Kraayvanger, Ryan J; Bidinosti, Christopher P; Dominguez-Viqueira, William; Parra-Robles, Juan; Fox, Matthew; Lam, Wilfred W; Santyr, Giles E
2010-11-01
Regional measurement of alveolar oxygen partial pressure can be obtained from the relaxation rates of hyperpolarized noble gases, (3) He and (129) Xe, in the lungs. Recently, it has been demonstrated that measurements of alveolar oxygen partial pressure can be obtained using the spin-spin relaxation rate (R(2) ) of (3) He at low magnetic field strengths (<0.1 T) in vivo. R(2) measurements can be achieved efficiently using the Carr-Purcell-Meiboom-Gill pulse sequence. In this work, alveolar oxygen partial pressure measurements based on Carr-Purcell-Meiboom-Gill R(2) values of hyperpolarized (3) He and (129) Xe in vitro and in vivo in the rat lung at low magnetic field strength (74 mT) are presented. In vitro spin-spin relaxivity constants for (3) He and (129) Xe were determined to be (5.2 ± 0.6) × 10(-6) Pa(-1) sec(-1) and (7.3 ± 0.4) × 10(-6) Pa(-1) s(-1) compared with spin-lattice relaxivity constants of (4.0 ± 0.4) × 10(-6) Pa(-1) s(-1) and (4.3 ± 1.3) × 10(-6) Pa(-1) s(-1), respectively. In vivo experimental measurements of alveolar oxygen partial pressure using (3) He in whole rat lung show good agreement (r(2) = 0.973) with predictions based on lung volumes and ventilation parameters. For (129) Xe, multicomponent relaxation was observed with one component exhibiting an increase in R(2) with decreasing alveolar oxygen partial pressure. Copyright © 2010 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Shenyang; Setyawan, Wahyu; Joshi, Vineet V.
Xe gas bubble superlattice formation is observed in irradiated uranium–10 wt% molybdenum (U10Mo) fuels. However, the thermodynamic properties of the bubbles (the relationship among bubble size, equilibrium Xe concentration, and bubble pressure) and the mechanisms of bubble growth and superlattice formation are not well known. In this work, molecular dynamics is used to study these properties and mechanisms. The results provide important inputs for quantitative mesoscale models of gas bubble evolution and fuel performance. In the molecular dynamics simulations, the embedded-atom method (EAM) potential of U10Mo-Xe (Smirnova et al. 2013) is employed. Initial gas bubbles with low Xe concentration aremore » generated in a U10Mo single crystal. Then Xe atom atoms are continuously added into the bubbles, and the evolution of pressure and dislocation emission around the bubbles is analyzed. The relationship between pressure, equilibrium Xe concentration, and radius of the bubbles is established. It was found that the gas bubble growth is accompanied by partial dislocation emission, which results in a star-shaped dislocation structure and an anisotropic stress field. The emitted partial dislocations have a Burgers vector along the <111> direction and a slip plane of (11-2). Dislocation loop punch-out was not observed. A tensile stress was found along <110> directions around the bubble, favoring the nucleation and formation of a face-centered cubic bubble superlattice in body-centered cubic U10Mo fuels.« less
Buchheit, R G; Schreiner, H R; Doebbler, G F
1966-02-01
Buchheit, R. G. (Union Carbide Corp., Tonawanda, N.Y.), H. R. Schreiner, and G. F. Doebbler. Growth responses of Neurospora crassa to increased partial pressures of the noble gases and nitrogen. J. Bacteriol. 91:622-627. 1966.-Growth rate of the fungus Neurospora crassa depends in part on the nature of metabolically "inert gas" present in its environment. At high partial pressures, the noble gas elements (helium, neon, argon, krypton, and xenon) inhibit growth in the order: Xe > Kr> Ar > Ne > He. Nitrogen (N(2)) closely resembles He in inhibitory effectiveness. Partial pressures required for 50% inhibition of growth were: Xe (0.8 atm), Kr (1.6 atm), Ar (3.8 atm), Ne (35 atm), and He ( approximately 300 atm). With respect to inhibition of growth, the noble gases and N(2) differ qualitatively and quantitatively from the order of effectiveness found with other biological effects, i.e., narcosis, inhibition of insect development, depression of O(2)-dependent radiation sensitivity, and effects on tissue-slice glycolysis and respiration. Partial pressures giving 50% inhibition of N. crassa growth parallel various physical properties (i.e., solubilities, solubility ratios, etc.) of the noble gases. Linear correlation of 50% inhibition pressures to the polarizability and of the logarithm of pressure to the first and second ionization potentials suggests the involvement of weak intermolecular interactions or charge-transfer in the biological activity of the noble gases.
Ouriadov, A; Farag, A; Kirby, M; McCormack, D G; Parraga, G; Santyr, G E
2015-12-01
Diffusion-weighted (DW) hyperpolarized (129) Xe morphometry magnetic resonance imaging (MRI) can be used to map regional differences in lung tissue micro-structure. We aimed to generate absolute xenon concentration ([Xe]) and alveolar oxygen partial pressure (pA O2 ) maps by extracting the unrestricted diffusion coefficient (D0 ) of xenon as a morphometric parameter. In this proof-of-concept demonstration, morphometry was performed using multi b-value (0, 12, 20, 30 s/cm(2) ) DW hyperpolarized (129) Xe images obtained in four never-smokers and four COPD ex-smokers. Morphometric parameters and D0 maps were computed and the latter used to generate [Xe] and pA O2 maps. Xenon concentration phantoms estimating a range of values mimicking those observed in vivo were also investigated. Xenon D0 was significantly increased (P = 0.035) in COPD (0.14 ± 0.03 cm(2) /s) compared with never-smokers (0.12 ± 0.02 cm(2) /s). COPD ex-smokers also had significantly decreased [Xe] (COPD = 8 ± 7% versus never-smokers = 13 ± 8%, P = 0.012) and increased pA O2 (COPD = 18 ± 3% versus never-smokers = 15 ± 3%, P = 0.009) compared with never-smokers. Phantom measurements showed the expected dependence of D0 on [Xe] over the range of concentrations anticipated in vivo. DW hyperpolarized (129) Xe MRI morphometry can be used to simultaneously map [Xe] and pA O2 in addition to providing micro-structural biomarkers of emphysematous destruction in COPD. Phantom measurements of D0 ([Xe]) supported the hypotheses that differences in subjects may reflect differences in functional residual capacity. © 2014 Wiley Periodicals, Inc.
Growth Responses of Neurospora crassa to Increased Partial Pressures of the Noble Gases and Nitrogen
Buchheit, R. G.; Schreiner, H. R.; Doebbler, G. F.
1966-01-01
Buchheit, R. G. (Union Carbide Corp., Tonawanda, N.Y.), H. R. Schreiner, and G. F. Doebbler. Growth responses of Neurospora crassa to increased partial pressures of the noble gases and nitrogen. J. Bacteriol. 91:622–627. 1966.—Growth rate of the fungus Neurospora crassa depends in part on the nature of metabolically “inert gas” present in its environment. At high partial pressures, the noble gas elements (helium, neon, argon, krypton, and xenon) inhibit growth in the order: Xe > Kr> Ar ≫ Ne ≫ He. Nitrogen (N2) closely resembles He in inhibitory effectiveness. Partial pressures required for 50% inhibition of growth were: Xe (0.8 atm), Kr (1.6 atm), Ar (3.8 atm), Ne (35 atm), and He (∼ 300 atm). With respect to inhibition of growth, the noble gases and N2 differ qualitatively and quantitatively from the order of effectiveness found with other biological effects, i.e., narcosis, inhibition of insect development, depression of O2-dependent radiation sensitivity, and effects on tissue-slice glycolysis and respiration. Partial pressures giving 50% inhibition of N. crassa growth parallel various physical properties (i.e., solubilities, solubility ratios, etc.) of the noble gases. Linear correlation of 50% inhibition pressures to the polarizability and of the logarithm of pressure to the first and second ionization potentials suggests the involvement of weak intermolecular interactions or charge-transfer in the biological activity of the noble gases. PMID:5883104
Mann, G; Hermans, J
2000-09-29
The complexes of phage T4 lysozyme L99A with noble gases have been studied by molecular dynamics simulation. In a long simulation of the complex with one Xe atom, the structure was found to undergo global conformation change involving a reversible opening and closing of the entrance to the substrate-binding site, during which the conformations of the N and C-terminal domains varied little. The distributions of Xe positions sampled in dynamics simulations were refined in terms of anisotropic Gaussian distributions via least-squares minimization of the difference between Fourier transforms. In addition, molecular transformation simulations have been applied in order to calculate the binding free energies of Xe, Kr and Ar relative to a standard state at a pressure of 1 bar. A single bound Xe is found to assume an equilibrium distribution over three adjacent preferred sites, while in a two-Xe complex, the two Xe atoms preferentially occupy two of these. The positions of the three sites agree closely with the positions of bound Xe determined in the refined crystal structure of a complex formed at a pressure of 8 bar Xe, and the calculated affinities agree well with the observed partial occupancies. At a pressure of 8 bar, a mixture of one-Xe and two-Xe complexes is present, and similarly for complexes with Kr and Ar, with single occupancy relatively more prevalent with Kr and Ar. (Binding of a third Xe atom is found to be quite unfavorable.) A comparison with simulation results for the binding of benzene to the same site leads to the conclusion that binding of Xe within cavities in proteins is common because of several favorable factors: (1) Xe has a large atomic polarizability; (2) Xe can be applied at a relatively high pressure, i.e. high chemical potential; (3) an unfavorable entropic term related to the need to orient the ligand in the binding site is absent. Finally, it is found that the model's binding energy of a water molecule in the cavity is insufficient to overcome the unfavorable binding entropy. Copyright 2000 Academic Press.
Kawata, Yoko; Adachi, Yuko; Haga, Saori; Fukutomi, Junko; Imai, Hirohiko; Kimura, Atsuomi; Fujiwara, Hideaki
2007-12-01
Temperature and pressure dependences of the 129Xe NMR chemical shift and the signal intensity have been investigated using ZSM-5 as an adsorbent under routine conditions without using any high-pressure or especially high-temperature facilities. The use of a rigorously shielded system and a calibration sample for the signal intensity was found to be valuable to obtain reliable data about the chemical shift and the signal intensity. The 129Xe NMR data obtained between 0.05 and 1.5 atm and from 24 to 80 degrees C were analyzed based on the Dubinin-Radushkevich equation as well as the Langmuir type equation. In both analyses, chemical shift data succeeded only partially in providing the profile of adsorption, such as energetic aspects, surface area, saturated amount of Xe adsorption and specific parameters of 129Xe chemical shift. It was shown that the reliable total analysis was achieved when the chemical shift data were used together with the intensity data. Such an analysis of the chemical shift data, aided by the intensity data, will be useful in performing nano-material analysis on 129Xe NMR without invoking the traditional methodology of gravimetric or volumetric adsorption experiments.
Low-Pressure Long-Term Xenon Storage for Electric Propulsion
NASA Technical Reports Server (NTRS)
Back, Dwight D.; Ramos, Charlie; Meyer, John A.
2001-01-01
This Phase 2 effort demonstrated an alternative Xe storage and regulation system using activated carbon (AC) as a secondary storage media (ACSFR). This regulator system is nonmechanical, simple, inexpensive, and lighter. The ACSFR system isolates the thruster from the compressed gas tank, and allows independent multiple setpoint thruster operation. The flow using an ACSFR can also be throttled by applying increments in electrical power. Primary storage of Xe by AC is not superior to compressed gas storage with regard to weight, but AC storage can provide volume reduction, lower pressures in space, and potentially in situ Xe purification. With partial fill designs, a primary AC storage vessel for Xe could also eliminate problems with two-phase storage and regulate pressure. AC could also be utilized in long-term large quantity storage of Xe serving as a compact capture site for boil-off. Several Xe delivery ACSFR protocols between 2 and 45 sccm, and 15 min to 7 hr, were tested with an average flow variance of 1.2 percent, average power requirements of 5 W, and repeatability s of about 0.4 percent. Power requirements are affected by ACSFR bed sizing and flow rate/ duration design points, and these flow variances can be reduced by optimizing PID controller parameters.
NASA Astrophysics Data System (ADS)
Seo, Jeong Hyun; Jeong, Heui Seob; Lee, Joo Yul; Yoon, Cha Keun; Kim, Joong Kyun; Whang, Ki-Woong
2000-08-01
We measured the time integrated vacuum ultraviolet (VUV) emission spectra of He-Ne-Xe gas mixture from a surface type alternating current (ac) plasma display panel cell. The measured emission lines are the resonance line (147 nm) from Xe*(1s4), the first continuum (150 nm) and the second continuum (173 nm) from Xe dimer excited states. The relative intensities of VUV spectral lines from Xe* and Xe2* are dependent on the He/Ne mixing ratio as well as the Xe partial and total pressure. The intensity of 147 nm VUV increases with the Ne content increase and Xe2* molecular emission increases with the He content increase. Infrared (IR) spectra and the time variation of VUV were measured to explain the reaction pathway and the effect of the mixing ratio of He/Ne on the spectral intensity. A detailed study for the decay time shows that the decay time of 147 nm has two time constants and the radiation of 150 and 173 nm results mainly from Xe*(1s5). The IR spectra shows that the contribution from Xe**(>6 s) to Xe*(1s5) and Xe*(1s4) in He-Xe is different from that of Ne-Xe. The change of IR intensity explains the spectral intensity variations of He-Xe and Ne-Xe discharge.
Hyperpolarized 131Xe NMR spectroscopy
Stupic, Karl F.; Cleveland, Zackary I.; Pavlovskaya, Galina E.; Meersmann, Thomas
2011-01-01
Hyperpolarized (hp) 131Xe with up to 2.2% spin polarization (i.e., 5000-fold signal enhancement at 9.4 T) was obtained after separation from the rubidium vapor of the spin-exchange optical pumping (SEOP) process. The SEOP was applied for several minutes in a stopped-flow mode, and the fast, quadrupolar-driven T1 relaxation of this spin I = 3/2 noble gas isotope required a rapid subsequent rubidium removal and swift transfer into the high magnetic field region for NMR detection. Because of the xenon density dependent 131Xe quadrupolar relaxation in the gas phase, the SEOP polarization build-up exhibits an even more pronounced dependence on xenon partial pressure than that observed in 129Xe SEOP. 131Xe is the only stable noble gas isotope with a positive gyromagnetic ratio and shows therefore a different relative phase between hp signal and thermal signal compared to all other noble gases. The gas phase 131Xe NMR spectrum displays a surface and magnetic field dependent quadrupolar splitting that was found to have additional gas pressure and gas composition dependence. The splitting was reduced by the presence of water vapor that presumably influences xenon-surface interactions. The hp 131Xe spectrum shows differential line broadening, suggesting the presence of strong adsorption sites. Beyond hp 131Xe NMR spectroscopy studies, a general equation for the high temperature, thermal spin polarization, P, for spin I⩾1/2 nuclei is presented. PMID:21051249
Adsorption of xenon and krypton on shales
NASA Technical Reports Server (NTRS)
Podosek, F. A.; Bernatowicz, T. J.; Kramer, F. E.
1981-01-01
A method that uses a mass spectrometer as a manometer is employed in the measurement of Xe and Kr adsorption parameters on shales and related samples, where gas partial pressures were lower than 10 to the -11th atm, corresponding adsorption coverages are only small fractions of a monolayer, and Henry's Law behavior is expected and observed. Results show heats of adsorption in the 2-7 kcal/mol range, and Henry constants at 0-25 C of 1 cu cm STP/g per atmosphere are extrapolated. Although the adsorption properties obtained are variable by sample, the range obtained suggests that shales may be capable of an equilibrium adsorption with modern air high enough to account for a significant fraction of the atmospheric inventory of Xe, and perhaps even of Kr. This effect will nevertheless not account for the factor-of-25 defficiency of atmospheric Xe, in comparison with the planetary gas patterns observed in meteorites.
Hyperpolarized (129)Xe T (1) in oxygenated and deoxygenated blood
NASA Technical Reports Server (NTRS)
Albert, M. S.; Balamore, D.; Kacher, D. F.; Venkatesh, A. K.; Jolesz, F. A.
2000-01-01
The viability of the new technique of hyperpolarized (129)Xe MRI (HypX-MRI) for imaging organs other than the lungs depends on whether the spin-lattice relaxation time, T(1), of (129)Xe is sufficiently long in the blood. In previous experiments by the authors, the T(1) was found to be strongly dependent upon the oxygenation of the blood, with T(1) increasing from about 3 s in deoxygenated samples to about 10 s in oxygenated samples. Contrarily, Tseng et al. (J. Magn. Reson. 1997; 126: 79-86) reported extremely long T(1) values deduced from an indirect experiment in which hyperpolarized (129)Xe was used to create a 'blood-foam'. They found that oxygenation decreased T(1). Pivotal to their experiment is the continual and rapid exchange of hyperpolarized (129)Xe between the gas phase (within blood-foam bubbles) and the dissolved phase (in the skin of the bubbles); this necessitated a complicated analysis to extract the T(1) of (129)Xe in blood. In the present study, the experimental design minimizes gas exchange after the initial bolus of hyperpolarized (129)Xe has been bubbled through the sample. This study confirms that oxygenation increases the T(1) of (129)Xe in blood, from about 4 s in freshly drawn venous blood, to about 13 s in blood oxygenated to arterial levels, and also shifts the red blood cell resonance to higher frequency. Copyright 2000 John Wiley & Sons, Ltd. Abbreviations used BOLD blood oxygen level dependent NOE nuclear overhouses effect PO(2) oxygen partial pressure RBC red blood cells RF radio frequency SNR signal-to-noise ratio.
Hyperpolarized 129Xe MRI of the Human Lung
Mugler, John P.; Altes, Talissa A.
2012-01-01
By permitting direct visualization of the airspaces of the lung, MR imaging using hyperpolarized gases provides unique strategies for evaluating pulmonary structure and function. Although the vast majority of research in humans has been performed using hyperpolarized 3He, recent contraction in the supply of 3He and consequent increases in price have turned attention to the alternative agent, hyperpolarized 129Xe. Compared to 3He, 129Xe yields reduced signal due to its smaller magnetic moment. Nonetheless, taking advantage of advances in gas-polarization technology, recent studies in humans using techniques for measuring ventilation, diffusion, and partial pressure of oxygen have demonstrated results for hyperpolarized 129Xe comparable to those previously demonstrated using hyperpolarized 3He. In addition, xenon has the advantage of readily dissolving in lung tissue and blood following inhalation, which makes hyperpolarized 129Xe particularly attractive for exploring certain characteristics of lung function, such as gas exchange and uptake, which cannot be accessed using 3He. Preliminary results from methods for imaging 129Xe dissolved in the human lung suggest that these approaches will provide new opportunities for quantifying relationships among gas delivery, exchange, and transport, and thus show substantial potential to broaden our understanding of lung disease. Finally, recent changes in the commercial landscape of the hyperpolarized-gas field now make it possible for this innovative technology to move beyond the research lab. PMID:23355432
Strength and Deformation of Solid Krypton and Xenon to Mbar Pressures
NASA Astrophysics Data System (ADS)
Brugman, B. L.; Lv, M.; Liu, J.; Park, C.; Popov, D.; Prakapenka, V. B.; Dorfman, S.
2017-12-01
Studying phase equilibria and deformation of rare gas solids (RGS) under pressure provides insight into their behavior in planetary bodies. Their simple bonding properties make them useful analogs for materials with similar structures and other van der Waals bonded materials. He, Ne, and Ar are useful as pressure-transmitting media in diamond anvil cell (DAC) experiments due to their low strength and inert chemistry, and Xe has been proposed as a pressure medium as well, but relatively little is known about the strength of Kr and Xe. The strength of heavy RGS may be affected by a martensitic transition from fcc to hcp structure, which is observed at lower pressures with higher Z. The pressure ranges of this transition in Kr and Xe in previous experimental and computational studies vary from 5 to 29 GPa for Xe and as high as 130 GPa for Kr. The transition may be further complicated by kinetics and multiple transition mechanisms. Modeling of phase equilibria and evaluation of Kr and Xe as pressure media may be improved by examination of elastic and plastic properties at extreme pressure. We studied phase transitions and deformation of Kr and Xe using synchrotron x-ray diffraction at Advanced Photon Source beamlines 13-ID-D and 16-BM-D in the DAC at pressures up to 118 GPa. The martensitic fcc-hcp phase transition begins as peak asymmetry and weak peaks in both Kr and Xe at pressures as low as 5 GPa. Intensity of hcp peaks in Xe increases continuously to 118 GPa. Weak hcp peaks were evident in Kr alongside fcc peaks from 5 to 94 GPa, contrary to theoretical predictions that the hcp transition does not begin below 110-130 GPa. Strength and plasticity of Kr and Xe were obtained by complementary lattice strain and peak width analysis of diffraction patterns in both axial and radial geometries as well as observation of pressure gradients by ruby fluorescence. Xe is approximately hydrostatic with strength comparable to common pressure media at pressures up to 10-12 GPa. Differential stress in Xe increases quickly above 12 GPa and then levels off above 30-50 GPa. This apparent reduction in strength coincides with dramatic growth of hcp peaks, suggesting that weakening is associated with the fcc-hcp transition. Strength is systematically higher for higher-Z RGS below the fcc-hcp transition, but transformation to the hcp structure modifies this trend.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shneider, Mikhail N.; Zhang Zhili; Miles, Richard B.
2008-07-15
Resonant enhanced multiphoton ionization (REMPI) and electron avalanche ionization (EAI) are measured simultaneously in Ar:Xe mixtures at different partial pressures of mixture components. A simple theory for combined REMPI+EAI in gas mixture is developed. It is shown that the REMPI electrons seed the avalanche process, and thus the avalanche process amplifies the REMPI signal. Possible applications are discussed.
A 3D-Printed High Power Nuclear Spin Polarizer
Nikolaou, Panayiotis; Coffey, Aaron M.; Walkup, Laura L.; Gust, Brogan M.; LaPierre, Cristen D.; Koehnemann, Edward; Barlow, Michael J.; Rosen, Matthew S.; Goodson, Boyd M.; Chekmenev, Eduard Y.
2015-01-01
Three-dimensional printing with high-temperature plastic is used to enable spin exchange optical pumping (SEOP) and hyperpolarization of xenon-129 gas. The use of 3D printed structures increases the simplicity of integration of the following key components with a variable temperature SEOP probe: (i) in situ NMR circuit operating at 84 kHz (Larmor frequencies of 129Xe and 1H nuclear spins), (ii) <0.3 nm narrowed 200 W laser source, (iii) in situ high-resolution near-IR spectroscopy, (iv) thermoelectric temperature control, (v) retroreflection optics, and (vi) optomechanical alignment system. The rapid prototyping endowed by 3D printing dramatically reduces production time and expenses while allowing reproducibility and integration of “off-the-shelf” components and enables the concept of printing on demand. The utility of this SEOP setup is demonstrated here to obtain near-unity 129Xe polarization values in a 0.5 L optical pumping cell, including ~74 ± 7% at 1000 Torr xenon partial pressure, a record value at such high Xe density. Values for the 129Xe polarization exponential build-up rate [(3.63 ± 0.15) × 10−2 min−1] and in-cell 129Xe spin−lattice relaxation time (T1 = 2.19 ± 0.06 h) for 1000 Torr Xe were in excellent agreement with the ratio of the gas-phase polarizations for 129Xe and Rb (PRb ~ 96%). Hyperpolarization-enhanced 129Xe gas imaging was demonstrated with a spherical phantom following automated gas transfer from the polarizer. Taken together, these results support the development of a wide range of chemical, biochemical, material science, and biomedical applications. PMID:24400919
Emission characteristics of Xe-RbBr plasma
NASA Astrophysics Data System (ADS)
Heneral, A. A.; Avtaeva, S. V.
2017-12-01
The luminescence spectra of the longitudinal pulsed-periodic discharge in Xe-RbBr gas-vapour mixtures at low pressures are experimentally studied. Conditions for obtaining strong UV radiation of XeBr* exiplex molecules in the spectral range of 200-425 nm are found. The greatest output of the XeBr* UV radiation is provided at temperature of the gas-discharge tube walls of ~1000 K. The maximum UV emission power of the whole plasma volume is 4.8 W. Formation of XeBr* exciplex molecules in the pulsed-periodic discharge in Xe-RbBr gas-vapour mixtures at low pressures is discussed.
Noble gas bond and the behaviour of XeO3 under pressure.
Hou, Chunju; Wang, Xianlong; Botana, Jorge; Miao, Maosheng
2017-10-18
Over the past few decades, the concept of hydrogen bonds, in which hydrogen is electrophilic, has been extended to halogen bonds, chalcogen bonds and pnicogen bonds. Herein, we show that such a non-covalent bonding also exists in noble gas compounds. Using first principles calculations, we illustrate the OXe-O bond in molecular crystal XeO 3 and its effect on the behavior of this compound under pressure. Our calculations show that the covalent Xe-O bond lengths were elongated with increasing pressure and correspondingly the Xe-O stretching vibration frequencies were red shifted, which is similar to the change of H-bonds under pressure. The OXe-O bond and related hopping of O between neighboring Xe sites also correspond to the structural changes in the XeO 3 compounds at about 2 GPa. Our study extends the concept of hydrogen bonding to include all p-block elements and show a new bonding type for Noble gas elements in which it acts as an electrophilic species.
Reaction between nickel or iron and xenon under high pressure
NASA Astrophysics Data System (ADS)
Dewaele, A.; Pépin, C. M.; Geneste, G.; Garbarino, G.
2017-04-01
Xe-Ni and Xe-Fe systems are studied in a pressure range relevant to the Earth's core (135-210 GPa) using laser-heated diamond anvil cells and synchrotron X-ray diffraction. The stability of several intermetallic compounds, including XeNi? and XeFe?, has been recently calculated using structural searches and density functional theory (DFT) above 155 and 190 GPa, respectively [Zhu L, Liu H, Pickard CJ, et al. Nat Chem. 2014;6:644-648]. We have synthesized XeNi? around 150 GPa, confirming the prediction; however, it has a cubic ?-Cu?Au structure, different from the predicted one for XeNi? but identical to the structure predicted for XeFe?. ?-XeNi? is calculated to be metastable with DFT. A disordered Ni?Xe? (?) alloy is observed to form prior to this compound. This alloy is interesting in the perspective of a possible storage of xenon in the Earth's core. We have not observed any reaction between Xe and Fe up to 210 GPa.
Hyperpolarized 129Xe MRI: A Viable Functional Lung Imaging Modality?
Patz, Samuel; Hersman, F. William; Muradian, Iga; Hrovat, Mirko I.; Ruset, Iulian C.; Ketel, Stephen; Jacobson, Francine; Topulos, George P.; Hatabu, Hiroto; Butler, James P.
2008-01-01
The majority of researchers investigating hyperpolarized gas MRI as a candidate functional lung imaging modality have used 3He as their imaging agent of choice rather than 129Xe. This preference has been predominantly due to, 3He providing stronger signals due to higher levels of polarization and higher gyromagnetic ratio, as well as its being easily available to more researchers due to availability of polarizers (USA) or ease of gas transport (Europe). Most researchers agree, however, that hyperpolarized 129Xe will ultimately emerge as the imaging agent of choice due to its unlimited supply in nature and its falling cost. Our recent polarizer technology delivers vast improvements in hyperpolarized 129Xe output. Using this polarizer, we have demonstrated the unique property of xenon to measure alveolar surface area noninvasively. In this article, we describe our human protocols and their safety, and our results for the measurement of the partial pressure of pulmonary oxygen (pO2) by observation of 129Xe signal decay. We note that the measurement of pO2 by observation of 129Xe signal decay is more complex than that for 3He because of an additional signal loss mechanism due to interphase diffusion of 129Xe from alveolar gas spaces to septal tissue. This results in measurements of an equivalent pO2 that accounts for both traditional T1 decay from pO2 and that from interphase diffusion. We also provide an update on new technological advancements that form the foundation for an improved compact design polarizer as well as improvements that provide another order-of-magnitude scale-up in xenon polarizer output. PMID:17890035
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhaka, R. S.; Biswas, C.; Shukla, A. K.
We have studied xenon and argon bubbles formed in the subsurface region of Al(111) by x-ray photoelectron spectroscopy. As a consequence of the nanometer size of the bubbles, the photohole formed by Xe 3d or Ar 2p photoemission is screened by the Al conduction electrons, which substantially lowers the binding energy (BE) as compared to the gas phase. As the bubble size increases, the Al conduction electron screening decreases and the BE increases. On the basis of density functional theory, we show that the change in the bubble pressure with size is not responsible for the BE shift of innermore » shell core levels, such as Xe 3d or Ar 2p. On the other hand, an increase in BE with bubble size for outer shell core levels, such as Ar 3p, could be due to a decrease in both pressure and Al conduction electron screening. The core level line shape also changes with bubble size. For example, the spectra are broadened due to the distribution of the bubble radius around its mean value, and an asymmetry for small bubbles is observed that decreases for larger bubbles. An annealing of Xe and Ar bubbles after an implantation up to 640 K shows that the BE increases with annealing temperature. Since it is well known that bubble size increases with annealing temperature, this further supports our contention of BE shift with bubble size. A defect induced partial disorder of the Al(111) surface by Xe and Ar bombardment is observed by low energy electron diffraction, but this does not affect the Al 2p BE and line shape.« less
Hyperfine frequencies of {sup 87}Rb and {sup 133}Cs atoms in Xe gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGuyer, B. H.; Xia, T.; Jau, Y.-Y.
2011-09-15
The microwave resonant frequencies of ground-state {sup 87}Rb and {sup 133}Cs atoms in Xe buffer gas are shown to have a relatively large nonlinear dependence on the Xe pressure, presumably because of RbXe or CsXe van der Waals molecules. The nonlinear shifts for Xe are opposite in sign to the previously measured shifts for Ar and Kr, even though all three gases have negative linear shifts. The Xe data show striking discrepancies with the previous theory for nonlinear shifts. Most of this discrepancy is eliminated by accounting for the spin-rotation interaction, {gamma}N{center_dot}S, in addition to the hyperfine-shift interaction, {delta} Amore » I{center_dot}S, in the molecules. To the limit of our experimental accuracy, the shifts of {sup 87}Rb and {sup 133}Cs in He, Ne, and N{sub 2} were linear with pressure.« less
XeCl Avalanche discharge laser employing Ar as a diluent
Sze, Robert C.
1981-01-01
A XeCl avalanche discharge exciplex laser which uses a gaseous lasing starting mixture of: (0.2%-0.4% chlorine donor/2.5%-10% Xe/97.3%-89.6% Ar). The chlorine donor normally comprises HCl but can also comprise CCl.sub.4 BCl.sub.3. Use of Ar as a diluent gas reduces operating pressures over other rare gas halide lasers to near atmospheric pressure, increases output lasing power of the XeCl avalanche discharge laser by 30% to exceed KrF avalanche discharge lasing outputs, and is less expensive to operate.
Production of Ar and Xe metastables in rare gas mixtures in a dielectric barrier discharge
NASA Astrophysics Data System (ADS)
Mikheyev, Pavel A.; Han, Jiande; Clark, Amanda; Sanderson, Carl; Heaven, Michael C.
2017-12-01
Optically pumped all-rare-gas lasers (OPRGL) utilize metastable atoms of the heavier rare gases as lasing species. The required number density of metastables for efficient laser operation is 1012-1013 cm-3 in He buffer gas at pressures in the 400-1000 Torr range. Such metastable densities are easily produced in a nanosecond pulsed discharge, even at pressures larger than atmospheric, but problems appear when one is trying to achieve continuous production. The reason for low production efficiency in many types of continuous discharge at atmospheric pressure is the low value of the E/N parameter (<5-6 Td). In the present work, we have examined the possibility of using a dielectric barrier discharge (DBD) to provide near continuous, high densities of Ar and Xe metastables. Experiments were performed using a 20 kHz DBD in binary Ar and Xe mixtures with He, and in ternary Ar:Xe:He mixtures at pressures up to 1 atmosphere. Concentrations were measured by means of tunable diode laser absorption spectroscopy. Time-averaged [Ar(1s5)] and [Xe(1s5)] number densities on the order of 1012 cm-3 were readily achieved. The temporal behavior of [Xe(1s5)] throughout the DBD cycle was observed. The results demonstrate the feasibility of using DBDs for OPRGL development. Spectral scans over the absorption lines were also used to examine the pressure broadening coefficients for the 912.3 nm Ar line in He and the Xe 904.5 nm line in Ne and He.
Xe incorporation in crust and upper mantle minerals: new experimental and theoretical evidences
NASA Astrophysics Data System (ADS)
Celine, C.; Sanloup, C.; Blanchard, M.; Lazzeri, M.; Balan, E.; Hudspeth, J.
2017-12-01
Storage of Xe in silicate minerals has been proposed to explain the `Missing Xenon' issue, i.e. the low Xe abundance in the Earth's and Mars' atmospheres compared to other noble gases [1]. However, data about Xe incorporation in minerals remain scarce due to high Xe volatility preventing studies at ambient conditions. Xe incorporations in olivine [2] and quartz [3] have been proposed based on experimental evidences at high pressures and temperatures. Nevertheless, Xe incorporation mechanisms remained so far only hypothetical. We present here new in situ X-ray diffraction data in diamond-anvil cell showing Xe incorporation in widespread silicate minerals of the continental crust (feldspars and quartz) and of the upper mantle (olivine) at relevant pressure and temperature conditions. Significant variations in cell parameters are retrieved in Xe-rich minerals as well as new peaks, implying change in the crystal structures linked to Xe incorporation. Theoretical calculations have been performed (using the density functional theory) to propose Xe incorporation sites able to reproduce experimental observations. In olivine, a Xe for Si substitutions is proposed, with up to 0.4 at% Xe potentially stored in olivine at depth. These new constraints on Xe incorporation at depths in silicate minerals, often neglected, could be crucial in the `Missing Xenon' issue. [1] Anders and Owen (1977) Science 198, 453-465, [2] Sanloup et al. (2011) Geochim. Cosmochim. Acta 75, 6271-6284, [3] Sanloup et al., (2005) Science, 310, 1174-1177
XeCl avalanche discharge laser employing Ar as a diluent
Sze, R.C.
1979-10-10
A XeCl avalanche discharge exciplex laser which uses a gaseous lasing starting mixture of: 0.2 to 0.4% chlorine donor/2.5% to 10% Xe/97.3% to 89.6% Ar) is provided. The chlorine donor normally comprises HCl but can also comprise CCl/sub 4/ BCl/sub 3/. Use of Ar as a diluent gas reduces operating pressures over other rare gas halide lasers to near atmospheric pressure, increases output lasing power of the XeCl avalanche discharge laser by 30% to exceed KrF avalanche discharge lasing outputs, and is less expensive to operate.
Reduced xenon diffusion for quantitative lung study--the role of SF(6)
NASA Technical Reports Server (NTRS)
Mair, R. W.; Hoffmann, D.; Sheth, S. A.; Wong, G. P.; Butler, J. P.; Patz, S.; Topulos, G. P.; Walsworth, R. L.
2000-01-01
The large diffusion coefficients of gases result in significant spin motion during the application of gradient pulses that typically last a few milliseconds in most NMR experiments. In restricted environments, such as the lung, this rapid gas diffusion can lead to violations of the narrow pulse approximation, a basic assumption of the standard Stejskal-Tanner NMR method of diffusion measurement. We therefore investigated the effect of a common, biologically inert buffer gas, sulfur hexafluoride (SF(6)), on (129)Xe NMR and diffusion. We found that the contribution of SF(6) to (129)Xe T(1) relaxation in a 1:1 xenon/oxygen mixture is negligible up to 2 bar of SF(6) at standard temperature. We also measured the contribution of SF(6) gas to (129)Xe T(2) relaxation, and found it to scale inversely with pressure, with this contribution approximately equal to 1 s for 1 bar SF(6) pressure and standard temperature. Finally, we found the coefficient of (129)Xe diffusion through SF(6) to be approximately 4.6 x 10(-6) m(2)s(-1) for 1 bar pressure of SF(6) and standard temperature, which is only 1.2 times smaller than the (129)Xe self diffusion coefficient for 1 bar (129)Xe pressure and standard temperature. From these measurements we conclude that SF(6) will not sufficiently reduce (129)Xe diffusion to allow accurate surface-area/volume ratio measurements in human alveoli using time-dependent gas diffusion NMR.
NASA Astrophysics Data System (ADS)
Montes-Bayón, M.; Camuña-Aguilar, F.; Pereiro, R.; Sánchez-Uria, J. E.; Sanz-Medel, A.
1996-06-01
A comparative study of the effect of CO 2 and Xe added along with the plasma gas to He and Ar microwave induced plasmas (MIPs), simulating possible conditions to be used when a MIP is employed as specific detector for supercritical fluid chromatography (SFC), has been carried out. The proportions of CO 2 and Xe to the plasma gas investigated are comparable to the typical percentages used for SFC-MIP couplings. The study has been performed with two different MIP systems: an atmospheric pressure discharge held in a Beenakker cavity TM 010 and a reduced pressure surfatron-MIP. The influence of CO 2 and Xe addition on the spectrochemical properties of the discharge has been studied by using the atomic emission of mercury and some typical non-metals (chlorine, carbon and sulfur) at different wavelengths (atomic and ionic lines). Results showed that ion line emission intensities are always reduced more significantly than atom line emissions by both dopant gases on study, whatever the pressure. In general terms, however, the effect of adding Xe is less severe, both for atom and ion lines, than that of CO 2; in most cases the detection limits (DLs) observed are better for Xe than for CO 2 as dopant gas. In fact, the DLs obtained for the selected lines of mercury measured were practically unaltered by the addition of 0.2% Xe to atmospheric pressure Ar or He MIPs. CO 2 addition (0.2%) produced about 1.5 times worsening of the observed DLs for mercury. For non-metal analyses better DLs were also obtained, in general terms, with Xe than with CO 2 as dopant gas.
Effect of hematocrit and systolic blood pressure on cerebral blood flow in newborn infants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Younkin, D.P.; Reivich, M.; Jaggi, J.L.
1987-06-01
The effects of hematocrit and systolic blood pressure on cerebral blood flow were measured in 15 stable, low birth weight babies. CBF was measured with a modification of the xenon-133 (/sup 133/Xe) clearance technique, which uses an intravenous bolus of /sup 133/Xe, an external chest detector to estimate arterial /sup 133/Xe concentration, eight external cranial detectors to measure cephalic /sup 133/Xe clearance curves, and a two-compartmental analysis of the cephalic /sup 133/Xe clearance curves to estimate CBF. There was a significant inverse correlation between hematocrit and CBF, presumably due to alterations in arterial oxygen content and blood viscosity. Newborn CBFmore » varied independently of systolic blood pressure between 60 and 84 mm Hg, suggesting an intact cerebrovascular autoregulatory mechanism. These results indicate that at least two of the factors that affect newborn animal CBF are operational in human newborns and may have important clinical implications.« less
Early episodes of high-pressure core formation preserved in plume mantle
NASA Astrophysics Data System (ADS)
Jackson, Colin R. M.; Bennett, Neil R.; Du, Zhixue; Cottrell, Elizabeth; Fei, Yingwei
2018-01-01
The decay of short-lived iodine (I) and plutonium (Pu) results in xenon (Xe) isotopic anomalies in the mantle that record Earth’s earliest stages of formation. Xe isotopic anomalies have been linked to degassing during accretion, but degassing alone cannot account for the co-occurrence of Xe and tungsten (W) isotopic heterogeneity in plume-derived basalts and their long-term preservation in the mantle. Here we describe measurements of I partitioning between liquid Fe alloys and liquid silicates at high pressure and temperature and propose that Xe isotopic anomalies found in modern plume rocks (that is, rocks with elevated 3He/4He ratios) result from I/Pu fractionations during early, high-pressure episodes of core formation. Our measurements demonstrate that I becomes progressively more siderophile as pressure increases, so that portions of mantle that experienced high-pressure core formation will have large I/Pu depletions not related to volatility. These portions of mantle could be the source of Xe and W anomalies observed in modern plume-derived basalts. Portions of mantle involved in early high-pressure core formation would also be rich in FeO, and hence denser than ambient mantle. This would aid the long-term preservation of these mantle portions, and potentially points to their modern manifestation within seismically slow, deep mantle reservoirs with high 3He/4He ratios.
Comparison of air space measurement imaged by CT, small-animal CT, and hyperpolarized Xe MRI
NASA Astrophysics Data System (ADS)
Madani, Aniseh; White, Steven; Santyr, Giles; Cunningham, Ian
2005-04-01
Lung disease is the third leading cause of death in the western world. Lung air volume measurements are thought to be early indicators of lung disease and markers in pharmaceutical research. The purpose of this work is to develop a lung phantom for assessing and comparing the quantitative accuracy of hyperpolarized xenon 129 magnetic resonance imaging (HP 129Xe MRI), conventional computed tomography (HRCT), and highresolution small-animal CT (μCT) in measuring lung gas volumes. We developed a lung phantom consisting of solid cellulose acetate spheres (1, 2, 3, 4 and 5 mm diameter) uniformly packed in circulated air or HP 129Xe gas. Air volume is estimated based on simple thresholding algorithm. Truth is calculated from the sphere diameters and validated using μCT. While this phantom is not anthropomorphic, it enables us to directly measure air space volume and compare these imaging methods as a function of sphere diameter for the first time. HP 129Xe MRI requires partial volume analysis to distinguish regions with and without 129Xe gas and results are within %5 of truth but settling of the heavy 129Xe gas complicates this analysis. Conventional CT demonstrated partial-volume artifacts for the 1mm spheres. μCT gives the most accurate air-volume results. Conventional CT and HP 129Xe MRI give similar results although non-uniform densities of 129Xe require more sophisticated algorithms than simple thresholding. The threshold required to give the true air volume in both HRCT and μCT, varies with sphere diameters calling into question the validity of thresholding method.
Determination of etching parameters for pulsed XeF2 etching of silicon using chamber pressure data
NASA Astrophysics Data System (ADS)
Sarkar, Dipta; Baboly, M. G.; Elahi, M. M.; Abbas, K.; Butner, J.; Piñon, D.; Ward, T. L.; Hieber, Tyler; Schuberth, Austin; Leseman, Z. C.
2018-04-01
A technique is presented for determination of the depletion of the etchant, etched depth, and instantaneous etch rate for Si etching with XeF2 in a pulsed etching system in real time. The only experimental data required is the pressure data collected temporally. Coupling the pressure data with the knowledge of the chemical reactions allows for the determination of the etching parameters of interest. Using this technique, it is revealed that pulsed etching processes are nonlinear, with the initial etch rate being the highest and monotonically decreasing as the etchant is depleted. With the pulsed etching system introduced in this paper, the highest instantaneous etch rate of silicon was recorded to be 19.5 µm min-1 for an initial pressure of 1.2 Torr for XeF2. Additionally, the same data is used to determine the rate constant for the reaction of XeF2 with Si; the reaction is determined to be second order in nature. The effect of varying the exposed surface area of Si as well as the effect that pressure has on the instantaneous etch rate as a function of time is shown applying the same technique. As a proof of concept, an AlN resonator is released using XeF2 pulses to remove a sacrificial poly-Si layer.
The solubility of noble gases in crude oil at 25-100°C
Kharaka, Yousif K.; Specht, Daniel J.
1988-01-01
The solubility of the noble gases He, Ne, Ar, Kr and Xe was measured in two typical crude oils at temperatures of 25–100°C. The oil samples were obtained from the Elk Hills oil field located in southern San Joaquin Valley, California. The experimental procedure consisted of placing a known amount of gas with a known volume of crude oil in a stainless steel hydrothermal pressure vessel. The vessel was housed inside an oven and the entire unit rotates providing continuous mixing. The amount of gas dissolved in oil at a measured temperature and partial pressure of gas was used to calculate the solubility constants for these gases. Results show that the solubility of He and Ne in both oils is approximately the same; solubility then increases with atomic mass, with the solubility of Xe at 25°C being two orders of magnitude higher than that of He. The gas solubilities are somewhat higher in the lower density (higher API gravity) oil. The solubility of Ar is approximately constant in the range of temperatures of this study. The solubilities of He and Ne increase, but those of Kr and Xe decrease with increasing temperatures. Solubilities of noble gases in crude oil are significantly higher than their solubilities in water. For example, the solubilities of He and Xe at 25°C in the light oil of this study are, respectively, 3 and 24 times higher than their solubilities in pure water, and they are 15 and 300 times higher than in a brine with a salinity of 350,000 mg/l dissolved solids. These large and variable differences in the solubilities of noble gases in oil and water indicate that, in sedimentary basins with oil, these gases must be partitioned between oil, water and natural gas before they are used to deduce the origin and residence time of these fluids.
Metal-organic frameworks for Xe/Kr separation
Ryan, Patrick J.; Farha, Omar K.; Broadbelt, Linda J.; Snurr, Randall Q.; Bae, Youn-Sang
2014-07-22
Metal-organic framework (MOF) materials are provided and are selectively adsorbent to xenon (Xe) over another noble gas such as krypton (Kr) and/or argon (Ar) as a result of having framework voids (pores) sized to this end. MOF materials having pores that are capable of accommodating a Xe atom but have a small enough pore size to receive no more than one Xe atom are desired to preferentially adsorb Xe over Kr in a multi-component (Xe--Kr mixture) adsorption method. The MOF material has 20% or more, preferably 40% or more, of the total pore volume in a pore size range of 0.45-0.75 nm which can selectively adsorb Xe over Kr in a multi-component Xe--Kr mixture over a pressure range of 0.01 to 1.0 MPa.
Metal-organic frameworks for Xe/Kr separation
Ryan, Patrick J.; Farha, Omar K.; Broadbelt, Linda J.; Snurr, Randall Q.; Bae, Youn-Sang
2013-08-27
Metal-organic framework (MOF) materials are provided and are selectively adsorbent to xenon (Xe) over another noble gas such as krypton (Kr) and/or argon (Ar) as a result of having framework voids (pores) sized to this end. MOF materials having pores that are capable of accommodating a Xe atom but have a small enough pore size to receive no more than one Xe atom are desired to preferentially adsorb Xe over Kr in a multi-component (Xe--Kr mixture) adsorption method. The MOF material has 20% or more, preferably 40% or more, of the total pore volume in a pore size range of 0.45-0.75 nm which can selectively adsorb Xe over Kr in a multi-component Xe--Kr mixture over a pressure range of 0.01 to 1.0 MPa.
Inner-shell photoionization and core-hole decay of Xe and XeF2.
Southworth, Stephen H; Wehlitz, Ralf; Picón, Antonio; Lehmann, C Stefan; Cheng, Lan; Stanton, John F
2015-06-14
Photoionization cross sections and partial ion yields of Xe and XeF2 from Xe 3d(5/2), Xe 3d(3/2), and F 1s subshells in the 660-740 eV range are compared to explore effects of the F ligands. The Xe 3d-ϵf continuum shape resonances dominate the photoionization cross sections of both the atom and molecule, but prominent resonances appear in the XeF2 cross section due to nominal excitation of Xe 3d and F 1s electrons to the lowest unoccupied molecular orbital (LUMO), a delocalized anti-bonding MO. Comparisons of the ion products from the atom and molecule following Xe 3d photoionization show that the charge-state distribution of Xe ions is shifted to lower charge states in the molecule along with production of energetic F(+) and F(2+) ions. This suggests that, in decay of a Xe 3d core hole, charge is redistributed to the F ligands and the system dissociates due to Coulomb repulsion. The ion products from excitation of the F 1s-LUMO resonance are different and show strong increases in the yields of Xe(+) and F(+) ions. The subshell ionization thresholds, the LUMO resonance energies, and their oscillator strengths are calculated by relativistic coupled-cluster methods and agree well with measurements.
Inner-shell photoionization and core-hole decay of Xe and XeF 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Southworth, Stephen H.; Wehlitz, Ralf; Picón, Antonio
2015-06-14
Photoionization cross sections and partial ion yields of Xe and XeF2 from Xe 3d5/2, Xe 3d3/2, and F 1s subshells in the 660–740 eV range are compared to explore effects of the F ligands. The Xe 3d-ϵf continuum shape resonances dominate the photoionization cross sections of both the atom and molecule, but prominent resonances appear in the XeF2 cross section due to nominal excitation of Xe 3d and F 1s electrons to the lowest unoccupied molecular orbital (LUMO), a delocalized anti-bonding MO. Comparisons of the ion products from the atom and molecule following Xe 3d photoionization show that the charge-statemore » distribution of Xe ions is shifted to lower charge states in the molecule along with production of energetic F+ and F2+ ions. This suggests that, in decay of a Xe 3d core hole, charge is redistributed to the F ligands and the system dissociates due to Coulomb repulsion. The ion products from excitation of the F 1s-LUMO resonance are different and show strong increases in the yields of Xe+ and F+ ions. The subshell ionization thresholds, the LUMO resonance energies, and their oscillator strengths are calculated by relativistic coupled-cluster methods and agree well with measurements.« less
ETV Report:Siemens Model H-4XE-HO Open Channel UV System
Verification testing of the Siemens Barrier Sunligt H-4XE-HO UV System was completed at the UV Validation and Research Center of New York (UV Center), located in Johnstown, NY. The H-4XE System utilizes 16 high-output, low-pressure lamps oriented horizontally and parallel to the...
Novel Functional Extended Solids at Extreme Conditions
2013-02-01
XeF8 polyhedron with a Xe-F distance 2.3 (±.1) Å - well below the metallization pressure of Xe [2,3] and F2 [4]. These findings signify...for explosives modeling and is expected to be incorporated into the explosive database such as Cheetah, etc., and (v) training graduate students and
Synthesis of the missing oxide of xenon, XeO2, and its implications for Earth's missing xenon.
Brock, David S; Schrobilgen, Gary J
2011-04-27
The missing Xe(IV) oxide, XeO(2), has been synthesized at 0 °C by hydrolysis of XeF(4) in water and 2.00 M H(2)SO(4(aq)). Raman spectroscopy and (16/18)O isotopic enrichment studies indicate that XeO(2) possesses an extended structure in which Xe(IV) is oxygen bridged to four neighboring oxygen atoms to give a local square-planar XeO(4) geometry based on an AX(4)E(2) valence shell electron pair repulsion (VSEPR) arrangement. The vibrational spectra of Xe(16)O(2) and Xe(18)O(2) amend prior vibrational assignments of xenon doped SiO(2) and are in accordance with prior speculation that xenon depletion from the Earth's atmosphere may occur by xenon insertion at high temperatures and high pressures into SiO(2) in the Earth's crust.
New constraints on Xe incorporation mechanisms in olivine from first-principles calculations
NASA Astrophysics Data System (ADS)
Crépisson, Céline; Blanchard, Marc; Lazzeri, Michele; Balan, Etienne; Sanloup, Chrystèle
2018-02-01
Storage of Xe at depth in silicate minerals has recently been proposed to explain the low Xe abundance in the Earth's and Mars' atmospheres compared to other noble gases (the so-called 'Missing Xenon' issue). Evidences for incorporation, and thus reactivity of Xe in olivine at high pressure and high temperature are based on variations in cell parameters and the appearance of a new Raman band. To constrain the, so far only hypothetical, Xe incorporation mechanism in olivine, we theoretically investigated models of Xe-bearing olivine using density functional theory. Three types of incorporation mechanisms are tested: Xe for Si and Xe for Mg substitutions, and interstitial Xe. Xe for Si substitution, implying an oxidation of Xe, is found to be the only mechanism consistent with experimental observations, leading to an increase of cell parameter a and the appearance of a new Raman band around 720-750 cm-1 associated with Xesbnd O stretching vibrations. Raman spectroscopy makes it possible to identify Xe incorporation site, even at low Xe content, due to high Xe polarizability. An estimation of Xe content in olivine, based on present work and previous in situ experimental results, shows that up to 0.4 at.% Xe could be stored in olivine at depth.
Evolution of atmospheric xenon and other noble gases inferred from Archean to Paleoproterozoic rocks
NASA Astrophysics Data System (ADS)
Avice, G.; Marty, B.; Burgess, R.; Hofmann, A.; Philippot, P.; Zahnle, K.; Zakharov, D.
2018-07-01
We have analyzed ancient atmospheric gases trapped in fluid inclusions contained in minerals of Archean (3.3 Ga) to Paleozoic (404 Ma) rocks in an attempt to document the evolution of the elemental composition and isotopic signature of the atmosphere with time. Doing so, we aimed at understanding how physical and chemical processes acted over geological time to shape the modern atmosphere. Modern atmospheric xenon is enriched in heavy isotopes by 30-40‰ u-1 relative to Solar or Chondritic xenon. Previous studies demonstrated that, 3.3 Ga ago, atmospheric xenon was isotopically fractionated (enriched in the light isotopes) relative to the modern atmosphere, by 12.9 ± 1.2 (1σ) ‰ u-1, whereas krypton was isotopically identical to modern atmospheric Kr. Details about the specific and progressive isotopic fractionation of Xe during the Archean, originally proposed by Pujol et al. (2011), are now well established by this work. Xe isotope fractionation has evolved from 21‰ u-1 at 3.5 Ga to 12.9‰ u-1 at 3.3 Ga. The current dataset provides some evidence for stabilization of the Xe fractionation between 3.3 and 2.7 Ga. However, further studies will be needed to confirm this observation. After 2.7 Ga, the composition kept evolving and reach the modern-like atmospheric Xe composition at around 2.1 Ga ago. Xenon may be the second atmospheric element, after sulfur, to show a secular isotope evolution during the Archean that ended shortly after the Archean-Proterozoic transition. Fractionation of xenon indicates that xenon escaped from Earth, probably as an ion, and that Xe escape stopped when the atmosphere became oxygen-rich. We speculate that the Xe escape was enabled by a vigorous hydrogen escape on the early anoxic Earth. Organic hazes, scavenging isotopically heavy Xe, could also have played a role in the evolution of atmospheric Xe. For 3.3 Ga-old samples, Ar-N2 correlations are consistent with a partial pressure of nitrogen (pN2) in the Archean atmosphere similar to, or lower than, the modern one, thus requiring other processes than a high pN2 to keep the Earth's surface warm despite a fainter Sun. The nitrogen isotope composition of the atmosphere at 3.3 Ga was already modern-like, attesting to inefficient nitrogen escape to space since that time.
Improved pressurized Marinelli beaker measurements of radioactive xenon in air.
Robinson, Troy; Mann, Nick; Houghton, Tracy; Watrous, Matthew; Peterson, John; Fabian, Paul; Hipp, Pat; Reavis, Mark; Fernandez, Francisco
2017-08-01
INL has shown that a Marinelli beaker geometry can be used for the measurement of radioactive xenon in air using an aluminum Marinelli. A carbon fiber Marinelli was designed and constructed to improve overall performance. This composite Marinelli can withstand sample pressures of 276bar and achieve approximately a 4x performance improvement in the minimum detectable concentrations (MDCs) and concentration uncertainties. The MDCs obtained during a 24h assay for 133 Xe, 131m Xe, and 135 Xe are: 1.4, 13, and 0.35Bq/m 3 . Copyright © 2016. Published by Elsevier Ltd.
Preservation of Primordial Mantle in the Aftermath of a Giant Impact
NASA Astrophysics Data System (ADS)
Lock, S. J.; Stewart, S. T.; Mukhopadhyay, S.
2016-12-01
Terrestrial planets experience a number of giant impacts in the final stages of accretion. These highly energetic events force planets into hot, partially vaporized, and occasionally rapidly-rotating states. However, recent measurements of Xe and W isotopes in mantle plume-derived basalts imply that the terrestrial mantle was not homogenized during this violent stage of Earth's accretion. Understanding the physical structure of post-impact states is key for interpreting these primitive mantle signatures. Post-impact states are highly thermally stratified: the lowermost mantle has lower entropy than the rest of the mantle. Usually, the lowermost mantle is near the solidus or partially molten. The high-entropy portion of the mantle is super-liquidus, smoothly grading to a silicate vapor atmosphere. Here, we consider the competing processes acting on these distinct layers as the mantle establishes a single thermal gradient. If the whole mantle chemically mixed during cooling, then any pre-impact chemical signature would be erased. Previous work has neglected the critical time period between the highly vaporized post-impact state and a fully-condensed silicate body, i.e., a separated magma ocean and atmosphere. The post-impact structure cools rapidly by radiation from the photosphere, causing contraction of the body and redistribution of mass and angular momentum. One consequence of contraction is that the pressure in the mantle increases significantly (on the order of several to 10s GPa at the core mantle boundary) over 10s-1000s years. The increased pressure causes part of the mantle to solidify. Significantly, the timescale for pressure-induced freezing is shorter than the timescale for thermal equilibration between the low and high entropy mantle layers and the timescale for melt percolation (both >100s yrs). Therefore, pressure-induced freezing in the aftermath of a giant impact may be an important factor in preserving primordial Xe and W signatures in the lower mantle. Pressure-induced freezing of the lower mantle predicts a different chemistry than that produced by fractional crystallization of a magma ocean. The post-impact planet could inherit chemical signatures from portions of the mantles of the impacting bodies that did not re-equilibrate with the metal core or outgas volatiles.
Inner-shell photoionization and core-hole decay of Xe and XeF{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Southworth, Stephen H.; Picón, Antonio; Lehmann, C. Stefan
2015-06-14
Photoionization cross sections and partial ion yields of Xe and XeF{sub 2} from Xe 3d{sub 5/2}, Xe 3d{sub 3/2}, and F 1s subshells in the 660–740 eV range are compared to explore effects of the F ligands. The Xe 3d-ϵf continuum shape resonances dominate the photoionization cross sections of both the atom and molecule, but prominent resonances appear in the XeF{sub 2} cross section due to nominal excitation of Xe 3d and F 1s electrons to the lowest unoccupied molecular orbital (LUMO), a delocalized anti-bonding MO. Comparisons of the ion products from the atom and molecule following Xe 3d photoionizationmore » show that the charge-state distribution of Xe ions is shifted to lower charge states in the molecule along with production of energetic F{sup +} and F{sup 2+} ions. This suggests that, in decay of a Xe 3d core hole, charge is redistributed to the F ligands and the system dissociates due to Coulomb repulsion. The ion products from excitation of the F 1s-LUMO resonance are different and show strong increases in the yields of Xe{sup +} and F{sup +} ions. The subshell ionization thresholds, the LUMO resonance energies, and their oscillator strengths are calculated by relativistic coupled-cluster methods and agree well with measurements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stavrou, Elissaios; Yao, Yansun; Goncharov, Alexander F.
In this study, using in situ synchrotron x-ray diffraction and Raman spectroscopy in concert with first principles calculations we demonstrate the synthesis of stable Xe(Fe ,Fe/Ni) 3 and XeNi 3 compounds at thermodynamic conditions representative of Earth’s core. Surprisingly, in the case of both the Xe-Fe and Xe-Ni systems Fe and Ni become highly electronegative and can act as oxidants. In conclusion, the results indicate the changing chemical properties of elements under extreme conditions by documenting that electropositive at ambient pressure elements could gain electrons and form anions.
NASA Astrophysics Data System (ADS)
Safronova, U. I.; Safronova, M. S.
2014-05-01
Excitation energies of the [Xe]nd (n =5-9), [Xe]ns (n =6-10), [Xe]np (n =6-9), [Xe]nf (n =4-8), and [Xe]ng (n =5-8) states in La iii, where [Xe] = 1s22s22p63s23p63d104s24p64d105s25p6, are evaluated. Electric dipole matrix elements for the allowed transitions between the low-lying [Xe]nd, [Xe]ns, [Xe]np, [Xe]nf, and [Xe]ng states in the La iii ion are calculated using the high-precision relativistic all-order method where all single, double, and partial triple excitations of the Dirac-Fock wave functions are included to all orders of perturbation theory. Recommended values are provided for a large number of electric dipole matrix elements, oscillator strengths, transition rates, and lifetimes. Scalar and tensor polarizabilities of the states listed above are evaluated. The uncertainties of the recommended values are estimated. Electric quadrupole and magnetic dipole matrix elements are calculated to determine lifetimes of the 5d5/2 and 6s metastable levels. The ground-state E1, E2, and E3 static polarizabilities are calculated. This work provides recommended values critically evaluated for their accuracy for a number of La iii atomic properties for use in planning and analysis of various experiments as well as theoretical modeling.
Lattice distortion in hcp rare gas solids
NASA Astrophysics Data System (ADS)
Grechnev, A.; Tretyak, S. M.; Freiman, Yu. A.
2010-04-01
The lattice distortion parameter δ ≡c/a-√8/3 has been calculated as a function of molar volume for the hcp phases of He, Ar, Kr, and Xe. Results from both semi-empirical potentials and density functional theory are presented. Our study shows that δ is negative for helium in the entire pressure range. For Ar, Kr, and Xe δ changes sign from negative to positive as the pressure increases, growing rapidly in magnitude at higher pressures.
Experimental ion mobility measurements in Xe-CF4 mixtures
NASA Astrophysics Data System (ADS)
Cortez, A. F. V.; Kaja, M. A.; Escada, J.; Santos, M. A. G.; Veenhof, R.; Neves, P. N. B.; Santos, F. P.; Borges, F. I. G. M.; Conde, C. A. N.
2018-04-01
In this paper we present the results of the ion mobility measurements made in gaseous mixtures of xenon with carbon tetrafluoride (Xe-CF4) for pressures ranging from 6 to 10 Torr (8-10.6 mbar) and for low reduced electric fields in the 10 to 25 Td range (2.4-6.1 kVṡcm‑1ṡbar‑1), at room temperature. The time-of-arrival spectra revealed one or two peaks depending on the gas relative abundances, which were attributed to CF3+ and to Xe2+ ions. However, for Xe concentrations above 60%, only one peak remains (Xe2+). The reduced mobilities obtained from the peak centroid of the time-of-arrival spectra are presented for Xe concentrations in the 5%-95% range.
Li, Na; Lu, Dongshi; Yang, Lei; Tao, Huan; Xu, Younian; Wang, Chenchen; Fu, Lisha; Liu, Hui; Chummum, Yatisha; Zhang, Shihai
2018-04-11
Xenon is an elemental anesthetic with nine stable isotopes. Nuclear spin is a quantum property which may differ among isotopes. Xenon 131 (Xe) has nuclear spin of 3/2, xenon 129 (Xe) a nuclear spin of 1/2, and the other seven isotopes have no nuclear spin. This study was aimed to explore the effect of nuclear spin on xenon anesthetic potency. Eighty C57BL/6 male mice (7 weeks old) were randomly divided into four groups, xenon 132 (Xe), xenon 134 (Xe), Xe, and Xe groups. Due to xenon's low potency, loss of righting reflex ED50 for mice to xenon was determined with 0.50% isoflurane. Loss of righting reflex ED50 of isoflurane was also measured, and the loss of righting reflex ED50 values of the four xenon isotopes were then calculated. The exact polarizabilities of the isotopes were calculated. Combined with 0.50% isoflurane, the loss of righting reflex ED50 values were 15 ± 4%, 16 ± 5%, 22 ± 5%, and 23 ± 7% for Xe, Xe, Xe, and Xe, respectively. For xenon alone, the loss of righting reflex ED50 values of Xe, Xe, Xe, and Xe were 70 ± 4%, 72 ± 5%, 99 ± 5%, and 105 ± 7%, respectively. Four isotopes had a same exact polarizability of 3.60 Å. Xenon isotopes with nuclear spin are less potent than those without, and polarizability cannot account for the difference. The lower anesthetic potency of Xe may be the result of it participating in conscious processing and therefore partially antagonizing its own anesthetic potency. Nuclear spin is a quantum property, and our results are consistent with theories that implicate quantum mechanisms in consciousness.
Synthesis of Xenon and Iron-Nickel Intermetallic Compounds at Earth's Core Thermodynamic Conditions
NASA Astrophysics Data System (ADS)
Stavrou, Elissaios; Yao, Yansun; Goncharov, Alexander F.; Lobanov, Sergey S.; Zaug, Joseph M.; Liu, Hanyu; Greenberg, Eran; Prakapenka, Vitali B.
2018-03-01
Using in situ synchrotron x-ray diffraction and Raman spectroscopy in concert with first principles calculations we demonstrate the synthesis of stable Xe (Fe ,Fe /Ni )3 and XeNi3 compounds at thermodynamic conditions representative of Earth's core. Surprisingly, in the case of both the Xe-Fe and Xe-Ni systems Fe and Ni become highly electronegative and can act as oxidants. The results indicate the changing chemical properties of elements under extreme conditions by documenting that electropositive at ambient pressure elements could gain electrons and form anions.
Luminescent Characteristics of a Pulsed Discharge Plasma in Xe-KBr Mixture
NASA Astrophysics Data System (ADS)
Heneral, A. A.; Zhmenyak, Y. V.
2018-03-01
A mixture of xenon with a nontoxic halogen carrier Xe-KBr is used to create a plasma radiation source at the 282-nm transition of the XeBr* molecule excited by a high-voltage pulsed-periodic discharge. The luminescence spectra of the plasma of a longitudinal pulsed-periodic discharge in the Xe-KBr mixture at low pressures are studied experimentally. The most intense UV bands of exciplex XeBr* molecules are recorded in the spectral range of 250-350 nm. The spectral, temporal, and energetic characteristics of the radiation source are presented, as well as the dependence of the XeBr* exciplex molecule formation efficiency on the discharge excitation conditions. The optimal conditions for the excitation of UV radiation in the pulsed-periodic discharge plasma are determined.
Optimizing the Ar-Xe infrared laser on the Naval Research Laboratory's Electra generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apruzese, J. P.; Giuliani, J. L.; Wolford, M. F.
2008-07-01
The Ar-Xe infrared laser has been investigated in several series of experiments carried out on the Naval Research Laboratory's Electra generator. Our primary goals were to optimize the efficiency of the laser (within Electra's capabilities) and to gain understanding of the main physical processes underlying the laser's output as a function of controllable parameters such as Xe fraction, power deposition, and gas pressure. We find that the intrinsic efficiency maximizes at {approx}3% at a total pressure of 2.5 atm, Xe fraction of 1%, and electron beam power deposition density of 50-100 kW cm{sup -3}. We deployed an interferometer to measuremore » the electron density during lasing; the ionization fractions of 10{sup -5}-10{sup -4} that it detected well exceed previous theoretical estimates. Some trends in the data as a function of beam power and xenon fraction are not fully understood. The as-yet incomplete picture of Ar-Xe laser physics is likely traceable in large part to significant uncertainties still present in many important rates influencing the atomic and molecular kinetics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tremsin, A. S.; Losko, A. S.; Vogel, S. C.
Neutron resonance absorption imaging is a non-destructive technique that can characterize the elemental composition of a sample by measuring nuclear resonances in the spectrum of a transmitted beam. Recent developments in pixelated time-of-flight imaging detectors coupled with pulsed neutron sources pose new opportunities for energy-resolved imaging. In this paper we demonstrate non-contact measurements of the partial pressure of xenon and krypton gases encapsulated in a steel pipe while simultaneously passing the neutron beam through high-Z materials. The configuration was chosen as a proof of principle demonstration of the potential to make non-destructive measurement of gas composition in nuclear fuel rods.more » The pressure measured from neutron transmission spectra (~739 ± 98 kPa and ~751 ± 154 kPa for two Xe resonances) is in relatively good agreement with the pressure value of ~758 ± 21 kPa measured by a pressure gauge. This type of imaging has been performed previously for solids with a spatial resolution of ~ 100 μm. In the present study it is demonstrated that the high penetration capability of epithermal neutrons enables quantitative mapping of gases encapsulate within high-Z materials such as steel, tungsten, urania and others. This technique may be beneficial for the non-destructive testing of bulk composition of objects (such as spent nuclear fuel assemblies and others) containing various elements opaque to other more conventional imaging techniques. As a result, the ability to image the gaseous substances concealed within solid materials also allows non-destructive leak testing of various containers and ultimately measurement of gas partial pressures with sub-mm spatial resolution.« less
Tremsin, A. S.; Losko, A. S.; Vogel, S. C.; ...
2017-01-31
Neutron resonance absorption imaging is a non-destructive technique that can characterize the elemental composition of a sample by measuring nuclear resonances in the spectrum of a transmitted beam. Recent developments in pixelated time-of-flight imaging detectors coupled with pulsed neutron sources pose new opportunities for energy-resolved imaging. In this paper we demonstrate non-contact measurements of the partial pressure of xenon and krypton gases encapsulated in a steel pipe while simultaneously passing the neutron beam through high-Z materials. The configuration was chosen as a proof of principle demonstration of the potential to make non-destructive measurement of gas composition in nuclear fuel rods.more » The pressure measured from neutron transmission spectra (~739 ± 98 kPa and ~751 ± 154 kPa for two Xe resonances) is in relatively good agreement with the pressure value of ~758 ± 21 kPa measured by a pressure gauge. This type of imaging has been performed previously for solids with a spatial resolution of ~ 100 μm. In the present study it is demonstrated that the high penetration capability of epithermal neutrons enables quantitative mapping of gases encapsulate within high-Z materials such as steel, tungsten, urania and others. This technique may be beneficial for the non-destructive testing of bulk composition of objects (such as spent nuclear fuel assemblies and others) containing various elements opaque to other more conventional imaging techniques. As a result, the ability to image the gaseous substances concealed within solid materials also allows non-destructive leak testing of various containers and ultimately measurement of gas partial pressures with sub-mm spatial resolution.« less
NASA Astrophysics Data System (ADS)
Tremsin, A. S.; Losko, A. S.; Vogel, S. C.; Byler, D. D.; McClellan, K. J.; Bourke, M. A. M.; Vallerga, J. V.
2017-01-01
Neutron resonance absorption imaging is a non-destructive technique that can characterize the elemental composition of a sample by measuring nuclear resonances in the spectrum of a transmitted beam. Recent developments in pixelated time-of-flight imaging detectors coupled with pulsed neutron sources pose new opportunities for energy-resolved imaging. In this paper we demonstrate non-contact measurements of the partial pressure of xenon and krypton gases encapsulated in a steel pipe while simultaneously passing the neutron beam through high-Z materials. The configuration was chosen as a proof of principle demonstration of the potential to make non-destructive measurement of gas composition in nuclear fuel rods. The pressure measured from neutron transmission spectra (˜739 ± 98 kPa and ˜751 ± 154 kPa for two Xe resonances) is in relatively good agreement with the pressure value of ˜758 ± 21 kPa measured by a pressure gauge. This type of imaging has been performed previously for solids with a spatial resolution of ˜ 100 μm. In the present study it is demonstrated that the high penetration capability of epithermal neutrons enables quantitative mapping of gases encapsulate within high-Z materials such as steel, tungsten, urania and others. This technique may be beneficial for the non-destructive testing of bulk composition of objects (such as spent nuclear fuel assemblies and others) containing various elements opaque to other more conventional imaging techniques. The ability to image the gaseous substances concealed within solid materials also allows non-destructive leak testing of various containers and ultimately measurement of gas partial pressures with sub-mm spatial resolution.
Gas exchange and intrapulmonary distribution of ventilation during continuous-flow ventilation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vettermann, J.; Brusasco, V.; Rehder, K.
1988-05-01
In 12 anesthetized paralyzed dogs, pulmonary gas exchange and intrapulmonary inspired gas distribution were compared between continuous-flow ventilation (CFV) and conventional mechanical ventilation (CMV). Nine dogs were studied while they were lying supine, and three dogs were studied while they were lying prone. A single-lumen catheter for tracheal insufflation and a double-lumen catheter for bilateral endobronchial insufflation (inspired O2 fraction = 0.4; inspired minute ventilation = 1.7 +/- 0.3 (SD) 1.kg-1.min-1) were evaluated. Intrapulmonary gas distribution was assessed from regional 133Xe clearances. In dogs lying supine, CO2 elimination was more efficient with endobronchial insufflation than with tracheal insufflation, but themore » alveolar-arterial O2 partial pressure difference was larger during CFV than during CMV, regardless of the type of insufflation. By contrast, endobronchial insufflation maintained both arterial PCO2 and alveolar-arterial O2 partial pressure difference at significantly lower levels in dogs lying prone than in dogs lying supine. In dogs lying supine, the dependent lung was preferentially ventilated during CMV but not during CFV. In dogs lying prone, gas distribution was uniform with both modes of ventilation. The alveolar-arterial O2 partial pressure difference during CFV in dogs lying supine was negatively correlated with the reduced ventilation of the dependent lung, which suggests that increased ventilation-perfusion mismatching was responsible for the increase in alveolar-arterial O2 partial pressure difference. The more efficient oxygenation during CFV in dogs lying prone suggests a more efficient matching of ventilation to perfusion, presumably because the distribution of blood flow is also nearly uniform.« less
Cryogenics free production of hyperpolarized 129Xe and 83Kr for biomedical MRI applications
NASA Astrophysics Data System (ADS)
Hughes-Riley, Theodore; Six, Joseph S.; Lilburn, David M. L.; Stupic, Karl F.; Dorkes, Alan C.; Shaw, Dominick E.; Pavlovskaya, Galina E.; Meersmann, Thomas
2013-12-01
As an alternative to cryogenic gas handling, hyperpolarized (hp) gas mixtures were extracted directly from the spin exchange optical pumping (SEOP) process through expansion followed by compression to ambient pressure for biomedical MRI applications. The omission of cryogenic gas separation generally requires the usage of high xenon or krypton concentrations at low SEOP gas pressures to generate hp 129Xe or hp 83Kr with sufficient MR signal intensity for imaging applications. Two different extraction schemes for the hp gasses were explored with focus on the preservation of the nuclear spin polarization. It was found that an extraction scheme based on an inflatable, pressure controlled balloon is sufficient for hp 129Xe handling, while 83Kr can efficiently be extracted through a single cycle piston pump. The extraction methods were tested for ex vivo MRI applications with excised rat lungs. Precise mixing of the hp gases with oxygen, which may be of interest for potential in vivo applications, was accomplished during the extraction process using a piston pump. The 83Kr bulk gas phase T1 relaxation in the mixtures containing more than approximately 1% O2 was found to be slower than that of 129Xe in corresponding mixtures. The experimental setup also facilitated 129Xe T1 relaxation measurements as a function of O2 concentration within excised lungs.
Cryogenics free production of hyperpolarized 129Xe and 83Kr for biomedical MRI applications☆
Hughes-Riley, Theodore; Six, Joseph S.; Lilburn, David M.L.; Stupic, Karl F.; Dorkes, Alan C.; Shaw, Dominick E.; Pavlovskaya, Galina E.; Meersmann, Thomas
2013-01-01
As an alternative to cryogenic gas handling, hyperpolarized (hp) gas mixtures were extracted directly from the spin exchange optical pumping (SEOP) process through expansion followed by compression to ambient pressure for biomedical MRI applications. The omission of cryogenic gas separation generally requires the usage of high xenon or krypton concentrations at low SEOP gas pressures to generate hp 129Xe or hp 83Kr with sufficient MR signal intensity for imaging applications. Two different extraction schemes for the hp gasses were explored with focus on the preservation of the nuclear spin polarization. It was found that an extraction scheme based on an inflatable, pressure controlled balloon is sufficient for hp 129Xe handling, while 83Kr can efficiently be extracted through a single cycle piston pump. The extraction methods were tested for ex vivo MRI applications with excised rat lungs. Precise mixing of the hp gases with oxygen, which may be of interest for potential in vivo applications, was accomplished during the extraction process using a piston pump. The 83Kr bulk gas phase T1 relaxation in the mixtures containing more than approximately 1% O2 was found to be slower than that of 129Xe in corresponding mixtures. The experimental setup also facilitated 129Xe T1 relaxation measurements as a function of O2 concentration within excised lungs. PMID:24135800
Cryogenics free production of hyperpolarized 129Xe and 83Kr for biomedical MRI applications.
Hughes-Riley, Theodore; Six, Joseph S; Lilburn, David M L; Stupic, Karl F; Dorkes, Alan C; Shaw, Dominick E; Pavlovskaya, Galina E; Meersmann, Thomas
2013-12-01
As an alternative to cryogenic gas handling, hyperpolarized (hp) gas mixtures were extracted directly from the spin exchange optical pumping (SEOP) process through expansion followed by compression to ambient pressure for biomedical MRI applications. The omission of cryogenic gas separation generally requires the usage of high xenon or krypton concentrations at low SEOP gas pressures to generate hp (129)Xe or hp (83)Kr with sufficient MR signal intensity for imaging applications. Two different extraction schemes for the hp gasses were explored with focus on the preservation of the nuclear spin polarization. It was found that an extraction scheme based on an inflatable, pressure controlled balloon is sufficient for hp (129)Xe handling, while (83)Kr can efficiently be extracted through a single cycle piston pump. The extraction methods were tested for ex vivo MRI applications with excised rat lungs. Precise mixing of the hp gases with oxygen, which may be of interest for potential in vivo applications, was accomplished during the extraction process using a piston pump. The (83)Kr bulk gas phase T1 relaxation in the mixtures containing more than approximately 1% O2 was found to be slower than that of (129)Xe in corresponding mixtures. The experimental setup also facilitated (129)Xe T1 relaxation measurements as a function of O2 concentration within excised lungs. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Structure and stability of solid Xe(H 2) n
Somayazulu, Maddury; Dera, Przemyslaw; Smith, Jesse; ...
2015-03-10
Mixtures of xenon and molecular hydrogen form a series of hexagonal, van der Waals compounds at high pressures and at 300 K. Synchrotron, x-ray, single crystal diffraction studies reveal that below 7.5 GPa, Xe(H 2) 8 crystallizes in a P3¯m1 structure that displays pressure-induced occupancy changes of two pairs of xenon atoms located on the 2c and 2d sites (while the third pair on yet another 2c site remains fully occupied). The occupancy becomes 1 at the P3¯m1 to R3 transition and all the xenon atoms occupy the 3d sites in the high-pressure structure. These pressure-induced changes in occupancy coincidemore » with volume changes that maintain the average Xe:H 2 stoichiometry fixed at 1:8. Furthermore, the synchrotron x-ray diffraction and Raman measurements show that this unique hydrogen-bearing compound that can be synthesized at 4.2 GPa and 300 K, quenched at low temperatures to atmospheric pressure, and retained up to 90 K on subsequent warming.« less
Synthesis of Xenon and Iron-Nickel Intermetallic Compounds at Earth’s Core Thermodynamic Conditions
Stavrou, Elissaios; Yao, Yansun; Goncharov, Alexander F.; ...
2018-02-28
In this study, using in situ synchrotron x-ray diffraction and Raman spectroscopy in concert with first principles calculations we demonstrate the synthesis of stable Xe(Fe ,Fe/Ni) 3 and XeNi 3 compounds at thermodynamic conditions representative of Earth’s core. Surprisingly, in the case of both the Xe-Fe and Xe-Ni systems Fe and Ni become highly electronegative and can act as oxidants. In conclusion, the results indicate the changing chemical properties of elements under extreme conditions by documenting that electropositive at ambient pressure elements could gain electrons and form anions.
Evaluation of hemodynamic effects of xenon in dogs undergoing hemorrhagic shock
Franceschi, Ruben C.; Malbouisson, Luiz; Yoshinaga, Eduardo; Auler, José Otavio Costa; de Figueiredo (in memoriam), Luiz Francisco Poli; Carmona, Maria José C.
2013-01-01
OBJECTIVES: The anesthetic gas xenon is reported to preserve hemodynamic stability during general anesthesia. However, the effects of the gas during shock are unclear. The objective of this study was to evaluate the effect of Xe on hemodynamic stability and tissue perfusion in a canine model of hemorrhagic shock. METHOD: Twenty-six dogs, mechanically ventilated with a fraction of inspired oxygen of 21% and anesthetized with etomidate and vecuronium, were randomized into Xenon (Xe; n = 13) or Control (C; n = 13) groups. Following hemodynamic monitoring, a pressure-driven shock was induced to reach an arterial pressure of 40 mmHg. Hemodynamic data and blood samples were collected prior to bleeding, immediately after bleeding and 5, 20 and 40 minutes following shock. The Xe group was treated with 79% Xe diluted in ambient air, inhaled for 20 minutes after shock. RESULT: The mean bleeding volume was 44 mL.kg−1 in the C group and 40 mL.kg−1 in the Xe group. Hemorrhage promoted a decrease in both the cardiac index (p<0.001) and mean arterial pressure (p<0.001). These changes were associated with an increase in lactate levels and worsening of oxygen transport variables in both groups (p<0.05). Inhalation of xenon did not cause further worsening of hemodynamics or tissue perfusion markers. CONCLUSIONS: Xenon did not alter hemodynamic stability or tissue perfusion in an experimentally controlled hemorrhagic shock model. However, further studies are necessary to validate this drug in other contexts. PMID:23525321
Probing the porosity of cocrystallized MCM-49/ZSM-35 zeolites by hyperpolarized 129Xe NMR.
Liu, Yong; Zhang, Weiping; Xie, Sujuan; Xu, Longya; Han, Xiuwen; Bao, Xinhe
2008-01-31
One- and two-dimensional 129Xe NMR spectroscopy has been employed to study the porosity of cocrystallized MCM-49/ZSM-35 zeolites under the continuous flow of hyperpolarized xenon gas. It is found by variable-temperature experiments that Xe atoms can be adsorbed in different domains of MCM-49/ZSM-35 cocrystallized zeolites and the mechanically mixed counterparts. The exchange of Xe atoms in different types of pores is very fast at ambient temperatures. Even at very low temperature two-dimensional exchange spectra (EXSY) show that Xe atoms still undergo much faster exchange between MCM-49 and ZSM-35 analogues in the cocrystallized zeolites than in the mechanical mixture. This demonstrates that the MCM-49 and ZSM-35 analogues in cocrystallized zeolites may be stacked much closer than in the physical mixture, and some parts of intergrowth may be formed due to the partially similar basic structure of MCM-49 and ZSM-35.
Molecular dynamics study of melting and fcc-bcc transitions in Xe.
Belonoshko, A B; Ahuja, R; Johansson, B
2001-10-15
We have investigated the phase diagram of Xe over a wide pressure-temperature range by molecular dynamics. The calculated melting curve is in good agreement with earlier experimental data. At a pressure of around 25 GPa and a temperature of about 2700 K we find a triple fcc-bcc liquid point. The calculated fcc-bcc boundary is in nice agreement with the experimental points, which, however, were interpreted as melting. This finding suggests that the transition from close-packed to bcc structure might be more common at high pressure and high temperature than was previously anticipated.
Xenon gas field ion source from a single-atom tip
NASA Astrophysics Data System (ADS)
Lai, Wei-Chiao; Lin, Chun-Yueh; Chang, Wei-Tse; Li, Po-Chang; Fu, Tsu-Yi; Chang, Chia-Seng; Tsong, T. T.; Hwang, Ing-Shouh
2017-06-01
Focused ion beam (FIB) systems have become powerful diagnostic and modification tools for nanoscience and nanotechnology. Gas field ion sources (GFISs) built from atomic-size emitters offer the highest brightness among all ion sources and thus can improve the spatial resolution of FIB systems. Here we show that the Ir/W(111) single-atom tip (SAT) can emit high-brightness Xe+ ion beams with a high current stability. The ion emission current versus extraction voltage was analyzed from 150 K up to 309 K. The optimal emitter temperature for maximum Xe+ ion emission was ˜150 K and the reduced brightness at the Xe gas pressure of 1 × 10-4 torr is two to three orders of magnitude higher than that of a Ga liquid metal ion source, and four to five orders of magnitude higher than that of a Xe inductively coupled plasma ion source. Most surprisingly, the SAT emitter remained stable even when operated at 309 K. Even though the ion current decreased with increasing temperature, the current at room temperature (RT) could still reach over 1 pA when the gas pressure was higher than 1 × 10-3 torr, indicating the feasibility of RT-Xe-GFIS for application to FIB systems. The operation temperature of Xe-SAT-GFIS is considerably higher than the cryogenic temperature required for the helium ion microscope (HIM), which offers great technical advantages because only simple or no cooling schemes can be adopted. Thus, Xe-GFIS-FIB would be easy to implement and may become a powerful tool for nanoscale milling and secondary ion mass spectroscopy.
Bonding of xenon to oxygen in magmas at depth
NASA Astrophysics Data System (ADS)
Leroy, Clémence; Sanloup, Chrystèle; Bureau, Hélène; Schmidt, Burkhard C.; Konôpková, Zuzana; Raepsaet, Caroline
2018-02-01
The field of noble gases chemistry has witnessed amazing advances in the last decade with over 100 compounds reported including Xe oxides and Xe-Fe alloys stable at the pressure-temperature conditions of planetary interiors. The chemistry of Xe with planetary materials is nonetheless still mostly ignored, while Xe isotopes are used to trace a variety of key planetary processes from atmosphere formation to underground nuclear tests. It is indeed difficult to incorporate the possibility of Xe reactivity at depth in isotopic geochemical models without a precise knowledge of its chemical environment. The structure of Xe doped hydrous silica-rich melts is investigated by in situ high energy synchrotron X-ray diffraction using resistive heating diamond anvil cells. Obtained pair distribution functions reveal the oxidation of Xe between 0.2 GPa and 4 GPa at high T up to 1000 K. In addition to the usual interatomic distances, a contribution at 2.05 ± 0.05 Å is observed. This contribution is not observed in the undoped melt, and is interpreted as the Xe-O bond, with a coordination number of about 12 consistent with Xe insertion in rings of the melt structure. Xe solubility measurements by electron microprobe and particle induced X-rays emission analysis confirm that Xe and Ar have similar solubility values in wt% in silicate melts. These values are nonetheless an order of magnitude higher than those theoretically calculated for Xe. The formation of Xe-O bonds explains the enhanced solubility of Xe in deep continental crust magmas, revealing a mechanism that could store Xe and fractionate its isotopes. Xenon is indeed atypical among noble gases, the atmosphere being notably depleted in elemental Xe, and very strongly depleted in Xe light isotopes. These observations are known as the 'missing' Xe paradox, and could be solved by the present findings.
Oliveira, C. A.B.; Gehman, V.; Goldschmidt, A.; ...
2015-03-24
Trimethylamine (TMA) may improve the energy resolution of gaseous xenon based detectors for 0νββ decay searches through the reduction of the Fano factor by the Penning effect. This molecule may also be the key for sensing directionality of nuclear recoils induced by Weakly Interacting Massive Particles (WIMPs) in monolithic massive (ton-scale) detectors, without the need of track imaging, by making use of columnar recombination. Nuclear recoil directionality may be the path for a definite discovery of the WIMP nature of Dark Matter. An ionization chamber has been constructed and operated to explore the properties of high pressure gaseous Xe +more » TMA mixtures for particle detection in rare-event experiments. The ionization, scintillation and electroluminescence (EL) signals are measured as function of pressure and electric field. We present results for pure xenon at pressures up to 8 bar. This work has been carried out within the context of the NEXT collaboration.« less
NASA Astrophysics Data System (ADS)
Baadj, S.; Harrache, Z.; Belasri, A.
2013-12-01
The aim of this work is to highlight, through numerical modeling, the chemical and the electrical characteristics of xenon chloride mixture in XeCl* (308 nm) excimer lamp created by a dielectric barrier discharge. A temporal model, based on the Xe/Cl2 mixture chemistry, the circuit and the Boltzmann equations, is constructed. The effects of operating voltage, Cl2 percentage in the Xe/Cl2 gas mixture, dielectric capacitance, as well as gas pressure on the 308-nm photon generation, under typical experimental operating conditions, have been investigated and discussed. The importance of charged and excited species, including the major electronic and ionic processes, is also demonstrated. The present calculations show clearly that the model predicts the optimal operating conditions and describes the electrical and chemical properties of the XeCl* exciplex lamp.
Direct solar-pumped iodine laser amplifier
NASA Technical Reports Server (NTRS)
Han, Kwang S.; Hwang, In H.; Stock, Larry V.
1988-01-01
A XeCl laser which was developed earlier for an iodine laser oscillator was modified in order to increase the output pulse energy of XeCl laser so that the iodine laser output energy could be increased. The electrical circuit of the XeCl laser was changed from a simple capacitor discharge circuit of the XeCl laser to a Marx system. Because of this improvement the output energy from the XeCl laser was increased from 60 mj to 80 mj. Subsequently, iodine laser output energy was increased from 100 mj to 3 mj. On the other hand, the energy storage capability and amplification characteristics of the Vortek solar simulator-pumped amplifier was calculated expecting the calculated amplification factor is about 2 and the energy extraction efficiency is 26 percent due to the very low input energy density to the amplifier. As a result of an improved kinetic modeling for the iodine solar simulator pumped power amplifier, it is found that the I-2 along the axis of the tube affects seriously the gain profile. For the gas i-C3F7I at the higher pressures, the gain will decrease due to the I-2 as the pumping intensity increases, and at these higher pressures an increase in flow velocity will increase the gain.
Structural Search for High Pressure CS2 and Xe-Cl Compounds
NASA Astrophysics Data System (ADS)
Zarifi, Niloofar; Tse, John S.
2018-04-01
The recent successful implementation of several methodologies for the prediction of crystal structures based on the first-principles electronic structure have ushered in a new area of computational chemistry. In this study, the two most popular methods, namely genetic evolution and particle swarm optimization, were applied to the investigation of stable crystalline polymorphs of solid carbon disulfide and xenon halides at high pressure. It was found that both methods have their own merits. However, there are subtleties that need to be considered for the proper execution of the methods. We found a two-dimensional (2D) layered structure that may be responsible for the superconductivity in CS2. Except for XeCl2, no thermodynamically stable crystalline Xe halides were found under 60 GPa in the halide-rich region of the phase diagram.
Experimental ion mobility measurements in Xe-CO2
NASA Astrophysics Data System (ADS)
Cortez, A. F. V.; Santos, M. A. G.; Veenhof, R.; Patra, R. N.; Neves, P. N. B.; Santos, F. P.; Borges, F. I. G. M.; Conde, C. A. N.
2017-06-01
Data on ion mobility is important to improve the performance of large volume gaseous detectors. In the present work the method, experimental setup and results for the ion mobility measurements in Xe-CO2 mixtures are presented. The results for this mixture show the presence of only one peak for all gas ratios of Xe-CO2, low reduced electric fields, E/N, 10-25 Td (2.4-6.1 kV·cm-1·bar-1), low pressures 6-8 Torr (8-10.6 mbar), at room temperature.
Measurement of fission product gases in the atmosphere
NASA Astrophysics Data System (ADS)
Schell, W. R.; Tobin, M. J.; Marsan, D. J.; Schell, C. W.; Vives-Batlle, J.; Yoon, S. R.
1997-01-01
The ability to quickly detect and assess the magnitude of releases of fission-produced radioactive material is of significant importance for ongoing operations of any conventional nuclear power plant or other activities with a potential for fission product release. In most instances, the control limits for the release of airborne radioactivity are low enough to preclude direct air sampling as a means of detection, especially for fission gases that decay by beta or electron emission. It is, therefore, customary to concentrate the major gaseous fission products (krypton, xenon and iodine) by cryogenic adsorption for subsequent separation and measurement. This study summarizes our initial efforts to develop an automated portable system for on-line separation and concentration with the potential for measuring environmental levels of radioactive gases, including 85Kr, 131,133,135Xe, 14C, 3H, 35S, 125,131I, etc., without using cryogenic fluids. Bench top and prototype models were constructed using the principle of heatless fractionation of the gases in a pressure swing system. This method removes the requirement for cryogenic fluids to concentrate gases and, with suitable electron and gamma ray detectors, provides for remote use under automatic computer control. Early results using 133Xe tracer show that kinetic chromatography, i.e., high pressure adsorption of xenon and low pressure desorption of air, using specific types of molecular sieves, permits the separation and quantification of xenon isotopes from large volume air samples. We are now developing the ability to measure the presence and amounts of fission-produced xenon isotopes that decay by internal conversion electrons and beta radiation with short half-lives, namely 131mXe, 11.8 d, 133mXe, 2.2 d, 133Xe, 5.2 d and 135Xe, 9.1 h. The ratio of the isotopic concentrations measured can be used to determine unequivocally the amount of fission gas and time of release of an air parcel many kilometers downwind from a nuclear activity where the fission products were discharged.
Romanenko, Konstantin V; Py, Xavier; d'Espinose de Lacaillerie, Jean-Baptiste; Lapina, Olga B; Fraissard, Jacques
2006-02-23
(129)Xe NMR has been used to study a series of homologous activated carbons obtained from a KOH-activated pitch-based carbon molecular sieve modified by air oxidation/pyrolysis cycles. A clear correlation between the pore size of microporous carbons and the (129)Xe NMR of adsorbed xenon is proposed for the first time. The virial coefficient delta(Xe)(-)(Xe) arising from binary xenon collisions varied linearly with the micropore size and appeared to be a better probe of the microporosity than the chemical shift extrapolated to zero pressure. This correlation was explained by the fact that the xenon collision frequency increases with increasing micropore size. The chemical shift has been shown to vary very little with temperature (less than 9 ppm) for xenon trapped inside narrow and wide micropores. This is indicative of a smooth xenon-surface interaction potential.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baadj, S.; Harrache, Z., E-mail: zharrache@yahoo.com; Belasri, A.
2013-12-15
The aim of this work is to highlight, through numerical modeling, the chemical and the electrical characteristics of xenon chloride mixture in XeCl* (308 nm) excimer lamp created by a dielectric barrier discharge. A temporal model, based on the Xe/Cl{sub 2} mixture chemistry, the circuit and the Boltzmann equations, is constructed. The effects of operating voltage, Cl{sub 2} percentage in the Xe/Cl{sub 2} gas mixture, dielectric capacitance, as well as gas pressure on the 308-nm photon generation, under typical experimental operating conditions, have been investigated and discussed. The importance of charged and excited species, including the major electronic and ionicmore » processes, is also demonstrated. The present calculations show clearly that the model predicts the optimal operating conditions and describes the electrical and chemical properties of the XeCl* exciplex lamp.« less
Many-body interactions and high-pressure equations of state in rare-gas solids
NASA Astrophysics Data System (ADS)
Freiman, Yu. A.; Tretyak, S. M.
2007-06-01
The T =0K equations of state (EOS) of rare-gas solids (RGS) (He, Ne, Ar, Kr, and Xe) are calculated in the experimentally studied ranges of pressures with the two- and three-body interatomic forces taken into account. Solid-state corrections to the pure two-body Aziz et al. potentials included the long-range Axilrod-Teller three-body interaction and short-range three-body exchange interaction. The energy-scale and length-scale parameters of the latter were taken as adjustable parameters of theory. The calculated T =0K EOS for all RGS are in excellent agreement with experiment in the whole range of pressures. The calculated EOS for Ar, Kr, and Xe exhibit inflection points where the isothermal bulk moduli have non-physical maxima, indicating that account of only three-body forces becomes insufficient. These points lie at pressures 250, 200, and 175GPa (volume compressions of approximately 4.8, 4.1, and 3.6) for Ar, Kr, and Xe, respectively. No such points were found in the calculated EOS of He and Ne. The relative magnitude of the three-body contribution to the ground-state energy with respect to the two-body one as a function of the volume compression was found to be nonmonotonic in the sequence Ne-Ar-Kr-Xe. In a large range of compressions, Kr has the highest value of this ratio. This anomalously high three-body exchange force contributes to the EOS a negative pressure so large that the EOS for Kr and Ar as a function of compression nearly coincide. At compressions higher than approximately 3.5 the curves intersect, and further on, the EOS of Kr lies lower than that of Ar.
Kinetic analysis of rare gas metastable production and optically pumped Xe lasers
NASA Astrophysics Data System (ADS)
Demyanov, A. V.; Kochetov, I. V.; Mikheyev, P. A.; Azyazov, V. N.; Heaven, M. C.
2018-01-01
Optically pumped all-rare-gas lasers use metastable rare gas atoms as the lasing species in mixtures with He or Ar buffer gas. The metastables are generated in a glow discharge, and we report model calculations for the optimal production of Ne*, Ar*, Kr* and Xe*. Discharge efficiency was estimated by solving the Boltzmann equation. Laser efficiency, gain and output power of the CW optically pumped Xe laser were assessed as functions of heavier rare gas content, pressure, optical pump intensity and the optical path length. It was found that, for efficient operation the heavier rare gas content has to be of the order of one percent or less, and the total pressure—in the range 0.3-1.5 atm. Output power and specific discharge power increase approximately linearly with pump intensity over the output range from 300-500 W cm-2. Ternary mixtures Xe:Ar:He were found to be the most promising. Total laser efficiency was found to be nearly the same for pumping the 2p8 or 2p9 state, reaching 61%-70% for a pump intensity of ~720 W cm-2 when the Xe fraction was in the range 0.001 ÷ 0.01 and Ar fraction—0.1 ÷ 0.5. However, when the 2p8 state was pumped, the maximum total efficiency occurred at larger pressures than for pumping of the 2p9 state. The discharge power density required to sustain a sufficient Xe* number density was in the range of tens of watts per cubic centimeter for 50% Ar in the mixture.
Chakkarapani, Elavazhagan; Dingley, John; Aquilina, Kristian; Osredkar, Damjan; Liu, Xun; Thoresen, Marianne
2013-01-01
Autoregulation of cerebral perfusion is impaired in hypoxic–ischemic encephalopathy. We investigated whether cerebrovascular pressure reactivity (PRx), an element of cerebral autoregulation that is calculated as a moving correlation coefficient between averages of intracranial and mean arterial blood pressure (MABP) with values between −1 and +1, is impaired during and after a hypoxic–ischemic insult (HI) in newborn pigs. Associations between end-tidal CO2, seizures, neuropathology, and PRx were investigated. The effect of hypothermia (HT) and Xenon (Xe) on PRx was studied. Pigs were randomized to Sham, and after HI to normothermia (NT), HT, Xe or xenon hypothermia (XeHT). We defined PRx >0.2 as peak and negative PRx as preserved. Neuropathology scores after 72 hours of survival was grouped as ‘severe' or ‘mild.' Secondary PRx peak during recovery, predictive of severe neuropathology and associated with insult severity (P=0.05), was delayed in HT (11.5 hours) than in NT (6.5 hours) groups. Seizures were associated with impaired PRx in NT pigs (P=0.0002), but not in the HT/XeHT pigs. PRx was preserved during normocapnia and impaired during hypocapnia. Xenon abolished the secondary PRx peak, increased (mean (95% confidence interval (CI)) MABP (6.5 (3.8, 9.4) mm Hg) and cerebral perfusion pressure (5.9 (2.9, 8.9) mm Hg) and preserved the PRx (regression coefficient, −0.098 (95% CI (−0.18, −0.01)), independent of the insult severity. PMID:23899927
Experimental ion mobility measurements in Xe-C2H6
NASA Astrophysics Data System (ADS)
Perdigoto, J. M. C.; Cortez, A. F. V.; Veenhof, R.; Neves, P. N. B.; Santos, F. P.; Borges, F. I. G. M.; Conde, C. A. N.
2017-10-01
In this paper we present the results of the ion mobility measurements made in gaseous mixtures of xenon (Xe) with ethane (C2H6) for pressures ranging from 6 to 10 Torr (8-10.6 mbar) and for low reduced electric fields in the 10 Td to 25 Td range (2.4-6.1 kVṡcm-1ṡ bar-1), at room temperature. The time of arrival spectra revealed two peaks throughout the entire range studied which were attributed to ion species with 3-carbons (C3H5+, C3H6+ C3H8+ and C3H9+) and with 4-carbons (C4H7+, C4H9+ and C4H10+). Besides these, and for Xe concentrations above 70%, a bump starts to appear at the right side of the main peak for reduced electric fields higher than 20 Td, which was attributed to the resonant charge transfer of C2H6+ to C2H6 that affects the mobility of its ion products (C3H8+ and C3H9+). The time of arrival spectra for Xe concentrations of 20%, 50%, 70% and 90% are presented, together with the reduced mobilities as a function of the Xe concentration calculated from the peaks observed for the low reduced electric fields and pressures studied.
Studies on cryogenic Xe capillary jet target for laser-produced plasma EUV-light source
NASA Astrophysics Data System (ADS)
Inoue, T.; Nica, P. E.; Kaku, K.; Shimoura, A.; Amano, S.; Miyamoto, S.; Mochizuki, T.
2006-03-01
In this paper, characterizations of a cryogenic Xe capillary jet target for a laser-produced plasma extreme ultraviolet (EUV) light source are reported. The capillary jet target is a candidate of fast-supplying targets for mitigating debris generation and target consumption in a vacuum chamber without reducing the EUV conversion efficiency. Xe capillary jets (jet velocity ~ 0.4 m/s) were generated in vacuum by using annular nozzles chilled to ~ 170 K at a Xe backing pressure of ~ 0.7 MPa. Forming mechanisms of the capillary jet targets were studied by using numerical calculations. Furthermore, laser-produced plasma EUV generation was performed by irradiating a Nd:YAG laser (1064 nm, ~ 0.5 J, 10 ns, 120 μmφ, ~ 4×10 11 W/cm2) on a Xe capillary jet target (outer / inner diameter = 100 / 70 μmφ). The angular distribution of EUV generation was approximately uniform around the Xe capillary jet target, and the peak kinetic energy of the fast-ions was evaluated to be ~ 2 keV.
Emission characteristics of plasma based on xenon-rubidium bromide mixture
NASA Astrophysics Data System (ADS)
Heneral, A. A.; Avtaeva, S. V.
2017-10-01
Luminescence spectra of a longitudinal pulse-periodic discharge in xenon mixture with rubidium bromide vapors (Xe-RbBr) are studied experimentally at low pressures. The conditions leading to the appearance of intense bands of ultraviolet radiation of exciplex XeBr* molecules in the spectral interval between 200 and 400 nm are found. The highest yield of UV radiation of XeBr* molecules is achieved when the temperature of discharge-tube walls is equal to 750°C. A maximum power of UV radiation from the entire plasma volume as high as 4.8 W is obtained.
The 129Xe nuclear shielding surfaces for Xe interacting with linear molecules CO2, N2, and CO
NASA Astrophysics Data System (ADS)
de Dios, Angel C.; Jameson, Cynthia J.
1997-09-01
We have calculated the intermolecular nuclear magnetic shielding surfaces for 129Xe in the systems Xe-CO2, Xe-N2, and Xe-CO using a gauge-invariant ab initio method at the coupled Hartree-Fock level with gauge-including atomic orbitals (GIAO). Implementation of a large basis set (240 basis functions) on the Xe gives very small counterpoise corrections which indicates that the basis set superposition errors in the calculated shielding values are negligible. These are the first intermolecular shielding surfaces for Xe-molecule systems. The surfaces are highly anisotropic and can be described adequately by a sum of inverse even powers of the distance with explicit angle dependence in the coefficients expressed by Legendre polynomials P2n(cos θ), n=0-3, for Xe-CO2 and Xe-N2. The Xe-CO shielding surface is well described by a similar functional form, except that Pn(cos θ), n=0-4 were used. When averaged over the anisotropic potential function these shielding surfaces provide the second virial coefficient of the nuclear magnetic resonance (NMR) chemical shift observed in gas mixtures. The energies from the self-consistent field (SCF) calculations were used to construct potential surfaces, using a damped dispersion form. These potential functions are compared with existing potentials in their predictions of the second virial coefficients of NMR shielding, the pressure virial coefficients, the density coefficient of the mean-square torque from infrared absorption, and the rotational constants and other average properties of the van der Waals complexes. Average properties of the van der Waals complexes were obtained by quantum diffusion Monte Carlo solutions of the vibrational motion using the various potentials and compared with experiment.
Coordination of XeF2 to calcium and cadmium hexafluorophosphates(V).
Bunic, Tina; Tavcar, Gasper; Tramsek, Melita; Zemva, Boris
2006-02-06
[M(XeF2)5](PF6)2 (M = Ca, Cd) complexes were prepared by the reaction of MF2 and XeF2 under pressure of gaseous PF5 in anhydrous HF as solvent. The coordination sphere of the Ca atom consists of nine fluorine atoms: three from two PF6(-) units (one bidentate and one monodentate) and one from each of six XeF2 molecules. The coordination sphere of the Cd atom consists of eight fluorine atoms: one from each of two PF6(-) units and one from each of six XeF2 molecules. Two of the XeF2 ligands about M in each compound are bridging ligands and are each linked to two M, generating infinite (-M-F-Xe-F-M-F-Xe-F-) chains along the b-axis in the Ca salt and along the c-axis in the Cd compound. The Cd2+ cation is smaller and more electronegative than the Ca2+ cation. These differences account for the higher F ligand coordination in the Ca2+ salt and for other structural features that distinguish them. The different stoichiometry of the PF6(-) salts when compared with their AsF6(-) analogues, which have the composition [M(XeF2)4](AsF6)2 (M = Ca, Cd), is in accord with the lower F ligand charge in the AsF6(-) when compared with that in the PF6(-) compound. Indeed, the AsF6(-) ligand charges appear to be similar to those in the XeF2-bridged species.
Thermodynamic evidence of first-order melting of Xe on graphite
NASA Astrophysics Data System (ADS)
Jin, A. J.; Bjurstrom, M. R.; Chan, M. H. W.
1989-03-01
Precision heat-capacity and vapor-pressure isotherm measurements indicate that the melting of monolayer Xe on graphite is always first order. This conclusion is consistent with the results of simulation studies but in sharp contrast with the claim advanced in a series of x-ray studies of a crossover from first-order to continuous Kosterlitz-Thouless-Halperin-Nelson-Young melting.
Angular dependence of EWS time delay for photoionization of @Xe
NASA Astrophysics Data System (ADS)
Mandal, Ankur; Deshmukh, Pranawa; Kheifets, Anatoli; Dolmatov, Valeriy; Manson, Steven
2017-04-01
Interference between photoionization channels leads to angular dependence in photoionization time delay. Angular dependence is found to be a common effect for two-photon absorption experiments very recently. The effect of confinement on the time delay where each partial wave contributions to the ionization are studied. In this work we report angular dependence and confinement effects on Eisenbud-Wigner-Smith (EWS) time delay in atomic photoionization. Using and we computed the EWS time delay for free and confined Xe atom for photoionization from inner 4d3/2 and 4d5/2 and outer 5p1/2 and 5p3/2 subshells at various angles. The calculated EWS time delay is few tens to few hundreds of attoseconds (10-18 second). The photoionization time delay for @Xe follows that in the free Xe atom on which the confinement oscillations are built. The present work reveals the effect of confinement on the photoionization time delay at different angles between photoelectron ejection and the photon polarization.
NASA Astrophysics Data System (ADS)
Irastorza, I. G.; Aznar, F.; Castel, J.; Cebrián, S.; Dafni, T.; Galán, J.; Garcia, J. A.; Garza, J. G.; Gómez, H.; Herrera, D. C.; Iguaz, F. J.; Luzon, G.; Mirallas, H.; Ruiz, E.; Seguí, L.; Tomás, A.
2016-01-01
As part of the T-REX project, a number of R&D and prototyping activities have been carried out during the last years to explore the applicability of gaseous Time Projection Chambers (TPCs) with Micromesh Gas Structures (Micromegas) in rare event searches like double beta decay, axion research and low-mass WIMP searches. In both this and its companion paper, we compile the main results of the project and give an outlook of application prospects for this detection technique. While in the companion paper we focus on axions and WIMPs, in this paper we focus on the results regarding the measurement of the double beta decay (DBD) of 136Xe in a high pressure Xe (HPXe) TPC. Micromegas of the microbulk type have been extensively studied in high pressure Xe and Xe mixtures. Particularly relevant are the results obtained in Xe + trimethylamine (TMA) mixtures, showing very promising results in terms of gain, stability of operation, and energy resolution at high pressures up to 10 bar. The addition of TMA at levels of ~ 1% reduces electron diffusion by up to a factor of 10 with respect to pure Xe, improving the quality of the topological pattern, with a positive impact on the discrimination capability. Operation with a medium size prototype of 30 cm diameter and 38 cm of drift (holding about 1 kg of Xe at 10 bar in the fiducial volume, enough to contain high energy electron tracks in the detector volume) has allowed to test the detection concept in realistic experimental conditions. Microbulk Micromegas are able to image the DBD ionization signature with high quality while, at the same time, measuring its energy deposition with a resolution of at least a ~ 3% FWHM @ Qββ. This value was experimentally demonstrated for high-energy extended tracks at 10 bar, and is probably improvable down to the ~ 1% FWHM levels as extrapolated from low energy events. In addition, first results on the topological signature information (one straggling track ending in two blobs) show promising background discrimination capabilities out of reach of other experimental implementations. Moreover, microbulk Micromegas have very low levels of intrinsic radioactivity, and offer cost-effective scaling-up options. All these results demonstrate that Micromegas-read HPXe TPC remains a very competitive technique for the next generation DBD experiments.
Rare gases systematics and mantle structure
NASA Technical Reports Server (NTRS)
Allegre, C. J.; Staudacher, T.
1994-01-01
The following points are emphasized: one of the most important ones is certainly the first set of experimental data on the solubility of noble gases in metal phases at intermediate pressures, since the core was certainly not formed at ultra high pressures, as emphasized by Ahrens and confirmed by trace elements systematics Wanke. The experimental data clearly show that the core can not be a major reservoir for terrestrial rare gases; the second point is a more elaborate reconsideration of the (40)K-(40)Ar budget of the Earth. This shows that (40)Ar contained in continental crust plus upper mantle plus atmosphere is at maximum half of the (40)Ar inventory of the whole earth. This implies the existence of a two layered mantle; the third point is the discovery by the Australian noble gases group of the existence of high (20)Ne/(22)Ne and low (21)Ne/(22)Ne isotopic ratios in Loihi seamount samples. This results which are different to the MORB ratios confirm the idea of a two layered model, but suggest the existence of a primordial solar type Ne reservoir. Several possibilities about the origin of this (20)Ne excess in the mantle will be discussed; The high (40)Ar/(36)Ar, (129)Xe/(130)Xe and (134) Xe/(130)Xe, (136)Xe/(130)Xe are confirmed by new data. The corresponding ratios for the lower mantle will be discussed. (40)Ar/(36)Ar ratios up to 6000 can be accepted and will not modify the general model of the mantle. They confirm the atmosphere chronology, about 85 percent of the atmosphere was formed in the first 50 My and 15 percent later on.
IR spectroscopic study of the displacement of an SF6 monolayer on graphite by Xe
NASA Astrophysics Data System (ADS)
Hess, G. B.; Xia, Yu
2017-09-01
We report a study of displacement by xenon of a monolayer of sulphur hexafluoride initially condensed on a graphite surface. Earlier work showed that, below 112 K, Xe displaces SF6 almost completely in a first-order transition. Working at higher temperatures, we show that this system has a simple eutectic-like phase diagram, at least for SF6 not too dilute. In our experiment, both adsorbates are in equilibrium with their respective vapors in a cold cell. In our infrared reflection-absorption spectroscopy measurements, the SF6 coverage on the surface is monitored by the frequency shift due to dynamic dipole coupling of the collective mode of the strong SF6 ν3 vibrational resonance. Simulations relate this frequency shift to the SF6 areal density. Below T ≈ 134 K, with increasing Xe pressure, a small amount Xe dissolves in the solid SF6 monolayer preceding its displacement by a solid predominantly Xe monolayer in a first-order transition. Above 134 K, there is a weaker first-order transition to a mixed liquid monolayer, followed by continuous increase in Xe concentration. If the initial SF6 monolayer is near its melting line, the melting transition on adding Xe appears to become continuous.
IR spectroscopic study of the displacement of an SF6 monolayer on graphite by Xe.
Hess, G B; Xia, Yu
2017-09-07
We report a study of displacement by xenon of a monolayer of sulphur hexafluoride initially condensed on a graphite surface. Earlier work showed that, below 112 K, Xe displaces SF 6 almost completely in a first-order transition. Working at higher temperatures, we show that this system has a simple eutectic-like phase diagram, at least for SF 6 not too dilute. In our experiment, both adsorbates are in equilibrium with their respective vapors in a cold cell. In our infrared reflection-absorption spectroscopy measurements, the SF 6 coverage on the surface is monitored by the frequency shift due to dynamic dipole coupling of the collective mode of the strong SF 6 ν 3 vibrational resonance. Simulations relate this frequency shift to the SF 6 areal density. Below T ≈ 134 K, with increasing Xe pressure, a small amount Xe dissolves in the solid SF 6 monolayer preceding its displacement by a solid predominantly Xe monolayer in a first-order transition. Above 134 K, there is a weaker first-order transition to a mixed liquid monolayer, followed by continuous increase in Xe concentration. If the initial SF 6 monolayer is near its melting line, the melting transition on adding Xe appears to become continuous.
An NMR study of microvoids in polymers
NASA Technical Reports Server (NTRS)
Toy, James; Mattix, Larry
1995-01-01
An understanding of polymer defect structures, like microvoids in polymeric matrices, is crucial to their fabrication and application potential. In this project guest atoms are introduced into the microvoids in PMR-15 and NMR is used to determine microvoid sizes and locations. Xenon is a relatively inert probe that would normally be found naturally in polymer or in NMR probe materials. There are two NMR active xenon isotopes, Xe-129 and Xe-131. The Xe atom has a very high polarizability, which makes it sensitive to the intracrystalline environment of polymers. Interactions between the Xe atoms and the host matrix perturb the Xe electron cloud, deshielding the nuclei, and thereby expanding the range of the observed NMR chemical shifts. This chemical shift range which may be as large as 5000 ppm, permits subtle structural and chemical effects to be studied with high sensitivity. The Xe(129)-NMR line shape has been found to vary in response to changes in the pore symmetry of the framework hosts line Zeolites and Clathrasil compounds. Before exposure to Xe gas, the PMR-15 samples were dried in a vacuum oven at 150 C for 48 hours. The samples were then exposed to Xe gas at 30 psi for 72 hours and sealed in glass tubes with 1 atmosphere of xenon gas. Xenon gas at 1 atmosphere was used to tune up the spectrometer and to set up the appropriate NMR parameters. A single Xe-129 line at 83.003498 Mhz (with protons at 300 Mhz) was observed for the gas. With the xenon charged PMR-15 samples, a second broader line is observed 190 ppm downfield from the gas line (also observed). The width of the NMR line from the Xe-129 absorbed in the polymer is at least partially due to the distribution of microvoid sizes. From the chemical shift (relative to the gas line) and the line width, we estimate the average void sizes to be 2.74 +/- 0.20 angstroms. Since Xe-129 has such a large chemical shift range (approximately 5000 ppm), we expect the chemical shift anisotropy to contribute to the line width (delta upsilon = 2.5 kHz).
Anomalous behavior of nonlinear refractive indexes of CO2 and Xe in supercritical states.
Mareev, Evgenii; Aleshkevich, Victor; Potemkin, Fedor; Bagratashvili, Victor; Minaev, Nikita; Gordienko, Vyacheslav
2018-05-14
Direct measurement of pressure dependent nonlinear refractive index of CO 2 and Xe in subcritical and supercritical states are reported. In the vicinity of the ridge (or the Widom line), corresponding to the maximum density fluctuations, the nonlinear refractive index reaches a maximum value (up to 4.8*10 -20 m 2 /W in CO 2 and 3.5*10 -20 m 2 /W in Xe). Anomalous behavior of the nonlinear refractive index in the vicinity of a ridge is caused by the cluster formation. That corresponds to the results of our theoretical assumption based on the modified Langevin theory.
Experimental ion mobility measurements in Xe-CH4
NASA Astrophysics Data System (ADS)
Perdigoto, J. M. C.; Cortez, A. F. V.; Veenhof, R.; Neves, P. N. B.; Santos, F. P.; Borges, F. I. G. M.; Conde, C. A. N.
2017-09-01
Data on ion mobility is important to improve the performance of large volume gaseous detectors. In the present work, the method, experimental setup and results for the ion mobility measurements in Xe-CH4 mixtures are presented. The results for this mixture show the presence of two distinct groups of ions. The nature of the ions depend on the mixture ratio since they are originated by both Xe and CH4. The results here presented were obtained for low reduced electric fields, E/N, 10-25 Td (2.4-6.1 kV ṡ cm-1 ṡ bar-1), at low pressure (8 Torr) (10.6 mbar), and at room temperature.
The electroluminescence of Xe-Ne gas mixtures: A Monte Carol simulation study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santos, F.P.; Dias, T.H.V.T.; Rachinhas, P.J.B.M.
1998-04-01
The authors have performed a Monte Carlo simulation of the drift of electrons through a mixture of gaseous xenon with the lighter noble gas neon at a total pressure of 1 atm. The electroluminescence characteristics and other transport parameters are investigated as a function of the reduced electric field and composition of the mixture. For Xe-Ne mixtures with 5, 10, 20, 40, 70, 90, and 100% of Xe, they present results for electroluminescence yield and excitation efficiency, average electron energy, electron drift velocity, reduced mobility, reduced diffusion coefficients, and characteristic energies over a range of reduced electric fields which excludemore » electron multiplication. For the 5% Xe mixture, they also assess the influence of electron multiplication on the electroluminescence yield. The present study of Xe-Ne mixtures was motivated by an interest in using them as a filling for gas proportional scintillation counters in low-energy X-ray applications. In this energy range, the X rays will penetrate further into the detector due to the presence of Ne, and this will lead to an improvement in the collection of primary electrons originating near the detector window and may represent an advantage over the use of pure Xe.« less
NASA Astrophysics Data System (ADS)
Malafsky, Geoffrey P.
1994-04-01
The temperature dependence of vacancy coalescence on an ion bombarded Ni(111) surface is measured by photoemission of adsorbed xenon (PAX). The Ni(111) crystal is sputtered by a low fluence (0.06 ML incident ions) Ar + ion beam with incident kinetic energies of 500-3000 eV. The Xe coverage decreases rapidly with increasing temperature between 88 and 375 K with little additional change from 375 to 775 K. The PAX spectra are acquired with a Xe chamber pressure of 8 × 10 -10 Torr and at a temperature of 88 K. Under these conditions, the Xe is selectively adsorbed at defect sites which would make the Xe coverage proportional to the surface defect density on simple defect structures but the large size of the Xe atom relative to the Ni atom prevents the direct relationship of Xe coverage to the defect density when complex and varying defect structures are present. The decrease in Xe coverage is not attributed to the loss of defect sites by adatom-vacancy recombination but the changing vacancy island shape and size with temperature which alters the ratio of adsorbed Xe atoms to surface vacancy sites. This ratio decreases with increasing temperature as the vacancy islands progress from small and irregularly shaped islands to larger and hexagonally shaped islands. This transition is seen in Monte Carlo simulations of the kinetically driven atomic diffusion on the sputtered surface.
Improvement in lifetime of color DC PDP K, Maezawa, T. Akeyoshi, and T. Mizutani
NASA Astrophysics Data System (ADS)
Motoyama, Y.; Ushirozawa, M.; Sakai, T.
1995-05-01
An important subject for the color DC PDP is how to extend its lifetime (defined by the decrease of luminance). The empirical equations for lifetime in He-Xe, Ne-Xe gas mixture have been obtained. These equations indicate that high pressure and a current limiting resistor built into each cell can secure a lifetime over 10,000 hours, which is long enough for practical use.
An RF-only ion-funnel for extraction from high-pressure gases
Brunner, T.; Fudenberg, D.; Varentsov, V.; ...
2015-01-27
An RF ion-funnel technique has been developed to extract ions from a high-pressure (10 bar) noble-gas environment into a vacuum (10 -6 mbar). Detailed simulations have been performed and a prototype has been developed for the purpose of extracting 136Ba ions from Xe gas with high efficiency. With this prototype, ions have been extracted for the first time from high-pressure xenon gas and argon gas. Systematic studies have been carried out and compared to simulations. This demonstration of extraction of ions, with mass comparable to that of the gas generating the high-pressure, has applications to Ba tagging from a Xe-gasmore » time-projection chamber for double-beta decay, as well as to the general problem of recovering trace amounts of an ionized element in a heavy (m > 40 u) carrier gas.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Irastorza, I.G.; Aznar, F.; Castel, J., E-mail: igor.irastorza@cern.ch, E-mail: faznar@unizar.es, E-mail: jfcastel@unizar.es
2016-01-01
As part of the T-REX project, a number of R and D and prototyping activities have been carried out during the last years to explore the applicability of gaseous Time Projection Chambers (TPCs) with Micromesh Gas Structures (Micromegas) in rare event searches like double beta decay, axion research and low-mass WIMP searches. In both this and its companion paper, we compile the main results of the project and give an outlook of application prospects for this detection technique. While in the companion paper we focus on axions and WIMPs, in this paper we focus on the results regarding the measurementmore » of the double beta decay (DBD) of {sup 136}Xe in a high pressure Xe (HPXe) TPC. Micromegas of the microbulk type have been extensively studied in high pressure Xe and Xe mixtures. Particularly relevant are the results obtained in Xe + trimethylamine (TMA) mixtures, showing very promising results in terms of gain, stability of operation, and energy resolution at high pressures up to 10 bar. The addition of TMA at levels of ∼ 1% reduces electron diffusion by up to a factor of 10 with respect to pure Xe, improving the quality of the topological pattern, with a positive impact on the discrimination capability. Operation with a medium size prototype of 30 cm diameter and 38 cm of drift (holding about 1 kg of Xe at 10 bar in the fiducial volume, enough to contain high energy electron tracks in the detector volume) has allowed to test the detection concept in realistic experimental conditions. Microbulk Micromegas are able to image the DBD ionization signature with high quality while, at the same time, measuring its energy deposition with a resolution of at least a ∼ 3% FWHM @ Q{sub ββ}. This value was experimentally demonstrated for high-energy extended tracks at 10 bar, and is probably improvable down to the ∼ 1% FWHM levels as extrapolated from low energy events. In addition, first results on the topological signature information (one straggling track ending in two blobs) show promising background discrimination capabilities out of reach of other experimental implementations. Moreover, microbulk Micromegas have very low levels of intrinsic radioactivity, and offer cost-effective scaling-up options. All these results demonstrate that Micromegas-read HPXe TPC remains a very competitive technique for the next generation DBD experiments.« less
Intramolecular vibrational redistribution of CH 2I 2 dissolved in supercritical Xe
NASA Astrophysics Data System (ADS)
Sekiguchi, K.; Shimojima, A.; Kajimoto, O.
2003-03-01
Intramolecular vibrational energy redistribution (IVR) of CH 2I 2 in supercritical Xe has been studied. The first overtone of the C-H stretching mode was excited with a near infrared laser pulse and the transient UV absorption near 390 nm was monitored. Signals showed a rise and decay profile, which gave the IVR and VET (intermolecular vibrational energy transfer) rates, respectively. Solvent density dependence of each rate was obtained by tuning the pressure at a constant temperature. The IVR rate in supercritical Xe increased with increasing solvent density and asymptotically reached a limiting value. This result suggests that the IVR process of CH 2I 2 in condensed phase is a solvent-assisted process.
Nakajima, Y.; Goldschmidt, A.; Matis, H. S.; ...
2016-03-18
The gaseous Xenon(Xe) time projection chamber (TPC) is an attractive detector technique for neutrinoless double beta decay and WIMP dark matter searches. While it is less dense compared to Liquid Xe detectors, it has intrinsic advantages in tracking capability and better energy resolution. The performance of gaseous Xe can be further improved by molecular additives such as trimethylamine(TMA), which is expected to (1) cool down the ionization electrons, (2) convert Xe excitation energy to TMA ionizations through Penning transfer, and (3) produce scintillation and electroluminescence light in a more easily detectable wavelength (300 nm). In order to test the feasibilitymore » of the performance improvements with TMA, in this paper we made the first direct measurement of Penning and fluorescence transfer efficiency with gaseous mixtures of Xe and TMA. While we observed a Penning transfer efficiency up to ~35%, we found strong suppression of primary scintillation light with TMA. We also found that the primary scintillation light with Xe and TMA mixture can be well characterized by ~3% fluorescence transfer from Xe to TMA, with further suppression due to TMA self-quenching. No evidence of the scintillation light produced by recombination of TMA ions was found. This strong suppression of scintillation light makes dark matter searches quite challenging, while the possibility of improved neutrinoless double beta decay searches remains open. Finally, this work has been carried out within the context of the NEXT collaboration.« less
Origin of planetary primordial rare gas - The possible role of adsorption.
NASA Technical Reports Server (NTRS)
Fanale, F. P.; Cannon, W. A.
1972-01-01
The degree of physical adsorption of Ne, Ar, Kr, and Xe on pulverized samples of the Allende meteorite at 113 K has been measured. The observed pattern of equilibrium enrichment of heavy rare gases over light on the pulverized meteorite surfaces relative to the gas phase is similar to the enrichment pattern exhibited by planetary primordial rare gas when compared with the composition of solar rare gas. Results indicate that, at 113 K, a total nebular pressure of from .01 to .001 atm would be required to explain the Ar, Kr, and Xe abundances in carbonaceous chondrites with an adsorption mechanism. This pressure estimate is compatible with the range of possible nebular pressures suggested by astrophysical arguments. However, the subsequent mechanism by which initially adsorbed gas might have been transferred into the interiors of grains cannot be identified at present.
Discrete stages of core formation survive the Moon-forming impact
NASA Astrophysics Data System (ADS)
Jackson, C.; Bennett, N.; Du, Z.; Fei, Y.
2016-12-01
There is mounting evidence that Earth contains isotopic variations produced by short-lived systems, namely Hf-W and I-Xe. The lifetimes of these systems are 50 Ma and 80 Ma, respectively, requiring that chemical heterogeneities that were formed extremely early in solar system history and have survived within Earth's mantle to the modern day. The isotopic heterogeneity observed within Earth's mantle contrasts the isotopic similarity of bulk silicate Earth and bulk silicate Moon. This suggests the process(es) responsible for the isotopic variations within Earth predate the Moon-forming impact. Here, we focus on the potential role of core-formation in generating coupled isotopic variations associated with the Hf-W and I-Xe systems. We present metal-silicate partitioning data for W and I from experiments employing laser-heated diamond anvil cells. Experiments were conducted up to the pressure and temperature conditions directly relevant to core formation at GSECARS, APS. Samples were prepared using focused ion beam milling and analyzed by field emission electron microbeam techniques (EDS & WDS). These analyses demonstrate that W and I preferentially partition into the core under a wide range of conditions. In combination with literature data, this suggests that core formation left the residual mantle with an increased Hf/W ratio and a decreased I/Xe ratio. These parent-daughter fractionations lead to radiogenic W and unradiogenic Xe isotopic signatures compared to mantle that experienced the extraction of core material at a later date, on average. Relatively radiogenic W and unradiogenic Xe isotopic signatures are associated with plume rocks, potentially linking the plume source to mantle reservoirs that experienced early core extraction relative to the bulk mantle. Compositional variables, pressure, and temperature also affect the magnitude of Hf/W and I/Xe fractionation associated with core formation. The interplay of these variables will be evaluated alongside the timing of core formation in the context of generating short-lived isotopic variations associated with plume mantle.
Al-Gharabli, Samer; Engeßer, Patrick; Gera, Diana; Klein, Sandra; Oppenländer, Thomas
2016-02-01
Excilamps are mercury-free gas-discharge sources of non-coherent VUV or UV radiation with high radiant power and a long lifetime. The most efficient excilamp that is currently available on the market is a VUV xenon excilamp system (Xe2(*)-excimer lamp, λ(max) = 172 nm) with a stated radiant efficiency η of 40% at an electrical input power P(el) of 20 W, 50 W or 100 W. In this paper, the use of this highly efficient Xe2(*)-excilamp (P(el) = 20 W) for water treatment is demonstrated using a recirculating laboratory photoreactor system with negative radiation geometry. The efficiency in the 172 nm initiated bleaching of aqueous solutions of Rhodamine B is compared to that initiated by a common low-pressure mercury (LP-Hg) lamp (185 nm, TNN 15/32). The dependence of the pseudo zero order rate constant k´ of decolorization of RhB on the flow rate and on the initial concentration of RhB was investigated. Both lamps exhibited dependences of k´ on the initial concentration of RhB, which represents a typical saturation kinetical behavior. The saturation kinetics was very prominent in the case of the Xe2(*)-excilamp. Also, the Xe2(*)-excilamp treatment exhibited a significant influence on the flow rate of the RhB aqueous solution, which was not the case during the LP-Hg lamp initiated bleaching of RhB. The results of this paper demonstrate that Xe2(*)-excilamps can be used for VUV-initiated water purification. However, to reach the maximum efficacy of the Xe2(*)-excilamp for photo-initiated water purification further engineering optimization of the photoreactor concept is necessary. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pathway to Cryogen Free Production of Hyperpolarized Krypton-83 and Xenon-129
Six, Joseph S.; Hughes-Riley, Theodore; Stupic, Karl F.; Pavlovskaya, Galina E.; Meersmann, Thomas
2012-01-01
Hyperpolarized (hp) 129Xe and hp 83Kr for magnetic resonance imaging (MRI) are typically obtained through spin-exchange optical pumping (SEOP) in gas mixtures with dilute concentrations of the respective noble gas. The usage of dilute noble gases mixtures requires cryogenic gas separation after SEOP, a step that makes clinical and preclinical applications of hp 129Xe MRI cumbersome. For hp 83Kr MRI, cryogenic concentration is not practical due to depolarization that is caused by quadrupolar relaxation in the condensed phase. In this work, the concept of stopped flow SEOP with concentrated noble gas mixtures at low pressures was explored using a laser with 23.3 W of output power and 0.25 nm linewidth. For 129Xe SEOP without cryogenic separation, the highest obtained MR signal intensity from the hp xenon-nitrogen gas mixture was equivalent to that arising from 15.5±1.9% spin polarized 129Xe in pure xenon gas. The production rate of the hp gas mixture, measured at 298 K, was 1.8 cm3/min. For hp 83Kr, the equivalent of 4.4±0.5% spin polarization in pure krypton at a production rate of 2 cm3/min was produced. The general dependency of spin polarization upon gas pressure obtained in stopped flow SEOP is reported for various noble gas concentrations. Aspects of SEOP specific to the two noble gas isotopes are discussed and compared with current theoretical opinions. A non-linear pressure broadening of the Rb D1 transition was observed and taken into account for the qualitative description of the SEOP process. PMID:23209620
NASA Astrophysics Data System (ADS)
Chen, Xun; Fu, ChangBo; Galan, Javier; Giboni, Karl; Giuliani, Franco; Gu, LingHui; Han, Ke; Ji, XiangDong; Lin, Heng; Liu, JiangLai; Ni, KaiXiang; Kusano, Hiroki; Ren, XiangXiang; Wang, ShaoBo; Yang, Yong; Zhang, Dan; Zhang, Tao; Zhao, Li; Sun, XiangMing; Hu, ShouYang; Jian, SiYu; Li, XingLong; Li, XiaoMei; Liang, Hao; Zhang, HuanQiao; Zhao, MingRui; Zhou, Jing; Mao, YaJun; Qiao, Hao; Wang, SiGuang; Yuan, Ying; Wang, Meng; Khan, Amir N.; Raper, Neill; Tang, Jian; Wang, Wei; Dong, JiaNing; Feng, ChangQing; Li, Cheng; Liu, JianBei; Liu, ShuBin; Wang, XiaoLian; Zhu, DanYang; Castel, Juan F.; Cebrián, Susana; Dafni, Theopisti; Garza, Javier G.; Irastorza, Igor G.; Iguaz, Francisco J.; Luzón, Gloria; Mirallas, Hector; Aune, Stephan; Berthoumieux, Eric; Bedfer, Yann; Calvet, Denis; d'Hose, Nicole; Delbart, Alain; Diakaki, Maria; Ferrer-Ribas, Esther; Ferrero, Andrea; Kunne, Fabienne; Neyret, Damien; Papaevangelou, Thomas; Sabatié, Franck; Vanderbroucke, Maxence; Tan, AnDi; Haxton, Wick; Mei, Yuan; Kobdaj, Chinorat; Yan, Yu-Peng
2017-06-01
Searching for the neutrinoless double beta decay (NLDBD) is now regarded as the topmost promising technique to explore the nature of neutrinos after the discovery of neutrino masses in oscillation experiments. PandaX-III (particle and astrophysical xenon experiment III) will search for the NLDBD of 136Xe at the China Jin Ping Underground Laboratory (CJPL). In the first phase of the experiment, a high pressure gas Time Projection Chamber (TPC) will contain 200 kg, 90% 136Xe enriched gas operated at 10 bar. Fine pitch micro-pattern gas detector (Microbulk Micromegas) will be used at both ends of the TPC for the charge readout with a cathode in the middle. Charge signals can be used to reconstruct the electron tracks of the NLDBD events and provide good energy and spatial resolution. The detector will be immersed in a large water tank to ensure 5 m of water shielding in all directions. The second phase, a ton-scale experiment, will consist of five TPCs in the same water tank, with improved energy resolution and better control over backgrounds.
Schoknecht, Karl; Berndt, Nikolaus; Rösner, Jörg; Heinemann, Uwe; Dreier, Jens P; Kovács, Richard; Friedman, Alon; Liotta, Agustin
2017-09-07
Neuronal injury due to seizures may result from a mismatch of energy demand and adenosine triphosphate (ATP) synthesis. However, ATP demand and oxygen consumption rates have not been accurately determined, yet, for different patterns of epileptic activity, such as interictal and ictal events. We studied interictal-like and seizure-like epileptiform activity induced by the GABA A antagonist bicuculline alone, and with co-application of the M-current blocker XE-991, in rat hippocampal slices. Metabolic changes were investigated based on recording partial oxygen pressure, extracellular potassium concentration, and intracellular flavine adenine dinucleotide (FAD) redox potential. Recorded data were used to calculate oxygen consumption and relative ATP consumption rates, cellular ATP depletion, and changes in FAD/FADH₂ ratio by applying a reactive-diffusion and a two compartment metabolic model. Oxygen-consumption rates were ca. five times higher during seizure activity than interictal activity. Additionally, ATP consumption was higher during seizure activity (~94% above control) than interictal activity (~15% above control). Modeling of FAD transients based on partial pressure of oxygen recordings confirmed increased energy demand during both seizure and interictal activity and predicted actual FAD autofluorescence recordings, thereby validating the model. Quantifying metabolic alterations during epileptiform activity has translational relevance as it may help to understand the contribution of energy supply and demand mismatches to seizure-induced injury.
Optima XE Single Wafer High Energy Ion Implanter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Satoh, Shu; Ferrara, Joseph; Bell, Edward
2008-11-03
The Optima XE is the first production worthy single wafer high energy implanter. The new system combines a state-of-art single wafer endstation capable of throughputs in excess of 400 wafers/hour with a production-proven RF linear accelerator technology. Axcelis has been evolving and refining RF Linac technology since the introduction of the NV1000 in 1986. The Optima XE provides production worthy beam currents up to energies of 1.2 MeV for P{sup +}, 2.9 MeV for P{sup ++}, and 1.5 MeV for B{sup +}. Energies as low as 10 keV and tilt angles as high as 45 degrees are also available., allowingmore » the implanter to be used for a wide variety of traditional medium current implants to ensure high equipment utilization. The single wafer endstation provides precise implant angle control across wafer and wafer to wafer. In addition, Optima XE's unique dose control system allows compensation of photoresist outgassing effects without relying on traditional pressure-based methods. We describe the specific features, angle control and dosimetry of the Optima XE and their applications in addressing the ever-tightening demands for more precise process controls and higher productivity.« less
Exotic species with explicit noble metal-noble gas-noble metal linkages.
Moreno, Norberto; Restrepo, Albeiro; Hadad, C Z
2018-02-14
We present a study of the isoelectronic Pt 2 Ng 2 F 4 and [Au 2 Ng 2 F 4 ] 2+ species with noble gas atoms (Ng = Kr, Xe, Rn) acting as links bridging the two noble metal atoms. The stability of the species is investigated using several thermodynamic, kinetic and reactivity indicators. The results are compared against [AuXe 4 ] 2+ , which is thermodynamically unstable in the gas phase but is stabilized in the solid state to the point that it has been experimentally detected as [AuXe 4 ](Sb 2 F 11 ) 2 (S. Seidel and K. Seppelt, Science, 2000, 290, 117-118). Our results indicate that improving upon [AuXe 4 ] 2+ , these exotic combinations between the a priori non-reactive noble metals and noble gases lead to metastable species, and, therefore, they have the possibility of existing in the solid state under adequate conditions. Our calculations include accurate energies and geometries at both the CCSD/SDDALL and MP2/SDDALL levels. We offer a detailed description of the nature of the bonding interactions using orbital and density-based analyses. The computational evidence suggests partially covalent and ionic interactions as the stabilization factors.
Ion beams in multi-species plasmas
NASA Astrophysics Data System (ADS)
Aguirre, E. M.; Scime, E. E.; Good, T. N.
2018-04-01
Argon and xenon ion velocity distribution functions are measured in Ar-He, Ar-Xe, and Xe-He expanding helicon plasmas to determine if ion beam velocity is enhanced by the presence of lighter ions. Contrary to observations in mixed gas sheath experiments, we find that adding a lighter ion does not increase the ion beam speed. The predominant effect is a reduction of ion beam velocity consistent with increased drag arising from increased gas pressure under all conditions: constant total gas pressure, equal plasma densities of different ions, and very different plasma densities of different ions. These results suggest that the physics responsible for the acceleration of multiple ion species in simple sheaths is not responsible for the ion acceleration observed in expanding helicon plasmas.
Neutron-capture cross-section measurements of Xe136 between 0.4 and 14.8 MeV
NASA Astrophysics Data System (ADS)
Bhike, Megha; Tornow, W.
2014-03-01
Fast-neutron-capture cross-section data on Xe136 have been measured with the activation method between 0.4 and 14.8 MeV. The cross section was found to be of the order of 1 mb at the eleven energies investigated. This result is important to interpret potential neutron-induced backgrounds in the enriched xenon observatory and KamLAND-Zen neutrinoless double-β decay searches that use xenon as both source and detector. A high-pressure sphere filled with Xe136 was irradiated with monoenergetic neutrons produced by the reactions 3H(p ,n)3He, 2H(d ,n)3He, and 3H(d ,n)4He. Indium and gold monitor foils were irradiated simultaneously with the Xe136 to determine the incident neutron flux. The activities of the reaction products were measured with high-resolution γ-ray spectroscopy. The present results are compared to predictions from ENDF/B-VII.1 and TENDL-2012.
Examining Changes in Radioxenon Isotope Activity Ratios during Subsurface Transport
NASA Astrophysics Data System (ADS)
Annewandter, R.
2013-12-01
The Non-Proliferation Experiment (NPE) has demonstrated and modelled the usefulness of barometric pumping induced soil gas sampling during On-Site inspections. Gas transport has been widely studied with different numerical codes. However, gas transport of all radioxenons in the post-detonation regime and their possible fractionation is still neglected in the open literature. Atmospheric concentrations of the radioxenons Xe-135, Xe-133m, Xe-133 and Xe-131m can be used to discriminate between civilian releases (nuclear power plants or medical isotope facilities), and nuclear explosion sources. It is based on the isotopic activity ratio method. Yet it is not clear whether subsurface migration of the radioxenons, with eventual release into the atmosphere, can affect the activity ratios due to fractionation. Fractionation can be caused by different diffusivities due to mass differences between the radioxenons. A previous study showed surface arrival time of a chemically inert gaseous tracer is affected by its diffusivity. They observed detectable amount for SF6 50 days after detonation and 375 days for He-3. They predict 50 and 80 days for Xe-133 and Ar-37 respectively. Cyclical changes in atmospheric pressure can drive subsurface gas transport. This barometric pumping phenomenon causes an oscillatoric flow in upward trending fractures which, combined with diffusion into the porous matrix, leads to a net transport of gaseous components - a ratcheting effect. We use a general purpose reservoir simulator (Complex System Modelling Platform, CSMP++) which has been applied in a range of fields such as deep geothermal systems, three-phase black oil simulations , fracture propagation in fractured, porous media, Navier-Stokes pore-scale modelling among others. It is specifically designed to account for structurally complex geologic situation of fractured, porous media. Parabolic differential equations are solved by a continuous Galerkin finite-element method, hyperbolic differential equations by a complementary finite volume method. The parabolic and hyperbolic problem can be solved separately using the operator-splitting method (Implicit Pressure Explicit Saturation, IMPES). The resulting system of linear equations is solved by the algebraic multigrid library SAMG, developed at the Fraunhofer Institute for Algorithms and Scientific Computing. CSMP++ is developed at Montan University of Leoben, ETH Zuerich, Imperial College London and Heriot-Watt University in Edinburgh. To date, there has been no research investigating how subsurface transport impacts isotope activity ratios. The isotopic activity ratio method can be used to discriminate between civil release or nuclear explosion sources. This study examines possible fractionation of Xe-135, Xe-133m, Xe-133, Xe-131m during barometric pumping-driven subsurface migration, which can affect surface arrival times and isotopic activity ratios. Surface arrival times for the Noble gases Kr-81, Kr-85 and Ar-39 are also calculated.
Acquisition and Early Losses of Rare Gases from the Deep Earth
NASA Technical Reports Server (NTRS)
Porcelli, D.; Cassen, P.; Woolum, D.; Wasserburg, G. J.
1998-01-01
Direct observations show that the deep Earth contains rare gases of solar composition distinct from those in the atmosphere. We examine the implications of mantle rare gas characteristics on acquisition of rare gases from the solar nebula and subsequent losses due to a large impact. Deep mantle rare gas concentrations and isotopic compositions can be obtained from a model of transport and distribution of mantle rare gases. This model assumes the lower mantle closed early, while the upper mantle is open to subduction from the atmosphere and mass transfer from the lower mantle. Constraints are derived that can be incorporated into models for terrestrial volatile acquisition: (1) Calculated lower-mantle Xe-isotopic ratios indicate that the fraction of radiogenic Xe produced by I-129 and Pu-244 during the first about 10(exp 8) yr was lost, a conclusion also drawn for atmospheric Xe. Thus, either the Earth was made from materials that had lost >99% of rare gases about (0.7-2) x 10(exp 8) yr after the solar system formed, or gases were then lost from the fully formed Earth. (2) Concentrations of 3He and 20Ne in the lower mantle were established after these losses. (3) Neon-isotopic data indicates that mantle Ne has solar composition. The model allows for solar Ar/Ne and Xe/Ne in the lower mantle if a dominant fraction of upper mantle Ar and Xe are subduction-derived. If Earth formed in the presence of the solar nebula, it could have been melted by accretional energy and the blanketing effect of a massive, nebula-derived atmosphere. Gases from this atmosphere would have been sequestered within the molten Earth by dissolution at the surface and downward mixing. It was found that too much Ne would be dissolved in the Earth unless the atmosphere began to escape when the Earth was only partially assembled. Here we consider conditions required to initially dissolve sufficient rare gases to account for the present lower mantle concentrations after subsequent losses at 10(exp 8) yr. It is assumed that equilibration of the atmosphere with a thoroughly molten mantle was rapid, so that initial abundances of gases retained in any mantle layer reflected surface conditions when the layer solidified. For subsequent gas loss of 99.5% and typical solubility coefficients, a total pressure of 100 atm was required for an atmosphere of solar composition. Calculations of the pressure at the base of a primordial atmosphere indicate that this value might be exceeded by an order of magnitude or more for an atmosphere supported by accretional energy. Surface temperatures of about 4000 K would have been produced, probably high enough to melt the deep mantle. Initial distributions of retained rare gases would then be determined by the history of surface pressure and temperature during mantle cooling and solidification, i.e., the coupled cooling of Earth and atmosphere. The Earth's thermal state was determined by its surface temperature and the efficiency of convection in the molten mantle, estimated to be sufficient to maintain an adiabatic gradient. Because the melting curve is steeper than the adiabat, solidification of the mantle proceeded outward from the interior. Incorporation of atmospheric gases in the mantle therefore occurred over a range in surface temperature of a few thousand degrees Kelvin. The thermal state of the atmosphere was controlled by total luminosity of the Earth (energy) released by accreting planetesimals and the cooling Earth), nebular temperature and pressure, and atmospheric opacity. The energy released by accretion declined with time as did nebular pressure. Analytical solutions for an idealized (constant opacity radiative atmosphere show that declining energy sources under constant nebular conditions result in slowly diminishing surface temperature but dramatically increasing surface pressure. For such an atmosphere with declining nebular pressure but constant total luminosity, surface pressure decreases gradually with decreasing temperaure. A decline in accretion luminosity might be compensated by energy released as the mantle cools for about 10(exp 5) year, after which luminosity must decline. The total complement of dissolved rare gases will depend on the particular evolutionary path determined by the declining accretional luminosity, the Earth thermal history, removal of the nebula, and opacity variations of the atmosphere. Models for these coupled evolutionary histories for Earth's acquisition of nebular-derived noble gases are in progress. The later losses required at about 10(exp 8) yr (depleting the interior concentrations of the sequestered solar gases by a factor of > 100) were presumably related to the major impact in which the Moon formed.
Ar-Ar and I-Xe Ages of Caddo County and Thermal History of IAB Iron Meteorites
NASA Technical Reports Server (NTRS)
Bogard, Donald D.; Garrison, Daniel H.; Takeda, Hiroshi
2005-01-01
Inclusions in IAB iron meteorites include non-chondritic silicate and those with more primitive chondritic silicate composition. Coarse-grained gabbroic material rich in plagioclase and diopside occurs in the Caddo County IAB iron meteorite and represents a new type of chemically differentiated, extra-terrestrial, andesitic silicate. Other parts of Caddo contain mostly andesitic material. Caddo thus exhibits petrologic characteristics of parent body metamorphism of a chondrite-like parent and inhomogeneous segregation of melts. Proposed IAB formation models include parent body partial melting and fractional crystallization or incomplete differentiation due to internal heat sources, and impact/induced melting and mixing. Benedix et al. prefer a hybrid model whereby the IAB parent body largely melted, then underwent collisional breakup, partial mixing of phases, and reassembly. Most reported 129I- Xe-129 ages of IABs are greater than 4.56 Gyr and a few are greater than or = 4.567 Gyr. These oldest ages exceed the 4.567 Gyr Pb-Pb age of Ca, Al-rich inclusions in primitive meteorites,
Diffusion Monte Carlo calculations of Xenon melting under pressure
NASA Astrophysics Data System (ADS)
Shulenburger, L.; Mattsson, T. R.
2011-03-01
The slope of the melting temperature as a function of pressure yields, via the Clausius-Clapeyron equation, important information regarding the changes in density, energy, and entropy. It is therefore crucial to resolve the long-standing differences in melt lines under pressure between Diamond Anvil Cell data (low/flat melt line) and other methods, including density functional theory (DFT) simulations 1 (high/steep melt line). The disagreement for Ta was recently resolved 2 and although a similar situation exists in the literature on Xe,3 the resolution may be quite different. For example, DFT with its lack of van der Waals forces is a prima facie less credible simulation method for Xe, although excellent agreement has been obtained between calculations of the Hugoniot of Xe and experiments.4 We investigate whether this theoretical shortcoming is significant for the melting transition by applying diffusion Monte Carlo. The energy differences obtained in this way are compared to the DFT results in order to address any systematic errors that may be present near the melting transition. 1 Taioli et al. PRB 75, 214103 (2007); 2 Dewaele et al. PRL 104, 255701 (2010); 3 Belonoshko el al. PRB 74, 054114 (2006); 4 Root et al. PRL 105, 085501 (2010) Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corp. for the US Dep. of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Noble gases in Mars atmosphere: new precise analysis with Paloma
NASA Astrophysics Data System (ADS)
Sarda, Ph.; Paloma Team
2003-04-01
The Viking mission embarked a mass spectrometer designed by Alfred O. Nier that yielded the first determination of the elemental and isotopic composition of noble gases in Mars atmosphere. For example, the 40Ar/36Ar ratio in martian air is roughly 10 fold that in terrestrial air. This extraordinary accomplishment, however, has furnished only partial results with large analytical uncertainties. For example, we do not know the isotopic composition of helium, and only very poorly that of Ne, Kr and Xe. In planetary science, it is fundamental to have a good knowledge of the atmosphere because this serves as a reference for all further studies of volatiles. In addition, part of our present knowledge of Mars atmosphere is based on the SNC meteorites, and again points to important differences between the atmospheres of Earth and Mars. For example the 129Xe/132Xe ratio of martian atmosphere would be twice that of terrestrial air and the 36Ar/38Ar ratio strongly different from the terrestrial or solar value. There is a need for confirming that the atmospheric components found in SNC meteorites actually represents the atmosphere of Mars, or to determine how different they are. Paloma is an instrument designed to generate elemental and isotopic data for He, Ne, Ar, Kr and Xe (and other gases) using a mass spectrometer with a purification and separation line. Gas purification and separation did not exist on the Vicking instrument. Because Paloma includes purification and separation, we expect strong improvement in precision. Ne, Ar and Xe isotope ratios should be obtained with an accuracy of better than 1%. Determination of the presently unknown ^3He/^4He ratio is also awaited from this experiment. Knowledge of noble gas isotopes in Mars atmosphere will allow some insight into major planetary processes such as degassing (^3He/^4He, 40Ar/36Ar, 129Xe/130Xe, 136Xe/130Xe), gravitational escape to space (^3He/^4He, 20Ne/22Ne), hydrodynamic escape and/or impact erosion of the atmosphere (20Ne/22Ne, 21Ne/22Ne, 38Ar/36Ar, Xe isotopes), input of solar wind and galactic comic rays (^3He/^4He, 20Ne/22Ne, 21Ne/22Ne). Comparison with the Earth may also shed light on long standing problems such as the large isotopic mass fractionation of the Xe isotopes and the so-called missing xenon problem. Possible variations of Kr and Xe abundances due to adsorption phenomena related to the climatic cycle will be searched for by measuring along at least one martian year.
Numerical analysis of similarity of barrier discharges in the 0.95 Ne/0.05 Xe mixture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avtaeva, S. V.; Kulumbaev, E. B.
2009-04-15
Established dynamic regimes of similar (with a scale factor of 10) barrier discharges in the 0.95 Ne/0.05 Xe mixture are simulated in a one-dimensional drift-diffusion model. The similarity is examined of barrier discharges excited in gaps of lengths 0.4 and 4 mm at gas pressures of 350 and 35 Torr and dielectric layer thicknesses of 0.2 and 2 mm, the frequencies of the 400-V ac voltage applied to the discharge electrodes being 100 and 10 kHz, respectively.
Mobility and fluorescence of barium ions in xenon gas for the exo experiment
NASA Astrophysics Data System (ADS)
Benitez Medina, Julio Cesar
The Enriched Xenon Observatory (EXO) is an experiment which aims to observe the neutrinoless double beta decay of 136Xe. The measurement of this decay would give information about the absolute neutrino mass and whether or not the neutrino is its own antiparticle. Since this is a very rare decay, the ability to reject background events by detecting the barium ion daughter from the double beta decay would be a major advantage. EXO is currently operating a detector with 200 kg of enriched liquid xenon, and there are plans to build a ton scale xenon detector. Measurements of the purity of liquid xenon in our liquid xenon test cell are reported. These results are relevant to the research on detection of single barium ions by our research group at Colorado State University. Details of the operation of the purity monitor are described. The effects of using a purifier, recirculation and laser ablation on the purity of liquid xenon are discussed. Mobility measurements of barium in xenon gas are reported for the first time. The variation of mobility with xenon gas pressure suggests that a significant fraction of molecular ions are formed when barium ions interact with xenon gas at high pressures. The measured mobility of Ba+ in Xe gas at different pressures is compared with the predicted theoretical value, and deviations are explained by a model that describes the fraction of molecular ions in Xe gas as a function of pressure. The results are useful for the analysis of experiments of fluorescence of Ba+ in xenon gas. It is also important to know the mobility of the ions in order to calculate the time they interact with an excitation laser in fluorescence experiments and in proposed 136 Ba+ daughter detection schemes. This thesis presents results of detection of laser induced fluorescence of Ba+ ions in Xe gas. Measurements of the pressure broadening of the excitation spectra of Ba+ in xenon gas are presented. Nonradiative decays due to gas collisions and optical pumping affect the number of fluorescence counts detected. A model that treats the barium ion as a three level system is used to predict the total number of fluorescence counts and correct for optical pumping. A pressure broadening coefficient for Ba+ in xenon gas is extracted and limits for p-d and d-s nonradiative decay rates are extracted. Although fluorescence is reduced significantly at 5-10 atm xenon pressure, the measurements in this thesis indicate that it is still feasible to detect 136Ba+ ions directly in high pressure xenon gas, e.g. in a double beta decay detector.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gozukirmizi, E.; Meyer, J.S.; Okabe, T.
1982-01-01
Cerebral blood flow (CBF) measurements were combined with sleep polysomnography in nine patients with complex partial seizures. Two methods were used: the 133Xe method for measuring regional (rCBF) and the stable xenon CT method for local (LCBF). Compared to nonepileptic subjects, who show diffuse CBF decreases during stages I-II, non-REM sleep onset, patients with complex partial seizures show statistically significant increases in CBF which are maximal in regions where the EEG focus is localized and are predominantly seen in one temporal region but are also propagated to other cerebral areas. Both CBF methods gave comparable results, but greater statistical significancemore » was achieved by stable xenon CT methodology. CBF increases are more diffuse than predicted by EEG paroxysmal activity recorded from scalp electrodes. An advantage of the 133Xe inhalation method was achievement of reliable data despite movement of the head. This was attributed to the use of a helmet which maintained the probes approximated to the scalp. Disadvantages were poor resolution (7 cm3) and two-dimensional information. The advantage of stable xenon CT method is excellent resolution (80 mm3) in three dimensions, but a disadvantage is that movement of the head in patients with seizure disorders may limit satisfactory measurements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kikukawa, Daisuke; Hori, Masaru; Honma, Koichiro
2006-11-15
Microwave excited plasma source operating at a low pressure of 1.5 Pa was newly developed. This plasma source was successfully applied to the formation of hydrogenated microcrystalline silicon films in a glass substrate with a mixture gas of silane (SiH{sub 4}), hydrogen (H{sub 2}), and xenon (Xe). It was found that the crystallinity of films was dramatically improved with decreasing pressure. The crystalline fraction was evaluated to be 82% at a substrate temperature of 400 deg. C, a mixture gas of SiH{sub 4}/H{sub 2}/Xe: 5/200/30 SCCM, and a total pressure of 1.5 Pa by Raman spectroscopy. The absolute density ofmore » hydrogen atoms and the behavior of higher radicals and molecules in the mixture gas were evaluated using vacuum ultraviolet absorption spectroscopy and quadrupole mass spectrometer, respectively. H atom densities were of the order of 10{sup 11} cm{sup -3}. The fraction of H atom density increased, while higher radicals and molecules decreased with decrease in the total pressure. The increase in H atom density and decrease in higher radicals and molecules improved the crystallinity of films in low pressures below 10 Pa.« less
Report on simulation of fission gas and fission product diffusion in UO 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersson, Anders David; Perriot, Romain Thibault; Pastore, Giovanni
2016-07-22
In UO 2 nuclear fuel, the retention and release of fission gas atoms such as xenon (Xe) are important for nuclear fuel performance by, for example, reducing the fuel thermal conductivity, causing fuel swelling that leads to mechanical interaction with the clad, increasing the plenum pressure and reducing the fuel–clad gap thermal conductivity. We use multi-scale simulations to determine fission gas diffusion mechanisms as well as the corresponding rates in UO 2 under both intrinsic and irradiation conditions. In addition to Xe and Kr, the fission products Zr, Ru, Ce, Y, La, Sr and Ba have been investigated. Density functionalmore » theory (DFT) calculations are used to study formation, binding and migration energies of small clusters of Xe atoms and vacancies. Empirical potential calculations enable us to determine the corresponding entropies and attempt frequencies for migration as well as investigate the properties of large clusters or small fission gas bubbles. A continuum reaction-diffusion model is developed for Xe and point defects based on the mechanisms and rates obtained from atomistic simulations. Effective fission gas diffusivities are then obtained by solving this set of equations for different chemical and irradiation conditions using the MARMOT phase field code. The predictions are compared to available experimental data. The importance of the large Xe U3O cluster (a Xe atom in a uranium + oxygen vacancy trap site with two bound uranium vacancies) is emphasized, which is a consequence of its high mobility and high binding energy. We find that the Xe U3O cluster gives Xe diffusion coefficients that are higher for intrinsic conditions than under irradiation over a wide range of temperatures. Under irradiation the fast-moving Xe U3O cluster recombines quickly with irradiation-induced interstitial U ions, while this mechanism is less important for intrinsic conditions. The net result is higher concentration of the Xe U3O cluster for intrinsic conditions than under irradiation. We speculate that differences in the irradiation conditions and their impact on the Xe U3O cluster can explain the wide range of diffusivities reported in experimental studies. However, all vacancy-mediated mechanisms underestimate the Xe diffusivity compared to the empirical radiation-enhanced rate used in most fission gas release models. We investigate the possibility that diffusion of small fission gas bubbles or extended Xe-vacancy clusters may give rise to the observed radiation-enhanced diffusion coefficient. These studies highlight the importance of U divacancies and an octahedron coordination of uranium vacancies encompassing a Xe fission gas atom. The latter cluster can migrate via a multistep mechanism with a rather low effective barrier, which together with irradiation-induced clusters of uranium vacancies, gives rise to the irradiation-enhanced diffusion coefficient observed in experiments.« less
Pollock, B B; Meinecke, J; Kuschel, S; Ross, J S; Shaw, J L; Stoafer, C; Divol, L; Tynan, G R; Glenzer, S H
2012-10-01
Uniform density and temperature Xe plasmas have been produced over >4 mm scale-lengths using x-rays generated in a cylindrical Pb cavity. The cavity is 750 μm in depth and diameter, and is heated by a 300 J, 2 ns square, 1054 nm laser pulse focused to a spot size of 200 μm at the cavity entrance. The plasma is characterized by simultaneous imaging Thomson scattering measurements from both the electron and ion scattering features. The electron feature measurement determines the spatial electron density and temperature profile, and using these parameters as constraints in the ion feature analysis allows an accurate determination of the charge state of the Xe ions. The Thomson scattering probe beam is 40 J, 200 ps, and 527 nm, and is focused to a 100 μm spot size at the entrance of the Pb cavity. Each system has a spatial resolution of 25 μm, a temporal resolution of 200 ps (as determined by the probe duration), and a spectral resolution of 2 nm for the electron feature system and 0.025 nm for the ion feature system. The experiment is performed in a Xe filled target chamber at a neutral pressure of 3-10 Torr, and the x-rays produced in the Pb ionize and heat the Xe to a charge state of 20±4 at up to 200 eV electron temperatures.
ExB Measurements of a 200 W Xenon Hall Thruster (Preprint)
2007-08-28
Hall thruster Busek BHT-200 plume were measured using an ExB probe under a variety of thruster operating conditions and background pressures. The thruster was operated at several operating conditions by varying the anode potential of the thruster from 200 V to 325 V in 25 V increments. Measurements of the ion species fractions were made 90 from thruster centerline 60 cm downstream of the exit plane. At reduced discharge voltages, the species fractions of multiply-charged xenon ions were lower, while at increased discharge voltages, Xe+2 and Xe+3 showed an increase in their
XeCl laser pumped iodine laser using t-C4F9I
NASA Technical Reports Server (NTRS)
Hwang, In Heon; Han, Kwang S.
1989-01-01
An iodine photodissociation laser using t-C4F9I as the active material was pumped by an XeCl laser. An iodine laser output energy of 3 mJ with pulse duration of 25 ns was obtained when the pumping pulse energy was 80 mJ, the iodide pressure was 70 torr, and the reflectance of the output mirror was 85 percent. The high pumping efficiency and low threshold pump power achieved in this experiment are attributable to the high absorption cross section at the pump laser wavelength (308 nm) of the iodide used.
Functional Properties of Five Dictyostelium discoideum P2X Receptors*
Baines, Abigail; Parkinson, Katie; Sim, Joan A.; Bragg, Laricia; Thompson, Christopher R. L.; North, R. Alan
2013-01-01
The Dictyostelium discoideum genome encodes five proteins that share weak sequence similarity with vertebrate P2X receptors. Unlike vertebrate P2X receptors, these proteins are not expressed on the surface of cells, but populate the tubules and bladders of the contractile vacuole. In this study, we expressed humanized cDNAs of P2XA, P2XB, P2XC, P2XD, and P2XE in human embryonic kidney cells and altered the ionic and proton environment in an attempt to reflect the situation in amoeba. Recording of whole-cell membrane currents showed that four receptors operated as ATP-gated channels (P2XA, P2XB, P2XD, and P2XE). At P2XA receptors, ATP was the only effective agonist of 17 structurally related putative ligands that were tested. Extracellular sodium, compared with potassium, strongly inhibited ATP responses in P2XB, P2XD, and P2XE receptors. Increasing the proton concentration (pH 6.2) accelerated desensitization at P2XA receptors and decreased currents at P2XD receptors, but increased the currents at P2XB and P2XE receptors. Dictyostelium lacking P2XA receptors showed impaired regulatory volume decrease in hypotonic solution. This phenotype was readily rescued by overexpression of P2XA and P2XD receptors, partially rescued by P2XB and P2XE receptors, and not rescued by P2XC receptors. The failure of the nonfunctional receptor P2XC to restore the regulatory volume decrease highlights the importance of ATP activation of P2X receptors for a normal response to hypo-osmotic shock, and the weak rescue by P2XB and P2XE receptors indicates that there is limited functional redundancy among Dictyostelium P2X receptors. PMID:23740252
Functional properties of five Dictyostelium discoideum P2X receptors.
Baines, Abigail; Parkinson, Katie; Sim, Joan A; Bragg, Laricia; Thompson, Christopher R L; North, R Alan
2013-07-19
The Dictyostelium discoideum genome encodes five proteins that share weak sequence similarity with vertebrate P2X receptors. Unlike vertebrate P2X receptors, these proteins are not expressed on the surface of cells, but populate the tubules and bladders of the contractile vacuole. In this study, we expressed humanized cDNAs of P2XA, P2XB, P2XC, P2XD, and P2XE in human embryonic kidney cells and altered the ionic and proton environment in an attempt to reflect the situation in amoeba. Recording of whole-cell membrane currents showed that four receptors operated as ATP-gated channels (P2XA, P2XB, P2XD, and P2XE). At P2XA receptors, ATP was the only effective agonist of 17 structurally related putative ligands that were tested. Extracellular sodium, compared with potassium, strongly inhibited ATP responses in P2XB, P2XD, and P2XE receptors. Increasing the proton concentration (pH 6.2) accelerated desensitization at P2XA receptors and decreased currents at P2XD receptors, but increased the currents at P2XB and P2XE receptors. Dictyostelium lacking P2XA receptors showed impaired regulatory volume decrease in hypotonic solution. This phenotype was readily rescued by overexpression of P2XA and P2XD receptors, partially rescued by P2XB and P2XE receptors, and not rescued by P2XC receptors. The failure of the nonfunctional receptor P2XC to restore the regulatory volume decrease highlights the importance of ATP activation of P2X receptors for a normal response to hypo-osmotic shock, and the weak rescue by P2XB and P2XE receptors indicates that there is limited functional redundancy among Dictyostelium P2X receptors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gedanken, A.; Smith, A.L.
1981-09-17
A pulsed nitrogen laser photodissociated F/sub 2/ in the presence of Xe, and the resulting ground-state XeF was excited by a second pulsed, tunable dye laser in the 0,4 and 0,5 bands of the B(1/2)-X(1/2) transition. Both dispersed fluorescence spectra and tunable laser excitation spectra, taken by using a gated detection system, show that the C state is lower in energy than the lowest vibrational level of the B state. The ratio of fluorescence intensities in the C-A and B-X transitions was measured as a function of xenon and argon pressure. An analytical model was developed for the time dependencemore » of the B and C state concentrations after instantaneous excitation and in the presence of intersystem crossing, quenching, and radiative decay. Published rate constants for the excited state kinetics of XeF(B) and XeF(C) are reviewed, and model calculations of the measured intensity ratio are used to assess these rate constants.« less
Improving Spectroscopic Performance of a Coplanar-Anode High-Pressure Xenon Gamma-Ray Spectrometer
NASA Astrophysics Data System (ADS)
Kiff, Scott Douglas; He, Zhong; Tepper, Gary C.
2007-08-01
High-pressure xenon (HPXe) gas is a desirable radiation detection medium for homeland security applications because of its good inherent room-temperature energy resolution, potential for large, efficient devices, and stability over a broad temperature range. Past work in HPXe has produced large-diameter gridded ionization chambers with energy resolution at 662 keV between 3.5 and 4% FWHM. However, one major limitation of these detectors is resolution degradation due to Frisch grid microphonics. A coplanar-anode HPXe detector has been developed as an alternative to gridded chambers. An investigation of this detector's energy resolution is reported in this submission. A simulation package is used to investigate the contributions of important physical processes to the measured photopeak broadening. Experimental data is presented for pure Xe and Xe + 0.2%H2 mixtures, including an analysis of interaction location effects on the energy spectrum.
Johnson, Ulf; Engquist, Henrik; Howells, Tim; Nilsson, Pelle; Ronne-Engström, Elisabeth; Lewén, Anders; Rostami, Elham; Enblad, Per
2016-08-01
Subarachnoid hemorrhage (SAH) is a disease with a high rate of unfavorable outcome, often related to delayed cerebral ischemia (DCI), i.e., ischemic injury that develops days-weeks after onset, with a multifactorial etiology. Disturbances in cerebral pressure autoregulation, the ability to maintain a steady cerebral blood flow (CBF), despite fluctuations in systemic blood pressure, have been suggested to play a role in the development of DCI. Pressure reactivity index (PRx) is a well-established measure of cerebral pressure autoregulation that has been used to study traumatic brain injury, but not extensively in SAH. To study the relation between PRx and CBF in SAH patients, and to examine if PRx can be used to predict DCI. Retrospective analysis of prospectively collected data. PRx was calculated as the correlation coefficient between mean arterial blood pressure (MABP) and intracranial pressure (ICP) in a 5 min moving window. CBF was measured using bedside Xenon-CT (Xe-CT). DCI was diagnosed clinically. 47 poor-grade mechanically ventilated patients were studied. Patients with disturbed pressure autoregulation (high PRx values) had lower CBF, as measured by bedside Xe-CT; both in the early (day 0-3) and late (day 4-14) acute phase of the disease. PRx did not differ significantly between patients who developed DCI or not. In mechanically ventilated and sedated SAH patients, high PRx (more disturbed CBF pressure autoregulation) is associated with low CBF, both day 0-3 and day 4-14 after onset. The role of PRx as a monitoring tool in SAH patients needs further studying.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pollock, B. B.; University of California, San Diego, 9500 Gilman Dr., La Jolla, California 92093; Meinecke, J.
2012-10-15
Uniform density and temperature Xe plasmas have been produced over >4 mm scale-lengths using x-rays generated in a cylindrical Pb cavity. The cavity is 750 {mu}m in depth and diameter, and is heated by a 300 J, 2 ns square, 1054 nm laser pulse focused to a spot size of 200 {mu}m at the cavity entrance. The plasma is characterized by simultaneous imaging Thomson scattering measurements from both the electron and ion scattering features. The electron feature measurement determines the spatial electron density and temperature profile, and using these parameters as constraints in the ion feature analysis allows an accuratemore » determination of the charge state of the Xe ions. The Thomson scattering probe beam is 40 J, 200 ps, and 527 nm, and is focused to a 100 {mu}m spot size at the entrance of the Pb cavity. Each system has a spatial resolution of 25 {mu}m, a temporal resolution of 200 ps (as determined by the probe duration), and a spectral resolution of 2 nm for the electron feature system and 0.025 nm for the ion feature system. The experiment is performed in a Xe filled target chamber at a neutral pressure of 3-10 Torr, and the x-rays produced in the Pb ionize and heat the Xe to a charge state of 20{+-}4 at up to 200 eV electron temperatures.« less
Zeiler, Frederick A; Donnelly, Joseph; Calviello, Leanne; Menon, David K; Smielewski, Peter; Czosnyka, Marek
2017-12-01
The purpose of this study was to perform a systematic, scoping review of commonly described intermittent/semi-intermittent autoregulation measurement techniques in adult traumatic brain injury (TBI). Nine separate systematic reviews were conducted for each intermittent technique: computed tomographic perfusion (CTP)/Xenon-CT (Xe-CT), positron emission tomography (PET), magnetic resonance imaging (MRI), arteriovenous difference in oxygen (AVDO 2 ) technique, thigh cuff deflation technique (TCDT), transient hyperemic response test (THRT), orthostatic hypotension test (OHT), mean flow index (Mx), and transfer function autoregulation index (TF-ARI). MEDLINE ® , BIOSIS, EMBASE, Global Health, Scopus, Cochrane Library (inception to December 2016), and reference lists of relevant articles were searched. A two tier filter of references was conducted. The total number of articles utilizing each of the nine searched techniques for intermittent/semi-intermittent autoregulation techniques in adult TBI were: CTP/Xe-CT (10), PET (6), MRI (0), AVDO 2 (10), ARI-based TCDT (9), THRT (6), OHT (3), Mx (17), and TF-ARI (6). The premise behind all of the intermittent techniques is manipulation of systemic blood pressure/blood volume via either chemical (such as vasopressors) or mechanical (such as thigh cuffs or carotid compression) means. Exceptionally, Mx and TF-ARI are based on spontaneous fluctuations of cerebral perfusion pressure (CPP) or mean arterial pressure (MAP). The method for assessing the cerebral circulation during these manipulations varies, with both imaging-based techniques and TCD utilized. Despite the limited literature for intermittent/semi-intermittent techniques in adult TBI (minus Mx), it is important to acknowledge the availability of such tests. They have provided fundamental insight into human autoregulatory capacity, leading to the development of continuous and more commonly applied techniques in the intensive care unit (ICU). Numerous methods of intermittent/semi-intermittent pressure autoregulation assessment in adult TBI exist, including: CTP/Xe-CT, PET, AVDO 2 technique, TCDT-based ARI, THRT, OHT, Mx, and TF-ARI. MRI-based techniques in adult TBI are yet to be described, with the main focus of MRI techniques on metabolic-based cerebrovascular reactivity (CVR) and not pressure-based autoregulation.
Comparison of measured and simulated concentrations of 133Xe in the shallow subsurface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Christine M.; Biegalski, Steven R.; Lowre
2018-09-01
Radioactive isotopes of the noble gases xenon and argon are considered primary indicators of an underground nuclear explosion. However, high atmospheric concentrations from other anthropogenic sources may lead to an elevation in the underground levels of these gases, particularly in times of increasing atmospheric pressure. In 2014, a week long sampling campaign near Canadian Nuclear Laboratories in the Ottawa River Valley resulted in first of their kind measurements of atmospheric 133Xe that had been pressed into the subsurface. In an effort to better understand this imprinting process, a second follow-up sampling campaign was conducted in the same location in 2016.more » The results of the second sampling campaign, where samples were collected at depths of 1 and 2 meters over a 14 day period and measured for their 133Xe concentration, are presented here. Gas transport and sample concentrations were predicted using the Subsurface Transport over Multiple Phases (STOMP) simulator. These results are examined and compared to the corresponding experimental results.« less
Photodisintegration cross section of the reaction (4)He(γ,p)(3)H between 22 and 30 MeV.
Raut, R; Tornow, W; Ahmed, M W; Crowell, A S; Kelley, J H; Rusev, G; Stave, S C; Tonchev, A P
2012-01-27
The two-body photodisintegration cross section of (4)He into a proton and triton was measured with monoenergetic photon beams in 0.5 MeV energy steps between 22 and 30 MeV. High-pressure (4)He-Xe gas scintillators of various (4)He/Xe ratios served as targets and detectors. Pure Xe gas scintillators were used for background studies. A NaI detector together with a plastic scintillator paddle was employed for determining the incident photon flux. Our comprehensive data set follows the trend of the theoretical calculations of the Trento group very well, although our data are consistently lower in magnitude by about 5%. However, they differ significantly from the majority of the previous data, especially from the recent data of Shima et al. The latter data had put into question the validity of theoretical approaches used to calculate core-collapse supernova explosions and big-bang nucleosynthesis abundances of certain light nuclei.
Comparison of measured and simulated concentrations of 133 Xe in the shallow subsurface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, C.; Biegalski, S. R.; Lowrey, J. D.
Radioactive isotopes of the noble gases xenon and argon are considered primary indicators of an underground nuclear explosion. However, high atmospheric concentrations from other anthropogenic sources may lead to an elevation in the underground levels of these gases, particularly in times of increasing atmospheric pressure. In 2014, a week long sampling campaign near Canadian Nuclear Laboratories in the Ottawa River Valley resulted in first of their kind measurements of atmospheric 133Xe that had been pressed into the subsurface. In an effort to better understand this imprinting process, a second follow-up sampling campaign was conducted in the same location in 2016.more » The results of the second sampling campaign, where samples were collected at depths of 1 and 2 meters over a 14 day period and measured for their 133Xe concentration, are presented here. Gas transport and sample concentrations were predicted using the Subsurface Transport over Multiple Phases (STOMP) simulator. These results are examined and compared to the corresponding experimental results.« less
NASA Astrophysics Data System (ADS)
Bordage, M. C.; Hagelaar, G. J. M.; Pitchford, L. C.; Biagi, S. F.; Puech, V.
2011-10-01
Xenon is used in a number of application areas ranging from light sources to x-ray detectors for imaging in medicine, border security and high-energy particle physics. There is a correspondingly large body of data available for electron scattering cross sections and swarm parameters in Xe, whereas data for Kr are more limited. In this communication we show intercomparisons of the cross section sets in Xe and Kr presently available on the LXCat site. Swarm parameters calculated using these cross sections sets are compared with experimental data, also available on the LXCat site. As was found for Ar, diffusion coefficients calculated using these cross section data in a 2-term Boltzmann solver are higher than Monte Carlo results by about 30% over a range of E/N from 1 to 100 Td. We find otherwise good agreement in Xe between 2-term and Monte Carlo results and between measured and calculated values of electron mobility, ionization rates and light emission (dimer) at atmospheric pressure. The available cross section data in Kr yield swarm parameters in agreement with the limited experimental data. The cross section compilations and measured swarm parameters used in this work are available on-line at www.lxcat.laplace. univ-tlse.fr.
NASA Astrophysics Data System (ADS)
Ono, Ryo; Tokumitsu, Yusuke; Zen, Shungo; Yonemori, Seiya
2014-11-01
We propose a method for producing OH, H, O, O3, and O2(a1Δg) using the vacuum ultraviolet photodissociation of H2O and O2 as a tool for studying the reaction processes of plasma medicine. For photodissociation, an H2O/He or O2/He mixture flowing in a quartz tube is irradiated by a Xe2 or Kr2 excimer lamp. The effluent can be applied to a target. Simulations show that the Xe2 lamp method can produce OH radicals within 0.1-1 ppm in the effluent at 5 mm from a quartz tube nozzle. This is comparable to those produced by a helium atmospheric-pressure plasma jet (He-APPJ) currently used in plasma medicine. The Xe2 lamp method also produces H atoms of, at most, 6 ppm. In contrast, the maximum O densities produced by the Xe2 and Kr2 lamp methods are 0.15 ppm and 2.5 ppm, respectively; these are much lower than those from He-APPJ (several tens of ppm). Both lamp methods can produce ozone at concentrations above 1000 ppm and O2(a1Δg) at tens of ppm. The validity of the simulations is verified by measuring the O3 and OH densities produced by the Xe2 lamp method using ultraviolet absorption and laser-induced fluorescence. The differences between the measured and simulated densities for O3 and OH are 20% and factors of 3-4, respectively.
Influence of the chlorine concentration on the radiation efficiency of a XeCl exciplex lamp
NASA Astrophysics Data System (ADS)
Avtaeva, S. V.; Sosnin, E. A.; Saghi, B.; Panarin, V. A.; Rahmani, B.
2013-09-01
The influence of the chlorine concentration on the radiation efficiency of coaxial exciplex lamps (excilamps) excited by a dielectric barrier discharge (DBD) in binary Xe-Cl2 mixtures at pressures of 240-250 Torr is investigated experimentally and theoretically. The experiments were carried out at Cl2 concentrations in the range of 0.01-1%. The DBD characteristics were calculated in the framework of a one-dimensional hydrodynamic model at Cl2 concentrations in the range of 0.1-5%. It is found that the radiation intensities of the emission bands of Xe*2(172 nm) and XeCl* (308 nm) are comparable when the chlorine concentration in the mixture is in the range of 0.01-0.1%. In this case, in the mixture, the radiation intensity of the Xe*2 molecule rapidly decreases with increasing Cl2 concentration and, at a chlorine concentration of ≥0.2%, the radiation of the B → X band of XeCl* molecules with a peak at 308 nm dominates in the discharge radiation. The radiation efficiency of this band reaches its maximum value at chlorine concentrations in the range of 0.4-0.5%. The calculated efficiencies of DBD radiation exceed those obtained experimentally. This is due to limitations of the one-dimensional model, which assumes the discharge to be uniform in the transverse direction, whereas the actual excilamp discharge is highly inhomogeneous. The influence of the chlorine concentration on the properties of the DBD plasma in binary Xe-Cl2 mixtures is studied numerically. It is shown that an increase in the Cl2 concentration in the mixture leads to the attachment of electrons to chlorine atoms and a decrease in the electron density and discharge conductivity. As a result, the electric field and the voltage drop across the discharge gap increase, which, in turn, leads to an increase in the average electron energy and the probability of dissociation of Cl2 molecules and ionization of Xe atoms and Cl2 molecules. The total energy deposited in the discharge rises with increasing chlorine concentration due to an increase in the power spent on the heating of positive and negative ions. The power dissipated by electrons decreases with increasing chlorine concentration in the working mixture. Recommendations on the choice of the chlorine content in the mixture for reducing the intensity of VUV radiation of the second continuum of the Xe*2 excimer without a substantial decrease in the excilamp efficiency are formulated.
Solubilities of noble gases in magnetite - Implications for planetary gases in meteorites.
NASA Technical Reports Server (NTRS)
Lancet, M. S.; Anders, E.
1973-01-01
Solubilities of noble gases in magnetite were determined by growing magnetite in a noble-gas atmosphere between 450 and 700 K. Henry's law is obeyed at pressures up to .01 atm for He, Ne, Ar and up to .00001 atm for Kr, Xe, with the following distribution coefficients at 500 K: He 0.042, Ne 0.016, Ar 3.6, Kr 1.3, Xe 0.88, some 100 to 100,000 times higher than previous determinations on silicate and fluoride melts. Apparent heats of solution are in sharp contrast with earlier determinations on melts which were small and positive, but are comparable to the values for clathrates. Presumably the gases are held in anion vacancies.
Examining Changes in Radioxenon Isotope Activity Ratios during Subsurface Transport
NASA Astrophysics Data System (ADS)
Annewandter, Robert
2014-05-01
The Non-Proliferation Experiment (NPE) has demonstrated and modelled the usefulness of barometric pumping induced gas transport and subsequent soil gas sampling during On-Site inspections. Generally, gas transport has been widely studied with different numerical codes. However, gas transport of radioxenons and radioiodines in the post-detonation regime and their possible fractionation is still neglected in the open peer-reviewed literature. Atmospheric concentrations of the radioxenons Xe-135, Xe-133m, Xe-133 and Xe-131m can be used to discriminate between civilian releases (nuclear power plants or medical isotope facilities), and nuclear explosion sources. It is based on the multiple isotopic activity ratio method. Yet it is not clear whether subsurface migration of the radionuclides, with eventual release into the atmosphere, can affect the activity ratios due to fractionation. Fractionation can be caused by different mass diffusivities due to mass differences between the radionuclides. Cyclical changes in atmospheric pressure can drive subsurface gas transport. This barometric pumping phenomenon causes an oscillatoric flow in upward trending fractures or highly conductive faults which, combined with diffusion into the porous matrix, leads to a net transport of gaseous components - a so-called ratcheting effect. We use a general purpose reservoir simulator (Complex System Modelling Platform, CSMP++) which is recognized by the oil industry as leading in Discrete Fracture-Matrix (DFM) simulations. It has been applied in a range of fields such as deep geothermal systems, three-phase black oil simulations, fracture propagation in fractured, porous media, and Navier-Stokes pore-scale modelling among others. It is specifically designed to account for structurally complex geologic situation of fractured, porous media. Parabolic differential equations are solved by a continuous Galerkin finite-element method, hyperbolic differential equations by a complementary finite volume method. The parabolic and hyperbolic problem can be solved separately by operator-splitting. The resulting system of linear equations is solved by the algebraic multigrid library SAMG, developed at the Fraunhofer Institute for Algorithms and Scientific Computing, Germany. CSMP++ is developed at Montan University of Leoben, ETH Zuerich, Imperial College London and Heriot-Watt University in Edinburgh. This study examines barometric pumping-driven subsurface transport of Xe-135, Xe-133m, Xe-133, Xe-131m including I-131, I-133 and I-135 on arrival times and isotopic activity ratios. This work was funded by the CTBTO Research Award for Young Scientist and Engineers (2013).
Noble Gases in the LEW 88663 L7 Chondrite
NASA Astrophysics Data System (ADS)
Miura, Y. N.; Sugiura, N.; Nagao, K.
1995-09-01
LEW88663 and some meteorites (e.g. Shaw) are the most highly metamorphosed meteorites among L group chondrites. Although the abundances of lithophile elements and oxygen isotopic compositions of the L7 chondrite LEW88663 (total recovered mass: 14.5g) are close to those of the range for L chondrites [1,2], metallic iron is absent and concentrations of siderophile elements are about half of typical values for L chondrites [3,4]. Petrographical and geochemical observation suggested that this meteorite has experienced partial melting [5]. As a part of our study on differentiated meteorites, we also investigated noble gases in this meteorite. We present here noble gas compositions of LEW88663 and discuss history of this meteorite. In addition, we will consider whether there is any evidence for bridging between chondrites and achondrites. Noble gases were extracted from a whole rock sample weighing 66.31 mg by total fusion, and all stable noble gas isotopes as well as cosmogenic radioactive 81Kr were analyzed using a mass spectrometer at ISEI, Okayama University. The results are summarized in the table. The concentrations of cosmogenic ^3He, ^21Ne, and ^38Ar are 7.3, 1.6 and 3.1x10^-8 cm^3STP/g, respectively. The cosmic-ray exposure ages based on them are calculated to be 4.7, 6.9 and 8.8 m.y., respectively, using the production rates proposed by [6, 7] and mean chemical compositions of L chondrites. The shorter cosmic-ray exposure ages T(sub)3 and T(sub)21 than T(sub)38 would be due to diffusive loss of lighter noble gases from the meteorite. The concentrations of trapped Kr and Xe in LEW88663 are lower than those for L6 chondrites [8], supporting thermal metamorphism for the meteorite higher than that for L6 chondrites. The Kr and Xe are isotopically close to those of the terrestrial atmospheric Kr and Xe, and elemental abundance ratios for Ar, Kr and Xe suggest adsorbed noble gas patterns of the terrestrial atmosphere. The terrestrial atmospheric Ar, Kr and Xe (most likely terrestrial contamination in origin) rather than chondritic ones seem to be dominant in LEW88663. A K-Ar age of 4.3 +/- 0.2 b.y. is obtained assuming K content of 660 ppm by [9], implying radiogenic ^40Ar is almost retained. Because of low abundance of trapped Xe in the meteorite compared with the abundances in other chondrites, ^244Pu-derived fission Xe could be evaluated more precisely. According to the measured Xe data (for this, three isotope plots such as ^134Xe/^130Xe versus ^136Xe/^130Xe are useful), we conclude that Xe in LEW88663 is the mixture of ^244Pu-derived fission Xe and the terrestrial atmospheric Xe with possibility that a small amount of chondritic Xe is contained. Using the same procedure described in [10], we obtained excess ^136Xe concentration, 1.4 x 10^-12 cm^3STP/g with about 20% uncertainty, of which about 3% is from contribution of ^238U-derived ^136Xe if average U content for L chondrite (14 ppb) is assumed. The calculated Pu abundance of 0.21 ppb is slightly higher than those reported for L chondrites Barwell (0.11 +/- 0.05 ppb [11]) and Marion (0.10+/-0.40 ppb [11]). Acknowledgments: We thank Meteorite Working Group for providing the sample. We are also grateful to Dr. D. Mittlefehldt for showing us his chemical composition data. This work is supported by Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists. References: [1] Mason B. et al. (1992) Antarc. Meteorite Newsletter, 15(2), 30. [2] Mason B. and Marlow R. (1992) Antarc. Meteorite Newsletter, 15(1), 16. [3] Davis A. M. et al. (1993) LPS XXIV, 375-376. [4] Mittlefehldt D. W. (1993) Meteoritics, 28, 401-402. [5] Hervey R. P. (1993) Meteoritics, 28, 360. [6] Eugster O. (1988) GCA, 52, 1649-1662. [7] Marti K. and Graf T.(1992) Annu. Rev. Earth Planet Sci., 20, 221-243. [8] E.g. Marti K. (1967) EPSL, 2, 193-196. [9] Mittlefehldt D. W., personal communication. [10] Miura Y. et al. (1993) GCA, 57, 1857-1866. [11] Hagee B. et al. (1990) GCA, 54, 2847-2858. Table 1 shows noble gases in L7 chondrite LEW88663 (66.31 mg).
Abdeen, Nishard; Cross, Albert; Cron, Gregory; White, Steven; Rand, Thomas; Miller, David; Santyr, Giles
2006-08-01
We used the dual capability of hyperpolarized 129Xe for spectroscopy and imaging to develop new measures of xenon diffusing capacity in the rat lung that (analogously to the diffusing capacity of carbon monoxide or DLCO) are calculated as a product of total lung volume and gas transfer rate constants divided by the pressure gradient. Under conditions of known constant pressure breath-hold, the volume is measured by hyperpolarized 129Xe MRI, and the transfer rate is measured by dynamic spectroscopy. The new quantities (xenon diffusing capacity in lung parenchyma (DLXeLP)), xenon diffusing capacity in RBCs (DLXeRBC), and total lung xenon diffusing capacity (DLXe)) were measured in six normal rats and six rats with lung inflammation induced by instillation of fungal spores of Stachybotrys chartarum. DLXeLP, DLXeRBC, and DLXe were 56 +/- 10 ml/min/mmHg, 64 +/- 35 ml/min/mmHg, and 29 +/- 9 ml/min/mmHg, respectively, for normal rats, and 27 +/- 9 ml/min/mmHg, 42 +/- 27 ml/min/mmHg, and 16 +/- 7 ml/min/mmHg, respectively, for diseased rats. Lung volumes and gas transfer times for LP (TtrLP) were 16 +/- 2 ml and 22 +/- 3 ms, respectively, for normal rats and 12 +/- 2 ml and 35 +/- 8 ms, respectively, for diseased rats. Xenon diffusing capacities may be useful for measuring changes in gas exchange associated with inflammation and other lung diseases. Copyright 2006 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Song, Jinliang; Zhao, Yanling; He, Xiujie; Zhang, Baoliang; Xu, Li; He, Zhoutong; Zhang, DongSheng; Gao, Lina; Xia, Huihao; Zhou, Xingtai; Huai, Ping; Bai, Shuo
2015-01-01
A fixed-bed deposition method was used to prepare rough laminar pyrolytic carbon coating (RLPyC) on graphite for inhibiting liquid fluoride salt and Xe135 penetration during use in molten salt breeder reactor. The RLPyC coating possessed a graphitization degree of 44% and had good contact with graphite substrate. A high-pressure reactor was constructed to evaluate the molten salt infiltration in the isostatic graphite (IG-110, TOYO TANSO CO., LTD.) and RLPyC coated graphite under 1.01, 1.52, 3.04, 5.07 and 10.13 × 105 Pa for 12 h. Mercury injection and molten-salt infiltration experiments indicated the porosity and the salt-infiltration amount of 18.4% and 13.5 wt% under 1.52 × 105 Pa of IG-110, which was much less than 1.2% and 0.06 wt% under 10.13 × 105 Pa of the RLPyC, respectively. A vacuum device was constructed to evaluate the Xe135 penetration in the graphite. The helium diffusion coefficient of RLPyC coated graphite was 2.16 × 10-12 m2/s, much less than 1.21 × 10-6 m2/s of the graphite. Thermal cycle experiment indicated the coatings possessed excellent thermal stability. The coated graphite could effectively inhibit the liquid fluoride salt and Xe135 penetration.
Computational investigation of noble gas adsorption and separation by nanoporous materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allendorf, Mark D.; Sanders, Joseph C.; Greathouse, Jeffery A.
2008-10-01
Molecular simulations are used to assess the ability of metal-organic framework (MOF) materials to store and separate noble gases. Specifically, grand canonical Monte Carlo simulation techniques are used to predict noble gas adsorption isotherms at room temperature. Experimental trends of noble gas inflation curves of a Zn-based material (IRMOF-1) are matched by the simulation results. The simulations also predict that IRMOF-1 selectively adsorbs Xe atoms in Xe/Kr and Xe/Ar mixtures at total feed gas pressures of 1 bar (14.7 psia) and 10 bar (147 psia). Finally, simulations of a copper-based MOF (Cu-BTC) predict this material's ability to selectively adsorb Xemore » and Kr atoms when present in trace amounts in atmospheric air samples. These preliminary results suggest that Cu-BTC may be an ideal candidate for the pre-concentration of noble gases from air samples. Additional simulations and experiments are needed to determine the saturation limit of Cu-BTC for xenon, and whether any krypton atoms would remain in the Cu-BTC pores upon saturation.« less
A spectral radiance comparison of a noise tube and a HgXe arc lamp between 60 GHz and 600 GHz
NASA Technical Reports Server (NTRS)
Heaney, J. B.; Stewart, K. P.; Boucarut, R. A.; Moller, K. D.; Zoeller, R.
1987-01-01
The relative spectral radiance of a noise tube, model TN-167, designed for the frequency range 90-140 GHz (3.3 mm to 2.1 mm) was compared to that from a 200-watt high pressure HgXe arc lamp over the wavelength region from 0.5 to about 5 mm. A Michelson Fourier transform spectrometer and a lamellar grating instrument were used in conjunction with liquid helium-cooled bolometers of NEP 10 to the -12th to 10 to the -14th watt/(Hz) exp 1/2 to measure relative spectral radiant power. With this instrumental arrangement, the noise tube exhibited a very sharp low frequency cutoff at about 2.2/cm. The HgXe arc lamp emitted more radiant power than the noise tube in the wavelength region below 3 mm (100 GHz) down to 0.5 mm. Above 3 mm, the noise tube had a stronger output. The noise tube spectral radiance shifted to lower frequencies when the input current was lowered from 125 mA to 50 mA.
Stationary Plasma Thruster Plume Emissions
NASA Technical Reports Server (NTRS)
Manzella, David H.
1994-01-01
The emission spectrum from a xenon plasma produced by a Stationary Plasma Thruster provided by the Ballistic Missile Defense Organization (BMDO) was measured. Approximately 270 individual Xe I, Xe II, and XE III transitions were identified. A total of 250 mW of radiated optical emission was estimated from measurements taken at the thruster exit plane. There was no evidence of erosion products in the emission signature. Ingestion and ionization of background gas at elevated background pressure was detected. The distribution of excited states could be described by temperatures ranging from fractions of 1 eV to 4 eV with a high degree of uncertainty due to the nonequilibrium nature of this plasma. The plasma was over 95 percent ionized at the thruster exit plane. Between 10 and 20 percent of the ions were doubly charged. Two modes of operation were identified. The intensity of plasma emission increased by a factor of two during operation in an oscillatory mode. The transfer between the two modes of operation was likely related to unidentified phenomena occurring on a time scale of minutes.
NASA Astrophysics Data System (ADS)
Panchenko, Aleksei N.; Tarasenko, Viktor F.
2006-02-01
The design and parameters of a UV—VUV spontaneous radiation source — an excilamp operating on chlorides of rare gases ArCl*, KrCl* and XeCl* in the wavelength range 175—308 nm are presented. The Ne—Xe(Kr, Ar)—HCl mixtures were excited by a high-pressure self-sustained discharge with spark preionisation. It is shown that upon pumping mixtures of rare gases and halogens by a transverse discharge, the intensities of the B—X emission band of molecules ArCl*, KrCl* and XeCl* are comparable and up to 90% of the emission energy of excilamps can be concentrated in the UV region. The peak UV power density at 222 and 308 nm on the output window of the excilamp was ~2 kW cm-2 for the pulse energy up to ~ 3 mJ. The output emission energy of the excilamp at 175 nm achieved ~0.6 mJ and the peak power density was ~0.4 kW cm-2.
NASA Astrophysics Data System (ADS)
Avtaeva, Svetlana
2014-04-01
Time-dependent characteristics of the dielectric barrier discharge in Xe-Cl2 mixture at chlorine concentration of 0.5% and kinetic processes governing the generation of XeCl∗ molecules are studied using the 1D fluid model. It is shown that at low voltage amplitude (5 kV) a one-peak mode of the discharge is observed and at high voltage amplitude (7 kV) a two-peak mode of the discharge appears. The radiation power of the XeCl∗ band increases with amplitude of the supply voltage. It is demonstrated that the harpoon reaction Xe∗ + Cl2 → XeCl∗ + Cl provides the greatest contribution into generation of XeCl∗ exciplex molecules during short current pulses and the ion-ion recombination Xe+ 2 + Cl- → XeCl* + Xe provides the greatest contribution during afterglow. Quenching of XeCl∗ molecules is a result of the radiative decay XeCl∗ → Xe + Cl + hv (308 nm). During current spike the great contribution into quenching of XeCl∗ provides also the dissociative ionization e + XeCl∗ → Xe+ + Cl + 2e.
Heavy noble gases in solar wind delivered by Genesis mission.
Meshik, Alex; Hohenberg, Charles; Pravdivtseva, Olga; Burnett, Donald
2014-02-15
One of the major goals of the Genesis Mission was to refine our knowledge of the isotopic composition of the heavy noble gases in solar wind and, by inference, the Sun, which represents the initial composition of the solar system. This has now been achieved with permil precision: 36 Ar/ 38 Ar = 5.5005 ± 0.0040, 86 Kr/ 84 Kr = .3012 ± .0004, 83 Kr/ 84 Kr = .2034 ± .0002, 82 Kr/ 84 Kr = .2054 ± .0002, 80 Kr/ 84 Kr = .0412 ± .0002, 78 Kr/ 84 Kr = .00642 ± .00005, 136 Xe/ 132 Xe = .3001 ± .0006, 134 Xe/ 132 Xe = .3691 ± .0007, 131 Xe/ 132 Xe = .8256 ± .0012, 130 Xe/ 132 Xe = .1650 ± .0004, 129 Xe/ 132 Xe = 1.0405 ± .0010, 128 Xe/ 132 Xe = .0842 ± .0003, 126 Xe/ 132 Xe = .00416 ± .00009, and 124 Xe/ 132 Xe = .00491 ± .00007 (error-weighted averages of all published data). The Kr and Xe ratios measured in the Genesis solar wind collectors generally agree with the less precise values obtained from lunar soils and breccias, which have accumulated solar wind over hundreds of millions of years, suggesting little if any temporal variability of the isotopic composition of solar wind krypton and xenon. The higher precision for the initial composition of the heavy noble gases in the solar system allows (1) to confirm that, exept 136 Xe and 134 Xe, the mathematically derived U-Xe is equivalent to Solar Wind Xe and (2) to provide an opportunity for better understanding the relationship between the starting composition and Xe-Q (and Q-Kr), the dominant current "planetary" component, and its host, the mysterious phase-Q.
Heavy noble gases in solar wind delivered by Genesis mission
Meshik, Alex; Hohenberg, Charles; Pravdivtseva, Olga; Burnett, Donald
2017-01-01
One of the major goals of the Genesis Mission was to refine our knowledge of the isotopic composition of the heavy noble gases in solar wind and, by inference, the Sun, which represents the initial composition of the solar system. This has now been achieved with permil precision: 36Ar/38Ar = 5.5005 ± 0.0040, 86Kr/84Kr = .3012 ± .0004, 83Kr/84Kr = .2034 ± .0002, 82Kr/84Kr = .2054 ± .0002, 80Kr/84Kr = .0412 ± .0002, 78Kr/84Kr = .00642 ± .00005, 136Xe/132Xe = .3001 ± .0006, 134Xe/132Xe = .3691 ± .0007, 131Xe/132Xe = .8256 ± .0012, 130Xe/132Xe = .1650 ± .0004, 129Xe/132Xe = 1.0405 ± .0010, 128Xe/132Xe = .0842 ± .0003, 126Xe/132Xe = .00416 ± .00009, and 124Xe/132Xe = .00491 ± .00007 (error-weighted averages of all published data). The Kr and Xe ratios measured in the Genesis solar wind collectors generally agree with the less precise values obtained from lunar soils and breccias, which have accumulated solar wind over hundreds of millions of years, suggesting little if any temporal variability of the isotopic composition of solar wind krypton and xenon. The higher precision for the initial composition of the heavy noble gases in the solar system allows (1) to confirm that, exept 136Xe and 134Xe, the mathematically derived U–Xe is equivalent to Solar Wind Xe and (2) to provide an opportunity for better understanding the relationship between the starting composition and Xe-Q (and Q-Kr), the dominant current “planetary” component, and its host, the mysterious phase-Q. PMID:29151613
NASA Astrophysics Data System (ADS)
Boichenko, Aleksandr M.; Yakovlenko, Sergei I.
2006-12-01
It was shown earlier that the ionisation propagation in a gas at about the atmospheric pressure may proceed due to the multiplication of the existing electrons with a low background density rather than the transfer of electrons or photons. We consider the feasibility of using the plasma produced in the afterglow of this background-electron multiplication wave for pumping plasma lasers (in particular, Xe2* xenon excimer lasers) as well as excilamps. Simulations show that it is possible to achieve the laser effect at λapprox172 nm as well as to substantially improve the peak specific power of the spontaneous radiation of xenon lamps.
Crystal Structure Prediction and its Application in Earth and Materials Sciences
NASA Astrophysics Data System (ADS)
Zhu, Qiang
First of all, we describe how to predict crystal structure by evolutionary approach, and extend this method to study the packing of organic molecules, by our specially designed constrained evolutionary algorithm. The main feature of this new approach is that each unit or molecule is treated as a whole body, which drastically reduces the search space and improves the efficiency. The improved method is possibly to be applied in the fields of (1) high pressure phase of simple molecules (H2O, NH3, CH4, etc); (2) pharmaceutical molecules (glycine, aspirin, etc); (3) complex inorganic crystals containing cluster or molecular unit, (Mg(BH4)2, Ca(BH4)2, etc). One application of the constrained evolutionary algorithm is given by the study of (Mg(BH4)2, which is a promising materials for hydrogen storage. Our prediction does not only reproduce the previous work on Mg(BH4)2 at ambient condition, but also yields two new tetragonal structures at high pressure, with space groups P4 and I41/acd are predicted to be lower in enthalpy, by 15.4 kJ/mol and 21.2 kJ/mol, respectively, than the earlier proposed P42nm phase. We have simulated X-ray diffraction spectra, lattice dynamics, and equations of state of these phases. The density, volume contraction, bulk modulus, and the simulated XRD patterns of P4 and I41/acd structures are in excellent agreement with the experimental results. Two kinds of oxides (Xe-O and Mg-O) have been studied under megabar pressures. For XeO, we predict the existence of thermodynamically stable Xe-O compounds at high pressures (XeO, XeO2 and XeO3 become stable at pressures of 83, 102 and 114 GPa, respectively). For Mg-O, our calculations find that two extraordinary compounds MgO2 and Mg3O 2 become thermodynamically stable at 116 GPa and 500 GPa, respectively. Our calculations indicate large charge transfer in these oxides for both systems, suggesting that large electronegativity difference and pressure are the key factors favouring their formations. We also discuss if these oxides might exist at earth and planetary conditions. If the target properties are set as the global fitness functions while structure relaxations are energy/enthalpy minimization, such hybrid optimization technique could effectively explore the landscape of properties for the given systems. Here we illustrate this function by the case of searching for superdense carbon allotropes. We find three structures (hP3, tI12, and tP12) that have significantly greater density. Furthermore, we find a collection of other superdense structures based on different ways of packing carbon tetrahedral. Superdense carbon allotropes are predicted to have remarkably high refractive indices and strong dispersion of light. Apart from evolutionary approach, there also exist some other methods for structural prediction. One can also combine the features from different methods. We develop a novel method for crystal structure prediction, based on metadynamics and evolutionary algorithms. This technique can be used to produce efficiently both the ground state and metastable states easily reachable from a reasonable initial structure. We use the cell shape as collective variable and evolutionary variation operators developed in the context of the USPEX method to equilibrate the system as a function of the collective variables. We illustrate how this approach helps one to find stable and metastable states for Al2SiO5, SiO2, MgSiO3. Apart from predicting crystal structures, the new method can also provide insight into mechanisms of phase transitions. This method is especially powerful in sampling the metastable structures from a given configuration. Experiments on cold compression indicated the existence of a new superhard carbon allotrope. Numerous metastable candidate structures featuring different topologies have been proposed for this allotrope. We use evolutionary metadynamics to systematically search for possible candidates which could be accessible from graphite. (Abstract shortened by UMI.)
Matsubara, S; Sawa, Y; Yokoji, H; Takamori, M
1990-01-01
In nine cases of Shy-Drager syndrome, the changes in blood pressure and cerebral blood flow on sitting up from a supine position were studied. The influence of fludrocortisone, a synthetic mineralocorticoid, and L-threo-3,4-dihydroxyphenylserine (DOPS), a precursor of norepinephrine, on these changes was examined. On sitting up, the regional cerebral blood flow (rCBF) measured by Xe133 inhalation showed a tendency to decrease. Fludrocortisone reduced the fall of the mean blood pressure significantly. DOPS reduced the fall of both the diastolic blood pressure and rCBF significantly. PMID:2283531
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avtaeva, S. V., E-mail: s_avtaeva@mail.ru; Sosnin, E. A.; Saghi, B.
The influence of the chlorine concentration on the radiation efficiency of coaxial exciplex lamps (excilamps) excited by a dielectric barrier discharge (DBD) in binary Xe-Cl{sub 2} mixtures at pressures of 240–250 Torr is investigated experimentally and theoretically. The experiments were carried out at Cl{sub 2} concentrations in the range of 0.01–1%. The DBD characteristics were calculated in the framework of a one-dimensional hydrodynamic model at Cl{sub 2} concentrations in the range of 0.1–5%. It is found that the radiation intensities of the emission bands of Xe*{sub 2}(172 nm) and XeCl* (308 nm) are comparable when the chlorine concentration in themore » mixture is in the range of 0.01–0.1%. In this case, in the mixture, the radiation intensity of the Xe*{sub 2} molecule rapidly decreases with increasing Cl{sub 2} concentration and, at a chlorine concentration of ≥0.2%, the radiation of the B → X band of XeCl* molecules with a peak at 308 nm dominates in the discharge radiation. The radiation efficiency of this band reaches its maximum value at chlorine concentrations in the range of 0.4–0.5%. The calculated efficiencies of DBD radiation exceed those obtained experimentally. This is due to limitations of the one-dimensional model, which assumes the discharge to be uniform in the transverse direction, whereas the actual excilamp discharge is highly inhomogeneous. The influence of the chlorine concentration on the properties of the DBD plasma in binary Xe-Cl{sub 2} mixtures is studied numerically. It is shown that an increase in the Cl{sub 2} concentration in the mixture leads to the attachment of electrons to chlorine atoms and a decrease in the electron density and discharge conductivity. As a result, the electric field and the voltage drop across the discharge gap increase, which, in turn, leads to an increase in the average electron energy and the probability of dissociation of Cl{sub 2} molecules and ionization of Xe atoms and Cl{sub 2} molecules. The total energy deposited in the discharge rises with increasing chlorine concentration due to an increase in the power spent on the heating of positive and negative ions. The power dissipated by electrons decreases with increasing chlorine concentration in the working mixture. Recommendations on the choice of the chlorine content in the mixture for reducing the intensity of VUV radiation of the second continuum of the Xe*{sub 2} excimer without a substantial decrease in the excilamp efficiency are formulated.« less
Primordial Terrestrial Xe from the Viewpoint of CFF-Xe
NASA Astrophysics Data System (ADS)
Meshik, A. P.; Shukolyukov, Yu. A.; Jessberger, E. K.
1995-09-01
We have already reported [7, 23] on the non-linear isotope mass-fractionation of fission Xe by migration of the precursors I, Te, Sn, and Sb and simultaneous fission of heavy nuclei. Xe with anomalous isotopic pattern was found in a number of meteorites and terrestrial materials and was named CFF-Xe (Chemically Fractionated Fission Xe). It is characterized by an up eightfold ^132Xe and ^131Xe excesses coupled with smaller ^134Xe and ^129Xe excesses. The present work is aimed to estimate the role of CFF-Xe in the terrestrial lithosphere and specifically deals with the problem of the isotopic composition of primordial terrestrial Xe. Due to variations of the migration conditions the isotopic structure of CFF-Xe is not well established and is even not reproducible in the same rock [2]. Nevertheless, we have tried to estimate the composition of CFF-Xe by investigating all available isotopic data of Xe of presumable mantle origin. This is Xe in MORB [29, 1, 12] and ocean island glasses [1, 28], in diamonds [17], in volcanic rocks [29, 8, 9, 21], in volcanic glasses from pillow basalts [16, 6], continental igneous rocks [1, 24, 10, 22], carbonatites and granitoids [1] as well as Xe in natural gases [3, 24, 11, 4, 15]. All data are plotted Fig. 1 where we also suggest end members of the observed scattering. Optimized slopes of CFF-lines are shown as well as the position of the initial points which we regard as primordial terrestrial Xe (Xe0). The isotopic composition of CFF-Xe and Xe0 are given in Tab. 1. The abundances of ^124Xe and ^126Xe in mantle derived samples are very uncertain, but since ^128Xe/^130Xe in Xea and Xe0 is very similar we propose the same ^124Xe/^130Xe and ^126Xe/^130Xe ratios for both Xea and Xe0. If so, AVCC-Xe is simply Xe0 with an admixture of L-Xe, and atmospheric xenon Xea consists of Xe0, CFF-Xe and a small amount of fission Xe (92.5%Xe0 + 5.3%CFF-Xe + 2.2%XeF). Thus, a number of old problems in xenology are removed. The hypothetic components U-Xe or atmosphere-like Xe are not required anymore. Instead, experimentally identified Xe0 can be regarded as primordial terrestrial Xe with an isotopic composition close to AVCC-Xe. Isotopic mass-fractionation is not needed to be involved. Concerning ^129Xe in the mantle, it seems to be part of CFF-Xe rather than the product of primordial 129I decay. This interpretation is supported by the observation of 129I excesses near uranium deposits that provides an additional argument in favor the CFF-Xe hypothesis [5, 14]. This work is supported by INTAS # 94-2397. References: [1] Allegre C. J. et al. (1983) Nature, 303, 762-766. [2] Azuma Sh. et al. (1993) EPSL, 114, 341-352. [3] Boulos M. S. et al. (1971) Science, 174, 1334-1336. [4] Caffee M. W. et al. (1988) AGU Meeting in San Francisco, reprint. [5] Fabrika-Martin J. et al. (1989) GCA, 53, 1817-1823.[6] Hiyagon H. et al. (1992) GCA, 56, 1301-1316. [7] Jessberger E. K. et al. (1992) LPS XXIII, 615-616. [8] Kaneoka I. et al. (1978) EPSL, 39, 382-386. [9] Kaneoka I. et al. (1983) EPSL, 66, 427-437. [10] Levsky L. K. (1993) personal communication. [11] Lin W. J. and Manuel O. K. (1987) Geochem. J., 2, 197-207. [12] Marty B. (1989) EPSL, 94, 45-56. [13] Meshik A. P. (1988) Ph.D. thesis , Vernadsky Institute, Moscow, 211 pp., in Russian. [14] Michelot J. L. et al. (1989) GCA, 53, 1803-1815. [15] Murty S. V. S. (1992) Chem. Geol., 94, 229-240. [16] Ozima M. and Podosek F. A. (1983) Noble Gas Geochemistry, Cambridge Univ., 367 pp. [17] Ozima M. and Zashu S. (1991) EPSL, 105, 13-27. [18] Ozima M. et al. (1983) EPSL, 62, 24-40. [19] Pepin R. O. (1993) preprint. [20] Phinney D. et al. (1978) JGR, 83, 2313-2319. [21] Poreda J. and Farley K. A. (1992) EPSL, 113, 129-144. [22] Schafer K. et al. (1993) Jahresbericht, 244-245, MPI fur Kernphysik, Heidelberg. [23] Shukolyukov Yu. A. et al. (1994) GCA, 58, 3075-3092. [24] Smith S. P. (1984) GCA, 48, 1033-1041. [25] Smith S. P.and Reinolds J. H. (1981) EPSL, 54, 236-238. [26] Staudacher Th. (1987) Nature, 325, 605-609. [27] Staudacher Th. and Allegre C. J. (1982) EPSL, 60, 389-406. [28] Staudacher Th. et al. (1986) Chem. Geol., 56, 193-205. [29] Thompson D. P. (1978) Phys. Earth Planet. Inter., 17, 98-107.
Radon and material radiopurity assessment for the NEXT double beta decay experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cebrián, S.; Dafni, T.; González-Díaz, D.
The ”Neutrino Experiment with a Xenon TPC” (NEXT), intended to investigate the neutrinoless double beta decay using a high-pressure xenon gas TPC filled with Xe enriched in {sup 136}Xe at the Canfranc Underground Laboratory in Spain, requires ultra-low background conditions demanding an exhaustive control of material radiopurity and environmental radon levels. An extensive material screening process is underway for several years based mainly on gamma-ray spectroscopy using ultra-low background germanium detectors in Canfranc but also on mass spectrometry techniques like GDMS and ICPMS. Components from shielding, pressure vessel, electroluminescence and high voltage elements and energy and tracking readout planes havemore » been analyzed, helping in the final design of the experiment and in the construction of the background model. The latest measurements carried out will be presented and the implication on NEXT of their results will be discussed. The commissioning of the NEW detector, as a first step towards NEXT, has started in Canfranc; in-situ measurements of airborne radon levels were taken there to optimize the system for radon mitigation and will be shown too.« less
Study of a plate-electrode XeCl laser with a pulse repetition rate up to 5 kHz
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voevodin, Denis D; Vysotskii, Andrei V; Lazhintsev, Boris V
2012-11-30
The results of the study of a repetitively pulsed XeCl laser with a high rate of pulse repetition and the electrode assembly based on a multi-section discharge gap with inductance-capacitance stabilisation of the discharge are presented. The multi-section discharge gap is formed by 25 pairs of anode - cathode plates. The discharge formed in the interelectrode gap had the dimensions 250 Multiplication-Sign 12 Multiplication-Sign 2 mm. The studies were performed using the HCl - Xe - Ne laser mixture at the total pressure up to 3.5 atm. The limit value of the radiation pulse repetition rate was equal to 5more » kHz. The meansquare deviation of the pulse energy increased from 0.8 % to 1.6 % in the range of repetition rates from 1 to 4.5 kHz and did not exceed 2.4 % at the frequency 5 kHz. The maximal energy of the laser pulse and the efficiency coefficient were equal to 7.9 mJ and 1.6 %, respectively. The maximal power of laser radiation (31 W) was obtained at the repetition rate 5 kHz. A new technique of measuring the gas flow velocity in the interelectrode gap is proposed. The velocity of gas circulation at the maximal pressure of the mixture did not exceed 18 m s{sup -1}. Optical inhomogeneities were observed, caused by a high concentration of electrons in the discharge plasma, by the acoustic wave, arising in the discharge gap, and by the heating of the gas in the discharge. (lasers)« less
Metastable Radioxenon Verification Laboratory (MRVL) Year-End Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, Matthew W.; Hayes, James C.; Lidey, Lance S.
2014-11-07
This is the year end report that is due to the client. The MRVL system is designed to measure multiple radioxenon isotopes ( 135Xe, 133Xe, 133mXe and 133mXe) simultaneously. The system has 12 channels to load samples and make nuclear measurements. Although the MRVL system has demonstrated excellent stability in measurements of Xe-133 and Xe-135 over the year of evaluation prior to delivery, there has been concern about system stability over measurements performed on samples with orders of magnitude different radioactivity, and samples containing multiple isotopes. To address these concerns, a series of evaluation test have been performed at themore » end-user laboratory. The evaluation was performed in two separate phases. Phase 1 made measurements on isotopically pure Xe-133 from high radioactivity down to the system background levels of activity, addressing the potential count rate dependencies when activities change from extreme high to very low. The second phase performed measurements on samples containing multiple isotopes (Xe-135, Xe-133 and Xe-133m), and addressed concerns about the dependence of isotopic concentrations on the presence of additional isotopes. The MRVL showed a concentration dependence on the Xe-133 due to the amount of Xe-133m that was in the sample. The dependency is due to the decay of Xe-133m into Xe-133. This document focuses on the second phase and will address the analysis used to account for ingrowth of Xe-133 from Xe-133m.« less
Studies of spin-exchange optical pumping
NASA Astrophysics Data System (ADS)
Chann, Bien
Although we still do not understand fully the alkali-alkali relaxation at pressures of an atmosphere or more, an important part of the spin-relaxation comes from the classical dipole-dipole anisotropic spin-axis interaction acting in triplet dimer molecules. The key observation is the existence of magnetic resonances in the magnetic decoupling curves which are predicted from the spin-axis interaction. We identified a new gas-phase, room temperature spin relaxation that is due to the spin-rotation coupling in bound 129Xe-Xe van der Waals molecules. This 129Xe-Xe molecular spin-relaxation is more than an order of magnitude stronger than the well-known 129 Xe-Xe binary spin-relaxation and is the fundamental spin-relaxation process at gas densities below 14 amagat. With external cavity diode laser array bar, we find, based on tests of several cells, that the power required to reach the same polarization is typically three times lower for the spectrally narrowed laser as compared to the unnarrowed diode array bar. This last result indicates that spectrally narrowed lasers are critical to obtaining the highest noble gas polarizations. Furthermore, we find, circularly polarized light propagating at an angle as small as a few degrees to the external magnetic field does not optically pump the atoms to full transparency and causes excess absorption of the pump beam. We measured the Rb-3He spin-exchange rate coefficients using three different methods. We obtained 6.73 +/- 0.12 x 10 -20 cm3/s for the repolarization method. We deduced the spin-exchange rate coefficient to be 6.61 +/- 0.12 x 10 -20 cm3/s for the rate balance method. The third method uses a temperature dependence relaxation of 3He and the deduced value is 8.85 +/- 0.32 x 10-20 cm3/s. This is about 30% higher than the other two methods. This implies a temperature-dependence wall-relaxation or a large value of anisotropic spin-exchange rate coefficient for Rb-3He and would explain the shortfall 3He measured polarization.
124Xe(n,γ)125Xe and 124Xe(n,2n)123Xe measurements for National Ignition Facility
NASA Astrophysics Data System (ADS)
Bhike, Megha; Ludin, Nurin; Tornow, Werner
2015-05-01
The cross section for the 124Xe(n,γ)125Xe reaction has been measured for the first time for neutron energies above 100 keV. In addition, the 124Xe(n,2n)123Xe reaction has been studied between threshold and 14.8 MeV. The results of these measurements provide sensitive diagnostic tools for investigating properties of the inertial confinement fusion plasma in Deuterium-Tritium (DT) capsules at the National Ignition Facility (NIF) located at Lawrence Livermore National Laboratory.
I-Xe systematics in LL chondrites
NASA Technical Reports Server (NTRS)
Bernatowicz, T. J.; Podosek, F. A.; Swindle, T. D.; Honda, M.
1988-01-01
A stepwise heating analysis of Ar and Xe data from five neutron-irradiated whole rock LL chondrites (Soko Banja, Alta Ameen, Tuxtuac, Guidder, and Olivenza) is presented, emphasizing the complicated thermal history of ordinary chondrites. None of the present meteorites show a well-defined (Ar-40)-(Ar-39) apparent age plateau comprised of more than two release fractions. Most of the samples are found to yield well-defined high-temperature correlations between Xe-129/Xe-130 and Xe-128/Xe-130, and thus determinations of I-129/I-127 and Xe-129/Xe-130 at the time of isotopic closure for Xe. As in the case of other ordinary chondrites, the I-Xe systematics for LL chondrites correlate neither with a metamorphic grade nor with chronologies based opon other methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cassata, W. S.; Velsko, C. A.; Stoeffl, W.
We determined fission yields of xenon ( 133mXe, 135Xe, 135mXe, 137Xe, 138Xe, and 139Xe) resulting from 14 MeV neutron induced fission of depleted uranium at the National Ignition Facility. Measurements begin approximately 20 s after shot time, and yields have been determined for nuclides with half-lives as short as tens of seconds. We determined the relative independent yields of 133mXe, 135Xe, and 135mXe to significantly higher precision than previously reported. The relative fission yields of all nuclides are statistically indistinguishable from values reported by England and Rider (ENDF-349. LA-UR-94-3106, 1994), with exception of the cumulative yield of 139Xe. Furthermore, considerablemore » differences exist between our measured yields and the JEFF-3.1 database values.« less
Photoionization and Photofragmentation of the Endohedral Xe C60+ Molecular Ion
NASA Astrophysics Data System (ADS)
Aryal, Nagendra Bahadur
An experimental study of photoionization and fragmentation of the Xe C 60+ endohedral molecular ion is presented in the photon energy range of the well-known Xe 4d giant resonance, and evidence of redistribution of the Xe 4d oscillator strength in photon energy due to multipath interference is reported. Experiments were conducted at undulator beamline 10.0.1 of the Advanced Light Source (ALS) using the merged-beams technique. Prior to these measurements, macroscopic samples containing endohedral Xe C60 were prepared using a setup developed at the ALS. Endohedral Xe C60 yields as high as 2.5x10 -4 were synthesized and a pure Xe C60+ ion beam current of up to 5.5 pA was obtained for the merged-beams experiments. Cross sections were measured in the photon energy range 60 - 150 eV in 0.5 eV steps for single, double, and triple photoionization of endohedral Xe C 60+ accompanied by the loss of n pairs of carbon atoms yielding Xe C60-2n2+ (n = 0, 1), Xe C60-2n 3+ (n = 0, 1, 2, 3), and Xe C584+ photoion products. Reference absolute cross-section measurements were made for empty C60+ for the corresponding reaction channels. The spectroscopic measurements with Xe C60+ were placed onto an absolute scale by normalization to the reference cross sections for C60+ in ranges of photon energies where the Xe 4d contributions were negligible. Results for single photoionization and fragmentation of Xe C60+ show no evidence of the presence of the caged Xe atom. The measurements of double and triple photoionization with fragmentation of Xe C60+ exhibit prominent signatures of the Xe 4d resonance and together account for 6.6 +/- 1.5 of the total Xe 4d oscillator strength of 10. Compared to that for a free Xe atom, the Xe oscillator strength in Xe C60+ is redistributed in photon energy due to multipath interference of outgoing Xe 4d photoelectron waves that may be transmitted or reflected by the spherical C60+ molecular cage, yielding so-called confinement resonances. The experimental data are compared with numerous theoretical predictions for this novel single-molecule photoelectron interferometer system. The comparison indicates that the interference structure is sensitive to the geometry of the molecular cage.
NASA Astrophysics Data System (ADS)
Khodja, K.; Belasri, A.; Loukil, H.
2017-08-01
This work is devoted to excimer lamp efficiency optimization by using a homogenous discharge model of a dielectric barrier discharge in a Ne-Xe mixture. The model includes the plasma chemistry, electrical circuit, and Boltzmann equation. In this paper, we are particularly interested in the electrical and kinetic properties and light output generated by the DBD. Xenon is chosen for its high luminescence in the range of vacuum UV radiation around 173 nm. Our study is motivated by interest in this type of discharge in many industrial applications, including the achievement of high light output lamps. In this work, we used an applied sinusoidal voltage, frequency, gas pressure, and concentration in the ranges of 2-8 kV, 10-200 kHz, 100-800 Torr, and 10-50%, respectively. The analyzed results concern the voltage V p across the gap, the dielectric voltage V d, the discharge current I, and the particles densities. We also investigated the effect of the electric parameters and xenon concentration on the lamp efficiency. This investigation will allow one to find out the appropriate parameters for Ne/Xe DBD excilamps to improve their efficiency.
New evidence for chemical fractionation of radioactive xenon precursors in fission chains
NASA Astrophysics Data System (ADS)
Meshik, A. P.; Pravdivtseva, O. V.; Hohenberg, C. M.
2016-04-01
Mass-spectrometric analyses of Xe released from acid-treated U ore reveal that apparent Xe fission yields significantly deviate from the normal values. The anomalous Xe structure is attributed to chemically fractionated fission (CFF), previously observed only in materials experienced neutron bursts. The least retentive CFF-Xe isotopes, 136Xe and 134Xe, typically escape in 2:1 proportion. Xe retained in the sample is complimentarily depleted in these isotopes. This nucleochemical process allows understanding of unexplained Xe isotopic structures in several geophysical environments, which include well gasses, ancient anorthosite, some mantle rocks, as well as terrestrial atmosphere. CFF is likely responsible for the isotopic difference in Xe in the Earth's and Martian atmospheres and it is capable of explaining the relationship between two major solar system Xe carriers: the Sun and phase-Q, found in meteorites.
Nuclear reactions in shock wave front during supernova events
NASA Technical Reports Server (NTRS)
Lavrukhina, A. K.
1985-01-01
The new unique isotopic anomalous coponent of Xe(XeX) was found in the carbonaceous chondrites. It is enriched in light shielded isotopes (124Xe and 126Xe) and in heavy nonshielded isotopes (134Xe and 136Xe. All characteristics of Xe-X can be explained by a model of nucleosynthesis of the Xe isotopes in shock wave front passed through the He envelope during supernova events. The light isotopes are created by p process and the heavy isotopes are created by n process (slow r process). They were captured with high temperature carbon grains condensing by supernova shock waves.
Molecular dynamics averaging of Xe chemical shifts in liquids.
Jameson, Cynthia J; Sears, Devin N; Murad, Sohail
2004-11-15
The Xe nuclear magnetic resonance chemical shift differences that afford the discrimination between various biological environments are of current interest for biosensor applications and medical diagnostic purposes. In many such environments the Xe signal appears close to that in water. We calculate average Xe chemical shifts (relative to the free Xe atom) in solution in eleven liquids: water, isobutane, perfluoro-isobutane, n-butane, n-pentane, neopentane, perfluoroneopentane, n-hexane, n-octane, n-perfluorooctane, and perfluorooctyl bromide. The latter is a liquid used for intravenous Xe delivery. We calculate quantum mechanically the Xe shielding response in Xe-molecule van der Waals complexes, from which calculations we develop Xe (atomic site) interpolating functions that reproduce the ab initio Xe shielding response in the complex. By assuming additivity, these Xe-site shielding functions can be used to calculate the shielding for any configuration of such molecules around Xe. The averaging over configurations is done via molecular dynamics (MD). The simulations were carried out using a MD technique that one of us had developed previously for the simulation of Henry's constants of gases dissolved in liquids. It is based on separating a gaseous compartment in the MD system from the solvent using a semipermeable membrane that is permeable only to the gas molecules. We reproduce the experimental trends in the Xe chemical shifts in n-alkanes with increasing number of carbons and the large chemical shift difference between Xe in water and in perfluorooctyl bromide. We also reproduce the trend for a given solvent of decreasing Xe chemical shift with increasing temperature. We predict chemical shift differences between Xe in alkanes vs their perfluoro counterparts.
Hg-Xe exciplex formation in mixed Xe/Ar matrices: molecular dynamics and luminescence study.
Lozada-García, Rolando; Rojas-Lorenzo, Germán; Crépin, Claudine; Ryan, Maryanne; McCaffrey, John G
2015-03-19
Luminescence of Hg((3)P1) atoms trapped in mixed Ar/Xe matrices containing a small amount of Xe is reported. Broad emission bands, strongly red-shifted from absorption are recorded which are assigned to strong complexes formed between the excited mercury Hg* and xenon atoms. Molecular dynamics calculations are performed on simulated Xe/Ar samples doped with Hg to follow the behavior of Hg* in the mixed rare gas matrices leading to exciplex formation. The role of Xe atoms in the first solvation shell (SS1) around Hg was investigated in detail, revealing the formation of two kinds of triatomic exciplexes; namely, Xe-Hg*-Xe and Ar-Hg*-Xe. The first species exists only when two xenon atoms are present in SS1 with specific geometries allowing the formation of a linear or quasi-linear exciplex. In the other geometries, or in the presence of only one Xe in SS1, a linear Ar-Hg*-Xe exciplex is formed. The two kinds of exciplexes have different emission bands, the most red-shifted being that involving two Xe atoms, whose emission is very close to that observed in pure Xe matrices. Simulations give a direct access to the analysis of the experimental absorption, emission, and excitation spectra, together with the dynamics of exciplexes formation.
Standara, Stanislav; Kulhánek, Petr; Marek, Radek; Straka, Michal
2013-08-15
The isotropic (129)Xe nuclear magnetic resonance (NMR) chemical shift (CS) in Xe@C60 dissolved in liquid benzene was calculated by piecewise approximation to faithfully simulate the experimental conditions and to evaluate the role of different physical factors influencing the (129)Xe NMR CS. The (129)Xe shielding constant was obtained by averaging the (129)Xe nuclear magnetic shieldings calculated for snapshots obtained from the molecular dynamics trajectory of the Xe@C60 system embedded in a periodic box of benzene molecules. Relativistic corrections were added at the Breit-Pauli perturbation theory (BPPT) level, included the solvent, and were dynamically averaged. It is demonstrated that the contribution of internal dynamics of the Xe@C60 system represents about 8% of the total nonrelativistic NMR CS, whereas the effects of dynamical solvent add another 8%. The dynamically averaged relativistic effects contribute by 9% to the total calculated (129)Xe NMR CS. The final theoretical value of 172.7 ppm corresponds well to the experimental (129)Xe CS of 179.2 ppm and lies within the estimated errors of the model. The presented computational protocol serves as a prototype for calculations of (129)Xe NMR parameters in different Xe atom guest-host systems. Copyright © 2013 Wiley Periodicals, Inc.
New evidence for chemical fractionation of radioactive xenon precursors in fission chains
Meshik, A. P.; Pravdivtseva, O. V.; Hohenberg, C. M.
2017-01-01
Mass-spectrometric analyses of Xe released from acid-treated U ore reveal that apparent Xe fission yields significantly deviate from the normal values. The anomalous Xe structure is attributed to chemically fractionated fission (CFF), previously observed only in materials experienced neutron bursts. The least retentive CFF-Xe isotopes, 136Xe and 134Xe, typically escape in 2:1 proportion. Xe retained in the sample is complimentarily depleted in these isotopes. This nucleochemical process allows understanding of unexplained Xe isotopic structures in several geophysical environments, which include well gasses, ancient anorthosite, some mantle rocks, as well as terrestrial atmosphere. CFF is likely responsible for the isotopic difference in Xe in the Earth’s and Martian atmospheres and it is capable of explaining the relationship between two major solar system Xe carriers: the Sun and phase-Q, found in meteorites. PMID:29177205
Cassata, W. S.; Velsko, C. A.; Stoeffl, W.; ...
2016-01-14
We determined fission yields of xenon ( 133mXe, 135Xe, 135mXe, 137Xe, 138Xe, and 139Xe) resulting from 14 MeV neutron induced fission of depleted uranium at the National Ignition Facility. Measurements begin approximately 20 s after shot time, and yields have been determined for nuclides with half-lives as short as tens of seconds. We determined the relative independent yields of 133mXe, 135Xe, and 135mXe to significantly higher precision than previously reported. The relative fission yields of all nuclides are statistically indistinguishable from values reported by England and Rider (ENDF-349. LA-UR-94-3106, 1994), with exception of the cumulative yield of 139Xe. Furthermore, considerablemore » differences exist between our measured yields and the JEFF-3.1 database values.« less
Radiation damage induced in Al2O3 single crystal by 90 MeV Xe ions
NASA Astrophysics Data System (ADS)
Zirour, H.; Izerrouken, M.; Sari, A.
2015-12-01
Radiation damage induced in Al2O3 single crystal by 90 MeV Xe ions were investigated by optical absorption measurements, Raman spectroscopy and X-ray diffraction (XRD) techniques. The irradiations were performed at the GANIL accelerator in Caen, France for the fluence in the range from 1012 to 6 × 1013 cm-2 at room temperature under normal incidence. The F+ and F22+ centers kinetic as a function of fluence deduced from the optical measurements explains that the single defects (F and F+) aggregate to F center clusters (F2 , F2+, F22+) during irradiation at high fluence (>1013 cm-2). Raman and XRD analysis reveal a partial disorder of 40% of Al2O3 in the studied fluence range in accordance with Kabir et al. (2008) study. The result suggests that this is due to the stress relaxation process which occurs at high fluence (>1013 cm-2).
Investigation of DOTA-Metal Chelation Effects on the Chemical Shift of 129 Xe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, Keunhong; Slack, Clancy C.; Vassiliou, Christophoros C.
2015-09-17
Recent work has shown that xenon chemical shifts in cryptophane-cage sensors are affected when tethered chelators bind to metals. Here in this paper, we explore the xenon shifts in response to a wide range of metal ions binding to diastereomeric forms of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) linked to cryptophane-A. The shifts induced by the binding of Ca 2+, Cu 2+, Ce 3+, Zn 2+, Cd 2+, Ni 2+, Co 2+, Cr 2+, Fe 3+, and Hg 2+ are distinct. In addition, the different responses of the diastereomers for the same metal ion indicate that shifts are affected by partial folding withmore » a correlation between the expected coordination number of the metal in the DOTA complex and the chemical shift of 129Xe. Lastly, these sensors may be used to detect and quantify many important metal ions, and a better understanding of the basis for the induced shifts could enhance future designs.« less
Direct detection of exothermic dark matter with light mediator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geng, Chao-Qiang; Department of Physics, National Tsing Hua University,Hsinchu, Taiwan; Physics Division, National Center for Theoretical Sciences,Hsinchu, Taiwan
2016-08-05
We study the dark matter (DM) direct detection for the models with the effects of the isospin-violating couplings, exothermic scatterings, and/or the lightness of the mediator, proposed to relax the tension between the CDMS-Si signals and null experiments. In the light of the new updates of the LUX and CDMSlite data, we find that many of the previous proposals are now ruled out, including the Ge-phobic exothermic DM model and the Xe-phobic DM one with a light mediator. We also examine the exothermic DM models with a light mediator but without the isospin violation, and we are unable to identifymore » any available parameter space that could simultaneously satisfy all the experiments. The only models that can partially relax the inconsistencies are the Xe-phobic exothermic DM models with or without a light mediator. But even in this case, a large portion of the CDMS-Si regions of interest has been constrained by the LUX and SuperCDMS data.« less
Early evolution of Martian volatiles: Nitrogen and noble gas components in ALH84001 and Chassigny
NASA Astrophysics Data System (ADS)
Mathew, K. J.; Marti, K.
2001-01-01
Studies on SNC meteorites have permitted the characterization of modern Martian atmospheric components as well as indigenous Martian nitrogen and solar-type xenon. New isotopic and elemental abundances of noble gases and nitrogen in ALH84001 and Chassigny provide important constraints on the early evolution of the planet. A primitive solar Xe component (Chass-S) and an evolved Xe component (Chass-E), augmented with fission Xe are identified in Chassigny. Both components represent interior reservoirs of Mars and are characterized by low 129Xe/132Xe (<1.07) and by distinct elemental ratios 36Ar/132Xe<5 and >130, respectively. Light nitrogen (δ15N=-30‰) is associated with the Chass-S component and is enriched in melt inclusions in olivine. An ancient (presumably incorporated ~4 Gyr ago) evolved Martian atmospheric component is identified in ALH84001 and has the following signatures: 129Xe/132Xe=2.16, 36Ar/38Ar>=5.0, 36Ar/132Xe=~50, 84Kr/132Xe=~6, and δ15N=7‰. The trapped Xe component in ALH84001 is not isotopically fractionated. We observe major shifts in nitrogen signatures due to cosmogenic N component in both Chassigny and ALH84001. A heavy nitrogen component of comparable magnitude (δ15N>150‰) has previously been interpreted as (heavy) Martian atmospheric N. In situ produced fission Xe components, due to 244Pu in ALH84001 and due to 238U in Chassigny, are identified. The ALH84001 data strongly constrain exchanges of Martian atmospheric and interior reservoirs. Mars retained abundant fission Xe components, and this may account for the low observed fission Xe component in the modern Martian atmosphere. Chronometric information regarding the evolution of the early Martian atmosphere can be secured from the relative abundances of radiogenic and fission Xe, as ~80% of the Martian 129Xer is observed in the atmospheric 129Xe/132Xe ratio ~ 4 Gyr ago.
NASA Astrophysics Data System (ADS)
Bhike, Megha; Fallin, B.; Gooden, M. E.; Ludin, N.; Tornow, W.
2015-01-01
Measurements of the neutron radiative-capture cross section of 124Xe have been performed for the first time for neutron energies above 100 keV. In addition, data for the 124Xe(n ,2 n )123Xe reaction cross section have been obtained from threshold to 14.8 MeV to cover the entire energy range of interest, while previous data existed only at around 14 MeV. The results of these measurements provide the basis for an alternative and sensitive diagnostic tool for investigating properties of the inertial confinement fusion plasma in deuterium-tritium (DT) capsules at the National Ignition Facility located at Lawrence Livermore National Laboratory. Here, areal density ρ R (density × radius) of the fuel, burn asymmetry, and fuel-ablator mix are of special interest. The 124Xe(n ,γ )125Xe reaction probes the down-scattered neutrons, while the 124Xe(n ,2 n )123Xe reaction provides a measure of the 14 MeV direct neutrons.
Photodisintegration cross section of the reaction 4He(γ,n)3He at the giant dipole resonance peak
NASA Astrophysics Data System (ADS)
Tornow, W.; Kelley, J. H.; Raut, R.; Rusev, G.; Tonchev, A. P.; Ahmed, M. W.; Crowell, A. S.; Stave, S. C.
2012-06-01
The photodisintegration cross section of 4He into a neutron and helion was measured at incident photon energies of 27.0, 27.5, and 28.0 MeV. A high-pressure 4He-Xe gas scintillator served as target and detector while a pure Xe gas scintillator was used for background measurements. A NaI detector in combination with the standard HIγS scintillator paddle system was employed for absolute photon-flux determination. Our data are in good agreement with the theoretical prediction of the Trento group and the recent data of Nilsson [Phys. Rev. CPRVCAN0556-281310.1103/PhysRevC.75.014007 75, 014007 (2007)] but deviate considerably from the high-precision data of Shima [Phys. Rev. CPRVCAN0556-281310.1103/PhysRevC.72.044004 72, 044004 (2005)].
Xe isotope detection and discrimination using beta spectroscopy with coincident gamma spectroscopy
NASA Astrophysics Data System (ADS)
Reeder, P. L.; Bowyer, T. W.
1998-02-01
Beta spectroscopic techniques show promise of significant improvements for a beta-gamma coincidence counter that is part of a system for analyzing Xe automatically separated from air. The previously developed counting system for 131mXe, 133mXe, 133gXe, and 135gXe can be enhanced to give additional discrimination between these Xe isotopes by using the plastic scintillation sample cell as a beta spectrometer to resolve the conversion electron peaks. The automated system will be a key factor in monitoring the Comprehensive Test Ban Treaty.
Ti12Xe: A twelve-coordinated Xe-containing molecule
NASA Astrophysics Data System (ADS)
Miao, Junjian; Xu, Wenwu; Zhu, Beien; Gao, Yi
2017-08-01
A twelve-coordinated Xe-containing molecule Ti12Xe has been predicted by DFT calculations with quasi-icosahedral symmetry. Structural and NBO analyses show the chemical bonding exists between the central Xe atom and peripheral Ti atoms, which leads to the high stability of the molecule to a considerable degree. First principle molecular dynamics simulations further reveal the particularly high thermal stability of Ti12Xe up to 1500 K. This unique species may disclose new physics and chemistry of xenon element and stir interest in the Xe-transition metal cluster physics and chemistry.
NASA Astrophysics Data System (ADS)
He, Zhao; Lian, Pengfei; Song, Yan; Liu, Zhanjun; Song, Jinliang; Zhang, Junpeng; Feng, Jing; Yan, Xi; Guo, Quangui
2018-02-01
A densification process has been conducted on isostatic graphite (IG-110, TOYO TANSO CO., Ltd., Japan) by impregnating phenolic resin to get the densified isostatic graphite (D-IG-110) with pore diameter of nearly 11 nm specifically for molten salt reactor application. The microstructure, mechanical, thermophysical and other properties of graphite were systematically investigated and compared before and after the densification process. The molten fluoride salt and Xe135 penetration in the graphite were evaluated in a high-pressure reactor and a vacuum device, respectively. Results indicated that D-IG-110 exhibited improved properties including infiltration resistance to molten fluoride salt and Xe135 as compared to IG-110 due to its low porosity of 2.8%, the average pore diameter of 11 nm and even smaller open pores on the surface of the graphite. The fluoride salt infiltration amount of IG-110 was 13.5 wt% under 1.5 atm and tended to be saturated under 3 atm with the fluoride salt occupation of 14.8 wt%. As to the D-IG-110, no salts could be detected even up to 10 atm attempted loading. The helium diffusion coefficient of D-IG-110 was 6.92 × 10-8 cm2/s, significantly less than 1.21 × 10-2 cm2/s of IG-110. If these as-produced properties for impregnated D-IG-110 could be retained during MSR operation, the material could prove effective at inhibiting molten fluoride salt and Xe135 inventories in the graphite.
Hughes, Michael J; Mercier, Hélène P A; Schrobilgen, Gary J
2010-04-05
Stoichiometric amounts of XeF(6) and (OsO(3)F(2))(infinity) react at 25-50 degrees C to form salts of the known XeF(5)(+) and Xe(2)F(11)(+) cations, namely, [XeF(5)][mu-F(OsO(3)F(2))(2)], [XeF(5)][OsO(3)F(3)], and [Xe(2)F(11)][OsO(3)F(3)]. Although XeF(6) is oxophilic toward a number of transition metal and main-group oxides and oxide fluorides, fluoride/oxide metathesis was not observed. The series provides the first examples of noble-gas cations that are stabilized by metal oxide fluoride anions and the first example of a mu-F(OsO(3)F(2))(2)(-) salt. Both [XeF(5)][mu-F(OsO(3)F(2))(2)] and [Xe(2)F(11)][OsO(3)F(3)] are orange solids at room temperature. The [XeF(5)][OsO(3)F(3)] salt is an orange liquid at room temperature that solidifies at 5-0 degrees C. When the salts are heated at 50 degrees C under 1 atm of N(2) for more than 2 h, significant XeF(6) loss occurs. The X-ray crystal structures (-173 degrees C) show that the salts exist as discrete ion pairs and that the osmium coordination spheres in OsO(3)F(3)(-) and mu-F(OsO(3)F(2))(2)(-) are pseudo-octahedral OsO(3)F(3)-units having facial arrangements of oxygen and fluorine atoms. The mu-F(OsO(3)F(2))(2)(-) anion is comprised of two symmetry-related OsO(3)F(2)-groups that are fluorine-bridged to one another. Ion pairing results from secondary bonding interactions between the fluorine/oxygen atoms of the anions and the xenon atom of the cation, with the Xe...F/O contacts occurring opposite the axial fluorine and from beneath the equatorial XeF(4)-planes of the XeF(5)(+) and Xe(2)F(11)(+) cations so as to avoid the free valence electron lone pairs of the xenon atoms. The xenon atoms of [XeF(5)][mu-F(OsO(3)F(2))(2)] and [Xe(2)F(11)][OsO(3)F(3)] are nine-coordinate and the xenon atom of [XeF(5)][OsO(3)F(3)] is eight-coordinate. Quantum-chemical calculations at SVWN and B3LYP levels of theory were used to obtain the gas-phase geometries, vibrational frequencies, and NBO bond orders, valencies, and NPA charges of the ion pairs, [Xe(2)F(11)][OsO(3)F(3)], [XeF(5)][OsO(3)F(3)], and [XeF(5)][mu-F(OsO(3)F(2))(2)], as well as those of the free ions, Xe(2)F(11)(+), XeF(5)(+), OsO(3)F(3)(-), and mu-F(OsO(3)F(2))(2)(-). The Raman spectra (-150 degrees C) of the salts have been assigned based on the ion pairs observed in the crystal structures and the calculated vibrational frequencies and intensities of the gas-phase ion pairs.
On-line detection of key radionuclides for fuel-rod failure in a pressurized water reactor.
Qin, Guoxiu; Chen, Xilin; Guo, Xiaoqing; Ni, Ning
2016-08-01
For early on-line detection of fuel rod failure, the key radionuclides useful in monitoring must leak easily from failing rods. Yield, half-life, and mass share of fission products that enter the primary coolant also need to be considered in on-line analyses. From all the nuclides that enter the primary coolant during fuel-rod failure, (135)Xe and (88)Kr were ultimately chosen as crucial for on-line monitoring of fuel-rod failure. A monitoring system for fuel-rod failure detection for pressurized water reactor (PWR) based on the LaBr3(Ce) detector was assembled and tested. The samples of coolant from the PWR were measured using the system as well as a HPGe γ-ray spectrometer. A comparison showed the method was feasible. Finally, the γ-ray spectra of primary coolant were measured under normal operations and during fuel-rod failure. The two peaks of (135)Xe (249.8keV) and (88)Kr (2392.1keV) were visible, confirming that the method is capable of monitoring fuel-rod failure on-line. Copyright © 2016 Elsevier Ltd. All rights reserved.
Experimental study of planetary gases with applications to planetary interior models
NASA Technical Reports Server (NTRS)
Bell, Peter M.; Mao, Ho-Kwang
1988-01-01
High-pressure experimental data on planetary materials are critical in developing planetary models and in addressing otherwise insoluble problems of the internal structure of the major planets. Progress in the last five years has been particularly marked. Maximum static pressure of 550 GPa was achieved. For the first time, X-ray diffraction of solidified gases (Ne, Xe) and ices (H2O) were obtained at pressures above one megabar, single-crystal diffraction of ultralight elements (H2, He) were detected up to 25 GPa, pressures over 200 GPa at 77 K were reached in solid hydrogen, including the discovery of a phase transformation in the molecular solid. Advances in instrumentation and new measurements performed during 1983 to 1988 are summarized.
Early and long-term mantle processing rates derived from xenon isotopes
NASA Astrophysics Data System (ADS)
Mukhopadhyay, S.; Parai, R.; Tucker, J.; Middleton, J. L.; Langmuir, C. H.
2015-12-01
Noble gases, particularly xenon (Xe), in mantle-derived basalts provide a rich portrait of mantle degassing and surface-interior volatile exchange. The combination of extinct and extant radioactive species in the I-Pu-U-Xe systems shed light on the degassing history of the early Earth throughout accretion, as well as the long-term degassing of the Earth's interior in association with plate tectonics. The ubiquitous presence of shallow-level air contamination, however, frequently obscures the mantle Xe signal. In a majority of the samples, shallow air contamination dominates the Xe budget. For example, in the gas-rich popping rock 2ΠD43, 129Xe/130Xe ratios reach 7.7±0.23 in individual step-crushes, but the bulk composition of the sample is close to air (129Xe/130Xe of 6.7). Thus, the extent of variability in mantle source Xe composition is not well-constrained. Here, we present new MORB Xe data and explore constraints placed on mantle processing rates by the Xe data. Ten step-crushes were obtained on a depleted popping glass that was sealed in ultrapure N2 after dredge retrieval from between the Kane-Atlantis Fracture Zone of the Mid Atlantic Ridge in May 2012. 9 steps yielded 129Xe/130Xe of 7.50-7.67 and one yielded 7.3. The bulk 129Xe/130Xe of the sample is 7.6, nearly identical to the estimated mantle source value of 7.7 for the sample. Hence, the sample is virtually free of shallow-level air contamination. Because sealing the sample in N2upon dredge retrieval largely eliminated air contamination, for many samples, contamination must be added after sample retrieval from the ocean bottom. Our new high-precision Xe isotopic measurements in upper mantle-derived samples provide improved constraints on the Xe isotopic composition of the mantle source. We developed a forward model of mantle volatile evolution to identify solutions that satisfy our Xe isotopic data. We find that accretion timescales of ~10±5 Myr are consistent with I-Pu-Xe constraints, and the last giant impact occurred 45-70 Myr after the start of the solar system. After the giant impact stage, the Pu-U-Xe system indicates that degassing of the planet via solid-state mantle convection and plate tectonics continued to liberate volatiles to the atmosphere and has led to between ~5-8 mantle turnovers over the age of the Earth.
NASA Astrophysics Data System (ADS)
Bekaert, David V.; Avice, Guillaume; Marty, Bernard; Henderson, Bryana; Gudipati, Murthy S.
2017-12-01
Despite extensive effort during the last four decades, no clear signature of a lunar indigenous noble gas component has been found. In order to further investigate the possible occurrence of indigenous volatiles in the Moon, we have re-analyzed the noble gas and nitrogen isotopic compositions in three anorthosite samples. Lunar anorthosites 60025, 60215 and 65315 have the lowest exposure duration (∼2 Ma) among Apollo samples and consequently contain only limited cosmogenic (e.g. 124,126Xe) and solar wind (SW) noble gases. Furthermore, anorthosites have negligible contributions of fissiogenic Xe isotopes because of their very low Pu and U contents. As observed in previous studies (Lightner and Marti, 1974; Leich and Niemeyer, 1975), lunar anorthosite Xe presents an isotopic composition very close to that of terrestrial atmospheric Xe, previously attributed to ;anomalous adsorption; of terrestrial Xe after sample return. The presumed atmospheric Xe contamination can only be removed by heating the samples at medium to high temperatures under vacuum, and is therefore different from common adsorption. To test this hypothesis, we monitored the adsorption of Xe onto lunar anorthositic powder using infrared reflectance spectroscopy. A clear shift in the anorthosite IR absorbance peaks is detected when comparing the IR absorbance spectra of the lunar anorthositic powder before and after exposure to a neutral Xe-rich atmosphere. This observation accounts for the chemical bonding (chemisorption) of Xe onto anorthosite, which is stronger than the common physical bonding (physisorption) and could account for the anomalous adsorption of Xe onto lunar samples. Our high precision Xe isotope analyses show slight mass fractionation patterns across 128-136Xe isotopes with systematic deficits in the heavy Xe isotopes (mostly 136Xe and marginally 134Xe) that have not previously been observed. This composition could be the result of mixing between an irreversibly adsorbed terrestrial contaminant that is mostly released at high temperature and an additional signature. Solar Wind (SW) Xe contents, estimated from SW-Ne and SW-Ar concentrations and SW-Ne/Ar/Xe elemental ratios, do not support SW as the additional contribution. Using a χ2 test, the latter is best accounted for by cometary Xe as measured in the coma of Comet 67P/Churyumov-Gerasimenko (Marty et al., 2017) or by the primordial U-Xe composition inferred to be the precursor of atmospheric Xe (Pepin, 1994; Avice et al., 2017). It could have been contributed to the lunar budget by volatile-rich bodies that participated to the building of the terrestrial atmosphere inventory (Marty et al., 2017).
Prediction of metastable metal-rare gas fluorides: FMRgF (M=Be and Mg; Rg=Ar, Kr and Xe).
Jayasekharan, T; Ghanty, T K
2008-04-14
The structure, stability, charge redistribution, bonding, and harmonic vibrational frequencies of rare gas containing group II-A fluorides with the general formula FMRgF (where M=Be and Mg; Rg=Ar, Kr, and Xe) have been investigated using second order Møller-Plesset perturbation theory, density functional theory, and coupled cluster theory [CCSD(T)] methods. The species, FMRgF show a quasilinear structure at the minima and a bent structure at the transition state. The predicted species are unstable with respect to the two-body dissociation channel, leading to the global minima (MF2+Rg) on the singlet potential energy surface. However, with respect to other two-body dissociation channel (FM+RgF), they are found to be stable and have high positive energies on the same surface. The computed binding energy for the two-body dissociation channels are 94.0, 164.7, and 199.7 kJ mol(-1) for FBeArF, FBeKrF, FBeXeF, respectively, at CCSD(T) method. The corresponding energy values are 83.4, 130.7, and 180.1 kJ mol(-1) for FMgArF, FMgKrF, and FMgXeF, respectively, at the same level of theory. With respect to the three-body dissociation (FM+Rg+F) channel as well as dissociation into atomic constituent, they are also found to be stable and have high positive energies. The dissociation of the predicted species typically proceeds via MRgF bending mode at the transition state. The computed barrier heights for the transition states are 11.4, 32.2, and 57.6 kJ mol(-1) for FBeArF, FBeKrF, and FBeXeF, respectively, at the CCSD(T) method. The corresponding barrier heights for the Mg containing species are 2.1, 9.2, and 32.1 kJ mol(-1) along the series Ar--Kr--Xe, respectively. The M--Rg bond energies of the FMRgF species is significantly higher than the corresponding bond energies of the M+--Rg species ( approximately 53 and approximately 15 kJ mol(-1) for Be+--Ar and Mg+--Ar, respectively). The computed energy diagram as well as the geometrical parameters along with the AIM results suggest that the species are metastable with partial covalent character in the M--Rg bonding. Thus, it may be possible to prepare and to characterize these species using low temperature matrix isolation technique.
Prediction of metastable metal-rare gas fluorides: FMRgF (M =Be and Mg; Rg =Ar, Kr and Xe)
NASA Astrophysics Data System (ADS)
Jayasekharan, T.; Ghanty, T. K.
2008-04-01
The structure, stability, charge redistribution, bonding, and harmonic vibrational frequencies of rare gas containing group II-A fluorides with the general formula FMRgF (where M =Be and Mg; Rg =Ar, Kr, and Xe) have been investigated using second order Møller-Plesset perturbation theory, density functional theory, and coupled cluster theory [CCSD(T)] methods. The species, FMRgF show a quasilinear structure at the minima and a bent structure at the transition state. The predicted species are unstable with respect to the two-body dissociation channel, leading to the global minima (MF2+Rg) on the singlet potential energy surface. However, with respect to other two-body dissociation channel (FM+RgF), they are found to be stable and have high positive energies on the same surface. The computed binding energy for the two-body dissociation channels are 94.0, 164.7, and 199.7kJmol-1 for FBeArF, FBeKrF, FBeXeF, respectively, at CCSD(T) method. The corresponding energy values are 83.4, 130.7, and 180.1kJmol-1 for FMgArF, FMgKrF, and FMgXeF, respectively, at the same level of theory. With respect to the three-body dissociation (FM+Rg+F) channel as well as dissociation into atomic constituent, they are also found to be stable and have high positive energies. The dissociation of the predicted species typically proceeds via MRgF bending mode at the transition state. The computed barrier heights for the transition states are 11.4, 32.2, and 57.6kJmol-1 for FBeArF, FBeKrF, and FBeXeF, respectively, at the CCSD(T) method. The corresponding barrier heights for the Mg containing species are 2.1, 9.2, and 32.1kJmol-1 along the series Ar KrXe, respectively. The M Rg bond energies of the FMRgF species is significantly higher than the corresponding bond energies of the M+Rg species (˜53 and ˜15kJmol-1 for Be+Ar and Mg+Ar, respectively). The computed energy diagram as well as the geometrical parameters along with the AIM results suggest that the species are metastable with partial covalent character in the M Rg bonding. Thus, it may be possible to prepare and to characterize these species using low temperature matrix isolation technique.
NASA Astrophysics Data System (ADS)
Guzey, V.; Kryshen, E.; Zhalov, M.
2018-07-01
We make predictions for cross sections of ρ and ϕ vector meson photoproduction in ultraperipheral Xe-Xe collisions at √{sNN } = 5.44TeV. Analyzing the momentum transfer distribution of ρ mesons in this process, we explore the feasibility of extracting the nuclear density of 129Xe, which is needed in searches for dark matter with Xenon-based detectors.
Symmetry structure in neutron deficient xenon nuclei
NASA Astrophysics Data System (ADS)
Govil, I. M.
1998-12-01
The paper describes the measurements of the lifetimes of the excited states in the ground state band of the Neutron deficient Xe nuclei (122,124Xe) by recoil Distance Method (RDM). The lifetimes of the 2+ state in 122Xe agrees with the RDM measurements but for 124Xe it does not agree the RDM measurements but agrees with the earlier Coulomb-excitation experiment. The experimental results are compared with the existing theories to understand the changes in the symmetry structure of the Xe-nuclei as the Neutron number decreases from N=76(130Xe) to N=64(118Xe).
Xe-129 - Xe-128 and Ar-40 - Ar-39 chronology of two Antarctic enstatite meteorites
NASA Technical Reports Server (NTRS)
Honda, M.; Bernatowicz, T. J.; Podosek, F. A.
1983-01-01
Xe-129 - Xe-128 and Ar-40 - Ar-39 analyses has been performed on two Antarctic enstatite meteorites, the chondrite Y-691 and the aubrite (enstatite achondrite) ALH-78113. Both meteorites have complex Ar-40 - Ar-39 release patterns to which no unambiguous age assignment is possible. Both give apparently satisfactory Xe-129 - Xe-128 correlations corresponding to unusual ages. The I-Xe age of the chondrite Y-691 is 16 Ma after Bjurbole, not unusual for chondrites in general but 10 Ma later than previously known ages for enstatite chondrites. The I-Xe age of the aubrite ALH-78113 is 210 Ma after Bjurbole, the latest age (rather than a limit) so far observed by the I-Xe technique, but this age assignment must be considered tentative because of the possibility that it is significantly influenced by terrestrial I contamination.
The Genesis solar xenon composition and its relationship to planetary xenon signatures
NASA Astrophysics Data System (ADS)
Crowther, S. A.; Gilmour, J. D.
2013-12-01
The fluence and isotopic composition of solar wind xenon have been determined from silicon collector targets flown on the NASA Genesis mission. A protocol was developed to extract gas quantitatively from samples of ∼9-25 mm2, and xenon measured using the RELAX mass spectrometer. The fluence of implanted solar wind xenon is 1.202(87) × 106 atoms 132Xe cm-2, which equates to a flux of 5.14(21) × 106 atoms 132Xe cm-2 year-1 at the L1 point. This value is in good agreement with those reported in other studies. The isotopic composition of the solar wind is consistent with that extracted from the young lunar regolith and other Genesis collector targets. The more precise xenon isotopic data derived from the Genesis mission confirm models of relationships among planetary xenon signatures. The underlying composition of Xe-Q is mass fractionated solar wind; small, varying contributions of Xe-HL and 129Xe from 129I decay are present in reported meteorite analyses. In contrast, an s-process deficit is apparent in Xe-P3, which appears to have been mass fractionated to the same extent as Xe-Q from a precursor composition, suggesting similar trapping mechanisms. Solar wind xenon later evolved by the addition of ∼1% (at 132Xe) of s-process xenon to this precursor. As an alternative model to a single source reservoir for Xe-P3, we propose that trapping of xenon onto carbonaceous carriers has been an ongoing process across galactic history, and that preparation of the residues in which Xe-P3 has been identified preferentially preserves longer lived host phases; a higher proportion of these sample xenon isotopic compositions from earlier in galactic chemical evolution, allowing the s-process deficit to become apparent. The relationships among SW-Xe, Xe-Q and Xe-P3 predict that the 124Xe/132Xe ratio for the solar wind is 0.00481(6).
Early differentiation and volatile accretion recorded in deep-mantle neon and xenon.
Mukhopadhyay, Sujoy
2012-06-06
The isotopes (129)Xe, produced from the radioactive decay of extinct (129)I, and (136)Xe, produced from extinct (244)Pu and extant (238)U, have provided important constraints on early mantle outgassing and volatile loss from Earth. The low ratios of radiogenic to non-radiogenic xenon ((129)Xe/(130)Xe) in ocean island basalts (OIBs) compared with mid-ocean-ridge basalts (MORBs) have been used as evidence for the existence of a relatively undegassed primitive deep-mantle reservoir. However, the low (129)Xe/(130)Xe ratios in OIBs have also been attributed to mixing between subducted atmospheric Xe and MORB Xe, which obviates the need for a less degassed deep-mantle reservoir. Here I present new noble gas (He, Ne, Ar, Xe) measurements from an Icelandic OIB that reveal differences in elemental abundances and (20)Ne/(22)Ne ratios between the Iceland mantle plume and the MORB source. These observations show that the lower (129)Xe/(130)Xe ratios in OIBs are due to a lower I/Xe ratio in the OIB mantle source and cannot be explained solely by mixing atmospheric Xe with MORB-type Xe. Because (129)I became extinct about 100 million years after the formation of the Solar System, OIB and MORB mantle sources must have differentiated by 4.45 billion years ago and subsequent mixing must have been limited. The Iceland plume source also has a higher proportion of Pu- to U-derived fission Xe, requiring the plume source to be less degassed than MORBs, a conclusion that is independent of noble gas concentrations and the partitioning behaviour of the noble gases with respect to their radiogenic parents. Overall, these results show that Earth's mantle accreted volatiles from at least two separate sources and that neither the Moon-forming impact nor 4.45 billion years of mantle convection has erased the signature of Earth's heterogeneous accretion and early differentiation.
Hydrodynamic predictions for 5.44 TeV Xe+Xe collisions
NASA Astrophysics Data System (ADS)
Giacalone, Giuliano; Noronha-Hostler, Jacquelyn; Luzum, Matthew; Ollitrault, Jean-Yves
2018-03-01
We argue that relativistic hydrodynamics is able to make robust predictions for soft particle production in Xe+Xe collisions at the CERN Large Hadron Collider (LHC). The change of system size from Pb+Pb to Xe+Xe provides a unique opportunity to test the scaling laws inherent to fluid dynamics. Using event-by-event hydrodynamic simulations, we make quantitative predictions for several observables: mean transverse momentum, anisotropic flow coefficients, and their fluctuations. Results are shown as a function of collision centrality.
Trapping Ne, Ar, Kr, and Xe in Si2O3 smokes
NASA Technical Reports Server (NTRS)
Nuth, Joseph A., III; Donn, Bertram; Olinger, Chad; Garrison, Dan; Hohenberg, Charles
1988-01-01
Simple Si2O3 smokes have been condensed at both low (less than 750 K) and high (greater than 1000 K) temperature at 35 torr H2 pressure in the presence of 0, 10, 100, and 1000 microns of a noble gas mixture containing Ne, Ar, Kr, and Xe. In general, both Ne and Ar are quite loosely bound in the smokes (6.0 x 10 to the -8th and 2.6 x 10 to the -4th ccSTP/g, respectively), and are degassed at temperatures below 1200 K. Both Kr and Xe are somewhat more strongly bound at concentrations of 1.0 x 10 to the -7th and 8.2 x 10 to the -8th ccSTP/g, respectively, and in addition show a double release with a second component at a temperature of about 1875 K. With the exception that Si2O3 smokes appear to show a particular affinity for argon, possibly due to an anomalous absorption of atmospheric argon, none of the other noble gases are found in sufficient concentration to explain the gases observed in meteorites as primary circumstellar condensates. However, this data in conjunction with observations of Honda et al. (1979) do seem to show a degree of dependence between noble gas retention and chemical composition.
Synchrotron X-Ray Diffraction Study of Structure and Growth of Adsorbed Layers
NASA Astrophysics Data System (ADS)
Dai, Pengcheng
Synchrotron x-ray diffraction and scanning-tunneling -microscopy (STM) experiments reveal a new commensurate monolayer structure of 10CB (decylcyanobiphenyl) molecules adsorbed on the (0001) graphite surface. Our results are consistent with two generic structures for nCB monolayers on surfaces of hexagonal symmetry. The monolayer d spacing of the new phase inferred by STM is 10% layer than that obtained by x-ray diffraction on the same sample. We suggest that part of this discrepancy results from a systematic error introduced in calibration of the STM length scale against the graphite substrate. For multilayer nCB films, we find that a polycrystalline structure is formed and most of the adsorbed molecules are aligned with their long axis perpendicular to the graphite surface. Synchrotron x-ray scattering has been used to investigate the structure and growth of xenon physisorbed on the Ag(111) surface using a specially designed ultra -high vacuum (UHV) chamber. For growth under quasi-equilibrium conditions, the bulk Xe-Xe spacing is reached at monolayer completion and solid films of thickness >= 220 A are observed in which an 'ABC' stacking sequence predominates. Under kinetic growth conditions, intensity oscillations at the Xe anti-Bragg position of the specular rod are observed as a function of time, indicating layer -by-layer growth. Analysis of the specular reflectivity at different coverages yields the fractional layer occupancies and the spacing between the Ag(111) surface and first Xe layer. We have conducted a series of low-energy electron diffraction (LEED) 'kinetic isotherm' experiments on both xenon and hexane rm(C_6H_{14 }) films adsorbed on the Ag(111) surface. Our preliminary results show that under the pressure and temperature range accessible to the experiments, all of the Xe kinetic isotherms fall on a universal curve which is concave upward. However, the hexane kinetic isotherms have a qualitatively different shape (S-like) at the higher temperatures while being similar to Xe at low temperatures. From these experiments, we determine that the growth of xenon from submonolayer to 0.9 monolayer is 'zero-order'. However, the growth of hexane is more complicated. It follows the 'first-order' at low temperatures, and changes to S-like shape at high temperatures which we do not yet understand.
Bai, Yubin; Hill, P. Aru; Dmochowski, Ivan J.
2012-01-01
Hyperpolarized 129Xe chemical exchange saturation transfer (129Xe Hyper-CEST) NMR is a powerful technique for the ultrasensitive, indirect detection of Xe host molecules (e.g., cryptophane-A). Irradiation at the appropriate Xe-cryptophane resonant radio frequency results in relaxation of the bound hyperpolarized 129Xe and rapid accumulation of depolarized 129Xe in bulk solution. The cryptophane effectively ‘catalyzes’ this process by providing a unique molecular environment for spin depolarization to occur, while allowing xenon exchange with the bulk solution during the hyperpolarized lifetime (T1 ≈ 1 min). Following this scheme, a triacetic acid cryptophane-A derivative (TAAC) was indirectly detected at 1.4 picomolar concentration at 320 K in aqueous solution, which is the record for a single-unit xenon host. To investigate this sensitivity enhancement, the xenon binding kinetics of TAAC in water was studied by NMR exchange lifetime measurement. At 297 K, kon ≈ 1.5 × 106 M−1s−1 and koff = 45 s−1, which represent the fastest Xe association and dissociation rates measured for a high-affinity, water-soluble xenon host molecule near rt. NMR linewidth measurements provided similar exchange rates at rt, which we assign to solvent-Xe exchange in TAAC. At 320 K, koff was estimated to be 1.1 × 103 s−1. In Hyper-CEST NMR experiments, the rate of 129Xe depolarization achieved by 14 pM TAAC in the presence of RF pulses was calculated to be 0.17 µM·s−1. On a per cryptophane basis, this equates to 1.2 × 104 129Xe atoms s−1 (or 4.6 × 104 Xe atoms s−1, all Xe isotopes), which is more than an order of magnitude faster than koff, the directly measurable Xe-TAAC exchange rate. This compels us to consider multiple Xe exchange processes for cryptophane-mediated bulk 129Xe depolarization, which provide at least 107-fold sensitivity enhancements over directly detected hyperpolarized 129Xe NMR signals. PMID:23106513
High-Energy Laser Interaction with Gases, Droplets, and Bulk Liquids.
NASA Astrophysics Data System (ADS)
Jarzembski, Maurice Anthony
Breakdown threshold intensities (I_ {rm TH}) were measured as functions of wavelengths and pressure for air, He, Ar, and Xe using a Nd:YAG pulsed laser. Multiphoton absorption dominates in the UV and cascade collision ionization dominates in the IR; however, both can be affected by other electron gain and loss processes. Presence of droplets lowers breakdown of gases due to field enhancements. Breakdown is initiated either in the droplet material or in the gas. At lambda = 0.532mum for a 50 μm dia. water droplet in He, Ar, and air for p < 800 Torr, breakdown occurs inside the droplet and is independent of gas pressure. For droplet -in-Xe, at p < 140 Torr breakdown occurs inside the droplet and is independent of gas pressure. For droplet-in-Xe, at p < 140 Torr breakdown occurs inside the droplet but at p > 140 Torr, breakdown occurs outside the droplet and is dependent on gas pressure. Pressure dependence of breakdown was observed for 120mum dia. water droplets in Ar at p > 400 Torr. The required intensity for breakdown of droplet depends on I_{ rm TH} of bulk liquid and the effective field enhancement created by the droplet. The I _{rm TH} of droplet-in-air provides an upper limit to the propagation of a high energy laser beam in the atmosphere containing particles. By geometrical optics approach, a significant field enhancement located at the critical ring region, encircling the axis of the sphere in the forward direction at angle theta_{c}, was discovered where nonlinear processes can occur. This was confirmed experimentally and by Mie theory. Field enhancements calculated at the critical ring for water droplets of different sizes agree well with measurements. For a droplet of given size and real refractive index, the effective field enhancement and the volume over which it occurs are two important factors governing the occurrence of breakdown in droplets for both off resonance and on resonance conditions. Measurements of wavelength dependence of breakdown showed that in the UV, I_{rm TH} for droplets and bulk liquids were comparable and lower by few orders of magnitude from that of air. Transmittance and reflectance of bulk liquids in the UV change with intensity implying absorption due to nonlinear processes and consequent increase in the imaginary part of the refractive index of the liquids. In the IR, I_{rm TH} of air and bulk liquids are comparable but for droplets are considerably lower due to field enhancement.
Analysis of XeC1 Emission in a Hollow Cathode Discharge.
1981-06-01
excited homopolar molecule, e.g., Xe2 , Hg2 The term exciplex refers to an electronically excited heteropolar complex, e.g., KrF , XeOH , XeCl , which...HCI Products, k9 = 5.4 x 10 cm /sec. (25) Figure 9 summarizes the main energy pathways for XeCI exciplex formation via three body recombination and
Xenon Recovery at Room Temperature using Metal-Organic Frameworks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elsaidi, Sameh K.; Ongari, Daniele; Xu, Wenqian
2017-07-24
Xenon is known to be a very efficient anesthetic gas but its cost prohibits the wider use in medical industry and other potential applications. It has been shown that Xe recovery and recycle from anesthetic gas mixture can significantly reduce its cost as anesthetic. The current technology uses series of adsorbent columns followed by low temperature distillation to recover Xe, which is expensive to use in medical facilities. Herein, we propose much efficient and simpler system to recover and recycle Xe from simulant exhale anesthetic gas mixture at room temperature using metal organic frameworks. Among the MOFs tested, PCN-12 exhibitsmore » unprecedented performance with high Xe capacity, Xe/O2, Xe/N2 and Xe/CO2 selectivity at room temperature. The in-situ synchrotron measurements suggest the Xe is occupied in the small pockets of PCN-12 compared to unsaturated metal centers (UMCs). Computational modeling of adsorption further supports our experimental observation of Xe binding sites in PCN-12.« less
Dose Control System in the Optima XE Single Wafer High Energy Ion Implanter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Satoh, Shu; Yoon, Jongyoon; David, Jonathan
2011-01-07
Photoresist outgassing can significantly compromise accurate dosimetry of high energy implants. High energy implant even at a modest beam current produces high beam powers which create significantly worse outgassing than low and medium energy implants and the outgassing continues throughout the implant due to the low dose in typical high energy implant recipes. In the previous generation of high energy implanters, dose correction by monitoring of process chamber pressure during photoresist outgassing has been used. However, as applications diversify and requirements change, the need arises for a more versatile photoresist correction system to match the versatility of a single wafermore » high energy ion implanter. We have successfully developed a new dosimetry system for the Optima XE single wafer high energy ion implanter which does not require any form of compensation due to the implant conditions. This paper describes the principles and performance of this new dose system.« less
NASA Astrophysics Data System (ADS)
Paloma, Cynthia S.
The plasma electron temperature (Te) plays a critical role in a tokamak nu- clear fusion reactor since temperatures on the order of 108K are required to achieve fusion conditions. Many plasma properties in a tokamak nuclear fusion reactor are modeled by partial differential equations (PDE's) because they depend not only on time but also on space. In particular, the dynamics of the electron temperature is governed by a PDE referred to as the Electron Heat Transport Equation (EHTE). In this work, a numerical method is developed to solve the EHTE based on a custom finite-difference technique. The solution of the EHTE is compared to temperature profiles obtained by using TRANSP, a sophisticated plasma transport code, for specific discharges from the DIII-D tokamak, located at the DIII-D National Fusion Facility in San Diego, CA. The thermal conductivity (also called thermal diffusivity) of the electrons (Xe) is a plasma parameter that plays a critical role in the EHTE since it indicates how the electron temperature diffusion varies across the minor effective radius of the tokamak. TRANSP approximates Xe through a curve-fitting technique to match experimentally measured electron temperature profiles. While complex physics-based model have been proposed for Xe, there is a lack of a simple mathematical model for the thermal diffusivity that could be used for control design. In this work, a model for Xe is proposed based on a scaling law involving key plasma variables such as the electron temperature (Te), the electron density (ne), and the safety factor (q). An optimization algorithm is developed based on the Sequential Quadratic Programming (SQP) technique to optimize the scaling factors appearing in the proposed model so that the predicted electron temperature and magnetic flux profiles match predefined target profiles in the best possible way. A simulation study summarizing the outcomes of the optimization procedure is presented to illustrate the potential of the proposed modeling method.
Xenon in the Protoplanetary Disk (PPD-Xe)
NASA Astrophysics Data System (ADS)
Marti, K.; Mathew, K. J.
2015-06-01
Relationships among solar system Xe components as observed in the solar wind, in planetary atmospheres, and in meteorites are investigated using isotopic correlations. The term PPD-Xe is used for components inferred to have been present in the molecular cloud material that formed the protoplanetary disk (PPD). The evidence of the lack of simple relationships between terrestrial atmospheric Xe and solar or meteoritic components is confirmed. Xe isotopic correlations indicate a heterogeneous PPD composition with variable mixing ratios of the nucleosynthetic component Xe-HL. Solar Xe represents a bulk PPD component, and the isotopic abundances did not change from the time of incorporation into the interior of Mars through times of regolith implantations to the present.
Ar-Ar and I-XE Ages and the Thermal History of IAB Meteorites
NASA Technical Reports Server (NTRS)
Bogard, Donald D.; Garrison, Daniel H.; Takeda, Hiroshi
2006-01-01
Studies of several samples of the large Caddo County IAB iron meteorite reveal andesitic material, enriched in Si, Na, Al and Ca which is essentially unique among meteorites. This material is believed to have formed from a chondritic source by partial melting and to have further segregated by grain coarsening. Such an origin implies extended metamorphism of the IAB parent body. New Ar-39- Ar-40 ages for silicate from three different Caddo samples are consistent with a common age of 4.50- 4.51 Gyr ago. Less well defined Ar-Ar degassing ages for inclusions from two other IABs, EET8333 and Udei Station, are approx. 4.32 Gyr, whereas the age for Campo del Cielo varies considerably over approx. 3.23-4.56 Gyr. New I-129-Xe-129 ges for Caddo County and EET8333 are 4561.9 plus or minus 0.1 Myr and 4560-4563 Myr, respectively, relative to an age of 4566 Myr for Shallowater. Considering all reported Ar-Ar ages for IABs and related winonaites, the range is approx. 4.32-4.53 Gyr, but several IABs give similar Ar ages of 4.50-4.52 Gyr. We interpret these older ages to represent cooling after the time of last significant metamorphism on the parent body, and the younger ages to represent later 40Ar diffusion loss. These older Ar-Ar ages are similar to Sm-Nd and Rb-Sr isochron ages reported in the literature for Caddo County. Considering the possibility that IAB parent body formation was followed by impact disruption, reassembly, and metamorphism (e.g., Benedix et al. 2000), the time of the postassembly metamorphism may have been as late as approx. 4.53 Gyr ago. However, precise I-Xe ages reported for some IABs define a range of ages of approx. 4560 to approx. 4576 Myr. The older I-Xe ages exceed the oldest precise radiometric ages of meteorites, appear unrealistic, and suggest a bias in the calibration of all I-Xe ages. But even with such a bias, the I-Xe ages of IABs cannot easily be reconciled with the much younger Ar-Ar and Sm-Nd ages and with cooling rates deduced from Ni concentration profiles in IAB metal (Herpfer et al., 1994). An explanation for the difference in radiometric ages of IABs may reside in combinations of the following: a) I-Xe ages have very high closure temperatures and were not reset during metamorphism; b) a bias exists in the K-40 decay constants; c) the reported Sm-Nd and Rb-Sr ages for Caddo are in error by amounts equal to or exceeding their reported 2-sigma uncertainties; and 4) the IAB parent body may have experienced a mild metamorphism approx.30 My after the initial heating that produced differentiation of Caddo silicate and mixing of silicate and metal.
High energy XeBr electric discharge laser
Sze, Robert C.; Scott, Peter B.
1981-01-01
A high energy XeBr laser for producing coherent radiation at 282 nm. The XeBr laser utilizes an electric discharge as the excitation source to minimize formation of molecular ions thereby minimizing absorption of laser radiation by the active medium. Additionally, HBr is used as the halogen donor which undergoes harpooning reactions with Xe.sub.M * to form XeBr*.
High energy XeBr electric discharge laser
Sze, R.C.; Scott, P.B.
A high energy XeBr laser for producing coherent radiation at 282 nm is disclosed. The XeBr laser utilizes an electric discharge as the excitation source to minimize formation of molecular ions thereby minimizing absorption of laser radiation by the active medium. Additionally, HBr, is used as the halogen donor which undergoes harpooning reactions with Xe/sub M/ to form XeBr.
Stable Chloro- and Bromoxenate Cage Anions; [X3(XeO3)3]3- and [X4(XeO3)4]4- (X = Cl or Br).
Goettel, James T; Haensch, Veit G; Schrobilgen, Gary J
2017-06-28
The number of isolable compounds which contain different noble-gas-element bonds is limited for xenon and even more so for krypton. Examples of Xe-Cl bonds are rare, and prior to this work, no Xe-Br bonded compound had been isolated in macroscopic quantities. The syntheses, isolation, and characterization of the first compounds to contain Xe-Br bonds and their chlorine analogues are described in the present work. The reactions of XeO 3 with [N(CH 3 ) 4 ]Br and [N(C 2 H 5 ) 4 ]Br have provided two bromoxenate salts, [N(C 2 H 5 ) 4 ] 3 [Br 3 (XeO 3 ) 3 ] and [N(CH 3 ) 4 ] 4 [Br 4 (XeO 3 ) 4 ], in which the cage anions have Xe-Br bond lengths that range from 3.0838(3) to 3.3181(8) Å. The isostructural chloroxenate anions (Xe-Cl bond lengths, 2.9316(2) to 3.101(4) Å) were synthesized by analogy with their bromine analogues. The bromo- and chloroxenate salts are stable in the atmosphere at room temperature and were characterized in the solid state by Raman spectroscopy and low-temperature single-crystal X-ray diffraction, and in the gas phase by quantum-chemical calculations. They are the only known examples of cage anions that contain a noble-gas element. The Xe-Br and Xe-Cl bonds are very weakly covalent and can be viewed as σ-hole interactions, similar to those encountered in halogen bonding. However, the halogen atoms in these cases are valence electron lone pair donors, and the σ* Xe-O orbitals are lone pair acceptors.
Iodine-Xenon Dating: Sensitive Chronometer for Reprocessing in the Primitive Solar System
NASA Technical Reports Server (NTRS)
Pravdivtseva, O. V.; Hohenberg, C. M.
1999-01-01
The I-Xe chronometer is based upon decay of I-129 to Xe-129 in the early Solar System. Recent comparison of I-Xe system in individual mineral separates from twelve different meteorites with independent Pb-Pb data has demonstrated that I-Xe clock is a reliable sensitive chronometer when applied to a single mineral system. Since most iodine hosts are secondary minerals, the I-Xe clock generally records post-formational processing, providing the information on early meteorite evolution. Absolute I-Xe ages can be found by normalization using the measured I-Xe and Pb-Pb ages of Acapulco phosphate (4.557 plus or minus 0.002 Ga). Absolute ages for the I-Xe internal standards Shallow water and Bjurbole, 4.566 plus or minus 0.002 Ga and 4.565 plus or minus 0.003 Ga, respectively, provide absolute I-Xe ages for all other samples. The I-Xe age of bulk meteorite is meaningful and interpretable only when the carrier of primordial iodine is a major mineral phase (e. g., enstatite chondrites). Using the "monomineral" approach, separated phases from the Richardton H5 chondrite provide a case history of post-formational alteration in this object. This work applies the I-Xe chronometer to determine the times of reprocessing of selected minerals in single meteorite types. A preliminary account of this work was recently reported. Additional information is contained in the original extended abstract.
Hyperpolarized xenon-129 production and applications
NASA Astrophysics Data System (ADS)
Ruset, Iulian C.
Hyperpolarized 3He and 129Xe were initially developed and used in the nuclear physics community. Lately they are primarily used in Medical Resonance Imaging (MRI). Although first MRI polarized gas images were acquired using 129Xe, the research community has focused mostly on 3He, due to the well-known polarizing methods and higher polarization numbers achieved. The main purpose of this thesis is to present a novel design of a large-scale SEOP polarizer for producing large quantities of highly polarized 129Xe. High Rb-Xe spin-exchange rates through long-lived van de Waals molecules at low total pressure, implemented in a novel counterflow polarizer design, resulted in xenon polarization as high as 50% for 1.2 liters/hour, with a maximum of 64% for 0.3 l/h. We characterized and improved the polarization process by finding the optimum operating parameters of the polarizer. Two new methods to efficiently use high-power diode lasers are described: a new optical arrangement for a better beam shaping of fiber coupled lasers and the first external-cavity spectrum narrowing of a stack of laser diode arrays. A new accumulation technique for the hyperpolarized xenon was developed and full recovery of polarization after a freeze-thaw cycle was demonstrated for the first time. Two approaches for xenon delivery, frozen and gas states, were developed. Hyperpolarized xenon transportation to Brigham and Women's Hospital was successfully accomplished for collaborative research. First MRI images using hyperpolarized xenon acquired at BWH are presented. Final chapter is focused on describing a low field human MRI scanner using hyperpolarized 3He. We built a human scale imager with open access for orientational studies of the lung functionality. Horizontal and vertical human lung images were acquired as a first stage of this project.
Xenon in the protoplanetary disk (PPD-XE)
Marti, K.; Mathew, K. J.
2015-06-18
Relationships among solar system Xe components as observed in the solar wind (SW), in planetary atmospheres and in meteorites are investigated using isotopic correlations. The term PPD-Xe is used for components inferred to have been present in the molecular cloud material that formed the protoplanetary disk (PPD). The evidence of the lack of simple relationships between terrestrial atmospheric Xe and solar or meteoritic components is confirmed. Xe isotopic correlations indicate a heterogeneous PPD composition with variable mixing ratios of the nucleosynthetic component Xe-HL. Solar Xe represents a bulk PPD component, and the isotopic abundances did not change from the timemore » of incorporation into the interior of Mars, through times of regolith implantations to the present.« less
NASA Astrophysics Data System (ADS)
Rosen, Matthew Scot
2001-07-01
This thesis presents in vivo nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) studies with laser-polarized 129Xe delivered to living rats by inhalation and transported to tissue via blood flow. The results presented herein include the observation, assignment, and dynamic measurement of 129Xe resonances in the brain and body, the first one- and two-dimensional chemical-shift-resolved images of 129Xe in blood, tissue, and gas in the thorax, and the first images of 129Xe in brain tissue. These results establish that laser-polarized 129Xe can be used as a magnetic resonance tracer in vivo. NMR resonances at 0, 191, 198, and 209 ppm relative to the 129 Xe gas resonance are observed in the rat thorax and assigned to 129Xe in gas, fat, tissue, and blood respectively. Resonances at 189, 192, 195, 198, and 209 ppm are observed in the brain, and the 195 and 209 ppm resonances are assigned to 129Xe in grey matter, and blood, respectively. The design and construction of a laser-polarized 129Xe production and delivery system is described. This system produces liter-volumes of laser- polarized 129Xe by spin-exchange optical- pumping. It represented an order of magnitude increase over previously reported production volumes of polarized 129Xe. At approximately 3-7% polarization, 157 cc-atm of xenon is produced and stored as ice every 5 minutes. This reliable, effective, and simple production method for large volumes of 129Xe can be applied to other areas of research involving the use of laser-polarized noble gases. A model of the in vivo transport of laser polarized 129Xe to tissue under realistic experimental NMR conditions is described. Appropriate control of the NMR parameters is shown to allow tissue perfasion and 129Xe tissue T1 to be extracted from measurement of the steady-state 129Xe tissue signal. In vivo rodent 129Xe NMR results are used to estimate the signal-to-noise ratio of this technique, and an inhaled 30% xenon/70% O2 mixture polarized to 5% is estimated to provide sufficient SNR in rodent grey matter. Application to the measurement of regional cerebral blood flow and neuronal activation is discussed.
Expansion and melting of Xe nanocrystals in Si
NASA Astrophysics Data System (ADS)
Faraci, Giuseppe; Pennisi, Agata R.; Zontone, Federico; Li, Boquan; Petrov, Ivan
2006-12-01
Xe agglomerates confined in a Si matrix by ion implantation were synthesized with different size depending on the implantation process and/or the thermal treatment. At low temperature Xe nanocrystals are formed, whose expansion and melting were studied in the range 15- 300K . Previous high resolution x-ray diffraction spectra were corroborated with complementary techniques such as two-dimensional imaging plate patterns and transmission electron microscopy. We detected fcc Xe nanocrystals whose properties were size dependent. The experiments showed that in annealed samples epitaxial condensation of small Xe clusters, on the cavities of the Si matrix, gave in fact expanded and oriented Xe, suggesting a possible preferential growth of Xe(311) planes oriented orthogonally to the Si[02-2] direction. On the contrary, small Xe clusters in an amorphous Si matrix have a fcc lattice contracted as a consequence of surface tension. Furthermore, a solid-to-liquid phase transition size dependent was found. Expansion of fcc Xe lattice was accurately determined as a function of the temperature. Overpressurized nanocrystals and/or binary size distributions were disproved.
High-spin structures in 132Xe and 133Xe and evidence for isomers along the N =79 isotones
NASA Astrophysics Data System (ADS)
Vogt, A.; Siciliano, M.; Birkenbach, B.; Reiter, P.; Hadyńska-Klek, K.; Wheldon, C.; Valiente-Dobón, J. J.; Teruya, E.; Yoshinaga, N.; Arnswald, K.; Bazzacco, D.; Blazhev, A.; Bracco, A.; Bruyneel, B.; Chakrawarthy, R. S.; Chapman, R.; Cline, D.; Corradi, L.; Crespi, F. C. L.; Cromaz, M.; de Angelis, G.; Eberth, J.; Fallon, P.; Farnea, E.; Fioretto, E.; Fransen, C.; Freeman, S. J.; Fu, B.; Gadea, A.; Gelletly, W.; Giaz, A.; Görgen, A.; Gottardo, A.; Hayes, A. B.; Hess, H.; Hetzenegger, R.; Hirsch, R.; Hua, H.; John, P. R.; Jolie, J.; Jungclaus, A.; Karayonchev, V.; Kaya, L.; Korten, W.; Lee, I. Y.; Leoni, S.; Liang, X.; Lunardi, S.; Macchiavelli, A. O.; Menegazzo, R.; Mengoni, D.; Michelagnoli, C.; Mijatović, T.; Montagnoli, G.; Montanari, D.; Müller-Gatermann, C.; Napoli, D.; Pearson, C. J.; Podolyák, Zs.; Pollarolo, G.; Pullia, A.; Queiser, M.; Recchia, F.; Regan, P. H.; Régis, J.-M.; Saed-Samii, N.; Şahin, E.; Scarlassara, F.; Seidlitz, M.; Siebeck, B.; Sletten, G.; Smith, J. F.; Söderström, P.-A.; Stefanini, A. M.; Stezowski, O.; Szilner, S.; Szpak, B.; Teng, R.; Ur, C.; Warner, D. D.; Wolf, K.; Wu, C. Y.; Zell, K. O.
2017-08-01
The transitional nuclei 132Xe and 133Xe are investigated after multinucleon-transfer (MNT) and fusion-evaporation reactions. Both nuclei are populated (i) in 136Xe+208Pb MNT reactions employing the high-resolution Advanced GAmma Tracking Array (AGATA) coupled to the magnetic spectrometer PRISMA, (ii) in the 136Xe+198Pt MNT reaction employing the GAMMASPHERE spectrometer in combination with the gas-detector array CHICO, and (iii) as an evaporation residue after a 130Te(α ,x n )134 -x nXe fusion-evaporation reaction employing the HORUS γ -ray array at the University of Cologne. The high-spin level schemes are considerably extended above the Jπ=(7-) and (10+) isomers in 132Xe and above the 11 /2- isomer in 133Xe. The results are compared to the high-spin systematics of the Z =54 as well as the N =78 and N =79 chains. Furthermore, evidence is found for a long-lived (T1 /2≫1 μ s ) isomer in 133Xe which closes a gap along the N =79 isotones. Shell-model calculations employing the SN100PN and PQM130 effective interactions reproduce the experimental findings and provide guidance to the interpretation of the observed high-spin features.
A prototype detection system for atmospheric monitoring of xenon radioisotopes
NASA Astrophysics Data System (ADS)
Czyz, Steven A.; Farsoni, Abi T.; Ranjbar, Lily
2018-03-01
The design of a radioxenon detection system utilizing a CdZeTe crystal and a plastic scintillator coupled to an array of SiPMs to conduct beta-gamma coincidence detection for atmospheric radioxenon monitoring, as well as the measurement of 135Xe and 133/133mXe, have been detailed previously. This paper presents recent measurements of 133/133mXe and 131mXe and the observation of conversion electrons in their coincidence spectra, as well as a 48-hour background measurement to calculate the Minimum Detectable Concentration (MDC) of radioxenon isotopes in the system. The identification of Regions of Interest (ROIs) in the coincidence spectra yielded from the radioxenon measurements, and the subsequent calculation of the MDCs of the system for 135Xe, 133/133mXe, and 131mXe, are also discussed. Calculated MDCs show that the detection system preforms respectably when compared to other state of the art radioxenon detection systems and achieved an MDC of less than 1 mBq/m3 for 131mXe, 133Xe, and 133mXe, in accordance with limits set by the Comprehensive Nuclear-Test-Ban Treaty (CTBTO). The system also provides the advantage of room temperature operation, compactness, low noise operation and having simple readout electronics.
High-spin structures in Xe 132 and Xe 133 and evidence for isomers along the N = 79 isotones
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogt, A.; Siciliano, M.; Birkenbach, B.
In this study, the transitional nuclei 132Xe and 133Xe are investigated after multinucleon-transfer (MNT) and fusion-evaporation reactions. Both nuclei are populated (i) in 136Xe + 208Pb MNT reactions employing the high-resolution Advanced GAmma Tracking Array (AGATA) coupled to the magnetic spectrometer PRISMA, (ii) in the 136Xe + 198Pt MNT reaction employing the GAMMASPHERE spectrometer in combination with the gas-detector array CHICO, and (iii) as an evaporation residue after a 130Te (α,xn) 134-xnXe fusion-evaporation reaction employing the HORUS γ -ray array at the University of Cologne. The high-spin level schemes are considerably extended above the J π = (7 -) andmore » (10 +) isomers in 132Xe and above the 11/2 - isomer in 133Xe. The results are compared to the high-spin systematics of the Z = 54 as well as the N = 78 and N = 79 chains. Furthermore, evidence is found for a long-lived (T 1/2 » 1 μs) isomer in 133Xe which closes a gap along the N = 79 isotones. Finally, shell-model calculations employing the SN100PN and PQM130 effective interactions reproduce the experimental findings and provide guidance to the interpretation of the observed high-spin features.« less
High-spin structures in Xe 132 and Xe 133 and evidence for isomers along the N = 79 isotones
Vogt, A.; Siciliano, M.; Birkenbach, B.; ...
2017-08-24
In this study, the transitional nuclei 132Xe and 133Xe are investigated after multinucleon-transfer (MNT) and fusion-evaporation reactions. Both nuclei are populated (i) in 136Xe + 208Pb MNT reactions employing the high-resolution Advanced GAmma Tracking Array (AGATA) coupled to the magnetic spectrometer PRISMA, (ii) in the 136Xe + 198Pt MNT reaction employing the GAMMASPHERE spectrometer in combination with the gas-detector array CHICO, and (iii) as an evaporation residue after a 130Te (α,xn) 134-xnXe fusion-evaporation reaction employing the HORUS γ -ray array at the University of Cologne. The high-spin level schemes are considerably extended above the J π = (7 -) andmore » (10 +) isomers in 132Xe and above the 11/2 - isomer in 133Xe. The results are compared to the high-spin systematics of the Z = 54 as well as the N = 78 and N = 79 chains. Furthermore, evidence is found for a long-lived (T 1/2 » 1 μs) isomer in 133Xe which closes a gap along the N = 79 isotones. Finally, shell-model calculations employing the SN100PN and PQM130 effective interactions reproduce the experimental findings and provide guidance to the interpretation of the observed high-spin features.« less
Rapid-relocation model for describing high-fluence retention of rare gases implanted in solids
NASA Astrophysics Data System (ADS)
Wittmaack, K.
2009-09-01
It has been known for a long time that the maximum areal density of inert gases that can be retained in solids after ion implantation is significantly lower than expected if sputter erosion were the only limiting factor. The difference can be explained in terms of the idea that the trapped gas atoms migrate towards the surface in a series of detrapping-trapping events so that reemission takes place well before the receding surface has advanced to the original depth of implantation. Here it is shown that the fluence dependent shift and shape of implantation profiles, previously determined by Rutherford backscattering spectrometry (RBS), can be reproduced surprisingly well by extending a simple retention model originally developed to account only for the effect of surface recession by sputtering ('sputter approximation'). The additional migration of inert gas atoms is formally included by introducing an effective shift parameter Yeff as the sum of the sputtering yield Y and a relocation efficiency Ψrel. The approach is discussed in detail for 145 keV Xe + implanted in Si at normal incidence. Yeff was found to increase with increasing fluence, to arrive at a maximum equivalent to about twice the sputtering yield. At the surface one needs to account for Xe depletion and the limited depth resolution of RBS. The (high-fluence) effect of implanted Xe on the range distributions is discussed on the basis of SRIM calculations for different definitions of the mean target density, including the case of volume expansion (swelling). To identify a 'range shortening' effect, the implanted gas atoms must be excluded from the definition of the depth scale. The impact-energy dependence of the relocation efficiency was derived from measured stationary Xe concentrations. Above some characteristic energy (˜20 keV for Ar, ˜200 keV for Xe), Y exceeds Ψrel. With decreasing energy, however, Ψrel increases rapidly. Below 2-3 keV more than 90% of the reemission of Ar and Xe is estimated to be due to bombardment induced relocation and reemission, only the remaining 10% (or less) can be attributed to sputter erosion. The relocation efficiency is interpreted as the 'speed' of radiation enhanced diffusion towards the surface. The directionality of diffusion is attributed to the gradient of the defect density on the large-depth side of the damage distribution where most of the implanted rare gas atoms come to rest. Based on SRIM calculations, two representative parameters are defined, the peak number of lattice displacements, Nd,m, and the spacing, △ zr,d, between the peaks of the range and the damage distributions. Support in favour of rapid rare gas relocation by radiation enhanced diffusion is provided by the finding that the relocation efficiencies for Ar and Xe, which vary by up to one order of magnitude, scale as Ψ=kN/Δz, independent to the implantation energy (10-80 keV Ar, 10-500 keV Xe), within an error margin of only ± 15%. The parameter k contains the properties of the implanted rare gas atoms. A recently described computer simulation model, which assumed that the pressure established by the implanted gas drives reemission, is shown to reproduce measured Xe profiles quite well, but only at that energy at which the fitting parameter of the model was determined (140 keV). Using the same parameter at other energies, deviations by up to a factor of four are observed.
NASA Technical Reports Server (NTRS)
Hart, R.; Hogan, L.
1985-01-01
Recent noble gas studies suggests the Earth's atmosphere outgassed from the Earth's upper mantle synchronous with sea floor spreading, ocean ridge hydrothermal activity and the formation of continents by partial melting in subduction zones. The evidence for formation of the atmosphere by outgassing of the mantle is the presence of radionuclides H3.-4, Ar-040 and 136 Xe-136 in the atmosphere that were produced from K-40, U and Th in the mantle. How these radionuclides were formed is reviewed.
NASA Astrophysics Data System (ADS)
Xi, Jianqi; Liu, Bin; Xu, Haixuan; Zhang, Yanwen; Weber, William J.
2018-02-01
Grain boundaries (GBs) are the most abundant structural defects in nanostructured nuclear fuels and play an important role in determining fission product behavior, which further affects the performance of nuclear fuels. In this work, cerium dioxide (CeO2) is used as a surrogate material for mixed oxide fuels to understand gaseous fission product behavior, specifically Xe. First-principles calculations are employed to comprehensively study the behavior of Xe and trap sites for Xe near the Σ 3 (111)/[11 bar0] grain boundary in CeO2, which will provide guidance on overall trends for Xe stability and diffusion at grain boundaries vs in the bulk. Significant segregation behavior of trap sites, regardless of charge states, is observed near the GB. This is mainly ascribed to the local atomic structure near the GB, which results in weaker bond strength and more negative segregation energies. For Xe, however, the segregation profile near the GB is different. Our calculations show that, as the size of trap sites increases, the segregation propensity of Xe is reduced. In addition, under hyper-stoichiometric conditions, the solubility of Xe trapped at the GB is significantly higher than that in the bulk, suggesting higher Xe concentration than that in the bulk. The results of this work demonstrate that the diffusion mechanism of Xe in CeO2 is comparable to that in UO2. The diffusion activation energies of Xe atoms in the Σ 3 GB are lower than that in the bulk CeO2. These results suggest that the diffusivity of Xe atoms is higher along the GB than that in the bulk, which enhances the aggregation of Xe atoms near the GB.
Cleveland, Zackary I.; Möller, Harald E.; Hedlund, Laurence W.; Nouls, John C.; Freeman, Matthew S.; Qi, Yi; Driehuys, Bastiaan
2012-01-01
Background Hyperpolarized (HP) 129Xe magnetic resonance imaging (MRI) permits high resolution, regional visualization of pulmonary ventilation. Additionally, its reasonably high solubility (>10%) and large chemical shift range (>200 ppm) in tissues allow HP 129Xe to serve as a regional probe of pulmonary perfusion and gas transport, when introduced directly into the vasculature. In earlier work, vascular delivery was accomplished in rats by first dissolving HP 129Xe in a biologically compatible carrier solution, injecting the solution into the vasculature, and then detecting HP 129Xe as it emerged into the alveolar airspaces. Although easily implemented, this approach was constrained by the tolerable injection volume and the duration of the HP 129Xe signal. Methods and Principal Findings Here, we overcome the volume and temporal constraints imposed by injection, by using hydrophobic, microporous, gas-exchange membranes to directly and continuously infuse 129Xe into the arterial blood of live rats with an extracorporeal (EC) circuit. The resulting gas-phase 129Xe signal is sufficient to generate diffusive gas exchange- and pulmonary perfusion-dependent, 3D MR images with a nominal resolution of 2×2×2 mm3. We also show that the 129Xe signal dynamics during EC infusion are well described by an analytical model that incorporates both mass transport into the blood and longitudinal relaxation. Conclusions Extracorporeal infusion of HP 129Xe enables rapid, 3D MR imaging of rat lungs and, when combined with ventilation imaging, will permit spatially resolved studies of the ventilation-perfusion ratio in small animals. Moreover, EC infusion should allow 129Xe to be delivered elsewhere in the body and make possible functional and molecular imaging approaches that are currently not feasible using inhaled HP 129Xe. PMID:22363613
Thin film devices used as oxygen partial pressure sensors
NASA Technical Reports Server (NTRS)
Canady, K. S.; Wortman, J. J.
1970-01-01
Electrical conductivity of zinc oxide films to be used in an oxygen partial pressure sensor is measured as a function of temperature, oxygen partial pressure, and other atmospheric constituents. Time response following partial pressure changes is studied as a function of temperature and environmental changes.
Norquay, Graham; Leung, General; Stewart, Neil J; Wolber, Jan; Wild, Jim M
2017-04-01
To evaluate the dependency of the 129 Xe-red blood cell (RBC) chemical shift on blood oxygenation, and to use this relation for noninvasive measurement of pulmonary blood oxygenation in vivo with hyperpolarized 129 Xe NMR. Hyperpolarized 129 Xe was equilibrated with blood samples of varying oxygenation in vitro, and NMR was performed at 1.5 T and 3 T. Dynamic in vivo NMR during breath hold apnea was performed at 3 T on two healthy volunteers following inhalation of hyperpolarized 129 Xe. The 129 Xe chemical shift in RBCs was found to increase nonlinearly with blood oxygenation at 1.5 T and 3 T. During breath hold apnea, the 129 Xe chemical shift in RBCs exhibited a periodic time modulation and showed a net decrease in chemical shift of ∼1 ppm over a 35 s breath hold, corresponding to a decrease of 7-10 % in RBC oxygenation. The 129 Xe-RBC signal amplitude showed a modulation with the same frequency as the 129 Xe-RBC chemical shift. The feasibility of using the 129 Xe-RBC chemical shift to measure pulmonary blood oxygenation in vivo has been demonstrated. Correlation between 129 Xe-RBC signal and 129 Xe-RBC chemical shift modulations in the lung warrants further investigation, with the aim to better quantify temporal blood oxygenation changes in the cardiopulmonary vascular circuit. Magn Reson Med 77:1399-1408, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
Straka, Michal; Lantto, Perttu; Vaara, Juha
2008-03-27
We calculate the 129Xe chemical shift in endohedral Xe@C60 with systematic inclusion of the contributing physical effects to model the real experimental conditions. These are relativistic effects, electron correlation, the temperature-dependent dynamics, and solvent effects. The ultimate task is to obtain the right result for the right reason and to develop a physically justified methodological model for calculations and simulations of endohedral Xe fullerenes and other confined Xe systems. We use the smaller Xe...C6H6 model to calibrate density functional theory approaches against accurate correlated wave function methods. Relativistic effects as well as the coupling of relativity and electron correlation are evaluated using the leading-order Breit-Pauli perturbation theory. The dynamic effects are treated in two ways. In the first approximation, quantum dynamics of the Xe atom in a rigid cage takes advantage of the centrosymmetric potential for Xe within the thermally accessible distance range from the center of the cage. This reduces the problem of obtaining the solution of a diatomic rovibrational problem. In the second approach, first-principles classical molecular dynamics on the density functional potential energy hypersurface is used to produce the dynamical trajectory for the whole system, including the dynamic cage. Snapshots from the trajectory are used for calculations of the dynamic contribution to the absorption 129Xe chemical shift. The calculated nonrelativistic Xe shift is found to be highly sensitive to the optimized molecular structure and to the choice of the exchange-correlation functional. Relativistic and dynamic effects are significant and represent each about 10% of the nonrelativistic static shift at the minimum structure. While the role of the Xe dynamics inside of the rigid cage is negligible, the cage dynamics turns out to be responsible for most of the dynamical correction to the 129Xe shift. Solvent effects evaluated with a polarized continuum model are found to be very small.
Fast discharge in a spherical cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antsiferov, P. S., E-mail: Ants@isan.troitsk.ru; Dorokhin, L. A.
2014-04-15
The work is devoted to the study of the plasma, created by a fast discharge in a spherical cavity. The discharge was driven by an inductive storage with plasma erosion opening switch (dI/dt ∼10{sup 12} A/s). The plasma was produced in a spherical cavity (alumina, 11 mm diameter). Xe, Ar, and He at the pressure 80 Pa were used as working gases. The time evolution of the spatial structure and of extreme ultraviolet (EUV) spectra of the discharge plasma was studied by means of micro channel plate detector. The discharges with Xe and Ar resulted in the stable appearance of the spherically shapedmore » plasma with the diameter about 1–3 mm. The plasma emission in the EUV region lasts ∼500 ns. The EUV spectrum of Ar discharge at the moment of maximum of the electron temperature T{sub e} contains the lines of Ar X (ionization potential 478.7 eV), that indicates a value of T{sub e} in the range 50–100 eV. The mechanism of plasma appearance can be the cumulation of the convergent spherical shock wave, generated by fast heat deposition and magnetic pressure in working media near the inner surface of the discharge volume.« less
I-Xe Dating: Comparison of I-Xe and Pb-Pb Ages of Richardton Chondrules and Separated Mineral Phases
NASA Technical Reports Server (NTRS)
Pravdivtseva, O. V.; Amelin, Y.; Hohenberg, C. M.; Meshik, A. P.
2002-01-01
I-Xe and Pb-Pb ages of individual Richardton chondrules and different mineral phases were compared in order to test the absolute I-Xe age normalization. Additional information is contained in the original extended abstract.
Iodine-xenon studies of Bjurbole and Parnallee using RELAX
NASA Astrophysics Data System (ADS)
Gilmour, J. D.; Ash, R. D.; Hutchison, R.; Bridges, J. C.; Lyon, I. C.; Turner, G.
1995-07-01
Iodine-xenon analyses of chondrules from the Bjurböle L4 and Parnallee LL3.6 meteorites have been made using a continuous wave laser microprobe and the resonance ionisation mass spectrometer RELAX. The excess 129Xe content released from the Bjurböle chondrule is lower than previous stepped-heating studies have found, suggesting that the technique does not completely degas the samples. Nonetheless, clear isochrons were produced, and data for initial 129Xe/130Xe are consistent with earlier work. A correlation is evident in each chondrule between 131Xe* and 128Xe*, perhaps indicating a common host-phase for their parent nuclides, a condition possibly fulfilled by a Te- and I-bearing sulfide. The I-Xe system of a Parnallee macrochondrule exhibits no excess 129Xe, possibly as a result of thermal alteration or deformation before accumulation of the meteorite. A cristobalite-bearing chondrule depleted in 16O yields an I-Xe age of 4.5±.5 Ma after the mean Bjurböle age.
Xenon Recovery at Room Temperature using Metal-Organic Frameworks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elsaidi, Sameh K.; Ongari, Daniele; Xu, Wenqian
2017-07-24
Xenon is known to be a very efficient anesthetic gas but its cost prohibits the wider use in medical industry and other potential applications. It has been shown that Xe recovery and recycle from anesthetic gas mixture can significantly reduce its cost as anesthetic. The current technology uses series of adsorbent columns followed by low temperature distillation to recover Xe, which is expensive to use in medical facilities. Herein, we propose much efficient and simpler system to recover and recycle Xe from simulant exhale anesthetic gas mixture at room temperature using metal organic frameworks. Among the MOFs tested, PCN-12 exhibitsmore » unprecedented performance with high Xe capacity, Xe/N2 and Xe/O2 selectivity at room temperature. The in-situ synchrotron measurements suggest the Xe is occupied in the small pockets of PCN-12 compared to unsaturated metal centers (UMCs). Computational modeling of adsorption further supports our experimental observation of Xe binding sites in PCN-12.« less
Park, Marcelo; Mendes, Pedro Vitale; Costa, Eduardo Leite Vieira; Barbosa, Edzangela Vasconcelos Santos; Hirota, Adriana Sayuri; Azevedo, Luciano Cesar Pontes
2016-01-01
The aim of this study was to explore the factors associated with blood oxygen partial pressure and carbon dioxide partial pressure. The factors associated with oxygen - and carbon dioxide regulation were investigated in an apneic pig model under veno-venous extracorporeal membrane oxygenation support. A predefined sequence of blood and sweep flows was tested. Oxygenation was mainly associated with extracorporeal membrane oxygenation blood flow (beta coefficient = 0.036mmHg/mL/min), cardiac output (beta coefficient = -11.970mmHg/L/min) and pulmonary shunting (beta coefficient = -0.232mmHg/%). Furthermore, the initial oxygen partial pressure and carbon dioxide partial pressure measurements were also associated with oxygenation, with beta coefficients of 0.160 and 0.442mmHg/mmHg, respectively. Carbon dioxide partial pressure was associated with cardiac output (beta coefficient = 3.578mmHg/L/min), sweep gas flow (beta coefficient = -2.635mmHg/L/min), temperature (beta coefficient = 4.514mmHg/ºC), initial pH (beta coefficient = -66.065mmHg/0.01 unit) and hemoglobin (beta coefficient = 6.635mmHg/g/dL). In conclusion, elevations in blood and sweep gas flows in an apneic veno-venous extracorporeal membrane oxygenation model resulted in an increase in oxygen partial pressure and a reduction in carbon dioxide partial pressure 2, respectively. Furthermore, without the possibility of causal inference, oxygen partial pressure was negatively associated with pulmonary shunting and cardiac output, and carbon dioxide partial pressure was positively associated with cardiac output, core temperature and initial hemoglobin.
Adsorption and excess fission Xe - Adsorption of Xe on vacuum crushed minerals
NASA Technical Reports Server (NTRS)
Bernatowicz, T. J.; Kramer, F. E.; Podosek, F. A.; Honda, M.
1982-01-01
It is hypothesized that adsorption is not likely to provide a sufficiently precise mechanism for the concentration of excess fission Xe in the entire lunar regolith, in view of laboratory analogs of the lunar soil and calculations of the residence times of noble gases in the present day regolith. Lunar cold trap and episodic degassing models are difficult to reconcile, however, with the generality of excess fission Xe in all gas-rich highland breccias. It is concluded that the high Xe concentration in such highland breccias is not the result of Xe adsorption prior to the trapping of this component.
NASA Astrophysics Data System (ADS)
Zahnle, K. J.
2013-12-01
Xenon has been regarded as an important goal of many proposed missions to Venus. This talk is intended to explain why. Despite its being the heaviest gas found in natural planetary atmospheres, there is more evidence that Xe escaped from Earth than for any element apart from helium: (i) Atmospheric Xe is very strongly mass fractionated (at about 4% per amu) from any known solar system source. This suggests fractionating escape that preferentially left the heavy Xe isotopes behind. (ii) Xe is underabundant compared to Kr, a lighter noble gas that is not strongly mass fractionated in air. (iii) Radiogenic Xe is strongly depleted by factors of several to ~100 compared to the quantities expected from radioactive decay of primordial solar system materials. In these respects Xe on Mars is similar to Xe on Earth, but with one key difference: Xe on Mars is readily explained by a simple process like hydrodynamic escape that acts on an initially solar or meteoritic Xe. This is not so for Earth. Earth's Xe cannot be derived by an uncontrived mass fractionating process acting on any known type of Solar System Xe. Earth is a stranger, made from different stuff than any known meteorite or Mars or even the Sun. Who else is in Earth's family? Comets? We know nothing. Father Zeus? Data from Jupiter are good enough to show that jovian Xe is not strongly mass-fractionated but not good enough to determine whether Jupiter resembles the Earth or the Sun. Sister Venus? Noble gas data from Venus are incomplete, with Kr uncertain and Xe unmeasured. Krypton was measured by several instruments on several spacecraft. The reported Kr abundances are discrepant and were once highly controversial. These discrepancies appear to have been not so much resolved as forgotten. Xenon was not detected on Venus. Upper limits were reported for the two most abundant xenon isotopes 129Xe and 132Xe. From the limited data it is not possible to tell whether Venus's affinities lie with the solar wind, or with the chondrites, with Earth, or with none of the above. Modern spacecraft mass spectrometers are at least 100-fold more sensitive to noble gases. Sending such an instrument to Venus may be the last best hope for decrypting what Earth's noble gases have been trying to tell us.
Targeted Molecular Imaging of Cancer Cells Using MS2-Based 129 Xe NMR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, Keunhong; Netirojjanakul, Chawita; Munch, Henrik K.
Targeted, selective, and highly sensitive 129Xe NMR nanoscale biosensors have been synthesized using a spherical MS2 viral capsid, Cryptophane A molecules, and DNA aptamers. The biosensors showed strong binding specificity toward targeted lymphoma cells (Ramos line). Hyperpolarized 129Xe NMR signal contrast and hyper-CEST 129Xe MRI image contrast indicated its promise as highly sensitive hyperpolarized 129Xe NMR nanoscale biosensor for future applications in cancer detection in vivo.
Raman study of apatite amorphised with swift heavy ions under various irradiation conditions
NASA Astrophysics Data System (ADS)
Weikusat, Christian; Glasmacher, Ulrich A.; Schuster, Beatrice; Trautmann, Christina; Miletich, Ronald; Neumann, Reinhard
2011-04-01
Crystallographically oriented Durango fluorapatites were exposed to swift heavy ions (Xe, Ta, Au, U) at different irradiation conditions. Beam-induced sample modifications were investigated with respect to the effect of fluence (109-1013 ions/cm2), electronic energy loss (18-27 keV/nm), and pressure (3.6-11.5 GPa) applied during irradiation. In situ high-pressure irradiation was performed in diamond anvil cells. Confocal Raman spectroscopy was used to trace the occurring changes in the crystal lattice. Fragmentation of the crystal specimen depends on the orientation and sample thickness and was found to scale with energy loss and fluence. The radiation damage for irradiation along the c-axis was found to be larger than for the < hk0> direction, independent of the confining pressure. Observations on samples irradiated at high pressures indicate a stabilising effect, leading to reduced amorphisation in comparison to the samples irradiated without pressure.
Influence of radiation damage on ruby as a pressure gauge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuster, B.; GSI Helmholtzzentrum fuer Schwerionenforschung, Planckstr. 1, 64291 Darmstadt; Weikusat, C.
2010-11-01
This study tackles the question if ruby crystals, irradiated with energetic heavy ions, can still be used as reliable pressure sensors. The problem is linked to novel irradiation experiments, exposing pressurized samples to swift heavy-ion beams. In order to test and quantify a possible influence of radiation damage on the laser-induced fluorescence lines of ruby (Al{sub 2}O{sub 3}:Cr{sup 3+}), small crystals were exposed to different heavy ions (Xe, Au, and U) with kinetic energies of several giga-electron volt at ambient as well as high-pressure conditions. With increasing fluence (ions/cm{sup 2}), the R{sub 1} and R{sub 2} lines shift both tomore » lower wavelengths which leads to an underestimation of the pressure. An empirical correction term {epsilon} is proposed to include the irradiation damage effect into the commonly employed ruby calibration scale.« less
NMR of laser-polarized 129Xe in blood foam
NASA Technical Reports Server (NTRS)
Tseng, C. H.; Peled, S.; Nascimben, L.; Oteiza, E.; Walsworth, R. L.; Jolesz, F. A.
1997-01-01
Laser-polarized 129Xe dissolved in a foam preparation of fresh human blood was investigated. The NMR signal of 129Xe dissolved in blood was enhanced by creating a foam in which the dissolved 129Xe exchanged with a large reservoir of gaseous laser-polarized 129Xe. The dissolved 129Xe T1 in this system was found to be significantly shorter in oxygenated blood than in deoxygenated blood. The T1 of 129Xe dissolved in oxygenated blood foam was found to be approximately 21 (+/-5) s, and in deoxygenated blood foam to be greater than 40 s. To understand the oxygenation trend, T1 measurements were also made on plasma and hemoglobin foam preparations. The measurement technique using a foam gas-liquid exchange interface may also be useful for studying foam coarsening and other liquid physical properties.
An NMR Study of Microvoids in Polymers
NASA Technical Reports Server (NTRS)
Toy, James; Mattrix, Larry
1996-01-01
An understanding of polymer defect structures, like microvoids in polymeric matrices, is most crucial to their fabrication and application potential. In this project guest atoms are introduced into the microvoids in PMR-15 and NMR is used to determine microvoid sizes and locations. Xenon is a relatively inert probe that would normally not be found naturally in polymer or in NMR probe materials. There are two NMR active Xenon isotopes, Xe-129 and Xe-131. The Xe atom has a very high polarizability, which makes it sensitive to the intracrystalline environment of polymers. Interactions between the Xe atoms and the host matrix perturb and Xe electron cloud, deshielding the nuclei, and thereby expanding the range of the observed NMR chemical shifts. This chemical shift range which may be as large as 5000 ppm, permits subtle structural and chemical effects to be studied with high sensitivity. The Xe-129-NMR line shape has been found to vary in response to changes in the pore symmetry of the framework hosts in Zeolites and Clathrasil compounds. Before exposure to Xe gas, the PMR-15 samples were dried in a vacuum oven at 150 C for 48 hours. The samples were then exposed to Xe gas at 30 psi for 72 hours and sealed in glass tubes with 1 atmosphere of Xenon gas. Xenon gas at 1 atmosphere was used to tune up the spectrometer and to set up the appropriate NMR parameters. A series of spectra were obtained interspersed with applications of vacuum and heating to drive out the adsorbed Xe and determine the role of Xe-Xe interactions in the observed chemical shift.
Structure and stability of small Li2 +(X2Σ+ g )-Xen (n = 1-6) clusters
NASA Astrophysics Data System (ADS)
Saidi, Sameh; Ghanmi, Chedli; Berriche, Hamid
2014-04-01
We have studied the structure and stability of the Li2 +(X2Σ+ g )Xe n ( n = 1-6) clusters for special symmetry groups. The potential energy surfaces of these clusters, are described using an accurate ab initio approach based on non-empirical pseudopotential, parameterized l-dependent polarization potential and analytic potential forms for the Li+Xe and Xe-Xe interactions. The pseudopotential technique has reduced the number of active electrons of Li2 +(X2Σ+ g )-Xe n ( n = 1-6) clusters to only one electron, the Li valence electron. The core-core interactions for Li+Xe are included using accurate CCSD(T) potential fitted using the analytical form of Tang and Toennies. For the Xe-Xe potential interactions we have used the analytical form of Lennard Jones (LJ6 - 12). The potential energy surfaces of the Li2 +(X2Σ+ g )Xe n ( n = 1-6) clusters are performed for a fixed distance of the Li2 +(X2Σ+ g ) alkali dimer, its equilibrium distance. They are used to extract information on the stability of the Li2 +(X2Σ+ g Xe n ( n = 1-6) clusters. For each n, the stability of the different isomers is examined by comparing their potential energy surfaces. Moreover, we have determined the quantum energies ( D 0), the zero-point-energies (ZPE) and the ZPE%. To our best knowledge, there are neither experimental nor theoretical works realized for the Li2 +(X2Σ+ g Xe n ( n = 1-6) clusters, our results are presented for the first time.
Effects of cardiac oscillations and lung volume on acinar gas mixing during apnea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackenzie, C.F.; Skacel, M.; Barnas, G.M.
1990-05-01
We evaluated the importance of cardiogenic gas mixing in the acini of 13 dogs during 2 min of apnea. 133Xe (1-2 mCi in 4 ml of saline) was injected into an alveolar region through an occluded pulmonary artery branch, and washout was measured by gamma scintillation scanning during continued occlusion or with blood flow reinstated. The monoexponential rate constant for Xe washout (XeW) was -0.4 +/- 0.08 (SE) min-1 at functional residual capacity (FRC) with no blood flow in the injected region. It decreased by more than half at lung volumes 500 ml above and 392 ml below FRC. Withmore » intact pulmonary blood flow, XeW was -1.0 +/- 0.08 (SE) min-1 at FRC, and it increased with decreasing lung volume. However, if calculated Xe uptake by the blood was subtracted from the XeW measured with blood flow intact, resulting values at FRC and at FRC + 500 ml were not different from XeW with no blood flow. Reasonable calculation of Xe blood uptake at 392 ml below FRC was not possible because airway closure, increased shunt, and other factors affect XeW. After death, no significant XeW could be measured, which suggests that XeW caused by molecular diffusion was small. We conclude that (1) the effect of heart motion on the lung parenchyma increases acinar gas mixing during apnea, (2) this effect diminishes above or below FRC, and (3) there is probably no direct effect of pulmonary vascular pulsatility on acinar gas mixing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Razhev, A M; Kargapol'tsev, E S; Churkin, D S
Results of an experimental study of the influence of a gas mixture (laser active medium) composition on an output energy and total efficiency of gas-discharge excimer lasers on ArF* (193 nm), KrCl* (222 nm), KrF* (248 nm) and XeCl* (308 nm) molecules operating without a buffer gas are presented. The optimal ratios of gas components (from the viewpoint of a maximum output energy) of an active medium are found, which provide an efficient operation of laser sources. It is experimentally confirmed that for gas-discharge excimer lasers on halogenides of inert gases the presence of a buffer gas in an activemore » medium is not a necessary condition for efficient operation. For the first time, in two-component gas mixtures of repetitively pulsed gas-discharge excimer lasers on electron transitions of excimer molecules ArF*, KrCl*, KrF* and XeCl*, the pulsed energy of laser radiation obtained under pumping by a transverse volume electric discharge in a low-pressure gas mixture without a buffer gas reached up to 170 mJ and a high pulsed output power (of up to 24 MW) was obtained at a FWHM duration of the KrF-laser pulse of 7 ns. The maximal total efficiency obtained in the experiment with two-component gas mixtures of KrF and XeCl lasers was 0.8%. (lasers)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yonas, H.; Steed, D.L.; Latchaw, R.E.
Operative intervention remains controversial for patients with transient nonhemispheric symptoms with occlusive disease of both the anterior and posterior cerebral circulations. In addition to the standard evaluation of these patients, we have used stable xenon-enhanced computed tomographic mapping of cerebral blood flow (Xe/CT CBF). This relatively new and potentially widely available CBF methodology, by measuring approximately 30,000 CBF values within each of three CT levels, provides a readily interpretable means of evaluating extremes of hemodynamic compromise within any or all vascular territories. In the past 30 months, Xe/CT CBF studies in 300 patients with occlusive vascular disease have identified ninemore » patients with global low flow and nonhemispheric symptoms (vertigo, lightheadedness, and/or blurred vision). Blood pressures determined by ocular pneumoplethysmography of Gee were markedly abnormal with reduced ocular/brachial ratios. Each patient had a combination of both segmental carotid and vertebrobasilar occlusive disease. Each patient had a flow-augmenting procedure performed on the anterior circulation in an attempt to improve global flow: carotid endarterectomy (two patients), subclavian-external carotid bypass (one patient), and superficial temporal artery-middle cerebral artery bypass (six patients). In each case disabling transient symptoms were relieved. There were no operative deaths, but one stroke occurred, probably as a result of a brief period of postoperative hypotension. Postoperative Xe/CT CBF studies show a long-term improved global CBF in all patients.« less
21 CFR 868.1150 - Indwelling blood carbon dioxide partial pressure (PCO2) analyzer.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Indwelling blood carbon dioxide partial pressure....1150 Indwelling blood carbon dioxide partial pressure (PCO2) analyzer. (a) Identification. An indwelling blood carbon dioxide partial pressure PCO2 analyzer is a device that consists of a catheter-tip...
21 CFR 868.1150 - Indwelling blood carbon dioxide partial pressure (PCO2) analyzer.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Indwelling blood carbon dioxide partial pressure....1150 Indwelling blood carbon dioxide partial pressure (PCO2) analyzer. (a) Identification. An indwelling blood carbon dioxide partial pressure PCO2 analyzer is a device that consists of a catheter-tip...
21 CFR 868.1150 - Indwelling blood carbon dioxide partial pressure (PCO2) analyzer.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Indwelling blood carbon dioxide partial pressure....1150 Indwelling blood carbon dioxide partial pressure (PCO2) analyzer. (a) Identification. An indwelling blood carbon dioxide partial pressure PCO2 analyzer is a device that consists of a catheter-tip...
21 CFR 868.1150 - Indwelling blood carbon dioxide partial pressure (PCO2) analyzer.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Indwelling blood carbon dioxide partial pressure....1150 Indwelling blood carbon dioxide partial pressure (PCO2) analyzer. (a) Identification. An indwelling blood carbon dioxide partial pressure PCO2 analyzer is a device that consists of a catheter-tip...
Park, Marcelo; Mendes, Pedro Vitale; Costa, Eduardo Leite Vieira; Barbosa, Edzangela Vasconcelos Santos; Hirota, Adriana Sayuri; Azevedo, Luciano Cesar Pontes
2016-01-01
Objective The aim of this study was to explore the factors associated with blood oxygen partial pressure and carbon dioxide partial pressure. Methods The factors associated with oxygen - and carbon dioxide regulation were investigated in an apneic pig model under veno-venous extracorporeal membrane oxygenation support. A predefined sequence of blood and sweep flows was tested. Results Oxygenation was mainly associated with extracorporeal membrane oxygenation blood flow (beta coefficient = 0.036mmHg/mL/min), cardiac output (beta coefficient = -11.970mmHg/L/min) and pulmonary shunting (beta coefficient = -0.232mmHg/%). Furthermore, the initial oxygen partial pressure and carbon dioxide partial pressure measurements were also associated with oxygenation, with beta coefficients of 0.160 and 0.442mmHg/mmHg, respectively. Carbon dioxide partial pressure was associated with cardiac output (beta coefficient = 3.578mmHg/L/min), sweep gas flow (beta coefficient = -2.635mmHg/L/min), temperature (beta coefficient = 4.514mmHg/ºC), initial pH (beta coefficient = -66.065mmHg/0.01 unit) and hemoglobin (beta coefficient = 6.635mmHg/g/dL). Conclusion In conclusion, elevations in blood and sweep gas flows in an apneic veno-venous extracorporeal membrane oxygenation model resulted in an increase in oxygen partial pressure and a reduction in carbon dioxide partial pressure 2, respectively. Furthermore, without the possibility of causal inference, oxygen partial pressure was negatively associated with pulmonary shunting and cardiac output, and carbon dioxide partial pressure was positively associated with cardiac output, core temperature and initial hemoglobin. PMID:27096671
Ion Species Fractions in the Far-Field Plume of a High-Specific Impulse Hall Thruster
NASA Technical Reports Server (NTRS)
Hofer, Richard R.; Gallimore, Alec D.
2003-01-01
An ExB probe was used to measure the ion species fractions of Xe(+), Xe(2+), and Xe(3+) in the far-field plume of the NASA-173Mv2 laboratory-model Hall thruster. The thruster was operated at a constant xenon flow rate of 10 milligrams per second and discharge voltages of 300 to 900 V. The ExB probe was placed two meters downstream of the thruster exit plane on the thruster centerline. At a discharge voltage of 300 V, the species fractions of Xe(2+) and Xe(3+) were lower, but still consistent with, previous Hall thruster studies using other mass analyzers. Over discharge voltages of 300 to 900 V, the Xe(2+) species fractions increased from 0.04 to 0.12 and the Xe(3+) species fraction increased from 0.01 to 0.02.
NASA Technical Reports Server (NTRS)
Musselwhite, Donald S.; Drake, Michael J.; Swindle, Timothy D.
1992-01-01
Argon and Xe in the Martian atmosphere are radiogenic relative to the Martian mantle if the SNC meteorites are from Mars. Decay of the short lived isotope I-129 to Xe-129 (t sub 1/2 = 16 m.y.) is the most plausible source of the radiogenic Xe. This short half life constrains any process responsible for the elevated Xe-129/Xe-132 ratio of the Martian atmosphere to occur very early in solar system history. Musselwhite et al. proposed that the differential solubility of I and Xe in liquid water played a key role in producing the radiogenic signature in the Martian atmosphere. Here we explore an alternative hypothesis involving purely igneous processes, and motivated in part by new experimental results on the partitioning of I and Xe between minerals and melt.
NASA Astrophysics Data System (ADS)
Lucas, Michael P.; Emery, Joshua P.; Pinilla-Alonso, Noemi; Lindsay, Sean S.; Lorenzi, Vania
2016-10-01
The Hungaria region represents a "purgatory" for the closest, preserved samples of the material from which the terrestrial planets accreted. The Hungaria region harbors a collisional family of Xe-type asteroids, which are situated among a background of predominantly S-complex asteroids. Deciphering their surface composition may provide constraints on the nature of the primordial building blocks of the terrestrial planets. We hypothesize that planetesimals in the inner part of the primordial asteroid belt experienced partial- to full-melting and differentiation, the Hungaria region should retain any petrologically-evolved material that formed there.We have undertaken an observational campaign entitled the Hungaria Asteroid Region Telescopic Spectral Survey (HARTSS) to record near-infrared (NIR) spectra to characterize taxonomy, surface mineralogy, and potential meteorite analogs. We used NIR instruments at two ground-based facilities (NASA IRTF; TNG). Our data set includes spectra of 82 Hungaria asteroids (61 background; 21 family), 65 were observed during HARTSS. We compare S-complex background asteroids to calibrations developed via laboratory analyses of ordinary chondrites, and to our analyses (EPMA, XRD, VIS+NIR spectra) of 11 primitive achondrite (acapulcoite-lodranite clan) meteorites.We find that stony S-complex asteroids dominate the Hungaria background population (~80%). Background objects exhibit considerable spectral diversity, when quantified by spectral band parameter measurements, translates to a variety of surface compositions. Two main meteorite groups are represented within the Hungaria background: unmelted, nebular L chondrites (and/or L chondrites), and partially-melted primitive achondrites. H-chondrite mineralogies appear to be absent from the Hungaria background. Xe-type Hungaria family members exhibit spectral homogeneity, consistent with the hypothesis that the family was derived from the disruption of a parent body analogous to an enstatite achondrite (i.e., aubrite) composition. Hungaria region asteroids exhibit a full range of petrologic evolution, from nebular, unmelted ordinary chondrites, through partially-melted primitive achondrites, to fully-melted igneous aubrite meteorites.
NASA Astrophysics Data System (ADS)
O'Mara, A.; Busemann, H.; Clay, P. L.; Crowther, S. A.; Gilmour, J. D.; Wieler, R.
2014-09-01
Xenon detection in comet Wild 2 stardust is hampered by the large adsorption of Xe on aerogel. In-vacuum etching presented here may enable the stepwise separation of terrestrial Xe, cometary Xe trapped in melted aerogel and Xe in cometary silicates.
Neutron-induced Backgrounds in 134Xe for Large-Scale Neutrinoless Double-Beta Decay Experiments
NASA Astrophysics Data System (ADS)
Moriguchi, Nina; Kidd, Mary; Tornow, Werner
2016-09-01
136Xe is used in large neutrinoless double-beta (0 νββ) decay experiments, such as KamLAND- Zen and EXO 200. Though highly purified, 136Xe still contains a significant amount of 134Xe. Recently, a new nuclear energy level was found in 134Xe. If 134Xe decays from this proposed excited state, it will emit a 2485.7 keV gamma ray. Because this energy lies near the region of interest of 136Xe νββ decay experiments (Q value 2457.8 keV), it could make a significant contribution to the background. A purified gaseous sample of 134Xe will be irradiated with neutrons of an incident energy of 4.0 MeV at Triangle Universities Nuclear Laboratory and monitored with high-purity germanium detectors. The spectra obtained from these detectors will be analyzed for the presence of the 2581 keV gamma ray. We will report on the status of this experiment. Future plans include expanding this measurement to higher initial neutron energies. Tennesse Tech University CISE Grant program.
Biological Studies with Laser-Polarized ^129Xe
NASA Astrophysics Data System (ADS)
Tseng, C. H.; Oteiza, E. R.; Wong, G. A.; Walsworth, R. L.; Albert, M. S.; Nascimben, L.; Peled, S.; Sakai, K.; Jolesz, F. A.
1996-05-01
We have studied several biological systems using laser-polarized ^129Xe. In certain tissues magnetic resonance imaging (MRI) using inhaled laser-polarized noble gases may provide images superior to those from conventional proton MRI. High resolution laser-polarized ^3He images of air spaces in the human lung were recently obtained by the Princeton/Duke group. However, ^3He is not very soluble in tissue. Therefore, we are using laser polarized ^129Xe (tissue-soluble), with the long term goal of biomedical functional imaging. We have investigated multi-echo and multi-excitation magnetic resonance detection schemes to exploit the highly non-thermal ^129Xe magnetization produced by the laser polarization technique. We have inhalated live rats with laser-polarized ^129Xe gas and measured three distinct ^129Xe tissue resonances that last 20 to 40 sec. As a demonstration, we obtained a laser polarized ^129Xe image of the human oral cavity. Currently we are measuring the polarization lifetime of ^129Xe dissolved in human blood, the biological transporting medium. These studies and other recent developments will be reported.
Improvements of low-level radioxenon detection sensitivity by a state-of-the art coincidence setup.
Cagniant, A; Le Petit, G; Gross, P; Douysset, G; Richard-Bressand, H; Fontaine, J-P
2014-05-01
The ability to quantify isotopic ratios of 135, 133 m, 133 and 131 m radioxenon is essential for the verification of the Comprehensive Nuclear-Test Ban Treaty (CTBT). In order to improve detection limits, CEA has developed a new on-site setup using photon/electron coincidence (Le Petit et al., 2013. J. Radioanal. Nucl. Chem., DOI : 10.1007/s 10697-013-2525-8.). Alternatively, the electron detection cell equipped with large silicon chips (PIPS) can be used with HPGe detector for laboratory analysis purpose. This setup allows the measurement of β/γ coincidences for the detection of (133)Xe and (135)Xe; and K-shell Conversion Electrons (K-CE)/X-ray coincidences for the detection of (131m)Xe, (133m)Xe and (133)Xe as well. Good energy resolution of 11 keV at 130 keV and low energy threshold of 29 keV for the electron detection were obtained. This provides direct discrimination between K-CE from (133)Xe, (133m)Xe and (131m)Xe. Estimation of Minimum Detectable Activity (MDA) for (131m)Xe is in the order of 1mBq over a 4 day measurement. An analysis of an environmental radioxenon sample using this method is shown. © 2013 The Authors. Published by Elsevier Ltd All rights reserved.
Characterization of form variants of Xenorhabdus luminescens.
Gerritsen, L J; de Raay, G; Smits, P H
1992-01-01
From Xenorhabdus luminescens XE-87.3 four variants were isolated. One, which produced a red pigment and antibiotics, was luminescent, and could take up dye from culture media, was considered the primary form (XE-red). A pink-pigmented variant (XE-pink) differed from the primary form only in pigmentation and uptake of dye. Of the two other variants, one produced a yellow pigment and fewer antibiotics (XE-yellow), while the other did not produce a pigment or antibiotics (XE-white). Both were less luminescent, did not take up dye, and had small cell and colony sizes. These two variants were very unstable and shifted to the primary form after 3 to 5 days. It was not possible to separate the primary form and the white variant completely; subcultures of one colony always contained a few colonies of the other variant. The white variant was also found in several other X. luminescens strains. DNA fingerprints showed that all four variants are genetically identical and are therefore derivatives of the same parent. Protein patterns revealed a few differences among the four variants. None of the variants could be considered the secondary form. The pathogenicity of the variants decreased in the following order: XE-red, XE-pink, XE-yellow, and XE-white. The mechanism and function of this variability are discussed. Images PMID:1622273
Nuclear spin-spin coupling in a van der Waals-bonded system: xenon dimer.
Vaara, Juha; Hanni, Matti; Jokisaari, Jukka
2013-03-14
Nuclear spin-spin coupling over van der Waals bond has recently been observed via the frequency shift of solute protons in a solution containing optically hyperpolarized (129)Xe nuclei. We carry out a first-principles computational study of the prototypic van der Waals-bonded xenon dimer, where the spin-spin coupling between two magnetically non-equivalent isotopes, J((129)Xe - (131)Xe), is observable. We use relativistic theory at the four-component Dirac-Hartree-Fock and Dirac-density-functional theory levels using novel completeness-optimized Gaussian basis sets and choosing the functional based on a comparison with correlated ab initio methods at the nonrelativistic level. J-coupling curves are provided at different levels of theory as functions of the internuclear distance in the xenon dimer, demonstrating cross-coupling effects between relativity and electron correlation for this property. Calculations on small Xe clusters are used to estimate the importance of many-atom effects on J((129)Xe - (131)Xe). Possibilities of observing J((129)Xe - (131)Xe) in liquid xenon are critically examined, based on molecular dynamics simulation. A simplistic spherical model is set up for the xenon dimer confined in a cavity, such as in microporous materials. It is shown that the on the average shorter internuclear distance enforced by the confinement increases the magnitude of the coupling as compared to the bulk liquid case, rendering J((129)Xe - (131)Xe) in a cavity a feasible target for experimental investigation.
Xe/Kr Selectivity Measurements using AgZ-PAN at Various Temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garn, Troy Gerry; Greenhalgh, Mitchell Randy; Watson, Tony Leroy
2015-05-01
In preparation for planned FY-15 Xe/Kr multi-column testing, a series of experiments were performed to determine the selectivity of Xe over Kr using the silver converted mordenite-polyacrylonitrile (AgZ-PAN) sorbent. Results from these experiments will be used for parameter selection guidelines to define test conditions for Kr gas capture purity evaluations later this year. The currently configured experimental test bed was modified by installing a new cooling apparatus to permit future multi-column testing with independent column temperature control. The modified test bed will allow for multi-column testing to facilitate a Xe separation followed by a Kr separation using engineered form sorbents.more » Selectivity experiments were run at temperatures of 295, 250 and 220 K. Two feed gas compositions of 1000 ppmv Xe, 150 ppmv Kr in either a He or an air balance were used. AgZ-PAN sorbent selectivity was calculated using Xe and Kr capacity determinations. AgZ-PAN sorbent selectivities for Xe over Kr of 72 were calculated at room temperature (295 K) using the feed gas with a He balance and 34 using the feed gas with an air balance. As the test temperatures were decreased the selectivity of Xe over Kr also decreased due to an increase in both Xe and Kr capacities. At 220 K, the sorbent selectivities for Xe over Kr were 22 using the feed gas with a He balance and 28 using the feed gas with an air balance. The selectivity results indicate that AgZ-PAN used in the first column of a multi-column configuration will provide adequate partitioning of Xe from Kr in the tested temperature range to produce a more pure Kr end product for collection.« less
Greene, Derek L; Kang, Seungwoo; Hoshi, Naoto
2017-07-01
M-channel inhibitors, especially XE991, are being used increasingly in animal experiments; however, insufficient characterization of XE991 at times confounds the interpretation of results when using this compound. Here, we demonstrate that XE991 and linopirdine are state-dependent inhibitors that favor the activated-subunit of neuronal Kv7/KCNQ channels. We performed patch-clamp experiments on homomeric Kv7.2 or heteromeric Kv7.2/3 channels expressed in Chinese hamster ovary cells to characterize XE991 and linopirdine. Neither inhibitor was efficacious around the resting membrane potential of cells in physiologic conditions. Inhibition of Kv7.2 and Kv7.2/3 channels by XE991 was closely related with channel activation. When the voltage dependence of activation was left-shifted by retigabine or right-shifted by the mutation, Kv7.2(R214D), the shift in half-activation voltage proportionally coincided with the shift in the half-effective potential for XE991 inhibition. Inhibition kinetics during XE991 wash-in was facilitated at depolarized potentials. Ten-minute washout of XE991 resulted in ∼30% current recovery, most of which was attributed to surface transport of Kv7.2 channels. Linopirdine also exhibited similar inhibition characteristics, with the exception of near- complete current recovery after washout at depolarized potentials. Inhibition kinetics of both XE991 and linopirdine was not as sensitive to changes in voltage as would be predicted by open- channel inhibition. Instead, they were well explained by binding to a single activated subunit. The characteristics of XE991 and linopirdine should be taken into account when these M-channel inhibitors are used in experiments. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.
Xi, Jianqi; Liu, Bin; Xu, Haixuan; ...
2017-12-02
We presenmore » t that grain boundaries (GBs) are the most abundant structural defects in nanostructured nuclear fuels and play an important role in determining fission product behavior, which further affects the performance of nuclear fuels. In this work, cerium dioxide (CeO 2) is used as a surrogate material for mixed oxide fuels to understand gaseous fission product behavior, specifically Xe. First-principles calculations are employed to comprehensively study the behavior of Xe and trap sites for Xe near the Σ 3 (111)/[1 1 ¯ 0] grain boundary in CeO 2, which will provide guidance on overall trends for Xe stability and diffusion at grain boundaries vs in the bulk. Significant segregation behavior of trap sites, regardless of charge states, is observed near the GB. This is mainly ascribed to the local atomic structure near the GB, which results in weaker bond strength and more negative segregation energies. For Xe, however, the segregation profile near the GB is different. Our calculations show that, as the size of trap sites increases, the segregation propensity of Xe is reduced. In addition, under hyper-stoichiometric conditions, the solubility of Xe trapped at the GB is significantly higher than that in the bulk, suggesting higher Xe concentration than that in the bulk. The results of this work demonstrate that the diffusion mechanism of Xe in CeO 2 is comparable to that in UO 2. The diffusion activation energies of Xe atoms in the Σ3GB are lower than that in the bulk CeO 2. Lastly, these results suggest that the diffusivity of Xe atoms is higher along the GB than that in the bulk, which enhances the aggregation of Xe atoms near the GB.« less
NASA Astrophysics Data System (ADS)
Pravdivtseva, O.; Krot, A. N.; Hohenberg, C. M.
2018-04-01
The I-Xe system was studied in a ferromagnetic sample separated from the Orgueil CI carbonaceous chondrite with a hand-held magnet and in two magnetite samples, one chemically separated before and the other one after neutron irradiation. This work was done in order to investigate the effects of chemical separation by LiCl and NaOH on the I-Xe system in magnetite. Our test demonstrated that the chemical separation of magnetite before irradiation using either LiCl or NaOH, or both, does not contaminate the sample with iodine and thus cannot lead to erroneous I-Xe ages due to introduction of uncorrelated 128∗Xe. The I-Xe ages of two Orgueil magnetite samples are mutually consistent within experimental uncertainties and, when normalized to an absolute time scale with the reevaluated Shallowater aubrite standard, place the onset of aqueous alteration on the CI parent body at 4564.3 ± 0.3 Ma, 2.9 ± 0.3 Ma after formation of the CV Ca-AI-rich inclusions (CAIs). The I-Xe age of the ferromagnetic Orgueil separate is 3.4 Ma younger, corresponding to a closure of the I-Xe system at 4560.9 ± 0.2 Ma. These and previously published I-Xe data for Orgueil (Hohenberg et al., 2000) indicate that aqueous alteration on the CI parent body lasted for at least 5 Ma. Although the two magnetite samples gave indistinguishable I-Xe ages, their temperature release profiles differed. One of the two Orgueil magnetites released less radiogenic Xe than the other, 80% of it corresponding to the low-temperature peak of the release profile, compared to only 6% in case of the second Orgueil magnetite sample. This could be due to the difference in iodine trapping efficiencies for magnetite grains of different morphologies. Alternatively, the magnetite grains with the lower radiogenic Xe concentrations may have formed at a later stage of alteration when iodine in an aqueous solution was depleted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xi, Jianqi; Liu, Bin; Xu, Haixuan
We presenmore » t that grain boundaries (GBs) are the most abundant structural defects in nanostructured nuclear fuels and play an important role in determining fission product behavior, which further affects the performance of nuclear fuels. In this work, cerium dioxide (CeO 2) is used as a surrogate material for mixed oxide fuels to understand gaseous fission product behavior, specifically Xe. First-principles calculations are employed to comprehensively study the behavior of Xe and trap sites for Xe near the Σ 3 (111)/[1 1 ¯ 0] grain boundary in CeO 2, which will provide guidance on overall trends for Xe stability and diffusion at grain boundaries vs in the bulk. Significant segregation behavior of trap sites, regardless of charge states, is observed near the GB. This is mainly ascribed to the local atomic structure near the GB, which results in weaker bond strength and more negative segregation energies. For Xe, however, the segregation profile near the GB is different. Our calculations show that, as the size of trap sites increases, the segregation propensity of Xe is reduced. In addition, under hyper-stoichiometric conditions, the solubility of Xe trapped at the GB is significantly higher than that in the bulk, suggesting higher Xe concentration than that in the bulk. The results of this work demonstrate that the diffusion mechanism of Xe in CeO 2 is comparable to that in UO 2. The diffusion activation energies of Xe atoms in the Σ3GB are lower than that in the bulk CeO 2. Lastly, these results suggest that the diffusivity of Xe atoms is higher along the GB than that in the bulk, which enhances the aggregation of Xe atoms near the GB.« less
Xenon NMR of liquid crystals confined to cylindrical nanocavities: a simulation study.
Karjalainen, Jouni; Vaara, Juha; Straka, Michal; Lantto, Perttu
2015-03-21
Applications of liquid crystals (LCs), such as smart windows and the ubiquitous display devices, are based on controlling the orientational and translational order in a small volume of LC medium. Hence, understanding the effects of confinement to the liquid crystal phase behaviour is essential. The NMR shielding of (129)Xe atoms dissolved in LCs constitutes a very sensitive probe to the details of LC environment. Linking the experimental results to microscopic phenomena calls for molecular simulations. In this work, the NMR shielding of atomic (129)Xe dissolved in a uniaxial thermotropic LC confined to nanosized cylindrical cavities is computed from coarse-grained (CG) isobaric Monte Carlo (MC) simulations with a quantum-chemically (QC) pre-parameterised pairwise-additive model for the Xe nuclear shielding tensor. We report the results for the (129)Xe nuclear shielding and its connection to the structure and order of the LC appropriate to two different cavity sizes, as well as a comparison to the results of bulk (non-confined) simulations. We find that the confinement changes the LC phase structure dramatically and gives rise to the coexistence of varying degrees of LC order, which is reflected in the Xe shielding. Furthermore, we qualitatively reproduce the behaviour of the mean (129)Xe chemical shift with respect to temperature for atomic Xe dissolved in LC confined to controlled-pore glass materials. In the small-radius cavity the nematic - paranematic phase transition is revealed only by the anisotropic component of the (129)Xe nuclear shielding. In the larger cavity, the nematic - paranematic - isotropic transition is clearly seen in the Xe shielding. The simulated (129)Xe NMR shielding is insensitive to the smectic-A - nematic transition, since in the smectic-A phase, the Xe atoms largely occupy the imperfect layer structure near the cavity walls. The direct contribution of the cavity wall to (129)Xe nuclear shielding is dependent on the cavity size but independent of temperature. Our results show that the combination of CG simulations and a QC pre-parameterised (129)Xe NMR shielding allows efficient studies of the phase behaviour and structure of complex systems containing thousands of molecules, and brings us closer to the simulation of NMR experiments.
21 CFR 868.1200 - Indwelling blood oxygen partial pressure (PO2) analyzer.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Indwelling blood oxygen partial pressure (PO2... Indwelling blood oxygen partial pressure (PO2) analyzer. (a) Identification. An indwelling blood oxygen... electrode) and that is used to measure, in vivo, the partial pressure of oxygen in blood to aid in...
21 CFR 868.1200 - Indwelling blood oxygen partial pressure (PO2) analyzer.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Indwelling blood oxygen partial pressure (PO2... Indwelling blood oxygen partial pressure (PO2) analyzer. (a) Identification. An indwelling blood oxygen... electrode) and that is used to measure, in vivo, the partial pressure of oxygen in blood to aid in...
21 CFR 868.1200 - Indwelling blood oxygen partial pressure (PO2) analyzer.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Indwelling blood oxygen partial pressure (PO2... Indwelling blood oxygen partial pressure (PO2) analyzer. (a) Identification. An indwelling blood oxygen... electrode) and that is used to measure, in vivo, the partial pressure of oxygen in blood to aid in...
21 CFR 868.1200 - Indwelling blood oxygen partial pressure (PO2) analyzer.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Indwelling blood oxygen partial pressure (PO2... Indwelling blood oxygen partial pressure (PO2) analyzer. (a) Identification. An indwelling blood oxygen... electrode) and that is used to measure, in vivo, the partial pressure of oxygen in blood to aid in...
21 CFR 868.1200 - Indwelling blood oxygen partial pressure (PO2) analyzer.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Indwelling blood oxygen partial pressure (PO2... Indwelling blood oxygen partial pressure (PO2) analyzer. (a) Identification. An indwelling blood oxygen... electrode) and that is used to measure, in vivo, the partial pressure of oxygen in blood to aid in...
NASA Astrophysics Data System (ADS)
Zahnle, K. J.
2017-12-01
Xenon is one of the major goals of proposed missions to Venus. This talk explains why xenon is important to understanding the evolution of Venus's atmosphere. Implications for the historic climate of Venus add a new wrinkle in the story. Xenon's 9 stable isotopes can tell us much about the contrasting histories of Earth, Mars, and Venus. Earth's atmospheric Xe is highly mass fractionated compared to any known solar system source. Moreover, Earth's Xe/Kr ratio is low. It would seem that our heaviest gas has been escaping. What is even more remarkable, Xe escape took place for billions of years until the advent of an O2 atmosphere (Srinivasan EPSL 31:129 (1976); Pujol et al. EPSL 308:298 (2011); Avice et al. Nature Comm 8 (2017)). (ii) Earth's original xenon - what Pepin named U-Xe and claimed was the true solar Xe - had not been seen anywhere else until this year, when the secret parent of U-Xe was found hiding in Comet 67P/Churyumov-Gerasimenko by Rosetta (Marty et al. Science 356:1069 (2017)). Apparently 20% of Earth's xenon came from this kind of comet. This has obvious consequences for volatiles in general. Mars's Xe is also strongly mass fractionated, but its original Xe is indistinguishable from solar Xe, which means that Xe escape is a planetary process that operated in parallel on the two planets. (iii) 7% of Earth's 129Xe are radiogenic daughters of extinct 129I, half-life 15.7 Myrs. This is only 1% of the radiogenic 129Xe that Earth would have had had Earth retained its full cosmic birthright. The missing 129Xe can be interpreted as dating the Moon-forming impact to 100 Myrs after the solar system formed. Venus will be different. Xenon loss probably requires escape as an ion, and therefore it likely depends on hydrogen escape and an organized planetary magnetic field. Xenon escape during Earth's Archean implies that hydrogen was abundant and that the planetary magnetic field was strong. Venus will have seen a different history of escape, so that the mass fractionation will be different, and if Venus had enjoyed a temperate phase, it might even prove remarkable. It is unlikely that Venus received the same mix of CG67-like comets versus asteroids, so the proportion of U-Xe will be different. Finally, the timing of the last giant impact is likely to have been stochastic, so that Venus's pool of radiogenic 129Xe will be different.
1994-11-01
separation of a stable, negatively charged exciplex such as (ClXe2)- and a self- trapped positive hole (STi) localized on a Xe+ (n = 2-3) molecule. The first...solid to form Xe + HO + 2hv -- Xe÷ (HCI)-, which quickly reacts with another Xe atom to form the more stable tri-atomic exciplex X407. This exciplex ...Transfer Reaction Dynamics in Rare Gas Solids. I. Photodynamics of Localized Xenon Chloride Exciplexes ." Journal of Chemical Physics. vol. 85, p. 5660
Production of pure 133mXe for CTBTO
NASA Astrophysics Data System (ADS)
Peräjärvi, K.; Eronen, T.; Gorelov, D.; Hakala, J.; Jokinen, A.; Kettunen, H.; Kolhinen, V.; Laitinen, M.; Moore, I. D.; Penttilä, H.; Rissanen, J.; Saastamoinen, A.; Toivonen, H.; Turunen, J.; Äystö, J.
2014-01-01
Underground nuclear weapon detonations release gaseous species into the atmosphere. The most interesting isotopes/isomers from the detection point of view are 131mXe, 133mXe, 133Xe and 135Xe. We have developed a method that employs high-precision Penning trap mass spectrometry at the JYFLTRAP facility, the University of Jyväskylä, to produce pure calibration samples of these isotopes/isomers. Among developments this work required a new mass resolution record of a few parts-per-million. Here the status and future plans of the project are reviewed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Debasisbanerjee, Debasis; Simon, Cory; Elsaidi, Sameh
The global demand for Xe, a noble gas with applications in electronics, lighting, and the medical industry, is expected to rise significantly over the coming decades. However, the low abundance of Xe in the earth’s atmosphere and the costly cryogenic distillation process that is used to obtain Xe commercially via air separation have limited the scale of applications of Xe. A physisorption-based separation using porous materials may be a viable and cost-effective alternative to cryogenic distillation. In particular, metal-organic frameworks (MOFs) have shown promise as highly Xe-selective, porous solids. In this review, we detail the recent advances of MOFs asmore » adsorbents for noble gas adsorption/separation and the role of computer simulation in finding optimal materials for Xe adsorption.« less
Study of a rare-gas transverse fast discharge
NASA Technical Reports Server (NTRS)
Chubb, D. L.; Michels, C. J.
1979-01-01
An experimental and analytical study of a Blumlein-type transverse fast discharge operating with He and Xe are presented. An electro-optical voltage probe was used to measure the discharge voltage, and the measured voltages were in agreement with the computed voltages. The analytical model was used to predict the dependence of the discharge efficiency for producing metastables and ions on the important plasma and external circuit parameters. In He the ion efficiency is greater than the metastable efficiency, while in Xe it is the opposite; the He ion efficiencies are much larger than in Xe, while Xe metastable efficiencies are much larger than in He. These differences between Xe and He are accounted by the large dissociative recombination rate of Xe compared with He.
Sensitivity of NEXT-100 to neutrinoless double beta decay
NASA Astrophysics Data System (ADS)
Martín-Albo, J.; Muñoz Vidal, J.; Ferrario, P.; Nebot-Guinot, M.; Gómez-Cadenas, J. J.; Álvarez, V.; Azevedo, C. D. R.; Borges, F. I. G.; Cárcel, S.; Carrión, J. V.; Cebrián, S.; Cervera, A.; Conde, C. A. N.; Díaz, J.; Diesburg, M.; Esteve, R.; Fernandes, L. M. P.; Ferreira, A. L.; Freitas, E. D. C.; Goldschmidt, A.; González-Díaz, D.; Gutiérrez, R. M.; Hauptman, J.; Henriques, C. A. O.; Hernando Morata, J. A.; Herrero, V.; Labarga, L.; Laing, A.; Lebrun, P.; Liubarsky, I.; López-March, N.; Lorca, D.; Losada, M.; Martínez-Lema, G.; Martínez, A.; Monrabal, F.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Novella, P.; Nygren, D.; Palmeiro, B.; Para, A.; Querol, M.; Renner, J.; Ripoll, L.; Rodríguez, J.; Santos, F. P.; dos Santos, J. M. F.; Serra, L.; Shuman, D.; Simón, A.; Sofka, C.; Sorel, M.; Stiegler, T.; Toledo, J. F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Webb, R.; White, J. T.; Yahlali, N.; Yepes-Ramírez, H.
2016-05-01
NEXT-100 is an electroluminescent high-pressure xenon gas time projection chamber that will search for the neutrinoless double beta (0 νββ) decay of 136Xe. The detector possesses two features of great value for 0 νββ searches: energy resolution better than 1% FWHM at the Q value of 136Xe and track reconstruction for the discrimination of signal and background events. This combination results in excellent sensitivity, as discussed in this paper. Material-screening measurements and a detailed Monte Carlo detector simulation predict a background rate for NEXT-100 of at most 4 × 10-4 counts keV-1 kg-1 yr-1. Accordingly, the detector will reach a sensitivity to the 0 νββ-decay half-life of 2.8 × 1025 years (90% CL) for an exposure of 100 kg·year, or 6.0 × 1025 years after a run of 3 effective years. [Figure not available: see fulltext.
Sensitivity of NEXT-100 to neutrinoless double beta decay
Martín-Albo, J.; Muñoz Vidal, J.; Ferrario, P.; ...
2016-05-26
NEXT-100 is an electroluminescent high-pressure xenon gas time projection chamber that will search for the neutrinoless double beta (0νββ) decay ofmore » $$^{136}$$Xe. The detector possesses two features of great value for 0νββ searches: energy resolution better than 1% FWHM at the Q value of $$^{136}$$Xe and track reconstruction for the discrimination of signal and background events. This combination results in excellent sensitivity, as discussed in this paper. Material-screening measurements and a detailed Monte Carlo detector simulation predict a background rate for NEXT-100 of at most 4 × 10$$^{–4}$$ counts keV$$^{–1}$$ kg$$^{–1}$$ yr$$^{–1}$$. Furthermore, the detector will reach a sensitivity to the 0νββ-decay half-life of 2.8 × 10$$^{25}$$ years (90% CL) for an exposure of 100 kg·year, or 6.0 × 10$$^{25}$$ years after a run of 3 effective years.« less
Cabasse, Amélie; Machinet, Guillaume; Dubrouil, Antoine; Cormier, Eric; Constant, Eric
2012-11-15
High-repetition-rate sources are very attractive for high-order harmonic generation (HHG). However, due to their pulse characteristics (low energy, long duration), those systems require a tight focusing geometry to achieve the necessary intensity to generate harmonics. In this Letter, we investigate theoretically and experimentally the optimization of HHG in this geometry, to maximize the extreme UV (XUV) photon flux and improve the conversion efficiency. We analyze the influence of atomic gas media (Ar, Kr, or Xe), gas pressure, and interaction geometries (a gas jet and a finite and a semi-infinite gas cell). Numerical simulations allow us to define optimal conditions for HHG in this tight focusing regime and to observe the signature of on-axis phase matching. These conditions are implemented experimentally using a high-repetition-rate Yb-doped fiber laser system. We achieve optimization of emission with a recorded XUV photon flux of 4.5×10(12) photons/s generated in Xe at 100 kHz repetition rate.
NASA Astrophysics Data System (ADS)
Nygren, David
2015-10-01
To proceed toward effective ``discovery class'' ton-scale detectors in the search for neutrino-less double beta decay, a robust technique for rejection of all radioactivity-induced backgrounds is urgently needed. An efficient technique for detection of the barium daughter in the decay 136Xe -->136Ba + 2e- would provide a long-sought pathway toward this goal. Single-molecule fluorescent imaging appears to offer a new way to detect the barium daughter atom, which emerges naturally in an ionized state in pure xenon. A doubly charged barium ion can initiate a chelation process with a non-fluorescent precursor molecule, leading to a highly fluorescent complex. Repeated photo-excitation of the complex can reveal both presence and location of a single ionized atom with high precision and selectivity. Detection within the active volume of a xenon gas Time Projection Chamber operating at high pressure would be automatic, and with a capability for redundant confirmation.
PandaX-III neutrinoless double beta decay experiment
NASA Astrophysics Data System (ADS)
Wang, Shaobo; PandaX-III Collaboration
2017-09-01
The PandaX-III experiment uses high pressure Time Projection Chambers (TPCs) to search for neutrinoless double-beta decay of Xe-136 with high energy resolution and sensitivity at the China Jin-Ping underground Laboratory II (CJPL-II). Fine-pitch Microbulk Micromegas will be used for charge amplification and readout in order to reconstruct both the energy and track of the neutrinoless double-beta decay event. In the first phase of the experiment, the detector, which contains 200 kg of 90% Xe-136 enriched gas operated at 10 bar, will be immersed in a large water tank to ensure 5 m of water shielding. For the second phase, a ton-scale experiment with multiple TPCs will be constructed to improve the detection probability and sensitivity. A 20-kg scale prototype TPC with 7 Micromegas modules has been built to optimize the design of Micromegas readout module, study the energy calibration of TPC and develop algorithm of 3D track reconstruction.
Liu, Haixia; Jia, Lu; Chen, Xiaoyan; Shi, Limin; Xie, Junxia
2018-03-01
The excitability of dopaminergic neurons in the substantia nigra pars compacta (SNc) that supply the striatum with dopamine (DA) determines the function of the nigrostriatal system for motor coordination. We previously showed that 4-pyridinylmethyl-9(10H)-anthracenone (XE991), a specific blocker of Kv7/KCNQ channels, enhanced the excitability of nigral DA neurons and resulted in attenuation of haloperidol-induced catalepsy in a Parkinson's disease (PD) rat model. However, whether XE991 exhibits neuroprotective effects towards DA neuron degeneration remains unknown. The aim of this study was to investigate the effects of Kv7/KCNQ channel blocker, XE991, on 6-hydroxydopamine (6-OHDA)-induced nigral DA neuron degeneration and motor dysfunction. Using immunofluorescence staining and western blotting, we showed that intracerebroventricular administration of XE991 prevented the 6-OHDA-induced decrease in tyrosine hydroxylase (TH)-positive neurons and TH protein expression in the SNc. High-performance liquid chromatography with electrochemical detection (HPLC-ECD) also revealed that XE991 partly restored the levels of DA and its metabolites in the striatum. Moreover, XE991 decreased apomorphine (APO)-induced contralateral rotations, enhanced balance and coordination, and attenuated muscle rigidity in 6-OHDA-treated rats. Importantly, all neuroprotective effects by XE991 were abolished by co-application of Kv7/KCNQ channel opener retigabine and XE991. Thus, Kv7/KCNQ channel inhibition by XE991 can exert neuroprotective effects against 6-OHDA-induced degeneration of the nigrostriatal DA system and motor dysfunction. Copyright © 2017. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Zhang, Youxue
1998-09-01
Patterson (1956) established that the age of Earth is close to that of meteorites. Over the last 20 years, workers argued for younger age for core differentiation based on Pb-Pb model ages and tungsten isotopic data and for gas retention based on I-Xe modeling. However, disagreement is abundant, and the young age of Earth has not been widely accepted. In this work, I examine all radiogenic noble gases in the atmosphere and use a model-independent approach and total inversion to show that (1) the Xe-closure age of Earth is 109 ± 23 million years younger than the formation of meteorite Bjurbole (˜4560 Ma) and (2) all radiogenic components of noble gases in the atmosphere can be quantitatively accounted for by production and degassing ˜60% of the bulk silicate earth. The agreement between the 129I- 129Xe clock and 244Pu- 238U- 136Xe- 134Xe- 132Xe- 131Xe clock suggests that the volatility of iodine does not affect the 129I- 129Xe clock. Earth's Xe-closure age is 4.45 ± 0.02 Ga, consistent with the model age of Pb and the 146Sm- 142Nd, 147Sm- 143Nd and 182Hf- 182W systematics. On the basis of the consistency of these ages, 4.45 ± 0.02 Ga probably represents the time when the last Martian-sized planetesimal hit Earth and reinitialized the global clocks.
Xe adsorption site distributions on Pt(111), Pt(221) and Pt(531)
NASA Astrophysics Data System (ADS)
Gellman, Andrew J.; Baker, L.; Holsclaw, B. S.
2016-04-01
The ideal structures of the Pt(111), Pt(221) and Pt(531) surfaces expose adsorption sites that can be qualitatively described as terrace sites on Pt(111), both step and terrace sites on Pt(221), and kink sites on Pt(531). The real surface structures of these surfaces can be complicated by imperfections such as misorientation, reconstruction and thermal roughening, all of which will influence their distributions of adsorption sites. Xe adsorption sites on the Pt(111), Pt(221) and Pt(531) surfaces have been probed using both photoemission of adsorbed Xe (PAX) and temperature programmed desorption (TPD) of Xe. Both PAX and Xe TPD are sensitive to the adsorption sites of the Xe and serve as complementary means of assessing the distributions of adsorption sites on these three Pt surfaces. The adsorption of Xe is sufficiently sensitive to detect the presence of residual steps on the Pt(111) surface at a density of 1.5% step atoms per Pt atom. On the Pt(221) surface, PAX and Xe TPD reveal adsorption at both terrace and step sites simultaneously. Although the ideal structure of the Pt(531) surface has no well-defined steps or terraces, Xe adsorption indicates that its adsorption sites are best described as a distribution of both step and kink sites with roughly twice as many steps sites as kinks.
Kennedy, Daniel J.; Seltzer, Scott J.; Jiménez-Martínez, Ricardo; Ring, Hattie L.; Malecek, Nicolas S.; Knappe, Svenja; Donley, Elizabeth A.; Kitching, John; Bajaj, Vikram S.; Pines, Alexander
2017-01-01
Low thermal-equilibrium nuclear spin polarizations and the need for sophisticated instrumentation render conventional nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI) incompatible with small-scale microfluidic devices. Hyperpolarized 129Xe gas has found use in the study of many materials but has required very large and expensive instrumentation. Recently a microfabricated device with modest instrumentation demonstrated all-optical hyperpolarization and detection of 129Xe gas. This device was limited by 129Xe polarizations less than 1%, 129Xe NMR signals smaller than 20 nT, and transport of hyperpolarized 129Xe over millimeter lengths. Higher polarizations, versatile detection schemes, and flow of 129Xe over larger distances are desirable for wider applications. Here we demonstrate an ultra-sensitive microfabricated platform that achieves 129Xe polarizations reaching 7%, NMR signals exceeding 1 μT, lifetimes up to 6 s, and simultaneous two-mode detection, consisting of a high-sensitivity in situ channel with signal-to-noise of 105 and a lower-sensitivity ex situ detection channel which may be useful in a wider variety of conditions. 129Xe is hyperpolarized and detected in locations more than 1 cm apart. Our versatile device is an optimal platform for microfluidic magnetic resonance in particular, but equally attractive for wider nuclear spin applications benefitting from ultra-sensitive detection, long coherences, and simple instrumentation. PMID:28266629
Kennedy, Daniel J.; Seltzer, Scott J.; Jiménez-Martínez, Ricardo; ...
2017-03-07
Low thermal-equilibrium nuclear spin polarizations and the need for sophisticated instrumentation render conventional nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI) incompatible with small-scale microfluidic devices. Hyperpolarized 129Xe gas has found use in the study of many materials but has required very large and expensive instrumentation. Recently a microfabricated device with modest instrumentation demonstrated all-optical hyperpolarization and detection of 129Xe gas. This device was limited by 129Xe polarizations less than 1%, 129Xe NMR signals smaller than 20 nT, and transport of hyperpolarized 129Xe over millimeter lengths. Higher polarizations, versatile detection schemes, and flow of 129Xe over larger distances are desirablemore » for wider applications. Here we demonstrate an ultra-sensitive microfabricated platform that achieves 129Xe polarizations reaching 7%, NMR signals exceeding 1 μT, lifetimes up to 6 s, and simultaneous two-mode detection, consisting of a high-sensitivity in situ channel with signal-to-noise of 10 5 and a lower-sensitivity ex situ detection channel which may be useful in a wider variety of conditions. 129Xe is hyperpolarized and detected in locations more than 1 cm apart. Our versatile device is an optimal platform for microfluidic magnetic resonance in particular, but equally attractive for wider nuclear spin applications benefitting from ultra-sensitive detection, long coherences, and simple instrumentation.« less
Neutron Inelastic Scattering on 134Xe at En = 5 - 8 MeV
NASA Astrophysics Data System (ADS)
Kidd, Mary; Tornow, Werner; Finch, Sean; Krishichayan, Fnu; Bhike, Megha
2017-09-01
Neutrinoless double-beta decay (0 νββ) studies are both the best way to determine the Majorana nature of the neutrino and determine its effective mass. The two main experiments searching for 0 νββ -decay of 136Xe (Q value = 2457.8 keV) are Kamland-Zen and EXO-200. Though both experiments have enriched 136Xe targets, these targets still contain significant quantities of 134Xe. Recently, a new nuclear level was discovered in 134Xe that decays to the ground state emitting a 2485.7 keV gamma ray. The γ-ray production cross section for this branch was found to be on the order of 10 mb for incident neutron energies of 2.5-4.5 MeV. Here, we have extended the investigation of this level to higher incident neutron energies, and further explore the potential neutron-induced backgrounds on both 134Xe and 136Xe for extended neutron energies. We will report our preliminary results for neutron inelastic scattering on 134Xe in applications to 0 νββ decay searches. NSF PHY-1614348, DE-FG02-97ER41033.
TEM and XAS investigation of fission gas behaviors in U-Mo alloy fuels through ion beam irradiation
NASA Astrophysics Data System (ADS)
Zang, Hang; Yun, Di; Mo, Kun; Wang, Kunpeng; Mohamed, Walid; Kirk, Marquis A.; Velázquez, Daniel; Seibert, Rachel; Logan, Kevin; Terry, Jeffrey; Baldo, Peter; Yacout, Abdellatif M.; Liu, Wenbo; Zhang, Bo; Gao, Yedong; Du, Yang; Liu, Jing
2017-10-01
In this study, smaller-grained (hundred nano-meter size grain) and larger-grained (micro-meter size grain) U-10Mo specimens have been irradiated (implanted) with 250 keV Xe+ beam and were in situ characterized by TEM. Xe bubbles were not seen in the specimen after an implantation fluence of 2 × 1020 ions/m2 at room temperature. Nucleation of Xe bubbles happened during heating of the specimen to a final temperature of 300 °C. By comparing measured Xe bubble statistics, the nucleation and growth behaviors of Xe bubbles were investigated in smaller-grained and larger-grained U-10Mo specimens. A multi-atom kind of nucleation mechanism has been observed in both specimens. X-ray Absorption spectroscopy showed the edge position in the bubbles to be the same as that of Xe gas. The size of Xe bubbles has been shown to be bigger in larger-grained specimens than in smaller-grained specimens at the same implantation conditions.
Hughes, Michael J; Mercier, Hélène P A; Schrobilgen, Gary J
2009-05-18
The adduct, (OsO(3)F(2))(2)2XeOF(4), was synthesized by dissolution of the infinite chain polymer, (OsO(3)F(2))(infinity), in XeOF(4) solvent at room temperature followed by removal of excess XeOF(4) under dynamic vacuum at 0 degrees C. Continued pumping at 0 degrees C resulted in removal of associated XeOF(4), yielding (OsO(3)F(2))(2), a new low-temperature phase of OsO(3)F(2). Upon standing at 25 degrees C for 1(1)/(2) h, (OsO(3)F(2))(2) underwent a phase transition to the known monoclinic phase, (OsO(3)F(2))(infinity). The title compounds, (OsO(3)F(2))(infinity), (OsO(3)F(2))(2), and (OsO(3)F(2))(2)2XeOF(4) have been characterized by low-temperature (-150 degrees C) Raman spectroscopy. Crystallization of (OsO(3)F(2))(2)2XeOF(4) from XeOF(4) solution at 0 degrees C yielded crystals suitable for X-ray structure determination. The structural unit contains the (OsO(3)F(2))(2) dimer in which the OsO(3)F(3) units are joined by two Os---F---Os bridges having fluorine bridge atoms that are equidistant from the osmium centers (2.117(5) and 2.107(4) A). The dimer coordinates to two XeOF(4) molecules through Os-F...Xe bridges in which the Xe...F distances (2.757(5) A) are significantly less than the sum of the Xe and F van der Waals radii (3.63 A). The (OsO(3)F(2))(2) dimer has C(i) symmetry in which each pseudo-octahedral OsO(3)F(3) unit has a facial arrangement of oxygen ligands with XeOF(4) molecules that are only slightly distorted from their gas-phase C(4v) symmetry. Quantum-chemical calculations using SVWN and B3LYP methods were employed to calculate the gas-phase geometries, natural bond orbital analyses, and vibrational frequencies of (OsO(3)F(2))(2), (OsO(3)F(2))(2)2XeOF(4), XeOF(4), OsO(2)F(4), and (mu-FOsO(3)F(2))(2)OsO(3)F(-) to aid in the assignment of the experimental vibrational frequencies of (OsO(3)F(2))(2), (OsO(3)F(2))(2)2XeOF(4), and (OsO(3)F(2))(infinity). The vibrational modes of the low-temperature polymeric phase, (OsO(3)F(2))(infinity), have been assigned by comparison with the calculated frequencies of (mu-FOsO(3)F(2))(2)OsO(3)F(-), providing more complete and reliable assignments than were previously available.
128Xe Lifetime Measurement Using the Coulex-Plunger Technique in Inverse Kinematics
NASA Astrophysics Data System (ADS)
Konstantinopoulos, T.; Lagoyannis, A.; Harissopulos, S.; Dewald, A.; Rother, W.; Ilie, G.; Jones, P.; Rakhila, P.; Greenlees, P.; Grahn, T.; Julin, R.; Balabanski, D. L.
2008-05-01
The lifetimes of the lowest collective yrast and non-yrast states in 128Xe were measured in a Coulomb excitation experiment using the recoil distance method (RDM) in inverse kinematics. Hereby, the Cologne plunger apparatus was employed together with the JUROGAM spectrometer. Excited states in 128Xe were populated using a 128Xe beam impinging on a natFe target with E(128Xe)~525 MeV. Recoils were detected by means of an array of solar cells placed at forward angles. Recoil-gated γ-spectra were measured at different plunger distances.
Mass and Double-Beta-Decay Q Value of Xe136
NASA Astrophysics Data System (ADS)
Redshaw, Matthew; Wingfield, Elizabeth; McDaniel, Joseph; Myers, Edmund G.
2007-02-01
The atomic mass of Xe136 has been measured by comparing cyclotron frequencies of single ions in a Penning trap. The result, with 1 standard deviation uncertainty, is M(Xe136)=135.907 214 484 (11) u. Combined with previous results for the mass of Ba136 [Audi, Wapstra, and Thibault, Nucl. Phys. A 729, 337 (2003)NUPABL0375-947410.1016/j.nuclphysa.2003.11.003], this gives a Q value (M[Xe136]-M[Ba136])c2=2457.83(37)keV, sufficiently precise for ongoing searches for the neutrinoless double-beta decay of Xe136.
Mass and Double-Beta-Decay Q Value of {sup 136}Xe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Redshaw, Matthew; Wingfield, Elizabeth; McDaniel, Joseph
The atomic mass of {sup 136}Xe has been measured by comparing cyclotron frequencies of single ions in a Penning trap. The result, with 1 standard deviation uncertainty, is M({sup 136}Xe)=135.907 214 484 (11) u. Combined with previous results for the mass of {sup 136}Ba [Audi, Wapstra, and Thibault, Nucl. Phys. A 729, 337 (2003)], this gives a Q value (M[{sup 136}Xe]-M[{sup 136}Ba])c{sup 2}=2457.83(37) keV, sufficiently precise for ongoing searches for the neutrinoless double-beta decay of {sup 136}Xe.
Radioxenon monitoring in Beijing following the Fukushima Daiichi NPP accident.
Shilian, Wang; Qi, Li; Qinghua, Meng; Zhanying, Chen; Yungang, Zhao; Huijuan, Li; Huaimao, Jia; Yinzhong, Chang; Shujiang, Liu; Xinjun, Zhang; Yuanqing, Fan; Ling, Wan; Yun, Lou
2013-11-01
This paper reports the brief process and results of radioxenon monitoring and analysis in Beijing following the Fukushima Daiichi nuclear power plant accident. The accident and release of volatile radionuclides were caused by 9.0 magnitude earthquake and tsunami on March 11, 2011. The maximum concentrations of (133)Xe and (131 m)Xe were in excess of 0.90 Bq.m(-3) and 0.047 Bq.m(-3), respectively. The activity ratio of (131 m)Xe to (133)Xe and the dynamic trend of (133)Xe activity concentration were analyzed. Copyright © 2013 Elsevier Ltd. All rights reserved.
Kirby, Miranda; Ouriadov, Alexei; Svenningsen, Sarah; Owrangi, Amir; Wheatley, Andrew; Etemad‐Rezai, Roya; Santyr, Giles E.; McCormack, David G.; Parraga, Grace
2014-01-01
Abstract Noble gas pulmonary magnetic resonance imaging (MRI) is transitioning away from 3He to 129Xe gas, but the physiological/clinical relevance of 129Xe apparent diffusion coefficient (ADC) parenchyma measurements is not well understood. Therefore, our objective was to generate 129Xe MRI ADC for comparison with 3He ADC and with well‐established measurements of alveolar structure and function in older never‐smokers and ex‐smokers with chronic obstructive pulmonary disease (COPD). In four never‐smokers and 10 COPD ex‐smokers, 3He (b = 1.6 sec/cm2) and 129Xe (b = 12, 20, and 30 sec/cm2) ADC, computed tomography (CT) density‐threshold measurements, and the diffusing capacity for carbon monoxide (DLCO) were measured. To understand regional differences, the anterior–posterior (APG) and superior–inferior (∆SI) ADC differences were evaluated. Compared to never‐smokers, COPD ex‐smokers showed greater 3He ADC (P = 0.006), 129Xe ADCb12 (P = 0.006), and ADCb20 (P = 0.006), but not for ADCb30 (P > 0.05). Never‐smokers and COPD ex‐smokers had significantly different APG for 3He ADC (P = 0.02), 129Xe ADCb12 (P = 0.006), and ADCb20 (P = 0.01), but not for ADCb30 (P > 0.05). ∆SI for never‐ and ex‐smokers was significantly different for 3He ADC (P = 0.046), but not for 129Xe ADC (P > 0.05). There were strong correlations for DLCO with 3He ADC and 129Xe ADCb12 (both r = −0.95, P < 0.05); in a multivariate model 129Xe ADCb12 was the only significant predictor of DLCO (P = 0.049). For COPD ex‐smokers, CT relative area <−950 HU (RA950) correlated with 3He ADC (r = 0.90, P = 0.008) and 129Xe ADCb12 (r = 0.85, P = 0.03). In conclusion, while 129Xe ADCb30 may be appropriate for evaluating subclinical or mild emphysema, in this small group of never‐smokers and ex‐smokers with moderate‐to‐severe emphysema, 129Xe ADCb12 provided a physiologically appropriate estimate of gas exchange abnormalities and alveolar microstructure. PMID:25347853
Combined Treatment of Xenon and Hypothermia in Newborn Rats - Additive or Synergistic Effect?
Sabir, Hemmen; Walløe, Lars; Dingley, John; Smit, Elisa; Liu, Xun; Thoresen, Marianne
2014-01-01
Background Breathing the inert gas Xenon (Xe) enhances hypothermic (HT) neuroprotection after hypoxia-ischemia (HI) in small and large newborn animal models. The underlying mechanism of the enhancement is not yet fully understood, but the combined effect of Xe and HT could either be synergistic (larger than the two effects added) or simply additive. A previously published study, using unilateral carotid ligation followed by hypoxia in seven day old (P7) rats, showed that the combination of mild HT (35°C) and low Xe concentration (20%), both not being neuroprotective alone, had a synergistic effect and was neuroprotective when both were started with a 4 h delay after a moderate HI insult. To examine whether another laboratory could confirm this finding, we repeated key aspects of the study. Design/Methods After the HI-insult 120 pups were exposed to different post-insult treatments: three temperatures (normothermia (NT) NT37°C, HT35°C, HT32°C) or Xe concentrations (0%, 20% or 50%) starting either immediately or with a 4 h delay. To assess the synergistic potency of Xe-HT, a second set (n = 101) of P7 pups were exposed to either HT35°C+Xe0%, NT+Xe20% or a combination of HT35°C+Xe20% starting with a 4 h delay after the insult. Brain damage was analyzed using relative hemispheric (ligated side/unligated side) brain tissue area loss after seven day survival. Results Immediate HT32°C (p = 0.042), but not HT35°C significantly reduced brain injury compared to NT37°C. As previously shown, adding immediate Xe50% to HT32°C increased protection. Neither 4 h-delayed Xe20%, nor Xe50% at 37°C significantly reduced brain injury (p>0.050). In addition, neither 4 h-delayed HT35°C alone, nor HT35°C+Xe20% reduced brain injury. We found no synergistic effect of the combined treatments in this experimental model. Conclusions Combining two treatments that individually were ineffective (delayed HT35°C and delayed Xe20%) did not exert neuroprotection when combined, and therefore did not show a synergistic treatment effect. PMID:25286345
Pairwise additivity in the nuclear magnetic resonance interactions of atomic xenon.
Hanni, Matti; Lantto, Perttu; Vaara, Juha
2009-04-14
Nuclear magnetic resonance (NMR) of atomic (129/131)Xe is used as a versatile probe of the structure and dynamics of various host materials, due to the sensitivity of the Xe NMR parameters to intermolecular interactions. The principles governing this sensitivity can be investigated using the prototypic system of interacting Xe atoms. In the pairwise additive approximation (PAA), the binary NMR chemical shift, nuclear quadrupole coupling (NQC), and spin-rotation (SR) curves for the xenon dimer are utilized for fast and efficient evaluation of the corresponding NMR tensors in small xenon clusters Xe(n) (n = 2-12). If accurate, the preparametrized PAA enables the analysis of the NMR properties of xenon clusters, condensed xenon phases, and xenon gas without having to resort to electronic structure calculations of instantaneous configurations for n > 2. The binary parameters for Xe(2) at different internuclear distances were obtained at the nonrelativistic Hartree-Fock level of theory. Quantum-chemical (QC) calculations at the corresponding level were used to obtain the NMR parameters of the Xe(n) (n = 2-12) clusters at the equilibrium geometries. Comparison of PAA and QC data indicates that the direct use of the binary property curves of Xe(2) can be expected to be well-suited for the analysis of Xe NMR in the gaseous phase dominated by binary collisions. For use in condensed phases where many-body effects should be considered, effective binary property functions were fitted using the principal components of QC tensors from Xe(n) clusters. Particularly, the chemical shift in Xe(n) is strikingly well-described by the effective PAA. The coordination number Z of the Xe site is found to be the most important factor determining the chemical shift, with the largest shifts being found for high-symmetry sites with the largest Z. This is rationalized in terms of the density of virtual electronic states available for response to magnetic perturbations.
Kaushik, S Sivaram; Freeman, Matthew S; Cleveland, Zackary I; Davies, John; Stiles, Jane; Virgincar, Rohan S; Robertson, Scott H; He, Mu; Kelly, Kevin T; Foster, W Michael; McAdams, H Page; Driehuys, Bastiaan
2013-09-01
Although some central aspects of pulmonary function (ventilation and perfusion) are known to be heterogeneous, the distribution of diffusive gas exchange remains poorly characterized. A solution is offered by hyperpolarized 129Xe magnetic resonance (MR) imaging, because this gas can be separately detected in the lung's air spaces and dissolved in its tissues. Early dissolved-phase 129Xe images exhibited intensity gradients that favored the dependent lung. To quantitatively corroborate this finding, we developed an interleaved, three-dimensional radial sequence to image the gaseous and dissolved 129Xe distributions in the same breath. These images were normalized and divided to calculate "129Xe gas-transfer" maps. We hypothesized that, for healthy volunteers, 129Xe gas-transfer maps would retain the previously observed posture-dependent gradients. This was tested in nine subjects: when the subjects were supine, 129Xe gas transfer exhibited a posterior-anterior gradient of -2.00 ± 0.74%/cm; when the subjects were prone, the gradient reversed to 1.94 ± 1.14%/cm (P < 0.001). The 129Xe gas-transfer maps also exhibited significant heterogeneity, as measured by the coefficient of variation, that correlated with subject total lung capacity (r = 0.77, P = 0.015). Gas-transfer intensity varied nonmonotonically with slice position and increased in slices proximal to the main pulmonary arteries. Despite substantial heterogeneity, the mean gas transfer for all subjects was 1.00 ± 0.01 while supine and 1.01 ± 0.01 while prone (P = 0.25), indicating good "matching" between gas- and dissolved-phase distributions. This study demonstrates that single-breath gas- and dissolved-phase 129Xe MR imaging yields 129Xe gas-transfer maps that are sensitive to altered gas exchange caused by differences in lung inflation and posture.
Temperature-Ramped 129Xe Spin-Exchange Optical Pumping
2015-01-01
We describe temperature-ramped spin-exchange optical pumping (TR-SEOP) in an automated high-throughput batch-mode 129Xe hyperpolarizer utilizing three key temperature regimes: (i) “hot”—where the 129Xe hyperpolarization rate is maximal, (ii) “warm”—where the 129Xe hyperpolarization approaches unity, and (iii) “cool”—where hyperpolarized 129Xe gas is transferred into a Tedlar bag with low Rb content (<5 ng per ∼1 L dose) suitable for human imaging applications. Unlike with the conventional approach of batch-mode SEOP, here all three temperature regimes may be operated under continuous high-power (170 W) laser irradiation, and hyperpolarized 129Xe gas is delivered without the need for a cryocollection step. The variable-temperature approach increased the SEOP rate by more than 2-fold compared to the constant-temperature polarization rate (e.g., giving effective values for the exponential buildup constant γSEOP of 62.5 ± 3.7 × 10–3 min–1 vs 29.9 ± 1.2 × 10–3 min–1) while achieving nearly the same maximum %PXe value (88.0 ± 0.8% vs 90.1% ± 0.8%, for a 500 Torr (67 kPa) Xe cell loading—corresponding to nuclear magnetic resonance/magnetic resonance imaging (NMR/MRI) enhancements of ∼3.1 × 105 and ∼2.32 × 108 at the relevant fields for clinical imaging and HP 129Xe production of 3 T and 4 mT, respectively); moreover, the intercycle “dead” time was also significantly decreased. The higher-throughput TR-SEOP approach can be implemented without sacrificing the level of 129Xe hyperpolarization or the experimental stability for automation—making this approach beneficial for improving the overall 129Xe production rate in clinical settings. PMID:25008290
Partial Pressures of Te2 and Thermodynamic Properties of Ga-Te System
NASA Technical Reports Server (NTRS)
Su, Ching-Hua; Curreri, Peter A. (Technical Monitor)
2001-01-01
The partial pressures of Te2 in equilibrium with Ga(1-x)Te(x) samples were measured by optical absorption technique from 450 to 1100 C for compositions, x, between 0.333 and 0.612. To establish the relationship between the partial pressure of Te, and the measured optical absorbance, the calibration runs of a pure Te sample were also conducted to determine the Beer's Law constants. The partial pressures of Te2 in equilibrium with the GaTe(s) and Ga2Te3(s)compounds, or the so-called three-phase curves, were established. These partial pressure data imply the existence of the Ga3Te4(s) compound. From the partial pressures of Te2 over the Ga-Te melts, partial molar enthalpy and entropy of mixing for Te were derived and they agree reasonable well with the published data. The activities of Te in the Ga-Te melts were also derived from the measured partial pressures of Te2. These data agree well with most of the previous results. The possible reason for the high activity of Te measured for x less than 0.60 is discussed.
Xe-126 Excesses: Monoisotopic Anomalies in Regolith Samples?
NASA Technical Reports Server (NTRS)
Mathew, K. J.; Marti, K.; Levskii, L. K.
2003-01-01
We present new Xe isotopic signatures of Pesyanoe regolith samples which document excesses of 126Xe and we explore the possibility that it formed by low-energy reactions on transient Te-rich coatings.
NASA Astrophysics Data System (ADS)
Xmass Collaboration; Abe, K.; Hiraide, K.; Ichimura, K.; Kishimoto, Y.; Kobayashi, K.; Kobayashi, M.; Moriyama, S.; Nakahata, M.; Norita, T.; Ogawa, H.; Sato, K.; Sekiya, H.; Takachio, O.; Takeda, A.; Tasaka, S.; Yamashita, M.; Yang, B. S.; Kim, N. Y.; Kim, Y. D.; Itow, Y.; Kanzawa, K.; Kegasa, R.; Masuda, K.; Takiya, H.; Fushimi, K.; Kanzaki, G.; Martens, K.; Suzuki, Y.; Xu, B. D.; Fujita, R.; Hosokawa, K.; Miuchi, K.; Oka, N.; Takeuchi, Y.; Kim, Y. H.; Lee, K. B.; Lee, M. K.; Fukuda, Y.; Miyasaka, M.; Nishijima, K.; Nakamura, S.
2018-05-01
We conducted an improved search for the simultaneous capture of two K-shell electrons on the ^{124}Xe and ^{126}Xe nuclei with emission of two neutrinos using 800.0 days of data from the XMASS-I detector. A novel method to discriminate γ-ray/X-ray or double electron capture signals from β-ray background using scintillation time profiles was developed for this search. No significant signal was found when fitting the observed energy spectra with the expected signal and background. Therefore, we set the most stringent lower limits on the half-lives at 2.1 × 10^{22} and 1.9 × 10^{22} years for ^{124}Xe and ^{126}Xe, respectively, with 90% confidence level. These limits improve upon previously reported values by a factor of 4.5.
Recoil distance lifetime measurements in 122,124Xe
NASA Astrophysics Data System (ADS)
Govil, I. M.; Kumar, A.; Iyer, H.; Li, H.; Garg, U.; Ghugre, S. S.; Johnson, T.; Kaczarowski, R.; Kharraja, B.; Naguleswaran, S.; Walpe, J. C.
1998-02-01
Lifetimes of the lower-excited states in 122,124Xe are measured using the recoil-distance Doppler-shift technique. The reactions 110Pd(16O,4n)122Xe and 110Pd(18O,4n)124Xe at a beam energy of 66 MeV were used for this experiment. The lifetimes of the 2+, 4+, 6+, and 8+ states of the ground state band were extracted using the computer code LIFETIME including the corrections due to the side feeding and the nuclear deorientation effects. The lifetime of the 2+ state in 122Xe agrees with the recoil distance method (RDM) measurements but for the 124Xe it does not agree with the RDM measurements but agrees with the Coulomb-excitation experiment. The measured B(E2) values for both the nuclei are compared with the standard algebraic and the multishell models.
Evaluation of the 129I Half-Life Value Through Analyses of Primitive Meteorites
NASA Astrophysics Data System (ADS)
Pravdivtseva, Olga; Meshik, Alex; Hohenberg, Charles M.
The preserved record of decay of now-extinct 129I into 129Xe forms the basis of the I-Xe chronometer. Comparison of the high precision I-Xe and Pb-Pb ages of chondrules and pure mineral phases separated from eight meteorites suggests the 17.5 ÷ 14.6 Ma range for the 129I half-life, assuming that the 235U and 238U half-lives are correct. The mean value of 16 Ma indicates that the 15.7 Ma half-life of 129I used here for the I-Xe age calculations is most probably correct. Since the 129I half-life value only affects the relative I-Xe ages, the few Ma relative to the Shallowater standard, the absolute I-Xe ages are almost immune to this uncertainty in the 129I half-life.
NASA Astrophysics Data System (ADS)
Andriichenko, N. N.; Ermilov, A. Yu.
2013-08-01
The optimum version of the DFT-D class of methods (BHHLYP-D2, 6-31G*) is chosen to describe binding in a Xe-phenol system with the aim of subsequent KM/MM calculations for complex Xe-containing protein systems. It is shown that the stability of the Xe-phenol system is due to weak dispersion interactions not described in conventional approaches using the density functional. The MP2 approach using the (aug)-cc-pVTZ basis and Stuttgart pseudopotential, which yield the best reproduction of the characteristics of a Xe2 xenon dimer, is chosen as the reference standard. It is noted that the 2010 DFT-D3 methods underestimate the binding energy by a factor of nearly three, while DFT methods without dispersion corrections do not reproduce the stability of Xe2 and Xe-phenol systems. It is found that in the best version of calculations, BHHLYP-D2, the binding energy in Xe-phenol complex is estimated to be 2.7 kcal/mol versus the 3.1 kcal/mol found using the comparative approach. It is concluded that BHHLYP-D2 adequately reproduces the difference between the two conformers of the Xe-phenol complex and trend toward an increase in binding energy in the series of aromatic amino acids (phenylalanine, tyrosine, and tryptophan). DFT-D can also indicate the existence of excess conformers that are missing in systems according to more precise descriptions (MP2/(aug)-cc-pVTZ).
Schleifenbaum, Johanna; Kassmann, Mario; Szijártó, István András; Hercule, Hantz C; Tano, Jean-Yves; Weinert, Stefanie; Heidenreich, Matthias; Pathan, Asif R; Anistan, Yoland-Marie; Alenina, Natalia; Rusch, Nancy J; Bader, Michael; Jentsch, Thomas J; Gollasch, Maik
2014-07-07
Vascular wall stretch is the major stimulus for the myogenic response of small arteries to pressure. The molecular mechanisms are elusive, but recent findings suggest that G protein-coupled receptors can elicit a stretch response. To determine whether angiotensin II type 1 receptors (AT1R) in vascular smooth muscle cells exert mechanosensitivity and identify the downstream ion channel mediators of myogenic vasoconstriction. We used mice deficient in AT1R signaling molecules and putative ion channel targets, namely AT1R, angiotensinogen, transient receptor potential channel 6 (TRPC6) channels, or several subtypes of the voltage-gated K+ (Kv7) gene family (KCNQ3, 4, or 5). We identified a mechanosensing mechanism in isolated mesenteric arteries and in the renal circulation that relies on coupling of the AT1R subtype a to a Gq/11 protein as a critical event to accomplish the myogenic response. Arterial mechanoactivation occurs after pharmacological block of AT1R and in the absence of angiotensinogen or TRPC6 channels. Activation of AT1R subtype a by osmotically induced membrane stretch suppresses an XE991-sensitive Kv channel current in patch-clamped vascular smooth muscle cells, and similar concentrations of XE991 enhance mesenteric and renal myogenic tone. Although XE991-sensitive KCNQ3, 4, and 5 channels are expressed in vascular smooth muscle cells, XE991-sensitive K+ current and myogenic contractions persist in arteries deficient in these channels. Our results provide definitive evidence that myogenic responses of mouse mesenteric and renal arteries rely on ligand-independent, mechanoactivation of AT1R subtype a. The AT1R subtype a signal relies on an ion channel distinct from TRPC6 or KCNQ3, 4, or 5 to enact vascular smooth muscle cell activation and elevated vascular resistance. © 2014 American Heart Association, Inc.
Seeking Ways to Break Energy Storage Limits
2016-05-02
system sizes that we simulated. 15. SUBJECT TERMS density functional theory, guest-host structures, carbon nanotubes , free atom limit, geometry...unlimited. iii Contents List of Figures iv 1. Introduction 1 2. Xenon-Buckminsterfullerene (Xe-C60) 3 3. Xe-C980 4 4. Xe-Carbon Nanotube (CNT) 4 5...calculations. 4. Xe-Carbon Nanotube (CNT) Because of our inability to attain guest-host complexes that would achieve energies in excess of the
Hybrid Ultra-Microporous Materials for Selective Xenon Adsorption and Separation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohamed, Mona H.; Elsaidi, Sameh K.; Pham, Tony
2016-05-30
The demand for Xe/Kr separation continues to grow due to the industrial significance of high-purity Xe gas. Current separation processes rely on energy intensive cryogenic distillation. Therefore, there is a need to develop less energy intensive alternatives such as physisorptive separation using porous materials. Here we show that an underexplored class of porous materials called hybrid ultramicroporous materials (HUMs) based upon inorganic and organic building blocks affords new benchmark selectivity for Xe separation from Xe/Kr mixtures. The isostructural materials, CROFOUR-1-Ni and CROFOUR-2-Ni, are coordination networks that exhibit coordinatively saturated metal centres and two distinct types of micropores, one of whichmore » is lined by CrO42- (CROFOUR) anions and the other is decorated by the functionalized organic linker. These nets offer unprecedented selectivity towards Xe, and also address processing and stability limitations of existing porous materials. Modelling experiments indicate that the extraordinary selectivity of these nets is tailored by synergy between the pore size, which is just above the kinetic diameter of Xe, and the strong electrostatics afforded by the CrO42- anions. Column breakthrough experiments demonstrate the potential of the practical use of these materials in Xe/Kr separation at low concentrations at the levels relevant to Xe capture from air and in nuclear fuel reprocessing.« less
NASA Technical Reports Server (NTRS)
Meshik, A. P.; Kehm, K.; Hohenberg, C. M.
1999-01-01
Some CFF-Xe (Chemically Fractionated Fission Xenon), whose isotopic composition is established by simultaneous decay and migration of radioactive fission products, is probably present in the Earth's lithosphere, a conclusion based on available Xe data from various crustal and mantle rocks . Our recent isotopic analysis of Xe in alumophosphate from zone 13 of Okelobondo (southern extension of Oklo), along with the independent estimation of the isotopic composition of atmospheric fission Xe , supports the hypothesis that CFF-Xe was produced on a planetary scale. Additional information is contained in the original extended abstract.
NASA Astrophysics Data System (ADS)
Galy, Jean; Matar, Samir F.
2017-02-01
The stereochemistry of ns2np4 (n = 4, 5) lone pair LP characterizing noble gas Kr and Xe (labeled M*) in M*F2 difluorides is examined within coherent crystal chemistry and ab initio visualizations. M*2+ in such oxidation state brings three lone pairs (E) and difluorides are formulated M*F2E3. The analyses use electron localization function (ELF) obtained within density functional theory calculations showing the development of the LP triplets whirling {E3} quantified in the relevant chemical systems. Detailed ELF data analyses allowed showing that in α KrF2E3 and isostructural XeF2E3 difluorides the three E electronic clouds merge or hybridize into a torus and adopt a perfect gyration circle with an elliptical section, while in β KrF2 the network architecture deforms the whole torus into an ellipsoid shape. Original precise metrics are provided for the torus in the different compounds under study. In KrF2 the geometric changes upon β → α phase transition is schematized and mechanisms for the transformation with temperature or pressure are proposed. The results are further highlighted by electronic band structure calculations which show similar features of equal band gaps of 3 eV in both α and β KrF2 and a reorganization of frontier orbitals due to the different orientations of the F-Kr-F linear molecule in the two tetragonal structures.
Oxygen Partial Pressure and Oxygen Concentration Flammability: Can They Be Correlated?
NASA Technical Reports Server (NTRS)
Harper, Susana A.; Juarez, Alfredo; Perez, Horacio, III; Hirsch, David B.; Beeson, Harold D.
2016-01-01
NASA possesses a large quantity of flammability data performed in ISS airlock (30% Oxygen 526mmHg) and ISS cabin (24.1% Oxygen 760 mmHg) conditions. As new programs develop, other oxygen and pressure conditions emerge. In an effort to apply existing data, the question arises: Do equivalent oxygen partial pressures perform similarly with respect to flammability? This paper evaluates how material flammability performance is impacted from both the Maximum Oxygen Concentration (MOC) and Maximum Total Pressures (MTP) perspectives. From these studies, oxygen partial pressures can be compared for both the MOC and MTP methods to determine the role of partial pressure in material flammability. This evaluation also assesses the influence of other variables on flammability performance. The findings presented in this paper suggest flammability is more dependent on oxygen concentration than equivalent partial pressure.
Zhao, Yanying; Gong, Yu; Chen, Mohua; Ding, Chuanfan; Zhou, Mingfei
2005-12-29
The combination of matrix isolation infrared spectroscopic and quantum chemical calculation results provide strong evidence that scandium and yttrium monoxide cations, ScO+ and YO+, coordinate multiple noble gas atoms in forming noble gas complexes. The results showed that ScO+ coordinates five Ar, Kr, or Xe atoms, and YO+ coordinates six Ar or Kr and five Xe atoms in solid noble gas matrixes. Hence, the ScO+ and YO+ cations trapped in solid noble gas matrixes should be regarded as the [ScO(Ng)5]+ (Ng = Ar, Kr, or Xe), [YO(Ng)6]+ (Ng = Ar or Kr) or [YO(Xe)5]+ complexes. Experiments with dilute krypton or xenon in argon or krypton in xenon produced new IR bands, which are due to the stepwise formation of the [ScO(Ar)(5-n)(Kr)n]+, [ScO(Kr)(5-n)(Xe)n]+ (n = 1-5), [YO(Ar)(6-n)(Kr)n]+ (n = 1-6), and [YO(Ar)(6-n)(Xe)n]+ (n = 1-4) complexes.
NASA Astrophysics Data System (ADS)
Ma, Chun-Wang; Wang, Shan-Shan; Zhang, Yan-Li; Wei, Hui-Ling
2013-12-01
Isoscaling and isobaric yield ratio difference (IBD) methods are used to study Δμ/T (Δμ being the difference between the chemical potentials of the neutron and proton, and T being the temperature) in the measured 1 A GeV 124Sn + 124Sn, 112Sn + 112Sn, 136Xe + Pb and 124Xe + Pb reactions. The isoscaling phenomena in the 124Sn/112Sn and 136Xe/124Xe reaction pairs are investigated, and the isoscaling parameters α and β are obtained. The Δμ/T determined by the isoscaling method (IS-Δμ/T) and the IBD method (IB-Δμ/T) in the measured Sn and Xe reactions are compared. It is shown that in most fragments, the IS- and IB-Δμ/T are consistent in the Xe reactions, while the IS- and IB-Δμ/T ones are only similar in the less neutron-rich fragments in the Sn reactions. The shell effects in IB-Δμ/T are also discussed.
Microstructure investigations of U3Si2 implanted by high-energy Xe ions at 600 °C
NASA Astrophysics Data System (ADS)
Miao, Yinbin; Harp, Jason; Mo, Kun; Kim, Yeon Soo; Zhu, Shaofei; Yacout, Abdellatif M.
2018-05-01
The microstructure investigations on a high-energy Xe-implanted U3Si2 pellet were performed. The promising accident tolerant fuel (ATF) candidate, U3Si2, was irradiated by 84 MeV Xe ions at 600 °C at Argonne Tandem Linac Accelerator System (ATLAS). The characterizations of the Xe implanted sample were conducted using advanced transmission electron microscopy (TEM) techniques. An oxidation layer was observed on the sample surface after irradiation under the ∼10-5 Pa vacuum. The study on the oxidation layer not only unveils the readily oxidation behavior of U3Si2 under high-temperature irradiation conditions, but also develops an understanding of its oxidation mechanism. Intragranular Xe bubbles with bimodal size distribution were observed within the Xe deposition region of the sample induced by 84 MeV Xe ion implantation. At the irradiation temperature of 600 °C, the gaseous swelling strain contributed by intragranular bubbles was found to be insignificant, indicating an acceptable fission gas behavior of U3Si2 as a light water reactor (LWR) fuel operating at such a temperature.
Liu, Xiaohu; Chen, Chang; Qu, Tianliang; Yang, Kaiyong; Luo, Hui
2016-01-01
The presence of a magnetic field gradient in a sample cell containing spin-polarized 129Xe atoms will cause an increased relaxation rate. We measured the transverse spin relaxation time of 129Xe verse the applied magnetic field gradient and the cell temperature. We then compared the different transverse spin relaxation behavior of dual isotopes of xenon (129Xe and 131Xe) due to magnetic field gradient in the same cell. The experiment results show the residual magnetic field gradient can be measured and compensated by applying a negative magnetic gradient in the sample cell. The transverse spin relaxation time of 129Xe could be increased 2–7 times longer when applying an appropriate magnetic field gradient. The experiment results can also be used to determine the diffusion constant of 129Xe in H2 and N2 to be 0.4 ± 0.26 cm2/sec and 0.12 ± 0.02 cm2/sec. The results are close with theoretical calculation. PMID:27049237
Chemi-luminescence measurements of hyperthermal Xe{sup +}/Xe{sup 2+}+ NH{sub 3} reactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prince, Benjamin D.; Steiner, Colby P.; Chiu, Yu-Hui
2012-04-14
Luminescence spectra are recorded for the reactions of Xe{sup +}+ NH{sub 3} and Xe{sup 2+}+ NH{sub 3} at energies ranging from 11.5 to 206 eV in the center-of-mass (E{sub cm}) frame. Intense features of the luminescence spectra are attributed to the NH (A {sup 3}{Pi}{sub i}-X {sup 3}{Sigma}{sup -}), hydrogen Balmer series, and Xe I emission observable for both primary ions. Evidence for charge transfer products is only found through Xe I emission for both primary ions and NH{sup +} emission for Xe{sup 2+} primary ions. For both primary ions, the absolute NH (A-X) cross section increases with collision energymore » before leveling off at a constant value, approximately 9 x 10{sup -18} cm{sup 2}, at about 50 eV while H-{alpha} emission increases linearly with collision energy. The nascent NH (A) populations derived from the spectral analysis are found to be independent of collision energy and have a constant rotational temperature of 4200 K.« less
Martinez-Jimenez, Santiago; Cleveland, Zackary I.; Metz, Gregory M.; Beaver, Denise M.; Nouls, John C.; Kaushik, S. Sivaram; Firszt, Rafael; Willis, Christine; Kelly, Kevin T.; Wolber, Jan; Kraft, Monica; McAdams, H. Page
2012-01-01
Purpose: To evaluate the safety and tolerability of inhaling multiple 1-L volumes of undiluted hyperpolarized xenon 129 (129Xe) followed by up to a 16-second breath hold and magnetic resonance (MR) imaging. Materials and Methods: This study was approved by the institutional review board and was HIPAA compliant. Written informed consent was obtained. Forty-four subjects (19 men, 25 women; mean age, 46.1 years ± 18.8 [standard deviation]) were enrolled, consisting of 24 healthy volunteers, 10 patients with chronic obstructive pulmonary disease (COPD), and 10 age-matched control subjects. All subjects received three or four 1-L volumes of undiluted hyperpolarized 129Xe, followed by breath-hold MR imaging. Oxygen saturation, heart rate and rhythm, and blood pressure were continuously monitored. These parameters, along with respiratory rate and subjective symptoms, were assessed after each dose. Subjects’ serum biochemistry and hematology were recorded at screening and at 24-hour follow-up. A 12-lead electrocardiogram (ECG) was obtained at these times and also within 2 hours prior to and 1 hour after 129Xe MR imaging. Xenon-related symptoms were evaluated for relationship to subject group by using a χ2 test and to subject age by using logistic regression. Changes in vital signs were tested for significance across subject group and time by using a repeated-measures multivariate analysis of variance test. Results: The 44 subjects tolerated all xenon inhalations, no subjects withdrew, and no serious adverse events occurred. No significant changes in vital signs (P > .27) were observed, and no subjects exhibited changes in laboratory test or ECG results at follow-up that were deemed clinically important or required intervention. Most subjects (91%) did experience transient xenon-related symptoms, most commonly dizziness (59%), paresthesia (34%), euphoria (30%), and hypoesthesia (30%). All symptoms resolved without clinical intervention in 1.6 minutes ± 0.9. Conclusion: Inhalation of hyperpolarized 129Xe is well tolerated in healthy subjects and in those with mild or moderate COPD. Subjects do experience mild, transient, xenon-related symptoms, consistent with its known anesthetic properties. © RSNA, 2011 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.11102172/-/DC1 PMID:22056683
Temperature dependence of the pressure broadening of spectral lines
NASA Astrophysics Data System (ADS)
Roston, G. D.; Helmi, M. S.
2012-12-01
The aim of this work is to obtain a formula relating the pressure broadening coefficient of the spectral line β with the temperature T, when the difference potential ΔV(R) between the upper and lower states of the emitting atom is represented by (Lennard - Jones) potential, The obtained formula is a power index law of β on T. This formula is applied for calculating β for different interactions of Ar, Ne, TI, Hg, Cd and Zn with the inert gases (Xe, Kr, Ar, Ne and He) at different temperatures. The results of these calculations are in good agreement with the corresponding values obtained before numerically. The obtained formula is considered very important in astrophysical problems.
Radioxenon Production from an Underground Nuclear Detonation
NASA Astrophysics Data System (ADS)
Sun, Y.
2016-12-01
The Comprehensive Nuclear Test Ban Treaty of 1996 has sparked the attention of many nations around the world for detecting Underground Nuclear Explosions (UNEs). The radioisotopes, specifically isotopes of xenon, Xe-131m, Xe-133m, Xe-133, and Xe-135, are being studied using their half-lives and decay networks for distinguishing civilian nuclear applications from UNEs. This study aims to simulate radioxenon concentrations and their uncertainties using analytical solutions of radioactive decay networks.
Programming A Molecular Relay for Ultrasensitive Biodetection through 129 Xe NMR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yanfei; Roose, Benjamin W.; Philbin, John P.
2015-12-21
We reported a supramolecular strategy for detecting specific proteins in complex media by using hyperpolarized 129Xe NMR. A cucurbit[6]uril (CB[6])-based molecular relay was programmed for three sequential equilibrium conditions by designing a two-faced guest (TFG) that initially binds CB[6] and blocks the CB[6]–Xe interaction. Moreover, the protein analyte recruits the TFG and frees CB[6] for Xe binding. TFGs containing CB[6]- and carbonic anhydrase II (CAII)-binding domains were synthesized in one or two steps. X-ray crystallography confirmed TFG binding to Zn 2+ in the deep CAII active-site cleft, which precludes simultaneous CB[6] binding. The molecular relay was reprogrammed to detect avidinmore » by using a different TFG. Finally, Xe binding by CB[6] was detected in buffer and in E. coli cultures expressing CAII through ultrasensitive 129Xe NMR spectroscopy.« less
Retention of ion-implanted-xenon in olivine: Dependence on implantation dose
NASA Technical Reports Server (NTRS)
Melcher, C. L.; Tombrello, T. A.; Burnett, D. S.
1982-01-01
The diffusion of Xe in olivine, a major mineral in both meteorites and lunar samples, was studied. Xe ions were implanted at 200 keV into single-crystal synthetic-forsterite targets and the depth profiles were measured by alpha particle backscattering before and after annealing for 1 hour at temperatures up to 1500 C. The fraction of implanted Xe retained following annealing was strongly dependent on the implantation dose. Maximum retention of 100% occurred for an implantion dose of 3 x 10 to the 15th power Xe ions/sq cm. Retention was less at lower doses, with (approximately more than or = 50% loss at one hundred trillion Xe ions/sq cm. Taking the diffusion coefficient at this dose as a lower limit, the minimum activation energy necessary for Xe retention in a 10 micrometer layer for ten million years was calculated as a function of metamorphic temperature.
Simulations of Xe and U diffusion in UO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersson, Anders D.; Vyas, Shyam; Tonks, Michael R.
2012-09-10
Diffusion of xenon (Xe) and uranium (U) in UO{sub 2} is controlled by vacancy mechanisms and under irradiation the formation of mobile vacancy clusters is important. Based on the vacancy and cluster diffusion mechanisms established from density functional theory (DFT) calculations, we derive continuum thermodynamic and diffusion models for Xe and U in UO{sub 2}. In order to capture the effects of irradiation, vacancies (Va) are explicitly coupled to the Xe and U dynamics. Segregation of defects to grain boundaries in UO{sub 2} is described by combining the bulk diffusion model with models of the interaction between Xe atoms andmore » vacancies with grain boundaries, which were derived from atomistic calculations. The diffusion and segregation models were implemented in the MOOSE-Bison-Marmot (MBM) finite element (FEM) framework and the Xe/U redistribution was simulated for a few simple microstructures.« less
ERIC Educational Resources Information Center
Bradley, J.
1973-01-01
Discusses how difficult the various problems of pressure, partial pressure, gas laws, and vapor pressure are for students. Outlines the evolution of the concept of pressure, the gas equation for a perfect gas, partial pressures, saturated vapor pressure, Avogadro's hypothesis, Raoult's law, and the vapor pressure of ideal solutions. (JR)
Meloni, Edward G.; Gillis, Timothy E.; Manoukian, Jasmine; Kaufman, Marc J.
2014-01-01
Xenon (Xe) is a noble gas that has been developed for use in people as an inhalational anesthestic and a diagnostic imaging agent. Xe inhibits glutamatergic N-methyl-D-aspartate (NMDA) receptors involved in learning and memory and can affect synaptic plasticity in the amygdala and hippocampus, two brain areas known to play a role in fear conditioning models of post-traumatic stress disorder (PTSD). Because glutamate receptors also have been shown to play a role in fear memory reconsolidation – a state in which recalled memories become susceptible to modification – we examined whether Xe administered after fear memory reactivation could affect subsequent expression of fear-like behavior (freezing) in rats. Male Sprague-Dawley rats were trained for contextual and cued fear conditioning and the effects of inhaled Xe (25%, 1 hr) on fear memory reconsolidation were tested using conditioned freezing measured days or weeks after reactivation/Xe administration. Xe administration immediately after fear memory reactivation significantly reduced conditioned freezing when tested 48 h, 96 h or 18 d after reactivation/Xe administration. Xe did not affect freezing when treatment was delayed until 2 h after reactivation or when administered in the absence of fear memory reactivation. These data suggest that Xe substantially and persistently inhibits memory reconsolidation in a reactivation and time-dependent manner, that it could be used as a new research tool to characterize reconsolidation and other memory processes, and that it could be developed to treat people with PTSD and other disorders related to emotional memory. PMID:25162644
Low-temperature dynamic nuclear polarization of gases in frozen mixtures
Pourfathi, Mehrdad; Clapp, Justin; Kadlecek, Stephen J.; Keenan, Caroline D.; Ghosh, Rajat K.; Kuzma, Nicholas N.; Rizi, Rahim R.
2015-01-01
Purpose To present a new cryogenic technique for preparing gaseous compounds in solid mixtures for polarization using dynamic nuclear polarization (DNP). Methods 129Xe and 15N2O samples were prepared using the presented method. Samples were hyperpolarized at 1.42K at 5T. 129Xe was polarized at 1.65K and 1.42K to compare enhancement. Polarization levels for both samples and T1 relaxation times for the 129Xe sample were measured. Sample pulverization for the 129Xe and controlled annealing for both samples were introduced as additional steps in sample preparation. Results Enhancement increased by 15% due to a temperature drop from 1.65K to 1.42K for the 129Xe sample. A polarization level of 20±3% for the 129Xe sample was achieved, a 2-fold increase from 10±1% after pulverization of the sample at 1.42K. T1 of the 129Xe sample was increased by more than 3-fold via annealing. In the case of 15N2O, annealing led to a ~2-fold increase in the signal level after DNP. Conclusion The presented technique for producing and manipulating solid gas/glassing agent/radical mixtures for DNP led to high polarization levels in 129Xe and 15N2O samples. These methods show potential for polarizing other gases using DNP technology. PMID:26444315
NASA Astrophysics Data System (ADS)
Vogt, A.; Birkenbach, B.; Reiter, P.; Blazhev, A.; Siciliano, M.; Valiente-Dobón, J. J.; Wheldon, C.; Bazzacco, D.; Bowry, M.; Bracco, A.; Bruyneel, B.; Chakrawarthy, R. S.; Chapman, R.; Cline, D.; Corradi, L.; Crespi, F. C. L.; Cromaz, M.; de Angelis, G.; Eberth, J.; Fallon, P.; Farnea, E.; Fioretto, E.; Freeman, S. J.; Gadea, A.; Geibel, K.; Gelletly, W.; Gengelbach, A.; Giaz, A.; Görgen, A.; Gottardo, A.; Hayes, A. B.; Hess, H.; Hua, H.; John, P. R.; Jolie, J.; Jungclaus, A.; Korten, W.; Lee, I. Y.; Leoni, S.; Liang, X.; Lunardi, S.; Macchiavelli, A. O.; Menegazzo, R.; Mengoni, D.; Michelagnoli, C.; Mijatović, T.; Montagnoli, G.; Montanari, D.; Napoli, D.; Pearson, C. J.; Pellegri, L.; Podolyák, Zs.; Pollarolo, G.; Pullia, A.; Radeck, F.; Recchia, F.; Regan, P. H.; Şahin, E.; Scarlassara, F.; Sletten, G.; Smith, J. F.; Söderström, P.-A.; Stefanini, A. M.; Steinbach, T.; Stezowski, O.; Szilner, S.; Szpak, B.; Teng, R.; Ur, C.; Vandone, V.; Ward, D.; Warner, D. D.; Wiens, A.; Wu, C. Y.
2016-05-01
Detailed spectroscopic information on the N ˜82 nuclei is necessary to benchmark shell-model calculations in the region. The nuclear structure above long-lived isomers in 134Xe is investigated after multinucleon transfer (MNT) and actinide fission. Xenon-134 was populated as (i) a transfer product in 238U+ 136Xe and 208Pb+ 136Xe MNT reactions and (ii) as a fission product in the 238U+ 136Xe reaction employing the high-resolution Advanced Gamma Tracking Array (AGATA). Trajectory reconstruction has been applied for the complete identification of beamlike transfer products with the magnetic spectrometer PRISMA. The 198Pt 136Xe MNT reaction was studied with the γ -ray spectrometer GAMMASPHERE in combination with the gas detector array Compact Heavy Ion Counter (CHICO). Several high-spin states in 134Xe on top of the two long-lived isomers are discovered based on γ γ -coincidence relationships and information on the γ -ray angular distributions as well as excitation energies from the total kinetic energy loss and fission fragments. The revised level scheme of 134Xe is extended up to an excitation energy of 5.832 MeV with tentative spin-parity assignments up to 16+. Previous assignments of states above the 7- isomer are revised. Latest shell-model calculations employing two different effective interactions reproduce the experimental findings and support the new spin and parity assignments.
Measurements and modeling of charge carrier lifetime in compressed xenon
NASA Astrophysics Data System (ADS)
Pudov, A. O.; Abyzov, A. S.; Sokolov, S. A.; Davydov, L. N.; Rybka, A. V.; Kutny, V. E.; Melnikov, S. I.; Kholomyeyev, G. A.; Leonov, S. A.; Turchin, A. A.
2018-06-01
Gamma-spectrometers based on high-pressure xenon gas (HPXe) are proving themselves as a great potential alternative to the spectrometers based on high-purity germanium crystals and scintillators. The working medium for the high-resolution HPXe detectors, that is, xenon gas compressed up to pressure ∼50 bar and sometimes doped with hydrogen, methane or others gases, needs to be of very high purity. The gas purity level can be determined by direct measurements or, alternatively, its usability in gamma-spectrometers can be evaluated indirectly through the charge carrier (electron) lifetime measurements. Different approaches and specific setups have been used for the lifetime determination, most of those methods involve the measurement and analyses of individual pulses from ionizing particles registered in an ionization chamber filled with Xe. In the present paper, we report on the HPXe electron lifetime study carried out by using measurements in a cylindrical ionization chamber and the respective analytical charge transport model. Our results support the possibility of carrier lifetime determination in the cylindrical configuration. In addition, the voltage regimes for the use of the chamber in the spectroscopic mode were determined. The measurements were conducted in a two-electrode configuration for a range of pressure values (5 to 50 bar) for the Xe+0.25%H2 gas mixture of ∼6N purity. It is shown that in gases with relatively high values of the electron drift velocity and the electron lifetime, for example low-density gases, the charge collection time measurements can give significantly underestimated lifetime assessment. On the other hand, for the low drift velocity gases, they give much more accurate results. With the use of the analytical model, the electron lifetime was determined more precisely.
HIMU-type Mid-Ocean Ridge Basalts Incorporate a Primitive Component
NASA Astrophysics Data System (ADS)
Tucker, J.; Mukhopadhyay, S.; Schilling, J. E.
2011-12-01
Samples from 5°N to 7°S along the MAR axis span a range of compositions from depleted MORB (La/SmN ~0.5, 206Pb/204Pb ~18) to very enriched MORB (La/SmN ~3, 206Pb/204Pb ~20). The measured 206Pb/204Pb in the enriched samples are among the highest measured MORB values and are thought to represent a HIMU type mantle (high μ where μ is the U/Pb ratio). Therefore, the enriched samples provide a unique opportunity to characterize the heavy noble gas composition of the HIMU mantle. If HIMU mantle is related to recycled crust, then the noble gas measurements can also provide insights into recycling of atmospheric noble gases back into the mantle. Additionally, the depleted equatorial samples provide an opportunity to characterize the Ar and Xe composition of the N-MORB source for comparison to the 14°N E-MORB popping rock. Finally, the large variations in lithophile isotopes over a geographically short distance affords the opportunity to study the nature of coupling between the noble gases and lithophile tracers, and understand the origin of the heterogeneities in the MORB source. Stepwise crushing and rare gas analysis (He, Ne, Ar, Xe) was undertaken for both enriched and depleted samples. Many of the crushing steps yielded 20Ne/22Ne > 12, and good correlations between Ne, Ar, and Xe isotopes allow for mantle source compositions of Ar and Xe to be determined by extrapolating the measured values to a mantle 20Ne/22Ne of 12.5. The highest measured values of Ar and Xe in a depleted N-MORB are comparable to measured values of the E-MORB popping rock (40Ar/36Ar ~28,000, 129Xe/130Xe ~7.7). When extrapolated to a mantle 20Ne/22Ne of 12.5, the depleted MORB sample indicates a 40Ar/36Ar of ~43,000 (higher than popping rock) and 129Xe/130Xe of ~7.8. Enriched MORB samples from this suite, thought to represent the HIMU mantle, have the same He and Ne characteristics as HIMU basalts from the Cook and Austral Islands; more radiogenic He than MORBs is accompanied by less nucleogenic Ne than MORBs. Additionally, the enriched MORB samples also constrain the HIMU mantle 40Ar/36Ar to ~20,000 and 129Xe/130Xe ~7.3-7.5, significantly lower than the depleted MORBs. Like the HIMU basalts from the Cook and Austral Islands, a less degassed reservoir than the MORB source must be invoked to explain the He and Ne systematics in the HIMU-type MORBs. If HIMU represents recycled crust, then it must have entrained or been entrained by a less degassed mantle from the deep interior. This less degassed reservoir would also explain the good correspondence between low 21Ne/22Ne, low 40Ar/36Ar and low 129Xe/130Xe in the HIMU-type samples. While we cannot rule out recycling of atmospheric noble gases to explain the low 40Ar/36Ar and 129Xe/130Xe, involvement of a source less degassed in He and Ne would also be accompanied by a less degassed Ar and Xe isotopic signature. Therefore the simplest explanation of the covariation between the noble gases and lithophile isotopes involves a mixture of a less processed and hence more primitive component, a degassed recycled component, and depleted MORB mantle beneath the equatorial Mid-Atlantic Ridge.
NASA Astrophysics Data System (ADS)
Zirour, H.; Izerrouken, M.; Sari, A.
2016-06-01
The present investigation reports the effect of 90 MeV Xe ion irradiation on neutron irradiated Al2O3 single crystals. Three irradiation experiments were performed, with neutrons only, 90 MeV Xe ions only and with neutrons followed by 90 MeV Xe ions. Neutron and 90 MeV Xe ion irradiations were performed at NUR research reactor, Algiers, Algeria and at GANIL accelerator, Caen, France respectively. After irradiation, the radiation damage was investigated by Raman spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), optical absorption measurements, and X-ray diffraction (XRD) techniques. Raman technique revealed that the concentration of the defects formed in Al2O3 samples subsequently irradiated with neutrons and 90 MeV Xe ions is lower than that formed in Al2O3 samples which were irradiated only with neutrons. This reveals the occurrence of ionization-induced recovery of the neutron damage. Furthermore, as revealed by XRD analysis, a new peak is appeared at about 2θ = 38.03° after irradiation at high fluence (>3 × 1013 Xe/cm2). It can be assigned to the formation of new lattice plane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reviol, W.; Sarantites, D. G.; Elson, J. M.
2016-09-08
Excited states in 137Xe have been studied by using the near-barrier single-neutron transfer reactions 13C( 136Xe, 12C ) 137Xe and 9Be( 136Xe, 8Be ) 137Xe in inverse kinematics.Particle- and particle- coincidence measurements have been performed with the Phoswich Wall and Digital Gammasphere detector arrays. Evidence is found for a 13/2 + 2 level (E = 3137 keV) and for additional high-lying 3/2 – and 5/2 – states. The results are discussed in the framework of realistic shell-model calculations. These calculations are also extended to the 13/2 + 1 and 13/2 + 2 levels in the N = 83 isotonic chain.more » Furthermore, they indicate that there is a need for a value of the neutron 0i 13/2 single-particle energy (E SPE = 2366 keV) lower than the one proposed in the literature. It is also demonstrated that the population patterns of the j = l ± 1/2 single-particle states in 137Xe are different for the two targets used in these measurements and the implications of this effect are addressed.« less
Noble Gas Recycling: Experimental Constraints on Ar, Kr, and Xe Solubility in Serpentinite
NASA Astrophysics Data System (ADS)
Krantz, J. A.; Parman, S. W.; Kelley, S. P.; Smye, A.; Jackson, C.; Cooper, R. F.
2016-12-01
To constrain the rate of noble gas (NG) recycling at subduction zones, experiments have been performed to constrain the solubility of NG in natural antigorite. Geochemical analyses of exhumed subduction zone material1, well gases2, OIB and MORB3 indicate that NG are recycled from the surface of the earth into the mantle. The mechanism by which uncharged atoms can be bound to a mineral and subsequently recycled remains unclear, but experimental work suggests that ring structures in silicate minerals are ideal sites for NG4. Serpentine contains such ring structures and is abundant in subducting slabs, providing significant potential for control of the recycling of NG. Developing an understanding of how NG are transported may shed light on the large scale mantle dynamics associated with subduction, convection, and mantle heterogeneity. Experiments were performed in a cold seal pressure vessel at 350°C using a mix of either equal parts He, Ne, and Ar or Ar, Kr, and Xe as the pressure medium. Pressures varied from 0.15 to 1.13 kbar total pressure and durations varied from 20 to 188 hours. Samples were analyzed by UV laser ablation, noble gas mass spectrometry at The Open University, UK. White light interferometry was used to determine the volume of laser ablation pits from which concentrations were calculated. The data indicate that solubilities of NG in serpentinite are high in antigorite, and that variations in the solubility of NG could fractionate NG during recycling. 1. Kendrick, M.A., Scambelluri, M., Honda, M., Phillips, D., Nature Geoscience, 4, 807-812, 2011 2. Holland, G., and Ballentine, C.J., Nature, 441, 186-191, 2006 3. Parai, R. and Mukhopadhyay, S., GGG, 16, 719-735, 2015 4. Jackson, C.R.M., Parman, S.W., Kelley, S.P., Cooper, R.F., GCA, 159, 1-15, 2015
Evidence from Xenon isotopes for limited mixing between MORB sources and plume sources since 4.45 Ga
NASA Astrophysics Data System (ADS)
Mukhopadhyay, S.
2011-12-01
Xenon isotopes provide unique insights into the sources of volatile material for planet Earth, the degassing of the mantle, and the chemical evolution of the mantle [1-4]. 129Xe is produced from 129I, which has a half-life of 16 Myrs, and 131-136Xe are produced from 244Pu, which has a half-life of 80 Myrs. To a smaller extent, 131-136Xe are also produced from 238U fission. Thus, ratios of Pu-derived to U-derived fission xenon and 129I-derived to Pu-derived fission xenon constrain the rate and degree of outgassing of a mantle reservoir. Here, I report on the Pu-derived to U-derived fission xenon and Pu/I ratio of the Iceland plume. I then compare the plume observations with the gas rich popping rock from the North Mid Atlantic Ridge that samples the upper mantle [4]. Through step crushing of multiple aliquots of a basalt glass from Iceland, 51 high-precision He, Ne, Ar, and Xe isotopic compositions were generated. Combined He, Ne, and Xe measurements provide unequivocal evidence that the Iceland plume has a lower 129Xe/130Xe ratio than MORBs because it evolved with a I/Xe ratio distinct from the MORB source and not because of recycled atmosphere (which has low 129Xe/130Xe) in the plume source. Since 129I became extinct 80 Myrs after solar system formation, limited mixing between plume and MORB source is a stringent requirement since 4.45 Ga. Of the 51 different isotopic analyses, 42 data points were distinct from the atmospheric 129Xe/130Xe composition at two standard deviations. These 42 data points were utilized to calculate the ratio of Pu- to U-derived fission xenon. The starting composition of terrestrial Xe is a matter of debate. However, for reasonable starting compositions of air, non-radiogenic atmosphere, solar wind, and U-Xe [5-7], the Iceland plume ,on average, has approximately a factor of two higher Pu-derived xenon than the MORB source. These data thus, provide unequivocal evidence that the Iceland plume is less degassed than the MORB source and that the differences must have existed early on because Pu becomes extinct after ~ 400 Myrs. Thus, the Xe isotopic data suggests that differences between plume and MORB sources are the result of different mantle processing rates and not related to the preferential recycling of atmospheric gases into the plume source. Furthermore, if the plumes are derived from the large low shear wave velocity (LLSVPs) provinces at the base of the lower mantle [8], then our results require that LLSVPs are not made of solely recycled material. Rather, primitive material must constitute some fraction of the LLSVPs, and LLSVPs are ancient, having persisted through most of Earth's history. [1] Holland and Ballentine, Nature, 2006. [2] Yokochi and Marty, EPSL, 2004. [3] Coltice et al., Chem Geol., 2009. [4] Moriera et al., Science, 1998. [5] Caffee et al., Science, 1998. [6] Kunz et al., Science 1998. [7] Pepin and Porcelli, EPSL, 2006. [8] Torsvik et al., Nature, 2010.
Abundance and Isotopic Composition of Xenon in the Ungrouped Achondrite NWA 7325
NASA Astrophysics Data System (ADS)
Crowther, S. A.; Jastrzebski, N. D.; Weber, I.; Hiesinger, H.; Gilmour, J. D.
2014-09-01
Xe releases from mid-temperature heating steps have a consistent 129Xe/132Xe ratio suggesting a trapped component with a signature inherited from a reservoir affected by 129I decay. Higher temperature releases indicate an in situ component.
Vibrational Relaxation and Collision-Induced Dissociation of Xenon Fluoride by Neon
1989-03-01
potential energy surface, which consists of a Morse function for the XeF interaction and Lennard - Jones functions for the NeXe and NeF interactions. Rate...interaction and a Lennard - Jones function for the NeXe and the NeF interactions. The values of the Morse potential parameters for XeF are taken from...interactions are calculated using the theoretical data provided by Svehla.59 The parameters for the Morse potential and the Lennard - Jones potentials are listed
Gain measurements of the Ca-Xe charge exchange system. [for UV lasers
NASA Technical Reports Server (NTRS)
Michels, C. J.; Chubb, D. L.
1978-01-01
Charge-exchange-pumped Ca(+) was studied for possible positive laser gain at 370.6 and 315.9 nm using an Xe MPD arc as the Xe(+) source. The present paper describes the MPD arc, the calcium injection system, the diagnostics for gain, and spontaneous emission measurements and results. No positive gain measurements were observed. A small Xe-Ca charge exchange cross section compared to He-metal laser systems charge exchange cross sections is the most probable reason why the result was negative.
High-j neutron excitations outside 136Xe
NASA Astrophysics Data System (ADS)
Talwar, R.; Kay, B. P.; Mitchell, A. J.; Adachi, S.; Entwisle, J. P.; Fujita, Y.; Gey, G.; Noji, S.; Ong, H. J.; Schiffer, J. P.; Tamii, A.
2017-08-01
The ν 0 h9 /2 and ν 0 i13 /2 strength at 137Xe, a single neutron outside the N =82 shell closure, has been determined using the 136Xe(α ,3He)137Xe reaction carried out at 100 MeV. We confirm the recent observation of the second 13 /2+ state and reassess previous data on the 9 /2- states, obtaining spectroscopic factors. These new data provide additional constraints on predictions of the same single-neutron excitations at 133Sn.
NASA Technical Reports Server (NTRS)
Meshik, A. P.; Pravdivtseva, O. V.; Hohenberg, C. M.; Amelin, Y.
2004-01-01
Alteration processes may affect I-Xe system in unequilibrated ordinary chondrites. It was shown that at the edges, where a contribution is made by matrix material around the rim, *Xe-129/Xe-128 values are generally lower (later apparent ages) than in the main chondrule mass. In this work we attempted to investigate whether thermal metamorphism can affect the I-Xe system in LL3 chondrites which did not experienced aqueous alteration.
Automated QA/QC Check for Beta-Gamma Coincidence Detector
2007-09-01
of the ARSA, 222Rn gas can be introduced into the gas cell, along with the radioactive xenon isotopes. While this radon decays via alpha decay and...Explosion Monitoring Technologies 741 Figure 2. γ-singles spectrum from a 222Rn spike. The peaks are primarily from the radon daughter 214Pb with...National Laboratory (PNNL), can collect and detect several radioxenon isotopes. The ARSA is very sensitive to 133Xe, 131mXe, 133mXe, and 135Xe due to the
Pressures of Partial Crystallization of Magmas Along Transforms: Implications for Crustal Accretion
NASA Astrophysics Data System (ADS)
Scott, J. L.; Zerda, C.; Brown, D.; Ciaramitaro, S. C.; Barton, M.
2016-12-01
Plate spreading at mid-ocean ridges is responsible for the creation of most of the crust on earth. The ridge system is very complex and many questions remain unresolved. Among these is the nature of magma plumbing systems beneath transform faults. Pervious workers have suggested that increased conductive cooling along transforms promotes higher pressures of partial crystallization, and that this explains the higher partial pressures of crystallization inferred for magmas erupted along slow spreading ridges compared to magmas erupted along faster spreading ridges. To test this hypothesis, we undertook a detailed analysis of pressures of partial crystallization for magmas erupted at 3 transforms along the fast to intermediate spreading East Pacific Rise(Blanco, Clipperton, and Siqueiros) and 3 transforms along the slow spreading Mid Atlantic Ridge(Famous Transform B, Kane, and 15°20'N). Pressures of partial crystallization were calculated from the compositions of glasses (quenched liquids) lying along the P (and T) dependent olivine, plagioclase, and augite cotectic using the method described by Kelley and Barton (2008). Published analyses of mid-ocean ridge basalt glasses sampled from these transforms and surrounding ridge segments were used as input data. Samples with anomalous chemical compositions and samples that yielded pressures associated with unrealistically large uncertainties were filtered out of the database. The pressures of partial crystallization for the remaining 916 samples ranged from 0 to 520 MPa with the great majority ( 95%) of sample returning pressures of less than 300 MPa. Pressures of < 300 MPa are within error of the pressure range associated with partial crystallization within oceanic crust with a thickness of 7 km. Higher (sub-crustal) pressures (>300 MPa) are associated with a small number of samples from the Pacific segments. Except for the Blanco, pressures of partial crystallization do not increase as transforms are approached. These observations contrast with those of previous workers, who reported anomalously high pressures (up to 1000 MPa) for a large number of samples erupted near both Atlantic and Pacific Transforms. We conclude that higher rates of cooling along transform does not have a major effect on the onset of partial crystallization along the mid-ocean ridges
On the nature of interactions in the F2 OXe(…) NCCH3 complex: Is there the Xe(IV)N bond?
Makarewicz, Emilia; Lundell, Jan; Gordon, Agnieszka J; Berski, Slawomir
2016-07-01
Nature of the bonding in isolated XeOF2 molecule and F2 OXe(…) NCCH3 complexes have been studied in the gas phase (0 K) using Quantum Chemical Topology methods. The wave functions have been approximated at the MP2 and DFT levels of calculations, using the APFD, B3LYP, M062X, and B2PLYP functionals with the GD3 dispersion correction. The nature of the formal XeO bond in the XeOF2 monomer depends on the basis set used (all-electron vs. the ecp-28 approximation for Xe). Within the all-electron basis set approach the bond is represented by two bonding attractors, Vi = 1,2 (Xe,O), with total population of about 1.06e and highly delocalized electron density in both bonding basins. No bonding basins are observed using the ecp-28 approximation. These results shows that the nature of xenon-oxygen is complicated and may be described with mesomeric equilibrium of the Lewis representations: Xe((+)) O((-)) and Xe((-)) O((+)) . For both the xenon-oxygen and xenon-fluorine interactions the charge-shift model can be applied. The F2 OXe(…) NCCH3 complex exists in two structures: "parallel," stabilized by non-covalent C(…) O and Xe(…) N interactions and "linear" stabilized by the Xe(…) N interaction. Topological analysis of ELF shows that the F2 OXe(…) NCCH3 molecule appears as a weakly bound intermolecular complex. Intermolecular interaction energy components have also been studied using Symmetry Adapted Perturbation Theory. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Naddaf, M.; Abdallah, B.; Ahmad, M.; A-Kharroub, M.
2016-08-01
The influence of N2 partial pressure on structural, mechanical and wetting properties of multilayered TiN/ZrN thin films deposited on silicon substrates by vacuum arc discharge of (N2 + Ar) gas mixtures is investigated. X-ray diffraction (XRD) results show that the average texturing coefficient of (1 1 1) orientation and the grain size of both TiN and ZrN individual layers increase with increasing the N2 partial pressure. The Rutherford back scattering (RBS) measurements and analysis reveal that incorporation of the nitrogen in the film increases with increasing the N2 partial pressure and both TiN and ZrN individual layers have a nitrogen over-stoichiometry for N2 partial pressure ⩾50%. The change in the film micro-hardness is correlated to the changes in crystallographic texture, grain size, stoichiometry and the residual stress in the film as a function of the N2 partial pressure. In particular, stoichiometry of ZrN and TiN individual is found to play the vital role in determining the multilayer hardness. The multilayer film deposited at N2 partial pressure of 25% has the best stoichiometric ratio of both TiN and ZrN layers and the highest micro-hardness of about 32 GPa. In addition, water contact angle (WCA) measurements and analysis show a decrease in the work of adhesion on increasing the N2 partial pressure.
Nuclear structure studies in highly neutron-deficient (114,116)Xe
NASA Astrophysics Data System (ADS)
Degraaf, James Hendrick
Lifetimes of nuclear states in 114Xe and 116Xe were measured for the first time; these nuclei represent the most neutron-deficient isotopes of xenon for which lifetimes have now been measured. The fusion-evaporation reactions 58Ni(60Ni, 2p)116Xe at 223 MeV beam energy and 58Ni(58Ni, 2p)114Xe at 215 MeV beam energy were used. Lifetimes were measured using the Recoil Distance Method (RDM) with the 8π gamma-ray spectrometer at Chalk River Laboratories. The new measurements of the B(E2;2+/to 0+) strength in these nuclei, coupled with the recent measurements for heavier xenon isotopes, are well described within the framework of the O(6) symmetry limit of the Interacting Boson Approximation. The octupole nature of the negative parity side-band was also studied, and the lifetime measurements indicate a change from a K/approx 3 structure in heavier xenon isotopes to a K/approx 0,/ 1 structure in 114Xe.
NASA Astrophysics Data System (ADS)
Rosen, M.; Coulter, K. P.; Chupp, T. E.; Swanson, S. D.; Agranoff, B. W.
1996-05-01
One of the most exciting prospects for the application of laser polarized noble gas magnetic resonance imaging and spectroscopy of ^129Xe is the quantitative measurement of cerebral blood flow changes in response to various stimuli. Development of this new modality of functional imaging requires tracking the transport of inspirated laser polarized ^129Xe from the lungs to the blood and to the brain. We describe a series of experiments with rats that include producing noble gas magnetic resonance images and study of the uptake and transport of polarized ^129Xe in the blood and to the head. We have observed spectral components of the ^129Xe at about -200 ppm relative to the free gas and confirmed their transport to the head. The time dependence of this component in the head has been studied. Current efforts are to spatially localize the polarized ^129Xe and image the magnetization in the steady state.
Calibration of the Galactic Cosmic Ray Flux
NASA Technical Reports Server (NTRS)
Mathew, K. J.; Marti, K.
2004-01-01
We report first Xe data on the cross-calibration of I-129-Xe-129(sub n) ages with conventional CRE ages, a method which is expected to provide information on the long-term constancy of the galactic cosmic ray (GCR) flux. We studied isotopic signatures of Xe released in stepwise heating, decomposition and melting of troilites in the Cape York iron meteorite to identify isotopic shifts in Xe-129 and Xe-131 due to neutron capture in Te-128 and Te-130. We also resolve components due to extinct 129I, spallation and fission Xe. There has recently been much speculation on the constancy of GCR over long time scales, as may be inferred from iron meteorites. If GCRs originate from supernova events, this provides the basis for postulating increased fluxes at locations with higher than average densities of supernovae, specifically in OB-associations. The solar system at present appears to be inside a local bubble between spiral arms and may experience an increased GCR flux.
MARMOT simulations of Xe segregation to grain boundaries in UO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersson, Anders D.; Tonks, Michael; Casillas, Luis
2012-06-20
Diffusion of Xe and U in UO{sub 2} is controlled by vacancy mechanisms and under irradiation the formation of mobile vacancy clusters is important. We derive continuum thermodynamic and diffusion models for Xe and U in UO{sub 2} based on the vacancy and cluster diffusion mechanisms established from recent density functional theory (DFT) calculations. Segregation of defects to grain boundaries in UO{sub 2} is described by combining the diffusion model with models of the interaction between Xe atoms and vacancies with grain boundaries derived from separate atomistic calculations. The diffusion and segregation models are implemented in the MOOSE/MARMOT (MBM) finitemore » element (FEM) framework and we simulate Xe redistribution for a few simple microstructures. In this report we focus on segregation to grain boundaries. The U or vacancy diffusion model as well as the coupled diffusion of vacancies and Xe have also been implemented, but results are not included in this report.« less
First-principles study of fission gas incorporation and migration in zirconium nitride
Mei, Zhi-Gang; Liang, Linyun; Yacout, Abdellatif M.
2017-03-24
To evaluate the effectiveness of ZrN as a diffusion barrier against fission gases, we investigate in this paper the incorporation and migration of fission gas atoms, with a focus on Xe, in ZrN by first-principles calculations. The formations of point defects in ZrN, including vacancies, interstitials, divacancies, Frenkel pairs, and Schottky defects, are first studied. Among all the defects, the Schottky defect with two vacancies as first nearest neighbor is predicted to be the most favorable incorporation site for fission gas Xe in ZrN. The migration of Xe gas atom in ZrN is investigated through two diffusion mechanisms, i.e., interstitialmore » and vacancy-assisted diffusions. The migration barrier of Xe gas atom through the intrinsic interstitials in ZrN is considerably lower than that through vacancies. Finally, therefore, at low temperatures fission gas Xe atoms diffuse mainly through interstitials in single crystal ZrN, whereas at high temperatures Xe may diffuse in ZrN assisted by vacancies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGrath, Christopher A.
2015-04-01
The presence of radioactive xenon isotopes indicates that fission events have occurred, and is used to help enforce the Comprehensive Test Ban Treaty. Idaho National Laboratory (INL) produces 135Xe, 133mXe, 133Xe, and 131mXe standards used for the calibration and testing of collection equipment and analytical techniques used to monitor radio xenon emissions. At INL, xenon is produced and collected as one of several spontaneous fission products from a 252Cf source. Further chromatographic purification of the fission gases ensures the separations of the xenon fraction for selective collection. An explanation of the fission gas collection, separation and purification is presented. Additionally,more » the range of 135Xe to 133Xe ratio that can be isolated is explained. This is an operational update on the work introduced previously, now that it is in operation and has been recharged with a second 252Cf source.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Cheng; Tsuge, Masashi; Khriachtchev, Leonid, E-mail: leonid.khriachtchev@helsinki.fi
Experimental and theoretical studies of HXeI and HXeH molecules in Ar, Kr, and Xe matrices are presented. HXeI exhibits the H–Xe stretching bands at 1238.0 and 1239.0 cm{sup −1} in Ar and Kr matrices, respectively, that are blue-shifted from the HXeI band observed in a Xe matrix (1193 cm{sup −1}) by 45 and 46 cm{sup −1}. These shifts are larger than those observed previously for HXeCl (27 and 16 cm{sup −1}) and HXeBr (37 and 23 cm{sup −1}); thus, the matrix effect is stronger for less stable molecules. The results for HXeI are qualitatively different from all previous results onmore » noble-gas hydrides with respect to the frequency order between Ar and Kr matrices. For previously studied HXeCl, HXeBr, and HXeCCH, the H–Xe stretching frequency is reliably (by >10 cm{sup −1}) higher in an Ar matrix than in a Kr matrix. In contrast, the H–Xe stretching frequency of HXeI in an Ar matrix is slightly lower than that in a Kr matrix. HXeH absorbs in Ar and Kr matrices at 1203.2 and 1192.1 cm{sup −1} (the stronger band for a Kr matrix), respectively. These bands are blue-shifted from the stronger band of HXeH in a Xe matrix (1166 cm{sup −1}) by 37 and 26 cm{sup −1}, and this frequency order is the same as observed for HXeCl, HXeBr, and HXeCCH but different from HXeI. The present hybrid quantum-classical simulations successfully describe the main experimental findings. For HXeI in the 〈110〉 (double substitution) site, the order of the H–Xe stretching frequencies (ν(Xe) < ν(Ar) < ν(Kr)) is in accord with the experimental observations, and also the frequency shifts in Ar and Kr matrices from a Xe matrix are well predicted (30 and 34 cm{sup −1}). Both in the theory and experiment, the order of the H–Xe stretching frequencies differs from the case of HXeCl, which suggests the adequate theoretical description of the matrix effect. For HXeH in the 〈100〉 (single substitution) site, the order of the frequencies is ν(Xe) < ν(Kr) < ν(Ar), which also agrees with the experiments. The calculated frequency shifts for HXeH in Ar and Kr matrices with respect to a Xe matrix (36 and 23 cm{sup −1}) are in a good agreement with the experiments. The present calculations predict an increase of the H–Xe stretching frequencies in the noble-gas matrices with respect to vacuum.« less
Theoretical study of the NMR chemical shift of Xe in supercritical condition.
Lacerda, Evanildo G; Sauer, Stephan P A; Mikkelsen, Kurt V; Coutinho, Kaline; Canuto, Sylvio
2018-02-20
In this work we investigate the level of theory necessary for reproducing the non-linear variation of the 129 Xe nuclear magnetic resonance (NMR) chemical shift with the density of Xe in supercritical conditions. In detail we study how the 129 Xe chemical shift depends under supercritical conditions on electron correlation, relativistic and many-body effects. The latter are included using a sequential-QM/MM methodology, in which a classical MD simulation is performed first and the chemical shift is then obtained as an average of quantum calculations of 250 MD snapshots conformations carried out for Xe n clusters (n = 2 - 8 depending on the density). The analysis of the relativistic effects is made at the level of 4-component Hartree-Fock calculations (4c-HF) and electron correlation effects are considered using second order Møller-Plesset perturbation theory (MP2). To simplify the calculations of the relativistic and electron correlation effects we adopted an additive scheme, where the calculations on the Xe n clusters are carried out at the non-relativistic Hartree-Fock (HF) level, while electron correlation and relativistic corrections are added for all the pairs of Xe atoms in the clusters. Using this approach we obtain very good agreement with the experimental data, showing that the chemical shift of 129 Xe in supercritical conditions is very well described by cluster calculations at the HF level, with small contributions from relativistic and electron correlation effects.
GraXe, graphene and xenon for neutrinoless double beta decay searches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gómez-Cadenas, J.J.; Martín-Albo, J.; Monrabal, F.
2012-02-01
We propose a new detector concept, GraXe (to be pronounced as grace), to search for neutrinoless double beta decay in {sup 136}XE. GraXe combines a popular detection medium in rare-event searches, liquid xenon, with a new, background-free material, graphene. In our baseline design of GraXe, a sphere made of graphene-coated titanium mesh and filled with liquid xenon (LXe) enriched in the {sup 136}XE isotope is immersed in a large volume of natural LXe instrumented with photodetectors. Liquid xenon is an excellent scintillator, reasonably transparent to its own light. Graphene is transparent over a large frequency range, and impermeable to themore » xenon. Event position could be deduced from the light pattern detected in the photosensors. External backgrounds would be shielded by the buffer of natural LXe, leaving the ultra-radiopure internal volume virtually free of background. Industrial graphene can be manufactured at a competitive cost to produce the sphere. Enriching xenon in the isotope {sup 136}XE is easy and relatively cheap, and there is already near one ton of enriched xenon available in the world (currently being used by the EXO, KamLAND-Zen and NEXT experiments). All the cryogenic know-how is readily available from the numerous experiments using liquid xenon. An experiment using the GraXe concept appears realistic and affordable in a short time scale, and its physics potential is enormous.« less
NASA Astrophysics Data System (ADS)
Eskola, K. J.; Niemi, H.; Paatelainen, R.; Tuominen, K.
2018-03-01
We present the event-by-event next-to-leading-order perturbative-QCD + saturation + viscous hydrodynamics (EKRT) model predictions for the centrality dependence of the charged hadron multiplicity in the pseudorapidity interval |η |≤0.5 , and for the centrality dependence of the charged hadron flow harmonics vn{2 } obtained from two-particle cumulants, in √{sN N}=5.44 TeV Xe+Xe collisions at the CERN Large Hadron Collider. Our prediction for the 0-5 % central charged multiplicity is d Nch/d η =1218 ±46 . We also predict vn{2 } in Xe+Xe collisions to increase more slowly from central towards peripheral collisions than those in a Pb+Pb system. We find that at 10 ,⋯,50 % centralities v2{2 } is smaller and v3{2 } is larger than in the Pb+Pb system while v4{2 } is of the same magnitude in both systems. We also find that the ratio of flow harmonics in Xe+Xe collisions and in Pb+Pb collisions shows a slight sensitivity to the temperature dependence of the shear-viscosity-to-entropy ratio. As we discuss here, the new nuclear mass-number systematics especially in the flow harmonics serves as a welcome further constraint for describing the space-time evolution of a heavy-ion system and for determining the shear viscosity and other transport properties of strongly interacting matter.
NASA Astrophysics Data System (ADS)
Noirot, J.; Lamontagne, J.; Nakae, N.; Kitagawa, T.; Kosaka, Y.; Tverberg, T.
2013-11-01
A UO2 fuel with a heterogeneous distribution of 235U was irradiated up to a high burn-up in the Halden Boiling Water Reactor (HBWR). The last 100 days of irradiation were performed with an increased level of linear power. The effect of the heterogeneous fissile isotope distribution on the formation of the HBS was studied free of the possible influence of Pu which exists in heterogeneous MOX fuels. The HBS formed in 235U-rich agglomerates and its main characteristics were very similar to those of the HBS formed in Pu-rich agglomerates of heterogeneous MOX fuels. The maximum local contents of Nd and Xe before HBS formation were studied in this fuel. In addition to a Pu effect that promotes the HBS phenomenon, comparison with previous results for heterogeneous MOX fuels showed that the local fission product concentration was not the only parameter that has to be taken into consideration. It appears that the local actinide depletion by fission and/or the energy locally deposited through electronic interactions in the fission fragment recoils also have an effect on the HBS formation threshold. Moreover, a major release of fission gases from the peripheral 235U-rich agglomerates of HBS bubbles and a Cs radial movement are also evidenced in this heterogeneous UO2. Cs deposits on the peripheral grain boundaries, including the HBS grain boundaries, are considered to reveal the release paths. SUP>235U-rich agglomerates, SUP>235U-poor areas, an intermediate phase with intermediate 235U concentrations. Short fuel rods were fabricated with these pellets. The main characteristics of these fuel rods are shown in Table 1.These rods were irradiated to high burn-ups in the IFA-609/626 of the HBWR and then one was irradiated in the IFA-702 for 100 days. Fig. 2 shows the irradiation history of this fuel. The final average burn-up of the rod was 69 GWd/tU. Due to the flux differences along the rod, however, the average burn-up of the cross section examined was 63 GWd/tU. This fuel experienced high linear powers during the first year of irradiation, but at the end of the IFA-609/626 period, the average linear power of the rod was around 12 kW/m. In the IFA-702, the power was gradually increased over 7 days from 12 kW/m to 22.5 kW/m before it was decreased again to reach ˜19 kW/m at the end of the 100 days forming this part of the irradiation. A LEICA (DM RXA2) optical microscope. A shielded electronic microprobe (EPMA) SX-100R by CAMECA. A shielded scanning electron microscope (SEM): the Philips XL30. Image acquisitions were performed using the ADDA "SIS" system with the AnalySIS software for image analysis. A shielded secondary ion mass spectrometer (SIMS): the CAMECA IMS 6f was capable of analysing the same samples as the SEM and EPMA [16-22]. In the central part of the pellet for all three phases, Xe precipitated into bubbles with very little Xe remaining outside the bubbles. Some Xe-filled bubbles were detected under the surface in this area. They appear as bright spots. Around mid-radius on the periphery of the 235U-poor areas and in the intermediate phase, Xe was depleted on the periphery of the grains. This depletion was not associated with Xe-filled bubbles that would be detected under the polished surface. Moreover, no large intergranular open bubbles were visible. Therefore, this missing gas must have been released. In the 235U-rich agglomerates all over the section, Xe precipitated into bubbles with very little Xe remaining outside the bubbles. The Xe quantitative analyses through 235U-rich agglomerates on the pellet periphery (Fig. 9) confirmed the low quantity of Xe remaining outside the bubbles. This Xe content was around 0.1 wt%. Fig. 10 shows the Xe and Nd EPMA quantitative measurements along a radius of the cross section. In this figure and in Fig. 9, the weight percentage scales were set so that the two profiles would be almost identical without Xe release or precipitation. Along the Xe axis, the Nd profile can be considered as the local Xe production. Fig. 10 shows that the Xe measurement all through the central part is low except for a few points corresponding to unopened but close to the polished surface and detected by EPMA. These points correspond to the bright spots detected in the central part in Fig. 8. High concentrations were detected locally all over the radius on the Nd profile. They correspond to the 235U-rich agglomerates or their surroundings. Outside the central part, these high Nd concentrations correspond to low Xe concentrations, consistent with the maps in Fig. 8 and the detailed analyses across large 235U-rich agglomerates (Fig. 9).Fig. 11 shows a set of Xe (wt%) and (145Nd + 146Nd)/heavy metal radial profiles both acquired by SIMS. Three profiles are show for each set: one in the 235U-rich agglomerates, one in the 235U-poor areas and one in the intermediate phase. The three phases are not homogeneous themselves. This induces differences between (145Nd + 146Nd)/HM SIMS measurement points of a given phase. The (145Nd + 146Nd)/HM results are a reference for the Xe measurements, giving an estimation of the relative Xe local production. The (145Nd + 146Nd)/HM was high in the 235U-rich agglomerates, lower in the intermediate phase and even lower in the 235U-poor areas. Differences similar to those obtained herein between the phases would have been found in the Xe measurements if no release had occurred in any of those phases. The Xe (wt%) results show that this is not the case. The Xe measurements were quite similar in the intermediate phase and in the 235U-poor areas; they would have been higher in the intermediate phase if no release had occurred. The Xe measurements in the 235U-rich agglomerates were very low and lower than in the two other phases. For the 235U-rich agglomerates, there was a very big difference, across the entire radius, between the Xe measured and the Xe local production.In the SIMS Xe measurements, local depth profiles show peaks on a base line [19]. The base line corresponds to the solid solution Xe and to the nano-bubbles. The peaks correspond to Xe in larger bubbles opened by ion beam fuel sputtering. The SIMS total values correspond to the Xe outside these bubbles plus the Xe trapped in these bubbles.Fig. 12 shows the total Xe SIMS results (already shown in Fig. 11) together with the base line measurements for each measurement point and in separate graphs for each phase. The Xe EPMA quantitative measurements used as a background for these three graphs are the same as those in Fig. 10 and are the same for the three graphs, without any phase distinction. The SIMS Xe relative measurements were calibrated through a correspondence between the SIMS base line results and the EPMA measurements [20]. As expected, the SIMS base line profile was consistent with the EPMA all along the profile for each corresponding phase. For example, the SIMS base line in the 235U-rich agglomerates corresponds to the low EPMA measurement points of the Xe in this zone, i.e. the points of the EPMA profile in the 235U-rich agglomerates. By way of comparison between the Xe and the Nd measurements (the latter being rescaled to be representative of the creation level of Xe), Fig. 11 made it possible to identify two main parts on the Xe SIMS radius: The central part 0R to ˜0.5R: In the intermediate phase and the 235U-poor areas, the SIMS total was used to identify this part as a release area. The average fraction of gas measured in the bubbles (the ratio between the gas in the bubbles and the total measurement) was between 60% and 90%. The Xe content outside the bubbles was very low. In the 235U-rich agglomerates, the SIMS total represents only a small fraction of the produced Xe, which means that a large fraction of the Xe is released or not detected by SIMS due to the large size of some agglomerate bubbles compared with the volume of the crater analysed. sim;0.5R to ˜1R: The 235U-poor areas are not release areas. The fraction of gas in bubbles measured in these areas remained low, ˜5%. The intermediate phase is a release area with moderate release. The average fraction of gas measured in the bubbles was around 20%. In the 235U-rich agglomerates, the Xe SIMS total was very low. This part is a release area. Sharp transitions between initial microstructure and the HBS, often inside one grain. Increase in the resulting grain size with increasing distance from the pellet periphery. The grain sizes are in fact consistent with the MOX measurements [2]. Increase in the bubble size with the increasing distance from the pellet periphery, consistent with the MOX measurements. Smaller bubbles tend to be found in the peripheral part of the 235U-rich agglomerates rather than in their central part. Sharp transition, around 0.5R, between the peripheral area where the conventional form of HBS forms in the 235U-rich agglomerates and the central part where much larger bubbles form and where the grain size is also clearly larger. Xe concentration of 0.1 wt% outside the bubbles in the HBS areas is consistent with the [2] MOX measurements at equivalent local burn-ups. The heterogeneous MOX fuels examinations have firmly established that the HBS can extend outside the Pu-rich agglomerates due to the implantation of fission products around these agglomerates. Similarly, it has been shown that the small Pu-rich agglomerates can remain with the initial microstructure even if there is a similar actual local burn-up, a large rate of fission products being implanted outside the agglomerates themselves so that the local fission product concentration remains low.In this 235U heterogeneous UO2, the Xe and Nd concentration levels reached at the HBS formation limit ranged between 0.8 wt% and 1.1 wt% for Xe and between 0.63 wt% and 0.83 wt% for Nd. These ranges are similar to what was reported in [23] for the UO2 rim. These limits are, however, slightly higher than those found for Pu-rich agglomerates in heterogeneous MOX fuels in [2] or in [24]. Nonetheless, they are clearly lower than the concentrations reached without HBS in the special Pu-poor spots in [2]. In these spots, UO2 particles in heterogeneous MOX were really close or even surrounded by Pu-rich areas. As a result, their fission product content, due to recoil, was almost the same as that in the surrounding Pu-rich agglomerates themselves despite a very low actual local burn-up. In these special UO2 spots in MOX fuel, 1.4 wt% was reached for Xe and no HBS formed.If these high Xe concentrations without HBS in the special spots in [2] were made possible by the very low Pu local concentration only, very high Xe concentrations should have been common around the heterogeneous UO2 fuel 235U-rich agglomerates, since the Pu level was low everywhere in this fuel. This is not what was observed.Even if this effect due to a high fission product level reached without the formation of a HBS (as reported in [2] for heterogeneous MOX fuels in the special spots) is partially due to the very low local Pu level, it does not seem to be the only reason. It also seems to be partly due to the very low level of actual fissions occurring there. Between a rich agglomerate and such a highly implanted area there is: The same local fission product build-up and associated damage (due to cascades from the nuclei interactions during the last part of the fission fragment recoil). A large difference in the actinide isotope depletion to the extent that a difference in chemical composition exists between the two. A difference in the electronic excitation level at the beginning of the fission fragment recoil, higher in Pu agglomerates and in 235U-rich agglomerates than in the low fissile content areas, even surrounded by rich areas. The last two points may have an effect on the formation of a HBS though this paper cannot say which one is the most significant.The highest levels reached for Xe and Nd without HBS in the 235U heterogeneous fuel are very likely to correspond to places where the initial 235U content was particularly low but where fission recoil led to these high levels. The maximum concentrations of fission products reached before the formation of a HBS in the 235U heterogeneous fuel are lower than for the heterogeneous MOX special Pu-poor spots. This is most certainly due to the local 235U initial concentration in the 235U-poor areas which is nonetheless high when compared with the initial Pu concentrations in the Pu-poor areas in the MOX fuel. Consequently, there are more fission reactions there in the heterogeneous UO2 fuel than in the MOX fuel.This fission and/or fission spike effect has in fact little impact on the overall fuel behaviour, be it homogeneous or heterogeneous, but it has to be taken into account in the separate-effect experiments where unirradiated UO2 is submitted to ion irradiation to simulate the irradiation effects [9,25-30]. The depletion of the actinide isotopes cannot be simulated in these experiments. The IFA-702 re-irradiation, with the high power during the last period of the irradiation most certainly having played a role. The other major difference between this fuel was irradiated under BWR conditions, whereas those used in [2] were all PWR fuels. The images of the IFA-702 heterogeneous UO2 fuel on the periphery show that an internal zirconia layer was formed during the irradiation, which is a sign of gap closure under hot conditions, though a thin gap was still measured at room temperature. Therefore, the stress field in the pellet of this fuel must have been significantly different from that of the fuel used in [2]. The resulting release is all the more interesting since the release path is more or less revealed by the Cs deposits. This Cs is released from the hot central part of the pellet and is not only in the fuel-cladding gap and along the obvious radial cracks, but also in: All the grain boundaries around those radial cracks. The HBS 235U-rich agglomerates around those radial cracks. Like for Xe, the general trend for Cs was a release from the 235U peripheral agglomerates. The higher Cs measurement in the 235U-rich agglomerates close to the radial cracks results from both this release and the deposition of the Cs released from the hot central part.This singular release of Xe from the HBS bubbles of the 235U-rich agglomerates on the fuel periphery is all the more surprising that the Pu-rich agglomerates of the MIMAS MOX fuel irradiated under the same conditions [15] retained their fission gases in these areas. We found no definitive reason for that difference. the fission product implantation level has an effect. the local Pu content has also an effect. the actual local burn-up has an effect. This effect may be linked to fission through the local depletion of the fissile isotopes which changes the local chemical composition, as well as to the higher energy deposited there by electronic interactions at the beginning of the fission fragment recoils when compared with implanted areas with a low actual burn-up. Moreover, the major release of fission gases from the peripheral 235U-rich agglomerate HBS bubbles was evidenced in this heterogeneous UO2 fuel.The radial movement of Cs from the central part of the pellet towards its periphery was shown. This involved a deposition at the grain boundaries, including the HBS ones, around the radial cracks in the periphery. This showed the intergranular paths existing for the release of fission gases and Cs all through the fuel periphery. Grain Equivalent Circular Diameter (ECD) for which half of the surface is made of smaller grains and half of larger grains
Sun, Junhui; Zhang, Yanning; Lu, Zhibin; Xue, Qunji; Wang, Liping
2017-05-10
Friction on a nanoscale revealed rich load-dependent behavior, which departs strongly from the long-standing Amonton's law. Whilst electrostatic repulsion-induced friction collapse for rare gas sliding over metallic surfaces in a high-load regime was reported by Righi et al. (Phys. Rev. Lett., 2007, 99, 176101), the significant role of attraction on frictional properties has not been reported to date. In this study, the frictional motion of Xe/Cu(111), Xe/Pd(111) and Ar/Cu(111) was studied using van der Waals corrected density functional calculations. An attraction-induced zero friction, which is a signal of superlubricity, was found for the sliding systems. The superlubric state results from the disappearance of the potential corrugation along the favored sliding path as a consequence of the potential crossing in the attractive regime when the interfacial pressure approaches a critical-value. The finding of an attraction-driven friction drop, together with the repulsion-induced collapse in the high-load regime, which breaks down the classic Amonton's law, provides a distinct approach for the realization of inherent superlubricity in some adsorbate/substrate interfaces.
Neutralization of space charge forces using ionized background gas
NASA Astrophysics Data System (ADS)
Steski, D. B.; Zarcone, M. J.; Smith, K. S.; Thieberger, P.
1996-03-01
The Tandem Van de Graaff at Brookhaven National Laboratory has delivered pulsed gold beam to the Alternating Gradient Synchrotron (AGS) and AGS Booster since 1992 for relativistic heavy ion physics. There is an ongoing effort to improve the quality and intensity of the negative ion beam delivered to the Tandem from the present Cs sputter sources. Because the beam energy is low (approximately 30 keV) and the current high, there are significant losses due to space charge forces. One of the ways being explored to overcome these losses is to neutralize the space charge forces with ionized background gas. On an ion source test bench, using three different gases (Ar, N2, and Xe), the percentage of current transported from the source to a downstream Faraday cup was increased from 10% to 40% by bleeding in gas. Bleeding in Xe resulted in the best transmission. The time dependence of the neutralization as a function of gas pressure was also observed. This system is presently being transferred to the Negative Ion Injector of the Tandem for use in upcoming heavy ion experiments.
Simple Model of Macroscopic Instability in XeCl Discharge Pumped Lasers
NASA Astrophysics Data System (ADS)
Ahmed, Belasri; Zoheir, Harrache
2003-10-01
The aim of this work is to study the development of the macroscopic non uniformity of the electron density of high pressure discharge for excimer lasers and eventually its propagation because of the medium kinetics phenomena. This study is executed using a transverse mono-dimensional model, in which the plasma is represented by a set of resistance's in parallel. This model was employed using a numerical code including three strongly coupled parts: electric circuit equations, electron Boltzmann equation, and kinetics equations (chemical kinetics model). The time variations of the electron density in each plasma element are obtained by solving a set of ordinary differential equations describing the plasma kinetics and external circuit. The use of the present model allows a good comprehension of the halogen depletion phenomena, which is the principal cause of laser ending and allows a simple study of a large-scale non uniformity in preionization density and its effects on electrical and chemical plasma properties. The obtained results indicate clearly that about 50consumed at the end of the pulse. KEY WORDS Excimer laser, XeCl, Modeling, Cold plasma, Kinetic, Halogen depletion, Macroscopic instability.
Topological signature in the NEXT high pressure xenon TPC
NASA Astrophysics Data System (ADS)
Ferrario, Paola;
2017-09-01
The NEXT experiment aims to observe the neutrinoless double beta decay of 136Xe in a high-pressure xenon gas TPC using electroluminescence to amplify the signal from ionization. One of the main advantages of this technology is the possibility to use the topology of events with energies close to Qββ as an extra tool to reject background. In these proceedings we show with data from prototypes that an extra background rejection factor of 24.3 ± 1.4 (stat.)% can be achieved, while maintaining an efficiency of 66.7 ± 1.% for signal events. The performance expected in NEW, the next stage of the experiment, is to improve to 12.9% ± 0.6% background acceptance for 66.9% ± 0.6% signal efficiency.
I-Pu-Xe dating and the relative ages of the earth and moon
NASA Technical Reports Server (NTRS)
Swindle, T. D.; Caffee, M. W.; Hohenberg, C. M.; Taylor, S. R.
1986-01-01
The ages of the earth and moon as determined by various chronometric systems are discussed with primary emphasis placed on the development of an I-Pu-Xe chronometer. Data on excess fission xenon are reviewed with attention given to the strengths and weaknesses of the assumptions required for lunar I-Pu-Xe chronometry. Using I-Pu-Xe dating, it is estimated that the retention of excess fission xenon in lunar samples began no more than 63 + or - 42 m.y. after the time of primitive meteorite formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Back, H. O.; Bottenus, D. R.; Clayton, C.
The next generation of 136Xe neutrinoless double beta decay experiments will require on the order of 5 tons of enriched 136Xe. By estimating the relative volatilities of the xenon isotopes and using standard chemical engineering techniques we explore the feasibility of using cryogenic distillation to produce 5 tons of 80% enriched 136Xe in 5-6 years. With current state-of-the-art distillation column packing materials we can estimate the total height of a traditional cryogenic distillation column. We also, report on how Micro Channel Distillation may reduce the overall size of a distillation system for 136Xe production.
Shell effects in a multinucleon transfer process
NASA Astrophysics Data System (ADS)
Zhu, Long; Wen, Pei-Wei; Lin, Cheng-Jian; Bao, Xiao-Jun; Su, Jun; Li, Cheng; Guo, Chen-Chen
2018-04-01
The shell effects in multinucleon transfer process are investigated in the systems 136Xe + 198Pt and 136Xe + 208Pb within the dinuclear system (DNS) model. The temperature dependence of shell corrections on potential energy surface is taken into account in the DNS model and remarkable improvement for description of experimental data is noticed. The reactions 136Xe + 186W and 150Nd + 186W are also studied. It is found that due to shell effects the projectile 150Nd is more promising for producing transtarget nuclei rather than 136Xe with neutron shell closure.
NASA Astrophysics Data System (ADS)
Zhang, C.; Feng, T.; Raabe, N.; Rottke, H.
2018-02-01
Strong-field ionization (SFI) of the homonuclear noble gas dimer Xe2 is investigated and compared with SFI of the Xe atom and of the ArXe heteronuclear dimer by using ultrashort Ti:sapphire laser pulses and photoelectron momentum spectroscopy. The large separation of the two nuclei of the dimer allows the study of two-equivalent-center interference effects on the photoelectron momentum distribution. Comparing the experimental results with a new model calculation, which is based on the strong-field approximation, actually reveals the influence of interference. Moreover, the comparison indicates that the presence of closely spaced gerade and ungerade electronic state pairs of the Xe2 + ion at the Xe2 ionization threshold, which are strongly dipole coupled, affects the photoelectron momentum distribution.
Abraini, Jacques H; David, Hélène N; Blatteau, Jean-Éric; Risso, Jean Jacques; Vallée, Nicolas
2017-01-01
The noble gases xenon (Xe) and helium (He) are known to possess neuroprotective properties. Xe is considered the golden standard neuroprotective gas. However, Xe has a higher molecular weight and lower thermal conductivity and specific heat than those of nitrogen, the main diluent of oxygen (O2) in air, conditions that could impair or at least reduce the intrinsic neuroprotective properties of Xe by increasing the critical care patient's respiratory workload and body temperature. In contrast, He has a lower molecular weight and higher thermal conductivity and specific heat than those of nitrogen, but is unfortunately far less potent than Xe at providing neuroprotection. Therefore, combining Xe with He could allow obtaining, depending on the gas inhalation temperature and composition, gas mixtures with neutral or hypothermic properties, the latter being advantageous in term of neuroprotection. However, calculating the thermal properties of a mixture, whatever the substances - gases, metals, rubbers, etc . - is not trivial. To answer this question, we provide a graphical method to assess the volume proportions of Xe, He and O2 that a gas mixture should contain, and the inhalation temperature to which it should be administered to allow a clinician to maintain the patient at a target body temperature.
About 129Xe ∗ in meteoritic nanodiamonds
NASA Astrophysics Data System (ADS)
Fisenko, A. V.; Semjonova, L. F.
2008-08-01
The analysis of excess 129Xe in meteoritic nanodiamonds and the kinetics of its release during stepwise pyrolysis allow to suggest that (1) in the solar nebula 129I atoms were adsorbed onto nanodiamond grains and (or) chemisorbed by forming covalent bonds with carbon atoms. Most 129I atoms existed in a surface connected state, but a minor amount of them was in nanopores of the grains. At radioactive decay of 129I the formed 129Xe ( 129Xe ∗) was trapped by diamond grains due to nuclear recoil. (2) During thermal metamorphism or aqueous alteration, the surface-sited 129I atoms were basically lost. On the basis of these assumptions and calculated concentrations of 129Xe ∗ in meteoritic nanodiamonds it is shown that the minimum closing time of the I-Xe system for meteorites of different chemical classes and low petrologic types may be about one million years relative to the minimally thermally metamorphized CO3 meteorite ALHA 77307. With increasing metamorphic grade the closing time of the I-Xe system increases and can range up to several ten millions years. This tendency is in agreement with an onion-shell model of structure and cooling history of meteorite parent bodies where the temperature increases in the direction from surface to center of the asteroids.
Ranjbar, Lily; Farsoni, Abi T; Becker, Eric M
2017-04-01
Measurement of elevated concentrations of xenon radioisotopes ( 131m Xe, 133m Xe, 133 Xe and 135 Xe) in the atmosphere has been shown to be a very powerful method for verifying whether or not a detected explosion is nuclear in nature. These isotopes are among the few with enough mobility and with half-lives long enough to make their detection at long distances realistic. Existing radioxenon detection systems used by the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) suffer from problems such as complexity, need for high maintenance and memory effect. To study the response of CdZnTe (CZT) detectors to xenon radioisotopes and investigate whether it is capable of mitigating the aforementioned issues with the current radioxenon detection systems, a prototype detector utilizing two coplanar CZT detectors was built and tested at Oregon State University. The detection system measures xenon radioisotopes through beta-gamma coincidence technique by detecting coincidence events between the two detectors. In this paper, we introduce the detector design and report our measurement results with radioactive lab sources and 135 Xe produced in the OSU TRIGA reactor. Minimum Detectable Concentration (MDC) for 135 Xe was calculated to be 1.47 ± 0.05 mBq/m 3 . Copyright © 2017 Elsevier Ltd. All rights reserved.
Zajicek, Robert; Mandys, Vaclav; Mestak, Ondrej; Sevcik, Jan; Königova, Radana; Matouskova, Eva
2012-01-01
A number of implantable biomaterials derived from animal tissues are now used in modern surgery. Xe-Derma is a dry, sterile, acellular porcine dermis. It has a remarkable healing effect on burns and other wounds. Our hypothesis was that the natural biological structure of Xe-Derma plays an important role in keratinocyte proliferation and formation of epidermal architecture in vitro as well as in vivo. The bioactivity of Xe-Derma was studied by a cell culture assay. We analyzed growth and differentiation of human keratinocytes cultured in vitro on Xe-Derma, and we compared the results with formation of neoepidermis in the deep dermal wounds treated with Xe-Derma. Keratinocytes cultured on Xe-Derma submerged in the culture medium achieved confluence in 7–10 days. After lifting the cultures to the air-liquid interface, the keratinocytes were stratified and differentiated within one week, forming an epidermis with basal, spinous, granular, and stratum corneum layers. Immunohistochemical detection of high-molecular weight cytokeratins (HMW CKs), CD29, p63, and involucrin confirmed the similarity of organization and differentiation of the cultured epidermal cells to the normal epidermis. The results suggest that the firm natural structure of Xe-Derma stimulates proliferation and differentiation of human primary keratinocytes and by this way improves wound healing. PMID:22629190
Metal–organic framework with optimally selective xenon adsorption and separation
Banerjee, Debasis; Simon, Cory M.; Plonka, Anna M.; ...
2016-06-13
Nuclear energy is considered among the most viable alternatives to our current fossil fuel based energy economy.1 The mass-deployment of nuclear energy as an emissions-free source requires the reprocessing of used nuclear fuel to mitigate the waste.2 One of the major concerns with reprocessing used nuclear fuel is the release of volatile radionuclides such as Xe and Kr. The most mature process for removing these radionuclides is energy- and capital-intensive cryogenic distillation. Alternatively, porous materials such as metal-organic frameworks (MOFs) have demonstrated the ability to selectively adsorb Xe and Kr at ambient conditions.3-8 High-throughput computational screening of large databases ofmore » porous materials has identified a calcium-based nanoporous MOF, SBMOF-1, as the most selective for Xe over Kr.9,10 Here, we affirm this prediction and report that SBMOF-1 exhibits by far the highest Xe adsorption capacity and a remarkable Xe/Kr selectivity under relevant nuclear reprocessing conditions. The exceptional selectivity of SBMOF-1 is attributed to its pore size tailored to Xe and its dense wall of atoms that constructs a binding site with a high affinity for Xe, as evident by single crystal X-ray diffraction and molecular simulation.« less
Imaging Human Brain Perfusion with Inhaled Hyperpolarized 129Xe MR Imaging.
Rao, Madhwesha R; Stewart, Neil J; Griffiths, Paul D; Norquay, Graham; Wild, Jim M
2018-02-01
Purpose To evaluate the feasibility of directly imaging perfusion of human brain tissue by using magnetic resonance (MR) imaging with inhaled hyperpolarized xenon 129 ( 129 Xe). Materials and Methods In vivo imaging with 129 Xe was performed in three healthy participants. The combination of a high-yield spin-exchange optical pumping 129 Xe polarizer, custom-built radiofrequency coils, and an optimized gradient-echo MR imaging protocol was used to achieve signal sensitivity sufficient to directly image hyperpolarized 129 Xe dissolved in the human brain. Conventional T1-weighted proton (hydrogen 1 [ 1 H]) images and perfusion images by using arterial spin labeling were obtained for comparison. Results Images of 129 Xe uptake were obtained with a signal-to-noise ratio of 31 ± 9 and demonstrated structural similarities to the gray matter distribution on conventional T1-weighted 1 H images and to perfusion images from arterial spin labeling. Conclusion Hyperpolarized 129 Xe MR imaging is an injection-free means of imaging the perfusion of cerebral tissue. The proposed method images the uptake of inhaled xenon gas to the extravascular brain tissue compartment across the intact blood-brain barrier. This level of sensitivity is not readily available with contemporary MR imaging methods. © RSNA, 2017.
A review of noble gas geochemistry in relation to early Earth history
NASA Technical Reports Server (NTRS)
Kurz, M. D.
1985-01-01
One of the most fundamental noble gas constraints on early Earth history is derived from isotopic differences in (129)Xe/(130)Xe between various terrestrial materials. The short half life (17 m.y.) of extinct (129I, parent of (129)Xe, means that these differences must have been produced within the first 100 m.y. after terrestrial accretion. The identification of large anomalies in (129)Xe/(130)Xe in mid ocean ridge basalts (MORB), with respect to atmospheric xenon, suggests that the atmosphere and upper mantle have remained separate since that time. This alone is a very strong argument for early catastrophic degassing, which would be consistent with an early fractionation resulting in core formation. However, noble gas isotopic systematics of oceanic basalts show that the mantle cannot necessarily be regarded as a homogeneous system, since there are significant variations in (3)He/(4)He, (40)Ar/(36)Ar, and (129)Xe/(130)Xe. Therefore, the early degassing cannot be considered to have acted on the whole mantle. The specific mechanisms of degassing, in particular the thickness and growth of the early crust, is an important variable in understanding present day noble gas inventories. Another constraint can be obtained from rocks that are thought to be derived from near the lithosphere asthenosphere boundary: ultramafic xenoliths.
Zajicek, Robert; Mandys, Vaclav; Mestak, Ondrej; Sevcik, Jan; Königova, Radana; Matouskova, Eva
2012-01-01
A number of implantable biomaterials derived from animal tissues are now used in modern surgery. Xe-Derma is a dry, sterile, acellular porcine dermis. It has a remarkable healing effect on burns and other wounds. Our hypothesis was that the natural biological structure of Xe-Derma plays an important role in keratinocyte proliferation and formation of epidermal architecture in vitro as well as in vivo. The bioactivity of Xe-Derma was studied by a cell culture assay. We analyzed growth and differentiation of human keratinocytes cultured in vitro on Xe-Derma, and we compared the results with formation of neoepidermis in the deep dermal wounds treated with Xe-Derma. Keratinocytes cultured on Xe-Derma submerged in the culture medium achieved confluence in 7-10 days. After lifting the cultures to the air-liquid interface, the keratinocytes were stratified and differentiated within one week, forming an epidermis with basal, spinous, granular, and stratum corneum layers. Immunohistochemical detection of high-molecular weight cytokeratins (HMW CKs), CD29, p63, and involucrin confirmed the similarity of organization and differentiation of the cultured epidermal cells to the normal epidermis. The results suggest that the firm natural structure of Xe-Derma stimulates proliferation and differentiation of human primary keratinocytes and by this way improves wound healing.
Halogens, Barium and Uranium in Mantle Fluid Inclusions
NASA Astrophysics Data System (ADS)
Villa, I. M.; Peverelli, V.; Oglialoro, E.; Pettke, D. T.; Frezzotti, M. L.
2016-12-01
Halogens are an underexplored geochemical marker. A way to measure halogens at ng/g levels is measuring Ar, Kr and Xe in irradiated samples [1,2]. We derive absolute halogen amounts from rare gas amounts via scapolite monitor SY [2]. Kr-Xe systematics also yield Ba and U concentrations. We combined irradiation with stepheating on carbonate-sulfate-rich fluid inclusions (FI)-bearing xenoliths from El Hierro, Canarias: spinel harzburgite XML-7 and spinel dunite XML-1 [3]. Three components are recognized in the rare gas release. (1) Atmospheric surface contamination occurs up to 1000 °C. (2) FI decrepitation by laboratory heating occurs above 1200 °C [4], corresponding to the release of 80,82Kr and 128Xe in the 1200 and 1400 °C steps. Br whole-rock concentrations are 3-8 ng/g; the molar Br/Cl and I/Cl ratios in the harzburgite FI, 9 E-4 resp. 2 E-4, are identical to those in the dunite FI. This sets the halogens in our FI apart from MORB [2]. Halogen-derived rare gases are closely associated to artificial 131Xe from Ba; Ba has a high affinity of for CO2-rich fluids. Daughter minerals in multiphase FI were identified by Raman microspectroscopy [4]. The calculated Ba concentrations are 2-6 µg/g. (3) The third component is U-derived 134,136Xe and 86Kr released in a spike at 1000 °C, decoupled from FI. This requires a different carrier than FI, e.g. Ti oxides. As U concentrations are 10-20 pg/g, the U-bearing phase needs to be below a ppm, invisible by petrography. The 136Xe/134Xe ratio > 1 suggests retention of radiogenic Xe. However, analysis of an unirradiated sample detected no radiogenic Xe. It is likely that Xe-U produced in the core of the McMaster reactor (thermal, epithermal and fast neutrons) has a different isotopic composition from that in textbooks, as proposed by [2].[1] Jeffery & Reynolds (1961) J.Geophys. Res. 66, 3582 [2] Kendrick (2012) Chem. Geol. 292, 116 [3] Oglialoro et al (2015) AGU Fall Meeting abstract V21C-3046 [4] Roedder (1965) Am. Min. 50, 1746
Searles, James A; Aravapalli, Sridhar; Hodge, Cody
2017-10-01
Secondary drying is the final step of lyophilization before stoppering, during which water is desorbed from the product to yield the final moisture content. We studied how chamber pressure and partial pressure of water vapor during this step affected the time course of water content of aqueous solutions of polyvinylpyrrolidone (PVP) in glass vials. The total chamber pressure had no effect when the partial pressure of water vapor was very low. However, when the vapor phase contained a substantial fraction of water vapor, the PVP moisture content was much higher. We carried out dynamic vapor sorption experiments (DVS) to demonstrate that the higher PVP moisture content was a straightforward result of the higher water vapor content in the lyophilizer. The results highlight that the partial pressure of water vapor is extremely important during secondary drying in lyophilization, and that lower chamber pressure set points for secondary drying may sometimes be justified as a strategy for ensuring low partial pressure of water vapor, especially for lyophilizers that do not inject dry gas to control pressure. These findings have direct application for process transfers/scale ups from freeze-dryers that do not inject dry gas for pressure control to those that do, and vice versa.
ERIC Educational Resources Information Center
Jee-Yon Lee; Hee-Soo Yoo; Jong Sook Park; Kwang-Jin Hwang; Jin Seog Kim
2005-01-01
The spontaneous mixing of helium and air in a helium-inflated balloon is described in an experiment in which the partial pressure of the gases in the balloon are determined from the mole factions and the total pressure measured in the balloon. The results described provide a model for teaching concepts of partial pressure, chemical potential, and…
Combined hydraulic and regenerative braking system
Venkataperumal, R.R.; Mericle, G.E.
1979-08-09
A combined hydraulic and regenerative braking system and method for an electric vehicle is disclosed. The braking system is responsive to the applied hydraulic pressure in a brake line to control the braking of the vehicle to be completely hydraulic up to a first level of brake line pressure, to be partially hydraulic at a constant braking force and partially regenerative at a linearly increasing braking force from the first level of applied brake line pressure to a higher second level of brake line pressure, to be partially hydraulic at a linearly increasing braking force and partially regenerative at a linearly decreasing braking force from the second level of applied line pressure to a third and higher level of applied line pressure, and to be completely hydraulic at a linearly increasing braking force from the third level to all higher applied levels of line pressure.
Combined hydraulic and regenerative braking system
Venkataperumal, Rama R.; Mericle, Gerald E.
1981-06-02
A combined hydraulic and regenerative braking system and method for an electric vehicle, with the braking system being responsive to the applied hydraulic pressure in a brake line to control the braking of the vehicle to be completely hydraulic up to a first level of brake line pressure, to be partially hydraulic at a constant braking force and partially regenerative at a linearly increasing braking force from the first level of applied brake line pressure to a higher second level of brake line pressure, to be partially hydraulic at a linearly increasing braking force and partially regenerative at a linearly decreasing braking force from the second level of applied line pressure to a third and higher level of applied line pressure, and to be completely hydraulic at a linearly increasing braking force from the third level to all higher applied levels of line pressure.
NASA Technical Reports Server (NTRS)
Rulison, Aaron J.; Flagan, Richard C.; Ahrens, Thomas J.; Miller, Wayne F.
1991-01-01
The ablative deceleration of spheres in the continuum and slip regimes is studied using spherical 7.1-micron-diam soda-lime glass particles launched from vacuum at about 4500 m/sec speed through a 13-micron-thick plastic film into a capture chamber containing Xe at 0.1 or 0.2 atm pressure and 295 K temperature. The results of SEM examinations of the collected ablated particles showed that the ratio of the ablated-particle radius (Rf) to the initial radius (R0) increased with gas pressure (from Rf/R0 about 0.67 at 0.1 atm, to about 0.88 at 0.2 atm). A model was developed to describe the ablation and deceleration of spheres in high-speed continuum and slip flow. The pressure dependence predicted by the model agreed with experimental results.
NASA Technical Reports Server (NTRS)
Cherrington, B. E.; Verdeyen, J. T.; Eden, J. G.; Leslie, S. G.
1975-01-01
By measuring the absorption and emission cantinua of various states in the cesium/xenon molecule, the collisional rates critical in populating the alkali/rare gas excimer levels have been estimated. Cs atomic states that are weakly optically connected to ground have been shown to form excimer levels that are attractive as potential dissociation lasers. In particular, the (Cs/7 2S/Xe) excited molecule appears promising as a source of high energy laser radiation due to its large dissociation energy, stimulated emission cross section, and small population inversion densities. Monitoring of the optically pumped Cs2 molecular absorption profile in the presence of xenon shows a drastic change with increasing xenon pressure for the Cs2C band. Dominant absorption at large xenon densities is centered around approximately 6380 A as opposed to 6300 A for lower perturber pressure.
Krypton and Xenon Radionuclides Monitoring in the Northwest Region of Russia
NASA Astrophysics Data System (ADS)
Dubasov, Yuri V.; Okunev, Nikolay S.
2010-05-01
Monitoring of Xe and Kr radionuclides was conducted from August 2006 to 30 July 2008 within the framework of ISTC Project #2133. Cherepovets City in Vologda Province and St. Petersburg were chosen as monitoring locations. Kr-Xe concentrate samples were obtained as a result of processing of several thousand m3 of atmospheric air. New results of 85Kr monitoring show, that for last 15 years, the 85Kr volumetric activity in the atmospheric air of the northwest region of Russia has increased approximately 50% and has achieved a level of 1.5 Bq/m3. This value correlates well with similar data for Western Europe and Japan. The xenon fraction (80-160 cm3 under STP) is adsorbed on charcoal in the ampoule, which is measured in the well of HPGe gamma detector. Minimum detectable concentration (MDC) of 133Xe for this technique is 0.008 mBq/m3, and it is the most sensitive method used today. The 133Xe concentration in the atmospheric air of Cherepovets City varied in the monitoring period ranging from 0.09 to 2.5 mBq/m3. During the period of March 2007-30 July 2008, 133Xe activity concentration in the atmospheric air of St. Petersburg changed from background values (0.2-0.3 mBq/m3) to 185 mBq/m3 and for approximately 20% of the samples 135Xe was also measured with the 135Xe/133Xe activity ratio varied within the range of 0.03-3.5.
NASA Astrophysics Data System (ADS)
Rauch, T.; Gamrath, S.; Quinet, P.; Löbling, L.; Hoyer, D.; Werner, K.; Kruk, J. W.; Demleitner, M.
2017-03-01
Context. For the spectral analysis of high-resolution and high-signal-to-noise spectra of hot stars, state-of-the-art non-local thermodynamic equilibrium (NLTE) model atmospheres are mandatory. These are strongly dependent on the reliability of the atomic data that is used for their calculation. Aims: To search for zirconium and xenon lines in the ultraviolet (UV) spectra of G191-B2B and RE 0503-289, new Zr iv-vii, Xe iv-v, and Xe vii oscillator strengths were calculated. This allows, for the first time, determination of the Zr abundance in white dwarf (WD) stars and improvement of the Xe abundance determinations. Methods: We calculated Zr iv-vii, Xe iv-v, and Xe vii oscillator strengths to consider radiative and collisional bound-bound transitions of Zr and Xe in our NLTE stellar-atmosphere models for the analysis of their lines exhibited in UV observations of the hot WDs G191-B2B and RE 0503-289. Results: We identified one new Zr iv, 14 new Zr v, and ten new Zr vi lines in the spectrum of RE 0503-289. Zr was detected for the first time in a WD. We measured a Zr abundance of -3.5 ± 0.2 (logarithmic mass fraction, approx. 11 500 times solar). We identified five new Xe vi lines and determined a Xe abundance of -3.9 ± 0.2 (approx. 7500 times solar). We determined a preliminary photospheric Al abundance of -4.3 ± 0.2 (solar) in RE 0503-289. In the spectra of G191-B2B, no Zr line was identified. The strongest Zr iv line (1598.948 Å) in our model gave an upper limit of -5.6 ± 0.3 (approx. 100 times solar). No Xe line was identified in the UV spectrum of G191-B2B and we confirmed the previously determined upper limit of -6.8 ± 0.3 (ten times solar). Conclusions: Precise measurements and calculations of atomic data are a prerequisite for advanced NLTE stellar-atmosphere modeling. Observed Zr iv-vi and Xe vi-vii line profiles in the UV spectrum of RE 0503-289 were simultaneously well reproduced with our newly calculated oscillator strengths. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26666. Based on observations made with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer. Tables A.9-A.12 and B.5-B.7 are only available via the German Astrophysical Virtual Observatory (GAVO) service TOSS (http://dc.g-vo.org/TOSS).
Investigation of 124Xe nuclear structure with the 8Pi spectrometer at TRIUMF-ISAC
NASA Astrophysics Data System (ADS)
Radich, Allison; Garrett, P.; Jigmeddorj, B.; Michetti-Wilson, J.; Diaz Varela, A.; Hadinia, B.; Bianco, L.; Wong, J.; Chagnon-Lessard, S.; Dunlop, R.; Finlay, P.; Laffoley, A.; Leach, K. G.; Rand, E.; Sumithrarachchi, C.; Svennson, C. E.; Wood, J. L.; Yates, S. W.; Andreoiu, C.; Starosta, K.; Cross, D.; Garnsworthy, A. B.; Hackman, G.; Ball, G.; Triambak, S.
2013-10-01
The 124Xe nucleus has been thought to obey O(6) symmetry but a recent Coulomb excitation study has found that while O(5) may be preserved, O(6) appears to be badly broken. To further characterize the structure of this nucleus, a beta-decay experiment was performed at the TRIUMF-ISAC facility. A beam of radioactive 124Cs at a rate of 9.8 × 107 ions/s was implanted at the center of the 8Pi spectrometer where it underwent β + /EC decay into stable 124Xe. High-statistics gamma-gamma coincidence measurements have been analyzed to add to the level scheme of 124Xe, which has been extended considerably. The high statistics data set has revealed a new decay branch from a 124Cs high-spin isomer as well as several very-weak transitions between low-spin states in 124Xe. Branching ratios and B(E2) transition strengths have been calculated for the updated level scheme. The results will be important in determining collective properties and nuclear structure of the 124Xe.
TiO2 films photocatalytic activity improvements by swift heavy ions irradiation
NASA Astrophysics Data System (ADS)
Rafik, Hazem; Mahmoud, Izerrouken; Mohamed, Trari; Abdenacer, Benyagoub
2014-08-01
TiO2 thin films synthesized by sol-gel on glass substrates are irradiated by 90 MeV Xe ions at various fluences and room temperature under normal incidence. The structural, electrical, optical and surface topography properties before and after Xe ions irradiation are investigated. X-ray diffraction (XRD) reveals that the crystallinity is gradually destroyed, and the films become amorphous above 5×1012 ions/cm2. The band gap is not affected by Xe ions irradiation as evidenced from the optical measurements. By contrast, the conductivity increases with raising Xe fluence. The energy band diagram established from the electrochemical characterization shows the feasibility of TiO2 films for the photo-electrochemical chromate reduction. Xe ion irradiation results in enhanced photocatalytic activity in aquatic medium, evaluated by the reduction of Cr(VI) into trivalent state. TiO2 films irradiated at 1013 Xe/cm2 exhibit the highest photoactivity; 69% of chromate (10 ppm) is reduced at pH 3 after 4 h of exposure to sunlight (1120 mW cm-2) with a quantum yield of 0.06%.
Code of Federal Regulations, 2013 CFR
2013-01-01
...-05 6E+05 Kr-81 2.1E+05 yr 7E-04 2E+07 Kr-83m 1.83 h 7E-02 2E+09 Kr-85 10.72 yr 7E-04 2E+07 Kr-85m 4.48 h 2E-05 1E+06 Kr-87 76.3 min 4E-06 1E+05 Kr-88 2.84 h 1E-06 7E+04 Xe-120 40.0 min 1E-05 4E+05 Xe-121 40.1 min 2E-06 8E+04 Xe-122 20.1 h 8E-05 3E+06 Xe-123 2.14 h 6E-06 2E+05 Xe-125 16.8 h 1E-05 6E+05...
Code of Federal Regulations, 2014 CFR
2014-01-01
...-05 6E+05 Kr-81 2.1E+05 yr 7E-04 2E+07 Kr-83m 1.83 h 7E-02 2E+09 Kr-85 10.72 yr 7E-04 2E+07 Kr-85m 4.48 h 2E-05 1E+06 Kr-87 76.3 min 4E-06 1E+05 Kr-88 2.84 h 1E-06 7E+04 Xe-120 40.0 min 1E-05 4E+05 Xe-121 40.1 min 2E-06 8E+04 Xe-122 20.1 h 8E-05 3E+06 Xe-123 2.14 h 6E-06 2E+05 Xe-125 16.8 h 1E-05 6E+05...
Production and delivery of polarized Xenon-129 for in vivo MRS/MRI.
NASA Astrophysics Data System (ADS)
Rosen, Matthew S.; Chupp, Timothy E.; Coulter, Kevin P.; Welsh, Robert C.; Swanson, Scott
1998-05-01
Laser polarized ^129Xe can be used as an entirely new magnetic tracer, and is a powerful enhancement to currently existing MRI techniques. Inert laser polarized ^129Xe is inhaled and transported via blood flow where it is detected using MR spectroscopy and imaging techniques. The time-dependent distribution patterns of ^129Xe signal intensity directly reflect local blood volume, blood flow rates, and the efficiency of perfusion and diffusive transport in tissues. We have developed a uniquely constructed laser polarized ^129Xe production and delivery system that is used in both our in vitro and in vivo imaging experiments with rats. This reliable, effective, and relatively simple production method for large volumes of laser polarized ^129Xe is the key to all other areas of research involving use of laser polarized gases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Negahdar, M; Yamamoto, T; Shultz, D
Purpose: We propose a novel lung functional imaging method to determine the spatial distribution of xenon (Xe) gas in a single inhalation as a measure of regional ventilation. We compare Xe-CT ventilation to single-photon emission CT (SPECT) ventilation, which is the current clinical reference. Regional lung ventilation information may be useful for the diagnosis and monitoring of pulmonary diseases such as COPD, radiotherapy planning, and assessing the progression of toxicity after radiation therapy. Methods: In an IRB-approved clinical study, Xe-CT and SPECT ventilation scans were acquired for three patients including one patient with severe emphysema and two lung cancer patientsmore » treated with radiotherapy. For Xe- CT, we acquired two breath-hold single energy CT images of the entire lung with inspiration of 100% O2 and a mixture of 70% Xe and 30% O2, respectively. A video biofeedback system was used to achieve reproducible breath-holds. We used deformable image registration to align the breathhold images with each other to accurately subtract them, producing a map of the distribution of Xe as a surrogate of lung ventilation. We divided each lung into twelve parts and correlated the Hounsfield unit (HU) enhancement at each part with the SPECT ventilation count of the corresponding part of the lung. Results: The mean of the Pearson linear correlation coefficient values between the Xe-CT and ventilation SPECT count for all three patients were 0.62 (p<0.01). The Xe-CT image had a higher resolution than SPECT, and did not show central airway deposition artifacts that were present in the SPECT image. Conclusion: We developed a rapid, safe, clinically practical, and potentially widely accessible method for regional lung functional imaging. We demonstrated strong correlations between the Xe-CT ventilation image and SPECT ventilation image as the clinical reference. This ongoing study will investigate more patients to confirm this finding.« less
Klegerman, Melvin E.; Moody, Melanie R.; Hurling, Jermaine R.; Peng, Tao; Huang, Shao-Ling; McPherson, David D.
2016-01-01
Rationale We have produced a liposomal formulation of xenon (Xe-ELIP) as a neuroprotectant for inhibition of brain damage in stroke patients. This mandates development of a reliable assay to measure the amount of dissolved xenon released from Xe-ELIP in water and blood samples. Methods Gas chromatography-Mass Spectrometry (GC-MS) was used to quantify xenon gas released into the headspace of vials containing Xe-ELIP samples in water or blood. In order to determine blood concentration of xenon in vivo after Xe-ELIP administration, 6 mg Xe-ELIP lipid was infused intravenously into rats. Blood samples were drawn directly from a catheterized right carotid artery. After introduction of the samples, each vial was allowed to equilibrate to 37° C in a water bath, followed by 20 minutes of sonication prior to headspace sampling. Xenon concentrations were calculated from a gas dose-response curve and normalized using the published xenon water-gas solubility coefficient. Results The mean corrected percent of xenon from Xe-ELIP released into water was 3.87 ± 0.56% (SD, n = 8), corresponding to 19.3 ± 2.8 μl/mg lipid, which is consistent with previous independent Xe-ELIP measurements. The corresponding xenon content of Xe-ELIP in rat blood was 23.38 ± 7.36 μl/mg lipid (n = 8). Mean rat blood xenon concentration after IV administration of Xe-ELIP was 14 ± 10 μM, which is approximately 15% of the estimated neuroprotective level. Conclusions Using this approach, we have established a reproducible method for measuring dissolved xenon in fluids. These measurements have established that neuroprotective effects can be elicited by less than 20% of the calculated neuroprotective xenon blood concentration. More work will have to be done to establish the protective xenon pharmacokinetic range. PMID:27689777
XeNA: An automated ‘open-source’ 129Xe hyperpolarizer for clinical use
Nikolaou, Panayiotis; Coffey, Aaron M.; Walkup, Laura L.; Gust, Brogan M.; Whiting, Nicholas; Newton, Hayley; Muradyan, Iga; Dabaghyan, Mikayel; Ranta, Kaili; Moroz, Gregory D.; Rosen, Matthew S.; Patz, Samuel; Barlow, Michael J.; Chekmenev, Eduard Y.; Goodson, Boyd M.
2014-01-01
Here we provide a full report on the construction, components, and capabilities of our consortium’s “open-source” large-scale (~1 L/hr) 129Xe hyperpolarizer for clinical, pre-clinical, and materials NMR/MRI (Nikolaou et al., Proc. Natl. Acad. Sci. USA, 110, 14150 (2013)). The ‘hyperpolarizer’ is automated and built mostly of off-the-shelf components; moreover, it is designed to be cost-effective and installed in both research laboratories and clinical settings with materials costing less than $125,000. The device runs in the xenon-rich regime (up to 1800 Torr Xe in 0.5 L) in either stopped-flow or single-batch mode—making cryo-collection of the hyperpolarized gas unnecessary for many applications. In-cell 129Xe nuclear spin polarization values of ~30-90% have been measured for Xe loadings of ~300-1600 Torr. Typical 129Xe polarization build-up and T1 relaxation time constants were ~8.5 min and ~1.9 hr respectively under our SEOP conditions; such ratios, combined with near-unity Rb electron spin polarizations enabled by the high resonant laser power (up to ~200 W), permits such high PXe values to be achieved despite the high in-cell Xe densities. Importantly, most of the polarization is maintained during efficient HP gas transfer to other containers, and ultra-long 129Xe relaxation times (up to nearly 6 hr) were observed in Tedlar bags following transport to a clinical 3 T scanner for MR spectroscopy and imaging as a prelude to in vivo experiments. The device has received FDA IND approval for a clinical study of COPD subjects. The primary focus of this paper is on the technical / engineering development of the polarizer, with the explicit goals of facilitating the adaptation of design features and operative modes into other laboratories, and of spurring the further advancement of HP-gas MR applications in biomedicine. PMID:24631715
XeNA: an automated 'open-source' (129)Xe hyperpolarizer for clinical use.
Nikolaou, Panayiotis; Coffey, Aaron M; Walkup, Laura L; Gust, Brogan M; Whiting, Nicholas; Newton, Hayley; Muradyan, Iga; Dabaghyan, Mikayel; Ranta, Kaili; Moroz, Gregory D; Rosen, Matthew S; Patz, Samuel; Barlow, Michael J; Chekmenev, Eduard Y; Goodson, Boyd M
2014-06-01
Here we provide a full report on the construction, components, and capabilities of our consortium's "open-source" large-scale (~1L/h) (129)Xe hyperpolarizer for clinical, pre-clinical, and materials NMR/MRI (Nikolaou et al., Proc. Natl. Acad. Sci. USA, 110, 14150 (2013)). The 'hyperpolarizer' is automated and built mostly of off-the-shelf components; moreover, it is designed to be cost-effective and installed in both research laboratories and clinical settings with materials costing less than $125,000. The device runs in the xenon-rich regime (up to 1800Torr Xe in 0.5L) in either stopped-flow or single-batch mode-making cryo-collection of the hyperpolarized gas unnecessary for many applications. In-cell (129)Xe nuclear spin polarization values of ~30%-90% have been measured for Xe loadings of ~300-1600Torr. Typical (129)Xe polarization build-up and T1 relaxation time constants were ~8.5min and ~1.9h respectively under our spin-exchange optical pumping conditions; such ratios, combined with near-unity Rb electron spin polarizations enabled by the high resonant laser power (up to ~200W), permit such high PXe values to be achieved despite the high in-cell Xe densities. Importantly, most of the polarization is maintained during efficient HP gas transfer to other containers, and ultra-long (129)Xe relaxation times (up to nearly 6h) were observed in Tedlar bags following transport to a clinical 3T scanner for MR spectroscopy and imaging as a prelude to in vivo experiments. The device has received FDA IND approval for a clinical study of chronic obstructive pulmonary disease subjects. The primary focus of this paper is on the technical/engineering development of the polarizer, with the explicit goals of facilitating the adaptation of design features and operative modes into other laboratories, and of spurring the further advancement of HP-gas MR applications in biomedicine. Copyright © 2014 Elsevier Inc. All rights reserved.
Klegerman, Melvin E; Moody, Melanie R; Hurling, Jermaine R; Peng, Tao; Huang, Shao-Ling; McPherson, David D
2017-01-15
We have produced a liposomal formulation of xenon (Xe-ELIP) as a neuroprotectant for inhibition of brain damage in stroke patients. This mandates development of a reliable assay to measure the amount of dissolved xenon released from Xe-ELIP in water and blood samples. Gas chromatography/mass spectrometry (GC/MS) was used to quantify xenon gas released into the headspace of vials containing Xe-ELIP samples in water or blood. In order to determine blood concentration of xenon in vivo after Xe-ELIP administration, 6 mg of Xe-ELIP lipid was infused intravenously into rats. Blood samples were drawn directly from a catheterized right carotid artery. After introduction of the samples, each vial was allowed to equilibrate to 37°C in a water bath, followed by 20 minutes of sonication prior to headspace sampling. Xenon concentrations were calculated from a gas dose-response curve and normalized using the published xenon water-gas solubility coefficient. The mean corrected percent of xenon from Xe-ELIP released into water was 3.87 ± 0.56% (SD, n = 8), corresponding to 19.3 ± 2.8 μL/mg lipid, which is consistent with previous independent Xe-ELIP measurements. The corresponding xenon content of Xe-ELIP in rat blood was 23.38 ± 7.36 μL/mg lipid (n = 8). Mean rat blood xenon concentration after intravenous administration of Xe-ELIP was 14 ± 10 μM, which is approximately 15% of the estimated neuroprotective level. Using this approach, we have established a reproducible method for measuring dissolved xenon in fluids. These measurements have established that neuroprotective effects can be elicited by less than 20% of the calculated neuroprotective xenon blood concentration. More work will have to be done to establish the protective xenon pharmacokinetic range. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Pseudopotential SCF-MO studies of hypervalent compounds. II. XeF+5 and XeF6
NASA Astrophysics Data System (ADS)
Rothman, Michael J.; Bartell, Lawrence S.; Ewig, Carl S.; Van Wazer, John R.
1980-07-01
New evidence bearing upon the anomalous properties of xenon hexafluoride has been obtained via the ab initio molecular orbital approach applied successfully to the di- and tetrafluorides in paper I. Structures of both XeF+5 and XeF6 are governed by a stereochemically active lone pair. In the case of the square-pyramidal cation the Fax-Xe-Feq angle calculated for the bare ion is within 2° of the value observed in the crystalline complex. For the hexafluoride, however, the calculated deformation from Oh symmetry is appreciably greater than that deduced from electron diffraction intensities. Nevertheless, the results of calculations are in sufficient conformity with the Bartell-Gavin, Pitzer-Bernstein interpretation and at variance with the ''electronic-isomers'' interpretation to leave little doubt about the answer. With increasing fluorination in the XeFn series the HOMO-LUMO energy difference decreases and the second-order Jahn-Teller effect is enhanced. Increasing fluorination (and increased positive charge on Xe) also shortens bond lengths; calculated shortenings parallel observed shortenings. The deformation of XeF6 from Oh is along t1u bend and stretch coordinates to a C3v structure with long bonds adjacent to the lone pair, as expected according to the valence-shell-electron-pair-repulsion model. Pure t2g deformations are destabilizing but anharmonic t1u-t2g coupling significantly stabilizes the deformation. Steric aspects of the structure and force field are diagnosed and found to be minor. Values for the force constants f44, f55, f¯4444, f¯444'4', and f¯445 are derived and found to be of the magnitude forecast in the Bartell-Gavin and Pitzer-Bernstein treatments except that the calculations do not reproduce the delicate balances believed to lead to almost free pseudorotation in XeF6.
Nuclear Structure of 124Xe Studied with β+/EC-Decay
NASA Astrophysics Data System (ADS)
Radich, A. J.; Garrett, P. E.; Allmond, J. M.; Andreoiu, C.; Ball, G. C.; Bianco, L.; Bildstein, V.; Chagnon-Lessard, S.; Cross, D. S.; Diaz Varela, A.; Dunlop, R.; Finlay, P.; Garnsworthy, A. B.; Hackman, G.; Hadinia, B.; Jigmeddorj, B.; Laffoley, A. T.; Leach, K. G.; Michetti-Wilson, J.; Orce, J. N.; Rajabali, M. M.; Rand, E.; Starosta, K.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Wang, Z. M.; Wood, J. L.; Wong, J.; Williams, S. J.; Yates, S. W.
The nuclear structure of 124Xe was investigated using γ-ray spectroscopy following the β+/EC-decay of 124Cs. A very high-statistics data set was collected and γγ coincidence data was analyzed, greatly adding to the 124Xe level scheme. A new decay branch from the high-spin isomer of 124Cs was observed as well as weak E2 transitions into excited 0+ states in 124Xe. B(E2) transition strengths of such low-spin transitions are very important in determining collective properties, which are currently poorly characterized in the region of neutron-deficient xenon isotopes.
Chip-Scale Combinatorial Atomic Navigator (C-SCAN) Low Drift Nuclear Spin Gyroscope
2018-01-01
in the 129Xe spin lifetime was related to the temperature of the cell bake -out prior to filling. Using spherical aluminosilicate glass blown cells...we have achieved a 129Xe T2 lifetime of 1000 sec by baking the cells for a week at 550°C, as shown in Fig. 11b). A similar bake out procedure was...with high temperature baking . Insets above show the time zoom of the signal with 3He and 129Xe frequencies Residual 129Xe T2 = 5.3s 3He T2 = 2300s
NASA Astrophysics Data System (ADS)
Ren, Jieru; Zhao, Yongtao; Zhou, Xianming; Cheng, Rui; Lei, Yu; Sun, Yuanbo; Wang, Xing; Xu, Ge; Wang, Yuyu; Liu, Shidong; Yu, Yang; Li, Yongfeng; Zhang, Xiaoan; Xu, Zhongfeng; Xiao, Guoqing
2013-09-01
X-ray yields for the projectile L-shell have been measured for collisions between Xe20+ and thick solid targets throughout the periodic table with incident energies near the Bohr velocity. The yields show a very pronounced cyclic dependence on the target atomic number. This result indicates that Xe L x-ray emission intensity is greatly enhanced either in near-symmetric collisions or if the binding energy of the Xe M-shell matches the L- or N-shell binding energy of the target.
Trampoline motions in Xe-graphite(0 0 0 1) surface scattering
NASA Astrophysics Data System (ADS)
Watanabe, Yoshimasa; Yamaguchi, Hiroki; Hashinokuchi, Michihiro; Sawabe, Kyoichi; Maruyama, Shigeo; Matsumoto, Yoichiro; Shobatake, Kosuke
2005-09-01
We have investigated Xe scattering from the graphite(0 0 0 1) surface at hyperthermal incident energies using a molecular beam-surface scattering technique and molecular dynamics simulations. For all incident conditions, the incident Xe atom conserves the momentum parallel to the surface and loses approximately 80% of the normal incident energy. The weak interlayer potential of graphite disperses the deformation over the wide range of a graphene sheet. The dynamic corrugation induced by the collision is smooth even at hyperthermal incident energy; the graphene sheet moves like a trampoline net and the Xe atom like a trampoliner.
Abraini, Jacques H.; David, Hélène N.; Blatteau, Jean-Éric; Risso, Jean Jacques; Vallée, Nicolas
2017-01-01
The noble gases xenon (Xe) and helium (He) are known to possess neuroprotective properties. Xe is considered the golden standard neuroprotective gas. However, Xe has a higher molecular weight and lower thermal conductivity and specific heat than those of nitrogen, the main diluent of oxygen (O2) in air, conditions that could impair or at least reduce the intrinsic neuroprotective properties of Xe by increasing the critical care patient's respiratory workload and body temperature. In contrast, He has a lower molecular weight and higher thermal conductivity and specific heat than those of nitrogen, but is unfortunately far less potent than Xe at providing neuroprotection. Therefore, combining Xe with He could allow obtaining, depending on the gas inhalation temperature and composition, gas mixtures with neutral or hypothermic properties, the latter being advantageous in term of neuroprotection. However, calculating the thermal properties of a mixture, whatever the substances – gases, metals, rubbers, etc. – is not trivial. To answer this question, we provide a graphical method to assess the volume proportions of Xe, He and O2 that a gas mixture should contain, and the inhalation temperature to which it should be administered to allow a clinician to maintain the patient at a target body temperature. PMID:29152210
NASA Astrophysics Data System (ADS)
Mis'kevich, A. I.; Guo, J.; Dyuzhov, Yu A.
2013-11-01
The spontaneous and induced emission of XeCl* excimer molecules upon excitation of Xe - CCl4 and Ar - Xe - CCl4 gas mixtures with a low CCl4 content by high-energy charged particles [a pulsed high-energy electron beam and products of neutron nuclear reaction 235U(n, f)] has been experimentally studied. The electron energy was 150 keV, and the pump current pulse duration and amplitude were 5 ns and 5 A, respectively. The energy of fission fragments did not exceed 100 MeV, the duration of the neutron pump pulse was 200 μs, and the specific power contribution to the gas was about 300 W cm-3. Electron beam pumping in a cell 4 cm long with a cavity having an output mirror transmittance of 2.7% gives rise to lasing on the B → X transition in the XeCl* molecule (λ = 308 nm) with a gain α = 0.0085 cm-1 and fluorescence efficiency η ≈ 10%. Pumping by fission fragments in a 250-cm-long cell with a cavity formed by a highly reflecting mirror and a quartz window implements amplified spontaneous emission (ASE) with an output power of 40 - 50 kW sr-1 and a base ASE pulse duration of ~200 ms.
NASA Astrophysics Data System (ADS)
Abdallah, B.; Naddaf, M.; A-Kharroub, M.
2013-03-01
Non-stiochiometric zirconium nitride (ZrNx) thin films have been deposited on silicon substrates by vacuum arc discharge of (N2 + Ar) gas mixtures at different N2 partial pressure ratio. The microstructure, mechanical, electrical and wetting properties of these films are studied by means of X-ray diffraction (XRD), micro-Raman spectroscopy, Rutherford back scattering (RBS) technique, conventional micro-hardness testing, electrical resistivity, atomic force microscopy (AFM) and contact angle (CA) measurements. RBS results and analysis show that the (N/Zr) ratio in the film increases with increasing the N2 partial pressure. A ZrNx film with (Zr/N) ratio in the vicinity of stoichiometric ZrN is obtained at N2 partial pressure of 10%. XRD and Raman results indicate that all deposited films have strained cubic crystal phase of ZrN, regardless of the N2 partial pressure. On increasing the N2 partial pressure, the relative intensity of (1 1 1) orientation with respect to (2 0 0) orientation is seen to decrease. The effect of N2 partial pressure on micro-hardness and the resistivity of the deposited film is revealed and correlated to the alteration of grain size, crystallographic texture, stoichiometry and residual stress developed in the film. In particular, it is found that residual stress and nitrogen incorporation in the film play crucial role in the alteration of micro-hardness and resistivity respectively. In addition, CA and AFM results demonstrate that as N2 partial pressure increases, both the surface hydrophobicity and roughness of the deposited film increase, leading to a significant decrease in the film surface free energy (SFE).
Cai, Chen; Hu, Shihu; Chen, Xueming; Ni, Bing-Jie; Pu, Jiaoyang; Yuan, Zhiguo
2018-10-15
Complete nitrogen removal has recently been demonstrated by integrating anaerobic ammonium oxidation (anammox) and denitrifying anaerobic methane oxidation (DAMO) processes. In this work, the effect of methane partial pressure on the performance of a membrane biofilm reactor (MBfR) consisting of DAMO and anammox microorganisms was evaluated. The activities of DAMO archaea and DAMO bacteria in the biofilm increased significantly with increased methane partial pressure, from 367 ± 9 and 58 ± 22 mg-N L -1 d -1 to 580 ± 12 and 222 ± 22 mg-N L -1 d -1 , respectively, while the activity of anammox bacteria only increased slightly, when the methane partial pressure was elevated from 0.24 to 1.39 atm in the short-term batch tests. The results were supported by a long-term (seven weeks) continuous test, when the methane partial pressure was dropped from 1.39 to 0.78 atm. The methane utilization efficiency was always above 96% during both short-term and long-term tests. Taken together, nitrogen removal rate (especially the nitrate reduction rate by DAMO archaea) and methane utilization efficiency could be maintained at high levels in a broad range of methane partial pressure (0.24-1.39 atm in this study). In addition, a previously established DAMO/anammox biofilm model was used to analyze the experimental data. The observed impacts of methane partial pressure on biofilm activity were well explained by the modeling results. These results suggest that methane partial pressure can potentially be used as a manipulated variable to control reaction rates, ultimately to maintain high nitrogen removal efficiency, according to nitrogen loading rate. Copyright © 2018 Elsevier B.V. All rights reserved.
Present Status and Future Perspectives of the NEXT Experiment
Gómez Cadenas, J. J.; Álvarez, V.; Borges, F. I. G.; ...
2014-03-18
NEXT is an experiment dedicated to neutrinoless double beta decay searches in xenon. The detector is a TPC, holding 100 kg of high-pressure xenon enriched in the 136Xe isotope. It is under construction in the Laboratorio Subterráneo de Canfranc in Spain, and it will begin operations in 2015. The NEXT detector concept provides an energy resolutionbetter than 1% FWHM and a topological signal that can be used to reduce the background. Furthermore, the NEXT technology can be extrapolated to a 1 ton-scale experiment.
Structural transformation of Si-rich SiNx film on Si via swift heavy ions irradiation
NASA Astrophysics Data System (ADS)
Murzalinov, D.; Akilbekov, A.; Dauletbekova, A.; Vlasukova, L.; Makhavikov, M.; Zdorovets, M.
2018-03-01
The effects of 200 MeV-Xe+ irradiation with fluencies of (109–1014) cm‑2 on the phase-structural transformation of Si-rich SiNx film deposited on Si substrate by low-pressure chemical vapor deposition have been reported. It has been shown from Raman scattering data that the swift heavy ions irradiation results in the dissolution of amorphous Si nanoclusters in nitride matrix. It has been shown, too, that the swift heavy ion irradiation leads to quenching a visual photoluminescence from nitride films.
Physical structure and dust reprocessing in a sample of HH jets
NASA Astrophysics Data System (ADS)
Podio, L.; Medves, S.; Bacciotti, F.; Eislöffel, J.; Ray, T.
2009-11-01
Context: Stellar jets are an essential ingredient of the star formation process and a wealth of information can be derived from their characteristic emission-line spectra. Aims: We investigate the physical structure and dust reprocessing in the shocks along the beam of a number of classical Herbig-Haro (HH) jets in the Orion and Lupus molecular clouds (HH 111, HH 1/2, HH 83, HH 24 M/A/E/C, and Sz68). Parameters describing plasma conditions, as well as dust content, are derived as a function of distance from the source and, for HH 111, of gas velocity. Methods: Spectral diagnostic techniques are applied to obtain the jet physical conditions (the electron and total density, ne and n_H, the ionisation fraction, x_e, and the temperature, T_e) from the ratios of selected forbidden lines. The presence of dust grains is investigated by estimating the gas-phase abundance of calcium with respect to its solar value. Results: We find the electron density varies between 0.05-4×103 cm-3, the ionisation fraction xe from 0.01-0.7, the temperature ranges between 0.6-3×104 K, and the hydrogen density between 0.01-6×104 cm-3. Interestingly, in the HH 111 jet, n_e, x_e, and Te peak in the high velocity interval (HVI) of the strongest working surfaces, confirming a prediction from shocks models. Calcium turns out to be depleted with respect to its solar value, but its gas-phase abundance is higher than estimates for the interstellar medium in Orion. The depletion is high (up to 80%) along the low-excited jets, while low or no depletion is measured in those jets which show higher excitation conditions. Moreover, for HH 111 the depletion is lower in the HVI of the fastest shock. Conclusions: Our results confirm the shock structure predicted by models and indicate that shocks occurring along jets, and presumably those present in the launch zone, only partially destroy dust grains and that the efficiency of dust reprocessing strongly depends on shock velocity. However, the high Ca gas-phase abundance estimated in some of the knots, is not well understood in terms of existing models of dust reprocessing in shocks, and indicates that the dust must have been partially reprocessed in the region where the flow originates. Based on observations collected at the European Southern Observatory, La Silla, Chile (ESO programmes 60.C-0398(A). Appendix A is only available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Thoa, Dao Thi Kim; Loc, Luu Cam
2017-09-01
The effect of both total pressure and hydrogen partial pressure during n-hexane hydro-isomerization over platinum impregnated on HZSM-5 was studied. n-Hexane hydro-isomerization was conducted at atmospheric pressure and 0.7 MPa to observe the influence of total pressure. In order to see the effect of hydrogen partial pressure, the reaction was taken place at different partial pressure of hydrogen varied from 307 hPa to 718 hPa by dilution with nitrogen to keep the total pressure at 0.1 MPa. Physico-chemical characteristics of catalyst were determined by the methods of nitrogen physi-sorption BET, SEM, XRD, TEM, NH3-TPD, TPR, and Hydrogen Pulse Chemi-sorption. Activity of catalyst in the hydro-isomerization of n-hexane was studied in a micro-flow reactor in the temperature range of 225-325 °C; the molar ratio H2/ hydrocarbon: 5.92, concentration of n-hexane: 9.2 mol.%, GHSV 2698 h-1. The obtained catalyst expressed high acid density, good reducing property, high metal dispersion, and good balance between metallic and acidic sites. It is excellent contact for n-hexane hydro-isomerization. At 250 °C, n-hexane conversion and selectivity were as high as 59-76 % and 85-99 %, respectively. It was found that catalytic activity was promoted either by total pressure or hydrogen partial pressure. At total pressure of 0.7 MPa while hydrogen partial pressure of 718 hPa, catalyst produced 63 RON liquid product containing friendly environmental iso-paraffins which is superior blending stock for green gasoline. Hydrogen did not only preserve catalyst actives by depressing hydrocracking and removing coke precursors but also facilitated hydride transfer step in the bi-functional bi-molecular mechanism.
Sulfur control in ion-conducting membrane systems
Stein, VanEric Edward; Richards, Robin Edward; Brengel, David Douglas; Carolan, Michael Francis
2003-08-05
A method for controlling the sulfur dioxide partial pressure in a pressurized, heated, oxygen-containing gas mixture which is contacted with an ion-conducting metallic oxide membrane which permeates oxygen ions. The sulfur dioxide partial pressure in the oxygen-depleted non-permeate gas from the membrane module is maintained below a critical sulfur dioxide partial pressure, p.sub.SO2 *, to protect the membrane material from reacting with sulfur dioxide and reducing the oxygen flux of the membrane. Each ion-conducting metallic oxide material has a characteristic critical sulfur dioxide partial pressure which is useful in determining the required level of sulfur removal from the feed gas and/or from the fuel gas used in a direct-fired feed gas heater.
Walkup, Laura L; Thomen, Robert P; Akinyi, Teckla G; Watters, Erin; Ruppert, Kai; Clancy, John P; Woods, Jason C; Cleveland, Zackary I
2016-11-01
Hyperpolarized 129 Xe is a promising contrast agent for MRI of pediatric lung function, but its safety and tolerability in children have not been rigorously assessed. To assess the feasibility, safety and tolerability of hyperpolarized 129 Xe gas as an inhaled contrast agent for pediatric pulmonary MRI in healthy control subjects and in children with cystic fibrosis. Seventeen healthy control subjects (ages 6-15 years, 11 boys) and 11 children with cystic fibrosis (ages 8-16 years, 4 boys) underwent 129 Xe MRI, receiving up to three doses of 129 Xe gas prepared by either a commercially available or a homebuilt 129 Xe polarizer. Subject heart rate and SpO 2 were monitored for 2 min post inhalation and compared to resting baseline values. Adverse events were reported via follow-up phone call at days 1 and 30 (range ±7 days) post-MRI. All children tolerated multiple doses of 129 Xe, and no children withdrew from the study. Relative to baseline, most children who received a full dose of gas for imaging (10 of 12 controls and 8 of 11 children with cystic fibrosis) experienced a nadir in SpO 2 (mean -6.0 ± standard deviation 7.2%, P≤0.001); however within 2 min post inhalation SpO 2 values showed no significant difference from baseline (P=0.11). There was a slight elevation in heart rate (mean +6.6 ± 13.9 beats per minute [bpm], P=0.021), which returned from baseline within 2 min post inhalation (P=0.35). Brief side effects related to the anesthetic properties of xenon were mild and quickly resolved without intervention. No serious or severe adverse events were observed; in total, four minor adverse events (14.3%) were reported following 129 Xe MRI, but all were deemed unrelated to the study. The feasibility, safety and tolerability of 129 Xe MRI has been assessed in a small group of children as young as 6 years. SpO 2 changes were consistent with the expected physiological effects of a short anoxic breath-hold, and other mild side effects were consistent with the known anesthetic properties of xenon and with previous safety assessments of 129 Xe MRI in adults. Hyperpolarized 129 Xe is a safe and well-tolerated inhaled contrast agent for pulmonary MR imaging in healthy children and in children with cystic fibrosis who have mild to moderate lung disease.
Xenon reduces glutamate-, AMPA-, and kainate-induced membrane currents in cortical neurones.
Dinse, A; Föhr, K J; Georgieff, M; Beyer, C; Bulling, A; Weigt, H U
2005-04-01
The anaesthetic, analgesic, and neuroprotective effects of xenon (Xe) are believed to be mediated by a block of the NMDA (N-methyl-D-aspartate) receptor channel. Interestingly, the clinical profile of the noble gas differs markedly from that of specific NMDA receptor antagonists. The aim of this study was, therefore, to investigate whether Xe might be less specific, also inhibiting the two other subtypes of glutamate receptor channels, such as the alpha-amino-3-hydroxy-5-methyl-4-isoxazolole propionate (AMPA) and kainate receptors. The study was performed on voltage-clamped cortical neurones from embryonic mice and SH-SY5Y cells expressing GluR6 kainate receptors. Drugs were applied by a multi-barreled fast perfusion system. Xe, dissolved at approximately 3.45 mM in aqueous solution, diminished the peak and even more the plateau of AMPA and glutamate induced currents. At the control EC(50) value for AMPA (29 microM) these reductions were by about 40 and 56% and at 3 mM glutamate the reductions were by 45 and 66%, respectively. Currents activated at the control EC(50) value for kainate (57 microM) were inhibited by 42%. Likewise, Xe showed an inhibitory effect on kainate-induced membrane currents of SH-SY5Y cells transfected with the GluR6 subunit of the kainate receptor. Xe reduced kainate-induced currents by between 35 and 60%, depending on the kainate concentration. Xe blocks not only NMDA receptors, but also AMPA and kainate receptors in cortical neurones as well as GluR6-type receptors expressed in SH-SY5Y cells. Thus, Xe seems to be rather non-specific as a channel blocker and this may contribute to the analgesic and anaesthetic potency of Xe.
Xe isotopic constraints on cycling of deep Earth volatiles
NASA Astrophysics Data System (ADS)
Parai, R.; Mukhopadhyay, S.
2017-12-01
The modern deep Earth volatile budget reflects primordial volatiles delivered during accretion, radiogenic ingrowth of volatile species (e.g., 40Ar produced by 40K decay), outgassing in association with mantle processing, and regassing via subduction. The noble gases are unique volatile tracers in that they are chemically inert, but are thought to be trapped within hydrous alteration phases in downwelling lithologies. Noble gases thus provide a tracer of volatile transport between the deep Earth and surface reservoirs. Constraints on the fluxes of noble gases between deep Earth and surface reservoirs over time can accordingly be used to provide insight into temperature conditions at subduction zones, limits on volatile cycling, and the evolving distribution of major volatile species in terrestrial reservoirs over time. Xe isotope systematics in mantle-derived rocks show that 80-90% of the mantle Xe budget is derived from recycling of atmospheric Xe, indicating that atmospheric Xe is retained in subducting slabs beyond depths of magma generation in subduction zones over Earth history. We present an integrated model of Xe cycling between the mantle and atmosphere in association with mantle processing over Earth history. We test a wide variety of outgassing and regassing rates and take the evolution of the atmospheric Xe isotopic composition [e.g., 1] into account. Models in which the deep Earth transitions from a net outgassing to net regassing regime best satisfy Xe isotopic constraints from mantle-derived rocks [2-6]. [1] Avice et al., 2017; Nature Communications, 8; [2] Mukhopadhyay, 2012, Nature 486, 101-104; [3] Parai et al., 2012, EPSL 359-360, 227-239; [4] Parai and Mukhopadhay, 2015, G-cubed 16, 719-735; [5] Peto et al., 2013, EPSL 369-370, 13-23; [6] Tucker et al., 2012, EPSL 355-356, 244-254.
NASA Technical Reports Server (NTRS)
Hirsch, David; Williams, Jim; Beeson, Harold
2006-01-01
Spacecraft materials selection is based on an upward flammability test conducted in a quiescent environment in the highest-expected oxygen-concentration environment. However, NASA s advanced space exploration program is anticipating using various habitable environments. Because limited data is available to support current program requirements, a different test logic is suggested to address these expanded atmospheric environments through the determination of materials self-extinguishment limits. This paper provides additional pressure effects data on oxygen concentration and partial pressure self-extinguishment limits under quiescent conditions. For the range of total pressures tested, the oxygen concentration and oxygen partial pressure flammability thresholds show a near linear function of total pressure. The oxygen concentration/oxygen partial pressure flammability thresholds depend on the total pressure and appear to increase with increasing oxygen concentration (and oxygen partial pressure). For the Constellation Program, the flammability threshold information will allow NASA to identify materials with increased flammability risk because of oxygen concentration and total pressure changes, minimize potential impacts, and allow for development of sound requirements for new spacecraft and extraterrestrial landers and habitats.
Nuclear spin relaxation due to chemical shift anisotropy of gas-phase 129Xe.
Hanni, Matti; Lantto, Perttu; Vaara, Juha
2011-08-14
Nuclear spin relaxation provides detailed dynamical information on molecular systems and materials. Here, first-principles modeling of the chemical shift anisotropy (CSA) relaxation time for the prototypic monoatomic (129)Xe gas is carried out, both complementing and predicting the results of NMR measurements. Our approach is based on molecular dynamics simulations combined with pre-parametrized ab initio binary nuclear shielding tensors, an "NMR force field". By using the Redfield relaxation formalism, the simulated CSA time correlation functions lead to spectral density functions that, for the first time, quantitatively determine the experimental spin-lattice relaxation times T(1). The quality requirements on both the Xe-Xe interaction potential and binary shielding tensor are investigated in the context of CSA T(1). Persistent dimers Xe(2) are found to be responsible for the CSA relaxation mechanism in the low-density limit of the gas, completely in line with the earlier experimental findings.
Effect of relativity on the ionization spectra of the xenon fluorides XeFn (n=2, 4, 6).
Pernpointner, Markus; Cederbaum, Lorenz S
2005-06-01
Noble gas compounds exhibit special chemical bonding situations and have been investigated by various spectroscopic and theoretical techniques. In this work we calculate the ionization spectra of the xenon fluorides (XeF2,XeF4, and XeF6) in the valence and subvalence (down to Xe 4d) areas by application of the recently developed Dirac-Hartree-Fock one-particle propagator technique. In this technique, the relativistic (four-component) and electron correlation effects are computed simultaneously. The xenon compounds show considerable spin-orbit splitting strongly influencing the photoelectron spectrum not reproducible in prior calculations. Comparison to one-component methods is made and the occurring satellite structures are interpreted. The satellite structures can be attributed either to the breakdown of the one-particle picture or to a reflection of intra-atomic and interatomic Auger decay processes within the molecule.
Radiogenic Xenon-129 in Silicate Inclusions in the Campo Del Cielo Iron Meteorite
NASA Technical Reports Server (NTRS)
Meshik, A.; Kurat, G.; Pravdivtseva, O.; Hohenberg, C. M.
2004-01-01
Iron meteorites present a challenge for the I-Xe dating technique because it is usually the inclusions, not metal, that contain radiogenic xenon and iodine. Silicate inclusions are frequent in only types IAB and IIE, and earlier studies of irons have demonstrated that I-Xe system can survive intact in these inclusions preserving valuable age information. Our previous studies of the I-Xe record in pyroxene grains from Toluca iron suggested an intriguing relationship between apparent I-Xe ages and (Mg+Fe)/Fe ratios. The I-Xe system in K-feldspar inclusions from Colomera (IIE) had the fingerprint of slow cooling, with an indicated cooling rate of 2-4 C/Ma. Here we present studies of the iodine-xenon system in a silicate-graphite-metal (SiGrMet) inclusion of the IA Campo del Cielo iron meteorite from the collection of the Museum of Natural History in Vienna.
Method and apparatus for monitoring oxygen partial pressure in air masks
NASA Technical Reports Server (NTRS)
Kelly, Mark E. (Inventor); Pettit, Donald R. (Inventor)
2006-01-01
Method and apparatus are disclosed for monitoring an oxygen partial pressure in an air mask and providing a tactile warning to the user. The oxygen partial pressure in the air mask is detected using an electrochemical sensor, the output signal from which is provided to a comparator. The comparator compares the output signal with a preset reference value or range of values representing acceptable oxygen partial pressures. If the output signal is different than the reference value or outside the range of values, the air mask is vibrated by a vibrating motor to alert the user to a potentially hypoxic condition.
Effect of substrate temperature and oxygen partial pressure on RF sputtered NiO thin films
NASA Astrophysics Data System (ADS)
Cheemadan, Saheer; Santhosh Kumar, M. C.
2018-04-01
Nickel oxide (NiO) thin films were deposited by RF sputtering process and the physical properties were investigated for varying substrate temperatures and oxygen partial pressure. The variation of the crystallographic orientation and microstructure of the NiO thin films with an increase in substrate temperature were studied. It was observed that NiO thin films deposited at 350 °C shows relatively good crystalline characteristics with a preferential orientation along (111) plane. With the optimum substrate temperature of 350 °C, the NiO thin films were deposited under various oxygen partial pressures at the same experimental conditions. The structural, optical and electrical properties of NiO thin films under varying oxygen partial pressure of 10%–50% were investigated. From XRD it is clear that the films prepared in the pure argon atmosphere were amorphous while the films in oxygen partial pressure exhibited polycrystalline NiO phase. SEM and AFM investigations unveil that the higher substrate temperature improves the microstructure of the thin films. It is revealed that the NiO thin films deposited at oxygen partial pressure of 40% and a substrate temperature of 350 °C, showed higher electrical conductivity with p-type characteristics.
Oxygen partial pressure effects on the RF sputtered p-type NiO hydrogen gas sensors
NASA Astrophysics Data System (ADS)
Turgut, Erdal; Çoban, Ömer; Sarıtaş, Sevda; Tüzemen, Sebahattin; Yıldırım, Muhammet; Gür, Emre
2018-03-01
NiO thin films were grown by Radio Frequency (RF) Magnetron Sputtering method under different oxygen partial pressures, which are 0.6 mTorr, 1.3 mTorr and 2.0 mTorr. The effects of oxygen partial pressures on the thin films were analyzed through Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS) and Hall measurements. The change in the surface morphology of the thin films has been observed with the SEM and AFM measurements. While nano-pyramids have been obtained on the thin film grown at the lowest oxygen partial pressure, the spherical granules lower than 60 nm in size has been observed for the samples grown at higher oxygen partial pressures. The shift in the dominant XRD peak is realized to the lower two theta angle with increasing the oxygen partial pressures. XPS measurements showed that the Ni2p peak involves satellite peaks and two oxidation states of Ni, Ni2+ and Ni3+, have been existed together with the corresponding splitting in O1s spectrum. P-type conductivity of the grown NiO thin films are confirmed by the Hall measurements with concentrations on the order of 1013 holes/cm-3. Gas sensor measurements revealed minimum of 10% response to the 10 ppm H2 level. Enhanced responsivity of the gas sensor devices of NiO thin films is shown as the oxygen partial pressure increases.
Striegl, Robert G.
1988-01-01
The unsaturated zone is a medium that provides pneumatic communication for the movement of gases from wastes buried in landfills to the atmosphere, biota, and groundwater. Gases in unsaturated glacial and eolian deposits near a waste-disposal trench at the low-level radioactive-waste disposal site near Sheffield, Bureau County, Illinois, were identified, and the spatial and temporal distributions of the partial pressures of those gases were determined for the period January 1984 through January 1986. Methods for the collection and analyses of the gases are described, as are geologic and hydrologic characteristics of the unsaturated zone that affect gas transport. The identified gases, which are of natural and of waste origin, include nitrogen, oxygen, and argon, carbon dioxide, methane, propane, butane, tritiated water vapor, 14carbon dioxide, and 222 radon. Concentrations of methane and 14carbon dioxide originated at the waste, as shown by partial-pressure gradients of the gases; 14carbon dioxide partial pressures exceeded natural background partial pressures by factors greater than 1 million at some locations. Variations in partial pressures of oxygen and carbon dioxide were seasonal among piezometers because of increased root and soil-microbe respiration during summer. Variations in methane and 14carbon dioxide partial pressures were apparently related to discrete releases from waste sources at unpredictable intervals of time. No greater than background partial pressures for tritiated water vapor or 222 radon were measured. (USGS)
Wang, Qi; Yu, Wei-Chang; Jiang, Hong-Zhi; Chen, Sheng-Li; Zhang, Ming-Min; Kong, E-Sheng; Huang, Guang-Ying
2010-12-01
To explore the relation between gap junction and meridian phenomenon. The oxygen partial pressure in acupoints [see text for formula] and in their corresponding non-acupoints of the Bladder Meridian was observed with the needle-type tissue oxygen tension sensor in the gap junction blocking goats by 1-Heptanol injection and the Connexin 43 (Cx43) gene knockout mice. (1) The oxygen partial pressure in acupoints of Bladder Meridian on goats was higher than that in non-acupoints after 1-Heptanol injection with significant differences between them (both P < 0.01). (2) The oxygen partial pressure in acupoints of Bladder Meridian on goats increased significantly after injecting 1-Heptanol as compare with that either injecting normal saline or injecting nothing with significant differences between them (all P < 0.01). (3) The oxygen partial pressure in acupoints of the Bladder Meridian was significantly higher than that in the non-acupoint controls in Cx43 wild type (WT) mice (all P < 0.01). In Cx43 heterozygote (HT) mice, the oxygen partial pressure between acupoints and non-acupoint controls showed no significant differences (all P > 0.05). (4) In acupoints, the oxygen partial pressure in Cx43 WT mice was significantly higher than that in Cx43 HT mice (all P < 0.05), while in the corresponding non-acupoints, this difference had no statistically significant (all P > 0.05). Gap junction maybe the essential factor in signal transduction of acupuncture.
Absolute branching fraction measurements for D+ and D0 inclusive semileptonic decays.
Adam, N E; Alexander, J P; Berkelman, K; Cassel, D G; Duboscq, J E; Ecklund, K M; Ehrlich, R; Fields, L; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Meyer, T O; Onyisi, P U E; Patterson, J R; Peterson, D; Pivarski, J; Riley, D; Ryd, A; Sadoff, A J; Schwarthoff, H; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Weinberger, M; Athar, S B; Patel, R; Potlia, V; Stoeck, H; Yelton, J; Rubin, P; Cawlfield, C; Eisenstein, B I; Karliner, I; Kim, D; Lowrey, N; Naik, P; Sedlack, C; Selen, M; White, E J; Wiss, J; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Gong, D T; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Smith, A; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Zweber, P; Ernst, J; Severini, H; Dytman, S A; Love, W; Savinov, V; Aquines, O; Li, Z; Lopez, A; Mehrabyan, S; Mendez, H; Ramirez, J; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Coan, T E; Gao, Y S; Liu, F; Artuso, M; Blusk, S; Butt, J; Li, J; Menaa, N; Mountain, R; Nisar, S; Randrianarivony, K; Redjimi, R; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, K; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Asner, D M; Edwards, K W; Briere, R A; Brock, I; Chen, J; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L
2006-12-22
We present measurements of the inclusive branching fractions for the decays D+-->Xe+ nu(e) and D0-->Xe+ nu(e), using 281 pb(-1) of data collected on the psi(3770) resonance with the CLEO-c detector. We find B(D0-->Xe+ nu(e)) = (6.46+/-0.17+/-0.13)% and B(D+-->Xe+ nu(e)) = (16.13+/-0.20+/-0.33)%. Using the known D meson lifetimes, we obtain the ratio Gamma(D+)sl/Gamma(D0)sl = 0.985+/-0.028+/-0.015, confirming isospin invariance at the level of 3%. The positron momentum spectra from D+ and D0 have consistent shapes.
Magnetic Resonance Imaging with laser polarized 129Xe
NASA Astrophysics Data System (ADS)
Swanson, Scott D.; Rosen, Matthew S.; Agranoff, Bernard W.; Coulter, Kevin P.; Welsh, Robert C.; Chupp, Timothy E.
1998-01-01
Magnetic Resonance Imaging with laser-polarized 129Xe can be utilized to trace blood flow and perfusion in tissue for a variety of biomedical applications. Polarized xenon gas introduced in to the lungs dissolves in the blood and is transported to organs such as the brain where it accumulates in the tissue. Spectroscopic studies combined with imaging have been used to produce brain images of 129Xe in the rat head. This work establishes that nuclear polarization produced in the gas phases survives transport to the brain where it may be imaged. Increases in polarization and delivered volume of 129Xe will allow clinical measurements of regional blood flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eliav, E.; Kaldor, U.; Ishikawa, Y.
1994-12-31
Relativistic pair correlation energies of Xe were computed by employing a recently developed relativistic coupled cluster theory based on the no-pair Dirac-Coulomb-Breit Hamiltonian. The matrix Dirac-Fock-Breit SCF and relativistic coupled cluster calculations were performed by means of expansion in basis sets of well-tempered Gaussian spinors. A detailed study of the pair correlation energies in Xe is performed, in order to investigate the effects of the low-frequency Breit interaction on the correlation energies of Xe. Nonadditivity of correlation and relativistic (particularly Breit) effects is discussed.
Geochemical constraints on the half-life of {sup 130}Te
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, H. V.; Pattrick, R. A. D.; Crowther, S. A.
2008-11-15
To determine the half-life of {sup 130}Te we have analyzed multiple aliquots of geological telluride samples 100 times smaller than those previously reported using a unique resonance ionization mass spectrometer. We employ a low-fluence neutron irradiation that allows determination of parent and daughter from the same xenon isotopic analysis. Step heating of these irradiated samples allows the {sup 130}Xe/{sup 132}Xe ratio of fluids trapped inside the tellurides to be determined. Considering only samples where the trapped {sup 130}Xe/{sup 132}Xe ratio is demonstrably consistent with atmospheric xenon, we can avoid over- or under-estimating the half-life due to redistribution or inheritance ofmore » radiogenic {sup 130}Xe. Combining our work with literature data, it is clear that several relatively young samples have retained xenon quantitatively since formation, allowing the half-life to be determined as (8.0{+-}1.1)x10{sup 20} yr. Older samples have clearly been affected by post-formation processing. This suggests that there is little hope of monitoring solar luminosity through the geological record of {sup 126}Xe production by solar neutrinos, but it is possible that geologically useful chronological information can be obtained from this system.« less
Interatomic potentials for HeAr, HeKr, and HeXe from multiproperty fits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danielson, L.J.; Keil, M.
1988-01-15
Crossed molecular beam measurements of differential cross sections (DCS) are reported for elastic scattering of He by Ar, Kr, and Xe at high resolution. Interatomic potentials are determined by simultaneously fitting the DCS's, as well as mixture viscosity and interaction second virial data. Bias due to systematic and potential model errors are examined and are used to estimate the accuracy of the potential energy curves obtained. Attractive well depths are 2.59, 2.67, and 2.64 meV +- 3% for HeAr, HeKr, and HeXe, respectively, agreeing with the best available HeAr potential and a previously proposed HeKr potential, but significantly deeper thanmore » previously reported potentials for HeXe. The HeXe attractive well is also considerably broader than previously reported. Attractive minimum positions are 3.48, 3.70, and 4.00 A ( +- 0.03 A) for HeAr, HeKr, and HeXe, respectively. Including the accurate diffusion data of Dunlop and co-workers (Physica A 95, 561 (1979)) and the absolute integral cross sections of Pirani and Vecchiocattivi (J. Chem. Phys. 66, 372 (1977) and revisions thereto) verify the error bounds for all three potentials.« less
The iodine-plutonium-xenon age of the Moon-Earth system revisited.
Avice, G; Marty, B
2014-09-13
Iodine-plutonium-xenon isotope systematics have been used to re-evaluate time constraints on the early evolution of the Earth-atmosphere system and, by inference, on the Moon-forming event. Two extinct radionuclides ((129)I, T1/2=15.6 Ma and (244)Pu, T1/2=80 Ma) have produced radiogenic (129)Xe and fissiogenic (131-136)Xe, respectively, within the Earth, the related isotope fingerprints of which are seen in the compositions of mantle and atmospheric Xe. Recent studies of Archaean rocks suggest that xenon atoms have been lost from the Earth's atmosphere and isotopically fractionated during long periods of geological time, until at least the end of the Archaean eon. Here, we build a model that takes into account these results. Correction for Xe loss permits the computation of new closure ages for the Earth's atmosphere that are in agreement with those computed for mantle Xe. The corrected Xe formation interval for the Earth-atmosphere system is [Formula: see text] Ma after the beginning of Solar System formation. This time interval may represent a lower limit for the age of the Moon-forming impact. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubio-Lago, L.; Zaouris, D.; Sakellariou, Y.
The photolysis of pyrrole has been studied in a molecular beam at wavelengths of 250, 240, and 193.3 nm, using two different carrier gases, He and Xe. A broad bimodal distribution of H-atom fragment velocities has been observed at all wavelengths. Near threshold at both 240 and 250 nm, sharp features have been observed in the fast part of the H-atom distribution. Under appropriate molecular beam conditions, the entire H-atom loss signal from the photolysis of pyrrole at both 240 and 250 nm (including the sharp features) disappear when using Xe as opposed to He as the carrier gas. Wemore » attribute this phenomenon to cluster formation between Xe and pyrrole, and this assumption is supported by the observation of resonance enhanced multiphoton ionization spectra for the (Xe{center_dot}{center_dot}{center_dot}pyrrole) cluster followed by photofragmentation of the nascent cation cluster. Ab initio calculations are presented for the ground states of the neutral and cationic (Xe{center_dot}{center_dot}{center_dot}pyrrole) clusters as a means of understanding their structural and energetic properties.« less
The iodine–plutonium–xenon age of the Moon–Earth system revisited
Avice, G.; Marty, B
2014-01-01
Iodine–plutonium–xenon isotope systematics have been used to re-evaluate time constraints on the early evolution of the Earth–atmosphere system and, by inference, on the Moon-forming event. Two extinct radionuclides (129I, T1/2=15.6 Ma and 244Pu, T1/2=80 Ma) have produced radiogenic 129Xe and fissiogenic 131−136Xe, respectively, within the Earth, the related isotope fingerprints of which are seen in the compositions of mantle and atmospheric Xe. Recent studies of Archaean rocks suggest that xenon atoms have been lost from the Earth's atmosphere and isotopically fractionated during long periods of geological time, until at least the end of the Archaean eon. Here, we build a model that takes into account these results. Correction for Xe loss permits the computation of new closure ages for the Earth's atmosphere that are in agreement with those computed for mantle Xe. The corrected Xe formation interval for the Earth–atmosphere system is Ma after the beginning of Solar System formation. This time interval may represent a lower limit for the age of the Moon-forming impact. PMID:25114317
Multiscale simulation of xenon diffusion and grain boundary segregation in UO₂
Andersson, David A.; Tonks, Michael R.; Casillas, Luis; ...
2015-07-01
In light water reactor fuel, gaseous fission products segregate to grain boundaries, resulting in the nucleation and growth of large intergranular fission gas bubbles. The segregation rate is controlled by diffusion of fission gas atoms through the grains and interaction with the boundaries. Based on the mechanisms established from earlier density functional theory (DFT) and empirical potential calculations, diffusion models for xenon (Xe), uranium (U) vacancies and U interstitials in UO₂ have been derived for both intrinsic (no irradiation) and irradiation conditions. Segregation of Xe to grain boundaries is described by combining the bulk diffusion model with a model formore » the interaction between Xe atoms and three different grain boundaries in UO₂ (Σ5 tilt, Σ5 twist and a high angle random boundary), as derived from atomistic calculations. The present model does not attempt to capture nucleation or growth of fission gas bubbles at the grain boundaries. The point defect and Xe diffusion and segregation models are implemented in the MARMOT phase field code, which is used to calculate effective Xe and U diffusivities as well as to simulate Xe redistribution for a few simple microstructures.« less
Chalcogenide Aerogels as Sorbents for Noble Gases (Xe, Kr)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subrahmanyam, Kota S.; Spanopoulos, Ioannis; Chun, Jaehun
High surface MoSx and SbSx chalcogels were studied for Xe/Kr gas separation. The intrinsic soft character of the chalcogel framework is a unique property among the large family of porous materials and offers a potential new approach towards the selective separation of Xe over Kr. Among these chalcogels, MoSx shows the highest Xe and Kr uptake, reaching 0.69 mmol g-1 (1.05 mmol cm-3) and 0.28 mmol g-1 (0.42 mmol cm-3) respectively, at 273 K and 1 bar. The corresponding isosteric heat of adsorption at zero coverage (Qst0) is 22.8 and 18.6 kJ mol-1 and both are the highest among themore » selected chalcogels. The IAST (10:90) Xe/Kr selectivity at 273 K for MoSx is 6.0 while for SbSx chalcogels varies in the range 2.0-2.8. The higher formal charge of molybdenum, Mo4+, in MoSx versus that of antimony, Sb3+, in SbSx coupled with its larger atomic size could induce higher polarizability in the MoSx framework and therefore higher Xe/Kr selectivity.« less
Swindle, T.D.; Grossman, J.N.; Olinger, C.T.; Garrison, D.H.
1991-01-01
We have performed INAA, petrographie, and noble gas analyses on seventeen chondrules from the Semarkona meteorite (LL3.0) primarily to study the relationship of the I-Xe system to other measured properties. We observe a range of ???10 Ma in apparent I-Xe ages. The three latest apparent ages fall in a cluster, suggesting the possibility of a common event. The initial 129I/127I ratio (R0) is apparently related to chondrule type and/or mineralogy, with nonporphyritic and pyroxene-rich chondrules showing evidence for lower R0'S (later apparent I-Xe ages) than porphyritic and olivine-rich chondrules. In addition, chondrules with sulfides on or near the surface have lower R0S than other chondrules. The 129Xe/132Xe ratio in the trapped Xe component anticorrelates with R0, consistent with evolution of a chronometer in a closed system or in multiple similar systems. On the basis of these correlations, we conclude that the variations in R0 represent variations in ages, and that later event(s), possibly aqueous alteration, preferentially affected chondrules with nonporphyritic textures and/or sulfide-rich exteriors about 10 Ma after the formation of the chondrules. ?? 1991.
SEP-Kr and SEP-Xe in Lunar Ilmenite and the Ar/Kr/Xe Ratio in the Solar Wind
NASA Astrophysics Data System (ADS)
Wieler, R.; Baur, H.; Signer, P.
1992-07-01
We analyzed all five noble gases in an ilmenite sample from lunar soil 71501 by closed system stepped etching (CSSE), thus extending our CSSE studies of solar noble gases (Wieler et al., 1986; Benkert et al., 1988) to Kr and Xe. He, Ne, Ar isotopes: We observe the familiar presence of two solar noble gas components: step 1 shows ^4He/^3He = 2250, ^20Ne/^22Ne = 13.8, and ^36Ar/^38Ar=5.46. The first two ratios are essentially identical to modern solar wind values (SWC; Geiss, 1973), indicating an isotopically unfractionated SW noble gas reservoir in lunar ilmenite. The Ne data-points of later steps fall on a straight line and reach the SEP-Ne point (^20Ne/^22Ne = 11.3). The slope of this line indicates mass dependent fractionation between SW-Ne and SEP-Ne. SEP-He (^4He/^3He = 4650 +-100) and SEP-Ar (^36Ar/^38Ar = 4.89+-0.05) are also observed (latter two numbers slightly revised compared to Wieler et al., 1992). Kr, Xe isotopes: Kr in those two steps that release pure SW-Ne is very slightly lighter than atmospheric Kr (^86Kr/^84Kr = 0.3041; see also Wieler et al., 1992). We interpret this to be SW-Kr in soil 71501. Steps containing (isotopically heavier) SEP-Ne likewise release heavier Kr, interpreted accordingly as SEP-Kr (^86Kr/^84Kr = 0.323). Similarly, a light Xe component is released first (SW-Xe, ^136Xe/^132Xe = 0.3003), followed by heavier SEP-Xe (^136Xe/^132Xe = 0.319). The data are consistent with both Kr and Xe in SW and SEP components to be related by mass fractionation. The relation first proposed by Benkert et al. (1988) between a ratio R(m(sub)2,m(sub)1) of two isotopes with masses m(sub)2>m(sub)1 in SW and SEP now holds for all five noble gases: (R(sub)SW-R(sub)SEP)/R(sub)SW = (2+-0.13)*(m(sub)2- m(sub)1)/m(sub)2. Since m(sub)2~m(sub)1, this relation may also be written as: R(sub)SEP/R(sub)SW ~ (m(sub)1/m(sub)2)^2 (Geiss and Bochsler, 1991). Element ratios: ^4He/^36Ar and ^20Ne/^36Ar rise from values several times below SWC to essentially SWC ratios in the steps releasing nearly pure SEP gases, indicating element fractionation between SW-He/Ne, but essentially unfractionated SEP-He/Ne/Ar in lunar ilmenite. In contrast, Kr/Xe stays virtually constant (^84Kr/^132Xe = 8.4+-0.5), except in the first few steps. If the light three noble gases indeed are not fractionated in the SEP dominated steps, we would also expect no fractionation for Kr/Xe. The measured ^84Kr/^132Xe ratio is, however, about 2.4 times lower than the most recent "solar system" ratio (Anders and Grevesse, 1989), albeit only ~30% lower than the "solar" value preferred by Marti and Suess (1988). Kr/Xe ratios similar to those in ilmenites have been found earlier, e.g. in Peysanoe (Marti, 1969). They are often taken to indicate fractionated loss of solar noble gases. Based on the new CSSE results, we propose, instead, that lunar ilmenites retain a faithful record of ^84Kr/^132Xe in SW and SEP (and also ^36Ar/^84Kr(sub)SW = 1750+- 300). If so, this may indicate noble gas fractionation in the solar corpuscular radiation, perhaps depending on first ionization potential or a related parameter. Work supported by the Swiss National Science Foundation. References: Anders, E. and Grevesse, N. (1989) Geochim. Cosmochim. Acta. 53, 197-214. Benkert, J.-P. et al. (1988) Lunar Planet. Sci. (abstract) 19, 59-60. Geiss, J. (1973) Proc. 13th Int. Cosmic Ray Conf. 3375-3398. Geiss, J. and Bochsler, P. (1991) In The Sun in Time (eds. C. P. Sonett, M. S. Giampapa and M.S. Matthews), pp. 98-117. Univ. Arizona Press, Tucson, Arizona. Marti, K. (1969) Science. 166. 1263-1265. Marti, K. and Suess, H. E. (1988) Astrophys. Space Sci. 144. 507-517. Wieler, R. et al. (1986) Geochim. Cosmochim. Acta. 50. 1997-2017. Wieler, R. et al. (1992) Lunar Planet. Sci. (abstract) 23.
CO adsorption on ion bombarded Ni(111): characterization by photoemission from adsorbed xenon
NASA Astrophysics Data System (ADS)
Fu, Sabrina S.; Malafsky, Geoffrey P.; Hsu, David S. Y.
1993-11-01
The adsorption of CO on Ni(111), ion bombarded with various fluences of 1.0 keV Ar + ions, has been investigated using photoemission from adsorbed xenon (PAX). After ion bombardment of the Ni(111) surface, various amounts of CO were adsorbed, followed by adsorption of xenon at 85 K. Two pressures of xenon were used in examining the 3d {5}/{2} peak of xenon: 5 × 10 -6 and 7 × 10 -10 Torr. PAX data taken at both pressures show that CO selectively adsorbs onto the defect (step) sites created by ion bombardment. In addition, it was found that the amount of CO which could occupy a defect site previously occupied by one Xe atom varied from 10 to 2.5, depending on the ion fluence.
Nitiyon, Sukanya; Khunnamwong, Pannida; Lertwattanasakul, Noppon; Limtong, Savitree
2018-05-24
Three strains (DMKU-XE11 T , DMKU-XE15 and DMKU-XE20) representing a single novel anamorphic and d-xylose-fermenting yeast species were obtained from three peat samples collected from Khan Thulee peat swamp forest in Surat Thani province, Thailand. The strains differed from each other by one to two nucleotide substitutions in the sequences of the D1/D2 region of the large subunit (LSU) rRNA gene and zero to one nucleotide substitution in the internal transcribed spacer (ITS) region. Phylogenetic analysis based on the combined sequences of the ITS and the D1/D2 regions showed that the three strains represented a single Candida species that was distinct from the other related species in the Lodderomyces/Candida albicans clade. The three strains form a subclade with the other Candida species including Candida sanyaensis, Candida tropicalis and Candida sojae. C. sanyaensis was the most closely related species, with 2.1-2.4 % nucleotide substitutions in the D1/D2 region of the LSU rRNA gene, and 3.8-4.0 % nucleotide substitutions in the ITS region. The three strains (DMKU-XE11 T , DMKU-XE15 and DMKU-XE20) were assigned as a single novel species, which was named Candida kantuleensis sp. nov. The type strain is DMKU-XE11 T (=CBS 15219 T =TBRC 7764 T ). The MycoBank number for C. kantuleensis sp. nov. is MB 824179.
Ghorai, Sankar; Chaudhury, Pinaki
2018-05-30
We have used a replica exchange Monte-Carlo procedure, popularly known as Parallel Tempering, to study the problem of Coulomb explosion in homogeneous Ar and Xe dicationic clusters as well as mixed Ar-Xe dicationic clusters of varying sizes with different degrees of relative composition. All the clusters studied have two units of positive charges. The simulations reveal that in all the cases there is a cutoff size below which the clusters fragment. It is seen that for the case of pure Ar, the value is around 95 while that for Xe it is 55. For the mixed clusters with increasing Xe content, the cutoff limit for suppression of Coulomb explosion gradually decreases from 95 for a pure Ar to 55 for a pure Xe cluster. The hallmark of this study is this smooth progression. All the clusters are simulated using the reliable potential energy surface developed by Gay and Berne (Gay and Berne, Phys. Rev. Lett. 1982, 49, 194). For the hetero clusters, we have also discussed two different ways of charge distribution, that is one in which both positive charges are on two Xe atoms and the other where the two charges are at a Xe atom and at an Ar atom. The fragmentation patterns observed by us are such that single ionic ejections are the favored dissociating pattern. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Investigation of plasma-induced erosion of multilayer condenser optics
NASA Astrophysics Data System (ADS)
Anderson, Richard J.; Buchenauer, Dean A.; Williams, K. A.; Clift, W. M.; Klebanoff, L. E.; Edwards, N. V.; Wood, O. R., II; Wurm, S.
2005-05-01
Experiments are presented that investigate the mechanistic cause of multilayer erosion observed from condenser optics exposed to EUV laser-produced plasma (LPP) sources. Using a Xe filament jet source excited with Nd-YAG laser radiation (300 mJ/pulse), measurements were made of material erosion from Au, Mo, Si and C using coated quartz microbalances located 127 mm from the plasma. The observed erosion rates were as follows: Au=99nm/106 shots, Mo= 26nm/106 shots, Si=19nm/106 shots, and C=6nm/106 shots. The relative ratio Au:Mo:Si:C of erosion rates observed experimentally, 16:4:3:1 compares favorably with that predicted from an atomic sputtering model assuming 20 kV Xe ions, 16:6:4:1. The relative agreement indicates that Xe-substrate sputtering is largely responsible for the erosion of Mo/Si multilayers on condenser optics that directly face the plasma. Time-of-flight Faraday cup measurements reveal the emission of high energy Xe ions from the Xe-filament jet plasma. The erosion rate does not depend on the repetition rate of the laser, suggesting a thermal mechanism is not operative. The Xe-filament jet erosion is ~20x that observed from a Xe spray jet. Since the long-lived (millisecond time scale) plasma emanating from these two sources are the same to within ~30%, sputtering from this long-lived plasma can be ruled out as an erosion agent.
Special Features of Photodegradation of Organic Compounds upon Exposure to Excilamp Light
NASA Astrophysics Data System (ADS)
Sokolova, I. V.; Vershinin, O. N.; Nevolina, K. A.
2016-08-01
The use of gas discharge sources of modern spontaneous radiation - excilamps - for photodegradation of organic compounds is discussed. The process of photodegradation upon exposure to excilamp light is considered on an example of degradation of a widespread herbicide - 2,4-dichlorophenoxyacetic acid (2,4-D) - in a continuous-flow photoreactor upon exposure to light of Xe2 (λ rad ~ 172 nm), KrCl (λ rad ~ 222 nm), and XeBr (λ rad ~ 283 nm) excilamps. It is found that the degradation of 2,4-D after exposure to Xe2 excilamp light occurs much more effective than upon exposure to other radiation sources. However, the dechlorination process accompanying the photodegradation of 2,4-D in an aqueous solution upon exposure to the KrCl excilamp is more intensive than that upon exposure to Xe2 lamp. The dynamics of changing the toxicant concentration in the solution during UV irradiation is established. The toxicity of 2,4-D aqueous solutions and photolysis products after irradiation are estimated. It is found that the initial bioluminescence index increases upon exposure to XeBr excilamp light, thereby reducing the toxicity in comparison with the Xe2 and KrCl excilamps. The solutions become most toxic under excitation by the Xe2 excilamp. We have succeeded in reducing the toxicity and increasing the efficiency of the photoreactor with the KrCl excilamp by addition of hydrogen peroxide. In this case, the complete 2,4-D decay has been achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skyhoj Olsen, T.; Lassen, N.A.
1989-01-01
The present study reports cerebral blood flow (CBF) measurements in 11 patients during attacks of classic migraine (CM)--migraine with aura. In 6 and 7 patients, respectively, cerebral vascular reactivity to increased blood pressure and to hypocapnia was also investigated during the CM attacks. The Xenon-133 intraarterial injection technique was used to measure CBF. In this study, based in part on previously published data, methodological limitations, in particular caused by scattered radiation (Compton scatter), are critically analysed. Based on this analysis and the results of the CBF studies it is concluded: During CM attacks CBF appears to decrease focally in themore » posterior part of the brain to a level around 20 ml/100 g/min which is consistent with a mild degree of ischemia. Changes of CBF in focal low flow areas are difficult to evaluate accurately with the Xe-133 technique. In most cases true CBF may change 50% or more in the low flow areas without giving rise to significantly measurable changes of CBF. This analysis suggests that the autoregulation response cannot be evaluated in the low flow areas with the technique used while the observations are compatible with the concept that a vasoconstrictive state, unresponsive to hypocapnia, prevails in the low flow areas during CM attacks. The gradual increase in size of the low flow area seen in several cases may be interpreted in two different ways. A spreading process may actually exist. However, due to Compton scatter, a gradual decrease of CBF in a territory that does not increase in size will also appear as a gradually spreading low flow area when studied with the Xe-133 intracarotid technique.« less
Applications of Excilamps in Microbiological and Medical Investigations
NASA Astrophysics Data System (ADS)
Tarasenko, Victor F.; Sosnin, E. A.; Zhdanova, O. S.; Krasnozhenov, E. P.
In a course long-term and comparative studies it has been shown, that the DBD XeBr-excilamps looks as a good choice for various microorganisms inactivation. The first data about bacteriophage inactivation by XeBr-excilamp has been obtained. Radiant modules for industrial treatment on contaminated water have been developed. The XeCl-excilamp for treatment of skin diseases has been created and tested.
NASA Astrophysics Data System (ADS)
Schlager, Hans; Arnold, Frank; Aufmhoff, Heinfried; Minikin, Andreas; Baumann, Robert; Simgen, Hardy; Lindemann, Stefan; Rauch, Ludwig; Kaether, Frank; Pirjola, Liisa; Schumann, Ulrich
2014-05-01
We report unique airborne measurements, at the tropopause, of the Fukushima radio nuclide Xe-133, aerosol particles (size, shape, number concentration, volatility), aerosol precursor gases (particularly SO2, HNO3, H2O). Our measurements and accompanying model simulations indicate homogeneous and cosmic ray induced aerosol formation at the tropopause. Using an extremely sensitive detection method, we managed to detect Fukushima Xe-133, an ideal transport tracer, at and even above the tropopause. To our knowledge, these airborne Xe-133 measurements are the only of their kind. Our investigations represent a striking example how a pioneering measurement of a Fukshima radio nuclide, employing an extremely sensitive method, can lead to new insights into an important atmospheric process. After the Fukushima accidential Xe-133 release (mostly during 11-15 March 2011), we have conducted two aircraft missions, which took place over Central Europe, on 23 March and 11 April 2011. In the air masses, encountered by the research aircraft on 23 March, we have detected Fukushima Xe-133 by an extremely sensitive method, at and even above the tropopause. Besides increased concentrations of Xe-133, we have detected also increased concentrations of the gases SO2, HNO3, and H2O. The Xe-133 data and accompanying transport model simulations indicate that a West-Pacific Warm Conveyor Belt (WCB) lifted East-Asian planetary boundary layer air to and even above the tropopause, followed by relatively fast quasi-horizontal advection to Europe. Along with Xe-133, anthropogenic SO2, NOx (mostly released from East-Asian ground-level combustion sources), and warer vapour were also lifted by the WCB. After the lift, SO2 and NOx experienced efficient solar UV-radiation driven conversion to the important aerosol precursors gases H2SO4 and HNO3. Our investigations indicate that, increased concentrations of the gases SO2, HNO3, and H2O promoted homogeneous and cosmic ray induced aerosol formation at and even above the tropopause.
Optical Study of the Critical Behaviour of Pure Fluids and Binary Mixtures.
NASA Astrophysics Data System (ADS)
Narger, Ulrike
1990-01-01
Optical techniques were used to study the critical behaviour of the pure fluids CHF_3, CClF_3 and Xe, and binary mixtures He-Xe and nicotine + water. We find that for all these substances, the order parameter is described by a power law in the reduced temperature t = (T _{c} - T)/T_{c} with a leading exponent beta = 0.327 +/- 0.002. Also, we determine the first correction to scaling exponent to be Delta = 0.43 +/- 0.02 for the pure fluids and Delta = 0.50 +/- 0.02 for the He-Xe system. The coexistence curve diameter in CHF _3 and CClF_3 exhibits a deviation from recti-linear diameter, in agreement with a modern theory which interprets this behaviour as resulting from three-body effects. In contrast, no such deviation is observed in Xe where, according to that theory, it should be more pronounced than in other substances. In the polar fluid CHF_3, the order parameter, isothermal compressibility and the chemical potential along the critical isotherm were simultaneously measured in the same experiment in an effort to ensure self-consistency of the results. From the data, two amplitude ratios which are predicted to be universal are determined: Gamma_sp{0}{+} /Gamma_sp{0}{ -} = 4.8 +/- 0.6 and D_0 Gamma_sp{0}{+ } B_sp{0}{delta-1} = 1.66 +/- 0.14. In the binary liquid system nicotine + water, the diffusivity was measured both by light scattering and by interferometry. The results agree qualitatively, but differ by a factor of ~2. From the light scattering data, the critical exponent of the viscosity is found to be z_{eta } = 0.044 +/- 0.008. The interferometric experiments on Xe and He-Xe furnish a direct way to measure the effects of wetting: From the data, the exponent of the surface tension is found to be n = 1.24 +/- 0.06. The similarity of the order parameter and compressibility in Xe and a He-Xe mixture containing 5% He indicate that the phase transition in this He-Xe mixture is of the liquid -gas type rather than the binary liquid type.
Rosemurgy, A S; McAllister, E W; Godellas, C V; Goode, S E; Albrink, M H; Fabri, P J
1995-12-01
With the advent of transjugular intrahepatic porta-systemic stent shunt and the wider application of the surgically placed small diameter prosthetic H-graft portacaval shunt (HGPCS), partial portal decompression in the treatment of portal hypertension has received increased attention. The clinical results supporting the use of partial portal decompression are its low incidence of variceal rehemorrhage due to decreased portal pressures and its low rate of hepatic failure, possibly due to maintenance of blood flow to the liver. Surprisingly, nothing is known about changes in portal hemodynamics and effective hepatic blood flow following partial portal decompression. To prospectively evaluate changes in portal hemodynamics and effective hepatic blood flow brought about by partial portal decompression, the following were determined in seven patients undergoing HGPCS: intraoperative pre- and postshunt portal vein pressures and portal vein-inferior vena cava pressure gradients, intraoperative pre- and postshunt portal vein flow, and pre- and postoperative effective hepatic blood flow. With HGPCS, portal vein pressures and portal vein-inferior vena cava pressure gradients decreased significantly, although portal pressures remained above normal. In contrast to the significant decreases in portal pressures, portal vein blood flow and effective hepatic blood flow do not decrease significantly. Changes in portal vein pressures and portal vein-inferior vena cava pressure gradients are great when compared to changes in portal vein flow and effective hepatic blood flow. Reduction of portal hypertension with concomitant maintenance of hepatic blood flow may explain why hepatic dysfunction is avoided following partial portal decompression.
Siemiaszko, Dariusz; Kowalska, Beata; Jóźwik, Paweł; Kwiatkowska, Monika
2015-01-01
This paper presents the results of studies on the influence of oxygen partial pressure (vacuum level in the chamber) on the properties of FeAl intermetallics. One of the problems in the application of classical methods of prepared Fe-Al intermetallic is the occurrence of oxides. Applying a vacuum during sintering should reduce this effect. In order to analyze the effect of oxygen partial pressure on sample properties, five samples were processed (by a pressure-assisted induction sintering—PAIS method) under the following pressures: 3, 8, 30, 80, and 300 mbar (corresponding to oxygen partial pressures of 0.63, 1.68, 6.3, 16.8, and 63 mbar, respectively). The chemical and phase composition, hardness, density, and microstructure observations indicate that applying a vacuum significantly impacts intermetallic samples. The compact sintered at pressure 3 mbar is characterized by the most homogeneous microstructure, the highest density, high hardness, and nearly homogeneous chemical composition. PMID:28788015
Dependence of magnetic anisotropy on MgO sputtering pressure in Co20Fe60B20/MgO stacks
NASA Astrophysics Data System (ADS)
Kaidatzis, A.; Serletis, C.; Niarchos, D.
2017-10-01
We investigated the dependence of magnetic anisotropy of Ta/Co20Fe60B20/MgO stacks on the Ar partial pressure during MgO deposition, in the range between 0.5 and 15 mTorr. The stacks are studied before and after annealing at 300°C and it is shown that magnetic anisotropy significantly depends on Ar partial pressure. High pressure results in stacks with very low perpendicular magnetic anisotropy even after annealing, while low pressure results in stacks with perpendicular anisotropy even at the as-deposited state. A monotonic increase of magnetic anisotropy energy is observed as Ar partial pressure is decreased.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Wei-Bin; Li, Fei; Chen, Hong-Ming
2015-06-15
Er-doped ZnO thin films have been prepared by using inductively coupled plasma enhanced physical vapor deposition at different O{sub 2}:Ar gas flow ratio (R = 0:30, 1:30, 1:15, 1:10 and 1:6). The influence of oxygen partial pressure on the structural, optical and magnetic properties was studied. It is found that an appropriate oxygen partial pressure (R=1:10) can produce the best crystalline quality with a maximum grain size. The internal strain, estimated by fitting the X-ray diffraction peaks, varied with oxygen partial pressure during growth. PL measurements show that plenty of defects, especially zinc vacancy, exist in Er-doped ZnO films. Allmore » the samples show room-temperature ferromagnetism. Importantly, the saturation magnetization exhibits similar dependency on oxygen partial pressure with the internal strain, which indicates that internal strain has an important effect on the magnetic properties of Er-doped ZnO thin films.« less
Early outgassing of Mars supported by differential water solubility of iodine and xenon
NASA Technical Reports Server (NTRS)
Musselwhite, Donald S.; Drake, Michael J.; Swindle, Timothy D.
1991-01-01
The Martian atmosphere has a high X-129/Xe-132 ratio compared to the Martian mantle. As Xe-129 is the daughter product of the extinct nuclide I-129, a means of fractionating iodine from xenon early in Martian history appears necessary to account for the X-129/Xe-132 ratios of its known reservoirs. A model is presented here to account for the Marian xenon data which relies on the very different solubilities of xenon and iodine in water to fractionate them after outgassing. Atmospheric xenon is lost by impact erosion during heavy bombardment, followed by release of Xe-129 produced from I-129 decay in the crust.
Entwisle, J. P.; Kay, B. P.; Tamii, A.; ...
2016-06-13
The change in the configuration of valence protons between the initial and final states in the neutrinoless double-beta decay of Te-130 -> Xe-130 and of Xe-136 -> Ba-136 has been determined by measuring the cross sections of the (d,He-3) reaction with 101-MeV deuterons. Together with our recent determination of the relevant neutron configurations involved in the process, a quantitative comparison with the latest shell-model and interacting-boson-model calculations reveals significant discrepancies. These are the same calculations used to determine the nuclear matrix elements governing the rate of neutrinoless double-beta decay in these systems.
Efficient Production of 4-KeV X Rays from Laser-Heated Xe Gas = Confined Within a Hohlraum
NASA Astrophysics Data System (ADS)
Grun, Jacob; Suter, Larry J.; Back, Christina A.; Decker, Chris; Kauffman, Robert L.; Davis, John F.
1996-11-01
Clean (debris-free) and efficient multi-kilovolt x-ray sources are needed for irradiating large military test objects and for use as backlighters in future Inertial Confinement Fusion experiments. Laser-plasma x-ray sources are particularly attractive for these uses since their spectrum can be controlled by proper choice of plasma material and laser intensity; and because many laser-plasma sources can be designed to produce little or no particulate debris. We report on an experiment in which we measured the production-efficiency, spectrum, and time history of 1-4 KeV x-rays from beryllium hohlraums which were filled with 1 and 2 atm of Xe gas and then irradiated by a 2-nsec pulse from the NOVA laser. It is predicted that 17be converted into > 4KeV x rays and 30history of >4KeV part of the spectrum is predicted to exhibit a dip in intensity whose depth and location vary with fill pressure and hohlraum size.. We also measured the debris produced by these sources. Work supported by the Defense Special Weapons Agency and the U.S. Department of Energy at LLNL under W-7405-ENG-48.
Effects of oxygen partial pressure on Li-air battery performance
NASA Astrophysics Data System (ADS)
Kwon, Hyuk Jae; Lee, Heung Chan; Ko, Jeongsik; Jung, In Sun; Lee, Hyun Chul; Lee, Hyunpyo; Kim, Mokwon; Lee, Dong Joon; Kim, Hyunjin; Kim, Tae Young; Im, Dongmin
2017-10-01
For application in electric vehicles (EVs), the Li-air battery system needs an air intake system to supply dry oxygen at controlled concentration and feeding rate as the cathode active material. To facilitate the design of such air intake systems, we have investigated the effects of oxygen partial pressure (≤1 atm) on the performance of the Li-air cell, which has not been systematically examined. The amounts of consumed O2 and evolved CO2 from the Li-air cell are measured with a custom in situ differential electrochemical gas chromatography-mass spectrometry (DEGC-MS). The amounts of consumed O2 suggest that the oxygen partial pressure does not affect the reaction mechanism during discharge, and the two-electron reaction occurs under all test conditions. On the other hand, the charging behavior varies by the oxygen partial pressure. The highest O2 evolution ratio is attained under 70% O2, along with the lowest CO2 evolution. The cell cycle life also peaks at 70% O2 condition. Overall, an oxygen partial pressure of about 0.5-0.7 atm maximizes the Li-air cell capacity and stability at 1 atm condition. The findings here indicate that the appropriate oxygen partial pressure can be a key factor when developing practical Li-air battery systems.
NASA Astrophysics Data System (ADS)
Pujol, M.; Marty, B.; Burnard, P.; Hofmann, A.
2012-12-01
The initial atmospheric xenon isotopic composition has been much debated over the last 4 decades. A Non radiogenic Earth Atmospheric xenon (NEA-Xe) composition has been proposed to be the best estimate of the initial signature ([1]). NEA-Xe consists of modern atmospheric Xe without fission (131-136Xe) or radioactive decay (129Xe) products. However, the isotope composition of such non-radiogenic xenon is very different to that of potential cosmochemical precursors such as solar or meteoritic Xe, as it is mass-fractionated by up to 3-4 % per amu relative to the potential precursors, and it is also elementally depleted relative to other noble gases. Because the Xe isotopic composition of the Archean appears to be intermediate between that of these cosmochemical end-members and that of the modern atmosphere, we argued that isotopic fractionation of atmospheric xenon did not occur early in Earth's history by hydrodynamic escape, as postulated by all other models ([1], [2], [3]), but instead was a continuous, long term process that lasted during at least the Hadean and Archean eons. Taken at face value, the decrease of the Xe isotopic fractionation from 1.6-2.1 % amu-1 3.5 Ga ago ([4]) to 1 % amu-1 3.0 Ga ago (Ar-Ar age in fluid inclusions trapped in quartz from the same Dresser Formation, [5]) could reflect a secular variation of the atmospheric Xe signature. Nevertheless, up until now, all data showing an isotopic mass fractionation have been measured in rocks and fluids from the same formation (Dresser Formation, Western Australia, aged 3.5 Ga), and have yet to be confirmed in rocks from different locations. In order to better constrain xenon isotopic fractionation of the atmosphere through time, we decided to analyze barites from different ages, geological environments and metamorphism grade. We started this study with barite from the Fig Tree Formation (South Africa, aged 3.26 Ga). This barite was sampled in old mines so have negligible modern exposure time. It is well preserved (no apparent metamorphism) and was deposited in a shallow submarine environment ("Finger type" barites) associated with hydrothermal circulation (white smokers). Compared to barite from the Dresser formation, Fig Tree barite had a long ancient exposure time in the subsurface (under shallow water for example) resulting in huge excesses of 131Xe (131Xe/130Xe ratio ~38 compared to 5.213 for the modern atmosphere one) due to 130Ba(n,γ) reactions. Fissiogenic products (132 to 136Xe) are also more present than in barites from the Dresser Formation and are compatible with the age of the Fig Tree formation. Despite corrections for secondary productions that are hard to constrain, the Fig Tree barite still shows an isotopic mass fractionation of about 1% amu-1, consistent with our expected atmospheric fractionation evolution. [1] Pepin R. O. (1991) Icarus 92(1), 2-79. [2] Dauphas N. (2003) Icarus 165, 326-339. [3] Tolstikhin I. and O'Nions R.K. (1994) Chem. Geol. 115, 1-6. [4] Pujol M., Marty B., Burnard P. and Philippot P. (2009) Geochim. Cosmochim. Acta 73, 6834-46. [5] Pujol M., Marty B. and Burgess R. (2011) Earth Planet. Sci. Lett. 308, 298-306
Effects of Oxygen Partial Pressure on the Surface Tension of Liquid Nickel
NASA Technical Reports Server (NTRS)
SanSoucie, Michael P.; Rogers, Jan R.; Gowda, Vijaya Kumar Malahalli Shankare; Rodriguez, Justin; Matson, Douglas M.
2015-01-01
The NASA Marshall Space Flight Center's electrostatic levitation (ESL) laboratory has been recently upgraded with an oxygen partial pressure controller. This system allows the oxygen partial pressure within the vacuum chamber to be measured and controlled, theoretically in the range from 10-36 to 100 bar. The oxygen control system installed in the ESL laboratory's main chamber consists of an oxygen sensor, oxygen pump, and a control unit. The sensor is a potentiometric device that determines the difference in oxygen activity in two gas compartments (inside the chamber and the air outside of the chamber) separated by an electrolyte, which is yttria-stabilized zirconia. The pump utilizes coulometric titration to either add or remove oxygen. The system is controlled by a desktop control unit, which can also be accessed via a computer. The controller performs temperature control for the sensor and pump, PID-based current loop, and a control algorithm. Oxygen partial pressure has been shown to play a significant role in the surface tension of liquid metals. Oxide films or dissolved oxygen may lead to significant changes in surface tension. The effects of oxygen partial pressure on the surface tension of undercooled liquid nickel will be analyzed, and the results will be presented. The surface tension will be measured at several different oxygen partial pressures while the sample is undercooled. Surface tension will be measured using the oscillating drop method. While undercooled, each sample will be oscillated several times consecutively to investigate how the surface tension behaves with time while at a particular oxygen partial pressure.
Atwell, B J; Henery, M L; Whitehead, D
2003-01-01
Clonal trees of Pinus radiata D. Don were grown in open-top chambers at a field site in New Zealand for 3 years at ambient (37 Pa) or elevated (65 Pa) carbon dioxide (CO2) partial pressure. Nitrogen (N) was supplied to half of the trees in each CO2 treatment, at 15 g N m-2 in the first year and 60 g N m-2 in the subsequent 2 years (high-N treatment). Trees in the low-N treatment were not supplied with N but received the same amount of other nutrients as trees in the high-N treatment. In the first year, stem basal area increased more in trees growing at elevated CO2 partial pressure and high-N supply than in control trees, suggesting a positive interaction between these resources. However, the relative rate of growth became the same across trees in all treatments after 450 days, resulting in trees growing at elevated CO2 partial pressure and high-N supply having larger basal areas than trees in the other treatments. Sapwood N content per unit dry mass was consistently about 0.09% in all treatments, indicating that N status was not suppressed by elevated CO2 partial pressure. Thus, during the first year of growth, an elevated CO2 partial pressure enhanced carbon (C) and N storage in woody stems, but there was no further stimulus to C and N deposition after the first year. The chemical composition of sapwood was unaffected by elevated CO2 partial pressure, indicating that no additional C was sequestered through lignification. However, independent of the treatments, early wood was 13% richer in lignin than late wood. Elevated CO2 partial pressure decreased the proportion of sapwood occupied by the lumina of tracheids by up to 12%, indicating increased sapwood density in response to CO2 enrichment. This effect was probably a result of thicker tracheid walls rather than narrower lumina.
Bubble morphology in U 3Si 2 implanted by high-energy Xe ions at 300 °C
Miao, Yinbin; Harp, Jason; Mo, Kun; ...
2017-08-02
The microstructure modifications of a high-energy Xe implanted U 3Si 2, a promising accident tolerant fuel candidate, were characterized and are reported upon. The U 3Si 2 pellet was irradiated at Argonne Tandem Linac Accelerator System (ATLAS) by an 84 MeV Xe ion beam at 300 °C. The irradiated specimen was then investigated using a series of transmission electron microscopy (TEM) techniques. A dense distribution of bubbles were observed near the range of the 84 MeV Xe ions. Xe gas was also found to accumulate at multiple types of sinks, such as dislocations and grain boundaries. Bubbles aggregated at thosemore » sinks are slightly larger than intragranular bubbles in lattice. At 300 °C, the gaseous swelling strain is limited as all the bubbles are below 10 nm, implying the promising fission gas behavior of U 3Si 2 under normal operating conditions in light water reactors (LWRs).« less
ZIF-Derived Nitrogen-Doped Porous Carbons for Xe Adsorption and Separation
NASA Astrophysics Data System (ADS)
Zhong, Shan; Wang, Qian; Cao, Dapeng
2016-02-01
Currently, finding high capacity adsorbents with large selectivity to capture Xe is still a great challenge. In this work, nitrogen-doped porous carbons were prepared by programmable temperature carbonization of zeolitic imidazolate framework-8 (ZIF-8) and ZIF-8/xylitol composite precursors and the resultant samples are marked as Carbon-Z and Carbon-ZX, respectively. Further adsorption measurements indicate that ZIF-derived nitrogen-doped Carbon-ZX exhibits extremely high Xe capacity of 4.42 mmol g-1 at 298 K and 1 bar, which is higher than almost all other pristine MOFs such as CuBTC, Ni/DOBDC, MOF-5 and Al-MIL-53, and even more than three times of the matrix ZIF-8 at similar conditions. Moreover, Carbon-ZX also shows the highest Xe/N2 selectivity about ~120, which is much larger than all other reported MOFs. These remarkable features illustrate that ZIF-derived nitrogen-doped porous carbon is an excellent adsorbent for Xe adsorption and separation at room temperature.
Breakthrough in Xenon Capture and Purification Using Adsorbent-Supported Silver Nanoparticles.
Deliere, Ludovic; Coasne, Benoit; Topin, Sylvain; Gréau, Claire; Moulin, Christophe; Farrusseng, David
2016-07-04
Rare gas capture and purification is a major challenge for energy, environment, and health applications. Of utmost importance for the nuclear industry, novel separation processes for Xe are urgently needed for spent nuclear fuel reprocessing and nuclear activity monitoring. The recovered, non-radioactive Xe is also of high economic value for lighting, surgical anesthetic, etc. Here, using adsorption and breakthrough experiments and statistical mechanics molecular simulation, we show the outstanding performance of zeolite-supported silver nanoparticles to capture/separate Xe at low concentrations (0.087-100 ppm). We also establish the efficiency of temperature swing adsorption based on such adsorbents for Xe separation from Kr/Xe mixtures and air streams corresponding to off-gases generated by nuclear reprocessing. This study paves the way for the development of novel, cost-efficient technologies relying on the large selectivity/capacity of adsorbent-supported silver nanoparticles which surpass all materials ever tested. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Alekseeva, O. S.; Devdariani, A. Z.; Grigorian, G. M.; Lednev, M. G.; Zagrebin, A. L.
2017-02-01
This study is devoted to the theoretical investigation of the quasimolecular emission of Xe*-He and Kr*-He collision pairs near the Xe (5p 56s 1,3 P 1 - 5p 6 1 S 0) and Kr (4p 55s 1,3 P 1 - 4p 6 1 S 0) resonance atomic lines. The potential curves of the quasimolecules Xe(5p 56s) + He and Kr(4p 55s) + He have been obtained with the use of the effective Hamiltonian and pseudopotential methods. Based on these potential curves the processes of quasimolecular emission of Xe*+He and Kr*+He mixtures have been considered and the spectral distributions I(ħΔω) of photons emitted have been obtained in the framework of quasistatic approximation.
Bubble morphology in U3Si2 implanted by high-energy Xe ions at 300 °C
NASA Astrophysics Data System (ADS)
Miao, Yinbin; Harp, Jason; Mo, Kun; Zhu, Shaofei; Yao, Tiankai; Lian, Jie; Yacout, Abdellatif M.
2017-11-01
The microstructure modifications of a high-energy Xe implanted U3Si2, a promising accident tolerant fuel candidate, were characterized and are reported upon. The U3Si2 pellet was irradiated at Argonne Tandem Linac Accelerator System (ATLAS) by an 84 MeV Xe ion beam at 300 °C. The irradiated specimen was then investigated using a series of transmission electron microscopy (TEM) techniques. A dense distribution of bubbles were observed near the range of the 84 MeV Xe ions. Xe gas was also found to accumulate at multiple types of sinks, such as dislocations and grain boundaries. Bubbles aggregated at those sinks are slightly larger than intragranular bubbles in lattice. At 300 °C, the gaseous swelling strain is limited as all the bubbles are below 10 nm, implying the promising fission gas behavior of U3Si2 under normal operating conditions in light water reactors (LWRs).
Hyperpolarized Gas MRI: Technique and Applications
McAdams, Holman P.; Kaushik, S. Sivaram; Driehuys, Bastiaan
2015-01-01
Synopsis Functional imaging today offers a rich world of information that is more sensitive to changes in lung structure and function than traditionally obtained pulmonary function tests. Hyperpolarized helium (3He) and xenon (129Xe) MR imaging of the lungs provided new sensitive contrast mechanisms to probe changes in pulmonary ventilation, microstructure and gas exchange. With the recent scarcity in the supply of 3He the field of hyperpolarized gas imaging shifted to the use of cheaper and naturally available 129Xe. Xenon is well tolerated and recent technical advances have ensured that the 129Xe image quality is on par with that of 3He. The added advantage of 129Xe is its solubility in pulmonary tissue, which allows exploring specific lung function characteristics involved in gas exchange and alveolar oxygenation. With a plethora of contrast mechanisms, hyperpolarized gases and 129Xe in particular, stands to be an excellent probe of pulmonary structure and function, and provide sensitive and non-invasive biomarkers for a wide variety of pulmonary diseases. PMID:25952516
Na + Xe collisions in the presence of two nonresonant lasers
NASA Technical Reports Server (NTRS)
De Vries, P. L.; Chang, C. H.; George, T. F.; Laskowski, B.; Stallcop, J. R.
1980-01-01
Na+Xe collisions in the presence of two distinct laser fields (rhodamine 110 and Nd:glass) are investigated with reference to the response to nonresonant radiation of alkali metals collisionally perturbed by a buffer gas. It is found that the excited Na-asterisk (4s)+Xe state is produced with a measurable cross section due to two-photon absorption with field intensities as low as 10 MW/sq cm.
Half-collision analysis of far-wing diffuse structure in Cs-Xe
NASA Technical Reports Server (NTRS)
Exton, R. J.; Hillard, M. E.; Lempert, W. R.
1987-01-01
Laser excitation in the far red wing of the second principal series doublet of Cs mixed with Xe revealed a diffuse structure associated with the 2P(3/2) component. The structure is thought to originate from a reflection type of spectrum between the weakly bound E 2Sigma(1/2) excited state and the X 2Sigma(1/2) repulsive ground state of CsXe.
Isotopes as clues to the origin and earliest differentiation history of the Earth.
Jacobsen, Stein B; Ranen, Michael C; Petaev, Michael I; Remo, John L; O'Connell, Richard J; Sasselov, Dimitar D
2008-11-28
Measurable variations in (182)W/(183)W, (142)Nd/(144)Nd, (129)Xe/(130)Xe and (136)XePu/(130)Xe in the Earth and meteorites provide a record of accretion and formation of the core, early crust and atmosphere. These variations are due to the decay of the now extinct nuclides (182)Hf, (146)Sm, (129)I and (244)Pu. The (l82)Hf-(182)W system is the best accretion and core-formation chronometer, which yields a mean time of Earth's formation of 10Myr, and a total time scale of 30Myr. New laser shock data at conditions comparable with those in the Earth's deep mantle subsequent to the giant Moon-forming impact suggest that metal-silicate equilibration was rapid enough for the Hf-W chronometer to reliably record this time scale. The coupled (146)Sm-(147)Sm chronometer is the best system for determining the initial silicate differentiation (magma ocean crystallization and proto-crust formation), which took place at ca 4.47Ga or perhaps even earlier. The presence of a large (129)Xe excess in the deep Earth is consistent with a very early atmosphere formation (as early as 30Myr); however, the interpretation is complicated by the fact that most of the atmospheric Xe may be from a volatile-rich late veneer.
Elastic and inelastic scattering of 134Xe beams on C2D4 targets measured with GODDESS
NASA Astrophysics Data System (ADS)
Sims, Harrison; Cizewski, Jolie; Lapailleur, Alex; Garland, Heather; Xination, Dai; Pain, Steven; Hall, Matthew; Goddess Collaboration
2017-09-01
The GODDESS (Gammasphere-ORRUBA: Dual Detector for Experimental Structure Studies) coupling of the ORRUBA charged-particle array with Gammasphere is designed to enable high-resolution particle-gamma measurements in inverse kinematics with radioactive beams. The high resolution and coverage of GODDESS allows for multiple reaction channels to be studied simultaneously. For the stable-beam commissioning of GODDESS, the 134Xe(d,p γ)135Xe reaction was measured using a beam of 134Xe at 8 MeV/A, delivered by the ATLAS facility at Argonne National Laboratory. The beam impinged on an 800 μg/cm2 C2D4 target, and charged particles were detected in the GODDESS silicon array between 15 and 165 degrees. Coincident gamma rays were measured with Gammasphere, with 10 % efficiency at 1.3 MeV. In the detectors downstream of the target, elastically- and inelastically-scattered target ions (deuterium and carbon) were detected, populating the ground and low-lying excited states in 134Xe. An overview of GODDESS will be presented, along with the analysis of the downstream data, including the differential scattering cross sections and population of collective states in 134Xe. Work supported in part by the U.S. D.O.E. and National Science Foundation.
Spin Exchange Optical Pumping of 129Xe for the Neutron Electron Dipole Moment Experiment at TRIUMF
NASA Astrophysics Data System (ADS)
Miller, Eric; Hayamizu, Tomohiro; Wienands, Joshua; Altiere, Emily; Jones, David; Madison, Kirk; Momose, Takamasa; Lang, Michael; Bidinosti, Chris; Martin, Jeffery
2016-09-01
Spin polarized noble gases have been a field of study for several decades and are of particular interest with respect to magnetic sensing. Using the Spin Exchange Optical Pumping technique, one can use the angular momentum of circularly polarized NIR photons to spin polarize Rb atoms, which then collide with Xe to polarize the ground state Zeeman sublevels of Xe many orders of magnitude above typical thermal Boltzmann distributions. The resulting polarized gas, with its magnetic dipole moment, is a useful probe of magnetic fields. We plan to use two spin polarized species, 129Xe and 199Hg, as dual co-magnetometers for the neutron EDM experiment at TRIUMF. They will be used to correct the neutron precession frequency for drifts due to magnetic field instability and geometric phase effects. For 129Xe, we aim to probe the populations of the ground state Zeeman sublevels using UV two-photon transitions. The respective populations depend on how much polarization we can produce using the SEOP technique. We will present technical details of our apparatus including results from a parameter space search, investigating how mode of preparation (batch or continuous flow), temperature, flow rate, and laser power affect 129Xe polarization as measured by low field NMR.
NASA Technical Reports Server (NTRS)
Onions, R. K.
1994-01-01
The degassing of the Earth during accretion is constrained by Pu-U-I-Xe systematics. Degassing was much more efficient during the first 100-200 Ma than subsequently, and it was more complete for Xe than for the lighter gases. More than 90 percent of the degassed Xe escaped from the atmosphere during this period. The combination of fractional degassing of melts and rare gas escape from the atmosphere is able to explain the deficit of terrestrial Xe as a simple consequence of this early degassing history. By the time Xe was quantitatively retained in the atmosphere, the abundances of Kr and the lighter gases in the Earth's interior were similar to or higher than the present-day atmospheric abundances. Subsequent transfer of these lighter rare gases into the atmosphere requires a high rate of post-accretion degassing and melt production. Considerations of Pu-U-Xe systematics suggest that relatively rapid post-accretion degassing was continued to ca. 4.1-4.2 Ga. The present-day degassing history of the Earth is investigated through consideration of rare gas isotope abundances. Although the Earth is a highly degassed body, depleted in rare gases by many orders of magnitude relative to their solar abundances, it is at the present-day losing primordial rare gases which were trapped at the time of accretion.
Rogers, Nicola J.; Hill-Casey, Fraser; Stupic, Karl F.; Six, Joseph S.; Lesbats, Clémentine; Rigby, Sean P.; Fraissard, Jacques; Pavlovskaya, Galina E.; Meersmann, Thomas
2016-01-01
Hyperpolarized (hp) 83Kr is a promising MRI contrast agent for the diagnosis of pulmonary diseases affecting the surface of the respiratory zone. However, the distinct physical properties of 83Kr that enable unique MRI contrast also complicate the production of hp 83Kr. This work presents a previously unexplored approach in the generation of hp 83Kr that can likewise be used for the production of hp 129Xe. Molecular nitrogen, typically used as buffer gas in spin-exchange optical pumping (SEOP), was replaced by molecular hydrogen without penalty for the achievable hyperpolarization. In this particular study, the highest obtained nuclear spin polarizations were P = 29% for 83Kr and P = 63% for 129Xe. The results were reproduced over many SEOP cycles despite the laser-induced on-resonance formation of rubidium hydride (RbH). Following SEOP, the H2 was reactively removed via catalytic combustion without measurable losses in hyperpolarized spin state of either 83Kr or 129Xe. Highly spin-polarized 83Kr can now be purified for the first time, to our knowledge, to provide high signal intensity for the advancement of in vivo hp 83Kr MRI. More generally, a chemical reaction appears as a viable alternative to the cryogenic separation process, the primary purification method of hp 129Xe for the past 2 1/2 decades. The inherent simplicity of the combustion process will facilitate hp 129Xe production and should allow for on-demand continuous flow of purified and highly spin-polarized 129Xe. PMID:26961001
Lee, Sang Min; Seo, Joon Beom; Hwang, Hye Jeon; Kim, Namkug; Oh, Sang Young; Lee, Jae Seung; Lee, Sei Won; Oh, Yeon-Mok; Kim, Tae Hoon
2017-07-01
To compare the parenchymal attenuation change between inspiration/expiration CTs with dynamic ventilation change between xenon wash-in (WI) inspiration and wash-out (WO) expiration CTs. 52 prospectively enrolled COPD patients underwent xenon ventilation dual-energy CT during WI and WO periods and pulmonary function tests (PFTs). The parenchymal attenuation parameters (emphysema index (EI), gas-trapping index (GTI) and air-trapping index (ATI)) and xenon ventilation parameters (xenon in WI (Xe-WI), xenon in WO (Xe-WO) and xenon dynamic (Xe-Dyna)) of whole lung and three divided areas (emphysema, hyperinflation and normal) were calculated on virtual non-contrast images and ventilation images. Pearson correlation, linear regression analysis and one-way ANOVA were performed. EI, GTI and ATI showed a significant correlation with Xe-WI, Xe-WO and Xe-Dyna (EI R = -.744, -.562, -.737; GTI R = -.621, -.442, -.629; ATI R = -.600, -.421, -.610, respectively, p < 0.01). All CT parameters showed significant correlation with PFTs except forced vital capacity (FVC). There was a significant difference in GTI, ATI and Xe-Dyna in each lung area (p < 0.01). The parenchymal attenuation change between inspiration/expiration CTs and xenon dynamic change between xenon WI- and WO-CTs correlate significantly. There are alterations in the dynamics of xenon ventilation between areas of emphysema. • The xenon ventilation change correlates with the parenchymal attenuation change. • The xenon ventilation change shows the difference between three lung areas. • The combination of attenuation and xenon can predict more accurate PFTs.
NASA Astrophysics Data System (ADS)
Rogers, Nicola J.; Hill-Casey, Fraser; Stupic, Karl F.; Six, Joseph S.; Lesbats, Clémentine; Rigby, Sean P.; Fraissard, Jacques; Pavlovskaya, Galina E.; Meersmann, Thomas
2016-03-01
Hyperpolarized (hp) 83Kr is a promising MRI contrast agent for the diagnosis of pulmonary diseases affecting the surface of the respiratory zone. However, the distinct physical properties of 83Kr that enable unique MRI contrast also complicate the production of hp 83Kr. This work presents a previously unexplored approach in the generation of hp 83Kr that can likewise be used for the production of hp 129Xe. Molecular nitrogen, typically used as buffer gas in spin-exchange optical pumping (SEOP), was replaced by molecular hydrogen without penalty for the achievable hyperpolarization. In this particular study, the highest obtained nuclear spin polarizations were P = 29% for 83Kr and P = 63% for 129Xe. The results were reproduced over many SEOP cycles despite the laser-induced on-resonance formation of rubidium hydride (RbH). Following SEOP, the H2 was reactively removed via catalytic combustion without measurable losses in hyperpolarized spin state of either 83Kr or 129Xe. Highly spin-polarized 83Kr can now be purified for the first time, to our knowledge, to provide high signal intensity for the advancement of in vivo hp 83Kr MRI. More generally, a chemical reaction appears as a viable alternative to the cryogenic separation process, the primary purification method of hp 129Xe for the past 2 1/2 decades. The inherent simplicity of the combustion process will facilitate hp 129Xe production and should allow for on-demand continuous flow of purified and highly spin-polarized 129Xe.
133Xe contamination found in internal bacteria filter of xenon ventilation system.
Hackett, Michael T; Collins, Judith A; Wierzbinski, Rebecca S
2003-09-01
We report on (133)Xe contamination found in the reusable internal bacteria filter of our xenon ventilation system. Internal bacteria filters (n = 6) were evaluated after approximately 1 mo of normal use. The ventilation system was evacuated twice to eliminate (133)Xe in the system before removal of the filter. Upon removal, the filter was monitored using a survey meter with an energy-compensated probe and was imaged on a scintillation camera. The filter was monitored and imaged over several days and was stored in a fume hood. Estimated (133)Xe activity in each filter immediately after removal ranged from 132 to 2,035 kBq (3.6-55.0 micro Ci), based on imaging. Initial surface radiation levels ranged from 0.4 to 4.5 micro Sv/h (0.04-0.45 mrem/h). The (133)Xe activity did not readily leave the filter over time (i.e., time to reach half the counts of the initial decay-corrected image ranged from <6 to >72 h). The majority of the image counts (approximately 70%) were seen in 2 distinctive areas in the filter. They corresponded to sites where the manufacturer used polyurethane adhesive to attach the fiberglass filter medium to the filter housing. (133)Xe contamination within the reusable internal bacteria filter of our ventilation system was easily detected by a survey meter and imaging. Although initial activities and surface radiation levels were low, radiation safety practices would dictate that a (133)Xe-contaminated bacteria filter be stored preferably in a fume hood until it cannot be distinguished from background before autoclaving or disposal.
Distribution of some highly volatile elements in chondrules
NASA Astrophysics Data System (ADS)
Kim, J. S.; Marti, K.
1994-07-01
As chondrule apparently were melted before accretion into chondritic parent bodies, we carried out a N and Xe isotopic study to obtain information on the partitioning of some of the most volatile as well as incompatible elements: noble gases, N, I, REE, and Pu. In separated silicates in Forest Vale, consisting of mostly broken chondrules, we observed rather large Xe concentrations, and since noble gases in chondrites are associated with C-rich phases, we decided to study the core portion of a suite of chondrules after removing the chondrule rim portion and adhering matrix. We selected sets of rounded chondrules from four meteorites: Allende (CV3), Dhajala (H3.8), Forest Vale (H4), and Bjurbole (L4). We compare measured N and Xe concentrations and isotopic abundances in cores of chondrules to those obtained from unetched chondrules. We discuss results obtained from melting steps, because N and Xe in the silicate lattice are mostly released at T greater than 1000 C. All cores of chondrules contain less than 1% of the Xe in the respective bulk samples. Moreover, they released much less trapped Xe in the melting step than did untreated bulk chondrites. However, the radiogenic Xer-129 and fissiogenic Xef is not or is only slightly depleted, and spallogenic Xe is a major component, particularly in Forest Vale. We can not deduce the signature of trapped Xe in the chondrules. The release systematics are completely different from those observed in primitive achondrites, which contain noble gas in the 'dusty' silicate inclusions. Allende chondrules differ from those of ordinary chondrite in the N release pattern. This represents possibly a signature of the local environment during chondrule formation, since N may exist in chondrule minerals in chemically bound forms. In contrast, all three sets of ordinary chondrite chondrules released less than 0.6 ppm N in the melting step, and these signatures reveal substantial components of cosmic-ray-produced N.
WE-AB-202-06: Correlating Lung CT HU with Transformation-Based and Xe-CT Derived Ventilation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, K; Patton, T; Bayouth, J
Purpose: Regional lung ventilation is useful to reduce radiation-induced function damage during lung cancer radiation therapy. Recently a new direct HU (Hounsfield unit)-based method was proposed to estimate the ventilation potential without image registration. The purpose of this study is to examine if there is a functional dependence between HU values and transformation-based or Xe-CT derived ventilation. Methods: 4DCT images acquired from 13 patients prior to radiation therapy and 4 mechanically ventilated sheep subjects which also have associated Xe-CT images were used for this analysis. Transformation-based ventilation was computed using Jacobian determinant of the transformation field between peak-exhale and peak-inhalemore » 4DCT images. Both transformation and Xe-CT derived ventilation was computed for each HU bin. Color scatter plot and cumulative histogram were used to compare and validate the direct HU-based method. Results: There was little change of the center and shape of the HU histograms between free breathing CT and 4DCT average, with or without smoothing, and between the repeated 4DCT scans. HU of −750 and −630 were found to have the greatest transformation-based ventilation for human and sheep subjects, respectively. Maximum Xe-CT derived ventilation was found to locate at HU of −600 in sheep subjects. The curve between Xe-CT ventilation and HU was noisy for tissue above HU −400, possibly due to less intensity change of Xe gas during wash-out and wash-in phases. Conclusion: Both transformation-based and Xe-CT ventilation demonstrated that lung tissues with HU values in the range of (-750, −600) HU have the maximum ventilation potential. The correlation between HU and ventilation suggests that HU might be used to help guide the ventilation calculation and make it more robust to noise and image registration errors. Research support from NIH grants CA166703 and CA166119 and a gift from Roger Koch.« less
Al-Busafi, Said A; Ghali, Peter; Wong, Philip; Novales-Diaz, Javier A; Deschênes, Marc
2012-03-01
Nonalcoholic fatty liver disease (NAFLD) is an important and common condition affecting approximately 20% of the general population. Given the limitation of radiological investigations, diagnosis often requires a liver biopsy. To compare Xenon-133 (Xe-133) liver scanning with ultrasonography in the diagnosis of NAFLD. From January 2003 to February 2007, 258 consecutive patients with suspected NAFLD underwent Xe-133 liver scanning at Royal Victoria Hospital (Montreal, Quebec). Of these, 43 patients underwent ultrasonography and liver biopsy for the evaluation of NAFLD. Patients with other liver diseases and significant alcohol consumption were excluded. Two nuclear medicine physicians assessed liver Xe-133 uptake and measured the grade of steatosis using a standardized protocol. The degree of steatosis was determined from biopsy specimens assessed by two hepatopathologists. NAFLD was identified by liver biopsy in 35 of 43 patients (81.4%). Xe-133 scan demonstrated 94.3% sensitivity (95% CI 81.4% to 98.4%) and 87.5% specificity (95% CI 52.9% to 99.4%) for the presence of NAFLD. The positive and negative predictive values for detection of steatosis by Xe-133 scan were 97.1% (95% CI 85.1% to 99.8%) and 77.8% (95% CI 45.3% to 93.7%), respectively. The positive and negative likelihood ratios were 7.54 (95% CI 1.20 to 47.26) and 0.07 (95% CI 0.02 to 0.26), respectively. Two patients with NAFLD (5.7%) who had a negative Xe-133 scan result had histologically mild steatosis (<10%). The grade of steatosis on liver biopsy was highly correlated with the results of the Xe-133 scan (r=0.87; P<0.001). The sensitivity and specificity of ultrasound in diagnosing steatosis were 62.9% and 75%, respectively. Xe-133 liver scan proved to be a safe, reliable, noninvasive method for diagnosing and quantifying hepatic steatosis, and was superior to ultrasound.
Using Dalton's Law of Partial Pressures to Determine the Vapor Pressure of a Volatile Liquid
ERIC Educational Resources Information Center
Hilgeman, Fred R.; Bertrand, Gary; Wilson, Brent
2007-01-01
This experiment, designed for a general chemistry laboratory, illustrates the use of Dalton's law of partial pressures to determine the vapor pressure of a volatile liquid. A predetermined volume of air is injected into a calibrated tube filled with a liquid whose vapor pressure is to be measured. The volume of the liquid displaced is greater than…
Oxygen partial pressure sensor
Dees, D.W.
1994-09-06
A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured. 1 fig.
Oxygen partial pressure sensor
Dees, Dennis W.
1994-01-01
A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured.
Zhang, Alan L; Miller, Stephanie L; Coughlin, Dezba G; Lotz, Jeffrey C; Feeley, Brian T
2015-10-01
To test contact pressures in the knee after treatment of a radial meniscus tear with an all-inside meniscal repair technique and compare the results with inside-out repair and partial meniscectomy. Six non-paired cadaveric knees were analyzed with intra-compartment pressures measured at loads of 250 N, 500 N and 1000 N at 0°, eight degrees, 15°, and 30° of knee flexion. Compartmental contact pressures were measured for the intact medial meniscus, radial tear in the posterior horn, all-inside repair using the NovoStitch suture passer device (Ceterix Orthopaedics Inc., Menlo Park, CA), inside-out repair method, and partial meniscectomy. One-way ANOVA was used for statistical analysis. The greatest differences in peak pressures between treatments were observed under 1000 N load at 30° flexion (0.8± (SD) 0.1 MPa (intact meniscus), 0.8± (SD) 0.1 MPa (all-inside), 0.9± (SD) 0.1 MPa (inside-out) and 1.6± (SD) 0.2 MPa (partial meniscectomy)). Treatment with partial meniscectomy resulted in the highest peak pressures compared to all other states (p<0.0001 at each angle). Repair of the radial tear using the all-inside technique as well as the inside-out technique resulted in significantly decreased compartment pressures compared to partial meniscectomies (p<0.0001 at each angle). There were no significant differences between peak pressures in the intact state and after repair with the all-inside or inside-out techniques. An all-inside repair technique using the NovoStitch suture passer can decrease contact pressures for a radial meniscus tear similarly to the inside-out repair technique when compared to partial meniscectomy. This novel arthroscopic suture passer warrants further analysis in the clinical setting as it may be a reliable method for repair of radial meniscal tears through an arthroscopic all-inside technique. Copyright © 2015 Elsevier B.V. All rights reserved.
Hunt, Julie E A; Stodart, Clare; Ferguson, Richard A
2016-07-01
Previous investigations to establish factors influencing the blood flow restriction (BFR) stimulus have determined cuff pressures required for complete arterial occlusion, which does not reflect the partial restriction prescribed for this training technique. This study aimed to establish characteristics that should be accounted for when prescribing cuff pressures required for partial BFR. Fifty participants were subjected to incremental blood flow restriction of the upper and lower limbs by proximal pneumatic cuff inflation. Popliteal and brachial artery diameter, blood velocity and blood flow was assessed with Doppler ultrasound. Height, body mass, limb circumference, muscle-bone cross-sectional area, adipose thickness (AT) and arterial blood pressure were measured and used in different models of hierarchical linear regression to predict the pressure at which 60 % BFR (partial occlusion) occurred. Combined analysis revealed a difference in cuff pressures required to elicit 60 % BFR in the popliteal (111 ± 12 mmHg) and brachial arteries (101 ± 12 mmHg). MAP (r = 0.58) and AT (r = -0.45) were the largest independent determinants of lower and upper body partial occlusion pressures. However, greater variance was explained by upper and lower limb regression models composed of DBP and BMI (48 %), and arm AT and DBP (30 %), respectively. Limb circumference has limited impact on the cuff pressure required for partial blood flow restriction which is in contrast to its recognised relationship with complete arterial occlusion. The majority of the variance in partial occlusion pressure remains unexplained by the predictor variables assessed in the present study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biedermann, C.; Radtke, R.
2007-06-15
We have found that xenon in different charge states, namely, Xe{sup 9+} and Xe{sup 31+}, can contribute to the radiation in the 598 nm spectral range. Our observation resolves the discrepancy of line identification given by Takacs et al. [Phys. Rev. A 73, 052505 (2006)] and Crespo et al. [Can. J. Phys. 80, 1687 (2002)].
1984-02-22
XeFfi 1s capable of deliver- ing the highest known Derformanrp fnr any NF F? gas generator composi- tion. The difficulty of synthesizing the compound ...the high cost of Xe and the shock sensitivity of the Xe(L hydrolysis product, however, render this compound Impractical at the present time. A...discovered for F0C10„ which allowed us to carry out a thorough characterization of this Interesting compound (see Appendix L). We have also
Two-photon spectroscopy of autoionizing states of Xe² near threshold
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pratt, Stephen T.; Dehmer, Patricia M.; Dehmer, Joseph L.
1990-01-01
The two-photon ionization spectrum of Xe² in the region of the first ionization threshold is presented. Vibronic bands corresponding to at least four different autoionizing electronic states of Xe² are observed for the first time and are tentatively assigned. The observed appearance potential is significantly higher (by 415 cm-1) than the earlier single-photon ionization result (Ng, Trevor, Mahan and Lee, - J. Chem. Phys. 65 (1976) 4327).
NASA Technical Reports Server (NTRS)
Marti, K.
1986-01-01
A technique of cosmic ray exposure age dating using cosmic ray produced I-129 and Xe-129 components is discussed. The live I-129 - Xe-129 method provides an ideal monitor for cosmic ray flux variations on the 10(7)y - 10(8)y time-scale. It is based on low-energy neutron reactions on Te, and these data, when coupled to those from other methods, may facilitate the detection of complex exposure histories.
NASA Astrophysics Data System (ADS)
Boichenko, A. M.; Klenovskii, M. S.
2015-12-01
By using the previously developed kinetic model, we have carried out simulations to study the possibility of laser generation of XeCl exciplex molecules in the working medium based on a mixture of Xe with CsCl vapours, excited by a longitudinal repetitively pulsed discharge. The formation mechanism of exciplex molecules in this mixture is fundamentally different from the formation mechanisms in the traditional mixtures of exciplex lasers. The conditions that make the laser generation possible are discussed. For these conditions, with allowance for available specific experimental conditions of the repetitively pulsed discharge excitation, we have obtained the calculated dependences of the power and efficiency of generation on the reflectivity of mirrors in a laser cavity.
Search for the permanent electric dipole moment of 129Xe
NASA Astrophysics Data System (ADS)
Sachdeva, Natasha; Chupp, Timothy; Gong, Fei; Babcock, Earl; Salhi, Zahir; Burghoff, Martin; Fan, Isaac; Killian, Wolfgang; Knappe-Grüneberg, Silvia; Schabel, Allard; Seifert, Frank; Trahms, Lutz; Voigt, Jens; Degenkolb, Skyler; Fierlinger, Peter; Krägeloh, Eva; Lins, Tobias; Marino, Michael; Meinel, Jonas; Niessen, Benjamin; Stuiber, Stefan; Terrano, William; Kuchler, Florian; Singh, Jaideep
2017-09-01
CP-violation in Beyond-the-Standard-Model physics, necessary to explain the baryon asymmetry, gives rise to permanent electric dipole moments (EDMs). EDM measurements of the neutron, electron, paramagnetic and diamagnetic atoms constrain CP-violating parameters. The current limit for the 129Xe EDM is 6 ×10-27 e . cm (95 % CL). The HeXeEDM experiment at FRM-II (Munich Research Reactor) and BMSR-2 (Berlin Magnetically Shielded Room) uses a stable magnetic field in a magnetically shielded room and 3He comagnetometer with potential to improve the limit by two orders of magnitude. Polarized 3He and 129Xe free precession is detected with SQUID magnetometers in the presence of applied electric and magnetic fields. Conclusions from recent measurements will be presented.
Global radioxenon emission inventory based on nuclear power reactor reports.
Kalinowski, Martin B; Tuma, Matthias P
2009-01-01
Atmospheric radioactivity is monitored for the verification of the Comprehensive Nuclear-Test-Ban Treaty, with xenon isotopes 131mXe, 133Xe, 133mXe and 135Xe serving as important indicators of nuclear explosions. The treaty-relevant interpretation of atmospheric concentrations of radioxenon is enhanced by quantifying radioxenon emissions released from civilian facilities. This paper presents the first global radioxenon emission inventory for nuclear power plants, based on North American and European emission reports for the years 1995-2005. Estimations were made for all power plant sites for which emission data were unavailable. According to this inventory, a total of 1.3PBq of radioxenon isotopes are released by nuclear power plants as continuous or pulsed emissions in a generic year.
Optical properties of implanted Xe color centers in diamond
Sandstrom, Russell; Ke, Li; Martin, Aiden; ...
2017-12-20
Optical properties of color centers in diamond have been the subject of intense research due to their promising applications in quantum photonics. Here in this work we study the optical properties of Xe related color centers implanted into nitrogen rich (type IIA) and an ultrapure, electronic grade diamond. The Xe defect has two zero phonon lines at 794 nm and 811 nm, which can be effectively excited using both green and red excitation, however, its emission in the nitrogen rich diamond is brighter. Near resonant excitation is performed at cryogenic temperatures and luminescence is probed under strong magnetic field. Finally,more » our results are important towards the understanding of the Xe related defect and other near infrared color centers in diamond.« less
Optical properties of implanted Xe color centers in diamond
NASA Astrophysics Data System (ADS)
Sandstrom, Russell; Ke, Li; Martin, Aiden; Wang, Ziyu; Kianinia, Mehran; Green, Ben; Gao, Wei-bo; Aharonovich, Igor
2018-03-01
Optical properties of color centers in diamond have been the subject of intense research due to their promising applications in quantum photonics. In this work we study the optical properties of Xe related color centers implanted into nitrogen rich (type IIA) and an ultrapure, electronic grade diamond. The Xe defect has two zero phonon lines at ∼794 nm and 811 nm, which can be effectively excited using both green and red excitation, however, its emission in the nitrogen rich diamond is brighter. Near resonant excitation is performed at cryogenic temperatures and luminescence is probed under strong magnetic field. Our results are important towards the understanding of the Xe related defect and other near infrared color centers in diamond.
Comparison of magnetic properties of austenitic stainless steel after ion irradiation
NASA Astrophysics Data System (ADS)
Xu, Chaoliang; Liu, Xiangbing; Xue, Fei; Li, Yuanfei; Qian, Wangjie
2018-07-01
Specimens of austenitic stainless steel (ASS) were irradiated with H, Fe and Xe ions at room temperature. The vibrating sample magnetometer (VSM) and grazing incidence X-ray diffraction (GIXRD) were used to analyze the magnetic properties and martensite formation. The magnetic hysteresis loops indicated that higher irradiation damage causes more significant magnetization phenomenon. Under the same damage level, Xe irradiation causes the most significant magnetization, Fe irradiation is the second, and H irradiation is the least. A similar martensite amount variation with irradiation can be obtained. The coercivity Hc increases first to 2 dpa and then decreases continuously with irradiation damage for Xe irradiation. At the same damage lever, H irradiation causes a largest Hc and Xe irradiation causes a minimal one.
Optical properties of implanted Xe color centers in diamond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandstrom, Russell; Ke, Li; Martin, Aiden
Optical properties of color centers in diamond have been the subject of intense research due to their promising applications in quantum photonics. Here in this work we study the optical properties of Xe related color centers implanted into nitrogen rich (type IIA) and an ultrapure, electronic grade diamond. The Xe defect has two zero phonon lines at 794 nm and 811 nm, which can be effectively excited using both green and red excitation, however, its emission in the nitrogen rich diamond is brighter. Near resonant excitation is performed at cryogenic temperatures and luminescence is probed under strong magnetic field. Finally,more » our results are important towards the understanding of the Xe related defect and other near infrared color centers in diamond.« less
Probing the structure of the stable Xe isotopes with inelastic neutron scattering
NASA Astrophysics Data System (ADS)
Peters, Erin E.; Ross, Timothy J.; Crider, Benjamin P.; Yates, Steven W.
2018-05-01
The stable isotopes of xenon, which have attracted interest for a number of reasons, span a transitional region that evolves from γ-soft structures for the lighter mass isotopes to nearly spherical 136Xe with a closed neutron shell. The nature of this transition, which is gradual, is not well understood. To provide detailed spectroscopic information on the Xe isotopes, we have studied 130,132,134,136Xe at the University of Kentucky Accelerator Laboratory using inelastic neutron scattering and γ-ray detection. These measurements yielded γ-ray angular distributions, branching ratios, multipole mixing ratios, and level lifetimes (from the Doppler-shift attenuation method), which allowed the determination of reduced transition probabilities and provided insight into the structure of these nuclei.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, A. D.; Jones, B. J. P.; Nygren, D. R.
A new method to tag the barium daughter in the double beta decay ofmore » $$^{136}$$Xe is reported. Using the technique of single molecule fluorescent imaging (SMFI), individual barium dication (Ba$$^{++}$$) resolution at a transparent scanning surface has been demonstrated. A single-step photo-bleach confirms the single ion interpretation. Individual ions are localized with super-resolution ($$\\sim$$2~nm), and detected with a statistical significance of 12.9~$$\\sigma$$ over backgrounds. This lays the foundation for a new and potentially background-free neutrinoless double beta decay technology, based on SMFI coupled to high pressure xenon gas time projection chambers.« less
Alumina Volatility in Water Vapor at Elevated Temperatures: Application to Combustion Environments
NASA Technical Reports Server (NTRS)
Opila, Elizabeth J.; Myers, Dwight L.
2003-01-01
The volatility of alumina in high temperature water vapor was determined by measuring weight loss of sapphire coupons at temperatures between 1250 and 1500 C, water vapor partial pressures between 0.15 and 0.68 atm in oxygen, at one atmosphere total pressure, and a gas velocity of 4.4 centimeters per second. The variation of the volatility with water vapor partial pressure was consistent with Al(OH)3(g) formation. The enthalpy of reaction to form Al(OH)3(g) from alumina and water vapor was found to be 210 plus or minus 20 kJ/mol. Surface rearrangement of ground sapphire surfaces increased with water vapor partial pressure, temperature and volatility rate. Recession rates of alumina due to volatility were determined as a function of water vapor partial pressure and temperature to evaluate limits for use of alumina in long term applications in combustion environments.
Non-invasive multiwavelength photoplethysmography under low partial pressure of oxygen.
Fang, Yung Chieh; Tai, Cheng-Chi
2016-08-01
A reduction in partial pressure of oxygen in the environment may be caused by a gain in altitude, which reduces the atmospheric pressure; it may also be caused by the carbon dioxide generated from breathing in an enclosed space. Does inhaling oxygen of lower partial pressure affect the oxygen-carrying function of haemoglobin in vivo? This study uses non-invasive multiwavelength photoplethysmography to measure the effects that inhaling this type of oxygen can have on the plethysmography of the appendages of the body (fingertips). The results indicate that under low partial pressure of oxygen, be it the result of a gain in carbon dioxide concentration or altitude, the change in visible light absorption is the biggest for short wavelengths (approximately 620 or 640 nm) near deoxyhaemoglobin, which has higher absorption coefficient. Moreover, increasing carbon dioxide concentration from 5000 to 10,000 ppm doubly reduces the absorption rate of these short wavelengths.
Report on ISS O2 Production, Gas Supply and Partial Pressure Management
NASA Technical Reports Server (NTRS)
Schaezler, Ryan N.; Cook, Anthony J.
2015-01-01
Oxygen is used on International Space Station (ISS) for metabolic support and denitrogenation procedures prior to Extra-Vehicular Activities. Nitrogen is used to maintain total pressure and account for losses associated with leakage and operational losses. Oxygen and nitrogen have been supplied by various visiting vehicles such as the Progress and Shuttle in addition to the on-orbit oxygen production capability. Starting in 2014, new high pressure oxygen/nitrogen tanks are available to launch on commercial cargo vehicles and will replace the high pressure gas source that Shuttle used to provide. To maintain a habitable atmosphere the oxygen and nitrogen partial pressures are controlled between upper and lower bounds. The full range of the allowable partial pressures along with the increased ISS cabin volume are utilized as a buffer allowing days to pass between oxygen production or direct addition of oxygen and nitrogen to the atmosphere from reserves. This paper summarizes the amount of gas supplied and produced from all of the sources and describes past experience of managing partial pressures along with the range of management options available to the ISS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moradi, S.; Ganjovi, A., E-mail: Ganjovi@kgut.ac.ir; Shojaei, F.
In this work, using a two-dimensional Particle In Cell-Monte Carlo Collision simulation method, a comparative study is performed on the influences of different types of atomic and molecular gases at various background gas pressures on the generation of broadband and intense Terahertz (THz) radiation via the application of two-color laser pulses. These two modes are focused into Argon (Ar), Xenon (Xe), Nitrogen (N{sub 2}), Oxygen (O{sub 2}), and air as the background gaseous media and the plasma channel is created. It is observed that the THz radiation emission dramatically changes due to the propagation effects. A wider THz pulse ismore » emitted from the formed plasma channel at the higher gas pressures. The significant effects of the propagation features of the emitted THz pulse on its energy at the longer lengths of the plasma channel are observed.« less
Thermal equation of state of TiC: A synchrotron x-ray diffraction study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu Xiaohui; National Lab for Condensed Matter Physics, Institute of Physics, CAS, Beijing 100080; Department of Physics, University of Science and Technology of China, Hefei 230026
2010-06-15
The pressure-volume-temperature measurements were carried out for titanium carbide (TiC) at pressures and temperatures up to 8.1 GPa and 1273 K using energy-dispersive synchrotron x-ray diffraction. Thermoelastic parameters were derived for TiC based on a modified high-temperature Birch-Murnaghan equation of state and a thermal pressure approach. With the pressure derivative of the bulk modulus, K{sub 0}{sup '}, fixed at 4.0, we obtain: the ambient bulk modulus K{sub 0}=268(6) GPa, which is comparable to previously reported value; temperature derivative of bulk modulus at constant pressure ({partial_derivative}K{sub T}/{partial_derivative}T){sub P}=-0.026(9) GPa K{sup -1}, volumetric thermal expansivity {alpha}{sub T}(K{sup -1})=a+bT with a=1.62(12)x10{sup -5} K{supmore » -1} and b=1.07(17)x10{sup -8} K{sup -2}, pressure derivative of thermal expansion ({partial_derivative}{alpha}/{partial_derivative}P){sub T}=(-3.62{+-}1.14)x10{sup -7} GPa{sup -1} K{sup -1}, and temperature derivative of bulk modulus at constant volume ({partial_derivative}K{sub T}/{partial_derivative}T){sub V}=-0.015(8) GPa K{sup -1}. These results provide fundamental thermophysical properties for TiC for the first time and are important to theoretical and computational modeling of transition metal carbides.« less
Thermal equation-of-state of TiC: a synchrotron x-ray diffraction study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Xiaohui; Lin, Zhijun; Zhang, Jianzhong
2009-01-01
The pressure (P)-volume (V)-temperature (T) measurements were carried out for titanium carbide at pressures and temperatures up to 8.1 GPa and 1273 K using energy-dispersive synchrotron x-ray diffraction. Thermoelastic parameters were derived for TiC based on a modified high-temperature Birch-Murnaghan equation of state and a thermal-pressure approach. With the pressure derivative of the bulk modulus, K'{sub 0}, fixed at 4.0, we obtain: the ambient bulk modulus K{sub 0} = 268(6) GPa, temperature derivative of bulk modulus at constant pressure ({partial_derivative}K{sub T}/{partial_derivative}T){sub p} = -0.026(9) GPa K{sup -1}, volumetric thermal expansivity a{sub T}(K{sup -1}) = a + bT with a =more » 1.62(12) x 10{sup -5} K{sup -1} and b = 1.07(17) x 10{sup -8} K{sup -2}, pressure derivative of thermal expansion ({partial_derivative}a/{partial_derivative}P){sub T} = (-3.62 {+-} 1.14) x 10{sup -7} GPa{sup -1} K{sup -1}, and temperature derivative of bulk modulus at constant volume ({partial_derivative}K{sub T}/{partial_derivative}T){sub v} = -0.015 (8) GPa K{sup -1}. These results provide fundamental thermo physical properties for TiC and are important to theoretical and computational modeling of transition metal carbides.« less
NASA Astrophysics Data System (ADS)
Ma, C. Y.; Lapostolle, F.; Briois, P.; Zhang, Q. Y.
2007-08-01
Amorphous and polycrystalline zirconium oxide thin films have been deposited by reactive rf magnetron sputtering in a mixed argon/oxygen or pure oxygen atmosphere with no intentional heating of the substrate. The films were characterized by high-resolution transmission electron microscopy (HR-TEM), atomic force microscopy (AFM), spectroscopic ellipsometry (SE), and capacitance versus voltage ( C- V) measurements to investigate the variation of structure, surface morphology, thickness of SiO 2-like interfacial layer as well as dielectric characteristics with different oxygen partial pressures. The films deposited at low oxygen partial pressures (less than 15%) are amorphous and dense with a smooth surface. In contrast, the films prepared at an oxygen partial pressure higher than 73% are crystallized with the microstructure changing from the mixture of monoclinic and tetragonal phases to a single monoclinic structure. The film structural transition is believed to be consequences of decrease in the oxygen vacancy concentration in the film and of increase of the energetically neutral particles in the plasma due to an increased oxygen partial pressure. SE measurements showed that significant interfacial SiO 2 growth has taken place above approximately 51%. The best C- V results in terms of relative dielectric constant values are obtained for thin films prepared at an oxygen partial pressure of 15%.
Ammann, Elizabeth C. B.; Lynch, Victoria H.
1966-01-01
Changes in the oxygen partial pressure of air over the range of 8 to 258 mm of Hg did not adversely affect the photosynthetic capacity of Chlorella pyrenoidosa. Gas exchange and growth measurements remained constant for 3-week periods and were similar to air controls (oxygen pressure of 160 mm of Hg). Oxygen partial pressures of 532 and 745 mm of Hg had an adverse effect on algal metabolism. Carbon dioxide consumption was 24% lower in the gas mixture containing oxygen at a pressure 532 mm of Hg than in the air control, and the growth rate was slightly reduced. Oxygen at a partial pressure of 745 mm of Hg decreased the photosynthetic rate 39% and the growth rate 37% over the corresponding rates in air. The lowered metabolic rates remained constant during 14 days of measurements, and the effect was reversible after this time. Substitution of helium or argon for the nitrogen in air had no effect on oxygen production, carbon dioxide consumption, or growth rate for 3-week periods. All measurements were made at a total pressure of 760 mm of Hg, and all gas mixtures were enriched with 2% carbon dioxide. Thus, the physiological functioning and reliability of a photosynthetic gas exchanger should not be adversely affected by: (i) oxygen partial pressures ranging from 8 to 258 mm of Hg; (ii) the use of pure oxygen at reduced total pressure (155 to 258 mm of Hg) unless pressure per se affects photosynthesis, or (iii) the inclusion of helium or argon in the gas environment (up to a partial pressure of 595 mm of Hg). PMID:5927028
Steady-State Plant Model to Predict Hydroden Levels in Power Plant Components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glatzmaier, Greg C.; Cable, Robert; Newmarker, Marc
The National Renewable Energy Laboratory (NREL) and Acciona Energy North America developed a full-plant steady-state computational model that estimates levels of hydrogen in parabolic trough power plant components. The model estimated dissolved hydrogen concentrations in the circulating heat transfer fluid (HTF), and corresponding partial pressures within each component. Additionally for collector field receivers, the model estimated hydrogen pressure in the receiver annuli. The model was developed to estimate long-term equilibrium hydrogen levels in power plant components, and to predict the benefit of hydrogen mitigation strategies for commercial power plants. Specifically, the model predicted reductions in hydrogen levels within the circulatingmore » HTF that result from purging hydrogen from the power plant expansion tanks at a specified target rate. Our model predicted hydrogen partial pressures from 8.3 mbar to 9.6 mbar in the power plant components when no mitigation treatment was employed at the expansion tanks. Hydrogen pressures in the receiver annuli were 8.3 to 8.4 mbar. When hydrogen partial pressure was reduced to 0.001 mbar in the expansion tanks, hydrogen pressures in the receiver annuli fell to a range of 0.001 mbar to 0.02 mbar. When hydrogen partial pressure was reduced to 0.3 mbar in the expansion tanks, hydrogen pressures in the receiver annuli fell to a range of 0.25 mbar to 0.28 mbar. Our results show that controlling hydrogen partial pressure in the expansion tanks allows us to reduce and maintain hydrogen pressures in the receiver annuli to any practical level.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kondaiah, P.; Madhavi, V.; Uthanna, S.
2013-02-05
Thin films of zirconium oxide (ZrO{sub 2}) were deposited on (100) p-silicon and quartz substrates by sputtering of metallic zirconium target under different oxygen partial pressures in the range 8 Multiplication-Sign 10{sup -3}-6 Multiplication-Sign 10{sup -2}Pa. The effect of oxygen partial pressure on the structural and optical properties of the deposited films was systematically investigated. The deposition rate of the films decreased from 3.3 to 1.83 nm/min with the increase of oxygen partial pressure from 8 Multiplication-Sign 10{sup -3}-6 Multiplication-Sign 10{sup -2}Pa respectively. The X-ray diffraction profiles revealed that the films exhibit (111) refection of zirconium oxide in monoclinic phase.more » The optical band gap of the films increased from 5.62 to 5.80 eV and refractive index increased from 2.01 to 2.08 with the increase of oxygen partial pressure from 8 Multiplication-Sign 10{sup -3}-6 Multiplication-Sign 10{sup -2}Pa respectively.« less
Formation of short high-power laser radiation pulses in excimer mediums
NASA Astrophysics Data System (ADS)
Losev, V. F., Sr.; Ivanov, N. G.; Panchenko, Yu. N.
2007-06-01
Presently an excimer mediums continue are examined as one of variants for formation of powerful and over powerful pulses of laser radiation with duration from units of nanosecond up to tens femtosecond. The researches on such powerful installations as "NIKE" (USA) and << SUPER ASHURA >>, Japan) proceed in this direction. The main advantage of excimer mediums is the opportunity to work in a frequency mode, absence of restriction on the size of active area, high uniformity of a gas working medium, high efficiency (up to 10 %) and wide spectral range of laser radiation (KrF, XeCl ~ 2nm, XeF (C-A), Xe IICl ~ 50-100 nanometers). Research in area of high quality laser beams formation in excimer mediums and its amplification in high power amplifiers are carried out the long time in Institute of High Current Electronics SB RAS, Tomsk, Russia. The wide aperture XeCl laser system of MELS-4k is used for these investigations. Last time we take part in program on development of high power excimer laser system with a petawatt level of power. This system supposes the formation and amplification high quality laser beams with different pulse duration from units of nanosecond up to tens femtosecond. We research the possibility of laser beams formation in excimer mediums with ps-ns pulse duration having the low noise and divergence near to diffraction limit. In other hand, we are developing the wide aperture XeF(C-A) amplifier with optical pump on base electron accelerator. According to our estimations of the XeF(C-A) amplifier based on the converter of e-beam energy to the Xe II* fluorescence at 172 nm will allow to obtain up to 100 TW peak power in a 30 fs pulse.
Lastrucci, Luciana; Bertocci, Silvia; Bini, Vittorio; Borghesi, Simona; De Majo, Roberta; Rampini, Andrea; Gennari, Pietro Giovanni; Pernici, Paola
2018-01-01
To translate the Xerostomia Quality-of-Life Scale (XeQoLS) into Italian language (XeQoLS-IT). Xerostomia is the most relevant acute and late toxicity in patients with head and neck cancer treated with radiotherapy (RT). Patient-reported outcome (PRO) instruments are subjective report on patient perception of health status. The XeQoLS consists of 15 items and measures the impact of salivary gland dysfunction and xerostomia on the four major domains of oral health-related QoL. The XeQoLS-IT was created through a linguistic validation multi-step process: forward translation (TF), backward translation (TB) and administration of the questionnaire to 35 Italian patients with head and neck cancer. Translation was independently carried out by two radiation oncologists who were Italian native speakers. The two versions were compared and adapted to obtain a reconciled version, version 1 (V1). V1 was translated back into English by an Italian pro skilled in teaching English. After review of discrepancies and choice of the most appropriate wording for clarity and similarity to the original, version 2 (V2) was reached by consensus. To evaluate version 2, patients completed the XeQoLS-IT questionnaire and also underwent a cognitive debriefing. The questionnaire was considered simple by the patients. The clarity of the instructions and the easiness to answer questions had a mean value of 4.5 (± 0.71) on a scale from 1 to 5. A valid multi-step process led to the creation of the final version of the XeQoLS-IT, a suitable instrument for the perception of xerostomia in patients treated with RT.
NASA Astrophysics Data System (ADS)
Sterling, Nicholas C.; Kerlin, Austin B.
2016-01-01
We present preliminary results of a study of the photoionization (PI) and recombination properties of low-charge Xe ions. The abundances of neutron(n)-capture elements (atomic number Z > 30) are of interest in planetary nebulae (PNe) since they can be enriched by slow n-capture nucleosynthesis (the ``s-process'') in the progenitor asymptotic giant branch (AGB) stars. Xe is particularly valuable, because it is the most widely-observed ``heavy-s'' species (Z > 40) in PNe. Its abundance relative to lighter n-capture elements can be used to determine s-process neutron exposures, and constrain s-process enrichment patterns as a function of progenitor metallicity. Using the atomic structure code AUTOSTRUCTURE (Badnell 2011, Comp. Phys. Comm., 182, 1528), we have computed multi-configuration Breit-Pauli distorted-wave PI cross sections and radiative recombination (RR) and dielectronic recombination (DR) rate coefficients for neutral through six-times ionized Xe, data which are critically needed for accurate Xe abundance determinations in ionized nebulae. We find good agreement between our computed direct PI cross sections and experimental measurements. Internal uncertainties are estimated for our calculations by using three different configuration interaction expansions for each ion, and by testing the sensitivity of our results to the radial orbital scaling parameters. As found for other n-capture elements (Sterling & Witthoeft 2011, A&A, 529, A147; Sterling 2011, A&A, 533, A62), DR is the dominant recombination mechanism for Xe ions at nebular temperatures (~104 K). Following Sterling et al. (2015, ApJS, 218, 25), these data will be added to nebular modeling codes to compute ionization correction factors for unobserved Xe ions in PNe, which will enable elemental Xe abundances to be determined with much higher accuracy than is currently possible. This work is supported by NSF award AST-1412928.
Theoretical Calculations of XeF Ground State Kinetics.
1988-03-01
potential parameters for XeF are taken from Tellinghuisen et al. 3 The values of the Lennard - Jones parameters for HeF...parameters for the Morse potential and the Lennard - Jones potentials are listed in Table 1. These parameters for the Lennard - Jones potentials produce the...relaxation and dissociation. 13 ~ o Table 1. Potential Parameters. Morse Function (XeF)3 De = 3.35 kcal/mol ae=1.726 a.u.-1 re =4.367 a.u. Lennard Jones
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talwar, R.; Kay, B. P.; Mitchell, A. J.
The nu 0h(9/2) and nu 0i(13/2) strength at Xe-137, a single neutron outside the N = 82 shell closure, has been determined using the Xe-136(alpha, He-3)Xe-137 reaction carried out at 100 MeV. We confirm the recent observation of the second 13/2(+) state and reassess previous data on the 9/2(-) states, obtaining spectroscopic factors. These new data provide additional constraints on predictions of the same single-neutron excitations at Sn-133.
Gate simulation of Compton Ar-Xe gamma-camera for radionuclide imaging in nuclear medicine
NASA Astrophysics Data System (ADS)
Dubov, L. Yu; Belyaev, V. N.; Berdnikova, A. K.; Bolozdynia, A. I.; Akmalova, Yu A.; Shtotsky, Yu V.
2017-01-01
Computer simulations of cylindrical Compton Ar-Xe gamma camera are described in the current report. Detection efficiency of cylindrical Ar-Xe Compton camera with internal diameter of 40 cm is estimated as1-3%that is 10-100 times higher than collimated Anger’s camera. It is shown that cylindrical Compton camera can image Tc-99m radiotracer distribution with uniform spatial resolution of 20 mm through the whole field of view.
Targets for producing high purity I-123
NASA Technical Reports Server (NTRS)
Blue, J. W. (Inventor)
1978-01-01
Tellurium powder in improved targets is bombarded with a cyclotron beam to produce Xe-123. Flowing gas streams carry the Xe-123 through one cold trap which removes Xe-123 that subsequently decays to I-123. During this bombardment energy is deposited in the target material causing its temperature to rise. Some of the tellurium vaporizes and subsequently condenses on surfaces that are cooler than the vaporization temperature. Provision is made for the repeated bombardment of this condensed tellurium.
Nuclear-spin optical rotation in xenon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savukov, Igor Mykhaylovich
We report that the nuclear-spin optical rotation (NSOR) effect, which has potential applications in correlated nuclear-spin-resonance optical spectroscopy, has previously been explored experimentally and theoretically in liquid Xe. Calculations of the Xe NSOR constant are very challenging because the result is sensitive to correlations, relativistic effects, and the choice of basis, with strong cancellation between contributions from lowest and remaining states. The relativistic configuration-interaction many-body-theory approach, presented here, is promising because this approach has been successful in predicting various properties of noble-gas atoms, such as energies, oscillator strengths (OSs), Verdet constants, and photoionization cross sections. However, correlations become stronger alongmore » the sequence of noble-gas atoms and the theoretical accuracy in Xe is not as high as, for example, in neon and argon. To improve the accuracy of the Xe Verdet and NSOR constants, which are calculated as explicit sums over the excited states, theoretical values for the several lowest levels are replaced with empirical values of energies, OSs, and hyperfine structure constants. We found that the Xe Verdet constant is in excellent agreement with accurate measurements. To take into account liquid effects, empirical data for energy shifts were also used to correct the NSOR constant. In conclusion, the resulting Xe NSOR constant is in a good agreement with experiment, although the liquid-state effect is treated quite approximately.« less
Nuclear-spin optical rotation in xenon
Savukov, Igor Mykhaylovich
2015-10-29
We report that the nuclear-spin optical rotation (NSOR) effect, which has potential applications in correlated nuclear-spin-resonance optical spectroscopy, has previously been explored experimentally and theoretically in liquid Xe. Calculations of the Xe NSOR constant are very challenging because the result is sensitive to correlations, relativistic effects, and the choice of basis, with strong cancellation between contributions from lowest and remaining states. The relativistic configuration-interaction many-body-theory approach, presented here, is promising because this approach has been successful in predicting various properties of noble-gas atoms, such as energies, oscillator strengths (OSs), Verdet constants, and photoionization cross sections. However, correlations become stronger alongmore » the sequence of noble-gas atoms and the theoretical accuracy in Xe is not as high as, for example, in neon and argon. To improve the accuracy of the Xe Verdet and NSOR constants, which are calculated as explicit sums over the excited states, theoretical values for the several lowest levels are replaced with empirical values of energies, OSs, and hyperfine structure constants. We found that the Xe Verdet constant is in excellent agreement with accurate measurements. To take into account liquid effects, empirical data for energy shifts were also used to correct the NSOR constant. In conclusion, the resulting Xe NSOR constant is in a good agreement with experiment, although the liquid-state effect is treated quite approximately.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Truxal, Ashley E.; Slack, Clancy C.; Gomes, Muller D.
2016-03-08
Studies of hyperpolarized xenon-129 in media such as liquid crystals and cell suspensions are in demand for applications ranging from biomedical imaging to materials engineering but have been hindered by the inability to bubble Xe through the desired media as a result of viscosity or perturbations caused by bubbles. This research reports on a device that can be reliably used to dissolve hp- 129 Xe into viscous aqueous and organic samples without bubbling. This method is robust, requires small sample volumes ( < 60 μL), is compatible with existing NMR hardware, and is made from readily available materials. Experiments showmore » that Xe can be introduced into viscous and aligned media without disrupting molecular order. We detected dissolved xenon in an aqueous liquid crystal that is disrupted by the shear forces of bubbling, and we observed liquid-crystal phase transitions in (MBBA). This tool allows an entirely new class of samples to be investigated by hyperpolarized-gas NMR spectroscopy. Blending into the crowd: A new device that facilitates the direct dissolution of hyperpolarized 129 Xe into viscous liquid-crystalline media is presented. 129 Xe and 2 H NMR spectra show the nondisruptive dissolution of xenon, the presence of ordered phases, and, in the case of the thermotropic liquid crystal N-(4-methoxybenzylidene)-4-butylaniline, a nematic-isotropic phase transition.« less
The total release of xenon-133 from the Fukushima Dai-ichi nuclear power plant accident.
Stohl, Andreas; Seibert, Petra; Wotawa, Gerhard
2012-10-01
The accident at the Fukushima Dai-ichi nuclear power plant (FD-NPP) on 11 March 2011 released large amounts of radioactivity into the atmosphere. We determine the total emission of the noble gas xenon-133 ((133)Xe) using global atmospheric concentration measurements. For estimating the emissions, we used three different methods: (i) using a purely observation-based multi-box model, (ii) comparisons of dispersion model results driven with GFS meteorological data with the observation data, and (iii) such comparisons with the dispersion model driven by ECMWF data. From these three methods, we have obtained total (133)Xe releases from FD-NPP of (i) 16.7 ± 1.9 EBq, (ii) 14.2 ± 0.8 EBq, and (iii) 19.0 ± 3.4 EBq, respectively. These values are substantially larger than the entire (133)Xe inventory of FD-NPP of about 12.2 EBq derived from calculations of nuclear fuel burn-up. Complete release of the entire (133)Xe inventory of FD-NPP and additional release of (133)Xe due to the decay of iodine-133 ((133)I), which can add another 2 EBq to the (133)Xe FD-NPP inventory, is required to explain the atmospheric observations. Two of our three methods indicate even higher emissions, but this may not be a robust finding given the differences between our estimates. Copyright © 2012 Elsevier Ltd. All rights reserved.
A fence line noble gas monitoring system for nuclear power plants.
Grasty, R L; Hovgaard, J; LaMarre, J R
2001-01-01
A noble gas monitoring system has been installed at Ontario Power Generation's Pickering Nuclear Generating Station (PNGS) near Toronto, Canada. This monitoring system allows a direct measure of air kerma from external radiation instead of calculating this based on plant emission data and meteorological models. This has resulted in a reduction in the reported effective dose from external radiation by a factor of at least ten. The system consists of nine self-contained units, each with a 7.6 cm x 7.6 cm (3 inch x 3 inch) NaI(TI) detector that is calibrated for air kerma. The 512-channel gamma ray spectral information is downloaded daily from each unit to a central computer where the data are stored and processed. A spectral stripping procedure is used to remove natural background variations from the spectral windows used to monitor xenon-133 (133Xe), xenon-135 (135Xe), argon-41 (41Ar), and skyshine radiation from the use of radiography sources. Typical monthly minimum detection limits in air kerma are 0.3 nGy for 133Xe, 0.7 nGy for 35Xe, 3 nGy for 41Ar and 2 nGy for skyshine radiation. Based on 9 months of continuous operation, the annualised air kerma due to 133Xe, 135Xe and 41Ar and skyshine radiation were 7 nGy, 8 nGy, 26 nGy and 107 nGy respectively.
Fermentation of xylose into ethanol by a new fungus strain Pestalotiopsis sp. XE-1.
Pang, Zong-wen; Liang, Jing-juan; Huang, Ri-bo
2011-08-01
A new fungus, Pestalotiopsis sp. XE-1, which produced ethanol from xylose with yield of 0.47 g ethanol/g of consumed xylose was isolated. It also produced ethanol from arabinose, glucose, fructose, mannose, galactose, cellobiose, maltose, and sucrose with yields of 0.38, 0.47, 0.45, 0.46, 0.31, 0.25, 0.31, and 0.34 g ethanol/g of sugar consumed, respectively. It produced maximum ethanol from xylose at pH 6.5, 30°C under a semi-aerobic condition. Acetic acid produced in xylose fermenting process inhibited ethanol production of XE-1. The ethanol yield in the pH-uncontrolled batch fermentation was about 27% lower than that in the pH-controlled one. The ethanol tolerance of XE-1 was higher than most xylose-fermenting, ethanol-producing microbes, but lower than Saccharomyces cerevisiae and Hansenula polymorpha. XE-1 showed tolerance to high concentration of xylose, and was able to grow and produce ethanol even when it was cultivated in 97.71 g/l xylose.
Population inversion calculations using near resonant charge exchange as a pumping mechanism
NASA Technical Reports Server (NTRS)
Chubb, D. L.; Rose, J. R.
1972-01-01
Near resonance charge exchange between ions of a large ionization potential gas such as helium or neon and vapors of metals such as zinc, cadmium, selenium, or tellurium has produced laser action in the metal ion gas. The possibility of obtaining population inversions in near resonant charge exchange systems (Xe-Ca, Xe-Mg, Xe-Sr, Xe-Ba, Ar-Mg, N-Ca) was investigated. The analysis is an initial value problem that utilizes rate equations for the densities of relevant levels of the laser gas (Ca, Ba, Mg, or Sr) and an electron energy equation. Electron excitation rates are calculated using the Bohr-Thomson approximation for the cross section. Approximations to experimental values of the electron ionization cross section and the ion-atom charge exchange cross section are used. Preliminary results have been obtained for the Ca-Xe system and show that it is possible to obtain gains greater than 10 to the 14th power/m with inversion times up to 8x10 to the minus 7th power second. A possible charge exchange laser system using a MPD arc plasma accelerator is also described.
I-Xe Dating: The Time Line of Chondrule Formation and Metamorphism in LL Chondrites
NASA Technical Reports Server (NTRS)
Pravdivtseva, O. V.; Hohenberg, C. M.; Meshik, A. P.
2005-01-01
Refractory inclusions, considered to be the oldest solids formed in the solar nebula. (4567.2 0.6 Ma) [1], are common in many carbonaceous and in some ordinary and enstatite chondrites. High-precision Pb- Pb ages for CAI s and chondrules (from different meteorites) suggested that chondrule formation appeared to have started about 2 Ma later than that of CAIs [1]. However, recent 26Al/26Mg data suggest simultaneous formation of CAI s and chondrules in Allende [2]. The I-Xe ages of CAI s in Allende are about 2 Ma younger than the I-Xe ages of Allende chondrules [3] but, like all chronometers, the I-Xe system records closure time of its particular host phase. In the case of Allende CAI s, the major iodine-bearing phase is sodalite, a secondary phase presumably formed by aqueous alteration, so I-Xe reflects the post-formational processes in these objects. In chondrules the iodine host phases vary and can reflect formation and/or alteration but, to put chondrule ages on a quantative basis, some problems should first be addressed.
The role of hyperpolarized 129xenon in MR imaging of pulmonary function
Ebner, Lukas; Kammerman, Jeff; Driehuys, Bastiaan; Schiebler, Mark L.; Cadman, Robert V.; Fain, Sean B.
2016-01-01
In the last two decades, functional imaging of the lungs using hyperpolarized noble gases has entered the clinical stage. Both helium (3 He) and xenon (129Xe) gas have been thoroughly investigated for their ability to assess both the global and regional patterns of lung ventilation. With advances in polarizer technology and the current transition towards the widely available 129Xe gas, this method is ready for translation to the clinic. Currently, hyperpolarized (HP) noble gas lung MRI is limited to selected academic institutions; yet, the promising results from initial clinical trials have drawn the attention of the pulmonary medicine community. HP 129Xe MRI provides not only 3-dimensional ventilation imaging, but also unique capabilities for probing regional lung physiology. In this review article, we aim to (1) provide a brief overview of current ventilation MR imaging techniques, (2) emphasize the role of HP 129Xe MRI within the array of different imaging strategies, (3) discuss the unique imaging possibilities with HP 129Xe MRI, and (4) propose clinical applications. PMID:27707585
Trapping of noble gases in proton-irradiated silicate smokes
NASA Technical Reports Server (NTRS)
Nichols, R. H., Jr.; Nuth, J. A., III; Hohenberg, C. M.; Olinger, C. T.; Moore, M. H.
1992-01-01
We have measured Ne, Ar, Kr, and Xe in Si2O3 'smokes' that were condensed on Al substrates, vapor-deposited with various mixtures of CH4, NH3, H2O3 and noble gases at 10 K and subsequently irradiated with 1 MeV protons to simulate conditions during grain mantle formation in interstellar clouds. Neither Ne nor Ar is retained by the samples upon warming to room temperature, but Xe is very efficiently trapped and retained. Kr is somewhat less effectively retained, typically depleted by factors of about 10-20 relative to Xe. Isotopic fractionation favoring the heavy isotopes of Xe and Kr of about 5-10-percent/amu is observed. Correlations between the specific chemistry of the vapor deposition and heavy noble gas retention are most likely the result of competition by the various species for irradiation-produced trapping sites. The concentration of Xe retained by some of these smokes exceeds that observed in phase Q of meteorites and, like phase Q, they do not seem to be carriers of the light noble gases.
NASA Astrophysics Data System (ADS)
Islam, M. S.; Nakashima, Y.; Hatayama, A.
2017-12-01
The linear divertor analysis with fluid model (LINDA) code has been developed in order to simulate plasma behavior in the end-cell of linear fusion device GAMMA 10/PDX. This paper presents the basic structure and simulated results of the LINDA code. The atomic processes of hydrogen and impurities have been included in the present model in order to investigate energy loss processes and mechanism of plasma detachment. A comparison among Ar, Kr and Xe shows that Xe is the most effective gas on the reduction of electron and ion temperature. Xe injection leads to strong reduction in the temperature of electron and ion. The energy loss terms for both the electron and the ion are enhanced significantly during Xe injection. It is shown that the major energy loss channels for ion and electron are charge-exchange loss and radiative power loss of the radiator gas, respectively. These outcomes indicate that Xe injection in the plasma edge region is effective for reducing plasma energy and generating detached plasma in linear device GAMMA 10/PDX.
Concentration Independent Calibration of β-γ Coincidence Detector Using 131mXe and 133Xe
DOE Office of Scientific and Technical Information (OSTI.GOV)
McIntyre, Justin I.; Cooper, Matthew W.; Carman, April J.
Absolute efficiency calibration of radiometric detectors is frequently difficult and requires careful detector modeling and accurate knowledge of the radioactive source used. In the past we have calibrated the b-g coincidence detector of the Automated Radioxenon Sampler/Analyzer (ARSA) using a variety of sources and techniques which have proven to be less than desirable.[1] A superior technique has been developed that uses the conversion-electron (CE) and x-ray coincidence of 131mXe to provide a more accurate absolute gamma efficiency of the detector. The 131mXe is injected directly into the beta cell of the coincident counting system and no knowledge of absolute sourcemore » strength is required. In addition, 133Xe is used to provide a second independent means to obtain the absolute efficiency calibration. These two data points provide the necessary information for calculating the detector efficiency and can be used in conjunction with other noble gas isotopes to completely characterize and calibrate the ARSA nuclear detector. In this paper we discuss the techniques and results that we have obtained.« less
Kantzow, Christina; Weuster-Botz, Dirk
2016-08-01
Low aqueous solubility of the gases for autotrophic fermentations (e.g., hydrogen gas) results in low productivities in bioreactors. A frequently suggested approach to overcome mass transfer limitation is to increase the solubility of the limiting gas in the reaction medium by increasing the partial pressure in the gas phase. An increased inlet hydrogen partial pressure of up to 2.1 bar (total pressure of 3.5 bar) was applied for the autotrophic conversion of hydrogen and carbon dioxide with Acetobacterium woodii in a batch-operated stirred-tank bioreactor with continuous gas supply. Compared to the autotrophic batch process with an inlet hydrogen partial pressure of 0.4 bar (total pressure of 1.0 bar) the final acetate concentration after 3.1 days was reduced to 50 % (29.2 g L(-1) compared to 59.3 g L(-1)), but the final formate concentration was increased by a factor of 18 (7.3 g L(-1) compared to 0.4 g L(-1)). Applying recombinant A. woodii strains overexpressing either genes for enzymes in the methyl branch of the Wood-Ljungdahl pathway or the genes phosphotransacetylase and acetate kinase at an inlet hydrogen partial pressure of 1.4 bar reduced the final formate concentration by up to 40 % and increased the final dry cell mass and acetate concentrations compared to the wild type strain. Solely the overexpression of the two genes for ATP regeneration at the end of the Wood-Ljungdahl pathway resulted in an initial switch off of formate production at increased hydrogen partial pressure until the maximum of the hydrogen uptake rate was reached.