interaction during the bacterial spot disease process.

  2. Genome mining reveals the genus Xanthomonas to be a promising reservoir for new bioactive non-ribosomally synthesized peptides

    PubMed Central

    2013-01-01

    Background Various bacteria can use non-ribosomal peptide synthesis (NRPS) to produce peptides or other small molecules. Conserved features within the NRPS machinery allow the type, and sometimes even the structure, of the synthesized polypeptide to be predicted. Thus, bacterial genome mining via in silico analyses of NRPS genes offers an attractive opportunity to uncover new bioactive non-ribosomally synthesized peptides. Xanthomonas is a large genus of Gram-negative bacteria that cause disease in hundreds of plant species. To date, the only known small molecule synthesized by NRPS in this genus is albicidin produced by Xanthomonas albilineans. This study aims to estimate the biosynthetic potential of Xanthomonas spp. by in silico analyses of NRPS genes with unknown function recently identified in the sequenced genomes of X. albilineans and related species of Xanthomonas. Results We performed in silico analyses of NRPS genes present in all published genome sequences of Xanthomonas spp., as well as in unpublished draft genome sequences of Xanthomonas oryzae pv. oryzae strain BAI3 and Xanthomonas spp. strain XaS3. These two latter strains, together with X. albilineans strain GPE PC73 and X. oryzae pv. oryzae strains X8-1A and X11-5A, possess novel NRPS gene clusters and share related NRPS-associated genes such as those required for the biosynthesis of non-proteinogenic amino acids or the secretion of peptides. In silico prediction of peptide structures according to NRPS architecture suggests eight different peptides, each specific to its producing strain. Interestingly, these eight peptides cannot be assigned to any known gene cluster or related to known compounds from natural product databases. PCR screening of a collection of 94 plant pathogenic bacteria indicates that these novel NRPS gene clusters are specific to the genus Xanthomonas and are also present in Xanthomonas translucens and X. oryzae pv. oryzicola. Further genome mining revealed other novel NRPS

  3. Presence of Extracellular DNA during Biofilm Formation by Xanthomonas citri subsp. citri Strains with Different Host Range.

    PubMed

    Sena-Vélez, Marta; Redondo, Cristina; Graham, James H; Cubero, Jaime

    2016-01-01

    Xanthomonas citri subsp. citri (Xcc) A strain causes citrus bacterial canker, a serious leaf, fruit and stem spotting disease of several Citrus species. X. alfalfae subsp. citrumelonis (Xac) is the cause of citrus bacterial spot, a minor disease of citrus nursery plants and X. campestris pv. campestris (Xc) is a systemic pathogen that causes black rot of cabbage. Xanthomonas spp. form biofilms in planta that facilitate the host infection process. Herein, the role of extracellular DNA (eDNA) was evaluated in the formation and stabilization of the biofilm matrix at different stages of biofilm development. Fluorescence and light microscopy, as well as DNAse treatments, were used to determine the presence of eDNA in biofilms and bacterial cultures. DNAse treatments of Xcc strains and Xac reduced biofilm formation at the initial stage of development, as well as disrupted preformed biofilm. By comparison, no significant effect of the DNAse was detected for biofilm formation by Xc. DNAse effects on biofilm formation or disruption varied among Xcc strains and Xanthomonas species which suggest different roles for eDNA. Variation in the structure of fibers containing eDNA in biofilms, bacterial cultures, and in twitching motility was also visualized by microscopy. The proposed roles for eDNA are as an adhesin in the early stages of biofilm formation, as an structural component of mature bacterial aggregates, and twitching motility structures.

  4. Pan-Genomic Analysis Permits Differentiation of Virulent and Non-virulent Strains of Xanthomonas arboricola That Cohabit Prunus spp. and Elucidate Bacterial Virulence Factors

    PubMed Central

    Garita-Cambronero, Jerson; Palacio-Bielsa, Ana; López, María M.; Cubero, Jaime

    2017-01-01

    Xanthomonas arboricola is a plant-associated bacterial species that causes diseases on several plant hosts. One of the most virulent pathovars within this species is X. arboricola pv. pruni (Xap), the causal agent of bacterial spot disease of stone fruit trees and almond. Recently, a non-virulent Xap-look-a-like strain isolated from Prunus was characterized and its genome compared to pathogenic strains of Xap, revealing differences in the profile of virulence factors, such as the genes related to the type III secretion system (T3SS) and type III effectors (T3Es). The existence of this atypical strain arouses several questions associated with the abundance, the pathogenicity, and the evolutionary context of X. arboricola on Prunus hosts. After an initial characterization of a collection of Xanthomonas strains isolated from Prunus bacterial spot outbreaks in Spain during the past decade, six Xap-look-a-like strains, that did not clustered with the pathogenic strains of Xap according to a multi locus sequence analysis, were identified. Pathogenicity of these strains was analyzed and the genome sequences of two Xap-look-a-like strains, CITA 14 and CITA 124, non-virulent to Prunus spp., were obtained and compared to those available genomes of X. arboricola associated with this host plant. Differences were found among the genomes of the virulent and the Prunus non-virulent strains in several characters related to the pathogenesis process. Additionally, a pan-genomic analysis that included the available genomes of X. arboricola, revealed that the atypical strains associated with Prunus were related to a group of non-virulent or low virulent strains isolated from a wide host range. The repertoire of the genes related to T3SS and T3Es varied among the strains of this cluster and those strains related to the most virulent pathovars of the species, corylina, juglandis, and pruni. This variability provides information about the potential evolutionary process associated to the

  5. Draft Genome Sequence of Two Strains of Xanthomonas arboricola Isolated from Prunus persica Which Are Dissimilar to Strains That Cause Bacterial Spot Disease on Prunus spp.

    PubMed Central

    Garita-Cambronero, Jerson; Palacio-Bielsa, Ana; López, María M.

    2016-01-01

    The draft genome sequences of two strains of Xanthomonas arboricola, isolated from asymptomatic peach trees in Spain, are reported here. These strains are avirulent and do not belong to the same phylogroup as X. arboricola pv. pruni, a causal agent of bacterial spot disease of stone fruits and almonds. PMID:27609931

  6. Characterization of the pigment xanthomonadin in the bacterial genus Xanthomonas using micro- and resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Paret, Mathews L.; Sharma, Shiv K.; Misra, Anupam K.; Acosta, Tayro; deSilva, Asoka S.; Vowell, Tomie; Alvarez, Anne M.

    2012-06-01

    We used micro- and resonance Raman spectroscopy with 785 nm and 514.5 nm laser excitation, respectively, to characterize a plant pathogenic bacteria, Xanthomonas axonopodis pv. dieffenbachiae D150. The bacterial genus Xathomonas is closely related to bacterial genus Stenotrophomonas that causes an infection in humans. This study has identified for the first time the unique Raman spectra of the carotenoid-like pigment xanthomonadin of the Xanthomonas strain. Xanthomonadin is a brominated aryl-polyene pigment molecule similar to carotenoids. Further studies were conducted using resonance Raman spectroscopy with 514.5 nm laser excitation on several strains of the bacterial genus Xanthomonas isolated from numerous plants from various geographical locations. The current study revealed that the Raman bands representing the vibrations (v1, v2, v3) of the polyene chain of xanthomonadin are 1003-1005 (v3), 1135-1138 (v2), and 1530 (v1). Overtone bands representing xanthomonadin were identified as 2264-2275 (2v2), and combinational bands at 2653-2662 (v1+ v2). The findings from this study validate our previous finding that the Raman fingerprints of xanthomonadin are unique for the genus Xanthomonas. This facilitates rapid identification (~5 minutes) of Xanthomonas spp. from bacterial culture plates. The xanthomonadin marker is different from Raman markers of many other bacterial genus including Agrobacterium, Bacillus, Clavibacter, Enterobacter, Erwinia, Microbacterium, Paenibacillus, and Ralstonia. This study also identified Xanthomonas spp. from bacterial strains isolated from a diseased wheat sample on a culture plate.

  7. Investigation of cellular fatty acid composition of Xanthomonas spp. as chemical markers of productivity and quality of xanthan gum.

    PubMed

    Miranda, Andrea Lobo; Costa, Samantha Serra; Assis, Denilson de Jesus; Andrade, Bianca Bomfim; de Souza, Carolina Oliveira; Oliveira, Maria Beatriz Prior Pinto; Guimarães, Alaíse Gil; Druzian, Janice Izabel

    2018-07-15

    In this study, we investigated the cellular fatty acid profiles of different Xanthomonas pathovars producing xanthan gum and explored the fatty acid composition to identify chemical markers of xanthan gum productivity and quality. Three Xanthomonas pathovars were studied. The fermentation was conducted for 168 h. Samples from the fermented medium were collected for extraction, quantification, and characterization of xanthan. The unsaturated/saturated (U/S) fatty acid ratio in Xanthomonas cells during fermentation was correlated with production, viscosity, and molecular weight of the gum obtained at each 24 h. The Xanthomonas axonopodis pv manihotis 290 strain showed a higher U/S ratio for major cell fatty acids (C16:1ω7/C16:0) as compared with the other two strains; this high ratio was directly associated with xanthan production. No correlation was observed between cellular fatty acid composition and characteristics of xanthan synthesized. Thus, it was possible to determine a production chemical marker for xanthan gum in Xanthomonas strains. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Complete Genome Sequences of Six Copper-Resistant Xanthomonas Strains Causing Bacterial Spot of Solaneous Plants, Belonging to X. gardneri, X. euvesicatoria, and X. vesicatoria, Using Long-Read Technology.

    PubMed

    Richard, Damien; Boyer, Claudine; Lefeuvre, Pierre; Canteros, Blanca I; Beni-Madhu, Shyam; Portier, Perrine; Pruvost, Olivier

    2017-02-23

    Xanthomonas vesicatoria , Xanthomonas euvesicatoria , and Xanthomonas gardneri cause bacterial spot disease. Copper has been applied since the 1920s as part of integrated management programs. The first copper-resistant strains were reported some decades later. Here, we fully sequenced six Xanthomonas strains pathogenic to tomato and/or pepper and having a copper-resistant phenotype. Copyright © 2017 Richard et al.

  9. Advanced Copper Composites Against Copper-Tolerant Xanthomonas perforans and Tomato Bacterial Spot.

    PubMed

    Strayer-Scherer, A; Liao, Y Y; Young, M; Ritchie, L; Vallad, G E; Santra, S; Freeman, J H; Clark, D; Jones, J B; Paret, M L

    2018-02-01

    Bacterial spot, caused by Xanthomonas spp., is a widespread and damaging bacterial disease of tomato (Solanum lycopersicum). For disease management, growers rely on copper bactericides, which are often ineffective due to the presence of copper-tolerant Xanthomonas strains. This study evaluated the antibacterial activity of the new copper composites core-shell copper (CS-Cu), multivalent copper (MV-Cu), and fixed quaternary ammonium copper (FQ-Cu) as potential alternatives to commercially available micron-sized copper bactericides for controlling copper-tolerant Xanthomonas perforans. In vitro, metallic copper from CS-Cu and FQ-Cu at 100 μg/ml killed the copper-tolerant X. perforans strain within 1 h of exposure. In contrast, none of the micron-sized copper rates (100 to 1,000 μg/ml) from Kocide 3000 significantly reduced copper-tolerant X. perforans populations after 48 h of exposure compared with the water control (P < 0.05). All copper-based treatments killed the copper-sensitive X. perforans strain within 1 h. Greenhouse studies demonstrated that all copper composites significantly reduced bacterial spot disease severity when compared with copper-mancozeb and water controls (P < 0.05). Although there was no significant impact on yield, copper composites significantly reduced disease severity when compared with water controls, using 80% less metallic copper in comparison with copper-mancozeb in field studies (P < 0.05). This study highlights the discovery that copper composites have the potential to manage copper-tolerant X. perforans and tomato bacterial spot.

  10. Genomic survey of pathogenicity determinants and VNTR markers in the cassava bacterial pathogen Xanthomonas axonopodis pv. Manihotis strain CIO151.

    PubMed

    Arrieta-Ortiz, Mario L; Rodríguez-R, Luis M; Pérez-Quintero, Álvaro L; Poulin, Lucie; Díaz, Ana C; Arias Rojas, Nathalia; Trujillo, Cesar; Restrepo Benavides, Mariana; Bart, Rebecca; Boch, Jens; Boureau, Tristan; Darrasse, Armelle; David, Perrine; Dugé de Bernonville, Thomas; Fontanilla, Paula; Gagnevin, Lionel; Guérin, Fabien; Jacques, Marie-Agnès; Lauber, Emmanuelle; Lefeuvre, Pierre; Medina, Cesar; Medina, Edgar; Montenegro, Nathaly; Muñoz Bodnar, Alejandra; Noël, Laurent D; Ortiz Quiñones, Juan F; Osorio, Daniela; Pardo, Carolina; Patil, Prabhu B; Poussier, Stéphane; Pruvost, Olivier; Robène-Soustrade, Isabelle; Ryan, Robert P; Tabima, Javier; Urrego Morales, Oscar G; Vernière, Christian; Carrere, Sébastien; Verdier, Valérie; Szurek, Boris; Restrepo, Silvia; López, Camilo; Koebnik, Ralf; Bernal, Adriana

    2013-01-01

    Xanthomonas axonopodis pv. manihotis (Xam) is the causal agent of bacterial blight of cassava, which is among the main components of human diet in Africa and South America. Current information about the molecular pathogenicity factors involved in the infection process of this organism is limited. Previous studies in other bacteria in this genus suggest that advanced draft genome sequences are valuable resources for molecular studies on their interaction with plants and could provide valuable tools for diagnostics and detection. Here we have generated the first manually annotated high-quality draft genome sequence of Xam strain CIO151. Its genomic structure is similar to that of other xanthomonads, especially Xanthomonas euvesicatoria and Xanthomonas citri pv. citri species. Several putative pathogenicity factors were identified, including type III effectors, cell wall-degrading enzymes and clusters encoding protein secretion systems. Specific characteristics in this genome include changes in the xanthomonadin cluster that could explain the lack of typical yellow color in all strains of this pathovar and the presence of 50 regions in the genome with atypical nucleotide composition. The genome sequence was used to predict and evaluate 22 variable number of tandem repeat (VNTR) loci that were subsequently demonstrated as polymorphic in representative Xam strains. Our results demonstrate that Xanthomonas axonopodis pv. manihotis strain CIO151 possesses ten clusters of pathogenicity factors conserved within the genus Xanthomonas. We report 126 genes that are potentially unique to Xam, as well as potential horizontal transfer events in the history of the genome. The relation of these regions with virulence and pathogenicity could explain several aspects of the biology of this pathogen, including its ability to colonize both vascular and non-vascular tissues of cassava plants. A set of 16 robust, polymorphic VNTR loci will be useful to develop a multi-locus VNTR analysis

  11. Genomic Survey of Pathogenicity Determinants and VNTR Markers in the Cassava Bacterial Pathogen Xanthomonas axonopodis pv. Manihotis Strain CIO151

    PubMed Central

    Arrieta-Ortiz, Mario L.; Rodríguez-R, Luis M.; Pérez-Quintero, Álvaro L.; Poulin, Lucie; Díaz, Ana C.; Arias Rojas, Nathalia; Trujillo, Cesar; Restrepo Benavides, Mariana; Bart, Rebecca; Boch, Jens; Boureau, Tristan; Darrasse, Armelle; David, Perrine; Dugé de Bernonville, Thomas; Fontanilla, Paula; Gagnevin, Lionel; Guérin, Fabien; Jacques, Marie-Agnès; Lauber, Emmanuelle; Lefeuvre, Pierre; Medina, Cesar; Medina, Edgar; Montenegro, Nathaly; Muñoz Bodnar, Alejandra; Noël, Laurent D.; Ortiz Quiñones, Juan F.; Osorio, Daniela; Pardo, Carolina; Patil, Prabhu B.; Poussier, Stéphane; Pruvost, Olivier; Robène-Soustrade, Isabelle; Ryan, Robert P.; Tabima, Javier; Urrego Morales, Oscar G.; Vernière, Christian; Carrere, Sébastien; Verdier, Valérie; Szurek, Boris; Restrepo, Silvia; López, Camilo

    2013-01-01

    Xanthomonas axonopodis pv. manihotis (Xam) is the causal agent of bacterial blight of cassava, which is among the main components of human diet in Africa and South America. Current information about the molecular pathogenicity factors involved in the infection process of this organism is limited. Previous studies in other bacteria in this genus suggest that advanced draft genome sequences are valuable resources for molecular studies on their interaction with plants and could provide valuable tools for diagnostics and detection. Here we have generated the first manually annotated high-quality draft genome sequence of Xam strain CIO151. Its genomic structure is similar to that of other xanthomonads, especially Xanthomonas euvesicatoria and Xanthomonas citri pv. citri species. Several putative pathogenicity factors were identified, including type III effectors, cell wall-degrading enzymes and clusters encoding protein secretion systems. Specific characteristics in this genome include changes in the xanthomonadin cluster that could explain the lack of typical yellow color in all strains of this pathovar and the presence of 50 regions in the genome with atypical nucleotide composition. The genome sequence was used to predict and evaluate 22 variable number of tandem repeat (VNTR) loci that were subsequently demonstrated as polymorphic in representative Xam strains. Our results demonstrate that Xanthomonas axonopodis pv. manihotis strain CIO151 possesses ten clusters of pathogenicity factors conserved within the genus Xanthomonas. We report 126 genes that are potentially unique to Xam, as well as potential horizontal transfer events in the history of the genome. The relation of these regions with virulence and pathogenicity could explain several aspects of the biology of this pathogen, including its ability to colonize both vascular and non-vascular tissues of cassava plants. A set of 16 robust, polymorphic VNTR loci will be useful to develop a multi-locus VNTR analysis

  12. Complete genome of the cotton bacteria blight pathogen Xanthomonas citri pv. malvacearum strain MSCT

    USDA-ARS?s Scientific Manuscript database

    Xanthomonas citri pv. malvacearum (Xcm) is a major pathogen of Gossypium hirsutum. In this study we report the complete genome of the Xcm strain MSCT assembled from long read DNA sequencing technology. The MSCT genome is the first Xcm genome that has complete coding regions for Xcm transcriptional a...

  13. Assessment of potential probiotic properties of Lactobacillus spp., Lactococcus spp., and Pediococcus spp. strains isolated from kefir.

    PubMed

    Sabir, Firat; Beyatli, Yavuz; Cokmus, Cumhur; Onal-Darilmaz, Derya

    2010-01-01

    In this study, the metabolic activities (in terms of quantities of the produced lactic acid, hydrogen peroxide, and exopolysaccharides) of 8 strains of Lactobacillus spp., Lactococcus spp., and Pediococcus spp., were determined. Lactic acid levels produced by strains were 8.1 to 17.4 mg/L. The L. acidophilus Z1L strain produced the maximum amount (3.18 μg/mL) of hydrogen peroxide. The exopolysaccharides (EPS) production by the strains was ranged between 173 and 378 mg/L. The susceptibility of 7 different antibiotics against these strains was also tested. All strains were found to be sensitive to ampicillin. The tolerance of the strains to low pH, their resistance to bile salts of strains, and their abilities to autoaggregate and coaggregate with Escherichia coli ATCC 11229 were also evaluated. High EPS-producing strains showed significant autoaggregation and coaggregation ability with test bacteria (P < 0.01). A correlation also was determined between EPS production and acid-bile tolerance (P < 0.05). EPS production possibly affects or is involved in acid-bile tolerance and aggregation of Lactobacillus spp., Lactococcus spp., and Pediococcus spp. strains and supports the potential of L. acidophilus Z1L strain as new probiotic. © 2010 Institute of Food Technologists®

  14. Comparative Genomic and Phenotypic Characterization of Pathogenic and Non-Pathogenic Strains of Xanthomonas arboricola Reveals Insights into the Infection Process of Bacterial Spot Disease of Stone Fruits

    PubMed Central

    Garita-Cambronero, Jerson; Palacio-Bielsa, Ana; López, María M.

    2016-01-01

    Xanthomonas arboricola pv. pruni is the causal agent of bacterial spot disease of stone fruits, a quarantinable pathogen in several areas worldwide, including the European Union. In order to develop efficient control methods for this disease, it is necessary to improve the understanding of the key determinants associated with host restriction, colonization and the development of pathogenesis. After an initial characterization, by multilocus sequence analysis, of 15 strains of X. arboricola isolated from Prunus, one strain did not group into the pathovar pruni or into other pathovars of this species and therefore it was identified and defined as a X. arboricola pv. pruni look-a-like. This non-pathogenic strain and two typical strains of X. arboricola pv. pruni were selected for a whole genome and phenotype comparative analysis in features associated with the pathogenesis process in Xanthomonas. Comparative analysis among these bacterial strains isolated from Prunus spp. and the inclusion of 15 publicly available genome sequences from other pathogenic and non-pathogenic strains of X. arboricola revealed variations in the phenotype associated with variations in the profiles of TonB-dependent transporters, sensors of the two-component regulatory system, methyl accepting chemotaxis proteins, components of the flagella and the type IV pilus, as well as in the repertoire of cell-wall degrading enzymes and the components of the type III secretion system and related effectors. These variations provide a global overview of those mechanisms that could be associated with the development of bacterial spot disease. Additionally, it pointed out some features that might influence the host specificity and the variable virulence observed in X. arboricola. PMID:27571391

  15. [Salmonella spp. strains resistant to drugs].

    PubMed

    Białucha, Agata; Kozuszko, Sylwia; Gospodarek, Eugenia

    2010-01-01

    The aim of the study was retrospective analysis of Salmonella spp. strains isolated from patients of State Infectious Diseases Observatory Hospital of T. Browicz in Bydgoszcz (SZAK) and University of dr. A. Jurasz in Bydgoszcz (SU CM UMK) in 2006-2009. The percentages of Salmonella spp. strains resistant to at least one drug were: 19,0% in 2006, 12,5% in 2007, 50,6% in 2008 and 43,8% in the first half of 2009 year. The highest number of Salmonella spp. strains resistant to drugs were isolated from stool (96,7%) and from patients of SZAK (83,3%). Among all isolated Salmonella spp. strains resistant to drugs the highest percentage were S. enterica serovar Enteritidis (56,7%). Among S. enterica bacilli predominated resitant phenotypes to ampicillin, amoxicillin, chloramphenicol and nalidixic acid. The increasing number of strains resistant to ciprofloxacin (0,0 - 26,7%) and high percentage of strains resistant to nalidixic acid (97,3%) were noted. Decreasing resistance to chloramphenicol was observed in our study (54,5 - 14,3%).

  16. Draft genome of a Xanthomonas perforans strain associated with pith necrosis.

    PubMed

    Torelli, Emanuela; Aiello, Dalia; Polizzi, Giancarlo; Firrao, Giuseppe; Cirvilleri, Gabriella

    2015-02-01

    Xanthomonas perforans causes bacterial spot of tomato and pepper. A genome draft of an unusual isolate (strain 4P1S2), differing in that it was associated with stem pith necrosis, was assembled from Illumina MiSeq sequencing data using the draft of X. perforans strain 91-118 as a reference. The resulting draft (accession number JRWW00000000) largely overlapped with the reference draft. In addition, the reads not mapping on the reference assembly were selected and used for a further assembly, that revealed a large putative plasmid. The analysis of the predicted proteins showed only few gene features that could be potentially implicated in the switch of a phytopathological behavior. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Identification of Isolates that Cause a Leaf Spot Disease of Brassicas as Xanthomonas campestris pv. raphani and Pathogenic and Genetic Comparison with Related Pathovars.

    PubMed

    Vicente, J G; Everett, B; Roberts, S J

    2006-07-01

    ABSTRACT Twenty-five Xanthomonas isolates, including some isolates received as either X. campestris pv. armoraciae or pv. raphani, caused discrete leaf spot symptoms when spray-inoculated onto at least one Brassica oleracea cultivar. Twelve of these isolates and four other Xanthomonas isolates were spray- and pin-inoculated onto 21 different plant species/cultivars including horseradish (Armoracia rusticana), radish (Raphanus sativus), and tomato (Lycopersicon esculentum). The remaining 13 leaf spot isolates were spray-inoculated onto a subset of 10 plant species/cultivars. The leaf spot isolates were very aggressive on several Brassica spp., radish, and tomato causing leaf spots and dark sunken lesions on the middle vein, petiole, and stem. Based on the differential reactions of several Brassica spp. and radish cultivars, the leaf spot isolates were divided into three races, with races 1 and 3 predominating. A differential series was established to determine the race-type of isolates and a gene-for-gene model based on the interaction of two avirulence genes in the pathogen races and two matching resistance genes in the differential hosts is proposed. Repetitive-DNA polymerase chain reaction-based fingerprinting was used to assess the genetic diversity of the leaf spot isolates and isolates of closely related Xanthomonas pathovars. Although there was variability within each race, the leaf spot isolates were clustered separately from the X. campestris pv. campestris isolates. We propose that X. campestris isolates that cause a nonvascular leaf spot disease on Brassica spp. should be identified as pv. raphani and not pv. armoraciae. Race-type strains and a neopathotype strain for X. campestris pv. raphani are proposed.

  18. Characterization of novel virulent broad-host-range phages of Xylella fastidiosa and Xanthomonas.

    PubMed

    Ahern, Stephen J; Das, Mayukh; Bhowmick, Tushar Suvra; Young, Ry; Gonzalez, Carlos F

    2014-01-01

    The xylem-limited bacterium Xylella fastidiosa is the causal agent of several plant diseases, most notably Pierce's disease of grape and citrus variegated chlorosis. We report the isolation and characterization of the first virulent phages for X. fastidiosa, siphophages Sano and Salvo and podophages Prado and Paz, with a host range that includes Xanthomonas spp. Phages propagated on homologous hosts had observed adsorption rate constants of ~4 × 10(-12) ml cell(-1) min(-1) for X. fastidiosa strain Temecula 1 and ~5 × 10(-10) to 7 × 10(-10) ml cell(-1) min(-1) for Xanthomonas strain EC-12. Sano and Salvo exhibit >80% nucleotide identity to each other in aligned regions and are syntenic to phage BcepNazgul. We propose that phage BcepNazgul is the founding member of a novel phage type, to which Sano and Salvo belong. The lysis genes of the Nazgul-like phage type include a gene that encodes an outer membrane lipoprotein endolysin and also spanin gene families that provide insight into the evolution of the lysis pathway for phages of Gram-negative hosts. Prado and Paz, although exhibiting no significant DNA homology to each other, are new members of the phiKMV-like phage type, based on the position of the single-subunit RNA polymerase gene. The four phages are type IV pilus dependent for infection of both X. fastidiosa and Xanthomonas. The phages may be useful as agents for an effective and environmentally responsible strategy for the control of diseases caused by X. fastidiosa.

  19. Characterization of Novel Virulent Broad-Host-Range Phages of Xylella fastidiosa and Xanthomonas

    PubMed Central

    Ahern, Stephen J.; Das, Mayukh; Bhowmick, Tushar Suvra; Young, Ry

    2014-01-01

    The xylem-limited bacterium Xylella fastidiosa is the causal agent of several plant diseases, most notably Pierce's disease of grape and citrus variegated chlorosis. We report the isolation and characterization of the first virulent phages for X. fastidiosa, siphophages Sano and Salvo and podophages Prado and Paz, with a host range that includes Xanthomonas spp. Phages propagated on homologous hosts had observed adsorption rate constants of ∼4 × 10−12 ml cell−1 min−1 for X. fastidiosa strain Temecula 1 and ∼5 × 10−10 to 7 × 10−10 ml cell−1 min−1 for Xanthomonas strain EC-12. Sano and Salvo exhibit >80% nucleotide identity to each other in aligned regions and are syntenic to phage BcepNazgul. We propose that phage BcepNazgul is the founding member of a novel phage type, to which Sano and Salvo belong. The lysis genes of the Nazgul-like phage type include a gene that encodes an outer membrane lipoprotein endolysin and also spanin gene families that provide insight into the evolution of the lysis pathway for phages of Gram-negative hosts. Prado and Paz, although exhibiting no significant DNA homology to each other, are new members of the phiKMV-like phage type, based on the position of the single-subunit RNA polymerase gene. The four phages are type IV pilus dependent for infection of both X. fastidiosa and Xanthomonas. The phages may be useful as agents for an effective and environmentally responsible strategy for the control of diseases caused by X. fastidiosa. PMID:24214944

  20. Xanthomonas prunicola sp. nov., a novel pathogen that affects nectarine (Prunus persica var. nectarina) trees.

    PubMed

    López, María M; Lopez-Soriano, Pablo; Garita-Cambronero, Jerson; Beltrán, Carmen; Taghouti, Geraldine; Portier, Perrine; Cubero, Jaime; Fischer-Le Saux, Marion; Marco-Noales, Ester

    2018-06-01

    Three isolates obtained from symptomatic nectarine trees (Prunus persica var. nectarina) cultivated in Murcia, Spain, which showed yellow and mucoid colonies similar to Xanthomonas arboricola pv. pruni, were negative after serological and real-time PCR analyses for this pathogen. For that reason, these isolates were characterized following a polyphasic approach that included both phenotypic and genomic methods. By sequence analysis of the 16S rRNA gene, these novel strains were identified as members of the genus Xanthomonas, and by multilocus sequence analysis (MLSA) they were clustered together in a distinct group that showed similarity values below 95 % with the rest of the species of this genus. Whole-genome comparisons of the average nucleotide identity (ANI) of genomes of the strains showed less than 91 % average nucleotide identity with all other species of the genus Xanthomonas. Additionally, phenotypic characterization based on API 20 NE, API 50 CH and BIOLOG tests differentiated the strains from the species of the genus Xanthomonas described previously. Moreover, the three strains were confirmed to be pathogenic on peach (Prunus persica), causing necrotic lesions on leaves. On the basis of these results, the novel strains represent a novel species of the genus Xanthomonas, for which the name Xanthomonas prunicola is proposed. The type strain is CFBP 8353 (=CECT 9404=IVIA 3287.1).

  1. High Variation in Pathogenicity of Genetically Closely Related Strains of Xanthomonas albilineans, the Sugarcane Leaf Scald Pathogen, in Guadeloupe.

    PubMed

    Champoiseau, P; Daugrois, J-H; Pieretti, I; Cociancich, S; Royer, M; Rott, P

    2006-10-01

    ABSTRACT Pathogenicity of 75 strains of Xanthomonas albilineans from Guadeloupe was assessed by inoculation of sugarcane cv. B69566, which is susceptible to leaf scald, and 19 of the strains were selected as representative of the variation in pathogenicity observed based on stalk colonization. In vitro production of albicidin varied among these 19 strains, but the restriction fragment length polymorphism pattern of their albicidin biosynthesis genes was identical. Similarly, no genomic variation was found among strains by pulsed-field gel electrophoresis. Some variation among strains was found by amplified fragment length polymorphism, but no relationship between this genetic variation and variation in pathogenicity was found. Only 3 (pilB, rpfA, and xpsE) of 40 genes involved in pathogenicity of bacterial species closely related to X. albilineans could be amplified by polymerase chain reaction from total genomic DNA of all nine strains tested of X. albilineans differing in pathogenicity in Guadeloupe. Nucleotide sequences of these genes were 100% identical among strains, and a phylogenetic study with these genes and housekeeping genes efp and ihfA suggested that X. albilineans is on an evolutionary road between the X. campestris group and Xylella fastidiosa, another vascular plant pathogen. Sequencing of the complete genome of Xanthomonas albilineans could be the next step in deciphering molecular mechanisms involved in pathogenicity of X. albilineans.

  2. Production of High-Viscosity Whey Broths by a Lactose-Utilizing Xanthomonas campestris Strain.

    PubMed

    Schwartz, R D; Bodie, E A

    1985-12-01

    Xanthomonas campestris BB-1L was isolated by enrichment and selection by serial passage in a lactose-minimal medium. When BB-1L was subsequently grown in medium containing only 4% whey and 0.05% yeast extract, the lactose was consumed and broth viscosities greater than 500 cps at a 12 s shear rate were produced. Prolonged maintenance in whey resulted in the loss of the ability of BB-1L to produce viscous broths in whey, indicating a reversion to preferential growth on whey protein, like the parent strain.

  3. Production of High-Viscosity Whey Broths by a Lactose-Utilizing Xanthomonas campestris Strain

    PubMed Central

    Schwartz, Robert D.; Bodie, Elizabeth A.

    1985-01-01

    Xanthomonas campestris BB-1L was isolated by enrichment and selection by serial passage in a lactose-minimal medium. When BB-1L was subsequently grown in medium containing only 4% whey and 0.05% yeast extract, the lactose was consumed and broth viscosities greater than 500 cps at a 12 s−1 shear rate were produced. Prolonged maintenance in whey resulted in the loss of the ability of BB-1L to produce viscous broths in whey, indicating a reversion to preferential growth on whey protein, like the parent strain. PMID:16346946

  4. Real time expression of ACC oxidase and PR-protein genes mediated by Methylobacterium spp. in tomato plants challenged with Xanthomonas campestris pv. vesicatoria.

    PubMed

    Yim, W J; Kim, K Y; Lee, Y W; Sundaram, S P; Lee, Y; Sa, T M

    2014-07-15

    Biotic stress like pathogenic infection increases ethylene biosynthesis in plants and ethylene inhibitors are known to alleviate the severity of plant disease incidence. This study aimed to reduce the bacterial spot disease incidence in tomato plants caused by Xanthomonas campestris pv. vesicatoria (XCV) by modulating stress ethylene with 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity of Methylobacterium strains. Under greenhouse condition, Methylobacterium strains inoculated and pathogen challenged tomato plants had low ethylene emission compared to pathogen infected ones. ACC accumulation and ACC oxidase (ACO) activity with ACO related gene expression increased in XCV infected tomato plants over Methylobacterium strains inoculated plants. Among the Methylobacterium spp., CBMB12 resulted lowest ACO related gene expression (1.46 Normalized Fold Expression), whereas CBMB20 had high gene expression (3.42 Normalized Fold Expression) in pathogen challenged tomato. But a significant increase in ACO gene expression (7.09 Normalized Fold Expression) was observed in the bacterial pathogen infected plants. In contrast, Methylobacterium strains enhanced β-1,3-glucanase and phenylalanine ammonia-lyase (PAL) enzyme activities in pathogen challenged tomato plants. The respective increase in β-1,3-glucanase related gene expressions due to CBMB12, CBMB15, and CBMB20 strains were 66.3, 25.5 and 10.4% higher over pathogen infected plants. Similarly, PAL gene expression was high with 0.67 and 0.30 Normalized Fold Expression, in pathogen challenged tomato plants inoculated with CBMB12 and CBMB15 strains. The results suggest that ethylene is a crucial factor in bacterial spot disease incidence and that methylobacteria with ACC deaminase activity can reduce the disease severity with ultimate pathogenesis-related protein increase in tomato. Copyright © 2014 Elsevier GmbH. All rights reserved.

  5. Genomic and phenotypic characterization of Xanthomonas cynarae sp. nov., a new species that causes bacterial bract spot of artichoke (Cynara scolymus L.).

    PubMed

    Trébaol, G; Gardan, L; Manceau, C; Tanguy, J L; Tirilly, Y; Boury, S

    2000-07-01

    A bacterial disease of artichoke (Cynara scolymus L.) was first observed in 1954 in Brittany and the Loire Valley, France. This disease causes water-soaked spots on bracts and depreciates marketability of the harvest. Ten strains of the pathogen causing bacterial spot of artichoke, previously identified as a member of the genus Xanthomonas, were characterized and compared with type and pathotype strains of the 20 Xanthomonas species using a polyphasic study including both phenotypic and genomic methods. The ten strains presented general morphological, biochemical and physiological traits and G+C content characteristic of the genus Xanthomonas. Sequencing of the 165 rRNA gene confirmed that this bacterium belongs to the genus Xanthomonas, and more precisely to the Xanthomonas campestris core. DNA-DNA hybridization results showed that the strains that cause bacterial spot of artichoke were 92-100% related to the proposed type strain CFBP 4188T and constituted a discrete DNA homology group that was distinct from the 20 previously described Xanthomonas species. The results of numerical analysis were in accordance with DNA-DNA hybridization data. Strains causing the bacterial bract spot of artichoke exhibited consistent determinative biochemical characteristics, which distinguished them from the 20 other Xanthomonas species previously described. Furthermore, pathogenicity tests allowed specific identification of this new phytopathogenic bacterium. Thus, it is concluded that this bacterium is a new species belonging to the genus Xanthomonas, for which the name Xanthomonas cynarae is proposed. The type strain, CFBP 4188T, has been deposited in the Collection Française des Bactéries Phytopathogènes (CFBP).

  6. Comparative genomics of a cannabis pathogen reveals insight into the evolution of pathogenicity in Xanthomonas

    PubMed Central

    Jacobs, Jonathan M.; Pesce, Céline; Lefeuvre, Pierre; Koebnik, Ralf

    2015-01-01

    Pathogenic bacteria in the genus Xanthomonas cause diseases on over 350 plant species, including cannabis (Cannabis sativa L.). Because of regulatory limitations, the biology of the Xanthomonas-cannabis pathosystem remains largely unexplored. To gain insight into the evolution of Xanthomonas strains pathogenic to cannabis, we sequenced the genomes of two geographically distinct Xanthomonas strains, NCPPB 3753 and NCPPB 2877, which were previously isolated from symptomatic plant tissue in Japan and Romania. Comparative multilocus sequence analysis of housekeeping genes revealed that they belong to Group 2, which comprises most of the described species of Xanthomonas. Interestingly, both strains lack the Hrp Type III secretion system and do not contain any of the known Type III effectors. Yet their genomes notably encode two key Hrp pathogenicity regulators HrpG and HrpX, and hrpG and hrpX are in the same genetic organization as in the other Group 2 xanthomonads. Promoter prediction of HrpX-regulated genes suggests the induction of an aminopeptidase, a lipase and two polygalacturonases upon plant colonization, similar to other plant-pathogenic xanthomonads. Genome analysis of the distantly related Xanthomonas maliensis strain 97M, which was isolated from a rice leaf in Mali, similarly demonstrated the presence of HrpG, HrpX, and a HrpX-regulated polygalacturonase, and the absence of the Hrp Type III secretion system and known Type III effectors. Given the observation that some Xanthomonas strains across distinct taxa do not contain hrpG and hrpX, we speculate a stepwise evolution of pathogenicity, which involves (i) acquisition of key regulatory genes and cell wall-degrading enzymes, followed by (ii) acquisition of the Hrp Type III secretion system, which is ultimately accompanied by (iii) successive acquisition of Type III effectors. PMID:26136759

  7. Pathological and Molecular Characterization of Xanthomonas campestris Strains Causing Diseases of Cassava (Manihot esculenta)

    PubMed Central

    Verdier, Valérie; Boher, Bernard; Maraite, Henri; Geiger, Jean-Paul

    1994-01-01

    Fifty-one strains representing Xanthomonas campestris pv. manihotis and cassavae and different pathovars occurring on plants of the family Euphorbiaceae were characterized by ribotyping with a 16S+23S rRNA probe of Escherichia coli and by restriction fragment length polymorphism analysis with a plasmid probe from X. campestris pv. manihotis. Pathogenicity tests were performed on cassava (Manihot esculenta). Histological comparative studies were conducted on strains of two pathovars of X. campestris (vascular and mesophyllic) that attack cassava. Our results indicated that X. campestris pv. manihotis and cassavae have different modes of action in the host and supplemented the taxonomic data on restriction fragment length polymorphism that clearly separate the two pathovars. The plasmid probe could detect multiple restriction fragment length polymorphisms among strains of the pathovar studied. Ribotyping provides a useful tool for rapid identification of X. campestris pathovars on cassava. Images PMID:16349463

  8. Complete Genome Sequences of Six Copper-Resistant Xanthomonas citri pv. citri Strains Causing Asiatic Citrus Canker, Obtained Using Long-Read Technology.

    PubMed

    Richard, Damien; Boyer, Claudine; Vernière, Christian; Canteros, Blanca I; Lefeuvre, Pierre; Pruvost, Olivier

    2017-03-23

    The gammaproteobacterium Xanthomonas citri pv .  citri causes Asiatic citrus canker. Pathotype A strains have a broad host range, which includes most commercial citrus species, and they cause important economic losses worldwide. Control often relies on frequent copper sprays. We present here the complete genomes of six X. citri pv .  citri copper-resistant strains. Copyright © 2017 Richard et al.

  9. Draft Genome Sequence of Xanthomonas arboricola pv. pruni Strain Xap33, Causal Agent of Bacterial Spot Disease on Almond

    PubMed Central

    Garita-Cambronero, J.; Sena-Vélez, M.; Palacio-Bielsa, A.

    2014-01-01

    We report the annotated genome sequence of Xanthomonas arboricola pv. pruni strain Xap33, isolated from almond leaves showing bacterial spot disease symptoms in Spain. The availability of this genome sequence will aid our understanding of the infection mechanism of this bacterium as well as its relationship to other species of the same genus. PMID:24903863

  10. AnnoTALE: bioinformatics tools for identification, annotation, and nomenclature of TALEs from Xanthomonas genomic sequences

    PubMed Central

    Grau, Jan; Reschke, Maik; Erkes, Annett; Streubel, Jana; Morgan, Richard D.; Wilson, Geoffrey G.; Koebnik, Ralf; Boch, Jens

    2016-01-01

    Transcription activator-like effectors (TALEs) are virulence factors, produced by the bacterial plant-pathogen Xanthomonas, that function as gene activators inside plant cells. Although the contribution of individual TALEs to infectivity has been shown, the specific roles of most TALEs, and the overall TALE diversity in Xanthomonas spp. is not known. TALEs possess a highly repetitive DNA-binding domain, which is notoriously difficult to sequence. Here, we describe an improved method for characterizing TALE genes by the use of PacBio sequencing. We present ‘AnnoTALE’, a suite of applications for the analysis and annotation of TALE genes from Xanthomonas genomes, and for grouping similar TALEs into classes. Based on these classes, we propose a unified nomenclature for Xanthomonas TALEs that reveals similarities pointing to related functionalities. This new classification enables us to compare related TALEs and to identify base substitutions responsible for the evolution of TALE specificities. PMID:26876161

  11. Characterization of bacteriophages Cp1 and Cp2, the strain-typing agents for Xanthomonas axonopodis pv. citri.

    PubMed

    Ahmad, Abdelmonim Ali; Ogawa, Megumi; Kawasaki, Takeru; Fujie, Makoto; Yamada, Takashi

    2014-01-01

    The strains of Xanthomonas axonopodis pv. citri, the causative agent of citrus canker, are historically classified based on bacteriophage (phage) sensitivity. Nearly all X. axonopodis pv. citri strains isolated from different regions in Japan are lysed by either phage Cp1 or Cp2; Cp1-sensitive (Cp1(s)) strains have been observed to be resistant to Cp2 (Cp2(r)) and vice versa. In this study, genomic and molecular characterization was performed for the typing agents Cp1 and Cp2. Morphologically, Cp1 belongs to the Siphoviridae. Genomic analysis revealed that its genome comprises 43,870-bp double-stranded DNA (dsDNA), with 10-bp 3'-extruding cohesive ends, and contains 48 open reading frames. The genomic organization was similar to that of Xanthomonas phage phiL7, but it lacked a group I intron in the DNA polymerase gene. Cp2 resembles morphologically Escherichia coli T7-like phages of Podoviridae. The 42,963-bp linear dsDNA genome of Cp2 contained terminal repeats. The Cp2 genomic sequence has 40 open reading frames, many of which did not show detectable homologs in the current databases. By proteomic analysis, a gene cluster encoding structural proteins corresponding to the class III module of T7-like phages was identified on the Cp2 genome. Therefore, Cp1 and Cp2 were found to belong to completely different virus groups. In addition, we found that Cp1 and Cp2 use different molecules on the host cell surface as phage receptors and that host selection of X. axonopodis pv. citri strains by Cp1 and Cp2 is not determined at the initial stage by binding to receptors.

  12. Relative importance of bacteriocin-like genes in antagonism of Xanthomonas perforans tomato race 3 to Xanthomonas euvesicatoria tomato race 1 strains.

    PubMed

    Hert, A P; Roberts, P D; Momol, M T; Minsavage, G V; Tudor-Nelson, S M; Jones, J B

    2005-07-01

    In a previous study, tomato race 3 (T3) strains of Xanthomonas perforans became predominant in fields containing both X. euvesicatoria and X. perforans races T1 and T3, respectively. This apparent ability to take over fields led to the discovery that there are three bacteriocin-like compounds associated with T3 strains. T3 strain 91-118 produces at least three different bacteriocin-like compounds (BCN-A, BCN-B, and BCN-C) antagonistic toward T1 strains. We determined the relative importance of the bacteriocin-like compounds by constructing the following mutant forms of a wild-type (WT) T3 strain to evaluate the antagonism to WT T1 strains: Mut-A (BCN-A-), Mut-B (BCN-B-), Mut-C (BCN-C-), Mut-AB, Mut-BC, and Mut-ABC. Although all mutant and WT T3 strains reduced the T1 populations in in planta growth room experiments, Mut-B and WT T3 were significantly more effective. Mutants expressing BCN-B and either BCN-A or BCN-C reduced T1 populations less than mutants expressing only BCN-A or BCN-C. The triple-knockout mutant Mut-ABC also had a significant competitive advantage over the T1 strain. In pairwise-inoculation field experiments where plants were coinoculated with an individual mutant or WT T3 strain and the T1 strain, the mutant strains and the WT T3 strain were reisolated from more than 70% of the lesions. WT T3 and Mut-B were the most frequently reisolated strains. In field experiments where plants were group inoculated with Mut-A, Mut-B, Mut-C, Mut-ABC, and WT T1 and T3 strains, Mut-B populations dominated all three seasons. In greenhouse and field experiments, the WT and mutant T3 strains had a selective advantage over T1 strains. Bacterial strains expressing both BCN-A and BCN-C appeared to have a competitive advantage over all other mutant and WT strains. Furthermore, BCN-B appeared to be a negative factor, with mutant T3 strains lacking BCN-B having a selective advantage in the field.

  13. Identification of a novel type III secretion-associated outer membrane-bound protein from Xanthomonas campestris pv. campestris

    PubMed Central

    Li, Lei; Li, Rui-Fang; Ming, Zhen-Hua; Lu, Guang-Tao; Tang, Ji-Liang

    2017-01-01

    Many bacterial pathogens employ the type III secretion system (T3SS) to translocate effector proteins into eukaryotic cells to overcome host defenses. To date, most of our knowledge about the T3SS molecular architecture comes from the studies on animal pathogens. In plant pathogens, nine Hrc proteins are believed to be structural components of the T3SS, of which HrcC and HrcJ form the outer and inner rings of the T3SS, respectively. Here, we demonstrated that a novel outer membrane-bound protein (HpaM) of Xanthomonas campestris pv. campestris is critical for the type III secretion and is structurally and functionally conserved in phytopathogenic Xanthomonas spp. We showed that the C-terminus of HpaM extends into the periplasm to interact physically with HrcJ and the middle part of HpaM interacts physically with HrcC. It is clear that the outer and inner rings compose the main basal body of the T3SS apparatus in animal pathogens. Therefore, we presume that HpaM may act as a T3SS structural component, or play a role in assisting assembling or affecting the stability of the T3SS apparatus. HpaM is a highly prevalent and specific protein in Xanthomonas spp., suggesting that the T3SS of Xanthomonas is distinctive in some aspects from other pathogens. PMID:28198457

  14. A genetic screen to isolate type III effectors translocated into pepper cells during Xanthomonas infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Julie Anne Roden, Branids Belt, Jason Barzel Ross, Thomas Tachibana, Joe Vargas, Mary Beth Mudgett

    2004-11-23

    The bacterial pathogen Xanthomonas campestris pv. vesicatoria (Xcv) uses a type III secretion system (TTSS) to translocate effector proteins into host plant cells. The TTSS is required for Xcv colonization, yet the identity of many proteins translocated through this apparatus is not known. We used a genetic screen to functionally identify Xcv TTSS effectors. A transposon 5 (Tn5)-based transposon construct including the coding sequence for the Xcv AvrBs2 effector devoid of its TTSS signal was randomly inserted into the Xcv genome. Insertion of the avrBs2 reporter gene into Xcv genes coding for proteins containing a functional TTSS signal peptide resultedmore » in the creation of chimeric TTSS effector::AvrBs2 fusion proteins. Xcv strains containing these fusions translocated the AvrBs2 reporter in a TTSS-dependent manner into resistant BS2 pepper cells during infection, activating the avrBs2-dependent hypersensitive response (HR). We isolated seven chimeric fusion proteins and designated the identified TTSS effectors as Xanthomonas outer proteins (Xops). Translocation of each Xop was confirmed by using the calmodulin-dependent adenylate cydase reporter assay. Three xop genes are Xanthomonas spp.-specific, whereas homologs for the rest are found in other phytopathogenic bacteria. XopF1 and XopF2 define an effector gene family in Xcv. XopN contains a eukaryotic protein fold repeat and is required for full Xcv pathogenicity in pepper and tomato. The translocated effectors identified in this work expand our knowledge of the diversity of proteins that Xcv uses to manipulate its hosts.« less

  15. Proposal of Xanthomonas translucens pv. pistaciae pv. nov., pathogenic to pistachio (Pistacia vera).

    PubMed

    Giblot-Ducray, Danièle; Marefat, Alireza; Gillings, Michael R; Parkinson, Neil M; Bowman, John P; Ophel-Keller, Kathy; Taylor, Cathy; Facelli, Evelina; Scott, Eileen S

    2009-12-01

    Strains of Xanthomonas translucens have caused dieback in the Australian pistachio industry for the last 15 years. Such pathogenicity to a dicotyledonous woody host contrasts with that of other pathovars of X. translucens, which are characterized by their pathogenicity to monocotyledonous plant families. Further investigations, using DNA-DNA hybridization, gyrB gene sequencing and integron screening, were conducted to confirm the taxonomic status of the X. translucens pathogenic to pistachio. DNA-DNA hybridization provided a clear classification, at the species level, of the pistachio pathogen as a X. translucens. In the gyrB-based phylogeny, strains of the pistachio pathogen clustered among the X. translucens pathovars as two distinct lineages. Integron screening revealed that the cassette arrays of strains of the pistachio pathogen were different from those of other Xanthomonas species, and again distinguished two groups. Together with previously reported pathogenicity data, these results confirm that the pistachio pathogen is a new pathovar of X. translucens and allow hypotheses about its origin. The proposed name is Xanthomonas translucens pv. pistaciae pv. nov.

  16. Evolution of Transcription Activator-Like Effectors in Xanthomonas oryzae

    PubMed Central

    Erkes, Annett; Reschke, Maik; Boch, Jens

    2017-01-01

    Abstract Transcription activator-like effectors (TALEs) are secreted by plant–pathogenic Xanthomonas bacteria into plant cells where they act as transcriptional activators and, hence, are major drivers in reprogramming the plant for the benefit of the pathogen. TALEs possess a highly repetitive DNA-binding domain of typically 34 amino acid (AA) tandem repeats, where AA 12 and 13, termed repeat variable di-residue (RVD), determine target specificity. Different Xanthomonas strains possess different repertoires of TALEs. Here, we study the evolution of TALEs from the level of RVDs determining target specificity down to the level of DNA sequence with focus on rice-pathogenic Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc) strains. We observe that codon pairs coding for individual RVDs are conserved to a similar degree as the flanking repeat sequence. We find strong indications that TALEs may evolve 1) by base substitutions in codon pairs coding for RVDs, 2) by recombination of N-terminal or C-terminal regions of existing TALEs, or 3) by deletion of individual TALE repeats, and we propose possible mechanisms. We find indications that the reassortment of TALE genes in clusters is mediated by an integron-like mechanism in Xoc. We finally study the effect of the presence/absence and evolutionary modifications of TALEs on transcriptional activation of putative target genes in rice, and find that even single RVD swaps may lead to considerable differences in activation. This correlation allowed a refined prediction of TALE targets, which is the crucial step to decipher their virulence activity. PMID:28637323

  17. Isolation of an insertion sequence (IS1051) from Xanthomonas campestris pv. dieffenbachiae with potential use for strain identification and characterization.

    PubMed Central

    Berthier, Y; Thierry, D; Lemattre, M; Guesdon, J L

    1994-01-01

    A new insertion sequence was isolated from Xanthomonas campestris pv. dieffenbachiae. Sequence analysis showed that this element is 1,158 bp long and has 15-bp inverted repeat ends containing two mismatches. Comparison of this sequence with sequences in data bases revealed significant homology with Escherichia coli IS5. IS1051, which detected multiple restriction fragment length polymorphisms, was used as a probe to characterize strains from the pathovar dieffenbachiae. Images PMID:7906933

  18. Five Xanthomonas type III effectors suppress cell death induced by components of immunity-associated MAP kinase cascades

    PubMed Central

    Teper, Doron; Sunitha, Sukumaran; Martin, Gregory B; Sessa, Guido

    2015-01-01

    Mitogen-activated protein kinase (MAPK) cascades play a fundamental role in signaling of plant immunity and mediate elicitation of cell death. Xanthomonas spp. manipulate plant signaling by using a type III secretion system to deliver effector proteins into host cells. We examined the ability of 33 Xanthomonas effectors to inhibit cell death induced by overexpression of components of MAPK cascades in Nicotiana benthamiana plants. Five effectors inhibited cell death induced by overexpression of MAPKKKα and MEK2, but not of MAP3Kϵ. In addition, expression of AvrBs1 in yeast suppressed activation of the high osmolarity glycerol MAPK pathway, suggesting that the target of this effector is conserved in eukaryotic organisms. These results indicate that Xanthomonas employs several type III effectors to suppress immunity-associated cell death mediated by MAPK cascades. PMID:26237448

  19. Two-component signal transduction systems of Xanthomonas spp.: a lesson from genomics.

    PubMed

    Qian, Wei; Han, Zhong-Ji; He, Chaozu

    2008-02-01

    The two-component signal transduction systems (TCSTSs), consisting of a histidine kinase sensor (HK) and a response regulator (RR), are the dominant molecular mechanisms by which prokaryotes sense and respond to environmental stimuli. Genomes of Xanthomonas generally contain a large repertoire of TCSTS genes (approximately 92 to 121 for each genome), which encode diverse structural groups of HKs and RRs. Among them, although a core set of 70 TCSTS genes (about two-thirds in total) which accumulates point mutations with a slow rate are shared by these genomes, the other genes, especially hybrid HKs, experienced extensive genetic recombination, including genomic rearrangement, gene duplication, addition or deletion, and fusion or fission. The recombinations potentially promote the efficiency and complexity of TCSTSs in regulating gene expression. In addition, our analysis suggests that a co-evolutionary model, rather than a selfish operon model, is the major mechanism for the maintenance and microevolution of TCSTS genes in the genomes of Xanthomonas. Genomic annotation, secondary protein structure prediction, and comparative genomic analyses of TCSTS genes reviewed here provide insights into our understanding of signal networks in these important phytopathogenic bacteria.

  20. Molecular Characterization of Copper Resistance Genes from Xanthomonas citri subsp. citri and Xanthomonas alfalfae subsp. citrumelonis▿

    PubMed Central

    Behlau, Franklin; Canteros, Blanca I.; Minsavage, Gerald V.; Jones, Jeffrey B.; Graham, James H.

    2011-01-01

    Copper sprays have been widely used for control of endemic citrus canker caused by Xanthomonas citri subsp. citri in citrus-growing areas for more than 2 decades. Xanthomonas alfalfae subsp. citrumelonis populations were also exposed to frequent sprays of copper for several years as a protective measure against citrus bacterial spot (CBS) in Florida citrus nurseries. Long-term use of these bactericides has led to the development of copper-resistant (Cur) strains in both X. citri subsp. citri and X. alfalfae subsp. citrumelonis, resulting in a reduction of disease control. The objectives of this study were to characterize for the first time the genetics of copper resistance in X. citri subsp. citri and X. alfalfae subsp. citrumelonis and to compare these organisms to other Cur bacteria. Copper resistance determinants from X. citri subsp. citri strain A44(pXccCu2) from Argentina and X. alfalfae subsp. citrumelonis strain 1381(pXacCu2) from Florida were cloned and sequenced. Open reading frames (ORFs) related to the genes copL, copA, copB, copM, copG, copC, copD, and copF were identified in X. citri subsp. citri A44. The same ORFs, except copC and copD, were also present in X. alfalfae subsp. citrumelonis 1381. Transposon mutagenesis of the cloned copper resistance determinants in pXccCu2 revealed that copper resistance in X. citri subsp. citri strain A44 is mostly due to copL, copA, and copB, which are the genes in the cloned cluster with the highest nucleotide homology (≥92%) among different Cur bacteria. PMID:21515725

  1. [The extracellular proteases of the phytopathogenic bacterium Xanthomonas campestris].

    PubMed

    Kalashnikova, E E; Chernyshova, M P; Ignatov, V V

    2003-01-01

    The culture liquids of three Xanthomonas campestris pv. campestris strains were found to possess proteolytic activity. The culture liquid of strain B-611 with the highest proteolytic activity was fractionated by salting-out with ammonium sulfate, gel filtration, and ion-exchange chromatography. The electrophoretic analysis of active fractions showed the presence of two proteases in the culture liquid of strain B-611, the major of which being serine protease. The treatment of cabbage seedlings with the proteases augmented the activity of peroxidase in the cabbage roots by 28%.

  2. Genomic insights into strategies used by Xanthomonas albilineans with its reduced artillery to spread within sugarcane xylem vessels.

    PubMed

    Pieretti, Isabelle; Royer, Monique; Barbe, Valérie; Carrere, Sébastien; Koebnik, Ralf; Couloux, Arnaud; Darrasse, Armelle; Gouzy, Jérôme; Jacques, Marie-Agnès; Lauber, Emmanuelle; Manceau, Charles; Mangenot, Sophie; Poussier, Stéphane; Segurens, Béatrice; Szurek, Boris; Verdier, Valérie; Arlat, Matthieu; Gabriel, Dean W; Rott, Philippe; Cociancich, Stéphane

    2012-11-21

    Xanthomonas albilineans causes leaf scald, a lethal disease of sugarcane. X. albilineans exhibits distinctive pathogenic mechanisms, ecology and taxonomy compared to other species of Xanthomonas. For example, this species produces a potent DNA gyrase inhibitor called albicidin that is largely responsible for inducing disease symptoms; its habitat is limited to xylem; and the species exhibits large variability. A first manuscript on the complete genome sequence of the highly pathogenic X. albilineans strain GPE PC73 focused exclusively on distinctive genomic features shared with Xylella fastidiosa-another xylem-limited Xanthomonadaceae. The present manuscript on the same genome sequence aims to describe all other pathogenicity-related genomic features of X. albilineans, and to compare, using suppression subtractive hybridization (SSH), genomic features of two strains differing in pathogenicity. Comparative genomic analyses showed that most of the known pathogenicity factors from other Xanthomonas species are conserved in X. albilineans, with the notable absence of two major determinants of the "artillery" of other plant pathogenic species of Xanthomonas: the xanthan gum biosynthesis gene cluster, and the type III secretion system Hrp (hypersensitive response and pathogenicity). Genomic features specific to X. albilineans that may contribute to specific adaptation of this pathogen to sugarcane xylem vessels were also revealed. SSH experiments led to the identification of 20 genes common to three highly pathogenic strains but missing in a less pathogenic strain. These 20 genes, which include four ABC transporter genes, a methyl-accepting chemotaxis protein gene and an oxidoreductase gene, could play a key role in pathogenicity. With the exception of hypothetical proteins revealed by our comparative genomic analyses and SSH experiments, no genes potentially involved in any offensive or counter-defensive mechanism specific to X. albilineans were identified, supposing

  3. Single molecule real-time sequencing of Xanthomonas oryzae genomes reveals a dynamic structure and complex TAL (transcription activator-like) effector gene relationships

    PubMed Central

    Booher, Nicholas J.; Carpenter, Sara C. D.; Sebra, Robert P.; Wang, Li; Salzberg, Steven L.; Leach, Jan E.

    2015-01-01

    Pathogen-injected, direct transcriptional activators of host genes, TAL (transcription activator-like) effectors play determinative roles in plant diseases caused by Xanthomonas spp. A large domain of nearly identical, 33–35 aa repeats in each protein mediates DNA recognition. This modularity makes TAL effectors customizable and thus important also in biotechnology. However, the repeats render TAL effector (tal) genes nearly impossible to assemble using next-generation, short reads. Here, we demonstrate that long-read, single molecule real-time (SMRT) sequencing solves this problem. Taking an ensemble approach to first generate local, tal gene contigs, we correctly assembled de novo the genomes of two strains of the rice pathogen X. oryzae completed previously using the Sanger method and even identified errors in those references. Sequencing two more strains revealed a dynamic genome structure and a striking plasticity in tal gene content. Our results pave the way for population-level studies to inform resistance breeding, improve biotechnology and probe TAL effector evolution. PMID:27148456

  4. Biochemical and molecular tools reveal two diverse Xanthomonas groups in bananas.

    PubMed

    Adriko, J; Aritua, V; Mortensen, C N; Tushemereirwe, W K; Mulondo, A L; Kubiriba, J; Lund, O S

    2016-02-01

    Xanthomonas campestris pv. musacearum (Xcm) causing the banana Xanthomonas wilt (BXW) disease has been the main xanthomonad associated with bananas in East and Central Africa based on phenotypic and biochemical characteristics. However, biochemical methods cannot effectively distinguish between pathogenic and non-pathogenic xanthomonads. In this study, gram-negative and yellow-pigmented mucoid bacteria were isolated from BXW symptomatic and symptomless bananas collected from different parts of Uganda. Biolog, Xcm-specific (GspDm), Xanthomonas vasicola species-specific (NZ085) and Xanthomonas genus-specific (X1623) primers in PCR, and sequencing of ITS region were used to identify and characterize the isolates. Biolog tests revealed several isolates as xanthomonads. The GspDm and NZ085 primers accurately identified three isolates from diseased bananas as Xcm and these were pathogenic when re-inoculated into bananas. DNA from more isolates than those amplified by GspDm and NZ085 primers were amplified by the X1623 primers implying they are xanthomonads, these were however non-pathogenic on bananas. In the 16-23 ITS sequence based phylogeny, the pathogenic bacteria clustered together with the Xcm reference strain, while the non-pathogenic xanthomonads isolated from both BXW symptomatic and symptomless bananas clustered with group I xanthomonads. The findings reveal dynamic Xanthomonas populations in bananas, which can easily be misrepresented by only using phenotyping and biochemical tests. A combination of tools provides the most accurate identity and characterization of these plant associated bacteria. The interactions between the pathogenic and non-pathogenic xanthomonads in bananas may pave way to understanding effect of microbial interactions on BXW disease development and offer clues to biocontrol of Xcm. Copyright © 2016. Published by Elsevier GmbH.

  5. Identification and adhesion profile of Lactobacillus spp. strains isolated from poultry

    PubMed Central

    Rocha, Ticiana Silva; Baptista, Ana Angelita Sampaio; Donato, Tais Cremasco; Milbradt, Elisane Lenita; Okamoto, Adriano Sakai; Filho, Raphael Lucio Andreatti

    2014-01-01

    In the aviculture industry, the use of Lactobacillus spp. as a probiotic has been shown to be frequent and satisfactory, both in improving bird production indexes and in protecting intestine against colonization by pathogenic bacteria. Adhesion is an important characteristic in selecting Lactobacillus probiotic strains since it impedes its immediate elimination to enable its beneficial action in the host. This study aimed to isolate, identify and characterize the in vitro and in vivo adhesion of Lactobacillus strains isolated from birds. The Lactobacillus spp. was identified by PCR and sequencing and the strains and its adhesion evaluated in vitro via BMM cell matrix and in vivo by inoculation in one-day-old birds. Duodenum, jejunum, ileum and cecum were collected one, four, 12 and 24 h after inoculation. The findings demonstrate greater adhesion of strains in the cecum and an important correlation between in vitro and in vivo results. It was concluded that BMM utilization represents an important technique for triage of Lactobacillus for subsequent in vivo evaluation, which was shown to be efficient in identifying bacterial adhesion to the enteric tract. PMID:25477944

  6. Duplex PCR for differentiation of the vaccine strain Brucella suis S2 and B. suis biovar 1 from other strains of Brucella spp.

    PubMed

    Nan, Wenlong; Tan, Pengfei; Wang, Yong; Xu, Zouliang; Mao, Kairong; Peng, Daxin; Chen, Yiping

    2014-09-01

    Immunisation with attenuated Brucella spp. vaccines prevents brucellosis, but may also interfere with diagnosis. In this study, a duplex PCR was developed to distinguish Brucella suis vaccine strain S2 from field strains of B. suis biovar 1 and other Brucella spp. The PCR detected 60 fg genomic DNA of B. suis S2 or biovar 1 field strains and was able to distinguish B. suis S2 and wild-type strains of B. suis biovar 1 among 76 field isolates representing all the common species and biovars, as well as four vaccine strains, of Brucella. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. MALDI-TOF-MS with PLS Modeling Enables Strain Typing of the Bacterial Plant Pathogen Xanthomonas axonopodis

    NASA Astrophysics Data System (ADS)

    Sindt, Nathan M.; Robison, Faith; Brick, Mark A.; Schwartz, Howard F.; Heuberger, Adam L.; Prenni, Jessica E.

    2018-02-01

    Matrix-assisted desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) is a fast and effective tool for microbial species identification. However, current approaches are limited to species-level identification even when genetic differences are known. Here, we present a novel workflow that applies the statistical method of partial least squares discriminant analysis (PLS-DA) to MALDI-TOF-MS protein fingerprint data of Xanthomonas axonopodis, an important bacterial plant pathogen of fruit and vegetable crops. Mass spectra of 32 X. axonopodis strains were used to create a mass spectral library and PLS-DA was employed to model the closely related strains. A robust workflow was designed to optimize the PLS-DA model by assessing the model performance over a range of signal-to-noise ratios (s/n) and mass filter (MF) thresholds. The optimized parameters were observed to be s/n = 3 and MF = 0.7. The model correctly classified 83% of spectra withheld from the model as a test set. A new decision rule was developed, termed the rolled-up Maximum Decision Rule (ruMDR), and this method improved identification rates to 92%. These results demonstrate that MALDI-TOF-MS protein fingerprints of bacterial isolates can be utilized to enable identification at the strain level. Furthermore, the open-source framework of this workflow allows for broad implementation across various instrument platforms as well as integration with alternative modeling and classification algorithms.

  8. Molecular characterization of Xanthomonas strains responsible for bacterial leaf spot of tomato in Ethiopia

    USDA-ARS?s Scientific Manuscript database

    Bacterial spot of tomato (BST) is a major constraint to tomato production in Ethiopia and many other countries leading to significant crop losses. In the present study, using pathogenicity tests, sensitivity to copper and streptomycin, and multilocus sequence analysis, a diverse group of Xanthomonas...

  9. Multiplexed lateral flow microarray assay for detection of citrus pathogens Xylella fastidiosa and Xanthomonas axonopodis pv citri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cary,; Bruce, R; Stubben, Christopher J

    The invention provides highly sensitive and specific assays for the major citrus pathogens Xylella fastidiosa and Xanthomonas axonopodis, including a field deployable multiplexed assay capable of rapidly assaying for both pathogens simultaneously. The assays are directed at particular gene targets derived from pathogenic strains that specifically cause the major citrus diseases of citrus variegated chlorosis (Xylella fastidiosa 9a5c) and citrus canker (Xanthomonas axonopodis pv citri). The citrus pathogen assays of the invention offer femtomole sensitivity, excellent linear dynamic range, and rapid and specific detection.

  10. Xanthomonas adaptation to common bean is associated with horizontal transfers of genes encoding TAL effectors.

    PubMed

    Ruh, Mylène; Briand, Martial; Bonneau, Sophie; Jacques, Marie-Agnès; Chen, Nicolas W G

    2017-08-30

    Common bacterial blight is a devastating bacterial disease of common bean (Phaseolus vulgaris) caused by Xanthomonas citri pv. fuscans and Xanthomonas phaseoli pv. phaseoli. These phylogenetically distant strains are able to cause similar symptoms on common bean, suggesting that they have acquired common genetic determinants of adaptation to common bean. Transcription Activator-Like (TAL) effectors are bacterial type III effectors that are able to induce the expression of host genes to promote infection or resistance. Their capacity to bind to a specific host DNA sequence suggests that they are potential candidates for host adaption. To study the diversity of tal genes from Xanthomonas strains responsible for common bacterial blight of bean, whole genome sequences of 17 strains representing the diversity of X. citri pv. fuscans and X. phaseoli pv. phaseoli were obtained by single molecule real time sequencing. Analysis of these genomes revealed the existence of four tal genes named tal23A, tal20F, tal18G and tal18H, respectively. While tal20F and tal18G were chromosomic, tal23A and tal18H were carried on plasmids and shared between phylogenetically distant strains, therefore suggesting recent horizontal transfers of these genes between X. citri pv. fuscans and X. phaseoli pv. phaseoli strains. Strikingly, tal23A was present in all strains studied, suggesting that it played an important role in adaptation to common bean. In silico predictions of TAL effectors targets in the common bean genome suggested that TAL effectors shared by X. citri pv. fuscans and X. phaseoli pv. phaseoli strains target the promoters of genes of similar functions. This could be a trace of convergent evolution among TAL effectors from different phylogenetic groups, and comforts the hypothesis that TAL effectors have been implied in the adaptation to common bean. Altogether, our results favour a model where plasmidic TAL effectors are able to contribute to host adaptation by being horizontally

  11. Toxicity of Bacillus sphaericus strain 2362 on Mansonia spp. larvae.

    PubMed

    Petcharat, J

    1991-09-01

    The efficiency of Bacillus sphaericus strain 2362 (Vectolex) as larvicide against Mansonia spp. was studied. Bioassay studies showed that the toxicity of B. sphaericus on both age groups (I-II instar and III-IV instar) of Mansonia spp. larvae occurred within 24 hours. Probit analysis revealed that LC100 (one hundred per cent lethal concentration) for both age groups of M. boneae were higher than those of M. dives. Small scale field trials were done at Kreng Village, Cha-uat District, Nakhon Si Thammarat Province, one of the most serious filarial infected areas. It was indicated that 100% kill of Mansonia spp. larvae in the field occurred within 9 days after the larvicide application. When a dose of 5 times of LC100 value was used, 100% control was achieved up to about one month.

  12. The RpfCG two-component system negatively regulates the colonization of sugar cane stalks by Xanthomonas albilineans.

    PubMed

    Rott, Philippe; Fleites, Laura A; Mensi, Imène; Sheppard, Lauren; Daugrois, Jean-Heinrich; Dow, J Maxwell; Gabriel, Dean W

    2013-06-01

    The genome of Xanthomonas albilineans, the causal agent of sugar cane leaf scald, carries a gene cluster encoding a predicted quorum sensing system that is highly related to the diffusible signalling factor (DSF) systems of the plant pathogens Xylella fastidiosa and Xanthomonas campestris. In these latter pathogens, a cluster of regulation of pathogenicity factors (rpf) genes encodes the DSF system and is involved in control of various cellular processes. Mutation of Xanthomonas albilineans rpfF, encoding a predicted DSF synthase, in Florida strain XaFL07-1 resulted in a small reduction of disease severity (DS). Single-knockout mutations of rpfC and rpfG (encoding a predicted DSF sensor and regulator, respectively) had no effect on DS or swimming motility of the pathogen. However, capacity of the pathogen to cause disease was slightly reduced and swimming motility was severely affected when rpfG and rpfC were both deleted. Similar results were obtained when the entire rpfGCF region was deleted. Surprisingly, when the pathogen was mutated in rpfG or rpfC (single or double mutations) it was able to colonize sugar cane spatially more efficiently than the wild-type. Mutation in rpfF alone did not affect the degree of spatial invasion. We conclude that the DSF signal contributes to symptom expression but not to invasion of sugar cane stalks by Xanthomonas albilineans strain XaFL07-1, which is mainly controlled by the RpfCG two-component system.

  13. Silver nanoparticles toxicity against airborne strains of Staphylococcus spp.

    PubMed

    Wolny-Koładka, Katarzyna A; Malina, Dagmara K

    2017-11-10

    The aim of this study was to explore the toxicity of silver nanoparticles (AgNPs) synthesized by chemical reduction method assessment with regard to airborne strains of Staphylococcus spp. The first step of the experiment was the preparation of silver nanoparticle suspension. The suspension was obtained by a fast and simple chemical method involving the reduction of silver ions through a reducing factor in the presence of the suitable stabilizer required to prevent the aggregation. In the second stage, varied instrumental techniques were used for the analysis and characterization of the obtained nanostructures. Third, the bacteria of the Staphylococcus genus were isolated from the air under stable conditions with 47 sports and recreational horses, relatively. Next, isolated strains were identified using biochemical and spectrophotometric methods. The final step was the evaluation of the Staphylococcus genus sensitivity to nanosilver using the disk diffusion test. It has been proven that prepared silver nanoparticles exhibit strong antibacterial properties. The minimum inhibitory concentration for tested isolates was 30 μg/mL. It has been found that the sensitivity of Staphylococcus spp. isolated from six identified species differs considerably. The size distribution of bacterial growth inhibition zones indicates that resistance to various nanosilver concentrations is an individual strain feature, and has no connection with belonging to a specific species.

  14. Construction and application of a Xanthomonas campestris CGMCC15155 strain that produces white xanthan gum.

    PubMed

    Dai, Xiaohui; Gao, Ge; Wu, Mengmeng; Wei, Weiying; Qu, Jianmei; Li, Guoqiang; Ma, Ting

    2018-04-15

    In the industrial production of xanthan gum using Xanthomonas campestris CGMCC15155, large amounts of ethanol are required to extract xanthan gum from the fermentation broth and remove xanthomonadin impurities. To reduce the amount of ethanol and the overall production cost of xanthan gum, a xanthomonadin-deficient strain of CGMCC15155 was constructed by inserting the Vitreoscilla globin (vgb) gene, under the control of the LacZ promoter, into the region of the pigA gene, which is involved in xanthomonadin synthesis. The insertion of vgb inactivated pigA, resulting in the production of white xanthan gum. The lack of xanthomonadins resulted in a decreased yield of xanthan gum. However, the expression product of vgb gene, VHb, could increase the metabolism of X. campestris, which allowed the production of xanthan gum to reach wild-type levels in the engineered strain. The yield, molecular weight, and rheological properties of the xanthan gum synthesized by the engineered and wild-type bacteria were essentially the same. When the same volume of ethanol was used, the whiteness values of the xanthan gum extracted from engineered and wild-type bacteria were 65.20 and 38.17, respectively. To extract xanthan gum with the same whiteness, three and seven times the fermentation volume of ethanol was required for the engineered and wild-type strains, respectively. Thus, the engineered train reduced the requirement for ethanol in xanthan gum production by 133.3%. The results demonstrated that the engineered bacteria used less ethanol, thus reducing the downstream processing cost in xanthan gum production. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  15. Probiotic properties of native Lactobacillus spp. strains for dairy calves.

    PubMed

    Fernández, S; Fraga, M; Silveyra, E; Trombert, A N; Rabaza, A; Pla, M; Zunino, P

    2018-04-10

    The use of native microorganisms with probiotic capacity is an alternative tool for the treatment and prevention of several diseases that affect animals, such as neonatal calf diarrhoea. The selection of probiotic strains within a collection is based on different in vitro and in vivo assays, which predict their potential. The aim of this study was to characterise a group of native Lactobacillus spp. strains isolated from faeces of healthy calves using an in vitro approach and to assess their ability to colonise the gastrointestinal tract (GIT) of calves. Native Lactobacillus spp. strains were evaluated on their capacity to survive low pH conditions and bile salts presence, biofilm formation and adhesion to both mucus and Caco-2 cells. Based on the in vitro characterisation, four strains (Lactobacillus johnsonii TP1.1, Lactobacillus reuteri TP1.3B, L. johnsonii TP1.6 and Lactobacillus amylovorus TP8.7) were selected to evaluate their capacity to colonise and persist in the GIT of calves. The assessment of enteric persistence involved an in vivo assay with oral administration of probiotics and quantification in faeces of the administered bacterial species with real-time quantitative PCR (qPCR). The study was conducted using 15 calves (1-month-old) which were divided into five groups of three animals, four of which were treated with four different selected strains and one was the control group. Strains TP1.3B and TP1.6 managed to persist in treated animals until ten days after the end of the administration period, indicating that they could be promising candidates for the design of probiotics for calves.

  16. Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99A

    PubMed Central

    Salzberg, Steven L; Sommer, Daniel D; Schatz, Michael C; Phillippy, Adam M; Rabinowicz, Pablo D; Tsuge, Seiji; Furutani, Ayako; Ochiai, Hirokazu; Delcher, Arthur L; Kelley, David; Madupu, Ramana; Puiu, Daniela; Radune, Diana; Shumway, Martin; Trapnell, Cole; Aparna, Gudlur; Jha, Gopaljee; Pandey, Alok; Patil, Prabhu B; Ishihara, Hiromichi; Meyer, Damien F; Szurek, Boris; Verdier, Valerie; Koebnik, Ralf; Dow, J Maxwell; Ryan, Robert P; Hirata, Hisae; Tsuyumu, Shinji; Won Lee, Sang; Ronald, Pamela C; Sonti, Ramesh V; Van Sluys, Marie-Anne; Leach, Jan E; White, Frank F; Bogdanove, Adam J

    2008-01-01

    Background Xanthomonas oryzae pv. oryzae causes bacterial blight of rice (Oryza sativa L.), a major disease that constrains production of this staple crop in many parts of the world. We report here on the complete genome sequence of strain PXO99A and its comparison to two previously sequenced strains, KACC10331 and MAFF311018, which are highly similar to one another. Results The PXO99A genome is a single circular chromosome of 5,240,075 bp, considerably longer than the genomes of the other strains (4,941,439 bp and 4,940,217 bp, respectively), and it contains 5083 protein-coding genes, including 87 not found in KACC10331 or MAFF311018. PXO99A contains a greater number of virulence-associated transcription activator-like effector genes and has at least ten major chromosomal rearrangements relative to KACC10331 and MAFF311018. PXO99A contains numerous copies of diverse insertion sequence elements, members of which are associated with 7 out of 10 of the major rearrangements. A rapidly-evolving CRISPR (clustered regularly interspersed short palindromic repeats) region contains evidence of dozens of phage infections unique to the PXO99A lineage. PXO99A also contains a unique, near-perfect tandem repeat of 212 kilobases close to the replication terminus. Conclusion Our results provide striking evidence of genome plasticity and rapid evolution within Xanthomonas oryzae pv. oryzae. The comparisons point to sources of genomic variation and candidates for strain-specific adaptations of this pathogen that help to explain the extraordinary diversity of Xanthomonas oryzae pv. oryzae genotypes and races that have been isolated from around the world. PMID:18452608

  17. Differentiation in MALDI-TOF MS and FTIR spectra between two pathovars of Xanthomonas oryzae

    NASA Astrophysics Data System (ADS)

    Ge, Mengyu; Li, Bin; Wang, Li; Tao, Zhongyun; Mao, Shengfeng; Wang, Yangli; Xie, Guanlin; Sun, Guochang

    2014-12-01

    Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc) strains are closely related phenotypically and genetically, which make it difficult to differentiate between the two pathovars based on phenotypic and DNA-based methods. In this study, a fast and accurate method was developed based on the differences in MALDI-TOF MS and FTIR spectra between the two pathovars. MALDI-TOF MS analysis revealed that 9 and 10 peaks are specific to Xoo and Xoc, respectively, which can be used as biomarkers to identify and differentiate the two closely related pathovars. Furthermore, FTIR analysis showed that there is a significant difference in both the band frequencies and absorption intensity of various functional groups between the two pathovars. In particular, the 6 peaks at 3433, 2867, 1273, 1065, 983 and 951 cm-1 were specific to the Xoo strains, while one peak at 1572 cm-1 was specific to the Xoc strains. Overall, this study gives the first attempt to identify and differentiate the two pathovars of X. oryzae based on mass and FTIR spectra, which will be helpful for the early detection and prevention of the two rice diseases caused by both X. oryzae pathovars.

  18. Detection of CDT toxin genes in Campylobacter spp. strains isolated from broiler carcasses and vegetables in São Paulo, Brazil

    PubMed Central

    de Carvalho, Aline Feola; da Silva, Daniela Martins; Azevedo, Sergio Santos; Piatti, Rosa Maria; Genovez, Margareth Elide; Scarcelli, Eliana

    2013-01-01

    Campylobacteriosis is a worldwide distributed zoonosis. One of the main virulence factors related to Campylobacter spp. in animals and humans is the cytolethal distending toxin (CDT), encoded by three adjacent genes (cdtA, cdtB, cdtC). The occurrence of Campylobacter spp. in samples of vegetables has not been reported in Brazil yet, and has seldom been described in the international literature. The detection of CDT in these strains has not been reported, either. The objectives of the present study were to determine the occurrence of Campylobacter spp. strains carrying virulence factors in samples of poultry and vegetables (lettuce and spinach) from different points of sale, thus verifying if vegetables are as an important vehicle for potentially virulent Campylobacter spp. strains as poultry. Twenty four strains were identified as Campylobacter jejuni by phenotypic and genotypic methods: 22 from broiler carcasses and two from lettuce samples. Three strains were identified as Campylobacter coli: two from broiler carcasses and one from lettuce. The presence of the cdt genes were detected in 20/24 (83.3%) C. jejuni strains, and 3/3 (100%) C. coli strains. The isolation of Campylobacter spp. strains with the cdt gene cluster in lettuce samples points to a new possible source of contamination, which could have an impact in the vegetable production chain and risk to public health. Results show that potentially virulent C. jejuni and C. coli strains remain viable in samples of broiler carcasses and vegetables at the points of sale. PMID:24516435

  19. 40 CFR 180.1325 - Heat-killed Burkholderia spp. strain A396 cells and spent fermentation media exemption from the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... A396 cells and spent fermentation media exemption from the requirement of a tolerance. 180.1325 Section...-killed Burkholderia spp. strain A396 cells and spent fermentation media exemption from the requirement of...-killed Burkholderia spp. strain A396 cells and spent fermentation media in or on all food commodities...

  20. Urease-positive thermophilic strains of Campylobacter isolated from seagulls (Larus spp.).

    PubMed

    Kaneko, A; Matsuda, M; Miyajima, M; Moore, J E; Murphy, P G

    1999-07-01

    Three strains of urease-positive thermophilic Campylobacter (UPTC), designated A1, A2 and A3, were identified by biochemical characterization after isolation from faeces of seagulls in Northern Ireland in 1996. The biochemical characteristics of the strains were identical to those of strains described previously. Analysis by pulsed-field gel electrophoresis (PFGE) after separate digestion with ApaI and SmaI demonstrated that the respective PFGE profiles were indistinguishable. The PFGE analysis also suggested that the genomes were approximately 1810 kb in length. This is the first example of the isolation of UPTC from flying homoiothermal animals, i.e. from seagulls (Larus spp.).

  1. Discovery of secondary metabolites from Bacillus spp. biocontrol strains using genome mining and mass spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Genome sequencing, data mining and mass spectrometry were used to identify secondary metabolites produced by several Bacillus spp. biocontrol strains. These biocontrol strains have shown promise in managing Fusarium head blight in wheat. Draft genomes were produced and screened in silico using genom...

  2. [Investigation of some virulence factors in Trichosporon spp. strains].

    PubMed

    Demir, Feyza; Kuştimur, Semra

    2014-10-01

    The frequency of fungal infections have increased recently in parallel to prolonged survival of patients with chronical infections, common use of the broad-spectrum antibiotics and cytotoxic drugs and surgical interventions. Fungi such as Trichosporon, Fusarium and Geotrichum that were previously evaluated as contaminant/colonization, become important causes of morbidity and mortality especially in neutropenic patients. The aim of this study was to investigate the presence of virulence factors such as acid proteinase, phospholipase, esterase, coagulase and hemolytic activity among Trichosporon species. A total of 40 Trichosporon strains, of them 24 (60%) were T.asahii, 6 (15%) were T.inkin and 10 (25%) were the other species (one of each of T.aquatile, T.asteroides, T.coremiiforme, T.cutaneum, T.dermatis, T.faecale, T.japonicum, T.montevideense, T.mucoides, T.ovoides) were included in the study. Identification of the isolates was performed according to microscopic morphology (blastospores, arthrospores, pseudohyphae and true hyphae) on corn meal agar media, and carbohydrate assimilation patterns (API ID32C; bioMérieux, France). Secretory acid proteinase, phospholipase and esterase activities of the strains were evaluated by 1% bovine serum albumin containing agar, by egg yolk containing solid medium, and by Tween 80 containing solid medium, respectively. Hemolytic activity of the isolates were evaluated by 5-10% sheep blood Sabouraud dextrose agar. Coagulase enzyme activity was determined by using human and rabbit plasma. In our study, all of the 40 Trichosporon spp. strains were found negative in terms of acid proteinase and phospholipase enzyme activity, however all were positive for esterase enzyme activity. Hemolytic enzyme activity were identified in a total of 15 (37.5%) strains, being "+++" in three strains (2 T.asahii, 1 T.japonicum), and "++" in 12 isolates (9 T.asahii, 1 T.inkin, 1 T.asteroides, 1 T.mentevideense). Although 11 of those 15 positive

  3. Acquisition and evolution of plant pathogenesis-associated gene clusters and candidate determinants of tissue-specificity in xanthomonas.

    PubMed

    Lu, Hong; Patil, Prabhu; Van Sluys, Marie-Anne; White, Frank F; Ryan, Robert P; Dow, J Maxwell; Rabinowicz, Pablo; Salzberg, Steven L; Leach, Jan E; Sonti, Ramesh; Brendel, Volker; Bogdanove, Adam J

    2008-01-01

    Xanthomonas is a large genus of plant-associated and plant-pathogenic bacteria. Collectively, members cause diseases on over 392 plant species. Individually, they exhibit marked host- and tissue-specificity. The determinants of this specificity are unknown. To assess potential contributions to host- and tissue-specificity, pathogenesis-associated gene clusters were compared across genomes of eight Xanthomonas strains representing vascular or non-vascular pathogens of rice, brassicas, pepper and tomato, and citrus. The gum cluster for extracellular polysaccharide is conserved except for gumN and sequences downstream. The xcs and xps clusters for type II secretion are conserved, except in the rice pathogens, in which xcs is missing. In the otherwise conserved hrp cluster, sequences flanking the core genes for type III secretion vary with respect to insertion sequence element and putative effector gene content. Variation at the rpf (regulation of pathogenicity factors) cluster is more pronounced, though genes with established functional relevance are conserved. A cluster for synthesis of lipopolysaccharide varies highly, suggesting multiple horizontal gene transfers and reassortments, but this variation does not correlate with host- or tissue-specificity. Phylogenetic trees based on amino acid alignments of gum, xps, xcs, hrp, and rpf cluster products generally reflect strain phylogeny. However, amino acid residues at four positions correlate with tissue specificity, revealing hpaA and xpsD as candidate determinants. Examination of genome sequences of xanthomonads Xylella fastidiosa and Stenotrophomonas maltophilia revealed that the hrp, gum, and xcs clusters are recent acquisitions in the Xanthomonas lineage. Our results provide insight into the ancestral Xanthomonas genome and indicate that differentiation with respect to host- and tissue-specificity involved not major modifications or wholesale exchange of clusters, but subtle changes in a small number of genes or

  4. An engineered promoter driving expression of a microbial avirulence gene confers recognition of TAL effectors and reduces growth of diverse Xanthomonas strains in citrus.

    PubMed

    Shantharaj, Deepak; Römer, Patrick; Figueiredo, Jose F L; Minsavage, Gerald V; Krönauer, Christina; Stall, Robert E; Moore, Gloria A; Fisher, Latanya C; Hu, Yang; Horvath, Diana M; Lahaye, Thomas; Jones, Jeffrey B

    2017-09-01

    Xanthomonas citri ssp. citri (X. citri), causal agent of citrus canker, uses transcription activator-like effectors (TALEs) as major pathogenicity factors. TALEs, which are delivered into plant cells through the type III secretion system (T3SS), interact with effector binding elements (EBEs) in host genomes to activate the expression of downstream susceptibility genes to promote disease. Predictably, TALEs bind EBEs in host promoters via known combinations of TALE amino acids to DNA bases, known as the TALE code. We introduced 14 EBEs, matching distinct X. citri TALEs, into the promoter of the pepper Bs3 gene (ProBs3 1EBE ), and fused this engineered promoter with multiple EBEs (ProBs3 14EBE ) to either the β-glucuronidase (GUS) reporter gene or the coding sequence (cds) of the pepper gene, Bs3. TALE-induced expression of the Bs3 cds in citrus leaves resulted in no visible hypersensitive response (HR). Therefore, we utilized a different approach in which ProBs3 1EBE and ProBs3 14EBE were fused to the Xanthomonas gene, avrGf1, which encodes a bacterial effector that elicits an HR in grapefruit and sweet orange. We demonstrated, in transient assays, that activation of ProBs3 14EBE by X. citri TALEs is T3SS dependent, and that the expression of AvrGf1 triggers HR and correlates with reduced bacterial growth. We further demonstrated that all tested virulent X. citri strains from diverse geographical locations activate ProBs3 14EBE . TALEs are essential for the virulence of X. citri strains and, because the engineered promoter traps are activated by multiple TALEs, this concept has the potential to confer broad-spectrum, durable resistance to citrus canker in stably transformed plants. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  5. Comprehensive update of dalbavancin activity when tested against uncommonly isolated streptococci, Corynebacterium spp., Listeria monocytogenes, and Micrococcus spp. (1357 strains).

    PubMed

    Jones, Ronald N; Stilwell, Matthew G

    2013-06-01

    Dalbavancin is an investigational lipoglycopeptide having an extended serum elimination half-life allowing once-weekly dosing. Data from testing 1357 strains of uncommonly isolated species expand the dalbavancin spectrum details as follows (MIC50/90): β-haemolytic streptococcal serogroups C, F, and G (≤0.03/≤0.03 μg/mL), 7 viridans group of streptococci (≤0.03/≤0.03-0.06 μg/mL), 5 Corynebacterium spp. (0.06/0.12 μg/mL), Listeria monocytogenes (0.06/0.12 μg/mL), and Micrococcus spp. (≤0.03/≤0.03 μg/mL). Among all reported isolates, 99.8% of tested strains were inhibited at dalbavancin MIC values at ≤0.12 μg/mL. Dalbavancin remains very potent against rarer Gram-positive pathogens, using in vitro test experience with organisms cultured through 2011. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Genomic Diversity of Biocontrol Strains of Pseudomonas spp. Isolated from Aerial or Root Surfaces of Plants

    USDA-ARS?s Scientific Manuscript database

    The striking ecological, metabolic, and biochemical diversity of Pseudomonas has intrigued microbiologists for many decades. To explore the genomic diversity of biocontrol strains of Pseudomonas spp., we derived high quality draft sequences of seven strains known to suppress plant disease. The str...

  7. OxyR-regulated catalase CatB promotes the virulence in rice via detoxifying hydrogen peroxide in Xanthomonas oryzae pv. oryzae.

    PubMed

    Yu, Chao; Wang, Nu; Wu, Maosen; Tian, Fang; Chen, Huamin; Yang, Fenghuan; Yuan, Xiaochen; Yang, Ching-Hong; He, Chenyang

    2016-11-08

    To facilitate infection, Xanthomonas oryzae pv. oryzae (Xoo), the bacterial blight pathogen of rice, needs to degrade hydrogen peroxide (H 2 O 2 ) generated by the host defense response via a mechanism that is mediated by the transcriptional regulator OxyR. The catalase (CAT) gene catB has previously been shown to belong to the OxyR regulon in Xoo. However, its expression patterns and function in H 2 O 2 detoxification and bacterial pathogenicity on rice remain to be elucidated. The catB gene encodes a putative catalase and is highly conserved in the sequenced strains of Xanthomonas spp. β-galactosidase analysis and electrophoretic mobility shift assays (EMSA) showed that OxyR positively regulated the transcription of catB by directly binding to its promoter region. The quantitative real-time PCR (qRT-PCR) assays revealed that the expression levels of catB and oxyR were significantly induced by H 2 O 2 . Deletion of catB or oxyR drastically impaired bacterial viability in the presence of extracellular H 2 O 2 and reduced CAT activity, demonstrating that CatB and OxyR contribute to H 2 O 2 detoxification in Xoo. In addition, ΔcatB and ΔoxyR displayed shorter bacterial blight lesions and reduced bacterial growth in rice compared to the wild-type stain, indicating that CatB and OxyR play essential roles in the virulence of Xoo. Transcription of catB is enhanced by OxyR in response to exogenous H 2 O 2 . CatB functions as an active catalase that is required for the full virulence of Xoo in rice.

  8. The effector gene xopAE of Xanthomonas euvesicatoria 85-10 is part of an operon and encodes an E3 ubiquitin ligase.

    PubMed

    Popov, Georgy; Majhi, Bharat Bhusan; Sessa, Guido

    2018-05-21

    The type III effector XopAE from the Xanthomonas euvesicatoria strain 85-10 ( Xe 85-10) was previously shown to inhibit plant immunity and enhance pathogen-induced disease symptoms. Evolutionary analysis of 60 xopAE alleles ( AEal ) revealed that the xopAE locus is conserved in multiple Xanthomonas species. The majority of xopAE alleles (55 out of 60) encodes a single ORF ( xopAE ), while in 5 alleles, including AEal 37 of the Xe 85-10 strain, a frame-shift splits the locus into two ORFs ( hpaF and a truncated xopAE ). To test whether the second ORF of AEal 37 ( xopAE 85-10 ) is translated, we examined expression of YFP fused downstream to truncated or mutant forms of the locus in Xanthomonas bacteria. YFP fluorescence was detected at maximal levels when the reporter was in proximity of an internal ribosome-binding site upstream to a rare ATT start codon in the xopAE 85-10 ORF, but severely reduced when these elements were abolished. In agreement with the notion that xopAE 85- 10 is a functional gene, its protein product was translocated into plant cells by the type III secretion system and translocation was dependent on its upstream ORF hpaF. Homology modeling predicted that XopAE 85-10 contains an E3 ligase XL-box domain at the C-terminus, and in vitro assays demonstrated that this domain displays mono-ubiquitination activity. Remarkably, the XL-box was essential for XopAE 85-10 to inhibit PAMP-induced gene expression in Arabidopsis protoplasts. Together, these results indicate that the xopAE 85-10 gene resides in a functional operon, which utilizes the alternative start codon ATT, and encodes a novel XL-box E3 ligase. Importance Xanthomonas bacteria utilize a type III secretion system to cause disease in many crops. This study provides insights into evolution, translocation and biochemical function of the XopAE type III secreted effector contributing to the understanding of Xanthomonas-host interactions. We establish XopAE as core effector of seven Xanthomonas

  9. DgcA, a diguanylate cyclase from Xanthomonas oryzae pv. oryzae regulates bacterial pathogenicity on rice

    PubMed Central

    Su, Jianmei; Zou, Xia; Huang, Liangbo; Bai, Tenglong; Liu, Shu; Yuan, Meng; Chou, Shan-Ho; He, Ya-Wen; Wang, Haihong; He, Jin

    2016-01-01

    Xanthomonas oryzae pv. oryzae (Xoo) is the causal agent of rice blight disease as well as a serious phytopathogen worldwide. It is also one of the model organisms for studying bacteria-plant interactions. Current progress in bacterial signal transduction pathways has identified cyclic di-GMP as a major second messenger molecule in controlling Xanthomonas pathogenicity. However, it still remains largely unclear how c-di-GMP regulates the secretion of bacterial virulence factors in Xoo. In this study, we focused on the important roles played by DgcA (XOO3988), one of our previously identified diguanylate cyclases in Xoo, through further investigating the phenotypes of several dgcA-related mutants, namely, the dgcA-knockout mutant ΔdgcA, the dgcA overexpression strain OdgcA, the dgcA complemented strain CdgcA and the wild-type strain. The results showed that dgcA negatively affected virulence, EPS production, bacterial autoaggregation and motility, but positively triggered biofilm formation via modulating the intracellular c-di-GMP levels. RNA-seq data further identified 349 differentially expressed genes controlled by DgcA, providing a foundation for a more solid understanding of the signal transduction pathways in Xoo. Collectively, the present study highlights DgcA as a major regulator of Xoo virulence, and can serve as a potential target for preventing rice blight diseases. PMID:27193392

  10. A model for predicting Xanthomonas arboricola pv. pruni growth as a function of temperature

    PubMed Central

    Llorente, Isidre; Montesinos, Emilio; Moragrega, Concepció

    2017-01-01

    A two-step modeling approach was used for predicting the effect of temperature on the growth of Xanthomonas arboricola pv. pruni, causal agent of bacterial spot disease of stone fruit. The in vitro growth of seven strains was monitored at temperatures from 5 to 35°C with a Bioscreen C system, and a calibrating equation was generated for converting optical densities to viable counts. In primary modeling, Baranyi, Buchanan, and modified Gompertz equations were fitted to viable count growth curves over the entire temperature range. The modified Gompertz model showed the best fit to the data, and it was selected to estimate the bacterial growth parameters at each temperature. Secondary modeling of maximum specific growth rate as a function of temperature was performed by using the Ratkowsky model and its variations. The modified Ratkowsky model showed the best goodness of fit to maximum specific growth rate estimates, and it was validated successfully for the seven strains at four additional temperatures. The model generated in this work will be used for predicting temperature-based Xanthomonas arboricola pv. pruni growth rate and derived potential daily doublings, and included as the inoculum potential component of a bacterial spot of stone fruit disease forecaster. PMID:28493954

  11. Biocontrol of geosmin-producing Streptomyces spp. by two Bacillus strains from Chinese liquor.

    PubMed

    Zhi, Yan; Wu, Qun; Du, Hai; Xu, Yan

    2016-08-16

    Streptomyces spp. producing geosmin have been regarded as the most frequent and serious microbial contamination causing earthy off-flavor in Chinese liquor. It is therefore necessary to control the Streptomyces community during liquor fermentation. Biological control, using the native microbiota present in liquor making, appears to be a better solution than chemical methods. The objective of this study was to isolate native microbiota antagonistic toward Streptomyces spp. and then to evaluate the possible action mode of the antagonists. Fourteen Bacillus strains isolated from different Daqu (the fermentation starter) showed antagonistic activity against Streptomyces sampsonii, which is one of the dominant geosmin producers. Bacillus subtilis 2-16 and Bacillus amyloliquefaciens 1-45 from Maotai Daqu significantly inhibited the growth of S. sampsonii by 57.8% and 84.3% respectively, and effectively prevented the geosmin production in the simulated fermentation experiments (inoculation ratio 1:1). To probe the biocontrol mode, the ability of strain 2-16 and 1-45 to produce antimicrobial metabolites and to reduce geosmin in the fermentation system was investigated. Antimicrobial substances were identified as lipopeptides by ultra-performance liquid chromatography tandem electrospray ionization/quadrupole-time-of-flight mass spectrometry (UPLC-ESI/Q-TOF MS) and in vitro antibiotic assay. In addition, strains 2-16 and 1-45 were able to remove 45% and 15% of the geosmin respectively in the simulated solid-state fermentation. This study highlighted the potential of biocontrol, and how the use of native Bacillus species in Daqu could provide an eco-friendly method to prevent growth of Streptomyces spp. and geosmin contamination in Chinese liquor fermentation. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Phosphatase activity of aerobic and facultative anaerobic bacteria.

    PubMed

    Pácová, Z; Kocur, M

    1978-10-01

    1115 strains of aerobic and facultatively anaerobic bacteria were tested for phosphatase activity by a conventional plate method and a microtest. The microtest was devised to allow results to be read after 4 h cultivation. Phosphatase activity was found in wide range of species and strains. Besides staphylococci, where the test for phosphatase is successfully used, it may be applied as one of the valuable tests for the differentiation of the following species: Bacillus cereus, B. licheniformis, Aeromonas spp., Vibrio parahaemolyticus, Actinobacillus spp., Pasteurella spp., Xanthomonas spp., Flavobacterium spp., Alteromonas putrefaciens, Pseudomonas maltophilia, Ps. cepacia, and some other species of Pseudomonas. The species which gave uniformly negative phosphatase reaction were as follows: Staph. saprophyticus, Acinetobacter calcoaceticus, Alcaligenes faecalis, and Bordetella bronchiseptica.

  13. Thickening compositions containing xanthomonas gum and hydroxyalkyl ether of guar gum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, W.A.

    1973-07-24

    Natural and synthetic gums have been used as thickeners for foods, coatings, paints, dyes, explosive slurries, oil-well fluids, and many other applications. Thickening compositions are described which consist of xanthomonas gum and hydroxyalkyl ether of guar gum and are suitable for use in explosive slurries. Aqueous sols of xanthomonas gum are plastic in nature and exhibit higher gel strengths than sols of other gums. Aqueous sols of hydroxyalkyl ether of guar are almost Newtonian and exhibit little or no gel strength. Aqueous sols of the thickening compositions of the present invention are plastic in character. At certain concentrations of themore » thickening compositions in aqueous sols, the sols have higher gel strengths than can be obtained from xanthomonas gum alone. At certain concentrations, the aqueous sols containing the thickening compositions exhibit greater viscosity differentials than do sols containing xanthomonas gum alone. In addition, the aqueous sols exhibit a greater drop in viscosity as the thickening composition concentration is reduced than do aqueous sols of xanthomonas gum alone.(5 claims)« less

  14. Comparative analyses of Xanthomonas and Xylella complete genomes.

    PubMed

    Moreira, Leandro M; De Souza, Robson F; Digiampietri, Luciano A; Da Silva, Ana C R; Setubal, João C

    2005-01-01

    Computational analyses of four bacterial genomes of the Xanthomonadaceae family reveal new unique genes that may be involved in adaptation, pathogenicity, and host specificity. The Xanthomonas genus presents 3636 unique genes distributed in 1470 families, while Xylella genus presents 1026 unique genes distributed in 375 families. Among Xanthomonas-specific genes, we highlight a large number of cell wall degrading enzymes, proteases, and iron receptors, a set of energy metabolism genes, second copy of the type II secretion system, type III secretion system, flagella and chemotactic machinery, and the xanthomonadin synthesis gene cluster. Important genes unique to the Xylella genus are an additional copy of a type IV pili gene cluster and the complete machinery of colicin V synthesis and secretion. Intersections of gene sets from both genera reveal a cluster of genes homologous to Salmonella's SPI-7 island in Xanthomonas axonopodis pv citri and Xylella fastidiosa 9a5c, which might be involved in host specificity. Each genome also presents important unique genes, such as an HMS cluster, the kdgT gene, and O-antigen in Xanthomonas axonopodis pv citri; a number of avrBS genes and a distinct O-antigen in Xanthomonas campestris pv campestris, a type I restriction-modification system and a nickase gene in Xylella fastidiosa 9a5c, and a type II restriction-modification system and two genes related to peptidoglycan biosynthesis in Xylella fastidiosa temecula 1. All these differences imply a considerable number of gene gains and losses during the divergence of the four lineages, and are associated with structural genome modifications that may have a direct relation with the mode of transmission, adaptation to specific environments and pathogenicity of each organism.

  15. Lateral flow immunoassay for on-site detection of Xanthomonas arboricola pv. pruni in symptomatic field samples

    PubMed Central

    López-Soriano, Pablo; Noguera, Patricia; Gorris, María Teresa; Puchades, Rosa; Maquieira, Ángel; Marco-Noales, Ester; López, María M.

    2017-01-01

    Xanthomonas arboricola pv. pruni is a quarantine pathogen and the causal agent of the bacterial spot disease of stone fruits and almond, a major threat to Prunus species. Rapid and specific detection methods are essential to improve disease management, and therefore a prototype of a lateral flow immunoassay (LFIA) was designed for the detection of X. arboricola pv. pruni in symptomatic field samples. It was developed by producing polyclonal antibodies which were then combined with carbon nanoparticles and assembled on nitrocellulose strips. The specificity of the LFIA was tested against 87 X. arboricola pv. pruni strains from different countries worldwide, 47 strains of other Xanthomonas species and 14 strains representing other bacterial genera. All X. arboricola pv. pruni strains were detected and cross-reactions were observed only with four strains of X. arboricola pv. corylina, a hazelnut pathogen that does not share habitat with X. arboricola pv. pruni. The sensitivity of the LFIA was assessed with suspensions from pure cultures of three X. arboricola pv. pruni strains and with spiked leaf extracts prepared from four hosts inoculated with this pathogen (almond, apricot, Japanese plum and peach). The limit of detection observed with both pure cultures and spiked samples was 104 CFU ml-1. To demonstrate the accuracy of the test, 205 samples naturally infected with X. arboricola pv. pruni and 113 samples collected from healthy plants of several different Prunus species were analyzed with the LFIA. Results were compared with those obtained by plate isolation and real time PCR and a high correlation was found among techniques. Therefore, we propose this LFIA as a screening tool that allows a rapid and reliable diagnosis of X. arboricola pv. pruni in symptomatic plants. PMID:28448536

  16. The role of type III effectors from Xanthomonas axonopodis pv. manihotis in virulence and suppression of plant immunity.

    PubMed

    Medina, Cesar Augusto; Reyes, Paola Andrea; Trujillo, Cesar Augusto; Gonzalez, Juan Luis; Bejarano, David Alejandro; Montenegro, Nathaly Andrea; Jacobs, Jonathan M; Joe, Anna; Restrepo, Silvia; Alfano, James R; Bernal, Adriana

    2018-03-01

    Xanthomonas axonopodis pv. manihotis (Xam) causes cassava bacterial blight, the most important bacterial disease of cassava. Xam, like other Xanthomonas species, requires type III effectors (T3Es) for maximal virulence. Xam strain CIO151 possesses 17 predicted T3Es belonging to the Xanthomonas outer protein (Xop) class. This work aimed to characterize nine Xop effectors present in Xam CIO151 for their role in virulence and modulation of plant immunity. Our findings demonstrate the importance of XopZ, XopX, XopAO1 and AvrBs2 for full virulence, as well as a redundant function in virulence between XopN and XopQ in susceptible cassava plants. We tested their role in pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) using heterologous systems. AvrBs2, XopR and XopAO1 are capable of suppressing PTI. ETI suppression activity was only detected for XopE4 and XopAO1. These results demonstrate the overall importance and diversity in functions of major virulence effectors AvrBs2 and XopAO1 in Xam during cassava infection. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  17. Comparative Genomic Analysis of Xanthomonas axonopodis pv. citrumelo F1, Which Causes Citrus Bacterial Spot Disease, and Related Strains Provides Insights into Virulence and Host Specificity ▿ #

    PubMed Central

    Jalan, Neha; Aritua, Valente; Kumar, Dibyendu; Yu, Fahong; Jones, Jeffrey B.; Graham, James H.; Setubal, João C.; Wang, Nian

    2011-01-01

    Xanthomonas axonopodis pv. citrumelo is a citrus pathogen causing citrus bacterial spot disease that is geographically restricted within the state of Florida. Illumina, 454 sequencing, and optical mapping were used to obtain a complete genome sequence of X. axonopodis pv. citrumelo strain F1, 4.9 Mb in size. The strain lacks plasmids, in contrast to other citrus Xanthomonas pathogens. Phylogenetic analysis revealed that this pathogen is very close to the tomato bacterial spot pathogen X. campestris pv. vesicatoria 85-10, with a completely different host range. We also compared X. axonopodis pv. citrumelo to the genome of citrus canker pathogen X. axonopodis pv. citri 306. Comparative genomic analysis showed differences in several gene clusters, like those for type III effectors, the type IV secretion system, lipopolysaccharide synthesis, and others. In addition to pthA, effectors such as xopE3, xopAI, and hrpW were absent from X. axonopodis pv. citrumelo while present in X. axonopodis pv. citri. These effectors might be responsible for survival and the low virulence of this pathogen on citrus compared to that of X. axonopodis pv. citri. We also identified unique effectors in X. axonopodis pv. citrumelo that may be related to the different host range as compared to that of X. axonopodis pv. citri. X. axonopodis pv. citrumelo also lacks various genes, such as syrE1, syrE2, and RTX toxin family genes, which were present in X. axonopodis pv. citri. These may be associated with the distinct virulences of X. axonopodis pv. citrumelo and X. axonopodis pv. citri. Comparison of the complete genome sequence of X. axonopodis pv. citrumelo to those of X. axonopodis pv. citri and X. campestris pv. vesicatoria provides valuable insights into the mechanism of bacterial virulence and host specificity. PMID:21908674

  18. Identification of the protein sequence of the type III effector XopD from the B100 strain of Xanthomonas campestris pv campestris

    PubMed Central

    Canonne, Joanne; Pichereaux, Carole; Marino, Daniel; Roby, Dominique; Rossignol, Michel; Rivas, Susana

    2012-01-01

    During evolution, pathogens have developed sophisticated strategies to suppress plant defense responses and promote successful colonization of their hosts. In their attempt to quell host resistance, Gram-negative phytopathogenic bacteria inject type III effectors (T3Es) into plant cells, where they typically target plant components essential for the establishment of defense responses. We have recently shown that the XopD T3E from the strain B100 of Xanthomonas campestris pathovar campestris (XopDXccB100) is able to target AtMYB30, a positive regulator of Arabidopsis defense responses. This protein interaction leads to inhibition of AtMYB30 transcriptional activity and promotion of bacterial virulence. Here, we describe the identification of the complete protein sequence of XopDXccB100, which presents an N-terminal extension of 40 amino acids with respect to the protein annotated in public databases. The implications of this finding are discussed. PMID:22353870

  19. Inheritance of high levels of resistance to common bacterial blight caused by Xanthomonas Axonopodis pv. Phaseoli in common bean (Phaseolus vulgaris L.)

    USDA-ARS?s Scientific Manuscript database

    Common bacterial blight caused by the pathogen Xanthomonas axonopodis pv. phaseoli (Xap) is an important biotic factor limiting common bean (Phaseolus vulgaris L.) production. A few interspecific bean breeding lines such as VAX 6 exhibit a high level of resistance to a wide range of Xap strains repr...

  20. Morphology and mycelial growth rate of Pleurotus spp. strains from the Mexican mixtec region

    PubMed Central

    Guadarrama-Mendoza, P.C.; del Toro, G. Valencia; Ramírez-Carrillo, R.; Robles-Martínez, F.; Yáñez-Fernández, J.; Garín-Aguilar, M.E.; Hernández, C.G.; Bravo-Villa, G.

    2014-01-01

    Two native Pleurotus spp. strains (white LB-050 and pale pink LB-051) were isolated from rotten tree trunks of cazahuate (Ipomoea murucoides) from the Mexican Mixtec Region. Both strains were chemically dedikaryotized to obtain their symmetrical monokaryotic components (neohaplonts). This was achieved employing homogenization time periods from 60 to 65 s, and 3 day incubation at 28 °C in a peptone-glucose solution (PGS). Pairing of compatible neohaplonts resulted in 56 hybrid strains which were classified into the four following hybrid types: (R1-nxB1-n, R1-nxB2-1, R2-nxB1-n and R2-nxB2-1). The mycelial growth of Pleurotus spp. monokaryotic and dikaryotic strains showed differences in texture (cottony or floccose), growth (scarce, regular or abundant), density (high, regular or low), and pigmentation (off-white, white or pale pink). To determine the rate and the amount of mycelium growth in malt extract agar at 28 °C, the diameter of the colony was measured every 24 h until the Petri dish was completely colonized. A linear model had the best fit to the mycelial growth kinetics. A direct relationship between mycelial morphology and growth rate was observed. Cottony mycelium presented significantly higher growth rates (p < 0.01) in comparison with floccose mycelium. Thus, mycelial morphology can be used as criterion to select which pairs must be used for optimizing compatible-mating studies. Hybrids resulting from cottony neohaplonts maintained the characteristically high growth rates of their parental strains with the hybrid R1-nxB1-n being faster than the latter. PMID:25477920

  1. Virulence of plant pathogenic bacteria attenuated by degradation of fatty acid cell-to-cell signaling factors.

    PubMed

    Newman, Karyn L; Chatterjee, Subhadeep; Ho, Kimberly A; Lindow, Steven E

    2008-03-01

    Diffusible signal factor (DSF) is a fatty acid signal molecule involved in regulation of virulence in several Xanthomonas species as well as Xylella fastidiosa. In this study, we identified a variety of bacteria that could disrupt DSF-mediated induction of virulence factors in Xanthomonas campestris pv. campestris. While many bacteria had the ability to degrade DSF, several bacterial strains belonging to genera Bacillus, Paenibacillus, Microbacterium, Staphylococcus, and Pseudomonas were identified that were capable of particularly rapid degradation of DSF. The molecular determinants for rapid degradation of DSF in Pseudomonas spp. strain G were elucidated. Random transposon mutants of strain G lacking the ability to degrade DSF were isolated. Cloning and characterization of disrupted genes in these strains revealed that carAB, required for the synthesis of carbamoylphosphate, a precursor for pyrimidine and arginine biosynthesis is required for rapid degradation of DSF in strain G. Complementation of carAB mutants restored both pyrimidine prototrophy and DSF degradation ability of the strain G mutant. An Escherichia coli strain harboring carAB of Pseudomonas spp. strain G degrades DSF more rapidly than the parental strain, and overexpression of carAB in trans increased the ability of Pseudomonas spp. strain G to degrade as compared with the parental strain. Coinoculation of X. campestris pv. campestris with DSF-degrading bacteria into mustard and cabbage leaves reduced disease severity up to twofold compared with plants inoculated only with the pathogen. Likewise, disease incidence and severity in grape stems coinoculated with Xylella fastidiosa and DSF-degrading strains were significantly reduced compared with plants inoculated with the pathogen alone. Coinoculation of grape plants with a carAB mutant of Pseudomonas spp. strain G complemented with carAB in trans reduced disease severity as well or better than the parental strain. These results indicate that

  2. An Improved Method for TAL Effectors DNA-Binding Sites Prediction Reveals Functional Convergence in TAL Repertoires of Xanthomonas oryzae Strains

    PubMed Central

    Pérez-Quintero, Alvaro L.; Rodriguez-R, Luis M.; Dereeper, Alexis; López, Camilo; Koebnik, Ralf; Szurek, Boris; Cunnac, Sebastien

    2013-01-01

    Transcription Activators-Like Effectors (TALEs) belong to a family of virulence proteins from the Xanthomonas genus of bacterial plant pathogens that are translocated into the plant cell. In the nucleus, TALEs act as transcription factors inducing the expression of susceptibility genes. A code for TALE-DNA binding specificity and high-resolution three-dimensional structures of TALE-DNA complexes were recently reported. Accurate prediction of TAL Effector Binding Elements (EBEs) is essential to elucidate the biological functions of the many sequenced TALEs as well as for robust design of artificial TALE DNA-binding domains in biotechnological applications. In this work a program with improved EBE prediction performances was developed using an updated specificity matrix and a position weight correction function to account for the matching pattern observed in a validation set of TALE-DNA interactions. To gain a systems perspective on the large TALE repertoires from X. oryzae strains, this program was used to predict rice gene targets for 99 sequenced family members. Integrating predictions and available expression data in a TALE-gene network revealed multiple candidate transcriptional targets for many TALEs as well as several possible instances of functional convergence among TALEs. PMID:23869221

  3. Addition of transcription activator-like effector binding sites to a pathogen strain-specific rice bacterial blight resistance gene makes it effective against additional strains and against bacterial leaf streak.

    PubMed

    Hummel, Aaron W; Doyle, Erin L; Bogdanove, Adam J

    2012-09-01

    Xanthomonas transcription activator-like (TAL) effectors promote disease in plants by binding to and activating host susceptibility genes. Plants counter with TAL effector-activated executor resistance genes, which cause host cell death and block disease progression. We asked whether the functional specificity of an executor gene could be broadened by adding different TAL effector binding elements (EBEs) to it. We added six EBEs to the rice Xa27 gene, which confers resistance to strains of the bacterial blight pathogen Xanthomonas oryzae pv. oryzae (Xoo) that deliver the TAL effector AvrXa27. The EBEs correspond to three other effectors from Xoo strain PXO99(A) and three from strain BLS256 of the bacterial leaf streak pathogen Xanthomonas oryzae pv. oryzicola (Xoc). Stable integration into rice produced healthy lines exhibiting gene activation by each TAL effector, and resistance to PXO99(A) , a PXO99(A) derivative lacking AvrXa27, and BLS256, as well as two other Xoo and 10 Xoc strains virulent toward wildtype Xa27 plants. Transcripts initiated primarily at a common site. Sequences in the EBEs were found to occur nonrandomly in rice promoters, suggesting an overlap with endogenous regulatory sequences. Thus, executor gene specificity can be broadened by adding EBEs, but caution is warranted because of the possible coincident introduction of endogenous regulatory elements. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  4. Evolutionary History of the Plant Pathogenic Bacterium Xanthomonas axonopodis

    PubMed Central

    Mhedbi-Hajri, Nadia; Hajri, Ahmed; Boureau, Tristan; Darrasse, Armelle; Durand, Karine; Brin, Chrystelle; Saux, Marion Fischer-Le; Manceau, Charles; Poussier, Stéphane; Pruvost, Olivier

    2013-01-01

    Deciphering mechanisms shaping bacterial diversity should help to build tools to predict the emergence of infectious diseases. Xanthomonads are plant pathogenic bacteria found worldwide. Xanthomonas axonopodis is a genetically heterogeneous species clustering, into six groups, strains that are collectively pathogenic on a large number of plants. However, each strain displays a narrow host range. We address the question of the nature of the evolutionary processes – geographical and ecological speciation – that shaped this diversity. We assembled a large collection of X. axonopodis strains that were isolated over a long period, over continents, and from various hosts. Based on the sequence analysis of seven housekeeping genes, we found that recombination occurred as frequently as point mutation in the evolutionary history of X. axonopodis. However, the impact of recombination was about three times greater than the impact of mutation on the diversity observed in the whole dataset. We then reconstructed the clonal genealogy of the strains using coalescent and genealogy approaches and we studied the diversification of the pathogen using a model of divergence with migration. The suggested scenario involves a first step of generalist diversification that spanned over the last 25 000 years. A second step of ecology-driven specialization occurred during the past two centuries. Eventually, secondary contacts between host-specialized strains probably occurred as a result of agricultural development and intensification, allowing genetic exchanges of virulence-associated genes. These transfers may have favored the emergence of novel pathotypes. Finally, we argue that the largest ecological entity within X. axonopodis is the pathovar. PMID:23505513

  5. A MLVA Genotyping Scheme for Global Surveillance of the Citrus Pathogen Xanthomonas citri pv. citri Suggests a Worldwide Geographical Expansion of a Single Genetic Lineage

    PubMed Central

    Boyer, Karine; Leduc, Alice; Tourterel, Christophe; Drevet, Christine; Ravigné, Virginie; Gagnevin, Lionel; Guérin, Fabien; Chiroleu, Frédéric; Koebnik, Ralf; Verdier, Valérie; Vernière, Christian

    2014-01-01

    MultiLocus Variable number of tandem repeat Analysis (MLVA) has been extensively used to examine epidemiological and evolutionary issues on monomorphic human pathogenic bacteria, but not on bacterial plant pathogens of agricultural importance albeit such tools would improve our understanding of their epidemiology, as well as of the history of epidemics on a global scale. Xanthomonas citri pv. citri is a quarantine organism in several countries and a major threat for the citrus industry worldwide. We screened the genomes of Xanthomonas citri pv. citri strain IAPAR 306 and of phylogenetically related xanthomonads for tandem repeats. From these in silico data, an optimized MLVA scheme was developed to assess the global diversity of this monomorphic bacterium. Thirty-one minisatellite loci (MLVA-31) were selected to assess the genetic structure of 129 strains representative of the worldwide pathological and genetic diversity of X. citri pv. citri. Based on Discriminant Analysis of Principal Components (DAPC), four pathotype-specific clusters were defined. DAPC cluster 1 comprised strains that were implicated in the major geographical expansion of X. citri pv. citri during the 20th century. A subset of 12 loci (MLVA-12) resolved 89% of the total diversity and matched the genetic structure revealed by MLVA-31. MLVA-12 is proposed for routine epidemiological identification of X. citri pv. citri, whereas MLVA-31 is proposed for phylogenetic and population genetics studies. MLVA-31 represents an opportunity for international X. citri pv. citri genotyping and data sharing. The MLVA-31 data generated in this study was deposited in the Xanthomonas citri genotyping database (http://www.biopred.net/MLVA/). PMID:24897119

  6. EcpA, an extracellular protease, is a specific virulence factor required by Xanthomonas oryzae pv. oryzicola but not by X. oryzae pv. oryzae in rice

    USDA-ARS?s Scientific Manuscript database

    Previously, twelve protease-deficient mutants of Xanthomonas oryzae pv. oryzicola (Xoc) RS105 strain were recovered from a Tn5-tagged mutant library. In the current study, the Tn5 insertion site in each mutant was mapped. Mutations in genes encoding components of the type II secretion apparatus, cAM...

  7. Detection of Ehrlichia spp., Anaplasma spp., Rickettsia spp., and other eubacteria in ticks from the Thai-Myanmar border and Vietnam.

    PubMed

    Parola, Philippe; Cornet, Jean-Paul; Sanogo, Yibayiri Osée; Miller, R Scott; Thien, Huynh Van; Gonzalez, Jean-Paul; Raoult, Didier; Telford III, Sam R; Wongsrichanalai, Chansuda

    2003-04-01

    A total of 650 ticks, including 13 species from five genera, were collected from animals, from people, or by flagging of the vegetation at sites on the Thai-Myanmar border and in Vietnam. They were tested by PCR to detect DNA of bacteria of the order RICKETTSIALES: Three Anaplasma spp. were detected in ticks collected in Thailand, including (i) Anaplasma sp. strain AnDa465, which was considered a genotype of Anaplasma platys (formerly Ehrlichia platys) and which was obtained from Dermacentor auratus ticks collected from dogs; (ii) Anaplasma sp. strain AnAj360, which was obtained from Amblyomma javanense ticks collected on a pangolin; and (iii) Anaplasma sp. strain AnHl446, which was closely related to Anaplasma bovis and which was detected in Haemaphysalis lagrangei ticks collected from a bear. Three Ehrlichia spp. were identified, including (i) Ehrlichia sp. strain EBm52, which was obtained from Boophilus microplus ticks collected from cattle from Thailand; (ii) Ehrlichia sp. strain EHh324, which was closely related to Ehrlichia chaffeensis and which was detected in Haemaphysalis hystricis ticks collected from wild pigs in Vietnam; and (iii) Ehrlichia sp. strain EHh317, which was closely related to Ehrlichia sp. strain EBm52 and which was also detected in H. hystricis ticks collected from wild pigs in Vietnam. Two Rickettsia spp. were detected in Thailand, including (i) Rickettsia sp. strain RDla420, which was detected in Dermacentor auratus ticks collected from a bear, and (ii) Rickettsia sp. strain RDla440, which was identified from two pools of Dermacentor larvae collected from a wild pig nest. Finally, two bacteria named Eubacterium sp. strain Hw124 and Eubacterium sp. strain Hw191 were identified in Haemaphysalis wellingtoni ticks collected from chicken in Thailand; these strains could belong to a new group of bacteria.

  8. Detection of Ehrlichia spp., Anaplasma spp., Rickettsia spp., and Other Eubacteria in Ticks from the Thai-Myanmar Border and Vietnam

    PubMed Central

    Parola, Philippe; Cornet, Jean-Paul; Sanogo, Yibayiri Osée; Miller, R. Scott; Thien, Huynh Van; Gonzalez, Jean-Paul; Raoult, Didier; Telford III, Sam R.; Wongsrichanalai, Chansuda

    2003-01-01

    A total of 650 ticks, including 13 species from five genera, were collected from animals, from people, or by flagging of the vegetation at sites on the Thai-Myanmar border and in Vietnam. They were tested by PCR to detect DNA of bacteria of the order Rickettsiales. Three Anaplasma spp. were detected in ticks collected in Thailand, including (i) Anaplasma sp. strain AnDa465, which was considered a genotype of Anaplasma platys (formerly Ehrlichia platys) and which was obtained from Dermacentor auratus ticks collected from dogs; (ii) Anaplasma sp. strain AnAj360, which was obtained from Amblyomma javanense ticks collected on a pangolin; and (iii) Anaplasma sp. strain AnHl446, which was closely related to Anaplasma bovis and which was detected in Haemaphysalis lagrangei ticks collected from a bear. Three Ehrlichia spp. were identified, including (i) Ehrlichia sp. strain EBm52, which was obtained from Boophilus microplus ticks collected from cattle from Thailand; (ii) Ehrlichia sp. strain EHh324, which was closely related to Ehrlichia chaffeensis and which was detected in Haemaphysalis hystricis ticks collected from wild pigs in Vietnam; and (iii) Ehrlichia sp. strain EHh317, which was closely related to Ehrlichia sp. strain EBm52 and which was also detected in H. hystricis ticks collected from wild pigs in Vietnam. Two Rickettsia spp. were detected in Thailand, including (i) Rickettsia sp. strain RDla420, which was detected in Dermacentor auratus ticks collected from a bear, and (ii) Rickettsia sp. strain RDla440, which was identified from two pools of Dermacentor larvae collected from a wild pig nest. Finally, two bacteria named Eubacterium sp. strain Hw124 and Eubacterium sp. strain Hw191 were identified in Haemaphysalis wellingtoni ticks collected from chicken in Thailand; these strains could belong to a new group of bacteria. PMID:12682151

  9. AFLP fingerprinting: an efficient technique for detecting genetic variation of Xanthomonas axonopodis pv. manihotis.

    PubMed

    Restrepo, S; Duque, M; Tohme, J; Verdier, V

    1999-01-01

    Xanthomonas axonopodis pv. manihotis (Xam) is the causative agent of cassava bacterial blight (CBB), a worldwide disease that is particularly destructive in South America and Africa. CBB is controlled essentially through the use of resistant varieties. To develop an appropriate disease management strategy, the genetic diversity of the pathogen's populations must be assessed. Until now, the genetic diversity of Xam was characterized by RFLP analyses using ribotyping, and plasmid and genomic Xam probes. We used AFLP (amplified fragment length polymorphism), a novel PCR-based technique, to characterize the genetic diversity of Colombian Xam isolates. Six Xam strains were tested with 65 AFLP primer combinations to identify the best selective primers. Eight primer combinations were selected according to their reproducibility, number of polymorphic bands and polymorphism detected between Xam strains. Forty-seven Xam strains, originating from different Colombian ecozones, were analysed with the selected combinations. Results obtained with AFLP are consistent with those obtained with RFLP, using plasmid DNA as a probe. Some primer combinations differentiated Xam strains that were not distinguished by RFLP analyses, thus AFLP fingerprinting allowed a better definition of the genetic relationships between Xam strains.

  10. Comparison of atypical Brachyspira spp. clinical isolates and classic strains in a mouse model of swine dysentery.

    PubMed

    Burrough, Eric; Strait, Erin; Kinyon, Joann; Bower, Leslie; Madson, Darin; Schwartz, Kent; Frana, Timothy; Songer, J Glenn

    2012-12-07

    Multiple Brachyspira spp. can colonize the porcine colon, and the presence of the strongly beta-hemolytic Brachyspira hyodysenteriae is typically associated with clinical swine dysentery. Recently, several Brachyspira spp. have been isolated from the feces of pigs with clinical disease suggestive of swine dysentery, yet these isolates were not identified as B. hyodysenteriae by genotypic or phenotypic methods. This study used a mouse model of swine dysentery to compare the pathogenic potential of seventeen different Brachyspira isolates including eight atypical clinical isolates, six typical clinical isolates, the standard strain of B. hyodysenteriae (B204), and reference strains of Brachyspira intermedia and Brachyspira innocens. Results revealed that strongly beta-hemolytic isolates induced significantly greater cecal inflammation than weakly beta-hemolytic isolates regardless of the genetic identification of the isolate, and that strongly beta-hemolytic isolates identified as 'Brachyspira sp. SASK30446' and B. intermedia by PCR produced lesions indistinguishable from those caused by B. hyodysenteriae in this model. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. [Determination of in vitro susceptibilities of Brucella spp. strains against 11 different antibacterial gents isolated from blood cultures].

    PubMed

    Keşli, Recep; Bilgin, Hüseyin; Yılmaz, Halim

    2017-07-01

    Brucellosis is a worldwide zoonotic disease and still continuous to be a major public health problem. In this study, it was aimed to identify the Brucella strains to the species level isolated from blood cultures, and to determine the rate of antimicrobial susceptibility against eleven antibacterial agents. A total of 106 Brucella spp. strains were included in the study, which were isolated from blood cultures in University of Health Sciences, Konya Training and Research Hospital, Medical Microbiology Laboratory between January 2011 and June 2013. Identification of the isolated strains were mainly based on conventional methods. In vitro antibacterial susceptibilities of azithromycin, ciprofloxacin, doxycycline, gentamicin, levofloxacin, moxifloxacin, rifampicin, streptomycin, tetracycline, tigecycline, and trimethoprim/sulfamethoxazole, were evaluated by using the gradient (E-test, bioMerieux, France) strip method. The bacterial suspensions adjusted to 0.5 McFarland turbidity was inoculated to Mueller Hinton agar plates, supplemented with 5% sheep blood, and E-test strips of selected antibacterial were applied. The plates were incubated in ambient air 48 hours at 37ºC and Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 29213 were used as quality control strains for antimicrobial susceptibility testing. Minimum inhibitors concentration (MIC) values were interpreted according to Clinical and Laboratory Standards Institute (CLSI) guidelines for slow-growing bacteria such as Haemophilus spp. Of the 106 Brucella spp. strains included in to the study, 90 were identified as Brucella melitensis, and 16 were Brucella abortus. MIC90 values of azithromycin, ciprofloxacin, doxycycline, gentamicin, levofloxacin, moxifloxacin, rifampicin, streptomycin, tetracycline, tigecycline, and trimethoprim/sulfamethoxazole were determined as 1 µg/ml, 0.25 µg/ml, 0.19 µg/ml, 0.25 µg/ml, 0.19 µg/ml, 0.75 µg/ml, 0.25 µg/ml, 0.75 µg/ml, 0.38 µg/ml, 0.64 µg/ml, and 0

  12. Occurrence of Toxigenic Fungi and Aflatoxin Potential of Aspergillus spp. Strains Associated with Subsistence Farmed Crops in Haiti.

    PubMed

    Aristil, Junior; Venturini, Giovanni; Spada, Alberto

    2017-04-01

    Subsistence farming and poor storage facilities favor toxigenic fungal contamination and mycotoxin accumulation in staple foods from tropical countries such as Haiti. The present preliminary study was designed to evaluate the occurrence of toxigenic fungi in Haitian foodstuffs to define the mycotoxin risk associated with Haitian crops. The objectives of this research were to determine the distribution of toxigenic fungi in the Haitian crops maize, moringa, and peanut seeds and to screen Aspergillus section Flavi (ASF) isolates for production of aflatoxins B 1 and G 1 in vitro. Maize, moringa, and peanut samples were contaminated by potential toxigenic fungal taxa, mainly ASF and Fusarium spp. The isolation frequency of Aspergillus spp. and Fusarium spp. was influenced by locality and thus by farming systems, storage systems, and weather conditions. Particularly for ASF in peanut and maize samples, isolation frequencies were directly related to the growing season length. The present study represents the first report of contamination by toxigenic fungi and aflatoxin in moringa seeds, posing concerns about the safety of these seeds, which people in Haiti commonly consume. Most (80%) of the Haitian ASF strains were capable of producing aflatoxins, indicating that Haitian conditions clearly favor the colonization of toxigenic ASF strains over atoxigenic strains. ASF strains producing both aflatoxins B 1 and G 1 were found. Understanding the distribution of toxigenic ASF in Haitian crops and foodstuffs is important for determining accurate toxicological risks because the toxic profile of ASF is species specific. The occurrence of toxigenic fungi and the profiles of the ASF found in various crops highlight the need to prevent formation of aflatoxins in Haitian crops. This study provides relevant preliminary baseline data for guiding the development of legislation regulating the quality and safety of crops in this low-income country.

  13. [Isolation of Listeria spp., Aeromonas spp., and Vibrio spp. from seafood products].

    PubMed

    Scoglio, M E; Di Pietro, A; Mauro, A; Picerno, I; Laganà, P; Delia, S A

    2000-01-01

    Forty-one strains of Listeria, Aeromonas and Vibrio have been isolated in 71 samples of seafood, both raw and ready to eat and frozen. L. monocytogenes, detected by PCR also, is found in the smoked salmon only. Aeromonas spp. and Vibrio spp. are isolated in the raw products (shrimps and shellfish). No relationship is found between the presence of such microrganisms and the common indicator bacteria. Finally, the health hazard related to strong contamination and the need to diversify the food safety assurance programmes, for the various products, are underlined.

  14. Genomic Insights into the Evolutionary Origin of Xanthomonas axonopodis pv. citri and Its Ecological Relatives

    PubMed Central

    Midha, Samriti

    2014-01-01

    Xanthomonas axonopodis pv. citri (Xac) is the causal agent of citrus bacterial canker (CBC) and is a serious problem worldwide. Like CBC, several important diseases in other fruits, such as mango, pomegranate, and grape, are also caused by Xanthomonas pathovars that display remarkable specificity toward their hosts. While citrus and mango diseases were documented more than 100 years ago, the pomegranate and grape diseases have been known only since the 1950s and 1970s, respectively. Interestingly, diseases caused by all these pathovars were noted first in India. Our genome-based phylogenetic studies suggest that these diverse pathogens belong to a single species and these pathovars may be just a group of rapidly evolving strains. Furthermore, the recently reported pathovars, such as those infecting grape and pomegranate, form independent clonal lineages, while the citrus and mango pathovars that have been known for a long time form one clonal lineage. Such an understanding of their phylogenomic relationship has further allowed us to understand major and unique variations in the lineages that give rise to these pathovars. Whole-genome sequencing studies including ecological relatives from their putative country of origin has allowed us to understand the evolutionary history of Xac and other pathovars that infect fruits. PMID:25085494

  15. [Screening strains for Trichoderma spp. for strong antagonism against ginseng root pathogens and study on their biological characters].

    PubMed

    Zhao, A-Na; Ding, Wan-Long; Zhu, Dian-Long

    2006-10-01

    To screen the Trichodenna spp. for strong antagonist against ginseng root pathogens. The biological characters of ten Trichoderma strains were compared by culturing on different media. And their antagonistic activity against Phytophthora cactorum, Cylindrocarpon destructans and Rhizoctonia solani were measured on PDA. Tv04-2 and Th3080 showed a good growth on soil solution medium and PDA, and also showed high inhibitory efficacy to the three pathogens. The two Trichoderma strains showed different growth rate under light conditions and pH. Trichoderma strains were sensitive to most fungicides used in ginseng root disease controlling, however Tv04-2 was not sensitive to the fungicide Junchong Jueba.

  16. Niclosamide inhibits leaf blight caused by Xanthomonas oryzae in rice

    PubMed Central

    Kim, Sung-Il; Song, Jong Tae; Jeong, Jin-Yong; Seo, Hak Soo

    2016-01-01

    Rice leaf blight, which is caused by the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo), results in huge losses in grain yield. Here, we show that Xoo-induced rice leaf blight is effectively controlled by niclosamide, an oral antihelminthic drug and molluscicide, which also functions as an anti-tumor agent. Niclosamide directly inhibited the growth of the three Xoo strains PXO99, 10208 and K3a. Niclosamide moved long distances from the site of local application to distant rice tissues. Niclosamide also increased the levels of salicylate and induced the expression of defense-related genes such as OsPR1 and OsWRKY45, which suppressed Xoo-induced leaf wilting. Niclosamide had no detrimental effects on vegetative/reproductive growth and yield. These combined results indicate that niclosamide can be used to block bacterial leaf blight in rice with no negative side effects. PMID:26879887

  17. An efficient method for visualization and growth of fluorescent Xanthomonas oryzae pv. oryzae in planta

    PubMed Central

    Han, Sang-Wook; Park, Chang-Jin; Lee, Sang-Won; Ronald, Pamela C

    2008-01-01

    Background Xanthomonas oryzae pv. oryzae, the causal agent of bacterial blight disease, is a serious pathogen of rice. Here we describe a fluorescent marker system to study virulence and pathogenicity of X. oryzae pv. oryzae. Results A fluorescent X. oryzae pv. oryzae Philippine race 6 strain expressing green fluorescent protein (GFP) (PXO99GFP) was generated using the gfp gene under the control of the neomycin promoter in the vector, pPneo-gfp. The PXO99GFPstrain displayed identical virulence and avirulence properties as the wild type control strain, PXO99. Using fluorescent microscopy, bacterial multiplication and colonization were directly observed in rice xylem vessels. Accurate and rapid determination of bacterial growth was assessed using fluoremetry and an Enzyme-Linked ImmunoSorbant Assay (ELISA). Conclusion Our results indicate that the fluorescent marker system is useful for assessing bacterial infection and monitoring bacterial multiplication in planta. PMID:18826644

  18. Molecular detection of Xanthomonas oryzae pv. oryzae, Xanthomonas oryzae pv. oryzicola, and Burkholderia glumae in infected rice seeds and leaves

    USDA-ARS?s Scientific Manuscript database

    Polymerase chain reaction (PCR) is particularly useful for plant pathogen detection. In the present study, multiplex PCR and SYBR green real-time PCR were developed to facilitate simultaneous detection of three important rice pathogens, Xanthomonas oryzae pv. oryzae, X. oryzae pv. oryzicola, and Bur...

  19. New genes of Xanthomonas citri subsp. citri involved in pathogenesis and adaptation revealed by a transposon-based mutant library

    PubMed Central

    2009-01-01

    Background Citrus canker is a disease caused by the phytopathogens Xanthomonas citri subsp. citri, Xanthomonas fuscans subsp. aurantifolli and Xanthomonas alfalfae subsp. citrumelonis. The first of the three species, which causes citrus bacterial canker type A, is the most widely spread and severe, attacking all citrus species. In Brazil, this species is the most important, being found in practically all areas where citrus canker has been detected. Like most phytobacterioses, there is no efficient way to control citrus canker. Considering the importance of the disease worldwide, investigation is needed to accurately detect which genes are related to the pathogen-host adaptation process and which are associated with pathogenesis. Results Through transposon insertion mutagenesis, 10,000 mutants of Xanthomonas citri subsp. citri strain 306 (Xcc) were obtained, and 3,300 were inoculated in Rangpur lime (Citrus limonia) leaves. Their ability to cause citrus canker was analyzed every 3 days until 21 days after inoculation; a set of 44 mutants showed altered virulence, with 8 presenting a complete loss of causing citrus canker symptoms. Sequencing of the insertion site in all 44 mutants revealed that 35 different ORFs were hit, since some ORFs were hit in more than one mutant, with mutants for the same ORF presenting the same phenotype. An analysis of these ORFs showed that some encoded genes were previously known as related to pathogenicity in phytobacteria and, more interestingly, revealed new genes never implicated with Xanthomonas pathogenicity before, including hypothetical ORFs. Among the 8 mutants with no canker symptoms are the hrpB4 and hrpX genes, two genes that belong to type III secretion system (TTSS), two hypothetical ORFS and, surprisingly, the htrA gene, a gene reported as involved with the virulence process in animal-pathogenic bacteria but not described as involved in phytobacteria virulence. Nucleic acid hybridization using labeled cDNA probes showed

  20. Investigation of a Quadruplex-Forming Repeat Sequence Highly Enriched in Xanthomonas and Nostoc sp.

    PubMed

    Rehm, Charlotte; Wurmthaler, Lena A; Li, Yuanhao; Frickey, Tancred; Hartig, Jörg S

    2015-01-01

    In prokaryotes simple sequence repeats (SSRs) with unit sizes of 1-5 nucleotides (nt) are causative for phase and antigenic variation. Although an increased abundance of heptameric repeats was noticed in bacteria, reports about SSRs of 6-9 nt are rare. In particular G-rich repeat sequences with the propensity to fold into G-quadruplex (G4) structures have received little attention. In silico analysis of prokaryotic genomes show putative G4 forming sequences to be abundant. This report focuses on a surprisingly enriched G-rich repeat of the type GGGNATC in Xanthomonas and cyanobacteria such as Nostoc. We studied in detail the genomes of Xanthomonas campestris pv. campestris ATCC 33913 (Xcc), Xanthomonas axonopodis pv. citri str. 306 (Xac), and Nostoc sp. strain PCC7120 (Ana). In all three organisms repeats are spread all over the genome with an over-representation in non-coding regions. Extensive variation of the number of repetitive units was observed with repeat numbers ranging from two up to 26 units. However a clear preference for four units was detected. The strong bias for four units coincides with the requirement of four consecutive G-tracts for G4 formation. Evidence for G4 formation of the consensus repeat sequences was found in biophysical studies utilizing CD spectroscopy. The G-rich repeats are preferably located between aligned open reading frames (ORFs) and are under-represented in coding regions or between divergent ORFs. The G-rich repeats are preferentially located within a distance of 50 bp upstream of an ORF on the anti-sense strand or within 50 bp from the stop codon on the sense strand. Analysis of whole transcriptome sequence data showed that the majority of repeat sequences are transcribed. The genetic loci in the vicinity of repeat regions show increased genomic stability. In conclusion, we introduce and characterize a special class of highly abundant and wide-spread quadruplex-forming repeat sequences in bacteria.

  1. Investigation of a Quadruplex-Forming Repeat Sequence Highly Enriched in Xanthomonas and Nostoc sp.

    PubMed Central

    Rehm, Charlotte; Wurmthaler, Lena A.; Li, Yuanhao; Frickey, Tancred; Hartig, Jörg S.

    2015-01-01

    In prokaryotes simple sequence repeats (SSRs) with unit sizes of 1–5 nucleotides (nt) are causative for phase and antigenic variation. Although an increased abundance of heptameric repeats was noticed in bacteria, reports about SSRs of 6–9 nt are rare. In particular G-rich repeat sequences with the propensity to fold into G-quadruplex (G4) structures have received little attention. In silico analysis of prokaryotic genomes show putative G4 forming sequences to be abundant. This report focuses on a surprisingly enriched G-rich repeat of the type GGGNATC in Xanthomonas and cyanobacteria such as Nostoc. We studied in detail the genomes of Xanthomonas campestris pv. campestris ATCC 33913 (Xcc), Xanthomonas axonopodis pv. citri str. 306 (Xac), and Nostoc sp. strain PCC7120 (Ana). In all three organisms repeats are spread all over the genome with an over-representation in non-coding regions. Extensive variation of the number of repetitive units was observed with repeat numbers ranging from two up to 26 units. However a clear preference for four units was detected. The strong bias for four units coincides with the requirement of four consecutive G-tracts for G4 formation. Evidence for G4 formation of the consensus repeat sequences was found in biophysical studies utilizing CD spectroscopy. The G-rich repeats are preferably located between aligned open reading frames (ORFs) and are under-represented in coding regions or between divergent ORFs. The G-rich repeats are preferentially located within a distance of 50 bp upstream of an ORF on the anti-sense strand or within 50 bp from the stop codon on the sense strand. Analysis of whole transcriptome sequence data showed that the majority of repeat sequences are transcribed. The genetic loci in the vicinity of repeat regions show increased genomic stability. In conclusion, we introduce and characterize a special class of highly abundant and wide-spread quadruplex-forming repeat sequences in bacteria. PMID:26695179

  2. Biofilm and metallo beta-lactamase production among the strains of Pseudomonas aeruginosa and Acinetobacter spp. at a Tertiary Care Hospital in Kathmandu, Nepal.

    PubMed

    Baniya, Bandana; Pant, Narayan Dutt; Neupane, Sanjeev; Khatiwada, Saroj; Yadav, Uday Narayan; Bhandari, Nisha; Khadka, Rama; Bhatta, Sabita; Chaudhary, Raina

    2017-11-02

    Pseudomonas aeruginosa and Acinetobacter spp. are found to be associated with biofilm and metallo-β-lactamase production and are the common causes of serious infections mainly in hospitalized patients. So, the main aims of this study were to determine the rates of biofilm production and metallo beta-lactamase production (MBL) among the strains of Pseudomonas aeruginosa and Acinetobacter spp. isolated from hospitalized patients. A total of 85 P. aeruginosa isolates and 50 Acinetobacter spp. isolates isolated from different clinical specimens from patients admitted to Shree Birendra Hospital, Kathmandu, Nepal from July 2013 to May 2014 were included in this study. The bacterial isolates were identified with the help of biochemical tests. Modified Kirby-Bauer disc diffusion technique was used for antimicrobial susceptibility testing. Combined disc diffusion technique was used for the detection of MBL production, while Congo red agar method and tube adherence method were used for detection of biofilm production. Around 16.4% of P. aeruginosa isolates and 22% of the strains of Acinetobacter spp. were metallo β-lactamase producers. Out of 85 P. aeruginosa isolates, 23 (27.05%) were biofilm producers according to tube adherence test while, only 13 (15.29%) were biofilm producers as per Congo red agar method. Similarly, out of 50 Acinetobacter spp. 7 (14%) isolates were biofilm producers on the basis of tube adherence test, while only 5 (10%) were positive for biofilm production by Congo red agar method. Highest rates of susceptibility of P. aeruginosa as well as Acinetobacter spp. were seen toward colistin. In our study, biofilm production and metallo beta-lactamase production were observed among Pseudomonas aeruginosa and Acinetobacter spp. However, no statistically significant association could be established between biofilm production and metallo beta-lactamase production.

  3. Designer TAL effectors induce disease susceptibility and resistance to Xanthomonas oryzae pv. oryzae in rice.

    PubMed

    Li, Ting; Huang, Sheng; Zhou, Junhui; Yang, Bing

    2013-05-01

    TAL (transcription activator-like) effectors from Xanthomonas bacteria activate the cognate host genes, leading to disease susceptibility or resistance dependent on the genetic context of host target genes. The modular nature and DNA recognition code of TAL effectors enable custom-engineering of designer TAL effectors (dTALE) for gene activation. However, the feasibility of dTALEs as transcription activators for gene functional analysis has not been demonstrated. Here, we report the use of dTALEs, as expressed and delivered by the pathogenic Xanthomonas oryzae pv. oryzae (Xoo), in revealing the new function of two previously identified disease-related genes and the potential of one developmental gene for disease susceptibility in rice/Xoo interactions. The dTALE gene dTALE-xa27, designed to target the susceptible allele of the resistance gene Xa27, elicited a resistant reaction in the otherwise susceptible rice cultivar IR24. Four dTALE genes were made to induce the four annotated Xa27 homologous genes in rice cultivar Nipponbare, but none of the four induced Xa27-like genes conferred resistance to the dTALE-containing Xoo strains. A dTALE gene was also generated to activate the recessive resistance gene xa13, an allele of the disease-susceptibility gene Os8N3 (also named Xa13 or OsSWEET11, a member of sucrose efflux transporter SWEET gene family). The induction of xa13 by the dTALE rendered the resistant rice IRBB13 (xa13/xa13) susceptible to Xoo. Finally, OsSWEET12, an as-yet uncharacterized SWEET gene with no corresponding naturally occurring TAL effector identified, conferred susceptibility to the Xoo strains expressing the corresponding dTALE genes. Our results demonstrate that dTALEs can be delivered through the bacterial secretion system to activate genes of interest for functional analysis in plants.

  4. Study of strains of Candida spp. Isolated from catheters in UHC of Oran (Algeria): Identification and antifungal susceptibility.

    PubMed

    Bendjelloul, M; Boucherit-Otmani, Z; Boucherit, K

    2016-09-01

    The increasing incidence of Candida spp., and the vital prognosis often compromise for patients with Candida species make urgent the exact knowledge of their distribution worldwide and exhaust action antifungals currently used in clinical. That why we carry out an epidemiological study of Candida species and testing their susceptibility against two antifungals: amphotericin B and caspofungin. Samplings of peripheral venous catheters (PVC) were carried out from during 8months on the services of Internal medicine, Surgery A and Neonatology of Oran's University Hospital Center (UHC). The study of the susceptibility of Candida species to antifungal agents was performed according to the Clinical Laboratory Standards Institute (CLSI 2008). From 300 samples, 25 yeasts were isolated. The rate of colonization PVC was 8.33% by Candida spp. The most isolated strains were Candida parapsilosis with 64% of cases, followed by Candida albicans (12%) then 8% for Candida glabrata and Candida krusei. However, only 4% of isolates were Candida famata or Candida lusitaniae. Furthermore all isolated strains were susceptible to amphotericin B with Minimum Inhibitory Concentrations (MIC) ranging from 0.25 to 1μg/mL. MIC obtained with caspofungin vary from 0.0625 to 2μg/mL for all strains. Moreover, one strain of C. krusei is resistant to caspofungin with a MIC superior to 8μg/mL. All though caspofungin is at least as effective as amphotericin B, it is better tolerated for the treatment of invasive fungal infections. Copyright © 2016. Published by Elsevier Masson SAS.

  5. Activation of bovine neutrophils by Brucella spp.

    PubMed

    Keleher, Lauren L; Skyberg, Jerod A

    2016-09-01

    Brucellosis is a globally important zoonotic infectious disease caused by gram negative bacteria of the genus Brucella. While many species of Brucella exist, Brucella melitensis, Brucella abortus, and Brucella suis are the most common pathogens of humans and livestock. The virulence of Brucella is largely influenced by its ability to evade host factors, including phagocytic killing mechanisms, which are critical for the host response to infection. The aim of this study was to characterize the bovine neutrophil response to virulent Brucella spp. Here, we found that virulent strains of smooth B. abortus, B. melitensis, B. suis, and virulent, rough, strains of Brucella canis possess similar abilities to resist killing by resting, or IFN-γ-activated, bovine neutrophils. Bovine neutrophils responded to infection with a time-dependent oxidative burst that varied little between Brucella spp. Inhibition of TAK1, or SYK kinase blunted the oxidative burst of neutrophils in response to Brucella infection. Interestingly, Brucella spp. did not induce robust death of bovine neutrophils. These results indicate that bovine neutrophils respond similarly to virulent Brucella spp. In addition, virulent Brucella spp., including naturally rough strains of B. canis, have a conserved ability to resist killing by bovine neutrophils. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. In vitro susceptibility of Bacillus spp. to selected antimicrobial agents.

    PubMed Central

    Weber, D J; Saviteer, S M; Rutala, W A; Thomann, C A

    1988-01-01

    Although often dismissed as contaminants when isolated from blood cultures, Bacillus spp. are increasingly recognized as capable of causing serious systemic infections. As part of a clinical-microbiological study, 89 strains of Bacillus spp. isolated from clinical blood cultures between 1981 and 1985 had their species determined and were tested for antimicrobial agent susceptibility to 18 antibiotics. Species of isolates were determined by the API 50CH and API 20E systems. Bacillus cereus (54 strains) was the most common species isolated, followed by B. megaterium (13 strains), B. polymyxa (5 strains), B. pumilus (4 strains), B. subtilis (4 strains), B. circulans (3 strains), B. amyloliquefaciens (2 strains), B. licheniformis (1 strain), and Bacillus spp. (3 strains). Microdilution MIC susceptibility tests revealed all B. cereus strains to be susceptible to imipenem, vancomycin, chloramphenicol, gentamicin, and ciprofloxacin. Non-B. cereus strains were most susceptible to imipenem, vancomycin, LY146032, and ciprofloxacin. Disk susceptibility testing suggested that B. cereus was rarely susceptible to penicillins, semisynthetic penicillins, or cephalosporins with the exception of mezlocillin. In contrast, many non-B. cereus strains were susceptible to penicillins, semisynthetic penicillins, and cephalosporins, but marked variability was noted among species. PMID:3395100

  7. Evaluation of Genetic Diversity of Candida spp. and Klebsiella spp. Isolated from the Denture Plaque of COPD Patients.

    PubMed

    Przybyłowska, D; Piskorska, K; Gołaś, M; Sikora, M; Swoboda-Kopeć, E; Kostrzewa-Janicka, J; Mierzwińska-Nastalska, E

    2017-01-01

    Yeast-like fungi and gram-negative bacilli are the most frequent potential pathogens of the respiratory tract isolated from the denture plaque of patients with chronic obstructive pulmonary disease (COPD). Dominant species among yeast-like fungi are Candida albicans and Candida tropicalis. Significant frequency is also exhibited by Klebsiella pneumoniae and Klebsiella oxytoca. The purpose of this study was to analyze genetic diversity of the strains of C. albicans, C. tropicalis, and Klebsiella spp. present in patients in stable phases of COPD. The analysis was conducted by the random amplified polymorphic DNA (RAPD) method on clinical strains isolated from patients with COPD and control patients in overall good health. Forty one strains of Candida albicans, 12 of Candida tropicalis, as well as 9 strains of K. pneumoniae and 7 of K. oxytoca were scrutinized. The dominant species in clinical material from COPD patients was Candida albicans with a substantial degree of variations of genetic profiles. On the basis of affinity analysis, 19 genetic types were identified within this strain. An analysis of the banding patterns among C. tropicalis strains indicated the existence of 6 genetic types. A considerable diversity of genetic profiles among Klebsiella spp. also was established. The genotype diversity of Klebsiella spp. strains may indicate the endogenic character of the majority of infections, regardless of the therapy applied for the underlying condition.

  8. Growth inhibition of Listeria spp. on Camembert cheese by bacteria producing inhibitory substances.

    PubMed

    Sulzer, G; Busse, M

    1991-12-01

    Bacterial strains exhibiting antimicrobial activity towards other bacteria are quite common in nature. During the past few years several genera have been shown to exert inhibitory action against Listeria. spp. In the present work strains of Enterococcus, Lactobacillus and Lactococcus were tested for their influence on the development of Listeria spp. on Camembert cheese. Partial or complete inhibition of growth of Listeria spp. was observed using various inhibitory bacteria. Complete inhibition occurred when the inhibitory strain was used as a starter culture and there was a low level of contamination with Listeria spp. during the first stage of ripening. Very little inhibition occurred if the inhibitory strain was added together with the starter culture.

  9. Mentha spicata Essential Oil: Chemical Composition, Antioxidant and Antibacterial Activities against Planktonic and Biofilm Cultures of Vibrio spp. Strains.

    PubMed

    Snoussi, Mejdi; Noumi, Emira; Trabelsi, Najla; Flamini, Guido; Papetti, Adele; De Feo, Vincenzo

    2015-08-07

    Chemical composition, antioxidant and anti-Vibrio spp. activities of the essential oil isolated from the aerial parts of Mentha spicata L. (spearmint) are investigated in the present study. The effect of the essential oil on Vibrio spp. biofilm inhibition and eradication was tested using the XTT assay. A total of 63 chemical constituents were identified in spearmint oil using GC/MS, constituting 99.9% of the total identified compounds. The main components were carvone (40.8% ± 1.23%) and limonene (20.8% ± 1.12%). The antimicrobial activity against 30 Vibrio spp. strains (16 species) was evaluated by disc diffusion and microdilution assays. All microorganisms were strongly affected, indicating an appreciable antimicrobial potential of the oil. Moreover, the investigated oil exhibited high antioxidant potency, as assessed by four different tests in comparison with BHT. The ability of the oil, belonging to the carvone chemotype, to inhibit or reduce Vibrio spp. biofilm warrants further investigation to explore the use of natural products in antibiofilm adhesion and reinforce the possibility of its use in the pharmaceutical or food industry as a natural antibiotic and seafood preservative against Vibrio contamination.

  10. Comparative analysis of genes encoding key steroid core oxidation enzymes in fast-growing Mycobacterium spp. strains.

    PubMed

    Bragin, E Yu; Shtratnikova, V Yu; Dovbnya, D V; Schelkunov, M I; Pekov, Yu A; Malakho, S G; Egorova, O V; Ivashina, T V; Sokolov, S L; Ashapkin, V V; Donova, M V

    2013-11-01

    A comparative genome analysis of Mycobacterium spp. VKM Ac-1815D, 1816D and 1817D strains used for efficient production of key steroid intermediates (androst-4-ene-3,17-dione, AD, androsta-1,4-diene-3,17-dione, ADD, 9α-hydroxy androst-4-ene-3,17-dione, 9-OH-AD) from phytosterol has been carried out by deep sequencing. The assembled contig sequences were analyzed for the presence putative genes of steroid catabolism pathways. Since 3-ketosteroid-9α-hydroxylases (KSH) and 3-ketosteroid-Δ(1)-dehydrogenase (Δ(1) KSTD) play key role in steroid core oxidation, special attention was paid to the genes encoding these enzymes. At least three genes of Δ(1) KSTD (kstD), five genes of KSH subunit A (kshA), and one gene of KSH subunit B of 3-ketosteroid-9α-hydroxylases (kshB) have been found in Mycobacterium sp. VKM Ac-1817D. Strains of Mycobacterium spp. VKM Ac-1815D and 1816D were found to possess at least one kstD, one kshB and two kshA genes. The assembled genome sequence of Mycobacterium sp. VKM Ac-1817D differs from those of 1815D and 1816D strains, whereas these last two are nearly identical, differing by 13 single nucleotide substitutions (SNPs). One of these SNPs is located in the coding region of a kstD gene and corresponds to an amino acid substitution Lys (135) in 1816D for Ser (135) in 1815D. The findings may be useful for targeted genetic engineering of the biocatalysts for biotechnological application. Copyright © 2013. Published by Elsevier Ltd.

  11. Antimicrobial resistance in Campylobacter spp isolated from broiler flocks

    PubMed Central

    Kuana, Suzete Lora; dos Santos, Luciana Ruschel; Rodrigues, Laura Beatriz; Borsoi, Anderlise; Moraes, Hamilton Luis do Souza; Salle, Carlos Tadeu Pippi; do Nascimento, Vladimir Pinheiro

    2008-01-01

    The aim of this study was to assess the antimicrobial susceptibility of 62 Campylobacter spp. strains obtained from broiler flocks using the agar diffusion method. The Campylobacter spp strains were isolated from 22 flocks aged between 3 and 5 weeks of life, isolated from cloacae swabs, stools and cecal droppings in the farm and from the carcass rinsing in the slaughterhouse. Campylobacter spp strains were tested on Mueller-Hilton (MH) agar (27 samples) and MH plus TTC agar (35 samples). The antimicrobial susceptibility test revealed a 62.5% resistance to at least one drug, especially to enrofloxacin (71%), neomycin (50%), lincomycin (50%), tetracycline (43%), penicillin (42%), ceftiofur (33%) amoxicillin (27%), spiramycin (20%), ampicillin (18%) and norfloxacin (14%), whereas a lower percentage of strains was resistant to erythromycin (10%) and doxycycline (10%). All strains were sensitive to gentamicin and lincomycin-spectinomycin and 80% of them to colistin. These results indicate that it is necessary to reduce the use of antimicrobials in veterinary and human medicine. PMID:24031299

  12. The dual nature of trehalose in citrus canker disease: a virulence factor for Xanthomonas citri subsp. citri and a trigger for plant defence responses

    PubMed Central

    Piazza, Ainelén; Zimaro, Tamara; Garavaglia, Betiana S.; Ficarra, Florencia A.; Thomas, Ludivine; Marondedze, Claudius; Feil, Regina; Lunn, John E.; Gehring, Chris; Ottado, Jorgelina; Gottig, Natalia

    2015-01-01

    Xanthomonas citri subsp. citri (Xcc) is a bacterial pathogen that causes citrus canker in susceptible Citrus spp. The Xcc genome contains genes encoding enzymes from three separate pathways of trehalose biosynthesis. Expression of genes encoding trehalose-6-phosphate synthase (otsA) and trehalose phosphatase (otsB) was highly induced during canker development, suggesting that the two-step pathway of trehalose biosynthesis via trehalose-6-phosphate has a function in pathogenesis. This pathway was eliminated from the bacterium by deletion of the otsA gene. The resulting XccΔotsA mutant produced less trehalose than the wild-type strain, was less resistant to salt and oxidative stresses, and was less able to colonize plant tissues. Gene expression and proteomic analyses of infected leaves showed that infection with XccΔotsA triggered only weak defence responses in the plant compared with infection with Xcc, and had less impact on the host plant’s metabolism than the wild-type strain. These results suggested that trehalose of bacterial origin, synthesized via the otsA–otsB pathway, in Xcc, plays a role in modifying the host plant’s metabolism to its own advantage but is also perceived by the plant as a sign of pathogen attack. Thus, trehalose biosynthesis has both positive and negative consequences for Xcc. On the one hand, it enables this bacterial pathogen to survive in the inhospitable environment of the leaf surface before infection and exploit the host plant’s resources after infection, but on the other hand, it is a tell-tale sign of the pathogen’s presence that triggers the plant to defend itself against infection. PMID:25770587

  13. Survival of Campylobacter spp. in bovine faeces on pasture.

    PubMed

    Gilpin, B J; Robson, B; Scholes, P; Nourozi, F; Sinton, L W

    2009-02-01

    To determine the survival on pasture of Campylobacter spp. naturally present in bovine faeces and compare this with a previously published study using laboratory-cultured Campylobacter spp. Ten freshly collected cow pats were deposited on pasture during summer, and Campylobacter spp. were enumerated by enrichment broth culture. The counts in three pats were below detection limits. Counts of Campylobacter spp. in the other seven pats fell below detection limits within 14 days. The geometric means of the counts up to 7 days produced a T(90) of 2.2 days. Characterization of Campylobacter spp. by PCR and pulsed field gel electrophoresis indicated the presence of at least six genotypes of Campylobacter jejuni, Campylobacter coli and Campylobacter lari. Campylobacter spp. naturally present in cow faeces exhibited a similar survival rate to that previously determined using laboratory-cultured strains. The highly variable counts of naturally occurring Campylobacter spp., and the predominance of lower counts, also support the earlier decision to use laboratory-cultured strains in survival experiments. This study reaffirms the short survival of Campylobacter spp. in cow faeces deposited on pasture. This information will be incorporated into a 'reservoir model' for Campylobacter spp. in cow pats on New Zealand pastures.

  14. DNA Barcoding for Efficient Species- and Pathovar-Level Identification of the Quarantine Plant Pathogen Xanthomonas

    PubMed Central

    Tian, Qian; Zhao, Wenjun; Lu, Songyu; Zhu, Shuifang; Li, Shidong

    2016-01-01

    Genus Xanthomonas comprises many economically important plant pathogens that affect a wide range of hosts. Indeed, fourteen Xanthomonas species/pathovars have been regarded as official quarantine bacteria for imports in China. To date, however, a rapid and accurate method capable of identifying all of the quarantine species/pathovars has yet to be developed. In this study, we therefore evaluated the capacity of DNA barcoding as a digital identification method for discriminating quarantine species/pathovars of Xanthomonas. For these analyses, 327 isolates, representing 45 Xanthomonas species/pathovars, as well as five additional species/pathovars from GenBank (50 species/pathovars total), were utilized to test the efficacy of four DNA barcode candidate genes (16S rRNA gene, cpn60, gyrB, and avrBs2). Of these candidate genes, cpn60 displayed the highest rate of PCR amplification and sequencing success. The tree-building (Neighbor-joining), ‘best close match’, and barcode gap methods were subsequently employed to assess the species- and pathovar-level resolution of each gene. Notably, all isolates of each quarantine species/pathovars formed a monophyletic group in the neighbor-joining tree constructed using the cpn60 sequences. Moreover, cpn60 also demonstrated the most satisfactory results in both barcoding gap analysis and the ‘best close match’ test. Thus, compared with the other markers tested, cpn60 proved to be a powerful DNA barcode, providing a reliable and effective means for the species- and pathovar-level identification of the quarantine plant pathogen Xanthomonas. PMID:27861494

  15. Ecological genomics in Xanthomonas: the nature of genetic adaptation with homologous recombination and host shifts.

    PubMed

    Huang, Chao-Li; Pu, Pei-Hua; Huang, Hao-Jen; Sung, Huang-Mo; Liaw, Hung-Jiun; Chen, Yi-Min; Chen, Chien-Ming; Huang, Ming-Ban; Osada, Naoki; Gojobori, Takashi; Pai, Tun-Wen; Chen, Yu-Tin; Hwang, Chi-Chuan; Chiang, Tzen-Yuh

    2015-03-15

    Comparative genomics provides insights into the diversification of bacterial species. Bacterial speciation usually takes place with lasting homologous recombination, which not only acts as a cohering force between diverging lineages but brings advantageous alleles favored by natural selection, and results in ecologically distinct species, e.g., frequent host shift in Xanthomonas pathogenic to various plants. Using whole-genome sequences, we examined the genetic divergence in Xanthomonas campestris that infected Brassicaceae, and X. citri, pathogenic to a wider host range. Genetic differentiation between two incipient races of X. citri pv. mangiferaeindicae was attributable to a DNA fragment introduced by phages. In contrast to most portions of the genome that had nearly equivalent levels of genetic divergence between subspecies as a result of the accumulation of point mutations, 10% of the core genome involving with homologous recombination contributed to the diversification in Xanthomonas, as revealed by the correlation between homologous recombination and genomic divergence. Interestingly, 179 genes were under positive selection; 98 (54.7%) of these genes were involved in homologous recombination, indicating that foreign genetic fragments may have caused the adaptive diversification, especially in lineages with nutritional transitions. Homologous recombination may have provided genetic materials for the natural selection, and host shifts likely triggered ecological adaptation in Xanthomonas. To a certain extent, we observed positive selection nevertheless contributed to ecological divergence beyond host shifting. Altogether, mediated with lasting gene flow, species formation in Xanthomonas was likely governed by natural selection that played a key role in helping the deviating populations to explore novel niches (hosts) or respond to environmental cues, subsequently triggering species diversification.

  16. Secretion of laccase and manganese peroxidase by Pleurotus strains cultivate in solid-state using Pinus spp. sawdust

    PubMed Central

    Camassola, Marli; da Rosa, Letícia O.; Calloni, Raquel; Gaio, Tamara A.; Dillon, Aldo J.P.

    2013-01-01

    Pleurotus species secrete phenol oxidase enzymes: laccase (Lcc) and manganese peroxidase (MnP). New genotypes of these species show potential to be used in processes aiming at the degradation of phenolic compounds, polycyclic aromatic hydrocarbons and dyes. Hence, a screening of some strains of Pleurotus towards Lcc and MnP production was performed in this work. Ten strains were grown through solid-state fermentation on a medium based on Pinus spp. sawdust, wheat bran and calcium carbonate. High Lcc and MnP activities were found with these strains. Highest Lcc activity, 741 ± 245 U gdm−1 of solid state-cultivation medium, was detected on strain IB11 after 32 days, while the highest MnP activity occurred with strains IB05, IB09, and IB11 (5,333 ± 357; 4,701 ± 652; 5,999 ± 1,078 U gdm−1, respectively). The results obtained here highlight the importance of further experiments with lignocellulolytic enzymes present in different strains of Pleurotus species. Such results also indicate the possibility of selecting more valuable strains for future biotechnological applications, in soil bioremediation and biological biomass pre-treatment in biofuels production, for instance, as well as obtaining value-added products from mushrooms, like phenol oxidase enzymes. PMID:24159307

  17. Deletion of pilA, a Minor Pilin-Like Gene, from Xanthomonas citri subsp. citri Influences Bacterial Physiology and Pathogenesis.

    PubMed

    Petrocelli, Silvana; Arana, Maite R; Cabrini, Marcela N; Casabuono, Adriana C; Moyano, Laura; Beltramino, Matías; Moreira, Leandro M; Couto, Alicia S; Orellano, Elena G

    2016-12-01

    Type IV pili (Tfp) are widely distributed adhesins of bacterial surfaces. In plant pathogenic bacteria, Tfp are involved in host colonization and pathogenesis. Xanthomonas citri subsp. citri (Xcc) is the phytopathogen responsible for citrus canker disease. In this work, three Tfp structural genes, fimA, fimA1, and pilA from Xcc were studied. A pilA mutant strain from Xcc (XccΔpilA) was constructed and differences in physiological features, such as motilities, adhesion, and biofilm formation, were observed. A structural study of the purified Tfp fractions from Xcc wild-type and Xcc∆pilA showed that pilins are glycosylated in both strains and that FimA and FimA1 are the main structural components of the pili. Furthermore, smaller lesion symptoms and reduced bacterial growth were produced by Xcc∆pilA in orange plants compared to the wild-type strain. These results indicate that the minor pilin-like gene, pilA, is involved in Tfp performance during the infection process.

  18. Mass spectrometry data from label-free quantitative proteomic analysis of harmless and pathogenic strains of infectious microalgae, Prototheca spp.

    PubMed

    Murugaiyan, Jayaseelan; Eravci, Murat; Weise, Christoph; Roesler, Uwe

    2017-06-01

    Here, we provide the dataset associated with our research article 'label-free quantitative proteomic analysis of harmless and pathogenic strains of infectious microalgae, Prototheca spp.' (Murugaiyan et al., 2017) [1]. This dataset describes liquid chromatography-mass spectrometry (LC-MS)-based protein identification and quantification of a non-infectious strain, Prototheca zopfii genotype 1 and two strains associated with severe and mild infections, respectively, P. zopfii genotype 2 and Prototheca blaschkeae . Protein identification and label-free quantification was carried out by analysing MS raw data using the MaxQuant-Andromeda software suit. The expressional level differences of the identified proteins among the strains were computed using Perseus software and the results were presented in [1]. This DiB provides the MaxQuant output file and raw data deposited in the PRIDE repository with the dataset identifier PXD005305.

  19. Specific detection of Xanthomonas axonopodis pv. dieffenbachiae in anthurium (Anthurium andreanum) tissues by nested PCR.

    PubMed

    Robène-Soustrade, Isabelle; Laurent, Philippe; Gagnevin, Lionel; Jouen, Emmanuel; Pruvost, Olivier

    2006-02-01

    Efficient control of Xanthomonas axonopodis pv. dieffenbachiae, the causal agent of anthurium bacterial blight, requires a sensitive and reliable diagnostic tool. A nested PCR test was developed from a sequence-characterized amplified region marker identified by randomly amplified polymorphic DNA PCR for the detection of X. axonopodis pv. dieffenbachiae. Serological and pathogenicity tests were performed concurrently with the nested PCR test with a large collection of X. axonopodis pv. dieffenbachiae strains that were isolated worldwide and are pathogenic to anthurium and/or other aroids. The internal primer pair directed amplification of the expected product (785 bp) for all 70 X. axonopodis pv. dieffenbachiae strains pathogenic to anthurium tested and for isolates originating from syngonium and not pathogenic to anthurium. This finding is consistent with previous studies which indicated that there is a high level of relatedness between strains from anthurium and strains from syngonium. Strains originating from the two host genera can be distinguished by restriction analysis of the amplification product. No amplification product was obtained with 98 strains of unrelated phytopathogenic bacteria or saprophytic bacteria from the anthurium phyllosphere, except for a weak signal obtained for one X. axonopodis pv. allii strain. Nevertheless, restriction enzyme analysis permitted the two pathovars to be distinguished. The detection threshold obtained with pure cultures or plant extracts (10(3) CFU ml(-1)) allowed detection of the pathogen from symptomless contaminated plants. This test could be a useful diagnostic tool for screening propagation stock plant material and for monitoring international movement of X. axonopodis pv. dieffenbachiae.

  20. Structural and physiological analyses of the alkanesulphonate-binding protein (SsuA) of the citrus pathogen Xanthomonas citri.

    PubMed

    Tófoli de Araújo, Fabiano; Bolanos-Garcia, Victor M; Pereira, Cristiane T; Sanches, Mario; Oshiro, Elisa E; Ferreira, Rita C C; Chigardze, Dimitri Y; Barbosa, João Alexandre Gonçalves; de Souza Ferreira, Luís Carlos; Benedetti, Celso E; Blundell, Tom L; Balan, Andrea

    2013-01-01

    The uptake of sulphur-containing compounds plays a pivotal role in the physiology of bacteria that live in aerobic soils where organosulfur compounds such as sulphonates and sulphate esters represent more than 95% of the available sulphur. Until now, no information has been available on the uptake of sulphonates by bacterial plant pathogens, particularly those of the Xanthomonas genus, which encompasses several pathogenic species. In the present study, we characterised the alkanesulphonate uptake system (Ssu) of Xanthomonas axonopodis pv. citri 306 strain (X. citri), the etiological agent of citrus canker. A single operon-like gene cluster (ssuEDACB) that encodes both the sulphur uptake system and enzymes involved in desulphurisation was detected in the genomes of X. citri and of the closely related species. We characterised X. citri SsuA protein, a periplasmic alkanesulphonate-binding protein that, together with SsuC and SsuB, defines the alkanesulphonate uptake system. The crystal structure of SsuA bound to MOPS, MES and HEPES, which is herein described for the first time, provides evidence for the importance of a conserved dipole in sulphate group coordination, identifies specific amino acids interacting with the sulphate group and shows the presence of a rather large binding pocket that explains the rather wide range of molecules recognised by the protein. Isolation of an isogenic ssuA-knockout derivative of the X. citri 306 strain showed that disruption of alkanesulphonate uptake affects both xanthan gum production and generation of canker lesions in sweet orange leaves. The present study unravels unique structural and functional features of the X. citri SsuA protein and provides the first experimental evidence that an ABC uptake system affects the virulence of this phytopathogen.

  1. Structural and Physiological Analyses of the Alkanesulphonate-Binding Protein (SsuA) of the Citrus Pathogen Xanthomonas citri

    PubMed Central

    Tófoli de Araújo, Fabiano; Bolanos-Garcia, Victor M.; Pereira, Cristiane T.; Sanches, Mario; Oshiro, Elisa E.; Ferreira, Rita C. C.; Chigardze, Dimitri Y.; Barbosa, João Alexandre Gonçalves; de Souza Ferreira, Luís Carlos; Benedetti, Celso E.; Blundell, Tom L.; Balan, Andrea

    2013-01-01

    Background The uptake of sulphur-containing compounds plays a pivotal role in the physiology of bacteria that live in aerobic soils where organosulfur compounds such as sulphonates and sulphate esters represent more than 95% of the available sulphur. Until now, no information has been available on the uptake of sulphonates by bacterial plant pathogens, particularly those of the Xanthomonas genus, which encompasses several pathogenic species. In the present study, we characterised the alkanesulphonate uptake system (Ssu) of Xanthomonas axonopodis pv. citri 306 strain (X. citri), the etiological agent of citrus canker. Methodology/Principal Findings A single operon-like gene cluster (ssuEDACB) that encodes both the sulphur uptake system and enzymes involved in desulphurisation was detected in the genomes of X. citri and of the closely related species. We characterised X. citri SsuA protein, a periplasmic alkanesulphonate-binding protein that, together with SsuC and SsuB, defines the alkanesulphonate uptake system. The crystal structure of SsuA bound to MOPS, MES and HEPES, which is herein described for the first time, provides evidence for the importance of a conserved dipole in sulphate group coordination, identifies specific amino acids interacting with the sulphate group and shows the presence of a rather large binding pocket that explains the rather wide range of molecules recognised by the protein. Isolation of an isogenic ssuA-knockout derivative of the X. citri 306 strain showed that disruption of alkanesulphonate uptake affects both xanthan gum production and generation of canker lesions in sweet orange leaves. Conclusions/Significance The present study unravels unique structural and functional features of the X. citri SsuA protein and provides the first experimental evidence that an ABC uptake system affects the virulence of this phytopathogen. PMID:24282519

  2. Development of an efficient real-time quantitative PCR protocol for detection of Xanthomonas arboricola pv. pruni in Prunus species.

    PubMed

    Palacio-Bielsa, Ana; Cubero, Jaime; Cambra, Miguel A; Collados, Raquel; Berruete, Isabel M; López, María M

    2011-01-01

    Xanthomonas arboricola pv. pruni, the causal agent of bacterial spot disease of stone fruit, is considered a quarantine organism by the European Union and the European and Mediterranean Plant Protection Organization (EPPO). The bacterium can undergo an epiphytic phase and/or be latent and can be transmitted by plant material, but currently, only visual inspections are used to certify plants as being X. arboricola pv. pruni free. A novel and highly sensitive real-time TaqMan PCR detection protocol was designed based on a sequence of a gene for a putative protein related to an ABC transporter ATP-binding system in X. arboricola pv. pruni. Pathogen detection can be completed within a few hours with a sensitivity of 10(2) CFU ml(-1), thus surpassing the sensitivity of the existing conventional PCR. Specificity was assessed for X. arboricola pv. pruni strains from different origins as well as for closely related Xanthomonas species, non-Xanthomonas species, saprophytic bacteria, and healthy Prunus samples. The efficiency of the developed protocol was evaluated with field samples of 14 Prunus species and rootstocks. For symptomatic leaf samples, the protocol was very efficient even when washed tissues of the leaves were directly amplified without any previous DNA extraction. For samples of 117 asymptomatic leaves and 285 buds, the protocol was more efficient after a simple DNA extraction, and X. arboricola pv. pruni was detected in 9.4% and 9.1% of the 402 samples analyzed, respectively, demonstrating its frequent epiphytic or endophytic phase. This newly developed real-time PCR protocol can be used as a quantitative assay, offers a reliable and sensitive test for X. arboricola pv. pruni, and is suitable as a screening test for symptomatic as well as asymptomatic plant material.

  3. Populations of Xanthomonas citri pv. mangiferaeindicae from asymptomatic mango leaves are primarily endophytic.

    PubMed

    Pruvost, Olivier; Savelon, Caroline; Boyer, Claudine; Chiroleu, Frédéric; Gagnevin, Lionel; Jacques, Marie-Agnès

    2009-07-01

    Epiphytic survival of several Xanthomonas pathovars has been reported, but most studies failed to determine whether such populations were resident epiphytes, resulting from latent infections, or casual epiphytes. This study aimed at understanding the nature of Xanthomonas citri pv. mangiferaeindicae populations associated with asymptomatic leaves. When spray-inoculated on mango leaves cv. Maison Rouge, the pathogen multiplied markedly in association with juvenile leaves, but was most often detected as low population sizes (<1 x 10(3) cfu g(-1)) in association with mature leaves. Our results suggest a very low biological significance of biofilm-associated populations of X. citri pv. mangiferaeindicae, while saprophytic microbiota associated with mango leaves survived frequently as biofilms. A chloroform vapor-based disinfestation assay which kills cells specifically located on the leaf surface and not those located within the leaf mesophyll was developed. When applied to spray-inoculated leaves maintained under controlled environmental conditions, 155 out of the 168 analyzed datasets collected over three assessment dates for seven bacterial strains representative of the genetic diversity of the pathogen failed to demonstrate a significant X. citri pv. mangiferaeindicae population decrease on chloroform treated leaves up to 13 days after inoculation. We conclude that an efficient survival of X. citri pv. mangiferaeindicae present on mango leaf surfaces following a limited dissemination event is largely dependent on the availability of juvenile plant tissues. The bacterium gains access to protected sites (e.g., mesophyll) through stomata where it becomes endophytic and eventually causes disease. Chloroform vapor-based disinfestation assays should be useful for further studies aiming at evaluating survival sites of bacteria associated with the phyllosphere.

  4. Development of a selective agar plate for the detection of Campylobacter spp. in fresh produce.

    PubMed

    Yoo, Jin-Hee; Choi, Na-Young; Bae, Young-Min; Lee, Jung-Su; Lee, Sun-Young

    2014-10-17

    This study was conducted to develop a selective medium for the detection of Campylobacter spp. in fresh produce. Campylobacter spp. (n=4), non-Campylobacter (showing positive results on Campylobacter selective agar) strains (n=49) isolated from fresh produce, indicator bacteria (n=13), and spoilage bacteria isolated from fresh produce (n=15) were plated on four Campylobacter selective media. Bolton agar and modified charcoal cefoperazone deoxycholate agar (mCCDA) exhibited higher sensitivity for Campylobacter spp. than did Preston agar and Hunt agar, although certain non-Campylobacter strains isolated from fresh produce by using a selective agar isolation method, were still able to grow on Bolton agar and mCCDA. To inhibit the growth of non-Campylobacter strains, Bolton agar and mCCDA were supplemented with 5 antibiotics (rifampicin, polymyxin B, sodium metabisulfite, sodium pyruvate, ferrous sulfate) and the growth of Campylobacter spp. (n=7) and non-Campylobacter strains (n=44) was evaluated. Although Bolton agar supplemented with rifampicin (BR agar) exhibited a higher selectivity for Campylobacter spp. than did mCCDA supplemented with antibiotics, certain non-Campylobacter strains were still able to grow on BR agar (18.8%). When BR agar with various concentrations of sulfamethoxazole-trimethoprim were tested with Campylobacter spp. (n=8) and non-Campylobacter (n=7), sulfamethoxazole-trimethoprim was inhibitory against 3 of 7 non-Campylobacter strains. Finally, we validated the use of BR agar containing 50mg/L sulfamethoxazole (BRS agar) or 0.5mg/L ciprofloxacin (BRCS agar) and other selective agars for the detection of Campylobacter spp. in chicken and fresh produce. All chicken samples were positive for Campylobacter spp. when tested on mCCDA, BR agar, and BRS agar. In fresh produce samples, BRS agar exhibited the highest selectivity for Campylobacter spp., demonstrating its suitability for the detection of Campylobacter spp. in fresh produce. Copyright

  5. Terrestrial and marine Antarctic fungi extracts active against Xanthomonas citri subsp. citri.

    PubMed

    Vieira, G; Purić, J; Morão, L G; Dos Santos, J A; Inforsato, F J; Sette, L D; Ferreira, H; Sass, D C

    2018-07-01

    This study aims to obtain secondary metabolites extracts from filamentous fungi isolated from soil and marine sediments from Antarctica and assess its potential antibacterial activity on Xanthomonas citri subsp. citri, the agent of citrus canker. Metabolites production was conducted in Malt 2% broth at 15°C for 20 days after which intracellular and extracellular extracts were obtained. The extracts were evaluated by cell viability assays through Resazurin Microtitre Assay. From 158 fungal extracts, 33 hampered bacterial growth in vitro. The average inhibition of the extracts obtained from terrestrial (soil) and marine (sediments) fungi was 94 and 97% respectively. These inhibition values were close to the average of 90% cell death for the positive control. MIC90 and MBC for the bioactive extracts were established. Isolates that produced active metabolites against the phytopathogen were identified using molecular taxonomy (ITS-rRNA sequencing) as: Pseudogymnoascus, Penicillium, Cadophora, Paraconiothyrium and Toxicocladosporium. Antarctic fungal strains isolated from terrestrial and marine sediments were able to produce secondary metabolites with antimicrobial activity against X. citri subsp. citri, highlighting the importance of these microbial genetic resources. These metabolites have potential to be used as alternatives for the control of this plant pathogen. This manuscript makes an impact on the study of micro-organisms from extreme habitats and their possible contribution in discovering new active molecules against pathogens of agricultural interest. Studies on the Antarctic continent and its communities have attracted the scientific community due to the long period of isolation and low levels of disturbance that surrounds the region. Knowing the potential of fungi in this region to produce active secondary metabolites, we aim to contribute to the discovery of compounds with antibacterial action in Xanthomonas citri subsp. citri, a plant pathogen present in

  6. Xanthomonas oryzae pv. oryzae RpfE Regulates Virulence and Carbon Source Utilization without Change of the DSF Production

    PubMed Central

    Cho, Jung-Hee; Yoon, Joo-Mi; Lee, Sang-Won; Noh, Young-Hee; Cha, Jae-Soon

    2013-01-01

    It has been known that most regulation of pathogenicity factor (rpf) genes in xanthomonads regulates virulence in response to the diffusible signal factor, DSF. Although many rpf genes have been functionally characterized, the function of rpfE is still unknown. We cloned the rpfE gene from a Xanthomonas oryzae pv. oryzae (Xoo) Korean race KACC10859 and generated mutant strains to elucidate the role of RpfE with respect to the rpf system. Through experiments using the rpfE-deficient mutant strain, we found that mutation in rpfE gene in Xoo reduced virulence, swarm motility, and production of virulence factors such as cellulase and extracellular polysaccharide. Disease progress by the rpfE-deficient mutant strain was significantly slowed compared to disease progress by the wild type and the number of the rpfE-deficient mutant strain was lower than that of the wild type in the early phase of infection in the inoculated rice leaf. The rpfE mutant strain was unable to utilize sucrose or xylose as carbon sources efficiently in culture. The mutation in rpfE, however, did not affect DSF synthesis. Our results suggest that the rpfE gene regulates the virulence of Xoo under different nutrient conditions without change of DSF production. PMID:25288965

  7. Analysis of the Type IV Fimbrial-Subunit Gene fimA of Xanthomonas hyacinthi: Application in PCR-Mediated Detection of Yellow Disease in Hyacinths

    PubMed Central

    van Doorn, J.; Hollinger, T. C.; Oudega, B.

    2001-01-01

    A sensitive and specific detection method was developed for Xanthomonas hyacinthi; this method was based on amplification of a subsequence of the type IV fimbrial-subunit gene fimA from strain S148. The fimA gene was amplified by PCR with degenerate DNA primers designed by using the N-terminal and C-terminal amino acid sequences of trypsin fragments of FimA. The nucleotide sequence of fimA was determined and compared with the nucleotide sequences coding for the fimbrial subunits in other type IV fimbria-producing bacteria, such as Xanthomonas campestris pv. vesicatoria, Neisseria gonorrhoeae, and Moraxella bovis. In a PCR internal primers JAAN and JARA, designed by using the nucleotide sequences of the variable central and C-terminal region of fimA, amplified a 226-bp DNA fragment in all X. hyacinthi isolates. This PCR was shown to be pathovar specific, as assessed by testing 71 Xanthomonas pathovars and bacterial isolates belonging to other genera, such as Erwinia and Pseudomonas. Southern hybridization experiments performed with the labelled 226-bp DNA amplicon as a probe suggested that there is only one structural type IV fimbrial-gene cluster in X. hyacinthi. Only two Xanthomonas translucens pathovars cross-reacted weakly in PCR. Primers amplifying a subsequence of the fimA gene of X. campestris pv. vesicatoria (T. Ojanen-Reuhs, N. Kalkkinen, B. Westerlund-Wikström, J. van Doorn, K. Haahtela, E.-L. Nurmiaho-Lassila, K. Wengelink, U. Bonas, and T. K. Korhonen, J. Bacteriol. 179: 1280–1290, 1997) were shown to be pathovar specific, indicating that the fimbrial-subunit sequences are more generally applicable in xanthomonads for detection purposes. Under laboratory conditions, approximately 1,000 CFU of X. hyacinthi per ml could be detected. In inoculated leaves of hyacinths the threshold was 5,000 CFU/ml. The results indicated that infected hyacinths with early symptoms could be successfully screened for X. hyacinthi with PCR. PMID:11157222

  8. Bioactive Organocopper Compound from Pseudomonas aeruginosa Inhibits the Growth of Xanthomonas citri subsp. citri.

    PubMed

    de Oliveira, Admilton G; Spago, Flavia R; Simionato, Ane S; Navarro, Miguel O P; da Silva, Caroline S; Barazetti, André R; Cely, Martha V T; Tischer, Cesar A; San Martin, Juca A B; de Jesus Andrade, Célia G T; Novello, Cláudio R; Mello, João C P; Andrade, Galdino

    2016-01-01

    Citrus canker is a very destructive disease of citrus species. The challenge is to find new compounds that show strong antibiotic activity and low toxicity to plants and the environment. The objectives of the present study were (1) to extract, purify and evaluate the secondary metabolites with antibiotic activity produced by Pseudomonas aeruginosa LV strain in vitro against Xanthomonas citri subsp. citri (strain 306), (2) to determine the potential of semi-purified secondary metabolites in foliar application to control citrus canker under greenhouse conditions, and (3) to identify antibiotic activity in orange leaf mesophyll infected with strain 306, by electron microscopy. Two pure bioactive compounds were isolated, an organocopper antibiotic compound (OAC) and phenazine-1-carboxamide. Phenazine-1-carboxamide did not show any antibiotic activity under the experimental conditions used in this study. The OAC showed a high level of antibiotic activity with a minimum inhibitory concentration of 0.12 μg mL(-1). In greenhouse tests for control of citrus canker in orange trees, the semi-purified fraction F3d reduced lesion formation by about 97%. The concentration used was 500 times lower than that for the recommended commercial copper-based product. Electron microscopy showed that F3d altered the exopolysaccharide matrix and caused cell lysis of the pathogen inside the citrus canker lesions. These results suggest that secondary metabolites produced by inducing P. aeruginosa LV strain have a high potential to be used as a bioproduct to control citrus canker.

  9. Bioactive Organocopper Compound from Pseudomonas aeruginosa Inhibits the Growth of Xanthomonas citri subsp. citri

    PubMed Central

    de Oliveira, Admilton G.; Spago, Flavia R.; Simionato, Ane S.; Navarro, Miguel O. P.; da Silva, Caroline S.; Barazetti, André R.; Cely, Martha V. T.; Tischer, Cesar A.; San Martin, Juca A. B.; de Jesus Andrade, Célia G. T.; Novello, Cláudio R.; Mello, João C. P.; Andrade, Galdino

    2016-01-01

    Citrus canker is a very destructive disease of citrus species. The challenge is to find new compounds that show strong antibiotic activity and low toxicity to plants and the environment. The objectives of the present study were (1) to extract, purify and evaluate the secondary metabolites with antibiotic activity produced by Pseudomonas aeruginosa LV strain in vitro against Xanthomonas citri subsp. citri (strain 306), (2) to determine the potential of semi-purified secondary metabolites in foliar application to control citrus canker under greenhouse conditions, and (3) to identify antibiotic activity in orange leaf mesophyll infected with strain 306, by electron microscopy. Two pure bioactive compounds were isolated, an organocopper antibiotic compound (OAC) and phenazine-1-carboxamide. Phenazine-1-carboxamide did not show any antibiotic activity under the experimental conditions used in this study. The OAC showed a high level of antibiotic activity with a minimum inhibitory concentration of 0.12 μg mL-1. In greenhouse tests for control of citrus canker in orange trees, the semi-purified fraction F3d reduced lesion formation by about 97%. The concentration used was 500 times lower than that for the recommended commercial copper-based product. Electron microscopy showed that F3d altered the exopolysaccharide matrix and caused cell lysis of the pathogen inside the citrus canker lesions. These results suggest that secondary metabolites produced by inducing P. aeruginosa LV strain have a high potential to be used as a bioproduct to control citrus canker. PMID:26903992

  10. A transcription activator-like effector from Xanthomonas oryzae pv. oryzicola elicits dose-dependent resistance in rice.

    PubMed

    Hummel, Aaron W; Wilkins, Katherine E; Wang, Li; Cernadas, R Andres; Bogdanove, Adam J

    2017-01-01

    Xanthomonas spp. reduce crop yields and quality worldwide. During infection of their plant hosts, many strains secrete transcription activator-like (TAL) effectors, which enter the host cell nucleus and activate specific corresponding host genes at effector binding elements (EBEs) in the promoter. TAL effectors may contribute to disease by activating the expression of susceptibility genes or trigger resistance associated with the hypersensitive reaction (HR) by activating an executor resistance (R) gene. The rice bacterial leaf streak pathogen X. oryzae pv. oryzicola (Xoc) is known to suppress host resistance, and no host R gene has been identified against it, despite considerable effort. To further investigate Xoc suppression of host resistance, we conducted a screen of effectors from BLS256 and identified Tal2a as an HR elicitor in rice when delivered heterologously by a strain of the closely related rice bacterial blight pathogen X. oryzae pv. oryzae (Xoo) or by the soybean pathogen X. axonopodis pv. glycines. The HR required the Tal2a activation domain, suggesting an executor R gene. Tal2a activity was differentially distributed among geographically diverse Xoc isolates, being largely conserved among Asian isolates. We identified four genes induced by Tal2a in next-generation RNA sequencing experiments and confirmed them using quantitative real-time reverse transcription-polymerase chain reaction (qPCR). However, neither individual nor collective activation of these genes by designer TAL effectors resulted in HR. A tal2a knockout mutant of BLS256 showed virulence comparable with the wild-type, but plasmid-based overexpression of tal2a at different levels in the wild-type reduced virulence in a directly corresponding way. Overall, the results reveal that host resistance suppression by Xoc plays a critical role in pathogenesis. Further, the dose-dependent avirulence activity of Tal2a and the apparent lack of a single canonical target that accounts for HR point to

  11. Antimicrobial activity of commercial marinades against multiple strains of Salmonella spp.

    PubMed

    Pathania, A; McKee, S R; Bilgili, S F; Singh, M

    2010-05-15

    Marination of poultry meat is widely done for value addition, enhancing shelf life, and increasing consumer acceptance. This study was conducted to determine in vitro the efficacy of commercially available teriyaki and lemon pepper marinades on the survivability of multiple strains of nalidixic acid (NAL) resistant Salmonella spp. S. Typhimurium and S. Heidelberg resistant to 60 microg of NAL and S. Seftenberg resistant to 35 microg of NAL were individually inoculated into the marinades (ca. 10(8) CFU/ml) and maintained at 4 and 25 degrees C for up to 32 h. Teriyaki marinade significantly (p<0.05) reduced the populations of all three strains of Salmonella over the 32 h period as compared to lemon pepper, irrespective of the storage temperature. Following the 32 h storage, irrespective of the storage temperature, surviving populations of S. Heidelberg, Typhimurium, and Senftenberg were reduced (p<0.05) by 3.55, 4.62 and 2.27 log(10) CFU/ml respectively at 0 h and subsequently were reduced (p<0.05) below detectable limits after 32 h whereas no significant reductions (p>0.05) were observed in the lemon pepper marinade. These findings suggest that, in addition to the potential for improving the sensory attributes of poultry products, marination can enhance their safety irrespective of the storage temperature. The findings from this study suggest a promising approach in developing antimicrobial systems for poultry products. 2010 Elsevier B.V. All rights reserved.

  12. Differentiation of Alcaligenes-like bacteria of avian origin and comparison with Alcaligenes spp. reference strains.

    PubMed Central

    Berkhoff, H A; Riddle, G D

    1984-01-01

    Although standard biochemical tests used for the identification of Alcaligenes spp. revealed only minor differences, the oxidative low-peptone technique clearly differentiated between Alcaligenes-like bacteria of avian origin and Alcaligenes spp. reference strains. Based on their colonial morphology, biochemical profiles, and hemagglutination, the Alcaligenes-like bacteria of avian origin were further divided into two subgroups, C1-T1 and C2-T2. Colonies of subgroup C1-T1 were nondescript, round, raised, glistening, translucent, greyish, and about 2 mm in diameter. Colonies of subgroup C2-T2 were off-white, flat, dry and wrinkled, generally round, and resembled tiny lily pads. Biochemical profiles by the oxidative low-peptone method showed the C1-T1 subgroup alkalinizing only three substrates (citrate, acetate, and succinate), whereas the C2-T2 subgroup alkalinized eight substrates (citrate, acetate, butyrate, itaconate, malonate, saccharate, succinate, and M-tartrate). Subgroup C1-T1 agglutinated human, chicken, and turkey erythrocytes, whereas subgroup C2-T2 did not. The recognition of these two subgroups within the Alcaligenes-like bacteria of avian origin is important, since it may explain the differences seen in pathogenicity among isolates. Images PMID:6715517

  13. Differentiation of Alcaligenes-like bacteria of avian origin and comparison with Alcaligenes spp. reference strains.

    PubMed

    Berkhoff, H A; Riddle, G D

    1984-04-01

    Although standard biochemical tests used for the identification of Alcaligenes spp. revealed only minor differences, the oxidative low-peptone technique clearly differentiated between Alcaligenes-like bacteria of avian origin and Alcaligenes spp. reference strains. Based on their colonial morphology, biochemical profiles, and hemagglutination, the Alcaligenes-like bacteria of avian origin were further divided into two subgroups, C1-T1 and C2-T2. Colonies of subgroup C1-T1 were nondescript, round, raised, glistening, translucent, greyish, and about 2 mm in diameter. Colonies of subgroup C2-T2 were off-white, flat, dry and wrinkled, generally round, and resembled tiny lily pads. Biochemical profiles by the oxidative low-peptone method showed the C1-T1 subgroup alkalinizing only three substrates (citrate, acetate, and succinate), whereas the C2-T2 subgroup alkalinized eight substrates (citrate, acetate, butyrate, itaconate, malonate, saccharate, succinate, and M-tartrate). Subgroup C1-T1 agglutinated human, chicken, and turkey erythrocytes, whereas subgroup C2-T2 did not. The recognition of these two subgroups within the Alcaligenes-like bacteria of avian origin is important, since it may explain the differences seen in pathogenicity among isolates.

  14. Isolation, Identification and Antibacterial Susceptibility of Staphylococcus spp. Associated with the Mobile Phones of University Students.

    PubMed

    Furuhata, Katsunori; Ishizaki, Naoto; Sogawa, Kazuyuki; Kawakami, Yasushi; Lee, Shin-Ichi; Sato, Masahiro; Fukuyama, Masafumi

    2016-01-01

    From May 2014 to February 2015, 319 university students (male, n=173; female n=146) of 18 to 24 years of age who carried mobile phones or computer tablets were selected as subjects. Staphylococcus spp. were detected in 101 of 319 samples (31.7%). In the present study, 11 strains of S. aureus were isolated and identified, not all of which were methicillin-resistant Staphylococcus aureus (MRSA). Overall, 14 species were identified, with 11 strains (10.9%) of S. xylosus being isolated at the highest frequency. Following this were eight strains (7.9%) of S. cohnii and seven strains (6.9%) each of S. capitis and S. haemolyticus. Staphylococcus spp. isolation was performed with bacterial samples obtained from the mobile phones of 22 specific subjects (males, n=12; females, n=10). Staphylococcus spp. isolation was performed on days -1, 7 and 30 of the experiment. Staphylococcus spp. were positively detected one or more times in 12 subjects (54.5%). In one subject (8.3%), all three tests were positive. Furthermore, two tests were positive in three (25.0%). In the eight remaining subjects (66.7%) Staphylococcus spp. were detected only once. For the three abovementioned tests, we investigated the pulsed-field gel electrophoresis (PFGE) patterns of the strains derived from the mobile phone and from the fingers of three subjects in whom the same bacterial species were isolated twice. From the cases with similarities between strains derived from the fingers and the mobile phones and cases, with consistency in the strains derived from the mobile phone at different times, commonality was observed in the strains derived from the fingers and mobile phones along with chronological uniformity in the strains derived from the mobile phones. A total of 101 Staphylococcus spp. strains were isolated from mobile phones. According to drug susceptibility tests, 99 strains (98.0%) were found to have some degree of resistance to drugs (excluding one strain each of S. aureus and S. haemolyticus

  15. Dehalogenation of chlorobenzenes, dichlorotoluenes, and tetrachloroethene by three Dehalobacter spp.

    PubMed

    Nelson, Jennifer L; Jiang, Jiandong; Zinder, Stephen H

    2014-04-01

    Three enrichment cultures containing Dehalobacter spp. were developed that dehalogenate each of the dichlorobenzene (DCB) isomers to monochlorobenzene (MCB), and the strains using 1,2-DCB (12DCB1) or 1,3-DCB (13DCB1) are now considered isolated, whereas the strain using 1,4-DCB (14DCB1) is considered highly enriched. In this study, we examined the dehalogenation capability of each strain to use chlorobenzenes with three or more chlorines, tetrachloroethene (PCE), or dichlorotoluene (DCT) isomers. Strain 12DCB1 preferentially dehalogenated singly flanked chlorines, but not doubly flanked or unflanked chlorines. It dehalogenated pentachlorobenzene to MCB with little buildup of intermediates. Strain 13DCB1, which could use either 1,3-DCB or 1,2-DCB, demonstrated the widest dehalogenation spectrum of electron acceptors tested, and dehalogenated every chlorobenzene isomer except 1,4-DCB. Notably, strain 13DCB1 dehalogenated the recalcitrant 1,3,5-trichlorobenzene isomer to MCB, and qPCR of 16S rRNA genes indicated that strain 13DCB1 grew. Strain 14DCB1 exhibited the narrowest range of substrate utilization, but was the only strain to dehalogenate para-substituted chlorines. Strains 12DCB1 and 13DCB1 dehalogenated PCE to cis-dichloroethene, and all strains dehalogenated 3,4-DCT to monochlorotoluene. These findings show that Dehalobacter spp., like Dehalococcoides spp., are versatile dehalogenators and should be considered when determining the fate of chlorinated organics at contaminated sites.

  16. Influence of Bacillus spp. strains on seedling growth and physiological parameters of sorghum under moisture stress conditions.

    PubMed

    Grover, Minakshi; Madhubala, R; Ali, Sk Z; Yadav, S K; Venkateswarlu, B

    2014-09-01

    Microorganisms isolated from stressed ecosystem may prove as ideal candidates for development of bio-inoculants for stressed agricultural production systems. In the present study, moisture stress tolerant rhizobacteria were isolated from the rhizosphere of sorghum, pigeonpea, and cowpea grown under semiarid conditions in India. Four isolates KB122, KB129, KB133, and KB142 from sorghum rhizosphere exhibited plant growth promoting traits and tolerance to salinity, high temperature, and moisture stress. These isolates were identified as Bacillus spp. by 16S rDNA sequence analysis. The strains were evaluated for growth promotion of sorghum seedlings under two different moisture stress conditions (set-I, continuous 50% soil water holding capacity (WHC) throughout the experiment and set-II, 75% soil WHC for 27 days followed by no irrigation for 5 days) under greenhouse conditions. Plate count and scanning electron microscope studies indicated successful root surface colonization by inoculated bacteria. Plants inoculated with Bacillus spp. strains showed better growth in terms of shoot length and root biomass with dark greenish leaves due to high chlorophyll content while un-inoculated plants showed rolling of the leaves, stunted appearance, and wilting under both stress conditions. Inoculation also improved leaf relative water content and soil moisture content. However, variation in proline and sugar content in the different treatments under two stress conditions indicated differential effect of microbial treatments on plant physiological parameters under stress conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. 3M™ Molecular detection system versus MALDI-TOF mass spectrometry and molecular techniques for the identification of Escherichia coli 0157:H7, Salmonella spp. &Listeria spp.

    PubMed

    Loff, Marché; Mare, Louise; de Kwaadsteniet, Michele; Khan, Wesaal

    2014-06-01

    The aim of this study was to compare standard selective plating, conventional PCR (16S rRNA and species specific primers), MALDI-TOF MS and the 3M™ Molecular Detection System for the routine detection of the pathogens Listeria, Salmonella and Escherichia coli 0157:H7 in wastewater and river water samples. MALDI-TOF MS was able to positively identify 20/21 (95%) of the E. coli isolates obtained at genus and species level, while 16S rRNA sequencing only correctly identified 6/21 (28%) as E. coli strains. None of the presumptive positive Listeria spp. and Salmonella spp. isolates obtained by culturing on selective media were positively identified by MALDI-TOF and 16S rRNA analysis. The species-specific E. coli 0157:H7 PCR described in this present study, was not able to detect any E. coli 0157:H7 strains in the wastewater and river water samples analysed. However, E. coli strains, Listeria spp., L. monocytogenes and Salmonella spp. were detected using species specific PCR. Escherichia coli 0157:H7, Listeria spp. and Salmonella spp. were also sporadically detected throughout the sampling period in the wastewater and river water samples analysed by the 3M™ Molecular Detection System. MALDI-TOF MS, which is a simple, accurate and cost-effective detection method, efficiently identified the culturable organisms, while in the current study both species specific PCR (Listeria spp. and Salmonella spp.) and 3M™ Molecular Detection System could be utilised for the direct routine analysis of pathogens in water sources. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Molecular Identification and Susceptibility of Clinically Relevant Scedosporium spp. in China

    PubMed Central

    Wang, Hong; Wan, Zhe; Li, Ruoyu; Lu, Qiaoyun

    2015-01-01

    As various new sibling species within the Scedosporium spp. have been described recently, this study was conducted to investigate distribution and antifungal susceptibility profiles of the different species of Scedosporium spp. in China. Twenty-one clinical strains of Scedosporium from China and two strains from Japan were reidentified by MLSA. The analysis included BT2, CAL, RPB, SOD, and ACT and the combination of the five loci. Pseudallescheria boydii complex (17 strains) and S. apiospermum (6 strains) were identified. P. boydii complex included four closely related subgroups: P. boydii (9 strains), P. ellipsoidea (6 strains), P. fusoidea (1 strain), and P. angusta (1 strain). There were no significant differences in MICs for neither VOR, POS, nor AMB over all the five species in study. For itraconazole, intraspecific diversity was evident. PMID:26550562

  19. Molecular identification and susceptibility of clinically relevant Scedosporium spp. in China.

    PubMed

    Wang, Hong; Wan, Zhe; Li, Ruoyu; Lu, Qiaoyun; Yu, Jin

    2015-01-01

    As various new sibling species within the Scedosporium spp. have been described recently, this study was conducted to investigate distribution and antifungal susceptibility profiles of the different species of Scedosporium spp. in China. Twenty-one clinical strains of Scedosporium from China and two strains from Japan were reidentified by MLSA. The analysis included BT2, CAL, RPB, SOD, and ACT and the combination of the five loci. Pseudallescheria boydii complex (17 strains) and S. apiospermum (6 strains) were identified. P. boydii complex included four closely related subgroups: P. boydii (9 strains), P. ellipsoidea (6 strains), P. fusoidea (1 strain), and P. angusta (1 strain). There were no significant differences in MICs for neither VOR, POS, nor AMB over all the five species in study. For itraconazole, intraspecific diversity was evident.

  20. Potential of Bacillus spp produces siderophores insuppressing thewilt disease of banana plants

    NASA Astrophysics Data System (ADS)

    Kesaulya, H.; Hasinu, J. V.; Tuhumury, G. NC

    2018-01-01

    In nature, different types of siderophore such as hydroxymate, catecholets and carboxylate, are produced by different bacteria. Bacillus spp were isolated from potato rhizospheric soil can produce siderophore of both catecholets and salicylate type with different concentrations. Various strains of Bacillus spp were tested for pathogen inhibition capability in a dual culture manner. The test results showed the ability of inhibition of pathogen isolated from banana wilt disease. From the result tested were found Bacillus niabensis Strain PT-32-1, Bacillus subtilis Strain SWI16b, Bacillus subtilis Strain HPC21, Bacillus mojavensis Strain JCEN3, and Bacillus subtilis Strain HPC24 showed different capabilities in suppressing pathogen.

  1. Gene-for-genes interactions between cotton R genes and Xanthomonas campestris pv. malvacearum avr genes.

    PubMed

    De Feyter, R; Yang, Y; Gabriel, D W

    1993-01-01

    Six plasmid-borne avirulence (avr) genes were previously cloned from strain XcmH of the cotton pathogen, Xanthomonas campestris pv. malvacearum. We have now localized all six avr genes on the cloned fragments by subcloning and Tn5-gusA insertional mutagenesis. None of these avr genes appeared to exhibit exclusively gene-for-gene patterns of interactions with cotton R genes, and avrB4 was demonstrated to confer avr gene-for-R genes (plural) avirulence to X. c. pv. malvacearum on congenic cotton lines carrying either of two different resistance loci, B1 or B4. Furthermore, the B1 locus appeared to confer R gene-for-avr genes resistance to cotton against isogenic X. c. pv. malvacearum strains carrying any one of three avr genes: avrB4, avrb6, or avrB102. Restriction enzyme, Southern blot hybridization, and DNA sequence analyses showed that the XcmH avr genes are all highly similar to each other, to avrBs3 and avrBsP from the pepper pathogen X. c. pv. vesicatoria, and to the host-specific virulence gene pthA from the citrus pathogen X. citri. The XcmH avr genes differed primarily in the multiplicity of a tandemly repeated 102-base pair motif within the central portions of the genes, repeated from 14 to 23 times in members of this gene family. The complete nucleotide sequence of avrb6 revealed that it is 97% identical in DNA sequence to avrB4, avrBs3, avrBsP, and pthA and that 62-bp inverted terminal repeats mark the boundaries of homology between avrb6 and all members of this Xanthomonas virulence/avirulence gene family sequenced to date. The terminal 38 bp of both inverted repeats are highly similar to the 38-bp consensus terminal sequence of the Tn3 family of transposons. Up to 11 members of the avr gene family appear to be present in North American strains of X. c. pv. malvacearum, including XcmH. The high level of homology observed among these avr genes and their presence in multiple copies may explain the gene-for-genes interactions and also the observed high

  2. Survival of Xanthomonas fragariae on common materials found in strawberry nurseries

    USDA-ARS?s Scientific Manuscript database

    Xanthomonas fragariae causes strawberry angular leaf spot, an important disease in strawberry nursery production. To identify potential inoculum sources, the ability of X. fragariae to survive was examined on 10 common materials typically associated with strawberry nurseries (cardboard, glass, latex...

  3. Comparison of Chromogenic Selective Media for the Detection of Cronobacter spp. (Enterobacter sakazakii).

    PubMed

    Teramura, Hajime; Fukuda, Noriko; Okada, Yumiko; Ogihara, Hirokazu

    2018-01-01

     The four types of chromogenic selective media that are commercially available in Japan were compared for establishing a Japanese standard method for detecting Cronobacter spp. based on ISO/TS 22964:2006. When assessed using 9 standard Cronobacter spp. strains and 29 non-Cronobacter strains, Enterobacter sakazakii isolation agar, Chromocult TM Enterobacter sakazakii agar, CHROMagar TM E. sakazakii, and XM-sakazakii agar demonstrated excellent inclusivity and exclusivity. Using the ISO/TS 22964:2006 method, the recovered numbers of 38 Cronobacter spp. strains, including 29 C. sakazakii isolates obtained from each medium, were equivalent, indicating that there was no significant difference (p > 0.05) among the four types of chromogenic selective media. Thus, we demonstrated that these four chromogenic selective media are suitable alternatives when using the standard method for detecting Cronobacter spp. in Japan, based on the ISO/TS 22964:2006.

  4. Characterization of hypersensitive resistance to bacterial spot race T3 (Xanthomonas perforans) from tomato accession PI 128216.

    PubMed

    Robbins, Matthew D; Darrigues, Audrey; Sim, Sung-Chur; Masud, Mohammed Abu Taher; Francis, David M

    2009-09-01

    Bacterial spot of tomato is caused by four species of Xanthomonas. The accession PI 128216 (Solanum pimpinellifolium) displays a hypersensitive reaction (HR) to race T3 strains (predominantely Xanthomonas perforans). We developed an inbred backcross (IBC) population (BC(2)S(5), 178 families) derived from PI 128216 and OH88119 (S. lycopersicum) as the susceptible recurrent parent for simultaneous introgression and genetic analysis of the HR response. These IBC families were evaluated in the greenhouse for HR to race T3 strain Xcv761. The IBC population was genotyped with molecular markers distributed throughout the genome in order to identify candidate loci conferring resistance. We treated the IBC population as a hypothesis forming generation to guide validation in subsequent crosses. Nonparametric analysis identified an association between HR and markers clustered on chromosome 11 (P < 0.05 to 0.0001) and chromosome 6 (0.04 > P > 0.002). Further analysis of the IBC population suggested that markers on chromosome 6 and 11 failed to assort independently, a phenomenon known as gametic phase disequilibrium. Therefore, to validate marker-trait linkages, resistant IBC plants were crossed with OH88119 and BC(3)F(2) progeny were evaluated for HR in the greenhouse. In these subsequent populations, the HR response was associated with the chromosome 11 markers (P < 0.0002) but not with the markers on chromosome 6 (P > 0.25). Independent F(2) families were developed by crossing resistant IBC lines to OH8245, OH88119, and OH7530. These populations were genotyped, organized into classes based on chromosome 11 markers, and evaluated for resistance in the field. The PI 128216 locus on chromosome 11 provided resistance that was dependent on gene dosage and genetic background. These results define a single locus, Rx-4, from PI 128216, which provides resistance to bacterial spot race T3, has additive gene action, and is located on chromosome 11.

  5. Identities of Arthrobacter spp. and Arthrobacter-Like Bacteria Encountered in Human Clinical Specimens▿

    PubMed Central

    Mages, Irene S.; Frodl, Reinhard; Bernard, Kathryn A.; Funke, Guido

    2008-01-01

    After the initial description of Arthrobacter spp. isolated from clinical specimens in the mid-1990s, very few further reports on Arthrobacter spp. have appeared in the clinical microbiology literature. The aim of the present study was to elucidate the distribution of Arthrobacter spp. and Arthrobacter-like bacteria encountered in clinical specimens by studying 50 consecutively isolated or received strains of large-colony-forming, whiteish-grayish, non-cheese-like-smelling, nonfermentative gram-positive rods by applying phenotypic methods as well as 16S rRNA gene sequencing. We observed a very heterogenous distribution, with the 50 strains belonging to 20 different taxa and each of 13 strains as a single representative of its particular taxon. Thirty-eight strains represented true Arthrobacter strains, 7 strains belonged to the genus Brevibacterium, 2 were Microbacterium species, and each of 3 single strains was a member of the rarely encountered genera Pseudoclavibacter, Leucobacter, and Brachybacterium, respectively. A. cumminsii (n = 14) and A. oxydans (n = 11) were the most frequently found species. The present report describes the first three A. aurescens strains isolated from human clinical specimens. Comprehensive antimicrobial susceptibility data are given for the 38 Arthrobacter isolates. PMID:18650355

  6. Enrichment of Acinetobacter spp. from food samples.

    PubMed

    Carvalheira, Ana; Ferreira, Vânia; Silva, Joana; Teixeira, Paula

    2016-05-01

    Relatively little is known about the role of foods in the chain of transmission of acinetobacters and the occurrence of different Acinetobacter spp. in foods. Currently, there is no standard procedure to recover acinetobacters from food in order to gain insight into the food-related ecology and epidemiology of acinetobacters. This study aimed to assess whether enrichment in Dijkshoorn enrichment medium followed by plating in CHROMagar™ Acinetobacter medium is a useful method for the isolation of Acinetobacter spp. from foods. Recovery of six Acinetobacter species from food spiked with these organisms was compared for two selective enrichment media (Baumann's enrichment and Dijkshoorn's enrichment). Significantly (p < 0.01) higher cell counts were obtained in Dijkshoorn's enrichment. Next, the Dijkshoorn's enrichment followed by direct plating on CHROMagar™ Acinetobacter was applied to detect Acinetobacter spp. in different foods. Fourteen different presumptive acinetobacters were recovered and assumed to represent nine different strains on the basis of REP-PCR typing. Eight of these strains were identified by rpoB gene analysis as belonging to the species Acinetobacter johnsonii, Acinetobacter calcoaceticus, Acinetobacter guillouiae and Acinetobacter gandensis. It was not possible to identify the species level of one strain which may suggests that it represents a distinct species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Burkholderia and Cupriavidus spp. are the preferred symbionts of Mimosa spp. in southern China.

    PubMed

    Liu, XiaoYun; Wei, Shuang; Wang, Fang; James, Euan K; Guo, XiaoYe; Zagar, Catherine; Xia, Liu Gui; Dong, Xin; Wang, Yi Peng

    2012-05-01

    Rhizobia were isolated from invasive Mimosa spp. (M. diplotricha and M. pudica) in Dehong district of the province of Yunnan in subtropical southern China. Almost all of the 98 isolates were β-rhizobia in the genera Burkholderia and Cupriavidus. These strains were analysed for their distribution characteristics together with strains from a previous study from Sishuangbanna. The proportion of nodules containing each β-rhizobial genus varied between Mimosa species, with Cupriavidus being predominant in M. diplotricha nodules (63.3% compared to 36.7% occupation with Burkholderia), but with M. pudica showing a slight preference for Burkholderia over Cupriavidus, with them occupying 56.5% and 43.5% of nodules, respectively. The symbiosis-essential genes nodA and nifH were present in all the Burkholderia and Cupriavidus strains tested, and their phylogenies indicated that these Mimosa symbionts share symbiotic genes with native South American rhizobia. The evolutionary discrepancies among 16S rRNA genes, nodA and nifH of Mimosa spp. symbionts, suggests that the nod and nif genes of β-rhizobia evolved independently. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  8. Accumulation of transcription factors and cell signaling-related proteins in the nucleus during citrus-Xanthomonas interaction.

    PubMed

    Rani, T Swaroopa; Durgeshwar, P; Podile, Appa Rao

    2015-07-20

    The nucleus is the maestro of the cell and is involved in the modulation of cell signaling during stress. We performed a comprehensive nuclear proteome analysis of Citrus sinensis during interaction with host (Xanthomonas citri pv. citri-Xcc) and non-host (Xanthomonas oryzae pv. oryzae-Xoo) pathogens. The nuclear proteome was obtained using a sequential method of organelle enrichment and determined by nano-LC-MS/MS analysis. A total of 243 proteins accumulated differentially during citrus-Xanthomonas interaction, belonging to 11 functional groups, with signaling and transcription-related proteins dominating. MADS-box transcription factors, DEAD-box RNA helicase and leucine aminopeptidase, mainly involved in jasmonic acid (JA) responses, were in high abundance during non-host interaction (Xoo). Signaling-related proteins like serine/threonine kinase, histones (H3.2, H2A), phosphoglycerate kinase, dynamin, actin and aldolase showed increased accumulation early during Xoo interaction. Our results suggest that there is a possible involvement of JA-triggered defense responses during non-host resistance, with early recognition of the non-host pathogen. Copyright © 2015. Published by Elsevier GmbH.

  9. The RNA chaperone Hfq is important for the virulence, motility and stress tolerance in the phytopathogen Xanthomonas campestris.

    PubMed

    Lai, Jie-Ling; Tang, Dong-Jie; Liang, Yu-Wei; Zhang, Ren; Chen, Qi; Qin, Zhen-Ping; Ming, Zhen-Hua; Tang, Ji-Liang

    2018-06-14

    The RNA chaperone, Hfq, is known to play extensive roles in bacterial growth and development. More recently, it has been shown to be required for virulence in many human and animal bacterial pathogens. Despite these studies little is known about the role Hfq plays in phytopathogenic bacteria. In this study, we show Hfq is required for full virulence of the crucifer black rot pathogen Xanthomonas campestris pv. campestris (Xcc). We demonstrate that an Xcc hfq deletion strain is highly attenuated for virulence in Chinese radish and shows a severe defect in the production of virulence factors including extracellular enzymes and extracellular polysaccharide. Furthermore, the Xcc strain lacking Hfq had significantly reduced cell motility and stress tolerance. These findings suggest that Hfq is a key regulator of important aspects of virulence and adaptation of Xcc. Taken together, our findings are suggestive of a regulatory network placing Hfq at the center of virulence gene expression control in Xcc. This article is protected by copyright. All rights reserved. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. High Milk-Clotting Activity Expressed by the Newly Isolated Paenibacillus spp. Strain BD3526.

    PubMed

    Hang, Feng; Liu, Peiyi; Wang, Qinbo; Han, Jin; Wu, Zhengjun; Gao, Caixia; Liu, Zhenmin; Zhang, Hao; Chen, Wei

    2016-01-12

    Paenibacillus spp. BD3526, a bacterium exhibiting a protein hydrolysis circle surrounded with an obvious precipitation zone on skim milk agar, was isolated from raw yak (Bos grunniens) milk collected in Tibet, China. Phylogenetic analysis based on 16S rRNA and whole genome sequence comparison indicated the isolate belong to the genus Paenibacillus. The strain BD3526 demonstrated strong ability to produce protease with milk clotting activity (MCA) in wheat bran broth. The protease with MCA was predominantly accumulated during the late-exponential phase of growth. The proteolytic activity (PA) of the BD3526 protease was 1.33-fold higher than that of the commercial R. miehei coagulant. A maximum MCA (6470 ± 281 SU mL(-1)) of the strain BD3526 was reached under optimal cultivation conditions. The protease with MCA was precipitated from the cultivated supernatant of wheat bran broth with ammonium sulfate and purified by anion-exchange chromatography. The molecular weight of the protease with MCA was determined as 35 kDa by sodium dodecyl sulfate-polyacrylamide gels electrophoresis (SDS-PAGE) and gelatin zymography. The cleavage site of the BD3526 protease with MCA in κ-casein was located at the Met106-Ala107 bond, as determined by mass spectrometry analysis.

  11. Detection and Characterization of Shiga Toxin Producing Escherichia coli, Salmonella spp., and Yersinia Strains from Human, Animal, and Food Samples in San Luis, Argentina

    PubMed Central

    Favier, Gabriela Isabel; Lucero Estrada, Cecilia; Cortiñas, Teresa Inés; Escudero, María Esther

    2014-01-01

    Shiga toxin producing Escherichia coli (STEC), Salmonella spp., and Yersinia species was investigated in humans, animals, and foods in San Luis, Argentina. A total of 453 samples were analyzed by culture and PCR. The antimicrobial susceptibility of all the strains was studied, the genomic relationships among isolates of the same species were determined by PFGE, and the potencial virulence of Y. enterocolitica strains was analyzed. Yersinia species showed higher prevalence (9/453, 2.0%, 95% CI, 0.7–3.3%) than STEC (4/453, 0.9%, 95% CI, 0–1.8%) and Salmonella spp. (3/453, 0.7%, 95% CI, 0–1.5%). Y. enterocolitica and Y. intermedia were isolated from chicken carcasses (6/80, 7.5%, 95% CI, 1.5–13.5%) and porcine skin and bones (3/10, 30%, 95% CI, 0–65%). One STEC strain was recovered from human feces (1/70, 1.4%, 95% CI, 0–4.2%) and STEC stx1/stx2 genes were detected in bovine stools (3/129, 2.3%, 95% CI, 0–5.0%). S. Typhimurium was isolated from human feces (1/70, 1.4%, 95% CI, 0–4.2%) while one S. Newport and two S. Gaminara strains were recovered from one wild boar (1/3, 33%, 95% CI, 0–99%). The knowledge of prevalence and characteristics of these enteropathogens in our region would allow public health services to take adequate preventive measures. PMID:25177351

  12. A plant natriuretic peptide-like gene in the bacterial pathogen Xanthomonas axonopodis may induce hyper-hydration in the plant host: a hypothesis of molecular mimicry.

    PubMed

    Nembaware, Victoria; Seoighe, Cathal; Sayed, Muhammed; Gehring, Chris

    2004-03-24

    Plant natriuretic peptides (PNPs) are systemically mobile molecules that regulate homeostasis at nanomolar concentrations. PNPs are up-regulated under conditions of osmotic stress and PNP-dependent processes include changes in ion transport and increases of H2O uptake into protoplasts and whole tissue. The bacterial citrus pathogen Xanthomonas axonopodis pv. Citri str. 306 contains a gene encoding a PNP-like protein. We hypothesise that this bacterial protein can alter plant cell homeostasis and thus is likely to represent an example of molecular mimicry that enables the pathogen to manipulate plant responses in order to bring about conditions favourable to the pathogen such as the induced plant tissue hyper-hydration seen in the wet edged lesions associated with Xanthomonas axonopodis infection. We found a Xanthomonas axonopodis PNP-like protein that shares significant sequence similarity and identical domain organisation with PNPs. We also observed a significant excess of conserved residues between the two proteins within the domain previously identified as being sufficient to induce biological activity. Structural modelling predicts identical six stranded double-psi beta barrel folds for both proteins thus supporting the hypothesis of similar modes of action. No significant similarity between the Xanthomonas axonopodis protein and other bacterial proteins from GenBank was found. Sequence similarity of the Xanthomonas axonopodis PNP-like protein with the Arabidopsis thaliana PNP (AtPNP-A), shared domain organisation and incongruent phylogeny suggest that the PNP-gene may have been acquired by the bacteria in an ancient lateral gene transfer event. Finally, activity of a recombinant Xanthomonas axonopodis protein in plant tissue and changes in symptoms induced by a Xanthomonas axonopodis mutant with a knocked-out PNP-like gene will be experimental proof of molecular mimicry. If the hypothesis is true, it could at least in part explain why the citrus pathogen

  13. Genetic relationships among strains of Xanthomonas fragariae based on random amplified polymorphic DNA PCR, repetitive extragenic palindromic PCR, and enterobacterial repetitive intergenic consensus PCR data and generation of multiplexed PCR primers useful for the identification of this phytopathogen.

    PubMed Central

    Pooler, M R; Ritchie, D F; Hartung, J S

    1996-01-01

    Genetic relationships among 25 isolates of Xanthomonas fragariae from diverse geographic regions were determined by three PCR methods that rely on different amplification priming strategies: random amplified polymorphic DNA (RAPD) PCR, repetitive extragenic palindromic (REP) PCR, and enterobacterial repetitive intergenic consensus (ERIC) PCR. The results of these assays are mutually consistent and indicate that pathogenic strains are very closely related to each other. RAPD, ERIC, and REP PCR assays identified nine, four, and two genotypes, respectively, within X. fragariae isolates. A single nonpathogenic isolate of X. fragariae was not distinguishable by these methods. The results of the PCR assays were also fully confirmed by physiological tests. There was no correlation between DNA amplification product patterns and geographic sites of isolation, suggesting that this bacterium has spread largely through exchange of infected plant germ plasm. Sequences identified through the RAPD assays were used to develop three primer pairs for standard PCR assays to identify X. fragariae. In addition, we developed a stringent multiplexed PCR assay to identify X. fragariae by simultaneously using the three independently derived sets of primers specific for pathogenic strains of the bacteria. PMID:8795198

  14. Rapid cell death in Xanthomonas campestris pv. glycines.

    PubMed

    Gautam, Satyendra; Sharma, Arun

    2002-04-01

    Xanthomonas campestris pv. glycines strain AM2 (XcgAM2), the etiological agent of bacterial pustule disease of soybean, exhibited post-exponential rapid cell death (RCD) in LB medium. X. campestris pv. malvacearum NCIM 2310 and X. campestris NCIM 2961 also displayed RCD, though less pronouncedly than XcgAM2. RCD was not observed in Pseudomonas syringae pv. glycines, or Escherichia coli DH5alpha. Incubation of the post-exponential LB-grown XcgAM2 cultures at 4 degrees C arrested the RCD. RCD was also inhibited by the addition of starch during the exponential phase of LB-growing XcgAM2. Protease negative mutants of XcgAM2 were found to be devoid of RCD behavior observed in the wild type XcgAM2. While undergoing RCD, the organism was found to transform to spherical membrane bodies. The presence of membrane bodies was confirmed by using a membrane specific fluorescent label, 1,6-diphenyl 1,3,5-hexatriene (DPH), and also by visualizing these structures under microscope. The membrane bodies of XcgAM2 were found to contain DNA, which was devoid of the indigenous plasmids of the organism. The membrane bodies were found to bind annexin V indicative of the externalization of membrane phosphatidyl serine. Nicking of DNA in XcgAM2 cultures undergoing RCD in LB medium was also detected using a TUNEL assay. The RCD in XcgAM2 appeared to have features similar to the programmed cell death in eukaryotes.

  15. Indigenous Halomonas spp., the Potential Nitrifying Bacteria for Saline Ammonium Waste Water Treatment.

    PubMed

    Sangnoi, Yutthapong; Chankaew, Sunipa; O-Thong, Sompong

    2017-01-01

    Toxic nitrogen compounds are one cause decreasing of shrimp production and water pollution. Indigenous Halomonas spp., isolated from Pacific white shrimp farm are benefitted for saline ammonium waste water treatment. This study aimed to isolate the heterotrophic-halophilic Halomonas spp. and investigate their ammonium removal efficiency. Halomonas spp., were isolated by culturing of samples collected from shrimp farm into modified Pep-Beef-AOM medium. Ammonium converting ability was tested and monitored by nitrite reagent. Ammonium removal efficiency was measured by the standard colorimetric method. Identification and classification of Halomonas spp., were studied by morphological, physiological and biochemical characteristics as well as molecular information. There were 5 strains of heterotrophic-halophilic nitrifying bacteria including SKNB2, SKNB4, SKNB17, SKNB20 and SKNB22 were isolated. The identification result based on 16S rRNA sequence analysis indicated that all 5 strains were Halomonas spp., with sequence similarity values of 91-99 %. Ammonium removal efficiency of all strains showed a range of 23-71%. The production of nitrite was low detected of 0.01-0.15 mg-N L-1, while the amount of nitrate was almost undetectable. This might suggest that the indigenous Halomonas spp., as nitrifying bacteria involved biological nitrification process for decreasing and transforming of ammonia. Due to being heterotrophic, halophilic and ammonium removing bacteria, these Halomonas spp., could be developed for use in treatment of saline ammonium waste water.

  16. Classification of Rhizomonas suberifaciens, an unnamed Rhizomonas species, and Sphingomonas spp. in rRNA superfamily IV.

    PubMed

    van Bruggen, A H; Jochimsen, K N; Steinberger, E M; Segers, P; Gillis, M

    1993-01-01

    Thermal melting profiles of hybrids between 3H-labeled rRNA of Rhizomonas suberifaciens, the causal agent of corky root of lettuce, and chromosomal DNAs from 27 species of gram-negative bacteria indicated that the genus Rhizomonas belongs to superfamily IV of De Ley. On the basis of the melting temperatures of DNA hybrids with rRNAs from the type strains of R. suberifaciens, Sphingomonas paucimobilis, and Sphingomonas capsulata, Rhizomonas strains constitute a separate branch in superfamily IV, which is closely related to but separate from branches containing Zymomonas mobilis, Sphingomonas spp., and S. capsulata. Sphingomonas yanoikuyae and Rhizomonas sp. strain WI4 are located toward the base of the Rhizomonas rRNA branch. DNA-DNA hybridization indicated that S. yanoikuyae is equidistant from Rhizomonas sp. strain WI4 and S. paucimobilis. Sequences of 270 bp of 16S ribosomal DNAs from eight strains of Rhizomonas spp., eight strains of Sphingomonas spp., and Agrobacterium tumefaciens indicated that S. yanoikuyae and Rhizomonas sp. strains WI4 and CA16 are genetically more closely related to R. suberifaciens than to Sphingomonas spp. Thus, S. yanoikuyae may need to be transferred to the genus Rhizomonas on the basis of the results of further study.

  17. The inheritance of resistance to bacterial leaf spot of lettuce caused by Xanthomonas campestris pv. vitians in three lettuce cultivars

    PubMed Central

    Hayes, Ryan J; Trent, Mark A; Truco, Maria Jose; Antonise, Rudie; Michelmore, Richard W; Bull, Carolee T

    2014-01-01

    Lettuce yields can be reduced by the disease bacterial leaf spot (BLS) caused by the pathogen Xanthomonas campestris pv. vitians (Xcv) and host resistance is the most feasible method to reduce disease losses. The cultivars La Brillante, Pavane and Little Gem express an incompatible host–pathogen interaction as a hypersensitive response (HR) to California strains of Xcv resulting in resistance. Little was known about the inheritance of resistance; however, resistance to other lettuce pathogens is often determined by resistance gene candidates (RGCs) encoding nucleotide-binding leucine-rich repeat (NB-LRR) proteins. Therefore, we determined the inheritance of BLS resistance in the cultivars La Brillante, Little Gem and Pavane and mapped it relative to RGCs. The reaction to Xcv was analyzed in nine F1, F2 and recombinant inbred line populations of lettuce from HR×compatible or HR×HR crosses. The HR in La Brillante, Pavane and Little Gem is conditioned by single dominant genes, which are either allelic or closely linked genes. The resistance gene in La Brillante was designated Xanthomonas resistance 1 (Xar1) and mapped to lettuce linkage group 2. Xar1 is present in a genomic region that contains numerous NB-LRR encoding RGCs and functional pathogen resistance loci in the RGC2 family. The Xar1 gene confers a high level of BLS resistance in the greenhouse and field that can be introgressed into commercial lettuce cultivars to reduce BLS losses using molecular markers. PMID:26504558

  18. Comparative genome analysis of Pseudogymnoascus spp. reveals primarily clonal evolution with small genome fragments exchanged between lineages.

    PubMed

    Leushkin, Evgeny V; Logacheva, Maria D; Penin, Aleksey A; Sutormin, Roman A; Gerasimov, Evgeny S; Kochkina, Galina A; Ivanushkina, Natalia E; Vasilenko, Oleg V; Kondrashov, Alexey S; Ozerskaya, Svetlana M

    2015-05-21

    Pseudogymnoascus spp. is a wide group of fungi lineages in the family Pseudorotiaceae including an aggressive pathogen of bats P. destructans. Although several lineages of P. spp. were shown to produce ascospores in culture, the vast majority of P. spp. demonstrates no evidence of sexual reproduction. P. spp. can tolerate a wide range of different temperatures and salinities and can survive even in permafrost layer. Adaptability of P. spp. to different environments is accompanied by extremely variable morphology and physiology. We sequenced genotypes of 14 strains of P. spp., 5 of which were extracted from permafrost, 1 from a cryopeg, a layer of unfrozen ground in permafrost, and 8 from temperate surface environments. All sequenced genotypes are haploid. Nucleotide diversity among these genomes is very high, with a typical evolutionary distance at synonymous sites dS ≈ 0.5, suggesting that the last common ancestor of these strains lived >50 Mya. The strains extracted from permafrost do not form a separate clade. Instead, each permafrost strain has close relatives from temperate environments. We observed a strictly clonal population structure with no conflicting topologies for ~99% of genome sequences. However, there is a number of short (~100-10,000 nt) genomic segments with the total length of 67.6 Kb which possess phylogenetic patterns strikingly different from the rest of the genome. The most remarkable case is a MAT-locus, which has 2 distinct alleles interspersed along the whole-genome phylogenetic tree. Predominantly clonal structure of genome sequences is consistent with the observations that sexual reproduction is rare in P. spp. Small number of regions with noncanonical phylogenies seem to arise due to some recombination events between derived lineages of P. spp., with MAT-locus being transferred on multiple occasions. All sequenced strains have heterothallic configuration of MAT-locus.

  19. Enterobacter Strains Might Promote Colon Cancer.

    PubMed

    Yurdakul, Dilşad; Yazgan-Karataş, Ayten; Şahin, Fikrettin

    2015-09-01

    Many studies have been performed to determine the interaction between bacterial species and cancer. However, there has been no attempts to demonstrate a possible relationship between Enterobacter spp. and colon cancer so far. Therefore, in the present study, it is aimed to investigate the effects of Enterobacter strains on colon cancer. Bacterial proteins were isolated from 11 Enterobacter spp., one Morganella morganii, and one Escherichia coli strains, and applied onto NCM460 (Incell) and CRL1790 (ATCC) cell lines. Cell viability and proliferation were determined in MTS assay. Flow Cytometry was used to detect CD24 level and apoptosis. Real-Time PCR studies were performed to determine NFKB and Bcl2 expression. Graphpad Software was used for statistical analysis. The results showed that proteins, isolated from the Enterobacter spp., have significantly increased cell viability and proliferation, while decreasing the apoptosis of the cell lines tested. The data in the present study indicated that Enterobacter strains might promote colon cancer. Moreover, Enterobacter spp. could be a clinically important factor for colon cancer initiation and progression. Studies can be extended on animal models in order to develop new strategies for treatment.

  20. Screening of Lactobacillus spp. and Pediococcus spp. for glycosidase activities that are important in oenology.

    PubMed

    Grimaldi, A; Bartowsky, E; Jiranek, V

    2005-01-01

    To assess glycosidase activities from a range of Lactobacillus and Pediococcus species and characterize these activities under conditions pertinent to the wine industry. Lactic acid bacteria were cultured in MRS broth supplemented with apple juice before being harvested, washed and assayed for glycosidase activity using p-nitrophenol-linked substrates. All strains exhibited a detectable capacity for the hydrolysis of the beta- and alpha-d-glucopyranosides. The magnitude of these activities and their response to the physico-chemical parameters investigated varied in a strain-dependent manner. The use of an assay buffer with a pH below 4 generally resulted in a reduced hydrolysis of both substrates while temperature optima ranged between 35 and 45 degrees C. The effect of the inclusion of ethanol in the assay buffer (up to 12%, v/v) ranged from near complete inhibition to increases in activity approaching 80%. With the clear exception of a single strain, glucose and fructose (0.1-20 g l(-1)) acted as inhibitors. An assessment of glycosidase activity during simultaneous exposure to glucose and ethanol at a pH of 3.5 suggested that ethanol decreased loss of activity under these wine-like conditions. Lactobacillus spp. and Pediococcus spp. possess varying degrees of beta- and alpha-d-glucopyranosidase activities, which in turn are influenced differently by exposure to ethanol and/or sugars, temperature and pH. Several strains appeared suited for further evaluation under winemaking conditions. This work highlights the fact that strains of Lactobacillus and Pediococcus have the potential to influence the glycoside composition of wine. Tailoring of wine may therefore be possible through selective application of strains or enzymatic extracts thereof.

  1. Genome Sequences of Apibacter spp., Gut Symbionts of Asian Honey Bees

    PubMed Central

    Kwong, Waldan K; Steele, Margaret I; Moran, Nancy A

    2018-01-01

    Abstract Honey bees have distinct gut microbiomes consisting almost entirely of several host-specific bacterial species. We present the genomes of three strains of Apibacter spp., bacteria of the Bacteroidetes phylum that are endemic to Asian honey bee species (Apis dorsata and Apis cerana). The Apibacter strains have similar metabolic abilities to each other and to Apibacter mensalis, a species isolated from a bumble bee. They use microaerobic respiration and fermentation to catabolize a limited set of monosaccharides and dicarboxylic acids. All strains are capable of gliding motility and encode a type IX secretion system. Two strains and A. mensalis have type VI secretion systems, and all strains encode Rhs or VgrG proteins used in intercellular interactions. The characteristics of Apibacter spp. are consistent with adaptions to life in a gut environment; however, the factors responsible for host-specificity and mutualistic interactions remain to be uncovered. PMID:29635372

  2. Label-Free Quantitative Proteomic Analysis of Harmless and Pathogenic Strains of Infectious Microalgae, Prototheca spp.

    PubMed Central

    Murugaiyan, Jayaseelan; Eravci, Murat; Weise, Christoph; Roesler, Uwe

    2016-01-01

    Microalgae of the genus Prototheca (P.) spp are associated with rare algal infections of invertebrates termed protothecosis. Among the seven generally accepted species, P. zopfii genotype 2 (GT2) is associated with a severe form of bovine mastitis while P. blaschkeae causes the mild and sub-clinical form of mastitis. The reason behind the infectious nature of P. zopfii GT2, while genotype 1 (GT1) remains non-infectious, is not known. Therefore, in the present study we investigated the protein expression level difference between the genotypes of P. zopfii and P. blaschkeae. Cells were cultured to the mid-exponential phase, harvested, and processed for LC-MS analysis. Peptide data was acquired on an LTQ Orbitrap Velos, raw spectra were quantitatively analyzed with MaxQuant software and matching with the reference database of Chlorella variabilis and Auxenochlorella protothecoides resulted in the identification of 226 proteins. Comparison of an environmental strain with infectious strains resulted in the identification of 51 differentially expressed proteins related to carbohydrate metabolism, energy production and protein translation. The expression level of Hsp70 proteins and their role in the infectious process is worth further investigation. All mass spectrometry data are available via ProteomeXchange with identifier PXD005305. PMID:28036087

  3. A Xanthomonas oryzae pv. oryzae effector, XopR, associates with receptor-like cytoplasmic kinases and suppresses PAMP-triggered stomatal closure.

    PubMed

    Wang, Shuangfeng; Sun, Jianhang; Fan, Fenggui; Tan, Zhaoyun; Zou, Yanmin; Lu, Dongping

    2016-09-01

    Receptor-like kinases (RLKs) play important roles in plant immunity signaling; thus, many are hijacked by pathogen effectors to promote successful pathogenesis. Xanthomonas oryzae pv. oryzae (Xoo) is the causal agent of rice leaf blight disease. The strain PXO99A has 18 non-TAL (transcription activation-like) effectors; however, their mechanisms of action and host target proteins remain largely unknown. Although the effector XopR from the Xoo strain MAFF311018 was shown to suppress PAMP-triggered immune responses in Arabidopsis, its target has not yet been identified. Here, we show that PXO99A XopR interacts with BIK1 at the plasma membrane. BIK1 is a receptor-like cytoplasmic kinase (RLCK) belonging to the RLK family of proteins and mediates PAMP-triggered stomatal immunity. In turn, BIK1 phosphorylates XopR. Furthermore, XopR suppresses PAMP-triggered stomatal closure in transgenic Arabidopsis expressing XopR. In addition, XopR is able to associate with RLCKs other than BIK1. These results suggest that XopR likely suppresses plant immunity by targeting BIK1 and other RLCKs.

  4. Xanthan Gum Production by Xanthomonas campestris pv. campestris IBSBF 1866 and 1867 from Lignocellulosic Agroindustrial Wastes.

    PubMed

    da Silva, Juliana Albuquerque; Cardoso, Lucas Guimarães; de Jesus Assis, Denilson; Gomes, Gleice Valéria Pacheco; Oliveira, Maria Beatriz Prior Pinto; de Souza, Carolina Oliveira; Druzian, Janice Izabel

    2018-05-05

    This study aimed to evaluate the properties of xanthan gum produced by Xanthomonas campestris pv. campestris 1866 and 1867 from lignocellulosic agroindustrial wastes. XG was produced using an orbital shaker in a culture medium containing coconut shell (CS), cocoa husks (CH), or sucrose (S) minimally supplemented with urea and potassium. The XG production results varied between the CS, CH, and S means, and it was higher with the CH in strains 1866 (4.48 g L -1 ) and 1867 (3.89 g L -1 ). However, there was more apparent viscosity in the S gum (181.88 mPas) and the CS gum (112.06 mPas) for both 1866 and 1867, respectively. The ability of XG CS and XG CH to emulsify different vegetable oils was similar to the ability of XG S . All gums exhibited good thermal stability and marked groups in the elucidation of compounds and particles with rough surfaces.

  5. Colonization and Movement of Xanthomonas fragariae in Strawberry Tissues.

    PubMed

    Wang, Hehe; McTavish, Christine; Turechek, William W

    2018-06-01

    Xanthomonas fragariae causes angular leaf spot of strawberry, an important disease in strawberry growing regions worldwide. To better understand how X. fragariae multiplies and moves in strawberry plants, a green fluorescent protein (GFP)-labeled strain was constructed and used to monitor the pathogen's presence in leaf, petiole, and crown tissue with fluorescence microscopy following natural and wound inoculation in three strawberry cultivars. Taqman PCR was used to quantify bacterial densities in these same tissues regardless of the presence of GFP signal. Results showed X. fragariae colonized leaf mesophyll, the top 1 cm portion of the petiole adjacent to the leaf blade, and was occasionally found colonizing xylem vessels down to the middle of the petioles. The colonization of vascular bundles and the limited systemic movement that was observed appeared to be a passive process, of which the frequency increased with wounding and direct infiltration of bacteria into leaf veins. X. fragariae was able to directly enter petioles and colonize the space under the epidermis. Systemic movement of the bacteria into crown and other uninoculated tissues was not detected visually by GFP. However, X. fragariae was occasionally detected in these tissues by qPCR, but at quantities very near the qPCR detection limit. Petiole tissue harboring bacteria introduced either by direct entry through natural openings or wounds, or by systemic movement from infected foliar tissue, likely serves as a main source of initial inoculum in field plantings.

  6. A TALE of transposition: Tn3-like transposons play a major role in the spread of pathogenicity determinants of Xanthomonas citri and other xanthomonads.

    PubMed

    Ferreira, Rafael Marini; de Oliveira, Amanda Carolina P; Moreira, Leandro M; Belasque, José; Gourbeyre, Edith; Siguier, Patricia; Ferro, Maria Inês T; Ferro, Jesus A; Chandler, Michael; Varani, Alessandro M

    2015-02-17

    Members of the genus Xanthomonas are among the most important phytopathogens. A key feature of Xanthomonas pathogenesis is the translocation of type III secretion system (T3SS) effector proteins (T3SEs) into the plant target cells via a T3SS. Several T3SEs and a murein lytic transglycosylase gene (mlt, required for citrus canker symptoms) are found associated with three transposition-related genes in Xanthomonas citri plasmid pXAC64. These are flanked by short inverted repeats (IRs). The region was identified as a transposon, TnXax1, with typical Tn3 family features, including a transposase and two recombination genes. Two 14-bp palindromic sequences within a 193-bp potential resolution site occur between the recombination genes. Additional derivatives carrying different T3SEs and other passenger genes occur in different Xanthomonas species. The T3SEs include transcription activator-like effectors (TALEs). Certain TALEs are flanked by the same IRs as found in TnXax1 to form mobile insertion cassettes (MICs), suggesting that they may be transmitted horizontally. A significant number of MICs carrying other passenger genes (including a number of TALE genes) were also identified, flanked by the same TnXax1 IRs and delimited by 5-bp target site duplications. We conclude that a large fraction of T3SEs, including individual TALEs and potential pathogenicity determinants, have spread by transposition and that TnXax1, which exhibits all of the essential characteristics of a functional transposon, may be involved in driving MIC transposition. We also propose that TALE genes may diversify by fork slippage during the replicative Tn3 family transposition. These mechanisms may play a crucial role in the emergence of Xanthomonas pathogenicity. Xanthomonas genomes carry many insertion sequences (IS) and transposons, which play an important role in their evolution and architecture. This study reveals a key relationship between transposons and pathogenicity determinants in

  7. Endophytic Colletrotrichum spp. from Cinchona calisaya wedd. and it's potential quinine production as antibacterial and antimalaria

    NASA Astrophysics Data System (ADS)

    Radiastuti, Nani; Mutea, Dalli; Sumarlin, La Ode

    2017-02-01

    An endophytic fungus is microorganisms that live inside plant tissues without harming its host and is capable of producing the same secondary metabolites as its host plant. The endophytic fungus is very diverse and important group of microorganisms. The objectives of the study are to identify endophyte Colletotrichum spp. using ITS rDNA analyze, alkaloid cinchona and antibacterial characteristics. Phylogenetic analysis of ITS rDNA regions and morphology are used to identify the species. The Chloroform extracts of filtrate were analyzed using the High Pressure Liquid Chromatography (HPLC) to determine the production of quinine. There were 13 isolates of Colletotrichum spp as endophytes with associated with Cinchona calisaya Wedd. from fruit (6 isolates), leaf (5 isolates), twig (1 isolate) and root (1 isolate). This is the first report as endophytes are associated with C. calisaya. Based on ITS phylogenetic analysis are introduced of 7 strains Colletotrichum sp, 1 strain closely with C. aegnigma, 2 strains closely C. cordylinicola, 1 strains C arxii, 2 strains nested C. karstii. The Colletotrichum sp. M1 (leaf), M3 (bark), M8 (fruit) and C. karstii M5 (fruit) are potential alkaloid quinine. Five strains of Colletotrichum spp. have antibacterial activity are selected against Staphylococcus aureus and nine Colletotrichum spp. against Escherichia coli. The endophyte identification of Colletotrichum species needs another gene other than ITS rDNA.

  8. The overexpression of RXam1, a cassava gene coding for an RLK, confers disease resistance to Xanthomonas axonopodis pv. manihotis.

    PubMed

    Díaz Tatis, Paula A; Herrera Corzo, Mariana; Ochoa Cabezas, Juan C; Medina Cipagauta, Adriana; Prías, Mónica A; Verdier, Valerie; Chavarriaga Aguirre, Paul; López Carrascal, Camilo E

    2018-04-01

    The overexpression of RXam1 leads to a reduction in bacterial growth of XamCIO136, suggesting that RXam1 might be implicated in strain-specific resistance. Cassava bacterial blight (CBB) caused by Xanthomonas axonopodis pv. manihotis (Xam) is a prevalent disease in all regions, where cassava is cultivated. CBB is a foliar and vascular disease usually controlled through host resistance. Previous studies have found QTLs explaining resistance to several Xam strains. Interestingly, one QTL called XM5 that explained 13% of resistance to XamCIO136 was associated with a similar fragment of the rice Xa21-resistance gene called PCR250. In this study, we aimed to further identify and characterize this fragment and its role in resistance to CBB. Screening and hybridization of a BAC library using the molecular marker PCR250 as a probe led to the identification of a receptor-like kinase similar to Xa21 and were called RXam1 (Resistance to Xam 1). Here, we report the functional characterization of susceptible cassava plants overexpressing RXam1. Our results indicated that the overexpression of RXam1 leads to a reduction in bacterial growth of XamCIO136. This suggests that RXAM1 might be implicated in strain-specific resistance to XamCIO136.

  9. Molecular functions of Xanthomonas type III effector AvrBsT and its plant interactors in cell death and defense signaling.

    PubMed

    Han, Sang Wook; Hwang, Byung Kook

    2017-02-01

    Xanthomonas effector AvrBsT interacts with plant defense proteins and triggers cell death and defense response. This review highlights our current understanding of the molecular functions of AvrBsT and its host interactor proteins. The AvrBsT protein is a member of a growing family of effector proteins in both plant and animal pathogens. Xanthomonas type III effector AvrBsT, a member of the YopJ/AvrRxv family, suppresses plant defense responses in susceptible hosts, but triggers cell death signaling leading to hypersensitive response (HR) and defense responses in resistant plants. AvrBsT interacts with host defense-related proteins to trigger the HR cell death and defense responses in plants. Here, we review and discuss recent progress in understanding the molecular functions of AvrBsT and its host interactor proteins in pepper (Capsicum annuum). Pepper arginine decarboxylase1 (CaADC1), pepper aldehyde dehydrogenase1 (CaALDH1), pepper heat shock protein 70a (CaHSP70a), pepper suppressor of the G2 allele of skp1 (CaSGT1), pepper SNF1-related kinase1 (SnRK1), and Arabidopsis acetylated interacting protein1 (ACIP1) have been identified as AvrBsT interactors in pepper and Arabidopsis. Gene expression profiling, virus-induced gene silencing, and transient transgenic overexpression approaches have advanced the functional characterization of AvrBsT-interacting proteins in plants. AvrBsT is localized in the cytoplasm and forms protein-protein complexes with host interactors. All identified AvrBsT interactors regulate HR cell death and defense responses in plants. Notably, CaSGT1 physically binds to both AvrBsT and pepper receptor-like cytoplasmic kinase1 (CaPIK1) in the cytoplasm. During infection with Xanthomonas campestris pv. vesicatoria strain Ds1 (avrBsT), AvrBsT is phosphorylated by CaPIK1 and forms the active AvrBsT-CaSGT1-CaPIK1 complex, which ultimately triggers HR cell death and defense responses. Collectively, the AvrBsT interactor proteins are involved in plant

  10. Structure determination of a sugar-binding protein from the phytopathogenic bacterium Xanthomonas citri

    PubMed Central

    Medrano, Francisco Javier; de Souza, Cristiane Santos; Romero, Antonio; Balan, Andrea

    2014-01-01

    The uptake of maltose and related sugars in Gram-negative bacteria is mediated by an ABC transporter encompassing a periplasmic component (the maltose-binding protein or MalE), a pore-forming membrane protein (MalF and MalG) and a membrane-associated ATPase (MalK). In the present study, the structure determination of the apo form of the putative maltose/trehalose-binding protein (Xac-MalE) from the citrus pathogen Xanthomonas citri in space group P6522 is described. The crystals contained two protein molecules in the asymmetric unit and diffracted to 2.8 Å resolution. Xac-MalE conserves the structural and functional features of sugar-binding proteins and a ligand-binding pocket with similar characteristics to eight different orthologues, including the residues for maltose and trehalose interaction. This is the first structure of a sugar-binding protein from a phytopathogenic bacterium, which is highly conserved in all species from the Xanthomonas genus. PMID:24817711

  11. Evidence for a plant-associated natural habitat for Cronobacter spp.

    PubMed

    Schmid, Michael; Iversen, Carol; Gontia, Iti; Stephan, Roger; Hofmann, Andreas; Hartmann, Anton; Jha, Bhavanath; Eberl, Leo; Riedel, Kathrin; Lehner, Angelika

    2009-10-01

    Cronobacter (Enterobacter sakazakii) species are responsible for rare cases of necrotising enterocolitis and bacteraemia in infants, as well as cases of meningitis with high case fatality rates in neonates and immunocompromised infants. Some physiological features, such as the production of a yellow pigment, the formation of a gum-like extracellular polysaccharide and the ability to persist in a desiccated state, suggest an environmental niche for these organisms. To date, the natural habitat of Cronobacter spp. remains unknown. In this report, the isolation and characterisation of two Cronobacter sakazakii strains from plant roots is described. Also, the root colonisation behaviour of Cronobacter strains originating from clinical and plant sources is assessed. The nine strains investigated showed features often found in plant-associated and rhizosphere microorganisms, including solubilisation of mineral phosphate and production of indole acetic acid. Siderophore production was observed for all except one strain. In addition, the capability to endophytically colonise tomato and maize roots was demonstrated for several strains, either by fluorescence in situ hybridisation, using fluorescently labelled oligonucleotide probes, or by using strains tagged with green fluorescent protein and confocal laser scanning microscopy. The results provide evidence that plants may be the natural habitat of Cronobacter spp.

  12. Lactic acid bacteria as protective cultures in fermented pork meat to prevent Clostridium spp. growth.

    PubMed

    Di Gioia, Diana; Mazzola, Giuseppe; Nikodinoska, Ivana; Aloisio, Irene; Langerholc, Tomaz; Rossi, Maddalena; Raimondi, Stefano; Melero, Beatriz; Rovira, Jordi

    2016-10-17

    In meat fermented foods, Clostridium spp. growth is kept under control by the addition of nitrite. The growing request of consumers for safer products has led to consider alternative bio-based approaches, the use of protective cultures being one of them. This work is aimed at checking the possibility of using two Lactobacillus spp. strains as protective cultures against Clostridium spp. in pork ground meat for fermented salami preparation. Both Lactobacillus strains displayed anti-clostridia activity in vitro using the spot agar test and after co-culturing them in liquid medium with each Clostridium strain. Only one of them, however, namely L. plantarum PCS20, was capable of effectively surviving in ground meat and of performing anti-microbial activity in carnis in a challenge test where meat was inoculated with the Clostridium strain. Therefore, this work pointed out that protective cultures can be a feasible approach for nitrite reduction in fermented meat products. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Antimicrobial resistance of Listeria spp. recovered from processed bison.

    PubMed

    Li, Q; Sherwood, J S; Logue, C M

    2007-01-01

    The current study examined the antimicrobial susceptibility of 86 Listeria spp. isolated from processed bison carcasses. Susceptibility to 25 antimicrobial agents was determined using E-test and National Antimicrobial Resistance Monitoring System (NARMS) panels. Most Listeria isolates (88-98%) exhibited resistance to bacitracin, oxacillin, cefotaxime, and fosfomycin. Resistance to tetracycline (18.6%) was also common. Of the 16 tetracycline-resistant Listeria isolates, 15 carried tetM and 2 contained integrase of Tn1545 transposons. Rifampicin and trimethoprim-sulfamethoxazole were the most active antimicrobial agents against Listeria spp., with a MIC(90) of 0.38 microg ml(-1). Ampicillin, erythromycin, penicillin, gentamicin, and tobramycin also exhibited good activity against Listeria spp., with MIC(90) not exceeding 1 microg ml(-1). Differences in resistance among Listeria spp. was displayed, as Listeria innocua strains were more resistant than other Listeria species. The study showed that Listeria monocytogenes strains from bison were susceptible to the antibiotics most commonly used to treat human listeriosis. However, the presence of antimicrobial resistance in L. innocua indicates the potential for transfer of resistance and a conjugative transposon to L. monocytogenes. The findings of our study will provide useful information for the development of public health policy in the use of antimicrobials in food animal production.

  14. Brachiaria Grasses (Brachiaria spp.) harbor a diverse bacterial community with multiple attributes beneficial to plant growth and development.

    PubMed

    Mutai, Collins; Njuguna, Joyce; Ghimire, Sita

    2017-10-01

    Endophytic and plant-associated bacteria were isolated from plants and rhizoplane soil of naturally grown Brachiaria grasses at International Livestock Research Institute in Nairobi, Kenya. Eighty-four bacterial strains were isolated from leaf tissues, root tissues, and rhizoplane soil on nutrient agar and 869 media. All bacterial strains were identified to the lowest possible taxonomic unit using 16S rDNA primers and were characterized for the production of Indole-3-acetic acid, hydrogen cyanide, and ACC deaminase; phosphate solubilization; siderophore production; antifungal properties; and plant biomass production. The 16S rDNA-based identification grouped these 84 bacterial strains into 3 phyla, 5 classes, 8 orders, 12 families, 16 genera, and 50 unique taxa. The four most frequently isolated genera were Pseudomonas (23), Pantoea (17), Acinetobacter (9), and Enterobacter (8). The functional characterization of these strains revealed that 41 of 84 strains had a minimum of three plant beneficial properties. Inoculation of maize seedlings with Acinetobacter spp., Microbacterium spp., Pectobacterium spp., Pseudomonas spp., and Enterobacter spp. showed positive effects on seedling biomass production. The ability of Brachiaria grasses to host genetically diverse bacteria, many of them with multiple plant growth-promoting attributes, might have contributed to high biomass production and adaptation of Brachiaria grasses to drought and low fertility soils. © 2017 International Livestock Research Institute. MicrobiologyOpen published by John Wiley & Sons Ltd.

  15. Extracellular matrix-associated proteome changes during non-host resistance in citrus-Xanthomonas interactions.

    PubMed

    Swaroopa Rani, Tirupaati; Podile, Appa Rao

    2014-04-01

    Non-host resistance (NHR) is a most durable broad-spectrum resistance employed by the plants to restrict majority of pathogens. Plant extracellular matrix (ECM) is a critical defense barrier. Understanding ECM responses during interaction with non-host pathogen will provide insights into molecular events of NHR. In this study, the ECM-associated proteome was compared during interaction of citrus with pathogen Xanthomonas axonopodis pv. citri (Xac) and non-host pathogen Xanthomonas oryzae pv. oryzae (Xoo) at 8, 16, 24 and 48 h post inoculation. Comprehensive analysis of ECM-associated proteins was performed by extracting wall-bound and soluble ECM components using both destructive and non-destructive procedures. A total of 53 proteins was differentially expressed in citrus-Xanthomonas host and non-host interaction, out of which 44 were identified by mass spectrometry. The differentially expressed proteins were related to (1) defense-response (5 pathogenesis-related proteins, 3 miraculin-like proteins (MIR, MIR1 and MIR2) and 2 proteases); (2) enzymes of reactive oxygen species (ROS) metabolism [Cu/Zn superoxide dismutase (SOD), Fe-SOD, ascorbate peroxidase and 2-cysteine-peroxiredoxin]; (3) signaling (lectin, curculin-like lectin and concanavalin A-like lectin kinase); and (4) cell-wall modification (α-xylosidase, glucan 1, 3 β-glucosidase, xyloglucan endotransglucosylase/hydrolase). The decrease in ascorbate peroxidase and cysteine-peroxiredoxin could be involved in maintenance of ROS levels. Increase in defense, cell-wall remodeling and signaling proteins in citrus-Xoo interaction suggests an active involvement of ECM in execution of NHR. Partially compromised NHR in citrus against Xoo, upon Brefeldin A pre-treatment supported the role of non-classical secretory proteins in this phenomenon. © 2013 Scandinavian Plant Physiology Society.

  16. Antibiosis of Trichoderma spp strains native to northeastern Mexico against the pathogenic fungus Macrophomina phaseolina

    PubMed Central

    Mendoza, José Luis Hernández; Pérez, María Isabel Sánchez; Prieto, Juan Manuel González; Velásquez, Jesús DiCarlo Quiroz; Olivares, Jesús Gerardo García; Langarica, Homar Rene Gill

    2015-01-01

    Abstract Sampling of agricultural soils from the Mexican northeastern region was performed to detect Trichoderma spp., genetically characterize it, and assess its potential use as a biologic control agent against Macrophomina phaseolina. M. phaseolina is a phytopathogen that attacks over 500 species of cultivated plants and causes heavy losses in the regional sorghum crop. Sampling was performed immediately after sorghum or corn harvest in an area that was approximately 170 km from the Mexico-USA border. Sixteen isolates were obtained in total. Using colony morphology and sequencing the internal transcribed spacers (ITS) 1 and 4 of 18S rDNA, 14 strains were identified as Trichoderma harzianum, T. koningiopsis and T. virens. Subsequently, their antagonistic activity against M. phaseolina was evaluated in vitro, and 11 isolates showed antagonism by competition and stopped M. phaseolina growth. In 4 of these isolates, the antibiosis phenomenon was observed through the formation of an intermediate band without growth between colonies. One strain, HTE808, was identified as Trichoderma koningiopsis and grew rapidly; when it came into contact with the M. phaseolina colony, it continued to grow and sporulated until it covered the entire petri dish. Microscopic examination confirmed that it has a high level of hyperparasitism and is thus considered to have high potential for use in the control of this phytopathogen. PMID:26691467

  17. Sarcocystis neurona and Neospora caninum in Brazilian opossums (Didelphis spp.): Molecular investigation and in vitro isolation of Sarcocystis spp.

    PubMed

    Gondim, Leane S Q; Jesus, Rogério F; Ribeiro-Andrade, Müller; Silva, Jean C R; Siqueira, Daniel B; Marvulo, Maria F V; Aléssio, Felipe M; Mauffrey, Jean-François; Julião, Fred S; Savani, Elisa San Martin Mouriz; Soares, Rodrigo M; Gondim, Luís F P

    2017-08-30

    Sarcocystis neurona and Neospora spp. are protozoan parasites that induce neurological diseases in horses and other animal species. Opossums (Didelphis albiventris and Didelphis virginiana) are definitive hosts of S. neurona, which is the major cause of equine protozoal myeloencephalitis (EPM). Neospora caninum causes abortion in cattle and infects a wide range of animal species, while N. hughesi is known to induce neurologic disease in equids. The aims of this study were to investigate S. neurona and N. caninum in tissues from opossums in the northeastern Brazil, and to isolate Brazilian strains of Sarcocystis spp. from wild opossums for comparison with previously isolated strains. Carcasses of 39 opossums from Bahia state were available for molecular identification of Sarcocystis spp. and N. caninum in their tissues, and for sporocyst detection by intestinal scraping. In addition, Sarcocystis-like sporocysts from nine additional opossums, obtained in São Paulo state, were tested. Sarcocystis DNA was found in 16 (41%) of the 39 opossums' carcasses; N. caninum DNA was detected in tissues from three opossums. The sporocysts from the nine additional opossums from São Paulo state were tested by bioassay and induced infection in nine budgerigars, but in none of the gamma-interferon knockout mice. In vitro isolation was successful using tissues from all nine budgerigars. The isolated strains were maintained in CV-1 and Vero cells. Three of nine isolates presented contamination in cell culture and were discarded. Analysis of six isolates based on five loci showed that these parasites were genetically different from each other and also distinct from S. neurona, S. falcatula, S. lindsayi, and S. speeri. In conclusion, opossums in the studied regions were infected with N. caninum and Sarcocystis spp. and represent a potential source of infection to other animals. This is the first report of N. caninum infection in tissues from black-eared opossum (D. aurita or D

  18. Development and validation of a real-time quantitative PCR assay to detect Xanthomonas axonopodis pv. allii from onion seed.

    PubMed

    Robène, Isabelle; Perret, Marion; Jouen, Emmanuel; Escalon, Aline; Maillot, Marie-Véronique; Chabirand, Aude; Moreau, Aurélie; Laurent, Annie; Chiroleu, Frédéric; Pruvost, Olivier

    2015-07-01

    Bacterial blight of onion is an emerging disease threatening world onion production. The causal agent Xanthomonas axonopodis pv. allii is seed transmitted and a reliable and sensitive tool is needed to monitor seed exchanges. A triplex quantitative real-time PCR assay was developed targeting two X. axonopodis pv. allii-specific markers and an internal control chosen in 5.8S rRNA gene from Alliaceae. Amplification of at least one marker indicates the presence of the bacterium in seed extracts. This real-time PCR assay detected all the 79 X. axonopodis pv. allii strains tested and excluded 85.2% of the 135 non-target strains and particularly all 39 saprophytic and pathogenic bacteria associated with onion. Cross-reactions were mainly obtained for strains assigned to nine phylogenetically related X. axonopodis pathovars. The cycle cut-off was estimated statistically at 36.3 considering a risk of false positive of 1%. The limit of detection obtained in at least 95% of the time (LOD 95%) was 5×10(3) CFU/g (colony forming unit/g). The sensitivity threshold was found to be 1 infected seed in 32,790 seeds. This real-time PCR assay should be useful for preventing the long-distance spread of X. axonopodis pv. allii via contaminated seed lots and determining the epidemiology of the bacterium. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Antimicrobial resistance profile of Enterococcus spp isolated from food in Southern Brazil

    PubMed Central

    Riboldi, Gustavo Pelicioli; Frazzon, Jeverson; d’Azevedo, Pedro Alves; Frazzon, Ana Paula Guedes

    2009-01-01

    Fifty-six Enterococcus spp. strains were isolated from foods in Southern Brazil, confirmed by PCR and classified as Enterococcus faecalis (27), Enterococcus faecium (23) and Enterococcus spp (6). Antimicrobial susceptibility tests showed resistance phenotypes to a range of antibiotics widely administrated in humans such as gentamycin, streptomycin, ampicillin and vancomycin. PMID:24031330

  20. Influence of relative humidity and suspending menstrua on survival of Acinetobacter spp. on dry surfaces.

    PubMed Central

    Jawad, A; Heritage, J; Snelling, A M; Gascoyne-Binzi, D M; Hawkey, P M

    1996-01-01

    Acinetobacter spp. are being reported with increasing frequency as a cause of nosocomial infection and have been isolated from the skin of healthy individuals, patients, hospital staff, dry nonbiotic objects, and different pieces of medical equipment. Factors affecting the survival of Acinetobacter spp. under conditions closely similar to those found in the hospital environment were investigated in the present study to help us understand the epidemiology of nosocomial Acinetobacter infection. Bacterial cells were suspended in distilled water or bovine serum albumin and were dried onto glass coverslips and kept at different relative humidities. Cells washed from coverslips were used to determined viable counts. Freshly isolated strains of Acinetobacter spp. belonging to the clinically important Acinetobacter calcoaceticus-Acinetobacter baumannii complex were found to be more resistant to drying conditions (e.g., 30 days for A. baumannii 16/49) than American Type Culture Collection strains (e.g., 2 days for A. baumannii ATCC 9955). The majority of strains belonging to the Acb complex had survival times similar to those observed for the gram-positive organism Staphylococcus aureus tested in the experiment. Survival times were prolonged for almost all the strains tested when they were suspended in bovine serum albumin (e.g., 60 days for A. baumannii R 447) compared with those for strains suspended in distilled water (11 days for R 447). The survival times for strains at higher relative humidity (31 or 93%) were longer than those for strains of Acinetobacter kept at a relative humidity of 10% (11 days at 31% relative humidity and 4 days at 10% relative humidity for R447). These findings are consistent with the observed tendency of Acinetobacter spp. to survive on dry surfaces, and they can be transferred not only by moist vectors but also under dry conditions in a hospital environment during nosocomial infection outbreaks. The results obtained in the experiment support

  1. [Phylogenetic and diversity analysis of Acidithiobacillus spp. based on 16S rRNA and RubisCO genes homologues].

    PubMed

    Liu, Minrui; Lin, Pengwu; Qi, Xing'e; Ni, Yongqing

    2016-04-14

    The purpose of the study was to reveal geographic region-related Acidithiobacillus spp. distribution and allopatric speciation. Phylogenetic and diversity analysis was done to expand our knowledge on microbial phylogeography, diversity-maintaining mechanisms and molecular biogeography. We amplified 16S rRNA gene and RubisCO genes to construct corresponding phylogenetic trees based on the sequence homology and analyzed genetic diversity of Acidithiobacillus spp.. Thirty-five strains were isolated from three different regions in China (Yunnan, Hubei, Xinjiang). The whole isolates were classified into five groups. Four strains were identified as A. ferrivorans, six as A. ferridurans, YNTR4-15 Leptspirillum ferrooxidans and HBDY3-31 as Leptospirillum ferrodiazotrophum. The remaining strains were identified as A. ferrooxidans. Analysis of cbbL and cbbM genes sequences of representative 26 strains indicated that cbbL gene of 19 were two copies (cbbL1 and cbbL2) and 7 possessed only cbbL1. cbbM gene was single copy. In nucleotide-based trees, cbbL1 gene sequences of strains were separated into three sequence types, and the cbbL2 was similar to cbbL1 with three types. Codon bias of RubisCO genes was not obvious in Acidithiobacillus spp.. Strains isolated from three different regions in China indicated a great genetic diversity in Acidithiobacillus spp. and their 16S rRNA/RubisCO genes sequence was of significant difference. Phylogenetic tree based on 16S rRNA genes and RubisCO genes was different in Acidithiobacillus spp..

  2. A novel strategy to improve protein secretion via overexpression of the SppA signal peptide peptidase in Bacillus licheniformis.

    PubMed

    Cai, Dongbo; Wang, Hao; He, Penghui; Zhu, Chengjun; Wang, Qin; Wei, Xuetuan; Nomura, Christopher T; Chen, Shouwen

    2017-04-24

    Signal peptide peptidases play an important role in the removal of remnant signal peptides in the cell membrane, a critical step for extracellular protein production. Although these proteins are likely a central component for extracellular protein production, there has been a lack of research on whether protein secretion could be enhanced via overexpression of signal peptide peptidases. In this study, both nattokinase and α-amylase were employed as prototypical secreted target proteins to evaluate the function of putative signal peptide peptidases (SppA and TepA) in Bacillus licheniformis. We observed dramatic decreases in the concentrations of both target proteins (45 and 49%, respectively) in a sppA deficient strain, while the extracellular protein yields of nattokinase and α-amylase were increased by 30 and 67% respectively in a strain overexpressing SppA. In addition, biomass, specific enzyme activities and the relative gene transcriptional levels were also enhanced due to the overexpression of sppA, while altering the expression levels of tepA had no effect on the concentrations of the secreted target proteins. Our results confirm that SppA, but not TepA, plays an important functional role for protein secretion in B. licheniformis. Our results indicate that the sppA overexpression strain, B. licheniformis BL10GS, could be used as a promising host strain for the industrial production of heterologous secreted proteins.

  3. Antimicrobial Susceptibility of Escherichia coli Strains Isolated from Alouatta spp. Feces to Essential Oils

    PubMed Central

    Carregaro, Adriano Bonfim; Santurio, Deise Flores; de Sá, Mariangela Facco; Santurio, Janio Moraes; Alves, Sydney Hartz

    2016-01-01

    This study evaluated the in vitro antibacterial activity of essential oils from Lippia graveolens (Mexican oregano), Origanum vulgaris (oregano), Thymus vulgaris (thyme), Rosmarinus officinalis (rosemary), Cymbopogon nardus (citronella), Cymbopogon citratus (lemongrass), and Eucalyptus citriodora (eucalyptus) against Escherichia coli (n = 22) strains isolated from Alouatta spp. feces. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined for each isolate using the broth microdilution technique. Essential oils of Mexican oregano (MIC mean = 1818 μg mL−1; MBC mean = 2618 μg mL−1), thyme (MIC mean = 2618 μg mL−1; MBC mean = 2909 μg mL−1), and oregano (MIC mean = 3418 μg mL−1; MBC mean = 4800 μg mL−1) showed the best antibacterial activity, while essential oils of eucalyptus, rosemary, citronella, and lemongrass displayed no antibacterial activity at concentrations greater than or equal to 6400 μg mL−1. Our results confirm the antimicrobial potential of some essential oils, which deserve further research. PMID:27313638

  4. Host genotype and hypersensitive reaction influence population levels of Xanthomonas campestris pv. vitians in lettuce

    USDA-ARS?s Scientific Manuscript database

    Population dynamics of Xanthomonas campestris pv. vitians spray inoculated on or infiltrated into lettuce leaves were monitored on cultivars that were well characterized for resistance or susceptibility to the pathogen. In general, population growth was greater for susceptible (Clemente, Salinas 88,...

  5. The Xanthomonas oryzae pv. oryzae PhoPQ Two-Component System Is Required for AvrXA21 Activity, hrpG Expression, and Virulence▿ †

    PubMed Central

    Lee, Sang-Won; Jeong, Kyu-Sik; Han, Sang-Wook; Lee, Seung-Eun; Phee, Bong-Kwan; Hahn, Tae-Ryong; Ronald, Pamela

    2008-01-01

    The rice pathogen recognition receptor, XA21, confers resistance to Xanthomonas oryzae pv. oryzae strains producing the type one system-secreted molecule, AvrXA21. X. oryzae pv. oryzae requires a regulatory two-component system (TCS) called RaxRH to regulate expression of eight rax (required for AvrXA21 activity) genes and to sense population cell density. To identify other key components in this critical regulatory circuit, we assayed proteins expressed in a raxR gene knockout strain. This survey led to the identification of the phoP gene encoding a response regulator that is up-regulated in the raxR knockout strain. Next we generated a phoP knockout strain and found it to be impaired in X. oryzae pv. oryzae virulence and no longer able to activate the response regulator HrpG (hypersensitive reaction and pathogenicity G) in response to low levels of Ca2+. The impaired virulence of the phoP knockout strain can be partially complemented by constitutive expression of hrpG, indicating that PhoP controls a key aspect of X. oryzae pv. oryzae virulence through regulation of hrpG. A gene encoding the cognate putative histidine protein kinase, phoQ, was also isolated. Growth curve analysis revealed that AvrXA21 activity is impaired in a phoQ knockout strain as reflected by enhanced growth of this strain in rice lines carrying XA21. These results suggest that the X. oryzae pv. oryzae PhoPQ TCS functions in virulence and in the production of AvrXA21 in partnership with RaxRH. PMID:18203830

  6. Phenotypic and Molecular Antibiotic Resistance Determination of Airborne Coagulase Negative Staphylococcus spp. Strains from Healthcare Facilities in Southern Poland.

    PubMed

    Lenart-Boroń, Anna; Wolny-Koładka, Katarzyna; Stec, Joanna; Kasprowic, Andrzej

    2016-10-01

    This study assessed the antimicrobial resistance of airborne Staphylococcus spp. strains isolated from healthcare facilities in southern Poland. A total of 55 isolates, belonging to 10 coagulase-negative staphylococci (CoNS) species, isolated from 10 healthcare facilities (including hospitals and outpatient units) were included in the analysis. The most frequently identified species were Staphylococcus saprophyticus and Staphylococcus warneri, which belong to normal human skin flora, but can also be the cause of common and even severe nosocomial infections. Disk diffusion tests showed that the bacterial strains were most frequently resistant to erythromycin and tetracycline and only 18% of strains were susceptible to all tested antimicrobials. Polymerase chain reaction amplification of specific gene regions was used to determine the presence of the Macrolide-Lincosamide-Streptogramin resistance mechanisms in CoNS. The molecular analysis, conducted using specific primer pairs, identified the msrA1 gene, encoding active efflux pumps in bacterial cells, as the most frequent resistance gene. As many as seven antibiotic resistance genes were found in one isolate, whereas the most common number of resistance genes per isolate was five (n = 17). It may be concluded that drug resistance was widely spread among the tested strains, but the resulting antimicrobial resistance profile indicates that in the case of infection, the use of antibiotics from the basic antibiogram group will be effective in therapy. However, before administering treatment, determination of the specific antimicrobial resistance should be conducted, particularly in the case of hospitalized patients.

  7. Antimicrobial and antibiofilm effects of selected food preservatives against Salmonella spp. isolated from chicken samples.

    PubMed

    Er, Buket; Demirhan, Burak; Onurdag, Fatma Kaynak; Ozgacar, Selda Özgen; Oktem, Aysel Bayhan

    2014-03-01

    Salmonella spp. are widespread foodborne pathogens that contaminate egg and poultry meats. Attachment, colonization, as well as biofilm formation capacity of Salmonella spp. on food and contact surfaces of food may cause continuous contamination. Biofilm may play a crucial role in the survival of salmonellae under unfavorable environmental conditions, such as in animal slaughterhouses and processing plants. This could serve as a reservoir compromising food safety and human health. Addition of antimicrobial preservatives extends shelf lives of food products, but even when products are supplemented with adequate amounts of preservatives, it is not always possible to inhibit the microorganisms in a biofilm community. In this study, our aims were i) to determine the minimum inhibitory concentrations (MIC) and minimum biofilm inhibitory concentrations (MBIC) of selected preservatives against planktonic and biofilm forms of Salmonella spp. isolated from chicken samples and Salmonella Typhimurium SL1344 standard strain, ii) to show the differences in the susceptibility patterns of same strains versus the planktonic and biofilm forms to the same preservative agent, and iii) to determine and compare antimicrobial and antibiofilm effects of selected food preservatives against Salmonella spp. For this purpose, Salmonella Typhimurium SL1344 standard strain and 4 Salmonella spp. strains isolated from chicken samples were used. Investigation of antimicrobial and antibiofilm effects of selected food preservatives against Salmonella spp. was done according to Clinical and Laboratory Standards Institute M100-S18 guidelines and BioTimer assay, respectively. As preservative agents, pure ciprofloxacin, sodium nitrite, potassium sorbate, sodium benzoate, methyl paraben, and propyl paraben were selected. As a result, it was determined that MBIC values are greater than the MIC values of the preservatives. This result verified the resistance seen in a biofilm community to food

  8. Identification of Staphylococcus spp. using (GTG)₅-PCR fingerprinting.

    PubMed

    Svec, Pavel; Pantůček, Roman; Petráš, Petr; Sedláček, Ivo; Nováková, Dana

    2010-12-01

    A group of 212 type and reference strains deposited in the Czech Collection of Microorganisms (Brno, Czech Republic) and covering 41 Staphylococcus species comprising 21 subspecies was characterised using rep-PCR fingerprinting with the (GTG)₅ primer in order to evaluate this method for identification of staphylococci. All strains were typeable using the (GTG)₅ primer and generated PCR products ranging from 200 to 4500 bp. Numerical analysis of the obtained fingerprints revealed (sub)species-specific clustering corresponding with the taxonomic position of analysed strains. Taxonomic position of selected strains representing the (sub)species that were distributed over multiple rep-PCR clusters was verified and confirmed by the partial rpoB gene sequencing. Staphylococcus caprae, Staphylococcus equorum, Staphylococcus sciuri, Staphylococcus piscifermentans, Staphylococcus xylosus, and Staphylococcus saprophyticus revealed heterogeneous fingerprints and each (sub)species was distributed over several clusters. However, representatives of the remaining Staphylococcus spp. were clearly separated in single (sub)species-specific clusters. These results showed rep-PCR with the (GTG)₅ primer as a fast and reliable method applicable for differentiation and straightforward identification of majority of Staphylococcus spp. Copyright © 2010 Elsevier GmbH. All rights reserved.

  9. Vaginal Candida spp. genomes from women with vulvovaginal candidiasis.

    PubMed

    Bradford, L Latéy; Chibucos, Marcus C; Ma, Bing; Bruno, Vincent; Ravel, Jacques

    2017-08-31

    Candida albicans is the predominant cause of vulvovaginal candidiasis (VVC). Little is known regarding the genetic diversity of Candida spp. in the vagina or the microvariations in strains over time that may contribute to the development of VVC. This study reports the draft genome sequences of four C. albicans and one C. glabrata strains isolated from women with VVC. An SNP-based whole-genome phylogeny indicates that these isolates are closely related; however, phylogenetic distances between them suggest that there may be genetic adaptations driven by unique host environments. These sequences will facilitate further comparative analyses and ultimately improve our understanding of genetic variation in isolates of Candida spp. that are associated with VVC. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Characterisation of Streptomyces spp. isolated from water-damaged buildings.

    PubMed

    Suutari, Merja; Rönkä, Elina; Lignell, Ulla; Rintala, Helena; Nevalainen, Aino

    2002-01-01

    Abstract Saprophytic Streptomyces spp. common in soil and producing biologically active compounds have been related to abnormal microbial growth in buildings where occupants may have health problems. We characterised 11 randomly selected water-damaged building isolates. The 16S rDNA sequence similarity was over 95.4% between strains so that seven, three, and one sequences had greater than 99.8, 99.7 and 99.7% similarity with those of Streptomyces griseus ATCC 10137 (Y15501), Streptomyces albidoflavus DSM 40455(T) (Z76676), and Streptomyces coelicolor A3(2) (Y00411), respectively. Although differences in morphology, pigmentation, fatty acids, biological activity and pH tolerance indicated that strains did not necessarily match with three single phenotypes, they all appeared to belong to two or three branches of Streptomyces spp. most common environmental isolates.

  11. Trypsin-dependent production of an antibacterial substance by a human Peptostreptococcus strain in gnotobiotic rats and in vitro.

    PubMed

    Ramare, F; Nicoli, J; Dabard, J; Corring, T; Ladire, M; Gueugneau, A M; Raibaud, P

    1993-09-01

    An antibacterial substance appeared within 1 day in feces of gnotobiotic rats harboring a human intestinal Peptostreptococcus strain. It disappeared when the rat bile-pancreatic duct was ligatured or when the rats ingested a trypsin inhibitor. Anaerobic cultures of the Peptostreptococcus strain in a medium supplemented with trypsin also exhibited an antibacterial activity, which was also inhibited by the trypsin inhibitor. In vitro the antibacterial substance from both feces and culture medium was active against several gram-positive bacteria, including other Peptostreptococcus spp., potentially pathogenic Clostridium spp. such as C. perfringens, C. difficile, C. butyricum, C. septicum, and C. sordellii, Eubacterium spp., Bifidobacterium spp., and Bacillus spp. Whatever the order of inoculation of the strains, a sensitive strain of C. perfringens was eliminated within 1 day from the intestine of rats monoassociated with the Peptostreptococcus strain. These findings demonstrate for the first time that very potent antibacterial substances can be produced through a mechanism involving intestinal bacteria and exocrine pancreatic secretions.

  12. Rapid and Sensitive Detection of Shigella spp. and Salmonella spp. by Multiple Endonuclease Restriction Real-Time Loop-Mediated Isothermal Amplification Technique

    PubMed Central

    Wang, Yi; Wang, Yan; Luo, Lijuan; Liu, Dongxin; Luo, Xia; Xu, Yanmei; Hu, Shoukui; Niu, Lina; Xu, Jianguo; Ye, Changyun

    2015-01-01

    Shigella and Salmonella are frequently isolated from various food samples and can cause human gastroenteritis. Here, a novel multiple endonuclease restriction real-time loop-mediated isothermal amplification technology (MERT-LAMP) were successfully established and validated for simultaneous detection of Shigella strains and Salmonella strains in only a single reaction. Two sets of MERT-LAMP primers for 2 kinds of pathogens were designed from ipaH gene of Shigella spp. and invA gene of Salmonella spp., respectively. Under the constant condition at 63°C, the positive results were yielded in as short as 12 min with the genomic DNA extracted from the 19 Shigella strains and 14 Salmonella strains, and the target pathogens present in a sample could be simultaneously identified based on distinct fluorescence curves in real-time format. Accordingly, the multiplex detection assay significantly reduced effort, materials and reagents used, and amplification and differentiation were conducted at the same time, obviating the use of postdetection procedures. The analytical sensitivity of MERT-LAMP was found to be 62.5 and 125 fg DNA/reaction with genomic templates of Shigella strains and Salmonella strains, which was consist with normal LAMP assay, and at least 10- and 100-fold more sensitive than that of qPCR and conventional PCR approaches. The limit of detection of MERT-LAMP for Shigella strains and Salmonella strains detection in artificially contaminated milk samples was 5.8 and 6.4 CFU per vessel. In conclusion, the MERT-LAMP methodology described here demonstrated a potential and valuable means for simultaneous screening of Shigella and Salmonella in a wide variety of samples. PMID:26697000

  13. Molecular Characterization and Phylogenetic Analysis of Anaplasma spp. and Ehrlichia spp. Isolated from Various Ticks in Southeastern and Northwestern Regions of Iran.

    PubMed

    Jafar Bekloo, Ahmad; Ramzgouyan, Maryam Roya; Shirian, Sadegh; Faghihi, Faezeh; Bakhshi, Hassan; Naseri, Fatemeh; Sedaghat, Mehdi; Telmadarraiy, Zakkyeh

    2018-05-01

    Anaplasma/Ehrlichia species are tick-transmitted pathogens that cause infections in humans and numerous domestic and wild animal species. There is no information available on the molecular characteristics and phylogenetic position of Anaplasma/Ehrlichia spp. isolated from tick species from different geographic locations in Iran. The aim of this study was to determine the prevalence, molecular characteristics, and phylogenetic relationship of both Anaplasma spp. and Ehrlichia spp. in tick species isolated from different domestic animals from two different geographical locations of Iran. A total of 930 ticks were collected from 93 cattle, 250 sheep, and 587 goats inhabiting the study areas. The collected ticks were then investigated for the presence of Anaplasma/Ehrlichia spp. using nested PCR based on the 16S rRNA gene, followed by sequencing. Sequence analysis was done based on the data published in the GenBank on Anaplasma/Ehrlichia spp. isolates using bioinformatic tools such as the standard nucleotide BLAST. Genome of Anaplasma or Ehrlichia spp. was detected in 14 ticks collected in Heris, including 5 Dermacentor marginatus, 1 Haemaphysalis erinacei, 3 Hyalomma anatolicum, and 4 Rhipicephalus sanguineus, also in 29 ticks collected in Chabahar, including 14 R. sanguineus, 8 D. marginatus, 3 Hyalomma Anatolicum, and 4 Hyalomma dromedarii. Partial analysis of the 16S rRNA gene sequence of positive samples collected from goats and sheep showed that they were infected with Anaplasma/Ehrlichia spp. that were 94-98% identical to ovine Anaplasma and 91-96% identical to Neoehrlichia and Ehrlichia spp. The various ticks identified in this study suggest the possible emergence of tick-borne diseases in animals and humans in these regions. R. sanguineus and D. marginatus seem to be predominant vectors responsible for anaplasmosis in these regions. Partial sequence analysis of the 16S rRNA gene showed that A. ovis is genetically polymorphic in these regions. Furthermore, an

  14. Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans.

    PubMed

    Ocsoy, Ismail; Paret, Mathews L; Ocsoy, Muserref Arslan; Kunwar, Sanju; Chen, Tao; You, Mingxu; Tan, Weihong

    2013-10-22

    Bacterial spot caused by Xanthomonas perforans is a major disease of tomatoes, leading to reduction in production by 10-50%. While copper (Cu)-based bactericides have been used for disease management, most of the X. perforans strains isolated from tomatoes in Florida and other locations worldwide are Cu-resistant. We have developed DNA-directed silver (Ag) nanoparticles (NPs) grown on graphene oxide (GO). These Ag@dsDNA@GO composites effectively decrease X. perforans cell viability in culture and on plants. At the very low concentration of 16 ppm of Ag@dsDNA@GO, composites show excellent antibacterial capability in culture with significant advantages in improved stability, enhanced antibacterial activity, and stronger adsorption properties. Application of Ag@dsDNA@GO at 100 ppm on tomato transplants in a greenhouse experiment significantly reduced the severity of bacterial spot disease compared to untreated plants, giving results similar to those of the current grower standard treatment, with no phytotoxicity.

  15. Enhanced growth and nodulation of pigeon pea by co-inoculation of Bacillus strains with Rhizobium spp.

    PubMed

    Rajendran, Geetha; Sing, Falguni; Desai, Anjana J; Archana, G

    2008-07-01

    Endophytic bacteria which are known to reside in plant tissues have often been shown to promote plant growth. Present study deals with the isolation of putative endophytes from the surface sterilized root nodules of pigeon pea (Cajanus cajan) designated as non-rhizobial (NR) isolates. Three of these non-rhizobial isolates called NR2, NR4 and NR6 showed plant growth promotion with respect to increase in plant fresh weight, chlorophyll content, nodule number and nodule fresh weight when co-inoculated with the rhizobial bioinoculant strain IC3123. The three isolates were neither able to nodulate C. cajan nor did they show significant plant growth promotion when inoculated alone without Rhizobium spp. IC3123. All the three isolates were gram positive rods with NR2 and NR4 showing endospore formation and formed one single cluster in Amplified Ribosomal DNA Restriction Analysis (ARDRA). Partial sequences of 16S rRNA genes of NR4 and NR6 showed 97% similarity to Bacillus megaterium. The Bacillus strains NR4 and NR6 were able to produce siderophores which the rhizobial bioinoculant IC3123 was able to cross-utilize. Under iron starved conditions IC3123 showed enhanced growth in the presence of the Bacillus isolates indicating that siderophore mediated interactions may be underlying mechanism of beneficial effect of the NR isolates on nodulation by IC3123.

  16. Reduced susceptibility to Xanthomonas citri in transgenic citrus expressing the FLS2 receptor from Nicotiana benthamiana

    USDA-ARS?s Scientific Manuscript database

    Overexpression of plant pattern-recognition receptors (PRRs) by genetic engineering provides a novel approach to enhance plant immunity and broad-spectrum disease resistance. The citrus canker disease associated with Xanthomonas citri is one of the important diseases damaging citrus production world...

  17. Melanogenic actinomycetes from rhizosphere soil-antagonistic activity against Xanthomonas oryzae and plant-growth-promoting traits.

    PubMed

    Muangham, Supattra; Pathom-Aree, Wasu; Duangmal, Kannika

    2015-02-01

    A total of 210 melanogenic actinomycetes were isolated from 75 rhizospheric soils using ISP6 and ISP7 agar supplemented with antifungal and antibacterial agents. Their morphological characteristics and the presence of ll-diaminopimelic acid in whole-cell hydrolyzates revealed that all isolates belonged to the genus Streptomyces. Their ability to inhibit the growth of 2 pathogenic rice bacteria, Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola, was observed using the agar overlay method. The results indicated that 61.9% of the isolates could inhibit at least one of the tested rice pathogens. Among these, isolate TY68-3 showed the highest antibacterial activity and siderophore production. The 16S rRNA gene sequence analysis of 46 representative isolates revealed that isolates with high similarity to Streptomyces bungoensis were frequently found. The present study indicated the potential of melanogenic actinomycetes for use as biocontrol agents against X. oryzae as well as their diversity in rhizospheric soils.

  18. Transcription activator-like (TAL) effectors targeting OsSWEET genes enhance virulence on diverse rice (Oryza sativa) varieties when expressed individually in a TAL effector-deficient strain of Xanthomonas oryzae.

    PubMed

    Verdier, Valérie; Triplett, Lindsay R; Hummel, Aaron W; Corral, Rene; Cernadas, R Andres; Schmidt, Clarice L; Bogdanove, Adam J; Leach, Jan E

    2012-12-01

    Genomes of the rice (Oryza sativa) xylem and mesophyll pathogens Xanthomonas oryzae pv. oryzae (Xoo) and pv. oryzicola (Xoc) encode numerous secreted transcription factors called transcription activator-like (TAL) effectors. In a few studied rice varieties, some of these contribute to virulence by activating corresponding host susceptibility genes. Some activate disease resistance genes. The roles of X. oryzae TAL effectors in diverse rice backgrounds, however, are poorly understood. Xoo TAL effectors that promote infection by activating SWEET sucrose transporter genes were expressed in TAL effector-deficient X. oryzae strain X11-5A, and assessed in 21 rice varieties. Some were also tested in Xoc on variety Nipponbare. Several Xoc TAL effectors were tested in X11-5A on four rice varieties. Xoo TAL effectors enhanced X11-5A virulence on most varieties, but to varying extents depending on the effector and variety. SWEET genes were activated in all tested varieties, but increased virulence did not correlate with activation level. SWEET activators also enhanced Xoc virulence on Nipponbare. Xoc TAL effectors did not alter X11-5A virulence. SWEET-targeting TAL effectors contribute broadly and non-tissue-specifically to virulence in rice, and their function is affected by host differences besides target sequences. Further, the utility of X11-5A for characterizing individual TAL effectors in rice was established. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  19. In Vitro Activity of Tea Tree Oil Vaginal Suppositories against Candida spp. and Probiotic Vaginal Microbiota.

    PubMed

    Di Vito, Maura; Mattarelli, Paola; Modesto, Monica; Girolamo, Antonietta; Ballardini, Milva; Tamburro, Annunziata; Meledandri, Marcello; Mondello, Francesca

    2015-10-01

    The aim of this work is to evaluate the in vitro microbicidal activity of vaginal suppositories (VS) containing tea tree oil (TTO-VS) towards Candida spp. and vaginal probiotics. A total of 20 Candida spp. strains, taken from patients with vaginitis and from an established type collection, including reference strains, were analysed by using the CLSI microdilution method. To study the action of VS towards the beneficial vaginal microbiota, the sensitivity of Bifidobacterium animalis subsp. lactis (DSM 10140) and Lactobacillus spp. (Lactobacillus casei R-215 and Lactobacillus acidophilus R-52) was tested. Both TTO-VS and TTO showed fungicidal activity against all strains of Candida spp. whereas placebo-VS or the Aloe gel used as controls were ineffective. The study of fractional fungicidal concentrations (FFC) showed synergistic interaction with the association between Amphotericin B and TTO (0.25 to 0.08 µg/ml, respectively) against Candida albicans. Instead, the probiotics were only affected by TTO concentration ≥ 4% v/v, while, at concentrations < 2% v/v, they remained viable. TTO-VS exhibits, in vitro, a selective fungicidal action, slightly affecting only the Bifidobacteriun animalis strain growth belonging to the vaginal microbiota. In vivo studies are needed to confirm the efficacy to prevent acute or recurrent vaginal candidiasis. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Eight-year Surveillance of Antimicrobial Resistance among Enterococcus Spp. Isolated in the First Bethune Hospital

    NASA Astrophysics Data System (ADS)

    Xu, Jiancheng; Wang, Liqiang; Wang, Kai; Zhou, Qi

    This study was to investigate the antimicrobial resistance of Enterococcus spp. isolated in 8 consecutive years in the First Bethune Hospital. Disk diffusion test was used to study the antimicrobial resistance. The data were analyzed by WHONET 5 software according to Clinical and Laboratory Standards Institute (CLSI). Most of 1446 strains of Enterococcus spp. were collected from urine 640 (44.3%), sputum 315 (21.8%), secretions and pus 265 (18.3%) during the past 8 years. The rates of high-level aminoglycoside resistance in Enterococcus faecalis and Enterococcus faecium were 57.4%∼75.9% and 69.0%∼93.8% during the past 8 years, respectively. No Enterococcus spp. was resistant to vancomycin. The antimicrobial resistance of Enterococcus spp. had increased in recent 8 years. The change of the antimicrobial resistance should be investigated in order to direct rational drug usage in the clinic and prevent bacterial strain of drug resistance from being transmitted.

  1. In vitro susceptibilities of Leptospira spp. and Borrelia burgdorferi isolates to amoxicillin, tilmicosin, and enrofloxacin

    PubMed Central

    Kim, Doo; Kordick, Dorsey; Divers, Thomas

    2006-01-01

    Antimicrobial susceptibility testing was conducted with 6 different spirochetal strains (4 strains of Leptospira spp. and 2 strains of Borrelia burgdorferi) against 3 antimicrobial agents, commonly used in equine and bovine practice. The ranges of MIC and MBC of amoxicillin against Leptospira spp. were 0.05-6.25 µg/ml and 6.25-25.0 µg/ml, respectively. And the ranges of minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of amoxicillin against B. burgdorferi were 0.05-0.39 µg/ml and 0.20-0.78 µg/ml, respectively. The ranges of MIC and MBC of enrofloxacin against Leptospira spp. were 0.05-0.39 µg/ml and 0.05-0.39 µg/ml, respectively. Two strains of B. burgdorferi were resistant to enrofloxacin at the highest concentration tested for MBC (≥100 µg/ml). Therefore, the potential role of tilmicosin in the treatment of leptospirosis and borreliosis should be further evaluated in animal models to understand whether the in vivo studies will confirm in vitro results. All spirochetal isolates were inhibited (MIC) and were killed (MBC) by tilmicosin at concentrations below the limit of testing (≤0.01 µg/ml). PMID:17106227

  2. In vitro susceptibilities of Leptospira spp. and Borrelia burgdorferi isolates to amoxicillin, tilmicosin, and enrofloxacin.

    PubMed

    Kim, Doo; Kordick, Dorsey; Divers, Thomas; Chang, Yung Fu

    2006-12-01

    Antimicrobial susceptibility testing was conducted with 6 different spirochetal strains (4 strains of Leptospira spp. and 2 strains of Borrelia burgdorferi) against 3 antimicrobial agents, commonly used in equine and bovine practice. The ranges of MIC and MBC of amoxicillin against Leptospira spp. were 0.05 - 6.25 microgram/ml and 6.25 - 25.0 microgram/ml, respectively. And the ranges of minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of amoxicillin against B. burgdorferi were 0.05 - 0.39 microgram/ml and 0.20 - 0.78 microgram/ml, respectively. The ranges of MIC and MBC of enrofloxacin against Leptospira spp. were 0.05 - 0.39 microgram/ml and 0.05 - 0.39 microgram/ml, respectively. Two strains of B. burgdorferi were resistant to enrofloxacin at the highest concentration tested for MBC (>or=100 microgram/ml). Therefore, the potential role of tilmicosin in the treatment of leptospirosis and borreliosis should be further evaluated in animal models to understand whether the in vivo studies will confirm in vitro results. All spirochetal isolates were inhibited (MIC) and were killed (MBC) by tilmicosin at concentrations below the limit of testing (

  3. Community Analysis of Biofilters Using Fluorescence In Situ Hybridization Including a New Probe for the Xanthomonas Branch of the Class Proteobacteria

    PubMed Central

    Friedrich, Udo; Naismith, Michèle M.; Altendorf, Karlheinz; Lipski, André

    1999-01-01

    Domain-, class-, and subclass-specific rRNA-targeted probes were applied to investigate the microbial communities of three industrial and three laboratory-scale biofilters. The set of probes also included a new probe (named XAN818) specific for the Xanthomonas branch of the class Proteobacteria; this probe is described in this study. The members of the Xanthomonas branch do not hybridize with previously developed rRNA-targeted oligonucleotide probes for the α-, β-, and γ-Proteobacteria. Bacteria of the Xanthomonas branch accounted for up to 4.5% of total direct counts obtained with 4′,6-diamidino-2-phenylindole. In biofilter samples, the relative abundance of these bacteria was similar to that of the γ-Proteobacteria. Actinobacteria (gram-positive bacteria with a high G+C DNA content) and α-Proteobacteria were the most dominant groups. Detection rates obtained with probe EUB338 varied between about 40 and 70%. For samples with high contents of gram-positive bacteria, these percentages were substantially improved when the calculations were corrected for the reduced permeability of gram-positive bacteria when formaldehyde was used as a fixative. The set of applied bacterial class- and subclass-specific probes yielded, on average, 58.5% (± a standard deviation of 23.0%) of the corrected eubacterial detection rates, thus indicating the necessity of additional probes for studies of biofilter communities. The Xanthomonas-specific probe presented here may serve as an efficient tool for identifying potential phytopathogens. In situ hybridization proved to be a practical tool for microbiological studies of biofiltration systems. PMID:10427047

  4. Wide Distribution of Closely Related, Antibiotic-Producing Arthrobacter Strains throughout the Arctic Ocean

    PubMed Central

    Wietz, Matthias; Månsson, Maria; Bowman, Jeff S.; Blom, Nikolaj; Ng, Yin

    2012-01-01

    We isolated 16 antibiotic-producing bacterial strains throughout the central Arctic Ocean, including seven Arthrobacter spp. with almost identical 16S rRNA gene sequences. These strains were numerically rare, as revealed using 454 pyrosequencing libraries. Arthrobacter spp. produced arthrobacilins A to C under different culture conditions, but other, unidentified compounds likely contributed to their antibiotic activity. PMID:22247128

  5. Iodine from bacterial iodide oxidization by Roseovarius spp. inhibits the growth of other bacteria.

    PubMed

    Zhao, Dan; Lim, Choon-Ping; Miyanaga, Kazuhiko; Tanji, Yasunori

    2013-03-01

    Microbial activities in brine, seawater, or estuarine mud are involved in iodine cycle. To investigate the effects of the microbiologically induced iodine on other bacteria in the environment, a total of 13 bacteria that potentially participated in the iodide-oxidizing process were isolated from water or biofilm at a location containing 131 μg ml(-1) iodide. Three distinct strains were further identified as Roseovarius spp. based on 16 S rRNA gene sequences after being distinguished by restriction fragment length polymorphism analysis. Morphological characteristics of these three Roseovarius spp. varied considerably across and within strains. Iodine production increased with Roseovarius spp. growth when cultured in Marine Broth with 200 μg ml(-1) iodide (I(-)). When 10(6) CFU/ml Escherichia coli, Pseudomonas aeruginosa, and Bacillus pumilus were exposed to various concentrations of molecular iodine (I(2)), the minimum inhibitory concentrations (MICs) were 0.5, 1.0, and 1.0 μg ml(-1), respectively. However, fivefold increases in the MICs for Roseovarius spp. were obtained. In co-cultured Roseovarius sp. IOB-7 and E. coli in Marine Broth containing iodide (I(-)), the molecular iodine concentration was estimated to be 0.76 μg ml(-1) after 24 h and less than 50 % of E. coli was viable compared to that co-cultured without iodide. The growth inhibition of E. coli was also observed in co-cultures with the two other Roseovarius spp. strains when the molecular iodine concentration was assumed to be 0.52 μg ml(-1).

  6. Expression of Xylella fastidiosa RpfF in citrus disrupts signaling in Xanthomonas citri subsp. citri and thereby its virulence.

    PubMed

    Caserta, R; Picchi, S C; Takita, M A; Tomaz, J P; Pereira, W E L; Machado, M A; Ionescu, M; Lindow, S; De Souza, A A

    2014-11-01

    Xylella fastidiosa and Xanthomonas citri subsp. citri, that cause citrus variegated chlorosis (CVC) and citrus canker diseases, respectively, utilize diffusible signal factor (DSF) for quorum sensing. DSF, produced by RpfF, are similar fatty acids in both organisms, although a different set of genes is regulated by DSF in each species. Because of this similarity, Xylella fastidiosa DSF might be recognized and affect the biology of Xanthomonas citri. Therefore, transgenic Citrus sinensis and Carrizo citrange plants overexpressing the Xylella fastidiosa rpfF were inoculated with Xanthomonas citri and changes in symptoms of citrus canker were observed. X. citri biofilms formed only at wound sites on transgenic leaves and were thicker; however, bacteria were unable to break through the tissue and form pustules elsewhere. Although abundant growth of X. citri occurred at wound sites on inoculated transgenic leaves, little growth was observed on unwounded tissue. Genes in the DFS-responsive core in X. citri were downregulated in bacteria isolated from transgenic leaves. DSF-dependent expression of engA was suppressed in cells exposed to xylem sap from transgenic plants. Thus, altered symptom development appears to be due to reduced expression of virulence genes because of the presence of antagonists of DSF signaling in X. citri in rpfF-expressing plants.

  7. In vitro activities of the new semisynthetic glycopeptide telavancin (TD-6424), vancomycin, daptomycin, linezolid, and four comparator agents against anaerobic gram-positive species and Corynebacterium spp.

    PubMed

    Goldstein, Ellie J C; Citron, Diane M; Merriam, C Vreni; Warren, Yumi A; Tyrrell, Kerin L; Fernandez, Helen T

    2004-06-01

    Telavancin is a new semisynthetic glycopeptide anti-infective with multiple mechanisms of action, including inhibition of bacterial membrane phospholipid synthesis and inhibition of bacterial cell wall synthesis. We determined the in vitro activities of telavancin, vancomycin, daptomycin, linezolid, quinupristin-dalfopristin, imipenem, piperacillin-tazobactam, and ampicillin against 268 clinical isolates of anaerobic gram-positive organisms and 31 Corynebacterium strains using agar dilution methods according to National Committee for Clinical Laboratory Standards procedures. Plates with daptomycin were supplemented with Ca(2+) to 50 mg/liter. The MICs at which 90% of isolates tested were inhibited (MIC(90)s) for telavancin and vancomycin were as follows: Actinomyces spp. (n = 45), 0.25 and 1 microg/ml, respectively; Clostridium difficile (n = 14), 0.25 and 1 microg/ml, respectively; Clostridium ramosum (n = 16), 1 and 4 microg/ml, respectively; Clostridium innocuum (n = 15), 4 and 16 microg/ml, respectively; Clostridium clostridioforme (n = 15), 8 and 1 microg/ml, respectively; Eubacterium group (n = 33), 0.25 and 2 microg/ml, respectively; Lactobacillus spp. (n = 26), 0.5 and 4 microg/ml, respectively; Propionibacterium spp. (n = 34), 0.125 and 0.5 microg/ml, respectively; Peptostreptococcus spp. (n = 52), 0.125 and 0.5 microg/ml, respectively; and Corynebacterium spp. (n = 31), 0.03 and 0.5 microg/ml, respectively. The activity of TD-6424 was similar to that of quinupristin-dalfopristin for most strains except C. clostridioforme and Lactobacillus casei, where quinupristin-dalfopristin was three- to fivefold more active. Daptomycin had decreased activity (MIC > 4 microg/ml) against 14 strains of Actinomyces spp. and all C. ramosum, Eubacterium lentum, and Lactobacillus plantarum strains. Linezolid showed decreased activity (MIC > 4 microg/ml) against C. ramosum, two strains of C. difficile, and 15 strains of Lactobacillus spp. Imipenem and piperacillin

  8. Biofilm formation and multidrug-resistant Aeromonas spp. from wild animals.

    PubMed

    Dias, Carla; Borges, Anabela; Saavedra, Maria José; Simões, Manuel

    2018-03-01

    The 'One Health' concept recognises that the health of humans, animals and the environment are interconnected. Therefore, knowledge on the behaviour of micro-organisms from the most diverse environmental niches is important to prevent the emergence and dissemination of antimicrobial resistance. Wild animals are known to carry antimicrobial-resistant micro-organisms with potential public health impact. However, no data are available on the behaviour of sessile bacteria from wild animals, although antimicrobial resistance is amplified in biofilms. This study characterised the ciprofloxacin susceptibility and the adhesion and biofilm formation abilities of 14 distinct Aeromonas spp. (8 Aeromonas salmonicida, 3 Aeromonas eucrenophila, 2 Aeromonas bestiarum and 1 Aeromonas veronii) isolated from wild animals and already characterised as resistant to β-lactam antibiotics. The ciprofloxacin MIC was determined according to CLSI guidelines. A biofilm formation assay was performed by a modified microtitre plate method. Bacterial surface hydrophobicity was assessed by sessile drop contact angle measurement. All Aeromonas spp. strains were resistant to ciprofloxacin (MICs of 6-60μg/mL) and had hydrophilic surfaces (range 2-37mJ/m 2 ). These strains were able to adhere and form biofilms with distinct magnitudes. Biofilm exposure to 10×MIC of ciprofloxacin only caused low to moderate biofilm removal. This study shows that the strains tested are of potential public health concern and emphasises that wild animals are potential reservoirs of multidrug-resistant strains. In fact, Aeromonas spp. are consistently considered opportunistic pathogens. Moreover, bacterial ability to form biofilms increases antimicrobial resistance and the propensity to cause persistent infections. Copyright © 2017 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  9. A Rhizosphere-Associated Symbiont, Photobacterium spp. Strain MELD1, and Its Targeted Synergistic Activity for Phytoprotection against Mercury

    PubMed Central

    Mathew, Dony Chacko; Ho, Ying-Ning; Gicana, Ronnie Gicaraya; Mathew, Gincy Marina; Chien, Mei-Chieh; Huang, Chieh-Chen

    2015-01-01

    Though heavy metal such as mercury is toxic to plants and microorganisms, the synergistic activity between them may offer benefit for surviving. In this study, a mercury-reducing bacterium, Photobacterium spp. strain MELD1, with an MIC of 33 mg . kg-1 mercury was isolated from a severely mercury and dioxin contaminated rhizosphere soil of reed (Phragmites australis). While the whole genome sequencing of MELD1 confirmed the presence of a mer operon, the mercury reductase MerA gene showed 99% sequence identity to Vibrio shilloni AK1 and implicates its route resulted from the event of horizontal gene transfer. The efficiency of MELD1 to vaporize mercury (25 mg . kg-1, 24 h) and its tolerance to toxic metals and xenobiotics such as lead, cadmium, pentachlorophenol, pentachloroethylene, 3-chlorobenzoic acid, 2,3,7,8-tetrachlorodibenzo-p-dioxin and 1,2,3,7,8,9-hexachlorodibenzo-p-dioxin is promising. Combination of a long yard bean (Vigna unguiculata ssp. Sesquipedalis) and strain MELD1 proved beneficial in the phytoprotection of mercury in vivo. The effect of mercury (Hg) on growth, distribution and tolerance was examined in root, shoot, leaves and pod of yard long bean with and without the inoculation of strain MELD1. The model plant inoculated with MELD1 had significant increases in biomass, root length, seed number, and increased mercury uptake limited to roots. Biolog plate assay were used to assess the sole-carbon source utilization pattern of the isolate and Indole-3-acetic acid (IAA) productivity was analyzed to examine if the strain could contribute to plant growth. The results of this study suggest that, as a rhizosphere-associated symbiont, the synergistic activity between the plant and MELD1 can improve the efficiency for phytoprotection, phytostabilization and phytoremediation of mercury. PMID:25816328

  10. A rhizosphere-associated symbiont, Photobacterium spp. strain MELD1, and its targeted synergistic activity for phytoprotection against mercury.

    PubMed

    Mathew, Dony Chacko; Ho, Ying-Ning; Gicana, Ronnie Gicaraya; Mathew, Gincy Marina; Chien, Mei-Chieh; Huang, Chieh-Chen

    2015-01-01

    Though heavy metal such as mercury is toxic to plants and microorganisms, the synergistic activity between them may offer benefit for surviving. In this study, a mercury-reducing bacterium, Photobacterium spp. strain MELD1, with an MIC of 33 mg x kg(-1) mercury was isolated from a severely mercury and dioxin contaminated rhizosphere soil of reed (Phragmites australis). While the whole genome sequencing of MELD1 confirmed the presence of a mer operon, the mercury reductase MerA gene showed 99% sequence identity to Vibrio shilloni AK1 and implicates its route resulted from the event of horizontal gene transfer. The efficiency of MELD1 to vaporize mercury (25 mg x kg(-1), 24 h) and its tolerance to toxic metals and xenobiotics such as lead, cadmium, pentachlorophenol, pentachloroethylene, 3-chlorobenzoic acid, 2,3,7,8-tetrachlorodibenzo-p-dioxin and 1,2,3,7,8,9-hexachlorodibenzo-p-dioxin is promising. Combination of a long yard bean (Vigna unguiculata ssp. Sesquipedalis) and strain MELD1 proved beneficial in the phytoprotection of mercury in vivo. The effect of mercury (Hg) on growth, distribution and tolerance was examined in root, shoot, leaves and pod of yard long bean with and without the inoculation of strain MELD1. The model plant inoculated with MELD1 had significant increases in biomass, root length, seed number, and increased mercury uptake limited to roots. Biolog plate assay were used to assess the sole-carbon source utilization pattern of the isolate and Indole-3-acetic acid (IAA) productivity was analyzed to examine if the strain could contribute to plant growth. The results of this study suggest that, as a rhizosphere-associated symbiont, the synergistic activity between the plant and MELD1 can improve the efficiency for phytoprotection, phytostabilization and phytoremediation of mercury.

  11. Molecular Mechanisms Associated with Xylan Degradation by Xanthomonas Plant Pathogens*

    PubMed Central

    Santos, Camila Ramos; Hoffmam, Zaira Bruna; de Matos Martins, Vanesa Peixoto; Zanphorlin, Leticia Maria; de Paula Assis, Leandro Henrique; Honorato, Rodrigo Vargas; Lopes de Oliveira, Paulo Sérgio; Ruller, Roberto; Murakami, Mario Tyago

    2014-01-01

    Xanthomonas pathogens attack a variety of economically relevant plants, and their xylan CUT system (carbohydrate utilization with TonB-dependent outer membrane transporter system) contains two major xylanase-related genes, xynA and xynB, which influence biofilm formation and virulence by molecular mechanisms that are still elusive. Herein, we demonstrated that XynA is a rare reducing end xylose-releasing exo-oligoxylanase and not an endo-β-1,4-xylanase as predicted. Structural analysis revealed that an insertion in the β7-α7 loop induces dimerization and promotes a physical barrier at the +2 subsite conferring this unique mode of action within the GH10 family. A single mutation that impaired dimerization became XynA active against xylan, and high endolytic activity was achieved when this loop was tailored to match a canonical sequence of endo-β-1,4-xylanases, supporting our mechanistic model. On the other hand, the divergent XynB proved to be a classical endo-β-1,4-xylanase, despite the low sequence similarity to characterized GH10 xylanases. Interestingly, this enzyme contains a calcium ion bound nearby to the glycone-binding region, which is required for catalytic activity and structural stability. These results shed light on the molecular basis for xylan degradation by Xanthomonas and suggest how these enzymes synergistically assist infection and pathogenesis. Our findings indicate that XynB contributes to breach the plant cell wall barrier, providing nutrients and facilitating the translocation of effector molecules, whereas the exo-oligoxylanase XynA possibly participates in the suppression of oligosaccharide-induced immune responses. PMID:25266726

  12. Confirmation and Identification of Salmonella spp., Cronobacter spp., and Other Gram-Negative Organisms by the Bruker MALDI Biotyper Method: Collaborative Study, First Action 2017.09.

    PubMed

    Bastin, Benjamin; Bird, Patrick; Benzinger, M Joseph; Crowley, Erin; Agin, James; Goins, David; Sohier, Daniele; Timke, Markus; Shi, Gongyi; Kostrzewa, Markus

    2018-04-27

    The Bruker MALDI Biotyper ® method utilizes matrix-assisted laser desorption/ionizationtime-of-flight (MALDI-TOF) MS for the rapid and accurate identification and confirmation of Gram-negative bacteria from select media types. The alternative method was evaluated using nonselective and selective agars to identify Cronobacter spp., Salmonella spp., and select Gram-negative bacteria. Results obtained by the Bruker MALDI Biotyper were compared to the traditional biochemical methods as prescribed in the appropriate reference methods. Two collaborative studies were organized, one in the United States focusing on Cronobacter spp. and other Gram-negative bacteria, and one in Europe focusing on Salmonella spp. and other Gram-negative bacteria. Fourteen collaborators from seven laboratories located within the United States participated in the first collaborative study for Cronobacter spp. Fifteen collaborators from 15 service laboratories located within Europe participated in the second collaborative study for Salmonella spp. For each target organism (either Salmonella spp. or Cronobacter spp.), a total of 24 blind-coded isolates were evaluated. In each set of 24 organisms, there were 16 inclusivity organisms ( Cronobacter spp. or Salmonella spp.) and 8 exclusivity organisms (closely related non- Cronobacter spp. and non- Salmonella spp. Gram-negative organisms). After testing was completed, the total percentage of correct identifications from each agar type for each strain was determined at a percentage of 100.0% to the genus level for the Cronobacter study and a percentage of 100.0% to the genus level for the Salmonella study. For both non- Cronobacter and non- Salmonella organisms, a percentage of 100.0% was correctly identified. The results indicated that the alternative method produced equivalent results when compared to the confirmatory procedures specified by each reference method.

  13. Chemical composition and antibiofilm activity of Petroselinum crispum and Ocimum basilicum essential oils against Vibrio spp. strains.

    PubMed

    Snoussi, Mejdi; Dehmani, Ameni; Noumi, Emira; Flamini, Guido; Papetti, Adele

    2016-01-01

    In this study, we evaluated the antibacterial activity of parsley and basilic essential oils tested against Vibrio strains and their abilities to inhibit and eradicate the mature biofilm using the XTT assay. Petroselinum crispum essential oil was characterized by 1,3,8-p-menthatriene (24.2%), β-phellandrene (22.8%), apiol (13.2%), myristicin (12.6%) and terpinolene (10.3%) as a major constituents. While, in the basilic oil, linalool (42.1%), (E)-methylcinnamate (16.9%) and 1-8 cineole (7.6%) were the main ones. These two essential oils exhibit high anti-Vibrio spp. activity with varying magnitudes. All microorganisms were strongly affected indicating an appreciable antimicrobial potential of basilic with a diameter of inhibition zones growth ranging from 8.67 to 23.33 mm and MIC and MBC values ranging from (0.023-0.047 mg/ml) and (>3->24 mg/ml), respectively. The two essential oils can inhibit and eradicate the mature biofilm formed on polystyrene surface even at low concentrations, with high magnitude for Ocimum basilicum essential oil. This study gives a better insight into the anti-Vibrio activity of parsley and basilc oils and the possibility of their use to prevent and eradicate contamination of sea products by these strains. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Emergence of extended-spectrum β-lactamase producing Enterobacter spp. in patients with bacteremia in a tertiary hospital in southern Brazil.

    PubMed

    Nogueira, Keite da Silva; Paganini, Maria Cristina; Conte, Andréia; Cogo, Laura Lúcia; Taborda de Messias Reason, Iara; da Silva, Márcio José; Dalla-Costa, Libera Maria

    2014-02-01

    Extended-spectrum β-lactamases (ESBLs) are increasingly prevalent in Enterobacter spp., posing a challenge to the treatment of infections caused by this microorganism. The purpose of this retrospective study was to evaluate the prevalence, risk factors, and clinical outcomes of inpatients with bacteremia caused by ESBL and non ESBL-producing Enterobacter spp. in a tertiary hospital over the period 2004-2008. The presence of blaCTX-M, blaTEM, blaSHV, and blaPER genes was detected by polymerase chain reaction (PCR) and nucleotide sequence analysis. Genetic similarity between strains was defined by pulsed-field gel electrophoresis (PFGE). Enterobacter spp. was identified in 205 of 4907 of the patients who had positive blood cultures during hospitalization. Of those cases, 41 (20%) were ESBL-producing Enterobacter spp. Nosocomial pneumonia was the main source of bacteremia caused by ESBL-producing Enterobacter spp. The presence of this microorganism was associated with longer hospital stays. The ESBL genes detected were: CTX-M-2 (23), CTX-M-59 (10), CTX-M-15 (1), SHV-12 (5), and PER-2 (2). While Enterobacter aerogenes strains showed mainly a clonal profile, Enterobacter cloacae strains were polyclonal. Although no difference in clinical outcomes was observed between patients with infections by ESBL-producing and non-ESBL-producing strains, the detection of ESBL in Enterobacter spp. resulted in the change of antimicrobials in 75% of cases, having important implications in the decision-making regarding adequate antimicrobial therapy. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  15. Competition by Bradyrhizobium Strains for Nodulation of the Nonlegume Parasponia andersonii

    PubMed Central

    Trinick, M. J.; Hadobas, P. A.

    1989-01-01

    Bradyrhizobium strains isolated from the nonlegume Parasponia spp. formed a group of strains that were highly competitive for nodulation of P. andersonii when paired with strains isolated from legumes. Strains from legumes, including those of similar effectiveness to NGR231 and CP283, were not able to form nodules as single occupants on P. andersonii in the presence of Parasponia strains. However, NGR86, an isolate from Macroptilium lathyroides, jointly occupied one-third of the nodules formed with each of the three strains isolated from Parasponia spp. Time taken for nodules to appear may have influenced the outcome of competition, since CP283 and all isolates from legumes were slow to nodulate P. andersonii. Among the Parasponia strains, competitiveness for nodulation of P. andersonii was not associated with effectiveness of nitrogen fixation. The highly effective strain CP299 was a poor competitor when paired with the least effective strain NGR231. CP283 was the least competitive of the Parasponia strains but was still able to dominate nodules when paired with legume isolates. Dual occupancy was high, up to 67% when the inoculum contained CP299 and CP273. Both the Muc+ and Muc- types of CP283 form a symbiosis of similar effectiveness and were similarly competitive at high inoculation densities, but the Muc- form was more competitive at low inoculum densities. Both forms frequently occupied the same nodule. Bradyrhizobium strains isolated from Parasponia spp. may have specific genetic information that favor their ability to competitively and effectively infect plants in the genus Parasponia (Ulmaceae) outside the Leguminosae. PMID:16347913

  16. A homolog of an Escherichia coli phosphate-binding protein gene from Xanthomonas oryzae pv. oryzae

    NASA Technical Reports Server (NTRS)

    Hopkins, C. M.; White, F. F.; Heaton, L. A.; Guikema, J. A.; Leach, J. E.; Spooner, B. S. (Principal Investigator)

    1995-01-01

    A Xanthomonas oryzae pv. oryzae gene with sequence similarity to an Escherichia coli phosphate-binding protein gene (phoS) produces a periplasmic protein of apparent M(r) 35,000 when expressed in E. coli. Amino terminal sequencing revealed that a signal peptide is removed during transport to the periplasm in E. coli.

  17. Recent advances in the understanding of Xanthomonas citri ssp. citri pathogenesis and citrus canker disease management.

    PubMed

    Ference, Christopher M; Gochez, Alberto M; Behlau, Franklin; Wang, Nian; Graham, James H; Jones, Jeffrey B

    2018-06-01

    Taxonomic status: Bacteria; Phylum Proteobacteria; Class Gammaproteobacteria; Order Xanthomonadales; Family Xanthomonadaceae; Genus Xanthomonas; Species Xanthomonas citri ssp. citri (Xcc). Host range: Compatible hosts vary in their susceptibility to citrus canker (CC), with grapefruit, lime and lemon being the most susceptible, sweet orange being moderately susceptible, and kumquat and calamondin being amongst the least susceptible. Microbiological properties: Xcc is a rod-shaped (1.5-2.0 × 0.5-0.75 µm), Gram-negative, aerobic bacterium with a single polar flagellum. The bacterium forms yellow colonies on culture media as a result of the production of xanthomonadin. Distribution: Present in South America, the British Virgin Islands, Africa, the Middle East, India, Asia and the South Pacific islands. Localized incidence in the USA, Argentina, Brazil, Bolivia, Uruguay, Senegal, Mali, Burkina Faso, Tanzania, Iran, Saudi Arabia, Yemen and Bangladesh. Widespread throughout Paraguay, Comoros, China, Japan, Malaysia and Vietnam. Eradicated from South Africa, Australia and New Zealand. Absent from Europe. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  18. Development and application of pathovar-specific monoclonal antibodies that recognize the lipopolysaccharide O antigen and the type IV fimbriae of Xanthomonas hyacinthi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doorn, J. van; Ojanen-Reuhs, T.; Hollinger, T.C.

    1999-09-01

    The objective of this study was to develop a specific immunological diagnostic assay for yellow disease in hyacinths, using monoclonal antibodies (MAbs). Mice were immunized with a crude cell wall preparation (shear fraction) from Xanthomonas hyacinthi and with purified type IV fimbriae. Hybridomas were screened for a positive reaction with X. hyacinthi cells or fimbriae and for a negative reaction with X. translucens pv. graminis or Erwinia carotovora subsp. carotovora. Nine MAbs recognized fimbrial epitopes, as shown by immunoblotting, immunofluorescence, enzyme-linked immunosorbent assay (ELISA), and immunoelectron microscopy; however, three of these MAbs had weak cross-reactions with two X. translucens pathovarsmore » in immunoblotting experiments. Seven MAbs reacted with lipopolysaccharides and yielded a low-mobility ladder pattern on immunoblots. Subsequent analysis of MAb 2E5 showed that it specifically recognized an epitope on the O antigen, which was found to consist of rhamnose and fucose in a 2:1 molar ratio. The cross-reaction of MAb 2E5 with all X. hyacinthi strains tested showed that this O antigen is highly conserved within this species. MAb 1B10 also reacted with lipopolysaccharides. MAbs 2E5 and 1B10 were further tested in ELISA and immunoblotting experiments with cells and extracts from other pathogens. No cross-reaction was found with 27 other Xanthomonas pathovars tested or with 14 other bacterial species from other genera, such as Erwinia and Pseudomonas, indicating the high specificity of these antibodies. MAbs 2E5 and 1B10 were shown to be useful in ELISA for the detection of X. hyacinthi in infected hyacinths.« less

  19. Development and Application of Pathovar-Specific Monoclonal Antibodies That Recognize the Lipopolysaccharide O Antigen and the Type IV Fimbriae of Xanthomonas hyacinthi

    PubMed Central

    van Doorn, J.; Ojanen-Reuhs, T.; Hollinger, T. C.; Reuhs, B. L.; Schots, A.; Boonekamp, P. M.; Oudega, B.

    1999-01-01

    The objective of this study was to develop a specific immunological diagnostic assay for yellow disease in hyacinths, using monoclonal antibodies (MAbs). Mice were immunized with a crude cell wall preparation (shear fraction) from Xanthomonas hyacinthi and with purified type IV fimbriae. Hybridomas were screened for a positive reaction with X. hyacinthi cells or fimbriae and for a negative reaction with X. translucens pv. graminis or Erwinia carotovora subsp. carotovora. Nine MAbs recognized fimbrial epitopes, as shown by immunoblotting, immunofluorescence, enzyme-linked immunosorbent assay (ELISA), and immunoelectron microscopy; however, three of these MAbs had weak cross-reactions with two X. translucens pathovars in immunoblotting experiments. Seven MAbs reacted with lipopolysaccharides and yielded a low-mobility ladder pattern on immunoblots. Subsequent analysis of MAb 2E5 showed that it specifically recognized an epitope on the O antigen, which was found to consist of rhamnose and fucose in a 2:1 molar ratio. The cross-reaction of MAb 2E5 with all X. hyacinthi strains tested showed that this O antigen is highly conserved within this species. MAb 1B10 also reacted with lipopolysaccharides. MAbs 2E5 and 1B10 were further tested in ELISA and immunoblotting experiments with cells and extracts from other pathogens. No cross-reaction was found with 27 other Xanthomonas pathovars tested or with 14 other bacterial species from other genera, such as Erwinia and Pseudomonas, indicating the high specificity of these antibodies. MAbs 2E5 and 1B10 were shown to be useful in ELISA for the detection of X. hyacinthi in infected hyacinths. PMID:10473431

  20. Amplification of DNA of Xanthomonas axonopodis pv. citri from historic citrus canker herbarium specimens.

    PubMed

    Li, Wenbin; Brlansky, Ronald H; Hartung, John S

    2006-05-01

    Herbaria are important resources for the study of the origins and dispersal of plant pathogens, particularly bacterial plant pathogens that incite local lesions in which large numbers of pathogen genomes are concentrated. Xanthomonas axonopodis pv. citri (Xac), the causal agent of citrus bacterial canker disease, is a notable example of such a pathogen. The appearance of novel strains of the pathogen in Florida and elsewhere make it increasingly important to understand the relationships among strains of this pathogen. USDA-ARS at Beltsville, Maryland maintains approximately 700 herbarium specimens with citrus canker disease lesions up to 90 years old, originally collected from all over the world, and so is an important resource for phytogeographic studies of this bacterium. Unfortunately, DNA in herbarium specimens is degraded and may contain high levels of inhibitors of PCR. In this study, we compared a total of 23 DNA isolation techniques in combination with 31 novel primer pairs in order to develop an efficient protocol for the analysis of Xac DNA in herbarium specimens. We identified the most reliable extraction method, identified in terms of successful amplification by our panel of 31 primer pairs. We also identified the most robust primer pairs, identified as successful in the largest number of extracts prepared by different methods. We amplified Xac genomic sequences up to 542 bp long from herbarium samples up to 89 years old. Primers varied in effectiveness, with some primer pairs amplifying Xac DNA from a 1/10,000 dilution of extract from a single lesion from a citrus canker herbarium specimen. Our methodology will be useful to identify pathogens and perform molecular analyses of bacterial and possibly fungal genomes from herbarium specimens.

  1. Bioherbicidal potential of a strain of Xanthomonas spp. for control of common cockelbur, (Santium strumarium)

    USDA-ARS?s Scientific Manuscript database

    Several isolates of a previously unreported disease were discovered on common cocklebur seedlings in Chicot County, Arkansas and Washington County, Mississippi. Diseased plants in nature exhibited angular-shaped leaf spotting symptoms on leaf margins and central leaf areas. The isolates were cultu...

  2. Coexistence of Burkholderia, Cupriavidus, and Rhizobium sp. nodule bacteria on two Mimosa spp. in Costa Rica.

    PubMed

    Barrett, Craig F; Parker, Matthew A

    2006-02-01

    rRNA gene sequencing and PCR assays indicated that 215 isolates of root nodule bacteria from two Mimosa species at three sites in Costa Rica belonged to the genera Burkholderia, Cupriavidus, and Rhizobium. This is the first report of Cupriavidus sp. nodule symbionts for Mimosa populations within their native geographic range in the neotropics. Burkholderia spp. predominated among samples from Mimosa pigra (86% of isolates), while there was a more even distribution of Cupriavidus, Burkholderia, and Rhizobium spp. on Mimosa pudica (38, 37, and 25% of isolates, respectively). All Cupriavidus and Burkholderia genotypes tested formed root nodules and fixed nitrogen on both M. pigra and M. pudica, and sequencing of rRNA genes in strains reisolated from nodules verified identity with inoculant strains. Inoculation tests further indicated that both Cupriavidus and Burkholderia spp. resulted in significantly higher plant growth and nodule nitrogenase activity (as measured by acetylene reduction assays) relative to plant performance with strains of Rhizobium. Given the prevalence of Burkholderia and Cupriavidus spp. on these Mimosa legumes and the widespread distribution of these plants both within and outside the neotropics, it is likely that both beta-proteobacterial genera are more ubiquitous as root nodule symbionts than previously believed.

  3. Coexistence of Burkholderia, Cupriavidus, and Rhizobium sp. Nodule Bacteria on two Mimosa spp. in Costa Rica

    PubMed Central

    Barrett, Craig F.; Parker, Matthew A.

    2006-01-01

    rRNA gene sequencing and PCR assays indicated that 215 isolates of root nodule bacteria from two Mimosa species at three sites in Costa Rica belonged to the genera Burkholderia, Cupriavidus, and Rhizobium. This is the first report of Cupriavidus sp. nodule symbionts for Mimosa populations within their native geographic range in the neotropics. Burkholderia spp. predominated among samples from Mimosa pigra (86% of isolates), while there was a more even distribution of Cupriavidus, Burkholderia, and Rhizobium spp. on Mimosa pudica (38, 37, and 25% of isolates, respectively). All Cupriavidus and Burkholderia genotypes tested formed root nodules and fixed nitrogen on both M. pigra and M. pudica, and sequencing of rRNA genes in strains reisolated from nodules verified identity with inoculant strains. Inoculation tests further indicated that both Cupriavidus and Burkholderia spp. resulted in significantly higher plant growth and nodule nitrogenase activity (as measured by acetylene reduction assays) relative to plant performance with strains of Rhizobium. Given the prevalence of Burkholderia and Cupriavidus spp. on these Mimosa legumes and the widespread distribution of these plants both within and outside the neotropics, it is likely that both β-proteobacterial genera are more ubiquitous as root nodule symbionts than previously believed. PMID:16461667

  4. Validation of the ANSR® Listeria Method for Detection of Listeria spp. in Selected Foods.

    PubMed

    Caballero, Oscar; Alles, Susan; Wendorf, Michael; Gray, R Lucas; Walton, Kayla; Pinkava, Lisa; Mozola, Mark; Rice, Jennifer

    2015-01-01

    ANSR® Listeria was previously certified as Performance Tested Method(SM) 101202 for detection of Listeria spp. on selected environmental surfaces. This study proposes a matrix extension to the method for detection of Listeria spp. in selected food matrixes. The method is an isothermal nucleic acid amplification assay based on the nicking enzyme amplification reaction technology. Following single-step sample enrichment for 16-24 h, the assay is completed in less than 50 min, requiring only simple instrumentation. Inclusivity testing was performed using a panel of 51 strains of Listeria spp., representing the species L. grayi, L. innocua, L. ivanovii, L. monocytogenes, L. seeligeri, and L. welshimeri. All strains tested were detected by the ANSR assay. Exclusivity testing of 30 strains representing non-Listeria Gram-positive bacteria yielded no evidence of cross-reactivity. Performance of the ANSR method for detection of Listeria spp. was compared to that of reference culture procedures for pasteurized liquid egg, pasteurized 2% milk, Mexican-style cheese, ice cream, smoked salmon, lettuce, cantaloupe, and guacamole. Data obtained in these unpaired studies and analyzed using a probability of detection model demonstrated that there were no statistically significant differences in results between the ANSR and reference culture methods, except for milk at 16 h and cantaloupe. In milk and smoked salmon, ANSR sensitivity was low at 16 h and therefore the recommended incubation time is 24 h. In cantaloupe, ANSR was found to be more sensitive than the reference culture method at both 16 and 24 h in independent laboratory testing. The ANSR Listeria method can be used as an accurate, rapid, and simple alternative to standard culture methods for detection of Listeria spp. in selected food types.

  5. Isolation of a Seawater Tolerant Leptospira spp. from a Southern Right Whale (Eubalaena australis)

    PubMed Central

    Rago, Virginia; Uhart, Marcela

    2015-01-01

    Leptospirosis is the most widespread zoonotic disease in the world. It is caused by pathogenic spirochetes of the genus Leptospira spp. and is maintained in nature through chronic renal infection of carrier animals. Rodents and other small mammals are the main reservoirs. Information on leptospirosis in marine mammals is scarce; however, cases of leptospirosis have been documented in pinniped populations from the Pacific coast of North America from southern California to British Columbia. We report the isolation of a Leptospira spp. strain, here named Manara, from a kidney sample obtained from a Southern Right Whale (Eubalaena australis) calf, which stranded dead in Playa Manara, Península Valdés, Argentina. This strain showed motility and morphology typical of the genus Leptospira spp. under dark-field microscopy; and grew in Ellinghausen-McCullough-Johnson-Harris (EMJH) medium and Fletcher medium after 90 days of incubation at 28°C. Considering the source of this bacterium, we tested its ability to grow in Fletcher medium diluted with seawater at different percentages (1%, 3%, 5%, 7% and 10% v/v). Bacterial growth was detected 48 h after inoculation of Fletcher medium supplemented with 5% sea water, demonstrating the halophilic nature of the strain Manara. Phylogenetic analysis of 16S rRNA gene sequences placed this novel strain within the radiation of the pathogenic species of the genus Leptospira spp., with sequence similarities within the range 97–100%, and closely related to L. interrogans. Two different PCR protocols targeting genus-specific pathogenic genes (G1-G2, B64I-B64II and LigB) gave positive results, which indicates that the strain Manara is likely pathogenic. Further studies are needed to confirm this possibility as well as determine its serogroup. These results could modify our understanding of the epidemiology of this zoonosis. Until now, the resistance and ability to grow in seawater for long periods of time had been proven for the strain

  6. Genotypic and phenotypic virulence characteristics and antimicrobial resistance of Yersinia spp. isolated from meat and milk products.

    PubMed

    Özdemir, Fatma; Arslan, Seza

    2015-06-01

    A total of 300 food samples including 180 milk and 120 meat products have been examined for the presence of Yersinia spp. using the ISO 10273 and the cold enrichment method. The overall prevalence of Yersinia spp. was 84 (28%). Yersinia enterocolitica was isolated from 18 (6%) of the 300 samples. The other Yersinia species were detected in the samples Yersinia rohdei 15 (5%), Yersinia intermedia 14 (4.7%), Yersinia pseudotuberculosis 12 (4%), Yersinia ruckeri 12 (4%), Yersinia mollaretii 5 (1.7%), Yersinia bercovieri 4 (1.3%), and atypical Yersinia spp. 4 (1.3%). The conventionally identified Y. enterocolitica strains were also confirmed by the 16S rRNA gene sequencing. All Y. enterocolitica strains biotyped as 1A had negative results in the phenotypic virulence tests. The 84 Yersinia strains were also examined genotypically for the presence of virulence genes. None of the Y. enterocolitica and other Yersinia strains contained the ail, ystA, yadA, and virF except only 1 Y. intermedia and 2 Y. enterocolitica strains that were found to be positive for ystB. Antimicrobial resistance of 84 Yersinia to 16 antimicrobial agents was determined by the disk diffusion method. All strains were sensitive to tobramycine and imipenem while resistant to clindamycin. Although 84.5% of the strains were resistant to at least 3 or more antimicrobial agents, 64.3% of them were resistant to 4 or more antimicrobial agents. © 2015 Institute of Food Technologists®

  7. Prevalence of Shiga toxin-producing Escherichia coli, Salmonella spp. and Campylobacter spp. in large game animals intended for consumption: relationship with management practices and livestock influence.

    PubMed

    Díaz-Sánchez, S; Sánchez, S; Herrera-León, S; Porrero, C; Blanco, J; Dahbi, G; Blanco, J E; Mora, A; Mateo, R; Hanning, I; Vidal, D

    2013-05-03

    Although wild ruminants have been identified as reservoirs of Shiga-toxin producing Escherichia coli (STEC), little information is available concerning the role of Salmonella spp. and Campylobacter spp. in large game species. We evaluated the presence of these pathogens in faeces (N=574) and carcasses (N=585) sampled from red deer (N=295), wild boar (N=333) and other ungulates (fallow deer, mouflon) (N=9). Animal sampling was done in situ from 33 hunting estates during two hunting seasons. Salmonella spp. and Campylobacter spp. strains associated with human campylobacteriosis were infrequently detected indicating that both pathogens had a limited zoonotic risk in our study area. The overall STEC prevalence in animals was 21% (134/637), being significantly higher in faeces from red deer (90 out of 264). A total of 58 isolates were serotyped. Serotypes O146:H- and O27:H30 were the most frequent in red deer and the majority of isolates from red deer and wild boar were from serotypes previously found in STEC strains associated with human infection, including the serotype O157:H7. The STEC prevalence in red deer faeces was significantly higher with the presence of livestock (p<0, 01) where high densities of red deer (p<0.001) were present. To the best of our knowledge, this is the first study reporting the occurrence of Salmonella spp. and STEC in carcasses of large game animals. Furthermore, this study confirmed by pulsed-field gel electrophoresis (PFGE) that cross contamination of STEC during carcass dressing occurred, implying the likelihood of these pathogens entering into the food chain. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Multilocus Sequence Typing of Cronobacter Strains Isolated from Retail Foods and Environmental Samples.

    PubMed

    Killer, Jiří; Skřivanová, Eva; Hochel, Igor; Marounek, Milan

    2015-06-01

    Cronobacter spp. are bacterial pathogens that affect children and immunocompromised adults. In this study, we used multilocus sequence typing (MLST) to determine sequence types (STs) in 11 Cronobacter spp. strains isolated from retail foods, 29 strains from dust samples obtained from vacuum cleaners, and 4 clinical isolates. Using biochemical tests, species-specific polymerase chain reaction, and MLST analysis, 36 strains were identified as Cronobacter sakazakii, and 6 were identified as Cronobacter malonaticus. In addition, one strain that originated from retail food and one from a dust sample from a vacuum cleaner were identified on the basis of MLST analysis as Cronobacter dublinensis and Cronobacter turicensis, respectively. Cronobacter spp. strains isolated from the retail foods were assigned to eight different MLST sequence types, seven of which were newly identified. The strains isolated from the dust samples were assigned to 7 known STs and 14 unknown STs. Three clinical isolates and one household dust isolate were assigned to ST4, which is the predominant ST associated with neonatal meningitis. One clinical isolate was classified based on MLST analysis as Cronobacter malonaticus and belonged to an as-yet-unknown ST. Three strains isolated from the household dust samples were assigned to ST1, which is another clinically significant ST. It can be concluded that Cronobacter spp. strains of different origin are genetically quite variable. The recovery of C. sakazakii strains belonging to ST1 and ST4 from the dust samples suggests the possibility that contamination could occur during food preparation. All of the novel STs and alleles for C. sakazakii, C. malonaticus, C. dublinensis, and C. turicensis determined in this study were deposited in the Cronobacter MLST database available online ( http://pubmlst.org/cronobacter/).

  9. Structure and Origin of Xanthomonas arboricola pv. pruni Populations Causing Bacterial Spot of Stone Fruit Trees in Western Europe.

    PubMed

    Boudon, Sylvain; Manceau, Charles; Nottéghem, Jean-Loup

    2005-09-01

    ABSTRACT Xanthomonas arboricola pv. pruni, the causal agent of bacterial spot on stone fruit, was found in 1995 in several orchards in southeastern France. We studied population genetics of this emerging pathogen in comparison with populations from the United States, where the disease was first described, and from Italy, where the disease has occurred since 1920. Four housekeeping genes (atpD, dnaK, efp, and glnA) and the intergenic transcribed spacer region were sequenced from a total of 3.9 kb of sequences, and fluorescent amplified fragment length polymorphism (FAFLP) analysis was performed. A collection of 64 X. arboricola pv. pruni strains, including 23 strains from France, was analyzed. The X. arboricola pv. pruni population had a low diversity because no sequence polymorphisms were observed. Population diversity revealed by FAFLP was lower for the West European population than for the American population. The same bacterial genotype was detected from five countries on three continents, a geographic distribution that can be explained by human-aided migration of bacteria. Our data support the hypothesis that the pathogen originated in the United States and subsequently has been disseminated to other stone-fruit-growing regions of the world. In France, emergence of this disease was due to a recent introduction of the most prevalent genotype of the bacterium found worldwide.

  10. Growth of Listeria spp. in shredded cabbage is enhanced by a mild heat treatment.

    PubMed

    Ells, Timothy C; Truelstrup Hansen, Lisbeth

    2010-03-01

    Mild thermal processing can enhance the shelf life of cut fruits and vegetables by delaying the onset of spoilage and preserving the organoleptic properties of shredded cabbage. However, food safety issues related to this process have not been fully investigated. Therefore, the survival and growth of Listeria spp. on cabbage treated in this manner was examined. Experimentally, 24 strains of Listeria spp. (including L. monocytogenes) were inoculated onto cut and intact cabbage tissues and stored at 5 degrees C. All strains on intact tissues exhibited a moderate decline in numbers (up to 1.0 log CFU/cm(2)) over the 28-day storage period. Conversely, cut tissue supported growth of most strains during the first 7 to 14 days of incubation with maximum increases of 1.2 log CFU/cm(2). Subsequently, the survival or growth on heat-treated (50 degrees C for 3 min) and untreated shredded cabbage of four L. monocytogenes and four nonpathogenic Listeria spp. strains were compared during storage for 21 days at 5 degrees C. Growth on untreated shred for all strains was similar to the results observed on cut tissue with a maximum increase of approximately 1.0 log CFU/g. However, in the heat-treated cabbage shred all strains displayed a rapid increase in growth (up to 2.5 log CFU/g) during the first 7 days of incubation, which may be indicative of the destruction of an endogenous growth-inhibiting compound within the cabbage. In conclusion, this study shows that mild thermal treatments of cut cabbage may promote pathogen growth if other inimical barriers are not implemented downstream of the thermal treatment.

  11. Influence of epidemiological factors on the bioherbicidal efficacy of a Xanthomonas capestris isolate on common cocklebur (Xanthium strumarium)

    USDA-ARS?s Scientific Manuscript database

    Greenhouse and controlled-environment studies were conducted to determine the effects of incubation temperature, dew period temperature and duration, plant growth stage, and cell concentration on the bioherbicidal efficacy of a highly virulent isolate (LVA987) of the bacterial pathogen, Xanthomonas ...

  12. Detection of Listeria spp. using ACTERO listeria enrichment media.

    PubMed

    Claveau, David; Olishevskyy, Sergiy; Giuffre, Michael; Martinez, Gabriela

    2014-01-01

    ACTERO Listeria Enrichment Media (ACTERO Listeria) is a selective medium developed for a single-step recovery and enrichment of Listeria spp. from environmental samples. Robustness testing of the ACTERO Listeria medium demonstrated good performance when minor changes were introduced to the incubation temperature and time. All 54 Listeria strains tested, representing the most frequently isolated Listeria species from food (L. monocytogenes, L. ivanovii, L. seeligeri, L. welshimeri, and L. grayi), were successfully enriched in ACTERO Listeria. None of the 30 nontarget strains tested in the exclusivity study was recovered after incubation in ACTERO Listeria. Recovery of Listeria was consistent across three independently produced lots of the ACTERO Listeria, and the prepared medium was stable for 45 days when stored at 4 degrees C in the dark. Matrix studies performed with environmental sponge samples from plastic and stainless steel surfaces demonstrated similar recovery of Listeria spp. in a single-step enrichment using ACTERO Listeria from plastic, and significantly better recovery from stainless steel surfaces when compared to the U.S. Department of Agriculture-Food Safety and Inspection Service reference method. The results of this study prove that ACTERO Listeria Enrichment Media can be effectively used in replacement of the two-step enrichment suggested by the reference method without affecting the recovery of Listeria spp. from environmental samples.

  13. Leptospira spp. infection in sheep herds in southeast Brazil

    PubMed Central

    2014-01-01

    Background With the aim of studying Leptospira spp. infection in sheep herds, blood samples and respective kidney and liver fragments were collected from 100 animals from twenty different properties during slaughter at a meat company in the Sorocaba region, São Paulo state, southeast Brazil. The microscopic agglutination test (MAT) was performed with 29 strains of Leptospira spp. To identify the agent in the liver and kidney, 100 samples of each tissue were submitted to culture in Fletcher medium and analyzed by the polymerase chain reaction (PCR) for Leptospira spp. Results MAT detected 23 samples serologically positive for one or more Leptospira spp. serovars and significantly more for Autumnalis. Eight (4%) samples were positive in culture (four kidneys and four livers), corresponding to five animals with positive serology (one animal simultaneously positive for both kidney and liver) and two negatives. PCR detected Leptospira spp. in 14 samples (seven kidneys and seven livers) corresponding to 12 positive animals (two animals simultaneously positive for kidney and liver), of which ten were serologically positive and two negative. Conclusions PCR was faster, more practical and more sensitive than culture for detecting leptospires. The results reinforce the importance of sheep in the epidemiological context of leptospirosis. PMID:24822059

  14. High Prevalence of Intermediate Leptospira spp. DNA in Febrile Humans from Urban and Rural Ecuador.

    PubMed

    Chiriboga, Jorge; Barragan, Verónica; Arroyo, Gabriela; Sosa, Andrea; Birdsell, Dawn N; España, Karool; Mora, Ana; Espín, Emilia; Mejía, María Eugenia; Morales, Melba; Pinargote, Carmina; Gonzalez, Manuel; Hartskeerl, Rudy; Keim, Paul; Bretas, Gustavo; Eisenberg, Joseph N S; Trueba, Gabriel

    2015-12-01

    Leptospira spp., which comprise 3 clusters (pathogenic, saprophytic, and intermediate) that vary in pathogenicity, infect >1 million persons worldwide each year. The disease burden of the intermediate leptospires is unclear. To increase knowledge of this cluster, we used new molecular approaches to characterize Leptospira spp. in 464 samples from febrile patients in rural, semiurban, and urban communities in Ecuador; in 20 samples from nonfebrile persons in the rural community; and in 206 samples from animals in the semiurban community. We observed a higher percentage of leptospiral DNA-positive samples from febrile persons in rural (64%) versus urban (21%) and semiurban (25%) communities; no leptospires were detected in nonfebrile persons. The percentage of intermediate cluster strains in humans (96%) was higher than that of pathogenic cluster strains (4%); strains in animal samples belonged to intermediate (49%) and pathogenic (51%) clusters. Intermediate cluster strains may be causing a substantial amount of fever in coastal Ecuador.

  15. High Prevalence of Intermediate Leptospira spp. DNA in Febrile Humans from Urban and Rural Ecuador

    PubMed Central

    Chiriboga, Jorge; Barragan, Verónica; Arroyo, Gabriela; Sosa, Andrea; Birdsell, Dawn N.; España, Karool; Mora, Ana; Espín, Emilia; Mejía, María Eugenia; Morales, Melba; Pinargote, Carmina; Gonzalez, Manuel; Hartskeerl, Rudy; Keim, Paul; Bretas, Gustavo; Eisenberg, Joseph N.S.

    2015-01-01

    Leptospira spp., which comprise 3 clusters (pathogenic, saprophytic, and intermediate) that vary in pathogenicity, infect >1 million persons worldwide each year. The disease burden of the intermediate leptospires is unclear. To increase knowledge of this cluster, we used new molecular approaches to characterize Leptospira spp. in 464 samples from febrile patients in rural, semiurban, and urban communities in Ecuador; in 20 samples from nonfebrile persons in the rural community; and in 206 samples from animals in the semiurban community. We observed a higher percentage of leptospiral DNA–positive samples from febrile persons in rural (64%) versus urban (21%) and semiurban (25%) communities; no leptospires were detected in nonfebrile persons. The percentage of intermediate cluster strains in humans (96%) was higher than that of pathogenic cluster strains (4%); strains in animal samples belonged to intermediate (49%) and pathogenic (51%) clusters. Intermediate cluster strains may be causing a substantial amount of fever in coastal Ecuador. PMID:26583534

  16. New Multilocus Variable-Number Tandem-Repeat Analysis Tool for Surveillance and Local Epidemiology of Bacterial Leaf Blight and Bacterial Leaf Streak of Rice Caused by Xanthomonas oryzae

    PubMed Central

    Poulin, L.; Grygiel, P.; Magne, M.; Rodriguez-R, L. M.; Forero Serna, N.; Zhao, S.; El Rafii, M.; Dao, S.; Tekete, C.; Wonni, I.; Koita, O.; Pruvost, O.; Verdier, V.; Vernière, C.

    2014-01-01

    Multilocus variable-number tandem-repeat analysis (MLVA) is efficient for routine typing and for investigating the genetic structures of natural microbial populations. Two distinct pathovars of Xanthomonas oryzae can cause significant crop losses in tropical and temperate rice-growing countries. Bacterial leaf streak is caused by X. oryzae pv. oryzicola, and bacterial leaf blight is caused by X. oryzae pv. oryzae. For the latter, two genetic lineages have been described in the literature. We developed a universal MLVA typing tool both for the identification of the three X. oryzae genetic lineages and for epidemiological analyses. Sixteen candidate variable-number tandem-repeat (VNTR) loci were selected according to their presence and polymorphism in 10 draft or complete genome sequences of the three X. oryzae lineages and by VNTR sequencing of a subset of loci of interest in 20 strains per lineage. The MLVA-16 scheme was then applied to 338 strains of X. oryzae representing different pathovars and geographical locations. Linkage disequilibrium between MLVA loci was calculated by index association on different scales, and the 16 loci showed linear Mantel correlation with MLSA data on 56 X. oryzae strains, suggesting that they provide a good phylogenetic signal. Furthermore, analyses of sets of strains for different lineages indicated the possibility of using the scheme for deeper epidemiological investigation on small spatial scales. PMID:25398857

  17. Dominant selectable markers for Penicillium spp. transformation and gene function studies

    USDA-ARS?s Scientific Manuscript database

    Penicillium spp. has been genetically manipulated and gene function studies have utilized single gene deletion strains for phenotypic analysis. Fungal transformation experiments have relied on hygromycin and hygromycin phosphotransferase (hph) as the main dominant selectable marker (DSM) system in P...

  18. Production and characterization of Ehrlichia risticii, the agent of Potomac horse fever, from snails (Pleuroceridae: Juga spp.) in aquarium culture and genetic comparison to equine strains.

    PubMed

    Reubel, G H; Barlough, J E; Madigan, J E

    1998-06-01

    We report on the production and characterization of Ehrlichia risticii, the agent of Potomac horse fever (PHF), from snails (Pleuroceridae: Juga spp.) maintained in aquarium culture and compare it genetically to equine strains. Snails were collected from stream waters on a pasture in Siskiyou County, Calif., where PHF is enzootic and were maintained for several weeks in freshwater aquaria in the laboratory. Upon exposure to temperatures above 22 degrees C the snails released trematode cercariae tentatively identified as virgulate cercariae. Fragments of three different genes (genes for 16S rRNA, the groESL heat shock operon, and the 51-kDa major antigen) were amplified from cercaria lysates by PCR and sequenced. Genetic information was also obtained from E. risticii strains from horses with PHF. The PCR positivity of snail secretions was associated with the presence of trematode cercariae. Sequence analysis of the three genes indicated that the source organism closely resembled E. risticii, and the sequences of all three genes were virtually identical to those of the genes of an equine E. risticii strain from a property near the snail collection site. Phylogenetic analyses of the three genes indicated the presence of geographical E. risticii strain clusters.

  19. Identification of novel Xanthomonas euvesicatoria type III effector proteins by a machine-learning approach.

    PubMed

    Teper, Doron; Burstein, David; Salomon, Dor; Gershovitz, Michael; Pupko, Tal; Sessa, Guido

    2016-04-01

    The Gram-negative bacterium Xanthomonas euvesicatoria (Xcv) is the causal agent of bacterial spot disease in pepper and tomato. Xcv pathogenicity depends on a type III secretion (T3S) system that delivers effector proteins into host cells to suppress plant immunity and promote disease. The pool of known Xcv effectors includes approximately 30 proteins, most identified in the 85-10 strain by various experimental and computational techniques. To identify additional Xcv 85-10 effectors, we applied a genome-wide machine-learning approach, in which all open reading frames (ORFs) were scored according to their propensity to encode effectors. Scoring was based on a large set of features, including genomic organization, taxonomic dispersion, hypersensitive response and pathogenicity (hrp)-dependent expression, 5' regulatory sequences, amino acid composition bias and GC content. Thirty-six predicted effectors were tested for translocation into plant cells using the hypersensitive response (HR)-inducing domain of AvrBs2 as a reporter. Seven proteins (XopAU, XopAV, XopAW, XopAP, XopAX, XopAK and XopAD) harboured a functional translocation signal and their translocation relied on the HrpF translocon, indicating that they are bona fide T3S effectors. Remarkably, four belong to novel effector families. Inactivation of the xopAP gene reduced the severity of disease symptoms in infected plants. A decrease in cell death and chlorophyll content was observed in pepper leaves inoculated with the xopAP mutant when compared with the wild-type strain. However, populations of the xopAP mutant in infected leaves were similar in size to those of wild-type bacteria, suggesting that the reduction in virulence was not caused by impaired bacterial growth. © 2015 BSPP and John Wiley & Sons Ltd.

  20. Isolation and identification of Salmonella spp. in drinking water, streams, and swine wastewater by molecular techniques in Taiwan

    NASA Astrophysics Data System (ADS)

    Kuo, C.; Hsu, B.; Shen, T.; Tseng, S.; Tsai, J.; Huang, K.; Kao, P.; Chen, J.

    2013-12-01

    Salmonella spp. is a common water-borne pathogens and its genus comprises more than 2,500 serotypes. Major pathogenic genotypes which cause typhoid fever, enteritis and other intestinal-type diseases are S. Typhimurium, S. Enteritidis, S. Stanley, S. Agona, S.Albany, S. Schwarzengrund, S. Newport, S. Choleraesuis, and S. Derby. Hence, the identification of the serotypes of Salmonella spp. is important. In the present study, the analytical procedures include direct concentration method, non-selective pre-enrichment method and selective enrichment method of Salmonella spp.. Both selective enrichment method and cultured bacteria were detected with specific primers of Salmonella spp. by polymerase chain reaction (PCR). At last, the serotypes of Salmonella were confirmed by using MLST (multilocus sequence typing) with aroC, dnaN, hemD, hisD, purE, sucA, thrA housekeeping genes to identify the strains of positive samples. This study contains 121 samples from three different types of water sources including the drinking water (51), streams (45), and swine wastewater (25). Thirteen samples with positive invA gene are separated from culture method. The strains of these positive samples which identified from MLST method are S. Albany, S. Typhimurium, S. Newport, S. Bareilly, and S. Derby. Some of the serotypes, S. Albany, S. Typhimurium and S. Newport, are highly pathogenic which correlated to human diarrhea. In our results, MLST is a useful method to identify the strains of Salmonella spp.. Keywords: Salmonella, PCR, MLST.

  1. A resistance locus in the American heirloom rice variety Carolina Gold Select is triggered by TAL effectors with diverse predicted targets and is effective against African strains of Xanthomonas oryzae pv. oryzicola.

    PubMed

    Triplett, Lindsay R; Cohen, Stephen P; Heffelfinger, Christopher; Schmidt, Clarice L; Huerta, Alejandra I; Tekete, Cheick; Verdier, Valerie; Bogdanove, Adam J; Leach, Jan E

    2016-09-01

    The rice pathogens Xanthomonas oryzae pathovar (pv.) oryzae and pv. oryzicola produce numerous transcription activator-like (TAL) effectors that increase bacterial virulence by activating expression of host susceptibility genes. Rice resistance mechanisms against TAL effectors include polymorphisms that prevent effector binding to susceptibility gene promoters, or that allow effector activation of resistance genes. This study identifies, in the heirloom variety Carolina Gold Select, a third mechanism of rice resistance involving TAL effectors. This resistance manifests through strong suppression of disease development in response to diverse TAL effectors from both X. oryzae pathovars. The resistance can be triggered by an effector with only 3.5 central repeats, is independent of the composition of the repeat variable di-residues that determine TAL effector binding specificity, and is independent of the transcriptional activation domain. We determined that the resistance is conferred by a single dominant locus, designated Xo1, that maps to a 1.09 Mbp fragment on chromosome 4. The Xo1 interval also confers complete resistance to the strains in the African clade of X. oryzae pv. oryzicola, representing the first dominant resistance locus against bacterial leaf streak in rice. The strong phenotypic similarity between the TAL effector-triggered resistance conferred by Xo1 and that conferred by the tomato resistance gene Bs4 suggests that monocots and dicots share an ancient or convergently evolved mechanism to recognize analogous TAL effector epitopes. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  2. A resistance locus in the American heirloom rice variety Carolina Gold Select is triggered by TAL effectors with diverse predicted targets and is effective against African strains of Xanthomonas oryzae pv. oryzicola

    PubMed Central

    Triplett, Lindsay R.; Cohen, Stephen P.; Heffelfinger, Christopher; Schmidt, Clarice L.; Huerta, Alejandra; Tekete, Cheick; Verdier, Valerie; Bogdanove, Adam J.; Leach, Jan E.

    2016-01-01

    Summary The rice pathogens Xanthomonas oryzae pathovar (pv.) oryzae and pv. oryzicola produce numerous transcription activator-like (TAL) effectors that increase bacterial virulence by activating expression of host susceptibility genes. Rice resistance mechanisms against TAL effectors include polymorphisms that prevent effector binding to susceptibility gene promoters, or that allow effector activation of resistance genes. This study identifies, in the heirloom variety Carolina Gold Select, a third mechanism of rice resistance involving TAL effectors. This resistance manifests through strong suppression of disease development in response to diverse TAL effectors from both X. oryzae pathovars. The resistance can be triggered by an effector with only 3.5 central repeats, is independent of the composition of the repeat variable diresidues that determine TAL effector binding specificity, and is independent of the transcriptional activation domain. We determined that the resistance is conferred by a single dominant locus, designated Xo1, that maps to a 1.09 Mbp fragment on chromosome 4. The Xo1 interval also confers complete resistance to the strains in the African clade of X. oryzae pv. oryzicola, representing the first dominant resistance locus against bacterial leaf streak in rice. The strong phenotypic similarity between the TAL effector triggered resistance conferred by Xo1 and that conferred by the tomato resistance gene Bs4 suggests that monocots and dicots share an ancient or convergently evolved mechanism to recognize analogous TAL effector epitopes. PMID:27197779

  3. [Serotype and phage type distribution of human Salmonella strains isolated in Spain, 1997-2001].

    PubMed

    Echeita, María Aurora; Aladueña, Ana María; Díez, Rosa; Arroyo, Margarita; Cerdán, Francisca; Gutiérrez, Rafaela; de la Fuente, Manuela; González-Sanz, Rubén; Herrera-León, Silvia; Usera, Miguel Angel

    2005-03-01

    Salmonellosis is one of the most frequent causes of gastroenteritis in Spain. Serotyping is the gold standard epidemiological marker for subdividing Salmonella spp. strains. A small number of serotypes are very frequently isolated, reducing the discriminatory power of serotyping. Thus, to increase our knowledge of Salmonella spp. epidemiology, additional epidemiological markers, such as phage typing, should be used for this purpose. Salmonella spp. strains of human origin sent to the Laboratorio Nacional de Referencia de Salmonella y Shigella (LNRSSE, Spanish Reference Laboratory for Salmonella and Shigella) between 1997 and 2001 were serotyped using conventional agglutination methods, and Enteritidis, Typhimurium, Hadar, Virchow and Typhi serotypes were additionally phage typed according to internationally-developed schemes. A total of 30,856 Salmonella spp. strains, isolated in the majority of Spanish Autonomous Communities, were analyzed. Enteritidis (51%) and Typhimurium (24%) were the most frequently isolated serotypes. The following were the most frequent serotype/phage type combinations: Enteritidis/PT1 (18%), Enteritidis/PT4 (15%), Enteritidis/PT6a (5%), Typhimurium/DT104 (5%) and Enteritidis/PT6 (3%). The serotype Enteritidis/PT1 showed the greatest increase over the period studied, from 11.61% in 1997 to 24.74% in 2001. A hierarchical typing approach for Salmonella spp., using serotyping coupled with phage typing allowed a higher level of discrimination among Salmonella serotypes. Application of this approach in epidemiological studies could be highly useful for early characterization of related strains.

  4. Diversity of naturally occurring Ambler class B metallo-β-lactamases in Erythrobacter spp.

    PubMed

    Girlich, Delphine; Poirel, Laurent; Nordmann, Patrice

    2012-11-01

    In silico analysis identified a metallo-β-lactamase (MBL) in Erythrobacter litoralis HTCC2594, sharing 55% amino acid identity with NDM-1. The aim of this work was to characterize the chromosomally encoded MBLs from several Erythrobacter spp. that may represent potential reservoirs of acquired MBLs. Erythrobacter citreus, Erythrobacter flavus, Erythrobacter longus, Erythrobacter aquimaris and Erythrobacter vulgaris were from the Pasteur Institute collection, France. DNA was extracted and used for shotgun cloning, and β-lactamases were expressed in Escherichia coli. MICs for resulting E. coli recombinant strains were determined by Etest. The deduced amino acid sequences were analysed and compared with BLASTP. Enzymatic activity of bacterial extracts from recombinant E. coli strains was determined by UV spectrophotometry with imipenem (100 μM) as substrate. Resulting E. coli recombinant strains harboured hypothetical MBL-encoding genes. MICs of β-lactams showed decreased susceptibility to carbapenems only for E. coli (pFLA-1) and E. coli (pLON-1), expressing the MBL from E. flavus and E. longus, respectively. MBLs from different Erythrobacter spp. shared weak amino acid identity, ranging from 45% to75% identity. They differed greatly from that of E. litoralis HTCC2594 (and NDM-1), sharing only 11%-23% identity. Enzymatic activity against imipenem was detectable but weak in all these recombinant E. coli strains, except E. coli (pFLA-1), in which specific activity was significantly higher. Several chromosomally located MBLs have been identified from Erythrobacter spp. They share weak amino acid identity and are very weakly related to other acquired MBLs (10%-23%).

  5. Nodulation of Cyclopia spp. (Leguminosae, Papilionoideae) by Burkholderia tuberum

    PubMed Central

    Elliott, Geoffrey N.; Chen, Wen-Ming; Bontemps, Cyril; Chou, Jui-Hsing; Young, J. Peter W.; Sprent, Janet I.; James, Euan K.

    2007-01-01

    Background and Aims Species of the genus Burkholderia, from the Betaproteobacteria, have been isolated from legume nodules, but so far they have only been shown to form symbioses with species of Mimosa, sub-family Mimosoideae. This work investigates whether Burkholderia tuberum strains STM678 (isolated from Aspalathus carnosa) and DUS833 (from Aspalathus callosa) can nodulate species of the South African endemic papilionoid genera Cyclopia (tribe Podalyrieae) and Aspalathus (Crotalarieae) as well as the promiscuous legume Macroptilium atropurpureum (Phaseoleae). Method Bacterial strains and the phylogeny of their symbiosis-related (nod) genes were examined via 16S rRNA gene sequencing. Seedlings were grown in liquid culture and inoculated with one of the two strains of B. tuberum or with Sinorhizobium strain NGR 234 (from Lablab purpureus), Mesorhizobium strain DUS835 (from Aspalathus linearis) or Methylobacterium nodulans (from Crotalaria podocarpa). Some nodules, inoculated with green fluorescence protein (GFP)-tagged strains, were examined by light and electron microscopy coupled with immunogold labelling with a Burkholderia-specific antibody. The presence of active nitrogenase was checked by immunolabelling of nitrogenase and by the acetylene reduction assay. B. tuberum STM678 was also tested on a wide range of legumes from all three sub-families. Key Results Nodules were not formed on any of the Aspalathus spp. Only B. tuberum nodulated Cyclopia falcata, C. galioides, C. genistoides, C. intermedia and C. pubescens. It also effectively nodulated M. atropurpureum but no other species tested. GFP-expressing inoculant strains were located inside infected cells of C. genistoides, and bacteroids in both Cyclopia spp. and M. atropurpureum were immunogold-labelled with antibodies against Burkholderia and nitrogenase. Nitrogenase activity was also shown using the acetylene reduction assay. This is the first demonstration that a β-rhizobial strain can effectively

  6. A loop-mediated isothermal amplification assay and sample preparation procedure for sensitive detection of Xanthomonas fragariae in strawberry

    USDA-ARS?s Scientific Manuscript database

    Xanthomonas fragariae is a bacterium that causes angular leaf spot of strawberry. Asymptomatic infections are common and contribute to the difficulties in disease management. The aim of this study was to develop a loop-mediated isothermal amplification (LAMP) assay with a bacterial enrichment proced...

  7. Antagonistic effect of chosen lactic acid bacteria strains on Salmonella species in meat and fermented sausages.

    PubMed

    Gomółka-Pawlicka, M; Uradziński, J

    2003-01-01

    The aim of this study was to determine of influence of 15 strains of lactic acid bacteria on the growth of 7 Salmonella spp. strains in model set-ups, and in meat and ripened fermented sausages. The investigations were performed within the framework of three alternate stages which differed in respect to the products studied, the number of Lactobacillus spp. strains and, partly, methodological approach. The ratio between lactic acid bacteria and Salmonella strains studied was, depending on the alternate, 1:1, 1:2 and 2:1, respectively. The investigations also covered the water activity (a(w)) and pH of the tested products. The results obtained are shown in 12 figures and suggest that all the lactic acid bacteria strains used within the framework of the model set-ups showed antagonistic effect on all the Salmonella spp. strains. However, these abilities were not observed with respect to some lactic acid bacteria strains in meat and fermented sausage. The temperature and length of the incubation period of sausages, but not a(w) and pH, were found to have a distinct influence on the antagonistic interaction between the bacteria.

  8. TRANSCRIPTIONAL INHIBITION OF INTERLEUKIN-12 PROMOTER ACTIVITY IN LEISHMANIA SPP.-INFECTED MACROPHAGES

    PubMed Central

    Jayakumar, Asha; Widenmaier, Robyn; Ma, Xiaojing; McDowell, Mary Ann

    2009-01-01

    To establish and persist within a host, Leishmania spp. parasites delay the onset of cell-mediated immunity by suppressing interleukin-12 (IL-12) production from host macrophages. Although it is established that Leishmania spp.-infected macrophages have impaired IL-12 production, the mechanisms that account for this suppression remain to be completely elucidated. Using a luciferase reporter assay assessing IL-12 transcription, we report here that Leishmania major, Leishmania donovani, and Leishmania chagasi inhibit IL-12 transcription in response to interferon-gamma, lipopolysaccharide, and CD40 ligand and that Leishmania spp. lipophosphoglycan, phosphoglycans, and major surface protein are not necessary for inhibition. In addition, all the Leishmania spp. strains and life-cycle stages tested inhibited IL-12 promoter activity. Our data further reveal that autocrine-acting host factors play no role in the inhibitory response and that phagocytosis signaling is necessary for inhibition of IL-12. PMID:18372625

  9. Comparison of seven plating media for enumeration of Listeria spp.

    PubMed Central

    Loessner, M J; Bell, R H; Jay, J M; Shelef, L A

    1988-01-01

    The suitability of seven media for the enumeration of Listeria spp. was evaluated at 30 degrees C for 48 h. The media tested were (i) the original McBride Listeria agar formulation (with glycine); (ii) modified McBride agar containing glycine anhydride; (iii) LiCl-phenylethanol-moxalactam (LPM) agar; (iv) acriflavine-ceftazidime agar; (v) Rodriguez isolation agar (RISA); (vi) modified Vogel-Johnson (MVJ) agar; (vii) cyclohexanedione-nalidixic acid-phenylethanol agar; and tryptose agar as control. A total of 66 organisms were used including 11 Listeria monocytogenes strains and 5 other Listeria spp. For L. monocytogenes strains only, all media performed highly similarly. Of the other Listeria spp., only two grew on MVJ agar and three each grew on LPM and RISA. Only LPM agar inhibited the 50 non-listeriae, including five yeasts, while MVJ agar inhibited all but one yeast. The McBride Listeria agar formulation that contained glycine anhydride was less selective than the original. When pure cultures of 10 bacteria (including one L. monocytogenes strain) were combined and plated on four media, L. monocytogenes colonies were easiest to enumerate on MVJ agar, followed by LPM and RISA. These media ranked in the same order when plated with homogenates of various foods to which was added L. monocytogenes Scott A, but LPM agar was the best overall since Scott A was inhibited by MVJ. Upon microscopic examination of listerial colonies from the plating media, atypical cell morphology was noted with cells being about twofold in size on LPM, MVJ, and acriflavine-ceftazidime agars. Overall, LPM agar was the most suitable of the media tested even though it was inhibitory to Listeria grayi and Listeria murrayi. PMID:3146947

  10. Isolation and Characterization of Pseudomonas spp. Strains That Efficiently Decompose Sodium Dodecyl Sulfate

    PubMed Central

    Furmanczyk, Ewa M.; Kaminski, Michal A.; Spolnik, Grzegorz; Sojka, Maciej; Danikiewicz, Witold; Dziembowski, Andrzej; Lipinski, Leszek; Sobczak, Adam

    2017-01-01

    Due to their particular properties, detergents are widely used in household cleaning products, cosmetics, pharmaceuticals, and in agriculture as adjuvants tailoring the features of pesticides or other crop protection agents. The continuously growing use of these various products means that water soluble detergents have become one of the most problematic groups of pollutants for the aquatic and terrestrial environments. Thus it is important to identify bacteria having the ability to survive in the presence of large quantities of detergent and efficiently decompose it to non-surface active compounds. In this study, we used peaty soil sampled from a surface flow constructed wetland in a wastewater treatment plant to isolate bacteria that degrade sodium dodecyl sulfate (SDS). We identified and initially characterized 36 Pseudomonas spp. strains that varied significantly in their ability to use SDS as their sole carbon source. Five isolates having the closest taxonomic relationship to the Pseudomonas jessenii subgroup appeared to be the most efficient SDS degraders, decomposing from 80 to 100% of the SDS present in an initial concentration 1 g/L in less than 24 h. These isolates exhibited significant differences in degree of SDS degradation, their resistance to high detergent concentration (ranging from 2.5 g/L up to 10 g/L or higher), and in chemotaxis toward SDS on a plate test. Mass spectrometry revealed several SDS degradation products, 1-dodecanol being dominant; however, traces of dodecanal, 2-dodecanol, and 3-dodecanol were also observed, but no dodecanoic acid. Native polyacrylamide gel electrophoresis zymography revealed that all of the selected isolates possessed alkylsulfatase-like activity. Three isolates, AP3_10, AP3_20, and AP3_22, showed a single band on native PAGE zymography, that could be the result of alkylsulfatase activity, whereas for isolates AP3_16 and AP3_19 two bands were observed. Moreover, the AP3_22 strain exhibited a band in presence of

  11. Isolation of Salmonella spp. from lettuce and evaluation of its susceptibility to novel bacteriocins of Bacillus thuringiensis and antibiotics.

    PubMed

    Castañeda-Ramírez, Cristobal; Cortes-Rodríguez, Viridiana; de la Fuente-Salcido, Norma; Bideshi, Dennis K; del Rincón-Castro, M Cristina; Barboza-Corona, J Eleazar

    2011-02-01

    In this study, 13% of fresh lettuce (Lactuca sativa) samples collected from markets and supermarkets in two cities of Mexico were contaminated with Salmonella spp. From those samples, amplicons of ∼300 base pairs (bp) were amplified, corresponding to the expected size of the invasion (invA) and internal transcribed spacer regions of the 16S and 23S rRNA genes of Salmonella spp. Additionally, Salmonella strains were isolated and harbored plasmids ranging from ∼9 to 16 kbp. From these strains, 91% were resistant to ampicillin and nitrofurantoin, whereas 55% were resistant to cephalothin and chloramphenicol. No resistance was detected to amikacin, carbenicillin, cefotaxime, gentamicin, netilmicin, norfloxacin, and sulfamethoxazole-trimethoprim. When Salmonella isolates were tested against novel bacteriocins (morricin 269, kurstacin 287, kenyacin 404, entomocin 420, and tolworthcin 524) produced by five Mexican strains of Bacillus thuringiensis, 50% were susceptible to these antimicrobial peptides. This is the first report showing that Salmonella strains isolated from lettuce are susceptible to bacteriocins produced by the most important bioinsecticide worldwide, suggesting the potential use of these antibacterial peptides as therapeutic agents or food preservatives to reduce or destroy populations of Salmonella spp. Copyright ©, International Association for Food Protection

  12. Strain-Level Diversity of Secondary Metabolism in Streptomyces albus

    PubMed Central

    Seipke, Ryan F.

    2015-01-01

    Streptomyces spp. are robust producers of medicinally-, industrially- and agriculturally-important small molecules. Increased resistance to antibacterial agents and the lack of new antibiotics in the pipeline have led to a renaissance in natural product discovery. This endeavor has benefited from inexpensive high quality DNA sequencing technology, which has generated more than 140 genome sequences for taxonomic type strains and environmental Streptomyces spp. isolates. Many of the sequenced streptomycetes belong to the same species. For instance, Streptomyces albus has been isolated from diverse environmental niches and seven strains have been sequenced, consequently this species has been sequenced more than any other streptomycete, allowing valuable analyses of strain-level diversity in secondary metabolism. Bioinformatics analyses identified a total of 48 unique biosynthetic gene clusters harboured by Streptomyces albus strains. Eighteen of these gene clusters specify the core secondary metabolome of the species. Fourteen of the gene clusters are contained by one or more strain and are considered auxiliary, while 16 of the gene clusters encode the production of putative strain-specific secondary metabolites. Analysis of Streptomyces albus strains suggests that each strain of a Streptomyces species likely harbours at least one strain-specific biosynthetic gene cluster. Importantly, this implies that deep sequencing of a species will not exhaust gene cluster diversity and will continue to yield novelty. PMID:25635820

  13. Iron-oxide minerals affect extracellular electron-transfer paths of Geobacter spp.

    PubMed

    Kato, Souichiro; Hashimoto, Kazuhito; Watanabe, Kazuya

    2013-01-01

    Some bacteria utilize (semi)conductive iron-oxide minerals as conduits for extracellular electron transfer (EET) to distant, insoluble electron acceptors. A previous study demonstrated that microbe/mineral conductive networks are constructed in soil ecosystems, in which Geobacter spp. share dominant populations. In order to examine how (semi)conductive iron-oxide minerals affect EET paths of Geobacter spp., the present study grew five representative Geobacter strains on electrodes as the sole electron acceptors in the absence or presence of (semi)conductive iron oxides. It was found that iron-oxide minerals enhanced current generation by three Geobacter strains, while no effect was observed in another strain. Geobacter sulfurreducens was the only strain that generated substantial amounts of currents both in the presence and absence of the iron oxides. Microscopic, electrochemical and transcriptomic analyses of G. sulfurreducens disclosed that this strain constructed two distinct types of EET path; in the absence of iron-oxide minerals, bacterial biofilms rich in extracellular polymeric substances were constructed, while composite networks made of mineral particles and microbial cells (without polymeric substances) were developed in the presence of iron oxides. It was also found that uncharacterized c-type cytochromes were up-regulated in the presence of iron oxides that were different from those found in conductive biofilms. These results suggest the possibility that natural (semi)conductive minerals confer energetic and ecological advantages on Geobacter, facilitating their growth and survival in the natural environment.

  14. Microbiological quality of selected ready-to-eat leaf vegetables, sprouts and non-pasteurized fresh fruit-vegetable juices including the presence of Cronobacter spp.

    PubMed

    Berthold-Pluta, Anna; Garbowska, Monika; Stefańska, Ilona; Pluta, Antoni

    2017-08-01

    Bacteria of the genus Cronobacter are emerging food-borne pathogens. Foods contaminated with Cronobacter spp. may pose a risk to infants or adults with suppressed immunity. This study was aimed at determining the microbiological quality of ready-to-eat (RTE) plant-origin food products available on the Polish market with special emphasis on the prevalence of Cronobacter genus bacteria. Analyses were carried out on 60 samples of commercial RTE type plant-origin food products, including: leaf vegetables (20 samples), sprouts (20 samples) and non-pasteurized vegetable, fruit and fruit-vegetable juices (20 samples). All samples were determined for the total count of aerobic mesophilic bacteria (TAMB) and for the presence of Cronobacter spp. The isolates of Cronobacter spp. were subjected to genetic identification and differentiation by 16S rDNA sequencing, PCR-RFLP analysis and RAPD-PCR and evaluation of antibiotic susceptibility by the disk diffusion assay. The TAMB count in samples of lettuces, sprouts and non-pasteurized fruit, vegetable and fruit-vegetable juices was in the range of 5.6-7.6, 6.7-8.4 and 2.9-7.7 log CFU g -1 , respectively. The presence of Cronobacter spp. was detected in 21 (35%) samples of the products, including in 6 (30%) samples of leaf vegetables (rucola, lamb's lettuce, endive escarola and leaf vegetables mix) and in 15 (75%) samples of sprouts (alfalfa, broccoli, small radish, lentil, sunflower, leek and sprout mix). No presence of Cronobacter spp. was detected in the analyzed samples of non-pasteurized fruit, vegetable and fruit-vegetable juices. The 21 strains of Cronobacter spp. isolated from leaf vegetable and sprouts included: 13 strains of C. sakazakii, 4 strains of C. muytjensii, 2 strains of C. turicensis, one strain of C. malonaticus and one strain of C. condimenti. All isolated C. sakazakii, C. muytjensii, C. turicensis and C. malonaticus strains were sensitive to ampicillin, cefepime, chloramphenicol, gentamycin

  15. Importance of serological cross-reactivity among Toxoplasma gondii, Hammondia spp., Neospora spp., Sarcocystis spp. and Besnoitia besnoiti.

    PubMed

    Gondim, Luís F P; Mineo, José R; Schares, Gereon

    2017-06-01

    Toxoplasma gondii, Neospora spp., Sarcocystis spp., Hammondia spp. and Besnoitia besnoiti are genetically related cyst-forming coccidia. Serology is frequently used for the identification of T. gondii, Neospora spp. and B. besnoiti-exposed individuals. Serologic cross-reactions occur in different tests among animals infected with T. gondii and H. hammondi, as well as among animals infected by T. gondii and N. caninum. Infections caused by N. caninum and N. hughesi are almost indistinguishable by serology. Neospora caninum, B. besnoiti and Sarcocystis spp. infections in cattle show some degree of serologic cross-reactivity. Antibody cross-reactivity between Neospora spp. and H. heydorni-infected animals is suspected, but not proven to occur. We review serologic cross-reactivity among animals and/or humans infected with T. gondii, Neospora spp., Sarcocystis spp., Hammondia spp. and B. besnoiti. Emphasis is laid upon antigens and serological methods for N. caninum diagnosis which were tested for cross-reactivity with related protozoa. Species-specific antigens, as well as stage-specific proteins have been identified in some of these parasites and have promising use for diagnosis and epidemiological surveys.

  16. Genotyping of Indian antigenic, vaccine, and field Brucella spp. using multilocus sequence typing.

    PubMed

    Shome, Rajeswari; Krithiga, Natesan; Shankaranarayana, Padmashree B; Jegadesan, Sankarasubramanian; Udayakumar S, Vishnu; Shome, Bibek Ranjan; Saikia, Girin Kumar; Sharma, Narendra Kumar; Chauhan, Harshad; Chandel, Bharat Singh; Jeyaprakash, Rajendhran; Rahman, Habibur

    2016-03-31

    Brucellosis is one of the most important zoonotic diseases that affects multiple livestock species and causes great economic losses. The highly conserved genomes of Brucella, with > 90% homology among species, makes it important to study the genetic diversity circulating in the country. A total of 26 Brucella spp. (4 reference strains and 22 field isolates) and 1 B. melitensis draft genome sequence from India (B. melitensis Bm IND1) were included for sequence typing. The field isolates were identified by biochemical tests and confirmed by both conventional and quantitative polymerase chain reaction (qPCR) targeting bcsp 31Brucella genus-specific marker. Brucella speciation and biotyping was done by Bruce ladder, probe qPCR, and AMOS PCRs, respectively, and genotyping was done by multilocus sequence typing (MLST). The MLST typing of 27 Brucella spp. revealed five distinct sequence types (STs); the B. abortus S99 reference strain and 21 B. abortus field isolates belonged to ST1. On the other hand, the vaccine strain B. abortus S19 was genotyped as ST5. Similarly, B. melitensis 16M reference strain and one B. melitensis field isolate were grouped into ST7. Another B. melitensis field isolate belonged to ST8 (draft genome sequence from India), and only B. suis 1330 reference strain was found to be ST14. The sequences revealed genetic similarity of the Indian strains to the global reference and field strains. The study highlights the usefulness of MLST for typing of field isolates and validation of reference strains used for diagnosis and vaccination against brucellosis.

  17. Occurrence of Campylobacter spp. and Cryptosporidium spp. in seagulls (Larus spp.).

    PubMed

    Moore, John E; Gilpin, Deidre; Crothers, Elizabeth; Canney, Anne; Kaneko, Aki; Matsuda, Motoo

    2002-01-01

    An investigation was carried out into the prevalence of thermophilic Campylobacter subspecies (spp.) and Cryptosporidium spp. in fresh fecal specimens collected from members of the gull family (Larus spp.) from three coastal locations of Northern Ireland. A total of 205 fresh fecal specimens were collected from gulls, of which 28 of 205 (13.7%) were positive for Campylobacter spp. and none of 205 for Cryptosporidium spp. Of these campylobacters, 21 of 28 (75%) isolates obtained belonged to the urease-positive thermophilic Campylobacter (UPTC) taxon, followed by five of 28 (17.9%) Campylobacter lari and 2/28 (7.1%) Campylobacter jejuni. It is significant that seagulls are the sole warm-blooded animal host of this bacterial taxon in Northern Ireland. It is proposed that physiological adaptation to starvation by gulls may lead to increased concentrations of urea through energy production from protein, yielding increased levels of urea for metabolism by UPTC organisms. In general, the possibility exists that environmental contamination of surface waters with campylobacters might be mediated by wild birds (such as gulls), where such waters are used for recreational purposes or where such waters are consumed untreated, might represent a risk to public health.

  18. [The study of the contamination and the levels of Campylobacter spp. during the processing of selected types of foods].

    PubMed

    Efimochkina, N R; Bykova, I B; Stetsenko, V V; Minaeva, L P; Pichugina, T V; Markova, Yu M; Korotkevich, Yu V; Kozak, S S; Sheveleva, S A

    2016-01-01

    The purpose of the work was to study the nature of the Campylobacter spp. contamination during the processing of food products of plant and animal origin (raw poultry and beef meat, raw milk, leafy salads, sliced raw vegetables). In the study of 148 samples 50 strains of Campylobacter spp. (33.8%) were found. For the main phenotypic characteristics they were identified as C. jejuni spp. jejuni and C. jejuni spp. doylei (over 75%). The highest level of detection of campylobacteria (over 45%) was set for raw poultry, including the carcasses of chickens broilers, quails, turkeys and their semi-finished products. 19 of the 27 strains from poultry were identified as C. jejuni. Among the strains isolated from the environment, including swabs from equipment surfaces, 91% of the isolates were also presented by C. jejuni. It was found that the investigated foodstuffs were characterized by high levels of contamination with bacteria of the family Enterobacteriaceae, the content of which was comparable with the identified values of total viable bacteria (cfu). Salmonella was detected in 19% of the investigated poultry samples and in 14.3% of raw cow milk. In the study of swabs from surfaces of poultry processing equipment, the frequency of detection of Campylobacter strains was 38.7%, Salmonella - 12.9%. Most commonly Campylobacter and Salmonella were detected in the zones of primary processing of poultry: the frequency of isolation of Salmonella in slaughter corner was 25%, Campylobacter - 43%. When testing the swabs taken in the cooking zone of «fast food» restaurants Campylobacter and Salmonella were not detected. For studying the swabs from equipment surfaces and the environment for the presence of Campylobacter spp. a modified technique of sampling was developed. The method includes a comprehensive analysis in the test area with the use of three types of media for transportation and incubation of Campylobacter spp. (Preston broth with blood, Brucella broth, Cary

  19. Production of a Functional Frozen Yogurt Fortified with Bifidobacterium spp.

    PubMed

    Abdelazez, Amro; Muhammad, Zafarullah; Zhang, Qiu-Xue; Zhu, Zong-Tao; Abdelmotaal, Heba; Sami, Rokayya; Meng, Xiang-Chen

    2017-01-01

    Frozen dairy products have characteristics of both yogurt and ice cream and could be the persuasive carriers of probiotics. Functions of the frozen yogurt containing viable bifidobacterial cells are recognized and favored by the people of all ages. We developed a kind of yogurt supplemented by Bifidobacterium species. Firstly, five strains of Bifidobacterium spp. ( Bifidobacterium bifidum ATCC 11547, Bifidobacterium longum ATCC 11549, Bifidobacterium infantis ATCC 11551, Bifidobacterium adolescentis ATCC 11550, and Bifidobacterium breve ATCC 11548) were evaluated based on the feasibility criteria of probiotics, comprising acid production, bile tolerance, and adhesion to epithelial cells. Formerly, we combined the optimum strains with yogurt culture ( Lactobacillus delbrueckii subsp. bulgaricus EMCC 11102 and Streptococcus salivarius subsp. thermophilus EMCC 11044) for producing frozen yogurt. Finally, physiochemical properties and sensory evaluation of the frozen yogurt were investigated during storage of 60 days at -18°C. Results directed that Bifidobacterium adolescentis ATCC 11550 and Bifidobacterium infantis ATCC 11551 could be utilized with yogurt culture for producing frozen yogurt. Moreover, the frozen yogurt fermented by two bifidobacterial strains and yogurt culture gained the high evaluation in the physiochemical properties and sensory evaluation. In summary, our results revealed that there was no significant difference between frozen yogurt fermented by Bifidobacterium spp. and yogurt culture and that fermented by yogurt culture only.

  20. [Phenotypic and molecular identification of extended-spectrum beta-lactamase (ESBL) TEM and SHV produced by clinical isolates Escherichia coli and Klebsiella spp. in hospitals].

    PubMed

    González Mesa, Leonora; Ramos Morí, Astrid; Nadal Becerra, Loreta; Morffi Figueroa, Janet; Hernández Robledo, Ernesto; Alvarez, Ana Berta; Marchena Bequer, Juan J; González Alemán, Mabel; Villain Plous, Carlos

    2007-01-01

    Nosocomial infections caused by gram-negative bacilli which produce extended spectrum beta-lactamase (ESBL) are associated with the increase of morbidity and mortality in hospitals. The objective of this study was to evaluate the frequency of ESBL, specifically the TEM and SHV type, produced by Escherichia coli and Klebsiella spp. strains, and also to determine the antimicrobial susceptibility of these isolates in comparison with other antibiotic families. A total of 326 strains were collected between 2002-2004 from hospitals in Havana City. The susceptibility tests were carried out according to the NCCLS guides and they were confirmed as. ESBL producers by the double disk diffusion method. The molecular characterization of these enzymes was determined by polymerase chain reaction (PCR), using two sets of oligonucleotides to amplify genes encoding TEM and SHV type beta-lactamase. The ESBL phenotype was detected in 31 (10%) Escherichia coli isolates, 19 of these strains (61%) carried the blaTEM genes, 5 (16%) blaSHV genes, 4 (12%) strains carried both genes and 11 strains (35%) carried the non-ESBL blaTEM and blaSHV genes. In Klebsiella spp. the ESBL phenotype was detected in 10 (36 %) isolates, only one strain carried the blaTEM gene. The most active antimicrobials against Escherichia coli were ciprofloxacin (64.5%) and gentamicin (58.07%); in the case of Klebsiella spp. the same antimicrobials were the most active with similar susceptibility (70%) for both. The carbapenems still remain the most active antibiotics against Escherichia coli and Klebsiella spp. strains, which are ESBL producers. However, their use should be closely controlled.

  1. Local genetic diversity of Xanthomonas citri subsp. citri in citrus orchards in northwest Paraná state, Brazil

    USDA-ARS?s Scientific Manuscript database

    Xanthomonas citri subsp. citri, causal agent of Asiatic citrus canker, is an important pathogen of citrus in Brazil and elsewhere. The genetic diversity of X. citri subsp. citri pathtype ‘A’ has not been studied in Brazil at a local scale (up to 300 km). A total of 40 isolates were collected from le...

  2. Effect of ozone on infection of wild strawberry by Xanthomonas fragariae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurence, J.A.; Wood, F.A.

    1978-05-01

    Interaction studies were conducted to determine the response of wild strawberry to ozone and the effects of ozone on the infection of wild strawberry by Xanthomonas fragariae. Data from the interaction studies showed that bacterial infection of wild strawberry was inhibited by ozone exposure at concentrations that caused visible injury to the plants. Since wild strawberry was sensitive to ozone exposure and the threshold for symptom development was higher than the current ambient air quality standard for ozone, the possible use of the plant as an indicator of ambient phytotoxic concentrations of ozone was suggested. (7 graphs, 1 photo, 18more » references)« less

  3. Short communication: β-Lactam resistance and vancomycin heteroresistance in Staphylococcus spp. isolated from bovine subclinical mastitis.

    PubMed

    Mello, Priscila Luiza; Pinheiro, Luiza; Martins, Lisiane de Almeida; Brito, Maria Aparecida Vasconcelos Paiva; Ribeiro de Souza da Cunha, Maria de Lourdes

    2017-08-01

    The use of antimicrobial agents has led to the emergence of resistant bacterial strains over a relatively short period. Furthermore, Staphylococcus spp. can produce β-lactamase, which explains the survival of these strains in a focus of infection despite the use of a β-lactam antibiotic. The aim of this study was to evaluate the resistance of Staphylococcus spp. isolated from bovine subclinical mastitis to oxacillin and vancomycin (by minimum inhibitory concentration) and to detect vancomycin heteroresistance by a screening method. We also evaluated β-lactamase production and resistance due to hyperproduction of this enzyme and investigated the mecA and mecC genes and performed staphylococcal cassette chromosome mec typing. For this purpose, 181 Staphylococcus spp. isolated from mastitis subclinical bovine were analyzed. Using the phenotypic method, 33 (18.2%) of Staphylococcus spp. were resistant to oxacillin. In contrast, all isolates were susceptible to vancomycin, and heteroresistance was detected by the screening method in 13 isolates. Production of β-lactamase was observed in 174 (96%) of the Staphylococcus spp. isolates. The mecA gene was detected in 8 isolates, all of them belonging to the species Staphylococcus epidermidis, and staphylococcal cassette chromosome mec typing revealed the presence of type I and type IV isolates. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. CatB is Critical for Total Catalase Activity and Reduces Bactericidal Effects of Phenazine-1-Carboxylic Acid on Xanthomonas oryzae pv. oryzae and X. oryzae pv. oryzicola.

    PubMed

    Pan, Xiayan; Wu, Jian; Xu, Shu; Duan, Yabing; Zhou, Mingguo

    2017-02-01

    Rice bacterial leaf blight, caused by Xanthomonas oryzae pv. oryzae, and rice bacterial leaf streak, caused by X. oryzae pv. oryzicola, are major diseases of rice. Phenazine-1-carboxylic acid (PCA) is a natural product that is isolated from Pseudomonas spp. and is used to control many important rice diseases in China. We previously reported that PCA disturbs the redox balance, which results in the accumulation of reactive oxygen species in X. oryzae pv. oryzae. In this study, we found that PCA significantly upregulated the transcript levels of catB and katE, which encode catalases, and that PCA sensitivity was reduced when X. oryzae pvs. oryzae and oryzicola were cultured with exogenous catalase. Furthermore, catB deletion mutants of X. oryzae pvs. oryzae and oryzicola showed dramatically decreased total catalase activity, increased sensitivity to PCA, and reduced virulence in rice. In contrast, deletion mutants of srpA and katG, which also encode catalases, exhibited little change in PCA sensitivity. The results indicate that catB in both X. oryzae pvs. oryzae and oryzicola encodes a catalase that helps protect the bacteria against PCA-induced stress.

  5. Production and Characterization of Ehrlichia risticii, the Agent of Potomac Horse Fever, from Snails (Pleuroceridae: Juga spp.) in Aquarium Culture and Genetic Comparison to Equine Strains

    PubMed Central

    Reubel, Gerhard H.; Barlough, Jeffrey E.; Madigan, John E.

    1998-01-01

    We report on the production and characterization of Ehrlichia risticii, the agent of Potomac horse fever (PHF), from snails (Pleuroceridae: Juga spp.) maintained in aquarium culture and compare it genetically to equine strains. Snails were collected from stream waters on a pasture in Siskiyou County, Calif., where PHF is enzootic and were maintained for several weeks in freshwater aquaria in the laboratory. Upon exposure to temperatures above 22°C the snails released trematode cercariae tentatively identified as virgulate cercariae. Fragments of three different genes (genes for 16S rRNA, the groESL heat shock operon, and the 51-kDa major antigen) were amplified from cercaria lysates by PCR and sequenced. Genetic information was also obtained from E. risticii strains from horses with PHF. The PCR positivity of snail secretions was associated with the presence of trematode cercariae. Sequence analysis of the three genes indicated that the source organism closely resembled E. risticii, and the sequences of all three genes were virtually identical to those of the genes of an equine E. risticii strain from a property near the snail collection site. Phylogenetic analyses of the three genes indicated the presence of geographical E. risticii strain clusters. PMID:9620368

  6. Diverse and Abundant Secondary Metabolism Biosynthetic Gene Clusters in the Genomes of Marine Sponge Derived Streptomyces spp. Isolates.

    PubMed

    Jackson, Stephen A; Crossman, Lisa; Almeida, Eduardo L; Margassery, Lekha Menon; Kennedy, Jonathan; Dobson, Alan D W

    2018-02-20

    The genus Streptomyces produces secondary metabolic compounds that are rich in biological activity. Many of these compounds are genetically encoded by large secondary metabolism biosynthetic gene clusters (smBGCs) such as polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS) which are modular and can be highly repetitive. Due to the repeats, these gene clusters can be difficult to resolve using short read next generation datasets and are often quite poorly predicted using standard approaches. We have sequenced the genomes of 13 Streptomyces spp. strains isolated from shallow water and deep-sea sponges that display antimicrobial activities against a number of clinically relevant bacterial and yeast species. Draft genomes have been assembled and smBGCs have been identified using the antiSMASH (antibiotics and Secondary Metabolite Analysis Shell) web platform. We have compared the smBGCs amongst strains in the search for novel sequences conferring the potential to produce novel bioactive secondary metabolites. The strains in this study recruit to four distinct clades within the genus Streptomyces . The marine strains host abundant smBGCs which encode polyketides, NRPS, siderophores, bacteriocins and lantipeptides. The deep-sea strains appear to be enriched with gene clusters encoding NRPS. Marine adaptations are evident in the sponge-derived strains which are enriched for genes involved in the biosynthesis and transport of compatible solutes and for heat-shock proteins. Streptomyces spp. from marine environments are a promising source of novel bioactive secondary metabolites as the abundance and diversity of smBGCs show high degrees of novelty. Sponge derived Streptomyces spp. isolates appear to display genomic adaptations to marine living when compared to terrestrial strains.

  7. An Interspecies Signaling System Mediated by Fusaric Acid Has Parallel Effects on Antifungal Metabolite Production by Pseudomonas protegens Strain Pf-5 and Antibiosis of Fusarium spp.

    PubMed Central

    Quecine, Maria Carolina; Kidarsa, Teresa A.; Goebel, Neal C.; Shaffer, Brenda T.; Henkels, Marcella D.; Zabriskie, T. Mark

    2015-01-01

    Pseudomonas protegens strain Pf-5 is a rhizosphere bacterium that suppresses soilborne plant diseases and produces at least seven different secondary metabolites with antifungal properties. We derived mutants of Pf-5 with single and multiple mutations in biosynthesis genes for seven antifungal metabolites: 2,4-diacetylphoroglucinol (DAPG), pyrrolnitrin, pyoluteorin, hydrogen cyanide, rhizoxin, orfamide A, and toxoflavin. These mutants were tested for inhibition of the pathogens Fusarium verticillioides and Fusarium oxysporum f. sp. pisi. Rhizoxin, pyrrolnitrin, and DAPG were found to be primarily responsible for fungal antagonism by Pf-5. Previously, other workers showed that the mycotoxin fusaric acid, which is produced by many Fusarium species, including F. verticillioides, inhibited the production of DAPG by Pseudomonas spp. In this study, amendment of culture media with fusaric acid decreased DAPG production, increased pyoluteorin production, and had no consistent influence on pyrrolnitrin or orfamide A production by Pf-5. Fusaric acid also altered the transcription of biosynthetic genes, indicating that the mycotoxin influenced antibiotic production by Pf-5 at the transcriptional level. Addition of fusaric acid to the culture medium reduced antibiosis of F. verticillioides by Pf-5 and derivative strains that produce DAPG but had no effect on antibiosis by Pf-5 derivatives that suppressed F. verticillioides due to pyrrolnitrin or rhizoxin production. Our results demonstrated the importance of three compounds, rhizoxin, pyrrolnitrin, and DAPG, in suppression of Fusarium spp. by Pf-5 and confirmed that an interspecies signaling system mediated by fusaric acid had parallel effects on antifungal metabolite production and antibiosis by the bacterial biological control organism. PMID:26655755

  8. All five host-range variants of Xanthomonas citri carry one pthA homolog with 17.5 repeats that determines pathogenicity on citrus, but none determine host-range variation.

    PubMed

    Al-Saadi, Abdulwahid; Reddy, Joseph D; Duan, Yong P; Brunings, Asha M; Yuan, Qiaoping; Gabriel, Dean W

    2007-08-01

    Citrus canker disease is caused by five groups of Xanthomonas citri strains that are distinguished primarily by host range: three from Asia (A, A*, and A(w)) and two that form a phylogenetically distinct clade and originated in South America (B and C). Every X. citri strain carries multiple DNA fragments that hybridize with pthA, which is essential for the pathogenicity of wide-host-range X. citri group A strain 3213. DNA fragments that hybridized with pthA were cloned from a representative strain from all five groups. Each strain carried one and only one pthA homolog that functionally complemented a knockout mutation of pthA in 3213. Every complementing homolog was of identical size to pthA and carried 17.5 nearly identical, direct tandem repeats, including three new genes from narrow-host-range groups C (pthC), A(w) (pthAW), and A* (pthA*). Every noncomplementing paralog was of a different size; one of these was sequenced from group A* (pthA*-2) and was found to have an intact promoter and full-length reading frame but with 15.5 repeats. None of the complementing homologs nor any of the noncomplementing paralogs conferred avirulence to 3213 on grapefruit or suppressed avirulence of a group A* strain on grapefruit. A knockout mutation of pthC in a group C strain resulted in loss of pathogenicity on lime, but the strain was unaffected in ability to elicit an HR on grapefruit. This pthC- mutant was fully complemented by pthA, pthB, or pthC. Analysis of the predicted amino-acid sequences of all functional pthA homologs and nonfunctional paralogs indicated that the specific sequence of the 17th repeat may be essential for pathogenicity of X. citri on citrus.

  9. Identities of Microbacterium spp. Encountered in Human Clinical Specimens▿

    PubMed Central

    Gneiding, Kathrina; Frodl, Reinhard; Funke, Guido

    2008-01-01

    In the present study, 50 strains of yellow-pigmented gram-positive rods that had been isolated from human clinical specimens and collected over a 5-year period were further characterized by phenotypic and molecular genetic methods. All 50 strains belonged to the genus Microbacterium, and together they represented 18 different species. Microbacterium oxydans (n = 11), M. paraoxydans (n = 9), and M. foliorum (n = 7) represented more than half of the strains included in the present study. The isolation of strains belonging to M. hydrocarbonoxydans (n = 2), M. esteraromaticum (n = 1), M. oleivorans (n = 1), M. phyllosphaerae (n = 1), and M. thalassium (n = 1) from humans is reported for the first time. Microbacterium sp. strain VKM Ac-1389 (n = 1) and the previously uncultured Microbacterium sp. clone YJQ-29 (n = 1) probably represent new species. Comprehensive antimicrobial susceptibility data are given for the 50 Microbacterium isolates. This study is, so far, the largest on Microbacterium spp. encountered in human clinical specimens and outlines the heterogeneity of clinical Microbacterium strains. PMID:18799696

  10. Effect of temperature on photosynthesis and growth in marine Synechococcus spp.

    PubMed

    Mackey, Katherine R M; Paytan, Adina; Caldeira, Ken; Grossman, Arthur R; Moran, Dawn; McIlvin, Matthew; Saito, Mak A

    2013-10-01

    In this study, we develop a mechanistic understanding of how temperature affects growth and photosynthesis in 10 geographically and physiologically diverse strains of Synechococcus spp. We found that Synechococcus spp. are able to regulate photochemistry over a range of temperatures by using state transitions and altering the abundance of photosynthetic proteins. These strategies minimize photosystem II (PSII) photodamage by keeping the photosynthetic electron transport chain (ETC), and hence PSII reaction centers, more oxidized. At temperatures that approach the optimal growth temperature of each strain when cellular demand for reduced nicotinamide adenine dinucleotide phosphate (NADPH) is greatest, the phycobilisome (PBS) antenna associates with PSII, increasing the flux of electrons into the ETC. By contrast, under low temperature, when slow growth lowers the demand for NADPH and linear ETC declines, the PBS associates with photosystem I. This favors oxidation of PSII and potential increase in cyclic electron flow. For Synechococcus sp. WH8102, growth at higher temperatures led to an increase in the abundance of PBS pigment proteins, as well as higher abundance of subunits of the PSII, photosystem I, and cytochrome b6f complexes. This would allow cells to increase photosynthetic electron flux to meet the metabolic requirement for NADPH during rapid growth. These PBS-based temperature acclimation strategies may underlie the larger geographic range of this group relative to Prochlorococcus spp., which lack a PBS.

  11. The LOV Protein of Xanthomonas citri subsp. citri Plays a Significant Role in the Counteraction of Plant Immune Responses during Citrus Canker

    PubMed Central

    Kraiselburd, Ivana; Daurelio, Lucas D.; Tondo, María Laura; Merelo, Paz; Cortadi, Adriana A.; Talón, Manuel; Tadeo, Francisco R.; Orellano, Elena G.

    2013-01-01

    Pathogens interaction with a host plant starts a set of immune responses that result in complex changes in gene expression and plant physiology. Light is an important modulator of plant defense response and recent studies have evidenced the novel influence of this environmental stimulus in the virulence of several bacterial pathogens. Xanthomonas citri subsp. citri is the bacterium responsible for citrus canker disease, which affects most citrus cultivars. The ability of this bacterium to colonize host plants is influenced by bacterial blue-light sensing through a LOV-domain protein and disease symptoms are considerably altered upon deletion of this protein. In this work we aimed to unravel the role of this photoreceptor during the bacterial counteraction of plant immune responses leading to citrus canker development. We performed a transcriptomic analysis in Citrus sinensis leaves inoculated with the wild type X. citri subsp. citri and with a mutant strain lacking the LOV protein by a cDNA microarray and evaluated the differentially regulated genes corresponding to specific biological processes. A down-regulation of photosynthesis-related genes (together with a corresponding decrease in photosynthesis rates) was observed upon bacterial infection, this effect being more pronounced in plants infected with the lov-mutant bacterial strain. Infection with this strain was also accompanied with the up-regulation of several secondary metabolism- and defense response-related genes. Moreover, we found that relevant plant physiological alterations triggered by pathogen attack such as cell wall fortification and tissue disruption were amplified during the lov-mutant strain infection. These results suggest the participation of the LOV-domain protein from X. citri subsp. citri in the bacterial counteraction of host plant defense response, contributing in this way to disease development. PMID:24260514

  12. Code-assisted discovery of TAL effector targets in bacterial leaf streak of rice reveals contrast with bacterial blight and a novel susceptibility gene

    USDA-ARS?s Scientific Manuscript database

    Transcription activator-like (TAL) effectors found in Xanthomonas spp. promote bacterial growth and plant susceptibility by binding specific DNA sequences or, effector-binding elements (EBEs), and inducing host gene expression. In this study, we have found substantially different transcriptional pro...

  13. Production of a Functional Frozen Yogurt Fortified with Bifidobacterium spp.

    PubMed Central

    Muhammad, Zafarullah; Zhang, Qiu-Xue; Zhu, Zong-Tao

    2017-01-01

    Frozen dairy products have characteristics of both yogurt and ice cream and could be the persuasive carriers of probiotics. Functions of the frozen yogurt containing viable bifidobacterial cells are recognized and favored by the people of all ages. We developed a kind of yogurt supplemented by Bifidobacterium species. Firstly, five strains of Bifidobacterium spp. (Bifidobacterium bifidum ATCC 11547, Bifidobacterium longum ATCC 11549, Bifidobacterium infantis ATCC 11551, Bifidobacterium adolescentis ATCC 11550, and Bifidobacterium breve ATCC 11548) were evaluated based on the feasibility criteria of probiotics, comprising acid production, bile tolerance, and adhesion to epithelial cells. Formerly, we combined the optimum strains with yogurt culture (Lactobacillus delbrueckii subsp. bulgaricus EMCC 11102 and Streptococcus salivarius subsp. thermophilus EMCC 11044) for producing frozen yogurt. Finally, physiochemical properties and sensory evaluation of the frozen yogurt were investigated during storage of 60 days at −18°C. Results directed that Bifidobacterium adolescentis ATCC 11550 and Bifidobacterium infantis ATCC 11551 could be utilized with yogurt culture for producing frozen yogurt. Moreover, the frozen yogurt fermented by two bifidobacterial strains and yogurt culture gained the high evaluation in the physiochemical properties and sensory evaluation. In summary, our results revealed that there was no significant difference between frozen yogurt fermented by Bifidobacterium spp. and yogurt culture and that fermented by yogurt culture only. PMID:28691028

  14. Virulotyping of Shigella spp. isolated from pediatric patients in Tehran, Iran.

    PubMed

    Ranjbar, Reza; Bolandian, Masomeh; Behzadi, Payam

    2017-03-01

    Shigellosis is a considerable infectious disease with high morbidity and mortality among children worldwide. In this survey the prevalence of four important virulence genes including ial, ipaH, set1A, and set1B were investigated among Shigella strains and the related gene profiles identified in the present investigation, stool specimens were collected from children who were referred to two hospitals in Tehran, Iran. The samples were collected during 3 years (2008-2010) from children who were suspected to shigellosis. Shigella spp. were identified throughout microbiological and serological tests and then subjected to PCR for virulotyping. Shigella sonnei was ranking first (65.5%) followed by Shigella flexneri (25.9%), Shigella boydii (6.9%), and Shigella dysenteriae (1.7%). The ial gene was the most frequent virulence gene among isolated bacterial strains and was followed by ipaH, set1B, and set1A. S. flexneri possessed all of the studied virulence genes (ial 65.51%, ipaH 58.62%, set1A 12.07%, and set1B 22.41%). Moreover, the pattern of virulence gene profiles including ial, ial-ipaH, ial-ipaH-set1B, and ial-ipaH-set1B-set1A was identified for isolated Shigella spp. strains. The pattern of virulence genes is changed in isolated strains of Shigella in this study. So, the ial gene is placed first and the ipaH in second.

  15. Comparative Genomic Analysis Reveals Organization, Function and Evolution of ars Genes in Pantoea spp.

    PubMed

    Wang, Liying; Wang, Jin; Jing, Chuanyong

    2017-01-01

    Numerous genes are involved in various strategies to resist toxic arsenic (As). However, the As resistance strategy in genus Pantoea is poorly understood. In this study, a comparative genome analysis of 23 Pantoea genomes was conducted. Two vertical genetic arsC -like genes without any contribution to As resistance were found to exist in the 23 Pantoea strains. Besides the two arsC -like genes, As resistance gene clusters arsRBC or arsRBCH were found in 15 Pantoea genomes. These ars clusters were found to be acquired by horizontal gene transfer (HGT) from sources related to Franconibacter helveticus, Serratia marcescens , and Citrobacter freundii . During the history of evolution, the ars clusters were acquired more than once in some species, and were lost in some strains, producing strains without As resistance capability. This study revealed the organization, distribution and the complex evolutionary history of As resistance genes in Pantoea spp.. The insights gained in this study improved our understanding on the As resistance strategy of Pantoea spp. and its roles in the biogeochemical cycling of As.

  16. Comparative Genomic Analysis Reveals Organization, Function and Evolution of ars Genes in Pantoea spp.

    PubMed Central

    Wang, Liying; Wang, Jin; Jing, Chuanyong

    2017-01-01

    Numerous genes are involved in various strategies to resist toxic arsenic (As). However, the As resistance strategy in genus Pantoea is poorly understood. In this study, a comparative genome analysis of 23 Pantoea genomes was conducted. Two vertical genetic arsC-like genes without any contribution to As resistance were found to exist in the 23 Pantoea strains. Besides the two arsC-like genes, As resistance gene clusters arsRBC or arsRBCH were found in 15 Pantoea genomes. These ars clusters were found to be acquired by horizontal gene transfer (HGT) from sources related to Franconibacter helveticus, Serratia marcescens, and Citrobacter freundii. During the history of evolution, the ars clusters were acquired more than once in some species, and were lost in some strains, producing strains without As resistance capability. This study revealed the organization, distribution and the complex evolutionary history of As resistance genes in Pantoea spp.. The insights gained in this study improved our understanding on the As resistance strategy of Pantoea spp. and its roles in the biogeochemical cycling of As. PMID:28377759

  17. Relationship among Shigella spp. and enteroinvasive Escherichia coli (EIEC) and their differentiation.

    PubMed

    Ud-Din, Abu; Wahid, Syeda

    2014-01-01

    Shigellosis produces inflammatory reactions and ulceration on the intestinal epithelium followed by bloody or mucoid diarrhea. It is caused by enteroinvasive E. coli (EIEC) as well as any species of the genus Shigella, namely, S. dysenteriae, S. flexneri, S. boydii, and S. sonnei. This current species designation of Shigella does not specify genetic similarity. Shigella spp. could be easily differentiated from E. coli, but difficulties observed for the EIEC-Shigella differentiation as both show similar biochemical traits and can cause dysentery using the same mode of invasion. Sequencing of multiple housekeeping genes indicates that Shigella has derived on several different occasions via acquisition of the transferable forms of ancestral virulence plasmids within commensal E. coli and form a Shigella-EIEC pathovar. EIEC showed lower expression of virulence genes compared to Shigella, hence EIEC produce less severe disease than Shigella spp. Conventional microbiological techniques often lead to confusing results concerning the discrimination between EIEC and Shigella spp. The lactose permease gene (lacY) is present in all E. coli strains but absent in Shigella spp., whereas β-glucuronidase gene (uidA) is present in both E. coli and Shigella spp. Thus uidA gene and lacY gene based duplex real-time PCR assay could be used for easy identification and differentiation of Shigella spp. from E. coli and in particular EIEC.

  18. Relationship among Shigella spp. and enteroinvasive Escherichia coli (EIEC) and their differentiation

    PubMed Central

    Ud-Din, Abu; Wahid, Syeda

    2014-01-01

    Shigellosis produces inflammatory reactions and ulceration on the intestinal epithelium followed by bloody or mucoid diarrhea. It is caused by enteroinvasive E. coli (EIEC) as well as any species of the genus Shigella, namely, S. dysenteriae, S. flexneri, S. boydii, and S. sonnei. This current species designation of Shigella does not specify genetic similarity. Shigella spp. could be easily differentiated from E. coli, but difficulties observed for the EIEC-Shigella differentiation as both show similar biochemical traits and can cause dysentery using the same mode of invasion. Sequencing of multiple housekeeping genes indicates that Shigella has derived on several different occasions via acquisition of the transferable forms of ancestral virulence plasmids within commensal E. coli and form a Shigella-EIEC pathovar. EIEC showed lower expression of virulence genes compared to Shigella, hence EIEC produce less severe disease than Shigella spp. Conventional microbiological techniques often lead to confusing results concerning the discrimination between EIEC and Shigella spp. The lactose permease gene (lacY) is present in all E. coli strains but absent in Shigella spp., whereas β-glucuronidase gene (uidA) is present in both E. coli and Shigella spp. Thus uidA gene and lacY gene based duplex real-time PCR assay could be used for easy identification and differentiation of Shigella spp. from E. coli and in particular EIEC. PMID:25763015

  19. Detection of Cronobacter spp. (formerly Enterobacter sakazakii) from medicinal plants and spices in Syria.

    PubMed

    Belal, Mouhammad; Al-Mariri, Ayman; Hallab, Lila; Hamad, Ibtesam

    2013-02-15

    Cronobacter spp. (formerly Enterobacter sakazakii) is an emerging food-borne pathogen that causes severe meningitis, sepsis, and necrotizing enterocolitis in neonates and infants. These infections have been reported from different parts of the world. The epidemiology and reservoir of Cronobacter spp. are still unknown, and most strains have been isolated from clinical specimens and from a variety of foods, including cheese, meat, milk, vegetables, grains, spices, and herbs. Our study aimed to detect and isolate Cronobacter spp. from different Syrian samples of spices, medicinal herbs and liquorices, depending on the pigment production and biochemical profile of isolates and PCR technique. This PCR method, which provides a powerful tool for rapid, specific, and sensitive detection of Cronobacter spp., is considered a reliable alternative to traditional bacteriological methods. This study revealed that the percentage of Cronobacter spp. was 94%, 52%, and 32% in liquorice, spices and medicinal herbs, respectively. In addition, it assured that the optimal enhancing growth temperature was 44°C, and optimal enhancing growth pH was 5.

  20. Photobactericidal activity of methylene blue derivatives against vancomycin-resistant Enterococcus spp.

    PubMed

    Wainwright, M; Phoenix, D A; Gaskell, M; Marshall, B

    1999-12-01

    The toxicities and phototoxicities of methylene blue and its two methylated derivatives were measured against one standard and three vancomycin-resistant pathogenic strains of Enterococcus spp. Each of the compounds was bactericidal and the derivatives exhibited photobactericidal activity on illumination at a 'light' dose of 6.3 J/cm(2) against one or more of the strains. Increased bactericidal and photobactericidal activity in the methylated derivatives is thought to be due to their higher hydrophobicities allowing greater interaction with the bacterial cell wall. In addition, the derivatives exhibited higher inherent photosensitizing efficacies.

  1. The inheritance of resistance to bacterial leaf spot of lettuce caused by Xanthomonas campestris pv. vitians in three lettuce cultivars

    USDA-ARS?s Scientific Manuscript database

    Lettuce yields can be reduced by the disease bacterial leaf spot (BLS) caused by the pathogen Xanthomonas campestris pv. vitians (Xcv) and host resistance is the most feasible method to reduce disease losses. The cultivars La Brillante, Pavane, and Little Gem express an incompatible host-pathogen in...

  2. Changes to the structure of Sphingomonas spp. communities associated with biodegradation of the herbicide isoproturon in soil.

    PubMed

    Shi, Shengjing; Bending, Gary D

    2007-04-01

    The phenyl-urea herbicide isoproturon is a major contaminant of surface and ground-water in agricultural catchments. Earlier work suggested that within-field spatial variation of isoproturon degradation rate resulted from interactions between catabolizing Sphingomonas spp. and pH. In the current study, changes to the structure of Sphingomonas communities during isoproturon catabolism were investigated using Sphingomonas-specific 16S rRNA gene primers. Growth-linked catabolism at high-pH (>7.5) sites was associated with the appearance of multiple new denaturing gradient gel electrophoresis (DGGE) bands. At low-pH sites, there was no change in DGGE banding at sites in which there was cometabolism, but at sites in which there was growth-linked catabolism, degradation was associated with the appearance of a new band not present at high pH sites. Sequencing of DGGE bands indicated that a strain related to Sphingomonas mali proliferated at low pH sites, while strain Sphingomonas sp. SRS2, a catabolic strain identified in earlier work, together with several further Sphingomonas spp., proliferated at high-pH sites. The data indicate that degradation was associated with complex changes to the structure of Sphingomonas spp. communities, the precise nature of which was spatially variable.

  3. Prevalence and risk factors for Campylobacter spp., Salmonella spp., Coxiella burnetii, and Newcastle disease virus in feral pigeons (Columba livia) in public areas of Montreal, Canada

    PubMed Central

    Gabriele-Rivet, Vanessa; Fairbrother, Julie-Hélène; Tremblay, Donald; Harel, Josée; Côté, Nathalie; Arsenault, Julie

    2016-01-01

    Feral pigeons (Columbia livia) can harbor a range of zoonotic pathogens. A transversal study was undertaken to estimate the prevalence of feral pigeons infected by various pathogens in public areas in Montreal, Quebec. Cloacal swabs from captured birds were cultured for Salmonella spp. and Campylobacter spp. and tested by real-time polymerase chain reaction (RT-PCR) for the detection of Coxiella burnetii. An oropharyngeal swab was also submitted to real-time reverse-transcription polymerase chain reaction (RRT-PCR) for the detection of Newcastle disease virus. Among the 187 pigeons tested from 10 public areas, 9.1% (95% CI: 3.0 to 15.2) were positive for Campylobacter spp. with all strains identified as Campylobacter jejuni. The Campylobacter status of birds was not associated with individual characteristics of birds, with the exception of body score. None of the pigeons tested positive for the other pathogens. Direct or indirect contacts with feral pigeons may constitute a potential risk for Campylobacter infection in humans. PMID:26733736

  4. Prevalence of Vibrio spp. in Retail Seafood in Berlin, Germany.

    PubMed

    Vu, Thi Thu Tra; Alter, Thomas; Huehn, Stephan

    2018-04-01

    This study was conducted to determine the prevalence of Vibrio spp. in retail seafood in Berlin, Germany. A total of 160 raw seafood samples from supermarkets and seafood shops, consisting of shrimp ( n = 80) and bivalves ( n = 80), were investigated for the presence of Vibrio spp. using the International Organization for Standardization ISO/TS 21872 method and a multiplex PCR. The overall prevalence of Vibrio spp. in retail seafood was 55% (95% CI: 47.2 to 62.8%). The prevalence of Vibrio spp. in shrimp was slightly higher than in bivalves (57.5 versus 52.5%); however, the difference was not statistically significant. Vibrio alginolyticus was the most prevalent species (35.6%), followed by Vibrio parahaemolyticus (27.5%), Vibrio cholerae (6.3%), and Vibrio vulnificus (0.6%). None of the V. parahaemolyticus ( n = 110) isolates encoded tdh/ trh genes, whereas all V. cholerae isolates ( n = 27) were lacking ctxA. Among the chilled samples ( n = 105), the prevalence of Vibrio spp. in unpacked samples was significantly higher than in packed samples ( P = 0.006). Among the packed samples ( n = 55), no significant difference in the prevalence of Vibrio spp. was observed between chilled or frozen products. The results of this study indicated a high prevalence of Vibrio spp. in retail seafood in Germany; positive samples were detected in all types of seafood investigated. The detection of tdh/ trh-negative V. parahaemolyticus isolates should not be neglected because of previous findings on pathogenic strains lacking these virulence markers. Even though thorough cooking might limit the risk of foodborne illness caused by Vibrio, potential cross-contamination during preparation or consumption of raw and undercooked seafood might represent a risk of Vibrio infections.

  5. An Interspecies Signaling System Mediated by Fusaric Acid Has Parallel Effects on Antifungal Metabolite Production by Pseudomonas protegens Strain Pf-5 and Antibiosis of Fusarium spp.

    PubMed

    Quecine, Maria Carolina; Kidarsa, Teresa A; Goebel, Neal C; Shaffer, Brenda T; Henkels, Marcella D; Zabriskie, T Mark; Loper, Joyce E

    2015-12-11

    Pseudomonas protegens strain Pf-5 is a rhizosphere bacterium that suppresses soilborne plant diseases and produces at least seven different secondary metabolites with antifungal properties. We derived mutants of Pf-5 with single and multiple mutations in biosynthesis genes for seven antifungal metabolites: 2,4-diacetylphoroglucinol (DAPG), pyrrolnitrin, pyoluteorin, hydrogen cyanide, rhizoxin, orfamide A, and toxoflavin. These mutants were tested for inhibition of the pathogens Fusarium verticillioides and Fusarium oxysporum f. sp. pisi. Rhizoxin, pyrrolnitrin, and DAPG were found to be primarily responsible for fungal antagonism by Pf-5. Previously, other workers showed that the mycotoxin fusaric acid, which is produced by many Fusarium species, including F. verticillioides, inhibited the production of DAPG by Pseudomonas spp. In this study, amendment of culture media with fusaric acid decreased DAPG production, increased pyoluteorin production, and had no consistent influence on pyrrolnitrin or orfamide A production by Pf-5. Fusaric acid also altered the transcription of biosynthetic genes, indicating that the mycotoxin influenced antibiotic production by Pf-5 at the transcriptional level. Addition of fusaric acid to the culture medium reduced antibiosis of F. verticillioides by Pf-5 and derivative strains that produce DAPG but had no effect on antibiosis by Pf-5 derivatives that suppressed F. verticillioides due to pyrrolnitrin or rhizoxin production. Our results demonstrated the importance of three compounds, rhizoxin, pyrrolnitrin, and DAPG, in suppression of Fusarium spp. by Pf-5 and confirmed that an interspecies signaling system mediated by fusaric acid had parallel effects on antifungal metabolite production and antibiosis by the bacterial biological control organism. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. Proteomic analysis reveals novel extracellular virulence-associated proteins and functions regulated by the diffusible signal factor (DSF) in Xanthomonas oryzae pv. oryzicola.

    PubMed

    Qian, Guoliang; Zhou, Yijing; Zhao, Yancun; Song, Zhiwei; Wang, Suyan; Fan, Jiaqin; Hu, Baishi; Venturi, Vittorio; Liu, Fengquan

    2013-07-05

    Quorum sensing (QS) in Xanthomonas oryzae pv. oryzicola (Xoc), the causal agent of bacterial leaf streak, is mediated by the diffusible signal factor (DSF). DSF-mediating QS has been shown to control virulence and a set of virulence-related functions; however, the expression profiles and functions of extracellular proteins controlled by DSF signal remain largely unclear. In the present study, 33 DSF-regulated extracellular proteins, whose functions include small-protein mediating QS, oxidative adaptation, macromolecule metabolism, cell structure, biosynthesis of small molecules, intermediary metabolism, cellular process, protein catabolism, and hypothetical function, were identified by proteomics in Xoc. Of these, 15 protein encoding genes were in-frame deleted, and 4 of them, including three genes encoding type II secretion system (T2SS)-dependent proteins and one gene encoding an Ax21 (activator of XA21-mediated immunity)-like protein (a novel small-protein type QS signal) were determined to be required for full virulence in Xoc. The contributions of these four genes to important virulence-associated functions, including bacterial colonization, extracellular polysaccharide, cell motility, biofilm formation, and antioxidative ability, are presented. To our knowledge, our analysis is the first complete list of DSF-regulated extracellular proteins and functions in a Xanthomonas species. Our results show that DSF-type QS played critical roles in regulation of T2SS and Ax21-mediating QS, which sheds light on the role of DSF signaling in Xanthomonas.

  7. Environmental Growth Conditions of Trichoderma spp. Affects Indole Acetic Acid Derivatives, Volatile Organic Compounds, and Plant Growth Promotion

    PubMed Central

    Nieto-Jacobo, Maria F.; Steyaert, Johanna M.; Salazar-Badillo, Fatima B.; Nguyen, Dianne Vi; Rostás, Michael; Braithwaite, Mark; De Souza, Jorge T.; Jimenez-Bremont, Juan F.; Ohkura, Mana; Stewart, Alison

    2017-01-01

    Trichoderma species are soil-borne filamentous fungi widely utilized for their many plant health benefits, such as conferring improved growth, disease resistance and abiotic stress tolerance to their hosts. Many Trichoderma species are able to produce the auxin phytohormone indole-3-acetic acid (IAA), and its production has been suggested to promote root growth. Here we show that the production of IAA is strain dependent and diverse external stimuli are associated with its production. In in vitro assays, Arabidopsis primary root length was negatively affected by the interaction with some Trichoderma strains. In soil experiments, a continuum effect on plant growth was shown and this was also strain dependent. In plate assays, some strains of Trichoderma spp. inhibited the expression of the auxin reporter gene DR5 in Arabidopsis primary roots but not secondary roots. When Trichoderma spp. and A. thaliana were physically separated, enhancement of both shoot and root biomass, increased root production and chlorophyll content were observed, which strongly suggested that volatile production by the fungus influenced the parameters analyzed. Trichoderma strains T. virens Gv29.8, T. atroviride IMI206040, T. sp. “atroviride B” LU132, and T. asperellum LU1370 were demonstrated to promote plant growth through volatile production. However, contrasting differences were observed with LU1370 which had a negative effect on plant growth in soil but a positive effect in plate assays. Altogether our results suggest that the mechanisms and molecules involved in plant growth promotion by Trichoderma spp. are multivariable and are affected by the environmental conditions. PMID:28232840

  8. Identification of actinomycetes from plant rhizospheric soils with inhibitory activity against Colletotrichum spp., the causative agent of anthracnose disease.

    PubMed

    Intra, Bungonsiri; Mungsuntisuk, Isada; Nihira, Takuya; Igarashi, Yasuhiro; Panbangred, Watanalai

    2011-04-01

    Colletotrichum is one of the most widespread and important genus of plant pathogenic fungi worldwide. Various species of Colletotrichum are the causative agents of anthracnose disease in plants, which is a severe problem to agricultural crops particularly in Thailand. These phytopathogens are usually controlled using chemicals; however, the use of these agents can lead to environmental pollution. Potential non-chemical control strategies for anthracnose disease include the use of bacteria capable of producing anti-fungal compounds such as actinomycetes spp., that comprise a large group of filamentous, Gram positive bacteria from soil. The aim of this study was to isolate actinomycetes capable of inhibiting the growth of Colletotrichum spp, and to analyze the diversity of actinomycetes from plant rhizospheric soil. A total of 304 actinomycetes were isolated and tested for their inhibitory activity against Colletotrichum gloeosporioides strains DoA d0762 and DoA c1060 and Colletotrichum capsici strain DoA c1511 which cause anthracnose disease as well as the non-pathogenic Saccharomyces cerevisiae strain IFO 10217. Most isolates (222 out of 304, 73.0%) were active against at least one indicator fungus or yeast. Fifty four (17.8%) were active against three anthracnose fungi and 17 (5.6%) could inhibit the growth of all three fungi and S. cerevisiae used in the test. Detailed analysis on 30 selected isolates from an orchard at Chanthaburi using the comparison of 16S rRNA gene sequences revealed that most of the isolates (87%) belong to the genus Streptomyces sp., while one each belongs to Saccharopolyspora (strain SB-2) and Nocardiopsis (strain CM-2) and two to Nocardia (strains BP-3 and LK-1). Strains LC-1, LC-4, JF-1, SC-1 and MG-1 exerted high inhibitory activity against all three anthracnose fungi and yeast. In addition, the organic solvent extracts prepared from these five strains inhibited conidial growth of the three indicator fungi. Preliminary analysis of crude

  9. Identification of actinomycetes from plant rhizospheric soils with inhibitory activity against Colletotrichum spp., the causative agent of anthracnose disease

    PubMed Central

    2011-01-01

    Background Colletotrichum is one of the most widespread and important genus of plant pathogenic fungi worldwide. Various species of Colletotrichum are the causative agents of anthracnose disease in plants, which is a severe problem to agricultural crops particularly in Thailand. These phytopathogens are usually controlled using chemicals; however, the use of these agents can lead to environmental pollution. Potential non-chemical control strategies for anthracnose disease include the use of bacteria capable of producing anti-fungal compounds such as actinomycetes spp., that comprise a large group of filamentous, Gram positive bacteria from soil. The aim of this study was to isolate actinomycetes capable of inhibiting the growth of Colletotrichum spp, and to analyze the diversity of actinomycetes from plant rhizospheric soil. Results A total of 304 actinomycetes were isolated and tested for their inhibitory activity against Colletotrichum gloeosporioides strains DoA d0762 and DoA c1060 and Colletotrichum capsici strain DoA c1511 which cause anthracnose disease as well as the non-pathogenic Saccharomyces cerevisiae strain IFO 10217. Most isolates (222 out of 304, 73.0%) were active against at least one indicator fungus or yeast. Fifty four (17.8%) were active against three anthracnose fungi and 17 (5.6%) could inhibit the growth of all three fungi and S. cerevisiae used in the test. Detailed analysis on 30 selected isolates from an orchard at Chanthaburi using the comparison of 16S rRNA gene sequences revealed that most of the isolates (87%) belong to the genus Streptomyces sp., while one each belongs to Saccharopolyspora (strain SB-2) and Nocardiopsis (strain CM-2) and two to Nocardia (strains BP-3 and LK-1). Strains LC-1, LC-4, JF-1, SC-1 and MG-1 exerted high inhibitory activity against all three anthracnose fungi and yeast. In addition, the organic solvent extracts prepared from these five strains inhibited conidial growth of the three indicator fungi

  10. Transgenic expression of the rice Xa21 pattern-recognition receptor in banana (Musa sp.) confers resistance to Xanthomonas campestris pv. musacearum.

    PubMed

    Tripathi, Jaindra N; Lorenzen, Jim; Bahar, Ofir; Ronald, Pamela; Tripathi, Leena

    2014-08-01

    Banana Xanthomonas wilt (BXW), caused by the bacterium Xanthomonas campestris pv. musacearum (Xcm), is the most devastating disease of banana in east and central Africa. The spread of BXW threatens the livelihood of millions of African farmers who depend on banana for food security and income. There are no commercial chemicals, biocontrol agents or resistant cultivars available to control BXW. Here, we take advantage of the robust resistance conferred by the rice pattern-recognition receptor (PRR), XA21, to the rice pathogen Xanthomonas oryzae pv. oryzae (Xoo). We identified a set of genes required for activation of Xa21-mediated immunity (rax) that were conserved in both Xoo and Xcm. Based on the conservation, we hypothesized that intergeneric transfer of Xa21 would confer resistance to Xcm. We evaluated 25 transgenic lines of the banana cultivar 'Gonja manjaya' (AAB) using a rapid bioassay and 12 transgenic lines in the glasshouse for resistance against Xcm. About 50% of the transgenic lines showed complete resistance to Xcm in both assays. In contrast, all of the nontransgenic control plants showed severe symptoms that progressed to complete wilting. These results indicate that the constitutive expression of the rice Xa21 gene in banana results in enhanced resistance against Xcm. Furthermore, this work demonstrates the feasibility of PRR gene transfer between monocotyledonous species and provides a valuable new tool for controlling the BXW pandemic of banana, a staple food for 100 million people in east Africa. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  11. Transgenic expression of the rice Xa21 pattern recognition receptor in banana (Musa sp.) confers resistance to Xanthomonas campestris pv. musacearum

    PubMed Central

    Tripathi, Jaindra Nath; Lorenzen, Jim; Bahar, Ofir; Ronald, Pamela; Tripathi, Leena

    2014-01-01

    Summary Banana Xanthomonas wilt (BXW), caused by the bacterium Xanthomonas campestris pv. musacearum (Xcm), is the most devastating disease of banana in east and central Africa. The spread of BXW threatens the livelihood of millions of African farmers who depend on banana for food security and income. There are no commercial chemicals, bio-control agents or resistant cultivars available to control BXW. Here we take advantage of the robust resistance conferred by the rice pattern recognition receptor (PRR), XA21, to the rice pathogen Xanthomonas oryzae pv. oryzae (Xoo). We identified a set of genes required for activation of Xa21 mediated immunity (rax) that were conserved in both Xoo and Xcm. Based on the conservation, we hypothesized that intergeneric transfer of Xa21 would confer resistance to Xcm. We evaluated 25 transgenic lines of the banana cultivar ‘Gonja manjaya’ (AAB) using a rapid bioassay and 12 transgenic plants in the glass house for resistance against Xcm. About fifty percent of the transgenic lines showed complete resistance to Xcm in both assays. In contrast, all of the non-transgenic control plants showed severe symptoms that progressed to complete wilting. These results indicate that the constitutive expression of the rice Xa21 gene in banana results in enhanced resistance against Xcm. Furthermore this work demonstrates the feasibility of PRR gene transfer between monocotyledonous species and provides a valuable new tool for controlling the BXW pandemic of banana, a staple food for 100 million people in east Africa. PMID:24612254

  12. Baby leaf lettuce germplasm enhancement: developing diverse populations with resistance to bacterial leaf spot caused by Xanthomonas campestris pv. vitians

    USDA-ARS?s Scientific Manuscript database

    Baby leaf lettuce cultivars with resistance to bacterial leaf spot (BLS) caused by Xanthomonas campestris pv. vitians (Xcv) are needed to reduce crop losses. The objectives of this research were to assess the genetic diversity for BLS resistance in baby leaf lettuce cultivars and to select early gen...

  13. Transcriptome reprogramming of resistant and susceptible peach genotypes during Xanthomonas arboricola pv. pruni early leaf infection

    PubMed Central

    Gervasi, Fabio; Ferrante, Patrizia; Dettori, Maria Teresa; Scortichini, Marco

    2018-01-01

    Bacterial spot caused by Xanthomonas arboricola pv. pruni (Xap) is a major threat to Prunus species worldwide. The molecular mechanisms of peach resistance to Xap during early leaf infection were investigated by RNA-Seq analysis of two Prunus persica cultivars, ‘Redkist’ (resistant), and ‘JH Hale’ (susceptible) at 30 minutes, 1 and 3 hours-post-infection (hpi). Both cultivars exhibited extensive modulation of gene expression at 30 mpi, which reduced significantly at 1 hpi, increasing again at 3 hpi. Overall, 714 differentially expressed genes (DEGs) were detected in ‘Redkist’ (12% at 30 mpi and 1 hpi and 88% at 3 hpi). In ‘JH Hale’, 821 DEGs were identified (47% at 30 mpi and 1 hpi and 53% at 3 hpi). Highly up-regulated genes (fold change > 100) at 3 hpi exhibited higher fold change values in ‘Redkist’ than in ‘JH Hale’. RNA-Seq bioinformatics analyses were validated by RT-qPCR. In both cultivars, DEGs included genes with putative roles in perception, signal transduction, secondary metabolism, and transcription regulation, and there were defense responses in both cultivars, with enrichment for the gene ontology terms, ‘immune system process’, ‘defense response’, and ‘cell death’. There were particular differences between the cultivars in the intensity and kinetics of modulation of expression of genes with putative roles in transcriptional activity, secondary metabolism, photosynthesis, and receptor and signaling processes. Analysis of differential exon usage (DEU) revealed that both cultivars initiated remodeling their transcriptomes at 30 mpi; however, ‘Redkist’ exhibited alternative exon usage for a greater number of genes at every time point compared with ‘JH Hale’. Candidate resistance genes (WRKY-like, CRK-like, Copper amine oxidase-like, and TIR-NBS-LRR-like) are of interest for further functional characterization with the aim of elucidating their role in Prunus spp. resistance to Xap. PMID:29698473

  14. Transcriptome reprogramming of resistant and susceptible peach genotypes during Xanthomonas arboricola pv. pruni early leaf infection.

    PubMed

    Gervasi, Fabio; Ferrante, Patrizia; Dettori, Maria Teresa; Scortichini, Marco; Verde, Ignazio

    2018-01-01

    Bacterial spot caused by Xanthomonas arboricola pv. pruni (Xap) is a major threat to Prunus species worldwide. The molecular mechanisms of peach resistance to Xap during early leaf infection were investigated by RNA-Seq analysis of two Prunus persica cultivars, 'Redkist' (resistant), and 'JH Hale' (susceptible) at 30 minutes, 1 and 3 hours-post-infection (hpi). Both cultivars exhibited extensive modulation of gene expression at 30 mpi, which reduced significantly at 1 hpi, increasing again at 3 hpi. Overall, 714 differentially expressed genes (DEGs) were detected in 'Redkist' (12% at 30 mpi and 1 hpi and 88% at 3 hpi). In 'JH Hale', 821 DEGs were identified (47% at 30 mpi and 1 hpi and 53% at 3 hpi). Highly up-regulated genes (fold change > 100) at 3 hpi exhibited higher fold change values in 'Redkist' than in 'JH Hale'. RNA-Seq bioinformatics analyses were validated by RT-qPCR. In both cultivars, DEGs included genes with putative roles in perception, signal transduction, secondary metabolism, and transcription regulation, and there were defense responses in both cultivars, with enrichment for the gene ontology terms, 'immune system process', 'defense response', and 'cell death'. There were particular differences between the cultivars in the intensity and kinetics of modulation of expression of genes with putative roles in transcriptional activity, secondary metabolism, photosynthesis, and receptor and signaling processes. Analysis of differential exon usage (DEU) revealed that both cultivars initiated remodeling their transcriptomes at 30 mpi; however, 'Redkist' exhibited alternative exon usage for a greater number of genes at every time point compared with 'JH Hale'. Candidate resistance genes (WRKY-like, CRK-like, Copper amine oxidase-like, and TIR-NBS-LRR-like) are of interest for further functional characterization with the aim of elucidating their role in Prunus spp. resistance to Xap.

  15. Comparative genomics of Fructobacillus spp. and Leuconostoc spp. reveals niche-specific evolution of Fructobacillus spp.

    DOE PAGES

    Endo, Akihito; Tanizawa, Yasuhiro; Tanaka, Naoto; ...

    2015-12-29

    In this study, Fructobacillus spp. in fructose-rich niches belong to the family Leuconostocaceae. They were originally classified as Leuconostoc spp., but were later grouped into a novel genus, Fructobacillus , based on their phylogenetic position, morphology and specific biochemical characteristics. The unique characters, so called fructophilic characteristics, had not been reported in the group of lactic acid bacteria, suggesting unique evolution at the genome level. Here we studied four draft genome sequences of Fructobacillus spp. and compared their metabolic properties against those of Leuconostoc spp. As a result, Fructobacillus species possess significantly less protein coding sequences in their small genomes.more » The number of genes was significantly smaller in carbohydrate transport and metabolism. Several other metabolic pathways, including TCA cycle, ubiquinone and other terpenoid-quinone biosynthesis and phosphotransferase systems, were characterized as discriminative pathways between the two genera. The adhE gene for bifunctional acetaldehyde/alcohol dehydrogenase, and genes for subunits of the pyruvate dehydrogenase complex were absent in Fructobacillus spp. The two genera also show different levels of GC contents, which are mainly due to the different GC contents at the third codon position. In conclusion, the present genome characteristics in Fructobacillus spp. suggest reductive evolution that took place to adapt to specific niches.« less

  16. Comparative genomics of Fructobacillus spp. and Leuconostoc spp. reveals niche-specific evolution of Fructobacillus spp.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Endo, Akihito; Tanizawa, Yasuhiro; Tanaka, Naoto

    In this study, Fructobacillus spp. in fructose-rich niches belong to the family Leuconostocaceae. They were originally classified as Leuconostoc spp., but were later grouped into a novel genus, Fructobacillus , based on their phylogenetic position, morphology and specific biochemical characteristics. The unique characters, so called fructophilic characteristics, had not been reported in the group of lactic acid bacteria, suggesting unique evolution at the genome level. Here we studied four draft genome sequences of Fructobacillus spp. and compared their metabolic properties against those of Leuconostoc spp. As a result, Fructobacillus species possess significantly less protein coding sequences in their small genomes.more » The number of genes was significantly smaller in carbohydrate transport and metabolism. Several other metabolic pathways, including TCA cycle, ubiquinone and other terpenoid-quinone biosynthesis and phosphotransferase systems, were characterized as discriminative pathways between the two genera. The adhE gene for bifunctional acetaldehyde/alcohol dehydrogenase, and genes for subunits of the pyruvate dehydrogenase complex were absent in Fructobacillus spp. The two genera also show different levels of GC contents, which are mainly due to the different GC contents at the third codon position. In conclusion, the present genome characteristics in Fructobacillus spp. suggest reductive evolution that took place to adapt to specific niches.« less

  17. The Xanthomonas euvesicatoria type III effector XopAU is an active protein kinase that manipulates plant MAP kinase signaling.

    PubMed

    Teper, Doron; Girija, Anil Madhusoodana; Bosis, Eran; Popov, Georgy; Savidor, Alon; Sessa, Guido

    2018-01-01

    The Gram-negative bacterium Xanthomonas euvesicatoria (Xe) is the causal agent of bacterial spot disease of pepper and tomato. Xe delivers effector proteins into host cells through the type III secretion system to promote disease. Here, we show that the Xe effector XopAU, which is conserved in numerous Xanthomonas species, is a catalytically active protein kinase and contributes to the development of disease symptoms in pepper plants. Agrobacterium-mediated expression of XopAU in host and non-host plants activated typical defense responses, including MAP kinase phosphorylation, accumulation of pathogenesis-related (PR) proteins and elicitation of cell death, that were dependent on the kinase activity of the effector. XopAU-mediated cell death was not dependent on early signaling components of effector-triggered immunity and was also observed when the effector was delivered into pepper leaves by Xanthomonas campestris pv. campestris, but not by Xe. Protein-protein interaction studies in yeast and in planta revealed that XopAU physically interacts with components of plant immunity-associated MAP kinase cascades. Remarkably, XopAU directly phosphorylated MKK2 in vitro and enhanced its phosphorylation at multiple sites in planta. Consistent with the notion that MKK2 is a target of XopAU, silencing of the MKK2 homolog or overexpression of the catalytically inactive mutant MKK2K99R in N. benthamiana plants reduced XopAU-mediated cell death and MAPK phosphorylation. Furthermore, yeast co-expressing XopAU and MKK2 displayed reduced growth and this phenotype was dependent on the kinase activity of both proteins. Together, our results support the conclusion that XopAU contributes to Xe disease symptoms in pepper plants and manipulates host MAPK signaling through phosphorylation and activation of MKK2.

  18. The role of gluconate production by Pseudomonas spp. in the mineralization and bioavailability of calcium-phytate to Nicotiana tabacum.

    PubMed

    Giles, Courtney D; Hsu, Pei-Chun Lisa; Richardson, Alan E; Hurst, Mark R H; Hill, Jane E

    2015-12-01

    Organic phosphorus (P) is abundant in most soils but is largely unavailable to plants. Pseudomonas spp. can improve the availability of P to plants through the production of phytases and organic anions. Gluconate is a major component of Pseudomonas organic anion production and may therefore play an important role in the mineralization of insoluble organic P forms such as calcium-phytate (CaIHP). Organic anion and phytase production was characterized in 2 Pseudomonas spp. soil isolates (CCAR59, Ha200) and an isogenic mutant of strain Ha200, which lacked a functional glucose dehydrogenase (Gcd) gene (strain Ha200 gcd::Tn5B8). Wild-type and mutant strains of Pseudomonas spp. were evaluated for their ability to solubilize and hydrolyze CaIHP and to promote the growth and assimilation of P by tobacco plants. Gluconate, 2-keto-gluconate, pyruvate, ascorbate, acetate, and formate were detected in Pseudomonas spp. supernatants. Wild-type pseudomonads containing a functional gcd could produce gluconate and mineralize CaIHP, whereas the isogenic mutant could not. Inoculation with Pseudomonas improved the bioavailability of CaIHP to tobacco plants, but there was no difference in plant growth response due to Gcd function. Gcd function is required for the mineralization of CaIHP in vitro; however, further studies will be needed to quantify the relative contribution of specific organic anions such as gluconate to plant growth promotion by soil pseudomonads.

  19. Classification of Plant Associated Bacteria Using RIF, a Computationally Derived DNA Marker

    PubMed Central

    Schneider, Kevin L.; Marrero, Glorimar; Alvarez, Anne M.; Presting, Gernot G.

    2011-01-01

    A DNA marker that distinguishes plant associated bacteria at the species level and below was derived by comparing six sequenced genomes of Xanthomonas, a genus that contains many important phytopathogens. This DNA marker comprises a portion of the dnaA replication initiation factor (RIF). Unlike the rRNA genes, dnaA is a single copy gene in the vast majority of sequenced bacterial genomes, and amplification of RIF requires genus-specific primers. In silico analysis revealed that RIF has equal or greater ability to differentiate closely related species of Xanthomonas than the widely used ribosomal intergenic spacer region (ITS). Furthermore, in a set of 263 Xanthomonas, Ralstonia and Clavibacter strains, the RIF marker was directly sequenced in both directions with a success rate approximately 16% higher than that for ITS. RIF frameworks for Xanthomonas, Ralstonia and Clavibacter were constructed using 682 reference strains representing different species, subspecies, pathovars, races, hosts and geographic regions, and contain a total of 109 different RIF sequences. RIF sequences showed subspecific groupings but did not place strains of X. campestris or X. axonopodis into currently named pathovars nor R. solanacearum strains into their respective races, confirming previous conclusions that pathovar and race designations do not necessarily reflect genetic relationships. The RIF marker also was sequenced for 24 reference strains from three genera in the Enterobacteriaceae: Pectobacterium, Pantoea and Dickeya. RIF sequences of 70 previously uncharacterized strains of Ralstonia, Clavibacter, Pectobacterium and Dickeya matched, or were similar to, those of known reference strains, illustrating the utility of the frameworks to classify bacteria below the species level and rapidly match unknown isolates to reference strains. The RIF sequence frameworks are available at the online RIF database, RIFdb, and can be queried for diagnostic purposes with RIF sequences obtained

  20. Identification of a host 14-3-3 Protein that Interacts with Xanthomonas effector AvrRxv

    PubMed Central

    Whalen, Maureen; Richter, Todd; Zakhareyvich, Kseniya; Yoshikawa, Masayasu; Al-Azzeh, Dana; Adefioye, Adeshola; Spicer, Greg; Mendoza, Laura L.; Morales, Christine Q.; Klassen, Vicki; Perez-Baron, Gina; Toebe, Carole S.; Tzovolous, Ageliki; Gerstman, Emily; Evans, Erika; Thompson, Cheryl; Lopez, Mary; Ronald, Pamela C.

    2009-01-01

    AvrRxv is a member of a family of pathogen effectors present in pathogens of both plant and mammalian species. Xanthomonas campestris pv. vesicatoria strains carrying AvrRxv induce a hypersensitive response (HR) in the tomato cultivar Hawaii 7998. Using a yeast two-hybrid screen, we identified a 14-3-3 protein from tomato that interacts with AvrRxv called AvrRxv Interactor 1 (ARI1). The interaction was confirmed in vitro with affinity chromatography. Using mutagenesis, we identified a 14-3-3-binding domain in AvrRxv and demonstrated that a mutant in that domain showed concomitant loss of interaction with ARI1 and HR-inducing activity in tomato. These results demonstrate that the AvrRxv bacterial effector recruits 14-3-3 proteins for its function within host cells. AvrRxv homologues YopP and YopJ from Yersinia do not have AvrRxv-specific HR-inducing activity when delivered into tomato host cells by Agrobacterium. Although YopP itself cannot induce HR, its C-terminal domain containing the catalytic residues can replace that of AvrRxv in an AvrRxv-YopP chimera for HR-inducing activity. Phylogenetic analysis indicates that the sequences encoding the C-termini of family members are evolving independently from those encoding the N-termini. Our results support a model in which there are three functional domains in proteins of the family, translocation, interaction, and catalytic. PMID:21796232

  1. TAL effector driven induction of a SWEET gene confers susceptibility to bacterial blight of cotton

    USDA-ARS?s Scientific Manuscript database

    Bacterial blight of cotton (BBC), caused by Xanthomonas citri subsp. malvacearum (Xcm), is among the most destructive diseases in cotton (Gossypium spp.). Transcription activator-like (TAL) effectors from Xcm are essential for BBC disease progression. Here, we carried out whole-genome PacBio-seque...

  2. Biodegradation and detoxification of olive mill wastewater by selected strains of the mushroom genera Ganoderma and Pleurotus.

    PubMed

    Ntougias, Spyridon; Baldrian, Petr; Ehaliotis, Constantinos; Nerud, Frantisek; Antoniou, Theodoros; Merhautová, Věra; Zervakis, Georgios I

    2012-07-01

    Thirty-nine white-rot fungi belonging to nine species of Agaricomycotina (Basidiomycota) were initially screened for their ability to decrease olive-mill wastewater (OMW) phenolics. Four strains of Ganoderma australe, Ganoderma carnosum, Pleurotus eryngii and Pleurotus ostreatus, were selected and further examined for key-aspects of the OMW biodegradation process. Fungal growth in OMW-containing batch cultures resulted in significant decolorization (by 40-46% and 60-65% for Ganoderma and Pleurotus spp. respectively) and reduction of phenolics (by 64-67% and 74-81% for Ganoderma and Pleurotus spp. respectively). COD decrease was less pronounced (12-29%). Cress-seeds germination increased by 30-40% when OMW was treated by Pleurotus strains. Toxicity expressed as inhibition of Aliivibrio fischeri luminescence was reduced in fungal-treated OMW samples by approximately 5-15 times compared to the control. As regards the pertinent enzyme activities, laccase and Mn-independent peroxidase were detected for Ganoderma spp. during the entire incubation period. In contrast, Pleurotus spp. did not exhibit any enzyme activities at early growth stages; instead, high laccase (five times greater than those of Ganoderma spp.) and Mn peroxidases activities were determined at the end of treatment. OMW decolorization by Ganoderma strains was strongly correlated to the reduction of phenolics, whereas P. eryngii laccase activity was correlated with the effluent's decolorization. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Nodulation, Nitrogen Fixation, and Hydrogen Oxidation by Pigeon Pea Bradyrhizobium spp. in Symbiotic Association with Pigeon Pea, Cowpea, and Soybean †

    PubMed Central

    Nautiyal, C. S.; Hegde, S. V.; van Berkum, P.

    1988-01-01

    The pigeon pea strains of Bradyrhizobium CC-1, CC-8, UASGR(S), and F4 were evaluated for nodulation, effectiveness for N2 fixation, and H2 oxidation with homologous and nonhomologous host plants. Strain CC-1 nodulated Macroptilium atropurpureum, Vigna unguiculata, Glycine max, and G. soja but did not nodulate Pisum sativum, Phaseolus vulgaris, Trigonella foenum-graecum, and Trifolium repens. Strain F4 nodulated G. max cv. Peking and PI 434937 (Malayan), but the symbioses formed were poor. Similarly, G. max cv. Peking, cv. Bragg, PI 434937, PR 13-28-2-8-7, and HM-1 were nodulated by strain CC-1, and symbioses were also poor. G. max cv. Williams and cv. Clark were not nodulated. H2 uptake activity was expressed with pigeon pea and cowpea, but not with soybean. G. max cv. Bragg grown in Bangalore, India, in local soil not previously exposed to Bradyrhizobium japonicum formed nodules with indigenous Bradyrhizobium spp. Six randomly chosen isolates, each originating from a different nodule, formed effective symbioses with pigeon pea host ICPL-407, nodulated PR 13-28-2-8-7 soybean forming moderately effective symbioses, and did not nodulate Williams soybean. These results indicate the six isolates to be pigeon pea strains although they originated from soybean nodules. Host-determined nodulation of soybean by pigeon pea Bradyrhizobium spp. may depend upon the ancestral backgrounds of the cultivars. The poor symbioses formed by the pigeon pea strains with soybean indicate that this crop should be inoculated with B. japonicum for its cultivation in soils containing only pigeon pea Bradyrhizobium spp. PMID:16347542

  4. Bacillus Endospores Isolated from Granite: Close Molecular Relationships to Globally Distributed Bacillus spp. from Endolithic and Extreme Environments

    PubMed Central

    Fajardo-Cavazos, Patricia; Nicholson, Wayne

    2006-01-01

    As part of an ongoing effort to catalog spore-forming bacterial populations in environments conducive to interplanetary transfer by natural impacts or by human spaceflight activities, spores of Bacillus spp. were isolated and characterized from the interior of near-subsurface granite rock collected from the Santa Catalina Mountains, AZ. Granite was found to contain ∼500 cultivable Bacillus spores and ∼104 total cultivable bacteria per gram. Many of the Bacillus isolates produced a previously unreported diffusible blue fluorescent compound. Two strains of eight tested exhibited increased spore UV resistance relative to a standard Bacillus subtilis UV biodosimetry strain. Fifty-six isolates were identified by repetitive extragenic palindromic PCR (rep-PCR) and 16S rRNA gene analysis as most closely related to B. megaterium (15 isolates), B. simplex (23 isolates), B. drentensis (6 isolates), B. niacini (7 isolates), and, likely, a new species related to B. barbaricus (5 isolates). Granite isolates were very closely related to a limited number of Bacillus spp. previously found to inhabit (i) globally distributed endolithic sites such as biodeteriorated murals, stone tombs, underground caverns, and rock concretions and (ii) extreme environments such as Antarctic soils, deep sea floor sediments, and spacecraft assembly facilities. Thus, it appears that the occurrence of Bacillus spp. in endolithic or extreme environments is not accidental but that these environments create unique niches excluding most Bacillus spp. but to which a limited number of Bacillus spp. are specifically adapted. PMID:16597992

  5. Biofilm formation by Salmonella spp. in catfish mucus extract under industrial conditions

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to determine the effect of strain and temperature on the growth and biofilm formation of Salmonella spp. in high and low concentrations of catfish mucus extract on different food-contact surfaces at 22°C and 10°C. The second objective of this study was to evaluate the...

  6. In vitro bactericidal activity of aminoglycosides, including the next-generation drug plazomicin, against Brucella spp.

    USDA-ARS?s Scientific Manuscript database

    Plazomicin is a next-generation aminoglycoside with a potentially improved safety profile compared to other aminoglycosides. This study assessed plazomicin MICs and MBCs in four Brucella spp. reference strains. Like other aminoglycosides and aminocyclitols, plazomicin MBC values equaled MIC values ...

  7. Xanthomonas citri ssp. citri requires the outer membrane porin OprB for maximal virulence and biofilm formation.

    PubMed

    Ficarra, Florencia A; Grandellis, Carolina; Galván, Estela M; Ielpi, Luis; Feil, Regina; Lunn, John E; Gottig, Natalia; Ottado, Jorgelina

    2017-06-01

    Xanthomonas citri ssp. citri (Xcc) causes canker disease in citrus, and biofilm formation is critical for the disease cycle. OprB (Outer membrane protein B) has been shown previously to be more abundant in Xcc biofilms compared with the planktonic state. In this work, we showed that the loss of OprB in an oprB mutant abolishes bacterial biofilm formation and adherence to the host, and also compromises virulence and efficient epiphytic survival of the bacteria. Moreover, the oprB mutant is impaired in bacterial stress resistance. OprB belongs to a family of carbohydrate transport proteins, and the uptake of glucose is decreased in the mutant strain, indicating that OprB transports glucose. Loss of OprB leads to increased production of xanthan exopolysaccharide, and the carbohydrate intermediates of xanthan biosynthesis are also elevated in the mutant. The xanthan produced by the mutant has a higher viscosity and, unlike wild-type xanthan, completely lacks pyruvylation. Overall, these results suggest that Xcc reprogrammes its carbon metabolism when it senses a shortage of glucose input. The participation of OprB in the process of biofilm formation and virulence, as well as in metabolic changes to redirect the carbon flux, is discussed. Our results demonstrate the importance of environmental nutrient supply and glucose uptake via OprB for Xcc virulence. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  8. Surveillance and molecular typing of Cronobacter spp. in commercial powdered infant formula and follow-up formula from 2011 to 2013 in Shandong Province, China.

    PubMed

    Zhang, Huaning; Hou, Peibin; Lv, Hui; Chen, Yuzhen; Li, Xinpeng; Ren, Yanyan; Wang, Mei; Tan, Hailian; Bi, Zhenwang

    2017-05-01

    Infection with Cronobacter spp. leads to neonatal meningitis, necrotizing enterocolitis and bacteremia. Cronobacter spp. are reported to comprise an important pathogen contaminating powdered infant formula (PIF) and follow-up formula (FUF), although little is known about the contamination level of Cronobacter spp. in PIFs and FUFs in China. In total, 1032 samples were collected between 2011 and 2013. Forty-two samples were positive, including 1.6% in PIFs and 6.5% in FUFs. The strains were susceptible to most antibiotics except for cefoxitin. Pulsed-field gel electrophoresis after XbaI digestion produced a total of 36 banding patterns. The 38 strains were found in 27 sequence types (STs), of which nine types (ST454 to ST462) had not been reported in other countries. The clinically relevant strains obtained from the 38 isolates in the present study comprised three ST3, two ST4, two ST8 and one ST1. The contamination rate in the PIF and FUF has stayed at a relatively high level. The contamination rate of PIF was significantly lower than FUF. The isolates had high susceptibility to the antibiotics tested, except cefoxitin. There were polymorphisms between the Cronobacter spp. as indicated by pulsed-field gel electrophoresis and multilocus sequence typing. Therefore, contamination with Cronobacter spp. remains a current issue for commercial infant formulas in China. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  9. CTX-M extended-spectrum β-lactamase-producing Klebsiella spp, Salmonella spp, Shigella spp and Escherichia coli isolates in Iranian hospitals.

    PubMed

    Bialvaei, Abed Zahedi; Kafil, Hossein Samadi; Asgharzadeh, Mohammad; Aghazadeh, Mohammad; Yousefi, Mehdi

    2016-01-01

    This study was conducted in Iran in order to assess the distribution of CTX-M type ESBLs producing Enterobacteriaceae. From January 2012 to December 2013, totally 198 E. coli, 139 Klebsiella spp, 54 Salmonella spp and 52 Shigella spp from seven hospitals of six provinces in Iran were screened for resistance to extended-spectrum cephalosporins. After identification and susceptibility testing, isolates presenting multiple-drug resistance (MDR) were evaluated for ESBL production by the disk combination method and by Etest using (cefotaxime and cefotaxime plus clavulanic acid). All isolates were also screened for blaCTX-M using conventional PCR. A total of 42.92%, 33.81%, 14.81% and 7.69% of the E. coli, Klebsiella spp, Salmonella spp and Shigella spp isolates were MDR, respectively. The presence of CTX-M enzyme among ESBL-producing isolates was 85.18%, 77.7%, 50%, and 66.7%, in E. coli, Klebsiella spp, Salmonella spp and Shigella spp respectively. The overall presence of CTX-M genes in Enterobacteriaceae was 15.4% and among the resistant isolates was 47.6%. This study indicated that resistance to β-lactams mediated by CTX-M enzymes in Iran had similar pattern as in other parts of the world. In order to control the spread of resistance, comprehensive studies and programs are needed. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  10. Comparative proteomic analysis of Xanthomonas citri ssp. citri periplasmic proteins reveals changes in cellular envelope metabolism during in vitro pathogenicity induction.

    PubMed

    Artier, Juliana; da Silva Zandonadi, Flávia; de Souza Carvalho, Flávia Maria; Pauletti, Bianca Alves; Leme, Adriana Franco Paes; Carnielli, Carolina Moretto; Selistre-de-Araujo, Heloisa Sobreiro; Bertolini, Maria Célia; Ferro, Jesus Aparecido; Belasque Júnior, José; de Oliveira, Julio Cezar Franco; Novo-Mansur, Maria Teresa Marques

    2018-01-01

    Citrus canker is a plant disease caused by Gram-negative bacteria from the genus Xanthomonas. The most virulent species is Xanthomonas citri ssp. citri (XAC), which attacks a wide range of citrus hosts. Differential proteomic analysis of the periplasm-enriched fraction was performed for XAC cells grown in pathogenicity-inducing (XAM-M) and pathogenicity-non-inducing (nutrient broth) media using two-dimensional electrophoresis combined with liquid chromatography-tandem mass spectrometry. Amongst the 40 proteins identified, transglycosylase was detected in a highly abundant spot in XAC cells grown under inducing condition. Additional up-regulated proteins related to cellular envelope metabolism included glucose-1-phosphate thymidylyltransferase, dTDP-4-dehydrorhamnose-3,5-epimerase and peptidyl-prolyl cis-trans-isomerase. Phosphoglucomutase and superoxide dismutase proteins, known to be involved in pathogenicity in other Xanthomonas species or organisms, were also detected. Western blot and quantitative real-time polymerase chain reaction analyses for transglycosylase and superoxide dismutase confirmed that these proteins were up-regulated under inducing condition, consistent with the proteomic results. Multiple spots for the 60-kDa chaperonin and glyceraldehyde-3-phosphate dehydrogenase were identified, suggesting the presence of post-translational modifications. We propose that substantial alterations in cellular envelope metabolism occur during the XAC infectious process, which are related to several aspects, from defence against reactive oxygen species to exopolysaccharide synthesis. Our results provide new candidates for virulence-related proteins, whose abundance correlates with the induction of pathogenicity and virulence genes, such as hrpD6, hrpG, hrpB7, hpa1 and hrpX. The results present new potential targets against XAC to be investigated in further functional studies. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  11. Wind speed effects on the quantity of Xanthomonas citri subsp. citri dispersed downwind from canopies of grapefruit trees infected with citrus canker

    USDA-ARS?s Scientific Manuscript database

    The epidemic of citrus canker (Xanthomonas citri subsp. citri, Xcc) in Florida continues to expand since termination of the eradication program in 2006. Storms are known to be associated with disease spread, but little information exists on the interaction of fundamental physical and biological proc...

  12. Occurrence of Fusarium spp. and Fumonisins in Stored Wheat Grains Marketed in Iran

    PubMed Central

    Chehri, Khosrow; Jahromi, Saeed Tamadoni; Reddy, Kasa R. N.; Abbasi, Saeed; Salleh, Baharuddin

    2010-01-01

    Wheat grains are well known to be invaded by Fusarium spp. under field and storage conditions and contaminated with fumonisins. Therefore, determining Fusarium spp. and fumonisins in wheat grains is of prime importance to develop suitable management strategies and to minimize risk. Eighty-two stored wheat samples produced in Iran were collected from various supermarkets and tested for the presence of Fusarium spp. by agar plate assay and fumonisins by HPLC. A total of 386 Fusarium strains were isolated and identified through morphological characteristics. All these strains belonged to F. culmorum, F. graminearum, F. proliferatum and F. verticillioides. Of the Fusarium species, F. graminearum was the most prevalent species, followed by F. verticillioides, F. proliferatum and then F. culmorum. Natural occurrence of fumonisin B1 (FB1) could be detected in 56 (68.2%) samples ranging from 15–155 μg/kg, fumonisin B2 (FB2) in 35 (42.6%) samples ranging from 12–86 μg/kg and fumonisin B3 (FB3) in 26 (31.7%) samples ranging from 13–64 μg/kg. The highest FB1 levels were detected in samples from Eilam (up to 155 μg/kg) and FB2 and FB3 in samples from Gilan Gharb (up to 86 μg/kg and 64 μg/kg). PMID:22069576

  13. Ex-Ante Economic Impact Assessment of Genetically Modified Banana Resistant to Xanthomonas Wilt in the Great Lakes Region of Africa.

    PubMed

    Ainembabazi, John Herbert; Tripathi, Leena; Rusike, Joseph; Abdoulaye, Tahirou; Manyong, Victor

    2015-01-01

    Credible empirical evidence is scanty on the social implications of genetically modified (GM) crops in Africa, especially on vegetatively propagated crops. Little is known about the future success of introducing GM technologies into staple crops such as bananas, which are widely produced and consumed in the Great Lakes Region of Africa (GLA). GM banana has a potential to control the destructive banana Xanthomonas wilt disease. To gain a better understanding of future adoption and consumption of GM banana in the GLA countries which are yet to permit the production of GM crops; specifically, to evaluate the potential economic impacts of GM cultivars resistant to banana Xanthomonas wilt disease. The paper uses data collected from farmers, traders, agricultural extension agents and key informants in the GLA. We analyze the perceptions of the respondents about the adoption and consumption of GM crop. Economic surplus model is used to determine future economic benefits and costs of producing GM banana. On the release of GM banana for commercialization, the expected initial adoption rate ranges from 21 to 70%, while the ceiling adoption rate is up to 100%. Investment in the development of GM banana is economically viable. However, aggregate benefits vary substantially across the target countries ranging from US$ 20 million to 953 million, highest in countries where disease incidence and production losses are high, ranging from 51 to 83% of production. The findings support investment in the development of GM banana resistant to Xanthomonas wilt disease. The main beneficiaries of this technology development are farmers and consumers, although the latter benefit more than the former from reduced prices. Designing a participatory breeding program involving farmers and consumers signifies the successful adoption and consumption of GM banana in the target countries.

  14. Ex-Ante Economic Impact Assessment of Genetically Modified Banana Resistant to Xanthomonas Wilt in the Great Lakes Region of Africa

    PubMed Central

    Ainembabazi, John Herbert; Tripathi, Leena; Rusike, Joseph; Abdoulaye, Tahirou; Manyong, Victor

    2015-01-01

    Background Credible empirical evidence is scanty on the social implications of genetically modified (GM) crops in Africa, especially on vegetatively propagated crops. Little is known about the future success of introducing GM technologies into staple crops such as bananas, which are widely produced and consumed in the Great Lakes Region of Africa (GLA). GM banana has a potential to control the destructive banana Xanthomonas wilt disease. Objective To gain a better understanding of future adoption and consumption of GM banana in the GLA countries which are yet to permit the production of GM crops; specifically, to evaluate the potential economic impacts of GM cultivars resistant to banana Xanthomonas wilt disease. Data Sources The paper uses data collected from farmers, traders, agricultural extension agents and key informants in the GLA. Analysis We analyze the perceptions of the respondents about the adoption and consumption of GM crop. Economic surplus model is used to determine future economic benefits and costs of producing GM banana. Results On the release of GM banana for commercialization, the expected initial adoption rate ranges from 21 to 70%, while the ceiling adoption rate is up to 100%. Investment in the development of GM banana is economically viable. However, aggregate benefits vary substantially across the target countries ranging from US$ 20 million to 953 million, highest in countries where disease incidence and production losses are high, ranging from 51 to 83% of production. Conclusion The findings support investment in the development of GM banana resistant to Xanthomonas wilt disease. The main beneficiaries of this technology development are farmers and consumers, although the latter benefit more than the former from reduced prices. Designing a participatory breeding program involving farmers and consumers signifies the successful adoption and consumption of GM banana in the target countries. PMID:26414379

  15. A Highly-Conserved Single-Stranded DNA-Binding Protein in Xanthomonas Functions as a Harpin-Like Protein to Trigger Plant Immunity

    PubMed Central

    Che, Yi-Zhou; Zou, Li-Fang; Zakria, Muhammad; Zou, Hua-Song; Chen, Gong-You

    2013-01-01

    Harpins are produced by Gram-negative phytopathogenic bacteria and typically elicit hypersensitive response (HR) in non-host plants. The characterization of harpins in Xanthomonas species is largely unexplored. Here we demonstrate that Xanthomonas produce a highly conserved single-stranded DNA-binding protein (SSBX) that elicits HR in tobacco as by harpin Hpa1. SSBX, like Hpa1, is an acidic, glycine-rich, heat-stable protein that lacks cysteine residues. SSBX-triggered HR in tobacco, as by Hpa1, is characterized by the oxidative burst, the expression of HR markers (HIN1, HSR203J), pathogenesis-related genes, and callose deposition. Both SSBX- and Hpa1-induced HRs can be inhibited by general metabolism inhibitors actinomycin D, cycloheximide, and lanthanum chloride. Furthermore, those HRs activate the expression of BAK1 and BIK1 genes that are essential for induction of mitogen-activated protein kinase (MAPK) and salicylic acid pathways. Once applied to plants, SSBX induces resistance to the fungal pathogen Alternaria alternata and enhances plant growth. When ssbX was deleted in X. oryzae pv. oryzicola, the causal agent of bacterial leaf streak in rice, the resulting ssbXoc mutant was reduced in virulence and bacterial growth in planta, but retained its ability to trigger HR in tobacco. Interestingly, ssbXoc contains an imperfect PIP-box (plant-inducible promoter) and the expression of ssbXoc is regulated by HrpX, which belongs to the AraC family of transcriptional activators. Immunoblotting evidence showed that SSBx secretion requires a functional type-III secretion system as Hpa1 does. This is the first report demonstrating that Xanthomonas produce a highly-conserved SSBX that functions as a harpin-like protein for plant immunity. PMID:23418541

  16. Xanthomonas TAL effectors hijack host basal transcription factor IIA α and γ subunits for invasion.

    PubMed

    Ma, Ling; Wang, Qiang; Yuan, Meng; Zou, Tingting; Yin, Ping; Wang, Shiping

    2018-02-05

    The Xanthomonas genus includes Gram-negative plant-pathogenic bacteria, which infect a broad range of crops and wild plant species, cause symptoms with leaf blights, streaks, spots, stripes, necrosis, wilt, cankers and gummosis on leaves, stems and fruits in a wide variety of plants via injecting their effector proteins into the host cell during infection. Among these virulent effectors, transcription activator-like effectors (TALEs) interact with the γ subunit of host transcription factor IIA (TFIIAγ) to activate the transcription of host disease susceptibility genes. Functional TFIIA is a ternary complex comprising α, β and γ subunits. However, whether TALEs recruit TFIIAα, TFIIAβ, or both remains unknown. The underlying molecular mechanisms by which TALEs mediate host susceptibility gene activation require full elucidation. Here, we show that TALEs interact with the α+γ binary subcomplex but not the α+β+γ ternary complex of rice TFIIA (holo-OsTFIIA). The transcription factor binding (TFB) regions of TALEs, which are highly conserved in Xanthomonas species, have a dominant role in these interactions. Furthermore, the interaction between TALEs and the α+γ complex exhibits robust DNA binding activity in vitro. These results collectively demonstrate that TALE-carrying pathogens hijack the host basal transcription factors TFIIAα and TFIIAγ, but not TFIIAβ, to enhance host susceptibility during pathogen infection. The uncovered mechanism widens new insights on host-microbe interaction and provide an applicable strategy to breed high-resistance crop varieties. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Short distance dispersal of splashed bacteria of Xanthomonas citri subsp. citri from canker-infected grapefruit tree canopies in turbulent wind

    USDA-ARS?s Scientific Manuscript database

    Citrus canker (Xanthomonas citri subsp citri [Xcc]) can result in yield loss and market restrictions. The pathogen is dispersed in rain splash and spread is promoted by wind. The goal of this study was to gain some insight into the behavior of the downwind plume of Xcc from ~1.5 m-tall canker-affect...

  18. Molecular characterization of Shigella spp. from patients in Gabon 2011-2013.

    PubMed

    Schaumburg, Frieder; Alabi, Abraham S; Kaba, Harry; Lell, Bertrand; Becker, Karsten; Grobusch, Martin P; Kremsner, Peter G; Mellmann, Alexander

    2015-04-01

    Shigella spp. dysentery is widespread in developing countries; the incidence is particularly high in children between 1-2 years of age. In sub-Saharan Africa, there is a paucity of epidemiological data on Shigella spp., with possible negative consequences for recognition and correct treatment choice for this life-threatening bacterial infection. We therefore characterized Shigella spp. isolates from Gabon. The antimicrobial resistance, virulence factors, genotypes and mobile genetic elements of Shigella isolates (29 S. flexneri; 5 S. boydii; 3 S. sonnei) from a retrospective strain collection were analyzed. High resistance rates were found for gentamicin and tetracycline (100%, 37/37), cotrimoxazole (92%, 34/37) and ampicillin (84%, 31/37). All isolate harbored ial and ipaH; no isolate produced Shiga toxins (stx1/2); enterotoxins (set1A/B) were only found in S. flexneri (n=19). Multilocus sequence types (MLST) clustered with global clones. A high prevalence of atypical class 1 integrons harboring blaOXA30 and aadA1 were detected in S. flexneri, while all S. sonnei carried class 2 integrons. There is a strong link of Gabonese Shigella spp. isolates with pandemic lineages as they cluster with major global clones and frequently carry atypical class 1 integrons which are frequently reported in Shigella spp. from Asia. © The Author 2014. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Effector Mimics and Integrated Decoys, the Never-Ending Arms Race between Rice and Xanthomonas oryzae.

    PubMed

    Zuluaga, Paola; Szurek, Boris; Koebnik, Ralf; Kroj, Thomas; Morel, Jean-Benoit

    2017-01-01

    Plants are constantly challenged by a wide range of pathogens and have therefore evolved an array of mechanisms to defend against them. In response to these defense systems, pathogens have evolved strategies to avoid recognition and suppress plant defenses (Brown and Tellier, 2011). Three recent reports dealing with the resistance of rice to Xanthomonas oryzae have added a new twist to our understanding of this fascinating co-evolutionary arms race (Ji et al., 2016; Read et al., 2016; Triplett et al., 2016). They show that pathogens also develop sophisticated effector mimics to trick recognition.

  20. Draft Genome Sequences of Seven Thermophilic Spore-Forming Bacteria Isolated from Foods That Produce Highly Heat-Resistant Spores, Comprising Geobacillus spp., Caldibacillus debilis, and Anoxybacillus flavithermus

    PubMed Central

    Berendsen, Erwin M.; Wells-Bennik, Marjon H. J.; Krawczyk, Antonina O.; de Jong, Anne; van Heel, Auke; Holsappel, Siger; Eijlander, Robyn T.

    2016-01-01

    Here, we report the draft genomes of five strains of Geobacillus spp., one Caldibacillus debilis strain, and one draft genome of Anoxybacillus flavithermus, all thermophilic spore-forming Gram-positive bacteria. PMID:27151781

  1. Processess involved in the dispersal of Xanthomonas citri pv. citri from canker-infected citrus canopies, and in the infection of citrus foliage

    USDA-ARS?s Scientific Manuscript database

    Citrus canker (Xanthomonas citri subsp. citri, Xcc) is now considered endemic in Florida, and epidemics result in yield loss and market penalties both in Florida and elsewhere, where the pathogen occurs and susceptible citrus is cultivated. The bacterium is dispersed in rain splash, and storms with...

  2. Processes involved in the dispersal of Xanthomonas citri pv. citri from canker-infectd citrus canopies, and in the infection of citrus foliage

    USDA-ARS?s Scientific Manuscript database

    Citrus canker (Xanthomonas citri subsp. citri, Xcc) is now considered endemic in Florida, and epidemics result in yield loss and market penalties both in Florida, and elsewhere where the pathogen occurs, and susceptible citrus is cultivated. The bacterium is dispersed in rain splash, and storms wit...

  3. Colonization of Chicks by Non-Culturable Campylobacter spp

    DTIC Science & Technology

    1994-01-01

    epidemiologic assessment for the transmission (8000 g, 5 min) and resuspended in 15 ml of PBS, with 5 of the organism to broiler chickens is needed to...spectrophotometrically (O.D.260 ). The DNA (2 uig) was digested (3-4 h, 37°C), Serotyping with BgIlI or HhaI in a 20 d reaction mixture in buffers Both the...original (0) and the recovered (R) Campylobacter uppliee by the manufacturer. After digestion , 5 pul of spp. strains were coded and sent to cooperating

  4. Occurrence and diversity of Pichia spp. in marine environments

    NASA Astrophysics Data System (ADS)

    Li, Jing; Chi, Zhenming; Wang, Xianghong; Wang, Lin; Sheng, Jun; Gong, Fang

    2008-08-01

    A total of 328 yeast strains from seawater, sediments, mud of salterns, the guts of marine fish and marine algae were obtained. The results of routine identification and molecular methods show that five yeast strains obtained in this study belonged to Pichia spp., including Pichia guilliermondii 1uv-small, Pichia ohmeri YF04d, Pichia fermentans YF12b, Pichia burtonii YF11A and Pichia anomala YF07b. Further studies revealed that Pichia anomala YF07b could produce killer toxin against pathogenic yeasts in crabs while Pichia guilliermondii 1uv-small could produce high activity of extracellular inulinase. It is advisable to test if Pichia ohmeri YF04d obtained in this study is related to central-venous-catheter-associated infection.

  5. Contamination by Salmonella spp., Campylobacter spp. and Listeria spp. of most popular chicken- and pork-sausages sold in Reunion Island.

    PubMed

    Trimoulinard, A; Beral, M; Henry, I; Atiana, L; Porphyre, V; Tessier, C; Leclercq, A; Cardinale, E

    2017-06-05

    One of the most popular meat products of the local "cuisine" is sausage composed with 100% chicken or 100% pork. In this study, we aimed to determine the presence of Salmonella spp., Campylobacter spp. and Listeria spp. in chicken- and pork-sausages, quantify Salmonella spp. population and identify the factors that could be associated with contamination in the outlets. Two hundred and three batches of pork and chicken sausages were randomly collected from 67 local outlets (supermarkets, groceries and butcher shops). Salmonella spp. was detected in 11.8% (95% confidence interval (CI): [10.0; 13.5]) of samples, Campylobacter spp. in 1.5% [0.7; 4.2] and Listeria monocytogenes in 5.9% [4.4; 7.3]. Most probable number of Salmonella spp. varied between 6cfu per gram to 320cfu per gram. Salmonella serotypes isolated from pork and chicken sausages were S. Typhimurium (45.8%), S. London (20.8%), S. Derby (16.7%), S. Newport (8.33%), S. Blockley (4.2%) and S. Weltevreden (4.17%). Using a logistic (mixed-effect) regression model, we found that Salmonella spp. contamination was positively associated with sausages sold in papers or plastic bags and no control of rodents. Chicken sausages were associated with a decreasing risk of Salmonella contamination. Listeria monocytogenes contamination was positively associated with the presence of fresh rodent droppings in the outlet and negatively when the staff was cleaning regularly their hands with soap and water or water only. All the sampled outlets of Reunion Island were not equivalent in terms of food safety measures. Increasing awareness of these traders remains a cornerstone to limit the presence of Salmonella spp. and Listeria spp. in sausages, particularly in a tropical context (high temperature and humidity). Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Biochemical Characteristics, Adhesion, and Cytotoxicity of Environmental and Clinical Isolates of Herbaspirillum spp.

    PubMed Central

    Marques, Ana C. Q.; Paludo, Katia S.; Dallagassa, Cibelle B.; Surek, Monica; Pedrosa, Fábio O.; Souza, Emanuel M.; Cruz, Leonardo M.; LiPuma, John J.; Zanata, Sílvio M.; Rego, Fabiane G. M.

    2014-01-01

    Herbaspirillum bacteria are best known as plant growth-promoting rhizobacteria but have also been recovered from clinical samples. Here, biochemical tests, matrix-assisted laser deionization–time of flight (MALDI-TOF) mass spectrometry, adherence, and cytotoxicity to eukaryotic cells were used to compare clinical and environmental isolates of Herbaspirillum spp. Discrete biochemical differences were observed between human and environmental strains. All strains adhered to HeLa cells at low densities, and cytotoxic effects were discrete, supporting the view that Herbaspirillum bacteria are opportunists with low virulence potential. PMID:25355763

  7. Screening wild yeast strains for alcohol fermentation from various fruits.

    PubMed

    Lee, Yeon-Ju; Choi, Yu-Ri; Lee, So-Young; Park, Jong-Tae; Shim, Jae-Hoon; Park, Kwan-Hwa; Kim, Jung-Wan

    2011-03-01

    Wild yeasts on the surface of various fruits including grapes were surveyed to obtain yeast strains suitable for fermenting a novel wine with higher alcohol content and supplemented with rice starch. We considered selected characteristics, such as tolerance to alcohol and osmotic pressure, capability of utilizing maltose, and starch hydrolysis. Among 637 putative yeast isolates, 115 strains exhibiting better growth in yeast-peptone-dextrose broth containing 30% dextrose, 7% alcohol, or 2% maltose were selected, as well as five α-amylase producers. Nucleotide sequence analysis of the 26S rDNA gene classified the strains into 13 species belonging to five genera; Pichia anomala was the most prevalent (41.7%), followed by Wickerhamomyces anomalus (19.2%), P. guilliermondii (15%), Candida spp. (5.8%), Kodamaea ohmeri (2.5%), and Metschnikowia spp. (2.5%). All of the α-amylase producers were Aureobasidium pullulans. Only one isolate (NK28) was identified as Saccharomyces cerevisiae. NK28 had all of the desired properties for the purpose of this study, except α-amylase production, and fermented alcohol better than commercial wine yeasts.

  8. Efficacy of Ozone against Phosphine Susceptible and Resistant Strains of Four Stored-Product Insect Species

    PubMed Central

    E, Xinyi; Subramanyam, Bhadriraju; Li, Beibei

    2017-01-01

    The efficacy of ozone was evaluated against four economically-important stored-product insect species at 27.2 °C and 20.4% r.h. Adults of phosphine-susceptible laboratory strains and phosphine-resistant field strains of the red flour beetle, Tribolium castaneum (Herbst), saw-toothed grain beetle, Oryzaephilus surinamensis (Linnaeus), maize weevil, Sitophilus zeamais Motschulsky, and rice weevil, Sitophilus oryzae (Linnaeus), were exposed in vials to an ozone concentration of 0.42 g/m3 (200 ppm) for 1, 2, 3, 5, 6, 8, 10 and 12 h with 0 and 10 g of wheat. Initial and final mortalities were assessed 1 and 5 d after exposure to ozone, respectively. After an 8–12-h exposure to ozone, initial mortality of Sitophilus spp. and O. surinamensis was 100%, whereas the highest initial mortality of T. castaneum was 90%. A 3–4-h exposure to ozone resulted in 100% final mortality of Sitophilus spp., whereas O. surinamensis required a 6- to 10-h exposure to ozone. Adults of T. castaneum were least susceptible to ozone, and after a 10-h exposure, mortality ranged between 82 and 95%. Time for the 5 d 99% mortality (LT99) for adults of laboratory and field strains of Sitophilus spp., O. surinamensis and T. castaneum were 2.00–5.56, 4.33–11.18 and 14.35–29.89 h, respectively. The LT99 values for adults of T. castaneum and O. surinamensis were not significantly different between bioassays conducted with 0 and 10 g of wheat. The LT99 values for the laboratory strains of Sitophilus spp. in the absence of wheat were significantly lower than those obtained in the presence of wheat. Both phosphine-susceptible and -resistant strains were equally susceptible to ozone. Ozone effectively suppressed adult progeny production of all four species. Ozone is a viable alternative fumigant to control phosphine-resistant strains of these four species. PMID:28398263

  9. The effects of inulin and fructo-oligosaccharide on the probiotic properties of Lactobacillus spp. isolated from human milk.

    PubMed

    Tulumoğlu, Şener; Erdem, Belgin; Şimşek, Ömer

    2018-05-22

    This study aims to determine the effects of inulin and fructo-oligosaccharide (FOS) on the probiotic properties of five Lactobacillus spp. isolated from human milk. Lactobacillus spp. were isolated and identified, and the growth characteristics, acid and bile salt tolerance, antagonistic effects, and cholesterol assimilation of Lactobacillus strains were investigated in the presence of inulin and FOS. Lactobacillus casei L1 was able to utilize inulin and FOS as carbon source as well as glucose even other strains were able to use, including Lactobacillus rhamnosus GG. This strain also showed high tolerance to acid and bile salt, even at pH 2.5 and 0.5% bile salt levels, respectively. Inulin and FOS promoted the antimicrobial activity of L. casei L1 against pathogenic bacteria. Cholesterol assimilation was higher than in the other and control probiotic strains in the presence inulin and FOS, which were measured as 14 and 25 mg/dL, respectively. In conclusion, L. casei L1 can use both inulin and FOS to maintain its viability both at digestive conditions and also the relevant prebiotics, and show broad antagonistic activity and cholesterol assimilation.

  10. Comparative Transcriptome Profiling of Rice Near-Isogenic Line Carrying Xa23 under Infection of Xanthomonas oryzae pv. oryzae.

    PubMed

    Tariq, Rezwan; Wang, Chunlian; Qin, Tengfei; Xu, Feifei; Tang, Yongchao; Gao, Ying; Ji, Zhiyuan; Zhao, Kaijun

    2018-03-02

    Bacterial blight, caused by Xanthomonas oryzae pv. oryzae ( Xoo ), is an overwhelming disease in rice-growing regions worldwide. Our previous studies revealed that the executor R gene Xa23 confers broad-spectrum disease resistance to all naturally occurring biotypes of Xoo . In this study, comparative transcriptomic profiling of two near-isogenic lines (NILs), CBB23 (harboring Xa23 ) and JG30 (without Xa23 ), before and after infection of the Xoo strain, PXO99 A , was done by RNA sequencing, to identify genes associated with the resistance. After high throughput sequencing, 1645 differentially expressed genes (DEGs) were identified between CBB23 and JG30 at different time points. Gene Ontlogy (GO) analysis categorized the DEGs into biological process, molecular function, and cellular component. KEGG analysis categorized the DEGs into different pathways, and phenylpropanoid biosynthesis was the most prominent pathway, followed by biosynthesis of plant hormones, flavonoid biosynthesis, and glycolysis/gluconeogenesis. Further analysis led to the identification of differentially expressed transcription factors (TFs) and different kinase responsive genes in CBB23, than that in JG30. Besides TFs and kinase responsive genes, DEGs related to ethylene, jasmonic acid, and secondary metabolites were also identified in both genotypes after PXO99 A infection. The data of DEGs are a precious resource for further clarifying the network of Xa23 -mediated resistance.

  11. Comparative Transcriptome Profiling of Rice Near-Isogenic Line Carrying Xa23 under Infection of Xanthomonas oryzae pv. oryzae

    PubMed Central

    Tariq, Rezwan; Wang, Chunlian; Qin, Tengfei; Xu, Feifei; Tang, Yongchao; Gao, Ying; Ji, Zhiyuan; Zhao, Kaijun

    2018-01-01

    Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is an overwhelming disease in rice-growing regions worldwide. Our previous studies revealed that the executor R gene Xa23 confers broad-spectrum disease resistance to all naturally occurring biotypes of Xoo. In this study, comparative transcriptomic profiling of two near-isogenic lines (NILs), CBB23 (harboring Xa23) and JG30 (without Xa23), before and after infection of the Xoo strain, PXO99A, was done by RNA sequencing, to identify genes associated with the resistance. After high throughput sequencing, 1645 differentially expressed genes (DEGs) were identified between CBB23 and JG30 at different time points. Gene Ontlogy (GO) analysis categorized the DEGs into biological process, molecular function, and cellular component. KEGG analysis categorized the DEGs into different pathways, and phenylpropanoid biosynthesis was the most prominent pathway, followed by biosynthesis of plant hormones, flavonoid biosynthesis, and glycolysis/gluconeogenesis. Further analysis led to the identification of differentially expressed transcription factors (TFs) and different kinase responsive genes in CBB23, than that in JG30. Besides TFs and kinase responsive genes, DEGs related to ethylene, jasmonic acid, and secondary metabolites were also identified in both genotypes after PXO99A infection. The data of DEGs are a precious resource for further clarifying the network of Xa23-mediated resistance. PMID:29498672

  12. Controlled synthesis of the DSF cell–cell signal is required for biofilm formation and virulence in Xanthomonas campestris

    PubMed Central

    Torres, Pablo S; Malamud, Florencia; Rigano, Luciano A; Russo, Daniela M; Marano, María Rosa; Castagnaro, Atilio P; Zorreguieta, Angeles; Bouarab, Kamal; Dow, John Maxwell; Vojnov, Adrián A

    2007-01-01

    Virulence of the black rot pathogen Xanthomonas campestris pv. campestris (Xcc) is regulated by cell–cell signalling involving the diffusible signal factor DSF. Synthesis and perception of DSF require products of genes within the rpf cluster (for regulation of pathogenicity factors). RpfF directs DSF synthesis whereas RpfC and RpfG are involved in DSF perception. Here we have examined the role of the rpf/DSF system in biofilm formation in minimal medium using confocal laser-scanning microscopy of GFP-labelled bacteria. Wild-type Xcc formed microcolonies that developed into a structured biofilm. In contrast, an rpfF mutant (DSF-minus) and an rpfC mutant (DSF overproducer) formed only unstructured arrangements of bacteria. A gumB mutant, defective in xanthan biosynthesis, was also unable to develop the typical wild-type biofilm. Mixed cultures of gumB and rpfF mutants formed a typical biofilm in vitro. In contrast, in mixed cultures the rpfC mutant prevented the formation of the structured biofilm by the wild-type and did not restore wild-type biofilm phenotypes to gumB or rpfF mutants. These effects on structured biofilm formation were correlated with growth and disease development by Xcc strains in Nicotiana benthamiana leaves. These findings suggest that DSF signalling is finely balanced during both biofilm formation and virulence. PMID:17635553

  13. Occurrence and Characterization of Cronobacter spp. in Dehydrated Rice Powder from Chinese Supermarket

    PubMed Central

    Huang, Yan; Pang, Yiheng; Wang, Hong; Tang, Zhengzhu; Zhou, Yan; Zhang, Weiyu; Li, Xiugui; Tan, Dongmei; Li, Jian; Lin, Ying; Liu, Xiaoling; Huang, Weiyi; Shi, Yunliang

    2015-01-01

    Cronobacter spp. are emerging food-borne pathogens and have been identified as causative agents of meningitis and necrotizing enterocolitis in infants. Dehydrated rice is popular with a wide range of people and it is frequently used as a substitute for infant milk powder to baby older than four months. The occurrence of Cronobacter spp. was investigated in 1,012 samples of dehydrated rice powder collected from 14 manufacturers in China during 2010 to 2012. The isolates were identified using fusA allele sequencing and subtyped using pulsed-field gel electrophoresis. Seventy-six samples (7.5%) contained Cronobacter spp. The prevalence among manufacturers ranged from 0-28.8%. The 76 isolates included 4 species [Cronobacter sakazakii (52 isolates) Cronobacter malonaticus (14 isolates), Cronobacter dublinensis (7 isolates), and Cronobacter muytjensii (3 isolates)]. Twenty-three unique fusA alleles and sixty-six PFGE-patterns were detected. All isolated strains were observed to be sensitive or to show intermediate susceptibility to eight tested antimicrobial agents. The study revealed serious contamination of dehydrated rice powder by Cronobacter spp., with prevalence varying among manufacturers in China. Identified Cronobacter species, fusA alleles, and subtypes were diverse. PMID:26132635

  14. Phylogenetic Analysis of Theileria annulata Infected Cell Line S15 Iran Vaccine Strain.

    PubMed

    Habibi, Gh

    2012-01-01

    Bovine theileriosis results from infection with obligate intracellular protozoa of the genus Theileria. The phylogenetic relationships between two isolates of Theileria annulata, and 36 Theileria spp., as well as 6 outgroup including Babesia spp. and coccidian protozoa were analyzed using the 18S rRNA gene sequence. The target DNA segment was amplified by PCR. The PCR product was used for direct sequencing. The length of the 18S rRNA gene of all Theileria spp. involved in this study was around 1,400 bp. A phylogenetic tree was inferred based on the 18S rRNA gene sequence of the Iran and Iraq isolates, and other species of Theileria available in GenBank. In the constructed tree, Theileria annulata (Iran vaccine strain) was closely related to other T. annulata from Europe, Asia, as well as T. lestoquardi, T. parva and T. taurotragi all in one clade. Phylogenetic analyses based on small subunit ribosomal RNA gene suggested that the percent identity of the sequence of Iran vaccine strain was completely the same as Iraq sequence (100% identical), but the similarity of Iran vaccine strain with other T. annulata reported from China, Spain and Italy determined the 97.9 to 99.9% identity.

  15. Structural analysis and involvement in plant innate immunity of Xanthomonas axonopodis pv. citri lipopolysaccharide.

    PubMed

    Casabuono, Adriana; Petrocelli, Silvana; Ottado, Jorgelina; Orellano, Elena G; Couto, Alicia S

    2011-07-22

    Xanthomonas axonopodis pv. citri (Xac) causes citrus canker, provoking defoliation and premature fruit drop with concomitant economical damage. In plant pathogenic bacteria, lipopolysaccharides are important virulence factors, and they are being increasingly recognized as major pathogen-associated molecular patterns for plants. In general, three domains are recognized in a lipopolysaccharide: the hydrophobic lipid A, the hydrophilic O-antigen polysaccharide, and the core oligosaccharide, connecting lipid A and O-antigen. In this work, we have determined the structure of purified lipopolysaccharides obtained from Xanthomonas axonopodis pv. citri wild type and a mutant of the O-antigen ABC transporter encoded by the wzt gene. High pH anion exchange chromatography and matrix-assisted laser desorption/ionization mass spectrum analysis were performed, enabling determination of the structure not only of the released oligosaccharides and lipid A moieties but also the intact lipopolysaccharides. The results demonstrate that Xac wild type and Xacwzt LPSs are composed mainly of a penta- or tetra-acylated diglucosamine backbone attached to either two pyrophosphorylethanolamine groups or to one pyrophosphorylethanolamine group and one phosphorylethanolamine group. The core region consists of a branched oligosaccharide formed by Kdo₂Hex₆GalA₃Fuc3NAcRha₄ and two phosphate groups. As expected, the presence of a rhamnose homo-oligosaccharide as O-antigen was determined only in the Xac wild type lipopolysaccharide. In addition, we have examined how lipopolysaccharides from Xac function in the pathogenesis process. We analyzed the response of the different lipopolysaccharides during the stomata aperture closure cycle, the callose deposition, the expression of defense-related genes, and reactive oxygen species production in citrus leaves, suggesting a functional role of the O-antigen from Xac lipopolysaccharides in the basal response.

  16. XocR, a LuxR solo required for virulence in Xanthomonas oryzae pv. oryzicola.

    PubMed

    Xu, Huiyong; Zhao, Yancun; Qian, Guoliang; Liu, Fengquan

    2015-01-01

    Xanthomonas oryzae pv. oryzicola (Xoc) causes bacterial leaf streak (BLS) in rice, a serious bacterial disease of rice in Asia and parts of Africa. The virulence mechanisms of Xoc are not entirely clear and control measures for BLS are poorly developed. The solo LuxR proteins are widespread and shown to be involved in virulence in some plant associated bacteria (PAB). Here, we have cloned and characterized a PAB LuxR solo from Xoc, named as XocR. Mutation of xocR almost completely impaired the virulence ability of Xoc on host rice, but did not alter the ability to trigger HR (hypersensitive response, a programmed cell death) on non-host (plant) tobacco, suggesting the diversity of function of xocR in host and non-host plants. We also provide evidence to show that xocR is involved in the regulation of growth-independent cell motility in response to a yet-to-be-identified rice signal, as mutation of xocR impaired cell swimming motility of wild-type Rs105 in the presence but not absence of rice macerate. We further found that xocR regulated the transcription of two characterized virulence-associated genes (recN and trpE) in the presence of rice macerate. The promoter regions of recN and trpE possessed a potential binding motif (an imperfect pip box-like element) of XocR, raising the possibility that XocR might directly bind the promoter regions of these two genes to regulate their transcriptional activity. Our studies add a new member of PAB LuxR solos and also provide new insights into the role of PAB LuxR solo in the virulence of Xanthomonas species.

  17. [Processes of plant colonization by Methylobacterium strains and some bacterial properties ].

    PubMed

    Romanovskaia, V A; Stoliar, S M; Malashenko, Iu R; Dodatko, T N

    2001-01-01

    The pink-pigmented facultative methylotrophic bacteria (PPFMB) of the genus Methylobacterium are indespensible inhabitants of the plant phyllosphere. Using maize Zea mays as a model, the ways of plant colonization by PPFMB and some properties of the latter that might be beneficial to plants were studied. A marked strain, Methylobacterium mesophilicum APR-8 (pULB113), was generated to facilitate the detection of the methylotrophic bacteria inoculated into the soil or applied to the maize leaves. Colonization of maize leaves by M. mesophilicum APR-8 (pULB113) occurred only after the bacteria were applied onto the leaf surface. In this case, the number of PPFMB cells on inoculated leaves increased with plant growth. During seed germination, no colonization of maize leaves with M. mesophilicum cells occurred immediately from the soil inoculated with the marked strain. Thus, under natural conditions, colonization of plant leaves with PPFMB seems to occur via soil particle transfer to the leaves by air. PPFMB monocultures were not antagonistic to phytopathogenic bacteria. However, mixed cultures of epiphytic bacteria containing Methylobacterium mesophilicum or M. extorquens did exhibit an antagonistic effect against the phytopathogenic bacteria studied (Xanthomonas camprestris, Pseudomonas syringae, Erwinia carotovora, Clavibacter michiganense, and Agrobacterium tumifaciens). Neither epiphytic and soil strains of Methylobacterium extorquens, M. organophillum, M. mesophilicum, and M. fujisawaense catalyzed ice nucleation. Hence, they cause no frost injury to plants. Thus, the results indicate that the strains of the genus Methylobacterium can protect plants against adverse environmental factors.

  18. A Xanthomonas uridine 5'-monophosphate transferase inhibits plant immune kinases.

    PubMed

    Feng, Feng; Yang, Fan; Rong, Wei; Wu, Xiaogang; Zhang, Jie; Chen, She; He, Chaozu; Zhou, Jian-Min

    2012-04-15

    Plant innate immunity is activated on the detection of pathogen-associated molecular patterns (PAMPs) at the cell surface, or of pathogen effector proteins inside the plant cell. Together, PAMP-triggered immunity and effector-triggered immunity constitute powerful defences against various phytopathogens. Pathogenic bacteria inject a variety of effector proteins into the host cell to assist infection or propagation. A number of effector proteins have been shown to inhibit plant immunity, but the biochemical basis remains unknown for the vast majority of these effectors. Here we show that the Xanthomonas campestris pathovar campestris type III effector AvrAC enhances virulence and inhibits plant immunity by specifically targeting Arabidopsis BIK1 and RIPK, two receptor-like cytoplasmic kinases known to mediate immune signalling. AvrAC is a uridylyl transferase that adds uridine 5'-monophosphate to and conceals conserved phosphorylation sites in the activation loop of BIK1 and RIPK, reducing their kinase activity and consequently inhibiting downstream signalling.

  19. Contribution of OxyR towards differential sensitivity to antioxidants in Xanthomonas oryzae pathovars oryzae and oryzicola.

    PubMed

    Pan, Xiayan; Wu, Jian; Xu, Shu; Duan, Tingting; Duan, Yabing; Wang, Jianxin; Zhang, Feng; Zhou, Mingguo

    2018-06-15

    OxyR and SoxR are two transcriptional regulators in response to oxidative stress in most bacteria, and SoxR has been reported to be activated by the endogenous redox-cycling compound phenazines in phenazine-producing organisms. However, which transcriptional regulator is activated in pathogens treated with the antibiotic phenazine-1-carboxylic acid (PCA) has not been determined. In this study, we found that PCA treatment activated OxyR rather than SoxR in the phytopathogenic bacteria Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc). We also found Xoo was much sensitive to PCA and H2O2 and had a defective antioxidant system, i.e., less of total antioxidant capacity and total catalase activity than Xoc, although Xoo and Xoc are very closely related. Based on KEGG sequences, OxyR differs in 10 amino acids in Xoo vs. Xoc. By exchanging OxyR between Xoo and Xoc, we elucidated that OxyR contributed to the differences in antioxidant capacity, total catalase activity, and sensitivity to PCA and H2O2. We also found that OxyR affected Xoo and Xoc growth in a nutrient-poor medium, virulence on host plants (rice), and the hypersensitive response (HR) on non-host plants (Nicotiana benthamiana). Thus, OxyR is a critical regulator that relates to the differences in anti-oxidative stress between Xoo and Xoc and contributes to the differences in survival of them against oxidative stress.

  20. Occurrence of Aflatoxins and Aflatoxin-Producing Strains of Aspergillus spp. in Soybeans 1

    PubMed Central

    Bean, George A.; Schillinger, John A.; Klarman, William L.

    1972-01-01

    Above average rainfall in Maryland during August, September, and October 1971 resulted in heavy mold growth in soybeans while still in the field. Of 28 samples of soybean seed, aflatoxins were found in 14, 2 of which had been used in poultry feed. Aflatoxins were identified by thin-layer chromatography, spectrophotometry, and chicken embryo bioassay. Aspergillus spp. were isolated from 11 samples, and 5 of these isolates produced aflatoxins when grown in liquid culture. PMID:4673021

  1. Detection of viable Cronobacter spp. (Enterobacter sakazakii) by one-step RT-PCR in dry aquatic product.

    PubMed

    Ye, Yingwang; Wu, Qingping; Zhang, Jumei; Jiang, He; Hu, Wang

    2012-11-01

    Cronobacter are opportunistic food-borne pathogens associated with meningitis, sepsis, and necrotizing enterocolitis. Little attempt has focused on detection of viable cell of Cronobacter spp. in dry aquatic products, which were frequently used for raw materials of infant foods due to high nutrition. In this paper, one-step reverse transcription polymerase chain reaction (RT-PCR) was developed for detection of viable Cronobacter spp. in dry aquatic products. Specificity test indicated that clearly expected amplicon in size 469 bp was amplified from RNA of Cronobacter, but not from RNA of negative controls and DNA of Cronobacter strains. The sensitivity was 10(4) CFU/mL of Cronobacter strain in artificially fish meal samples and 10(1) CFU/mL of Cronobacter after 10-h enrichment. In a total of 81 dry aquatic products, 9.8%, 8.6%, and 9.8% of samples were found to be positive for Cronobacter by one-step RT-PCR, U.S. Food and Drug Administration method, and Druggan-Forsythe-Iversen medium, respectively. The results clearly indicated that one-step RT-PCR could avoid the interference of residual DNA of Cronobacter in food samples and be used to specifically detect viable Cronobacter spp. for large-scale monitoring of food samples. The use of rapid and specific detection of food borne pathogens in food samples was most of importance for control and precaution of food borne diseases. In this study, one-step RT-PCR was developed for detection of Cronobacter spp. in aquatic products. A comparison of different methods for detection of Cronobacter indicated that the newly developed method could be widely used to specifically detect Cronobacter spp. in food samples. © 2012 Institute of Food Technologists®

  2. Tn5099, a xylE promoter probe transposon for Streptomyces spp.

    PubMed Central

    Hahn, D R; Solenberg, P J; Baltz, R H

    1991-01-01

    Tn5099, a promoter probe transposon for Streptomyces spp., was constructed by inserting a promoterless xylE gene and a hygromycin resistance gene into IS493. Tn5099 transposed into different sites in the Streptomyces griseofuscus genome, and the xylE reporter gene was expressed in some of the transposition mutants. Strains containing Tn5099 insertions that gave regulated expression of the xylE gene were identified. Images PMID:1653213

  3. Effector Mimics and Integrated Decoys, the Never-Ending Arms Race between Rice and Xanthomonas oryzae

    PubMed Central

    Zuluaga, Paola; Szurek, Boris; Koebnik, Ralf; Kroj, Thomas; Morel, Jean-Benoit

    2017-01-01

    Plants are constantly challenged by a wide range of pathogens and have therefore evolved an array of mechanisms to defend against them. In response to these defense systems, pathogens have evolved strategies to avoid recognition and suppress plant defenses (Brown and Tellier, 2011). Three recent reports dealing with the resistance of rice to Xanthomonas oryzae have added a new twist to our understanding of this fascinating co-evolutionary arms race (Ji et al., 2016; Read et al., 2016; Triplett et al., 2016). They show that pathogens also develop sophisticated effector mimics to trick recognition. PMID:28400786

  4. Discerning strain effects in microbial dose-response data.

    PubMed

    Coleman, Margaret E; Marks, Harry M; Golden, Neal J; Latimer, Heejeong K

    In order to estimate the risk or probability of adverse events in risk assessment, it is necessary to identify the important variables that contribute to the risk and provide descriptions of distributions of these variables for well-defined populations. One component of modeling dose response that can create uncertainty is the inherent genetic variability among pathogenic bacteria. For many microbial risk assessments, the "default" assumption used for dose response does not account for strain or serotype variability in pathogenicity and virulence, other than perhaps, recognizing the existence of avirulent strains. However, an examination of data sets from human clinical trials in which Salmonella spp. and Campylobacter jejuni strains were administered reveals significant strain differences. This article discusses the evidence for strain variability and concludes that more biologically based alternatives are necessary to replace the default assumptions commonly used in microbial risk assessment, specifically regarding strain variability.

  5. A reverse-phase protein microarray-based screen identifies host signaling dynamics upon Burkholderia spp. infection

    PubMed Central

    Chiang, Chih-Yuan; Uzoma, Ijeoma; Lane, Douglas J.; Memišević, Vesna; Alem, Farhang; Yao, Kuan; Kota, Krishna P.; Bavari, Sina; Wallqvist, Anders; Hakami, Ramin M.; Panchal, Rekha G.

    2015-01-01

    Burkholderia is a diverse genus of gram-negative bacteria that causes high mortality rate in humans, equines and cattle. The lack of effective therapeutic treatments poses serious public health threats. Developing insights toward host-Burkholderia spp. interaction is critical for understanding the pathogenesis of infection as well as identifying therapeutic targets for drug development. Reverse-phase protein microarray technology was previously proven to identify and characterize novel biomarkers and molecular signatures associated with infectious disease and cancer. In the present study, this technology was utilized to interrogate changes in host protein expression and phosphorylation events in macrophages infected with a collection of geographically diverse strains of Burkholderia spp. The expression or phosphorylation state of 25 proteins was altered during Burkholderia spp. infections of which eight proteins were selected for further characterization by immunoblotting. Increased phosphorylation of AMPK-α1, Src, and GSK3β suggested the importance of their roles in regulating Burkholderia spp. mediated innate immune response. Modulating the inflammatory response by perturbing their activities may provide therapeutic routes for future treatments. PMID:26284031

  6. Antimicrobial Susceptibility and Genotypic Characteristic of Campylobacter spp. Isolates from Free-Living Birds in Poland.

    PubMed

    Krawiec, Marta; Woźniak-Biel, Anna; Bednarski, Michał; Wieliczko, Alina

    2017-11-01

    Campylobacter spp. is the most commonly reported, bacterial cause of human foodborne infection worldwide. Commercial poultry and free-living birds are natural reservoirs of three particular species: Campylobacter jejuni, Campylobacter coli, and Campylobacter lari. The aim of this study was to determine the genotypic characteristics and antibiotic susceptibility of 43 Campylobacter strains, obtained from free-living birds, in Poland. In total, 700 birds were examined. The strains were isolated from 43 birds (6.14%) from the feces of 7 wild bird species: Mallard ducks Anas platyrhynchos (29 positive/121 tested), great cormorants Phalacrocorax carbo (5/77), velvet scoters Melanitta fusca (4/30), tawny owls Strix aluco (2/5), common buzzard Buteo buteo (1/3), rook Corvus frugilegus (1/6), and Eurasian tree sparrow Passer montanus (1/30). Thirty-eight (88.37%) of obtained strains belonged to C. jejuni and five (11.63%) to C. coli. Other 428 examined birds from different bird species were Campylobacter negative. The antimicrobial susceptibility to nine antimicrobials was also studied in investigated isolates of Campylobacter spp. Sixteen of the examined strains (37.21% of all positive samples) showed susceptibility to all of the nine antimicrobials. Moreover, the prevalence of selected virulence genes, such as flaA, cadF, ceuE, virB11, cdtA, cdtB, and cdtC were all analyzed. The virulence gene that was found most frequently in total number of Campylobacter strains was ceuE (72.10%) and other genes, such as flaA, cadF, cdtA, cdtB, and cdtC, were found in over 60% of all examined strains. Variable antimicrobial susceptibility and the presence of different virulence genes of examined strains, isolated from free-living birds, suggest that special attention should be given to wild birds and any potential approaches to the control of antibiotic-resistant Campylobacter should be discussed.

  7. A promising strain of Streptomyces sp. with agricultural traits for growth promotion and disease management.

    PubMed

    Alam, Mansoor; Dharni, Seema; Abdul-Khaliq; Srivastava, Santosh Kumar; Samad, Abdul; Gupta, Mahesh Kumar

    2012-08-01

    A bacterial strain, Streptomyces sp. CIMAP- A1 was isolated from Geranium rhizosphere and identified by morphological, physiological, biochemical and molecular characters (16S rDNA gene sequence). Phylogenetically, it was found most closely related to S. vinacendrappus, strain NRRL-2363 with 99% sequence similarity. The strain had potential antagonistic activity (in vitro) against wide range of phytopathogenic fungi like Stemphylium sp., Botrytis cinerea, Sclerotinia sclerotiorum, Colletotrichum spp., Curvularia spp., Corynespora cassicola and Thielavia basicola. The extracellular secondary metabolites produced by the strain in the culture filtrates significantly inhibited the spore germination, growth of germ tube of the germinated spores and radial growth of Alternaria alternata, Colletotrichum acutatum, Curvularia andropogonis and Fusarium moniliforme. The extraction of culture filtrate with solvents and purification by following VLC and PTLC methods always yielded a 10th fraction antifungal compound showing activity against wide range of phytopathogenic fungi. The strain was able to produce siderophores and indole-3-acetic acid. The strain was found to enhance the growth and biomass production of Geranium. It increased 11.3% fresh shoot biomass of Geranium and 21.7% essential oil yield.

  8. DNA Probes Show Genetic Variation in Cyanobacterial Symbionts of the Azolla Fern and a Closer Relationship to Free-Living Nostoc Strains than to Free-Living Anabaena Strains

    PubMed Central

    Plazinski, Jacek; Zheng, Qi; Taylor, Rona; Croft, Lynn; Rolfe, Barry G.; Gunning, Brian E. S.

    1990-01-01

    Twenty-two isolates of Anabaena azollae derived from seven Azolla species from various geographic and ecological sources were characterized by DNA-DNA hybridization. Cloned DNA fragments derived from the genomic sequences of three different A. azollae isolates were used to detect restriction fragment length polymorphism among all symbiotic anabaenas. DNA clones were radiolabeled and hybridized against southern blot transfers of genomic DNAs of different isolates of A. azollae digested with restriction endonucleases. Eight DNA probes were selected to identify the Anabaena strains tested. Two were strain specific and hybridized only to A. azollae strains isolated from Azolla microphylla or Azolla caroliniana. One DNA probe was section specific (hybridized only to anabaenas isolated from Azolla ferns representing the section Euazolla), and five other probes gave finer discrimination among anabaenas representing various ecotypes of Azolla species. These cloned genomic DNA probes identified 11 different genotypes of A. azollae isolates. These included three endosymbiotic genotypes within Azolla filiculoides species and two genotypes within both A. caroliniana and Azolla pinnata endosymbionts. Although we were not able to discriminate among anabaenas extracted from different ecotypes of Azolla nilotica, Azolla mexicina, Azolla rubra and Azolla microphylla species, each of the endosymbionts was easily identified as a unique genotype. When total DNA isolated from free-living Anabaena sp. strain PCC7120 was screened, none of the genomic DNA probes gave detectable positive hybridization. Total DNA of Nostoc cycas PCC7422 hybridized with six of eight genomic DNA fragments. These data imply that the dominant symbiotic organism in association with Azolla spp. is more closely related to Nostoc spp. than to free-living Anabaena spp. Images PMID:16348182

  9. Evaluation of an antibiotic producing strain of Pseudomonas flourescens for suppression of plant-parasitic nematodes

    USDA-ARS?s Scientific Manuscript database

    The antibiotic 2,4-diacetylphloroglucinol (DAPG), produced by some strains of Pseudomonas spp., is involved in suppression of several fungal root pathogens as well as plant-parasitic nematodes. The primary objective of this study was to determine whether Wood1R, a D-genotype strain of DAPG-producin...

  10. Prevalence of Antibiotic-resistance Enterobacteriaceae strains Isolated from Chicken Meat at Traditional Markets in Surabaya, Indonesia

    NASA Astrophysics Data System (ADS)

    Yulistiani, R.; Praseptiangga, D.; Supyani; Sudibya; Raharjo, D.; Shirakawa, T.

    2017-04-01

    Antibiotic resistance in bacteria from the family Enterobacteriaceae is an important indicator of the emergence of resistant bacterial strains in the community. This study investigated the prevalence of antibiotic-resistant Enterobacteriaceae isolated from chicken meat sold at traditional markets in Surabaya Indonesia. In all, 203 isolates (43 Salmonella spp., 53 Escherichia coli, 16 Shigella spp., 22 Citrobacter spp., 13 Klebsiella spp, 24 Proteus spp., 15 Yersinia spp., 7 Enterobacter spp., 6 Serratia spp., 3 Edwardsiella spp. were resistant to tetracycline (69.95 %), nalidixid acid (54.19 %), sulfamethoxazole/sulfamethizole (42.36 %), chloramphenicol (12.81%), cefoxitin (6.40 %), gentamicin (5.91 %). Tetracycline was the antimicrobial that showed the highest frequency of resistance among Salmonella, E. coli, Citrobacter, Proteus and Erdwardsiella isolates, and nalidixid acid was second frequency of resistance. Overall, 124 (61.08 %) out of 203 isolates demonstrated multidrug resistance to at least two unrelated antimicrobial agents. The high rate of antimicrobial resistance in bacterial isolates from chicken meat may have major implications for human and animal health with adverse economic implications.

  11. Molecular characterization of Ambler class A to D β-lactamases, ISAba1, and integrons reveals multidrug-resistant Acinetobacter spp. isolates in northeastern China.

    PubMed

    Sun, Xiaoyu; Liu, Bin; Chen, Yan; Huang, Honglan; Wang, Guoqing; Li, Fan; Ni, Zhaohui

    2016-12-01

    The prevalence of various Ambler class A to D β-lactamases, ISAba1, and class 1 and 2 integrons as well as the clonal relatedness in 105 Acinetobacter spp. isolates found in northeastern China was investigated. All 105 Acinetobacter spp. isolates were determined to be multidrug resistant (MDR), and the resistance rates to carbapenem agents were approximately 50%. PER, IMP, AmpC, and OXA-23 were found to be dominant β-lactamases belonging to different classes, respectively. This is the first report of the coexistence of bla PER , bla IMP , bla AmpC , and bla OXA-23-like genes in Acinetobacter spp. isolates from northeastern China. ISAba1 was found upstream of the bla OXA-23-like gene in 87.8% (36/41) strains and upstream of the bla OXA-51-like gene in 26.5% (13/49) strains. ISAba3-like element was found upstream of the bla OXA-58-like gene in one bla OXA-58-like -positive strain. The presence of IntI1 was detected in 63.8% (67/105) of the isolates and the most prevalent gene cassettes were aacA4, aadA1, and catB8. The highly prevalent isolates belong to international clonal lineage (ICL)-II. These results indicate that the wide horizontal and clonal spread of MDR Acinetobacter spp. isolates harbouring multiple β-lactamase genes has become a serious problem in northeastern China.

  12. Investigation of antibacterial activity of Bacillus spp. isolated from the feces of Giant Panda and characterization of their antimicrobial gene distributions.

    PubMed

    Zhou, Ziyao; Zhou, Xiaoxiao; Zhong, Zhijun; Wang, Chengdong; Zhang, Hemin; Li, Desheng; He, Tingmei; Li, Caiwu; Liu, Xuehan; Yuan, Hui; Ji, Hanli; Luo, Yongjiu; Gu, Wuyang; Fu, Hualin; Peng, Guangneng

    2014-12-01

    Bacillus group is a prevalent community of Giant Panda's intestinal flora, and plays a significant role in the field of biological control of pathogens. To understand the diversity of Bacillus group from the Giant Panda intestine and their functions in maintaining the balance of the intestinal microflora of Giant Panda, this study isolated a significant number of strains of Bacillus spp. from the feces of Giant Panda, compared the inhibitory effects of these strains on three common enteric pathogens, investigated the distributions of six universal antimicrobial genes (ituA, hag, tasA, sfp, spaS and mrsA) found within the Bacillus group by PCR, and analyzed the characterization of antimicrobial gene distributions in these strains using statistical methods. The results suggest that 34 strains of Bacillus spp. were isolated which has not previously been detected at such a scale, these Bacillus strains could be classified into five categories as well as an external strain by 16S rRNA; Most of Bacillus strains are able to inhibit enteric pathogens, and the antimicrobial abilities may be correlated to their categories of 16S rRNA; The detection rates of six common antimicrobial genes are between 20.58 %(7/34) and 79.41 %(27/34), and genes distribute in three clusters in these strains. We found that the antimicrobial abilities of Bacillus strains can be one of the mechanisms by which Giant Panda maintains its intestinal microflora balance, and may be correlated to their phylogeny.

  13. Indigenous Pseudomonas spp. Strains from the Olive (Olea europaea L.) Rhizosphere as Effective Biocontrol Agents against Verticillium dahliae: From the Host Roots to the Bacterial Genomes

    PubMed Central

    Gómez-Lama Cabanás, Carmen; Legarda, Garikoitz; Ruano-Rosa, David; Pizarro-Tobías, Paloma; Valverde-Corredor, Antonio; Niqui, José L.; Triviño, Juan C.; Roca, Amalia; Mercado-Blanco, Jesús

    2018-01-01

    The use of biological control agents (BCA), alone or in combination with other management measures, has gained attention over the past decades, driven by the need to seek for sustainable and eco-friendly alternatives to confront plant pathogens. The rhizosphere of olive (Olea europaea L.) plants is a source of bacteria with potential as biocontrol tools against Verticillium wilt of olive (VWO) caused by Verticillium dahliae Kleb. A collection of bacterial isolates from healthy nursery-produced olive (cultivar Picual, susceptible to VWO) plants was generated based on morphological, biochemical and metabolic characteristics, chemical sensitivities, and on their in vitro antagonistic activity against several olive pathogens. Three strains (PIC25, PIC105, and PICF141) showing high in vitro inhibition ability of pathogens' growth, particularly against V. dahliae, were eventually selected. Their effectiveness against VWO caused by the defoliating pathotype of V. dahliae was also demonstrated, strain PICF141 being the rhizobacteria showing the best performance as BCA. Genotypic and phenotypic traits traditionally associated with plant growth promotion and/or biocontrol abilities were evaluated as well (e.g., phytase, xylanase, catalase, cellulase, chitinase, glucanase activities, and siderophore and HCN production). Multi-locus sequence analyses of conserved genes enabled the identification of these strains as Pseudomonas spp. Strain PICF141 was affiliated to the “Pseudomonas mandelii subgroup,” within the “Pseudomonas fluorescens group,” Pseudomonas lini being the closest species. Strains PIC25 and PIC105 were affiliated to the “Pseudomonas aeruginosa group,” Pseudomonas indica being the closest relative. Moreover, we identified P. indica (PIC105) for the first time as a BCA. Genome sequencing and in silico analyses allowed the identification of traits commonly associated with plant-bacteria interactions. Finally, the root colonization ability of these olive

  14. Indigenous Pseudomonas spp. Strains from the Olive (Olea europaea L.) Rhizosphere as Effective Biocontrol Agents against Verticillium dahliae: From the Host Roots to the Bacterial Genomes.

    PubMed

    Gómez-Lama Cabanás, Carmen; Legarda, Garikoitz; Ruano-Rosa, David; Pizarro-Tobías, Paloma; Valverde-Corredor, Antonio; Niqui, José L; Triviño, Juan C; Roca, Amalia; Mercado-Blanco, Jesús

    2018-01-01

    The use of biological control agents (BCA), alone or in combination with other management measures, has gained attention over the past decades, driven by the need to seek for sustainable and eco-friendly alternatives to confront plant pathogens. The rhizosphere of olive ( Olea europaea L.) plants is a source of bacteria with potential as biocontrol tools against Verticillium wilt of olive (VWO) caused by Verticillium dahliae Kleb. A collection of bacterial isolates from healthy nursery-produced olive (cultivar Picual, susceptible to VWO) plants was generated based on morphological, biochemical and metabolic characteristics, chemical sensitivities, and on their in vitro antagonistic activity against several olive pathogens. Three strains (PIC25, PIC105, and PICF141) showing high in vitro inhibition ability of pathogens' growth, particularly against V. dahliae , were eventually selected. Their effectiveness against VWO caused by the defoliating pathotype of V. dahliae was also demonstrated, strain PICF141 being the rhizobacteria showing the best performance as BCA. Genotypic and phenotypic traits traditionally associated with plant growth promotion and/or biocontrol abilities were evaluated as well (e.g., phytase, xylanase, catalase, cellulase, chitinase, glucanase activities, and siderophore and HCN production). Multi-locus sequence analyses of conserved genes enabled the identification of these strains as Pseudomonas spp. Strain PICF141 was affiliated to the " Pseudomonas mandelii subgroup," within the " Pseudomonas fluorescens group," Pseudomonas lini being the closest species. Strains PIC25 and PIC105 were affiliated to the " Pseudomonas aeruginosa group," Pseudomonas indica being the closest relative. Moreover, we identified P. indica (PIC105) for the first time as a BCA. Genome sequencing and in silico analyses allowed the identification of traits commonly associated with plant-bacteria interactions. Finally, the root colonization ability of these olive

  15. Biochemical characteristics, adhesion, and cytotoxicity of environmental and clinical isolates of Herbaspirillum spp.

    PubMed

    Marques, Ana C Q; Paludo, Katia S; Dallagassa, Cibelle B; Surek, Monica; Pedrosa, Fábio O; Souza, Emanuel M; Cruz, Leonardo M; LiPuma, John J; Zanata, Sílvio M; Rego, Fabiane G M; Fadel-Picheth, Cyntia M T

    2015-01-01

    Herbaspirillum bacteria are best known as plant growth-promoting rhizobacteria but have also been recovered from clinical samples. Here, biochemical tests, matrix-assisted laser deionization-time of flight (MALDI-TOF) mass spectrometry, adherence, and cytotoxicity to eukaryotic cells were used to compare clinical and environmental isolates of Herbaspirillum spp. Discrete biochemical differences were observed between human and environmental strains. All strains adhered to HeLa cells at low densities, and cytotoxic effects were discrete, supporting the view that Herbaspirillum bacteria are opportunists with low virulence potential. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Phenotypic and molecular characterization of antimicrobial resistance in Enterobacter spp. isolates from companion animals in Japan

    PubMed Central

    Harada, Kazuki; Shimizu, Takae; Mukai, Yujiro; Kuwajima, Ken; Sato, Tomomi; Kajino, Akari; Usui, Masaru; Tamura, Yutaka; Kimura, Yui; Miyamoto, Tadashi; Tsuyuki, Yuzo; Ohki, Asami; Kataoka, Yasushi

    2017-01-01

    The emergence of antimicrobial resistance among Enterobacter spp., including resistance to extended-spectrum cephalosporins (ESC), is of great concern in both human and veterinary medicine. In this study, we investigated the prevalence of antimicrobial resistance among 60 isolates of Enterobacter spp., including E. cloacae (n = 44), E. aerogenes (n = 10), and E. asburiae (n = 6), from clinical specimens of dogs and cats from 15 prefectures in Japan. Furthermore, we characterized the resistance mechanisms harbored by these isolates, including extended-spectrum β-lactamases (ESBLs) and plasmid-mediated quinolone resistance (PMQR); and assessed the genetic relatedness of ESC-resistant Enterobacter spp. strains by multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). Antimicrobial susceptibility testing demonstrated the resistance rates to ampicillin (93.3%), amoxicillin-clavulanic acid (93.3%), cefmetazole (93.3%), chloramphenicol (46.7%), ciprofloxacin (43.3%), tetracycline (40.0%), ceftazidime (33.3%), cefotaxime (33.3%), trimethoprim/sulfamethoxazole (28.3%), gentamicin (23.3%), and meropenem (0%). Phenotypic testing detected ESBLs in 16 of 18 ESC-resistant E. cloacae isolates but not in the other species. The most frequent ESBL was CTX-M-15 (n = 8), followed by SHV-12 (n = 7), and CTX-M-3 (n = 1). As for AmpC β-lactamases, CMY-2 (n = 2) and DHA-1 (n = 2) were identified in ESC-resistant E. cloacae strains with or without ESBLs. All of the ESC-resistant E. cloacae strains also harbored one or two PMQRs, including qnrB (n = 15), aac(6’)-Ib-cr (n = 8), and qnrS (n = 2). Based on MLST and PFGE analysis, E. cloacae clones of ST591-SHV-12, ST171-CTX-M-15, and ST121-CTX-M-15 were detected in one or several hospitals. These results suggested intra- and inter-hospital dissemination of E. cloacae clones co-harboring ESBLs and PMQRs among companion animals. This is the first report on the large-scale monitoring of antimicrobial-resistant isolates

  17. Phenotypic and molecular characterization of antimicrobial resistance in Enterobacter spp. isolates from companion animals in Japan.

    PubMed

    Harada, Kazuki; Shimizu, Takae; Mukai, Yujiro; Kuwajima, Ken; Sato, Tomomi; Kajino, Akari; Usui, Masaru; Tamura, Yutaka; Kimura, Yui; Miyamoto, Tadashi; Tsuyuki, Yuzo; Ohki, Asami; Kataoka, Yasushi

    2017-01-01

    The emergence of antimicrobial resistance among Enterobacter spp., including resistance to extended-spectrum cephalosporins (ESC), is of great concern in both human and veterinary medicine. In this study, we investigated the prevalence of antimicrobial resistance among 60 isolates of Enterobacter spp., including E. cloacae (n = 44), E. aerogenes (n = 10), and E. asburiae (n = 6), from clinical specimens of dogs and cats from 15 prefectures in Japan. Furthermore, we characterized the resistance mechanisms harbored by these isolates, including extended-spectrum β-lactamases (ESBLs) and plasmid-mediated quinolone resistance (PMQR); and assessed the genetic relatedness of ESC-resistant Enterobacter spp. strains by multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). Antimicrobial susceptibility testing demonstrated the resistance rates to ampicillin (93.3%), amoxicillin-clavulanic acid (93.3%), cefmetazole (93.3%), chloramphenicol (46.7%), ciprofloxacin (43.3%), tetracycline (40.0%), ceftazidime (33.3%), cefotaxime (33.3%), trimethoprim/sulfamethoxazole (28.3%), gentamicin (23.3%), and meropenem (0%). Phenotypic testing detected ESBLs in 16 of 18 ESC-resistant E. cloacae isolates but not in the other species. The most frequent ESBL was CTX-M-15 (n = 8), followed by SHV-12 (n = 7), and CTX-M-3 (n = 1). As for AmpC β-lactamases, CMY-2 (n = 2) and DHA-1 (n = 2) were identified in ESC-resistant E. cloacae strains with or without ESBLs. All of the ESC-resistant E. cloacae strains also harbored one or two PMQRs, including qnrB (n = 15), aac(6')-Ib-cr (n = 8), and qnrS (n = 2). Based on MLST and PFGE analysis, E. cloacae clones of ST591-SHV-12, ST171-CTX-M-15, and ST121-CTX-M-15 were detected in one or several hospitals. These results suggested intra- and inter-hospital dissemination of E. cloacae clones co-harboring ESBLs and PMQRs among companion animals. This is the first report on the large-scale monitoring of antimicrobial-resistant isolates

  18. Diversity of Cronobacter spp. isolates from the vegetables in the middle-east coastline of China.

    PubMed

    Chen, Wanyi; Yang, Jielin; You, Chunping; Liu, Zhenmin

    2016-06-01

    Cronobacter spp. has caused life-threatening neonatal infections mainly resulted from consumption of contaminated powdered infant formula. A total of 102 vegetable samples from retail markets were evaluated for the presence of Cronobacter spp. Thirty-five presumptive Cronobacter isolates were isolated and identified using API 20E and 16S rDNA sequencing analyses. All isolates and type strains were characterized using enterobacterial repetitive intergenic consensus sequence PCR (ERIC-PCR), and genetic profiles of cluster analysis from this molecular typing test clearly showed that there were differences among isolates from different vegetables. A polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) based on the amplification of the gyrB gene (1258 bp) was developed to differentiate among Cronobacter species. A new PCR-RFLP assay based on the amplification of the gyrB gene using Alu I and Hinf I endonuclease combination is established and it has been confirmed an accurate and rapid subtyping method to differentiate Cronobacter species. Sequence analysis of the gyrB gene was proven to be suitable for the phylogenetic analysis of the Cronobacter strains, which has much better resolution based on SNPs in the identification of Cronobacter species specificity than PCR-RFLP and ERIC-PCR. Our study further confirmed that vegetables are one of the most common habitats or sources of Cronobacter spp. contamination in the middle-east coastline of China.

  19. Prevalence of Microsporidia, Cryptosporidium spp., and Giardia spp. in beavers (Castor canadensis) in Massachusetts

    USGS Publications Warehouse

    Fayer, R.; Santin, M.; Trout, J.M.; DeStefano, S.; Koenen, K.; Kaur, T.

    2006-01-01

    Feces from 62 beavers (Castor canadensis) in Massachusetts were examined by fluorescence microscopy (IFA) and polymerase chain reaction (PCR) for Microsporidia species, Cryptosporidium spp., and Giardia spp. between January 2002 and December 2004. PCR-positive specimens were further examined by gene sequencing. Protist parasites were detected in 6.4% of the beavers. All were subadults and kits. Microsporidia species were not detected. Giardia spp. was detected by IFA from four beavers; Cryptosporidium spp. was also detected by IFA from two of these beavers. However, gene sequence data for the ssrRNA gene from these two Cryptosporidium spp.-positive beavers were inconclusive in identifying the species. Nucleotide sequences of the TPI, ssrRNA, and ??-giardin genes for Giardia spp. (deposited in GenBank) indicated that the four beavers were excreting Giardia duodenalis Assemblage B, the zoonotic genotype representing a potential source of waterborne Giardia spp. cysts. Copyright 2006 by American Association of Zoo Veterinarians.

  20. Identification and characterization of the biotechnological potential of a wild strain of Paraconiothyrium sp.

    PubMed

    Arredondo-Santoyo, Marina; Vázquez-Garcidueñas, Ma Soledad; Vázquez-Marrufo, Gerardo

    2018-04-30

    The isolation and characterization of fungal strains from poorly described taxa allows undercover attributes of their basic biology useful for biotechnology. Here, a wild fungal strain (CMU-196) from recently described Paraconiothyrium genus was analyzed. CMU-196 was identified as Paraconiothyrium brasiliense by phylogenetic analysis of the rDNA internal transcribed spacer region (ITS). CMU-196 metabolized 57 out of 95 substrates of the Biolog FF microplates. Efficient assimilation of dextrins and glycogen indicates that CMU-196 is a good producer of amylolytic enzymes. It showed a remarkably assimilation of α-D-lactose, substrate described as inducer of cellulolytic activity but poorly assimilated by several fungi. Metabolically active mycelium of the strain decolorized broth supplemented with direct blue 71, Chicago sky blue and remazol brilliant blue R dyes. The former two dyes were also well removed from broth by mycelium inactivated by autoclaving. Both mycelia had low efficiency for removing fuchsin acid from broth and for decolorizing wastewater from the paper industry. CMU-196 strain showed extracellular laccase activity when potato dextrose broth was supplemented with Cu +2 , reaching a maximum activity of 46.8 (±0.33) U/L. Studied strain antagonized phytopathogenic Colletotrichum spp. fungi and Phytophthora spp. oomycetes in vitro, but is less effective towards Fusarium spp. fungi. CMU-196 antagonism includes overgrowing the mycelia of phytopathogens and growth inhibition, probably by hydrosoluble extracellular metabolites. The biotechnological potential of strain CMU-196 here described warrants further studies to have a more detailed knowledge of the mechanisms associated with its metabolic versatility, capacity for environmental detoxification, extracellular laccase production and antagonism against phytopathogens. This article is protected by copyright. All rights reserved. © 2018 American Institute of Chemical Engineers.

  1. Proteomics-based identification of differentially abundant proteins reveals adaptation mechanisms of Xanthomonas citri subsp. citri during Citrus sinensis infection.

    PubMed

    Moreira, Leandro M; Soares, Márcia R; Facincani, Agda P; Ferreira, Cristiano B; Ferreira, Rafael M; Ferro, Maria I T; Gozzo, Fábio C; Felestrino, Érica B; Assis, Renata A B; Garcia, Camila Carrião M; Setubal, João C; Ferro, Jesus A; de Oliveira, Julio C F

    2017-07-11

    Xanthomonas citri subsp. citri (Xac) is the causal agent of citrus canker. A proteomic analysis under in planta infectious and non-infectious conditions was conducted in order to increase our knowledge about the adaptive process of Xac during infection. For that, a 2D-based proteomic analysis of Xac at 1, 3 and 5 days after inoculation, in comparison to Xac growth in NB media was carried out and followed by MALDI-TOF-TOF identification of 124 unique differentially abundant proteins. Among them, 79 correspond to up-regulated proteins in at least one of the three stages of infection. Our results indicate an important role of proteins related to biofilm synthesis, lipopolysaccharides biosynthesis, and iron uptake and metabolism as possible modulators of plant innate immunity, and revealed an intricate network of proteins involved in reactive oxygen species adaptation during Plants` Oxidative Burst response. We also identified proteins previously unknown to be involved in Xac-Citrus interaction, including the hypothetical protein XAC3981. A mutant strain for this gene has proved to be non-pathogenic in respect to classical symptoms of citrus canker induced in compatible plants. This is the first time that a protein repertoire is shown to be active and working in an integrated manner during the infection process in a compatible host, pointing to an elaborate mechanism for adaptation of Xac once inside the plant.

  2. Analysis of new type III effectors from Xanthomonas uncovers XopB and XopS as suppressors of plant immunity.

    PubMed

    Schulze, Sebastian; Kay, Sabine; Büttner, Daniela; Egler, Monique; Eschen-Lippold, Lennart; Hause, Gerd; Krüger, Antje; Lee, Justin; Müller, Oliver; Scheel, Dierk; Szczesny, Robert; Thieme, Frank; Bonas, Ulla

    2012-09-01

    The pathogenicity of the Gram-negative plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria (Xcv) is dependent on type III effectors (T3Es) that are injected into plant cells by a type III secretion system and interfere with cellular processes to the benefit of the pathogen. In this study, we analyzed eight T3Es from Xcv strain 85-10, six of which were newly identified effectors. Genetic studies and protoplast expression assays revealed that XopB and XopS contribute to disease symptoms and bacterial growth, and suppress pathogen-associated molecular pattern (PAMP)-triggered plant defense gene expression. In addition, XopB inhibits cell death reactions induced by different T3Es, thus suppressing defense responses related to both PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI). XopB localizes to the Golgi apparatus and cytoplasm of the plant cell and interferes with eukaryotic vesicle trafficking. Interestingly, a XopB point mutant derivative was defective in the suppression of ETI-related responses, but still interfered with vesicle trafficking and was only slightly affected with regard to the suppression of defense gene induction. This suggests that XopB-mediated suppression of PTI and ETI is dependent on different mechanisms that can be functionally separated. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  3. Structural Analysis and Involvement in Plant Innate Immunity of Xanthomonas axonopodis pv. citri Lipopolysaccharide*

    PubMed Central

    Casabuono, Adriana; Petrocelli, Silvana; Ottado, Jorgelina; Orellano, Elena G.; Couto, Alicia S.

    2011-01-01

    Xanthomonas axonopodis pv. citri (Xac) causes citrus canker, provoking defoliation and premature fruit drop with concomitant economical damage. In plant pathogenic bacteria, lipopolysaccharides are important virulence factors, and they are being increasingly recognized as major pathogen-associated molecular patterns for plants. In general, three domains are recognized in a lipopolysaccharide: the hydrophobic lipid A, the hydrophilic O-antigen polysaccharide, and the core oligosaccharide, connecting lipid A and O-antigen. In this work, we have determined the structure of purified lipopolysaccharides obtained from Xanthomonas axonopodis pv. citri wild type and a mutant of the O-antigen ABC transporter encoded by the wzt gene. High pH anion exchange chromatography and matrix-assisted laser desorption/ionization mass spectrum analysis were performed, enabling determination of the structure not only of the released oligosaccharides and lipid A moieties but also the intact lipopolysaccharides. The results demonstrate that Xac wild type and Xacwzt LPSs are composed mainly of a penta- or tetra-acylated diglucosamine backbone attached to either two pyrophosphorylethanolamine groups or to one pyrophosphorylethanolamine group and one phosphorylethanolamine group. The core region consists of a branched oligosaccharide formed by Kdo2Hex6GalA3Fuc3NAcRha4 and two phosphate groups. As expected, the presence of a rhamnose homo-oligosaccharide as O-antigen was determined only in the Xac wild type lipopolysaccharide. In addition, we have examined how lipopolysaccharides from Xac function in the pathogenesis process. We analyzed the response of the different lipopolysaccharides during the stomata aperture closure cycle, the callose deposition, the expression of defense-related genes, and reactive oxygen species production in citrus leaves, suggesting a functional role of the O-antigen from Xac lipopolysaccharides in the basal response. PMID:21596742

  4. Validation of the ANSR Listeria method for detection of Listeria spp. in environmental samples.

    PubMed

    Wendorf, Michael; Feldpausch, Emily; Pinkava, Lisa; Luplow, Karen; Hosking, Edan; Norton, Paul; Biswas, Preetha; Mozola, Mark; Rice, Jennifer

    2013-01-01

    ANSR Listeria is a new diagnostic assay for detection of Listeria spp. in sponge or swab samples taken from a variety of environmental surfaces. The method is an isothermal nucleic acid amplification assay based on the nicking enzyme amplification reaction technology. Following single-step sample enrichment for 16-24 h, the assay is completed in 40 min, requiring only simple instrumentation. In inclusivity testing, 48 of 51 Listeria strains tested positive, with only the three strains of L. grayi producing negative results. Further investigation showed that L. grayi is reactive in the ANSR assay, but its ability to grow under the selective enrichment conditions used in the method is variable. In exclusivity testing, 32 species of non-Listeria, Gram-positive bacteria all produced negative ANSR assay results. Performance of the ANSR method was compared to that of the U.S. Department of Agriculture-Food Safety and Inspection Service reference culture procedure for detection of Listeria spp. in sponge or swab samples taken from inoculated stainless steel, plastic, ceramic tile, sealed concrete, and rubber surfaces. Data were analyzed using Chi-square and probability of detection models. Only one surface, stainless steel, showed a significant difference in performance between the methods, with the ANSR method producing more positive results. Results of internal trials were supported by findings from independent laboratory testing. The ANSR Listeria method can be used as an accurate, rapid, and simple alternative to standard culture methods for detection of Listeria spp. in environmental samples.

  5. Prevalence of Legionella spp. in water systems of hospitals and hotels in South Western Greece.

    PubMed

    Fragou, K; Kokkinos, P; Gogos, C; Alamanos, Y; Vantarakis, A

    2012-01-01

    The aim of the present study was to determine the prevalence of Legionella spp. in water systems of hospitals and hotels located in South Western Greece, to study the molecular epidemiology of the isolated strains and their possible association with bacterial contamination (total count and Pseudomonas aeruginosa), the water pH, and temperature. A prevalence survey for Legionella spp. by culturing techniques in water distribution systems of eight hospitals and nine hotels occurred in South Western Greece. Water sampling and microbiological analysis were carried out following the ISO methods. Legionella pneumophila was detected in 33% and 36% of the distribution systems of hospitals and hotels, respectively. Our survey results suggest a frequent prevalence of elevated concentrations of Legionella spp. in water systems of hospitals and hotels. Our investigation has confirmed the need to regularly monitor the microbiological condition of water systems in hospitals and hotels.

  6. Characterization of Citrus sinensis transcription factors closely associated with the non-host response to Xanthomonas campestris pv. vesicatoria.

    PubMed

    Daurelio, Lucas D; Romero, María S; Petrocelli, Silvana; Merelo, Paz; Cortadi, Adriana A; Talón, Manuel; Tadeo, Francisco R; Orellano, Elena G

    2013-07-01

    Plants, when exposed to certain pathogens, may display a form of genotype-independent resistance, known as non-host response. In this study, the response of Citrus sinensis (sweet orange) leaves to Xanthomonas campestris pv. vesicatoria (Xcv), a pepper and tomato pathogenic bacterium, was analyzed through biochemical assays and cDNA microarray hybridization and compared with Asiatic citrus canker infection caused by Xanthomonas citri subsp. citri. Citrus leaves exposed to the non-host bacterium Xcv showed hypersensitive response (HR) symptoms (cell death), a defense mechanism common in plants but poorly understood in citrus. The HR response was accompanied by differentially expressed genes that are associated with biotic stress and cell death. Moreover, 58 transcription factors (TFs) were differentially regulated by Xcv in citrus leaves, including 26 TFs from the stress-associated families AP2-EREBP, bZip, Myb and WRKY. Remarkably, in silico analysis of the distribution of expressed sequence tags revealed that 10 of the 58 TFs, belonging to C2C2-GATA, C2H2, CCAAT, HSF, NAC and WRKY gene families, were specifically over-represented in citrus stress cDNA libraries. This study identified candidate TF genes for the regulation of key steps during the citrus non-host HR. Furthermore, these TFs might be useful in future strategies of molecular breeding for citrus disease resistance. Copyright © 2013 Elsevier GmbH. All rights reserved.

  7. A cell wall-degrading esterase of Xanthomonas oryzae requires a unique substrate recognition module for pathogenesis on rice.

    PubMed

    Aparna, Gudlur; Chatterjee, Avradip; Sonti, Ramesh V; Sankaranarayanan, Rajan

    2009-06-01

    Xanthomonas oryzae pv oryzae (Xoo) causes bacterial blight, a serious disease of rice (Oryza sativa). LipA is a secretory virulence factor of Xoo, implicated in degradation of rice cell walls and the concomitant elicitation of innate immune responses, such as callose deposition and programmed cell death. Here, we present the high-resolution structural characterization of LipA that reveals an all-helical ligand binding module as a distinct functional attachment to the canonical hydrolase catalytic domain. We demonstrate that the enzyme binds to a glycoside ligand through a rigid pocket comprising distinct carbohydrate-specific and acyl chain recognition sites where the catalytic triad is situated 15 A from the anchored carbohydrate. Point mutations disrupting the carbohydrate anchor site or blocking the pocket, even at a considerable distance from the enzyme active site, can abrogate in planta LipA function, exemplified by loss of both virulence and the ability to elicit host defense responses. A high conservation of the module across genus Xanthomonas emphasizes the significance of this unique plant cell wall-degrading function for this important group of plant pathogenic bacteria. A comparison with the related structural families illustrates how a typical lipase is recruited to act on plant cell walls to promote virulence, thus providing a remarkable example of the emergence of novel functions around existing scaffolds for increased proficiency of pathogenesis during pathogen-plant coevolution.

  8. Chemical composition and biological activities of Tunisian Cuminum cyminum L. essential oil: a high effectiveness against Vibrio spp. strains.

    PubMed

    Hajlaoui, Hafedh; Mighri, Hedi; Noumi, Emira; Snoussi, Mejdi; Trabelsi, Najla; Ksouri, Riadh; Bakhrouf, Amina

    2010-01-01

    Essential oil extracted by hydrodistillation from Tunisian variety of Cuminumcyminum was characterized by means of GC and GC-MS. Twenty-one components were identified and C. cyminum contained cuminlaldehyde (39.48%), gamma-terpinene (15.21%), O-cymene (11.82%), beta-pinene (11.13%), 2-caren-10-al (7.93%), trans-carveol (4.49%) and myrtenal (3.5%) as a major components. Moreover, C. cyminum oil exhibited higher antibacterial and antifungal activities with a high effectiveness against Vibrio spp. strains with a diameter of inhibition zones growth ranging from 11 to 23 mm and MIC and MBC values ranging from (0.078-0.31 mg/ml) to (0.31-1.25mg/ml), respectively. On the other hand, the cumin oil was investigated for its antioxidant activities using four different tests then compared with BHT. Results showed that cumin oil exhibit a higher activity in each antioxidant system with a special attention for beta-carotene bleaching test (IC(50): 20 microg/ml) and reducing power (EC(50): 11 microg/ml). In the light of these findings, we suggested that C. cyminum essential oil may be considered as an interesting source of antibacterial, antifungal and antioxidants components used as potent agents in food preservation and for therapeutic or nutraceutical industries. Copyright (c) 2010. Published by Elsevier Ltd.

  9. PREVALENCE OF DRUG RESISTANCE AND VIRULENCE FEATURES IN Salmonella spp. ISOLATED FROM FOODS ASSOCIATED OR NOT WITH SALMONELLOSIS IN BRAZIL

    PubMed Central

    Rowlands, Ruth Estela Gravato; Ristori, Christiane Asturiano; Ikuno, Alice A.; Barbosa, Maria Luisa; Jakabi, Miyoko; Franco, Bernadette Dora Gombossy de Melo

    2014-01-01

    Salmonella is the most common etiological agent of cases and outbreaks of foodborne diarrheal illnesses. The emergence and spread of Salmonella spp., which has become multi-drug resistant and potentially more pathogenic, have increased the concern with this pathogen. In this study, 237 Salmonella spp., associated or not with foodborne salmonellosis in Brazil, belonging mainly to serotype Enteritidis, were tested for antimicrobial susceptibility and the presence of the virulence genes spvC, invA, sefA and pefA. Of the isolates, 46.8% were sensitive to all antimicrobials and 51.9% were resistant to at least one antimicrobial agent. Resistance to more than one antimicrobial agent was observed in 10.5% of the strains. The highest rates of resistance were observed for streptomycin (35.9%) and nalidixic acid (16.9%). No strain was resistant to cefoxitin, cephalothin, cefotaxime, amikacin, ciprofloxacin and imipenem. The invA gene was detected in all strains. Genes spvC and pefA were found in 48.1% and 44.3% of strains, respectively. The gene sefA was detected in 31.6% of the strains and only among S. Enteritidis. Resistance and virulence determinants were detected in Salmonella strains belonging to several serotypes. The high rates of antibiotic-resistance in strains isolated from poultry products demonstrate the potential risk associated with the consumption of these products and the need to ensure good food hygiene practices from farm to table to reduce the spread of pathogens relevant to public health. PMID:25351537

  10. Microarray analysis of the semi-compatible pathogenic response and recovery of leafy spurge inoculated with the Cassava bacterial blight pathogen Xanthomonas axonopodis pv. manihotis

    USDA-ARS?s Scientific Manuscript database

    Infection by Xanthomonas axonopodis pv. manihotis (Xam)of the model perennial range land weed leafy spurge was tested to see if Xam might serve a potential biological control agent for this invasive weed. Although leafy spurge was susceptible to Xam infection, it recovered with 21 days after inocula...

  11. The Ciprofloxacin Impact on Biofilm Formation by Proteus Mirabilis and P. Vulgaris Strains

    PubMed Central

    Kwiecinska-Pirog, Joanna; Skowron, Krzysztof; Bartczak, Wojciech; Gospodarek-Komkowska, Eugenia

    2016-01-01

    Background Proteus spp. bacilli belong to opportunistic human pathogens, which are primarily responsible for urinary tract and wound infections. An important virulence factor is their ability to form biofilms that greatly reduce the effectiveness of antibiotics in the site of infection. Objectives The aim of this study was to determine the value of the minimum concentration of ciprofloxacin that eradicates a biofilm of Proteus spp. strains. Materials and Methods A biofilm formation of 20 strains of P. mirabilis and 20 strains of P. vulgaris were evaluated by a spectrophotometric method using 0.1% 2, 3, 5-Triphenyl-tetrazolium chloride solution (TTC, AVANTORTM). On the basis of the results of the absorbance of the formazan, a degree of reduction of biofilm and minimum biofilm eradication (MBE) values of MBE50 and MBE90 were determined. Results All tested strains formed a biofilm. A value of 1.0 μg/mL ciprofloxacin is MBE50 for the strains of both tested species. An MBE90 value of ciprofloxacin for isolates of P. vulgaris was 2 μg/mL and for P. mirabilis was 512 μg/mL. Conclusions Minimum biofilm eradication values of ciprofloxacin obtained in the study are close to the values of the minimal inhibition concentration (MIC). PMID:27303616

  12. Genome sequence of the Lotus spp. microsymbiont Mesorhizobium loti strain R7A.

    PubMed

    Kelly, Simon; Sullivan, John; Ronson, Clive; Tian, Rui; Bräu, Lambert; Munk, Christine; Goodwin, Lynne; Han, Cliff; Woyke, Tanja; Reddy, Tatiparthi; Huntemann, Marcel; Pati, Amrita; Mavromatis, Konstantinos; Markowitz, Victor; Ivanova, Natalia; Kyrpides, Nikos; Reeve, Wayne

    2014-01-01

    Mesorhizobium loti strain R7A was isolated in 1993 in Lammermoor, Otago, New Zealand from a Lotus corniculatus root nodule and is a reisolate of the inoculant strain ICMP3153 (NZP2238) used at the site. R7A is an aerobic, Gram-negative, non-spore-forming rod. The symbiotic genes in the strain are carried on a 502-kb integrative and conjugative element known as the symbiosis island or ICEMlSym(R7A). M. loti is the microsymbiont of the model legume Lotus japonicus and strain R7A has been used extensively in studies of the plant-microbe interaction. This report reveals that the genome of M. loti strain R7A does not harbor any plasmids and contains a single scaffold of size 6,529,530 bp which encodes 6,323 protein-coding genes and 75 RNA-only encoding genes. This rhizobial genome is one of 100 sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.

  13. XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.

    PubMed

    Thomas, Nicholas C; Schwessinger, Benjamin; Liu, Furong; Chen, Huamin; Wei, Tong; Nguyen, Yen P; Shaker, Isaac W F; Ronald, Pamela C

    2016-01-01

    The rice XA21 receptor kinase confers robust resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae ( Xoo ). We developed a detached leaf infection assay to quickly and reliably measure activation of the XA21-mediated immune response using genetic markers. We used RNA sequencing of elf18 treated EFR:XA21:GFP plants to identify candidate genes that could serve as markers for XA21 activation. From this analysis, we identified eight genes that are up-regulated in both in elf18 treated EFR:XA21:GFP rice leaves and Xoo infected XA21 rice leaves. These results provide a rapid and reliable method to assess bacterial-rice interactions.

  14. Real-time PCR assays for detection of Brucella spp. and the identification of genotype ST27 in bottlenose dolphins (Tursiops truncatus).

    PubMed

    Wu, Qingzhong; McFee, Wayne E; Goldstein, Tracey; Tiller, Rebekah V; Schwacke, Lori

    2014-05-01

    Rapid detection of Brucella spp. in marine mammals is challenging. Microbiologic culture is used for definitive diagnosis of brucellosis, but is time consuming, has low sensitivity and can be hazardous to laboratory personnel. Serological methods can aid in diagnosis, but may not differentiate prior exposure versus current active infection and may cross-react with unrelated Gram-negative bacteria. This study reports a real-time PCR assay for the detection of Brucella spp. and application to screen clinical samples from bottlenose dolphins stranded along the coast of South Carolina, USA. The assay was found to be 100% sensitive for the Brucella strains tested, and the limit of detection was 0.27fg of genomic DNA from Brucella ceti B1/94 per PCR volume. No amplification was detected for the non-Brucella pathogens tested. Brucella DNA was detected in 31% (55/178) of clinical samples tested. These studies indicate that the real-time PCR assay is highly sensitive and specific for the detection of Brucella spp. in bottlenose dolphins. We also developed a second real-time PCR assay for rapid identification of Brucella ST27, a genotype that is associated with human zoonotic infection. Positive results were obtained for Brucella strains which had been identified as ST27 by multilocus sequence typing. No amplification was found for other Brucella strains included in this study. ST27 was identified in 33% (18/54) of Brucella spp. DNA-positive clinical samples. To our knowledge, this is the first report on the use of a real-time PCR assay for identification of Brucella genotype ST27 in marine mammals. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Identification of Pectin Degrading Enzymes Secreted by Xanthomonas oryzae pv. oryzae and Determination of Their Role in Virulence on Rice

    PubMed Central

    Tayi, Lavanya; Maku, Roshan V.; Patel, Hitendra Kumar; Sonti, Ramesh V.

    2016-01-01

    Xanthomonas oryzae pv.oryzae (Xoo) causes the serious bacterial blight disease of rice. Xoo secretes a repertoire of plant cell wall degrading enzymes (CWDEs) like cellulases, xylanases, esterases etc., which act on various components of the rice cell wall. The major cellulases and xylanases secreted by Xoo have been identified and their role in virulence has been determined. In this study, we have identified some of the pectin degrading enzymes of Xoo and assessed their role in virulence. Bioinformatics analysis indicated the presence of four pectin homogalacturonan (HG) degrading genes in the genome of Xoo. The four HG degrading genes include one polygalacturonase (pglA), one pectin methyl esterase (pmt) and two pectate lyases (pel and pelL). There was no difference in the expression of pglA, pmt and pel genes by laboratory wild type Xoo strain (BXO43) grown in either nutrient rich PS medium or in plant mimic XOM2 medium whereas the expression of pelL gene was induced in XOM2 medium as indicated by qRT-PCR experiments. Gene disruption mutations were generated in each of these four genes. The polygalacturonase mutant pglA- was completely deficient in degrading the substrate Na-polygalacturonicacid (PGA). Strains carrying mutations in the pmt, pel and pelL genes were as efficient as wild type Xoo (BXO43) in cleaving PGA. These observations clearly indicate that PglA is the major pectin degrading enzyme produced by Xoo. The pectin methyl esterase, Pmt, is the pectin de-esterifying enzyme secreted by Xoo as evident from the enzymatic activity assay performed using pectin as the substrate. Mutations in the pglA, pmt, pel and pelL genes have minimal effects on virulence. This suggests that, as compared to cellulases and xylanases, the HG degrading enzymes may not have a major role in the pathogenicity of Xoo. PMID:27907079

  16. Identification of Pectin Degrading Enzymes Secreted by Xanthomonas oryzae pv. oryzae and Determination of Their Role in Virulence on Rice.

    PubMed

    Tayi, Lavanya; Maku, Roshan V; Patel, Hitendra Kumar; Sonti, Ramesh V

    2016-01-01

    Xanthomonas oryzae pv.oryzae (Xoo) causes the serious bacterial blight disease of rice. Xoo secretes a repertoire of plant cell wall degrading enzymes (CWDEs) like cellulases, xylanases, esterases etc., which act on various components of the rice cell wall. The major cellulases and xylanases secreted by Xoo have been identified and their role in virulence has been determined. In this study, we have identified some of the pectin degrading enzymes of Xoo and assessed their role in virulence. Bioinformatics analysis indicated the presence of four pectin homogalacturonan (HG) degrading genes in the genome of Xoo. The four HG degrading genes include one polygalacturonase (pglA), one pectin methyl esterase (pmt) and two pectate lyases (pel and pelL). There was no difference in the expression of pglA, pmt and pel genes by laboratory wild type Xoo strain (BXO43) grown in either nutrient rich PS medium or in plant mimic XOM2 medium whereas the expression of pelL gene was induced in XOM2 medium as indicated by qRT-PCR experiments. Gene disruption mutations were generated in each of these four genes. The polygalacturonase mutant pglA- was completely deficient in degrading the substrate Na-polygalacturonicacid (PGA). Strains carrying mutations in the pmt, pel and pelL genes were as efficient as wild type Xoo (BXO43) in cleaving PGA. These observations clearly indicate that PglA is the major pectin degrading enzyme produced by Xoo. The pectin methyl esterase, Pmt, is the pectin de-esterifying enzyme secreted by Xoo as evident from the enzymatic activity assay performed using pectin as the substrate. Mutations in the pglA, pmt, pel and pelL genes have minimal effects on virulence. This suggests that, as compared to cellulases and xylanases, the HG degrading enzymes may not have a major role in the pathogenicity of Xoo.

  17. Genetic diversity of Hepatozoon spp. in coyotes from the south-central United States.

    PubMed

    Starkey, Lindsay A; Panciera, Roger J; Paras, Kelsey; Allen, Kelly E; Reiskind, Michael H; Reichard, Mason V; Johnson, Eileen M; Little, Susan E

    2013-04-01

    To better define the strains and species of Hepatozoon that infect coyotes in the south-central United States, whole blood and muscle samples were collected from 44 coyotes from 6 locations in Oklahoma and Texas. Samples were evaluated by a nested polymerase chain reaction (PCR) using primers amplifying a variable region of the apicomplexan 18S rRNA gene as well as histopathology (muscle only) for presence of tissue cysts. Hepatozoon spp. infections were identified in 79.5% (35/44) of coyotes tested including 27 of 44 (61.4%) whole blood samples and 17 of 44 (38.6%) muscle samples tested by PCR and 23 of 44 (52.3%) muscle samples evaluated by histological examination. Analysis revealed 19 distinct sequences comprising 3 major clusters of Hepatozoon spp., i.e., 1 most closely related to Hepatozoon americanum, another most closely related to Hepatozoon canis , and the third an intermediate between the 2 groups. The diversity of Hepatozoon spp. in wild canids appears greater than previously recognized and warrants further investigation.

  18. Molecular characterization of the presence of Eubacterium spp and Streptococcus spp in endodontic infections.

    PubMed

    Fouad, A F; Kum, K-Y; Clawson, M L; Barry, J; Abenoja, C; Zhu, Q; Caimano, M; Radolf, J D

    2003-08-01

    Eubacterium spp. and Streptococcus spp. are virulent, commonly identified microorganisms in endodontic infections. The purpose of this study was to use molecular methods to identify these organisms in 22 infected root canals that include eight cases with preoperative clinical symptoms and five cases with a history of diabetes mellitus. The presence of Streptococcus spp. and Eubacterium spp. was examined using two sets of PCR primers specific with multiple species within the respective genera. Positive specimens had their PCR products sequenced and phylogenetically analyzed to identify the specific species. Sixteen specimens (73%) contained Eubacterium spp. and nine (41%) were positive for Streptococcus spp. Eubacterium infirmum was the most prevalent Eubacterium sp. This organism was significantly associated with a history of diabetes (OR = 9.6; P = 0.04). Streptococcus anginosus was the most common Streptococcus sp., but neither it nor any of the other streptococci were significantly associated with the clinical parameters evaluated.

  19. Factors associated with the likelihood of Giardia spp. and Cryptosporidium spp. in soil from dairy farms.

    PubMed

    Barwick, R S; Mohammed, H O; White, M E; Bryant, R B

    2003-03-01

    A study was conducted to identify factors associated with the likelihood of detecting Giardia spp. and Cryptosporidium spp. in the soil of dairy farms in a watershed area. A total of 37 farms were visited, and 782 soil samples were collected from targeted areas on these farms. The samples were analyzed for the presence of Cryptosporidium spp. oocysts, Giardia spp. cysts, percent moisture content, and pH. Logistic regression analysis was used to identify risk factors associated with the likelihood of the presence of these organisms. The use of the land at the sampling site was associated with the likelihood of environmental contamination with Cryptosporidium spp. Barn cleaner equipment area and agricultural fields were associated with increased likelihood of environmental contamination with Cryptosporidium spp. The risk of environmental contamination decreased with the pH of the soil and with the score of the potential likelihood of Cryptosporidium spp. The size of the sampling site, as determined by the sampling design, in square feet, was associated nonlinearly with the risk of detecting Cryptosporidium spp. The likelihood of the Giardia cyst in the soil increased with the prevalence of Giardia spp. in animals (i.e., 18 to 39%). As the size of the farm increased, there was decreased risk of Giardia spp. in the soil, and sampling sites which were covered with brush or bare soil showed a decrease in likelihood of detecting Giardia spp. when compared to land which had managed grass. The number of cattle on the farm less than 6 mo of age was negatively associated with the risk of detecting Giardia spp. in the soil, and the percent moisture content was positively associated with the risk of detecting Giardia spp. Our study showed that these two protozoan exist in dairy farm soil at different rates, and this risk could be modified by manipulating the pH of the soil.

  20. The effect of wind on dispersal of splash-borne Xanthomonas citri subsp citri at different heights and distances downwind of canker-infected grapefruit trees

    USDA-ARS?s Scientific Manuscript database

    Xanthomonas citri subsp citri (Xcc), which causes citrus canker, is a major pathogen of grapefruit and other canker-susceptible citrus species and cultivars grown in Florida and elsewhere. It is dispersed by rain splash, and wind promotes the dispersal of the pathogen. The aim of this study was to e...

  1. Presence of Aeromonas spp in water from drinking-water- and wastewater-treatment plants in Mexico City.

    PubMed

    Villarruel-López, Angélica; Fernández-Rendón, Elizabeth; Mota-de-la-Garza, Lydia; Ortigoza-Ferado, Jorge

    2005-01-01

    The frequency of Aeromonas spp in three wastewater-treatment plants (WWTPs) and two drinking-water plants (DWPs) in México City was determined. Samples were taken throughout a year by the Moore's swab technique. A total of 144 samples were obtained from WWTPs and 96 from DWPs of both incoming and outflowing water. Aeromonas spp was isolated in 31% of the samples, from both kinds of sources. The technique used for the isolation of the pathogen was suitable for samples with high associate microbiota content and for those with a scarce microbial content. The presence of mesophilic-aerobic, coliform, and fecal-coliform organisms was investigated to determine whether there was any correlation with the presence of Aeromonas spp. Most samples from WWTP, which did not comply with the Mexican standards, had the pathogen, and some of the samples from the outflow of the DWP, which were within the limits set by the Mexican standards, also had Aeromonas spp. Most samples containing Aeromonas spp. had concentrations below 0.1 ppm residual chlorine, and the strains were resistant to 0.3 ppm, which supports the recommendation to increase the residual chlorine concentration to 0.5 to 1.0 ppm, as recommended by the Mexican standards.

  2. Comprehensive Genome Analysis of Carbapenemase-Producing Enterobacter spp.: New Insights into Phylogeny, Population Structure, and Resistance Mechanisms.

    PubMed

    Chavda, Kalyan D; Chen, Liang; Fouts, Derrick E; Sutton, Granger; Brinkac, Lauren; Jenkins, Stephen G; Bonomo, Robert A; Adams, Mark D; Kreiswirth, Barry N

    2016-12-13

    Knowledge regarding the genomic structure of Enterobacter spp., the second most prevalent carbapenemase-producing Enterobacteriaceae, remains limited. Here we sequenced 97 clinical Enterobacter species isolates that were both carbapenem susceptible and resistant from various geographic regions to decipher the molecular origins of carbapenem resistance and to understand the changing phylogeny of these emerging and drug-resistant pathogens. Of the carbapenem-resistant isolates, 30 possessed bla KPC-2 , 40 had bla KPC-3 , 2 had bla KPC-4 , and 2 had bla NDM-1 Twenty-three isolates were carbapenem susceptible. Six genomes were sequenced to completion, and their sizes ranged from 4.6 to 5.1 Mbp. Phylogenomic analysis placed 96 of these genomes, 351 additional Enterobacter genomes downloaded from NCBI GenBank, and six newly sequenced type strains into 19 phylogenomic groups-18 groups (A to R) in the Enterobacter cloacae complex and Enterobacter aerogenes Diverse mechanisms underlying the molecular evolutionary trajectory of these drug-resistant Enterobacter spp. were revealed, including the acquisition of an antibiotic resistance plasmid, followed by clonal spread, horizontal transfer of bla KPC -harboring plasmids between different phylogenomic groups, and repeated transposition of the bla KPC gene among different plasmid backbones. Group A, which comprises multilocus sequence type 171 (ST171), was the most commonly identified (23% of isolates). Genomic analysis showed that ST171 isolates evolved from a common ancestor and formed two different major clusters; each acquiring unique bla KPC -harboring plasmids, followed by clonal expansion. The data presented here represent the first comprehensive study of phylogenomic interrogation and the relationship between antibiotic resistance and plasmid discrimination among carbapenem-resistant Enterobacter spp., demonstrating the genetic diversity and complexity of the molecular mechanisms driving antibiotic resistance in this

  3. Fluorescence in situ Hybridization method using Peptide Nucleic Acid probes for rapid detection of Lactobacillus and Gardnerella spp.

    PubMed Central

    2013-01-01

    Background Bacterial vaginosis (BV) is a common vaginal infection occurring in women of reproductive age. It is widely accepted that the microbial switch from normal microflora to BV is characterized by a decrease in vaginal colonization by Lactobacillus species together with an increase of Gardnerella vaginalis and other anaerobes. Our goal was to develop and optimize a novel Peptide Nucleic Acid (PNA) Fluorescence in situ Hybridization assay (PNA FISH) for the detection of Lactobacillus spp. and G. vaginalis in mixed samples. Results Therefore, we evaluated and validated two specific PNA probes by using 36 representative Lactobacillus strains, 22 representative G. vaginalis strains and 27 other taxonomically related or pathogenic bacterial strains commonly found in vaginal samples. The probes were also tested at different concentrations of G. vaginalis and Lactobacillus species in vitro, in the presence of a HeLa cell line. Specificity and sensitivity of the PNA probes were found to be 98.0% (95% confidence interval (CI), from 87.8 to 99.9%) and 100% (95% CI, from 88.0 to 100.0%), for Lactobacillus spp.; and 100% (95% CI, from 92.8 to 100%) and 100% (95% CI, from 81.5 to 100.0%) for G. vaginalis. Moreover, the probes were evaluated in mixed samples mimicking women with BV or normal vaginal microflora, demonstrating efficiency and applicability of our PNA FISH. Conclusions This quick method accurately detects Lactobacillus spp. and G. vaginalis species in mixed samples, thus enabling efficient evaluation of the two bacterial groups, most frequently encountered in the vagina. PMID:23586331

  4. Rapid Detection and Simultaneous Genotyping of Cronobacter spp. (formerly Enterobacter sakazakii) in Powdered Infant Formula Using Real-time PCR and High Resolution Melting (HRM) Analysis

    PubMed Central

    Cai, Xian-Quan; Yu, Hai-Qiong; Ruan, Zhou-Xi; Yang, Lei-Liang; Bai, Jian-Shan; Qiu, De-Yi; Jian, Zhi-Hua; Xiao, Yi-Qian; Yang, Jie-Yang; Le, Thanh Hoa; Zhu, Xing-Quan

    2013-01-01

    Cronobacter spp. is an emerging pathogen that causes meningitis, sepsis, bacteremia, and necrotizing enterocolitis in neonates and children. The present study developed an assay integrating real-time PCR and high resolution melting (HRM) analysis targeting the OmpA gene for the specific detection and rapid identification of Cronobacter spp. (formerly Enterobacter sakazakii) in powdered infant formula. Eleven Cronobacter field isolates and 25 reference strains were examined using one pair of primers, having the accuracy of 100% in reference to conventional methods. The assay was proved to be highly sensitive with a detection limit of 102 CFU/ml without pre-enrichment, and highly concordant (100%) when compared with ISO-IDF 22964 in 89 actual samples. The method performed for Cronobacter spp. detection was less than 24 h, drastically shortened, compared to several days using standard culturing method, it is probe-free and reduces a risk of PCR carryover. Moreover, all Cronobacter strains examined in this study were genotyped into two species according to their HRM profiles. The established method should provide a molecular tool for direct detection and simultaneous genotyping of Cronobacter spp. in powdered infant formula. PMID:23825624

  5. Rapid detection and simultaneous genotyping of Cronobacter spp. (formerly Enterobacter sakazakii) in powdered infant formula using real-time PCR and high resolution melting (HRM) analysis.

    PubMed

    Cai, Xian-Quan; Yu, Hai-Qiong; Ruan, Zhou-Xi; Yang, Lei-Liang; Bai, Jian-Shan; Qiu, De-Yi; Jian, Zhi-Hua; Xiao, Yi-Qian; Yang, Jie-Yang; Le, Thanh Hoa; Zhu, Xing-Quan

    2013-01-01

    Cronobacter spp. is an emerging pathogen that causes meningitis, sepsis, bacteremia, and necrotizing enterocolitis in neonates and children. The present study developed an assay integrating real-time PCR and high resolution melting (HRM) analysis targeting the OmpA gene for the specific detection and rapid identification of Cronobacter spp. (formerly Enterobacter sakazakii) in powdered infant formula. Eleven Cronobacter field isolates and 25 reference strains were examined using one pair of primers, having the accuracy of 100% in reference to conventional methods. The assay was proved to be highly sensitive with a detection limit of 10(2) CFU/ml without pre-enrichment, and highly concordant (100%) when compared with ISO-IDF 22964 in 89 actual samples. The method performed for Cronobacter spp. detection was less than 24 h, drastically shortened, compared to several days using standard culturing method, it is probe-free and reduces a risk of PCR carryover. Moreover, all Cronobacter strains examined in this study were genotyped into two species according to their HRM profiles. The established method should provide a molecular tool for direct detection and simultaneous genotyping of Cronobacter spp. in powdered infant formula.

  6. In vitro susceptibility testing of Aspergillus spp. against voriconazole, itraconazole, posaconazole, amphotericin B and caspofungin.

    PubMed

    Shi, Jun-yan; Xu, Ying-chun; Shi, Yi; Lü, Huo-xiang; Liu, Yong; Zhao, Wang-sheng; Chen, Dong-mei; Xi, Li-yan; Zhou, Xin; Wang, He; Guo, Li-na

    2010-10-01

    During recent years, the incidence of serious infections caused by opportunistic fungi has increased dramatically due to alterations of the immune status of patients with hematological diseases, malignant tumors, transplantations and so forth. Unfortunately, the wide use of triazole antifungal agents to treat these infections has lead to the emergence of Aspergillus spp. resistant to triazoles. The present study was to assess the in vitro activities of five antifungal agents (voriconazole, itraconazole, posaconazole, amphotericin B and caspofungin) against different kinds of Aspergillus spp. that are commonly encountered in the clinical setting. The agar-based Etest MIC method was employed. One hundred and seven strains of Aspergillus spp. (5 species) were collected and prepared according to Etest Technique Manuel. Etest MICs were determined with RPMI agar containing 2% glucose and were read after incubation for 48 hours at 35°C. MIC(50), MIC(90) and MIC range were acquired by Whonet 5.4 software. The MIC(90) of caspofungin against A. fumigatus, A. flavus and A. nidulans was 0.094 µg/ml whereas the MIC(90) against A. niger was 0.19 µg/ml. For these four species, the MIC(90) of caspofungin was the lowest among the five antifungal agents. For A. terrus, the MIC(90) of posaconazole was the lowest. For A. fumigatus and A. flavus, the MIC(90) in order of increasing was caspofungin, posaconazole, voriconazole, itraconazole, and amphotericin B. The MIC of amphotericin B against A. terrus was higher than 32 µg/ml in all 7 strains tested. The in vitro antifungal susceptibility test shows the new drug caspofungin, which is a kind of echinocandins, has good activity against the five species of Aspergillus spp. and all the triazoles tested have better in vitro activity than traditional amphotericin B.

  7. Selection and Validation of a Multilocus Variable-Number Tandem-Repeat Analysis Panel for Typing Shigella spp.▿ †

    PubMed Central

    Gorgé, Olivier; Lopez, Stéphanie; Hilaire, Valérie; Lisanti, Olivier; Ramisse, Vincent; Vergnaud, Gilles

    2008-01-01

    The Shigella genus has historically been separated into four species, based on biochemical assays. The classification within each species relies on serotyping. Recently, genome sequencing and DNA assays, in particular the multilocus sequence typing (MLST) approach, greatly improved the current knowledge of the origin and phylogenetic evolution of Shigella spp. The Shigella and Escherichia genera are now considered to belong to a unique genomospecies. Multilocus variable-number tandem-repeat (VNTR) analysis (MLVA) provides valuable polymorphic markers for genotyping and performing phylogenetic analyses of highly homogeneous bacterial pathogens. Here, we assess the capability of MLVA for Shigella typing. Thirty-two potentially polymorphic VNTRs were selected by analyzing in silico five Shigella genomic sequences and subsequently evaluated. Eventually, a panel of 15 VNTRs was selected (i.e., MLVA15 analysis). MLVA15 analysis of 78 strains or genome sequences of Shigella spp. and 11 strains or genome sequences of Escherichia coli distinguished 83 genotypes. Shigella population cluster analysis gave consistent results compared to MLST. MLVA15 analysis showed capabilities for E. coli typing, providing classification among pathogenic and nonpathogenic E. coli strains included in the study. The resulting data can be queried on our genotyping webpage (http://mlva.u-psud.fr). The MLVA15 assay is rapid, highly discriminatory, and reproducible for Shigella and Escherichia strains, suggesting that it could significantly contribute to epidemiological trace-back analysis of Shigella infections and pathogenic Escherichia outbreaks. Typing was performed on strains obtained mostly from collections. Further studies should include strains of much more diverse origins, including all pathogenic E. coli types. PMID:18216214

  8. Effect of storage temperatures and stresses on the survival of Salmonella spp. in halva.

    PubMed

    Osaili, T M; Al-Nabulsi, A A; Nazzal, D S; Shaker, R R

    2017-11-01

    The presence of Salmonella spp. in halva has been associated with foodborne illnesses and product recalls from the markets. This study investigated the effect of environmental stresses on the survival of Salmonella spp. in halva during storage for 12 months at 10 and 25°C (log (N 0 /N) g -1 ). Halva samples were inoculated with a cocktail of four strains of unstressed, desiccation stressed or heat stressed Salmonella (10 6 -10 7  CFU per gram). In general, survival of Salmonella spp. in halva decreased significantly (P ˂ 0·05) as storage time and temperature increased. At the end of halva shelf life at 10°C, the initial populations of unstressed, desiccation stressed or heat stressed Salmonella spp. decreased by 2·7, 2·6 or 2·8 log CFU per gram (reduction rate c. 0·2 log CFU per month), respectively. While at 25°C, the populations decreased 5·2, 6·7 or 6·3 log CFU per gram, respectively (reduction rate c. 0·4-0·5 log CFU per month). The populations of stressed Salmonella spp. in halva samples were not significantly different (P ≥ 0·05) from populations of unstressed cells during storage at 10 and 25°C, except during the last 3 months of storage at 25°C when populations of unstressed cells were higher (P < 0·05). Exposing Salmonella spp. to desiccation or heat stress prior product contamination may play a role in Salmonella spp. survival in halva during storage. Contamination of halva (tahini halva) with Salmonella from raw materials or during production was documented. Halva and tahini have been involved in salmonellosis outbreaks in different countries. The study demonstrated enhanced survivability of stressed and unstressed Salmonella spp. in halva over a 12-month storage period at 10 and 25°C with lower log reductions than expected. Exposing Salmonella spp. to desiccation or heat stress prior product contamination may play a role in microbial survival in halva during storage. These findings serve as a model to halva producers to

  9. PopF1 and PopF2, Two Proteins Secreted by the Type III Protein Secretion System of Ralstonia solanacearum, Are Translocators Belonging to the HrpF/NopX Family†

    PubMed Central

    Meyer, Damien; Cunnac, Sébastien; Guéneron, Mareva; Declercq, Céline; Van Gijsegem, Frédérique; Lauber, Emmanuelle; Boucher, Christian; Arlat, Matthieu

    2006-01-01

    Ralstonia solanacearum GMI1000 is a gram-negative plant pathogen which contains an hrp gene cluster which codes for a type III protein secretion system (TTSS). We identified two novel Hrp-secreted proteins, called PopF1 and PopF2, which display similarity to one another and to putative TTSS translocators, HrpF and NopX, from Xanthomonas spp. and rhizobia, respectively. They also show similarities with TTSS translocators of the YopB family from animal-pathogenic bacteria. Both popF1 and popF2 belong to the HrpB regulon and are required for the interaction with plants, but PopF1 seems to play a more important role in virulence and hypersensitive response (HR) elicitation than PopF2 under our experimental conditions. PopF1 and PopF2 are not necessary for the secretion of effector proteins, but they are required for the translocation of AvrA avirulence protein into tobacco cells. We conclude that PopF1 and PopF2 are type III translocators belonging to the HrpF/NopX family. The hrpF gene of Xanthomonas campestris pv. campestris partially restored HR-inducing ability to popF1 popF2 mutants of R. solanacearum, suggesting that translocators of R. solanacearum and Xanthomonas are functionally conserved. Finally, R. solanacearum strain UW551, which does not belong to the same phylotype as GMI1000, also possesses two putative translocator proteins. However, although one of these proteins is clearly related to PopF1 and PopF2, the other seems to be different and related to NopX proteins, thus showing that translocators might be variable in R. solanacearum. PMID:16788199

  10. Colony Dimorphism in Bradyrhizobium Strains

    PubMed Central

    Sylvester-Bradley, Rosemary; Thornton, Philip; Jones, Peter

    1988-01-01

    Ten isolates of Bradyrhizobium spp. which form two colony types were studied; the isolates originated from a range of legume species. The two colony types differed in the amount of gum formed or size or both, depending on the strain. Whole 7-day-old colonies of each type were subcultured to determine the proportion of cells which had changed to the other type. An iterative computerized procedure was used to determine the rate of switching per generation between the two types and to predict proportions reached at equilibrium for each strain. The predicted proportions of the wetter (more gummy) or larger colony type at equilibrium differed significantly between strains, ranging from 0.9999 (strain CIAT 2383) to 0.0216 (strain CIAT 2469), because some strains switched faster from dry to wet (or small to large) and others switched faster from wet to dry (or large to small). Predicted equilibrium was reached after about 140 generations in strain USDA 76. In all but one strain (CIAT 3030) the growth rate of the wetter colony type was greater than or similar to that of the drier type. The mean difference in generation time between the two colony types was 0.37 h. Doubling times calculated for either colony type after 7 days of growth on the agar surface ranged from 6.0 to 7.3 h. The formation of two persistent colony types by one strain (clonal or colony dimorphism) may be a common phenomenon among Bradyrhizobium strains. Images PMID:16347599

  11. Genetic and phenotypic characterization of Saccharomyces spp. strains isolated in distillery plants.

    PubMed

    Úbeda, Juan F; Chacón-Ocaña, Maria; Díaz-Hellín, Patricia; Ramírez-Pérez, Hector; Briones, Ana

    2016-06-01

    In this study, the biodiversity and some interesting phenotypic properties of Saccharomyces wild yeasts isolated in distilleries, at least 100 years old, located in La Mancha (Spain), were determined. Strains were genetically characterized by RFLP-mtDNA, which confirmed a great genetic biodiversity with 73% of strains with different mtDNA profiles, highlighting the large variability found in sweet and fermented piquette substrata. The predominant species identified was S. cerevisiae, followed by S. paradoxus and S. bayanus Due to the residual sugar-alcohol extraction process using warm water, a great number of thermophilic Saccharomyces strains with a great cell vitality were found to have potential use as starters in distillery plants. Interesting technological properties such as cell vitality and growth rate at different temperatures were studied. The thermal washing process for the extraction of alcohol and reducing sugars of some raw materials contributes to the presence of Saccharomyces strains with technologically interesting properties, especially in terms of vitality and resistance to high temperatures. Due to the fact that fermentation is spontaneous, the yeast biota of these environments, Saccharomyces and non-Saccharomyces, is very varied so these ecological niches are microbial reserves of undoubted biotechnological interest. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Transgenic expression of antimicrobial peptide D2A21 confers resistance to diseases incited by Pseudomonas syringae pv. tabaci and Xanthomonas citri, but not Candidatus Liberibacter asiaticus

    USDA-ARS?s Scientific Manuscript database

    Citrus Huanglongbing (HLB) associated with ‘Candidatus Liberibacter asiaticus’ (Las) and citrus canker disease incited by Xanthomonas citri are the most devastating citrus diseases worldwide. To control citrus HLB and canker disease, we previously screened over forty antimicrobial peptides (AMPs) in...

  13. Sequence analysis of the msp4 gene of Anaplasma ovis strains

    USGS Publications Warehouse

    de la Fuente, J.; Atkinson, M.W.; Naranjo, V.; Fernandez de Mera, I. G.; Mangold, A.J.; Keating, K.A.; Kocan, K.M.

    2007-01-01

    Anaplasma ovis (Rickettsiales: Anaplasmataceae) is a tick-borne pathogen of sheep, goats and wild ruminants. The genetic diversity of A. ovis strains has not been well characterized due to the lack of sequence information. In this study, we evaluated bighorn sheep (Ovis canadensis) and mule deer (Odocoileus hemionus) from Montana for infection with A. ovis by serology and sequence analysis of the msp4 gene. Antibodies to Anaplasma spp. were detected in 37% and 39% of bighorn sheep and mule deer analyzed, respectively. Four new msp4 genotypes were identified. The A. ovis msp4 sequences identified herein were analyzed together with sequences reported previously for the characterization of the genetic diversity of A. ovis strains in comparison with other Anaplasma spp. The results of these studies demonstrated that although A. ovis msp4 genotypes may vary among geographic regions and between sheep and deer hosts, the variation observed was less than the variation observed between A. marginale and A. phagocytophilum strains. The results reported herein further confirm that A. ovis infection occurs in natural wild ruminant populations in Western United States and that bighorn sheep and mule deer may serve as wildlife reservoirs of A. ovis. ?? 2006.

  14. Chemometric analysis of attenuated total reflectance infrared spectra of Proteus mirabilis strains with defined structures of LPS.

    PubMed

    Zarnowiec, Paulina; Mizera, Andrzej; Chrapek, Magdalena; Urbaniak, Mariusz; Kaca, Wieslaw

    2016-07-01

    Proteus spp. strains are some of the most important pathogens associated with complicated urinary tract infections and bacteremia affecting patients with immunodeficiency and long-term urinary catheterization. For epidemiological purposes, various molecular typing methods have been developed for this pathogen. However, these methods are labor intensive and time consuming. We evaluated a new method of differentiation between strains. A collection of Proteus spp. strains was analyzed by attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy in the mid-infrared region. ATR FT-IR spectroscopy used in conjunction with a diamond ATR accessory directly produced the biochemical profile of the surface chemistry of bacteria. We conclude that a combination of ATR FT-IR spectroscopy and mathematical modeling provides a fast and reliable alternative for discrimination between Proteus isolates, contributing to epidemiological research. © The Author(s) 2016.

  15. Comparison of multilocus sequence typing and pulsed-field gel electrophoresis for Salmonella spp. identification in surface water

    NASA Astrophysics Data System (ADS)

    Kuo, Chun Wei; Hao Huang, Kuan; Hsu, Bing Mu; Tsai, Hsien Lung; Tseng, Shao Feng; Kao, Po Min; Shen, Shu Min; Chou Chiu, Yi; Chen, Jung Sheng

    2013-04-01

    Salmonella is one of the most important pathogens of waterborne diseases with outbreaks from contaminated water reported worldwide. In addition, Salmonella spp. can survive for long periods in aquatic environments. To realize genotypes and serovars of Salmonella in aquatic environments, we isolated the Salmonella strains by selective culture plates to identify the serovars of Salmonella by serological assay, and identify the genotypes by Multilocus sequence typing (MLST) based on the sequence data from University College Cork (UCC), respectively. The results show that 36 stream water samples (30.1%) and 18 drinking water samples (23.3%) were confirmed the existence of Salmonella using culture method combined PCR specific invA gene amplification. In this study, 24 cultured isolates of Salmonella from water samples were classified to fifteen Salmonella enterica serovars. In addition, we construct phylogenetic analysis using phylogenetic tree and Minimum spanning tree (MST) method to analyze the relationship of clinical, environmental, and geographical data. Phylogenetic tree showed that four main clusters and our strains can be distributed in all. The genotypes of isolates from stream water are more biodiversity while comparing the Salmonella strains genotypes from drinking water sources. According to MST data, we can found the positive correlation between serovars and genotypes of Salmonella. Previous studies revealed that the result of Pulsed field gel electrophoresis (PFGE) method can predict the serovars of Salmonella strain. Hence, we used the MLST data combined phylogenetic analysis to identify the serovars of Salmonella strain and achieved effectiveness. While using the geographical data combined phylogenetic analysis, the result showed that the dominant strains were existed in whole stream area in rainy season. Keywords: Salmonella spp., MLST, phylogenetic analysis, PFGE

  16. Genetic diversity of thermotolerant Campylobacter spp. isolates from different stages of the poultry meat supply chain in Argentina.

    PubMed

    Zbrun, María V; Romero-Scharpen, Analía; Olivero, Carolina; Zimmermann, Jorge A; Rossler, Eugenia; Soto, Lorena P; Astesana, Diego M; Blajman, Jesica E; Berisvil, Ayelén; Frizzo, Laureano S; Signorini, Marcelo L

    The objective of this study was to investigate a clonal relationship among thermotolerant Campylobacter spp. isolates from different stages of the poultry meat supply chain in Argentina. A total of 128 thermotolerant Campylobacter spp. (89 C. jejuni and 39 C. coli) isolates from six poultry meat chains were examined. These isolates were from: a) hens from breeder flocks, b) chickens on the farm (at ages 1 wk and 5 wk), c) chicken carcasses in the slaughterhouse, and d) chicken carcasses in the retail market. Chickens sampled along each food chain were from the same batch. Campylobacter spp. isolates were analyzed using pulsed-field gel electrophoresis to compare different profiles according to the source. Clustering of C. jejuni isolates resulted in 17 profiles, with four predominant genotypes and many small profiles with just a few isolates or unique patterns, showing a very high degree of heterogeneity among the C. jejuni isolates. Some clusters included isolates from different stages within the same chain, which would indicate a spread of strains along the same poultry meat chain. Moreover, twenty-two strains of C. coli clustered in seven groups and the remaining 17 isolates exhibited unique profiles. Evidence for transmission of thermotolerant Campylobacter spp. through the food chain and cross contamination in the slaughterhouses were obtained. This collective evidence should be considered as the scientific basis to implement risk management measures to protect the public health. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Antifungal Susceptibility Testing of Malassezia spp. with an Optimized Colorimetric Broth Microdilution Method.

    PubMed

    Leong, Cheryl; Buttafuoco, Antonino; Glatz, Martin; Bosshard, Philipp P

    2017-06-01

    Malassezia is a genus of lipid-dependent yeasts. It is associated with common skin diseases such as pityriasis versicolor and atopic dermatitis and can cause systemic infections in immunocompromised individuals. Owing to the slow growth and lipid requirements of these fastidious yeasts, convenient and reliable antifungal drug susceptibility testing assays for Malassezia spp. are not widely available. Therefore, we optimized a broth microdilution assay for the testing of Malassezia that is based on the CLSI and EUCAST assays for Candida and other yeasts. The addition of ingredients such as lipids and esculin provided a broth medium formulation that enabled the growth of all Malassezia spp. and could be read, with the colorimetric indicator resazurin, by visual and fluorescence readings. We tested the susceptibility of 52 strains of 13 Malassezia species to 11 commonly used antifungals. MIC values determined by visual readings were in good agreement with MIC values determined by fluorescence readings. The lowest MICs were found for the azoles itraconazole, posaconazole, and voriconazole, with MIC 90 values of 0.03 to 1.0 μg/ml, 0.06 to 0.5 μg/ml, and 0.03 to 2.0 μg/ml, respectively. All Malassezia spp. were resistant to echinocandins and griseofulvin. Some Malassezia spp. also showed high MIC values for ketoconazole, which is the most widely recommended topical antifungal to treat Malassezia skin infections. In summary, our assay enables the fast and reliable susceptibility testing of Malassezia spp. with a large panel of different antifungals. Copyright © 2017 American Society for Microbiology.

  18. Antifungal Susceptibility Testing of Malassezia spp. with an Optimized Colorimetric Broth Microdilution Method

    PubMed Central

    Leong, Cheryl; Buttafuoco, Antonino

    2017-01-01

    ABSTRACT Malassezia is a genus of lipid-dependent yeasts. It is associated with common skin diseases such as pityriasis versicolor and atopic dermatitis and can cause systemic infections in immunocompromised individuals. Owing to the slow growth and lipid requirements of these fastidious yeasts, convenient and reliable antifungal drug susceptibility testing assays for Malassezia spp. are not widely available. Therefore, we optimized a broth microdilution assay for the testing of Malassezia that is based on the CLSI and EUCAST assays for Candida and other yeasts. The addition of ingredients such as lipids and esculin provided a broth medium formulation that enabled the growth of all Malassezia spp. and could be read, with the colorimetric indicator resazurin, by visual and fluorescence readings. We tested the susceptibility of 52 strains of 13 Malassezia species to 11 commonly used antifungals. MIC values determined by visual readings were in good agreement with MIC values determined by fluorescence readings. The lowest MICs were found for the azoles itraconazole, posaconazole, and voriconazole, with MIC90 values of 0.03 to 1.0 μg/ml, 0.06 to 0.5 μg/ml, and 0.03 to 2.0 μg/ml, respectively. All Malassezia spp. were resistant to echinocandins and griseofulvin. Some Malassezia spp. also showed high MIC values for ketoconazole, which is the most widely recommended topical antifungal to treat Malassezia skin infections. In summary, our assay enables the fast and reliable susceptibility testing of Malassezia spp. with a large panel of different antifungals. PMID:28381607

  19. Phytochemical Characterization of Terminalia catappa Linn. Extracts and Their antifungal Activities against Candida spp.

    PubMed

    Terças, Analucia G; Monteiro, Andrea de Souza; Moffa, Eduardo B; Dos Santos, Julliana R A; de Sousa, Eduardo M; Pinto, Anna R B; Costa, Paola C da Silva; Borges, Antonio C R; Torres, Luce M B; Barros Filho, Allan K D; Fernandes, Elizabeth S; Monteiro, Cristina de Andrade

    2017-01-01

    Terminalia catappa Linn bark is used to treat dysentery by various populations in Southeast Asian countries, and its leaves have also been used in traditional medicine to treat hepatitis in India and the Philippines. Here, the antifungal actions of crude hydro-alcoholic extract (TcHE) and fractions from T. catappa leaves were assessed via the agar diffusion and microdilution tests on Candida reference strains and clinical isolates from patients with acquired immunodeficiency syndrome (AIDS). Additionally, the potential cytotoxic effects of TcHE were assessed on cultured human peripheral blood mononuclear cells (PBMC). T. catappa fractions and sub-fractions were analyzed by gas chromatography coupled to mass spectrometry with electron impact (GC/MS/EI), high-performance liquid chromatography coupled to mass spectrometry "electrospray" ionization in positive mode (HPLC/MS/MS/ESI + ) and hydrogen nuclear magnetic resonance ( 1 HNMR). TcHE and its fractions were able to inhibit the growth of all tested Candida strains with the n -butanol (FBuOH) fraction presenting the best antifungal activity. Testing of different FBuOH sub-fractions (SF) showed that SF10 was the most active against Candida spp. Fractioning of SF10 demonstrated that 5 out of its 15 sub-fractions were active against Candida spp., with SF10.5 presenting the highest activity. Chemical analysis of SF10 detected hydrolysable tannins (punicalin, punicalagin), gallic acid and flavonoid C-glycosides. Overall, the results showed that T. catappa L. leaf extract, fractions and sub-fractions were antifungal against Candida spp. and may be useful to treat diseases caused by this fungus.

  20. Phytochemical Characterization of Terminalia catappa Linn. Extracts and Their antifungal Activities against Candida spp.

    PubMed Central

    Terças, Analucia G.; Monteiro, Andrea de Souza; Moffa, Eduardo B.; dos Santos, Julliana R. A.; de Sousa, Eduardo M.; Pinto, Anna R. B.; Costa, Paola C. da Silva; Borges, Antonio C. R.; Torres, Luce M. B.; Barros Filho, Allan K. D.; Fernandes, Elizabeth S.; Monteiro, Cristina de Andrade

    2017-01-01

    Terminalia catappa Linn bark is used to treat dysentery by various populations in Southeast Asian countries, and its leaves have also been used in traditional medicine to treat hepatitis in India and the Philippines. Here, the antifungal actions of crude hydro-alcoholic extract (TcHE) and fractions from T. catappa leaves were assessed via the agar diffusion and microdilution tests on Candida reference strains and clinical isolates from patients with acquired immunodeficiency syndrome (AIDS). Additionally, the potential cytotoxic effects of TcHE were assessed on cultured human peripheral blood mononuclear cells (PBMC). T. catappa fractions and sub-fractions were analyzed by gas chromatography coupled to mass spectrometry with electron impact (GC/MS/EI), high-performance liquid chromatography coupled to mass spectrometry “electrospray” ionization in positive mode (HPLC/MS/MS/ESI+) and hydrogen nuclear magnetic resonance (1HNMR). TcHE and its fractions were able to inhibit the growth of all tested Candida strains with the n-butanol (FBuOH) fraction presenting the best antifungal activity. Testing of different FBuOH sub-fractions (SF) showed that SF10 was the most active against Candida spp. Fractioning of SF10 demonstrated that 5 out of its 15 sub-fractions were active against Candida spp., with SF10.5 presenting the highest activity. Chemical analysis of SF10 detected hydrolysable tannins (punicalin, punicalagin), gallic acid and flavonoid C-glycosides. Overall, the results showed that T. catappa L. leaf extract, fractions and sub-fractions were antifungal against Candida spp. and may be useful to treat diseases caused by this fungus. PMID:28443078

  1. Analysis of the response of human keratinocytes to Malassezia globosa and restricta strains.

    PubMed

    Donnarumma, Giovanna; Perfetto, Brunella; Paoletti, Iole; Oliviero, Giovanni; Clavaud, Cécile; Del Bufalo, Aurelia; Guéniche, Audrey; Jourdain, Roland; Tufano, Maria Antonietta; Breton, Lionel

    2014-10-01

    Malassezia spp. are saprophyte yeasts involved in skin diseases with different degrees of severity. The aim of our study was to analyze the response of human epidermal keratinocytes to Malassezia globosa and restricta strains evaluating the host defence mechanisms induced by Malassezia spp. colonization. Our results showed a different modulation of the inflammatory and immunomodulatory cytokine pathways obtained with the different strains of Malassezia tested. In addition, this expression is altered by blocking the TLR2 receptor. In comparison with M. furfur, M. globosa and restricta displayed an unexpected and striking cytotoxicity on keratinocytes. The differences observed could be related to the different modalities of interaction between keratinocytes and Malassezia strains, but also to their growth condition. Taken together, these results indicate that M. globosa or M. restricta colonization exert a different control on the cytokine inflammatory response activated in the human keratinocyte in which TLR2 might be involved. M. globosa and M. restricta may play a synergistic role in the exacerbation of skin diseases in which both are found.

  2. Methylobacterium spp. as an indicator for the presence or absence of Mycobacterium spp.

    PubMed

    Falkinham, Joseph O; Williams, Myra D; Kwait, Rebecca; Lande, Leah

    2016-06-01

    A published survey of bacteria in showerhead biofilm samples revealed that Methylobacterium spp. and Mycobacterium spp. seldom coexisted in biofilms. To confirm that information, biofilm samples were collected from household plumbing of Mycobacterium avium patients and Methylobacterium spp. and M. avium numbers were measured by direct colony counts. The results demonstrated that if Methylobacterium spp. were present, Mycobacterium spp. were absent, and the opposite. The data demonstrate that microbial populations in biofilms can influence the presence or absence of opportunistic premise plumbing pathogens and, thereby, increase the range of strategies to reduce exposure to waterborne pathogens. Finally, by assessing for the visual presence of methylobacteria as pink pigmentation on showers and shower curtains, homeowners and managers of hospitals and other buildings can quickly determine whether a premise plumbing biofilm sample has mycobacteria with a high degree of assurance. Copyright © 2016 Asian African Society for Mycobacteriology. Published by Elsevier Ltd. All rights reserved.

  3. Construction of a genetic linkage map for identification of molecular markers associated with resistance to Xanthomonas arboriciola pv. pruni in peach [Prunus persica (L.) Batsch

    USDA-ARS?s Scientific Manuscript database

    Bacterial spot, caused by Xanthomonas campestris pv. pruni, is a serious disease that can affect peach fruit quality and production. The molecular basis of its tolerance and susceptibility is yet to be understood. To study the genetics of the peach in response to bacterial spot, an F2 population of ...

  4. Campylobacter spp., Giardia spp., Cryptosporidium spp., Noroviruses, and Indicator Organisms in Surface Water in Southwestern Finland, 2000-2001

    PubMed Central

    Hörman, Ari; Rimhanen-Finne, Ruska; Maunula, Leena; von Bonsdorff, Carl-Henrik; Torvela, Niina; Heikinheimo, Annamari; Hänninen, Marja-Liisa

    2004-01-01

    A total of 139 surface water samples from seven lakes and 15 rivers in southwestern Finland were analyzed during five consecutive seasons from autumn 2000 to autumn 2001 for the presence of various enteropathogens (Campylobacter spp., Giardia spp., Cryptosporidium spp., and noroviruses) and fecal indicators (thermotolerant coliforms, Escherichia coli, Clostridium perfringens, and F-RNA bacteriophages) and for physicochemical parameters (turbidity and temperature); this was the first such systematic study. Altogether, 41.0% (57 of 139) of the samples were positive for at least one of the pathogens; 17.3% were positive for Campylobacter spp. (45.8% of the positive samples contained Campylobacter jejuni, 25.0% contained Campylobacter lari, 4.2% contained Campylobacter coli, and 25.0% contained Campylobacter isolates that were not identified), 13.7% were positive for Giardia spp., 10.1% were positive for Cryptosporidium spp., and 9.4% were positive for noroviruses (23.0% of the positive samples contained genogroup I and 77.0% contained genogroup II). The samples were positive for enteropathogens significantly (P < 0.05) less frequently during the winter season than during the other sampling seasons. No significant differences in the prevalence of enteropathogens were found when rivers and lakes were compared. The presence of thermotolerant coliforms, E. coli, and C. perfringens had significant bivariate nonparametric Spearman's rank order correlation coefficients (P < 0.001) with samples that were positive for one or more of the pathogens analyzed. The absence of these indicators in a logistic regression model was found to have significant predictive value (odds ratios, 1.15 × 108, 7.57, and 2.74, respectively; P < 0.05) for a sample that was negative for the pathogens analyzed. There were no significant correlations between counts or count levels for thermotolerant coliforms or E. coli or the presence of F-RNA phages and pathogens in the samples analyzed. PMID

  5. In situ synthesis of exopolysaccharides by Leuconostoc spp. and Weissella spp. and their rheological impacts in fava bean flour.

    PubMed

    Xu, Yan; Wang, Yaqin; Coda, Rossana; Säde, Elina; Tuomainen, Päivi; Tenkanen, Maija; Katina, Kati

    2017-05-02

    Fava bean flour is regarded as a potential plant-based protein source, but the addition of it at high concentration is restricted by its poor texture-improving ability and by anti-nutritional factors (ANF). Exopolysaccharides (EPS) produced by lactic acid bacteria (LAB) are regarded as good texture modifiers. In this study, fava bean flour was fermented with Leuconostoc spp. and Weissella spp. with or without sucrose addition, in order to evaluate their potential in EPS production. The contents of free sugars, organic acids, mannitol and EPS in all fermented fava bean doughs were measured. Rheological properties of sucrose-enriched doughs, including viscosity flow curves, hysteresis loop and dynamic oscillatory sweep curves, were measured after fermentation. As one of the ANF, the degradation of raffinose family oligosaccharides (RFO) was also studied by analyzing RFO profiles of different doughs. Quantification of EPS revealed the potential of Leuconostoc pseudomesenteroides DSM 20193 in EPS production, and the rheological analysis showed that the polymers produced by this strain has the highest thickening and gelling capability. Furthermore, the viscous fava bean doughs containing plant proteins and synthesized in situ EPS may have a potential application in the food industry and fulfill consumers' increasing demands for "clean labels" and plant-originated food materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Xenorhabdus bovienii Strain Diversity Impacts Coevolution and Symbiotic Maintenance with Steinernema spp. Nematode Hosts

    PubMed Central

    Murfin, Kristen E.; Lee, Ming-Min; McDonald, Bradon R.; Larget, Bret; Forst, Steven; Stock, S. Patricia; Currie, Cameron R.

    2015-01-01

    ABSTRACT Microbial symbionts provide benefits that contribute to the ecology and fitness of host plants and animals. Therefore, the evolutionary success of plants and animals fundamentally depends on long-term maintenance of beneficial associations. Most work investigating coevolution and symbiotic maintenance has focused on species-level associations, and studies are lacking that assess the impact of bacterial strain diversity on symbiotic associations within a coevolutionary framework. Here, we demonstrate that fitness in mutualism varies depending on bacterial strain identity, and this is consistent with variation shaping phylogenetic patterns and maintenance through fitness benefits. Through genome sequencing of nine bacterial symbiont strains and cophylogenetic analysis, we demonstrate diversity among Xenorhabdus bovienii bacteria. Further, we identified cocladogenesis between Steinernema feltiae nematode hosts and their corresponding X. bovienii symbiont strains, indicating potential specificity within the association. To test the specificity, we performed laboratory crosses of nematode hosts with native and nonnative symbiont strains, which revealed that combinations with the native bacterial symbiont and closely related strains performed significantly better than those with more divergent symbionts. Through genomic analyses we also defined potential factors contributing to specificity between nematode hosts and bacterial symbionts. These results suggest that strain-level diversity (e.g., subspecies-level differences) in microbial symbionts can drive variation in the success of host-microbe associations, and this suggests that these differences in symbiotic success could contribute to maintenance of the symbiosis over an evolutionary time scale. PMID:26045536

  7. Safety Evaluation of Enterocin Producer Enterococcus sp. Strains Isolated from Traditional Turkish Cheeses.

    PubMed

    Avcı, Mine; Özden Tuncer, Banu

    2017-07-06

    The purpose of this study was to determine the antimicrobial activity and occurrence of bacteriocin structural genes in Enterococcus spp. isolated from different cheeses and also investigate some of their virulence factors. Enterococcus strains were isolated from 33 different cheeses. Enterococcus faecium (6 strains) and Enterococcus faecalis (5 strains) enterocin-producing strains were identified by 16S rDNA analyses. Structural genes entA, entB, entP and entX were detected in some isolates. Multiple enterocin structural genes were found in 7 strains. None of the tested enterococci demonstrated anyβ-haemolytic activity and only one strain had gelatinase activity. Six strains showed multiple antibiotic resistance patterns and in addition, vanA and several virulence genes were detected in many strains. Only E. faecalis MBE1-9 showed tyrosine decarboxylase activity and tdc gene was detected only in this strain.

  8. Draft Genome Sequences of New Genomospecies "Candidatus Pectobacterium maceratum" Strains, Which Cause Soft Rot in Plants.

    PubMed

    Shirshikov, Fedor V; Korzhenkov, Aleksei A; Miroshnikov, Kirill K; Kabanova, Anastasia P; Barannik, Alla P; Ignatov, Alexander N; Miroshnikov, Konstantin A

    2018-04-12

    Investigation of collections of phytopathogenic bacteria has revealed some strains distinct from known Pectobacterium spp. We report here the draft genome sequences of five such strains, isolated during the period of 1947 to 2012. Based on comparative genomics, we propose a new candidate genomospecies of the genus Pectobacterium , " Candidatus Pectobacterium maceratum." Copyright © 2018 Shirshikov et al.

  9. Dunaliella spp. Under Environmental Stress: Enhancing Lipid Production and Optimizing Harvest

    NASA Astrophysics Data System (ADS)

    Mixson, Stephanie Marie

    Agricultural crops including corn, sugar cane, and oil palm have been investigated as potential sources for biofuel; however, they produce only a fraction of the oil percent biomass as compared to that of microalgae. Growth and lipid production by microalgae is regulated by a variety of environmental factors, including light intensity, availability of nutrients, temperature regime and salinity. We assessed 14 strains of the saltwater algae Dunaliella spp. (Teodoresco) in unialgal cultures within four species to determine a best strain or strain(s) as potential feedstock for biofuels. The taxonomy of these 14 strains was elucidated by comparing both physiological characteristics and the ITS2 and 18S regions. After careful analysis, the data suggest that the 14 strains grouped within four species: D. tertiolecta, D. pseudosalina, D. salina, and D. viridis. In addition, the isolation and accurate quantification of neutral lipids in Dunaliella was developed from existing techniques. Nile Red was optimized as a qualitative stain to rapidly screen and visualize neutral lipids. Direct transesterification was determined to be the best quantitative method because it yielded high amounts of neutral lipids with precise and reproducible results when compared to conventional extraction methods. Seven strains were selected for further efforts to enhance lipid production using salinity stress, nutrient limitation, pH stress, continuous light, and bubbling with carbon dioxide (CO2). High salinity yielded the maximum total fatty acid (FA) content (up to 65% by dry weight) in comparison to controls (˜10-25% total FAs). High pH x low salinity, low pH, and continuous light x CO2 yielded near maximum FA content (56%, 43%, and 42%, respectively). Nitrogen and/or phosphorus limitation and 12:12 (light:dark photoperiod) x CO 2 did not significantly enhance FA production (23% and 31%, respectively). Results were strain-specific with high intraspecific variation observed within each

  10. Two overlapping two-component systems in Xanthomonas oryzae pv. oryzae contribute to full fitness in rice by regulating virulence factors expression

    PubMed Central

    Zheng, Dehong; Yao, Xiaoyan; Duan, Meng; Luo, Yufeng; Liu, Biao; Qi, Pengyuan; Sun, Ming; Ruan, Lifang

    2016-01-01

    Two-component signal transduction systems (TCSs) are widely used by bacteria to adapt to the environment. In the present study, StoS (stress tolerance-related oxygen sensor) and SreKRS (salt response kinase, regulator, and sensor) were found to positively regulate extracellular polysaccharide (EPS) production and swarming in the rice pathogen Xanthomonas oryzae pv. oryzae (Xoo). Surprisingly, the absence of stoS or sreKRS did not attenuate virulence. To better understand the intrinsic functions of StoS and SreKRS, quantitative proteomics isobaric tags for relative and absolute quantitation (iTRAQ) was employed. Consistent with stoS and sreK mutants exhibiting a similar phenotype, the signalling circuits of StoS and SreKRS overlapped. Carbohydrate metabolism proteins and chemotaxis proteins, which could be responsible for EPS and swarming regulation, respectively, were reprogrammed in stoS and sreK mutants. Moreover, StoS and SreKRS demonstrated moderate expression of the major virulence factor, hypersensitive response and pathogenicity (Hrp) proteins through the HrpG-HrpX circuit. Most importantly, Xoo equipped with StoS and SreKRS outcompetes strains without StoS or SreKRS in co-infected rice and grows outside the host. Therefore, we propose that StoS and SreKRS adopt a novel strategy involving the moderation of Hrp protein expression and the promotion of EPS and motility to adapt to the environment. PMID:26957113

  11. Commercially laid eggs vs. discarded hatching eggs: contamination by Salmonella spp.

    PubMed

    Kottwitz, Luciana B M; Leão, Joice Aparecida; Back, Alberto; Rodrigues, Dalia dos P; Magnani, Marciane; de Oliveira, Tereza C R M

    2013-01-01

    Salmonella enterica is frequently associated with outbreaks of human salmonellosis, and products of avian origin, such as eggs and chicken meat, are the main vehicles of its transmission. The present study describes the occurrence of different serovars of Salmonella enterica and phagotypes of S. enterica serovar Enteritidis in eggs destined for human consumption. Four thousand eggs obtained from commercial egg laying farms and one thousand discarded hatching eggs from broiler farms, which were acquired at farmers' markets and informal shops, were analyzed. Salmonella spp. was isolated from 52.0% of the discarded hatching eggs, in which the predominant serovar was Enteritidis (84.6%), and the predominant Salmonella Enteritidis phagotype (PT) was PT7 (26.9%). Salmonella spp. was not isolated from eggs obtained from commercial egg laying farms. The antimicrobial resistance profile showed that 23.1% (n = 6) of the SE strains were resistant to nalidixic acid. The results suggest that the consumption of discarded hatching eggs represents an important source of Salmonella transmission to humans.

  12. Effect of Seed Quality and Combination Fungicide-Trichoderma spp. Seed Treatments on Pre- and Postemergence Damping-Off in Cotton.

    PubMed

    Howell, Charles R

    2007-01-01

    ABSTRACT Good quality seeds of cotton cultivars often escaped pre-emergence damping-off incited by Pythium spp. and Rhizopus oryzae, and they were resistant to postemergence damping-off incited by Rhizoctonia solani. Poor quality seeds, however, were highly susceptible to both phases of seedling disease and required seed treatment in order to survive. Pre-emergence damping-off incited by Pythium spp. and Rhizopus oryzae could be controlled by seed treatment with biocontrol preparations of a number of Trichoderma spp., but these treatments were much less effective in controlling postemergence disease incited by Rhizoctonia solani. Postemergence seedling disease can be controlled by fungicides, but they were much less effective in controlling the pre-emergence phase of the disease. Combination seed treatments of poor quality cotton seeds with fungicides and Trichoderma spp. preparations, followed by planting in pathogen-infested soil, indicated that this technique will control both phases of seedling disease. Seed treatment with either the fungicides or the biocontrol agents alone did not achieve this goal. The optimum combination treatment for disease control was that of chloroneb plus Trichoderma spp., followed by chloroneb plus metalaxyl (Deltacoat AD) plus T. virens strain G-6.

  13. Active Shiga-Like Toxin Produced by Some Aeromonas spp., Isolated in Mexico City.

    PubMed

    Palma-Martínez, Ingrid; Guerrero-Mandujano, Andrea; Ruiz-Ruiz, Manuel J; Hernández-Cortez, Cecilia; Molina-López, José; Bocanegra-García, Virgilio; Castro-Escarpulli, Graciela

    2016-01-01

    Shiga-like toxins (Stx) represent a group of bacterial toxins involved in human and animal diseases. Stx is produced by enterohemorrhagic Escherichia coli, Shigella dysenteriae type 1, Citrobacter freundii , and Aeromonas spp.; Stx is an important cause of bloody diarrhea and hemolytic uremic syndrome (HUS). The aim of this study was to identify the stx 1 /stx 2 genes in clinical strains and outer membrane vesicles (OMVs) of Aeromonas spp., 66 strains were isolated from children who live in Mexico City, and Stx effects were evaluated in Vero cell cultures. The capacity to express active Stx1 and Stx2 toxins was determined in Vero cell cultures and the concentration of Stx was evaluated by 50% lethal dose (LD 50 ) assays, observing inhibition of damaged cells by specific monoclonal antibodies. The results obtained in this study support the hypothesis that the stx gene is another putative virulence factor of Aeromonas , and since this gene can be transferred horizontally through OMVs this genus should be included as a possible causal agents of gastroenteritis and it should be reported as part of standard health surveillance procedures. Furthermore, these results indicate that the Aeromonas genus might be a potential causative agent of HUS.

  14. Active Shiga-Like Toxin Produced by Some Aeromonas spp., Isolated in Mexico City

    PubMed Central

    Palma-Martínez, Ingrid; Guerrero-Mandujano, Andrea; Ruiz-Ruiz, Manuel J.; Hernández-Cortez, Cecilia; Molina-López, José; Bocanegra-García, Virgilio; Castro-Escarpulli, Graciela

    2016-01-01

    Shiga-like toxins (Stx) represent a group of bacterial toxins involved in human and animal diseases. Stx is produced by enterohemorrhagic Escherichia coli, Shigella dysenteriae type 1, Citrobacter freundii, and Aeromonas spp.; Stx is an important cause of bloody diarrhea and hemolytic uremic syndrome (HUS). The aim of this study was to identify the stx1/stx2 genes in clinical strains and outer membrane vesicles (OMVs) of Aeromonas spp., 66 strains were isolated from children who live in Mexico City, and Stx effects were evaluated in Vero cell cultures. The capacity to express active Stx1 and Stx2 toxins was determined in Vero cell cultures and the concentration of Stx was evaluated by 50% lethal dose (LD50) assays, observing inhibition of damaged cells by specific monoclonal antibodies. The results obtained in this study support the hypothesis that the stx gene is another putative virulence factor of Aeromonas, and since this gene can be transferred horizontally through OMVs this genus should be included as a possible causal agents of gastroenteritis and it should be reported as part of standard health surveillance procedures. Furthermore, these results indicate that the Aeromonas genus might be a potential causative agent of HUS. PMID:27725813

  15. Prevalence, Seasonal Occurrence, and Antimicrobial Resistance of Salmonella spp. Isolates Recovered from Chicken Carcasses Sampled at Major Poultry Processing Plants of South Korea.

    PubMed

    Lee, Soo-Kyoung; Choi, Dasom; Kim, Hong-Seok; Kim, Dong-Hyeon; Seo, Kun-Ho

    2016-10-01

    The current study was conducted to assess Salmonella spp. contamination in chicken carcasses produced at major poultry processing plants in South Korea. In total, 120 chicken carcasses were collected through 12 individual trials (10 chickens per trial) from six poultry processing plants in the summer of 2014 and the winter of 2015. Eighteen chicken samples (15%) were contaminated with Salmonella, with a higher rate of contamination observed during summer (14 isolates, 11.7%) than during winter (four isolates, 3.3%). Salmonella enterica serotype Typhimurium was the most prevalent, followed by Salmonella Hadar, Salmonella Rissen, Salmonella Bareilly, and Salmonella Virchow. Among five multidrug resistant isolates, a single strain was resistant to 10 antibiotics, including third-generation cephalosporins. This cephalosporin-resistant strain exhibited the extended-spectrum β-lactamase (ESBL) phenotype and harbored the gene encoding CTX-M-15, the most prevalent ESBL enzyme worldwide. Herein, repetitive-sequence-based polymerase chain reaction (rep-PCR) subtyping was conducted to discriminate the isolated Salmonella spp. and the ESBL-producing Salmonella isolate was distinguished by rep-PCR molecular subtyping, showing low genetic similarity in their rep-PCR-banding patterns. Given that poultry processing plants are the last stage in the chicken-production chain, the occurrence of Salmonella spp. including ESBL-producing strain in individually packaged chicken products highlights the necessity for regular monitoring for Salmonella in poultry processing plants.

  16. [Comparative study on the productivity of strains of Pleurotus spp. in commercial cultivation].

    PubMed

    Vogel, F; Salmones, D

    2000-12-01

    This paper describes the commercial production of two strains of Pleurotus pulmonarius, selected in the laboratory for their rapid mycelial development and high production of basidiomata, and one commercial strain of Pleurotus ostreatus. Substrate preparation, impact of pathogens and environmental conditions necessary for the production and quality of the fruiting bodies required are discussed.

  17. Infection of California sea lions (Zalophus californianus) with terrestrial Brucella spp.

    PubMed

    Avalos-Téllez, Rosalía; Ramírez-Pfeiffer, Carlos; Hernández-Castro, Rigoberto; Díaz-Aparicio, Efrén; Sánchez-Domínguez, Carlos; Zavala-Norzagaray, Alan; Arellano-Reynoso, Beatriz; Suárez-Güemes, Francisco; Aguirre, A Alonso; Aurioles-Gamboa, David

    2014-10-01

    Infections with Brucella ceti and pinnipedialis are prevalent in marine mammals worldwide. A total of 22 California sea lions (Zalophus californianus) were examined to determine their exposure to Brucella spp. at San Esteban Island in the Gulf of California, Mexico, in June and July 2011. Although samples of blood, vaginal mucus and milk cultured negative for these bacteria, the application of rose Bengal, agar gel immunodiffusion, PCR and modified fluorescence polarization assays found that five animals (22.7%) had evidence of exposure to Brucella strains. The data also suggested that in two of these five sea lions the strains involved were of terrestrial origin, a novel finding in marine mammals. Further work will be required to validate and determine the epidemiological significance of this finding. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Phenotypic and genotypic antimicrobial susceptibility pattern of Streptococcus spp. isolated from cases of clinical mastitis in dairy cattle in Poland.

    PubMed

    Kaczorek, E; Małaczewska, J; Wójcik, R; Rękawek, W; Siwicki, A K

    2017-08-01

    Mastitis of dairy cattle is one of the most frequently diagnosed diseases worldwide. The main etiological agents of mastitis are bacteria of the genus Streptococcus spp., in which several antibiotic resistance mechanisms have been identified. However, detailed studies addressing this problem have not been conducted in northeastern Poland. Therefore, the aim of our study was to analyze, on phenotypic and genotypic levels, the antibiotic resistance pattern of Streptococcus spp. isolated from clinical cases of mastitis from dairy cattle in this region of Poland. The research was conducted using 135 strains of Streptococcus (Streptococcus uberis, n = 53; Streptococcus dysgalactiae, n = 41; Streptococcus agalactiae, n = 27; other streptococci, n = 14). The investigation of the antimicrobial susceptibility to 8 active substances applied in therapy in the analyzed region, as well as a selected bacteriocin (nisin), was performed using the minimum inhibitory concentration method. The presence of selected resistance genes (n = 14) was determined via PCR. We also investigated the correlation between the presence of resistance genes and the antimicrobial susceptibility of the examined strains in vitro. The highest observed resistance of Streptococcus spp. was toward gentamicin, kanamycin, and tetracycline, whereas the highest susceptibility occurred toward penicillin, enrofloxacin, and marbofloxacin. Additionally, the tested bacteriocin showed high efficacy. The presence of 13 analyzed resistance genes was observed in the examined strains [gene mef(A) was not detected]. In most strains, at least one resistance gene, mainly responsible for resistance to tetracyclines [tet(M), tet(K), tet(L)], was observed. However, a relationship between the presence of a given resistance gene and antimicrobial susceptibility on the phenotypic level was not always observed. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Molecular detection of Bartonella spp. and Rickettsia spp. in bat ectoparasites in Brazil

    PubMed Central

    do Amaral, Renan Bressianini; Lourenço, Elizabete Captivo; Famadas, Kátia Maria; Garcia, Amanda Barbosa; Machado, Rosangela Zacarias

    2018-01-01

    The family Streblidae comprises a monophyletic group of Hippoboscoidea, hematophagous dipterans that parasitize bats. Bartonella spp. and Rickettsia spp. have been reported in bats sampled in Europe, Africa, Asia, North, Central and South America. However, there are few reports on the Bartonella and Rickettsia bacteria infecting Hippoboscoidea flies and mites. While Spinturnicidae mites are ectoparasites found only in bats, those belonging to the family Macronyssidae comprise mites that also parasitize other mammal species. This study investigates the occurrence and assesses the phylogenetic positioning of Bartonella spp. and Rickettsia spp. found in Streblidae flies and Spinturnicidae and Macronyssidae mites collected from bats captured in Brazil. From May 2011 to April 2012 and September 2013 to December 2014, 400 Streblidae flies, 100 Macronyssidaes, and 100 Spinturnicidae mites were collected from bats captured in two sites in northeastern Nova Iguaçu, Rio de Janeiro, southeastern Brazil. Forty (19.8%) out of 202 Streblidae flies were positive for Bartonella spp. in qPCR assays based on the nuoG gene. Among the flies positive for the bacterium, six (18%) were Paratrichobius longicrus, seven (29%) Strebla guajiro, two (40%) Aspidoptera phyllostomatis, five (11%) Aspidoptera falcata, one (10%) Trichobius anducei, one (25%) Megistopoda aranea, and 18 (32%) Trichobius joblingi, and collected from bats of the following species: Artibeus lituratus, Carollia perspicillata, Artibeus planirostris, Sturnira lilium, and Artibeus obscurus. Six sequences were obtained for Bartonella (nuoG [n = 2], gltA [n = 2], rpoB [n = 1], ribC = 1]). The phylogenetic analysis based on gltA (750pb) gene showed that the Bartonella sequences clustered with Bartonella genotypes detected in bats and ectoparasites previously sampled in Latin America, including Brazil. Only one sample (0.49%) of the species Trichobius joblingi collected from a specimen of Carollia perspicillata was positive

  20. Molecular detection of Bartonella spp. and Rickettsia spp. in bat ectoparasites in Brazil.

    PubMed

    do Amaral, Renan Bressianini; Lourenço, Elizabete Captivo; Famadas, Kátia Maria; Garcia, Amanda Barbosa; Machado, Rosangela Zacarias; André, Marcos Rogério

    2018-01-01

    The family Streblidae comprises a monophyletic group of Hippoboscoidea, hematophagous dipterans that parasitize bats. Bartonella spp. and Rickettsia spp. have been reported in bats sampled in Europe, Africa, Asia, North, Central and South America. However, there are few reports on the Bartonella and Rickettsia bacteria infecting Hippoboscoidea flies and mites. While Spinturnicidae mites are ectoparasites found only in bats, those belonging to the family Macronyssidae comprise mites that also parasitize other mammal species. This study investigates the occurrence and assesses the phylogenetic positioning of Bartonella spp. and Rickettsia spp. found in Streblidae flies and Spinturnicidae and Macronyssidae mites collected from bats captured in Brazil. From May 2011 to April 2012 and September 2013 to December 2014, 400 Streblidae flies, 100 Macronyssidaes, and 100 Spinturnicidae mites were collected from bats captured in two sites in northeastern Nova Iguaçu, Rio de Janeiro, southeastern Brazil. Forty (19.8%) out of 202 Streblidae flies were positive for Bartonella spp. in qPCR assays based on the nuoG gene. Among the flies positive for the bacterium, six (18%) were Paratrichobius longicrus, seven (29%) Strebla guajiro, two (40%) Aspidoptera phyllostomatis, five (11%) Aspidoptera falcata, one (10%) Trichobius anducei, one (25%) Megistopoda aranea, and 18 (32%) Trichobius joblingi, and collected from bats of the following species: Artibeus lituratus, Carollia perspicillata, Artibeus planirostris, Sturnira lilium, and Artibeus obscurus. Six sequences were obtained for Bartonella (nuoG [n = 2], gltA [n = 2], rpoB [n = 1], ribC = 1]). The phylogenetic analysis based on gltA (750pb) gene showed that the Bartonella sequences clustered with Bartonella genotypes detected in bats and ectoparasites previously sampled in Latin America, including Brazil. Only one sample (0.49%) of the species Trichobius joblingi collected from a specimen of Carollia perspicillata was positive

  1. Bartonella spp. in Bats, Guatemala

    PubMed Central

    Kosoy, Michael; Recuenco, Sergio; Alvarez, Danilo; Moran, David; Turmelle, Amy; Ellison, James; Garcia, Daniel L.; Estevez, Alejandra; Lindblade, Kim; Rupprecht, Charles

    2011-01-01

    To better understand the role of bats as reservoirs of Bartonella spp., we estimated Bartonella spp. prevalence and genetic diversity in bats in Guatemala during 2009. We found prevalence of 33% and identified 21 genetic variants of 13 phylogroups. Vampire bat–associated Bartonella spp. may cause undiagnosed illnesses in humans. PMID:21762584

  2. Canis lupus familiaris involved in the transmission of pathogenic Yersinia spp. in China.

    PubMed

    Wang, Xin; Liang, Junrong; Xi, Jinxiao; Yang, Jinchuan; Wang, Mingliu; Tian, Kecheng; Li, Jicheng; Qiu, Haiyan; Xiao, Yuchun; Duan, Ran; Yang, Haoshu; Li, Kewei; Cui, Zhigang; Qi, Meiying; Jing, Huaiqi

    2014-08-06

    To investigate canines carrying pathogens associated with human illness, we studied their roles in transmitting and maintaining pathogenic Yersinia spp. We examined different ecological landscapes in China for the distribution of pathogenic Yersinia spp. in Canis lupus familiaris, the domestic dog. The highest number of pathogenic Yersinia enterocolitica was shown from the tonsils (6.30%), followed by rectal swabs (3.63%) and feces (1.23%). Strains isolated from plague free areas for C. lupus familiaris, local pig and diarrhea patients shared the same pulsed-field gel electrophoresis (PFGE) pattern, indicating they may be from the same clone and the close transmission source of pathogenic Y. enterocolitica infections in these areas. Among 226 dogs serum samples collected from natural plague areas of Yersinia pestis in Gansu and Qinghai Provinces, 49 were positive for F1 antibody, while the serum samples collected from plague free areas were all negative, suggested a potential public health risk following exposure to dogs. No Y. enterocolitica or Yersinia pseudotuberculosis was isolated from canine rectal swabs in natural plague areas. Therefore, pathogenic Yersinia spp. may be regionally distributed in China. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. The Xanthomonas campestris type III effector XopJ proteolytically degrades proteasome subunit RPT6.

    PubMed

    Üstün, Suayib; Börnke, Frederik

    2015-05-01

    Many animal and plant pathogenic bacteria inject type III effector (T3E) proteins into their eukaryotic host cells to suppress immunity. The Yersinia outer protein J (YopJ) family of T3Es is a widely distributed family of effector proteins found in both animal and plant pathogens, and its members are highly diversified in virulence functions. Some members have been shown to possess acetyltransferase activity; however, whether this is a general feature of YopJ family T3Es is currently unknown. The T3E Xanthomonas outer protein J (XopJ), a YopJ family effector from the plant pathogen Xanthomonas campestris pv vesicatoria, interacts with the proteasomal subunit Regulatory Particle AAA-ATPase6 (RPT6) in planta to suppress proteasome activity, resulting in the inhibition of salicylic acid-related immune responses. Here, we show that XopJ has protease activity to specifically degrade RPT6, leading to reduced proteasome activity in the cytoplasm as well as in the nucleus. Proteolytic degradation of RPT6 was dependent on the localization of XopJ to the plasma membrane as well as on its catalytic triad. Mutation of the Walker B motif of RPT6 prevented XopJ-mediated degradation of the protein but not XopJ interaction. This indicates that the interaction of RPT6 with XopJ is dependent on the ATP-binding activity of RPT6, but proteolytic cleavage additionally requires its ATPase activity. Inhibition of the proteasome impairs the proteasomal turnover of Nonexpressor of Pathogenesis-Related1 (NPR1), the master regulator of salicylic acid responses, leading to the accumulation of ubiquitinated NPR1, which likely interferes with the full induction of NPR1 target genes. Our results show that YopJ family T3Es are not only highly diversified in virulence function but also appear to possess different biochemical activities. © 2015 American Society of Plant Biologists. All Rights Reserved.

  4. Draft Genome Sequence of Two Sphingopyxis sp. Strains, Dominant Members of the Bacterial Community Associated with a Drinking Water Distribution System Simulator

    EPA Science Inventory

    We report the draft genome of two Sphingopyxis spp. strains isolated from a chloraminated drinking water distribution system simulator. Both strains are ubiquitous residents and early colonizers of water distribution systems. Genomic annotation identified a class 1 integron (in...

  5. Identification of 17 HrpX-Regulated Proteins Including Two Novel Type III Effectors, XOC_3956 and XOC_1550, in Xanthomonas oryzae pv. oryzicola

    PubMed Central

    Xue, Xiao-bo; Zou, Li-fang; Ma, Wen-xiu; Liu, Zhi-yang; Chen, Gong-you

    2014-01-01

    The function of some hypothetical proteins, possibly regulated by key hrp regulators, in the pathogenicity of phytopathogenic bacteria remains largely unknown. In the present study, in silicon microarray data demonstrated that the expression of 17 HrpX-regulated protein (Xrp) genes of X. oryzae pv. oryzicola (Xoc), which causes bacterial leaf streak in rice, were either positively or negatively regulated by HrpX or/and HrpG. Bioinformatics analysis demonstrated that five Xrps possess a putative type III secretion (T3S) signal in the first 50 N-terminal amino acids, six xrp genes contain a PIP-box-like sequence (TTCGB-NX-TTCGB, 9≤X≤25) in the promoter regions, and two Xrps have both motifs. Twelve Xrps are widely conserved in Xanthomonas spp., whereas four are specific for X. oryzae (Xrp6) or Xoc (Xrp8, Xrp14 and Xrp17). In addition to the regulation by HrpG/HrpX, some of the 17 genes were also modulated by another hrp regulator HrpD6. Mutagenesis of these 17 genes indicated that five Xrps (Xrp1, Xrp2, Xrp5, Xrp8 and Xrp14) were required for full virulence and bacterial growth in planta. Immunoblotting assays and fusion with N-terminally truncated AvrXa10 indicated that Xrp3 and Xrp5 were secreted and translocated into rice cells through the type-III secretion system (T3S), suggesting they are novel T3S effectors. Our results suggest that Xoc exploits an orchestra of proteins that are regulated by HrpG, HrpX and HrpD6, and these proteins facilitate both infection and metabolism. PMID:24675748

  6. Identification of 17 HrpX-regulated proteins including two novel type III effectors, XOC_3956 and XOC_1550, in Xanthomonas oryzae pv. oryzicola.

    PubMed

    Xue, Xiao-bo; Zou, Li-fang; Ma, Wen-xiu; Liu, Zhi-yang; Chen, Gong-you

    2014-01-01

    The function of some hypothetical proteins, possibly regulated by key hrp regulators, in the pathogenicity of phytopathogenic bacteria remains largely unknown. In the present study, in silicon microarray data demonstrated that the expression of 17 HrpX-regulated protein (Xrp) genes of X. oryzae pv. oryzicola (Xoc), which causes bacterial leaf streak in rice, were either positively or negatively regulated by HrpX or/and HrpG. Bioinformatics analysis demonstrated that five Xrps possess a putative type III secretion (T3S) signal in the first 50 N-terminal amino acids, six xrp genes contain a PIP-box-like sequence (TTCGB-NX-TTCGB, 9 ≤ X ≤ 25) in the promoter regions, and two Xrps have both motifs. Twelve Xrps are widely conserved in Xanthomonas spp., whereas four are specific for X. oryzae (Xrp6) or Xoc (Xrp8, Xrp14 and Xrp17). In addition to the regulation by HrpG/HrpX, some of the 17 genes were also modulated by another hrp regulator HrpD6. Mutagenesis of these 17 genes indicated that five Xrps (Xrp1, Xrp2, Xrp5, Xrp8 and Xrp14) were required for full virulence and bacterial growth in planta. Immunoblotting assays and fusion with N-terminally truncated AvrXa10 indicated that Xrp3 and Xrp5 were secreted and translocated into rice cells through the type-III secretion system (T3S), suggesting they are novel T3S effectors. Our results suggest that Xoc exploits an orchestra of proteins that are regulated by HrpG, HrpX and HrpD6, and these proteins facilitate both infection and metabolism.

  7. Plasmids of Carotenoid-Producing Paracoccus spp. (Alphaproteobacteria) - Structure, Diversity and Evolution

    PubMed Central

    Maj, Anna; Dziewit, Lukasz; Czarnecki, Jakub; Wlodarczyk, Miroslawa; Baj, Jadwiga; Skrzypczyk, Grazyna; Giersz, Dorota; Bartosik, Dariusz

    2013-01-01

    Plasmids are components of many bacterial genomes. They enable the spread of a large pool of genetic information via lateral gene transfer. Many bacterial strains contain mega-sized replicons and these are particularly common in Alphaproteobacteria. Considerably less is known about smaller alphaproteobacterial plasmids. We analyzed the genomes of 14 such plasmids residing in 4 multireplicon carotenoid-producing strains of the genus Paracoccus (Alphaproteobacteria): P. aestuarii DSM 19484, P. haeundaensis LG P-21903, P. marcusii DSM 11574 and P. marcusii OS22. Comparative analyses revealed mosaic structures of the plasmids and recombinational shuffling of diverse genetic modules involved in (i) plasmid replication, (ii) stabilization (including toxin-antitoxin systems of the relBE/parDE, tad-ata, higBA, mazEF and toxBA families) and (iii) mobilization for conjugal transfer (encoding relaxases of the MobQ, MobP or MobV families). A common feature of the majority of the plasmids is the presence of AT-rich sequence islets (located downstream of exc1-like genes) containing genes, whose homologs are conserved in the chromosomes of many bacteria (encoding e.g. RelA/SpoT, SMC-like proteins and a retron-type reverse transcriptase). The results of this study have provided insight into the diversity and plasticity of plasmids of Paracoccus spp., and of the entire Alphaproteobacteria. Some of the identified plasmids contain replication systems not described previously in this class of bacteria. The composition of the plasmid genomes revealed frequent transfer of chromosomal genes into plasmids, which significantly enriches the pool of mobile DNA that can participate in lateral transfer. Many strains of Paracoccus spp. have great biotechnological potential, and the plasmid vectors constructed in this study will facilitate genetic studies of these bacteria. PMID:24260361

  8. Comparative phenotypic and genotypic characterization of Salmonella spp. in pig farms and slaughterhouses in two provinces in northern Thailand.

    PubMed

    Tadee, Pakpoom; Boonkhot, Phacharaporn; Pornruangwong, Srirat; Patchanee, Prapas

    2015-01-01

    Salmonella spp. are an important group of bacterial zoonotic pathogens which can cause acute food-borne diseases in humans. Pork products are the main source of salmonellosis, but the origins and transmission routes of the disease have not been clearly determined. The purpose of this study was to characterize Salmonella spp. isolated in pig production lines both from pig farms and from slaughterhouses in Chiang Mai and Lamphun provinces in northern Thailand. The study focuses on the association among serotypes, antimicrobial resistance patterns and Pulse Field Gel Electrophoresis (PFGE) patterns to investigate possible sources of infection and to provide information which could help strengthen salmonellosis control programs in the region. A total of 86 strains of Salmonella comprising five majority serotypes were identified. Antibiotic resistance to tetracycline was found to be the most prevalent (82.56%) followed by ampicillin (81.40%) and streptomycin (63.95%). Seven clusters and 28 fingerprint-patterns generated by PFGE were identified among strains recovered from various locations and at different times, providing information on associations among the strains as well as evidence of the existence of persistent strains in some areas. Study results suggest that Salmonella control programs should be implemented at slaughterhouse production lines, including surveillance to insure good hygiene practices, in addition to regular monitoring of large populations of farm animals.

  9. Multicentre Etest evaluation of in vitro activity of conventional antifungal drugs against European bovine mastitis Prototheca spp. isolates.

    PubMed

    Jagielski, Tomasz; Buzzini, Pietro; Lassa, Henryka; Malinowski, Edward; Branda, Eva; Turchetti, Benedetta; Polleichtner, Angela; Roesler, Uwe; Lagneau, Paul-Emile; Marques, Sara; Silva, Eliane; Thompson, Gertrude; Stachowiak, Radosław; Bielecki, Jacek

    2012-08-01

    Bovine mammary protothecosis is a serious pathology that entails high economic losses in the dairy industry. The disease, the frequency of which has recently been increasing worldwide, is caused by unicellular, achlorophyllous, yeast-like algae of two species: Prototheca zopfii and Prototheca blaschkeae. The objective of this study was to investigate the in vitro activity of a panel of conventional antifungal drugs against Prototheca spp. isolates. A total of 144 P. zopfii genotype 2 and P. blaschkeae strains isolated from milk of mastitic cows were subjected to drug susceptibility testing by Etest methodology. Five out of ten antifungal drugs tested exhibited no activity against Prototheca spp. isolates. The best activity against Prototheca spp. was demonstrated by amphotericin B (MIC₉₀ of 1.5 mg/L). The MICs differed significantly (P < 0.01) between P. zopfii genotype 2 and P. blaschkeae, with the latter species being more susceptible to amphotericin B and azoles. Marked differences (P < 0.05) in azole and amphotericin B activities were noted among Prototheca spp. isolates originating from different European countries. Based on the correlation coefficients, a considerable cross-interaction was found among MICs of azoles and between MICs of azoles and amphotericin B for Prototheca spp. (P < 0.03). This study represents the largest, cross-European evaluation of antifungal activity against Prototheca spp. to date. The activity of amphotericin B against Prototheca spp. validates its potential use as a therapeutic agent against bovine protothecosis. For laboratory testing of drug activity against Prototheca spp., the Etest method is encouraged, due to its technical simplicity, rapidity and high intra- and inter-laboratory reproducibility.

  10. ``Black Holes" and Bacterial Pathogenicity: A Large Genomic Deletion that Enhances the Virulence of Shigella spp. and Enteroinvasive Escherichia coli

    NASA Astrophysics Data System (ADS)

    Maurelli, Anthony T.; Fernandez, Reinaldo E.; Bloch, Craig A.; Rode, Christopher K.; Fasano, Alessio

    1998-03-01

    Plasmids, bacteriophages, and pathogenicity islands are genomic additions that contribute to the evolution of bacterial pathogens. For example, Shigella spp., the causative agents of bacillary dysentery, differ from the closely related commensal Escherichia coli in the presence of a plasmid in Shigella that encodes virulence functions. However, pathogenic bacteria also may lack properties that are characteristic of nonpathogens. Lysine decarboxylate (LDC) activity is present in ≈ 90% of E. coli strains but is uniformly absent in Shigella strains. When the gene for LDC, cadA, was introduced into Shigella flexneri 2a, virulence became attenuated, and enterotoxin activity was inhibited greatly. The enterotoxin inhibitor was identified as cadaverine, a product of the reaction catalyzed by LDC. Comparison of the S. flexneri 2a and laboratory E. coli K-12 genomes in the region of cadA revealed a large deletion in Shigella. Representative strains of Shigella spp. and enteroinvasive E. coli displayed similar deletions of cadA. Our results suggest that, as Shigella spp. evolved from E. coli to become pathogens, they not only acquired virulence genes on a plasmid but also shed genes via deletions. The formation of these ``black holes,'' deletions of genes that are detrimental to a pathogenic lifestyle, provides an evolutionary pathway that enables a pathogen to enhance virulence. Furthermore, the demonstration that cadaverine can inhibit enterotoxin activity may lead to more general models about toxin activity or entry into cells and suggests an avenue for antitoxin therapy. Thus, understanding the role of black holes in pathogen evolution may yield clues to new treatments of infectious diseases.

  11. Identification of putative TAL effector targets of the citrus canker pathogens shows functional convergence underlying disease development and defense response

    PubMed Central

    2014-01-01

    Background Transcriptional activator-like (TAL) effectors, formerly known as the AvrBs3/PthA protein family, are DNA-binding effectors broadly found in Xanthomonas spp. that transactivate host genes upon injection via the bacterial type three-secretion system. Biologically relevant targets of TAL effectors, i.e. host genes whose induction is vital to establish a compatible interaction, have been reported for xanthomonads that colonize rice and pepper; however, citrus genes modulated by the TAL effectors PthA“s” and PthC“s” of the citrus canker bacteria Xanthomonas citri (Xc) and Xanthomonas aurantifolii pathotype C (XaC), respectively, are poorly characterized. Of particular interest, XaC causes canker disease in its host lemon (Citrus aurantifolia), but triggers a defense response in sweet orange. Results Based on, 1) the TAL effector-DNA binding code, 2) gene expression data of Xc and XaC-infiltrated sweet orange leaves, and 3) citrus hypocotyls transformed with PthA2, PthA4 or PthC1, we have identified a collection of Citrus sinensis genes potentially targeted by Xc and XaC TAL effectors. Our results suggest that similar with other strains of Xanthomonas TAL effectors, PthA2 and PthA4, and PthC1 to some extent, functionally converge. In particular, towards induction of genes involved in the auxin and gibberellin synthesis and response, cell division, and defense response. We also present evidence indicating that the TAL effectors act as transcriptional repressors and that the best scoring predicted DNA targets of PthA“s” and PthC“s” in citrus promoters predominantly overlap with or localize near to TATA boxes of core promoters, supporting the idea that TAL effectors interact with the host basal transcriptional machinery to recruit the RNA pol II and start transcription. Conclusions The identification of PthA“s” and PthC“s” targets, such as the LOB (LATERAL ORGAN BOUNDARY) and CCNBS genes that we report here, is key for the understanding

  12. Identification of putative TAL effector targets of the citrus canker pathogens shows functional convergence underlying disease development and defense response.

    PubMed

    Pereira, Andre L A; Carazzolle, Marcelo F; Abe, Valeria Y; de Oliveira, Maria L P; Domingues, Mariane N; Silva, Jaqueline C; Cernadas, Raul A; Benedetti, Celso E

    2014-02-25

    Transcriptional activator-like (TAL) effectors, formerly known as the AvrBs3/PthA protein family, are DNA-binding effectors broadly found in Xanthomonas spp. that transactivate host genes upon injection via the bacterial type three-secretion system. Biologically relevant targets of TAL effectors, i.e. host genes whose induction is vital to establish a compatible interaction, have been reported for xanthomonads that colonize rice and pepper; however, citrus genes modulated by the TAL effectors PthA"s" and PthC"s" of the citrus canker bacteria Xanthomonas citri (Xc) and Xanthomonas aurantifolii pathotype C (XaC), respectively, are poorly characterized. Of particular interest, XaC causes canker disease in its host lemon (Citrus aurantifolia), but triggers a defense response in sweet orange. Based on, 1) the TAL effector-DNA binding code, 2) gene expression data of Xc and XaC-infiltrated sweet orange leaves, and 3) citrus hypocotyls transformed with PthA2, PthA4 or PthC1, we have identified a collection of Citrus sinensis genes potentially targeted by Xc and XaC TAL effectors. Our results suggest that similar with other strains of Xanthomonas TAL effectors, PthA2 and PthA4, and PthC1 to some extent, functionally converge. In particular, towards induction of genes involved in the auxin and gibberellin synthesis and response, cell division, and defense response. We also present evidence indicating that the TAL effectors act as transcriptional repressors and that the best scoring predicted DNA targets of PthA"s" and PthC"s" in citrus promoters predominantly overlap with or localize near to TATA boxes of core promoters, supporting the idea that TAL effectors interact with the host basal transcriptional machinery to recruit the RNA pol II and start transcription. The identification of PthA"s" and PthC"s" targets, such as the LOB (lateral organ boundary) and CCNBS genes that we report here, is key for the understanding of the canker symptoms development during host

  13. Occurrence of Cryptosporidium spp. and Giardia spp. in a public water-treatment system, Paraná, Southern Brazil.

    PubMed

    Almeida, Jonatas Campos; Martins, Felippe Danyel Cardoso; Ferreira Neto, José Maurício; Santos, Maíra Moreira Dos; Garcia, João Luis; Navarro, Italmar Teodorico; Kuroda, Emília Kiyomi; Freire, Roberta Lemos

    2015-01-01

    The purpose of this study was to investigate the occurrence of Cryptosporidium spp. and Giardia spp. in a public water-treatment system. Samples of raw and treated water were collected and concentrated using the membrane filtration technique. Direct Immunofluorescence Test was performed on the samples. DNA extraction using a commercial kit was performed and the DNA extracted was submitted to a nested-PCR reaction (n-PCR) and sequencing. In the immunofluorescence, 2/24 (8.33%) samples of raw water were positive for Giardia spp.. In n-PCR and sequencing, 2/24 (8.33%) samples of raw water were positive for Giardia spp., and 2/24 (8.33%) samples were positive for Cryptosporidium spp.. The sequencing showed Cryptosporidium parvum and Giardia duodenalis DNA. In raw water, there was moderate correlation among turbidity, color and Cryptosporidium spp. and between turbidity and Giardia spp.. The presence of these protozoans in the water indicates the need for monitoring for water-treatment companies.

  14. Draft Genome Sequences of New Genomospecies “Candidatus Pectobacterium maceratum” Strains, Which Cause Soft Rot in Plants

    PubMed Central

    2018-01-01

    ABSTRACT Investigation of collections of phytopathogenic bacteria has revealed some strains distinct from known Pectobacterium spp. We report here the draft genome sequences of five such strains, isolated during the period of 1947 to 2012. Based on comparative genomics, we propose a new candidate genomospecies of the genus Pectobacterium, “Candidatus Pectobacterium maceratum.” PMID:29650577

  15. Selection of Lecanicillium Strain with High Virulence against Developmental Stages of Bemisia tabaci

    PubMed Central

    Park, Heeyong

    2010-01-01

    Selection of fungal strains with high virulence against the developmental stages of Bemisia tabaci was performed using internal transcribed spacer regions. The growth rate of hyphae was measured and bioassay of each developmental stage of B. tabaci was conducted for seven days. All of the fungal strains tested were identified as Lecanicillium spp., with strain 4078 showing the fastest mycelium growth rate (colony diameter, 16.3 ± 0.9 mm) among the strains. Compared to strain 4075, which showed the slowest growth rate, the growth rate of strain 4078 was increased almost 2-fold after seven days. Strains 4078 and Btab01 were most virulent against the egg and larva stages, respectively. The virulence of fungal strains against the adult stage was high, except for strains 41185 and 3387. Based on the growth rate of mycelium and level of virulence, strains 4078 and Btab01 were selected as the best fungal strains for application to B. tabaci, regardless of developmental stage. PMID:23956657

  16. Characterization of certain bacterial strains for potential use as starter or probiotic cultures in dairy products.

    PubMed

    Monteagudo-Mera, A; Caro, I; Rodríguez-Aparicio, L B; Rúa, J; Ferrero, M A; García-Armesto, M R

    2011-08-01

    The present work was aimed at characterizing 12 strains of lactic acid bacteria (LAB) to obtain improved potential starter or probiotic cultures that could be used for making dairy products from ewe's milk and cow's milk. Eight strains with antimicrobial properties, isolated from ewe's milk and from cheese made from ewe's and/or cow's milk, were studied. They were identified as Enterococcus faecalis (five strains), Lactococcus lactis subsp. cremoris, Leuconostoc mesenteroides, and Lactobacillus paracasei subsp. paracasei (one strain of each species). Additionally, four strains were obtained from the American Type Culture Collection: Lactobacillus casei 393 (isolated from cheese), L. lactis subsp. lactis 11454 (origin nonspecified and a producer of nisin), and two strains isolated from human feces (L. paracasei subsp. paracasei 27092 and Lactobacillus rhamnosus 53103, antibacterial agent producer). All E. faecalis strains showed at least one virulence factor (either hemolysin or gelatinase), which emphasizes the importance of these studies in this species. Both L. lactis strains and most Lactobacillus spp. were good acidifiers in ewe's milk and cow's milk at 30°C. High β-galactosidase activity, as well as aminopeptidase activities that favor the development of desirable flavors in cheese, were detected in all Lactobacillus spp. strains. Furthermore, L. rhamnosus ATCC 53103 showed α-fucosidase activity (thought to help colonization of the intestine) and lack of α-glucosidase activity (a trait considered positive for diabetic and obese humans). This last enzymatic activity was also lacking in L. lactis ATCC 11454. L. mesenteroides was the only strain D(2)-lactic acid producer. The selection of any particular strain for probiotic or dairy cultures should be performed according to the technological and/or functional abilities needed.

  17. Phenotypic characterisation of Saccharomyces spp. for tolerance to 1-butanol.

    PubMed

    Zaki, A M; Wimalasena, T T; Greetham, D

    2014-11-01

    Biofuels are expected to play a role in replacing crude oil as a liquid transportation fuel, and research into butanol has highlighted the importance of this alcohol as a fuel. Butanol has a higher energy density than ethanol, butanol-gasoline blends do not separate in the presence of water, and butanol is miscible with gasoline (Szulczyk, Int J Energy Environ 1(1):2876-2895, 40). Saccharomyces cerevisiae has been used as a fermentative organism in the biofuel industry producing ethanol from glucose derived from starchy plant material; however, it typically cannot tolerate butanol concentrations greater than 2 % (Luong, Biotechnol Bioeng 29 (2):242-248, 27). 90 Saccharomyces spp. strains were screened for tolerance to 1-butanol via a phenotypic microarray assay and we observed significant variation in response with the most tolerant strains (S. cerevisiae DBVPG1788, S. cerevisiae DBVPG6044 and S. cerevisiae YPS128) exhibiting tolerance to 4 % 1-butanol compared with S. uvarum and S. castelli strains, which were sensitive to 3 % 1-butanol. Response to butanol was confirmed using traditional yeast methodologies such as growth; it was observed that fermentations in the presence of butanol, when using strains with a tolerant background, were significantly faster. Assessing for genetic rationale for tolerance, it was observed that 1-butanol-tolerant strains, when compared with 1-butanol-sensitive strains, had an up-regulation of RPN4, a transcription factor which regulates proteasome genes. Analysing for the importance of RPN4, we observed that a Δrpn4 strain displayed a reduced rate of fermentation in the presence of 1-butanol when compared with the BY4741 background strain. This data will aid the development of breeding programmes to produce better strains for future bio-butanol production.

  18. The Survey of Cronobacter spp. (formerly Enterbacter sakazakii) in Infant and Follow-up Powdered Formula in China in 2012.

    PubMed

    Pei, Xiao Yan; Yan, Lin; Zhu, Jiang Hui; Li, Ning; Guo, Yun Chang; Fu, Ping; Jia, Hua Yun; Zhang, Xiu Li; Yang, Xiao Rong; Yang, Da Jin

    2016-02-01

    To determine Cronobacter spp. contamination in infant and follow-up powdered formula in China. All of 2282 samples were collected from the retail markets in China from January 2012 to December 2012, and analyzed for Cronobacter spp. by the Chinese National Food Safety Standard. Characterization of the isolates was analyzed by pulsed-field gel electrophoresis (PFGE) with XbaI and SpeI restriction enzymes. Cronobacter spp. strains were isolated from 25 samples, and the positive rates in infant powdered formulas and follow-up powdered formulas were 0.90% (10/1011) and 1.18% (15/1271), respectively. Analysis of variable data regarding different purchasing store formats, seasonality, and production locations as well as comparison of infant versus follow-up formulas did not reveal statistically significant factors. During the sampling period, one of six surveillance zones did exhibit a statistically significant trend towards higher positive rate. PFGE characterization of Cronobacter spp. to elucidate genetic diversity revealed only three pairs of Cronobacter spp. out of 25 having the same PFGE patterns. The current investigation indicated a lower positive rate of Cronobacter spp. in the powdered formula in China. This evidence suggested contamination originating from multiple different sources during the manufacturing process. Copyright © 2016 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  19. A Reverse-phase Protein Microarray-based Screen Identifies Host Signaling Dynamics upon Burkholderia spp. Infection

    DTIC Science & Technology

    2015-07-27

    University, Manassas, VA, USA, 4 PerkinElmer, Inc., Waltham, MA, USA Burkholderia is a diverse genus of gram-negative bacteria that causes high...Burkholderia spp. infections. Materials and Methods Bacterial Strains Bm ATCC 23344, NCTC 10247, NCTC 10229, NCTC 3708, NCTC 3709, 2002721278 (Burtnick...macrophage cell line RAW264.7 was obtained from ATCC (Manassas, VA). Cells were cultured in DMEM (Life Technologies) supplemented with 10% fetal

  20. Prevalence study of Legionella spp. contamination in ferries and cruise ships

    PubMed Central

    Azara, Antonio; Piana, Andrea; Sotgiu, Giovanni; Dettori, Marco; Deriu, Maria Grazia; Masia, Maria Dolores; Are, Bianca Maria; Muresu, Elena

    2006-01-01

    Background In the last years, international traffic volume has significantly increased, raising the risk for acquisition of infectious diseases. Among travel-associated infections, increased incidence of legionellosis has been reported among travellers. Aim of our study was: to describe the frequency and severity of Legionella spp. contamination in ferries and cruise ships; to compare the levels of contamination with those indicated by the Italian ministerial guidelines for control and prevention of legionellosis, in order to assess health risks and to adopt control measures. Method A prevalence study was carried out on 9 ships docked at the seaports of northern Sardinia in 2004. Water samples were collected from critical sites: passenger cabins, crew cabins, kitchens, coffee bars, rooms of the central air conditioning system. It was performed a qualitative and quantitative identification of Legionella spp. and a chemical, physical and bacteriological analysis of water samples. Results Forty-two percent (38/90) water samples were contaminated by Legionella spp.. Positive samples were mainly drawn from showers (24/44), washbasins (10/22). L. pneumophila was isolated in 42/44 samples (95.5%), followed by L. micdadei (4.5%). Strains were identified as L. pneumophila serogroup 6 (45.2%; 19 samples), 2–14 (42.9%), 5 (7.1%) and 3 (4.8%). Legionella spp. load was high; 77.8% of the water samples contained > 104 CFU/L. Low residual free chlorine concentration (0–0,2 mg/L) was associated to a contamination of the 50% of the water samples. Conclusion Legionella is an ubiquitous bacterium that could create problems for public health. We identified Legionella spp. in 6/7 ferries. Microbial load was predominantly high (> 104 CFU/L or ranging from 103 to 104 CFU/L). It is matter of concern when passengers are subjects at risk because of Legionella spp. is an opportunist that can survive in freshwater systems; high bacterial load might be an important variable related to

  1. Prevalence study of Legionella spp. contamination in ferries and cruise ships.

    PubMed

    Azara, Antonio; Piana, Andrea; Sotgiu, Giovanni; Dettori, Marco; Deriu, Maria Grazia; Masia, Maria Dolores; Are, Bianca Maria; Muresu, Elena

    2006-04-18

    In the last years, international traffic volume has significantly increased, raising the risk for acquisition of infectious diseases. Among travel-associated infections, increased incidence of legionellosis has been reported among travellers. Aim of our study was: to describe the frequency and severity of Legionella spp. contamination in ferries and cruise ships; to compare the levels of contamination with those indicated by the Italian ministerial guidelines for control and prevention of legionellosis, in order to assess health risks and to adopt control measures. A prevalence study was carried out on 9 ships docked at the seaports of northern Sardinia in 2004. Water samples were collected from critical sites: passenger cabins, crew cabins, kitchens, coffee bars, rooms of the central air conditioning system. It was performed a qualitative and quantitative identification of Legionella spp. and a chemical, physical and bacteriological analysis of water samples. Forty-two percent (38/90) water samples were contaminated by Legionella spp.. Positive samples were mainly drawn from showers (24/44), washbasins (10/22). L. pneumophila was isolated in 42/44 samples (95.5%), followed by L. micdadei (4.5%). Strains were identified as L. pneumophila serogroup 6 (45.2%; 19 samples), 2-14 (42.9%), 5 (7.1%) and 3 (4.8%). Legionella spp. load was high; 77.8% of the water samples contained > 10(4) CFU/L. Low residual free chlorine concentration (0-0.2 mg/L) was associated to a contamination of the 50% of the water samples. Legionella is an ubiquitous bacterium that could create problems for public health. We identified Legionella spp. in 6/7 ferries. Microbial load was predominantly high (> 10(4) CFU/L or ranging from 10(3) to 10(4) CFU/L). It is matter of concern when passengers are subjects at risk because of Legionella spp. is an opportunist that can survive in freshwater systems; high bacterial load might be an important variable related to disease's occurrence. High level of

  2. Isolation and Molecular Characterization of Novel Chlorpyrifos and 3,5,6-trichloro-2-pyridinol-degrading Bacteria from Sugarcane Farm Soils

    PubMed Central

    Rayu, Smriti; Nielsen, Uffe N.; Nazaries, Loïc; Singh, Brajesh K.

    2017-01-01

    Chlorpyrifos (CP) is one of the most widely used organophosphate pesticides in agriculture worldwide, but its extensive use has led to the contamination of various soil and water systems. Microbial bioremediation is considered to be one of the most viable options for the removal of CP from the environment; however, little is known about the soil bacterial diversity that degrade CP. Sequential soil and liquid culture enrichments enabled the isolation of bacterial CP degraders with sequence homologies to Xanthomonas sp., Pseudomonas sp., and Rhizobium sp. The efficacy of the three isolated strains: Xanthomonas sp. 4R3-M1, Pseudomonas sp. 4H1-M3, and Rhizobium sp. 4H1-M1 was further investigated for biodegradation of CP and its primary metabolic product, 3,5,6-trichloro-2-pyridinol (TCP). The results indicate that all three bacterial strains almost completely metabolized CP (10 mg/L) and TCP, occurring as a metabolic degradation product, in mineral salt media as a sole source of carbon and nitrogen. The isolated bacterial strains Xanthomonas sp. 4R3-M1 and Pseudomonas sp. 4H1-M3 could also degrade TCP (10 mg/L) as a sole carbon and nitrogen source, when provided externally. Thus, these bacterial strains may be effective in practical application of bioremediation of both CP and TCP. PMID:28421040

  3. Molecular study on some antibiotic resistant genes in Salmonella spp. isolates

    NASA Astrophysics Data System (ADS)

    Nabi, Ari Q.

    2017-09-01

    Studying the genes related with antimicrobial resistance in Salmonella spp. is a crucial step toward a correct and faster treatment of infections caused by the pathogen. In this work Integron mediated antibiotic resistant gene IntI1 (Class I Integrase IntI1) and some plasmid mediated antibiotic resistance genes (Qnr) were scanned among the isolated non-Typhoid Salmonellae strains with known resistance to some important antimicrobial drugs using Sybr Green real time PCR. The aim of the study was to correlate the multiple antibiotics and antimicrobial resistance of Salmonella spp. with the presence of integrase (IntI1) gene and plasmid mediated quinolone resistant genes. Results revealed the presence of Class I Integrase gene in 76% of the isolates with confirmed multiple antibiotic resistances. Moreover, about 32% of the multiple antibiotic resistant serotypes showed a positive R-PCR for plasmid mediated qnrA gene encoding for nalidixic acid and ciprofloxacin resistance. No positive results could be revealed form R-PCRs targeting qnrB or qnrS. In light of these results we can conclude that the presence of at least one of the qnr genes and/or the presence of Integrase Class I gene were responsible for the multiple antibiotic resistance to for nalidixic acid and ciprofloxacin from the studied Salmonella spp. and further studies required to identify the genes related with multiple antibiotic resistance of the pathogen.

  4. Phenotypic and Molecular Aspects of Staphylococcus spp. Isolated from Hospitalized Patients and Beef in the Brazilian Amazon.

    PubMed

    Pieri, Fabio A; Vargas, Taise F; Galvão, Newton N; Nogueira, Paulo A; Orlandi, Patrícia P

    2016-03-01

    The aim of this study was to characterize and compare Staphylococcus spp. isolated from hospitalized patients and beef marketed in the city of Porto Velho-RO, Brazil. The isolates were subjected to antibiogram tests, adherence capacity tests, detection of the mecA gene, and epidemiological investigation by the random amplified polymorphic DNA (RAPD) technique, using the primers M13 and H12. Among the 123 Staphylococcus spp. isolates, 50 were identified as S. aureus and 73 as coagulase-negative Staphylococcus; among the latter, 7 species were identified. It was observed that the coagulase-negative Staphylococcus isolates showed greater adhesion ability than S. aureus. The profile of antimicrobial susceptibility was different among isolates, all of which were susceptible to vancomycin and linezolid, and had high penicillin resistance rates, varying according to the bacterial class and the source. In this study, all strains were negative for mecA gene detection; however, 36% of S. aureus and 17% of coagulase-negative Staphylococcus were resistant to oxacillin. The genetic relationship of these bacteria, analyzed by RAPD, was able to discriminate the species of coagulase-negative Staphylococcus strains of S. aureus along its origin. It was concluded that the isolates of Staphylococcus spp. derived from beef and human infections differ genetically. Thus, it is suggested that isolates from beef, which were grouped within hospital isolates, were probably carried via contact with beef in hospital professionals or patients.

  5. FIRST REPORT OF METALLO-β-LACTAMASES PRODUCING Enterobacter spp. STRAINS FROM VENEZUELA

    PubMed Central

    Martínez, Dianny; Rodulfo, Hectorina E.; Rodríguez, Lucy; Caña, Luisa E.; Medina, Belkis; Guzman, Militza; Carreño, Numirin; Marcano, Daniel; Donato, Marcos De

    2014-01-01

    Clinical strains of Enterobacter were isolated from Cumana's Central Hospital in Venezuela, and classified as E. cloacae (21), E. aerogenes (7), E. intermedium (1), E. sakazakii (1) and three unclassified. The strains showed high levels of resistance, especially to SXT (58.1%), CRO (48.8%), CAZ (46.6%), PIP (46.4%), CIP (45.2%) and ATM (43.3%). This is the first report for South America of bla VIM-2 in two E. cloacae and one Enterobacter sp., which also showed multiple mechanisms of resistance. Both E. cloacae showed bla TEM-1, but only one showed bla CTX-M-15 gene, while no bla SHV was detected. PMID:24553611

  6. Biochemical and molecular characterization of Cronobacter spp. (formerly Enterobacter sakazakii) isolated from foods.

    PubMed

    Turcovský, Imrich; Kuniková, Kristína; Drahovská, Hana; Kaclíková, Eva

    2011-02-01

    The aim of this study was to identify and characterize Cronobacter spp. isolated from a range of foods. A total of 71 Cronobacter strains were isolated from 602 foods in our laboratory. The highest contamination was observed in foods of plant origin, e.g. spices, teas, chocolate, nuts, pastries and vegetables. On the basis of genus and species identification performed using genus-specific PCR, 16S rRNA sequencing and AFLP genotyping, most of the strains belonged to Cronobacter sakazakii. Biochemical profiling by the tests included in API 20E, complemented with relevant additional tests, classified the strains into 13 biogroups. AFLP genotyping facilitated discrimination of six main groups at the 70% similarity level and strain grouping correlated clearly with species identification. Our results indicate that molecular typing by AFLP may be applied as a useful tool not only for direct comparison of Cronobacter isolates, providing traceability, but also for the reliable species classification. Moreover, tracing of these bacteria in a wider variety of foods should be important to enhance the knowledge of their transmission.

  7. Breaking the DNA-binding code of Ralstonia solanacearum TAL effectors provides new possibilities to generate plant resistance genes against bacterial wilt disease.

    PubMed

    de Lange, Orlando; Schreiber, Tom; Schandry, Niklas; Radeck, Jara; Braun, Karl Heinz; Koszinowski, Julia; Heuer, Holger; Strauß, Annett; Lahaye, Thomas

    2013-08-01

    Ralstonia solanacearum is a devastating bacterial phytopathogen with a broad host range. Ralstonia solanacearum injected effector proteins (Rips) are key to the successful invasion of host plants. We have characterized Brg11(hrpB-regulated 11), the first identified member of a class of Rips with high sequence similarity to the transcription activator-like (TAL) effectors of Xanthomonas spp., collectively termed RipTALs. Fluorescence microscopy of in planta expressed RipTALs showed nuclear localization. Domain swaps between Brg11 and Xanthomonas TAL effector (TALE) AvrBs3 (avirulence protein triggering Bs3 resistance) showed the functional interchangeability of DNA-binding and transcriptional activation domains. PCR was used to determine the sequence of brg11 homologs from strains infecting phylogenetically diverse host plants. Brg11 localizes to the nucleus and activates promoters containing a matching effector-binding element (EBE). Brg11 and homologs preferentially activate promoters containing EBEs with a 5' terminal guanine, contrasting with the TALE preference for a 5' thymine. Brg11 and other RipTALs probably promote disease through the transcriptional activation of host genes. Brg11 and the majority of homologs identified in this study were shown to activate similar or identical target sequences, in contrast to TALEs, which generally show highly diverse target preferences. This information provides new options for the engineering of plants resistant to R. solanacearum. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  8. Isolation of Escherichia coli and Salmonella spp. from free-ranging wild animals.

    PubMed

    Iovine, Renata de Oliveira; Dejuste, Catia; Miranda, Flávia; Filoni, Claudia; Bueno, Marina Galvão; de Carvalho, Vania Maria

    2015-01-01

    Increasing interactions between humans, domestic animals and wildlife may result in inter-species transmission of infectious agents. To evaluate the presence of pathogenic E. coli and Salmonella spp. and to test the antimicrobial susceptibility of isolates, rectal swabs from 36 different free-ranging wild mammals were taken from two distinct natural sites in Brazil: Cantareira State Park (CSP, state of São Paulo) and Santa Isabel do Rio Negro Region (SIRNR, state of Amazonas). The swabs were randomly collected and processed for bacterial isolation, identification, characterization and antimicrobial resistance. Eighteen E. coli strains from CSP and 20 from SIRNR were recovered from 14 and 22 individuals, respectively. Strains from animals captured in CSP, the site with the greatest anthropization, exhibited a higher range and percentage of virulence genes, including an eae+/bfpA+ strain. Antimicrobial resistance was verified in strains originating from both sites; however, in strains from SIRNR, aminopenicillins were almost the exclusive antimicrobial class to which strains exhibited resistance, whereas in CSP there were strains resistant to cephalosporins, sulfonamide, aminoglycoside, tetracycline and fluoroquinolone, in addition to strains exhibiting multidrug resistance. Two strains of Salmonella enterica that are known to be associated with reptiles, serotypes Belem and 60:r:e,n,z15, were recovered only from Amazonian animals and showed susceptibility to all classes of antimicrobials that were tested. Although the potential impact of these pathogens on wildlife remains unknown, bacteria isolated from free-ranging wild animals may provide relevant information about environmental health and should therefore be more deeply studied.

  9. Effect of oral administration of Bacillus coagulans B37 and Bacillus pumilus B9 strains on fecal coliforms, Lactobacillus and Bacillus spp. in rat animal model

    PubMed Central

    Haldar, Lopamudra; Gandhi, D. N.

    2016-01-01

    Aim: To investigate the effect of oral administration of two Bacillus strains on fecal coliforms, Lactobacillus and Bacillus spp. in rat animal model. Materials and Methods: An in vivo experiment was conducted for 49-day period on 36 adult male albino Wister rats divided equally into to four groups. After 7-day adaptation period, one group (T1) was fed on sterile skim milk along with basal diet for the next 28 days. Second (T2) and (T3) groups received spore biomass of Bacillus coagulans B37 and Bacillus pumilus B9, respectively, suspended in sterilized skim milk at 8-9 log colony-forming units/ml plus basal diet for 28 days, while control group (T4) was supplied with clean water along with basal diet. There was a 14-day post-treatment period. A total of 288 fecal samples (8 fecal collections per rat) were collected at every 7-day interval starting from 0 to 49 days and subjected to the enumeration of the counts of coliforms and lactobacilli and Bacillus spores using respective agar media. In vitro acid and bile tolerance tests on both the strains were performed. Results: The rats those (T2 and T3) received either B. coagulans B37 or B. pumilus B9 spore along with non-fermented skim milk showed decrease (p<0.01) in fecal coliform counts and increase (p<0.05) in both fecal lactobacilli and Bacillus spore counts as compared to the control group (T4) and the group fed only skim milk (T1). In vitro study indicated that both the strains were found to survive at pH 2.0 and 3.0 even up to 3 h and tolerate bile up to 2.0% concentration even after 12 h of exposure. Conclusions: This study revealed that oral administration of either B. coagulans B37 or B. pumilus B9 strains might be useful in reducing coliform counts accompanied by concurrent increase in lactobacilli counts in the intestinal flora in rats. PMID:27536040

  10. Effect of oral administration of Bacillus coagulans B37 and Bacillus pumilus B9 strains on fecal coliforms, Lactobacillus and Bacillus spp. in rat animal model.

    PubMed

    Haldar, Lopamudra; Gandhi, D N

    2016-07-01

    To investigate the effect of oral administration of two Bacillus strains on fecal coliforms, Lactobacillus and Bacillus spp. in rat animal model. An in vivo experiment was conducted for 49-day period on 36 adult male albino Wister rats divided equally into to four groups. After 7-day adaptation period, one group (T1) was fed on sterile skim milk along with basal diet for the next 28 days. Second (T2) and (T3) groups received spore biomass of Bacillus coagulans B37 and Bacillus pumilus B9, respectively, suspended in sterilized skim milk at 8-9 log colony-forming units/ml plus basal diet for 28 days, while control group (T4) was supplied with clean water along with basal diet. There was a 14-day post-treatment period. A total of 288 fecal samples (8 fecal collections per rat) were collected at every 7-day interval starting from 0 to 49 days and subjected to the enumeration of the counts of coliforms and lactobacilli and Bacillus spores using respective agar media. In vitro acid and bile tolerance tests on both the strains were performed. The rats those (T2 and T3) received either B. coagulans B37 or B. pumilus B9 spore along with non-fermented skim milk showed decrease (p<0.01) in fecal coliform counts and increase (p<0.05) in both fecal lactobacilli and Bacillus spore counts as compared to the control group (T4) and the group fed only skim milk (T1). In vitro study indicated that both the strains were found to survive at pH 2.0 and 3.0 even up to 3 h and tolerate bile up to 2.0% concentration even after 12 h of exposure. This study revealed that oral administration of either B. coagulans B37 or B. pumilus B9 strains might be useful in reducing coliform counts accompanied by concurrent increase in lactobacilli counts in the intestinal flora in rats.

  11. Straw and Xylan Utilization by Pure Cultures of Nitrogen-Fixing Azospirillum spp

    PubMed Central

    Halsall, Dorothy M.; Turner, Graham L.; Gibson, Alan H.

    1985-01-01

    Azospirillum spp. were shown to utilize both straw and xylan, a major component of straw, for growth with an adequate combined N supply and also under N-limiting conditions. For most strains examined, a semisolid agar medium was satisfactory, but several strains appeared to be capable of slow metabolism of the agar. Subsequently, experiments were done with acid-washed sand supplemented with various carbon sources. In these experiments, authenticated laboratory strains, and all 16 recent field isolates from straw-amended soils, of both A. brasilense and A. lipoferum possessed the ability to utilize straw and xylan as energy sources for nitrogen fixation. Neither carboxymethyl cellulose nor cellulose was utilized. The strains and isolates differed in their abilities to utilize xylan and straw and in the efficiency of nitrogenase activity (CO2/C2H2 ratio). Reasonable levels of activity could be maintained for at least 14 days in the sand cultures. Nitrogenase activity (acetylene reduction) was confirmed by 15N2 incorporation. The level of nitrogenase activity observed was dependent on the time of the addition of acetylene to the culture vessels. PMID:16346730

  12. Phenotypic characterization and colistin susceptibilities of carbapenem-resistant of Pseudomonas aeruginosa and Acinetobacter spp.

    PubMed

    Mohanty, Srujana; Maurya, Vijeta; Gaind, Rajni; Deb, Monorama

    2013-11-15

    Pseudomonas aeruginosa and Acinetobcter spp. are important nosocomial pathogens and carbapenem resistance is an emerging threat. Therapeutic options for infections with these isolates include colistin. This study was conducted to determine the prevalence of carbapenem resistance in P. aeruginosa and Acinetobacter spp. bloodstream isolates, phenotypically characterize the resistance mechanisms and evaluate the in vitro activity of colistin. Consecutive 145 (95 P.aeruginosa and 50 Acinetobacter spp.) non-repeat isolates were included. Antibiotic susceptibility testing was performed per CLSI guidelines. MIC for carbapenems and colistin was performed using Etest. Isolates showing reduced susceptibility or resistance to the carbapenems were tested for metallo-β-lactamase (MBL) production using imipenem-EDTA combined disk and MBL Etest. Carbapenem resistance was observed in 40% P. aeruginosa and 66.0% Acinetobacter spp. Carbapenem-resistant (CA-R) isolates were significantly (p <0.05) more frequently resistant to the other antibiotics than carbapenem-susceptible isolates. Approximately half of the CA-R strains were multidrug-resistant, and 3.1-5.5% were resistant to all antibiotics tested. MBL was found in 76.3% and 69.7% of the P. aeruginosa and Acinetobacter spp., respectively. Colistin resistance was observed in three (6.0%) Acinetobacter isolates and eight (8.4%) P. aeruginosa. MIC50 for carbapenems were two to four times higher for MBL-positive compared to MBL-negative isolates, but no difference was seen in MIC for colistin. Carbapenem resistance was observed to be mediated by MBL in a considerable number of isolates. Colistin is an alternative for infections caused by CA-R isolates; however, MIC testing should be performed whenever clinical use of colistin is considered.

  13. Transferability of SSR and RGA markers developed in Cynodon spp. to Zoysia spp.

    USDA-ARS?s Scientific Manuscript database

    Bermudagrass (Cynodon spp.) and zoysiagrass (Zoysia spp.), which are both used as warm-season turfgrasses in the United States, are members of subfamily Chloridoideae and are reported to be at least 55% genetically similar. To assess if molecular tools between the two species can be interchanged, 93...

  14. Detection of Viral Hemorrhagic Septicemia Virus (VHSV) from Diporeia spp. (Pontoporeiidae, Amphipoda) in the Laurentian Great Lakes, USA

    PubMed Central

    2011-01-01

    The mode of viral hemorrhagic septicemia virus (VHSV) transmission in the Great Lakes basin is largely unknown. In order to assess the potential role of macroinvertebrates in VHSV transmission, Diporeia spp., a group of amphipods that are preyed upon by a number of susceptible Great Lakes fishes, were collected from seven locations in four of the Great Lakes and analyzed for the presence of VHSV. It was demonstrated that VHSV is present in some Diporeia spp. samples collected from lakes Ontario, Huron, and Michigan, but not from Lake Superior. Phylogenetic comparison of partial nucleoprotein (N) gene sequences (737 base pairs) of the five isolates to sequences of 13 other VHSV strains showed the clustering of Diporeia spp. isolates with the VHSV genotype IVb. This study reports the first incidence of a fish-pathogenic rhabdovirus being isolated from Diporeia, or any other crustacean and underscores the role macroinvertebrates may play in VHSV ecology. PMID:21210995

  15. New Chromogenic Agar Medium for the Identification of Candida spp.

    PubMed Central

    Cooke, Venitia M.; Miles, R. J.; Price, R. G.; Midgley, G.; Khamri, W.; Richardson, A. C.

    2002-01-01

    A new chromogenic agar medium (Candida diagnostic agar [CDA]) for differentiation of Candida spp. is described. This medium is based on Sabouraud dextrose agar (Oxoid CM41) and contains (per liter) 40.0 g of glucose, 10.0 g of mycological peptone, and 15.0 g of agar along with a novel chromogenic glucosaminidase substrate, ammonium 4-{2-[4-(2-acetamido-2-deoxy-β-d-glucopyranosyloxy)-3-methoxyphenyl]-vinyl}-1-(propan-3-yl-oate)-quinolium bromide (0.32 g liter−1). The glucosaminidase substrate in CDA was hydrolyzed by Candida albicans and Candida dubliniensis, yielding white colonies with deep-red spots on a yellow transparent background after 24 to 48 h of incubation at 37°C. Colonies of Candida tropicalis and Candida kefyr were uniformly pink, and colonies of other Candida spp., including Candida glabrata and Candida parapsilosis, were white. CDA was evaluated by using 115 test strains of Candida spp. and other clinically important yeasts and was compared with two commercially available chromogenic agars (Candida ID agar [bioMerieux] and CHROMagar Candida [CHROMagar Company Ltd.]). On all three agars, colonies of C. albicans were not distinguished from colonies of C. dubliniensis. However, for the group containing C. albicans plus C. dubliniensis, both the sensitivity and the specificity of detection when CDA was used were 100%, compared with values of 97.6 and 100%, respectively, with CHROMagar Candida and 100 and 96.8%, respectively, with Candida ID agar. In addition, for the group containing C. tropicalis plus C. kefyr, the sensitivity and specificity of detection when CDA was used were also 100%, compared with 72.7 and 98.1%, respectively, with CHROMagar Candida. Candida ID agar did not differentiate C. tropicalis and C. kefyr strains but did differentiate members of a broader group (C. tropicalis, C. kefyr, Candida lusitaniae plus Candida guilliermondii); the sensitivity and specificity of detection for members of this group were 94.7 and 93

  16. Selection and evaluation of Malaysian Bacillus spp. strains as potential probiotics in cultured tiger grouper (Epinephelus fuscoguttatus).

    PubMed

    Yasin, Ina-salwany Md; Razak, Nabilah Fatin; Natrah, F M I; Harmin, Sharr Azni

    2016-07-01

    A total of 58 Gram-positive bacteria strains were isolated from the marine environment and screened for potential probiotics for disease prevention and improving the productivity of tiger grouper Epinephelus fuscoguttatus larvae and juveniles. The bacteria were identified as Bacillus licheniformis, B. subtilis, B. circulans, B. sphaericus, B. cereus, Brevibacillus brevis, Corynebacterium propinquum, Leifsonia aquatica and Paenibacillus macerans. Only 24 strains showed antagonistic activities against four pathogenic strains; Vibrio alginolyticus, V. harveyi, V. parahaemolyticus and Aeromonas hydrophila, where two of the Bacillus strains, B12 and B45 demonstrated intermediate to highest level of inhibitory activity against these pathogenic strains, respectively. Further assessment by co-culture assay showed that Bacillus strain B12 exhibited a total inhibition of V. alginolyticus, while B45 strain displayed no inhibitory activity. Mixed culture of Bacillus B12 and B45 strains to outcompete V. alginolyticus was observed at a cell density of 10(7) CFU ml(-1). Molecular identification and phylogenetic tree analysis have categorized Bacillus strain B12 to the reference strains GQ340480 and JX290193 of? B. amyloliquafaciens, and Bacillus strain B45 with a reference strain JF496522 of B. subtilis. Safety tests of probionts by intraperitoneal administration of B12 and B45 strains at cell densities of 103, 105 and 10(7) CFU ml(-1) revealed no abnormalities and cent percent survival for healthy Epinephelus fuscoguttatus juveniles within 15 days of experimental period. Overall, the study revealed that Bacillus B12 strain possesses tremendous probiotic potential that could be used as a feed supplement in tiger grouper diets. ?

  17. Alginate Oligosaccharides Inhibit Fungal Cell Growth and Potentiate the Activity of Antifungals against Candida and Aspergillus spp

    PubMed Central

    Tøndervik, Anne; Sletta, Håvard; Klinkenberg, Geir; Emanuel, Charlotte; Powell, Lydia C.; Pritchard, Manon F.; Khan, Saira; Craine, Kieron M.; Onsøyen, Edvar; Rye, Phil D.; Wright, Chris; Thomas, David W.; Hill, Katja E.

    2014-01-01

    The oligosaccharide OligoG, an alginate derived from seaweed, has been shown to have anti-bacterial and anti-biofilm properties and potentiates the activity of selected antibiotics against multi-drug resistant bacteria. The ability of OligoG to perturb fungal growth and potentiate conventional antifungal agents was evaluated using a range of pathogenic fungal strains. Candida (n = 11) and Aspergillus (n = 3) spp. were tested using germ tube assays, LIVE/DEAD staining, scanning electron microscopy (SEM), atomic force microscopy (AFM) and high-throughput minimum inhibition concentration assays (MICs). In general, the strains tested showed a significant dose-dependent reduction in cell growth at ≥6% OligoG as measured by optical density (OD600; P<0.05). OligoG (>0.5%) also showed a significant inhibitory effect on hyphal growth in germ tube assays, although strain-dependent variations in efficacy were observed (P<0.05). SEM and AFM both showed that OligoG (≥2%) markedly disrupted fungal biofilm formation, both alone, and in combination with fluconazole. Cell surface roughness was also significantly increased by the combination treatment (P<0.001). High-throughput robotic MIC screening demonstrated the potentiating effects of OligoG (2, 6, 10%) with nystatin, amphotericin B, fluconazole, miconazole, voriconazole or terbinafine with the test strains. Potentiating effects were observed for the Aspergillus strains with all six antifungal agents, with an up to 16-fold (nystatin) reduction in MIC. Similarly, all the Candida spp. showed potentiation with nystatin (up to 16-fold) and fluconazole (up to 8-fold). These findings demonstrate the antifungal properties of OligoG and suggest a potential role in the management of fungal infections and possible reduction of antifungal toxicity. PMID:25409186

  18. Small rodents as reservoirs of Cryptosporidium spp. and Giardia spp. in south-western Poland.

    PubMed

    Perec-Matysiak, Agnieszka; Buńkowska-Gawlik, Katarzyna; Zaleśny, Grzegorz; Hildebrand, Joanna

    2015-01-01

    Cryptosporidium spp. and Giardia spp. have been detected in a range of host species, including rodents. The aim of this study was to determine the distribution of these pathogens and recognition of the reservoir role of rodents in the maintenance of these pathogens in south-western Poland. Additionally, preliminary molecular studies were conducted to elucidate the species and genotypes of Cryptosporidium and Giardia identified in this study. Stool samples (n=266) from A. agrarius, A. flavicollis and M. glareolus, were subjected for analyses. Values of prevalence were 61.7, 68.3 and 68.1%, respectively, for Cryptosporidium spp. and 41.7, 24.4 and 38.4%, respectively, for Giardia spp. There was a statistically significant correlation between host species and Giardia infection where A. agrarius was the species of the highest prevalence. Statistically significant differences were not found for comparisons made for study sites and occurrence of Giardia spp. and Cryptosporidium spp. Due to preliminary nested PCR results, specific amplifications of Cryptosporidium COWP and SSU rRNA genes were obtained for several isolates taken from rodent host species. One isolate recovered from A. agrarius (from a semi-aquatic, urban area) was identified as C. parvum and revealed 100% similarity with sequences obtained from humans. To the best of the knowledge of the authors, this is the first record of the C. parvum zoonotic species from the striped field mouse. Also recorded were the first findings of C. ubiquitum from three small rodent species.

  19. Antimicrobial Susceptibility of Bacillus Strains Isolated from Primary Starters for African Traditional Bread Production and Characterization of the Bacitracin Operon and Bacitracin Biosynthesis

    PubMed Central

    Sørensen, Kim I.; Thorsen, Line; Stuer-Lauridsen, Birgitte; Abdelgadir, Warda S.; Nielsen, Dennis S.; Derkx, Patrick M. F.; Jespersen, Lene

    2012-01-01

    Bacillus spp. are widely used as feed additives and probiotics. However, there is limited information on their resistance to various antibiotics, and there is a growing concern over the transfer of antibiotic resistance genes. The MIC for 8 antibiotics was determined for 85 Bacillus species strains, Bacillus subtilis subsp. subtilis (n = 29), Bacillus licheniformis (n = 38), and Bacillus sonorensis (n = 18), all of which were isolated from starters for Sudanese bread production. All the strains were sensitive to tetracycline (8.0 mg/liter), vancomycin (4.0 mg/liter), and gentamicin (4.0 mg/liter) but resistant to streptomycin. Sensitivity to clindamycin, chloramphenicol, and kanamycin was species specific. The erythromycin resistance genes ermD and ermK were detected by PCR in all of the erythromycin-resistant (MIC, ≥16.0 mg/liter) B. licheniformis strains and one erythromycin-sensitive (MIC, 4.0 mg/liter) B. licheniformis strain. Several amino acid changes were present in the translated ermD and ermK nucleotide sequences of the erythromycin-sensitive strain, which could indicate ErmD and ErmK protein functionalities different from those of the resistance strains. The ermD and ermK genes were localized on an 11.4-kbp plasmid. All of the B. sonorensis strains harbored the bacitracin synthetase gene, bacA, and the transporter gene bcrA, which correlated with their observed resistance to bacitracin. Bacitracin was produced by all the investigated species strains (28%), as determined by ultra-high-definition quadrupole time-of-flight liquid chromatography-mass spectrometry (UHD-QTOF LC/MS). The present study has revealed species-specific variations in the antimicrobial susceptibilities of Bacillus spp. and provides new information on MIC values, as well as the occurrence of resistance genes in Bacillus spp., including the newly described species B. sonorensis. PMID:22941078

  20. Antimicrobial susceptibility of Bacillus strains isolated from primary starters for African traditional bread production and characterization of the bacitracin operon and bacitracin biosynthesis.

    PubMed

    Adimpong, David B; Sørensen, Kim I; Thorsen, Line; Stuer-Lauridsen, Birgitte; Abdelgadir, Warda S; Nielsen, Dennis S; Derkx, Patrick M F; Jespersen, Lene

    2012-11-01

    Bacillus spp. are widely used as feed additives and probiotics. However, there is limited information on their resistance to various antibiotics, and there is a growing concern over the transfer of antibiotic resistance genes. The MIC for 8 antibiotics was determined for 85 Bacillus species strains, Bacillus subtilis subsp. subtilis (n = 29), Bacillus licheniformis (n = 38), and Bacillus sonorensis (n = 18), all of which were isolated from starters for Sudanese bread production. All the strains were sensitive to tetracycline (8.0 mg/liter), vancomycin (4.0 mg/liter), and gentamicin (4.0 mg/liter) but resistant to streptomycin. Sensitivity to clindamycin, chloramphenicol, and kanamycin was species specific. The erythromycin resistance genes ermD and ermK were detected by PCR in all of the erythromycin-resistant (MIC, ≥16.0 mg/liter) B. licheniformis strains and one erythromycin-sensitive (MIC, 4.0 mg/liter) B. licheniformis strain. Several amino acid changes were present in the translated ermD and ermK nucleotide sequences of the erythromycin-sensitive strain, which could indicate ErmD and ErmK protein functionalities different from those of the resistance strains. The ermD and ermK genes were localized on an 11.4-kbp plasmid. All of the B. sonorensis strains harbored the bacitracin synthetase gene, bacA, and the transporter gene bcrA, which correlated with their observed resistance to bacitracin. Bacitracin was produced by all the investigated species strains (28%), as determined by ultra-high-definition quadrupole time-of-flight liquid chromatography-mass spectrometry (UHD-QTOF LC/MS). The present study has revealed species-specific variations in the antimicrobial susceptibilities of Bacillus spp. and provides new information on MIC values, as well as the occurrence of resistance genes in Bacillus spp., including the newly described species B. sonorensis.

  1. Dynamics of sterol synthesis during development of Leishmania spp. parasites to their virulent form.

    PubMed

    Yao, Chaoqun; Wilson, Mary E

    2016-04-12

    The Leishmania spp. protozoa, the causative agents of the "neglected" tropical disease leishmaniasis, are transmitted to mammals by sand fly vectors. Within the sand fly, parasites transform from amastigotes to procyclic promastigotes, followed by development of virulent (metacyclic) promastigote forms. The latter are infectious to mammalian hosts. Biochemical components localized in the parasite plasma membrane such as proteins and sterols play a pivotal role in Leishmania pathogenesis. Leishmania spp. lack the enzymes for cholesterol synthesis, and the dynamics of sterol acquisition and biosynthesis in parasite developmental stages are not understood. We hypothesized that dynamic changes in sterol composition during metacyclogenesis contribute to the virulence of metacyclic promastigotes. Sterols were extracted from logarithmic phase or metacyclic promastigotes grown in liquid culture with or without cholesterol, and analyzed qualitatively and quantitatively by gas chromatograph-mass spectrometry (GC-MS). TriTrypDB was searched for identification of genes involved in Leishmania sterol biosynthetic pathways. In total nine sterols were identified. There were dynamic changes in sterols during promastigote metacyclogenesis. Cholesterol in the culture medium affected sterol composition in different parasite stages. There were qualitative and relative quantitative differences between the sterol content of virulent versus avirulent parasite strains. A tentative sterol biosynthetic pathway in Leishmania spp. promastigotes was identified. Significant differences in sterol composition were observed between promastigote stages, and between parasites exposed to different extracellular cholesterol in the environment. These data lay the foundation for further investigating the role of sterols in the pathogenesis of Leishmania spp. infections.

  2. Season-Specific Occurrence of Potentially Pathogenic Vibrio spp. on the Southern Coast of South Korea.

    PubMed

    Di, Doris Y W; Lee, Anna; Jang, Jeonghwan; Han, Dukki; Hur, Hor-Gil

    2017-02-01

    Vibrio species are widely distributed in warm estuarine and coastal environments, and they can infect humans through the consumption of raw and mishandled contaminated seafood. In this study, we aimed to isolate and observe the distribution of enteropathogenic Vibrio spp. from environments of the southern coast of South Korea over a season cycle. A total of 10,983 isolates of Vibrio spp. were obtained from tidal water and mud samples over a 1-year period from five sampling sites along the southwest coast of South Korea. We found that Vibrio alginolyticus (n = 6,262) and Vibrio parahaemolyticus (n = 1,757) were ubiquitous in both tidal water and mud year round, whereas Vibrio cholerae (n = 24) and Vibrio vulnificus (n = 130) were seasonally specific to summer. While all V. cholerae isolates were nontoxigenic (non-O1 and non-O139), more than 88% of V. vulnificus isolates possessed the virulence factor elastolytic protease (encoded by vvp). Interestingly, V. parahaemolyticus, which was omnipresent in all seasons, contained the virulence factors thermostable direct hemolysin (encoded by tdh) and thermostable direct hemolysin-related hemolysin (encoded by trh) in larger amounts in June (29 trh-positive strains) and September (14 tdh-, 36 trh-, and 12 tdh- and trh-positive strains) than in December (4 trh-positive strains) and February (3 tdh-positive strains), and virulence factors were absent from isolates detected in April. To understand why virulence factors were detected only in the warm season and were absent in the cold season although the locations are static, long-term monitoring and particularly seasonal study are necessary. The presence of enteropathogenic Vibrio species (Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus), which cause acute diarrheal infection, septicemia, and wound infections upon ingestion through food and water, is usually associated with temperature. The World Health Organization (WHO) has estimated that there are 1.4 to 4

  3. Season-Specific Occurrence of Potentially Pathogenic Vibrio spp. on the Southern Coast of South Korea

    PubMed Central

    Di, Doris Y. W.; Lee, Anna; Jang, Jeonghwan; Han, Dukki

    2016-01-01

    ABSTRACT Vibrio species are widely distributed in warm estuarine and coastal environments, and they can infect humans through the consumption of raw and mishandled contaminated seafood. In this study, we aimed to isolate and observe the distribution of enteropathogenic Vibrio spp. from environments of the southern coast of South Korea over a season cycle. A total of 10,983 isolates of Vibrio spp. were obtained from tidal water and mud samples over a 1-year period from five sampling sites along the southwest coast of South Korea. We found that Vibrio alginolyticus (n = 6,262) and Vibrio parahaemolyticus (n = 1,757) were ubiquitous in both tidal water and mud year round, whereas Vibrio cholerae (n = 24) and Vibrio vulnificus (n = 130) were seasonally specific to summer. While all V. cholerae isolates were nontoxigenic (non-O1 and non-O139), more than 88% of V. vulnificus isolates possessed the virulence factor elastolytic protease (encoded by vvp). Interestingly, V. parahaemolyticus, which was omnipresent in all seasons, contained the virulence factors thermostable direct hemolysin (encoded by tdh) and thermostable direct hemolysin-related hemolysin (encoded by trh) in larger amounts in June (29 trh-positive strains) and September (14 tdh-, 36 trh-, and 12 tdh- and trh-positive strains) than in December (4 trh-positive strains) and February (3 tdh-positive strains), and virulence factors were absent from isolates detected in April. To understand why virulence factors were detected only in the warm season and were absent in the cold season although the locations are static, long-term monitoring and particularly seasonal study are necessary. IMPORTANCE The presence of enteropathogenic Vibrio species (Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus), which cause acute diarrheal infection, septicemia, and wound infections upon ingestion through food and water, is usually associated with temperature. The World Health Organization (WHO) has estimated that

  4. Activity of pradofloxacin against Porphyromonas and Prevotella spp. Implicated in periodontal disease in dogs: susceptibility test data from a European multicenter study.

    PubMed

    Stephan, Bernd; Greife, Heinrich A; Pridmore, Andrew; Silley, Peter

    2008-06-01

    Collaborating veterinarians from five European countries collected subgingival bacterial samples from dogs exhibiting clinical periodontal disease. Sterile endodontic paper points were used for collection of the samples, which were transported to a central laboratory for susceptibility testing. Anaerobic bacteria were isolated and Porphyromonas and Prevotella isolates identified to the species level; susceptibility to pradofloxacin and metronidazole was determined using the CLSI agar dilution methodology. A total of 630 isolates, 310 of Porphyromonas spp. and 320 of Prevotella spp., were isolated. Pradofloxacin MIC data for all isolates were in the range of < or =0.016 to 1 microg/ml, the overall MIC(50) was 0.062, and the overall MIC(90) was 0.25 microg/ml. There were no differences in activity against Porphyromonas and Prevotella isolates or in the pradofloxacin susceptibility distributions from the different European countries. All isolates were within the wild-type distribution and were fully susceptible to pradofloxacin. Metronidazole was also highly active against these strains: 316 of 320 Prevotella strains (98.8%) and 309 of 310 Porphyromonas strains (99.7%) were susceptible (MICs of < or =8 microg/ml). However, three Prevotella strains had intermediate metronidazole susceptibility (MICs of 16 microg/ml), while one Prevotella and one Porphyromonas strain were metronidazole resistant (MICs of 128 and 256 microg/ml, respectively). Pradofloxacin, a novel broad-spectrum fluoroquinolone, demonstrates a high degree of antianaerobic activity against strains isolated from clinical cases of periodontal disease and shows activity against metronidazole-resistant isolates. The broad-spectrum activity of pradofloxacin makes it a suitable candidate for the treatment of periodontal disease in dogs.

  5. Destruction of Mycobacterium paratuberculosis, Salmonella spp., and Mycoplasma spp. in raw milk by a commercial on-farm high-temperature, short-time pasteurizer.

    PubMed

    Stabel, J R; Hurd, S; Calvente, L; Rosenbusch, R F

    2004-07-01

    The 2002 NAHM's Dairy Survey indicated that 87.2% of dairy farms in the United States feed waste milk to their neonatal calves. Although cost-effective, this practice can lead to increased calf morbidity and mortality due to ingestion of pathogenic agents. In an effort to reduce the risk of infection, dairy producers are implementing on-farm pasteurization of the waste milk as a control procedure before feeding the milk to calves. In the present study, the efficacy of a commercial high-temperature, short-time (HTST) on-farm pasteurizer unit to destroy Mycobacterium paratuberculosis, Salmonella enterica spp., and Mycoplasma spp. in raw milk was evaluated. Replicate experiments were run for 3 isolates of M. paratuberculosis, 3 serovars of Salmonella (derby, dublin, typhimurium); and 4 species of Mycoplasma (bovis, californicum, canadense, serogroup 7) at 2 different levels of experimental inoculation. In addition, HTST pasteurization experiments were performed on colostrum experimentally inoculated with M. paratuberculosis. After culture of the pasteurized milk samples, no viable M. paratuberculosis, Salmonella, or Mycoplasma were recovered, regardless of species, strain, or isolate. Pasteurization of colostrum was also effective in the destruction of M. paratuberculosis but resulted in an average 25% reduction in colostral immunoglobulin. These results suggest that HTST pasteurization is effective in generating a safer product to feed to young calves.

  6. Adaptation to enemy shifts: rapid resistance evolution to local Vibrio spp. in invasive Pacific oysters

    PubMed Central

    Wendling, Carolin C.; Wegner, K. Mathias

    2015-01-01

    One hypothesis for the success of invasive species is reduced pathogen burden, resulting from a release from infections or high immunological fitness of invaders. Despite strong selection exerted on the host, the evolutionary response of invaders to newly acquired pathogens has rarely been considered. The two independent and genetically distinct invasions of the Pacific oyster Crassostrea gigas into the North Sea represent an ideal model system to study fast evolutionary responses of invasive populations. By exposing both invasion sources to ubiquitous and phylogenetically diverse pathogens (Vibrio spp.), we demonstrate that within a few generations hosts adapted to newly encountered pathogen communities. However, local adaptation only became apparent in selective environments, i.e. at elevated temperatures reflecting patterns of disease outbreaks in natural populations. Resistance against sympatric and allopatric Vibrio spp. strains was dominantly inherited in crosses between both invasion sources, resulting in an overall higher resistance of admixed individuals than pure lines. Therefore, we suggest that a simple genetic resistance mechanism of the host is matched to a common virulence mechanism shared by local Vibrio strains. This combination might have facilitated a fast evolutionary response that can explain another dimension of why invasive species can be so successful in newly invaded ranges. PMID:25716784

  7. Enzymatic Activity of Candida spp. from Oral Cavity and Urine in Children with Nephrotic Syndrome.

    PubMed

    Olczak-Kowalczyk, Dorota; Roszkowska-Blaim, Maria; Dąbkowska, Maria; Swoboda-Kopeć, Ewa; Gozdowski, Dariusz; Mizerska-Wasiak, Małgorzata; Demkow, Urszula; Pańczyk-Tomaszewska, Małgorzata

    2017-01-01

    Oral colonization with Candida spp. is not synonymous with a systemic active infection. The aim of the study was to evaluate enzymatic activity of Candida strains isolated from the oral cavity in patients with nephrotic syndrome (NS) and to compare it with the activity determined in urine. We studied 32 children with NS and 26 control healthy children. Children with NS were treated with glucocorticosteroids, cyclosporin A, mycophenolate mofetil or azathioprine. In all children, API-ZYM enzymatic tests were performed to evaluate hydrolytic enzymes of Candida isolated from the oral cavity and in urine. Candida spp. were isolated from the oral cavity in 11 patients with NS (34.4%), all receiving immunosuppressive treatment. All strains produced valine arylamidase, 9 alpha-glucosidase (E16), and 9 N-acetyl-beta-glucosaminidase (E18). A positive correlation between the presence of Candida in the oral cavity and E16 and E18 enzymatic activity in both oral cavity and urine was found. A dose of cyclosporin A had an effect on the enzymatic activity (p < 0.05). We conclude that immunosuppressive treatment of NS in children may predispose to systemic Candida invasion. The results of this study suggest that oral candida infection should be monitored in children with nephrotic syndrome, particularly those treated with immunosuppressive agents.

  8. Phenotypic and genotypic identification of Aeromonas spp. isolated from a chlorinated intermittent water distribution system in Lebanon.

    PubMed

    Tokajian, Sima; Hashwa, Fuad

    2004-06-01

    Aeromonas spp. were detected in samples collected from both untreated groundwater and treated drinking water in Lebanon. Aeromonas spp. levels ranged between 2 and 1,100 colonies per 100 ml in the intake underground well and between 3 and 43 colonies per 100 ml in samples from the distribution system. Samples positive for Aeromonas spp. from the network had a free chlorine level ranging between 0 and 0.4 mg l(-1). Multiple antibiotic-resistance was common among the isolated aeromonads; all were resistant to amoxycillin while 92% showed resistance to cephalexin. Haemolysis on blood agar was detected in 52% of the isolates recovered from the distribution network and 81% of isolates from the untreated underground source. The Biolog microbial identification system assigned identities to all of the isolated presumptive aeromonads (at least at the genus level), which was not the case with the API 20NE strips. Differences at the species level were observed when results from the Biolog system were compared with identification based on the MicroSeq 500 16S rDNA sequence analysis. The presence of Aeromonas spp. in drinking water can be an important threat to public health, thus greater awareness of Aeromonas strains as potential enteropathogens is warranted.

  9. Evaluation of new antimicrobial agents on Bacillus spp. strains: docking affinity and in vitro inhibition of glutamate-racemase.

    PubMed

    Tamay-Cach, Feliciano; Correa-Basurto, José; Villa-Tanaca, Lourdes; Mancilla-Percino, Teresa; Juárez-Montiel, Margarita; Trujillo-Ferrara, José G

    2013-10-01

    Three glutamic acid derivatives, two boron-containing and one imide-containing compound, were synthesized and tested for antimicrobial activity targeting glutamate-racemase. Antimicrobial effect was evaluated over Bacillus spp. Docking analysis shown that the test compounds bind near the active site of racemase isoforms, suggesting an allosteric effect. The boron derivatives had greater affinity than the imide derivative. In vitro assays shown good antimicrobial activity for the boron-containing compounds, and no effectiveness for the imide-containing compounds. The minimum inhibitory concentration of tetracycline, used as standard, was lower than that of the boron-containing derivatives. However, it seems that the boron-containing derivatives are more selective for bacteria. Experimental evidence suggests that the boron-containing derivatives act by inhibiting the racemase enzyme. Therefore, these test compounds probably impede the formation of the bacterial cell wall. Thus, the boron-containing glutamic acid derivatives should certainly be of interest for future studies as antimicrobial agents for Bacillus spp.

  10. Molecular Characterization of Leptospira spp. in Environmental Samples from North-Eastern Malaysia Revealed a Pathogenic Strain, Leptospira alstonii

    PubMed Central

    Azali, Muhammad Azharuddin; Yean Yean, Chan; Aminuddin Baki, Nurul Najian

    2016-01-01

    The presence of pathogenic Leptospira spp. in the environment poses threats to human health. The aim of this study was to detect and characterize Leptospira spp. from environmental samples. A total of 144 samples comprised of 72 soil and 72 water samples were collected from markets and recreational areas in a north-eastern state in Malaysia. Samples were cultured on Ellinghausen and McCullough modified by Johnson and Harris media. Leptospires were positive in 22.9% (n = 33) of the isolates. Based on partial sequences of 16S rRNA, a pathogenic leptospire, Leptospira alstonii (n = 1/33), was identified in 3% of the isolates followed by intermediate leptospire (L. wolffii, n = 1/33, and L. licerasiae, n = 7/33) and nonpathogenic leptospire, L. meyeri (n = 22/33) in 24.2% and 66.7%, respectively. This study demonstrates the presence of a clinically significant pathogenic L. alstonii in the environments which could pose health risks to the occupants and visitors. PMID:27127522

  11. High-antibacterial activity of Urtica spp. seed extracts on food and plant pathogenic bacteria.

    PubMed

    Körpe, Didem Aksoy; İşerı, Özlem Darcansoy; Sahin, Feride Iffet; Cabi, Evren; Haberal, Mehmet

    2013-05-01

    The aim of this study was to comparatively evaluate antibacterial activities of methanol (MetOH) and aqueous (dw) leaf (L), root (R) and seed (S) extracts of Urtica dioica L. (Ud; stinging nettle) and Urtica pilulifera L. (Up; Roman nettle) on both food- and plant-borne pathogens, with total phenolic contents and DPPH radical scavenging activities (DRSA). MetOH extracts of leaves and roots of U. dioica had the highest DRSA. Extracts with high antibacterial activity were in the order Up-LMetOH (13/16) > Ud-SMetOH (11/16) > Up-SMetOH (9/16). Results obtained with Up-SMetOH against food spoiling Bacillus pumilus, Shigella spp. and Enterococcus gallinarum with minimum inhibitory concentrations (MICs) in 128-1024 μg/ml range seem to be promising. Up-SMetOH also exerted strong inhibition against Clavibacter michiganensis with a considerably low MIC (32 μg/ml). Ud-SMetOH and Up-LMetOH were also effective against C. michiganensis (MIC = 256 and 1024 μg/ml, respectively). Ud-SMetOH and Ud-RMetOH had also antimicrobial activity against Xanthomonas vesicatoria (MIC = 512 and 1024 μg/ml, respectively). Results presented here demonstrate high-antibacterial activity of U. pilulifera extracts and U. dioica seed extract against phytopathogens for the first time, and provide the most comprehensive data on the antibacterial activity screening of U. pilulifera against food-borne pathogens. Considering limitations in plant disease control, antibacterial activities of these extracts would be of agricultural importance.

  12. Suppression of Pythium spp. by Trichoderma spp. during germination of tomato seeds in soilless growing media.

    PubMed

    Aerts, R; De Schutter, B; Rombouts, L

    2002-01-01

    In the Flemish horticulture Pythium spp. is an important pathogen of tomato plants (Lycopersicon esculenthum) in soilless growing media. Therefore some experiments were conducted to evaluate the possibility of decreasing the damage caused by Pythium spp. by Trichoderma spp. In a tray with several growing media, a suspension of Trichoderma conidia (10(6)/ml growing medium) was applied two weeks before sowing. On some objects, a compost extract (Biostimulus) was added. The growing media used in the experiment were rockwool, recycled rockwool and recycled coconut fibre. After sowing, the trays were covered with perlite. Three isolates of Trichoderma spp.: T. asperellum (Biofungus), T. harzianum (Tri 003) and Trichoderma sp. (KHK) and two isolates of Pythium spp.: P. ultimum (MUCL) en P. aphanidermatum (HRI, UK) were used. Propamocarb was used as a chemical standard. The use of coconut fibre growing medium resulted in a higher percentage (36%) of germination than the rockwool media when only Pythium spp. was used. The presence of the spontaneous developing microflora in the coconut fibre medium gave probably also a suppression of Pythium spp. For that reason the results of the suppression by Trichoderma spp. are not easy to explain and very variable on the different objects. Pythium ultimum was more suppressed than P. aphanidermatum on all the growing media and the application of all the Trichoderma isolates increased the germination percentage of tomato seeds. T. asperellum (Biofungus) gave on rockwool also a good result for the suppression of P. aphanidermatum (increasing of germination with 48%). This effect was comparable with the propamocarb treatment (48%). T. harzianum (Tri 003) gave a small suppression (22%) and Trichoderma sp. (KHK) gave almost no suppression of P. aphanidermatum (7%). When less Trichoderma conidia were applied the germination percentage decreased. The adding of a compost extract (Biostimulus) had no influence on the results. This experiment

  13. Identification and discrimination of Toxoplasma gondii, Sarcocystis spp., Neospora spp., and Cryptosporidium spp. by righ-resolution melting analysis

    PubMed Central

    2017-01-01

    The objective of this study was to standardize the high-resolution melting method for identification and discrimination of Toxoplasma gondii, Sarcocystis spp., Neospora spp., and Cryptosporidium spp. by amplification of 18S ribosomal DNA (rDNA) using a single primer pair. The analyses were performed on individual reactions (containing DNA from a single species of a protozoan), on duplex reactions (containing DNA from two species of protozoa in each reaction), and on a multiplex reaction (containing DNA of four parasites in a single reaction). The proposed method allowed us to identify and discriminate the four species by analyzing the derivative, normalized, and difference melting curves, with high reproducibility among and within the experiments, as demonstrated by low coefficients of variation (less than 2.2% and 2.0%, respectively). This is the first study where this method is used for discrimination of these four species of protozoa in a single reaction. PMID:28346485

  14. Susceptibilities of Legionella spp. to Newer Antimicrobials In Vitro

    PubMed Central

    Schülin, T.; Wennersten, C. B.; Ferraro, M. J.; Moellering, R. C.; Eliopoulos, G. M.

    1998-01-01

    The in vitro activities of 13 antimicrobial agents against 30 strains of Legionella spp. were determined. Rifapentine, rifampin, and clarithromycin were the most potent agents (MICs at which 90% of isolates are inhibited [MIC90s], ≤0.008 μg/ml). The ketolide HMR 3647 and the fluoroquinolones levofloxacin and BAY 12-8039 (MIC90s, 0.03 to 0.06 μg/ml) were more active than erythromycin A or roxithromycin. The MIC90s of dalfopristin-quinupristin and linezolid were 0.5 and 8 μg/ml, respectively. Based on class characteristics and in vitro activities, several of these agents may have potential roles in the treatment of Legionella infections. PMID:9624509

  15. Serological evidence of exposure to tick-borne agents in opossums (Didelphis spp.) in the state of São Paulo, Brazil.

    PubMed

    Melo, Andréia Lima Tomé; Aguiar, Daniel Moura de; Spolidorio, Mariana Granziera; Yoshinari, Natalino Hajime; Matushima, Eliana Reiko; Labruna, Marcelo Bahia; Horta, Mauricio Claudio

    2016-06-07

    This work involved a serological investigation of tick-borne pathogens in opossums in eight municipalities of the state of São Paulo, Brazil. Serum samples from 109 opossums (91 Didelphis aurita and 18 Didelphis albiventris) were tested to detect antibodies to Rickettsia rickettsii (Taiaçu strain, 1:64 cut-off) and Ehrlichia canis (São Paulo strain, 1:40 cut-off), by indirect immunofluorescence assay (IFA); and against Borrelia burgdorferi (strain G39/40) by enzyme-linked immunosorbent assay (ELISA). The presence of antibodies to anti-R. rickettsii, anti-E. canis and anti-B. burgdorferi was detected in 32 (29.35%), 16 (14.67%) and 30 (27.52%) opossums, respectively. Opossum endpoint titers ranged from 64 to 1,024 for R. rickettsii, from 40 to 160 for E. canis, and from 400 to >51,200 for B. burgdorferi. These serological results suggest that opossums have been exposed to Rickettsia spp., Ehrlichia spp., and B. burgdorferi-related agents in the state of São Paulo. Our study underscores the need for further research about these agents in this study area, in view of the occurrence of Spotted Fever and Baggio-Yoshinari Syndrome disease in humans in the state of São Paulo, Brazil.

  16. Design and verification of a pangenome microarray oligonucleotide probe set for Dehalococcoides spp.

    PubMed

    Hug, Laura A; Salehi, Maryam; Nuin, Paulo; Tillier, Elisabeth R; Edwards, Elizabeth A

    2011-08-01

    Dehalococcoides spp. are an industrially relevant group of Chloroflexi bacteria capable of reductively dechlorinating contaminants in groundwater environments. Existing Dehalococcoides genomes revealed a high level of sequence identity within this group, including 98 to 100% 16S rRNA sequence identity between strains with diverse substrate specificities. Common molecular techniques for identification of microbial populations are often not applicable for distinguishing Dehalococcoides strains. Here we describe an oligonucleotide microarray probe set designed based on clustered Dehalococcoides genes from five different sources (strain DET195, CBDB1, BAV1, and VS genomes and the KB-1 metagenome). This "pangenome" probe set provides coverage of core Dehalococcoides genes as well as strain-specific genes while optimizing the potential for hybridization to closely related, previously unknown Dehalococcoides strains. The pangenome probe set was compared to probe sets designed independently for each of the five Dehalococcoides strains. The pangenome probe set demonstrated better predictability and higher detection of Dehalococcoides genes than strain-specific probe sets on nontarget strains with <99% average nucleotide identity. An in silico analysis of the expected probe hybridization against the recently released Dehalococcoides strain GT genome and additional KB-1 metagenome sequence data indicated that the pangenome probe set performs more robustly than the combined strain-specific probe sets in the detection of genes not included in the original design. The pangenome probe set represents a highly specific, universal tool for the detection and characterization of Dehalococcoides from contaminated sites. It has the potential to become a common platform for Dehalococcoides-focused research, allowing meaningful comparisons between microarray experiments regardless of the strain examined.

  17. Prevalence of food contamination with Listeria spp. in Kermanshah, Islamic Republic of Iran.

    PubMed

    Akya, A; Najafi, A; Moradi, J; Mohebi, Z; Adabagher, S

    2013-05-01

    Listeria monocytogenes is a human pathogen causing serious diseases. We aimed to determine food contamination with Listeria spp. in Kermanshah, Islamic Republic of Iran. Samples (185 dairy, 187 meat products and 158 ready-to-eat foods such as salads) were randomly collected from markets. After processing, samples were cultured in half-Fraser and Fraser broth followed by cultivation on PALCAM and Oxford media. Confirmatory tests including carbohydrate utilization were performed on isolates to determine species. Bacteria were isolated from 66/530 samples (12.5%). Meat products showed the highest (27.2%) and dairy products the lowest (3.8%) contamination rates. L. innocua was found in 56 (10.6%) samples, but L. monocytogenes was only found in 3 samples (0.6%). The results indicate that the rate of contamination with L. monocytogenes, even for ready-to-eat foods, was low but for other Listeria spp., in particular strains of L. innocua, the rate of contamination was higher, suggesting that more control on food sanitation is required.

  18. DNA relatedness and biochemical features of Campylobacter spp. isolated in central and South Australia.

    PubMed Central

    Steele, T W; Sangster, N; Lanser, J A

    1985-01-01

    Investigations of the etiology of diarrhea in patients in South Australia and the Northern Territory showed that Campylobacter spp. other than Campylobacter jejuni and C. coli were common in children. Campylobacters which were hippurate positive, nitrate negative, and susceptible to cephalothin and polymyxins were shown to be closely related to C. jejuni by DNA studies. Thermotolerant catalase-negative campylobacters were also isolated. These were H2S negative and biochemically resembled the catalase-negative or weak strains found in dogs in Sweden. DNA studies showed these campylobacters to be distinct from C. sputorum subsp. sputorum and to form a homogeneous group distinct from the enteropathogenic catalase-positive campylobacters. Preliminary studies suggest that these campylobacters are related to the Swedish catalase-negative or weak strains. PMID:2991331

  19. Efficacy of the thin agar layer method for the recovery of stressed Cronobacter spp. (Enterobacter sakazakii).

    PubMed

    Osaili, Tareq M; Al-Nabulsi, Anas A; Shaker, Reyad R; Al-Holy, Murad M; Al-Haddaq, Mohammed S; Olaimat, Amin N; Ayyash, Mutamed M; Al Ta'ani, Mahmoud K; Forsythe, Stephen J

    2010-10-01

    Cronobacter spp. (Enterobacter sakazakii) are emerging opportunistic pathogens for all age groups, and are of particular concern when it comes to infants. Prior to contaminating food, the organism may be exposed to a variety of stresses, leading to a generation of sublethally injured cells that may not be detected by selective media unless a protracted recovery period is included in the isolation procedure. This study evaluated the efficacy of the thin agar layer (TAL) method for the recovery of Cronobacter cells that had been exposed to various stress conditions. Five strains of C. sakazakii and C. muytjensii were exposed to starvation, heat, cold, acid, alkaline, chlorine, or ethanol, with or without further exposure to desiccation stress. The recovery of the stressed cells was determined on tryptone soy agar (TSA; nonselective control medium), violet red bile glucose agar (VRBGA; selective agar), Druggan-Forsythe-Iversen (DFI; selective agar), and TAL media (viz., VRBGA overlaid with TSA, and DFI overlaid with TSA). Regardless of stress type, there were no significant differences among the recoveries of stressed desiccated Cronobacter spp. cultures on TSA, DFI+TSA, and VRBGA+TSA, but there was significantly less recovery on VRBGA. The recovery of prestressed desiccated Cronobacter spp. on DFI+TSA was similar to that on TSA, whereas the recovery on VRBGA+TSA was lower. DFI+TSA performed better than VRBGA+TSA did in differentiating Cronobacter spp. within mixed bacterial cultures. The results of this study suggest the use of the TAL method DFI+TSA as an improved method for the direct recovery of stressed Cronobacter spp.

  20. “Black holes” and bacterial pathogenicity: A large genomic deletion that enhances the virulence of Shigella spp. and enteroinvasive Escherichia coli

    PubMed Central

    Maurelli, Anthony T.; Fernández, Reinaldo E.; Bloch, Craig A.; Rode, Christopher K.; Fasano, Alessio

    1998-01-01

    Plasmids, bacteriophages, and pathogenicity islands are genomic additions that contribute to the evolution of bacterial pathogens. For example, Shigella spp., the causative agents of bacillary dysentery, differ from the closely related commensal Escherichia coli in the presence of a plasmid in Shigella that encodes virulence functions. However, pathogenic bacteria also may lack properties that are characteristic of nonpathogens. Lysine decarboxylase (LDC) activity is present in ≈90% of E. coli strains but is uniformly absent in Shigella strains. When the gene for LDC, cadA, was introduced into Shigella flexneri 2a, virulence became attenuated, and enterotoxin activity was inhibited greatly. The enterotoxin inhibitor was identified as cadaverine, a product of the reaction catalyzed by LDC. Comparison of the S. flexneri 2a and laboratory E. coli K-12 genomes in the region of cadA revealed a large deletion in Shigella. Representative strains of Shigella spp. and enteroinvasive E. coli displayed similar deletions of cadA. Our results suggest that, as Shigella spp. evolved from E. coli to become pathogens, they not only acquired virulence genes on a plasmid but also shed genes via deletions. The formation of these “black holes,” deletions of genes that are detrimental to a pathogenic lifestyle, provides an evolutionary pathway that enables a pathogen to enhance virulence. Furthermore, the demonstration that cadaverine can inhibit enterotoxin activity may lead to more general models about toxin activity or entry into cells and suggests an avenue for antitoxin therapy. Thus, understanding the role of black holes in pathogen evolution may yield clues to new treatments of infectious diseases. PMID:9520472

  1. Xanthomonas campestris RpfB is a Fatty Acyl-CoA Ligase Required to Counteract the Thioesterase Activity of the RpfF Diffusible Signal Factor (DSF) Synthase

    PubMed Central

    Bi, Hongkai; Yu, Yonghong; Dong, Huijuan; Wang, Haihong; Cronan, John E.

    2014-01-01

    SUMMARY In Xanthomonas campestris pv. campestris (Xcc), the proteins encoded by the rpf (regulator of pathogenicity factor) gene cluster produce and sense a fatty acid signal molecule called diffusible signaling factor (DSF, 2(Z)-11-methyldodecenoic acid). RpfB was reported to be involved in DSF processing and was predicted to encode an acyl-CoA ligase. We report that RpfB activates a wide range of fatty acids to their CoA esters in vitro. Moreover, RpfB can functionally replace the paradigm bacterial acyl-CoA ligase, Escherichia coli FadD, in the E. coli β-oxidation pathway and deletion of RpfB from the Xcc genome results in a strain unable to utilize fatty acids as carbon sources. An essential RpfB function in the pathogenicity factor pathway was demonstrated by the properties of a strain deleted for both the rpfB and rpfC genes. The ΔrpfB ΔrpfC strain grew poorly and lysed upon entering stationary phase. Deletion of rpfF, the gene encoding the DSF synthetic enzyme, restored normal growth to this strain. RpfF is a dual function enzyme that synthesizes DSF by dehydration of a 3-hydroxyacyl-acyl carrier protein (ACP) fatty acid synthetic intermediate and also cleaves the thioester bond linking DSF to ACP. However, the RpfF thioesterase activity is of broad specificity and upon elimination of its RpfC inhibitor RpfF attains maximal activity and its thioesterase activity proceeds to block membrane lipid synthesis by cleavage of acyl-ACP intermediates. This resulted in release of the nascent acyl chains to the medium as free fatty acids. This lack of acyl chains for phospholipid synthesis results in cell lysis unless RpfB is present to counteract the RpfF thioesterase activity by catalyzing uptake and activation of the free fatty acids to give acyl-CoAs that can be utilized to restore membrane lipid synthesis. Heterologous expression of a different fatty acid activating enzyme, the Vibrio harveyi acyl-ACP synthetase, replaced RpfB in counteracting the effects of

  2. High prevalence of Salmonella spp. in wastewater reused for irrigation assessed by molecular methods.

    PubMed

    Santiago, Paula; Jiménez-Belenguer, Ana; García-Hernández, Jorge; Estellés, Rosa Montes; Hernández Pérez, Manuel; Castillo López, M Angeles; Ferrús, María Antonia; Moreno, Yolanda

    2018-01-01

    Salmonella spp. is one of the most important causal agents of food-borne illness in developed countries and its presence in irrigation water poses a risk to public health. Its detection in environmental samples is not easy when culture methods are used, and molecular techniques such as PCR or ribosomal rRNA probe hybridization (Fluorescent in situ Hybridization, FISH) are outstanding alternatives. The aim of this work was to determine the environmental risk due to the presence of Salmonella spp. in wastewater by culture, PCR and FISH. A new specific rDNA probe for Salmonella was designed and its efficiency was compared with the rest of methods Serotype and antibiotic resistance of isolated strains were determined. Forty-five wastewater samples (collected from two secondary wastewater treatment plants) were analysed. Salmonella strains were isolated in 24 wastewater samples (53%), two of them after disinfection treatment. Twenty-three Salmonella strains exhibited resistance to one or more antimicrobial agent. Analysis of wastewater samples yielded PCR positive results for Salmonella in 28 out of the 45 wastewater samples (62%). FISH analysis allowed for the detection of Salmonella in 27 (60%) samples. By using molecular methods, Salmonella was detected in four samples after disinfection treatment. These results show the prevalence of Salmonella in reclaimed wastewater even after U.V. disinfection, what is a matter of public health concern, the high rates of resistance to antibiotics and the adequacy of molecular methods for its rapid detection. FISH method, with SA23 probe developed and assayed in this work provides a tool for detecting Salmonella in water within few hours, with a high rate of effectiveness. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. In vitro screening of selected probiotic properties of Lactobacillus strains isolated from traditional fermented cabbage and cucumber.

    PubMed

    Zielińska, Dorota; Rzepkowska, Anna; Radawska, Anna; Zieliński, Konrad

    2015-02-01

    Most important during probiotic selection are gastric acid and bile tolerance, the adhesion to the luminal epithelium to colonize the lower gastrointestinal tract of a human and safety for human consumption. The aim of this study was to evaluate the selected probiotic in vitro properties of Lactobacillus spp. Strains isolated from traditional fermented food. A total 38 strains were isolated from the pickled samples and 14 were identified as Lactobacillus spp. The survival of almost all strains after incubation at pH 2.5 did not change markedly, and remained at above 90 % (10(9) CFU/mL). The strains also exhibited a high survival rate at pH 3.5 (>90 %), whereas pH 1.5 all were died. Just four strains could survive 90 min. at pH 1.5 (<39 %). The incubation with 0.2 % bile salt solution resulted in a survival rates of 81-94 % after 24 h, whereas after incubation in 2 and 4 % bile salt solution it was 59-94 %. All tested strains showed very good and good resistance to 0.4 % phenol addition, however only Lb. johnsonii K4 was able to multiply. The hydrophobic nature of the cell surface of the tested strains was moderated recording hydrophobicity of Lb. johnsonii K4 and Lb. rhamnosus K3 above 60 %. Safety evaluation excluded four of tested strains as candidate probiotics, according to antibiotic resistance patterns and certain metabolic activities. On the basis on the results 10 of the selected Lactobacillus strains are safe and can survive under gastrointestinal conditions, which requires them to future in vitro and in vivo probiotic studies.

  4. Stress tolerant virulent strains of Cronobacter sakazakii from food.

    PubMed

    Fakruddin, Md; Rahaman, Mizanur; Ahmed, Monzur Morshed; Hoque, Md Mahfuzul

    2014-11-25

    Cronobacter sakazakii is considered as an emerging foodborne pathogen. The aim of this study was to isolate and characterize virulent strains of Cronobacter sakazakii from food samples of Bangladesh. Six (6) Cronobacter sakazakii was isolated and identified from 54 food samples on the basis of biochemical characteristics, sugar fermentation, SDS-PAGE of whole cell protein, plasmid profile and PCR of Cronobacter spp. specific genes (esak, gluA, zpx, ompA, ERIC, BOX-AIR) and sequencing. These strains were found to have moderately high antibiotic resistance against common antibiotics and some are ESBL producer. Most of the C. sakazakii isolates were capable of producing biofilm (strong biofilm producer), extracellular protease and siderophores, curli expression, haemolysin, haemagglutinin, mannose resistant haemagglutinin, had high cell surface hydrophobicity, significant resistance to human serum, can tolerate high concentration of salt, bile and DNase production. Most of them produced enterotoxins of different molecular weight. The isolates pose significant serological cross-reactivity with other gram negative pathogens such as serotypes of Salmonella spp., Shigella boydii, Shigella sonnei, Shigella flexneri and Vibrio cholerae. They had significant tolerance to high temperature, low pH, dryness and osmotic stress. Special attention should be given in ensuring hygiene in production and post-processing to prevent contamination of food with such stress-tolerant virulent Cronobacter sakazakii.

  5. Reduction of Legionella spp. in Water and in Soil by a Citrus Plant Extract Vapor

    PubMed Central

    Kurzbach, Elena; Score, Jodie; Tejpal, Jyoti; Chi Tangyie, George; Phillips, Carol

    2014-01-01

    Legionnaires' disease is a severe form of pneumonia caused by Legionella spp., organisms often isolated from environmental sources, including soil and water. Legionella spp. are capable of replicating intracellularly within free-living protozoa, and once this has occurred, Legionella is particularly resistant to disinfectants. Citrus essential oil (EO) vapors are effective antimicrobials against a range of microorganisms, with reductions of 5 log cells ml−1 on a variety of surfaces. The aim of this investigation was to assess the efficacy of a citrus EO vapor against Legionella spp. in water and in soil systems. Reductions of viable cells of Legionella pneumophila, Legionella longbeachae, Legionella bozemanii, and an intra-amoebal culture of Legionella pneumophila (water system only) were assessed in soil and in water after exposure to a citrus EO vapor at concentrations ranging from 3.75 mg/liter air to 15g/liter air. Antimicrobial efficacy via different delivery systems (passive and active sintering of the vapor) was determined in water, and gas chromatography-mass spectrometry (GC-MS) analysis of the antimicrobial components (linalool, citral, and β-pinene) was conducted. There was up to a 5-log cells ml−1 reduction in Legionella spp. in soil after exposure to the citrus EO vapors (15 mg/liter air). The most susceptible strain in water was L. pneumophila, with a 4-log cells ml−1 reduction after 24 h via sintering (15 g/liter air). Sintering the vapor through water increased the presence of the antimicrobial components, with a 61% increase of linalool. Therefore, the appropriate method of delivery of an antimicrobial citrus EO vapor may go some way in controlling Legionella spp. from environmental sources. PMID:25063652

  6. Longitudinal evaluation of the efficacy of heat treatment procedures against Legionella spp. in hospital water systems by using a flow cytometric assay.

    PubMed

    Allegra, Severine; Grattard, Florence; Girardot, Françoise; Riffard, Serge; Pozzetto, Bruno; Berthelot, Philippe

    2011-02-01

    Legionella spp. are frequently isolated in hospital water systems. Heat shock (30 min at 70°C) is recommended by the World Health Organization to control its multiplication. The aim of the study was to evaluate retrospectively the efficacy of heat treatments by using a flow cytometry assay (FCA) able to identify viable but nonculturable (VBNC) cells. The study included Legionella strains (L. pneumophila [3 clusters] and L. anisa [1 cluster]) isolated from four hot water circuits of different hospital buildings in Saint-Etienne, France, during a 20-year prospective surveillance. The strains recovered from the different circuits were not epidemiologically related, but the strains isolated within a same circuit over time exhibited an identical genotypic profile. After an in vitro treatment of 30 min at 70°C, the mean percentage of viable cells and VBNC cells varied from 4.6% to 71.7%. The in vitro differences in heat sensitivity were in agreement with the observed efficacy of preventive and corrective heating measures used to control water contamination. These results suggest that Legionella strains can become heat resistant after heating treatments for a long time and that flow cytometry could be helpful to check the efficacy of heat treatments on Legionella spp. and to optimize the decontamination processes applied to water systems for the control of Legionella proliferation.

  7. Isolation, Identification and Partial Characterization of a Lactobacillus casei Strain with Bile Salt Hydrolase Activity from Pulque.

    PubMed

    González-Vázquez, R; Azaola-Espinosa, A; Mayorga-Reyes, L; Reyes-Nava, L A; Shah, N P; Rivera-Espinoza, Y

    2015-12-01

    The aim of this study was to isolate, from pulque, Lactobacillus spp. capable of survival in simulated gastrointestinal stress conditions. Nine Gram-positive rods were isolated; however, only one strain (J57) shared identity with Lactobacillus and was registered as Lactobacillus casei J57 (GenBank accession: JN182264). The other strains were identified as Bacillus spp. The most significant observation during the test of tolerance to simulated gastrointestinal conditions (acidity, gastric juice and bile salts) was that L. casei J57 showed a rapid decrease (p ≤ 0.05) in the viable population at 0 h. Bile salts were the stress condition that most affected its survival, from which deoxycholic acid and the mix of bile salts (oxgall) were the most toxic. L. casei J57 showed bile salt hydrolase activity over primary and secondary bile salts as follows: 44.91, 671.72, 45.27 and 61.57 U/mg to glycocholate, taurocholate, glycodeoxycholate and taurodeoxycholate. In contrast, the control strain (L. casei Shirota) only showed activity over tauroconjugates. These results suggest that L. casei J57 shows potential for probiotic applications.

  8. Molecular Detection of Legionella spp. and their associations with Mycobacterium spp., Pseudomonas aeruginosa and amoeba hosts in a drinking water distribution system.

    PubMed

    Lu, J; Struewing, I; Vereen, E; Kirby, A E; Levy, K; Moe, C; Ashbolt, N

    2016-02-01

    This study investigated waterborne opportunistic pathogens (OPs) including potential hosts, and evaluated the use of Legionella spp. for indicating microbial water quality for OPs within a full-scale operating drinking water distribution system (DWDS). To investigate the occurrence of specific microbial pathogens within a major city DWDS we examined large volume (90 l drinking water) ultrafiltration (UF) concentrates collected from six sites between February, 2012 and June, 2013. The detection frequency and concentration estimates by qPCR were: Legionella spp. (57%/85 cell equivalent, CE l(-1) ), Mycobacterium spp. (88%/324 CE l(-1) ), Pseudomonas aeruginosa (24%/2 CE l(-1) ), Vermamoeba vermiformis (24%/2 CE l(-1) ) and Acanthamoeba spp. (42%/5 cyst equivalent, CE l(-1) ). There was no detection of the following microorganisms: human faecal indicator Bacteroides (HF183), Salmonella enterica, Campylobacter spp., Escherichia coli O157:H7, Giardia intestinalis, Cryptosporidium spp. or Naegleria fowleri. There were significant correlations between the qPCR signals of Legionella spp. and Mycobacterium spp., and their potential hosts V. vermiformis and Acanthamoeba spp. Sequencing of Legionella spp. demonstrated limited diversity, with most sequences coming from two dominant groups, of which the larger dominant group was an unidentified species. Other known species including Legionella pneumophila were detected, but at low frequency. The densities of Legionella spp. and Mycobacterium spp. were generally higher (17 and 324 folds, respectively) for distal sites relative to the entry point to the DWDS. Legionella spp. occurred, had significant growth and were strongly associated with free-living amoebae (FLA) and Mycobacterium spp., suggesting that Legionella spp. could provide a useful DWDS monitoring role to indicate potential conditions for non-faecal OPs. The results provide insight into microbial pathogen detection that may aid in the monitoring of microbial water

  9. Free-living and captive turtles and tortoises as carriers of new Chlamydia spp.

    PubMed Central

    Niemczuk, Krzysztof; Zaręba, Kinga; Zając, Magdalena; Laroucau, Karine; Szymańska-Czerwińska, Monika

    2017-01-01

    A variety of Chlamydia species belonging to the Chlamydiaceae family have been reported in reptilian hosts but scarce data about their occurrence in turtles and tortoises are available. In this study, research was conducted to acquire information on invasive alien species (IAS) of turtles and indigenous turtles and tortoises, living both free and in captivity, as possible reservoirs of Chlamydiaceae. Analysis of specimens (pharyngeal and cloacal swabs and tissues) from 204 turtles and tortoises revealed an overall Chlamydiaceae prevalence of 18.3% and 28.6% among free-living and captive animals respectively, with variable levels of shedding. Further testing conducted with a species-specific real-time PCR and microarray test was unsuccessful. Subsequently sequencing was applied to genotype the Chlamydiaceae-positive samples. Almost the full lengths of the 16S rRNA and ompA genes as well as the 16S-23S intergenic spacer (IGS) and 23S rRNA domain I were obtained for 14, 20 and 8 specimens respectively. Phylogenetic analysis of 16S rRNA amplicons revealed two distinct branches. Group 1 (10 specimens), specific to freshwater turtles and reported here for the first time, was most closely related to Chlamydia (C.) pneumoniae strains and the newly described Candidatus C. sanzinia. Group 2 (four specimens), detected in Testudo spp. samples, showed highest homology to C. pecorum strains but formed a separate sub-branch. Finally, molecular analysis conducted on positive samples together with their geographical distribution in places distant from each other strongly suggest that Group 1 specimens correspond to a new species in the Chlamydiaceae family. In-depth studies of Chlamydia spp. from turtles and tortoises are needed to further characterise these atypical strains and address arising questions about their pathogenicity and zoonotic potential. PMID:28950002

  10. Free-living and captive turtles and tortoises as carriers of new Chlamydia spp.

    PubMed

    Mitura, Agata; Niemczuk, Krzysztof; Zaręba, Kinga; Zając, Magdalena; Laroucau, Karine; Szymańska-Czerwińska, Monika

    2017-01-01

    A variety of Chlamydia species belonging to the Chlamydiaceae family have been reported in reptilian hosts but scarce data about their occurrence in turtles and tortoises are available. In this study, research was conducted to acquire information on invasive alien species (IAS) of turtles and indigenous turtles and tortoises, living both free and in captivity, as possible reservoirs of Chlamydiaceae. Analysis of specimens (pharyngeal and cloacal swabs and tissues) from 204 turtles and tortoises revealed an overall Chlamydiaceae prevalence of 18.3% and 28.6% among free-living and captive animals respectively, with variable levels of shedding. Further testing conducted with a species-specific real-time PCR and microarray test was unsuccessful. Subsequently sequencing was applied to genotype the Chlamydiaceae-positive samples. Almost the full lengths of the 16S rRNA and ompA genes as well as the 16S-23S intergenic spacer (IGS) and 23S rRNA domain I were obtained for 14, 20 and 8 specimens respectively. Phylogenetic analysis of 16S rRNA amplicons revealed two distinct branches. Group 1 (10 specimens), specific to freshwater turtles and reported here for the first time, was most closely related to Chlamydia (C.) pneumoniae strains and the newly described Candidatus C. sanzinia. Group 2 (four specimens), detected in Testudo spp. samples, showed highest homology to C. pecorum strains but formed a separate sub-branch. Finally, molecular analysis conducted on positive samples together with their geographical distribution in places distant from each other strongly suggest that Group 1 specimens correspond to a new species in the Chlamydiaceae family. In-depth studies of Chlamydia spp. from turtles and tortoises are needed to further characterise these atypical strains and address arising questions about their pathogenicity and zoonotic potential.

  11. DNA microarray-based detection and identification of Burkholderia mallei, Burkholderia pseudomallei and Burkholderia spp.

    PubMed

    Schmoock, Gernot; Ehricht, Ralf; Melzer, Falk; Rassbach, Astrid; Scholz, Holger C; Neubauer, Heinrich; Sachse, Konrad; Mota, Rinaldo Aparecido; Saqib, Muhammad; Elschner, Mandy

    2009-01-01

    We developed a rapid oligonucleotide microarray assay based on genetic markers for the accurate identification and differentiation of Burkholderia (B.) mallei and Burkholderia pseudomallei, the agents of glanders and melioidosis, respectively. These two agents were clearly identified using at least 4 independent genetic markers including 16S rRNA gene, fliC, motB and also by novel species-specific target genes, identified by in silico sequence analysis. Specific hybridization signal profiles allowed the detection and differentiation of up to 10 further Burkholderia spp., including the closely related species Burkholderia thailandensis and Burkholderia-like agents, such as Burkholderia cepacia, Burkholderia cenocepacia, Burkholderia vietnamiensis, Burkholderia ambifaria, and Burkholderia gladioli, which are often associated with cystic fibrosis (CF) lung disease. The assay was developed using the easy-to-handle and economical ArrayTube (AT) platform. A representative strain panel comprising 44 B. mallei, 32 B. pseudomallei isolates, and various Burkholderia type strains were examined to validate the test. Assay specificity was determined by examination of 40 non-Burkholderia strains.

  12. Analysis of pan-genome to identify the core genes and essential genes of Brucella spp.

    PubMed

    Yang, Xiaowen; Li, Yajie; Zang, Juan; Li, Yexia; Bie, Pengfei; Lu, Yanli; Wu, Qingmin

    2016-04-01

    Brucella spp. are facultative intracellular pathogens, that cause a contagious zoonotic disease, that can result in such outcomes as abortion or sterility in susceptible animal hosts and grave, debilitating illness in humans. For deciphering the survival mechanism of Brucella spp. in vivo, 42 Brucella complete genomes from NCBI were analyzed for the pan-genome and core genome by identification of their composition and function of Brucella genomes. The results showed that the total 132,143 protein-coding genes in these genomes were divided into 5369 clusters. Among these, 1710 clusters were associated with the core genome, 1182 clusters with strain-specific genes and 2477 clusters with dispensable genomes. COG analysis indicated that 44 % of the core genes were devoted to metabolism, which were mainly responsible for energy production and conversion (COG category C), and amino acid transport and metabolism (COG category E). Meanwhile, approximately 35 % of the core genes were in positive selection. In addition, 1252 potential essential genes were predicted in the core genome by comparison with a prokaryote database of essential genes. The results suggested that the core genes in Brucella genomes are relatively conservation, and the energy and amino acid metabolism play a more important role in the process of growth and reproduction in Brucella spp. This study might help us to better understand the mechanisms of Brucella persistent infection and provide some clues for further exploring the gene modules of the intracellular survival in Brucella spp.

  13. Development of novel Alicyclobacillus spp. isolation medium.

    PubMed

    Chang, S; Kang, D-H

    2005-01-01

    To develop a new isolation medium with higher recovery rates of Alicyclobacillus spp. SK agar was developed with optimized incubation temperature, pH, acidulant, Tween 80 concentration and divalent cation addition. Results indicate that detection of Alicyclobacillus spp. by SK agar was significantly higher (P > 0.05) than those obtained by K agar, orange serum agar, and potato dextrose agar. Current media used for Alicyclobacillus spp. isolation still resulted in high numbers of false negative products. The sensitivity of SK agar to Alicyclobacillus spp. allows detection of low numbers of Alicyclobacillus spp. and also provides a more higher isolation results compared with currently used media. SK agar will be useful to the fruit juice industry to obtain more accurate numbers of contaminant Alicyclobacillus spp. With this media, false negative samples can be reduced, and the likelihood of exported products being rejected can be greatly reduced.

  14. Association of Enterococcus spp. with Severe Combat Extremity Injury, Intensive Care, and Polymicrobial Wound Infection.

    PubMed

    Heitkamp, Rae A; Li, Ping; Mende, Katrin; Demons, Samandra T; Tribble, David R; Tyner, Stuart D

    2018-01-01

    Combat-related extremity wound infections can complicate the recovery of injured military personnel. The Enterococcus genus contains both commensal and pathogenic bacteria found in many combat wounds. We describe the patient population susceptible to Enterococcus infection, the characteristics of Enterococcus spp. isolated from combat-related wounds, and the microbiological profile of Enterococcus-positive wounds. Patient and culture data were obtained from the Trauma Infectious Disease Outcomes Study. Subjects were divided into a case group with enterococcal extremity wound infections and a comparator group with wound infections caused by other micro-organisms. Case and comparator subjects had similar patterns of injury and infection. Case subjects had higher Injury Severity Scores (33 vs. 30; p < 0.001), longer hospitalization at U.S. facilities (55 vs. 40 days; p = 0.004), and required more large-volume blood transfusions (>20 units) within 24 h post-injury (53% vs. 30%; p < 0.001). Approximately 60% of case subjects had three or more infections, and 91% had one or more polymicrobial infections, compared with 43% and 50%, respectively, in the comparator group. The thigh was the most common site of Enterococcus spp. isolation, contributing 50% of isolates. Enterococcus faecium was the predominant species isolated from case-group infections overall (66%), as well as in polymicrobial infections (74%). Frequent co-colonizing microbes in polymicrobial wound infections with Enterococcus were other ESKAPE pathogens (64%) (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae [and Escherichia coli], Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) and fungi (35%). The specific pathogenicity of Enterococcus relative to other pathogens in polymicrobial wounds is unknown. Identifying strain-specific outcomes and investigating the interactions of Enterococcus strains with other wound pathogens could provide additional tools

  15. Evaluating the effectiveness of common disinfectants at preventing the propagation of Mycobacterium spp. isolated from zebrafish

    PubMed Central

    Chang, Carolyn T.; Colicino, Erica G.; DiPaola, Elizabeth J.; Al-Hasnawi, Hadi Jabbar; Whipps, Christopher M.

    2016-01-01

    Mycobacteriosis is a bacterial disease that is common in captive, wild and research fish. There is no one causative agent of mycobacteriosis, as several strains and species of Mycobacterium have been identified in zebrafish. With increased usage and investment in wild-type and mutant zebrafish strains, considerable value is placed on preserving zebrafish health. One control measure used to prevent mycobacterial spread within and between zebrafish facilities is egg disinfection. Here we investigate the effectiveness of three disinfectants [chlorine bleach, hydrogen peroxide, and povidone iodine (PVPI)] commonly included in egg disinfection protocols for laboratory fish as well as aquaculture fish and compare the knockdown effect of these treatments on Mycobacterium spp. in vitro. Despite current usage, comparison of these disinfection regimes’ abilities to prevent mycobacterial growth has not been tested. We found that the germicidal effect of different disinfectants vary by Mycobacterium spp.. Hydrogen peroxide was the least effective disinfectant, followed by unbuffered chlorine bleach, which is commonly used to disinfect embryos in zebrafish facilities. Disinfection with 25 ppm PVPI for 5 min was very effective, and may be an improved alternative to chlorine bleach for embryo disinfection. Results from this study can be utilized by laboratory fish facilities in order to prevent the spread of mycobacteriosis in research fish. PMID:26423444

  16. Identification of facultatively heterotrophic, N/sub 2/-fixing cyanobacteria able to receive plasmid vectors from Escherichia coli by conjugation. [Anabaena spp; Nostoc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flores, E.; Wolk, C.P.

    1985-06-01

    Plasmid vectors transferable by conjugation from Escherichia coli to obligately photoautotrophic strains of Anabaena spp. are also transferred to and maintained in heterotrophic, filamentous cyanobacteria of the genus Nostoc. These organisms can be used for the genetic analysis of oxygenic photosynthesis, chromatic adaptation, nitrogen fixation, and heterocyst development.

  17. Brevundimonas spp: Emerging global opportunistic pathogens

    PubMed Central

    2018-01-01

    ABSTRACT Non-fermenting Gram-negative bacteria are problematic in clinical locations, being one of the most prevalent causes of nosocomial infections. Many of these non-fermenting Gram-negative bacteria are opportunistic pathogens that affect patients that are suffering with underlying medical conditions and diseases. Brevundimonas spp., in particular Brevundimonas diminuta and Brevundimonas vesicularis, are a genus of non-fermenting Gram-negative bacteria considered of minor clinical importance. Forty-nine separate instances of infection relating to Brevundimonas spp were found in the scientific literature along with two pseudo-infections. The majority of these instances were infection with Brevundimonas vesicularis (thirty-five cases – 71%). The major condition associated with Brevundimonas spp infection was bacteraemia with seventeen individual cases/outbreaks (35%). This review identified forty-nine examples of Brevundimonas spp. infections have been discussed in the literature. These findings indicate that infection review programs should consider investigation of possible Brevundimonas spp outbreaks if these bacteria are clinically isolated in more than one patient. PMID:29484917

  18. Four biochemical tests for identification of probable enteroinvasive Escherichia coli strains.

    PubMed

    Flores Abuxapqui, J J; Suárez Hoil, G J; Heredia Navarrete, M R; Puc Franco, M A; Vivas Rosel, M L

    1999-01-01

    Enteroinvasive Escherichia coli (EIEC) share important features with Shigella spp., but EIEC strains are difficult to identify because their biochemical reactions are variable, and Sereny tests or other biological and molecular assays are expensive or hard to perform. The aim of this work was to detect probable enteroinvasive E. coli strains by using four biochemical tests, in children under 5 years of age with and without acute diarrhea. 330 strains of E. coli isolated from children with diarrhea, and 660 strains from children without diarrhea were studied. All strains were tested with the following tests: mucus , lysine and ornithine decarboxylase and motility. The strains which were negative to the four tests were tested by Sereny assay. Twelve strains (3.6%) isolated from children with diarrhea were negative to the tests proposed; eleven were lactose positive and only one was lactose negative. Three strains (0.5%) from children without diarrhea were negative to the tests proposed and were lactose positive. All the 15 strains (100%) were positive in Sereny assay. We recommend the use of these four biochemical tests for initial detection of EIEC strains, because their cost is very low and it is feasible carry out them in small diagnostic laboratories.

  19. Disinfection efficacy of chlorine and peracetic acid alone or in combination against Aspergillus spp. and Candida albicans in drinking water.

    PubMed

    Sisti, Maurizio; Brandi, Giorgio; De Santi, Mauro; Rinaldi, Laura; Schiavano, Giuditta F

    2012-03-01

    The aim of the present study was to evaluate the fungicidal activity of chlorine and peracetic acid in drinking water against various pathogenic Aspergillus spp. and Candida albicans strains. A. nidulans exhibited the greatest resistance, requiring 10 ppm of chlorine for 30 min contact time for a complete inactivation. Under the same experimental conditions, peracetic acid was even less fungicidal. In this case, A. niger proved to be the most resistant species (50 ppm for 60 min for complete inactivation). All Aspergillus spp. were insensitive to 10 ppm even with extended exposure (>5 h). The combination of chlorine and peracetic acid against Aspergillus spp. did not show synergistic effects except in the case of A. flavus. Complete growth inhibition of C. albicans was observed after about 3 h contact time with 0.2 ppm. C. albicans was less sensitive to peracetic acid. Hence the concentrations of chlorine that are usually present in drinking water distribution systems are ineffective against several Aspergillus spp. and peracetic acid cannot be considered an alternative to chlorine for disinfecting drinking water. The combination of the two biocides is not very effective in eliminating filamentous fungi at the concentrations permitted for drinking water disinfection.

  20. Activity of Pradofloxacin against Porphyromonas and Prevotella spp. Implicated in Periodontal Disease in Dogs: Susceptibility Test Data from a European Multicenter Study▿

    PubMed Central

    Stephan, Bernd; Greife, Heinrich A.; Pridmore, Andrew; Silley, Peter

    2008-01-01

    Collaborating veterinarians from five European countries collected subgingival bacterial samples from dogs exhibiting clinical periodontal disease. Sterile endodontic paper points were used for collection of the samples, which were transported to a central laboratory for susceptibility testing. Anaerobic bacteria were isolated and Porphyromonas and Prevotella isolates identified to the species level; susceptibility to pradofloxacin and metronidazole was determined using the CLSI agar dilution methodology. A total of 630 isolates, 310 of Porphyromonas spp. and 320 of Prevotella spp., were isolated. Pradofloxacin MIC data for all isolates were in the range of ≤0.016 to 1 μg/ml, the overall MIC50 was 0.062, and the overall MIC90 was 0.25 μg/ml. There were no differences in activity against Porphyromonas and Prevotella isolates or in the pradofloxacin susceptibility distributions from the different European countries. All isolates were within the wild-type distribution and were fully susceptible to pradofloxacin. Metronidazole was also highly active against these strains: 316 of 320 Prevotella strains (98.8%) and 309 of 310 Porphyromonas strains (99.7%) were susceptible (MICs of ≤8 μg/ml). However, three Prevotella strains had intermediate metronidazole susceptibility (MICs of 16 μg/ml), while one Prevotella and one Porphyromonas strain were metronidazole resistant (MICs of 128 and 256 μg/ml, respectively). Pradofloxacin, a novel broad-spectrum fluoroquinolone, demonstrates a high degree of antianaerobic activity against strains isolated from clinical cases of periodontal disease and shows activity against metronidazole-resistant isolates. The broad-spectrum activity of pradofloxacin makes it a suitable candidate for the treatment of periodontal disease in dogs. PMID:18411326