Sample records for xen based virtual

  1. A performance study of live VM migration technologies: VMotion vs XenMotion

    NASA Astrophysics Data System (ADS)

    Feng, Xiujie; Tang, Jianxiong; Luo, Xuan; Jin, Yaohui

    2011-12-01

    Due to the growing demand of flexible resource management for cloud computing services, researches on live virtual machine migration have attained more and more attention. Live migration of virtual machine across different hosts has been a powerful tool to facilitate system maintenance, load balancing, fault tolerance and so on. In this paper, we use a measurement-based approach to compare the performance of two major live migration technologies under certain network conditions, i.e., VMotion and XenMotion. The results show that VMotion generates much less data transferred than XenMotion when migrating identical VMs. However, in network with moderate packet loss and delay, which are typical in a VPN (virtual private network) scenario used to connect the data centers, XenMotion outperforms VMotion in total migration time. We hope that this study can be helpful in choosing suitable virtualization environments for data center administrators and optimizing existing live migration mechanisms.

  2. It’s an app. It’s a hypervisor. It’s a hypapp. : Design and Implementation of an eXtensible and Modular Hypervisor Framework

    DTIC Science & Technology

    2012-06-26

    existing commercial-grade virtualization solutions (e.g., Xen, Linux KVM, VMware, or L4 ), but generally do not require such rich functional- ity [9...ports multiprocessor configuration on both AMD and Intel x86 platforms. Xen [8], KVM [27], VMware [39], NOVA [33], Virtual- box‡‡ and L4 are some...popular general purpose (open-source) hypervisors and microkernels which have been used for var- ious hypervisor based research [9,15,26,30,32,34,45

  3. Design of Xen Hybrid Multiple Police Model

    NASA Astrophysics Data System (ADS)

    Sun, Lei; Lin, Renhao; Zhu, Xianwei

    2017-10-01

    Virtualization Technology has attracted more and more attention. As a popular open-source virtualization tools, XEN is used more and more frequently. Xsm, XEN security model, has also been widespread concern. The safety status classification has not been established in the XSM, and it uses the virtual machine as a managed object to make Dom0 a unique administrative domain that does not meet the minimum privilege. According to these questions, we design a Hybrid multiple police model named SV_HMPMD that organically integrates multiple single security policy models include DTE,RBAC,BLP. It can fullfill the requirement of confidentiality and integrity for security model and use different particle size to different domain. In order to improve BLP’s practicability, the model introduce multi-level security labels. In order to divide the privilege in detail, we combine DTE with RBAC. In order to oversize privilege, we limit the privilege of domain0.

  4. Achieving High Resolution Timer Events in Virtualized Environment.

    PubMed

    Adamczyk, Blazej; Chydzinski, Andrzej

    2015-01-01

    Virtual Machine Monitors (VMM) have become popular in different application areas. Some applications may require to generate the timer events with high resolution and precision. This however may be challenging due to the complexity of VMMs. In this paper we focus on the timer functionality provided by five different VMMs-Xen, KVM, Qemu, VirtualBox and VMWare. Firstly, we evaluate resolutions and precisions of their timer events. Apparently, provided resolutions and precisions are far too low for some applications (e.g. networking applications with the quality of service). Then, using Xen virtualization we demonstrate the improved timer design that greatly enhances both the resolution and precision of achieved timer events.

  5. Achieving High Resolution Timer Events in Virtualized Environment

    PubMed Central

    Adamczyk, Blazej; Chydzinski, Andrzej

    2015-01-01

    Virtual Machine Monitors (VMM) have become popular in different application areas. Some applications may require to generate the timer events with high resolution and precision. This however may be challenging due to the complexity of VMMs. In this paper we focus on the timer functionality provided by five different VMMs—Xen, KVM, Qemu, VirtualBox and VMWare. Firstly, we evaluate resolutions and precisions of their timer events. Apparently, provided resolutions and precisions are far too low for some applications (e.g. networking applications with the quality of service). Then, using Xen virtualization we demonstrate the improved timer design that greatly enhances both the resolution and precision of achieved timer events. PMID:26177366

  6. Infrastructure Suitability Assessment Modeling for Cloud Computing Solutions

    DTIC Science & Technology

    2011-09-01

    Virtualization vs . Para-Virtualization .......................................................10 Figure 4. Modeling alternatives in relation to model...the conceptual difference between full virtualization and para-virtualization. Figure 3. Full Virtualization vs . Para-Virtualization 2. XEN...Besides Microsoft’s own client implementations, dubbed “Remote Desktop Con- nection Client” for Windows® and Apple ® operating systems, various open

  7. Proactive Fault Tolerance for HPC with Xen Virtualization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagarajan, Arun Babu; Mueller, Frank; Engelmann, Christian

    2007-01-01

    with thousands of processors. At such large counts of compute nodes, faults are becoming common place. Current techniques to tolerate faults focus on reactive schemes to recover from faults and generally rely on a checkpoint/restart mechanism. Yet, in today's systems, node failures can often be anticipated by detecting a deteriorating health status. Instead of a reactive scheme for fault tolerance (FT), we are promoting a proactive one where processes automatically migrate from “unhealthy” nodes to healthy ones. Our approach relies on operating system virtualization techniques exemplied by but not limited to Xen. This paper contributes an automatic and transparent mechanismmore » for proactive FT for arbitrary MPI applications. It leverages virtualization techniques combined with health monitoring and load-based migration. We exploit Xen's live migration mechanism for a guest operating system (OS) to migrate an MPI task from a health-deteriorating node to a healthy one without stopping the MPI task during most of the migration. Our proactive FT daemon orchestrates the tasks of health monitoring, load determination and initiation of guest OS migration. Experimental results demonstrate that live migration hides migration costs and limits the overhead to only a few seconds making it an attractive approach to realize FT in HPC systems. Overall, our enhancements make proactive FT a valuable asset for long-running MPI application that is complementary to reactive FT using full checkpoint/ restart schemes since checkpoint frequencies can be reduced as fewer unanticipated failures are encountered. In the context of OS virtualization, we believe that this is the rst comprehensive study of proactive fault tolerance where live migration is actually triggered by health monitoring.« less

  8. Red Hat Enterprise Virtualization - KVM-based infrastructure services at BNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cortijo, D.

    2011-06-14

    Over the past 18 months, BNL has moved a large percentage of its Linux-based servers and services into a Red Hat Enterprise Virtualization (RHEV) environment. This presentation will address our approach to virtualization, critical decision points, and a discussion of our implementation. Specific topics will include an overview of hardware and software requirements, networking, and storage; discussion of the decision of Red Hat solution over competing products (VMWare, Xen, etc); details on some of the features of RHEV - both current and on their roadmap; Review of performance and reliability gains since deployment completion; path forward for RHEV at BNLmore » and caveats and potential problems.« less

  9. Pharmacokinetics and pharmacodynamics of intrathecally administered Xen2174, a synthetic conopeptide with norepinephrine reuptake inhibitor and analgesic properties

    PubMed Central

    Hay, Justin L.; Sitsen, Elske; Dahan, Albert; Klaassen, Erica; Houghton, William; Groeneveld, Geert Jan

    2016-01-01

    Aim Xen2174 is a synthetic 13‐amino acid peptide that binds specifically to the norepinephrine transporter, which results in inhibition of norepinephrine uptake. It is being developed as a possible treatment for moderate to severe pain and is delivered intrathecally. The current study was performed to assess the pharmacodynamics (PD) and the cerebrospinal fluid (CSF) pharmacokinetics (PK) of Xen2174 in healthy subjects. Methods This was a randomized, blinded, placebo‐controlled study in healthy subjects. The study was divided into three treatment arms. Each group consisted of eight subjects on active treatment and two or three subjects on placebo. The CSF was sampled for 32 h using an intrathecal catheter. PD assessments were performed using a battery of nociceptive tasks (electrical pain, pressure pain and cold pressor tasks). Results Twenty‐five subjects were administered Xen2174. CSF PK analysis showed a higher area under the CSF concentration–time curve of Xen2174 in the highest dose group than allowed by the predefined safety margin based on nonclinical data. The most common adverse event was post‐lumbar puncture syndrome, with no difference in incidence between treatment groups. Although no statistically significant differences were observed in the PD assessments between the different dosages of Xen2174 and placebo, pain tolerability in the highest dose group was higher than in the placebo group [contrast least squares mean pressure pain tolerance threshold of Xen2174 2.5 mg–placebo (95% confidence interval), 22.2% (−5.0%, 57.1%); P = 0.1131]. Conclusions At the Xen2174 dose level of 2.5 mg, CSF concentrations exceeded the prespecified exposure limit based on the nonclinical safety margin. No statistically significant effects on evoked pain tests were observed. PMID:27987228

  10. Cross-VM Side Channels and Their Use to Extract Private Keys

    DTIC Science & Technology

    2012-10-16

    clouds such as Amazon EC2 and Rackspace, but also by other Xen use cases. For ex- 4 ample, many virtual desktop infrastructure ( VDI ) solutions (e.g...whose bit length is, for example, 337, 403, or 457 when κ is 2048 , 3072, or 4096, respectively. We note that this deviates from standard ElGamal, in

  11. Enterprise Cloud Architecture for Chinese Ministry of Railway

    NASA Astrophysics Data System (ADS)

    Shan, Xumei; Liu, Hefeng

    Enterprise like PRC Ministry of Railways (MOR), is facing various challenges ranging from highly distributed computing environment and low legacy system utilization, Cloud Computing is increasingly regarded as one workable solution to address this. This article describes full scale cloud solution with Intel Tashi as virtual machine infrastructure layer, Hadoop HDFS as computing platform, and self developed SaaS interface, gluing virtual machine and HDFS with Xen hypervisor. As a result, on demand computing task application and deployment have been tackled per MOR real working scenarios at the end of article.

  12. Review of Enabling Technologies to Facilitate Secure Compute Customization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aderholdt, Ferrol; Caldwell, Blake A; Hicks, Susan Elaine

    High performance computing environments are often used for a wide variety of workloads ranging from simulation, data transformation and analysis, and complex workflows to name just a few. These systems may process data for a variety of users, often requiring strong separation between job allocations. There are many challenges to establishing these secure enclaves within the shared infrastructure of high-performance computing (HPC) environments. The isolation mechanisms in the system software are the basic building blocks for enabling secure compute enclaves. There are a variety of approaches and the focus of this report is to review the different virtualization technologies thatmore » facilitate the creation of secure compute enclaves. The report reviews current operating system (OS) protection mechanisms and modern virtualization technologies to better understand the performance/isolation properties. We also examine the feasibility of running ``virtualized'' computing resources as non-privileged users, and providing controlled administrative permissions for standard users running within a virtualized context. Our examination includes technologies such as Linux containers (LXC [32], Docker [15]) and full virtualization (KVM [26], Xen [5]). We categorize these different approaches to virtualization into two broad groups: OS-level virtualization and system-level virtualization. The OS-level virtualization uses containers to allow a single OS kernel to be partitioned to create Virtual Environments (VE), e.g., LXC. The resources within the host's kernel are only virtualized in the sense of separate namespaces. In contrast, system-level virtualization uses hypervisors to manage multiple OS kernels and virtualize the physical resources (hardware) to create Virtual Machines (VM), e.g., Xen, KVM. This terminology of VE and VM, detailed in Section 2, is used throughout the report to distinguish between the two different approaches to providing virtualized execution environments. As part of our technology review we analyzed several current virtualization solutions to assess their vulnerabilities. This included a review of common vulnerabilities and exposures (CVEs) for Xen, KVM, LXC and Docker to gauge their susceptibility to different attacks. The complete details are provided in Section 5 on page 33. Based on this review we concluded that system-level virtualization solutions have many more vulnerabilities than OS level virtualization solutions. As such, security mechanisms like sVirt (Section 3.3) should be considered when using system-level virtualization solutions in order to protect the host against exploits. The majority of vulnerabilities related to KVM, LXC, and Docker are in specific regions of the system. Therefore, future "zero day attacks" are likely to be in the same regions, which suggests that protecting these areas can simplify the protection of the host and maintain the isolation between users. The evaluations of virtualization technologies done thus far are discussed in Section 4. This includes experiments with 'user' namespaces in VEs, which provides the ability to isolate user privileges and allow a user to run with different UIDs within the container while mapping them to non-privileged UIDs in the host. We have identified Linux namespaces as a promising mechanism to isolate shared resources, while maintaining good performance. In Section 4.1 we describe our tests with LXC as a non-root user and leveraging namespaces to control UID/GID mappings and support controlled sharing of parallel file-systems. We highlight several of these namespace capabilities in Section 6.2.3. The other evaluations that were performed during this initial phase of work provide baseline performance data for comparing VEs and VMs to purely native execution. In Section 4.2 we performed tests using the High-Performance Computing Conjugate Gradient (HPCCG) benchmark to establish baseline performance for a scientific application when run on the Native (host) machine in contrast with execution under Docker and KVM. Our tests verified prior studies showing roughly 2-4% overheads in application execution time & MFlops when running in hypervisor-base environments (VMs) as compared to near native performance with VEs. For more details, see Figures 4.5 (page 28), 4.6 (page 28), and 4.7 (page 29). Additionally, in Section 4.3 we include network measurements for TCP bandwidth performance over the 10GigE interface in our testbed. The Native and Docker based tests achieved >= ~9Gbits/sec, while the KVM configuration only achieved 2.5Gbits/sec (Table 4.6 on page 32). This may be a configuration issue with our KVM installation, and is a point for further testing as we refine the network settings in the testbed. The initial network tests were done using a bridged networking configuration. The report outline is as follows: - Section 1 introduces the report and clarifies the scope of the proj...« less

  13. System-Level Virtualization for High Performance Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vallee, Geoffroy R; Naughton, III, Thomas J; Engelmann, Christian

    2008-01-01

    System-level virtualization has been a research topic since the 70's but regained popularity during the past few years because of the availability of efficient solution such as Xen and the implementation of hardware support in commodity processors (e.g. Intel-VT, AMD-V). However, a majority of system-level virtualization projects is guided by the server consolidation market. As a result, current virtualization solutions appear to not be suitable for high performance computing (HPC) which is typically based on large-scale systems. On another hand there is significant interest in exploiting virtual machines (VMs) within HPC for a number of other reasons. By virtualizing themore » machine, one is able to run a variety of operating systems and environments as needed by the applications. Virtualization allows users to isolate workloads, improving security and reliability. It is also possible to support non-native environments and/or legacy operating environments through virtualization. In addition, it is possible to balance work loads, use migration techniques to relocate applications from failing machines, and isolate fault systems for repair. This document presents the challenges for the implementation of a system-level virtualization solution for HPC. It also presents a brief survey of the different approaches and techniques to address these challenges.« less

  14. Using virtual machine monitors to overcome the challenges of monitoring and managing virtualized cloud infrastructures

    NASA Astrophysics Data System (ADS)

    Bamiah, Mervat Adib; Brohi, Sarfraz Nawaz; Chuprat, Suriayati

    2012-01-01

    Virtualization is one of the hottest research topics nowadays. Several academic researchers and developers from IT industry are designing approaches for solving security and manageability issues of Virtual Machines (VMs) residing on virtualized cloud infrastructures. Moving the application from a physical to a virtual platform increases the efficiency, flexibility and reduces management cost as well as effort. Cloud computing is adopting the paradigm of virtualization, using this technique, memory, CPU and computational power is provided to clients' VMs by utilizing the underlying physical hardware. Beside these advantages there are few challenges faced by adopting virtualization such as management of VMs and network traffic, unexpected additional cost and resource allocation. Virtual Machine Monitor (VMM) or hypervisor is the tool used by cloud providers to manage the VMs on cloud. There are several heterogeneous hypervisors provided by various vendors that include VMware, Hyper-V, Xen and Kernel Virtual Machine (KVM). Considering the challenge of VM management, this paper describes several techniques to monitor and manage virtualized cloud infrastructures.

  15. Transformation of RDX and other energetic compounds by xenobiotic reductases XenA and XenB

    PubMed Central

    McClay, Kevin; Hawari, Jalal; Paquet, Louise; Malone, Thomas E.; Fox, Brian G.; Steffan, Robert J.

    2017-01-01

    The transformation of explosives, including hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), by xenobiotic reductases XenA and XenB (and the bacterial strains harboring these enzymes) under both aerobic and anaerobic conditions was assessed. Under anaerobic conditions, Pseudomonas fluorescens I-C (XenB) degraded RDX faster than Pseudomonas putida II-B (XenA), and transformation occurred when the cells were supplied with sources of both carbon (succinate) and nitrogen (NH4+), but not when only carbon was supplied. Transformation was always faster under anaerobic conditions compared to aerobic conditions, with both enzymes exhibiting a O2 concentration-dependent inhibition of RDX transformation. The primary degradation pathway for RDX was conversion to methylenedinitramine and then to formaldehyde, but a minor pathway that produced 4-nitro-2,4-diazabutanal (NDAB) also appeared to be active during transformation by whole cells of P. putida II-B and purified XenA. Both XenA and XenB also degraded the related nitramine explosives octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane. Purified XenB was found to have a broader substrate range than XenA, degrading more of the explosive compounds examined in this study. The results show that these two xenobiotic reductases (and their respective bacterial strains) have the capacity to transform RDX as well as a wide variety of explosive compounds, especially under low oxygen concentrations. PMID:19455327

  16. The bioluminescent Listeria monocytogenes strain Xen32 is defective in flagella expression and highly attenuated in orally infected BALB/cJ mice.

    PubMed

    Bergmann, Silke; Rohde, Manfred; Schughart, Klaus; Lengeling, Andreas

    2013-07-15

    In vivo bioluminescence imaging (BLI) is a powerful method for the analysis of host-pathogen interactions in small animal models. The commercially available bioluminescent Listeria monocytogenes strain Xen32 is commonly used to analyse immune functions in knockout mice and pathomechanisms of listeriosis. To analyse and image listerial dissemination after oral infection we have generated a murinised Xen32 strain (Xen32-mur) which expresses a previously described mouse-adapted internalin A. This strain was used alongside the Xen32 wild type strain and the bioluminescent L. monocytogenes strains EGDe-lux and murinised EGDe-mur-lux to characterise bacterial dissemination in orally inoculated BALB/cJ mice. After four days of infection, Xen32 and Xen32-mur infected mice displayed consistently higher rates of bioluminescence compared to EGDe-lux and EGDe-mur-lux infected animals. However, surprisingly both Xen32 strains showed attenuated virulence in orally infected BALB/c mice that correlated with lower bacterial burden in internal organs at day 5 post infection, smaller losses in body weights and increased survival compared to EGDe-lux or EGDe-mur-lux inoculated animals. The Xen32 strain was made bioluminescent by integration of a lux-kan transposon cassette into the listerial flaA locus. We show here that this integration results in Xen32 in a flaA frameshift mutation which makes this strain flagella deficient. The bioluminescent L. monocytogenes strain Xen32 is deficient in flagella expression and highly attenuated in orally infected BALB/c mice. As this listerial strain has been used in many BLI studies of murine listeriosis, it is important that the scientific community is aware of its reduced virulence in vivo.

  17. MIGS: therapeutic success of combined Xen Gel Stent implantation with cataract surgery.

    PubMed

    Hohberger, Bettina; Welge-Lüßen, Ulrich-Christoph; Lämmer, Robert

    2018-03-01

    Glaucoma, a common disease in the elderly population, is frequently coexistent with cataract. While the combination of filtration surgery and cataract surgery is a challenging topic with limited success, minimal invasive glaucoma surgery (MIGS), such as Xen Gel Stents, seems to provide promising results. The aim of this study was to investigate the complete and qualified therapeutic success of Xen Gel Stent implantation with (XenPhaco) and without cataract surgery. One hundred and eleven open-angle glaucoma eyes underwent implantation of Xen45 Gel Stent (AqueSys, Inc.) with or without cataract operation. Complete therapeutic success was defined as target intraocular pressure (IOP) < 18 mmHg at any time point within 6 months of follow-up without local antiglaucomatous therapy or further surgical interventions. Qualified success was defined as target IOP <18 mmHg with additional 1-2 local antiglaucomatous eye drops. Failure included all cases with the necessity of at least three local antiglaucomatous eye drops or additional glaucoma surgery. Combined implantation of Xen Gel Stent with cataract surgery was performed in 30 eyes and stand-alone Xen Gel Stent implantation was performed in 81 eyes. A complete therapeutic success was achieved in 46.9% of single Xen Gel Stent implantation, whereas 53.3% was reached with combined XenPhaco. Qualified success was seen in 2.5% in the eyes of the single Xen Gel Stent implantation group and in 3.3% of the combined surgery group. Therapeutic failure rate was 49.4% in the stand-alone group vs 46.7% in the combined group. Data were not significantly different for group and subgroup analyses. Complete and qualified therapeutic success is similar for the combination of Xen Gel Stent implantation with and without cataract surgery in open-angle glaucoma patients. MIGS using Xen Gel Stent can be recommended in situations if glaucoma surgery is indicated besides coexisting cataract.

  18. An investigation of the safety and pharmacokinetics of the novel TRPV1 antagonist XEN-D0501 in healthy subjects

    PubMed Central

    Round, Patrick; Priestley, Anthony; Robinson, Jan

    2011-01-01

    AIMS XEN-D0501, a novel TRPV1 antagonist, is being developed to treat overactive bladder. This study investigated the safety and pharmacokinetics of repeat-dose XEN-D0501 in healthy subjects. METHODS The study was conducted in two parts. Part 1 was a double-blind, randomized, placebo-controlled, two-way crossover study in three cohorts of 12 young male subjects. Each subject received XEN-D0501 and placebo (in random order) twice daily for 13 days, with a final single dose on day 14. Doses of 1, 2.5 and 5 mg XEN-D0501 were investigated. Part 2 was an open-label, randomized, two-way crossover study in male and female subjects (45 to 65 years). Subjects received single doses of 5 mg XEN-D0501 under fasted and fed conditions in random order. Blood sampling and safety assessments were conducted throughout the study. RESULTS XEN-D0501 was rapidly absorbed (tmax generally 0.5–4 h post dose). XEN-D0501 exposure increased less than proportionally to dose over the range studied and exhibited minimal accumulation with twice daily dosing. Food had no clinically relevant effects on the pharmacokinetics of XEN-D0501. There were no severe or serious adverse events and all doses were well tolerated. A dose-related increase in body temperature was seen with XEN-D0501 which attenuated over time. Differences from placebo in mean maximum core body temperatures were 0.22°C, 0.5°C and 0.74°C following 1 mg, 2.5 mg and 5 mg twice daily XEN-D0501. The observed increase in body temperature was not considered to be of clinical concern. CONCLUSIONS XEN-D0501 appeared safe and well tolerated at doses up to 5 mg twice daily for 14 days in healthy subjects. PMID:21676011

  19. Chronic Intraocular Inflammation as a Risk Factor for XEN Gel Stent Occlusion: A Case of Microscopic Examination of a Fibrin-obstructed XEN Stent.

    PubMed

    Gillmann, Kevin; Mansouri, Kaweh; Bravetti, Giorgio Enrico; Mermoud, André

    2018-06-05

    In recent years microinvasive glaucoma surgery (MIGS) has risen in popularity. Amongst MIGS options is the XEN gel stent (Allergan Plc, Dublin, Ireland), a 45▒μm wide ab-interno microstent. It has proven effective in lowering IOP with low complication rates. However, XEN gel stents can become obstructed and cause postoperative rise in IOP. The causes and predicting factors for such obstructions still requires further research. We describe the case of a 69-year old male patient, with traumatic glaucoma and chronic intraocular inflammation demonstrated by laser flare photometry, following childhood trauma and anterior segment surgery. Uncontrollable IOP despite maximal antiglaucomatous therapy was managed with XEN-augmented Baerveldt surgery. Despite good initial filtration and IOP control, the XEN stent became obstructed and was surgically replaced. After a month, the new stent became obstructed and was replaced by a thicker-lumened Baerveldt tube. This restored good filtration, and adequate IOP was maintained post-operatively. Microscopic examination of the obstructed XEN stent showed a dense fibrin plug. This case report shows that fibrin formation could be an important factor in XEN gel stent obstruction, even in initially successfully filtering stents. The association of fibrinogenesis and intraocular inflammation could add a note of caution to the use of XEN gel stents in complicated cataract surgery, or advocate for aggressive anti-inflammatory treatments post-operatively. This could lead to a refinement in success predictors and better patient selection for XEN surgery. Finally, this could open the way to new management options for persistent obstructions, including pharmaceutical fibrinolysis.

  20. Photonic Characteristics and Ex Vivo Imaging of Escherichia coli-Xen14 Within the Bovine Reproductive Tract

    USDA-ARS?s Scientific Manuscript database

    The objectives of this study were to (1) characterize the photonic properties of Escherichia coli-Xen14 and (2) conduct photonic imaging of E. coli-Xen14 within bovine reproductive tract segments (RTS) ex vivo (Bos indicus). E. coli-Xen14 was grown for 24 h in Luria Bertani medium (LB), with or with...

  1. Commonality and Variability Analysis for Xenon Family of Separation Virtual Machine Monitors (CVAX)

    DTIC Science & Technology

    2017-07-18

    technical approach is a systematic application of Software Product Line Engineering (SPLE). A systematic application requires describing the family and... engineering Software family September 2016 – October 2016 OSD/OUSD/ATL/ASD(R&E)/RDOffice of Information Systems & Cyber Security RD / ASD(R&E) / AT&L...by the evolving open-source Xen hypervisor. The technical approach is a systematic application of Software Product Line Engineering (SPLE). A

  2. Characterization and proteomic analysis of the Pseudomonas sp. HK-6 xenB knockout mutant under RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) stress.

    PubMed

    Lee, Bheong-Uk; Choi, Moon-Seop; Oh, Kye-Heon

    2015-01-01

    Pseudomonas sp. HK-6 is able to utilize RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) as its sole nitrogen source. The role of the xenB gene, encoding xenobiotic reductase B, was investigated using HK-6 xenB knockout mutants. The xenB mutant degraded RDX to a level that was 10-fold less than that obtained with the wild-type HK-6 strain. After 60 days of culture with 25 or 50 μM RDX, no residual RDX was detected in the supernatants of the wild-type aerobically grown cultures, whereas approximately 90 % of the RDX remained in the xenB mutant cultures. The xenB mutant bacteria exhibited a 10(2)-10(4)-fold decrease in survival rate compared to the wild-type. The expression of DnaK and GroEL proteins, two typical stress shock proteins (SSPs), in the xenB mutant increased after immediate exposure to RDX, yet dramatically decreased after 4 h of exposure. In addition, DnaK and GroEL were more highly expressed in the cultures with 25 μM RDX in the medium but showed low expression in the cultures with 50 or 75 μM RDX. The expression levels of the dnaK and groEL genes measured by RT-qPCR were also much lower in the xenB genetic background. Analyses of the proteomes of the HK-6 and xenB mutant cells grown under conditions of RDX stress showed increased induction of several proteins, such as Alg8, alginate biosynthesis sensor histidine kinase, and OprH in the xenB mutants when compared to wild-type. However, many proteins, including two SSPs (DnaK and GroEL) and proteins involved in metabolism, exhibited lower expression levels in the xenB mutant than in the wild-type HK-6 strain. The xenB knockout mutation leads to reduced RDX degradation ability, which renders the mutant more sensitive to RDX stress and results in a lower survival rate and an altered proteomic profile under RDX stress.

  3. In Vivo Tracking of Streptococcal Infections of Subcutaneous Origin in a Murine Model.

    PubMed

    Davis, Richard W; Eggleston, Heather; Johnson, Frances; Nahrendorf, Matthias; Bock, Paul E; Peterson, Tiffany; Panizzi, Peter

    2015-12-01

    Generation of plasmin in vivo by Streptococcus pyogenes is thought to localize the active protease complexes to the pathogen surface to aid in tissue dissemination. Here, we chose to follow cutaneous streptococcal infections by the use of non-invasive bioluminescence imaging to determine if this pathogen can be followed by this approach and the extent of bacterial spread in the absence of canonical plasminogen activation by streptokinase. Mice were injected subcutaneously with either bioluminescent strains of streptococci, namely Xen20 and Xen10 or S. pyogenes ALAB49. Bioluminescence imaging was performed daily and results were correlated with microbiological and histological analyses. Comparative analysis of chronologic non-invasive datasets indicated that Xen20 did not disseminate from the initial infection site. Contrary to this, microbiological and histological analyses of Xen20 mice for total bacterial burden indicated sepsis and widespread pathogen involvement. The use of bioluminescence in microbe-based studies requires genomic and pathologic characterization to correlate imaging results with underlying pathology.

  4. In Vivo Tracking of Streptococcal Infections of Subcutaneous Origin in a Murine Model

    PubMed Central

    Davis, Richard W.; Eggleston, Heather; Johnson, Frances; Nahrendorf, Matthias; Bock, Paul E.; Peterson, Tiffany; Panizzi, Peter

    2016-01-01

    Purpose Generation of plasmin in vivo by Streptococcus pyogenes is thought to localize the active protease complexes to the pathogen surface to aid in tissue dissemination. Here, we chose to follow cutaneous streptococcal infections by the use of non-invasive bioluminescence imaging to determine if this pathogen can be followed by this approach and the extent of bacterial spread in the absence of canonical plasminogen activation by streptokinase. Procedures Mice were injected subcutaneously with either bioluminescent strains of streptococci, namely Xen20 and Xen10 or S. pyogenes ALAB49. Bioluminescence imaging was performed daily and results were correlated with microbiological and histological analyses. Results Comparative analysis of chronologic non-invasive datasets indicated that Xen20 did not disseminate from the initial infection site. Contrary to this, microbiological and histological analyses of Xen20 mice for total bacterial burden indicated sepsis and widespread pathogen involvement. Conclusions The use of bioluminescence in microbe-based studies requires genomic and pathologic characterization to correlate imaging results with underlying pathology. PMID:25921659

  5. Pairwise additivity in the nuclear magnetic resonance interactions of atomic xenon.

    PubMed

    Hanni, Matti; Lantto, Perttu; Vaara, Juha

    2009-04-14

    Nuclear magnetic resonance (NMR) of atomic (129/131)Xe is used as a versatile probe of the structure and dynamics of various host materials, due to the sensitivity of the Xe NMR parameters to intermolecular interactions. The principles governing this sensitivity can be investigated using the prototypic system of interacting Xe atoms. In the pairwise additive approximation (PAA), the binary NMR chemical shift, nuclear quadrupole coupling (NQC), and spin-rotation (SR) curves for the xenon dimer are utilized for fast and efficient evaluation of the corresponding NMR tensors in small xenon clusters Xe(n) (n = 2-12). If accurate, the preparametrized PAA enables the analysis of the NMR properties of xenon clusters, condensed xenon phases, and xenon gas without having to resort to electronic structure calculations of instantaneous configurations for n > 2. The binary parameters for Xe(2) at different internuclear distances were obtained at the nonrelativistic Hartree-Fock level of theory. Quantum-chemical (QC) calculations at the corresponding level were used to obtain the NMR parameters of the Xe(n) (n = 2-12) clusters at the equilibrium geometries. Comparison of PAA and QC data indicates that the direct use of the binary property curves of Xe(2) can be expected to be well-suited for the analysis of Xe NMR in the gaseous phase dominated by binary collisions. For use in condensed phases where many-body effects should be considered, effective binary property functions were fitted using the principal components of QC tensors from Xe(n) clusters. Particularly, the chemical shift in Xe(n) is strikingly well-described by the effective PAA. The coordination number Z of the Xe site is found to be the most important factor determining the chemical shift, with the largest shifts being found for high-symmetry sites with the largest Z. This is rationalized in terms of the density of virtual electronic states available for response to magnetic perturbations.

  6. XEN-D0501, a Novel Transient Receptor Potential Vanilloid 1 Antagonist, Does Not Reduce Cough in Patients with Refractory Cough.

    PubMed

    Belvisi, Maria G; Birrell, Mark A; Wortley, Michael A; Maher, Sarah A; Satia, Imran; Badri, Huda; Holt, Kimberley; Round, Patrick; McGarvey, Lorcan; Ford, John; Smith, Jaclyn A

    2017-11-15

    Heightened cough responses to inhaled capsaicin, a transient receptor potential vanilloid 1 (TRPV1) agonist, are characteristic of patients with chronic cough. However, previously, a TRPV1 antagonist (SB-705498) failed to improve spontaneous cough frequency in these patients, despite small reductions in capsaicin-evoked cough. XEN-D0501 (a potent TRPV1 antagonist) was compared with SB-705498 in preclinical studies to establish whether an improved efficacy profile would support a further clinical trial of XEN-D0501 in refractory chronic cough. XEN-D0501 and SB-705498 were profiled against capsaicin in a sensory nerve activation assay and in vivo potency established against capsaicin-induced cough in the guinea pig. Twenty patients with refractory chronic cough participated in a double-blind, randomized, placebo-controlled crossover study evaluating the effect of 14 days of XEN-D0501 (oral, 4 mg twice daily) versus placebo on awake cough frequency (primary outcome), capsaicin-evoked cough, and patient-reported outcomes. XEN-D0501 was more efficacious and 1,000-fold more potent than SB-705498 at inhibiting capsaicin-induced depolarization of guinea pig and human isolated vagus nerve. In vivo XEN-D0501 completely inhibited capsaicin-induced cough, whereas 100 times more SB-705498 was required to achieve the same effect. In patients, XEN-D0501 substantially reduced maximal cough responses to capsaicin (mean change from baseline, XEN-D0501, -19.3 ± 16.4) coughs; placebo, -1.8 ± 5.8 coughs; P < 0.0001), but not spontaneous awake cough frequency (mean change from baseline, XEN-D0501, 6.7  ± 16.9 coughs/h; placebo, 0.4 ± 13.7 coughs/h; P = 0.41). XEN-D0501 demonstrated superior efficacy and potency in preclinical and clinical capsaicin challenge studies; despite this improved pharmacodynamic profile, spontaneous cough frequency did not improve, ruling out TRPV1 as an effective therapeutic target for refractory cough. Clinical trial registered with www.clinicaltrialsregister.eu (2014-000306-36).

  7. Use of XenX™, the latest ureteric occlusion device with guide wire utility: results from a prospective multicentric comparative study.

    PubMed

    Sanguedolce, Francesco; Montanari, Emanuele; Alvarez-Maestro, Mario; Macchione, Nicola; Hruby, Stephan; Papatsoris, Athanasios; Kallidonis, Panagiotis; Villa, Luca; Honeck, Patrick; Traxer, Olivier; Greco, Francesco

    2016-11-01

    This is a prospective multicentric comparative study evaluating the performance of XenX-a new dual-purpose device for the prevention of stone fragments migration during ureteroscopic lithotripsy (URS). Between March 2014 and January 2015, 41 patients undertaking URS + XenX were matched with 41 patients undergoing standard URS. Patients included had unilateral ureteric stone(s) of 0.5-1.5 cm in maximum size. Demographics, complication rates and surgical outcomes were recorded for comparison. A Likert-like 5-grade scoring system was used for surgeons' evaluation of XenX properties. Cost analysis was performed by comparing weighted mean costs of the relevant procedures. Patients' characteristics between the two groups were comparable. Lasering time was longer for XenX group (13.59 vs. 5.17 min; p = 0.0001) whilst use of basket and need of JJ stent insertion was more frequent in control group (19.5 vs. 97.6 %; p = 0.0001 and 22 vs. 35 %; p = 0.001, respectively). Intra-operative SFR was significantly higher for XenX group (100 vs. 85.4 %; p = 0.0001), but not at 4-week follow-up, after ancillary procedures were needed in 17.1 % of the control group. Surgeons' evaluations for XenX were suboptimal for "Ease of Basketing" (2/5) and "Advancement of double J stent" (3/5). The use of XenX increased costs of procedures, but spared the costs associated to ancillary procedures and stent removals. XenX confirmed to be a safe and effective device especially for the treatment of upper ureteric tract stones; moreover, XenX may reduce the risk for the need of auxiliary procedures and for the insertion of a JJ stent.

  8. XEN Gel Implant: a new surgical approach in glaucoma.

    PubMed

    Chaudhary, Ankita; Salinas, Lauriane; Guidotti, Jacopo; Mermoud, André; Mansouri, Kaweh

    2018-01-01

    Glaucoma is a leading cause of blindness worldwide. Intraocular pressure (IOP) lowering is the only effective treatment strategy. Traditional glaucoma surgeries are generally considered to be unpredictable and associated with a high rate of complications. This has led to the development of a novel XEN Gel Implant, a type of minimally invasive glaucoma surgery (MIGS), lowering the IOP without extensive surgical dissection. Areas covered: A literature search was undertaken on PubMed using the terms XEN glaucoma, gelatin microstent, and MIGS. All the articles and case reports on XEN Gel Implant and selected articles on MIGS were studied and reviewed. We have discussed the results of most studies on XEN Gel Implant related to its efficacy, safety and success. Expert commentary: The XEN Gel Implant effectively lowers IOP and medication use, with a favorable safety profile. Long-term data on its success and cost-effectiveness are lacking. The studies have shown it to be without any serious adverse events and to have good safety profile encouraging future research on this novel implant. There is a need to correctly identify selection criteria for patients, who would benefit the most from the XEN Gel Implant.

  9. Direct Reprogramming of Fibroblasts via a Chemically Induced XEN-like State.

    PubMed

    Li, Xiang; Liu, Defang; Ma, Yantao; Du, Xiaomin; Jing, Junzhan; Wang, Lipeng; Xie, Bingqing; Sun, Da; Sun, Shaoqiang; Jin, Xueqin; Zhang, Xu; Zhao, Ting; Guan, Jingyang; Yi, Zexuan; Lai, Weifeng; Zheng, Ping; Huang, Zhuo; Chang, Yanzhong; Chai, Zhen; Xu, Jun; Deng, Hongkui

    2017-08-03

    Direct lineage reprogramming, including with small molecules, has emerged as a promising approach for generating desired cell types. We recently found that during chemical induction of induced pluripotent stem cells (iPSCs) from mouse fibroblasts, cells pass through an extra-embryonic endoderm (XEN)-like state. Here, we show that these chemically induced XEN-like cells can also be induced to directly reprogram into functional neurons, bypassing the pluripotent state. The induced neurons possess neuron-specific expression profiles, form functional synapses in culture, and further mature after transplantation into the adult mouse brain. Using similar principles, we were also able to induce hepatocyte-like cells from the XEN-like cells. Cells in the induced XEN-like state were readily expandable over at least 20 passages and retained genome stability and lineage specification potential. Our study therefore establishes a multifunctional route for chemical lineage reprogramming and may provide a platform for generating a diverse range of cell types via application of this expandable XEN-like state. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. A three phase optimization method for precopy based VM live migration.

    PubMed

    Sharma, Sangeeta; Chawla, Meenu

    2016-01-01

    Virtual machine live migration is a method of moving virtual machine across hosts within a virtualized datacenter. It provides significant benefits for administrator to manage datacenter efficiently. It reduces service interruption by transferring the virtual machine without stopping at source. Transfer of large number of virtual machine memory pages results in long migration time as well as downtime, which also affects the overall system performance. This situation becomes unbearable when migration takes place over slower network or a long distance migration within a cloud. In this paper, precopy based virtual machine live migration method is thoroughly analyzed to trace out the issues responsible for its performance drops. In order to address these issues, this paper proposes three phase optimization (TPO) method. It works in three phases as follows: (i) reduce the transfer of memory pages in first phase, (ii) reduce the transfer of duplicate pages by classifying frequently and non-frequently updated pages, and (iii) reduce the data sent in last iteration of migration by applying the simple RLE compression technique. As a result, each phase significantly reduces total pages transferred, total migration time and downtime respectively. The proposed TPO method is evaluated using different representative workloads on a Xen virtualized environment. Experimental results show that TPO method reduces total pages transferred by 71 %, total migration time by 70 %, downtime by 3 % for higher workload, and it does not impose significant overhead as compared to traditional precopy method. Comparison of TPO method with other methods is also done for supporting and showing its effectiveness. TPO method and precopy methods are also tested at different number of iterations. The TPO method gives better performance even with less number of iterations.

  11. Grids, virtualization, and clouds at Fermilab

    DOE PAGES

    Timm, S.; Chadwick, K.; Garzoglio, G.; ...

    2014-06-11

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. To better serve this community, in 2004, the (then) Computing Division undertook the strategy of placing all of the High Throughput Computing (HTC) resources in a Campus Grid known as FermiGrid, supported by common shared services. In 2007, the FermiGrid Services group deployed a service infrastructure that utilized Xen virtualization, LVS network routing and MySQL circular replication to deliver highly available services that offered significant performance, reliability and serviceability improvements. This deployment was further enhanced through the deployment of a distributed redundant network core architecture andmore » the physical distribution of the systems that host the virtual machines across multiple buildings on the Fermilab Campus. In 2010, building on the experience pioneered by FermiGrid in delivering production services in a virtual infrastructure, the Computing Sector commissioned the FermiCloud, General Physics Computing Facility and Virtual Services projects to serve as platforms for support of scientific computing (FermiCloud 6 GPCF) and core computing (Virtual Services). Lastly, this work will present the evolution of the Fermilab Campus Grid, Virtualization and Cloud Computing infrastructure together with plans for the future.« less

  12. Grids, virtualization, and clouds at Fermilab

    NASA Astrophysics Data System (ADS)

    Timm, S.; Chadwick, K.; Garzoglio, G.; Noh, S.

    2014-06-01

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. To better serve this community, in 2004, the (then) Computing Division undertook the strategy of placing all of the High Throughput Computing (HTC) resources in a Campus Grid known as FermiGrid, supported by common shared services. In 2007, the FermiGrid Services group deployed a service infrastructure that utilized Xen virtualization, LVS network routing and MySQL circular replication to deliver highly available services that offered significant performance, reliability and serviceability improvements. This deployment was further enhanced through the deployment of a distributed redundant network core architecture and the physical distribution of the systems that host the virtual machines across multiple buildings on the Fermilab Campus. In 2010, building on the experience pioneered by FermiGrid in delivering production services in a virtual infrastructure, the Computing Sector commissioned the FermiCloud, General Physics Computing Facility and Virtual Services projects to serve as platforms for support of scientific computing (FermiCloud 6 GPCF) and core computing (Virtual Services). This work will present the evolution of the Fermilab Campus Grid, Virtualization and Cloud Computing infrastructure together with plans for the future.

  13. Virtual machine-based simulation platform for mobile ad-hoc network-based cyber infrastructure

    DOE PAGES

    Yoginath, Srikanth B.; Perumalla, Kayla S.; Henz, Brian J.

    2015-09-29

    In modeling and simulating complex systems such as mobile ad-hoc networks (MANETs) in de-fense communications, it is a major challenge to reconcile multiple important considerations: the rapidity of unavoidable changes to the software (network layers and applications), the difficulty of modeling the critical, implementation-dependent behavioral effects, the need to sustain larger scale scenarios, and the desire for faster simulations. Here we present our approach in success-fully reconciling them using a virtual time-synchronized virtual machine(VM)-based parallel ex-ecution framework that accurately lifts both the devices as well as the network communications to a virtual time plane while retaining full fidelity. At themore » core of our framework is a scheduling engine that operates at the level of a hypervisor scheduler, offering a unique ability to execute multi-core guest nodes over multi-core host nodes in an accurate, virtual time-synchronized manner. In contrast to other related approaches that suffer from either speed or accuracy issues, our framework provides MANET node-wise scalability, high fidelity of software behaviors, and time-ordering accuracy. The design and development of this framework is presented, and an ac-tual implementation based on the widely used Xen hypervisor system is described. Benchmarks with synthetic and actual applications are used to identify the benefits of our approach. The time inaccuracy of traditional emulation methods is demonstrated, in comparison with the accurate execution of our framework verified by theoretically correct results expected from analytical models of the same scenarios. In the largest high fidelity tests, we are able to perform virtual time-synchronized simulation of 64-node VM-based full-stack, actual software behaviors of MANETs containing a mix of static and mobile (unmanned airborne vehicle) nodes, hosted on a 32-core host, with full fidelity of unmodified ad-hoc routing protocols, unmodified application executables, and user-controllable physical layer effects including inter-device wireless signal strength, reachability, and connectivity.« less

  14. Virtual machine-based simulation platform for mobile ad-hoc network-based cyber infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoginath, Srikanth B.; Perumalla, Kayla S.; Henz, Brian J.

    In modeling and simulating complex systems such as mobile ad-hoc networks (MANETs) in de-fense communications, it is a major challenge to reconcile multiple important considerations: the rapidity of unavoidable changes to the software (network layers and applications), the difficulty of modeling the critical, implementation-dependent behavioral effects, the need to sustain larger scale scenarios, and the desire for faster simulations. Here we present our approach in success-fully reconciling them using a virtual time-synchronized virtual machine(VM)-based parallel ex-ecution framework that accurately lifts both the devices as well as the network communications to a virtual time plane while retaining full fidelity. At themore » core of our framework is a scheduling engine that operates at the level of a hypervisor scheduler, offering a unique ability to execute multi-core guest nodes over multi-core host nodes in an accurate, virtual time-synchronized manner. In contrast to other related approaches that suffer from either speed or accuracy issues, our framework provides MANET node-wise scalability, high fidelity of software behaviors, and time-ordering accuracy. The design and development of this framework is presented, and an ac-tual implementation based on the widely used Xen hypervisor system is described. Benchmarks with synthetic and actual applications are used to identify the benefits of our approach. The time inaccuracy of traditional emulation methods is demonstrated, in comparison with the accurate execution of our framework verified by theoretically correct results expected from analytical models of the same scenarios. In the largest high fidelity tests, we are able to perform virtual time-synchronized simulation of 64-node VM-based full-stack, actual software behaviors of MANETs containing a mix of static and mobile (unmanned airborne vehicle) nodes, hosted on a 32-core host, with full fidelity of unmodified ad-hoc routing protocols, unmodified application executables, and user-controllable physical layer effects including inter-device wireless signal strength, reachability, and connectivity.« less

  15. Comprehensive sets of 124Xe(n ,γ )125Xe and 124Xe(n ,2 n )123Xe cross-section data for assessment of inertial-confinement deuterium-tritium fusion plasma

    NASA Astrophysics Data System (ADS)

    Bhike, Megha; Fallin, B.; Gooden, M. E.; Ludin, N.; Tornow, W.

    2015-01-01

    Measurements of the neutron radiative-capture cross section of 124Xe have been performed for the first time for neutron energies above 100 keV. In addition, data for the 124Xe(n ,2 n )123Xe reaction cross section have been obtained from threshold to 14.8 MeV to cover the entire energy range of interest, while previous data existed only at around 14 MeV. The results of these measurements provide the basis for an alternative and sensitive diagnostic tool for investigating properties of the inertial confinement fusion plasma in deuterium-tritium (DT) capsules at the National Ignition Facility located at Lawrence Livermore National Laboratory. Here, areal density ρ R (density × radius) of the fuel, burn asymmetry, and fuel-ablator mix are of special interest. The 124Xe(n ,γ )125Xe reaction probes the down-scattered neutrons, while the 124Xe(n ,2 n )123Xe reaction provides a measure of the 14 MeV direct neutrons.

  16. Fluid Dynamics of a Novel Micro-Fistula Implant for the Surgical Treatment of Glaucoma.

    PubMed

    Sheybani, Arsham; Reitsamer, Herbert; Ahmed, Iqbal Ike K

    2015-07-01

    The purpose of this study was to describe the fluidics of a novel non-valved glaucoma implant designed to prevent hypotony and compare the fluidics of this device with two commonly used non-valved glaucoma devices. The XEN 45 micro-fistula implant was designed to limit hypotony by virtue of its length and width according to the Hagen-Poiseuille equation. Flow testing was performed using a syringe pump and pressure transducer at multiple flow rates. The pressure differentials across the XEN implant, the Ex-Press implant, and 10 mm of silicone tubing from a Baerveldt implant at a physiologic flow rate (2.5 μL/min) were extrapolated. The XEN 45 achieved a steady-state pressure calculated at 7.56 mm Hg at 2.5 μL/min. At the same flow rate, the Ex-Press device and Baerveldt tubing reached steady-state pressures of 0.09 and 0.01 mm Hg, respectively. Under flow testing, the XEN micro-fistula implant was able to maintain backpressure above numerical hypotony levels without the use of complex valve systems. This is due to the XEN implant's design, derived from the principles that dictate Newtonian fluids.

  17. Integration of virtualized worker nodes in standard batch systems

    NASA Astrophysics Data System (ADS)

    Büge, Volker; Hessling, Hermann; Kemp, Yves; Kunze, Marcel; Oberst, Oliver; Quast, Günter; Scheurer, Armin; Synge, Owen

    2010-04-01

    Current experiments in HEP only use a limited number of operating system flavours. Their software might only be validated on one single OS platform. Resource providers might have other operating systems of choice for the installation of the batch infrastructure. This is especially the case if a cluster is shared with other communities, or communities that have stricter security requirements. One solution would be to statically divide the cluster into separated sub-clusters. In such a scenario, no opportunistic distribution of the load can be achieved, resulting in a poor overall utilization efficiency. Another approach is to make the batch system aware of virtualization, and to provide each community with its favoured operating system in a virtual machine. Here, the scheduler has full flexibility, resulting in a better overall efficiency of the resources. In our contribution, we present a lightweight concept for the integration of virtual worker nodes into standard batch systems. The virtual machines are started on the worker nodes just before jobs are executed there. No meta-scheduling is introduced. We demonstrate two prototype implementations, one based on the Sun Grid Engine (SGE), the other using Maui/Torque as a batch system. Both solutions support local job as well as Grid job submission. The hypervisors currently used are Xen and KVM, a port to another system is easily envisageable. To better handle different virtual machines on the physical host, the management solution VmImageManager is developed. We will present first experience from running the two prototype implementations. In a last part, we will show the potential future use of this lightweight concept when integrated into high-level (i.e. Grid) work-flows.

  18. Microbial community characterization and functional gene quantification in RDX-degrading microcosms derived from sediment and groundwater at two naval sites.

    PubMed

    Wilson, Fernanda Paes; Cupples, Alison M

    2016-08-01

    The explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) has long been recognized as a problematic environmental pollutant, and efforts to remediate contaminated soils, sediments, and groundwater have been going on for decades. In recent years, much interest has focused on using bioremediation to clean up these sites. The current study investigated the microorganisms (16S rRNA genes, Illumina) and functional genes (xenA, xenB, and xplA) linked to RDX biodegradation in microcosms composed of sediment or groundwater from two Navy sites. For this, experiments included sediment samples from three depths (5 to 30 ft) from two wells located in one Navy site. In addition, the groundwater upstream and downstream of an emulsified oil biobarrier was examined from another Navy site. Further, for the groundwater experiments, the effect of glucose addition was explored. For the sediment experiments, the most enriched phylotypes during RDX degradation varied over time, by depth and well locations. However, several trends were noted, including the enrichment of Pseudomonas, Rhodococcus, Arthrobacter, and Sporolactobacillus in the sediment microcosms. For the groundwater-based experiments, Pseudomonas, unclassified Rhodocyclaceae, Sphingomonas, and Rhodococcus were also highly abundant during RDX degradation. The abundance of both xplA and xenA significantly increased during RDX degradation compared to the control microcosms for many treatments (both groundwater and sediment microcosms). In a limited number of microcosms, the copy number of the xenB gene increased. Phylotype data were correlated with functional gene data to highlight potentially important biomarkers for RDX biodegradation at these two Navy sites.

  19. Exploring Windows Domain-Level Defenses Against Authentication Attacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, Jeff A.; Curtis, Laura

    2016-01-01

    We investigated the security resilience of the current Windows Active Directory (AD) environments to Pass-the-Hash and Pass- the-Ticket credential theft attacks. While doing this, we discovered a way to trigger the removal of all previously issued authentication credentials for a client, thus preventing their use by attackers. After triggered, the user is forced to contact the domain administrators and to authenticate to the AD to continue. This could become the basis for a response that arrests the spread of a detected attack. Operating in a virtualized XenServer environment, we were able to carefully determine and recreate the conditions necessary tomore » cause this response.« less

  20. Evolution of the Virtualized HPC Infrastructure of Novosibirsk Scientific Center

    NASA Astrophysics Data System (ADS)

    Adakin, A.; Anisenkov, A.; Belov, S.; Chubarov, D.; Kalyuzhny, V.; Kaplin, V.; Korol, A.; Kuchin, N.; Lomakin, S.; Nikultsev, V.; Skovpen, K.; Sukharev, A.; Zaytsev, A.

    2012-12-01

    Novosibirsk Scientific Center (NSC), also known worldwide as Akademgorodok, is one of the largest Russian scientific centers hosting Novosibirsk State University (NSU) and more than 35 research organizations of the Siberian Branch of Russian Academy of Sciences including Budker Institute of Nuclear Physics (BINP), Institute of Computational Technologies, and Institute of Computational Mathematics and Mathematical Geophysics (ICM&MG). Since each institute has specific requirements on the architecture of computing farms involved in its research field, currently we've got several computing facilities hosted by NSC institutes, each optimized for a particular set of tasks, of which the largest are the NSU Supercomputer Center, Siberian Supercomputer Center (ICM&MG), and a Grid Computing Facility of BINP. A dedicated optical network with the initial bandwidth of 10 Gb/s connecting these three facilities was built in order to make it possible to share the computing resources among the research communities, thus increasing the efficiency of operating the existing computing facilities and offering a common platform for building the computing infrastructure for future scientific projects. Unification of the computing infrastructure is achieved by extensive use of virtualization technology based on XEN and KVM platforms. This contribution gives a thorough review of the present status and future development prospects for the NSC virtualized computing infrastructure and the experience gained while using it for running production data analysis jobs related to HEP experiments being carried out at BINP, especially the KEDR detector experiment at the VEPP-4M electron-positron collider.

  1. XEN glaucoma treatment system in the management of refractory glaucomas: a short review on trial data and potential role in clinical practice.

    PubMed

    De Gregorio, A; Pedrotti, E; Stevan, G; Bertoncello, A; Morselli, S

    2018-01-01

    The recent development of new devices that are significantly less invasive, collectively termed minimally invasive glaucoma surgery, offers new perspective of intraocular pressure reduction with less risk, short operating times, and rapid recovery. The aim of this work is to provide a panoramic review of the currently published clinical data to assess the potential role of XEN gel stent (Allergan PLC, Irvine, CA, USA) in the management of glaucoma, which is the only filtering minimally invasive glaucoma surgery device that allows the subconjunctival filtration. The ab interno placement of the XEN gel stent offers an alternative for lowering intraocular pressure in refractory glaucoma as a final step, and in patients intolerant to medical therapy as an early surgical approach with minimum conjunctival tissue disruption, restricted flow to avoid hypotony, and long-term safety.

  2. XEN glaucoma treatment system in the management of refractory glaucomas: a short review on trial data and potential role in clinical practice

    PubMed Central

    De Gregorio, A; Pedrotti, E; Stevan, G; Bertoncello, A; Morselli, S

    2018-01-01

    The recent development of new devices that are significantly less invasive, collectively termed minimally invasive glaucoma surgery, offers new perspective of intraocular pressure reduction with less risk, short operating times, and rapid recovery. The aim of this work is to provide a panoramic review of the currently published clinical data to assess the potential role of XEN gel stent (Allergan PLC, Irvine, CA, USA) in the management of glaucoma, which is the only filtering minimally invasive glaucoma surgery device that allows the subconjunctival filtration. The ab interno placement of the XEN gel stent offers an alternative for lowering intraocular pressure in refractory glaucoma as a final step, and in patients intolerant to medical therapy as an early surgical approach with minimum conjunctival tissue disruption, restricted flow to avoid hypotony, and long-term safety. PMID:29750009

  3. 124Xe(n,γ)125Xe and 124Xe(n,2n)123Xe measurements for National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Bhike, Megha; Ludin, Nurin; Tornow, Werner

    2015-05-01

    The cross section for the 124Xe(n,γ)125Xe reaction has been measured for the first time for neutron energies above 100 keV. In addition, the 124Xe(n,2n)123Xe reaction has been studied between threshold and 14.8 MeV. The results of these measurements provide sensitive diagnostic tools for investigating properties of the inertial confinement fusion plasma in Deuterium-Tritium (DT) capsules at the National Ignition Facility (NIF) located at Lawrence Livermore National Laboratory.

  4. Simple re-instantiation of small databases using cloud computing.

    PubMed

    Tan, Tin Wee; Xie, Chao; De Silva, Mark; Lim, Kuan Siong; Patro, C Pawan K; Lim, Shen Jean; Govindarajan, Kunde Ramamoorthy; Tong, Joo Chuan; Choo, Khar Heng; Ranganathan, Shoba; Khan, Asif M

    2013-01-01

    Small bioinformatics databases, unlike institutionally funded large databases, are vulnerable to discontinuation and many reported in publications are no longer accessible. This leads to irreproducible scientific work and redundant effort, impeding the pace of scientific progress. We describe a Web-accessible system, available online at http://biodb100.apbionet.org, for archival and future on demand re-instantiation of small databases within minutes. Depositors can rebuild their databases by downloading a Linux live operating system (http://www.bioslax.com), preinstalled with bioinformatics and UNIX tools. The database and its dependencies can be compressed into an ".lzm" file for deposition. End-users can search for archived databases and activate them on dynamically re-instantiated BioSlax instances, run as virtual machines over the two popular full virtualization standard cloud-computing platforms, Xen Hypervisor or vSphere. The system is adaptable to increasing demand for disk storage or computational load and allows database developers to use the re-instantiated databases for integration and development of new databases. Herein, we demonstrate that a relatively inexpensive solution can be implemented for archival of bioinformatics databases and their rapid re-instantiation should the live databases disappear.

  5. Simple re-instantiation of small databases using cloud computing

    PubMed Central

    2013-01-01

    Background Small bioinformatics databases, unlike institutionally funded large databases, are vulnerable to discontinuation and many reported in publications are no longer accessible. This leads to irreproducible scientific work and redundant effort, impeding the pace of scientific progress. Results We describe a Web-accessible system, available online at http://biodb100.apbionet.org, for archival and future on demand re-instantiation of small databases within minutes. Depositors can rebuild their databases by downloading a Linux live operating system (http://www.bioslax.com), preinstalled with bioinformatics and UNIX tools. The database and its dependencies can be compressed into an ".lzm" file for deposition. End-users can search for archived databases and activate them on dynamically re-instantiated BioSlax instances, run as virtual machines over the two popular full virtualization standard cloud-computing platforms, Xen Hypervisor or vSphere. The system is adaptable to increasing demand for disk storage or computational load and allows database developers to use the re-instantiated databases for integration and development of new databases. Conclusions Herein, we demonstrate that a relatively inexpensive solution can be implemented for archival of bioinformatics databases and their rapid re-instantiation should the live databases disappear. PMID:24564380

  6. Exploiting GPUs in Virtual Machine for BioCloud

    PubMed Central

    Jo, Heeseung; Jeong, Jinkyu; Lee, Myoungho; Choi, Dong Hoon

    2013-01-01

    Recently, biological applications start to be reimplemented into the applications which exploit many cores of GPUs for better computation performance. Therefore, by providing virtualized GPUs to VMs in cloud computing environment, many biological applications will willingly move into cloud environment to enhance their computation performance and utilize infinite cloud computing resource while reducing expenses for computations. In this paper, we propose a BioCloud system architecture that enables VMs to use GPUs in cloud environment. Because much of the previous research has focused on the sharing mechanism of GPUs among VMs, they cannot achieve enough performance for biological applications of which computation throughput is more crucial rather than sharing. The proposed system exploits the pass-through mode of PCI express (PCI-E) channel. By making each VM be able to access underlying GPUs directly, applications can show almost the same performance as when those are in native environment. In addition, our scheme multiplexes GPUs by using hot plug-in/out device features of PCI-E channel. By adding or removing GPUs in each VM in on-demand manner, VMs in the same physical host can time-share their GPUs. We implemented the proposed system using the Xen VMM and NVIDIA GPUs and showed that our prototype is highly effective for biological GPU applications in cloud environment. PMID:23710465

  7. Exploiting GPUs in virtual machine for BioCloud.

    PubMed

    Jo, Heeseung; Jeong, Jinkyu; Lee, Myoungho; Choi, Dong Hoon

    2013-01-01

    Recently, biological applications start to be reimplemented into the applications which exploit many cores of GPUs for better computation performance. Therefore, by providing virtualized GPUs to VMs in cloud computing environment, many biological applications will willingly move into cloud environment to enhance their computation performance and utilize infinite cloud computing resource while reducing expenses for computations. In this paper, we propose a BioCloud system architecture that enables VMs to use GPUs in cloud environment. Because much of the previous research has focused on the sharing mechanism of GPUs among VMs, they cannot achieve enough performance for biological applications of which computation throughput is more crucial rather than sharing. The proposed system exploits the pass-through mode of PCI express (PCI-E) channel. By making each VM be able to access underlying GPUs directly, applications can show almost the same performance as when those are in native environment. In addition, our scheme multiplexes GPUs by using hot plug-in/out device features of PCI-E channel. By adding or removing GPUs in each VM in on-demand manner, VMs in the same physical host can time-share their GPUs. We implemented the proposed system using the Xen VMM and NVIDIA GPUs and showed that our prototype is highly effective for biological GPU applications in cloud environment.

  8. Evaluation of Bleb Morphology and Reduction in IOP and Glaucoma Medication following Implantation of a Novel Gel Stent

    PubMed Central

    Spinetta, Roberta; Cannizzo, Paola Maria Loredana; Consolandi, Giulia; Lavia, Carlo; Germinetti, Francesco; Rolle, Teresa

    2017-01-01

    Objective To evaluate the efficacy and safety of the Xen Gel Stent and provide a macro- and microscopic analyses of bleb morphology. Methods A prospective 12-month study on patients with primary open-angle glaucoma. Patients underwent implantation of the XEN Gel Stent (Allergan INC, Dublin, Ireland) either alone or combined with a cataract surgery. Biomicroscopy, in vivo confocal microscopy (IVCM), and anterior segment-optical coherence tomography (AS-OCT) were used to assess bleb morphology. Safety parameters were adverse events, best corrected visual acuity, visual field, and corneal endothelial cell loss. A postoperative IOP ≤ 18 mmHg without or on medications was respectively defined as complete and qualified success while an IOP ≥ 18 mmHg was defined as failure. Results Twelve eyes of 11 patients were evaluated. At one year, 5 out of 10 patients available achieved a complete success while five were qualified success. AS-OCT showed that bleb wall reflectivity was significantly higher in the failure group; IVCM revealed that stromal density was significantly lower in the success group. No safety issues were recorded. Conclusion Implantation of the XEN Gel Stent appears to be a safe and effective procedure. AS-OCT and IVCM may be helpful in bleb assessment. PMID:28751986

  9. Early Clinical Results of a Novel Ab Interno Gel Stent for the Surgical Treatment of Open-angle Glaucoma.

    PubMed

    Sheybani, Arsham; Dick, H Burkhard; Ahmed, Iqbal I K

    2016-07-01

    To evaluate the intraocular pressure (IOP) lowering effect of the XEN140 microfistula gel stent implant for the surgical treatment of open-angle glaucoma. Forty-nine eyes of 49 patients with an IOP>18 mm Hg and ≤35 mm Hg were studied in a prospective nonrandomized multicenter cohort trial of the surgical implantation of the XEN140 implant in patients with open-angle glaucoma. Complete success was defined as a postoperative IOP≤18 mm Hg with ≥20% reduction in IOP at 12 months without any glaucoma medications. Failure was defined as vision loss of light perceptions vision or worse, need for additional glaucoma surgery, or <20% reduction of IOP from baseline. The average age was 64.3 (28.1 to 86.9) years old. Twenty-one eyes had prior failed trabeculectomy with mitomycin C surgery. IOP at 12 months decreased from a mean of 23.1 (±4.1) mm Hg to 14.7 (±3.7) mm Hg for a 36.4% reduction in IOP from baseline. The number of patients at 12 months who achieved an IOP≤18 mm Hg and ≥20% reduction in IOP was 40 (89%). The number of patients who achieved an IOP≤18 mm Hg and ≥20% reduction in IOP without antiglaucoma medications was 18 (40%). The XEN140 gel stent lowers IOP with few complications when implanted for the surgical treatment of open-angle glaucoma.

  10. Photodissociation and caging of HBr and HI molecules on the surface of large rare gas clusters.

    PubMed

    Baumfalk, R; Nahler, N H; Buck, U

    2001-01-01

    Photodissociation experiments were carried out at a wavelength of 243 nm for single HBr and HI molecules adsorbed on the surface of large Nen, Arn, Krn and Xen clusters. The average size is about = 130; the size ranges = 62-139 for the system HBr-Arn and = 110-830 for HI-Xen were covered. In this way the dependence of the photodissociation dynamics on both the size and the rare gas host cluster was investigated. The main observable is the kinetic energy distribution of the outgoing H atoms. The key results are that we do not find any size dependence for either system but that we observe a strong dependence on the rare gas clusters. All systems exhibit H atoms with no energy loss that indicate direct cage exit and those with nearly zero energy that are an indication of complete caging. The intensity ratio of caged to uncaged H atoms is largest for Nen, decreases with increasing mass of the cage atoms, and is weakest for Xen. On the basis of accompanying calculations this behaviour is attributed to the large amplitude motion of the light H atom. This leads to direct cage exit and penetration of the atom through the cluster with different energy transfer per collision depending on the rare gas atoms. The differences between HBr and HI molecules are attributed to different surface states, a flat and an encapsulated site.

  11. Isolation of Oct4-Expressing Extraembryonic Endoderm Precursor Cell Lines

    PubMed Central

    Debeb, Bisrat G.; Galat, Vasiliy; Epple-Farmer, Jessica; Iannaccone, Steve; Woodward, Wendy A.; Bader, Michael; Iannaccone, Philip; Binas, Bert

    2009-01-01

    Background The extraembryonic endoderm (ExEn) defines the yolk sac, a set of membranes that provide essential support for mammalian embryos. Recent findings suggest that the committed ExEn precursor is present already in the embryonic Inner Cell Mass (ICM) as a group of cells that intermingles with the closely related epiblast precursor. All ICM cells contain Oct4, a key transcription factor that is first expressed at the morula stage. In vitro, the epiblast precursor is most closely represented by the well-characterized embryonic stem (ES) cell lines that maintain the expression of Oct4, but analogous ExEn precursor cell lines are not known and it is unclear if they would express Oct4. Methodology/Principal Findings Here we report the isolation and characterization of permanently proliferating Oct4-expressing rat cell lines (“XEN-P cell lines”), which closely resemble the ExEn precursor. We isolated the XEN-P cell lines from blastocysts and characterized them by plating and gene expression assays as well as by injection into embryos. Like ES cells, the XEN-P cells express Oct4 and SSEA1 at high levels and their growth is stimulated by leukemia inhibitory factor, but instead of the epiblast determinant Nanog, they express the ExEn determinants Gata6 and Gata4. Further, they lack markers characteristic of the more differentiated primitive/visceral and parietal ExEn stages, but exclusively differentiate into these stages in vitro and contribute to them in vivo. Conclusions/Significance Our findings (i) suggest strongly that the ExEn precursor is a self-renewable entity, (ii) indicate that active Oct4 gene expression (transcription plus translation) is part of its molecular identity, and (iii) provide an in vitro model of early ExEn differentiation. PMID:19784378

  12. APPLICATION OF ADVANCED IN VITRO TECHNIQUES TO MEASURE, UNDERSTAND AND PREDICT THE KINETICS AND MECHANISMS OF XENOBIOTIC METABOLISM

    EPA Science Inventory

    We have developed a research program in metabolism that involves numerous collaborators across EPA as well as other federal and academic labs. A primary goal is to develop and apply advanced in vitro techniques to measure, understand and predict the kinetics and mechanisms of xen...

  13. Oxidative stress biomarkers and organochlorine pesticides in nesting female hawksbill turtles Eretmochelys imbricata from Mexican coast (Punta Xen, Mexico).

    PubMed

    Salvarani, Patricia I; Vieira, Luis R; Ku-Peralta, Wiliam; Morgado, Fernando; Osten, Jaime Rendón-von

    2018-06-06

    Because of their vulnerable population status, assessing exposure levels and impacts of toxicants on the health status of Gulf of Mexico marine turtle populations is essential, and this study was aimed to obtain baseline information on oxidative stress indicators in hawksbill sea turtle (Eretmochelys imbricata). In order to evaluate the health status of sea turtles and the effect of organochlorine compounds (OC) in the southern part of the Gulf of Mexico, we searched for relationships between carapace size and the activity of antioxidant enzymes in the blood of the hawksbill sea turtle. The level of oxidative stress biomarkers such as the enzymes catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), glutathione S-transferase (GST), and acetylcholinesterase (Ache) in the hawksbill sea turtle was analysed during nesting season in the years 2014-2015 at Punta Xen (Campeche, Mexico). The results of this study provide insight into data of antioxidant enzyme activities in relation to contaminant OCPs in hawksbill sea turtles and the possible health impacts of contaminant in sea turtles.

  14. Single-Cell RNA-Seq Reveals Dynamic Early Embryonic-like Programs during Chemical Reprogramming.

    PubMed

    Zhao, Ting; Fu, Yao; Zhu, Jialiang; Liu, Yifang; Zhang, Qian; Yi, Zexuan; Chen, Shi; Jiao, Zhonggang; Xu, Xiaochan; Xu, Junquan; Duo, Shuguang; Bai, Yun; Tang, Chao; Li, Cheng; Deng, Hongkui

    2018-06-12

    Chemical reprogramming provides a powerful platform for exploring the molecular dynamics that lead to pluripotency. Although previous studies have uncovered an intermediate extraembryonic endoderm (XEN)-like state during this process, the molecular underpinnings of pluripotency acquisition remain largely undefined. Here, we profile 36,199 single-cell transcriptomes at multiple time points throughout a highly efficient chemical reprogramming system using RNA-sequencing and reconstruct their progression trajectories. Through identifying sequential molecular events, we reveal that the dynamic early embryonic-like programs are key aspects of successful reprogramming from XEN-like state to pluripotency, including the concomitant transcriptomic signatures of two-cell (2C) embryonic-like and early pluripotency programs and the epigenetic signature of notable genome-wide DNA demethylation. Moreover, via enhancing the 2C-like program by fine-tuning chemical treatment, the reprogramming process is remarkably accelerated. Collectively, our findings offer a high-resolution dissection of cell fate dynamics during chemical reprogramming and shed light on mechanistic insights into the nature of induced pluripotency. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. A Review of Anaerobic Infections of the Oral Cavity in Egypt

    DTIC Science & Technology

    1987-01-01

    of Anaerobic Epidemiological studies have demonstrated a strong positive correlation between oral microorgan- Infections of the Oral Cavity isms and... oral cavity ". Reports published on the gingivitis were reported by the Greek scientist Xen- various aspects of these conditions have confirmed ophen...THE ORAL CAVITY cable to anaerobic synergistic infections. In other words, anaerobic infections have generally been con- Mucous membranes of the

  16. Relationship between organochlorine pesticides and stress indicators in hawksbill sea turtle (Eretmochelys imbricata) nesting at Punta Xen (Campeche), Southern Gulf of Mexico.

    PubMed

    Tremblay, Nelly; Ortíz Arana, Alejandro; González Jáuregui, Mauricio; Rendón-von Osten, Jaime

    2017-03-01

    Data on the impact of environmental pollution on the homeostasis of sea turtles remains scarce, particularly in the Southern Gulf of Mexico. As many municipalities along the coastline of the Yucatan Peninsula do not rely on a waste treatment plant, these organisms could be particularly vulnerable. We searched for relationships between the presence of organochlorine pesticides (OCP) and the level of several oxidative and pollutant stress indicators of the hawksbill sea turtle (Eretmochelys imbricata) during the 2010 nesting season at Punta Xen (Campeche, Mexico). Of the 30 sampled sea turtles, endosulfans, aldrin related (aldrin, endrin, dieldrin, endrin ketone, endrin aldehyde) and dichlorodiphenyldichloroethylene (DDT) families were detected in 17, 21 and 26, respectively. Significant correlation existed between the size of sea turtles with the concentration of methoxychlor, cholinesterase activity in plasma and heptachlors family, and catalase activity and hexachlorohexane family. Cholinesterase activity in washed erythrocytes and lipid peroxidation were positively correlated with glutathione reductase activity. Antioxidant enzyme actions seem adequate as no lipids damages were correlated with any OCPs. Future studies are necessary to evaluate the effect of OCPs on males of the area due to the significant detection of methoxychlor, which target endocrine functioning and increases its concentration with sea turtles size.

  17. Minimizing Overhead for Secure Computation and Fully Homomorphic Encryption: Overhead

    DTIC Science & Technology

    2015-11-01

    many inputs. We also improved our compiler infrastructure to handle very large circuits in a more scalable way. In Jan’13, we employed the AESNI and...Amazon’s elastic compute infrastructure , and is running under a Xen hypervisor. Since we do not have direct access to the bare metal, we cannot...creating novel opportunities for compressing au- thentication overhead. It is especially compelling that existing public key infrastructures can be used

  18. Cloud computing geospatial application for water resources based on free and open source software and open standards - a prototype

    NASA Astrophysics Data System (ADS)

    Delipetrev, Blagoj

    2016-04-01

    Presently, most of the existing software is desktop-based, designed to work on a single computer, which represents a major limitation in many ways, starting from limited computer processing, storage power, accessibility, availability, etc. The only feasible solution lies in the web and cloud. This abstract presents research and development of a cloud computing geospatial application for water resources based on free and open source software and open standards using hybrid deployment model of public - private cloud, running on two separate virtual machines (VMs). The first one (VM1) is running on Amazon web services (AWS) and the second one (VM2) is running on a Xen cloud platform. The presented cloud application is developed using free and open source software, open standards and prototype code. The cloud application presents a framework how to develop specialized cloud geospatial application that needs only a web browser to be used. This cloud application is the ultimate collaboration geospatial platform because multiple users across the globe with internet connection and browser can jointly model geospatial objects, enter attribute data and information, execute algorithms, and visualize results. The presented cloud application is: available all the time, accessible from everywhere, it is scalable, works in a distributed computer environment, it creates a real-time multiuser collaboration platform, the programing languages code and components are interoperable, and it is flexible in including additional components. The cloud geospatial application is implemented as a specialized water resources application with three web services for 1) data infrastructure (DI), 2) support for water resources modelling (WRM), 3) user management. The web services are running on two VMs that are communicating over the internet providing services to users. The application was tested on the Zletovica river basin case study with concurrent multiple users. The application is a state-of-the-art cloud geospatial collaboration platform. The presented solution is a prototype and can be used as a foundation for developing of any specialized cloud geospatial applications. Further research will be focused on distributing the cloud application on additional VMs, testing the scalability and availability of services.

  19. Survival Escherichia coli O157:H7 transformed with either the pAK1-lux or pXEN-13 plasmids in in vitro bovine ruminal and fecal microbial fermentations

    USDA-ARS?s Scientific Manuscript database

    The use of luminescent technology may serve as a viable model for the real-time validation of various pre-harvest interventions on the colonization or shedding of Escherichia coli O157:H7 within cattle. The objective of this study was to determine if the growth of E. coli O157:H7 (ATCC 43888) in ru...

  20. Relativistic many-body calculation of energies, transition rates, lifetimes, and multipole polarizabilities in Cs-like La iii

    NASA Astrophysics Data System (ADS)

    Safronova, U. I.; Safronova, M. S.

    2014-05-01

    Excitation energies of the [Xe]nd (n =5-9), [Xe]ns (n =6-10), [Xe]np (n =6-9), [Xe]nf (n =4-8), and [Xe]ng (n =5-8) states in La iii, where [Xe] = 1s22s22p63s23p63d104s24p64d105s25p6, are evaluated. Electric dipole matrix elements for the allowed transitions between the low-lying [Xe]nd, [Xe]ns, [Xe]np, [Xe]nf, and [Xe]ng states in the La iii ion are calculated using the high-precision relativistic all-order method where all single, double, and partial triple excitations of the Dirac-Fock wave functions are included to all orders of perturbation theory. Recommended values are provided for a large number of electric dipole matrix elements, oscillator strengths, transition rates, and lifetimes. Scalar and tensor polarizabilities of the states listed above are evaluated. The uncertainties of the recommended values are estimated. Electric quadrupole and magnetic dipole matrix elements are calculated to determine lifetimes of the 5d5/2 and 6s metastable levels. The ground-state E1, E2, and E3 static polarizabilities are calculated. This work provides recommended values critically evaluated for their accuracy for a number of La iii atomic properties for use in planning and analysis of various experiments as well as theoretical modeling.

  1. Human Mendelian pain disorders: a key to discovery and validation of novel analgesics.

    PubMed

    Goldberg, Y P; Pimstone, S N; Namdari, R; Price, N; Cohen, C; Sherrington, R P; Hayden, M R

    2012-10-01

    We have utilized a novel application of human genetics, illuminating the important role that rare genetic disorders can play in the development of novel drugs that may be of relevance for the treatment of both rare and common diseases. By studying a very rare Mendelian disorder of absent pain perception, congenital indifference to pain, we have defined Nav1.7 (endocded by SCN9A) as a critical and novel target for analgesic development. Strong human validation has emerged with SCN9A gain-of-function mutations causing inherited erythromelalgia (IEM) and paroxysmal extreme pain disorder, both Mendelian disorder of spontaneous or easily evoked pain. Furthermore, variations in the Nav1.7 channel also modulate pain perception in healthy subjects as well as in painful conditions such as osteoarthritis and Parkinson disease. On the basis of this, we have developed a novel compound (XEN402) that exhibits potent, voltage-dependent block of Nav1.7. In a small pilot study, we showed that XEN402 blocks Nav1.7 mediated pain associated with IEM thereby demonstrating the use of rare genetic disorders with mutant target channels as a novel approach to rapid proof-of-concept. Our approach underscores the critical role that human genetics can play by illuminating novel and critical pathways pertinent for drug discovery. © 2012 John Wiley & Sons A/S.

  2. Bactericidal Activity of Ceragenin CSA-13 in Cell Culture and in an Animal Model of Peritoneal Infection.

    PubMed

    Bucki, Robert; Niemirowicz, Katarzyna; Wnorowska, Urszula; Byfield, Fitzroy J; Piktel, Ewelina; Wątek, Marzena; Janmey, Paul A; Savage, Paul B

    2015-10-01

    Ceragenins constitute a novel family of cationic antibiotics characterized by a broad spectrum of antimicrobial activities, which have mostly been assessed in vitro. Using a polarized human lung epithelial cell culture system, we evaluated the antibacterial activities of the ceragenin CSA-13 against two strains of Pseudomonas aeruginosa (PAO1 and Xen5). Additionally, the biodistribution and bactericidal activity of a CSA-13-IRDye 800CW derivate were assessed using an animal model of peritoneal infection after PAO1 challenge. In cell culture, CSA-13 bactericidal activities against PAO1 and Xen5 were higher than the activities of the human cathelicidin peptide LL-37. Increased CSA-13 activity was observed in polarized human lung epithelial cell cultures subjected to butyric acid treatment, which is known to increase endogenous LL-37 production. Eight hours after intravenous or intraperitoneal injection, the greatest CSA-13-IRDye 800CW accumulation was observed in mouse liver and kidneys. CSA-13-IRDye 800CW administration resulted in decreased bacterial outgrowth from abdominal fluid collected from animals subjected to intraperitoneal PAO1 infection. These observations indicate that CSA-13 may synergistically interact with antibacterial factors that are naturally present at mucosal surfaces and it maintains its antibacterial activity in the infected abdominal cavity. Cationic lipids such as CSA-13 represent excellent candidates for the development of new antibacterial compounds. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Metagenomic Insights into the RDX-Degrading Potential of the Ovine Rumen Microbiome

    PubMed Central

    Li, Robert W.; Giarrizzo, Juan Gabriel; Wu, Sitao; Li, Weizhong; Duringer, Jennifer M.; Craig, A. Morrie

    2014-01-01

    The manufacturing processes of royal demolition explosive (RDX), or hexahydro-1,3,5-trinitro-1,3,5-triazine, have resulted in serious water contamination. As a potential carcinogen, RDX can cause a broad range of harmful effects to humans and animals. The ovine rumen is capable of rapid degradation of nitroaromatic compounds, including RDX. While ruminal RDX-degrading bacteria have been identified, the genes and pathways responsible for RDX degradation in the rumen have yet to be characterized. In this study, we characterized the metabolic potential of the ovine rumen using metagenomic approaches. Sequences homologous to at least five RDX-degrading genes cloned from environmental samples (diaA, xenA, xenB, xplA, and xplB) were present in the ovine rumen microbiome. Among them, diaA was the most abundant, likely reflective of the predominance of the genus Clostridium in the ovine rumen. At least ten genera known to harbor RDX-degrading microorganisms were detectable. Metagenomic sequences were also annotated using public databases, such as Pfam, COG, and KEGG. Five of the six Pfam protein families known to be responsible for RDX degradation in environmental samples were identified in the ovine rumen. However, increased substrate availability did not appear to enhance the proliferation of RDX-degrading bacteria and alter the microbial composition of the ovine rumen. This implies that the RDX-degrading capacity of the ovine rumen microbiome is likely regulated at the transcription level. Our results provide metagenomic insights into the RDX-degrading potential of the ovine rumen, and they will facilitate the development of novel and economic bioremediation strategies. PMID:25383623

  4. Minimally invasive glaucoma surgery: current status and future prospects

    PubMed Central

    Richter, Grace M; Coleman, Anne L

    2016-01-01

    Minimally invasive glaucoma surgery aims to provide a medication-sparing, conjunctival-sparing, ab interno approach to intraocular pressure reduction for patients with mild-to-moderate glaucoma that is safer than traditional incisional glaucoma surgery. The current approaches include: increasing trabecular outflow (Trabectome, iStent, Hydrus stent, gonioscopy-assisted transluminal trabeculotomy, excimer laser trabeculotomy); suprachoroidal shunts (Cypass micro-stent); reducing aqueous production (endocyclophotocoagulation); and subconjunctival filtration (XEN gel stent). The data on each surgical procedure for each of these approaches are reviewed in this article, patient selection pearls learned to date are discussed, and expectations for the future are examined. PMID:26869753

  5. Transformation of 2,4,6-Trinitrotoluene by Purified Xenobiotic Reductase B from Pseudomonas fluorescens I-C

    PubMed Central

    Pak, Jeong W.; Knoke, Kyle L.; Noguera, Daniel R.; Fox, Brian G.; Chambliss, Glenn H.

    2000-01-01

    The enzymatic transformation of 2,4,6-trinitrotoluene (TNT) by purified XenB, an NADPH-dependent flavoprotein oxidoreductase from Pseudomonas fluorescens I-C, was evaluated by using natural abundance and [U-14C]TNT preparations. XenB catalyzed the reduction of TNT either by hydride addition to the aromatic ring or by nitro group reduction, with the accumulation of various tautomers of the protonated dihydride-Meisenheimer complex of TNT, 2-hydroxylamino-4,6-dinitrotoluene, and 4-hydroxylamino-2,6-dinitrotoluene. Subsequent reactions of these metabolites were nonenzymatic and resulted in predominant formation of at least three dimers with an anionic m/z of 376 as determined by negative-mode electrospray ionization mass spectrometry and the release of ∼0.5 mol of nitrite per mol of TNT consumed. The extents of the initial enzymatic reactions were similar in the presence and in the absence of O2, but the dimerization reaction and the release of nitrite were favored under aerobic conditions or under anaerobic conditions in the presence of NADP+. Reactions of chemically and enzymatically synthesized and high-pressure liquid chromatography-purified TNT metabolites showed that both a hydroxylamino-dinitrotoluene isomer and a tautomer of the protonated dihydride-Meisenheimer complex of TNT were required precursors for the dimerization and nitrite release reactions. The m/z 376 dimers also reacted with either dansyl chloride or N-1-naphthylethylenediamine HCl, providing evidence for an aryl amine functional group. In combination, the experimental results are consistent with assigning the chemical structures of the m/z 376 species to various isomers of amino-dimethyl-tetranitrobiphenyl. A mechanism for the formation of these proposed TNT metabolites is presented, and the potential enzymatic and environmental significance of their formation is discussed. PMID:11055918

  6. Phacoemulsification combined with a new ab interno gel stent to treat open-angle glaucoma: Pilot study.

    PubMed

    Sheybani, Arsham; Lenzhofer, Markus; Hohensinn, Melchior; Reitsamer, Herbert; Ahmed, Iqbal Ike K

    2015-09-01

    To study the effect on intraocular pressure (IOP) of implanting a new gelatin stent at the time of cataract surgery in the treatment of open-angle glaucoma (OAG). Multicenter university and private-practice settings. Nonrandomized prospective clinical trial. The implantation of 2 models of a gelatin stent (Xen140 and Xen63) was performed at the time of cataract surgery without mitomycin-C. Complete success was defined as a postoperative IOP of less than 18 mm Hg and more than a 20% reduction in IOP at 12 months without glaucoma medication. Failure was defined as loss of light perception vision or worse, a need for additional glaucoma surgery, or less than a 20% reduction in the IOP from baseline. The study included 37 eyes of 37 patients. The mean preoperative IOP was 22.4 mm Hg ± 4.2 (SD) on 2.5 ± 1.4 medication classes. Twelve months postoperatively, the mean IOP was reduced to 15.4 ± 3.0 mm Hg on 0.9 ± 1.0 medication classes (P < .0001). This resulted in a qualified success of 85.3% and a complete success rate off medications of 47.1%. There were no failures. Cataract surgery combined with implantation of the gelatin stent resulted in a significant reduction in IOP in eyes with OAG. Dr. Sheybani has received travel reimbursement from Aquesys, Inc. Dr. Ahmed is a paid consultant to Aquesys, Inc. No other author has a financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  7. The 129Xe nuclear shielding surfaces for Xe interacting with linear molecules CO2, N2, and CO

    NASA Astrophysics Data System (ADS)

    de Dios, Angel C.; Jameson, Cynthia J.

    1997-09-01

    We have calculated the intermolecular nuclear magnetic shielding surfaces for 129Xe in the systems Xe-CO2, Xe-N2, and Xe-CO using a gauge-invariant ab initio method at the coupled Hartree-Fock level with gauge-including atomic orbitals (GIAO). Implementation of a large basis set (240 basis functions) on the Xe gives very small counterpoise corrections which indicates that the basis set superposition errors in the calculated shielding values are negligible. These are the first intermolecular shielding surfaces for Xe-molecule systems. The surfaces are highly anisotropic and can be described adequately by a sum of inverse even powers of the distance with explicit angle dependence in the coefficients expressed by Legendre polynomials P2n(cos θ), n=0-3, for Xe-CO2 and Xe-N2. The Xe-CO shielding surface is well described by a similar functional form, except that Pn(cos θ), n=0-4 were used. When averaged over the anisotropic potential function these shielding surfaces provide the second virial coefficient of the nuclear magnetic resonance (NMR) chemical shift observed in gas mixtures. The energies from the self-consistent field (SCF) calculations were used to construct potential surfaces, using a damped dispersion form. These potential functions are compared with existing potentials in their predictions of the second virial coefficients of NMR shielding, the pressure virial coefficients, the density coefficient of the mean-square torque from infrared absorption, and the rotational constants and other average properties of the van der Waals complexes. Average properties of the van der Waals complexes were obtained by quantum diffusion Monte Carlo solutions of the vibrational motion using the various potentials and compared with experiment.

  8. Effect of cathodic polarization on coating doxycycline on titanium surfaces.

    PubMed

    Geißler, Sebastian; Tiainen, Hanna; Haugen, Håvard J

    2016-06-01

    Cathodic polarization has been reported to enhance the ability of titanium based implant materials to interact with biomolecules by forming titanium hydride at the outermost surface layer. Although this hydride layer has recently been suggested to allow the immobilization of the broad spectrum antibiotic doxycycline on titanium surfaces, the involvement of hydride in binding the biomolecule onto titanium remains poorly understood. To gain better understanding of the influence this immobilization process has on titanium surfaces, mirror-polished commercially pure titanium surfaces were cathodically polarized in the presence of doxycycline and the modified surfaces were thoroughly characterized using atomic force microscopy, electron microscopy, secondary ion mass spectrometry, and angle-resolved X-ray spectroscopy. We demonstrated that no hydride was created during the polarization process. Doxycycline was found to be attached to an oxide layer that was modified during the electrochemical process. A bacterial assay using bioluminescent Staphylococcus epidermidis Xen43 showed the ability of the coating to reduce bacterial colonization and planktonic bacterial growth. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Sensitivity-based virtual fields for the non-linear virtual fields method

    NASA Astrophysics Data System (ADS)

    Marek, Aleksander; Davis, Frances M.; Pierron, Fabrice

    2017-09-01

    The virtual fields method is an approach to inversely identify material parameters using full-field deformation data. In this manuscript, a new set of automatically-defined virtual fields for non-linear constitutive models has been proposed. These new sensitivity-based virtual fields reduce the influence of noise on the parameter identification. The sensitivity-based virtual fields were applied to a numerical example involving small strain plasticity; however, the general formulation derived for these virtual fields is applicable to any non-linear constitutive model. To quantify the improvement offered by these new virtual fields, they were compared with stiffness-based and manually defined virtual fields. The proposed sensitivity-based virtual fields were consistently able to identify plastic model parameters and outperform the stiffness-based and manually defined virtual fields when the data was corrupted by noise.

  10. Virtual reality system for treatment of the fear of public speaking using image-based rendering and moving pictures.

    PubMed

    Lee, Jae M; Ku, Jeong H; Jang, Dong P; Kim, Dong H; Choi, Young H; Kim, In Y; Kim, Sun I

    2002-06-01

    The fear of speaking is often cited as the world's most common social phobia. The rapid growth of computer technology enabled us to use virtual reality (VR) for the treatment of the fear of public speaking. There have been two techniques used to construct a virtual environment for the treatment of the fear of public speaking: model-based and movie-based. Virtual audiences and virtual environments made by model-based technique are unrealistic and unnatural. The movie-based technique has a disadvantage in that each virtual audience cannot be controlled respectively, because all virtual audiences are included in one moving picture file. To address this disadvantage, this paper presents a virtual environment made by using image-based rendering (IBR) and chroma keying simultaneously. IBR enables us to make the virtual environment realistic because the images are stitched panoramically with the photos taken from a digital camera. And the use of chroma keying allows a virtual audience to be controlled individually. In addition, a real-time capture technique was applied in constructing the virtual environment to give the subjects more interaction, in that they can talk with a therapist or another subject.

  11. In vivo characterisation of the inflammatory reaction following mesh implantation in transgenic mice models.

    PubMed

    Fet, N; Alizai, P H; Fragoulis, A; Wruck, C; Pufe, T; Tolba, R H; Neumann, U P; Klinge, U

    2014-06-01

    Hernia repair with prosthetic meshes represents one of the most common surgical procedures in the field of surgery. This intervention is always associated with an ensuing inflammatory response, angiogenesis and fibrotic encapsulation forming a foreign body granuloma (FBG) around the mesh fibres. Several studies have described this inflammatory reaction by characterising inflammatory cell infiltrate around the FBG after mesh explantation. However, very little is known about the real-time progression of such an inflammatory response. The aim of this study was to investigate the feasibility of monitoring the ongoing inflammatory response to mesh implantation using bioluminescence in vivo. Three luciferase transgenic mice strains (FVB/N-Tg(Vegfr2-luc)-Xen, BALB/C-Tg(NFκB-RE-luc)-Xen and Tg(INS/EpRE-Luc)T20Rbl) were used. Mice were anaesthetized with 2 % isoflurane, and two incisions were made on the left and right sides of the abdomen of the mice. A 1-cm(2) propylene mesh was implanted subcutaneously in the right incision wound of each mouse, and the left wound served as control. Two hundred microliters of D-luciferin was injected into the mice, and bioluminescence measurements were done prior to the surgical intervention and subsequently every 3 days. After mesh explantation, histological analysis was done. Statistical analysis was done using prism GraphPad software. Bioluminescence results revealed different time points of maximum signal for the different mice strains. VEGFR2 gene expression peaked on day 6, NFkB on day 12 and ARE on day 3 post mesh implantation. We also observed much higher bioluminescent signal around the FBG surrounding the mesh as compared to the control wound, with p < 0.05 for all the different mice strains. Our results prove the possibility of monitoring the inflammatory reaction after mesh implantation in vivo using bioluminescence signal release. This provides a novel method of accessing and accurately describing the ongoing inflammatory response over a given period of time.

  12. Selection of stable reference genes for quantitative rt-PCR comparisons of mouse embryonic and extra-embryonic stem cells.

    PubMed

    Veazey, Kylee J; Golding, Michael C

    2011-01-01

    Isolation and culture of both embryonic and tissue specific stem cells provide an enormous opportunity to study the molecular processes driving development. To gain insight into the initial events underpinning mammalian embryogenesis, pluripotent stem cells from each of the three distinct lineages present within the preimplantation blastocyst have been derived. Embryonic (ES), trophectoderm (TS) and extraembryonic endoderm (XEN) stem cells possess the developmental potential of their founding lineages and seemingly utilize distinct epigenetic modalities to program gene expression. However, the basis for these differing cellular identities and epigenetic properties remain poorly defined.Quantitative reverse transcription-polymerase chain reaction (qPCR) is a powerful and efficient means of rapidly comparing patterns of gene expression between different developmental stages and experimental conditions. However, careful, empirical selection of appropriate reference genes is essential to accurately measuring transcriptional differences. Here we report the quantitation and evaluation of fourteen commonly used references genes between ES, TS and XEN stem cells. These included: Actb, B2m, Hsp70, Gapdh, Gusb, H2afz, Hk2, Hprt, Pgk1, Ppia, Rn7sk, Sdha, Tbp and Ywhaz. Utilizing three independent statistical analysis, we identify Pgk1, Sdha and Tbp as the most stable reference genes between each of these stem cell types. Furthermore, we identify Sdha, Tbp and Ywhaz as well as Ywhaz, Pgk1 and Hk2 as the three most stable reference genes through the in vitro differentiation of embryonic and trophectoderm stem cells respectively.Understanding the transcriptional and epigenetic regulatory mechanisms controlling cellular identity within these distinct stem cell types provides essential insight into cellular processes controlling both embryogenesis and stem cell biology. Normalizing quantitative RT-PCR measurements using the geometric mean CT values obtained for the identified mRNAs, offers a reliable method to assess differing patterns of gene expression between the three founding stem cell lineages present within the mammalian preimplantation embryo.

  13. Regulon Studies and In Planta Role of the BraI/R Quorum-Sensing System in the Plant-Beneficial Burkholderia Cluster

    PubMed Central

    Coutinho, Bruna G.; Mitter, Birgit; Talbi, Chouhra; Sessitsch, Angela; Bedmar, Eulogio J.; Halliday, Nigel; James, Euan K.; Cámara, Miguel

    2013-01-01

    The genus Burkholderia is composed of functionally diverse species, and it can be divided into several clusters. One of these, designated the plant-beneficial-environmental (PBE) Burkholderia cluster, is formed by nonpathogenic species, which in most cases have been found to be associated with plants. It was previously established that members of the PBE group share an N-acyl-homoserine lactone (AHL) quorum-sensing (QS) system, designated BraI/R, that produces and responds to 3-oxo-C14-HSL (OC14-HSL). Moreover, some of them also possess a second AHL QS system, designated XenI2/R2, producing and responding to 3-hydroxy-C8-HSL (OHC8-HSL). In the present study, we performed liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis to determine which AHL molecules are produced by each QS system of this group of bacteria. The results showed that XenI2/R2 is mainly responsible for the production of OHC8-HSL and that the BraI/R system is involved in the production of several different AHLs. This analysis also revealed that Burkholderia phymatum STM815 produces greater amounts of AHLs than the other species tested. Further studies showed that the BraR protein of B. phymatum is more promiscuous than other BraR proteins, responding equally well to several different AHL molecules, even at low concentrations. Transcriptome studies with Burkholderia xenovorans LB400 and B. phymatum STM815 revealed that the BraI/R regulon is species specific, with exopolysaccharide production being the only common phenotype regulated by this system in the PBE cluster. In addition, BraI/R was shown not to be important for plant nodulation by B. phymatum strains or for endophytic colonization and growth promotion of maize by B. phytofirmans PsJN. PMID:23686262

  14. Using smartphone technology to deliver a virtual pedestrian environment: usability and validation.

    PubMed

    Schwebel, David C; Severson, Joan; He, Yefei

    2017-09-01

    Various programs effectively teach children to cross streets more safely, but all are labor- and cost-intensive. Recent developments in mobile phone technology offer opportunity to deliver virtual reality pedestrian environments to mobile smartphone platforms. Such an environment may offer a cost- and labor-effective strategy to teach children to cross streets safely. This study evaluated usability, feasibility, and validity of a smartphone-based virtual pedestrian environment. A total of 68 adults completed 12 virtual crossings within each of two virtual pedestrian environments, one delivered by smartphone and the other a semi-immersive kiosk virtual environment. Participants completed self-report measures of perceived realism and simulator sickness experienced in each virtual environment, plus self-reported demographic and personality characteristics. All participants followed system instructions and used the smartphone-based virtual environment without difficulty. No significant simulator sickness was reported or observed. Users rated the smartphone virtual environment as highly realistic. Convergent validity was detected, with many aspects of pedestrian behavior in the smartphone-based virtual environment matching behavior in the kiosk virtual environment. Anticipated correlations between personality and kiosk virtual reality pedestrian behavior emerged for the smartphone-based system. A smartphone-based virtual environment can be usable and valid. Future research should develop and evaluate such a training system.

  15. Learning Rationales and Virtual Reality Technology in Education.

    ERIC Educational Resources Information Center

    Chiou, Guey-Fa

    1995-01-01

    Defines and describes virtual reality technology and differentiates between virtual learning environment, learning material, and learning tools. Links learning rationales to virtual reality technology to pave conceptual foundations for application of virtual reality technology education. Constructivism, case-based learning, problem-based learning,…

  16. A web-based platform for virtual screening.

    PubMed

    Watson, Paul; Verdonk, Marcel; Hartshorn, Michael J

    2003-09-01

    A fully integrated, web-based, virtual screening platform has been developed to allow rapid virtual screening of large numbers of compounds. ORACLE is used to store information at all stages of the process. The system includes a large database of historical compounds from high throughput screenings (HTS) chemical suppliers, ATLAS, containing over 3.1 million unique compounds with their associated physiochemical properties (ClogP, MW, etc.). The database can be screened using a web-based interface to produce compound subsets for virtual screening or virtual library (VL) enumeration. In order to carry out the latter task within ORACLE a reaction data cartridge has been developed. Virtual libraries can be enumerated rapidly using the web-based interface to the cartridge. The compound subsets can be seamlessly submitted for virtual screening experiments, and the results can be viewed via another web-based interface allowing ad hoc querying of the virtual screening data stored in ORACLE.

  17. Study on virtual instrument developing system based on intelligent virtual control

    NASA Astrophysics Data System (ADS)

    Tang, Baoping; Cheng, Fabin; Qin, Shuren

    2005-01-01

    The paper introduces a non-programming developing system of a virtual instument (VI), i.e., a virtual measurement instrument developing system (VMIDS) based on intelligent virtual control (IVC). The background of the IVC-based VMIDS is described briefly, and the hierarchical message bus (HMB)-based software architecture of VMIDS is discussed in detail. The three parts and functions of VMIDS are introduced, and the process of non-programming developing VI is further described.

  18. Walking training associated with virtual reality-based training increases walking speed of individuals with chronic stroke: systematic review with meta-analysis.

    PubMed

    Rodrigues-Baroni, Juliana M; Nascimento, Lucas R; Ada, Louise; Teixeira-Salmela, Luci F

    2014-01-01

    To systematically review the available evidence on the efficacy of walking training associated with virtual reality-based training in patients with stroke. The specific questions were: Is walking training associated with virtual reality-based training effective in increasing walking speed after stroke? Is this type of intervention more effective in increasing walking speed, than non-virtual reality-based walking interventions? A systematic review with meta-analysis of randomized clinical trials was conducted. Participants were adults with chronic stroke and the experimental intervention was walking training associated with virtual reality-based training to increase walking speed. The outcome data regarding walking speed were extracted from the eligible trials and were combined using a meta-analysis approach. Seven trials representing eight comparisons were included in this systematic review. Overall, the virtual reality-based training increased walking speed by 0.17 m/s (IC 95% 0.08 to 0.26), compared with placebo/nothing or non-walking interventions. In addition, the virtual reality-based training increased walking speed by 0.15 m/s (IC 95% 0.05 to 0.24), compared with non-virtual reality walking interventions. This review provided evidence that walking training associated with virtual reality-based training was effective in increasing walking speed after stroke, and resulted in better results than non-virtual reality interventions.

  19. Walking training associated with virtual reality-based training increases walking speed of individuals with chronic stroke: systematic review with meta-analysis

    PubMed Central

    Rodrigues-Baroni, Juliana M.; Nascimento, Lucas R.; Ada, Louise; Teixeira-Salmela, Luci F.

    2014-01-01

    OBJECTIVE: To systematically review the available evidence on the efficacy of walking training associated with virtual reality-based training in patients with stroke. The specific questions were: Is walking training associated with virtual reality-based training effective in increasing walking speed after stroke? Is this type of intervention more effective in increasing walking speed, than non-virtual reality-based walking interventions? METHOD: A systematic review with meta-analysis of randomized clinical trials was conducted. Participants were adults with chronic stroke and the experimental intervention was walking training associated with virtual reality-based training to increase walking speed. The outcome data regarding walking speed were extracted from the eligible trials and were combined using a meta-analysis approach. RESULTS: Seven trials representing eight comparisons were included in this systematic review. Overall, the virtual reality-based training increased walking speed by 0.17 m/s (IC 95% 0.08 to 0.26), compared with placebo/nothing or non-walking interventions. In addition, the virtual reality-based training increased walking speed by 0.15 m/s (IC 95% 0.05 to 0.24), compared with non-virtual reality walking interventions. CONCLUSIONS: This review provided evidence that walking training associated with virtual reality-based training was effective in increasing walking speed after stroke, and resulted in better results than non-virtual reality interventions. PMID:25590442

  20. Effects of virtual reality-based bilateral upper-extremity training on brain activity in post-stroke patients.

    PubMed

    Lee, Su-Hyun; Kim, Yu-Mi; Lee, Byoung-Hee

    2015-07-01

    [Purpose] This study investigated the therapeutic effects of virtual reality-based bilateral upper-extremity training on brain activity in patients with stroke. [Subjects and Methods] Eighteen chronic stroke patients were divided into two groups: the virtual reality-based bilateral upper-extremity training group (n = 10) and the bilateral upper-limb training group (n = 8). The virtual reality-based bilateral upper-extremity training group performed bilateral upper-extremity exercises in a virtual reality environment, while the bilateral upper-limb training group performed only bilateral upper-extremity exercise. All training was conducted 30 minutes per day, three times per week for six weeks, followed by brain activity evaluation. [Results] Electroencephalography showed significant increases in concentration in the frontopolar 2 and frontal 4 areas, and significant increases in brain activity in the frontopolar 1 and frontal 3 areas in the virtual reality-based bilateral upper-extremity training group. [Conclusion] Virtual reality-based bilateral upper-extremity training can improve the brain activity of stroke patients. Thus, virtual reality-based bilateral upper-extremity training is feasible and beneficial for improving brain activation in stroke patients.

  1. A Virtual Reality-Based Simulation of Abdominal Surgery

    DTIC Science & Technology

    1994-06-30

    415) 591-7881 In! IhNiI 1 SHORT TITLE: A Virtual Reality -Based Simulation of Abdominal Surgery REPORTING PERIOD: October 31, 1993-June 30, 1994 The...Report - A Virtual Reality -Based Simulation Of Abdominal Surgery Page 2 June 21, 1994 TECHNICAL REPORT SUMMARY Virtual Reality is a marriage between...applications of this technology. Virtual reality systems can be used to teach surgical anatomy, diagnose surgical problems, plan operations. simulate and

  2. Photorealistic virtual anatomy based on Chinese Visible Human data.

    PubMed

    Heng, P A; Zhang, S X; Xie, Y M; Wong, T T; Chui, Y P; Cheng, C Y

    2006-04-01

    Virtual reality based learning of human anatomy is feasible when a database of 3D organ models is available for the learner to explore, visualize, and dissect in virtual space interactively. In this article, we present our latest work on photorealistic virtual anatomy applications based on the Chinese Visible Human (CVH) data. We have focused on the development of state-of-the-art virtual environments that feature interactive photo-realistic visualization and dissection of virtual anatomical models constructed from ultra-high resolution CVH datasets. We also outline our latest progress in applying these highly accurate virtual and functional organ models to generate realistic look and feel to advanced surgical simulators. (c) 2006 Wiley-Liss, Inc.

  3. The Virtual Desktop: Options and Challenges in Selecting a Secure Desktop Infrastructure Based on Virtualization

    DTIC Science & Technology

    2011-10-01

    Fortunately, some products offer centralized management and deployment tools for local desktop implementation . Figure 5 illustrates the... implementation of a secure desktop infrastructure based on virtualization. It includes an overview of desktop virtualization, including an in-depth...environment in the data centre, whereas LHVD places it on the endpoint itself. Desktop virtualization implementation considerations and potential

  4. Delay-based virtual congestion control in multi-tenant datacenters

    NASA Astrophysics Data System (ADS)

    Liu, Yuxin; Zhu, Danhong; Zhang, Dong

    2018-03-01

    With the evolution of cloud computing and virtualization, the congestion control of virtual datacenters has become the basic issue for multi-tenant datacenters transmission. Regarding to the friendly conflict of heterogeneous congestion control among multi-tenant, this paper proposes a delay-based virtual congestion control, which translates the multi-tenant heterogeneous congestion control into delay-based feedback uniformly by setting the hypervisor translation layer, modifying three-way handshake of explicit feedback and packet loss feedback and throttling receive window. The simulation results show that the delay-based virtual congestion control can effectively solve the unfairness of heterogeneous feedback congestion control algorithms.

  5. Sense of presence and anxiety during virtual social interactions between a human and virtual humans.

    PubMed

    Morina, Nexhmedin; Brinkman, Willem-Paul; Hartanto, Dwi; Emmelkamp, Paul M G

    2014-01-01

    Virtual reality exposure therapy (VRET) has been shown to be effective in treatment of anxiety disorders. Yet, there is lack of research on the extent to which interaction between the individual and virtual humans can be successfully implanted to increase levels of anxiety for therapeutic purposes. This proof-of-concept pilot study aimed at examining levels of the sense of presence and anxiety during exposure to virtual environments involving social interaction with virtual humans and using different virtual reality displays. A non-clinical sample of 38 participants was randomly assigned to either a head-mounted display (HMD) with motion tracker and sterescopic view condition or a one-screen projection-based virtual reality display condition. Participants in both conditions engaged in free speech dialogues with virtual humans controlled by research assistants. It was hypothesized that exposure to virtual social interactions will elicit moderate levels of sense of presence and anxiety in both groups. Further it was expected that participants in the HMD condition will report higher scores of sense of presence and anxiety than participants in the one-screen projection-based display condition. Results revealed that in both conditions virtual social interactions were associated with moderate levels of sense of presence and anxiety. Additionally, participants in the HMD condition reported significantly higher levels of presence than those in the one-screen projection-based display condition (p = .001). However, contrary to the expectations neither the average level of anxiety nor the highest level of anxiety during exposure to social virtual environments differed between the groups (p = .97 and p = .75, respectively). The findings suggest that virtual social interactions can be successfully applied in VRET to enhance sense of presence and anxiety. Furthermore, our results indicate that one-screen projection-based displays can successfully activate levels of anxiety in social virtual environments. The outcome can prove helpful in using low-cost projection-based virtual reality environments for treating individuals with social phobia.

  6. Virtual Reality: Toward Fundamental Improvements in Simulation-Based Training.

    ERIC Educational Resources Information Center

    Thurman, Richard A.; Mattoon, Joseph S.

    1994-01-01

    Considers the role and effectiveness of virtual reality in simulation-based training. The theoretical and practical implications of verity, integration, and natural versus artificial interface are discussed; a three-dimensional classification scheme for virtual reality is described; and the relationship between virtual reality and other…

  7. Development of a virtual speaking simulator using Image Based Rendering.

    PubMed

    Lee, J M; Kim, H; Oh, M J; Ku, J H; Jang, D P; Kim, I Y; Kim, S I

    2002-01-01

    The fear of speaking is often cited as the world's most common social phobia. The rapid growth of computer technology has enabled the use of virtual reality (VR) for the treatment of the fear of public speaking. There are two techniques for building virtual environments for the treatment of this fear: a model-based and a movie-based method. Both methods have the weakness that they are unrealistic and not controllable individually. To understand these disadvantages, this paper presents a virtual environment produced with Image Based Rendering (IBR) and a chroma-key simultaneously. IBR enables the creation of realistic virtual environments where the images are stitched panoramically with the photos taken from a digital camera. And the use of chroma-keys puts virtual audience members under individual control in the environment. In addition, real time capture technique is used in constructing the virtual environments enabling spoken interaction between the subject and a therapist or another subject.

  8. Stepping into the virtual unknown: feasibility study of a virtual reality-based test of ocular misalignment.

    PubMed

    Nesaratnam, N; Thomas, P; Vivian, A

    2017-10-01

    IntroductionDissociated tests of strabismus provide valuable information for diagnosis and monitoring of ocular misalignment in patients with normal retinal correspondence. However, they are vulnerable to operator error and rely on a fixed head position. Virtual reality headsets obviate the need for head fixation, while providing other clear theoretical advantages, including complete control over the illumination and targets presented for the patient's interaction.PurposeWe compared the performance of a virtual reality-based test of ocular misalignment to that of the traditional Lees screen, to establish the feasibility of using virtual reality technology in ophthalmic settings in the future.MethodsThree patients underwent a traditional Lees screen test, and a virtual reality headset-based test of ocular motility. The virtual reality headset-based programme consisted of an initial test to measure horizontal and vertical deviation, followed by a test for torsion.ResultsThe pattern of deviation obtained using the virtual reality-based test showed agreement with that obtained from the Lees screen for patients with a fourth nerve palsy, comitant esotropia, and restrictive thyroid eye disease.ConclusionsThis study reports the first use of a virtual reality headset in assessing ocular misalignment, and demonstrates that it is a feasible dissociative test of strabismus.

  9. Realistic terrain visualization based on 3D virtual world technology

    NASA Astrophysics Data System (ADS)

    Huang, Fengru; Lin, Hui; Chen, Bin; Xiao, Cai

    2009-09-01

    The rapid advances in information technologies, e.g., network, graphics processing, and virtual world, have provided challenges and opportunities for new capabilities in information systems, Internet applications, and virtual geographic environments, especially geographic visualization and collaboration. In order to achieve meaningful geographic capabilities, we need to explore and understand how these technologies can be used to construct virtual geographic environments to help to engage geographic research. The generation of three-dimensional (3D) terrain plays an important part in geographical visualization, computer simulation, and virtual geographic environment applications. The paper introduces concepts and technologies of virtual worlds and virtual geographic environments, explores integration of realistic terrain and other geographic objects and phenomena of natural geographic environment based on SL/OpenSim virtual world technologies. Realistic 3D terrain visualization is a foundation of construction of a mirror world or a sand box model of the earth landscape and geographic environment. The capabilities of interaction and collaboration on geographic information are discussed as well. Further virtual geographic applications can be developed based on the foundation work of realistic terrain visualization in virtual environments.

  10. Realistic terrain visualization based on 3D virtual world technology

    NASA Astrophysics Data System (ADS)

    Huang, Fengru; Lin, Hui; Chen, Bin; Xiao, Cai

    2010-11-01

    The rapid advances in information technologies, e.g., network, graphics processing, and virtual world, have provided challenges and opportunities for new capabilities in information systems, Internet applications, and virtual geographic environments, especially geographic visualization and collaboration. In order to achieve meaningful geographic capabilities, we need to explore and understand how these technologies can be used to construct virtual geographic environments to help to engage geographic research. The generation of three-dimensional (3D) terrain plays an important part in geographical visualization, computer simulation, and virtual geographic environment applications. The paper introduces concepts and technologies of virtual worlds and virtual geographic environments, explores integration of realistic terrain and other geographic objects and phenomena of natural geographic environment based on SL/OpenSim virtual world technologies. Realistic 3D terrain visualization is a foundation of construction of a mirror world or a sand box model of the earth landscape and geographic environment. The capabilities of interaction and collaboration on geographic information are discussed as well. Further virtual geographic applications can be developed based on the foundation work of realistic terrain visualization in virtual environments.

  11. Evolution-based Virtual Content Insertion with Visually Virtual Interactions in Videos

    NASA Astrophysics Data System (ADS)

    Chang, Chia-Hu; Wu, Ja-Ling

    With the development of content-based multimedia analysis, virtual content insertion has been widely used and studied for video enrichment and multimedia advertising. However, how to automatically insert a user-selected virtual content into personal videos in a less-intrusive manner, with an attractive representation, is a challenging problem. In this chapter, we present an evolution-based virtual content insertion system which can insert virtual contents into videos with evolved animations according to predefined behaviors emulating the characteristics of evolutionary biology. The videos are considered not only as carriers of message conveyed by the virtual content but also as the environment in which the lifelike virtual contents live. Thus, the inserted virtual content will be affected by the videos to trigger a series of artificial evolutions and evolve its appearances and behaviors while interacting with video contents. By inserting virtual contents into videos through the system, users can easily create entertaining storylines and turn their personal videos into visually appealing ones. In addition, it would bring a new opportunity to increase the advertising revenue for video assets of the media industry and online video-sharing websites.

  12. Research and Development of Web-Based Virtual Online Classroom

    ERIC Educational Resources Information Center

    Yang, Zongkai; Liu, Qingtang

    2007-01-01

    To build a web-based virtual learning environment depends on information technologies, concerns technology supporting learning methods and theories. A web-based virtual online classroom is designed and developed based on learning theories and streaming media technologies. And it is composed of two parts: instructional communicating environment…

  13. Web-based Three-dimensional Virtual Body Structures: W3D-VBS

    PubMed Central

    Temkin, Bharti; Acosta, Eric; Hatfield, Paul; Onal, Erhan; Tong, Alex

    2002-01-01

    Major efforts are being made to improve the teaching of human anatomy to foster cognition of visuospatial relationships. The Visible Human Project of the National Library of Medicine makes it possible to create virtual reality-based applications for teaching anatomy. Integration of traditional cadaver and illustration-based methods with Internet-based simulations brings us closer to this goal. Web-based three-dimensional Virtual Body Structures (W3D-VBS) is a next-generation immersive anatomical training system for teaching human anatomy over the Internet. It uses Visible Human data to dynamically explore, select, extract, visualize, manipulate, and stereoscopically palpate realistic virtual body structures with a haptic device. Tracking user’s progress through evaluation tools helps customize lesson plans. A self-guided “virtual tour” of the whole body allows investigation of labeled virtual dissections repetitively, at any time and place a user requires it. PMID:12223495

  14. Web-based three-dimensional Virtual Body Structures: W3D-VBS.

    PubMed

    Temkin, Bharti; Acosta, Eric; Hatfield, Paul; Onal, Erhan; Tong, Alex

    2002-01-01

    Major efforts are being made to improve the teaching of human anatomy to foster cognition of visuospatial relationships. The Visible Human Project of the National Library of Medicine makes it possible to create virtual reality-based applications for teaching anatomy. Integration of traditional cadaver and illustration-based methods with Internet-based simulations brings us closer to this goal. Web-based three-dimensional Virtual Body Structures (W3D-VBS) is a next-generation immersive anatomical training system for teaching human anatomy over the Internet. It uses Visible Human data to dynamically explore, select, extract, visualize, manipulate, and stereoscopically palpate realistic virtual body structures with a haptic device. Tracking user's progress through evaluation tools helps customize lesson plans. A self-guided "virtual tour" of the whole body allows investigation of labeled virtual dissections repetitively, at any time and place a user requires it.

  15. Virtual reality measures in neuropsychological assessment: a meta-analytic review.

    PubMed

    Neguț, Alexandra; Matu, Silviu-Andrei; Sava, Florin Alin; David, Daniel

    2016-02-01

    Virtual reality-based assessment is a new paradigm for neuropsychological evaluation, that might provide an ecological assessment, compared to paper-and-pencil or computerized neuropsychological assessment. Previous research has focused on the use of virtual reality in neuropsychological assessment, but no meta-analysis focused on the sensitivity of virtual reality-based measures of cognitive processes in measuring cognitive processes in various populations. We found eighteen studies that compared the cognitive performance between clinical and healthy controls on virtual reality measures. Based on a random effects model, the results indicated a large effect size in favor of healthy controls (g = .95). For executive functions, memory and visuospatial analysis, subgroup analysis revealed moderate to large effect sizes, with superior performance in the case of healthy controls. Participants' mean age, type of clinical condition, type of exploration within virtual reality environments, and the presence of distractors were significant moderators. Our findings support the sensitivity of virtual reality-based measures in detecting cognitive impairment. They highlight the possibility of using virtual reality measures for neuropsychological assessment in research applications, as well as in clinical practice.

  16. The role of virtual articulator in prosthetic and restorative dentistry.

    PubMed

    Koralakunte, Pavankumar Ravi; Aljanakh, Mohammad

    2014-07-01

    Virtual reality is a computer based technology linked with the future of dentistry and dental practice. The virtual articulator is one such application in prosthetic and restorative dentistry based on virtual reality that will significantly reduce the limitations of the mechanical articulator, and by simulation of real patient data, allow analyses with regard to static and dynamic occlusion as well as to jaw relation. It is the purpose of this article to present the concepts and strategies for a future replacement of the mechanical articulator by a virtual one. Also, a brief note on virtual reality haptic system has been highlighted along with newly developed touch enabled virtual articulator.

  17. Interference Cognizant Network Scheduling

    NASA Technical Reports Server (NTRS)

    Hall, Brendan (Inventor); Bonk, Ted (Inventor); DeLay, Benjamin F. (Inventor); Varadarajan, Srivatsan (Inventor); Smithgall, William Todd (Inventor)

    2017-01-01

    Systems and methods for interference cognizant network scheduling are provided. In certain embodiments, a method of scheduling communications in a network comprises identifying a bin of a global timeline for scheduling an unscheduled virtual link, wherein a bin is a segment of the timeline; identifying a pre-scheduled virtual link in the bin; and determining if the pre-scheduled and unscheduled virtual links share a port. In certain embodiments, if the unscheduled and pre-scheduled virtual links don't share a port, scheduling transmission of the unscheduled virtual link to overlap with the scheduled transmission of the pre-scheduled virtual link; and if the unscheduled and pre-scheduled virtual links share a port: determining a start time delay for the unscheduled virtual link based on the port; and scheduling transmission of the unscheduled virtual link in the bin based on the start time delay to overlap part of the scheduled transmission of the pre-scheduled virtual link.

  18. Real-time interactive virtual tour on the World Wide Web (WWW)

    NASA Astrophysics Data System (ADS)

    Yoon, Sanghyuk; Chen, Hai-jung; Hsu, Tom; Yoon, Ilmi

    2003-12-01

    Web-based Virtual Tour has become a desirable and demanded application, yet challenging due to the nature of web application's running environment such as limited bandwidth and no guarantee of high computation power on the client side. Image-based rendering approach has attractive advantages over traditional 3D rendering approach in such Web Applications. Traditional approach, such as VRML, requires labor-intensive 3D modeling process, high bandwidth and computation power especially for photo-realistic virtual scenes. QuickTime VR and IPIX as examples of image-based approach, use panoramic photos and the virtual scenes that can be generated from photos directly skipping the modeling process. But, these image-based approaches may require special cameras or effort to take panoramic views and provide only one fixed-point look-around and zooming in-out rather than 'walk around', that is a very important feature to provide immersive experience to virtual tourists. The Web-based Virtual Tour using Tour into the Picture employs pseudo 3D geometry with image-based rendering approach to provide viewers with immersive experience of walking around the virtual space with several snap shots of conventional photos.

  19. A Virtual Campus Based on Human Factor Engineering

    ERIC Educational Resources Information Center

    Yang, Yuting; Kang, Houliang

    2014-01-01

    Three Dimensional or 3D virtual reality has become increasingly popular in many areas, especially in building a digital campus. This paper introduces a virtual campus, which is based on a 3D model of The Tourism and Culture College of Yunnan University (TCYU). Production of the virtual campus was aided by Human Factor and Ergonomics (HF&E), an…

  20. Hierarchical virtual screening approaches in small molecule drug discovery.

    PubMed

    Kumar, Ashutosh; Zhang, Kam Y J

    2015-01-01

    Virtual screening has played a significant role in the discovery of small molecule inhibitors of therapeutic targets in last two decades. Various ligand and structure-based virtual screening approaches are employed to identify small molecule ligands for proteins of interest. These approaches are often combined in either hierarchical or parallel manner to take advantage of the strength and avoid the limitations associated with individual methods. Hierarchical combination of ligand and structure-based virtual screening approaches has received noteworthy success in numerous drug discovery campaigns. In hierarchical virtual screening, several filters using ligand and structure-based approaches are sequentially applied to reduce a large screening library to a number small enough for experimental testing. In this review, we focus on different hierarchical virtual screening strategies and their application in the discovery of small molecule modulators of important drug targets. Several virtual screening studies are discussed to demonstrate the successful application of hierarchical virtual screening in small molecule drug discovery. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Incorporating Virtual Reactions into a Logic-based Ligand-based Virtual Screening Method to Discover New Leads

    PubMed Central

    Reynolds, Christopher R; Muggleton, Stephen H; Sternberg, Michael J E

    2015-01-01

    The use of virtual screening has become increasingly central to the drug development pipeline, with ligand-based virtual screening used to screen databases of compounds to predict their bioactivity against a target. These databases can only represent a small fraction of chemical space, and this paper describes a method of exploring synthetic space by applying virtual reactions to promising compounds within a database, and generating focussed libraries of predicted derivatives. A ligand-based virtual screening tool Investigational Novel Drug Discovery by Example (INDDEx) is used as the basis for a system of virtual reactions. The use of virtual reactions is estimated to open up a potential space of 1.21×1012 potential molecules. A de novo design algorithm known as Partial Logical-Rule Reactant Selection (PLoRRS) is introduced and incorporated into the INDDEx methodology. PLoRRS uses logical rules from the INDDEx model to select reactants for the de novo generation of potentially active products. The PLoRRS method is found to increase significantly the likelihood of retrieving molecules similar to known actives with a p-value of 0.016. Case studies demonstrate that the virtual reactions produce molecules highly similar to known actives, including known blockbuster drugs. PMID:26583052

  2. Engineering Laboratory Instruction in Virtual Environment--"eLIVE"

    ERIC Educational Resources Information Center

    Chaturvedi, Sushil; Prabhakaran, Ramamurthy; Yoon, Jaewan; Abdel-Salam, Tarek

    2011-01-01

    A novel application of web-based virtual laboratories to prepare students for physical experiments is explored in some detail. The pedagogy of supplementing physical laboratory with web-based virtual laboratories is implemented by developing a web-based tool, designated in this work as "eLIVE", an acronym for Engineering Laboratory…

  3. Simplified Virtualization in a HEP/NP Environment with Condor

    NASA Astrophysics Data System (ADS)

    Strecker-Kellogg, W.; Caramarcu, C.; Hollowell, C.; Wong, T.

    2012-12-01

    In this work we will address the development of a simple prototype virtualized worker node cluster, using Scientific Linux 6.x as a base OS, KVM and the libvirt API for virtualization, and the Condor batch software to manage virtual machines. The discussion in this paper provides details on our experience with building, configuring, and deploying the various components from bare metal, including the base OS, creation and distribution of the virtualized OS images and the integration of batch services with the virtual machines. Our focus was on simplicity and interoperability with our existing architecture.

  4. The Role of Virtual Articulator in Prosthetic and Restorative Dentistry

    PubMed Central

    Aljanakh, Mohammad

    2014-01-01

    Virtual reality is a computer based technology linked with the future of dentistry and dental practice. The virtual articulator is one such application in prosthetic and restorative dentistry based on virtual reality that will significantly reduce the limitations of the mechanical articulator, and by simulation of real patient data, allow analyses with regard to static and dynamic occlusion as well as to jaw relation. It is the purpose of this article to present the concepts and strategies for a future replacement of the mechanical articulator by a virtual one. Also, a brief note on virtual reality haptic system has been highlighted along with newly developed touch enabled virtual articulator. PMID:25177664

  5. Cognitive training on stroke patients via virtual reality-based serious games.

    PubMed

    Gamito, Pedro; Oliveira, Jorge; Coelho, Carla; Morais, Diogo; Lopes, Paulo; Pacheco, José; Brito, Rodrigo; Soares, Fabio; Santos, Nuno; Barata, Ana Filipa

    2017-02-01

    Use of virtual reality environments in cognitive rehabilitation offers cost benefits and other advantages. In order to test the effectiveness of a virtual reality application for neuropsychological rehabilitation, a cognitive training program using virtual reality was applied to stroke patients. A virtual reality-based serious games application for cognitive training was developed, with attention and memory tasks consisting of daily life activities. Twenty stroke patients were randomly assigned to two conditions: exposure to the intervention, and waiting list control. The results showed significant improvements in attention and memory functions in the intervention group, but not in the controls. Overall findings provide further support for the use of VR cognitive training applications in neuropsychological rehabilitation. Implications for Rehabilitation Improvements in memory and attention functions following a virtual reality-based serious games intervention. Training of daily-life activities using a virtual reality application. Accessibility to training contents.

  6. Architecture of web services in the enhancement of real-time 3D video virtualization in cloud environment

    NASA Astrophysics Data System (ADS)

    Bada, Adedayo; Wang, Qi; Alcaraz-Calero, Jose M.; Grecos, Christos

    2016-04-01

    This paper proposes a new approach to improving the application of 3D video rendering and streaming by jointly exploring and optimizing both cloud-based virtualization and web-based delivery. The proposed web service architecture firstly establishes a software virtualization layer based on QEMU (Quick Emulator), an open-source virtualization software that has been able to virtualize system components except for 3D rendering, which is still in its infancy. The architecture then explores the cloud environment to boost the speed of the rendering at the QEMU software virtualization layer. The capabilities and inherent limitations of Virgil 3D, which is one of the most advanced 3D virtual Graphics Processing Unit (GPU) available, are analyzed through benchmarking experiments and integrated into the architecture to further speed up the rendering. Experimental results are reported and analyzed to demonstrate the benefits of the proposed approach.

  7. Exploring Virtual Reality for Classroom Use: The Virtual Reality and Education Lab at East Carolina University.

    ERIC Educational Resources Information Center

    Auld, Lawrence W. S.; Pantelidis, Veronica S.

    1994-01-01

    Describes the Virtual Reality and Education Lab (VREL) established at East Carolina University to study the implications of virtual reality for elementary and secondary education. Highlights include virtual reality software evaluation; hardware evaluation; computer-based curriculum objectives which could use virtual reality; and keeping current…

  8. Facilitating 3D Virtual World Learning Environments Creation by Non-Technical End Users through Template-Based Virtual World Instantiation

    ERIC Educational Resources Information Center

    Liu, Chang; Zhong, Ying; Ozercan, Sertac; Zhu, Qing

    2013-01-01

    This paper presents a template-based solution to overcome technical barriers non-technical computer end users face when developing functional learning environments in three-dimensional virtual worlds (3DVW). "iVirtualWorld," a prototype of a platform-independent 3DVW creation tool that implements the proposed solution, facilitates 3DVW…

  9. Pre-Service Teachers' Perspectives on Using Scenario-Based Virtual Worlds in Science Education

    ERIC Educational Resources Information Center

    Kennedy-Clark, Shannon

    2011-01-01

    This paper presents the findings of a study on the current knowledge and attitudes of pre-service teachers on the use of scenario-based multi-user virtual environments in science education. The 28 participants involved in the study were introduced to "Virtual Singapura," a multi-user virtual environment, and completed an open-ended questionnaire.…

  10. Shape-Based Virtual Screening with Volumetric Aligned Molecular Shapes

    PubMed Central

    Koes, David Ryan; Camacho, Carlos J.

    2014-01-01

    Shape-based virtual screening is an established and effective method for identifying small molecules that are similar in shape and function to a reference ligand. We describe a new method of shape-based virtual screening, volumetric aligned molecular shapes (VAMS). VAMS uses efficient data structures to encode and search molecular shapes. We demonstrate that VAMS is an effective method for shape-based virtual screening and that it can be successfully used as a pre-filter to accelerate more computationally demanding search algorithms. Unique to VAMS is a novel minimum/maximum shape constraint query for precisely specifying the desired molecular shape. Shape constraint searches in VAMS are particularly efficient and millions of shapes can be searched in a fraction of a second. We compare the performance of VAMS with two other shape-based virtual screening algorithms a benchmark of 102 protein targets consisting of more than 32 million molecular shapes and find that VAMS provides a competitive trade-off between run-time performance and virtual screening performance. PMID:25049193

  11. The Role of Semantics in Next-Generation Online Virtual World-Based Retail Store

    NASA Astrophysics Data System (ADS)

    Sharma, Geetika; Anantaram, C.; Ghosh, Hiranmay

    Online virtual environments are increasingly becoming popular for entrepreneurship. While interactions are primarily between avatars, some interactions could occur through intelligent chatbots. Such interactions require connecting to backend business applications to obtain information, carry out real-world transactions etc. In this paper, we focus on integrating business application systems with virtual worlds. We discuss the probable features of a next-generation online virtual world-based retail store and the technologies involved in realizing the features of such a store. In particular, we examine the role of semantics in integrating popular virtual worlds with business applications to provide natural language based interactions.

  12. Designing communication and remote controlling of virtual instrument network system

    NASA Astrophysics Data System (ADS)

    Lei, Lin; Wang, Houjun; Zhou, Xue; Zhou, Wenjian

    2005-01-01

    In this paper, a virtual instrument network through the LAN and finally remote control of virtual instruments is realized based on virtual instrument and LabWindows/CVI software platform. The virtual instrument network system is made up of three subsystems. There are server subsystem, telnet client subsystem and local instrument control subsystem. This paper introduced virtual instrument network structure in detail based on LabWindows. Application procedure design of virtual instrument network communication, the Client/the programming mode of the server, remote PC and server communication far realizing, the control power of the workstation is transmitted, server program and so on essential technical were introduced. And virtual instruments network may connect to entire Internet on. Above-mentioned technology, through measuring the application in the electronic measurement virtual instrument network that is already built up, has verified the actual using value of the technology. Experiment and application validate that this design is resultful.

  13. Spodoptera frugiperda (J.E. Smith) with field-evolved resistance to Bt maize are susceptible to Bt pesticides.

    PubMed

    Jakka, S R K; Knight, V R; Jurat-Fuentes, J L

    2014-10-01

    Field-evolved resistance to maize event TC1507 expressing the Cry1Fa toxin from Bacillus thuringiensis (Bt) was detected in populations of Spodoptera frugiperda from Puerto Rico. We tested for cross-resistance to purified Cry1A toxins and commercial Bt pesticides in susceptible (Benzon) and TC1507-resistant (456) strains of S. frugiperda. Larvae from the 456 strain exhibited cross-resistance to Cry1Ab and Cry1Ac toxins, while no differences in susceptibility to XenTari WG and DiPel ES pesticides were detected. These data support cross-resistance to toxins that share binding sites with Cry1Fa and no cross-resistance to Bt pesticides in S. frugiperda with field-evolved resistance to Bt maize. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. The Effect of Virtual versus Traditional Learning in Achieving Competency-Based Skills

    ERIC Educational Resources Information Center

    Mosalanejad, Leili; Shahsavari, Sakine; Sobhanian, Saeed; Dastpak, Mehdi

    2012-01-01

    Background: By rapid developing of the network technology, the internet-based learning methods are substituting the traditional classrooms making them expand to the virtual network learning environment. The purpose of this study was to determine the effectiveness of virtual systems on competency-based skills of first-year nursing students.…

  15. 77 FR 5008 - Solios Power Mid-Atlantic Virtual LLC; Supplemental Notice That Initial Market-Based Rate Filing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-01

    ...-referenced proceeding are accessible in the Commission's eLibrary system by clicking on the appropriate link... Mid-Atlantic Virtual LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request... of Solios Power Mid-Atlantic Virtual LLC's application for market-based rate authority, with an...

  16. Intelligent web agents for a 3D virtual community

    NASA Astrophysics Data System (ADS)

    Dave, T. M.; Zhang, Yanqing; Owen, G. S. S.; Sunderraman, Rajshekhar

    2003-08-01

    In this paper, we propose an Avatar-based intelligent agent technique for 3D Web based Virtual Communities based on distributed artificial intelligence, intelligent agent techniques, and databases and knowledge bases in a digital library. One of the goals of this joint NSF (IIS-9980130) and ACM SIGGRAPH Education Committee (ASEC) project is to create a virtual community of educators and students who have a common interest in comptuer graphics, visualization, and interactive techniqeus. In this virtual community (ASEC World) Avatars will represent the educators, students, and other visitors to the world. Intelligent agents represented as specially dressed Avatars will be available to assist the visitors to ASEC World. The basic Web client-server architecture of the intelligent knowledge-based avatars is given. Importantly, the intelligent Web agent software system for the 3D virtual community is implemented successfully.

  17. ChemScreener: A Distributed Computing Tool for Scaffold based Virtual Screening.

    PubMed

    Karthikeyan, Muthukumarasamy; Pandit, Deepak; Vyas, Renu

    2015-01-01

    In this work we present ChemScreener, a Java-based application to perform virtual library generation combined with virtual screening in a platform-independent distributed computing environment. ChemScreener comprises a scaffold identifier, a distinct scaffold extractor, an interactive virtual library generator as well as a virtual screening module for subsequently selecting putative bioactive molecules. The virtual libraries are annotated with chemophore-, pharmacophore- and toxicophore-based information for compound prioritization. The hits selected can then be further processed using QSAR, docking and other in silico approaches which can all be interfaced within the ChemScreener framework. As a sample application, in this work scaffold selectivity, diversity, connectivity and promiscuity towards six important therapeutic classes have been studied. In order to illustrate the computational power of the application, 55 scaffolds extracted from 161 anti-psychotic compounds were enumerated to produce a virtual library comprising 118 million compounds (17 GB) and annotated with chemophore, pharmacophore and toxicophore based features in a single step which would be non-trivial to perform with many standard software tools today on libraries of this size.

  18. Comparing Science Virtual and Paper-Based Test to Measure Students’ Critical Thinking based on VAK Learning Style Model

    NASA Astrophysics Data System (ADS)

    Rosyidah, T. H.; Firman, H.; Rusyati, L.

    2017-02-01

    This research was comparing virtual and paper-based test to measure students’ critical thinking based on VAK (Visual-Auditory-Kynesthetic) learning style model. Quasi experiment method with one group post-test only design is applied in this research in order to analyze the data. There was 40 eight grade students at one of public junior high school in Bandung becoming the sample in this research. The quantitative data was obtained through 26 questions about living thing and environment sustainability which is constructed based on the eight elements of critical thinking and be provided in the form of virtual and paper-based test. Based on analysis of the result, it is shown that within visual, auditory, and kinesthetic were not significantly difference in virtual and paper-based test. Besides, all result was supported by quistionnaire about students’ respond on virtual test which shows 3.47 in the scale of 4. Means that student showed positive respond in all aspet measured, which are interest, impression, and expectation.

  19. Psychological benefits of virtual reality for patients in rehabilitation therapy.

    PubMed

    Chen, Chih-Hung; Jeng, Ming-Chang; Fung, Chin-Ping; Doong, Ji-Liang; Chuang, Tien-Yow

    2009-05-01

    Whether virtual rehabilitation is beneficial has not been determined. To investigate the psychological benefits of virtual reality in rehabilitation. An experimental group underwent therapy with a virtual-reality-based exercise bike, and a control group underwent the therapy without virtual-reality equipment. Hospital laboratory. 30 patients suffering from spinal-cord injury. A designed rehabilitation therapy. Endurance, Borg's rating-of-perceived-exertion scale, the Activation-Deactivation Adjective Check List (AD-ACL), and the Simulator Sickness Questionnaire. The differences between the experimental and control groups were significant for AD-ACL calmness and tension. A virtual-reality-based rehabilitation program can ease patients' tension and induce calm.

  20. Innovative application of virtual display technique in virtual museum

    NASA Astrophysics Data System (ADS)

    Zhang, Jiankang

    2017-09-01

    Virtual museum refers to display and simulate the functions of real museum on the Internet in the form of 3 Dimensions virtual reality by applying interactive programs. Based on Virtual Reality Modeling Language, virtual museum building and its effective interaction with the offline museum lie in making full use of 3 Dimensions panorama technique, virtual reality technique and augmented reality technique, and innovatively taking advantages of dynamic environment modeling technique, real-time 3 Dimensions graphics generating technique, system integration technique and other key virtual reality techniques to make sure the overall design of virtual museum.3 Dimensions panorama technique, also known as panoramic photography or virtual reality, is a technique based on static images of the reality. Virtual reality technique is a kind of computer simulation system which can create and experience the interactive 3 Dimensions dynamic visual world. Augmented reality, also known as mixed reality, is a technique which simulates and mixes the information (visual, sound, taste, touch, etc.) that is difficult for human to experience in reality. These technologies make virtual museum come true. It will not only bring better experience and convenience to the public, but also be conducive to improve the influence and cultural functions of the real museum.

  1. Performance evaluation of structure based and ligand based virtual screening methods on ten selected anti-cancer targets.

    PubMed

    Ramasamy, Thilagavathi; Selvam, Chelliah

    2015-10-15

    Virtual screening has become an important tool in drug discovery process. Structure based and ligand based approaches are generally used in virtual screening process. To date, several benchmark sets for evaluating the performance of the virtual screening tool are available. In this study, our aim is to compare the performance of both structure based and ligand based virtual screening methods. Ten anti-cancer targets and their corresponding benchmark sets from 'Demanding Evaluation Kits for Objective In silico Screening' (DEKOIS) library were selected. X-ray crystal structures of protein-ligand complexes were selected based on their resolution. Openeye tools such as FRED, vROCS were used and the results were carefully analyzed. At EF1%, vROCS produced better results but at EF5% and EF10%, both FRED and ROCS produced almost similar results. It was noticed that the enrichment factor values were decreased while going from EF1% to EF5% and EF10% in many cases. Published by Elsevier Ltd.

  2. Virtual wall-based haptic-guided teleoperated surgical robotic system for single-port brain tumor removal surgery.

    PubMed

    Seung, Sungmin; Choi, Hongseok; Jang, Jongseong; Kim, Young Soo; Park, Jong-Oh; Park, Sukho; Ko, Seong Young

    2017-01-01

    This article presents a haptic-guided teleoperation for a tumor removal surgical robotic system, so-called a SIROMAN system. The system was developed in our previous work to make it possible to access tumor tissue, even those that seat deeply inside the brain, and to remove the tissue with full maneuverability. For a safe and accurate operation to remove only tumor tissue completely while minimizing damage to the normal tissue, a virtual wall-based haptic guidance together with a medical image-guided control is proposed and developed. The virtual wall is extracted from preoperative medical images, and the robot is controlled to restrict its motion within the virtual wall using haptic feedback. Coordinate transformation between sub-systems, a collision detection algorithm, and a haptic-guided teleoperation using a virtual wall are described in the context of using SIROMAN. A series of experiments using a simplified virtual wall are performed to evaluate the performance of virtual wall-based haptic-guided teleoperation. With haptic guidance, the accuracy of the robotic manipulator's trajectory is improved by 57% compared to one without. The tissue removal performance is also improved by 21% ( p < 0.05). The experiments show that virtual wall-based haptic guidance provides safer and more accurate tissue removal for single-port brain surgery.

  3. Virtual environments simulation in research reactor

    NASA Astrophysics Data System (ADS)

    Muhamad, Shalina Bt. Sheik; Bahrin, Muhammad Hannan Bin

    2017-01-01

    Virtual reality based simulations are interactive and engaging. It has the useful potential in improving safety training. Virtual reality technology can be used to train workers who are unfamiliar with the physical layout of an area. In this study, a simulation program based on the virtual environment at research reactor was developed. The platform used for virtual simulation is 3DVia software for which it's rendering capabilities, physics for movement and collision and interactive navigation features have been taken advantage of. A real research reactor was virtually modelled and simulated with the model of avatars adopted to simulate walking. Collision detection algorithms were developed for various parts of the 3D building and avatars to restrain the avatars to certain regions of the virtual environment. A user can control the avatar to move around inside the virtual environment. Thus, this work can assist in the training of personnel, as in evaluating the radiological safety of the research reactor facility.

  4. Optimizing Virtual Network Functions Placement in Virtual Data Center Infrastructure Using Machine Learning

    NASA Astrophysics Data System (ADS)

    Bolodurina, I. P.; Parfenov, D. I.

    2018-01-01

    We have elaborated a neural network model of virtual network flow identification based on the statistical properties of flows circulating in the network of the data center and characteristics that describe the content of packets transmitted through network objects. This enabled us to establish the optimal set of attributes to identify virtual network functions. We have established an algorithm for optimizing the placement of virtual data functions using the data obtained in our research. Our approach uses a hybrid method of visualization using virtual machines and containers, which enables to reduce the infrastructure load and the response time in the network of the virtual data center. The algorithmic solution is based on neural networks, which enables to scale it at any number of the network function copies.

  5. Evaluation of the cognitive effects of travel technique in complex real and virtual environments.

    PubMed

    Suma, Evan A; Finkelstein, Samantha L; Reid, Myra; V Babu, Sabarish; Ulinski, Amy C; Hodges, Larry F

    2010-01-01

    We report a series of experiments conducted to investigate the effects of travel technique on information gathering and cognition in complex virtual environments. In the first experiment, participants completed a non-branching multilevel 3D maze at their own pace using either real walking or one of two virtual travel techniques. In the second experiment, we constructed a real-world maze with branching pathways and modeled an identical virtual environment. Participants explored either the real or virtual maze for a predetermined amount of time using real walking or a virtual travel technique. Our results across experiments suggest that for complex environments requiring a large number of turns, virtual travel is an acceptable substitute for real walking if the goal of the application involves learning or reasoning based on information presented in the virtual world. However, for applications that require fast, efficient navigation or travel that closely resembles real-world behavior, real walking has advantages over common joystick-based virtual travel techniques.

  6. The comparison between science virtual and paper based test in measuring grade 7 students’ critical thinking

    NASA Astrophysics Data System (ADS)

    Dhitareka, P. H.; Firman, H.; Rusyati, L.

    2018-05-01

    This research is comparing science virtual and paper-based test in measuring grade 7 students’ critical thinking based on Multiple Intelligences and gender. Quasi experimental method with within-subjects design is conducted in this research in order to obtain the data. The population of this research was all seventh grade students in ten classes of one public secondary school in Bandung. There were 71 students within two classes taken randomly became the sample in this research. The data are obtained through 28 questions with a topic of living things and environmental sustainability constructed based on eight critical thinking elements proposed by Inch then the questions provided in science virtual and paper-based test. The data was analysed by using paired-samples t test when the data are parametric and Wilcoxon signed ranks test when the data are non-parametric. In general comparison, the p-value of the comparison between science virtual and paper-based tests’ score is 0.506, indicated that there are no significance difference between science virtual and paper-based test based on the tests’ score. The results are furthermore supported by the students’ attitude result which is 3.15 from the scale from 1 to 4, indicated that they have positive attitudes towards Science Virtual Test.

  7. Virtual network embedding in cross-domain network based on topology and resource attributes

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; Zhang, Zhizhong; Feng, Linlin; Liu, Lilan

    2018-03-01

    Aiming at the network architecture ossification and the diversity of access technologies issues, this paper researches the cross-domain virtual network embedding algorithm. By analysing the topological attribute from the local and global perspective of nodes in the virtual network and the physical network, combined with the local network resource property, we rank the embedding priority of the nodes with PCA and TOPSIS methods. Besides, the link load distribution is considered. Above all, We proposed an cross-domain virtual network embedding algorithm based on topology and resource attributes. The simulation results depicts that our algorithm increases the acceptance rate of multi-domain virtual network requests, compared with the existing virtual network embedding algorithm.

  8. Welcome to Wonderland: The Influence of the Size and Shape of a Virtual Hand On the Perceived Size and Shape of Virtual Objects

    PubMed Central

    Linkenauger, Sally A.; Leyrer, Markus; Bülthoff, Heinrich H.; Mohler, Betty J.

    2013-01-01

    The notion of body-based scaling suggests that our body and its action capabilities are used to scale the spatial layout of the environment. Here we present four studies supporting this perspective by showing that the hand acts as a metric which individuals use to scale the apparent sizes of objects in the environment. However to test this, one must be able to manipulate the size and/or dimensions of the perceiver’s hand which is difficult in the real world due to impliability of hand dimensions. To overcome this limitation, we used virtual reality to manipulate dimensions of participants’ fully-tracked, virtual hands to investigate its influence on the perceived size and shape of virtual objects. In a series of experiments, using several measures, we show that individuals’ estimations of the sizes of virtual objects differ depending on the size of their virtual hand in the direction consistent with the body-based scaling hypothesis. Additionally, we found that these effects were specific to participants’ virtual hands rather than another avatar’s hands or a salient familiar-sized object. While these studies provide support for a body-based approach to the scaling of the spatial layout, they also demonstrate the influence of virtual bodies on perception of virtual environments. PMID:23874681

  9. Cousins Virtual Jane and Virtual Joe, Extraordinary Virtual Helpers

    ERIC Educational Resources Information Center

    Blignaut, Seugnet; Nagel, Lynette

    2009-01-01

    Higher education institutions deliver web-based learning with varied success. The success rate of distributed online courses remains low. Factors such as ineffective course facilitation and insufficient communication contribute to the unfulfilled promises of web-based learning. Students consequently feel unmotivated. Instructor control and in the…

  10. Statistical virtual eye model based on wavefront aberration

    PubMed Central

    Wang, Jie-Mei; Liu, Chun-Ling; Luo, Yi-Ning; Liu, Yi-Guang; Hu, Bing-Jie

    2012-01-01

    Wavefront aberration affects the quality of retinal image directly. This paper reviews the representation and reconstruction of wavefront aberration, as well as the construction of virtual eye model based on Zernike polynomial coefficients. In addition, the promising prospect of virtual eye model is emphasized. PMID:23173112

  11. A virtual maintenance-based approach for satellite assembling and troubleshooting assessment

    NASA Astrophysics Data System (ADS)

    Geng, Jie; Li, Ying; Wang, Ranran; Wang, Zili; Lv, Chuan; Zhou, Dong

    2017-09-01

    In this study, a Virtual Maintenance (VM)-based approach for satellite troubleshooting assessment is proposed. By focusing on various elements in satellite assemble troubleshooting, such as accessibility, ergonomics, wiring, and extent of damage, a systematic, quantitative, and objective assessment model is established to decrease subjectivity in satellite assembling and troubleshooting assessment. Afterwards, based on the established assessment model and satellite virtual prototype, an application process of this model suitable for a virtual environment is presented. Finally, according to the application process, all the elements in satellite troubleshooting are analyzed and assessed. The corresponding improvements, which realize the transformation from a conventional way to a virtual simulation and assessment, are suggested, and the flaws in assembling and troubleshooting are revealed. Assembling or troubleshooting schemes can be improved in the early stage of satellite design with the help of a virtual prototype. Repetition in the practical operation is beneficial to companies as risk and cost are effectively reduced.

  12. Novel Hybrid Virtual Screening Protocol Based on Molecular Docking and Structure-Based Pharmacophore for Discovery of Methionyl-tRNA Synthetase Inhibitors as Antibacterial Agents

    PubMed Central

    Liu, Chi; He, Gu; Jiang, Qinglin; Han, Bo; Peng, Cheng

    2013-01-01

    Methione tRNA synthetase (MetRS) is an essential enzyme involved in protein biosynthesis in all living organisms and is a potential antibacterial target. In the current study, the structure-based pharmacophore (SBP)-guided method has been suggested to generate a comprehensive pharmacophore of MetRS based on fourteen crystal structures of MetRS-inhibitor complexes. In this investigation, a hybrid protocol of a virtual screening method, comprised of pharmacophore model-based virtual screening (PBVS), rigid and flexible docking-based virtual screenings (DBVS), is used for retrieving new MetRS inhibitors from commercially available chemical databases. This hybrid virtual screening approach was then applied to screen the Specs (202,408 compounds) database, a structurally diverse chemical database. Fifteen hit compounds were selected from the final hits and shifted to experimental studies. These results may provide important information for further research of novel MetRS inhibitors as antibacterial agents. PMID:23839093

  13. An investigation of the efficacy of collaborative virtual reality systems for moderated remote usability testing.

    PubMed

    Chalil Madathil, Kapil; Greenstein, Joel S

    2017-11-01

    Collaborative virtual reality-based systems have integrated high fidelity voice-based communication, immersive audio and screen-sharing tools into virtual environments. Such three-dimensional collaborative virtual environments can mirror the collaboration among usability test participants and facilitators when they are physically collocated, potentially enabling moderated usability tests to be conducted effectively when the facilitator and participant are located in different places. We developed a virtual collaborative three-dimensional remote moderated usability testing laboratory and employed it in a controlled study to evaluate the effectiveness of moderated usability testing in a collaborative virtual reality-based environment with two other moderated usability testing methods: the traditional lab approach and Cisco WebEx, a web-based conferencing and screen sharing approach. Using a mixed methods experimental design, 36 test participants and 12 test facilitators were asked to complete representative tasks on a simulated online shopping website. The dependent variables included the time taken to complete the tasks; the usability defects identified and their severity; and the subjective ratings on the workload index, presence and satisfaction questionnaires. Remote moderated usability testing methodology using a collaborative virtual reality system performed similarly in terms of the total number of defects identified, the number of high severity defects identified and the time taken to complete the tasks with the other two methodologies. The overall workload experienced by the test participants and facilitators was the least with the traditional lab condition. No significant differences were identified for the workload experienced with the virtual reality and the WebEx conditions. However, test participants experienced greater involvement and a more immersive experience in the virtual environment than in the WebEx condition. The ratings for the virtual environment condition were not significantly different from those for the traditional lab condition. The results of this study suggest that participants were productive and enjoyed the virtual lab condition, indicating the potential of a virtual world based approach as an alternative to conventional approaches for synchronous usability testing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. High-numerical-aperture-based virtual point detectors for photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Li, Changhui; Wang, Lihong V.

    2008-07-01

    The focal point of a high-numerical-aperture (NA) ultrasonic transducer can be used as a virtual point detector. This virtual point detector detects omnidirectionally over a wide acceptance angle. It also combines a large active transducer surface and a small effective virtual detector size. Thus the sensitivity is high compared with that of a real point detector, and the aperture effect is small compared with that of a finite size transducer. We present two kinds of high-NA-based virtual point detectors and their successful application in photoacoustic tomography. They can also be applied in other ultrasound-related fields.

  15. Synchronized Pair Configuration in Virtualization-Based Lab for Learning Computer Networks

    ERIC Educational Resources Information Center

    Kongcharoen, Chaknarin; Hwang, Wu-Yuin; Ghinea, Gheorghita

    2017-01-01

    More studies are concentrating on using virtualization-based labs to facilitate computer or network learning concepts. Some benefits are lower hardware costs and greater flexibility in reconfiguring computer and network environments. However, few studies have investigated effective mechanisms for using virtualization fully for collaboration.…

  16. Designing a Virtual-Reality-Based, Gamelike Math Learning Environment

    ERIC Educational Resources Information Center

    Xu, Xinhao; Ke, Fengfeng

    2016-01-01

    This exploratory study examined the design issues related to a virtual-reality-based, gamelike learning environment (VRGLE) developed via OpenSimulator, an open-source virtual reality server. The researchers collected qualitative data to examine the VRGLE's usability, playability, and content integration for math learning. They found it important…

  17. Virtualization for Cost-Effective Teaching of Assembly Language Programming

    ERIC Educational Resources Information Center

    Cadenas, José O.; Sherratt, R. Simon; Howlett, Des; Guy, Chris G.; Lundqvist, Karsten O.

    2015-01-01

    This paper describes a virtual system that emulates an ARM-based processor machine, created to replace a traditional hardware-based system for teaching assembly language. The virtual system proposed here integrates, in a single environment, all the development tools necessary to deliver introductory or advanced courses on modern assembly language…

  18. Efficacy of a Virtual Teaching Assistant in an Open Laboratory Environment for Electric Circuits

    ERIC Educational Resources Information Center

    Saleheen, Firdous; Wang, Zicong; Picone, Joseph; Butz, Brian P.; Won, Chang-Hee

    2018-01-01

    In order to provide an on-demand, open electrical engineering laboratory, we developed an innovative software-based Virtual Open Laboratory Teaching Assistant (VOLTA). This web-based virtual assistant provides laboratory instructions, equipment usage videos, circuit simulation assistance, and hardware implementation diagnostics. VOLTA allows…

  19. Case-Based Learning in Virtual Groups--Collaborative Problem Solving Activities and Learning Outcomes in a Virtual Professional Training Course

    ERIC Educational Resources Information Center

    Kopp, Birgitta; Hasenbein, Melanie; Mandl, Heinz

    2014-01-01

    This article analyzes the collaborative problem solving activities and learning outcomes of five groups that worked on two different complex cases in a virtual professional training course. In this asynchronous virtual learning environment, all knowledge management content was delivered virtually and collaboration took place through forums. To…

  20. [The virtual reality simulation research of China Mechanical Virtual Human based on the Creator/Vega].

    PubMed

    Wei, Gaofeng; Tang, Gang; Fu, Zengliang; Sun, Qiuming; Tian, Feng

    2010-10-01

    The China Mechanical Virtual Human (CMVH) is a human musculoskeletal biomechanical simulation platform based on China Visible Human slice images; it has great realistic application significance. In this paper is introduced the construction method of CMVH 3D models. Then a simulation system solution based on Creator/Vega is put forward for the complex and gigantic data characteristics of the 3D models. At last, combined with MFC technology, the CMVH simulation system is developed and a running simulation scene is given. This paper provides a new way for the virtual reality application of CMVH.

  1. Operating Room Performance Improves after Proficiency-Based Virtual Reality Cataract Surgery Training.

    PubMed

    Thomsen, Ann Sofia Skou; Bach-Holm, Daniella; Kjærbo, Hadi; Højgaard-Olsen, Klavs; Subhi, Yousif; Saleh, George M; Park, Yoon Soo; la Cour, Morten; Konge, Lars

    2017-04-01

    To investigate the effect of virtual reality proficiency-based training on actual cataract surgery performance. The secondary purpose of the study was to define which surgeons benefit from virtual reality training. Multicenter masked clinical trial. Eighteen cataract surgeons with different levels of experience. Cataract surgical training on a virtual reality simulator (EyeSi) until a proficiency-based test was passed. Technical performance in the operating room (OR) assessed by 3 independent, masked raters using a previously validated task-specific assessment tool for cataract surgery (Objective Structured Assessment of Cataract Surgical Skill). Three surgeries before and 3 surgeries after the virtual reality training were video-recorded, anonymized, and presented to the raters in random order. Novices (non-independently operating surgeons) and surgeons having performed fewer than 75 independent cataract surgeries showed significant improvements in the OR-32% and 38%, respectively-after virtual reality training (P = 0.008 and P = 0.018). More experienced cataract surgeons did not benefit from simulator training. The reliability of the assessments was high with a generalizability coefficient of 0.92 and 0.86 before and after the virtual reality training, respectively. Clinically relevant cataract surgical skills can be improved by proficiency-based training on a virtual reality simulator. Novices as well as surgeons with an intermediate level of experience showed improvement in OR performance score. Copyright © 2017 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  2. Designing a successful HMD-based experience

    NASA Technical Reports Server (NTRS)

    Pierce, J. S.; Pausch, R.; Sturgill, C. B.; Christiansen, K. D.; Kaiser, M. K. (Principal Investigator)

    1999-01-01

    For entertainment applications, a successful virtual experience based on a head-mounted display (HMD) needs to overcome some or all of the following problems: entering a virtual world is a jarring experience, people do not naturally turn their heads or talk to each other while wearing an HMD, putting on the equipment is hard, and people do not realize when the experience is over. In the Electric Garden at SIGGRAPH 97, we presented the Mad Hatter's Tea Party, a shared virtual environment experienced by more than 1,500 SIGGRAPH attendees. We addressed these HMD-related problems with a combination of back story, see-through HMDs, virtual characters, continuity of real and virtual objects, and the layout of the physical and virtual environments.

  3. Building Virtuality into University-Based Human Resources Policy in China's Universities

    ERIC Educational Resources Information Center

    Guoliang, Zhang

    2005-01-01

    On the basis of discussing the notion of virtual human resources and its structure, this paper analyzes the necessity of building up virtual university teaching staff and proposes a model for the structural makeup of virtual university teaching staff.

  4. Managing Drawbacks in Unconventional Successful Glaucoma Surgery: A Case Report of Stent Exposure

    PubMed Central

    Fea, Antonio; Cannizzo, Paola Maria Loredana; Consolandi, Giulia; Lavia, Carlo Alessandro; Pignata, Giulia; Grignolo, Federico M.

    2015-01-01

    Traditional options in managing failed trabeculectomy (bleb needling, revision, additional incisional surgery and tube surgery) have a relatively high failure and complication rate. The use of microinvasive glaucoma surgery (MIGS) has generally been reserved to mild to moderate glaucoma cases, proving good safety profiles but significant limitations in terms of efficacy. We describe a patient who underwent MIGS (XEN Aquesys subconjunctival shunt implantation) after a prior failed trabeculectomy. After the surgery, the IOP was well controlled but as the stent was close to an area of scarred conjunctiva of the previous trabeculectomy, it became partially exposed. As a complete success was achieved, we decided to remove the conjunctiva over the exposed area and replace it by an amniotic membrane transplantation and a conjunctiva autograft. Six months after surgery, the unmedicated IOP is still well controlled with complete visual acuity recovery. PMID:26294994

  5. Better than Nature: Nicotinamide Biomimetics That Outperform Natural Coenzymes.

    PubMed

    Knaus, Tanja; Paul, Caroline E; Levy, Colin W; de Vries, Simon; Mutti, Francesco G; Hollmann, Frank; Scrutton, Nigel S

    2016-01-27

    The search for affordable, green biocatalytic processes is a challenge for chemicals manufacture. Redox biotransformations are potentially attractive, but they rely on unstable and expensive nicotinamide coenzymes that have prevented their widespread exploitation. Stoichiometric use of natural coenzymes is not viable economically, and the instability of these molecules hinders catalytic processes that employ coenzyme recycling. Here, we investigate the efficiency of man-made synthetic biomimetics of the natural coenzymes NAD(P)H in redox biocatalysis. Extensive studies with a range of oxidoreductases belonging to the "ene" reductase family show that these biomimetics are excellent analogues of the natural coenzymes, revealed also in crystal structures of the ene reductase XenA with selected biomimetics. In selected cases, these biomimetics outperform the natural coenzymes. "Better-than-Nature" biomimetics should find widespread application in fine and specialty chemicals production by harnessing the power of high stereo-, regio-, and chemoselective redox biocatalysts and enabling reactions under mild conditions at low cost.

  6. Relaxation rates of low-field gas-phase ^129Xe storage cells

    NASA Astrophysics Data System (ADS)

    Limes, Mark; Saam, Brian

    2010-10-01

    A study of longitudinal nuclear relaxation rates T1 of ^129Xe and Xe-N2 mixtures in a magnetic field of 3.8 mT is presented. In this regime, intrinsic spin relaxation is dominated by the intramolecular spin-rotation interaction due to persistent xenon dimers, a mechanism that can be quelled by introducing large amounts of N2 into the storage cell. Extrinsic spin relaxation is dominated by the wall-relaxation rate, which is the primary quantity of interest for the various low-field storage cells and coatings that we have tested. Previous group work has shown that extremely long gas-phase relaxation times T1 can be obtained, but only at large magnetic fields and low xenon densities. The current work is motivated by the practical benefits of retaining hyperpolarized ^129Xe for extended periods of time in a small magnetic field.

  7. Relaxation times measurement in single and multiply excited xenon clusters

    NASA Astrophysics Data System (ADS)

    Serdobintsev, P. Yu.; Melnikov, A. S.; Pastor, A. A.; Timofeev, N. A.; Khodorkovskiy, M. A.

    2018-05-01

    Direct measurement of the rates of nonradiative relaxation processes in electronically excited xenon clusters was carried out. The clusters were created in a pulsed supersonic beam and two-photon excited by femtosecond laser pulses with a wavelength of 263 nm. The measurements were performed using the pump-probe method and electron spectroscopy. It is shown that relaxation of light clusters XeN (N < 15) predominantly occurs by desorption of excited xenon atoms with a characteristic time constant of 3 ps. Heavier electronically excited clusters (N > 10) vibrationally relax to the lowest electronically excited state at a rate of about 0.075 eV/ps. Multiply excited clusters are deactivated via energy exchange between excited centers with the ionization of one of them. The production of electrons in this process occurs with a delay of ˜4 ps from the pump pulse, and the process is completed in 10 ps.

  8. LHCb experience with running jobs in virtual machines

    NASA Astrophysics Data System (ADS)

    McNab, A.; Stagni, F.; Luzzi, C.

    2015-12-01

    The LHCb experiment has been running production jobs in virtual machines since 2013 as part of its DIRAC-based infrastructure. We describe the architecture of these virtual machines and the steps taken to replicate the WLCG worker node environment expected by user and production jobs. This relies on the uCernVM system for providing root images for virtual machines. We use the CernVM-FS distributed filesystem to supply the root partition files, the LHCb software stack, and the bootstrapping scripts necessary to configure the virtual machines for us. Using this approach, we have been able to minimise the amount of contextualisation which must be provided by the virtual machine managers. We explain the process by which the virtual machine is able to receive payload jobs submitted to DIRAC by users and production managers, and how this differs from payloads executed within conventional DIRAC pilot jobs on batch queue based sites. We describe our operational experiences in running production on VM based sites managed using Vcycle/OpenStack, Vac, and HTCondor Vacuum. Finally we show how our use of these resources is monitored using Ganglia and DIRAC.

  9. Investigating Research Approaches: Classroom-Based Interaction Studies in Physical and Virtual Contexts

    ERIC Educational Resources Information Center

    Hartwick, Peggy

    2018-01-01

    This article investigates research approaches used in traditional classroom-based interaction studies for identifying a suitable research method for studies in three-dimensional virtual learning environments (3DVLEs). As opportunities for language learning and teaching in virtual worlds emerge, so too do new research questions. An understanding of…

  10. Assessment method of digital Chinese dance movements based on virtual reality technology

    NASA Astrophysics Data System (ADS)

    Feng, Wei; Shao, Shuyuan; Wang, Shumin

    2008-03-01

    Virtual reality has played an increasing role in such areas as medicine, architecture, aviation, engineering science and advertising. However, in the art fields, virtual reality is still in its infancy in the representation of human movements. Based on the techniques of motion capture and reuse of motion capture data in virtual reality environment, this paper presents an assessment method in order to evaluate the quantification of dancers' basic Arm Position movements in Chinese traditional dance. In this paper, the data for quantifying traits of dance motions are defined and measured on dancing which performed by an expert and two beginners, with results indicating that they are beneficial for evaluating dance skills and distinctiveness, and the assessment method of digital Chinese dance movements based on virtual reality technology is validity and feasibility.

  11. Image Mosaicking Approach for a Double-Camera System in the GaoFen2 Optical Remote Sensing Satellite Based on the Big Virtual Camera.

    PubMed

    Cheng, Yufeng; Jin, Shuying; Wang, Mi; Zhu, Ying; Dong, Zhipeng

    2017-06-20

    The linear array push broom imaging mode is widely used for high resolution optical satellites (HROS). Using double-cameras attached by a high-rigidity support along with push broom imaging is one method to enlarge the field of view while ensuring high resolution. High accuracy image mosaicking is the key factor of the geometrical quality of complete stitched satellite imagery. This paper proposes a high accuracy image mosaicking approach based on the big virtual camera (BVC) in the double-camera system on the GaoFen2 optical remote sensing satellite (GF2). A big virtual camera can be built according to the rigorous imaging model of a single camera; then, each single image strip obtained by each TDI-CCD detector can be re-projected to the virtual detector of the big virtual camera coordinate system using forward-projection and backward-projection to obtain the corresponding single virtual image. After an on-orbit calibration and relative orientation, the complete final virtual image can be obtained by stitching the single virtual images together based on their coordinate information on the big virtual detector image plane. The paper subtly uses the concept of the big virtual camera to obtain a stitched image and the corresponding high accuracy rational function model (RFM) for concurrent post processing. Experiments verified that the proposed method can achieve seamless mosaicking while maintaining the geometric accuracy.

  12. Virtual collaboration in the online educational setting: a concept analysis.

    PubMed

    Breen, Henny

    2013-01-01

    This study was designed to explore the concept of virtual collaboration within the context of an online learning environment in an academic setting. Rodgers' method of evolutionary concept analysis was used to provide a contextual view of the concept to identify attributes, antecedents, and consequences of virtual collaboration. Commonly used terms to describe virtual collaboration are collaborative and cooperative learning, group work, group interaction, group learning, and teamwork. A constructivist pedagogy, group-based process with a shared purpose, support, and web-based technology is required for virtual collaboration to take place. Consequences of virtual collaboration are higher order thinking and learning to work with others. A comprehensive definition of virtual collaboration is offered as an outcome of this analysis. Clarification of virtual collaboration prior to using it as a pedagogical tool in the online learning environment will enhance nursing education with the changes in nursing curriculum being implemented today. Further research is recommended to describe the developmental stages of the collaborative process among nursing students in online education and how virtual collaboration facilitates collaboration in practice. © 2013 Wiley Periodicals, Inc.

  13. Migrating EO/IR sensors to cloud-based infrastructure as service architectures

    NASA Astrophysics Data System (ADS)

    Berglie, Stephen T.; Webster, Steven; May, Christopher M.

    2014-06-01

    The Night Vision Image Generator (NVIG), a product of US Army RDECOM CERDEC NVESD, is a visualization tool used widely throughout Army simulation environments to provide fully attributed synthesized, full motion video using physics-based sensor and environmental effects. The NVIG relies heavily on contemporary hardware-based acceleration and GPU processing techniques, which push the envelope of both enterprise and commodity-level hypervisor support for providing virtual machines with direct access to hardware resources. The NVIG has successfully been integrated into fully virtual environments where system architectures leverage cloudbased technologies to various extents in order to streamline infrastructure and service management. This paper details the challenges presented to engineers seeking to migrate GPU-bound processes, such as the NVIG, to virtual machines and, ultimately, Cloud-Based IAS architectures. In addition, it presents the path that led to success for the NVIG. A brief overview of Cloud-Based infrastructure management tool sets is provided, and several virtual desktop solutions are outlined. A discrimination is made between general purpose virtual desktop technologies compared to technologies that expose GPU-specific capabilities, including direct rendering and hard ware-based video encoding. Candidate hypervisor/virtual machine configurations that nominally satisfy the virtualized hardware-level GPU requirements of the NVIG are presented , and each is subsequently reviewed in light of its implications on higher-level Cloud management techniques. Implementation details are included from the hardware level, through the operating system, to the 3D graphics APls required by the NVIG and similar GPU-bound tools.

  14. Distributed attitude synchronization of formation flying via consensus-based virtual structure

    NASA Astrophysics Data System (ADS)

    Cong, Bing-Long; Liu, Xiang-Dong; Chen, Zhen

    2011-06-01

    This paper presents a general framework for synchronized multiple spacecraft rotations via consensus-based virtual structure. In this framework, attitude control systems for formation spacecrafts and virtual structure are designed separately. Both parametric uncertainty and external disturbance are taken into account. A time-varying sliding mode control (TVSMC) algorithm is designed to improve the robustness of the actual attitude control system. As for the virtual attitude control system, a behavioral consensus algorithm is presented to accomplish the attitude maneuver of the entire formation and guarantee a consistent attitude among the local virtual structure counterparts during the attitude maneuver. A multiple virtual sub-structures (MVSSs) system is introduced to enhance current virtual structure scheme when large amounts of spacecrafts are involved in the formation. The attitude of spacecraft is represented by modified Rodrigues parameter (MRP) for its non-redundancy. Finally, a numerical simulation with three synchronization situations is employed to illustrate the effectiveness of the proposed strategy.

  15. Effects of virtual reality-based training and task-oriented training on balance performance in stroke patients.

    PubMed

    Lee, Hyung Young; Kim, You Lim; Lee, Suk Min

    2015-06-01

    [Purpose] This study aimed to investigate the clinical effects of virtual reality-based training and task-oriented training on balance performance in stroke patients. [Subjects and Methods] The subjects were randomly allocated to 2 groups: virtual reality-based training group (n = 12) and task-oriented training group (n = 12). The patients in the virtual reality-based training group used the Nintendo Wii Fit Plus, which provided visual and auditory feedback as well as the movements that enabled shifting of weight to the right and left sides, for 30 min/day, 3 times/week for 6 weeks. The patients in the task-oriented training group practiced additional task-oriented programs for 30 min/day, 3 times/week for 6 weeks. Patients in both groups also underwent conventional physical therapy for 60 min/day, 5 times/week for 6 weeks. [Results] Balance and functional reach test outcomes were examined in both groups. The results showed that the static balance and functional reach test outcomes were significantly higher in the virtual reality-based training group than in the task-oriented training group. [Conclusion] This study suggested that virtual reality-based training might be a more feasible and suitable therapeutic intervention for dynamic balance in stroke patients compared to task-oriented training.

  16. Effects of virtual reality-based training and task-oriented training on balance performance in stroke patients

    PubMed Central

    Lee, Hyung Young; Kim, You Lim; Lee, Suk Min

    2015-01-01

    [Purpose] This study aimed to investigate the clinical effects of virtual reality-based training and task-oriented training on balance performance in stroke patients. [Subjects and Methods] The subjects were randomly allocated to 2 groups: virtual reality-based training group (n = 12) and task-oriented training group (n = 12). The patients in the virtual reality-based training group used the Nintendo Wii Fit Plus, which provided visual and auditory feedback as well as the movements that enabled shifting of weight to the right and left sides, for 30 min/day, 3 times/week for 6 weeks. The patients in the task-oriented training group practiced additional task-oriented programs for 30 min/day, 3 times/week for 6 weeks. Patients in both groups also underwent conventional physical therapy for 60 min/day, 5 times/week for 6 weeks. [Results] Balance and functional reach test outcomes were examined in both groups. The results showed that the static balance and functional reach test outcomes were significantly higher in the virtual reality-based training group than in the task-oriented training group. [Conclusion] This study suggested that virtual reality-based training might be a more feasible and suitable therapeutic intervention for dynamic balance in stroke patients compared to task-oriented training. PMID:26180341

  17. Vision-based navigation in a dynamic environment for virtual human

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Sun, Ji-Zhou; Zhang, Jia-Wan; Li, Ming-Chu

    2004-06-01

    Intelligent virtual human is widely required in computer games, ergonomics software, virtual environment and so on. We present a vision-based behavior modeling method to realize smart navigation in a dynamic environment. This behavior model can be divided into three modules: vision, global planning and local planning. Vision is the only channel for smart virtual actor to get information from the outside world. Then, the global and local planning module use A* and D* algorithm to find a way for virtual human in a dynamic environment. Finally, the experiments on our test platform (Smart Human System) verify the feasibility of this behavior model.

  18. Advanced Maintenance Simulation by Means of Hand-Based Haptic Interfaces

    NASA Astrophysics Data System (ADS)

    Nappi, Michele; Paolino, Luca; Ricciardi, Stefano; Sebillo, Monica; Vitiello, Giuliana

    Aerospace industry has been involved in virtual simulation for design and testing since the birth of virtual reality. Today this industry is showing a growing interest in the development of haptic-based maintenance training applications, which represent the most advanced way to simulate maintenance and repair tasks within a virtual environment by means of a visual-haptic approach. The goal is to allow the trainee to experiment the service procedures not only as a workflow reproduced at a visual level but also in terms of the kinaesthetic feedback involved with the manipulation of tools and components. This study, conducted in collaboration with aerospace industry specialists, is aimed to the development of an immersive virtual capable of immerging the trainees into a virtual environment where mechanics and technicians can perform maintenance simulation or training tasks by directly manipulating 3D virtual models of aircraft parts while perceiving force feedback through the haptic interface. The proposed system is based on ViRstperson, a virtual reality engine under development at the Italian Center for Aerospace Research (CIRA) to support engineering and technical activities such as design-time maintenance procedure validation, and maintenance training. This engine has been extended to support haptic-based interaction, enabling a more complete level of interaction, also in terms of impedance control, and thus fostering the development of haptic knowledge in the user. The user’s “sense of touch” within the immersive virtual environment is simulated through an Immersion CyberForce® hand-based force-feedback device. Preliminary testing of the proposed system seems encouraging.

  19. Virtual Learning Effectiveness: An Examination of the Process

    ERIC Educational Resources Information Center

    Stonebraker, Peter W.; Hazeltine, James E.

    2004-01-01

    This study defines, examines, and measures the effectiveness of a corporate virtual learning program. Initially, distinctions between traditional and virtual learning and university and corporate programs are defined. Then, based on the literature, an integrative model of the perceived effectiveness of a virtual learning environment is developed…

  20. Virtual Reference Services.

    ERIC Educational Resources Information Center

    Brewer, Sally

    2003-01-01

    As the need to access information increases, school librarians must create virtual libraries. Linked to reliable reference resources, the virtual library extends the physical collection and library hours and lets students learn to use Web-based resources in a protected learning environment. The growing number of virtual schools increases the need…

  1. A VM-shared desktop virtualization system based on OpenStack

    NASA Astrophysics Data System (ADS)

    Liu, Xi; Zhu, Mingfa; Xiao, Limin; Jiang, Yuanjie

    2018-04-01

    With the increasing popularity of cloud computing, desktop virtualization is rising in recent years as a branch of virtualization technology. However, existing desktop virtualization systems are mostly designed as a one-to-one mode, which one VM can only be accessed by one user. Meanwhile, previous desktop virtualization systems perform weakly in terms of response time and cost saving. This paper proposes a novel VM-Shared desktop virtualization system based on OpenStack platform. The paper modified the connecting process and the display data transmission process of the remote display protocol SPICE to support VM-Shared function. On the other hand, we propose a server-push display mode to improve user interactive experience. The experimental results show that our system performs well in response time and achieves a low CPU consumption.

  2. Towards Gesture-Based Multi-User Interactions in Collaborative Virtual Environments

    NASA Astrophysics Data System (ADS)

    Pretto, N.; Poiesi, F.

    2017-11-01

    We present a virtual reality (VR) setup that enables multiple users to participate in collaborative virtual environments and interact via gestures. A collaborative VR session is established through a network of users that is composed of a server and a set of clients. The server manages the communication amongst clients and is created by one of the users. Each user's VR setup consists of a Head Mounted Display (HMD) for immersive visualisation, a hand tracking system to interact with virtual objects and a single-hand joypad to move in the virtual environment. We use Google Cardboard as a HMD for the VR experience and a Leap Motion for hand tracking, thus making our solution low cost. We evaluate our VR setup though a forensics use case, where real-world objects pertaining to a simulated crime scene are included in a VR environment, acquired using a smartphone-based 3D reconstruction pipeline. Users can interact using virtual gesture-based tools such as pointers and rulers.

  3. Robotic and Virtual Reality BCIs Using Spatial Tactile and Auditory Oddball Paradigms.

    PubMed

    Rutkowski, Tomasz M

    2016-01-01

    The paper reviews nine robotic and virtual reality (VR) brain-computer interface (BCI) projects developed by the author, in collaboration with his graduate students, within the BCI-lab research group during its association with University of Tsukuba, Japan. The nine novel approaches are discussed in applications to direct brain-robot and brain-virtual-reality-agent control interfaces using tactile and auditory BCI technologies. The BCI user intentions are decoded from the brainwaves in realtime using a non-invasive electroencephalography (EEG) and they are translated to a symbiotic robot or virtual reality agent thought-based only control. A communication protocol between the BCI output and the robot or the virtual environment is realized in a symbiotic communication scenario using an user datagram protocol (UDP), which constitutes an internet of things (IoT) control scenario. Results obtained from healthy users reproducing simple brain-robot and brain-virtual-agent control tasks in online experiments support the research goal of a possibility to interact with robotic devices and virtual reality agents using symbiotic thought-based BCI technologies. An offline BCI classification accuracy boosting method, using a previously proposed information geometry derived approach, is also discussed in order to further support the reviewed robotic and virtual reality thought-based control paradigms.

  4. Robotic and Virtual Reality BCIs Using Spatial Tactile and Auditory Oddball Paradigms

    PubMed Central

    Rutkowski, Tomasz M.

    2016-01-01

    The paper reviews nine robotic and virtual reality (VR) brain–computer interface (BCI) projects developed by the author, in collaboration with his graduate students, within the BCI–lab research group during its association with University of Tsukuba, Japan. The nine novel approaches are discussed in applications to direct brain-robot and brain-virtual-reality-agent control interfaces using tactile and auditory BCI technologies. The BCI user intentions are decoded from the brainwaves in realtime using a non-invasive electroencephalography (EEG) and they are translated to a symbiotic robot or virtual reality agent thought-based only control. A communication protocol between the BCI output and the robot or the virtual environment is realized in a symbiotic communication scenario using an user datagram protocol (UDP), which constitutes an internet of things (IoT) control scenario. Results obtained from healthy users reproducing simple brain-robot and brain-virtual-agent control tasks in online experiments support the research goal of a possibility to interact with robotic devices and virtual reality agents using symbiotic thought-based BCI technologies. An offline BCI classification accuracy boosting method, using a previously proposed information geometry derived approach, is also discussed in order to further support the reviewed robotic and virtual reality thought-based control paradigms. PMID:27999538

  5. Teachers' Conceptions and Their Approaches to Teaching in Virtual Reality and Simulation-Based Learning Environments

    ERIC Educational Resources Information Center

    Keskitalo, Tuulikki

    2011-01-01

    This research article focuses on virtual reality (VR) and simulation-based training, with a special focus on the pedagogical use of the Virtual Centre of Wellness Campus known as ENVI (Rovaniemi, Finland). In order to clearly understand how teachers perceive teaching and learning in such environments, this research examines the concepts of…

  6. Personalization of Learning Activities within a Virtual Environment for Training Based on Fuzzy Logic Theory

    ERIC Educational Resources Information Center

    Mohamed, Fahim; Abdeslam, Jakimi; Lahcen, El Bermi

    2017-01-01

    Virtual Environments for Training (VET) are useful tools for visualization, discovery as well as for training. VETs are based on virtual reality technique to put learners in training situations that emulate genuine situations. VETs have proven to be advantageous in putting learners into varied training situations to acquire knowledge and…

  7. Can You Skype Me Now? Developing Teachers' Classroom Management Practices through Virtual Coaching

    ERIC Educational Resources Information Center

    Rock, Marcia L.; Schoenfeld, Naomi; Zigmond, Naomi; Gable, Robert A.; Gregg, Madeleine; Ploessl, Donna M.; Salter, Ashley

    2013-01-01

    In this article, situated within the context of a larger ongoing study on the efficacy of Web-based virtual coaching, these authors describe a virtual coaching model for maximizing pre- and in-service teachers' effective use of evidence-based classroom management practices. They also provide a brief summary of previous results obtained…

  8. A Practical Guide, with Theoretical Underpinnings, for Creating Effective Virtual Reality Learning Environments

    ERIC Educational Resources Information Center

    O'Connor, Eileen A.; Domingo, Jelia

    2017-01-01

    With the advent of open source virtual environments, the associated cost reductions, and the more flexible options, avatar-based virtual reality environments are within reach of educators. By using and repurposing readily available virtual environments, instructors can bring engaging, community-building, and immersive learning opportunities to…

  9. Virtual temporal bone: an interactive 3-dimensional learning aid for cranial base surgery.

    PubMed

    Kockro, Ralf A; Hwang, Peter Y K

    2009-05-01

    We have developed an interactive virtual model of the temporal bone for the training and teaching of cranial base surgery. The virtual model was based on the tomographic data of the Visible Human Project. The male Visible Human's computed tomographic data were volumetrically reconstructed as virtual bone tissue, and the individual photographic slices provided the basis for segmentation of the middle and inner ear structures, cranial nerves, vessels, and brainstem. These structures were created by using outlining and tube editing tools, allowing structural modeling either directly on the basis of the photographic data or according to information from textbooks and cadaver dissections. For training and teaching, the virtual model was accessed in the previously described 3-dimensional workspaces of the Dextroscope or Dextrobeam (Volume Interactions Pte, Ltd., Singapore), whose interfaces enable volumetric exploration from any perspective and provide virtual tools for drilling and measuring. We have simulated several cranial base procedures including approaches via the floor of the middle fossa and the lateral petrous bone. The virtual model suitably illustrated the core facts of anatomic spatial relationships while simulating different stages of bone drilling along a variety of surgical corridors. The system was used for teaching during training courses to plan and discuss operative anatomy and strategies. The Virtual Temporal Bone and its surrounding 3-dimensional workspace provide an effective way to study the essential surgical anatomy of this complex region and to teach and train operative strategies, especially when used as an adjunct to cadaver dissections.

  10. Web-Based Testing Tools for Electrical Engineering Courses

    DTIC Science & Technology

    2001-09-01

    ideas of distance learning are based on forming “ virtual teams” [2]. Each team is equipped with the same software packages and share information via...using virtual laboratories where they can simulate a laboratory experience in a web-based environment. They can also control laboratory devices over...possible to create a set of virtual laboratories that allow students to interact with the learning material at the same time that the student is

  11. Virtual TeleRehab: a case study.

    PubMed

    Pareto, Lena; Johansson, Britt; Zeller, Sally; Sunnerhagen, Katharina S; Rydmark, Martin; Broeren, Jurgen

    2011-01-01

    We examined the efficacy of a remotely based occupational therapy intervention. A 40-year-old woman who suffered a stroke participated in a telerehabilitation program. The intervention method is based on virtual reality gaming to enhance the training experience and to facilitate the relearning processes. The results indicate that Virtual TeleRehab is an effective method for motivational, economical, and practical reasons by combining game-based rehabilitation in the home with weekly distance meetings.

  12. A virtual university Web system for a medical school.

    PubMed

    Séka, L P; Duvauferrier, R; Fresnel, A; Le Beux, P

    1998-01-01

    This paper describes a Virtual Medical University Web Server. This project started in 1994 by the development of the French Radiology Server. The main objective of our Medical Virtual University is to offer not only an initial training (for students) but also the Continuing Professional Education (for practitioners). Our system is based on electronic textbooks, clinical cases (around 4000) and a medical knowledge base called A.D.M. ("Aide au Diagnostic Medical"). We have indexed all electronic textbooks and clinical cases according to the ADM base in order to facilitate the navigation on the system. This system base is supported by a relational database management system. The Virtual Medical University, available on the Web Internet, is presently in the process of external evaluations.

  13. An Integrated In Silico Method to Discover Novel Rock1 Inhibitors: Multi- Complex-Based Pharmacophore, Molecular Dynamics Simulation and Hybrid Protocol Virtual Screening.

    PubMed

    Chen, Haining; Li, Sijia; Hu, Yajiao; Chen, Guo; Jiang, Qinglin; Tong, Rongsheng; Zang, Zhihe; Cai, Lulu

    2016-01-01

    Rho-associated, coiled-coil containing protein kinase 1 (ROCK1) is an important regulator of focal adhesion, actomyosin contraction and cell motility. In this manuscript, a combination of the multi-complex-based pharmacophore (MCBP), molecular dynamics simulation and a hybrid protocol of a virtual screening method, comprised of multipharmacophore- based virtual screening (PBVS) and ensemble docking-based virtual screening (DBVS) methods were used for retrieving novel ROCK1 inhibitors from the natural products database embedded in the ZINC database. Ten hit compounds were selected from the hit compounds, and five compounds were tested experimentally. Thus, these results may provide valuable information for further discovery of more novel ROCK1 inhibitors.

  14. Shared protection based virtual network mapping in space division multiplexing optical networks

    NASA Astrophysics Data System (ADS)

    Zhang, Huibin; Wang, Wei; Zhao, Yongli; Zhang, Jie

    2018-05-01

    Space Division Multiplexing (SDM) has been introduced to improve the capacity of optical networks. In SDM optical networks, there are multiple cores/modes in each fiber link, and spectrum resources are multiplexed in both frequency and core/modes dimensions. Enabled by network virtualization technology, one SDM optical network substrate can be shared by several virtual networks operators. Similar with point-to-point connection services, virtual networks (VN) also need certain survivability to guard against network failures. Based on customers' heterogeneous requirements on the survivability of their virtual networks, this paper studies the shared protection based VN mapping problem and proposes a Minimum Free Frequency Slots (MFFS) mapping algorithm to improve spectrum efficiency. Simulation results show that the proposed algorithm can optimize SDM optical networks significantly in terms of blocking probability and spectrum utilization.

  15. Virtual Reality for Pediatric Sedation: A Randomized Controlled Trial Using Simulation.

    PubMed

    Zaveri, Pavan P; Davis, Aisha B; O'Connell, Karen J; Willner, Emily; Aronson Schinasi, Dana A; Ottolini, Mary

    2016-02-09

    Team training for procedural sedation for pediatric residents has traditionally consisted of didactic presentations and simulated scenarios using high-fidelity mannequins. We assessed the effectiveness of a virtual reality module in teaching preparation for and management of sedation for procedures. After developing a virtual reality environment in Second Life® (Linden Lab, San Francisco, CA) where providers perform and recover patients from procedural sedation, we conducted a randomized controlled trial to assess the effectiveness of the virtual reality module versus a traditional web-based educational module. A 20 question pre- and post-test was administered to assess knowledge change. All subjects participated in a simulated pediatric procedural sedation scenario that was video recorded for review and assessed using a 32-point checklist. A brief survey elicited feedback on the virtual reality module and the simulation scenario. The median score on the assessment checklist was 75% for the intervention group and 70% for the control group (P = 0.32). For the knowledge tests, there was no statistically significant difference between the groups (P = 0.14). Users had excellent reviews of the virtual reality module and reported that the module added to their education. Pediatric residents performed similarly in simulation and on a knowledge test after a virtual reality module compared with a traditional web-based module on procedural sedation. Although users enjoyed the virtual reality experience, these results question the value virtual reality adds in improving the performance of trainees. Further inquiry is needed into how virtual reality provides true value in simulation-based education.

  16. Using Virtual Pets to Increase Fruit and Vegetable Consumption in Children: A Technology-Assisted Social Cognitive Theory Approach.

    PubMed

    Ahn, Sun Joo Grace; Johnsen, Kyle; Moore, James; Brown, Scott; Biersmith, Melanie; Ball, Catherine

    2016-02-01

    A virtual pet in the form of a mid-sized dog was developed based on the framework of social cognitive theory and tested as a vehicle for promoting fruit and vegetable (F&V) consumption in children. Three groups of children (N = 68) between the ages of 7 and 13 years were studied: baseline (no treatment), computer only, and virtual dog. Children in the virtual dog condition interacted with the virtual dog for 3 days, setting F&V consumption goals and receiving evaluation and reinforcement based on whether they met their self-set goals. Children vicariously experienced future health outcomes of F&V consumption by seeing, hearing, and feeling their virtual dog's physical and mental health improve or deteriorate based on their F&V consumption in the physical world. Children in the computer only condition interacted with a computer system that presented equivalent features, but without the virtual dog. Children in the baseline condition did not receive any experimental treatment. Results indicated that children in the virtual dog condition chose to be served significantly more F&V than those in the computer only or baseline conditions did. However, children in the virtual dog condition were unable to consume significantly more F&V than those in the computer only condition, although children in those two conditions consumed more F&V than the baseline condition. Food preferences did not differ significantly across the three conditions before and after the experimental treatments. Theoretical and practical potentials of using a virtual pet to promote F&V consumption systematically in children are discussed.

  17. Virtual Reality for Pediatric Sedation: A Randomized Controlled Trial Using Simulation

    PubMed Central

    Davis, Aisha B; O'Connell, Karen J; Willner, Emily; Aronson Schinasi, Dana A; Ottolini, Mary

    2016-01-01

    Introduction: Team training for procedural sedation for pediatric residents has traditionally consisted of didactic presentations and simulated scenarios using high-fidelity mannequins. We assessed the effectiveness of a virtual reality module in teaching preparation for and management of sedation for procedures. Methods: After developing a virtual reality environment in Second Life® (Linden Lab, San Francisco, CA) where providers perform and recover patients from procedural sedation, we conducted a randomized controlled trial to assess the effectiveness of the virtual reality module versus a traditional web-based educational module. A 20 question pre- and post-test was administered to assess knowledge change. All subjects participated in a simulated pediatric procedural sedation scenario that was video recorded for review and assessed using a 32-point checklist. A brief survey elicited feedback on the virtual reality module and the simulation scenario. Results: The median score on the assessment checklist was 75% for the intervention group and 70% for the control group (P = 0.32). For the knowledge tests, there was no statistically significant difference between the groups (P = 0.14). Users had excellent reviews of the virtual reality module and reported that the module added to their education. Conclusions: Pediatric residents performed similarly in simulation and on a knowledge test after a virtual reality module compared with a traditional web-based module on procedural sedation. Although users enjoyed the virtual reality experience, these results question the value virtual reality adds in improving the performance of trainees. Further inquiry is needed into how virtual reality provides true value in simulation-based education. PMID:27014520

  18. Virtual Heritage Tours: Developing Interactive Narrative-Based Environments for Historical Sites

    NASA Astrophysics Data System (ADS)

    Tuck, Deborah; Kuksa, Iryna

    In the last decade there has been a noticeable growth in the use of virtual reality (VR) technologies for reconstructing cultural heritage sites. However, many of these virtual reconstructions evidence little of sites' social histories. Narrating the Past is a research project that aims to re-address this issue by investigating methods for embedding social histories within cultural heritage sites and by creating narrative based virtual environments (VEs) within them. The project aims to enhance the visitor's knowledge and understanding by developing a navigable 3D story space, in which participants are immersed. This has the potential to create a malleable virtual environment allowing the visitor to configure their own narrative paths.

  19. Virtual rehabilitation: What are the practical barriers for home-based research?

    PubMed Central

    Threapleton, Kate; Drummond, Avril; Standen, Penny

    2016-01-01

    Virtual reality technologies are becoming increasingly accessible and affordable to deliver, and consequently the interest in applying virtual reality within rehabilitation is growing. This has resulted in the emergence of research exploring the utility of virtual reality and interactive video gaming interventions for home use by patients. The aim of this paper is to highlight the practical factors and difficulties that may be encountered in research in this area, and to make recommendations for addressing these. Whilst this paper focuses on examples drawn mainly from stroke rehabilitation research, many of the issues raised are relevant to other conditions where virtual reality approaches have the potential to be applied to home-based rehabilitation. PMID:29942551

  20. A digital atlas of breast histopathology: an application of web based virtual microscopy

    PubMed Central

    Lundin, M; Lundin, J; Helin, H; Isola, J

    2004-01-01

    Aims: To develop an educationally useful atlas of breast histopathology, using advanced web based virtual microscopy technology. Methods: By using a robotic microscope and software adopted and modified from the aerial and satellite imaging industry, a virtual microscopy system was developed that allows fully automated slide scanning and image distribution via the internet. More than 150 slides were scanned at high resolution with an oil immersion ×40 objective (numerical aperture, 1.3) and archived on an image server residing in a high speed university network. Results: A publicly available website was constructed, http://www.webmicroscope.net/breastatlas, which features a comprehensive virtual slide atlas of breast histopathology according to the World Health Organisation 2003 classification. Users can view any part of an entire specimen at any magnification within a standard web browser. The virtual slides are supplemented with concise textual descriptions, but can also be viewed without diagnostic information for self assessment of histopathology skills. Conclusions: Using the technology described here, it is feasible to develop clinically and educationally useful virtual microscopy applications. Web based virtual microscopy will probably become widely used at all levels in pathology teaching. PMID:15563669

  1. The Virtual Climate Data Server (vCDS): An iRODS-Based Data Management Software Appliance Supporting Climate Data Services and Virtualization-as-a-Service in the NASA Center for Climate Simulation

    NASA Technical Reports Server (NTRS)

    Schnase, John L.; Tamkin, Glenn S.; Ripley, W. David III; Stong, Savannah; Gill, Roger; Duffy, Daniel Q.

    2012-01-01

    Scientific data services are becoming an important part of the NASA Center for Climate Simulation's mission. Our technological response to this expanding role is built around the concept of a Virtual Climate Data Server (vCDS), repetitive provisioning, image-based deployment and distribution, and virtualization-as-a-service. The vCDS is an iRODS-based data server specialized to the needs of a particular data-centric application. We use RPM scripts to build vCDS images in our local computing environment, our local Virtual Machine Environment, NASA s Nebula Cloud Services, and Amazon's Elastic Compute Cloud. Once provisioned into one or more of these virtualized resource classes, vCDSs can use iRODS s federation capabilities to create an integrated ecosystem of managed collections that is scalable and adaptable to changing resource requirements. This approach enables platform- or software-asa- service deployment of vCDS and allows the NCCS to offer virtualization-as-a-service: a capacity to respond in an agile way to new customer requests for data services.

  2. Determining sensitivity/specificity of virtual reality-based neuropsychological tool for detecting residual abnormalities following sport-related concussion.

    PubMed

    Teel, Elizabeth; Gay, Michael; Johnson, Brian; Slobounov, Semyon

    2016-05-01

    Computer-based neuropsychological (NP) evaluation is an effective clinical tool used to assess cognitive function which complements the clinical diagnosis of a concussion. However, some researchers and clinicians argue its lack of ecological validity places limitations on externalizing results to a sensory rich athletic environment. Virtual reality-based NP assessment offers clinical advantages using an immersive environment and evaluating domains not typically assessed by traditional NP assessments. The sensitivity and specificity of detecting lingering cognitive abnormalities was examined on components of a virtual reality-based NP assessment battery to cohort affiliation (concussed vs. controls). Data were retrospectively gathered on 128 controls (no concussion) and 24 concussed college-age athletes on measures of spatial navigation, whole body reaction, attention, and balance in a virtual environment. Concussed athletes were tested within 10 days (M = 8.33, SD = 1.06) of concussion and were clinically asymptomatic at the time of testing. A priori alpha level was set at 0.05 for all tests. Spatial navigation (sensitivity 95.8%/specificity 91.4%, d = 1.89), whole body reaction time (sensitivity 95.2%/specificity 89.1%, d = 1.50) and combined virtual reality modules (sensitivity 95.8%,/specificity 96.1%, d = 3.59) produced high sensitivity/specificity values when determining performance-based variability between groups. Use of a virtual reality-based NP platform can detect lingering cognitive abnormalities resulting from concussion in clinically asymptomatic participants. Virtual reality NP platforms may compliment the traditional concussion assessment battery by providing novel information. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  3. Hemodynamic Changes Caused by Flow Diverters in Rabbit Aneurysm Models: Comparison of Virtual and Realistic FD Deployments Based on Micro-CT Reconstruction

    PubMed Central

    Fang, Yibin; Yu, Ying; Cheng, Jiyong; Wang, Shengzhang; Wang, Kuizhong; Liu, Jian-Min; Huang, Qinghai

    2013-01-01

    Adjusting hemodynamics via flow diverter (FD) implantation is emerging as a novel method of treating cerebral aneurysms. However, most previous FD-related hemodynamic studies were based on virtual FD deployment, which may produce different hemodynamic outcomes than realistic (in vivo) FD deployment. We compared hemodynamics between virtual FD and realistic FD deployments in rabbit aneurysm models using computational fluid dynamics (CFD) simulations. FDs were implanted for aneurysms in 14 rabbits. Vascular models based on rabbit-specific angiograms were reconstructed for CFD studies. Real FD configurations were reconstructed based on micro-CT scans after sacrifice, while virtual FD configurations were constructed with SolidWorks software. Hemodynamic parameters before and after FD deployment were analyzed. According to the metal coverage (MC) of implanted FDs calculated based on micro-CT reconstruction, 14 rabbits were divided into two groups (A, MC >35%; B, MC <35%). Normalized mean wall shear stress (WSS), relative residence time (RRT), inflow velocity, and inflow volume in Group A were significantly different (P<0.05) from virtual FD deployment, but pressure was not (P>0.05). The normalized mean WSS in Group A after realistic FD implantation was significantly lower than that of Group B. All parameters in Group B exhibited no significant difference between realistic and virtual FDs. This study confirmed MC-correlated differences in hemodynamic parameters between realistic and virtual FD deployment. PMID:23823503

  4. Web-Based Virtual Laboratory for Food Analysis Course

    NASA Astrophysics Data System (ADS)

    Handayani, M. N.; Khoerunnisa, I.; Sugiarti, Y.

    2018-02-01

    Implementation of learning on food analysis course in Program Study of Agro-industrial Technology Education faced problems. These problems include the availability of space and tools in the laboratory that is not comparable with the number of students also lack of interactive learning tools. On the other hand, the information technology literacy of students is quite high as well the internet network is quite easily accessible on campus. This is a challenge as well as opportunities in the development of learning media that can help optimize learning in the laboratory. This study aims to develop web-based virtual laboratory as one of the alternative learning media in food analysis course. This research is R & D (research and development) which refers to Borg & Gall model. The results showed that assessment’s expert of web-based virtual labs developed, in terms of software engineering aspects; visual communication; material relevance; usefulness and language used, is feasible as learning media. The results of the scaled test and wide-scale test show that students strongly agree with the development of web based virtual laboratory. The response of student to this virtual laboratory was positive. Suggestions from students provided further opportunities for improvement web based virtual laboratory and should be considered for further research.

  5. Immersive Virtual Moon Scene System Based on Panoramic Camera Data of Chang'E-3

    NASA Astrophysics Data System (ADS)

    Gao, X.; Liu, J.; Mu, L.; Yan, W.; Zeng, X.; Zhang, X.; Li, C.

    2014-12-01

    The system "Immersive Virtual Moon Scene" is used to show the virtual environment of Moon surface in immersive environment. Utilizing stereo 360-degree imagery from panoramic camera of Yutu rover, the system enables the operator to visualize the terrain and the celestial background from the rover's point of view in 3D. To avoid image distortion, stereo 360-degree panorama stitched by 112 images is projected onto inside surface of sphere according to panorama orientation coordinates and camera parameters to build the virtual scene. Stars can be seen from the Moon at any time. So we render the sun, planets and stars according to time and rover's location based on Hipparcos catalogue as the background on the sphere. Immersing in the stereo virtual environment created by this imaged-based rendering technique, the operator can zoom, pan to interact with the virtual Moon scene and mark interesting objects. Hardware of the immersive virtual Moon system is made up of four high lumen projectors and a huge curve screen which is 31 meters long and 5.5 meters high. This system which take all panoramic camera data available and use it to create an immersive environment, enable operator to interact with the environment and mark interesting objects contributed heavily to establishment of science mission goals in Chang'E-3 mission. After Chang'E-3 mission, the lab with this system will be open to public. Besides this application, Moon terrain stereo animations based on Chang'E-1 and Chang'E-2 data will be showed to public on the huge screen in the lab. Based on the data of lunar exploration,we will made more immersive virtual moon scenes and animations to help the public understand more about the Moon in the future.

  6. Virtual Reality: An Instructional Medium for Visual-Spatial Tasks.

    ERIC Educational Resources Information Center

    Regian, J. Wesley; And Others

    1992-01-01

    Describes an empirical exploration of the instructional potential of virtual reality as an interface for simulation-based training. Shows that subjects learned spatial-procedural and spatial-navigational skills in virtual reality. (SR)

  7. Natural gesture interfaces

    NASA Astrophysics Data System (ADS)

    Starodubtsev, Illya

    2017-09-01

    The paper describes the implementation of the system of interaction with virtual objects based on gestures. The paper describes the common problems of interaction with virtual objects, specific requirements for the interfaces for virtual and augmented reality.

  8. Research on three-dimensional visualization based on virtual reality and Internet

    NASA Astrophysics Data System (ADS)

    Wang, Zongmin; Yang, Haibo; Zhao, Hongling; Li, Jiren; Zhu, Qiang; Zhang, Xiaohong; Sun, Kai

    2007-06-01

    To disclose and display water information, a three-dimensional visualization system based on Virtual Reality (VR) and Internet is researched for demonstrating "digital water conservancy" application and also for routine management of reservoir. To explore and mine in-depth information, after completion of modeling high resolution DEM with reliable quality, topographical analysis, visibility analysis and reservoir volume computation are studied. And also, some parameters including slope, water level and NDVI are selected to classify easy-landslide zone in water-level-fluctuating zone of reservoir area. To establish virtual reservoir scene, two kinds of methods are used respectively for experiencing immersion, interaction and imagination (3I). First virtual scene contains more detailed textures to increase reality on graphical workstation with virtual reality engine Open Scene Graph (OSG). Second virtual scene is for internet users with fewer details for assuring fluent speed.

  9. Social Presence and Transactional Distance as an Antecedent to Knowledge Sharing in Virtual Learning Communities

    ERIC Educational Resources Information Center

    Karaoglan Yilmaz, Fatma Gizem

    2017-01-01

    Today, the use of social network-based virtual learning communities is increasing rapidly in terms of knowledge management. An important dynamic of knowledge management processes is the knowledge sharing behaviors (KSB) in community. The purpose of this study is to examine the KSB of the students in a Facebook-based virtual community created…

  10. Applied virtual reality at the Research Triangle Institute

    NASA Technical Reports Server (NTRS)

    Montoya, R. Jorge

    1994-01-01

    Virtual Reality (VR) is a way for humans to use computers in visualizing, manipulating and interacting with large geometric data bases. This paper describes a VR infrastructure and its application to marketing, modeling, architectural walk through, and training problems. VR integration techniques used in these applications are based on a uniform approach which promotes portability and reusability of developed modules. For each problem, a 3D object data base is created using data captured by hand or electronically. The object's realism is enhanced through either procedural or photo textures. The virtual environment is created and populated with the data base using software tools which also support interactions with and immersivity in the environment. These capabilities are augmented by other sensory channels such as voice recognition, 3D sound, and tracking. Four applications are presented: a virtual furniture showroom, virtual reality models of the North Carolina Global TransPark, a walk through the Dresden Fraunenkirche, and the maintenance training simulator for the National Guard.

  11. Virtual Technologies to Develop Visual-Spatial Ability in Engineering Students

    ERIC Educational Resources Information Center

    Roca-González, Cristina; Martin-Gutierrez, Jorge; García-Dominguez, Melchor; Carrodeguas, Mª del Carmen Mato

    2017-01-01

    The present study assessed a short training experiment to improve spatial abilities using two tools based on virtual technologies: one focused on manipulation of specific geometric virtual pieces, and the other consisting of virtual orienteering game. The two tools can help improve spatial abilities required for many engineering problem-solving…

  12. Managing Global Virtual Teams across Classrooms, Students and Faculty

    ERIC Educational Resources Information Center

    Shea, Timothy P.; Sherer, Pamela D.; Quilling, Rosemary D.; Blewett, Craig N.

    2011-01-01

    Virtual teams are becoming commonplace in business today so our business school students should have experience in effectively working in virtual teams. Based on a month-long virtual team project conducted by the authors between classes in South Africa and the United States, this paper discusses the opportunities and challenges of using global…

  13. Virtual Frog Dissection Kit Version 2.2

    Science.gov Websites

    Virtual Frog Dissection Kit This award-winning interactive program is part of the "Whole Frog " project. You can interactively dissect a (digitized) frog named Fluffy, and play the Virtual Frog animals other than the frog that have a computer-graphics based virtual dissection page. We get frequent

  14. The Study on Virtual Medical Instrument based on LabVIEW.

    PubMed

    Chengwei, Li; Limei, Zhang; Xiaoming, Hu

    2005-01-01

    With the increasing performance of computer, the virtual instrument technology has greatly advanced over the years, and then virtual medical instrument technology becomes available. This paper presents the virtual medical instrument, and then as an example, an application of a signal acquisition, processing and analysis system using LabVIEW is also given.

  15. The Problem Patron and the Academic Library Web Site as Virtual Reference Desk.

    ERIC Educational Resources Information Center

    Taylor, Daniel; Porter, George S.

    2002-01-01

    Considers problem library patrons in a virtual environment based on experiences at California Institute of Technology's Web site and its use for virtual reference. Discusses the virtual reference desk concept; global visibility and access to the World Wide Web; problematic email; and advantages in the electronic environment. (LRW)

  16. Education about Hallucinations Using an Internet Virtual Reality System: A Qualitative Survey

    ERIC Educational Resources Information Center

    Yellowlees, Peter M.; Cook, James N.

    2006-01-01

    Objective: The authors evaluate an Internet virtual reality technology as an education tool about the hallucinations of psychosis. Method: This is a pilot project using Second Life, an Internet-based virtual reality system, in which a virtual reality environment was constructed to simulate the auditory and visual hallucinations of two patients…

  17. Comparative analysis of machine learning methods in ligand-based virtual screening of large compound libraries.

    PubMed

    Ma, Xiao H; Jia, Jia; Zhu, Feng; Xue, Ying; Li, Ze R; Chen, Yu Z

    2009-05-01

    Machine learning methods have been explored as ligand-based virtual screening tools for facilitating drug lead discovery. These methods predict compounds of specific pharmacodynamic, pharmacokinetic or toxicological properties based on their structure-derived structural and physicochemical properties. Increasing attention has been directed at these methods because of their capability in predicting compounds of diverse structures and complex structure-activity relationships without requiring the knowledge of target 3D structure. This article reviews current progresses in using machine learning methods for virtual screening of pharmacodynamically active compounds from large compound libraries, and analyzes and compares the reported performances of machine learning tools with those of structure-based and other ligand-based (such as pharmacophore and clustering) virtual screening methods. The feasibility to improve the performance of machine learning methods in screening large libraries is discussed.

  18. [Use of virtual reality in forensic psychiatry. A new paradigm?].

    PubMed

    Fromberger, P; Jordan, K; Müller, J L

    2014-03-01

    For more than 20 years virtual realities (VR) have been successfully used in the assessment and treatment of psychiatric disorders. The most important advantages of VR are the high ecological validity of virtual environments, the entire controllability of virtual stimuli in the virtual environment and the capability to induce the sensation of being in the virtual environment instead of the physical environment. VRs provide the opportunity to face the user with stimuli and situations which are not available or too risky in reality. Despite these advantages VR-based applications have not yet been applied in forensic psychiatry. On the basis of an overview of the recent state-of-the-art in VR-based applications in general psychiatry, the article demonstrates the advantages and possibilities of VR-based applications in forensic psychiatry. Up to now only preliminary studies regarding the VR-based assessment of pedophilic interests exist. These studies demonstrate the potential of ecologically valid VR-based applications for the assessment of forensically relevant disorders. One of the most important advantages is the possibility of VR to assess the behavior of forensic inpatients in crime-related situations without endangering others. This provides completely new possibilities not only regarding the assessment but also for the treatment of forensic inpatients. Before utilizing these possibilities in the clinical practice exhaustive research and development will be necessary. Given the high potential of VR-based applications, this effort would be worth it.

  19. An efficient and scalable deformable model for virtual reality-based medical applications.

    PubMed

    Choi, Kup-Sze; Sun, Hanqiu; Heng, Pheng-Ann

    2004-09-01

    Modeling of tissue deformation is of great importance to virtual reality (VR)-based medical simulations. Considerable effort has been dedicated to the development of interactively deformable virtual tissues. In this paper, an efficient and scalable deformable model is presented for virtual-reality-based medical applications. It considers deformation as a localized force transmittal process which is governed by algorithms based on breadth-first search (BFS). The computational speed is scalable to facilitate real-time interaction by adjusting the penetration depth. Simulated annealing (SA) algorithms are developed to optimize the model parameters by using the reference data generated with the linear static finite element method (FEM). The mechanical behavior and timing performance of the model have been evaluated. The model has been applied to simulate the typical behavior of living tissues and anisotropic materials. Integration with a haptic device has also been achieved on a generic personal computer (PC) platform. The proposed technique provides a feasible solution for VR-based medical simulations and has the potential for multi-user collaborative work in virtual environment.

  20. Exploring Design Requirements for Repurposing Dental Virtual Patients From the Web to Second Life: A Focus Group Study

    PubMed Central

    Antoniou, Panagiotis E; Athanasopoulou, Christina A; Dafli, Eleni

    2014-01-01

    Background Since their inception, virtual patients have provided health care educators with a way to engage learners in an experience simulating the clinician’s environment without danger to learners and patients. This has led this learning modality to be accepted as an essential component of medical education. With the advent of the visually and audio-rich 3-dimensional multi-user virtual environment (MUVE), a new deployment platform has emerged for educational content. Immersive, highly interactive, multimedia-rich, MUVEs that seamlessly foster collaboration provide a new hotbed for the deployment of medical education content. Objective This work aims to assess the suitability of the Second Life MUVE as a virtual patient deployment platform for undergraduate dental education, and to explore the requirements and specifications needed to meaningfully repurpose Web-based virtual patients in MUVEs. Methods Through the scripting capabilities and available art assets in Second Life, we repurposed an existing Web-based periodontology virtual patient into Second Life. Through a series of point-and-click interactions and multiple-choice queries, the user experienced a specific periodontology case and was asked to provide the optimal responses for each of the challenges of the case. A focus group of 9 undergraduate dentistry students experienced both the Web-based and the Second Life version of this virtual patient. The group convened 3 times and discussed relevant issues such as the group’s computer literacy, the assessment of Second Life as a virtual patient deployment platform, and compared the Web-based and MUVE-deployed virtual patients. Results A comparison between the Web-based and the Second Life virtual patient revealed the inherent advantages of the more experiential and immersive Second Life virtual environment. However, several challenges for the successful repurposing of virtual patients from the Web to the MUVE were identified. The identified challenges for repurposing of Web virtual patients to the MUVE platform from the focus group study were (1) increased case complexity to facilitate the user’s gaming preconception in a MUVE, (2) necessity to decrease textual narration and provide the pertinent information in a more immersive sensory way, and (3) requirement to allow the user to actuate the solutions of problems instead of describing them through narration. Conclusions For a successful systematic repurposing effort of virtual patients to MUVEs such as Second Life, the best practices of experiential and immersive game design should be organically incorporated in the repurposing workflow (automated or not). These findings are pivotal in an era in which open educational content is transferred to and shared among users, learners, and educators of various open repositories/environments. PMID:24927470

  1. Teaching Basic Field Skills Using Screen-Based Virtual Reality Landscapes

    NASA Astrophysics Data System (ADS)

    Houghton, J.; Robinson, A.; Gordon, C.; Lloyd, G. E. E.; Morgan, D. J.

    2016-12-01

    We are using screen-based virtual reality landscapes, created using the Unity 3D game engine, to augment the training geoscience students receive in preparing for fieldwork. Students explore these landscapes as they would real ones, interacting with virtual outcrops to collect data, determine location, and map the geology. Skills for conducting field geological surveys - collecting, plotting and interpreting data; time management and decision making - are introduced interactively and intuitively. As with real landscapes, the virtual landscapes are open-ended terrains with embedded data. This means the game does not structure student interaction with the information as it is through experience the student learns the best methods to work successfully and efficiently. These virtual landscapes are not replacements for geological fieldwork rather virtual spaces between classroom and field in which to train and reinforcement essential skills. Importantly, these virtual landscapes offer accessible parallel provision for students unable to visit, or fully partake in visiting, the field. The project has received positive feedback from both staff and students. Results show students find it easier to focus on learning these basic field skills in a classroom, rather than field setting, and make the same mistakes as when learning in the field, validating the realistic nature of the virtual experience and providing opportunity to learn from these mistakes. The approach also saves time, and therefore resources, in the field as basic skills are already embedded. 70% of students report increased confidence with how to map boundaries and 80% have found the virtual training a useful experience. We are also developing landscapes based on real places with 3D photogrammetric outcrops, and a virtual urban landscape in which Engineering Geology students can conduct a site investigation. This project is a collaboration between the University of Leeds and Leeds College of Art, UK, and all our virtual landscapes are freely available online at www.see.leeds.ac.uk/virtual-landscapes/.

  2. Image-based 3D reconstruction and virtual environmental walk-through

    NASA Astrophysics Data System (ADS)

    Sun, Jifeng; Fang, Lixiong; Luo, Ying

    2001-09-01

    We present a 3D reconstruction method, which combines geometry-based modeling, image-based modeling and rendering techniques. The first component is an interactive geometry modeling method which recovery of the basic geometry of the photographed scene. The second component is model-based stereo algorithm. We discus the image processing problems and algorithms of walking through in virtual space, then designs and implement a high performance multi-thread wandering algorithm. The applications range from architectural planning and archaeological reconstruction to virtual environments and cinematic special effects.

  3. Analyzing Members' Motivations to Participate in Role-Playing and Self-Expression Based Virtual Communities

    NASA Astrophysics Data System (ADS)

    Lee, Young Eun; Saharia, Aditya

    With the rapid growth of computer mediated communication technologies in the last two decades, various types of virtual communities have emerged. Some communities provide a role playing arena, enabled by avatars, while others provide an arena for expressing and promoting detailed personal profiles to enhance their offline social networks. Due to different focus of these virtual communities, different factors motivate members to participate in these communities. In this study, we examine differences in members’ motivations to participate in role-playing versus self-expression based virtual communities. To achieve this goal, we apply the Wang and Fesenmaier (2004) framework, which explains members’ participation in terms of their functional, social, psychological, and hedonic needs. The primary contributions of this study are two folds: First, it demonstrates differences between role-playing and self-expression based communities. Second, it provides a comprehensive framework describing members’ motivation to participate in virtual communities.

  4. Efficient Comparison between Windows and Linux Platform Applicable in a Virtual Architectural Walkthrough Application

    NASA Astrophysics Data System (ADS)

    Thubaasini, P.; Rusnida, R.; Rohani, S. M.

    This paper describes Linux, an open source platform used to develop and run a virtual architectural walkthrough application. It proposes some qualitative reflections and observations on the nature of Linux in the concept of Virtual Reality (VR) and on the most popular and important claims associated with the open source approach. The ultimate goal of this paper is to measure and evaluate the performance of Linux used to build the virtual architectural walkthrough and develop a proof of concept based on the result obtain through this project. Besides that, this study reveals the benefits of using Linux in the field of virtual reality and reflects a basic comparison and evaluation between Windows and Linux base operating system. Windows platform is use as a baseline to evaluate the performance of Linux. The performance of Linux is measured based on three main criteria which is frame rate, image quality and also mouse motion.

  5. Sinus Anatomy

    MedlinePlus

    ... ARS HOME ANATOMY Nasal Anatomy Sinus Anatomy Nasal Physiology Nasal Endoscopy Skull Base Anatomy Virtual Anatomy Disclosure ... ANATOMY > Sinus Anatomy Nasal Anatomy Sinus Anatomy Nasal Physiology Nasal Endoscopy Skull Base Anatomy Virtual Anatomy Disclosure ...

  6. Comparison of virtual patient simulation with mannequin-based simulation for improving clinical performances in assessing and managing clinical deterioration: randomized controlled trial.

    PubMed

    Liaw, Sok Ying; Chan, Sally Wai-Chi; Chen, Fun-Gee; Hooi, Shing Chuan; Siau, Chiang

    2014-09-17

    Virtual patient simulation has grown substantially in health care education. A virtual patient simulation was developed as a refresher training course to reinforce nursing clinical performance in assessing and managing deteriorating patients. The objective of this study was to describe the development of the virtual patient simulation and evaluate its efficacy, by comparing with a conventional mannequin-based simulation, for improving the nursing students' performances in assessing and managing patients with clinical deterioration. A randomized controlled study was conducted with 57 third-year nursing students who were recruited through email. After a baseline evaluation of all participants' clinical performance in a simulated environment, the experimental group received a 2-hour fully automated virtual patient simulation while the control group received 2-hour facilitator-led mannequin-based simulation training. All participants were then re-tested one day (first posttest) and 2.5 months (second posttest) after the intervention. The participants from the experimental group completed a survey to evaluate their learning experiences with the newly developed virtual patient simulation. Compared to their baseline scores, both experimental and control groups demonstrated significant improvements (P<.001) in first and second post-test scores. While the experimental group had significantly lower (P<.05) second post-test scores compared with the first post-test scores, no significant difference (P=.94) was found between these two scores for the control group. The scores between groups did not differ significantly over time (P=.17). The virtual patient simulation was rated positively. A virtual patient simulation for a refreshing training course on assessing and managing clinical deterioration was developed. Although the randomized controlled study did not show that the virtual patient simulation was superior to mannequin-based simulation, both simulations have demonstrated to be effective refresher learning strategies for improving nursing students' clinical performance. Given the greater resource requirements of mannequin-based simulation, the virtual patient simulation provides a more promising alternative learning strategy to mitigate the decay of clinical performance over time.

  7. Vision-based overlay of a virtual object into real scene for designing room interior

    NASA Astrophysics Data System (ADS)

    Harasaki, Shunsuke; Saito, Hideo

    2001-10-01

    In this paper, we introduce a geometric registration method for augmented reality (AR) and an application system, interior simulator, in which a virtual (CG) object can be overlaid into a real world space. Interior simulator is developed as an example of an AR application of the proposed method. Using interior simulator, users can visually simulate the location of virtual furniture and articles in the living room so that they can easily design the living room interior without placing real furniture and articles, by viewing from many different locations and orientations in real-time. In our system, two base images of a real world space are captured from two different views for defining a projective coordinate of object 3D space. Then each projective view of a virtual object in the base images are registered interactively. After such coordinate determination, an image sequence of a real world space is captured by hand-held camera with tracking non-metric measured feature points for overlaying a virtual object. Virtual objects can be overlaid onto the image sequence by taking each relationship between the images. With the proposed system, 3D position tracking device, such as magnetic trackers, are not required for the overlay of virtual objects. Experimental results demonstrate that 3D virtual furniture can be overlaid into an image sequence of the scene of a living room nearly at video rate (20 frames per second).

  8. Multiscale virtual particle based elastic network model (MVP-ENM) for normal mode analysis of large-sized biomolecules.

    PubMed

    Xia, Kelin

    2017-12-20

    In this paper, a multiscale virtual particle based elastic network model (MVP-ENM) is proposed for the normal mode analysis of large-sized biomolecules. The multiscale virtual particle (MVP) model is proposed for the discretization of biomolecular density data. With this model, large-sized biomolecular structures can be coarse-grained into virtual particles such that a balance between model accuracy and computational cost can be achieved. An elastic network is constructed by assuming "connections" between virtual particles. The connection is described by a special harmonic potential function, which considers the influence from both the mass distributions and distance relations of the virtual particles. Two independent models, i.e., the multiscale virtual particle based Gaussian network model (MVP-GNM) and the multiscale virtual particle based anisotropic network model (MVP-ANM), are proposed. It has been found that in the Debye-Waller factor (B-factor) prediction, the results from our MVP-GNM with a high resolution are as good as the ones from GNM. Even with low resolutions, our MVP-GNM can still capture the global behavior of the B-factor very well with mismatches predominantly from the regions with large B-factor values. Further, it has been demonstrated that the low-frequency eigenmodes from our MVP-ANM are highly consistent with the ones from ANM even with very low resolutions and a coarse grid. Finally, the great advantage of MVP-ANM model for large-sized biomolecules has been demonstrated by using two poliovirus virus structures. The paper ends with a conclusion.

  9. Usalpharma: A Cloud-Based Architecture to Support Quality Assurance Training Processes in Health Area Using Virtual Worlds

    PubMed Central

    García-Peñalvo, Francisco J.; Pérez-Blanco, Jonás Samuel; Martín-Suárez, Ana

    2014-01-01

    This paper discusses how cloud-based architectures can extend and enhance the functionality of the training environments based on virtual worlds and how, from this cloud perspective, we can provide support to analysis of training processes in the area of health, specifically in the field of training processes in quality assurance for pharmaceutical laboratories, presenting a tool for data retrieval and analysis that allows facing the knowledge discovery in the happenings inside the virtual worlds. PMID:24778593

  10. Virtual Distances Methodology as Verification Technique for AACMMs with a Capacitive Sensor Based Indexed Metrology Platform

    PubMed Central

    Acero, Raquel; Santolaria, Jorge; Brau, Agustin; Pueo, Marcos

    2016-01-01

    This paper presents a new verification procedure for articulated arm coordinate measuring machines (AACMMs) together with a capacitive sensor-based indexed metrology platform (IMP) based on the generation of virtual reference distances. The novelty of this procedure lays on the possibility of creating virtual points, virtual gauges and virtual distances through the indexed metrology platform’s mathematical model taking as a reference the measurements of a ball bar gauge located in a fixed position of the instrument’s working volume. The measurements are carried out with the AACMM assembled on the IMP from the six rotating positions of the platform. In this way, an unlimited number and types of reference distances could be created without the need of using a physical gauge, therefore optimizing the testing time, the number of gauge positions and the space needed in the calibration and verification procedures. Four evaluation methods are presented to assess the volumetric performance of the AACMM. The results obtained proved the suitability of the virtual distances methodology as an alternative procedure for verification of AACMMs using the indexed metrology platform. PMID:27869722

  11. Virtual Distances Methodology as Verification Technique for AACMMs with a Capacitive Sensor Based Indexed Metrology Platform.

    PubMed

    Acero, Raquel; Santolaria, Jorge; Brau, Agustin; Pueo, Marcos

    2016-11-18

    This paper presents a new verification procedure for articulated arm coordinate measuring machines (AACMMs) together with a capacitive sensor-based indexed metrology platform (IMP) based on the generation of virtual reference distances. The novelty of this procedure lays on the possibility of creating virtual points, virtual gauges and virtual distances through the indexed metrology platform's mathematical model taking as a reference the measurements of a ball bar gauge located in a fixed position of the instrument's working volume. The measurements are carried out with the AACMM assembled on the IMP from the six rotating positions of the platform. In this way, an unlimited number and types of reference distances could be created without the need of using a physical gauge, therefore optimizing the testing time, the number of gauge positions and the space needed in the calibration and verification procedures. Four evaluation methods are presented to assess the volumetric performance of the AACMM. The results obtained proved the suitability of the virtual distances methodology as an alternative procedure for verification of AACMMs using the indexed metrology platform.

  12. Local and global perspectives on the virtual water trade

    NASA Astrophysics Data System (ADS)

    Tamea, S.; Allamano, P.; Carr, J. A.; Claps, P.; Laio, F.; Ridolfi, L.

    2012-11-01

    Recent studies on fluxes of virtual water are showing how the global food and goods trade interconnects the water resources of different and distant countries, conditioning the local water balances. This paper presents and discusses the assessment of virtual water fluxes between a single country and its network of trading partners, delineating a country's virtual water budget in space and time (years 1986-2010). The fluxes between the country under study and its importing/exporting partners are visualized with a geographical representation shaping the trade network as a virtual river/delta. Time variations of exchanged fluxes are quantified to show possible trends in the virtual water balance, while characterizing the time evolution of the trade network and its composition in terms of product categories (plant-based, animal-based, luxury and non-edible). The average distance traveled by virtual water to arrive to the place of consumption is also introduced as a new measure for the analysis of globalization of the virtual water trade. Using Italy as an example, we find that food trade has a steadily growing importance compared to domestic production, with a major component represented by plan-based products, and luxury products taking an increasingly larger share (26% in 2010). In 2010 Italy had an average net import of 55 km3 of virtual water (38 km3 in 1986), a value which poses the country among the top net importers in the world. On average each cubic meter of virtual water travels nearly 4000 km before entering Italy, while export goes to relatively closer countries (average distance: 2600 km), with increasing trends in time which are almost unique among the world countries. Analyses proposed for Italy are replicated for 10 other world countries, triggering similar investigations on different socio-economic actualities.

  13. Local and global perspectives on the virtual water trade

    NASA Astrophysics Data System (ADS)

    Tamea, S.; Allamano, P.; Carr, J. A.; Claps, P.; Laio, F.; Ridolfi, L.

    2013-03-01

    Recent studies on fluxes of virtual water are showing how the global food and goods trade interconnects the water resources of different and distant countries, conditioning the local water balances. This paper presents and discusses the assessment of virtual water fluxes between a single country and its network of trading partners, delineating a country's virtual water budget in space and time (years 1986-2010). The fluxes between the country under study and its importing/exporting partners are visualized with a geographical representation shaping the trade network as a virtual river/delta. Time variations of exchanged fluxes are quantified to show possible trends in the virtual water balance, while characterizing the time evolution of the trade network and its composition in terms of product categories (plant-based, animal-based, luxury food, and non-edible). The average distance traveled by virtual water to arrive to the place of consumption is also introduced as a new measure for the analysis of globalization of the virtual water trade. Using Italy as an example, we find that food trade has a steadily growing importance compared to domestic production, with a major component represented by plant-based products, and luxury products taking an increasingly larger share (26% in 2010). In 2010 Italy had an average net import of 55 km3 of virtual water (38 km3 in 1986), a value which poses the country among the top net importers in the world. On average each cubic meter of virtual water travels nearly 4000 km before entering Italy, while export goes to relatively closer countries (average distance: 2600 km), with increasing trends in time which are almost unique among the world countries. Analyses proposed for Italy are replicated for 10 other world countries, triggering similar investigations on different socio-economic actualities.

  14. Using Virtual Worlds to Identify Multidimensional Student Engagement in High School Foreign Language Learning Classrooms

    ERIC Educational Resources Information Center

    Jacob, Laura Beth

    2012-01-01

    Virtual world environments have evolved from object-oriented, text-based online games to complex three-dimensional immersive social spaces where the lines between reality and computer-generated begin to blur. Educators use virtual worlds to create engaging three-dimensional learning spaces for students, but the impact of virtual worlds in…

  15. Open Source Meets Virtual Reality--An Instructor's Journey Unearths New Opportunities for Learning, Community, and Academia

    ERIC Educational Resources Information Center

    O'Connor, Eileen A.

    2015-01-01

    Opening with the history, recent advances, and emerging ways to use avatar-based virtual reality, an instructor who has used virtual environments since 2007 shares how these environments bring more options to community building, teaching, and education. With the open-source movement, where the source code for virtual environments was made…

  16. Virtual Enterprises and Vocational Training.

    ERIC Educational Resources Information Center

    Kreber, Stefan

    2001-01-01

    Characteristics of virtual enterprises (client oriented, temporary working organizations that dissolve after solving specific problems, extensive technological applications) can be applied to vocational training. Virtual learning centers can provide web-based training intraorganizationally and interorganizationally via intranets and extranets. (SK)

  17. The Application of Leap Motion in Astronaut Virtual Training

    NASA Astrophysics Data System (ADS)

    Qingchao, Xie; Jiangang, Chao

    2017-03-01

    With the development of computer vision, virtual reality has been applied in astronaut virtual training. As an advanced optic equipment to track hand, Leap Motion can provide precise and fluid tracking of hands. Leap Motion is suitable to be used as gesture input device in astronaut virtual training. This paper built an astronaut virtual training based Leap Motion, and established the mathematics model of hands occlusion. At last the ability of Leap Motion to handle occlusion was analysed. A virtual assembly simulation platform was developed for astronaut training, and occlusion gesture would influence the recognition process. The experimental result can guide astronaut virtual training.

  18. HPPD: ligand- and target-based virtual screening on a herbicide target.

    PubMed

    López-Ramos, Miriam; Perruccio, Francesca

    2010-05-24

    Hydroxyphenylpyruvate dioxygenase (HPPD) has proven to be a very successful target for the development of herbicides with bleaching properties, and today HPPD inhibitors are well established in the agrochemical market. Syngenta has a long history of HPPD-inhibitor research, and HPPD was chosen as a case study for the validation of diverse ligand- and target-based virtual screening approaches to identify compounds with inhibitory properties. Two-dimensional extended connectivity fingerprints, three-dimensional shape-based tools (ROCS, EON, and Phase-shape) and a pharmacophore approach (Phase) were used as ligand-based methods; Glide and Gold were used as target-based. Both the virtual screening utility and the scaffold-hopping ability of the screening tools were assessed. Particular emphasis was put on the specific pitfalls to take into account for the design of a virtual screening campaign in an agrochemical context, as compared to a pharmaceutical environment.

  19. A Discussion of Knowledge Based Design

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Bauer, Steven X. S.

    1999-01-01

    A discussion of knowledge and Knowledge- Based design as related to the design of aircraft is presented. The paper discusses the perceived problem with existing design studies and introduces the concepts of design and knowledge for a Knowledge- Based design system. A review of several Knowledge-Based design activities is provided. A Virtual Reality, Knowledge-Based system is proposed and reviewed. The feasibility of Virtual Reality to improve the efficiency and effectiveness of aerodynamic and multidisciplinary design, evaluation, and analysis of aircraft through the coupling of virtual reality technology and a Knowledge-Based design system is also reviewed. The final section of the paper discusses future directions for design and the role of Knowledge-Based design.

  20. Local concurrent error detection and correction in data structures using virtual backpointers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, C.C.J.; Chen, P.P.; Fuchs, W.K.

    1989-11-01

    A new technique, based on virtual backpointers, is presented in this paper for local concurrent error detection and correction in linked data structures. Two new data structures utilizing virtual backpointers, the Virtual Double-Linked List and the B-Tree and Virtual Backpointers, are described. For these structures, double errors within a fixed-size checking window can be detected in constant time and single errors detected during forward moves can be corrected in constant time.

  1. Visuo-Haptic Mixed Reality with Unobstructed Tool-Hand Integration.

    PubMed

    Cosco, Francesco; Garre, Carlos; Bruno, Fabio; Muzzupappa, Maurizio; Otaduy, Miguel A

    2013-01-01

    Visuo-haptic mixed reality consists of adding to a real scene the ability to see and touch virtual objects. It requires the use of see-through display technology for visually mixing real and virtual objects, and haptic devices for adding haptic interaction with the virtual objects. Unfortunately, the use of commodity haptic devices poses obstruction and misalignment issues that complicate the correct integration of a virtual tool and the user's real hand in the mixed reality scene. In this work, we propose a novel mixed reality paradigm where it is possible to touch and see virtual objects in combination with a real scene, using commodity haptic devices, and with a visually consistent integration of the user's hand and the virtual tool. We discuss the visual obstruction and misalignment issues introduced by commodity haptic devices, and then propose a solution that relies on four simple technical steps: color-based segmentation of the hand, tracking-based segmentation of the haptic device, background repainting using image-based models, and misalignment-free compositing of the user's hand. We have developed a successful proof-of-concept implementation, where a user can touch virtual objects and interact with them in the context of a real scene, and we have evaluated the impact on user performance of obstruction and misalignment correction.

  2. Prospective comparison of virtual fluoroscopy to fluoroscopy and plain radiographs for placement of lumbar pedicle screws.

    PubMed

    Resnick, Daniel K

    2003-06-01

    Fluoroscopy-based frameless stereotactic systems provide feedback to the surgeon using virtual fluoroscopic images. The real-life accuracy of these virtual images has not been compared with traditional fluoroscopy in a clinical setting. We prospectively studied 23 consecutive cases. In two cases, registration errors precluded the use of virtual fluoroscopy. Pedicle probes placed with virtual fluoroscopic imaging were imaged with traditional fluoroscopy in the remaining 21 cases. Position of the probes was judged to be ideal, acceptable but not ideal, or not acceptable based on the traditional fluoroscopic images. Virtual fluoroscopy was used to place probes in for 97 pedicles from L1 to the sacrum. Eighty-eight probes were judged to be in ideal position, eight were judged to be acceptable but not ideal, and one probe was judged to be in an unacceptable position. This probe was angled toward an adjacent disc space. Therefore, 96 of 97 probes placed using virtual fluoroscopy were found to be in an acceptable position. The positive predictive value for acceptable screw placement with virtual fluoroscopy compared with traditional fluoroscopy was 99%. A probe placed with virtual fluoroscopic guidance will be judged to be in an acceptable position when imaged with traditional fluoroscopy 99% of the time.

  3. Virtual World Currency Value Fluctuation Prediction System Based on User Sentiment Analysis.

    PubMed

    Kim, Young Bin; Lee, Sang Hyeok; Kang, Shin Jin; Choi, Myung Jin; Lee, Jung; Kim, Chang Hun

    2015-01-01

    In this paper, we present a method for predicting the value of virtual currencies used in virtual gaming environments that support multiple users, such as massively multiplayer online role-playing games (MMORPGs). Predicting virtual currency values in a virtual gaming environment has rarely been explored; it is difficult to apply real-world methods for predicting fluctuating currency values or shares to the virtual gaming world on account of differences in domains between the two worlds. To address this issue, we herein predict virtual currency value fluctuations by collecting user opinion data from a virtual community and analyzing user sentiments or emotions from the opinion data. The proposed method is straightforward and applicable to predicting virtual currencies as well as to gaming environments, including MMORPGs. We test the proposed method using large-scale MMORPGs and demonstrate that virtual currencies can be effectively and efficiently predicted with it.

  4. Virtual World Currency Value Fluctuation Prediction System Based on User Sentiment Analysis

    PubMed Central

    Kim, Young Bin; Lee, Sang Hyeok; Kang, Shin Jin; Choi, Myung Jin; Lee, Jung; Kim, Chang Hun

    2015-01-01

    In this paper, we present a method for predicting the value of virtual currencies used in virtual gaming environments that support multiple users, such as massively multiplayer online role-playing games (MMORPGs). Predicting virtual currency values in a virtual gaming environment has rarely been explored; it is difficult to apply real-world methods for predicting fluctuating currency values or shares to the virtual gaming world on account of differences in domains between the two worlds. To address this issue, we herein predict virtual currency value fluctuations by collecting user opinion data from a virtual community and analyzing user sentiments or emotions from the opinion data. The proposed method is straightforward and applicable to predicting virtual currencies as well as to gaming environments, including MMORPGs. We test the proposed method using large-scale MMORPGs and demonstrate that virtual currencies can be effectively and efficiently predicted with it. PMID:26241496

  5. Authentication in Virtual Organizations: A Reputation Based PKI Interconnection Model

    NASA Astrophysics Data System (ADS)

    Wazan, Ahmad Samer; Laborde, Romain; Barrere, Francois; Benzekri, Abdelmalek

    Authentication mechanism constitutes a central part of the virtual organization work. The PKI technology is used to provide the authentication in each organization involved in the virtual organization. Different trust models are proposed to interconnect the different PKIs in order to propagate the trust between them. While the existing trust models contain many drawbacks, we propose a new trust model based on the reputation of PKIs.

  6. Adapting Document Similarity Measures for Ligand-Based Virtual Screening.

    PubMed

    Himmat, Mubarak; Salim, Naomie; Al-Dabbagh, Mohammed Mumtaz; Saeed, Faisal; Ahmed, Ali

    2016-04-13

    Quantifying the similarity of molecules is considered one of the major tasks in virtual screening. There are many similarity measures that have been proposed for this purpose, some of which have been derived from document and text retrieving areas as most often these similarity methods give good results in document retrieval and can achieve good results in virtual screening. In this work, we propose a similarity measure for ligand-based virtual screening, which has been derived from a text processing similarity measure. It has been adopted to be suitable for virtual screening; we called this proposed measure the Adapted Similarity Measure of Text Processing (ASMTP). For evaluating and testing the proposed ASMTP we conducted several experiments on two different benchmark datasets: the Maximum Unbiased Validation (MUV) and the MDL Drug Data Report (MDDR). The experiments have been conducted by choosing 10 reference structures from each class randomly as queries and evaluate them in the recall of cut-offs at 1% and 5%. The overall obtained results are compared with some similarity methods including the Tanimoto coefficient, which are considered to be the conventional and standard similarity coefficients for fingerprint-based similarity calculations. The achieved results show that the performance of ligand-based virtual screening is better and outperforms the Tanimoto coefficients and other methods.

  7. Exploring Learner Acceptance of the Use of Virtual Reality in Medical Education: A Case Study of Desktop and Projection-Based Display Systems

    ERIC Educational Resources Information Center

    Huang, Hsiu-Mei; Liaw, Shu-Sheng; Lai, Chung-Min

    2016-01-01

    Advanced technologies have been widely applied in medical education, including human-patient simulators, immersive virtual reality Cave Automatic Virtual Environment systems, and video conferencing. Evaluating learner acceptance of such virtual reality (VR) learning environments is a critical issue for ensuring that such technologies are used to…

  8. A comparative analysis of dynamic grids vs. virtual grids using the A3pviGrid framework.

    PubMed

    Shankaranarayanan, Avinas; Amaldas, Christine

    2010-11-01

    With the proliferation of Quad/Multi-core micro-processors in mainstream platforms such as desktops and workstations; a large number of unused CPU cycles can be utilized for running virtual machines (VMs) as dynamic nodes in distributed environments. Grid services and its service oriented business broker now termed cloud computing could deploy image based virtualization platforms enabling agent based resource management and dynamic fault management. In this paper we present an efficient way of utilizing heterogeneous virtual machines on idle desktops as an environment for consumption of high performance grid services. Spurious and exponential increases in the size of the datasets are constant concerns in medical and pharmaceutical industries due to the constant discovery and publication of large sequence databases. Traditional algorithms are not modeled at handing large data sizes under sudden and dynamic changes in the execution environment as previously discussed. This research was undertaken to compare our previous results with running the same test dataset with that of a virtual Grid platform using virtual machines (Virtualization). The implemented architecture, A3pviGrid utilizes game theoretic optimization and agent based team formation (Coalition) algorithms to improve upon scalability with respect to team formation. Due to the dynamic nature of distributed systems (as discussed in our previous work) all interactions were made local within a team transparently. This paper is a proof of concept of an experimental mini-Grid test-bed compared to running the platform on local virtual machines on a local test cluster. This was done to give every agent its own execution platform enabling anonymity and better control of the dynamic environmental parameters. We also analyze performance and scalability of Blast in a multiple virtual node setup and present our findings. This paper is an extension of our previous research on improving the BLAST application framework using dynamic Grids on virtualization platforms such as the virtual box.

  9. Cochrane review: virtual reality for stroke rehabilitation.

    PubMed

    Laver, K; George, S; Thomas, S; Deutsch, J E; Crotty, M

    2012-09-01

    Virtual reality and interactive video gaming are innovative therapy approaches in the field of stroke rehabilitation. The primary objective of this review was to determine the effectiveness of virtual reality on motor function after stroke. The impact on secondary outcomes including activities of daily living was also assessed. Randomised and quasi-randomised controlled trials that compared virtual reality with an alternative or no intervention were included in the review. The authors searched the Cochrane Stroke Group Trials Register, the Cochrane Central Register of Controlled Trials, electronic databases, trial registers, reference lists, Dissertation Abstracts, conference proceedings and contacted key researchers and virtual reality manufacturers. Search results were independently examined by two review authors to identify studies meeting the inclusion criteria. Nineteen studies with a total of 565 participants were included in the review. Variation in intervention approaches and outcome data collected limited the extent to which studies could be compared. Virtual reality was found to be significantly more effective than conventional therapy in improving upper limb function (standardised mean difference, SMD) 0.53, 95% confidence intervals [CI] 0.25 to 0.81)) based on seven studies, and activities of daily living (ADL) function (SMD 0.81, 95% CI 0.39 to 1.22) based on three studies. No statistically significant effects were found for grip strength (based on two studies) or gait speed (based on three studies). Virtual reality appears to be a promising approach however, further studies are required to confirm these findings.

  10. Virtual Simulations: A Creative, Evidence-Based Approach to Develop and Educate Nurses.

    PubMed

    Leibold, Nancyruth; Schwarz, Laura

    2017-02-01

    The use of virtual simulations in nursing is an innovative strategy that is increasing in application. There are several terms related to virtual simulation; although some are used interchangeably, the meanings are not the same. This article presents examples of virtual simulation, virtual worlds, and virtual patients in continuing education, staff development, and academic nursing education. Virtual simulations in nursing use technology to provide safe, as realistic as possible clinical practice for nurses and nursing students. Virtual simulations are useful for learning new skills; practicing a skill that puts content, high-order thinking, and psychomotor elements together; skill competency learning; and assessment for low-volume, high-risk skills. The purpose of this article is to describe the related terms, examples, uses, theoretical frameworks, challenges, and evidence related to virtual simulations in nursing.

  11. Inertial Sensor-Based Touch and Shake Metaphor for Expressive Control of 3D Virtual Avatars

    PubMed Central

    Patil, Shashidhar; Chintalapalli, Harinadha Reddy; Kim, Dubeom; Chai, Youngho

    2015-01-01

    In this paper, we present an inertial sensor-based touch and shake metaphor for expressive control of a 3D virtual avatar in a virtual environment. An intuitive six degrees-of-freedom wireless inertial motion sensor is used as a gesture and motion control input device with a sensor fusion algorithm. The algorithm enables user hand motions to be tracked in 3D space via magnetic, angular rate, and gravity sensors. A quaternion-based complementary filter is implemented to reduce noise and drift. An algorithm based on dynamic time-warping is developed for efficient recognition of dynamic hand gestures with real-time automatic hand gesture segmentation. Our approach enables the recognition of gestures and estimates gesture variations for continuous interaction. We demonstrate the gesture expressivity using an interactive flexible gesture mapping interface for authoring and controlling a 3D virtual avatar and its motion by tracking user dynamic hand gestures. This synthesizes stylistic variations in a 3D virtual avatar, producing motions that are not present in the motion database using hand gesture sequences from a single inertial motion sensor. PMID:26094629

  12. Ring-based ultrasonic virtual point detector with applications to photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Yang, Xinmai; Li, Meng-Lin; Wang, Lihong V.

    2007-06-01

    An ultrasonic virtual point detector is constructed using the center of a ring transducer. The virtual point detector provides ideal omnidirectional detection free of any aperture effect. Compared with a real point detector, the virtual one has lower thermal noise and can be scanned with its center inside a physically inaccessible medium. When applied to photoacoustic tomography, the virtual point detector provides both high spatial resolution and high signal-to-noise ratio. It can also be potentially applied to other ultrasound-related technologies.

  13. Simulators and virtual reality in surgical education.

    PubMed

    Chou, Betty; Handa, Victoria L

    2006-06-01

    This article explores the pros and cons of virtual reality simulators, their abilities to train and assess surgical skills, and their potential future applications. Computer-based virtual reality simulators and more conventional box trainers are compared and contrasted. The virtual reality simulator provides objective assessment of surgical skills and immediate feedback further to enhance training. With this ability to provide standardized, unbiased assessment of surgical skills, the virtual reality trainer has the potential to be a tool for selecting, instructing, certifying, and recertifying gynecologists.

  14. Spherical harmonics coefficients for ligand-based virtual screening of cyclooxygenase inhibitors.

    PubMed

    Wang, Quan; Birod, Kerstin; Angioni, Carlo; Grösch, Sabine; Geppert, Tim; Schneider, Petra; Rupp, Matthias; Schneider, Gisbert

    2011-01-01

    Molecular descriptors are essential for many applications in computational chemistry, such as ligand-based similarity searching. Spherical harmonics have previously been suggested as comprehensive descriptors of molecular structure and properties. We investigate a spherical harmonics descriptor for shape-based virtual screening. We introduce and validate a partially rotation-invariant three-dimensional molecular shape descriptor based on the norm of spherical harmonics expansion coefficients. Using this molecular representation, we parameterize molecular surfaces, i.e., isosurfaces of spatial molecular property distributions. We validate the shape descriptor in a comprehensive retrospective virtual screening experiment. In a prospective study, we virtually screen a large compound library for cyclooxygenase inhibitors, using a self-organizing map as a pre-filter and the shape descriptor for candidate prioritization. 12 compounds were tested in vitro for direct enzyme inhibition and in a whole blood assay. Active compounds containing a triazole scaffold were identified as direct cyclooxygenase-1 inhibitors. This outcome corroborates the usefulness of spherical harmonics for representation of molecular shape in virtual screening of large compound collections. The combination of pharmacophore and shape-based filtering of screening candidates proved to be a straightforward approach to finding novel bioactive chemotypes with minimal experimental effort.

  15. A computer-based training system combining virtual reality and multimedia

    NASA Technical Reports Server (NTRS)

    Stansfield, Sharon A.

    1993-01-01

    Training new users of complex machines is often an expensive and time-consuming process. This is particularly true for special purpose systems, such as those frequently encountered in DOE applications. This paper presents a computer-based training system intended as a partial solution to this problem. The system extends the basic virtual reality (VR) training paradigm by adding a multimedia component which may be accessed during interaction with the virtual environment. The 3D model used to create the virtual reality is also used as the primary navigation tool through the associated multimedia. This method exploits the natural mapping between a virtual world and the real world that it represents to provide a more intuitive way for the student to interact with all forms of information about the system.

  16. Assessing Upper Extremity Motor Function in Practice of Virtual Activities of Daily Living

    PubMed Central

    Adams, Richard J.; Lichter, Matthew D.; Krepkovich, Eileen T.; Ellington, Allison; White, Marga; Diamond, Paul T.

    2015-01-01

    A study was conducted to investigate the criterion validity of measures of upper extremity (UE) motor function derived during practice of virtual activities of daily living (ADLs). Fourteen hemiparetic stroke patients employed a Virtual Occupational Therapy Assistant (VOTA), consisting of a high-fidelity virtual world and a Kinect™ sensor, in four sessions of approximately one hour in duration. An Unscented Kalman Filter-based human motion tracking algorithm estimated UE joint kinematics in real-time during performance of virtual ADL activities, enabling both animation of the user’s avatar and automated generation of metrics related to speed and smoothness of motion. These metrics, aggregated over discrete sub-task elements during performance of virtual ADLs, were compared to scores from an established assessment of UE motor performance, the Wolf Motor Function Test (WMFT). Spearman’s rank correlation analysis indicates a moderate correlation between VOTA-derived metrics and the time-based WMFT assessments, supporting the criterion validity of VOTA measures as a means of tracking patient progress during an UE rehabilitation program that includes practice of virtual ADLs. PMID:25265612

  17. Assessing upper extremity motor function in practice of virtual activities of daily living.

    PubMed

    Adams, Richard J; Lichter, Matthew D; Krepkovich, Eileen T; Ellington, Allison; White, Marga; Diamond, Paul T

    2015-03-01

    A study was conducted to investigate the criterion validity of measures of upper extremity (UE) motor function derived during practice of virtual activities of daily living (ADLs). Fourteen hemiparetic stroke patients employed a Virtual Occupational Therapy Assistant (VOTA), consisting of a high-fidelity virtual world and a Kinect™ sensor, in four sessions of approximately one hour in duration. An unscented Kalman Filter-based human motion tracking algorithm estimated UE joint kinematics in real-time during performance of virtual ADL activities, enabling both animation of the user's avatar and automated generation of metrics related to speed and smoothness of motion. These metrics, aggregated over discrete sub-task elements during performance of virtual ADLs, were compared to scores from an established assessment of UE motor performance, the Wolf Motor Function Test (WMFT). Spearman's rank correlation analysis indicates a moderate correlation between VOTA-derived metrics and the time-based WMFT assessments, supporting the criterion validity of VOTA measures as a means of tracking patient progress during an UE rehabilitation program that includes practice of virtual ADLs.

  18. Hardware assisted hypervisor introspection.

    PubMed

    Shi, Jiangyong; Yang, Yuexiang; Tang, Chuan

    2016-01-01

    In this paper, we introduce hypervisor introspection, an out-of-box way to monitor the execution of hypervisors. Similar to virtual machine introspection which has been proposed to protect virtual machines in an out-of-box way over the past decade, hypervisor introspection can be used to protect hypervisors which are the basis of cloud security. Virtual machine introspection tools are usually deployed either in hypervisor or in privileged virtual machines, which might also be compromised. By utilizing hardware support including nested virtualization, EPT protection and #BP, we are able to monitor all hypercalls belongs to the virtual machines of one hypervisor, include that of privileged virtual machine and even when the hypervisor is compromised. What's more, hypercall injection method is used to simulate hypercall-based attacks and evaluate the performance of our method. Experiment results show that our method can effectively detect hypercall-based attacks with some performance cost. Lastly, we discuss our furture approaches of reducing the performance cost and preventing the compromised hypervisor from detecting the existence of our introspector, in addition with some new scenarios to apply our hypervisor introspection system.

  19. Canoe game-based virtual reality training to improve trunk postural stability, balance, and upper limb motor function in subacute stroke patients: a randomized controlled pilot study.

    PubMed

    Lee, Myung-Mo; Shin, Doo-Chul; Song, Chang-Ho

    2016-07-01

    [Purpose] This study was aimed at investigating the preliminary therapeutic efficacy and usefulness of canoe game-based virtual reality training for stroke patients. [Subjects and Methods] Ten stroke patients were randomly assigned to an experimental group (EG; n=5) or a control group (CG; n=5). Patients in both groups participated in a conventional rehabilitation program, but those in the EG additionally participated in a 30-min canoe game-based virtual reality training program 3 days a week for 4 weeks. Therapeutic efficacy was assessed based on trunk postural stability, balance, and upper limb motor function. In addition, the usefulness of canoe game-based virtual reality training was assessed in the EG and therapist group (TG; n=20), which consisted of physical and occupational therapists, by using the System Usability Scale (SUS). [Results] Improvements in trunk postural stability, balance, and upper limb motor function were observed in the EG and CG, but were greater in the EG. The mean SUS scores in the EG and TG were 71 ± 5.2 and 74.2 ± 4.8, respectively. [Conclusion] Canoe game-based virtual reality training is an acceptable and effective intervention for improving trunk postural stability, balance, and upper limb motor function in stroke patients.

  20. The experiment editor: supporting inquiry-based learning with virtual labs

    NASA Astrophysics Data System (ADS)

    Galan, D.; Heradio, R.; de la Torre, L.; Dormido, S.; Esquembre, F.

    2017-05-01

    Inquiry-based learning is a pedagogical approach where students are motivated to pose their own questions when facing problems or scenarios. In physics learning, students are turned into scientists who carry out experiments, collect and analyze data, formulate and evaluate hypotheses, and so on. Lab experimentation is essential for inquiry-based learning, yet there is a drawback with traditional hands-on labs in the high costs associated with equipment, space, and maintenance staff. Virtual laboratories are helpful to reduce these costs. This paper enriches the virtual lab ecosystem by providing an integrated environment to automate experimentation tasks. In particular, our environment supports: (i) scripting and running experiments on virtual labs, and (ii) collecting and analyzing data from the experiments. The current implementation of our environment supports virtual labs created with the authoring tool Easy Java/Javascript Simulations. Since there are public repositories with hundreds of freely available labs created with this tool, the potential applicability to our environment is considerable.

  1. BIM based virtual environment for fire emergency evacuation.

    PubMed

    Wang, Bin; Li, Haijiang; Rezgui, Yacine; Bradley, Alex; Ong, Hoang N

    2014-01-01

    Recent building emergency management research has highlighted the need for the effective utilization of dynamically changing building information. BIM (building information modelling) can play a significant role in this process due to its comprehensive and standardized data format and integrated process. This paper introduces a BIM based virtual environment supported by virtual reality (VR) and a serious game engine to address several key issues for building emergency management, for example, timely two-way information updating and better emergency awareness training. The focus of this paper lies on how to utilize BIM as a comprehensive building information provider to work with virtual reality technologies to build an adaptable immersive serious game environment to provide real-time fire evacuation guidance. The innovation lies on the seamless integration between BIM and a serious game based virtual reality (VR) environment aiming at practical problem solving by leveraging state-of-the-art computing technologies. The system has been tested for its robustness and functionality against the development requirements, and the results showed promising potential to support more effective emergency management.

  2. Innovative research on the group teaching mode based on the LabVIEW virtual environment

    NASA Astrophysics Data System (ADS)

    Liang, Pei; Huang, Jie; Gong, Hua-ping; Dong, Qian-min; Dong, Yan-yan; Sun, Cai-xia

    2017-08-01

    This paper discusses the widely existing problems of increasing demand of professional engineer in electronic science major and the backward of the teaching mode at present. From one specialized course "Virtual Instrument technique and LABVIEW programming", we explore the new group-teaching mode based on the Virtual Instrument technique, and then the Specific measures and implementation procedures and effect of this teaching mode summarized in the end.

  3. Collaborative voxel-based surgical virtual environments.

    PubMed

    Acosta, Eric; Muniz, Gilbert; Armonda, Rocco; Bowyer, Mark; Liu, Alan

    2008-01-01

    Virtual Reality-based surgical simulators can utilize Collaborative Virtual Environments (C-VEs) to provide team-based training. To support real-time interactions, C-VEs are typically replicated on each user's local computer and a synchronization method helps keep all local copies consistent. This approach does not work well for voxel-based C-VEs since large and frequent volumetric updates make synchronization difficult. This paper describes a method that allows multiple users to interact within a voxel-based C-VE for a craniotomy simulator being developed. Our C-VE method requires smaller update sizes and provides faster synchronization update rates than volumetric-based methods. Additionally, we address network bandwidth/latency issues to simulate networked haptic and bone drilling tool interactions with a voxel-based skull C-VE.

  4. Planning Image-Based Measurements in Wind Tunnels by Virtual Imaging

    NASA Technical Reports Server (NTRS)

    Kushner, Laura Kathryn; Schairer, Edward T.

    2011-01-01

    Virtual imaging is routinely used at NASA Ames Research Center to plan the placement of cameras and light sources for image-based measurements in production wind tunnel tests. Virtual imaging allows users to quickly and comprehensively model a given test situation, well before the test occurs, in order to verify that all optical testing requirements will be met. It allows optimization of the placement of cameras and light sources and leads to faster set-up times, thereby decreasing tunnel occupancy costs. This paper describes how virtual imaging was used to plan optical measurements for three tests in production wind tunnels at NASA Ames.

  5. Designing Virtual Museum Using Web3D Technology

    NASA Astrophysics Data System (ADS)

    Zhao, Jianghai

    VRT was born to have the potentiality of constructing an effective learning environment due to its 3I characteristics: Interaction, Immersion and Imagination. It is now applied in education in a more profound way along with the development of VRT. Virtual Museum is one of the applications. The Virtual Museum is based on the WEB3D technology and extensibility is the most important factor. Considering the advantage and disadvantage of each WEB3D technology, VRML, CULT3D AND VIEWPOINT technologies are chosen. A web chatroom based on flash and ASP technology is also been created in order to make the Virtual Museum an interactive learning environment.

  6. National Mesothelioma Virtual Bank: a standard based biospecimen and clinical data resource to enhance translational research.

    PubMed

    Amin, Waqas; Parwani, Anil V; Schmandt, Linda; Mohanty, Sambit K; Farhat, Ghada; Pople, Andrew K; Winters, Sharon B; Whelan, Nancy B; Schneider, Althea M; Milnes, John T; Valdivieso, Federico A; Feldman, Michael; Pass, Harvey I; Dhir, Rajiv; Melamed, Jonathan; Becich, Michael J

    2008-08-13

    Advances in translational research have led to the need for well characterized biospecimens for research. The National Mesothelioma Virtual Bank is an initiative which collects annotated datasets relevant to human mesothelioma to develop an enterprising biospecimen resource to fulfill researchers' need. The National Mesothelioma Virtual Bank architecture is based on three major components: (a) common data elements (based on College of American Pathologists protocol and National North American Association of Central Cancer Registries standards), (b) clinical and epidemiologic data annotation, and (c) data query tools. These tools work interoperably to standardize the entire process of annotation. The National Mesothelioma Virtual Bank tool is based upon the caTISSUE Clinical Annotation Engine, developed by the University of Pittsburgh in cooperation with the Cancer Biomedical Informatics Grid (caBIG, see http://cabig.nci.nih.gov). This application provides a web-based system for annotating, importing and searching mesothelioma cases. The underlying information model is constructed utilizing Unified Modeling Language class diagrams, hierarchical relationships and Enterprise Architect software. The database provides researchers real-time access to richly annotated specimens and integral information related to mesothelioma. The data disclosed is tightly regulated depending upon users' authorization and depending on the participating institute that is amenable to the local Institutional Review Board and regulation committee reviews. The National Mesothelioma Virtual Bank currently has over 600 annotated cases available for researchers that include paraffin embedded tissues, tissue microarrays, serum and genomic DNA. The National Mesothelioma Virtual Bank is a virtual biospecimen registry with robust translational biomedical informatics support to facilitate basic science, clinical, and translational research. Furthermore, it protects patient privacy by disclosing only de-identified datasets to assure that biospecimens can be made accessible to researchers.

  7. Protein tyrosine phosphatases: Ligand interaction analysis and optimisation of virtual screening.

    PubMed

    Ghattas, Mohammad A; Atatreh, Noor; Bichenkova, Elena V; Bryce, Richard A

    2014-07-01

    Docking-based virtual screening is an established component of structure-based drug discovery. Nevertheless, scoring and ranking of computationally docked ligand libraries still suffer from many false positives. Identifying optimal docking parameters for a target protein prior to virtual screening can improve experimental hit rates. Here, we examine protocols for virtual screening against the important but challenging class of drug target, protein tyrosine phosphatases. In this study, common interaction features were identified from analysis of protein-ligand binding geometries of more than 50 complexed phosphatase crystal structures. It was found that two interactions were consistently formed across all phosphatase inhibitors: (1) a polar contact with the conserved arginine residue, and (2) at least one interaction with the P-loop backbone amide. In order to investigate the significance of these features on phosphatase-ligand binding, a series of seeded virtual screening experiments were conducted on three phosphatase enzymes, PTP1B, Cdc25b and IF2. It was observed that when the conserved arginine and P-loop amide interactions were used as pharmacophoric constraints during docking, enrichment of the virtual screen significantly increased in the three studied phosphatases, by up to a factor of two in some cases. Additionally, the use of such pharmacophoric constraints considerably improved the ability of docking to predict the inhibitor's bound pose, decreasing RMSD to the crystallographic geometry by 43% on average. Constrained docking improved enrichment of screens against both open and closed conformations of PTP1B. Incorporation of an ordered water molecule in PTP1B screening was also found to generally improve enrichment. The knowledge-based computational strategies explored here can potentially inform structure-based design of new phosphatase inhibitors using docking-based virtual screening. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Virtual goods recommendations in virtual worlds.

    PubMed

    Chen, Kuan-Yu; Liao, Hsiu-Yu; Chen, Jyun-Hung; Liu, Duen-Ren

    2015-01-01

    Virtual worlds (VWs) are computer-simulated environments which allow users to create their own virtual character as an avatar. With the rapidly growing user volume in VWs, platform providers launch virtual goods in haste and stampede users to increase sales revenue. However, the rapidity of development incurs virtual unrelated items which will be difficult to remarket. It not only wastes virtual global companies' intelligence resources, but also makes it difficult for users to find suitable virtual goods fit for their virtual home in daily virtual life. In the VWs, users decorate their houses, visit others' homes, create families, host parties, and so forth. Users establish their social life circles through these activities. This research proposes a novel virtual goods recommendation method based on these social interactions. The contact strength and contact influence result from interactions with social neighbors and influence users' buying intention. Our research highlights the importance of social interactions in virtual goods recommendation. The experiment's data were retrieved from an online VW platform, and the results show that the proposed method, considering social interactions and social life circle, has better performance than existing recommendation methods.

  9. Virtual Goods Recommendations in Virtual Worlds

    PubMed Central

    Chen, Kuan-Yu; Liao, Hsiu-Yu; Chen, Jyun-Hung; Liu, Duen-Ren

    2015-01-01

    Virtual worlds (VWs) are computer-simulated environments which allow users to create their own virtual character as an avatar. With the rapidly growing user volume in VWs, platform providers launch virtual goods in haste and stampede users to increase sales revenue. However, the rapidity of development incurs virtual unrelated items which will be difficult to remarket. It not only wastes virtual global companies' intelligence resources, but also makes it difficult for users to find suitable virtual goods fit for their virtual home in daily virtual life. In the VWs, users decorate their houses, visit others' homes, create families, host parties, and so forth. Users establish their social life circles through these activities. This research proposes a novel virtual goods recommendation method based on these social interactions. The contact strength and contact influence result from interactions with social neighbors and influence users' buying intention. Our research highlights the importance of social interactions in virtual goods recommendation. The experiment's data were retrieved from an online VW platform, and the results show that the proposed method, considering social interactions and social life circle, has better performance than existing recommendation methods. PMID:25834837

  10. The early benefits of a problem-based approach to teaching social inclusion using an online virtual town.

    PubMed

    Beadle, Mary; Santy, Julie

    2008-05-01

    This article describes the delivery of a core pre-registration nursing and midwifery module centred on social inclusion. The module was previously delivered using a classroom-based problem-based learning approach. Difficulties with this approach led to changes to the module and its delivery. Logistic issues encouraged the module team to implement a blended learning approach using a virtual town to facilitate online learning and discussion activities. The paper describes and discusses the use of online learning technology to support student nurses and midwives. It highlights the benefits of this approach and outlines some of the experiences of the students including their evaluation of the virtual town. There is also an examination of some of the practical and theoretical issues related to both problem-based learning, online working and using a virtual town to support learning. This article outlines the approach taken and its implications.

  11. Propagation of crises in the virtual water trade network

    NASA Astrophysics Data System (ADS)

    Tamea, Stefania; Laio, Francesco; Ridolfi, Luca

    2015-04-01

    The international trade of agricultural goods is associated to the displacement of the water used to produce such goods and embedded in trade as a factor of production. Water virtually exchanged from producing to consuming countries, named virtual water, defines flows across an international network of 'virtual water trade' which enable the assessment of environmental forcings and implications of trade, such as global water savings or country dependencies on foreign water resources. Given the recent expansion of commodity (and virtual water) trade, in both displaced volumes and network structure, concerns have been raised about the exposure to crises of individuals and societies. In fact, if one country had to markedly decrease its export following a socio-economical or environmental crisis, such as a war or a drought, many -if not all- countries would be affected due to a cascade effect within the trade network. The present contribution proposes a mechanistic model describing the propagation of a local crisis into the virtual water trade network, accounting for the network structure and the virtual water balance of all countries. The model, built on data-based assumptions, is tested on the real case study of the Argentinean crisis in 2008-09, when the internal agricultural production (measured as virtual water volume) decreased by 26% and the virtual water export of Argentina dropped accordingly. Crisis propagation and effects on the virtual water trade are correctly captured, showing the way forward to investigations of crises impact and country vulnerability based on the results of the model proposed.

  12. Virtual Education in Universities: A Technological Imperative.

    ERIC Educational Resources Information Center

    O'Donoghue, John; Singh, Gurmak; Dorward, Lisa

    2001-01-01

    Discusses virtual universities and virtual classrooms, exploring both the benefits and the disadvantages of technology-based delivery systems. Highlights include competitive pressures to use technology; impacts on students; the need for flexibility to meet unique student needs and learning styles; learning environments; impact on society; and…

  13. Knowledge Searching and Sharing on Virtual Networks.

    ERIC Educational Resources Information Center

    Helokunnas, Tuija; Herrala, Juha

    2001-01-01

    Describes searching and sharing of knowledge on virtual networks, based on experiences gained when hosting virtual knowledge networks at Tampere University of Technology in Finland. Discusses information and knowledge management studies; role of information technology in knowledge searching and sharing; implementation and experiences of the…

  14. State Virtual Libraries

    ERIC Educational Resources Information Center

    Pappas, Marjorie L.

    2003-01-01

    Virtual library? Electronic library? Digital library? Online information network? These all apply to the growing number of Web-based resource collections managed by consortiums of state library entities. Some, like "INFOhio" and "KYVL" ("Kentucky Virtual Library"), have been available for a few years, but others are just starting. Searching for…

  15. A 3D character animation engine for multimodal interaction on mobile devices

    NASA Astrophysics Data System (ADS)

    Sandali, Enrico; Lavagetto, Fabio; Pisano, Paolo

    2005-03-01

    Talking virtual characters are graphical simulations of real or imaginary persons that enable natural and pleasant multimodal interaction with the user, by means of voice, eye gaze, facial expression and gestures. This paper presents an implementation of a 3D virtual character animation and rendering engine, compliant with the MPEG-4 standard, running on Symbian-based SmartPhones. Real-time animation of virtual characters on mobile devices represents a challenging task, since many limitations must be taken into account with respect to processing power, graphics capabilities, disk space and execution memory size. The proposed optimization techniques allow to overcome these issues, guaranteeing a smooth and synchronous animation of facial expressions and lip movements on mobile phones such as Sony-Ericsson's P800 and Nokia's 6600. The animation engine is specifically targeted to the development of new "Over The Air" services, based on embodied conversational agents, with applications in entertainment (interactive story tellers), navigation aid (virtual guides to web sites and mobile services), news casting (virtual newscasters) and education (interactive virtual teachers).

  16. Engaging adolescents in a computer-based weight management program: avatars and virtual coaches could help.

    PubMed

    LeRouge, Cynthia; Dickhut, Kathryn; Lisetti, Christine; Sangameswaran, Savitha; Malasanos, Toree

    2016-01-01

    This research focuses on the potential ability of animated avatars (a digital representation of the user) and virtual agents (a digital representation of a coach, buddy, or teacher) to deliver computer-based interventions for adolescents' chronic weight management. An exploration of the acceptance and desire of teens to interact with avatars and virtual agents for self-management and behavioral modification was undertaken. The utilized approach was inspired by community-based participatory research. Data was collected from 2 phases: Phase 1) focus groups with teens, provider interviews, parent interviews; and Phase 2) mid-range prototype assessment by teens and providers. Data from all stakeholder groups expressed great interest in avatars and virtual agents assisting self-management efforts. Adolescents felt the avatars and virtual agents could: 1) reinforce guidance and support, 2) fit within their lifestyle, and 3) help set future goals, particularly after witnessing the effect of their current behavior(s) on the projected physical appearance (external and internal organs) of avatars. Teens wanted 2 virtual characters: a virtual agent to act as a coach or teacher and an avatar (extension of themselves) to serve as a "buddy" for empathic support and guidance and as a surrogate for rewards. Preferred modalities for use include both mobile devices to accommodate access and desktop to accommodate preferences for maximum screen real estate to support virtualization of functions that are more contemplative and complex (e.g., goal setting). Adolescents expressed a desire for limited co-user access, which they could regulate. Data revealed certain barriers and facilitators that could affect adoption and use. The current study extends the support of teens, parents, and providers for adding avatars or virtual agents to traditional computer-based interactions. Data supports the desire for a personal relationship with a virtual character in support of previous studies. The study provides a foundation for further work in the area of avatar-driven motivational interviewing. This study provides evidence supporting the use of avatars and virtual agents, designed using participatory approaches, to be included in the continuum of care. Increased probability of engagement and long-term retention of overweight, obese adolescent users and suggests expanding current chronic care models toward more comprehensive, socio-technical representations. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. An information model for a virtual private optical network (OVPN) using virtual routers (VRs)

    NASA Astrophysics Data System (ADS)

    Vo, Viet Minh Nhat

    2002-05-01

    This paper describes a virtual private optical network architecture (Optical VPN - OVPN) based on virtual router (VR). It improves over architectures suggested for virtual private networks by using virtual routers with optical networks. The new things in this architecture are necessary changes to adapt to devices and protocols used in optical networks. This paper also presents information models for the OVPN: at the architecture level and at the service level. These are extensions to the DEN (directory enable network) and CIM (Common Information Model) for OVPNs using VRs. The goal is to propose a common management model using policies.

  18. Handheld Micromanipulation with Vision-Based Virtual Fixtures

    PubMed Central

    Becker, Brian C.; MacLachlan, Robert A.; Hager, Gregory D.; Riviere, Cameron N.

    2011-01-01

    Precise movement during micromanipulation becomes difficult in submillimeter workspaces, largely due to the destabilizing influence of tremor. Robotic aid combined with filtering techniques that suppress tremor frequency bands increases performance; however, if knowledge of the operator's goals is available, virtual fixtures have been shown to greatly improve micromanipulator precision. In this paper, we derive a control law for position-based virtual fixtures within the framework of an active handheld micromanipulator, where the fixtures are generated in real-time from microscope video. Additionally, we develop motion scaling behavior centered on virtual fixtures as a simple and direct extension to our formulation. We demonstrate that hard and soft (motion-scaled) virtual fixtures outperform state-of-the-art tremor cancellation performance on a set of artificial but medically relevant tasks: holding, move-and-hold, curve tracing, and volume restriction. PMID:23275860

  19. Virtual local target method for avoiding local minimum in potential field based robot navigation.

    PubMed

    Zou, Xi-Yong; Zhu, Jing

    2003-01-01

    A novel robot navigation algorithm with global path generation capability is presented. Local minimum is a most intractable but is an encountered frequently problem in potential field based robot navigation. Through appointing appropriately some virtual local targets on the journey, it can be solved effectively. The key concept employed in this algorithm are the rules that govern when and how to appoint these virtual local targets. When the robot finds itself in danger of local minimum, a virtual local target is appointed to replace the global goal temporarily according to the rules. After the virtual target is reached, the robot continues on its journey by heading towards the global goal. The algorithm prevents the robot from running into local minima anymore. Simulation results showed that it is very effective in complex obstacle environments.

  20. Selective Listening Point Audio Based on Blind Signal Separation and Stereophonic Technology

    NASA Astrophysics Data System (ADS)

    Niwa, Kenta; Nishino, Takanori; Takeda, Kazuya

    A sound field reproduction method is proposed that uses blind source separation and a head-related transfer function. In the proposed system, multichannel acoustic signals captured at distant microphones are decomposed to a set of location/signal pairs of virtual sound sources based on frequency-domain independent component analysis. After estimating the locations and the signals of the virtual sources by convolving the controlled acoustic transfer functions with each signal, the spatial sound is constructed at the selected point. In experiments, a sound field made by six sound sources is captured using 48 distant microphones and decomposed into sets of virtual sound sources. Since subjective evaluation shows no significant difference between natural and reconstructed sound when six virtual sources and are used, the effectiveness of the decomposing algorithm as well as the virtual source representation are confirmed.

  1. Visualizing dynamic geosciences phenomena using an octree-based view-dependent LOD strategy within virtual globes

    NASA Astrophysics Data System (ADS)

    Li, Jing; Wu, Huayi; Yang, Chaowei; Wong, David W.; Xie, Jibo

    2011-09-01

    Geoscientists build dynamic models to simulate various natural phenomena for a better understanding of our planet. Interactive visualizations of these geoscience models and their outputs through virtual globes on the Internet can help the public understand the dynamic phenomena related to the Earth more intuitively. However, challenges arise when the volume of four-dimensional data (4D), 3D in space plus time, is huge for rendering. Datasets loaded from geographically distributed data servers require synchronization between ingesting and rendering data. Also the visualization capability of display clients varies significantly in such an online visualization environment; some may not have high-end graphic cards. To enhance the efficiency of visualizing dynamic volumetric data in virtual globes, this paper proposes a systematic framework, in which an octree-based multiresolution data structure is implemented to organize time series 3D geospatial data to be used in virtual globe environments. This framework includes a view-dependent continuous level of detail (LOD) strategy formulated as a synchronized part of the virtual globe rendering process. Through the octree-based data retrieval process, the LOD strategy enables the rendering of the 4D simulation at a consistent and acceptable frame rate. To demonstrate the capabilities of this framework, data of a simulated dust storm event are rendered in World Wind, an open source virtual globe. The rendering performances with and without the octree-based LOD strategy are compared. The experimental results show that using the proposed data structure and processing strategy significantly enhances the visualization performance when rendering dynamic geospatial phenomena in virtual globes.

  2. G2H--graphics-to-haptic virtual environment development tool for PC's.

    PubMed

    Acosta, E; Temkin, B; Krummel, T M; Heinrichs, W L

    2000-01-01

    For surgical training and preparations, the existing surgical virtual environments have shown great improvement. However, these improvements are more in the visual aspect. The incorporation of haptics into virtual reality base surgical simulations would enhance the sense of realism greatly. To aid in the development of the haptic surgical virtual environment we have created a graphics to haptic, G2H, virtual environment developer tool. G2H transforms graphical virtual environments (created or imported) to haptic virtual environments without programming. The G2H capability has been demonstrated using the complex 3D pelvic model of Lucy 2.0, the Stanford Visible Female. The pelvis was made haptic using G2H without any further programming effort.

  3. [Virtual water content of livestock products in China].

    PubMed

    Wang, Hong-rui; Wang, Jun-hong

    2006-04-01

    The paper expatiated the virtual water content concept of livestock products and the study meaning on developing virtual water trade of livestock products in China, then summarized the calculation methods on virtual water and virtual water trade of livestock products. Based on these, the paper analyzed and researched every province virtual water content of livestock products in details, then elicited various situation of every province virtual water content of livestock products in China by year. Moreover, it compared virtual water content of livestock products with local water resources. The study indicated the following results: (1) The virtual water content of livestock products is increasing rapidly in China recently, especially poultry eggs and pork. (2) The distribution of virtual water content of livestock products is not balanced, mainly lies in North China, East China and so on; (3) The increasing production of livestock in Beijing City, Tianjin City, Hebei, Nei Monggol, Liaononing, Jilin, Shandong, Henan and Ningxia province and autonom ous region will bring pressure to local water shortage.

  4. Virtual Network Configuration Management System for Data Center Operations and Management

    NASA Astrophysics Data System (ADS)

    Okita, Hideki; Yoshizawa, Masahiro; Uehara, Keitaro; Mizuno, Kazuhiko; Tarui, Toshiaki; Naono, Ken

    Virtualization technologies are widely deployed in data centers to improve system utilization. However, they increase the workload for operators, who have to manage the structure of virtual networks in data centers. A virtual-network management system which automates the integration of the configurations of the virtual networks is provided. The proposed system collects the configurations from server virtualization platforms and VLAN-supported switches, and integrates these configurations according to a newly developed XML-based management information model for virtual-network configurations. Preliminary evaluations show that the proposed system helps operators by reducing the time to acquire the configurations from devices and correct the inconsistency of operators' configuration management database by about 40 percent. Further, they also show that the proposed system has excellent scalability; the system takes less than 20 minutes to acquire the virtual-network configurations from a large scale network that includes 300 virtual machines. These results imply that the proposed system is effective for improving the configuration management process for virtual networks in data centers.

  5. Validation of a new method for finding the rotational axes of the knee using both marker-based roentgen stereophotogrammetric analysis and 3D video-based motion analysis for kinematic measurements.

    PubMed

    Roland, Michelle; Hull, M L; Howell, S M

    2011-05-01

    In a previous paper, we reported the virtual axis finder, which is a new method for finding the rotational axes of the knee. The virtual axis finder was validated through simulations that were subject to limitations. Hence, the objective of the present study was to perform a mechanical validation with two measurement modalities: 3D video-based motion analysis and marker-based roentgen stereophotogrammetric analysis (RSA). A two rotational axis mechanism was developed, which simulated internal-external (or longitudinal) and flexion-extension (FE) rotations. The actual axes of rotation were known with respect to motion analysis and RSA markers within ± 0.0006 deg and ± 0.036 mm and ± 0.0001 deg and ± 0.016 mm, respectively. The orientation and position root mean squared errors for identifying the longitudinal rotation (LR) and FE axes with video-based motion analysis (0.26 deg, 0.28 m, 0.36 deg, and 0.25 mm, respectively) were smaller than with RSA (1.04 deg, 0.84 mm, 0.82 deg, and 0.32 mm, respectively). The random error or precision in the orientation and position was significantly better (p=0.01 and p=0.02, respectively) in identifying the LR axis with video-based motion analysis (0.23 deg and 0.24 mm) than with RSA (0.95 deg and 0.76 mm). There was no significant difference in the bias errors between measurement modalities. In comparing the mechanical validations to virtual validations, the virtual validations produced comparable errors to those of the mechanical validation. The only significant difference between the errors of the mechanical and virtual validations was the precision in the position of the LR axis while simulating video-based motion analysis (0.24 mm and 0.78 mm, p=0.019). These results indicate that video-based motion analysis with the equipment used in this study is the superior measurement modality for use with the virtual axis finder but both measurement modalities produce satisfactory results. The lack of significant differences between validation techniques suggests that the virtual sensitivity analysis previously performed was appropriately modeled. Thus, the virtual axis finder can be applied with a thorough understanding of its errors in a variety of test conditions.

  6. Telemanipulation, telepresence, and virtual reality for surgery in the year 2000

    NASA Astrophysics Data System (ADS)

    Satava, Richard M.

    1995-12-01

    The new technologic revolution in medicine is based upon information technologies, and telemanipulation, telepresence and virtual reality are essential components. Telepresence surgery returns the look and feel of `open surgery' to the surgeon and promises enhancement of physical capabilities above normal human performance. Virtual reality provides basic medical education, simulation of surgical procedures, medical forces and disaster medicine practice, and virtual prototyping of medical equipment.

  7. A User-Centric Knowledge Creation Model in a Web of Object-Enabled Internet of Things Environment

    PubMed Central

    Kibria, Muhammad Golam; Fattah, Sheik Mohammad Mostakim; Jeong, Kwanghyeon; Chong, Ilyoung; Jeong, Youn-Kwae

    2015-01-01

    User-centric service features in a Web of Object-enabled Internet of Things environment can be provided by using a semantic ontology that classifies and integrates objects on the World Wide Web as well as shares and merges context-aware information and accumulated knowledge. The semantic ontology is applied on a Web of Object platform to virtualize the real world physical devices and information to form virtual objects that represent the features and capabilities of devices in the virtual world. Detailed information and functionalities of multiple virtual objects are combined with service rules to form composite virtual objects that offer context-aware knowledge-based services, where context awareness plays an important role in enabling automatic modification of the system to reconfigure the services based on the context. Converting the raw data into meaningful information and connecting the information to form the knowledge and storing and reusing the objects in the knowledge base can both be expressed by semantic ontology. In this paper, a knowledge creation model that synchronizes a service logistic model and a virtual world knowledge model on a Web of Object platform has been proposed. To realize the context-aware knowledge-based service creation and execution, a conceptual semantic ontology model has been developed and a prototype has been implemented for a use case scenario of emergency service. PMID:26393609

  8. A User-Centric Knowledge Creation Model in a Web of Object-Enabled Internet of Things Environment.

    PubMed

    Kibria, Muhammad Golam; Fattah, Sheik Mohammad Mostakim; Jeong, Kwanghyeon; Chong, Ilyoung; Jeong, Youn-Kwae

    2015-09-18

    User-centric service features in a Web of Object-enabled Internet of Things environment can be provided by using a semantic ontology that classifies and integrates objects on the World Wide Web as well as shares and merges context-aware information and accumulated knowledge. The semantic ontology is applied on a Web of Object platform to virtualize the real world physical devices and information to form virtual objects that represent the features and capabilities of devices in the virtual world. Detailed information and functionalities of multiple virtual objects are combined with service rules to form composite virtual objects that offer context-aware knowledge-based services, where context awareness plays an important role in enabling automatic modification of the system to reconfigure the services based on the context. Converting the raw data into meaningful information and connecting the information to form the knowledge and storing and reusing the objects in the knowledge base can both be expressed by semantic ontology. In this paper, a knowledge creation model that synchronizes a service logistic model and a virtual world knowledge model on a Web of Object platform has been proposed. To realize the context-aware knowledge-based service creation and execution, a conceptual semantic ontology model has been developed and a prototype has been implemented for a use case scenario of emergency service.

  9. Research on inosculation between master of ceremonies or players and virtual scene in virtual studio

    NASA Astrophysics Data System (ADS)

    Li, Zili; Zhu, Guangxi; Zhu, Yaoting

    2003-04-01

    A technical principle about construction of virtual studio has been proposed where orientation tracker and telemeter has been used for improving conventional BETACAM pickup camera and connecting with the software module of the host. A model of virtual camera named Camera & Post-camera Coupling Pair has been put forward, which is different from the common model in computer graphics and has been bound to real BETACAM pickup camera for shooting. The formula has been educed to compute the foreground frame buffer image and the background frame buffer image of the virtual scene whose boundary is based on the depth information of target point of the real BETACAM pickup camera's projective ray. The effect of real-time consistency has been achieved between the video image sequences of the master of ceremonies or players and the CG video image sequences for the virtual scene in spatial position, perspective relationship and image object masking. The experimental result has shown that the technological scheme of construction of virtual studio submitted in this paper is feasible and more applicative and more effective than the existing technology to establish a virtual studio based on color-key and image synthesis with background using non-linear video editing technique.

  10. Virtual water flows and trade liberalization.

    PubMed

    Ramirez-Vallejo, J; Rogers, P

    2004-01-01

    The linkages between agricultural trade and water resources need to be identified and analyzed to better understand the potential impacts that a full liberalization, or lack thereof, will have on water resources. This paper examines trade of virtual water embodied in agricultural products for most countries of the world. The main purpose of the paper, however, is to examine the impact of trade liberalization on virtual-water trade in the future. Based on a simulation of global agricultural trade, a scenario of full liberalization of agriculture was used to assess the net effect of virtual water flows from the relocation of meat and cereals' trade. The paper also identifies the main reasons behind the changes in the magnitude and direction of the net virtual water trade over time, and shows that virtual water trade flows are independent of water resource endowments, contrary to what the Heckscher-Ohlin Theorem states. Finally, based on a formal model, some input demand functions at the country level are estimated. The estimates of the income and agricultural support elasticities of demand for import of virtual water have the expected sign, and are statistically significant. Variables found to have some explanatory power of the variance of virtual water imports are average income; population; agriculture as value added; irrigated area, and exports of goods and services.

  11. The Virtual Care Climate Questionnaire: Development and Validation of a Questionnaire Measuring Perceived Support for Autonomy in a Virtual Care Setting.

    PubMed

    Smit, Eline Suzanne; Dima, Alexandra Lelia; Immerzeel, Stephanie Annette Maria; van den Putte, Bas; Williams, Geoffrey Colin

    2017-05-08

    Web-based health behavior change interventions may be more effective if they offer autonomy-supportive communication facilitating the internalization of motivation for health behavior change. Yet, at this moment no validated tools exist to assess user-perceived autonomy-support of such interventions. The aim of this study was to develop and validate the virtual climate care questionnaire (VCCQ), a measure of perceived autonomy-support in a virtual care setting. Items were developed based on existing questionnaires and expert consultation and were pretested among experts and target populations. The virtual climate care questionnaire was administered in relation to Web-based interventions aimed at reducing consumption of alcohol (Study 1; N=230) or cannabis (Study 2; N=228). Item properties, structural validity, and reliability were examined with item-response and classical test theory methods, and convergent and divergent validity via correlations with relevant concepts. In Study 1, 20 of 23 items formed a one-dimensional scale (alpha=.97; omega=.97; H=.66; mean 4.9 [SD 1.0]; range 1-7) that met the assumptions of monotonicity and invariant item ordering. In Study 2, 16 items fitted these criteria (alpha=.92; H=.45; omega=.93; mean 4.2 [SD 1.1]; range 1-7). Only 15 items remained in the questionnaire in both studies, thus we proceeded to the analyses of the questionnaire's reliability and construct validity with a 15-item version of the virtual climate care questionnaire. Convergent validity of the resulting 15-item virtual climate care questionnaire was confirmed by positive associations with autonomous motivation (Study 1: r=.66, P<.001; Study 2: r=.37, P<.001) and perceived competence for reducing alcohol intake (Study 1: r=.52, P<.001). Divergent validity could only be confirmed by the nonsignificant association with perceived competence for learning (Study 2: r=.05, P=.48). The virtual climate care questionnaire accurately assessed participants' perceived autonomy-support offered by two Web-based health behavior change interventions. Overall, the scale showed the expected properties and relationships with relevant concepts, and the studies presented suggest this first version of the virtual climate care questionnaire to be reasonably valid and reliable. As a result, the current version may cautiously be used in future research and practice to measure perceived support for autonomy within a virtual care climate. Future research efforts are required that focus on further investigating the virtual climate care questionnaire's divergent validity, on determining the virtual climate care questionnaire's validity and reliability when used in the context of Web-based interventions aimed at improving nonaddictive or other health behaviors, and on developing and validating a short form virtual climate care questionnaire. ©Eline Suzanne Smit, Alexandra Lelia Dima, Stephanie Annette Maria Immerzeel, Bas van den Putte, Geoffrey Colin Williams. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 08.05.2017.

  12. Computational assessment of model-based wave separation using a database of virtual subjects.

    PubMed

    Hametner, Bernhard; Schneider, Magdalena; Parragh, Stephanie; Wassertheurer, Siegfried

    2017-11-07

    The quantification of arterial wave reflection is an important area of interest in arterial pulse wave analysis. It can be achieved by wave separation analysis (WSA) if both the aortic pressure waveform and the aortic flow waveform are known. For better applicability, several mathematical models have been established to estimate aortic flow solely based on pressure waveforms. The aim of this study is to investigate and verify the model-based wave separation of the ARCSolver method on virtual pulse wave measurements. The study is based on an open access virtual database generated via simulations. Seven cardiac and arterial parameters were varied within physiological healthy ranges, leading to a total of 3325 virtual healthy subjects. For assessing the model-based ARCSolver method computationally, this method was used to perform WSA based on the aortic root pressure waveforms of the virtual patients. Asa reference, the values of WSA using both the pressure and flow waveforms provided by the virtual database were taken. The investigated parameters showed a good overall agreement between the model-based method and the reference. Mean differences and standard deviations were -0.05±0.02AU for characteristic impedance, -3.93±1.79mmHg for forward pressure amplitude, 1.37±1.56mmHg for backward pressure amplitude and 12.42±4.88% for reflection magnitude. The results indicate that the mathematical blood flow model of the ARCSolver method is a feasible surrogate for a measured flow waveform and provides a reasonable way to assess arterial wave reflection non-invasively in healthy subjects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Virtually optimized insoles for offloading the diabetic foot: A randomized crossover study.

    PubMed

    Telfer, S; Woodburn, J; Collier, A; Cavanagh, P R

    2017-07-26

    Integration of objective biomechanical measures of foot function into the design process for insoles has been shown to provide enhanced plantar tissue protection for individuals at-risk of plantar ulceration. The use of virtual simulations utilizing numerical modeling techniques offers a potential approach to further optimize these devices. In a patient population at-risk of foot ulceration, we aimed to compare the pressure offloading performance of insoles that were optimized via numerical simulation techniques against shape-based devices. Twenty participants with diabetes and at-risk feet were enrolled in this study. Three pairs of personalized insoles: one based on shape data and subsequently manufactured via direct milling; and two were based on a design derived from shape, pressure, and ultrasound data which underwent a finite element analysis-based virtual optimization procedure. For the latter set of insole designs, one pair was manufactured via direct milling, and a second pair was manufactured through 3D printing. The offloading performance of the insoles was analyzed for forefoot regions identified as having elevated plantar pressures. In 88% of the regions of interest, the use of virtually optimized insoles resulted in lower peak plantar pressures compared to the shape-based devices. Overall, the virtually optimized insoles significantly reduced peak pressures by a mean of 41.3kPa (p<0.001, 95% CI [31.1, 51.5]) for milled and 40.5kPa (p<0.001, 95% CI [26.4, 54.5]) for printed devices compared to shape-based insoles. The integration of virtual optimization into the insole design process resulted in improved offloading performance compared to standard, shape-based devices. ISRCTN19805071, www.ISRCTN.org. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Digital Immersive Virtual Environments and Instructional Computing

    ERIC Educational Resources Information Center

    Blascovich, Jim; Beall, Andrew C.

    2010-01-01

    This article reviews theory and research relevant to the development of digital immersive virtual environment-based instructional computing systems. The review is organized within the context of a multidimensional model of social influence and interaction within virtual environments that models the interaction of four theoretical factors: theory…

  15. ICCE/ICCAI 2000 Full & Short Papers (Virtual Lab/Classroom/School).

    ERIC Educational Resources Information Center

    2000

    This document contains the following full and short papers on virtual laboratories, classrooms, and schools from ICCE/ICCAI 2000 (International Conference on Computers in Education/International Conference on Computer-Assisted Instruction): (1) "A Collaborative Learning Support System Based on Virtual Environment Server for Multiple…

  16. Virtual Learning Environments.

    ERIC Educational Resources Information Center

    Follows, Scott B.

    1999-01-01

    Illustrates the possibilities and educational benefits of virtual learning environments (VLEs), based on experiences with "Thirst for Knowledge," a VLE that simulates the workplace of a major company. While working in this virtual office world, students walk through the building, attend meetings, read reports, receive e-mail, answer the telephone,…

  17. Better than Nature: Nicotinamide Biomimetics That Outperform Natural Coenzymes

    PubMed Central

    2016-01-01

    The search for affordable, green biocatalytic processes is a challenge for chemicals manufacture. Redox biotransformations are potentially attractive, but they rely on unstable and expensive nicotinamide coenzymes that have prevented their widespread exploitation. Stoichiometric use of natural coenzymes is not viable economically, and the instability of these molecules hinders catalytic processes that employ coenzyme recycling. Here, we investigate the efficiency of man-made synthetic biomimetics of the natural coenzymes NAD(P)H in redox biocatalysis. Extensive studies with a range of oxidoreductases belonging to the “ene” reductase family show that these biomimetics are excellent analogues of the natural coenzymes, revealed also in crystal structures of the ene reductase XenA with selected biomimetics. In selected cases, these biomimetics outperform the natural coenzymes. “Better-than-Nature” biomimetics should find widespread application in fine and specialty chemicals production by harnessing the power of high stereo-, regio-, and chemoselective redox biocatalysts and enabling reactions under mild conditions at low cost. PMID:26727612

  18. Xenon Recovery at Room Temperature using Metal-Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elsaidi, Sameh K.; Ongari, Daniele; Xu, Wenqian

    2017-07-24

    Xenon is known to be a very efficient anesthetic gas but its cost prohibits the wider use in medical industry and other potential applications. It has been shown that Xe recovery and recycle from anesthetic gas mixture can significantly reduce its cost as anesthetic. The current technology uses series of adsorbent columns followed by low temperature distillation to recover Xe, which is expensive to use in medical facilities. Herein, we propose much efficient and simpler system to recover and recycle Xe from simulant exhale anesthetic gas mixture at room temperature using metal organic frameworks. Among the MOFs tested, PCN-12 exhibitsmore » unprecedented performance with high Xe capacity, Xe/O2, Xe/N2 and Xe/CO2 selectivity at room temperature. The in-situ synchrotron measurements suggest the Xe is occupied in the small pockets of PCN-12 compared to unsaturated metal centers (UMCs). Computational modeling of adsorption further supports our experimental observation of Xe binding sites in PCN-12.« less

  19. Xenon Recovery at Room Temperature using Metal-Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elsaidi, Sameh K.; Ongari, Daniele; Xu, Wenqian

    2017-07-24

    Xenon is known to be a very efficient anesthetic gas but its cost prohibits the wider use in medical industry and other potential applications. It has been shown that Xe recovery and recycle from anesthetic gas mixture can significantly reduce its cost as anesthetic. The current technology uses series of adsorbent columns followed by low temperature distillation to recover Xe, which is expensive to use in medical facilities. Herein, we propose much efficient and simpler system to recover and recycle Xe from simulant exhale anesthetic gas mixture at room temperature using metal organic frameworks. Among the MOFs tested, PCN-12 exhibitsmore » unprecedented performance with high Xe capacity, Xe/N2 and Xe/O2 selectivity at room temperature. The in-situ synchrotron measurements suggest the Xe is occupied in the small pockets of PCN-12 compared to unsaturated metal centers (UMCs). Computational modeling of adsorption further supports our experimental observation of Xe binding sites in PCN-12.« less

  20. ZIF-Derived Nitrogen-Doped Porous Carbons for Xe Adsorption and Separation

    NASA Astrophysics Data System (ADS)

    Zhong, Shan; Wang, Qian; Cao, Dapeng

    2016-02-01

    Currently, finding high capacity adsorbents with large selectivity to capture Xe is still a great challenge. In this work, nitrogen-doped porous carbons were prepared by programmable temperature carbonization of zeolitic imidazolate framework-8 (ZIF-8) and ZIF-8/xylitol composite precursors and the resultant samples are marked as Carbon-Z and Carbon-ZX, respectively. Further adsorption measurements indicate that ZIF-derived nitrogen-doped Carbon-ZX exhibits extremely high Xe capacity of 4.42 mmol g-1 at 298 K and 1 bar, which is higher than almost all other pristine MOFs such as CuBTC, Ni/DOBDC, MOF-5 and Al-MIL-53, and even more than three times of the matrix ZIF-8 at similar conditions. Moreover, Carbon-ZX also shows the highest Xe/N2 selectivity about ~120, which is much larger than all other reported MOFs. These remarkable features illustrate that ZIF-derived nitrogen-doped porous carbon is an excellent adsorbent for Xe adsorption and separation at room temperature.

  1. Population-based respiratory 4D motion atlas construction and its application for VR simulations of liver punctures

    NASA Astrophysics Data System (ADS)

    Mastmeyer, Andre; Wilms, Matthias; Handels, Heinz

    2018-03-01

    Virtual reality (VR) training simulators of liver needle insertion in the hepatic area of breathing virtual patients often need 4D image data acquisitions as a prerequisite. Here, first a population-based breathing virtual patient 4D atlas is built and second the requirement of a dose-relevant or expensive acquisition of a 4D CT or MRI data set for a new patient can be mitigated by warping the mean atlas motion. The breakthrough contribution of this work is the construction and reuse of population-based, learned 4D motion models.

  2. Mechanism of Kinect-based virtual reality training for motor functional recovery of upper limbs after subacute stroke.

    PubMed

    Bao, Xiao; Mao, Yurong; Lin, Qiang; Qiu, Yunhai; Chen, Shaozhen; Li, Le; Cates, Ryan S; Zhou, Shufeng; Huang, Dongfeng

    2013-11-05

    The Kinect-based virtual reality system for the Xbox 360 enables users to control and interact with the game console without the need to touch a game controller, and provides rehabilitation training for stroke patients with lower limb dysfunctions. However, the underlying mechanism remains unclear. In this study, 18 healthy subjects and five patients after subacute stroke were included. The five patients were scanned using functional MRI prior to training, 3 weeks after training and at a 12-week follow-up, and then compared with healthy subjects. The Fugl-Meyer Assessment and Wolf Motor Function Test scores of the hemiplegic upper limbs of stroke patients were significantly increased 3 weeks after training and at the 12-week follow-up. Functional MRI results showed that contralateral primary sensorimotor cortex was activated after Kinect-based virtual reality training in the stroke patients compared with the healthy subjects. Contralateral primary sensorimotor cortex, the bilateral supplementary motor area and the ipsilateral cerebellum were also activated during hand-clenching in all 18 healthy subjects. Our findings indicate that Kinect-based virtual reality training could promote the recovery of upper limb motor function in subacute stroke patients, and brain reorganization by Kinect-based virtual reality training may be linked to the contralateral sensorimotor cortex.

  3. Mechanism of Kinect-based virtual reality training for motor functional recovery of upper limbs after subacute stroke

    PubMed Central

    Bao, Xiao; Mao, Yurong; Lin, Qiang; Qiu, Yunhai; Chen, Shaozhen; Li, Le; Cates, Ryan S.; Zhou, Shufeng; Huang, Dongfeng

    2013-01-01

    The Kinect-based virtual reality system for the Xbox 360 enables users to control and interact with the game console without the need to touch a game controller, and provides rehabilitation training for stroke patients with lower limb dysfunctions. However, the underlying mechanism remains unclear. In this study, 18 healthy subjects and five patients after subacute stroke were included. The five patients were scanned using functional MRI prior to training, 3 weeks after training and at a 12-week follow-up, and then compared with healthy subjects. The Fugl-Meyer Assessment and Wolf Motor Function Test scores of the hemiplegic upper limbs of stroke patients were significantly increased 3 weeks after training and at the 12-week follow-up. Functional MRI results showed that contralateral primary sensorimotor cortex was activated after Kinect-based virtual reality training in the stroke patients compared with the healthy subjects. Contralateral primary sensorimotor cortex, the bilateral supplementary motor area and the ipsilateral cerebellum were also activated during hand-clenching in all 18 healthy subjects. Our findings indicate that Kinect-based virtual reality training could promote the recovery of upper limb motor function in subacute stroke patients, and brain reorganization by Kinect-based virtual reality training may be linked to the contralateral sensorimotor cortex. PMID:25206611

  4. Combining structure-based pharmacophore modeling, virtual screening, and in silico ADMET analysis to discover novel tetrahydro-quinoline based pyruvate kinase isozyme M2 activators with antitumor activity

    PubMed Central

    Chen, Can; Wang, Ting; Wu, Fengbo; Huang, Wei; He, Gu; Ouyang, Liang; Xiang, Mingli; Peng, Cheng; Jiang, Qinglin

    2014-01-01

    Compared with normal differentiated cells, cancer cells upregulate the expression of pyruvate kinase isozyme M2 (PKM2) to support glycolytic intermediates for anabolic processes, including the synthesis of nucleic acids, amino acids, and lipids. In this study, a combination of the structure-based pharmacophore modeling and a hybrid protocol of virtual screening methods comprised of pharmacophore model-based virtual screening, docking-based virtual screening, and in silico ADMET (absorption, distribution, metabolism, excretion and toxicity) analysis were used to retrieve novel PKM2 activators from commercially available chemical databases. Tetrahydroquinoline derivatives were identified as potential scaffolds of PKM2 activators. Thus, the hybrid virtual screening approach was applied to screen the focused tetrahydroquinoline derivatives embedded in the ZINC database. Six hit compounds were selected from the final hits and experimental studies were then performed. Compound 8 displayed a potent inhibitory effect on human lung cancer cells. Following treatment with Compound 8, cell viability, apoptosis, and reactive oxygen species (ROS) production were examined in A549 cells. Finally, we evaluated the effects of Compound 8 on mice xenograft tumor models in vivo. These results may provide important information for further research on novel PKM2 activators as antitumor agents. PMID:25214764

  5. Virtual reality exposure therapy in anxiety disorders: a quantitative meta-analysis.

    PubMed

    Opriş, David; Pintea, Sebastian; García-Palacios, Azucena; Botella, Cristina; Szamosközi, Ştefan; David, Daniel

    2012-02-01

    Virtual reality exposure therapy (VRET) is a promising intervention for the treatment of the anxiety disorders. The main objective of this meta-analysis is to compare the efficacy of VRET, used in a behavioral or cognitive-behavioral framework, with that of the classical evidence-based treatments, in anxiety disorders. A comprehensive search of the literature identified 23 studies (n = 608) that were included in the final analysis. The results show that in the case of anxiety disorders, (1) VRET does far better than the waitlist control; (2) the post-treatment results show similar efficacy between the behavioral and the cognitive behavioral interventions incorporating a virtual reality exposure component and the classical evidence-based interventions, with no virtual reality exposure component; (3) VRET has a powerful real-life impact, similar to that of the classical evidence-based treatments; (4) VRET has a good stability of results over time, similar to that of the classical evidence-based treatments; (5) there is a dose-response relationship for VRET; and (6) there is no difference in the dropout rate between the virtual reality exposure and the in vivo exposure. Implications are discussed. © 2011 Wiley Periodicals, Inc.

  6. Virtual manufacturing in reality

    NASA Astrophysics Data System (ADS)

    Papstel, Jyri; Saks, Alo

    2000-10-01

    SMEs play an important role in manufacturing industry. But from time to time there is a shortage in resources to complete the particular order in time. Number of systems is introduced to produce digital information in order to support product and process development activities. Main problem is lack of opportunity for direct data transition within design system modules when needed temporary extension of design capacity (virtuality) or to implement integrated concurrent product development principles. The planning experience in the field is weakly used as well. The concept of virtual manufacturing is a supporting idea to solve this problem. At the same time a number of practical problems should be solved like information conformity, data transfer, unified technological concepts acceptation etc. In the present paper the proposed ways to solve the practical problems of virtual manufacturing are described. General objective is to introduce the knowledge-based CAPP system as missing module for Virtual Manufacturing in the selected product domain. Surface-centered planning concept based on STEP- based modeling principles, and knowledge-based process planning methodology will be used to gain the objectives. As a result the planning module supplied by design data with direct access, and supporting advising environment is expected. Mould producing SME would be as test basis.

  7. Inhibitors of Helicobacter pylori Protease HtrA Found by ‘Virtual Ligand’ Screening Combat Bacterial Invasion of Epithelia

    PubMed Central

    Schneider, Petra; Hoy, Benjamin; Wessler, Silja; Schneider, Gisbert

    2011-01-01

    Background The human pathogen Helicobacter pylori (H. pylori) is a main cause for gastric inflammation and cancer. Increasing bacterial resistance against antibiotics demands for innovative strategies for therapeutic intervention. Methodology/Principal Findings We present a method for structure-based virtual screening that is based on the comprehensive prediction of ligand binding sites on a protein model and automated construction of a ligand-receptor interaction map. Pharmacophoric features of the map are clustered and transformed in a correlation vector (‘virtual ligand’) for rapid virtual screening of compound databases. This computer-based technique was validated for 18 different targets of pharmaceutical interest in a retrospective screening experiment. Prospective screening for inhibitory agents was performed for the protease HtrA from the human pathogen H. pylori using a homology model of the target protein. Among 22 tested compounds six block E-cadherin cleavage by HtrA in vitro and result in reduced scattering and wound healing of gastric epithelial cells, thereby preventing bacterial infiltration of the epithelium. Conclusions/Significance This study demonstrates that receptor-based virtual screening with a permissive (‘fuzzy’) pharmacophore model can help identify small bioactive agents for combating bacterial infection. PMID:21483848

  8. Open Source Virtual Worlds and Low Cost Sensors for Physical Rehab of Patients with Chronic Diseases

    NASA Astrophysics Data System (ADS)

    Romero, Salvador J.; Fernandez-Luque, Luis; Sevillano, José L.; Vognild, Lars

    For patients with chronic diseases, exercise is a key part of rehab to deal better with their illness. Some of them do rehabilitation at home with telemedicine systems. However, keeping to their exercising program is challenging and many abandon the rehabilitation. We postulate that information technologies for socializing and serious games can encourage patients to keep doing physical exercise and rehab. In this paper we present Virtual Valley, a low cost telemedicine system for home exercising, based on open source virtual worlds and utilizing popular low cost motion controllers (e.g. Wii Remote) and medical sensors. Virtual Valley allows patient to socialize, learn, and play group based serious games while exercising.

  9. Virtual Estimator for Piecewise Linear Systems Based on Observability Analysis

    PubMed Central

    Morales-Morales, Cornelio; Adam-Medina, Manuel; Cervantes, Ilse; Vela-Valdés and, Luis G.; García Beltrán, Carlos Daniel

    2013-01-01

    This article proposes a virtual sensor for piecewise linear systems based on observability analysis that is in function of a commutation law related with the system's outpu. This virtual sensor is also known as a state estimator. Besides, it presents a detector of active mode when the commutation sequences of each linear subsystem are arbitrary and unknown. For the previous, this article proposes a set of virtual estimators that discern the commutation paths of the system and allow estimating their output. In this work a methodology in order to test the observability for piecewise linear systems with discrete time is proposed. An academic example is presented to show the obtained results. PMID:23447007

  10. Development of virtual environment for treating acrophobia.

    PubMed

    Ku, J; Jang, D; Shin, M; Jo, H; Ahn, H; Lee, J; Cho, B; Kim, S I

    2001-01-01

    Virtual Reality (VR) is a new technology that makes humans communicate with computer. It allows the user to see, hear, feel and interact in a three-dimensional virtual world created graphically. Virtual Reality Therapy (VRT), based on this sophisticated technology, has been recently used in the treatment of subjects diagnosed with acrophobia, a disorder that is characterized by marked anxiety upon exposure to heights, avoidance of heights, and a resulting interference in functioning. Conventional virtual reality system for the treatment of acrophobia has a limitation in scope that it is based on over-costly devices or somewhat unrealistic graphic scene. The goal of this study was to develop a inexpensive and more realistic virtual environment for the exposure therapy of acrophobia. We constructed two types virtual environment. One is constituted a bungee-jump tower in the middle of a city. It includes the open lift surrounded by props beside tower that allowed the patient to feel sense of heights. Another is composed of diving boards which have various heights. It provides a view of a lower diving board and people swimming in the pool to serve the patient stimuli upon exposure to heights.

  11. Virtual experiments in electronics: beyond logistics, budgets, and the art of the possible

    NASA Astrophysics Data System (ADS)

    Chapman, Brian

    1999-09-01

    It is common and correct to suppose that computers support flexible delivery of educational resources by offering virtual experiments that replicate and substitute for experiments traditionally offered in conventional teaching laboratories. However, traditional methods are limited by logistics, costs, and what is physically possible to accomplish on a laboratory bench. Virtual experiments allow experimental approaches to teaching and learning to transcend these limits. This paper analyses recent and current developments in educational software for 1st- year physics, 2nd-year electronics engineering and 3rd-year communication engineering, based on three criteria: (1)Is the virtual experiment possible in a real laboratory? (2)How direct is the link between the experimental manipulation and the reinforcement of theoretical learning? (3) What impact might the virtual experiment have on the learner's acquisition of practical measurement skills? Virtual experiments allow more flexibility in the directness of the link between experimental manipulation and the theoretical message. However, increasing the directness of this link may reduce or even abolish the measurement processes associated with traditional experiments. Virtual experiments thus pose educational challenges: (a) expanding the design of experimentally based curricula beyond traditional boundaries and (b) ensuring that the learner acquires sufficient experience in making practical measurements.

  12. A sensor network based virtual beam-like structure method for fault diagnosis and monitoring of complex structures with Improved Bacterial Optimization

    NASA Astrophysics Data System (ADS)

    Wang, H.; Jing, X. J.

    2017-02-01

    This paper proposes a novel method for the fault diagnosis of complex structures based on an optimized virtual beam-like structure approach. A complex structure can be regarded as a combination of numerous virtual beam-like structures considering the vibration transmission path from vibration sources to each sensor. The structural 'virtual beam' consists of a sensor chain automatically obtained by an Improved Bacterial Optimization Algorithm (IBOA). The biologically inspired optimization method (i.e. IBOA) is proposed for solving the discrete optimization problem associated with the selection of the optimal virtual beam for fault diagnosis. This novel virtual beam-like-structure approach needs less or little prior knowledge. Neither does it require stationary response data, nor is it confined to a specific structure design. It is easy to implement within a sensor network attached to the monitored structure. The proposed fault diagnosis method has been tested on the detection of loosening screws located at varying positions in a real satellite-like model. Compared with empirical methods, the proposed virtual beam-like structure method has proved to be very effective and more reliable for fault localization.

  13. Using Immersive Virtual Reality for Electrical Substation Training

    ERIC Educational Resources Information Center

    Tanaka, Eduardo H.; Paludo, Juliana A.; Cordeiro, Carlúcio S.; Domingues, Leonardo R.; Gadbem, Edgar V.; Euflausino, Adriana

    2015-01-01

    Usually, distribution electricians are called upon to solve technical problems found in electrical substations. In this project, we apply problem-based learning to a training program for electricians, with the help of a virtual reality environment that simulates a real substation. Using this virtual substation, users may safely practice maneuvers…

  14. Transforming Professional Healthcare Narratives into Structured Game-Informed-Learning Activities

    ERIC Educational Resources Information Center

    Begg, Michael; Ellaway, Rachel; Dewhurst, David; Macleod, Hamish

    2007-01-01

    Noting the dependency of healthcare education on practice-based learning, Michael Begg, Rachel Ellaway, David Dewhurst, and Hamish Macleod suggest that creating a virtual clinical setting for students to interact with virtual patients can begin to address educational demands for clinical experience. They argue that virtual patient simulations that…

  15. Learning to Drive a Wheelchair in Virtual Reality

    ERIC Educational Resources Information Center

    Inman, Dean P.; Loge, Ken; Cram, Aaron; Peterson, Missy

    2011-01-01

    This research project studied the effect that a technology-based training program, WheelchairNet, could contribute to the education of children with physical disabilities by providing a chance to practice driving virtual motorized wheelchairs safely within a computer-generated world. Programmers created three virtual worlds for training. Scenarios…

  16. Scenario-Based Spoken Interaction with Virtual Agents

    ERIC Educational Resources Information Center

    Morton, Hazel; Jack, Mervyn A.

    2005-01-01

    This paper describes a CALL approach which integrates software for speaker independent continuous speech recognition with embodied virtual agents and virtual worlds to create an immersive environment in which learners can converse in the target language in contextualised scenarios. The result is a self-access learning package: SPELL (Spoken…

  17. E-Learning and Virtual Science Centers

    ERIC Educational Resources Information Center

    Hin, Leo Tan Wee, Ed.; Subramaniam, R., Ed.

    2005-01-01

    "E-Learning and Virtual Science Centers" addresses an aspect of Web-based education that has not attracted sufficient attention in the international research literature--that of virtual science centers, the cyberspace annex of traditional science centers. It is the first book to be published on the rapidly advancing field of science education.…

  18. The World's the Limit in the Virtual High School.

    ERIC Educational Resources Information Center

    Berman, Sheldon; Tinker, Robert

    1997-01-01

    Assisted by a U.S. Department of Education Technology Innovation Challenge Grant, the Hudson (Massachusetts) Public Schools, the Concord Consortium Educational Technology Lab, and 30 collaborating high schools across the nation have developed a virtual high school over the Internet. Through Internet-based courses, Virtual High School significantly…

  19. Adolescent Attitudes towards Virtual Learning

    ERIC Educational Resources Information Center

    Pleau, Andrea R.

    2012-01-01

    This study was designed to examine adolescents' attitudes towards virtual schooling. Virtual schooling may be defined as any public or private organization that delivers instruction via the Internet. The rationale for this study is based on the increased number of adolescents opting to complete some or all of their secondary education through…

  20. When Rural Reality Goes Virtual.

    ERIC Educational Resources Information Center

    Husain, Dilshad D.

    1998-01-01

    In rural towns where sparse population and few business are barriers, virtual reality may be the only way to bring work-based learning to students. A partnership between a small-town high school, the Ohio Supercomputer Center, and a high-tech business will enable students to explore the workplace using virtual reality. (JOW)

  1. The Virtual Classroom: A Catalyst for Institutional Transformation

    ERIC Educational Resources Information Center

    Subramaniam, Nantha Kumar; Kandasamy, Maheswari

    2011-01-01

    This study explores the use of the virtual classroom which has been created in "myVLE", a learning management system used by the Open University Malaysia (OUM). The virtual classroom in "myVLE" is an asynchronous-based online learning environment that delivers course materials to learners and provides collaboration and…

  2. Virtual Patient Simulations for Medical Education: Increasing Clinical Reasoning Skills through Deliberate Practice

    ERIC Educational Resources Information Center

    McCoy, Lise

    2014-01-01

    Virtual Patient Simulations (VPS) are web-based exercises involving simulated patients in virtual environments. This study investigates the utility of VPS for increasing medical student clinical reasoning skills, collaboration, and engagement. Many studies indicate that VPS provide medical students with essential practice in clinical decision…

  3. Virtual Peace Education

    ERIC Educational Resources Information Center

    Firer, Ruth

    2008-01-01

    This article is based on the convictions that peace education is the basis for any sustainable non-violent relations between parties in a conflict, and that virtual peace education is almost the only feasible way to practise peace education in an open violent conflict as is the current Israeli/Palestinians one. Moreover, virtual peace education…

  4. Social Impact in Personalised Virtual Professional Development Pathways

    ERIC Educational Resources Information Center

    Owen, Hazel; Whalley, Rick; Dunmill, Merryn; Eccles, Heather

    2018-01-01

    This article presents exploratory research into an education-based virtual mentoring provision, the Virtual Professional Learning and Development (VPLD) program, and uses the Elements of Value Pyramid to help frame findings in a way that highlights the participants' (mentors' and mentees') perceived value of working together. Participants were…

  5. Global Team Development. Symposium 7. [AHRD Conference, 2001].

    ERIC Educational Resources Information Center

    2001

    This document contains three papers on global team development. "Virtual Executives: A Paradox with Implications for Development" (Andrea Hornett), which is based on a case study exploring power relationships among members of a virtual team, demonstrates that members of a virtual team describe power differently for situations inside…

  6. Theoretical Bases for Using Virtual Reality in Education

    ERIC Educational Resources Information Center

    Chen, Chwen Jen

    2009-01-01

    This article elaborates on how the technical capabilities of virtual reality support the constructivist learning principles. It introduces VRID, a model for instructional design and development that offers explicit guidance on how to produce an educational virtual environment. The define phase of VRID consists of three main tasks: forming a…

  7. Exploring barriers and facilitators to the clinical use of virtual reality for post-stroke unilateral spatial neglect assessment.

    PubMed

    Ogourtsova, Tatiana; Archambault, Philippe S; Lamontagne, Anouk

    2017-11-07

    Hemineglect, defined as a failure to attend to the contralesional side of space, is a prevalent and disabling post-stroke deficit. Conventional hemineglect assessments lack sensitivity as they contain mainly non-functional tasks performed in near-extrapersonal space, using static, two-dimensional methods. This is of concern given that hemineglect is a strong predictor for functional deterioration, limited post-stroke recovery, and difficulty in community reintegration. With the emerging field of virtual reality, several virtual tools have been proposed and have reported better sensitivity in neglect-related deficits detection than conventional methods. However, these and future virtual reality-based tools are yet to be implemented in clinical practice. The present study aimed to explore the barriers/facilitators perceived by clinicians in the use of virtual reality for hemineglect assessment; and to identify features of an optimal virtual assessment. A qualitative descriptive process, in the form of focus groups, self-administered questionnaire and individual interviews was used. Two focus groups (n = 11 clinicians) were conducted and experts in the field (n = 3) were individually interviewed. Several barriers and facilitators, including personal, institutional, client suitability, and equipment factors, were identified. Clinicians and experts in the field reported numerous features for the virtual tool optimization. Factors identified through this study lay the foundation for the development of a knowledge translation initiative towards an implementation of a virtual assessment for hemineglect. Addressing the identified barriers/facilitators during implementation and incorporating the optimal features in the design of the virtual assessment could assist and promote its eventual adoption in clinical settings. Implications for rehabilitation A multimodal and active knowledge translation intervention built on the presently identified modifiable factors is suggested to be implemented to support the clinical integration of a virtual reality-based assessment for post-stroke hemineglect. To amplify application and usefulness of a virtual-reality based tool in the assessment of post-stroke hemineglect, optimal features identified in the present study should be incorporated in the design of such technology.

  8. Educational MOO: Text-Based Virtual Reality for Learning in Community. ERIC Digest.

    ERIC Educational Resources Information Center

    Turbee, Lonnie

    MOO stands for "Multi-user domain, Object-Oriented." Early multi-user domains, or "MUDs," began as net-based dungeons-and-dragons type games, but MOOs have evolved from these origins to become some of cyberspace's most fascinating and engaging online communities. MOOs are social environments in a text-based virtual reality…

  9. Creative Writing, Problem-Based Learning, and Game-Based Learning Principles

    ERIC Educational Resources Information Center

    Trekles, Anastasia M.

    2012-01-01

    This paper examines how virtual worlds and other advanced social media can be married with problem-based learning to encourage creativity and critical thinking in the English/Language Arts classroom, particularly for middle school, high school, and undergraduate college education. Virtual world experiences such as "Second Life," Jumpstart.com, and…

  10. The Impact of "Virtualization" on Independent Study Course Completion Rates: The British Columbia Open University Experiment

    ERIC Educational Resources Information Center

    Giguere, Louis

    2009-01-01

    In 1997 the British Columbia Open University (BCOU) adopted a virtualization strategy based primarily on twinning off-line independent study distance education courses (textbook-based with study guide and telephone and e-mail tutor support) with alternate online versions (textbook-based with integrated conferencing and communications provided…

  11. A Feasibility Study of Virtual Reality-Based Coping Skills Training for Nicotine Dependence

    ERIC Educational Resources Information Center

    Bordnick, Patrick S.; Traylor, Amy C.; Carter, Brian L.; Graap, Ken M.

    2012-01-01

    Objective: Virtual reality (VR)-based cue reactivity has been successfully used for the assessment of drug craving. Going beyond assessment of cue reactivity, a novel VR-based treatment approach for smoking cessation was developed and tested for feasibility. Method: In a randomized experiment, 10-week treatment feasibility trial, 46…

  12. Recent evolution of China's virtual water trade: analysis of selected crops and considerations for policy

    NASA Astrophysics Data System (ADS)

    Shi, J.; Liu, J.; Pinter, L.

    2014-04-01

    China has dramatically increased its virtual water import over recent years. Many studies have focused on the quantity of traded virtual water, but very few go into analysing geographic distribution and the properties of China's virtual water trade network. This paper provides a calculation and analysis of the crop-related virtual water trade network of China based on 27 major primary crops between 1986 and 2009. The results show that China is a net importer of virtual water from water-abundant areas of North America and South America, and a net virtual water exporter to water-stressed areas of Asia, Africa, and Europe. Virtual water import is far larger than virtual water export, and in both import and export a small number of trade partners control the supply chain. Grain crops are the major contributors to virtual water trade, and among grain crops, soybeans, mostly imported from the US, Brazil and Argentina, are the most significant. In order to mitigate water scarcity and secure the food supply, virtual water should actively be incorporated into national water management strategies. And the sources of virtual water import need to be further diversified to reduce supply chain risks and increase resilience.

  13. A Framework for Web-Based Interprofessional Education for Midwifery and Medical Students.

    PubMed

    Reis, Pamela J; Faser, Karl; Davis, Marquietta

    2015-01-01

    Scheduling interprofessional team-based activities for health sciences students who are geographically dispersed, with divergent and often competing schedules, can be challenging. The use of Web-based technologies such as 3-dimensional (3D) virtual learning environments in interprofessional education is a relatively new phenomenon, which offers promise in helping students come together in online teams when face-to-face encounters are not possible. The purpose of this article is to present the experience of a nurse-midwifery education program in a Southeastern US university in delivering Web-based interprofessional education for nurse-midwifery and third-year medical students utilizing the Virtual Community Clinic Learning Environment (VCCLE). The VCCLE is a 3D, Web-based, asynchronous, immersive clinic environment into which students enter to meet and interact with instructor-controlled virtual patient and virtual preceptor avatars and then move through a classic diagnostic sequence in arriving at a plan of care for women throughout the lifespan. By participating in the problem-based management of virtual patients within the VCCLE, students learn both clinical competencies and competencies for interprofessional collaborative practice, as described by the Interprofessional Education Collaborative Core Competencies for Interprofessional Collaborative Practice. This article is part of a special series of articles that address midwifery innovations in clinical practice, education, interprofessional collaboration, health policy, and global health. © 2015 by the American College of Nurse-Midwives.

  14. Novel interactive virtual showcase based on 3D multitouch technology

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Liu, Yue; Lu, You; Wang, Yongtian

    2009-11-01

    A new interactive virtual showcase is proposed in this paper. With the help of virtual reality technology, the user of the proposed system can watch the virtual objects floating in the air from all four sides and interact with the virtual objects by touching the four surfaces of the virtual showcase. Unlike traditional multitouch system, this system cannot only realize multi-touch on a plane to implement 2D translation, 2D scaling, and 2D rotation of the objects; it can also realize the 3D interaction of the virtual objects by recognizing and analyzing the multi-touch that can be simultaneously captured from the four planes. Experimental results show the potential of the proposed system to be applied in the exhibition of historical relics and other precious goods.

  15. A comparison of older adults' subjective experiences with virtual and real environments during dynamic balance activities.

    PubMed

    Proffitt, Rachel; Lange, Belinda; Chen, Christina; Winstein, Carolee

    2015-01-01

    The purpose of this study was to explore the subjective experience of older adults interacting with both virtual and real environments. Thirty healthy older adults engaged with real and virtual tasks of similar motor demands: reaching to a target in standing and stepping stance. Immersive tendencies and absorption scales were administered before the session. Game engagement and experience questionnaires were completed after each task, followed by a semistructured interview at the end of the testing session. Data were analyzed respectively using paired t tests and grounded theory methodology. Participants preferred the virtual task over the real task. They also reported an increase in presence and absorption with the virtual task, describing an external focus of attention. Findings will be used to inform future development of appropriate game-based balance training applications that could be embedded in the home or community settings as part of evidence-based fall prevention programs.

  16. Research on virtual Guzheng based on Kinect

    NASA Astrophysics Data System (ADS)

    Li, Shuyao; Xu, Kuangyi; Zhang, Heng

    2018-05-01

    There are a lot of researches on virtual instruments, but there are few on classical Chinese instruments, and the techniques used are very limited. This paper uses Unity 3D and Kinect camera combined with virtual reality technology and gesture recognition method to design a virtual playing system of Guzheng, a traditional Chinese musical instrument, with demonstration function. In this paper, the real scene obtained by Kinect camera is fused with virtual Guzheng in Unity 3D. The depth data obtained by Kinect and the Suzuki85 algorithm are used to recognize the relative position of the user's right hand and the virtual Guzheng, and the hand gesture of the user is recognized by Kinect.

  17. Distribution Locational Real-Time Pricing Based Smart Building Control and Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Jun; Dai, Xiaoxiao; Zhang, Yingchen

    This paper proposes an real-virtual parallel computing scheme for smart building operations aiming at augmenting overall social welfare. The University of Denver's campus power grid and Ritchie fitness center is used for demonstrating the proposed approach. An artificial virtual system is built in parallel to the real physical system to evaluate the overall social cost of the building operation based on the social science based working productivity model, numerical experiment based building energy consumption model and the power system based real-time pricing mechanism. Through interactive feedback exchanged between the real and virtual system, enlarged social welfare, including monetary cost reductionmore » and energy saving, as well as working productivity improvements, can be achieved.« less

  18. Multi-viewpoint Image Array Virtual Viewpoint Rapid Generation Algorithm Based on Image Layering

    NASA Astrophysics Data System (ADS)

    Jiang, Lu; Piao, Yan

    2018-04-01

    The use of multi-view image array combined with virtual viewpoint generation technology to record 3D scene information in large scenes has become one of the key technologies for the development of integrated imaging. This paper presents a virtual viewpoint rendering method based on image layering algorithm. Firstly, the depth information of reference viewpoint image is quickly obtained. During this process, SAD is chosen as the similarity measure function. Then layer the reference image and calculate the parallax based on the depth information. Through the relative distance between the virtual viewpoint and the reference viewpoint, the image layers are weighted and panned. Finally the virtual viewpoint image is rendered layer by layer according to the distance between the image layers and the viewer. This method avoids the disadvantages of the algorithm DIBR, such as high-precision requirements of depth map and complex mapping operations. Experiments show that, this algorithm can achieve the synthesis of virtual viewpoints in any position within 2×2 viewpoints range, and the rendering speed is also very impressive. The average result proved that this method can get satisfactory image quality. The average SSIM value of the results relative to real viewpoint images can reaches 0.9525, the PSNR value can reaches 38.353 and the image histogram similarity can reaches 93.77%.

  19. Exploring Infiniband Hardware Virtualization in OpenNebula towards Efficient High-Performance Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pais Pitta de Lacerda Ruivo, Tiago; Bernabeu Altayo, Gerard; Garzoglio, Gabriele

    2014-11-11

    has been widely accepted that software virtualization has a big negative impact on high-performance computing (HPC) application performance. This work explores the potential use of Infiniband hardware virtualization in an OpenNebula cloud towards the efficient support of MPI-based workloads. We have implemented, deployed, and tested an Infiniband network on the FermiCloud private Infrastructure-as-a-Service (IaaS) cloud. To avoid software virtualization towards minimizing the virtualization overhead, we employed a technique called Single Root Input/Output Virtualization (SRIOV). Our solution spanned modifications to the Linux’s Hypervisor as well as the OpenNebula manager. We evaluated the performance of the hardware virtualization on up to 56more » virtual machines connected by up to 8 DDR Infiniband network links, with micro-benchmarks (latency and bandwidth) as well as w a MPI-intensive application (the HPL Linpack benchmark).« less

  20. Virtual Screening with AutoDock: Theory and Practice

    PubMed Central

    Cosconati, Sandro; Forli, Stefano; Perryman, Alex L.; Harris, Rodney; Goodsell, David S.; Olson, Arthur J.

    2011-01-01

    Importance to the field Virtual screening is a computer-based technique for identifying promising compounds to bind to a target molecule of known structure. Given the rapidly increasing number of protein and nucleic acid structures, virtual screening continues to grow as an effective method for the discovery of new inhibitors and drug molecules. Areas covered in this review We describe virtual screening methods that are available in the AutoDock suite of programs, and several of our successes in using AutoDock virtual screening in pharmaceutical lead discovery. What the reader will gain A general overview of the challenges of virtual screening is presented, along with the tools available in the AutoDock suite of programs for addressing these challenges. Take home message Virtual screening is an effective tool for the discovery of compounds for use as leads in drug discovery, and the free, open source program AutoDock is an effective tool for virtual screening. PMID:21532931

  1. Distributed collaborative environments for virtual capability-based planning

    NASA Astrophysics Data System (ADS)

    McQuay, William K.

    2003-09-01

    Distributed collaboration is an emerging technology that will significantly change how decisions are made in the 21st century. Collaboration involves two or more geographically dispersed individuals working together to share and exchange data, information, knowledge, and actions. The marriage of information, collaboration, and simulation technologies provides the decision maker with a collaborative virtual environment for planning and decision support. This paper reviews research that is focusing on the applying open standards agent-based framework with integrated modeling and simulation to a new Air Force initiative in capability-based planning and the ability to implement it in a distributed virtual environment. Virtual Capability Planning effort will provide decision-quality knowledge for Air Force resource allocation and investment planning including examining proposed capabilities and cost of alternative approaches, the impact of technologies, identification of primary risk drivers, and creation of executable acquisition strategies. The transformed Air Force business processes are enabled by iterative use of constructive and virtual modeling, simulation, and analysis together with information technology. These tools are applied collaboratively via a technical framework by all the affected stakeholders - warfighter, laboratory, product center, logistics center, test center, and primary contractor.

  2. Going glass to digital: virtual microscopy as a simulation-based revolution in pathology and laboratory science.

    PubMed

    Nelson, Danielle; Ziv, Amitai; Bandali, Karim S

    2012-10-01

    The recent technological advance of digital high resolution imaging has allowed the field of pathology and medical laboratory science to undergo a dramatic transformation with the incorporation of virtual microscopy as a simulation-based educational and diagnostic tool. This transformation has correlated with an overall increase in the use of simulation in medicine in an effort to address dwindling clinical resource availability and patient safety issues currently facing the modern healthcare system. Virtual microscopy represents one such simulation-based technology that has the potential to enhance student learning and readiness to practice while revolutionising the ability to clinically diagnose pathology collaboratively across the world. While understanding that a substantial amount of literature already exists on virtual microscopy, much more research is still required to elucidate the full capabilities of this technology. This review explores the use of virtual microscopy in medical education and disease diagnosis with a unique focus on key requirements needed to take this technology to the next level in its use in medical education and clinical practice.

  3. Republished: going glass to digital: virtual microscopy as a simulation-based revolution in pathology and laboratory science.

    PubMed

    Nelson, Danielle; Ziv, Amitai; Bandali, Karim S

    2013-10-01

    The recent technological advance of digital high resolution imaging has allowed the field of pathology and medical laboratory science to undergo a dramatic transformation with the incorporation of virtual microscopy as a simulation-based educational and diagnostic tool. This transformation has correlated with an overall increase in the use of simulation in medicine in an effort to address dwindling clinical resource availability and patient safety issues currently facing the modern healthcare system. Virtual microscopy represents one such simulation-based technology that has the potential to enhance student learning and readiness to practice while revolutionising the ability to clinically diagnose pathology collaboratively across the world. While understanding that a substantial amount of literature already exists on virtual microscopy, much more research is still required to elucidate the full capabilities of this technology. This review explores the use of virtual microscopy in medical education and disease diagnosis with a unique focus on key requirements needed to take this technology to the next level in its use in medical education and clinical practice.

  4. An imperialist competitive algorithm for virtual machine placement in cloud computing

    NASA Astrophysics Data System (ADS)

    Jamali, Shahram; Malektaji, Sepideh; Analoui, Morteza

    2017-05-01

    Cloud computing, the recently emerged revolution in IT industry, is empowered by virtualisation technology. In this paradigm, the user's applications run over some virtual machines (VMs). The process of selecting proper physical machines to host these virtual machines is called virtual machine placement. It plays an important role on resource utilisation and power efficiency of cloud computing environment. In this paper, we propose an imperialist competitive-based algorithm for the virtual machine placement problem called ICA-VMPLC. The base optimisation algorithm is chosen to be ICA because of its ease in neighbourhood movement, good convergence rate and suitable terminology. The proposed algorithm investigates search space in a unique manner to efficiently obtain optimal placement solution that simultaneously minimises power consumption and total resource wastage. Its final solution performance is compared with several existing methods such as grouping genetic and ant colony-based algorithms as well as bin packing heuristic. The simulation results show that the proposed method is superior to other tested algorithms in terms of power consumption, resource wastage, CPU usage efficiency and memory usage efficiency.

  5. BIM Based Virtual Environment for Fire Emergency Evacuation

    PubMed Central

    Rezgui, Yacine; Ong, Hoang N.

    2014-01-01

    Recent building emergency management research has highlighted the need for the effective utilization of dynamically changing building information. BIM (building information modelling) can play a significant role in this process due to its comprehensive and standardized data format and integrated process. This paper introduces a BIM based virtual environment supported by virtual reality (VR) and a serious game engine to address several key issues for building emergency management, for example, timely two-way information updating and better emergency awareness training. The focus of this paper lies on how to utilize BIM as a comprehensive building information provider to work with virtual reality technologies to build an adaptable immersive serious game environment to provide real-time fire evacuation guidance. The innovation lies on the seamless integration between BIM and a serious game based virtual reality (VR) environment aiming at practical problem solving by leveraging state-of-the-art computing technologies. The system has been tested for its robustness and functionality against the development requirements, and the results showed promising potential to support more effective emergency management. PMID:25197704

  6. Complementing Neurophysiology Education for Developing Countries via Cost-Effective Virtual Labs: Case Studies and Classroom Scenarios.

    PubMed

    Diwakar, Shyam; Parasuram, Harilal; Medini, Chaitanya; Raman, Raghu; Nedungadi, Prema; Wiertelak, Eric; Srivastava, Sanjeeva; Achuthan, Krishnashree; Nair, Bipin

    2014-01-01

    Classroom-level neuroscience experiments vary from detailed protocols involving chemical, physiological and imaging techniques to computer-based modeling. The application of Information and Communication Technology (ICT) is revolutionizing the current laboratory scenario in terms of active learning especially for distance education cases. Virtual web-based labs are an asset to educational institutions confronting economic issues in maintaining equipment, facilities and other conditions needed for good laboratory practice. To enhance education, we developed virtual laboratories in neuroscience and explored their first-level use in (Indian) University education in the context of developing countries. Besides using interactive animations and remotely-triggered experimental devices, a detailed mathematical simulator was implemented on a web-based software platform. In this study, we focused on the perceptions of technology adoption for a virtual neurophysiology laboratory as a new pedagogy tool for complementing college laboratory experience. The study analyses the effect of virtual labs on users assessing the relationship between cognitive, social and teaching presence. Combining feedback from learners and teachers, the study suggests enhanced motivation for students and improved teaching experience for instructors.

  7. Physical environment virtualization for human activities recognition

    NASA Astrophysics Data System (ADS)

    Poshtkar, Azin; Elangovan, Vinayak; Shirkhodaie, Amir; Chan, Alex; Hu, Shuowen

    2015-05-01

    Human activity recognition research relies heavily on extensive datasets to verify and validate performance of activity recognition algorithms. However, obtaining real datasets are expensive and highly time consuming. A physics-based virtual simulation can accelerate the development of context based human activity recognition algorithms and techniques by generating relevant training and testing videos simulating diverse operational scenarios. In this paper, we discuss in detail the requisite capabilities of a virtual environment to aid as a test bed for evaluating and enhancing activity recognition algorithms. To demonstrate the numerous advantages of virtual environment development, a newly developed virtual environment simulation modeling (VESM) environment is presented here to generate calibrated multisource imagery datasets suitable for development and testing of recognition algorithms for context-based human activities. The VESM environment serves as a versatile test bed to generate a vast amount of realistic data for training and testing of sensor processing algorithms. To demonstrate the effectiveness of VESM environment, we present various simulated scenarios and processed results to infer proper semantic annotations from the high fidelity imagery data for human-vehicle activity recognition under different operational contexts.

  8. Customizing G Protein-coupled receptor models for structure-based virtual screening.

    PubMed

    de Graaf, Chris; Rognan, Didier

    2009-01-01

    This review will focus on the construction, refinement, and validation of G Protein-coupled receptor models for the purpose of structure-based virtual screening. Practical tips and tricks derived from concrete modeling and virtual screening exercises to overcome the problems and pitfalls associated with the different steps of the receptor modeling workflow will be presented. These examples will not only include rhodopsin-like (class A), but also secretine-like (class B), and glutamate-like (class C) receptors. In addition, the review will present a careful comparative analysis of current crystal structures and their implication on homology modeling. The following themes will be discussed: i) the use of experimental anchors in guiding the modeling procedure; ii) amino acid sequence alignments; iii) ligand binding mode accommodation and binding cavity expansion; iv) proline-induced kinks in transmembrane helices; v) binding mode prediction and virtual screening by receptor-ligand interaction fingerprint scoring; vi) extracellular loop modeling; vii) virtual filtering schemes. Finally, an overview of several successful structure-based screening shows that receptor models, despite structural inaccuracies, can be efficiently used to find novel ligands.

  9. A discrete mechanics framework for real time virtual surgical simulations with application to virtual laparoscopic nephrectomy.

    PubMed

    Zhou, Xiangmin; Zhang, Nan; Sha, Desong; Shen, Yunhe; Tamma, Kumar K; Sweet, Robert

    2009-01-01

    The inability to render realistic soft-tissue behavior in real time has remained a barrier to face and content aspects of validity for many virtual reality surgical training systems. Biophysically based models are not only suitable for training purposes but also for patient-specific clinical applications, physiological modeling and surgical planning. When considering the existing approaches for modeling soft tissue for virtual reality surgical simulation, the computer graphics-based approach lacks predictive capability; the mass-spring model (MSM) based approach lacks biophysically realistic soft-tissue dynamic behavior; and the finite element method (FEM) approaches fail to meet the real-time requirement. The present development stems from physics fundamental thermodynamic first law; for a space discrete dynamic system directly formulates the space discrete but time continuous governing equation with embedded material constitutive relation and results in a discrete mechanics framework which possesses a unique balance between the computational efforts and the physically realistic soft-tissue dynamic behavior. We describe the development of the discrete mechanics framework with focused attention towards a virtual laparoscopic nephrectomy application.

  10. Complementing Neurophysiology Education for Developing Countries via Cost-Effective Virtual Labs: Case Studies and Classroom Scenarios

    PubMed Central

    Diwakar, Shyam; Parasuram, Harilal; Medini, Chaitanya; Raman, Raghu; Nedungadi, Prema; Wiertelak, Eric; Srivastava, Sanjeeva; Achuthan, Krishnashree; Nair, Bipin

    2014-01-01

    Classroom-level neuroscience experiments vary from detailed protocols involving chemical, physiological and imaging techniques to computer-based modeling. The application of Information and Communication Technology (ICT) is revolutionizing the current laboratory scenario in terms of active learning especially for distance education cases. Virtual web-based labs are an asset to educational institutions confronting economic issues in maintaining equipment, facilities and other conditions needed for good laboratory practice. To enhance education, we developed virtual laboratories in neuroscience and explored their first-level use in (Indian) University education in the context of developing countries. Besides using interactive animations and remotely-triggered experimental devices, a detailed mathematical simulator was implemented on a web-based software platform. In this study, we focused on the perceptions of technology adoption for a virtual neurophysiology laboratory as a new pedagogy tool for complementing college laboratory experience. The study analyses the effect of virtual labs on users assessing the relationship between cognitive, social and teaching presence. Combining feedback from learners and teachers, the study suggests enhanced motivation for students and improved teaching experience for instructors. PMID:24693260

  11. Moving from Virtual Reality Exposure-Based Therapy to Augmented Reality Exposure-Based Therapy: A Review

    PubMed Central

    Baus, Oliver; Bouchard, Stéphane

    2014-01-01

    This paper reviews the move from virtual reality exposure-based therapy to augmented reality exposure-based therapy (ARET). Unlike virtual reality (VR), which entails a complete virtual environment (VE), augmented reality (AR) limits itself to producing certain virtual elements to then merge them into the view of the physical world. Although, the general public may only have become aware of AR in the last few years, AR type applications have been around since beginning of the twentieth century. Since, then, technological developments have enabled an ever increasing level of seamless integration of virtual and physical elements into one view. Like VR, AR allows the exposure to stimuli which, due to various reasons, may not be suitable for real-life scenarios. As such, AR has proven itself to be a medium through which individuals suffering from specific phobia can be exposed “safely” to the object(s) of their fear, without the costs associated with programing complete VEs. Thus, ARET can offer an efficacious alternative to some less advantageous exposure-based therapies. Above and beyond presenting what has been accomplished in ARET, this paper covers some less well-known aspects of the history of AR, raises some ARET related issues, and proposes potential avenues to be followed. These include the type of measures to be used to qualify the user’s experience in an augmented reality environment, the exclusion of certain AR-type functionalities from the definition of AR, as well as the potential use of ARET to treat non-small animal phobias, such as social phobia. PMID:24624073

  12. Moving from virtual reality exposure-based therapy to augmented reality exposure-based therapy: a review.

    PubMed

    Baus, Oliver; Bouchard, Stéphane

    2014-01-01

    This paper reviews the move from virtual reality exposure-based therapy to augmented reality exposure-based therapy (ARET). Unlike virtual reality (VR), which entails a complete virtual environment (VE), augmented reality (AR) limits itself to producing certain virtual elements to then merge them into the view of the physical world. Although, the general public may only have become aware of AR in the last few years, AR type applications have been around since beginning of the twentieth century. Since, then, technological developments have enabled an ever increasing level of seamless integration of virtual and physical elements into one view. Like VR, AR allows the exposure to stimuli which, due to various reasons, may not be suitable for real-life scenarios. As such, AR has proven itself to be a medium through which individuals suffering from specific phobia can be exposed "safely" to the object(s) of their fear, without the costs associated with programing complete VEs. Thus, ARET can offer an efficacious alternative to some less advantageous exposure-based therapies. Above and beyond presenting what has been accomplished in ARET, this paper covers some less well-known aspects of the history of AR, raises some ARET related issues, and proposes potential avenues to be followed. These include the type of measures to be used to qualify the user's experience in an augmented reality environment, the exclusion of certain AR-type functionalities from the definition of AR, as well as the potential use of ARET to treat non-small animal phobias, such as social phobia.

  13. Utilization and acceptance of virtual patients in veterinary basic sciences - the vetVIP-project.

    PubMed

    Kleinsorgen, Christin; Kankofer, Marta; Gradzki, Zbigniew; Mandoki, Mira; Bartha, Tibor; von Köckritz-Blickwede, Maren; Naim, Hassan Y; Beyerbach, Martin; Tipold, Andrea; Ehlers, Jan P

    2017-01-01

    Context: In medical and veterinary medical education the use of problem-based and cased-based learning has steadily increased over time. At veterinary faculties, this development has mainly been evident in the clinical phase of the veterinary education. Therefore, a consortium of teachers of biochemistry and physiology together with technical and didactical experts launched the EU-funded project "vetVIP", to create and implement veterinary virtual patients and problems for basic science instruction. In this study the implementation and utilization of virtual patients occurred at the veterinary faculties in Budapest, Hannover and Lublin. Methods: This report describes the investigation of the utilization and acceptance of students studying veterinary basic sciences using optional online learning material concurrently to regular biochemistry and physiology didactic instruction. The reaction of students towards this offer of clinical case-based learning in basic sciences was analysed using quantitative and qualitative data. Quantitative data were collected automatically within the chosen software-system CASUS as user-log-files. Responses regarding the quality of the virtual patients were obtained using an online questionnaire. Furthermore, subjective evaluation by authors was performed using a focus group discussion and an online questionnaire. Results: Implementation as well as usage and acceptance varied between the three participating locations. High approval was documented in Hannover and Lublin based upon the high proportion of voluntary students (>70%) using optional virtual patients. However, in Budapest the participation rate was below 1%. Due to utilization, students seem to prefer virtual patients and problems created in their native language and developed at their own university. In addition, the statement that assessment drives learning was supported by the observation that peak utilization was just prior to summative examinations. Conclusion: Veterinary virtual patients in basic sciences can be introduced and used for the presentation of integrative clinical case scenarios. Student post-course comments also supported the conclusion that overall the virtual cases increased their motivation for learning veterinary basic sciences.

  14. A Framework for Implementing Virtual Collaborative Networks - Case Study on Automobile Components Production Industry

    NASA Astrophysics Data System (ADS)

    Parvinnia, Elham; Khayami, Raouf; Ziarati, Koorush

    Virtual collaborative networks are composed of small companies which take most advantage from the market opportunity and are able to compete with large companies. So some frameworks have been introduced for implementing this type of collaboration; although none of them has been standardized completely. In this paper we specify some instances that need to be standardized for implementing virtual enterprises. Then, a framework is suggested for implementing virtual collaborative networks. Finally, based on that suggestion, as a case study, we design a virtual collaborative network in automobile components production industry.

  15. Trust Building in Virtual Communities

    NASA Astrophysics Data System (ADS)

    Mezgár, István

    By using different types of communication networks various groups of people can come together according to their private or business interest forming a Virtual Community. In these communities cooperation and collaboration plays an important role. As trust is the base of all human interactions this fact is even more valid in case of virtual communities. According to different experiments the level of trust in virtual communities is highly influenced by the way/mode of communication and by the duration of contact. The paper discusses the ways of trust building focusing on communication technologies and security aspects in virtual communities.

  16. Open web system of Virtual labs for nuclear and applied physics

    NASA Astrophysics Data System (ADS)

    Saldikov, I. S.; Afanasyev, V. V.; Petrov, V. I.; Ternovykh, M. Yu

    2017-01-01

    An example of virtual lab work on unique experimental equipment is presented. The virtual lab work is software based on a model of real equipment. Virtual labs can be used for educational process in nuclear safety and analysis field. As an example it includes the virtual lab called “Experimental determination of the material parameter depending on the pitch of a uranium-water lattice”. This paper included general description of this lab. A description of a database on the support of laboratory work on unique experimental equipment which is included this work, its concept development are also presented.

  17. Network Virtualization - Opportunities and Challenges for Operators

    NASA Astrophysics Data System (ADS)

    Carapinha, Jorge; Feil, Peter; Weissmann, Paul; Thorsteinsson, Saemundur E.; Etemoğlu, Çağrı; Ingþórsson, Ólafur; Çiftçi, Selami; Melo, Márcio

    In the last few years, the concept of network virtualization has gained a lot of attention both from industry and research projects. This paper evaluates the potential of network virtualization from an operator's perspective, with the short-term goal of optimizing service delivery and rollout, and on a longer term as an enabler of technology integration and migration. Based on possible scenarios for implementing and using network virtualization, new business roles and models are examined. Open issues and topics for further evaluation are identified. In summary, the objective is to identify the challenges but also new opportunities for telecom operators raised by network virtualization.

  18. Virtual reality-based cognitive training for drug abusers: A randomised controlled trial.

    PubMed

    Man, David W K

    2018-05-08

    Non-pharmacological means are being developed to enhance cognitive abilities in drug abusers. This study evaluated virtual reality (VR) as an intervention tool for enhancing cognitive and vocational outcomes in 90 young ketamine users (KU) randomly assigned to a treatment group (virtual reality group, VRG; tutor-administered group, TAG) or wait-listed control group (CG). Two training programmes with similar content but different delivery modes (VR-based and manual-based) were applied using a virtual boutique as a training scenario. Outcome assessments comprised the Digit Vigilance Test, Rivermead Behavioural Memory Test, Wisconsin Cart Sorting Test, work-site test and self-efficacy pre- and post-test and during 3- and 6-month follow-ups. The VRG exhibited significant improvements in attention and improvements in memory that were maintained after 3 months. Both the VRG and TAG exhibited significantly improved vocational skills after training which were maintained during follow-up, and improved self-efficacy. VR-based cognitive training might target cognitive problems in KU.

  19. Subjective visual vertical assessment with mobile virtual reality system.

    PubMed

    Ulozienė, Ingrida; Totilienė, Milda; Paulauskas, Andrius; Blažauskas, Tomas; Marozas, Vaidotas; Kaski, Diego; Ulozas, Virgilijus

    2017-01-01

    The subjective visual vertical (SVV) is a measure of a subject's perceived verticality, and a sensitive test of vestibular dysfunction. Despite this, and consequent upon technical and logistical limitations, SVV has not entered mainstream clinical practice. The aim of the study was to develop a mobile virtual reality based system for SVV test, evaluate the suitability of different controllers and assess the system's usability in practical settings. In this study, we describe a novel virtual reality based system that has been developed to test SVV using integrated software and hardware, and report normative values across healthy population. Participants wore a mobile virtual reality headset in order to observe a 3D stimulus presented across separate conditions - static, dynamic and an immersive real-world ("boat in the sea") SVV tests. The virtual reality environment was controlled by the tester using a Bluetooth connected controllers. Participants controlled the movement of a vertical arrow using either a gesture control armband or a general-purpose gamepad, to indicate perceived verticality. We wanted to compare 2 different methods for object control in the system, determine normal values and compare them with literature data, to evaluate the developed system with the help of the system usability scale questionnaire and evaluate possible virtually induced dizziness with the help of subjective visual analog scale. There were no statistically significant differences in SVV values during static, dynamic and virtual reality stimulus conditions, obtained using the two different controllers and the results are compared to those previously reported in the literature using alternative methodologies. The SUS scores for the system were high, with a median of 82.5 for the Myo controller and of 95.0 for the Gamepad controller, representing a statistically significant difference between the two controllers (P<0.01). The median of virtual reality-induced dizziness for both devices was 0.7. The mobile virtual reality based system for implementation of subjective visual vertical test, is accurate and applicable in the clinical environment. The gamepad-based virtual object control method was preferred by the users. The tests were well tolerated with low dizziness scores in the majority of patients. Copyright © 2018 The Lithuanian University of Health Sciences. Production and hosting by Elsevier Sp. z o.o. All rights reserved.

  20. Use of 3D techniques for virtual production

    NASA Astrophysics Data System (ADS)

    Grau, Oliver; Price, Marc C.; Thomas, Graham A.

    2000-12-01

    Virtual production for broadcast is currently mainly used in the form of virtual studios, where the resulting media is a sequence of 2D images. With the steady increase of 3D computing power in home PCs and the technical progress in 3D display technology, the content industry is looking for new kinds of program material, which makes use of 3D technology. The applications range form analysis of sport scenes, 3DTV, up to the creation of fully immersive content. In a virtual studio a camera films one or more actors in a controlled environment. The pictures of the actors can be segmented very accurately in real time using chroma keying techniques. The isolated silhouette can be integrated into a new synthetic virtual environment using a studio mixer. The resulting shape description of the actors is 2D so far. For the realization of more sophisticated optical interactions of the actors with the virtual environment, such as occlusions and shadows, an object-based 3D description of scenes is needed. However, the requirements of shape accuracy, and the kind of representation, differ in accordance with the application. This contribution gives an overview of requirements and approaches for the generation of an object-based 3D description in various applications studied by the BBC R and D department. An enhanced Virtual Studio for 3D programs is proposed that covers a range of applications for virtual production.

  1. Game-Based Virtual Worlds as Decentralized Virtual Activity Systems

    NASA Astrophysics Data System (ADS)

    Scacchi, Walt

    There is widespread interest in the development and use of decentralized systems and virtual world environments as possible new places for engaging in collaborative work activities. Similarly, there is widespread interest in stimulating new technological innovations that enable people to come together through social networking, file/media sharing, and networked multi-player computer game play. A decentralized virtual activity system (DVAS) is a networked computer supported work/play system whose elements and social activities can be both virtual and decentralized (Scacchi et al. 2008b). Massively multi-player online games (MMOGs) such as World of Warcraft and online virtual worlds such as Second Life are each popular examples of a DVAS. Furthermore, these systems are beginning to be used for research, deve-lopment, and education activities in different science, technology, and engineering domains (Bainbridge 2007, Bohannon et al. 2009; Rieber 2005; Scacchi and Adams 2007; Shaffer 2006), which are also of interest here. This chapter explores two case studies of DVASs developed at the University of California at Irvine that employ game-based virtual worlds to support collaborative work/play activities in different settings. The settings include those that model and simulate practical or imaginative physical worlds in different domains of science, technology, or engineering through alternative virtual worlds where players/workers engage in different kinds of quests or quest-like workflows (Jakobsson 2006).

  2. Beamforming applied to surface EEG improves ripple visibility.

    PubMed

    van Klink, Nicole; Mol, Arjen; Ferrier, Cyrille; Hillebrand, Arjan; Huiskamp, Geertjan; Zijlmans, Maeike

    2018-01-01

    Surface EEG can show epileptiform ripples in people with focal epilepsy, but identification is impeded by the low signal-to-noise ratio of the electrode recordings. We used beamformer-based virtual electrodes to improve ripple identification. We analyzed ten minutes of interictal EEG of nine patients with refractory focal epilepsy. EEGs with more than 60 channels and 20 spikes were included. We computed ∼79 virtual electrodes using a scalar beamformer and marked ripples (80-250 Hz) co-occurring with spikes in physical and virtual electrodes. Ripple numbers in physical and virtual electrodes were compared, and sensitivity and specificity of ripples for the region of interest (ROI; based on clinical information) were determined. Five patients had ripples in the physical electrodes and eight in the virtual electrodes, with more ripples in virtual than in physical electrodes (101 vs. 57, p = .007). Ripples in virtual electrodes predicted the ROI better than physical electrodes (AUC 0.65 vs. 0.56, p = .03). Beamforming increased ripple visibility in surface EEG. Virtual ripples predicted the ROI better than physical ripples, although sensitivity was still poor. Beamforming can facilitate ripple identification in EEG. Ripple localization needs to be improved to enable its use for presurgical evaluation in people with epilepsy. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  3. Vicher: A Virtual Reality Based Educational Module for Chemical Reaction Engineering.

    ERIC Educational Resources Information Center

    Bell, John T.; Fogler, H. Scott

    1996-01-01

    A virtual reality application for undergraduate chemical kinetics and reactor design education, Vicher (Virtual Chemical Reaction Model) was originally designed to simulate a portion of a modern chemical plant. Vicher now consists of two programs: Vicher I that models catalyst deactivation and Vicher II that models nonisothermal effects in…

  4. A "Second Life" for Gross Anatomy: Applications for Multiuser Virtual Environments in Teaching the Anatomical Sciences

    ERIC Educational Resources Information Center

    Richardson, April; Hazzard, Matthew; Challman, Sandra D.; Morgenstein, Aaron M.; Brueckner, Jennifer K.

    2011-01-01

    This article describes the emerging role of educational multiuser virtual environments, specifically Second Life[TM], in anatomical sciences education. Virtual worlds promote inquiry-based learning and conceptual understanding, potentially making them applicable for teaching and learning gross anatomy. A short introduction to Second Life as an…

  5. Virtual Learning Spaces in the Web: An Agent-Based Architecture of Personalized Collaborative Learning Environment.

    ERIC Educational Resources Information Center

    Nunez Esquer, Gustavo; Sheremetov, Leonid

    This paper reports on the results and future research work within the paradigm of Configurable Collaborative Distance Learning, called Espacios Virtuales de Apredizaje (EVA). The paper focuses on: (1) description of the main concepts, including virtual learning spaces for knowledge, collaboration, consulting, and experimentation, a…

  6. The Doubtful Guest? A Virtual Research Environment for Education

    ERIC Educational Resources Information Center

    Laterza, Vito; Carmichael, Patrick; Procter, Richard

    2007-01-01

    In this paper the authors describe a novel "Virtual Research Environment" (VRE) based on the Sakai Virtual Collaboration Environment and designed to support education research. This VRE has been used for the past two years by projects of the UK Economic and Social Research Council's Teaching and Learning Research Programme, 10 of which…

  7. Visualizing Compound Rotations with Virtual Reality

    ERIC Educational Resources Information Center

    Flanders, Megan; Kavanagh, Richard C.

    2013-01-01

    Mental rotations are among the most difficult of all spatial tasks to perform, and even those with high levels of spatial ability can struggle to visualize the result of compound rotations. This pilot study investigates the use of the virtual reality-based Rotation Tool, created using the Virtual Reality Modeling Language (VRML) together with…

  8. A Systematic, Inquiry-Based 7-Step Virtual Worlds Teacher Training

    ERIC Educational Resources Information Center

    Nussli, Natalie Christina; Oh, Kevin

    2015-01-01

    Eighteen special education teachers explored one prominent example of three-dimensional virtual worlds, namely Second Life. This study aimed to (a) determine their perception of the effectiveness of a systematic 7-Step Virtual Worlds Teacher Training workshop in terms of enabling them to make informed decisions about the usability of virtual…

  9. A System for Governmental Virtual Institutions Based on Ontologies and Interaction Protocols

    ERIC Educational Resources Information Center

    de Araujo, Claudia J. Abrao; da Silva, Flavio S. Correa

    2012-01-01

    The authors believe that the adoption of virtual worlds is suitable for electronic government applications as it can increase the capillarity of public services, facilitate the access to government services and provide citizens with a natural and immersive experience. They present a Government Virtual Institution Model (GVI) for the provision of…

  10. 10 Myths of Virtualization

    ERIC Educational Resources Information Center

    Schaffhauser, Dian

    2012-01-01

    Half of servers in higher ed are virtualized. But that number's not high enough for Link Alander, interim vice chancellor and CIO at the Lone Star College System (Texas). He aspires to see 100 percent of the system's infrastructure requirements delivered as IT services from its own virtualized data centers or other cloud-based operators. Back in…

  11. Virtual Quests As Learning Environments for K-12 Students.

    ERIC Educational Resources Information Center

    Spudic, Linda

    Perhaps some of the most engaging, unique, Web-based activities are virtual quests that take student participants along on real expeditions, following a team in the field as they explore new territory or do research on authentic scientific problems. Virtual quests, such as the MayaQuest expedition produced by Classroom Connect, are excellent…

  12. Virtual Simulations and Serious Games in a Laptop-Based University: Gauging Faculty and Student Perceptions

    ERIC Educational Resources Information Center

    Kapralos, Bill; Hogan, Michelle; Pribetic, Antonin I.; Dubrowski, Adam

    2011-01-01

    Purpose: Gaming and interactive virtual simulation environments support a learner-centered educational model allowing learners to work through problems acquiring knowledge through an active, experiential learning approach. To develop effective virtual simulations and serious games, the views and perceptions of learners and educators must be…

  13. An Investigation into Cooperative Learning in a Virtual World Using Problem-Based Learning

    ERIC Educational Resources Information Center

    Parson, Vanessa; Bignell, Simon

    2017-01-01

    Three-dimensional multi-user virtual environments (MUVEs) have the potential to provide experiential learning qualitatively similar to that found in the real world. MUVEs offer a pedagogically-driven immersive learning opportunity for educationalists that is cost-effective and enjoyable. A family of digital virtual avatars was created within…

  14. Pre-Service Teachers Designing Virtual World Learning Environments

    ERIC Educational Resources Information Center

    Jacka, Lisa; Booth, Kate

    2012-01-01

    Integrating Information Technology Communications in the classroom has been an important part of pre-service teacher education for over a decade. The advent of virtual worlds provides the pre-service teacher with an opportunity to study teaching and learning in a highly immersive 3D computer-based environment. Virtual worlds also provide a place…

  15. Vision-Based Control of a Handheld Surgical Micromanipulator with Virtual Fixtures

    PubMed Central

    Becker, Brian C.; MacLachlan, Robert A.; Lobes, Louis A.; Hager, Gregory D.; Riviere, Cameron N.

    2012-01-01

    Performing micromanipulation and delicate operations in submillimeter workspaces is difficult because of destabilizing tremor and imprecise targeting. Accurate micromanipulation is especially important for microsurgical procedures, such as vitreoretinal surgery, to maximize successful outcomes and minimize collateral damage. Robotic aid combined with filtering techniques that suppress tremor frequency bands increases performance; however, if knowledge of the operator’s goals is available, virtual fixtures have been shown to further improve performance. In this paper, we derive a virtual fixture framework for active handheld micromanipulators that is based on high-bandwidth position measurements rather than forces applied to a robot handle. For applicability in surgical environments, the fixtures are generated in real-time from microscope video during the procedure. Additionally, we develop motion scaling behavior around virtual fixtures as a simple and direct extension to the proposed framework. We demonstrate that virtual fixtures significantly outperform tremor cancellation algorithms on a set of synthetic tracing tasks (p < 0.05). In more medically relevant experiments of vein tracing and membrane peeling in eye phantoms, virtual fixtures can significantly reduce both positioning error and forces applied to tissue (p < 0.05). PMID:24639624

  16. The Future of Virtual Worlds

    NASA Astrophysics Data System (ADS)

    Bainbridge, William Sims; Lutters, Wayne; Rhoten, Diana; Lowood, Henry

    This book, like the May 2008 conference in World of Warcraft, ends with projections toward what the future might hold for virtual worlds. Every chapter thus far has included speculations about future directions, even while standing on data from the past. This last chapter, like the final session of the conference on which it is based, incorporates comments from dozens of participants into a stream of ideas. We have edited selected comments together with the panel's contributions. Our intention is to provide a portal from this book into a wider virtual community comprising researchers and residents in virtual worlds. The discussion surveys many recent lines of development, some of which have already been surveyed in scientific and historical literature, or by journalists (Au 2008; Castronova 2007; Guest 2007; Ludlow and Wallace 2007). Yet, many of the topics here have not received such attention. Considered as a set of socio-technical innovations, virtual worlds are not just about technical possibilities; they also inspired the participants to consider the economic bases for investing in those possibilities and the novel cultural, social, and artistic forms virtual worlds might offer.

  17. GPURFSCREEN: a GPU based virtual screening tool using random forest classifier.

    PubMed

    Jayaraj, P B; Ajay, Mathias K; Nufail, M; Gopakumar, G; Jaleel, U C A

    2016-01-01

    In-silico methods are an integral part of modern drug discovery paradigm. Virtual screening, an in-silico method, is used to refine data models and reduce the chemical space on which wet lab experiments need to be performed. Virtual screening of a ligand data model requires large scale computations, making it a highly time consuming task. This process can be speeded up by implementing parallelized algorithms on a Graphical Processing Unit (GPU). Random Forest is a robust classification algorithm that can be employed in the virtual screening. A ligand based virtual screening tool (GPURFSCREEN) that uses random forests on GPU systems has been proposed and evaluated in this paper. This tool produces optimized results at a lower execution time for large bioassay data sets. The quality of results produced by our tool on GPU is same as that on a regular serial environment. Considering the magnitude of data to be screened, the parallelized virtual screening has a significantly lower running time at high throughput. The proposed parallel tool outperforms its serial counterpart by successfully screening billions of molecules in training and prediction phases.

  18. Emulation-Based Virtual Laboratories: A Low-Cost Alternative to Physical Experiments in Control Engineering Education

    ERIC Educational Resources Information Center

    Goodwin, G. C.; Medioli, A. M.; Sher, W.; Vlacic, L. B.; Welsh, J. S.

    2011-01-01

    This paper argues the case for emulation-based virtual laboratories in control engineering education. It demonstrates that such emulation experiments can give students an industrially relevant educational experience at relatively low cost. The paper also describes a particular emulation-based system that has been developed with the aim of giving…

  19. Enriching Project-Based Learning Environments with Virtual Manipulatives: A Comparative Study

    ERIC Educational Resources Information Center

    Çakiroglu, Ünal

    2014-01-01

    Problem statement: Although there is agreement on the potential of project based learning (PBL) and virtual manipulatives (VMs), their positive impact depends on how they are used. This study was based on supporting the use of online PBL environments and improving the efficacy of the instructional practices in PBL by combining the potentials of…

  20. Web-Based Interactive 3D Visualization as a Tool for Improved Anatomy Learning

    ERIC Educational Resources Information Center

    Petersson, Helge; Sinkvist, David; Wang, Chunliang; Smedby, Orjan

    2009-01-01

    Despite a long tradition, conventional anatomy education based on dissection is declining. This study tested a new virtual reality (VR) technique for anatomy learning based on virtual contrast injection. The aim was to assess whether students value this new three-dimensional (3D) visualization method as a learning tool and what value they gain…

  1. Virtual Learning. A Revolutionary Approach to Building a Highly Skilled Workforce.

    ERIC Educational Resources Information Center

    Schank, Roger

    This book offers trainers and human resource managers an alternative approach to train people more effectively and capitalize on multimedia-based tools. The approach is based on computer-based training and virtual learning theory. Chapter 1 discusses how to remedy problems caused by bad training. Chapter 2 focuses on simulating work and creating…

  2. Naver: a PC-cluster-based VR system

    NASA Astrophysics Data System (ADS)

    Park, ChangHoon; Ko, HeeDong; Kim, TaiYun

    2003-04-01

    In this paper, we present a new framework NAVER for virtual reality application. The NAVER is based on a cluster of low-cost personal computers. The goal of NAVER is to provide flexible, extensible, scalable and re-configurable framework for the virtual environments defined as the integration of 3D virtual space and external modules. External modules are various input or output devices and applications on the remote hosts. From the view of system, personal computers are divided into three servers according to its specific functions: Render Server, Device Server and Control Server. While Device Server contains external modules requiring event-based communication for the integration, Control Server contains external modules requiring synchronous communication every frame. And, the Render Server consists of 5 managers: Scenario Manager, Event Manager, Command Manager, Interaction Manager and Sync Manager. These managers support the declaration and operation of virtual environment and the integration with external modules on remote servers.

  3. The use of PC based VR in clinical medicine: the VREPAR projects.

    PubMed

    Riva, G; Bacchetta, M; Baruffi, M; Borgomainerio, E; Defrance, C; Gatti, F; Galimberti, C; Fontaneto, S; Marchi, S; Molinari, E; Nugues, P; Rinaldi, S; Rovetta, A; Ferretti, G S; Tonci, A; Wann, J; Vincelli, F

    1999-01-01

    Virtual reality (VR) is an emerging technology that alters the way individuals interact with computers: a 3D computer-generated environment in which a person can move about and interact as if he actually was inside it. Given to the high computational power required to create virtual environments, these are usually developed on expensive high-end workstations. However, the significant advances in PC hardware that have been made over the last three years, are making PC-based VR a possible solution for clinical assessment and therapy. VREPAR - Virtual Reality Environments for Psychoneurophysiological Assessment and Rehabilitation - are two European Community funded projects (Telematics for health - HC 1053/HC 1055 - http://www.psicologia.net) that are trying to develop a modular PC-based virtual reality system for the medical market. The paper describes the rationale of the developed modules and the preliminary results obtained.

  4. A Virtual Reality Simulator Prototype for Learning and Assessing Phaco-sculpting Skills

    NASA Astrophysics Data System (ADS)

    Choi, Kup-Sze

    This paper presents a virtual reality based simulator prototype for learning phacoemulsification in cataract surgery, with focus on the skills required for making a cross-shape trench in cataractous lens by an ultrasound probe during the phaco-sculpting procedure. An immersive virtual environment is created with 3D models of the lens and surgical tools. Haptic device is also used as 3D user interface. Phaco-sculpting is simulated by interactively deleting the constituting tetrahedrons of the lens model. Collisions between the virtual probe and the lens are effectively identified by partitioning the space containing the lens hierarchically with an octree. The simulator can be programmed to collect real-time quantitative user data for reviewing and assessing trainee's performance in an objective manner. A game-based learning environment can be created on top of the simulator by incorporating gaming elements based on the quantifiable performance metrics.

  5. A review of haptic simulator for oral and maxillofacial surgery based on virtual reality.

    PubMed

    Chen, Xiaojun; Hu, Junlei

    2018-06-01

    Traditional medical training in oral and maxillofacial surgery (OMFS) may be limited by its low efficiency and high price due to the shortage of cadaver resources. With the combination of visual rendering and feedback force, surgery simulators become increasingly popular in hospitals and medical schools as an alternative to the traditional training. Areas covered: The major goal of this review is to provide a comprehensive reference source of current and future developments of haptic OMFS simulators based on virtual reality (VR) for relevant researchers. Expert commentary: Visual rendering, haptic rendering, tissue deformation, and evaluation are key components of haptic surgery simulator based on VR. Compared with traditional medical training, virtual and tactical fusion of virtual environment in surgery simulator enables considerably vivid sensation, and the operators have more opportunities to practice surgical skills and receive objective evaluation as reference.

  6. A constraint optimization based virtual network mapping method

    NASA Astrophysics Data System (ADS)

    Li, Xiaoling; Guo, Changguo; Wang, Huaimin; Li, Zhendong; Yang, Zhiwen

    2013-03-01

    Virtual network mapping problem, maps different virtual networks onto the substrate network is an extremely challenging work. This paper proposes a constraint optimization based mapping method for solving virtual network mapping problem. This method divides the problem into two phases, node mapping phase and link mapping phase, which are all NP-hard problems. Node mapping algorithm and link mapping algorithm are proposed for solving node mapping phase and link mapping phase, respectively. Node mapping algorithm adopts the thinking of greedy algorithm, mainly considers two factors, available resources which are supplied by the nodes and distance between the nodes. Link mapping algorithm is based on the result of node mapping phase, adopts the thinking of distributed constraint optimization method, which can guarantee to obtain the optimal mapping with the minimum network cost. Finally, simulation experiments are used to validate the method, and results show that the method performs very well.

  7. Design of virtual simulation experiment based on key events

    NASA Astrophysics Data System (ADS)

    Zhong, Zheng; Zhou, Dongbo; Song, Lingxiu

    2018-06-01

    Considering complex content and lacking of guidance in virtual simulation experiments, the key event technology in VR narrative theory was introduced for virtual simulation experiment to enhance fidelity and vividness process. Based on the VR narrative technology, an event transition structure was designed to meet the need of experimental operation process, and an interactive event processing model was used to generate key events in interactive scene. The experiment of" margin value of bees foraging" based on Biologic morphology was taken as an example, many objects, behaviors and other contents were reorganized. The result shows that this method can enhance the user's experience and ensure experimental process complete and effectively.

  8. Name-Based Address Mapping for Virtual Private Networks

    NASA Astrophysics Data System (ADS)

    Surányi, Péter; Shinjo, Yasushi; Kato, Kazuhiko

    IPv4 private addresses are commonly used in local area networks (LANs). With the increasing popularity of virtual private networks (VPNs), it has become common that a user connects to multiple LANs at the same time. However, private address ranges for LANs frequently overlap. In such cases, existing systems do not allow the user to access the resources on all LANs at the same time. In this paper, we propose name-based address mapping for VPNs, a novel method that allows connecting to hosts through multiple VPNs at the same time, even when the address ranges of the VPNs overlap. In name-based address mapping, rather than using the IP addresses used on the LANs (the real addresses), we assign a unique virtual address to each remote host based on its domain name. The local host uses the virtual addresses to communicate with remote hosts. We have implemented name-based address mapping for layer 3 OpenVPN connections on Linux and measured its performance. The communication overhead of our system is less than 1.5% for throughput and less than 0.2ms for each name resolution.

  9. Web-based e-learning and virtual lab of human-artificial immune system.

    PubMed

    Gong, Tao; Ding, Yongsheng; Xiong, Qin

    2014-05-01

    Human immune system is as important in keeping the body healthy as the brain in supporting the intelligence. However, the traditional models of the human immune system are built on the mathematics equations, which are not easy for students to understand. To help the students to understand the immune systems, a web-based e-learning approach with virtual lab is designed for the intelligent system control course by using new intelligent educational technology. Comparing the traditional graduate educational model within the classroom, the web-based e-learning with the virtual lab shows the higher inspiration in guiding the graduate students to think independently and innovatively, as the students said. It has been found that this web-based immune e-learning system with the online virtual lab is useful for teaching the graduate students to understand the immune systems in an easier way and design their simulations more creatively and cooperatively. The teaching practice shows that the optimum web-based e-learning system can be used to increase the learning effectiveness of the students.

  10. Virtual Collaboration Readiness Measurement a Case Study in the Automobile Industry

    NASA Astrophysics Data System (ADS)

    Ziarati, Koorush; Khayami, Raouf; Parvinnia, Elham; Afroozi Milani, Ghazal

    In end of the last century information and communication technology caused a veritable evolution in the world of business and commerce. Globalization has changed all the commerce equations and business plans. Old companies have to change their strategies if they want to survive after this technological revolution. A new form of collaboration between the distributed and networked organizations has emerged as the "Virtual Organization" paradigm. A company can not join a virtual organization before obtaining a virtual maturity. This maturity shows the readiness of the company to begin a virtual collaboration. In this paper, based on the coherent and formal definition of virtual organizations, the criteria for measuring the readiness of companies are proposed. Our criteria are confirmed, modified or combined by using the factor analysis method on a sufficient number of virtual companies in the automobile manufacturing industry.

  11. Intelligent Motion and Interaction Within Virtual Environments

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R. (Editor); Slater, Mel (Editor); Alexander, Thomas (Editor)

    2007-01-01

    What makes virtual actors and objects in virtual environments seem real? How can the illusion of their reality be supported? What sorts of training or user-interface applications benefit from realistic user-environment interactions? These are some of the central questions that designers of virtual environments face. To be sure simulation realism is not necessarily the major, or even a required goal, of a virtual environment intended to communicate specific information. But for some applications in entertainment, marketing, or aspects of vehicle simulation training, realism is essential. The following chapters will examine how a sense of truly interacting with dynamic, intelligent agents may arise in users of virtual environments. These chapters are based on presentations at the London conference on Intelligent Motion and Interaction within a Virtual Environments which was held at University College, London, U.K., 15-17 September 2003.

  12. Cloud-Based Virtual Laboratory for Network Security Education

    ERIC Educational Resources Information Center

    Xu, Le; Huang, Dijiang; Tsai, Wei-Tek

    2014-01-01

    Hands-on experiments are essential for computer network security education. Existing laboratory solutions usually require significant effort to build, configure, and maintain and often do not support reconfigurability, flexibility, and scalability. This paper presents a cloud-based virtual laboratory education platform called V-Lab that provides a…

  13. Students' Experience of Problem-Based Learning in Virtual Space

    ERIC Educational Resources Information Center

    Gibbings, Peter; Lidstone, John; Bruce, Christine

    2015-01-01

    This paper reports outcomes of a study focused on discovering qualitatively different ways students experience problem-based learning in virtual space. A well-accepted and documented qualitative research method was adopted for this study. Five qualitatively different conceptions are described, each revealing characteristics of increasingly complex…

  14. Adaptive User Model for Web-Based Learning Environment.

    ERIC Educational Resources Information Center

    Garofalakis, John; Sirmakessis, Spiros; Sakkopoulos, Evangelos; Tsakalidis, Athanasios

    This paper describes the design of an adaptive user model and its implementation in an advanced Web-based Virtual University environment that encompasses combined and synchronized adaptation between educational material and well-known communication facilities. The Virtual University environment has been implemented to support a postgraduate…

  15. Virtual reality in surgical skills training.

    PubMed

    Palter, Vanessa N; Grantcharov, Teodor P

    2010-06-01

    With recent concerns regarding patient safety, and legislation regarding resident work hours, it is accepted that a certain amount of surgical skills training will transition to the surgical skills laboratory. Virtual reality offers enormous potential to enhance technical and non-technical skills training outside the operating room. Virtual-reality systems range from basic low-fidelity devices to highly complex virtual environments. These systems can act as training and assessment tools, with the learned skills effectively transferring to an analogous clinical situation. Recent developments include expanding the role of virtual reality to allow for holistic, multidisciplinary team training in simulated operating rooms, and focusing on the role of virtual reality in evidence-based surgical curriculum design. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Modeling and simulation of five-axis virtual machine based on NX

    NASA Astrophysics Data System (ADS)

    Li, Xiaoda; Zhan, Xianghui

    2018-04-01

    Virtual technology in the machinery manufacturing industry has shown the role of growing. In this paper, the Siemens NX software is used to model the virtual CNC machine tool, and the parameters of the virtual machine are defined according to the actual parameters of the machine tool so that the virtual simulation can be carried out without loss of the accuracy of the simulation. How to use the machine builder of the CAM module to define the kinematic chain and machine components of the machine is described. The simulation of virtual machine can provide alarm information of tool collision and over cutting during the process to users, and can evaluate and forecast the rationality of the technological process.

  17. Web-based interactive 3D visualization as a tool for improved anatomy learning.

    PubMed

    Petersson, Helge; Sinkvist, David; Wang, Chunliang; Smedby, Orjan

    2009-01-01

    Despite a long tradition, conventional anatomy education based on dissection is declining. This study tested a new virtual reality (VR) technique for anatomy learning based on virtual contrast injection. The aim was to assess whether students value this new three-dimensional (3D) visualization method as a learning tool and what value they gain from its use in reaching their anatomical learning objectives. Several 3D vascular VR models were created using an interactive segmentation tool based on the "virtual contrast injection" method. This method allows users, with relative ease, to convert computer tomography or magnetic resonance images into vivid 3D VR movies using the OsiriX software equipped with the CMIV CTA plug-in. Once created using the segmentation tool, the image series were exported in Quick Time Virtual Reality (QTVR) format and integrated within a web framework of the Educational Virtual Anatomy (EVA) program. A total of nine QTVR movies were produced encompassing most of the major arteries of the body. These movies were supplemented with associated information, color keys, and notes. The results indicate that, in general, students' attitudes towards the EVA-program were positive when compared with anatomy textbooks, but results were not the same with dissections. Additionally, knowledge tests suggest a potentially beneficial effect on learning.

  18. Attentional Demand of a Virtual Reality-Based Reaching Task in Nondisabled Older Adults.

    PubMed

    Chen, Yi-An; Chung, Yu-Chen; Proffitt, Rachel; Wade, Eric; Winstein, Carolee

    2015-12-01

    Attention during exercise is known to affect performance; however, the attentional demand inherent to virtual reality (VR)-based exercise is not well understood. We used a dual-task paradigm to compare the attentional demands of VR-based and non-VR-based (conventional, real-world) exercise: 22 non-disabled older adults performed a primary reaching task to virtual and real targets in a counterbalanced block order while verbally responding to an unanticipated auditory tone in one third of the trials. The attentional demand of the primary reaching task was inferred from the voice response time (VRT) to the auditory tone. Participants' engagement level and task experience were also obtained using questionnaires. The virtual target condition was more attention demanding (significantly longer VRT) than the real target condition. Secondary analyses revealed a significant interaction between engagement level and target condition on attentional demand. For participants who were highly engaged, attentional demand was high and independent of target condition. However, for those who were less engaged, attentional demand was low and depended on target condition (i.e., virtual > real). These findings add important knowledge to the growing body of research pertaining to the development and application of technology-enhanced exercise for elders and for rehabilitation purposes.

  19. Attentional Demand of a Virtual Reality-Based Reaching Task in Nondisabled Older Adults

    PubMed Central

    Chen, Yi-An; Chung, Yu-Chen; Proffitt, Rachel; Wade, Eric; Winstein, Carolee

    2015-01-01

    Attention during exercise is known to affect performance; however, the attentional demand inherent to virtual reality (VR)-based exercise is not well understood. We used a dual-task paradigm to compare the attentional demands of VR-based and non-VR-based (conventional, real-world) exercise: 22 non-disabled older adults performed a primary reaching task to virtual and real targets in a counterbalanced block order while verbally responding to an unanticipated auditory tone in one third of the trials. The attentional demand of the primary reaching task was inferred from the voice response time (VRT) to the auditory tone. Participants' engagement level and task experience were also obtained using questionnaires. The virtual target condition was more attention demanding (significantly longer VRT) than the real target condition. Secondary analyses revealed a significant interaction between engagement level and target condition on attentional demand. For participants who were highly engaged, attentional demand was high and independent of target condition. However, for those who were less engaged, attentional demand was low and depended on target condition (i.e., virtual > real). These findings add important knowledge to the growing body of research pertaining to the development and application of technology-enhanced exercise for elders and for rehabilitation purposes. PMID:27004233

  20. [Learning about social determinants of health through chronicles, using a virtual learning environment].

    PubMed

    Restrepo-Palacio, Sonia; Amaya-Guio, Jairo

    2016-01-01

    To describe the contributions of a pedagogical strategy based on the construction of chronicles, using a Virtual Learning Environment for training medical students from Universidad de La Sabana on social determinants of health. Descriptive study with a qualitative approach. Design and implementation of a Virtual Learning Environment based on the ADDIE instructional model. A Virtual Learning Environment was implemented with an instructional design based on the five phases of the ADDIE model, on the grounds of meaningful learning and social constructivism, and through the narration of chronicles or life stories as a pedagogical strategy. During the course, the structural determinants and intermediaries were addressed, and nine chronicles were produced by working groups made up of four or five students, who demonstrated meaningful learning from real life stories, presented a coherent sequence, and kept a thread; 82% of these students incorporated in their contents most of the social determinants of health, emphasizing on the concepts of equity or inequity, equality or inequality, justice or injustice and social cohesion. A Virtual Learning Environment, based on an appropriate instructional design, allows to facilitate learning of social determinants of health through a constructivist pedagogical approach by analyzing chronicles or life stories created by ninth-semester students of medicine from Universidad de La Sabana.

  1. Decision PBL: A 4-year retrospective case study of the use of virtual patients in problem-based learning.

    PubMed

    Ellaway, Rachel H; Poulton, Terry; Jivram, Trupti

    2015-01-01

    In 2009, St George's University of London (SGUL) replaced their paper-based problem-based learning (PBL) cases with virtual patients for intermediate-level undergraduate students. This involved the development of Decision-Problem-Based Learning (D-PBL), a variation on progressive-release PBL that uses virtual patients instead of paper cases, and focuses on patient management decisions and their consequences. Using a case study method, this paper describes four years of developing and running D-PBL at SGUL from individual activities up to the ways in which D-PBL functioned as an educational system. A number of broad issues were identified: the importance of debates and decision-making in making D-PBL activities engaging and rewarding; the complexities of managing small group dynamics; the time taken to complete D-PBL activities; the changing role of the facilitator; and the erosion of the D-PBL process over time. A key point in understanding this work is the construction and execution of the D-PBL activity, as much of the value of this approach arises from the actions and interactions of students, their facilitators and the virtual patients rather than from the design of the virtual patients alone. At a systems level D-PBL needs to be periodically refreshed to retain its effectiveness.

  2. Toward Optimization of Gaze-Controlled Human-Computer Interaction: Application to Hindi Virtual Keyboard for Stroke Patients.

    PubMed

    Meena, Yogesh Kumar; Cecotti, Hubert; Wong-Lin, Kongfatt; Dutta, Ashish; Prasad, Girijesh

    2018-04-01

    Virtual keyboard applications and alternative communication devices provide new means of communication to assist disabled people. To date, virtual keyboard optimization schemes based on script-specific information, along with multimodal input access facility, are limited. In this paper, we propose a novel method for optimizing the position of the displayed items for gaze-controlled tree-based menu selection systems by considering a combination of letter frequency and command selection time. The optimized graphical user interface layout has been designed for a Hindi language virtual keyboard based on a menu wherein 10 commands provide access to type 88 different characters, along with additional text editing commands. The system can be controlled in two different modes: eye-tracking alone and eye-tracking with an access soft-switch. Five different keyboard layouts have been presented and evaluated with ten healthy participants. Furthermore, the two best performing keyboard layouts have been evaluated with eye-tracking alone on ten stroke patients. The overall performance analysis demonstrated significantly superior typing performance, high usability (87% SUS score), and low workload (NASA TLX with 17 scores) for the letter frequency and time-based organization with script specific arrangement design. This paper represents the first optimized gaze-controlled Hindi virtual keyboard, which can be extended to other languages.

  3. Virtual Glovebox (VGX) Aids Astronauts in Pre-Flight Training

    NASA Technical Reports Server (NTRS)

    2003-01-01

    NASA's Virtual Glovebox (VGX) was developed to allow astronauts on Earth to train for complex biology research tasks in space. The astronauts may reach into the virtual environment, naturally manipulating specimens, tools, equipment, and accessories in a simulated microgravity environment as they would do in space. Such virtual reality technology also provides engineers and space operations staff with rapid prototyping, planning, and human performance modeling capabilities. Other Earth based applications being explored for this technology include biomedical procedural training and training for disarming bio-terrorism weapons.

  4. Promotion of self-directed learning using virtual patient cases.

    PubMed

    Benedict, Neal; Schonder, Kristine; McGee, James

    2013-09-12

    To assess the effectiveness of virtual patient cases to promote self-directed learning (SDL) in a required advanced therapeutics course. Virtual patient software based on a branched-narrative decision-making model was used to create complex patient case simulations to replace lecture-based instruction. Within each simulation, students used SDL principles to learn course objectives, apply their knowledge through clinical recommendations, and assess their progress through patient outcomes and faculty feedback linked to their individual decisions. Group discussions followed each virtual patient case to provide further interpretation, clarification, and clinical perspective. Students found the simulated patient cases to be organized (90%), enjoyable (82%), intellectually challenging (97%), and valuable to their understanding of course content (91%). Students further indicated that completion of the virtual patient cases prior to class permitted better use of class time (78%) and promoted SDL (84%). When assessment questions regarding material on postoperative nausea and vomiting were compared, no difference in scores were found between the students who attended the lecture on the material in 2011 (control group) and those who completed the virtual patient case on the material in 2012 (intervention group). Completion of virtual patient cases, designed to replace lectures and promote SDL, was overwhelmingly supported by students and proved to be as effective as traditional teaching methods.

  5. Promotion of Self-directed Learning Using Virtual Patient Cases

    PubMed Central

    Schonder, Kristine; McGee, James

    2013-01-01

    Objective. To assess the effectiveness of virtual patient cases to promote self-directed learning (SDL) in a required advanced therapeutics course. Design. Virtual patient software based on a branched-narrative decision-making model was used to create complex patient case simulations to replace lecture-based instruction. Within each simulation, students used SDL principles to learn course objectives, apply their knowledge through clinical recommendations, and assess their progress through patient outcomes and faculty feedback linked to their individual decisions. Group discussions followed each virtual patient case to provide further interpretation, clarification, and clinical perspective. Assessments. Students found the simulated patient cases to be organized (90%), enjoyable (82%), intellectually challenging (97%), and valuable to their understanding of course content (91%). Students further indicated that completion of the virtual patient cases prior to class permitted better use of class time (78%) and promoted SDL (84%). When assessment questions regarding material on postoperative nausea and vomiting were compared, no difference in scores were found between the students who attended the lecture on the material in 2011 (control group) and those who completed the virtual patient case on the material in 2012 (intervention group). Conclusion. Completion of virtual patient cases, designed to replace lectures and promote SDL, was overwhelmingly supported by students and proved to be as effective as traditional teaching methods. PMID:24052654

  6. Enhancing Navigation Skills through Audio Gaming.

    PubMed

    Sánchez, Jaime; Sáenz, Mauricio; Pascual-Leone, Alvaro; Merabet, Lotfi

    2010-01-01

    We present the design, development and initial cognitive evaluation of an Audio-based Environment Simulator (AbES). This software allows a blind user to navigate through a virtual representation of a real space for the purposes of training orientation and mobility skills. Our findings indicate that users feel satisfied and self-confident when interacting with the audio-based interface, and the embedded sounds allow them to correctly orient themselves and navigate within the virtual world. Furthermore, users are able to transfer spatial information acquired through virtual interactions into real world navigation and problem solving tasks.

  7. Gesture therapy: an upper limb virtual reality-based motor rehabilitation platform.

    PubMed

    Sucar, Luis Enrique; Orihuela-Espina, Felipe; Velazquez, Roger Luis; Reinkensmeyer, David J; Leder, Ronald; Hernández-Franco, Jorge

    2014-05-01

    Virtual reality platforms capable of assisting rehabilitation must provide support for rehabilitation principles: promote repetition, task oriented training, appropriate feedback, and a motivating environment. As such, development of these platforms is a complex process which has not yet reached maturity. This paper presents our efforts to contribute to this field, presenting Gesture Therapy, a virtual reality-based platform for rehabilitation of the upper limb. We describe the system architecture and main features of the platform and provide preliminary evidence of the feasibility of the platform in its current status.

  8. Human Activity Behavior and Gesture Generation in Virtual Worlds for Long- Duration Space Missions. Chapter 8

    NASA Technical Reports Server (NTRS)

    Sierhuis, Maarten; Clancey, William J.; Damer, Bruce; Brodsky, Boris; vanHoff, Ron

    2007-01-01

    A virtual worlds presentation technique with embodied, intelligent agents is being developed as an instructional medium suitable to present in situ training on long term space flight. The system combines a behavioral element based on finite state automata, a behavior based reactive architecture also described as subsumption architecture, and a belief-desire-intention agent structure. These three features are being integrated to describe a Brahms virtual environment model of extravehicular crew activity which could become a basis for procedure training during extended space flight.

  9. Virtual worlds and team training.

    PubMed

    Dev, Parvati; Youngblood, Patricia; Heinrichs, W Leroy; Kusumoto, Laura

    2007-06-01

    An important component of all emergency medicine residency programs is managing trauma effectively as a member of an emergency medicine team, but practice on live patients is often impractical and mannequin-based simulators are expensive and require all trainees to be physically present at the same location. This article describes a project to develop and evaluate a computer-based simulator (the Virtual Emergency Department) for distance training in teamwork and leadership in trauma management. The virtual environment provides repeated practice opportunities with life-threatening trauma cases in a safe and reproducible setting.

  10. Enhancing Navigation Skills through Audio Gaming

    PubMed Central

    Sánchez, Jaime; Sáenz, Mauricio; Pascual-Leone, Alvaro; Merabet, Lotfi

    2014-01-01

    We present the design, development and initial cognitive evaluation of an Audio-based Environment Simulator (AbES). This software allows a blind user to navigate through a virtual representation of a real space for the purposes of training orientation and mobility skills. Our findings indicate that users feel satisfied and self-confident when interacting with the audio-based interface, and the embedded sounds allow them to correctly orient themselves and navigate within the virtual world. Furthermore, users are able to transfer spatial information acquired through virtual interactions into real world navigation and problem solving tasks. PMID:25505796

  11. Super-Resolution Algorithm in Cumulative Virtual Blanking

    NASA Astrophysics Data System (ADS)

    Montillet, J. P.; Meng, X.; Roberts, G. W.; Woolfson, M. S.

    2008-11-01

    The proliferation of mobile devices and the emergence of wireless location-based services have generated consumer demand for precise location. In this paper, the MUSIC super-resolution algorithm is applied to time delay estimation for positioning purposes in cellular networks. The goal is to position a Mobile Station with UMTS technology. The problem of Base-Stations herability is solved using Cumulative Virtual Blanking. A simple simulator is presented using DS-SS signal. The results show that MUSIC algorithm improves the time delay estimation in both the cases whether or not Cumulative Virtual Blanking was carried out.

  12. Augmented reality glass-free three-dimensional display with the stereo camera

    NASA Astrophysics Data System (ADS)

    Pang, Bo; Sang, Xinzhu; Chen, Duo; Xing, Shujun; Yu, Xunbo; Yan, Binbin; Wang, Kuiru; Yu, Chongxiu

    2017-10-01

    An improved method for Augmented Reality (AR) glass-free three-dimensional (3D) display based on stereo camera used for presenting parallax contents from different angle with lenticular lens array is proposed. Compared with the previous implementation method of AR techniques based on two-dimensional (2D) panel display with only one viewpoint, the proposed method can realize glass-free 3D display of virtual objects and real scene with 32 virtual viewpoints. Accordingly, viewers can get abundant 3D stereo information from different viewing angles based on binocular parallax. Experimental results show that this improved method based on stereo camera can realize AR glass-free 3D display, and both of virtual objects and real scene have realistic and obvious stereo performance.

  13. Comparison of virtual monoenergetic and polyenergetic images reconstructed from dual-layer detector CT angiography of the head and neck.

    PubMed

    Neuhaus, Victor; Große Hokamp, Nils; Abdullayev, Nuran; Maus, Volker; Kabbasch, Christoph; Mpotsaris, Anastasios; Maintz, David; Borggrefe, Jan

    2018-03-01

    To compare the image quality of virtual monoenergetic images and polyenergetic images reconstructed from dual-layer detector CT angiography (DLCTA). Thirty patients who underwent DLCTA of the head and neck were retrospectively identified and polyenergetic as well as virtual monoenergetic images (40 to 120 keV) were reconstructed. Signals (± SD) of the cervical and cerebral vessels as well as lateral pterygoid muscle and the air surrounding the head were measured to calculate the CNR and SNR. In addition, subjective image quality was assessed using a 5-point Likert scale. Student's t-test and Wilcoxon test were used to determine statistical significance. Compared to polyenergetic images, although noise increased with lower keV, CNR (p < 0.02) and SNR (p > 0.05) of the cervical, petrous and intracranial vessels were improved in virtual monoenergetic images at 40 keV and virtual monoenergetic images at 45 keV were also rated superior regarding vascular contrast, assessment of arteries close to the skull base and small arterial branches (p < 0.0001 each). Compared to polyenergetic images, virtual monoenergetic images reconstructed from DLCTA at low keV ranging from 40 to 45 keV improve the objective and subjective image quality of extra- and intracranial vessels and facilitate assessment of vessels close to the skull base and of small arterial branches. • Virtual monoenergetic images greatly improve attenuation, while noise only slightly increases. • Virtual monoenergetic images show superior contrast-to-noise ratios compared to polyenergetic images. • Virtual monoenergetic images significantly improve image quality at low keV.

  14. Virtual Cerebral Aneurysm Clipping with Real-Time Haptic Force Feedback in Neurosurgical Education.

    PubMed

    Gmeiner, Matthias; Dirnberger, Johannes; Fenz, Wolfgang; Gollwitzer, Maria; Wurm, Gabriele; Trenkler, Johannes; Gruber, Andreas

    2018-04-01

    Realistic, safe, and efficient modalities for simulation-based training are highly warranted to enhance the quality of surgical education, and they should be incorporated in resident training. The aim of this study was to develop a patient-specific virtual cerebral aneurysm-clipping simulator with haptic force feedback and real-time deformation of the aneurysm and vessels. A prototype simulator was developed from 2012 to 2016. Evaluation of virtual clipping by blood flow simulation was integrated in this software, and the prototype was evaluated by 18 neurosurgeons. In 4 patients with different medial cerebral artery aneurysms, virtual clipping was performed after real-life surgery, and surgical results were compared regarding clip application, surgical trajectory, and blood flow. After head positioning and craniotomy, bimanual virtual aneurysm clipping with an original forceps was performed. Blood flow simulation demonstrated residual aneurysm filling or branch stenosis. The simulator improved anatomic understanding for 89% of neurosurgeons. Simulation of head positioning and craniotomy was considered realistic by 89% and 94% of users, respectively. Most participants agreed that this simulator should be integrated into neurosurgical education (94%). Our illustrative cases demonstrated that virtual aneurysm surgery was possible using the same trajectory as in real-life cases. Both virtual clipping and blood flow simulation were realistic in broad-based but not calcified aneurysms. Virtual clipping of a calcified aneurysm could be performed using the same surgical trajectory, but not the same clip type. We have successfully developed a virtual aneurysm-clipping simulator. Next, we will prospectively evaluate this device for surgical procedure planning and education. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Techniques for virtual lung nodule insertion: volumetric and morphometric comparison of projection-based and image-based methods for quantitative CT

    NASA Astrophysics Data System (ADS)

    Robins, Marthony; Solomon, Justin; Sahbaee, Pooyan; Sedlmair, Martin; Choudhury, Kingshuk Roy; Pezeshk, Aria; Sahiner, Berkman; Samei, Ehsan

    2017-09-01

    Virtual nodule insertion paves the way towards the development of standardized databases of hybrid CT images with known lesions. The purpose of this study was to assess three methods (an established and two newly developed techniques) for inserting virtual lung nodules into CT images. Assessment was done by comparing virtual nodule volume and shape to the CT-derived volume and shape of synthetic nodules. 24 synthetic nodules (three sizes, four morphologies, two repeats) were physically inserted into the lung cavity of an anthropomorphic chest phantom (KYOTO KAGAKU). The phantom was imaged with and without nodules on a commercial CT scanner (SOMATOM Definition Flash, Siemens) using a standard thoracic CT protocol at two dose levels (1.4 and 22 mGy CTDIvol). Raw projection data were saved and reconstructed with filtered back-projection and sinogram affirmed iterative reconstruction (SAFIRE, strength 5) at 0.6 mm slice thickness. Corresponding 3D idealized, virtual nodule models were co-registered with the CT images to determine each nodule’s location and orientation. Virtual nodules were voxelized, partial volume corrected, and inserted into nodule-free CT data (accounting for system imaging physics) using two methods: projection-based Technique A, and image-based Technique B. Also a third Technique C based on cropping a region of interest from the acquired image of the real nodule and blending it into the nodule-free image was tested. Nodule volumes were measured using a commercial segmentation tool (iNtuition, TeraRecon, Inc.) and deformation was assessed using the Hausdorff distance. Nodule volumes and deformations were compared between the idealized, CT-derived and virtual nodules using a linear mixed effects regression model which utilized the mean, standard deviation, and coefficient of variation (Mea{{n}RHD} , ST{{D}RHD} and C{{V}RHD}{) }~ of the regional Hausdorff distance. Overall, there was a close concordance between the volumes of the CT-derived and virtual nodules. Percent differences between them were less than 3% for all insertion techniques and were not statistically significant in most cases. Correlation coefficient values were greater than 0.97. The deformation according to the Hausdorff distance was also similar between the CT-derived and virtual nodules with minimal statistical significance in the (C{{V}RHD} ) for Techniques A, B, and C. This study shows that both projection-based and image-based nodule insertion techniques yield realistic nodule renderings with statistical similarity to the synthetic nodules with respect to nodule volume and deformation. These techniques could be used to create a database of hybrid CT images containing nodules of known size, location and morphology.

  16. Techniques for virtual lung nodule insertion: volumetric and morphometric comparison of projection-based and image-based methods for quantitative CT

    PubMed Central

    Robins, Marthony; Solomon, Justin; Sahbaee, Pooyan; Sedlmair, Martin; Choudhury, Kingshuk Roy; Pezeshk, Aria; Sahiner, Berkman; Samei, Ehsan

    2017-01-01

    Virtual nodule insertion paves the way towards the development of standardized databases of hybrid CT images with known lesions. The purpose of this study was to assess three methods (an established and two newly developed techniques) for inserting virtual lung nodules into CT images. Assessment was done by comparing virtual nodule volume and shape to the CT-derived volume and shape of synthetic nodules. 24 synthetic nodules (three sizes, four morphologies, two repeats) were physically inserted into the lung cavity of an anthropomorphic chest phantom (KYOTO KAGAKU). The phantom was imaged with and without nodules on a commercial CT scanner (SOMATOM Definition Flash, Siemens) using a standard thoracic CT protocol at two dose levels (1.4 and 22 mGy CTDIvol). Raw projection data were saved and reconstructed with filtered back-projection and sinogram affirmed iterative reconstruction (SAFIRE, strength 5) at 0.6 mm slice thickness. Corresponding 3D idealized, virtual nodule models were co-registered with the CT images to determine each nodule’s location and orientation. Virtual nodules were voxelized, partial volume corrected, and inserted into nodule-free CT data (accounting for system imaging physics) using two methods: projection-based Technique A, and image-based Technique B. Also a third Technique C based on cropping a region of interest from the acquired image of the real nodule and blending it into the nodule-free image was tested. Nodule volumes were measured using a commercial segmentation tool (iNtuition, TeraRecon, Inc.) and deformation was assessed using the Hausdorff distance. Nodule volumes and deformations were compared between the idealized, CT-derived and virtual nodules using a linear mixed effects regression model which utilized the mean, standard deviation, and coefficient of variation (MeanRHD, and STDRHD CVRHD) of the regional Hausdorff distance. Overall, there was a close concordance between the volumes of the CT-derived and virtual nodules. Percent differences between them were less than 3% for all insertion techniques and were not statistically significant in most cases. Correlation coefficient values were greater than 0.97. The deformation according to the Hausdorff distance was also similar between the CT-derived and virtual nodules with minimal statistical significance in the (CVRHD) for Techniques A, B, and C. This study shows that both projection-based and image-based nodule insertion techniques yield realistic nodule renderings with statistical similarity to the synthetic nodules with respect to nodule volume and deformation. These techniques could be used to create a database of hybrid CT images containing nodules of known size, location and morphology. PMID:28786399

  17. Evaluation of the Persistent Issues in History Laboratory for Virtual Field Experience (PIH-LVFE)

    ERIC Educational Resources Information Center

    Brush, Thomas; Saye, John; Kale, Ugur; Hur, Jung Won; Kohlmeier, Jada; Yerasimou, Theano; Guo, Lijiang; Symonette, Simone

    2009-01-01

    The Persistent Issues in History Laboratory for Virtual Field Experience (PIH-LVFE) combines a database of video cases of authentic classroom practices with multiple resources and tools to enable pre-service social studies teachers to virtually observe teachers implementing problem-based learning activities. In this paper, we present the results…

  18. A Multi-User Virtual Environment for Building and Assessing Higher Order Inquiry Skills in Science

    ERIC Educational Resources Information Center

    Ketelhut, Diane Jass; Nelson, Brian C.; Clarke, Jody; Dede, Chris

    2010-01-01

    This study investigated novel pedagogies for helping teachers infuse inquiry into a standards-based science curriculum. Using a multi-user virtual environment (MUVE) as a pedagogical vehicle, teams of middle-school students collaboratively solved problems around disease in a virtual town called River City. The students interacted with "avatars" of…

  19. Virtual Worlds as the Next Asset of Virtual Learning Environments for Students in Business?

    ERIC Educational Resources Information Center

    Pelet, Jean-Eric; Lecat, Benoît

    2012-01-01

    The authors' research examines the effectiveness of a web-based virtual learning environment (VLE) in the context of management studies. This article provides two main contributions. First, an exploratory study introduces and describes the concept of VLE applied to the training of seven students in an "interactivity design" (IS) course.…

  20. The Efficacy of an Immersive 3D Virtual versus 2D Web Environment in Intercultural Sensitivity Acquisition

    ERIC Educational Resources Information Center

    Coffey, Amy Jo; Kamhawi, Rasha; Fishwick, Paul; Henderson, Julie

    2017-01-01

    Relatively few studies have empirically tested computer-based immersive virtual environments' efficacy in teaching or enhancing pro-social attitudes, such as intercultural sensitivity. This channel study experiment was conducted (N = 159) to compare what effects, if any, an immersive 3D virtual environment would have upon subjects' intercultural…

  1. Design of Virtual Environments for the Comprehension of Planetary Phenomena Based on Students' Ideas.

    ERIC Educational Resources Information Center

    Bakas, Christos; Mikropoulos, Tassos A.

    2003-01-01

    Explains the design and development of an educational virtual environment to support the teaching of planetary phenomena, particularly the movements of Earth and the sun, day and night cycle, and change of seasons. Uses an interactive, three-dimensional (3D) virtual environment. Initial results show that the majority of students enthused about…

  2. An Analysis of Learners' Intentions toward Virtual Reality Learning Based on Constructivist and Technology Acceptance Approaches

    ERIC Educational Resources Information Center

    Huang, Hsiu-Mei; Liaw, Shu-Sheng

    2018-01-01

    Within a constructivist paradigm, the virtual reality technology focuses on the learner's actively interactive learning processes and attempts to reduce the gap between the learner's knowledge and a real-life experience. Recently, virtual reality technologies have been developed for a wide range of applications in education, but further research…

  3. Comparing the Performance and Preference of Students Experiencing a Reading Aloud Accommodation to Those Who Do Not on a Virtual Science Assessment

    ERIC Educational Resources Information Center

    Shelton, Angela

    2012-01-01

    Many United States secondary students perform poorly on standardized summative science assessments. Situated Assessments using Virtual Environments (SAVE) Science is an innovative assessment project that seeks to capture students' science knowledge and understanding by contextualizing problems in a game-based virtual environment called…

  4. Teaching 21st-Century Art Education in a "Virtual" Age: Art Cafe at Second Life

    ERIC Educational Resources Information Center

    Lu, Lilly

    2010-01-01

    The emerging three-dimensional (3D) virtual world (VW) technology offers great potential for teaching contemporary digital art and growing digital visual culture in 21st-century art education. Such online virtual worlds are built and conceptualized based on information visualization and visual metaphors. Recently, an increasing number of…

  5. Computational Scientific Inquiry with Virtual Worlds and Agent-Based Models: New Ways of Doing Science to Learn Science

    ERIC Educational Resources Information Center

    Jacobson, Michael J.; Taylor, Charlotte E.; Richards, Deborah

    2016-01-01

    In this paper, we propose computational scientific inquiry (CSI) as an innovative model for learning important scientific knowledge and new practices for "doing" science. This approach involves the use of a "game-like" virtual world for students to experience virtual biological fieldwork in conjunction with using an agent-based…

  6. Making and Taking Virtual Field Trips in Pre-K and the Primary Grades

    ERIC Educational Resources Information Center

    Kirchen, Dennis J.

    2011-01-01

    A virtual field trip (VFT) is a technology-based experience that allows children to take an educational journey without leaving the classroom. These multimedia presentations bring the sights, sounds, and descriptions of distant places to learners. Virtual field trips vary in complexity. They can range from a single PowerPoint or video presentation…

  7. Advancing Virtual Patient Simulations through Design Research and Inter"PLAY": Part II--Integration and Field Test

    ERIC Educational Resources Information Center

    Hirumi, Atsusi; Johnson, Teresa; Reyes, Ramsamooj Javier; Lok, Benjamin; Johnsen, Kyle; Rivera-Gutierrez, Diego J.; Bogert, Kenneth; Kubovec, Stacey; Eakins, Michael; Kleinsmith, Andrea; Bellew, Michael; Cendan, Juan

    2016-01-01

    In Part I of this two-part series, we examined the design and development of NERVE: A virtual patient simulation created to give medical students standardized experiences in interviewing, examining, and diagnosing virtual patients with cranial nerve disorders. We illustrated key design features and discussed how design-based research studies…

  8. The Impact of Different Scoring Rubrics for Grading Virtual Patient-Based Exams

    ERIC Educational Resources Information Center

    Fors, Uno G. H.; Gunning, William T.

    2014-01-01

    Virtual patient cases (VPs) are used for healthcare education and assessment. Most VP systems track user interactions to be used for assessment. Few studies have investigated how virtual exam cases should be scored and graded. We have applied eight different scoring models on a data set from 154 students. Issues studied included the impact of…

  9. Elevating Virtual Machine Introspection for Fine-Grained Process Monitoring: Techniques and Applications

    ERIC Educational Resources Information Center

    Srinivasan, Deepa

    2013-01-01

    Recent rapid malware growth has exposed the limitations of traditional in-host malware-defense systems and motivated the development of secure virtualization-based solutions. By running vulnerable systems as virtual machines (VMs) and moving security software from inside VMs to the outside, the out-of-VM solutions securely isolate the anti-malware…

  10. A DBR Framework for Designing Mobile Virtual Reality Learning Environments

    ERIC Educational Resources Information Center

    Cochrane, Thomas Donald; Cook, Stuart; Aiello, Stephen; Christie, Duncan; Sinfield, David; Steagall, Marcus; Aguayo, Claudio

    2017-01-01

    This paper proposes a design based research (DBR) framework for designing mobile virtual reality learning environments. The application of the framework is illustrated by two design-based research projects that aim to develop more authentic educational experiences and learner-centred pedagogies in higher education. The projects highlight the first…

  11. Simulating Microdosimetry of Environmental Chemicals for EPA’s Virtual Liver

    EPA Science Inventory

    US EPA Virtual Liver (v-Liver) is a cellular systems model of hepatic tissues aimed at predicting chemical-induced adverse effects through agent-based modeling. A primary objective of the project is to extrapolate in vitro data to in vivo outcomes. Agent-based approaches to tissu...

  12. Evaluation of Virtual Laboratory Package on Nigerian Secondary School Physics Concepts

    ERIC Educational Resources Information Center

    Falode, Oluwole Caleb; Gambari, Amosa Isiaka

    2017-01-01

    The study evaluated accessibility, flexibility, cost and learning effectiveness of researchers-developed virtual laboratory package for Nigerian secondary school physics. Based on these issues, four research questions were raised and answered. The study was a quantitative-based evaluation research. Sample for the study included 24 physics…

  13. A Virtual "Hello": A Web-Based Orientation to the Library.

    ERIC Educational Resources Information Center

    Borah, Eloisa Gomez

    1997-01-01

    Describes the development of Web-based library services and resources available at the Rosenfeld Library of the Anderson Graduate School of Management at University of California at Los Angeles. Highlights include library orientation sessions; virtual tours of the library; a database of basic business sources; and research strategies, including…

  14. Virtual Reality: Teaching Tool of the Twenty-First Century?

    ERIC Educational Resources Information Center

    Hoffman, Helene; Vu, Dzung

    1997-01-01

    Virtual reality-based procedural and surgical simulations promise to revolutionize medical training. A wide range of simulations representing diverse content areas and varied implementation strategies are under development or in early use. The new systems will make broad-based training experiences available for students at all levels without risks…

  15. Virtual-Reality-Based Social Interaction Training for Children with High-Functioning Autism

    ERIC Educational Resources Information Center

    Ke, Fengfeng; Im, Tami

    2013-01-01

    Employing the multiple-baseline across-subjects design, the authors examined the implementation and potential effect of a virtual-reality-based social interaction program on the interaction and communication performance of children with high functioning autism. The data were collected via behavior observation and analysis, questionnaires, and…

  16. A Physiologically Informed Virtual Reality Based Social Communication System for Individuals with Autism

    ERIC Educational Resources Information Center

    Lahiri, Uttama; Bekele, Esubalew; Dohrmann, Elizabeth; Warren, Zachary; Sarkar, Nilanjan

    2015-01-01

    Clinical applications of advanced technology may hold promise for addressing impairments associated with autism spectrum disorders (ASD). This project evaluated the application of a novel physiologically responsive virtual reality based technological system for conversation skills in a group of adolescents with ASD. The system altered components…

  17. Virtual Reality Based Collaborative Design by Children with High-Functioning Autism: Design-Based Flexibility, Identity, and Norm Construction

    ERIC Educational Resources Information Center

    Ke, Fengfeng; Lee, Sungwoong

    2016-01-01

    This exploratory case study examined the process and potential impact of collaborative architectural design and construction in an OpenSimulator-based virtual reality (VR) on the social skills development of children with high-functioning autism (HFA). Two children with a formal medical diagnosis of HFA and one typically developing peer, aged…

  18. Effects of virtual reality for stroke individuals based on the International Classification of Functioning and Health: a systematic review.

    PubMed

    Palma, Gisele Carla Dos Santos; Freitas, Tatiana Beline; Bonuzzi, Giordano Márcio Gatinho; Soares, Marcos Antonio Arlindo; Leite, Paulo Henrique Wong; Mazzini, Natália Araújo; Almeida, Murilo Ruas Groschitz; Pompeu, José Eduardo; Torriani-Pasin, Camila

    2017-05-01

    This review determines the effects of virtual reality interventions for stroke subjects based on the International Classification of Functioning, Disability,and Health (ICF) framework. Virtual reality is a promising tool for therapy for stroke rehabilitation, but the effects of virtual reality interventions on post-stroke patients based on the specific ICF domains (Body Structures, Body Functions, Activity, and Participation) have not been investigated. A systematic review was conducted, including trials with adults with a clinical diagnosis of a chronic, subacute, or acute stroke. Eligible trials had to include studies with an intervention protocol and follow-up, with a focus on upper limbs and/or lower limbs and/or balance. The Physiotherapy Evidence Database (PEDro) was used to assess the methodological quality of randomized controlled trials. Each trial was separated according to methodological quality into a high-quality trial (PEDro ≥ 6) and a low-quality trial (PEDro ≤ 6). Only high-quality trials were analyzed specifically based on the outcome of these trials. In total, 54 trials involving 1811 participants were included. Of the papers included and considered high quality, 14 trials evaluated areas of the Body Structures component, 20 trials of the Body Functions domain, 17 trials of the Activity component, and 8 trials of the Participation domain. In relation to ICF Part 2, four trials evaluated areas of the Personal Factors component and one trial evaluated domains of the Environmental Factors component. The effects of virtual reality on stroke rehabilitation based on the ICF framework are positive in Body Function and Body Structure. However, the results in the domains Activity and Participation are inconclusive. More high-quality clinical trials are needed to confirm the effectiveness of virtual reality in the domains of Activity and Participation.

  19. Virtual Organizations: An Overview

    NASA Astrophysics Data System (ADS)

    Nami, Mohammad Reza

    The need to remain competitive in the open market forces companies to concentrate on their core competencies while searching for alliances when additional skills or resources are needed to fulfill business opportunities. The changing business situation of companies and customer needs have motivated researchers to introduce Virtual Organization (VO) idea. A Virtual Organization is always a form of partnership and managing partners and handling partnerships are crucial. Virtual organizations are defined as a temporary collection of enterprises that cooperate and share resources, knowledge, and competencies to better respond to business opportunities. This paper presents base concepts of virtual organizations including properties, management concepts, operational concepts, and main issues in collaboration such as security and authentication.

  20. Virtualisation Devices for Student Learning: Comparison between Desktop-Based (Oculus Rift) and Mobile-Based (Gear VR) Virtual Reality in Medical and Health Science Education

    ERIC Educational Resources Information Center

    Moro, Christian; Stromberga, Zane; Stirling, Allan

    2017-01-01

    Consumer-grade virtual reality has recently become available for both desktop and mobile platforms and may redefine the way that students learn. However, the decision regarding which device to utilise within a curriculum is unclear. Desktop-based VR has considerably higher setup costs involved, whereas mobile-based VR cannot produce the quality of…

  1. Development and comparison of projection and image space 3D nodule insertion techniques

    NASA Astrophysics Data System (ADS)

    Robins, Marthony; Solomon, Justin; Sahbaee, Pooyan; Samei, Ehsan

    2016-04-01

    This study aimed to develop and compare two methods of inserting computerized virtual lesions into CT datasets. 24 physical (synthetic) nodules of three sizes and four morphologies were inserted into an anthropomorphic chest phantom (LUNGMAN, KYOTO KAGAKU). The phantom was scanned (Somatom Definition Flash, Siemens Healthcare) with and without nodules present, and images were reconstructed with filtered back projection and iterative reconstruction (SAFIRE) at 0.6 mm slice thickness using a standard thoracic CT protocol at multiple dose settings. Virtual 3D CAD models based on the physical nodules were virtually inserted (accounting for the system MTF) into the nodule-free CT data using two techniques. These techniques include projection-based and image-based insertion. Nodule volumes were estimated using a commercial segmentation tool (iNtuition, TeraRecon, Inc.). Differences were tested using paired t-tests and R2 goodness of fit between the virtually and physically inserted nodules. Both insertion techniques resulted in nodule volumes very similar to the real nodules (<3% difference) and in most cases the differences were not statistically significant. Also, R2 values were all <0.97 for both insertion techniques. These data imply that these techniques can confidently be used as a means of inserting virtual nodules in CT datasets. These techniques can be instrumental in building hybrid CT datasets composed of patient images with virtually inserted nodules.

  2. Validation of a method for real time foot position and orientation tracking with Microsoft Kinect technology for use in virtual reality and treadmill based gait training programs.

    PubMed

    Paolini, Gabriele; Peruzzi, Agnese; Mirelman, Anat; Cereatti, Andrea; Gaukrodger, Stephen; Hausdorff, Jeffrey M; Della Croce, Ugo

    2014-09-01

    The use of virtual reality for the provision of motor-cognitive gait training has been shown to be effective for a variety of patient populations. The interaction between the user and the virtual environment is achieved by tracking the motion of the body parts and replicating it in the virtual environment in real time. In this paper, we present the validation of a novel method for tracking foot position and orientation in real time, based on the Microsoft Kinect technology, to be used for gait training combined with virtual reality. The validation of the motion tracking method was performed by comparing the tracking performance of the new system against a stereo-photogrammetric system used as gold standard. Foot position errors were in the order of a few millimeters (average RMSD from 4.9 to 12.1 mm in the medio-lateral and vertical directions, from 19.4 to 26.5 mm in the anterior-posterior direction); the foot orientation errors were also small (average %RMSD from 5.6% to 8.8% in the medio-lateral and vertical directions, from 15.5% to 18.6% in the anterior-posterior direction). The results suggest that the proposed method can be effectively used to track feet motion in virtual reality and treadmill-based gait training programs.

  3. When drug discovery meets web search: Learning to Rank for ligand-based virtual screening.

    PubMed

    Zhang, Wei; Ji, Lijuan; Chen, Yanan; Tang, Kailin; Wang, Haiping; Zhu, Ruixin; Jia, Wei; Cao, Zhiwei; Liu, Qi

    2015-01-01

    The rapid increase in the emergence of novel chemical substances presents a substantial demands for more sophisticated computational methodologies for drug discovery. In this study, the idea of Learning to Rank in web search was presented in drug virtual screening, which has the following unique capabilities of 1). Applicable of identifying compounds on novel targets when there is not enough training data available for these targets, and 2). Integration of heterogeneous data when compound affinities are measured in different platforms. A standard pipeline was designed to carry out Learning to Rank in virtual screening. Six Learning to Rank algorithms were investigated based on two public datasets collected from Binding Database and the newly-published Community Structure-Activity Resource benchmark dataset. The results have demonstrated that Learning to rank is an efficient computational strategy for drug virtual screening, particularly due to its novel use in cross-target virtual screening and heterogeneous data integration. To the best of our knowledge, we have introduced here the first application of Learning to Rank in virtual screening. The experiment workflow and algorithm assessment designed in this study will provide a standard protocol for other similar studies. All the datasets as well as the implementations of Learning to Rank algorithms are available at http://www.tongji.edu.cn/~qiliu/lor_vs.html. Graphical AbstractThe analogy between web search and ligand-based drug discovery.

  4. Content and structure of knowledge base used for virtual control of android arm motion in specified environment

    NASA Astrophysics Data System (ADS)

    Pritykin, F. N.; Nebritov, V. I.

    2018-01-01

    The paper presents the configuration of knowledge base necessary for intelligent control of android arm mechanism motion with different positions of certain forbidden regions taken into account. The present structure of the knowledge base characterizes the past experience of arm motion synthesis in the vector of velocities with due regard for the known obstacles. This structure also specifies its intrinsic properties. Knowledge base generation is based on the study of the arm mechanism instantaneous states implementations. Computational experiments connected with the virtual control of android arm motion with known forbidden regions using the developed knowledge base are introduced. Using the developed knowledge base to control virtually the arm motion reduces the time of test assignments calculation. The results of the research can be used in developing control systems of autonomous android robots in the known in advance environment.

  5. Deception and Shopping Behavior Among Current Cigarette Smokers: A Web-Based, Randomized Virtual Shopping Experiment.

    PubMed

    Dutra, Lauren McCarl; Nonnemaker, James; Taylor, Nathaniel; Kim, Annice E

    2018-06-29

    Virtual stores can be used to identify influences on consumer shopping behavior. Deception is one technique that may be used to attempt to increase the realism of virtual stores. The objective of the experiment was to test whether the purchasing behavior of participants in a virtual shopping task varied based on whether they were told that they would receive the products they selected in a virtual convenience store (a form of deception) or not. We recruited a US national sample of 402 adult current smokers by email from an online panel of survey participants. They completed a fully automated randomized virtual shopping experiment with a US $15 or US $20 budget in a Web-based virtual convenience store. We told a random half of participants that they would receive the products they chose in the virtual store or the cash equivalent (intervention condition), and the other random half simply to conduct a shopping task (control condition). We tested for differences in demographics, tobacco use behaviors, and in-store purchases (outcome variable, assessed by questionnaire) by experimental condition. The characteristics of the participants (398/402, 99.0% with complete data) were comparable across conditions except that the intervention group contained slightly more female participants (103/197, 52.3%) than the control group (84/201, 41.8%; P=.04). We did not find any other significant differences in any other demographic variables or tobacco use, or in virtual store shopping behaviors, including purchasing any tobacco (P=.44); purchasing cigarettes (P=.16), e-cigarettes (P=.54), cigars (P=.98), or smokeless tobacco (P=.72); amount spent overall (P=.63) or on tobacco (P=.66); percentage of budget spent overall (P=.84) or on tobacco (P=.74); number of total items (P=.64) and tobacco items purchased (P=.54); or total time spent in the store (P=.07). We found that telling participants that they will receive the products they select in a virtual store did not influence their purchases. This finding suggests that deception may not affect consumer behavior and, as a result, may not be necessary in virtual shopping experiments. ©Lauren McCarl Dutra, James Nonnemaker, Nathaniel Taylor, Annice E Kim. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 29.06.2018.

  6. Evaluation of virtual simulation in a master's-level nurse education certificate program.

    PubMed

    Foronda, Cynthia; Lippincott, Christine; Gattamorta, Karina

    2014-11-01

    Master's-level, nurse education certificate students performed virtual clinical simulations as a portion of their clinical practicum. Virtual clinical simulation is an innovative pedagogy using avatars in Web-based platforms to provide simulated clinical experiences. The purpose of this mixed-methods study was to evaluate nurse educator students' experience with virtual simulation and the effect of virtual simulation on confidence in teaching ability. Aggregated quantitative results yielded no significant change in confidence in teaching ability. Individually, some students indicated change of either increased or decreased confidence, whereas others exhibited no change in confidence after engaging in virtual simulation. Qualitative findings revealed a process of precursors of anxiety and frustration with technical difficulties followed by outcomes of appreciation and learning. Instructor support was a mediating factor to decrease anxiety and technical difficulties. This study served as a starting point regarding the application of a virtual world to teach the art of instruction. As the movement toward online education continues, educators should further explore use of virtual simulation to prepare nurse educators.

  7. Can virtual reality be used to conduct mass prophylaxis clinic training? A pilot program.

    PubMed

    Yellowlees, Peter; Cook, James N; Marks, Shayna L; Wolfe, Daniel; Mangin, Elanor

    2008-03-01

    To create and evaluate a pilot bioterrorism defense training environment using virtual reality technology. The present pilot project used Second Life, an internet-based virtual world system, to construct a virtual reality environment to mimic an actual setting that might be used as a Strategic National Stockpile (SNS) distribution site for northern California in the event of a bioterrorist attack. Scripted characters were integrated into the system as mock patients to analyze various clinic workflow scenarios. Users tested the virtual environment over two sessions. Thirteen users who toured the environment were asked to complete an evaluation survey. Respondents reported that the virtual reality system was relevant to their practice and had potential as a method of bioterrorism defense training. Computer simulations of bioterrorism defense training scenarios are feasible with existing personal computer technology. The use of internet-connected virtual environments holds promise for bioterrorism defense training. Recommendations are made for public health agencies regarding the implementation and benefits of using virtual reality for mass prophylaxis clinic training.

  8. Increasing Accessibility to the Blind of Virtual Environments, Using a Virtual Mobility Aid Based On the "EyeCane": Feasibility Study

    PubMed Central

    Maidenbaum, Shachar; Levy-Tzedek, Shelly; Chebat, Daniel-Robert; Amedi, Amir

    2013-01-01

    Virtual worlds and environments are becoming an increasingly central part of our lives, yet they are still far from accessible to the blind. This is especially unfortunate as such environments hold great potential for them for uses such as social interaction, online education and especially for use with familiarizing the visually impaired user with a real environment virtually from the comfort and safety of his own home before visiting it in the real world. We have implemented a simple algorithm to improve this situation using single-point depth information, enabling the blind to use a virtual cane, modeled on the “EyeCane” electronic travel aid, within any virtual environment with minimal pre-processing. Use of the Virtual-EyeCane, enables this experience to potentially be later used in real world environments with identical stimuli to those from the virtual environment. We show the fast-learned practical use of this algorithm for navigation in simple environments. PMID:23977316

  9. Shared virtual environments for aerospace training

    NASA Technical Reports Server (NTRS)

    Loftin, R. Bowen; Voss, Mark

    1994-01-01

    Virtual environments have the potential to significantly enhance the training of NASA astronauts and ground-based personnel for a variety of activities. A critical requirement is the need to share virtual environments, in real or near real time, between remote sites. It has been hypothesized that the training of international astronaut crews could be done more cheaply and effectively by utilizing such shared virtual environments in the early stages of mission preparation. The Software Technology Branch at NASA's Johnson Space Center has developed the capability for multiple users to simultaneously share the same virtual environment. Each user generates the graphics needed to create the virtual environment. All changes of object position and state are communicated to all users so that each virtual environment maintains its 'currency.' Examples of these shared environments will be discussed and plans for the utilization of the Department of Defense's Distributed Interactive Simulation (DIS) protocols for shared virtual environments will be presented. Finally, the impact of this technology on training and education in general will be explored.

  10. Formalizing and Promoting Collaboration in 3D Virtual Environments - A Blueprint for the Creation of Group Interaction Patterns

    NASA Astrophysics Data System (ADS)

    Schmeil, Andreas; Eppler, Martin J.

    Despite the fact that virtual worlds and other types of multi-user 3D collaboration spaces have long been subjects of research and of application experiences, it still remains unclear how to best benefit from meeting with colleagues and peers in a virtual environment with the aim of working together. Making use of the potential of virtual embodiment, i.e. being immersed in a space as a personal avatar, allows for innovative new forms of collaboration. In this paper, we present a framework that serves as a systematic formalization of collaboration elements in virtual environments. The framework is based on the semiotic distinctions among pragmatic, semantic and syntactic perspectives. It serves as a blueprint to guide users in designing, implementing, and executing virtual collaboration patterns tailored to their needs. We present two team and two community collaboration pattern examples as a result of the application of the framework: Virtual Meeting, Virtual Design Studio, Spatial Group Configuration, and Virtual Knowledge Fair. In conclusion, we also point out future research directions for this emerging domain.

  11. Effectiveness of conventional versus virtual reality-based balance exercises in vestibular rehabilitation for unilateral peripheral vestibular loss: results of a randomized controlled trial.

    PubMed

    Meldrum, Dara; Herdman, Susan; Vance, Roisin; Murray, Deirdre; Malone, Kareena; Duffy, Douglas; Glennon, Aine; McConn-Walsh, Rory

    2015-07-01

    To compare the effectiveness of virtual reality-based balance exercises to conventional balance exercises during vestibular rehabilitation in patients with unilateral peripheral vestibular loss (UVL). Assessor-blind, randomized controlled trial. Two acute care university teaching hospitals. Patients with UVL (N=71) who had dizziness/vertigo, and gait and balance impairment. Patients with UVL were randomly assigned to receive 6 weeks of either conventional (n=36) or virtual reality-based (n=35) balance exercises during vestibular rehabilitation. The virtual reality-based group received an off-the-shelf virtual reality gaming system for home exercise, and the conventional group received a foam balance mat. Treatment comprised weekly visits to a physiotherapist and a daily home exercise program. The primary outcome was self-preferred gait speed. Secondary outcomes included other gait parameters and tasks, Sensory Organization Test (SOT), dynamic visual acuity, Hospital Anxiety and Depression Scale, Vestibular Rehabilitation Benefits Questionnaire, and Activities Balance Confidence Questionnaire. The subjective experience of vestibular rehabilitation was measured with a questionnaire. Both groups improved, but there were no significant differences in gait speed between the groups postintervention (mean difference, -.03m/s; 95% confidence interval [CI], -.09 to .02m/s). There were also no significant differences between the groups in SOT scores (mean difference, .82%; 95% CI, -5.00% to 6.63%) or on any of the other secondary outcomes (P>.05). In both groups, adherence to exercise was high (∼77%), but the virtual reality-based group reported significantly more enjoyment (P=.001), less difficulty with (P=.009) and less tiredness after (P=.03) balance exercises. At 6 months, there were no significant between-group differences in physical outcomes. Virtual reality-based balance exercises performed during vestibular rehabilitation were not superior to conventional balance exercises during vestibular rehabilitation but may provide a more enjoyable method of retraining balance after unilateral peripheral vestibular loss. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  12. Virtual optical network mapping and core allocation in elastic optical networks using multi-core fibers

    NASA Astrophysics Data System (ADS)

    Xuan, Hejun; Wang, Yuping; Xu, Zhanqi; Hao, Shanshan; Wang, Xiaoli

    2017-11-01

    Virtualization technology can greatly improve the efficiency of the networks by allowing the virtual optical networks to share the resources of the physical networks. However, it will face some challenges, such as finding the efficient strategies for virtual nodes mapping, virtual links mapping and spectrum assignment. It is even more complex and challenging when the physical elastic optical networks using multi-core fibers. To tackle these challenges, we establish a constrained optimization model to determine the optimal schemes of optical network mapping, core allocation and spectrum assignment. To solve the model efficiently, tailor-made encoding scheme, crossover and mutation operators are designed. Based on these, an efficient genetic algorithm is proposed to obtain the optimal schemes of the virtual nodes mapping, virtual links mapping, core allocation. The simulation experiments are conducted on three widely used networks, and the experimental results show the effectiveness of the proposed model and algorithm.

  13. A 360° Vision for Virtual Organizations Characterization and Modelling: Two Intentional Level Aspects

    NASA Astrophysics Data System (ADS)

    Priego-Roche, Luz-María; Rieu, Dominique; Front, Agnès

    Nowadays, organizations aiming to be successful in an increasingly competitive market tend to group together into virtual organizations. Designing the information system (IS) of such virtual organizations on the basis of the IS of those participating is a real challenge. The IS of a virtual organization plays an important role in the collaboration and cooperation of the participants organizations and in reaching the common goal. This article proposes criteria allowing virtual organizations to be identified and classified at an intentional level, as well as the information necessary for designing the organizations’ IS. Instantiation of criteria for a specific virtual organization and its participants, will allow simple graphical models to be generated in a modelling tool. The models will be used as bases for the IS design at organizational and operational levels. The approach is illustrated by the example of the virtual organization UGRT (a regional stockbreeders union in Tabasco, Mexico).

  14. Runtime Performance and Virtual Network Control Alternatives in VM-Based High-Fidelity Network Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoginath, Srikanth B; Perumalla, Kalyan S; Henz, Brian J

    2012-01-01

    In prior work (Yoginath and Perumalla, 2011; Yoginath, Perumalla and Henz, 2012), the motivation, challenges and issues were articulated in favor of virtual time ordering of Virtual Machines (VMs) in network simulations hosted on multi-core machines. Two major components in the overall virtualization challenge are (1) virtual timeline establishment and scheduling of VMs, and (2) virtualization of inter-VM communication. Here, we extend prior work by presenting scaling results for the first component, with experiment results on up to 128 VMs scheduled in virtual time order on a single 12-core host. We also explore the solution space of design alternatives formore » the second component, and present performance results from a multi-threaded, multi-queue implementation of inter-VM network control for synchronized execution with VM scheduling, incorporated in our NetWarp simulation system.« less

  15. Directional virtual backbone based data aggregation scheme for Wireless Visual Sensor Networks.

    PubMed

    Zhang, Jing; Liu, Shi-Jian; Tsai, Pei-Wei; Zou, Fu-Min; Ji, Xiao-Rong

    2018-01-01

    Data gathering is a fundamental task in Wireless Visual Sensor Networks (WVSNs). Features of directional antennas and the visual data make WVSNs more complex than the conventional Wireless Sensor Network (WSN). The virtual backbone is a technique, which is capable of constructing clusters. The version associating with the aggregation operation is also referred to as the virtual backbone tree. In most of the existing literature, the main focus is on the efficiency brought by the construction of clusters that the existing methods neglect local-balance problems in general. To fill up this gap, Directional Virtual Backbone based Data Aggregation Scheme (DVBDAS) for the WVSNs is proposed in this paper. In addition, a measurement called the energy consumption density is proposed for evaluating the adequacy of results in the cluster-based construction problems. Moreover, the directional virtual backbone construction scheme is proposed by considering the local-balanced factor. Furthermore, the associated network coding mechanism is utilized to construct DVBDAS. Finally, both the theoretical analysis of the proposed DVBDAS and the simulations are given for evaluating the performance. The experimental results prove that the proposed DVBDAS achieves higher performance in terms of both the energy preservation and the network lifetime extension than the existing methods.

  16. Fast Virtual Stenting with Active Contour Models in Intracranical Aneurysm

    PubMed Central

    Zhong, Jingru; Long, Yunling; Yan, Huagang; Meng, Qianqian; Zhao, Jing; Zhang, Ying; Yang, Xinjian; Li, Haiyun

    2016-01-01

    Intracranial stents are becoming increasingly a useful option in the treatment of intracranial aneurysms (IAs). Image simulation of the releasing stent configuration together with computational fluid dynamics (CFD) simulation prior to intervention will help surgeons optimize intervention scheme. This paper proposed a fast virtual stenting of IAs based on active contour model (ACM) which was able to virtually release stents within any patient-specific shaped vessel and aneurysm models built on real medical image data. In this method, an initial stent mesh was generated along the centerline of the parent artery without the need for registration between the stent contour and the vessel. Additionally, the diameter of the initial stent volumetric mesh was set to the maximum inscribed sphere diameter of the parent artery to improve the stenting accuracy and save computational cost. At last, a novel criterion for terminating virtual stent expanding that was based on the collision detection of the axis aligned bounding boxes was applied, making the stent expansion free of edge effect. The experiment results of the virtual stenting and the corresponding CFD simulations exhibited the efficacy and accuracy of the ACM based method, which are valuable to intervention scheme selection and therapy plan confirmation. PMID:26876026

  17. Virtual Reality-Based Center of Mass-Assisted Personalized Balance Training System.

    PubMed

    Kumar, Deepesh; González, Alejandro; Das, Abhijit; Dutta, Anirban; Fraisse, Philippe; Hayashibe, Mitsuhiro; Lahiri, Uttama

    2017-01-01

    Poststroke hemiplegic patients often show altered weight distribution with balance disorders, increasing their risk of fall. Conventional balance training, though powerful, suffers from scarcity of trained therapists, frequent visits to clinics to get therapy, one-on-one therapy sessions, and monotony of repetitive exercise tasks. Thus, technology-assisted balance rehabilitation can be an alternative solution. Here, we chose virtual reality as a technology-based platform to develop motivating balance tasks. This platform was augmented with off-the-shelf available sensors such as Nintendo Wii balance board and Kinect to estimate one's center of mass (CoM). The virtual reality-based CoM-assisted balance tasks (Virtual CoMBaT) was designed to be adaptive to one's individualized weight-shifting capability quantified through CoM displacement. Participants were asked to interact with Virtual CoMBaT that offered tasks of varying challenge levels while adhering to ankle strategy for weight shifting. To facilitate the patients to use ankle strategy during weight-shifting, we designed a heel lift detection module. A usability study was carried out with 12 hemiplegic patients. Results indicate the potential of our system to contribute to improving one's overall performance in balance-related tasks belonging to different difficulty levels.

  18. Development of a Virtual Museum Including a 4d Presentation of Building History in Virtual Reality

    NASA Astrophysics Data System (ADS)

    Kersten, T. P.; Tschirschwitz, F.; Deggim, S.

    2017-02-01

    In the last two decades the definition of the term "virtual museum" changed due to rapid technological developments. Using today's available 3D technologies a virtual museum is no longer just a presentation of collections on the Internet or a virtual tour of an exhibition using panoramic photography. On one hand, a virtual museum should enhance a museum visitor's experience by providing access to additional materials for review and knowledge deepening either before or after the real visit. On the other hand, a virtual museum should also be used as teaching material in the context of museum education. The laboratory for Photogrammetry & Laser Scanning of the HafenCity University Hamburg has developed a virtual museum (VM) of the museum "Alt-Segeberger Bürgerhaus", a historic town house. The VM offers two options for visitors wishing to explore the museum without travelling to the city of Bad Segeberg, Schleswig-Holstein, Germany. Option a, an interactive computer-based, tour for visitors to explore the exhibition and to collect information of interest or option b, to immerse into virtual reality in 3D with the HTC Vive Virtual Reality System.

  19. [Research on the virtual water composition and virtual water trade for agriculture in Beijing].

    PubMed

    Wang, Hong-rui; Wang, Yan; Wang, Jun-hong; Dong, Yan-yan; Han, Zhao-xing

    2007-12-01

    Based on the irrigation norm of typical district and county, and revised by the isoline map of Chinese crops water demand, the change of crops program was analyzed as well as the agricultural water use and its GDP benefits. Then the virtual water was calculated for years. At last, the input-output method was used to calculate the trade of virtual water in Beijing. As the results, the virtual water for cereal crops has been decreasing in Beijing, from 1.832 x 10(9) m3 in 1990 to 4.283 x 10(8) m3 in 2004. Otherwise the virtual water for technical crops has been increasing, which is from 9.06 x 10(8) m3 in 1990 to 1.492 x 10(9) m3 in 2004. On the whole, the virtual water for crops has been decreasing in Beijing. From the angle of primary products Beijing is a virtual water importing area. Virtual water importing of annual average is 2.37 x 10(8) m3, which is about 5.93% of the total water of Beijing. Virtual water has been an important supplement of local real water of Beijing.

  20. A comparison of older adults' subjective experience with virtual and real environments during dynamic balance activities

    PubMed Central

    Proffitt, Rachel; Lange, Belinda; Chen, Christina; Winstein, Carolee

    2014-01-01

    The purpose of this study was to explore the subjective experience of older adults interacting with both virtual and real environments. Thirty healthy older adults engaged with real and virtual tasks of similar motor demands: reaching to a target in standing and stepping stance. Immersive tendencies and absorption scales were administered before the session. Game engagement and experience questionnaires were completed after each task, followed by a semi-structured interview at the end of the testing session. Data were analyzed respectively using paired t-tests and grounded theory methodology. Participants preferred the virtual task over the real task. They also reported an increase in presence and absorption with the virtual task, describing an external focus of attention. Findings will be used to inform future development of appropriate game-based balance training applications that could be embedded in the home or community settings as part of evidence-based fall prevention programs. PMID:24334299

  1. Online virtual-patient cases versus traditional problem-based learning in advanced pharmacy practice experiences.

    PubMed

    Al-Dahir, Sara; Bryant, Kendrea; Kennedy, Kathleen B; Robinson, Donna S

    2014-05-15

    To evaluate the efficacy of faculty-led problem-based learning (PBL) vs online simulated-patient case in fourth-year (P4) pharmacy students. Fourth-year pharmacy students were randomly assigned to participate in either online branched-case learning using a virtual simulation platform or a small-group discussion. Preexperience and postexperience student assessments and a survey instrument were completed. While there were no significant differences in the preexperience test scores between the groups, there was a significant increase in scores in both the virtual-patient group and the PBL group between the preexperience and postexperience tests. The PBL group had higher postexperience test scores (74.8±11.7) than did the virtual-patient group (66.5±13.6) (p=0.001). The PBL method demonstrated significantly greater improvement in postexperience test scores than did the virtual-patient method. Both were successful learning methods, suggesting that a diverse approach to simulated patient cases may reach more student learning styles.

  2. Three-dimensional Virtual Simulation of Oil Spill of Yangtze River in Chongqing Area Based on Emergency Decision

    NASA Astrophysics Data System (ADS)

    Chen, Shuzhe; Huang, Liwen

    the river of Yangtze River in Chongqing area is continuous curved. Hydrology and channel situation is complex, and the transportation is busy. With the increasing of shipments of hazardous chemicals year by year, oil spill accident risk is rising. So establishment of three-dimensional virtual simulation of oil spill and its application in decision-making has become an urgent task. This paper detailed the process of three-dimensional virtual simulation of oil spill and established a system of three-dimensional virtual Simulation of oil spill of Yangtze River in Chongqing area by establishing an oil spill model of the Chongqing area based on oil particles model, and the system has been used in emergency decision to provide assistance for the oil spill response.

  3. Research on The Construction of Flexible Multi-body Dynamics Model based on Virtual Components

    NASA Astrophysics Data System (ADS)

    Dong, Z. H.; Ye, X.; Yang, F.

    2018-05-01

    Focus on the harsh operation condition of space manipulator, which cannot afford relative large collision momentum, this paper proposes a new concept and technology, called soft-contact technology. In order to solve the problem of collision dynamics of flexible multi-body system caused by this technology, this paper also proposes the concepts of virtual components and virtual hinges, and constructs flexible dynamic model based on virtual components, and also studies on its solutions. On this basis, this paper uses NX to carry out model and comparison simulation for space manipulator in 3 different modes. The results show that using the model of multi-rigid body + flexible body hinge + controllable damping can make effective control on amplitude for the force and torque caused by target satellite collision.

  4. An innovative training program based on virtual reality and treadmill: effects on gait of persons with multiple sclerosis.

    PubMed

    Peruzzi, Agnese; Zarbo, Ignazio Roberto; Cereatti, Andrea; Della Croce, Ugo; Mirelman, Anat

    2017-07-01

    In this single blind randomized controlled trial, we examined the effect of a virtual reality-based training on gait of people with multiple sclerosis. Twenty-five individuals with multiple sclerosis with mild to moderate disability were randomly assigned to either the control group (n = 11) or the experimental group (n = 14). The subjects in the control group received treadmill training. Subjects in the experimental group received virtual reality based treadmill training. Clinical measures and gait parameters were evaluated. Subjects in both the groups significantly improved the walking endurance and speed, cadence and stride length, lower limb joint ranges of motion and powers, during single and dual task gait. Moreover, subjects in the experimental group also improved balance, as indicated by the results of the clinical motor tests (p < 0.05). Between-group comparisons revealed that the experimental group improved significantly more than control group in hip range of motion and hip generated power at terminal stance at post-training. Our results support the perceived benefits of training programs that incorporate virtual reality to improve gait measures in individuals with multiple sclerosis. Implication of rehabilitation Gait deficits are common in multiple sclerosis (85%) and worsen during dual task activities. Intensive and progressive treadmill training, with and without virtual reality, is effective on dual task gait in persons with multiple sclerosis. Virtual reality-based treadmill training requiring obstacle negotiation increases the range of motion and the power generated at the hip, consequently allowing longer stride length and, consequently, higher gait speed.

  5. Discovery of novel human acrosin inhibitors by virtual screening

    NASA Astrophysics Data System (ADS)

    Liu, Xuefei; Dong, Guoqiang; Zhang, Jue; Qi, Jingjing; Zheng, Canhui; Zhou, Youjun; Zhu, Ju; Sheng, Chunquan; Lü, Jiaguo

    2011-10-01

    Human acrosin is an attractive target for the discovery of male contraceptive drugs. For the first time, structure-based drug design was applied to discover structurally diverse human acrosin inhibitors. A parallel virtual screening strategy in combination with pharmacophore-based and docking-based techniques was used to screen the SPECS database. From 16 compounds selected by virtual screening, a total of 10 compounds were found to be human acrosin inhibitors. Compound 2 was found to be the most potent hit (IC50 = 14 μM) and its binding mode was investigated by molecular dynamics simulations. The hit interacted with human acrosin mainly through hydrophobic and hydrogen-bonding interactions, which provided a good starting structure for further optimization studies.

  6. Feedback from video for virtual reality Navigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsap, L V

    2000-10-27

    Important preconditions for wide acceptance of virtual reality (VR) systems include their comfort, ease and naturalness to use. Most existing trackers super from discomfort-related issues. For example, body-based trackers (hand controllers, joysticks, helmet attachments, etc.) restrict spontaneity and naturalness of motion, while ground-based devices (e.g., hand controllers) limit the workspace by literally binding an operator to the ground. There are similar problems with controls. This paper describes using real-time video with registered depth information (from a commercially available camera) for virtual reality navigation. Camera-based setup can replace cumbersome trackers. The method includes selective depth processing for increased speed, and amore » robust skin-color segmentation for accounting illumination variations.« less

  7. Inquiry-Based Learning for a Virtual Learning Community to Enhance Problem-Solving Ability of Applied Thai Traditional Medicine Students

    ERIC Educational Resources Information Center

    Chanprasitchai, Ong-art; Khlaisang, Jintavee

    2016-01-01

    The recent growth in collaborative and interactive virtual learning communities integrating innovative digital technologies and contemporary learning frameworks is contributing enormously to the use of e-learning in higher education in the twenty-first century. The purpose of this study was to describe the development of a virtual learning…

  8. Virtual Physics Laboratory Application Based on the Android Smartphone to Improve Learning Independence and Conceptual Understanding

    ERIC Educational Resources Information Center

    Arista, Fitra Suci; Kuswanto, Heru

    2018-01-01

    The research study concerned here was to: (1) produce a virtual physics laboratory application to be called ViPhyLab by using the Android smartphone as basis; (2) determine the appropriateness and quality of the virtual physics laboratory application that had been developed; and (3) describe the improvement in learning independence and conceptual…

  9. Learning and Skills Development in a Virtual Class of Educommunication Based on Educational Proposals and Interactions

    ERIC Educational Resources Information Center

    Bohorquez Sotelo, Maria Cristina; Rodriguez Mendoza, Brigitte Julieth; Vega, Sandra Milena; Roja Higuera, Naydu Shirley; Barbosa Gomez, Luisa Fernanda

    2016-01-01

    In the present paper we describe the analysis of qualitative and quantitative data from asynchronous learning networks, the virtual forums that take place in VirtualNet 2.0, the platform of the University Manuela Beltran (UMB), inside the course of Educommunication, from the master of Digital technologies applied to education. Here, we performed a…

  10. When "Teaching a Class of Daemons, Dragons and Trainee Teachers"--Learning the Pedagogy of the Virtual Classroom

    ERIC Educational Resources Information Center

    Woollard, John

    2012-01-01

    Virtual worlds can offer opportunities to further extend the experience, skills and understanding of professionals, in this case pre-service teachers. Based on the empirical evidence provided by professional, pre-service teachers, this paper describes the social and emotional aspects of being and learning in a virtual world and the implications…

  11. Doing Textiles Experiments in Game-Based Virtual Reality: A Design of the Stereoscopic Chemical Laboratory (SCL) for Textiles Education

    ERIC Educational Resources Information Center

    Lau, Kung Wong; Kan, Chi Wai; Lee, Pui Yuen

    2017-01-01

    Purpose: The purpose of this paper is to discuss the use of stereoscopic virtual technology in textile and fashion studies in particular to the area of chemical experiment. The development of a designed virtual platform, called Stereoscopic Chemical Laboratory (SCL), is introduced. Design/methodology/approach: To implement the suggested…

  12. The Ecology of Collaborative Work. Workscape 21: The Ecology of New Ways of Working.

    ERIC Educational Resources Information Center

    Becker, Franklin; Quinn, Kristen L.; Tennessen, Carolyn M.

    A study examined Chiat/Day inc. Advertising's team-based virtual office in which work could occur at any location inside or outside the office at any time. Three sites used three workplace strategies: full virtual (FV), modified virtual (MV), and conventional (C). Interviews, observations, and archival data were used to assess project teams doing…

  13. Enhancing Intercultural Competence of Engineering Students via GVT (Global Virtual Teams)-Based Virtual Exchanges: An International Collaborative Course in Intralogistics Education

    ERIC Educational Resources Information Center

    Wang, Rui; Rechl, Friederike; Bigontina, Sonja; Fang, Dianjun; Günthner, Willibald A.; Fottner, Johannes

    2017-01-01

    In order to enhance the intercultural competence of engineering students, an international collaborative course in intralogistics education was initiated and realized between the Technical University of Munich in Germany and the Tongji University in China. In this course, students worked in global virtual teams (GVTs) and solved a concrete case…

  14. Design Concerns in the Engineering of Virtual Worlds for Learning

    ERIC Educational Resources Information Center

    Rapanotti, Lucia; Hall, Jon G.

    2011-01-01

    The convergence of 3D simulation and social networking into current multi-user virtual environments has opened the door to new forms of interaction for learning in order to complement the face-to-face and Web 2.0-based systems. Yet, despite a growing user community, design knowledge for virtual worlds remains patchy, particularly when it comes to…

  15. The Virtual Museum of Minerals and Molecules: Molecular Visualization in a Virtual Hands-On Museum

    ERIC Educational Resources Information Center

    Barak, Phillip; Nater, Edward A.

    2005-01-01

    The Virtual Museum of Minerals and Molecules (VMMM) is a web-based resource presenting interactive, 3-D, research-grade molecular models of more than 150 minerals and molecules of interest to chemical, earth, plant, and environmental sciences. User interactivity with the 3-D display allows models to be rotated, zoomed, and specific regions of…

  16. The Use of Internet Resources and Browser-Based Virtual Worlds in Teaching Grammar

    ERIC Educational Resources Information Center

    Kruk, Mariusz

    2014-01-01

    Online virtual worlds are becoming important tools in foreign/second language instruction in view of the fact that they enhance learner motivation, promote autonomy and social presence in a 3D environment. Virtual worlds are a type of reality in which students can meet and communicate with other learners in the target language using text, voice or…

  17. Constructing Virtual Training Demonstrations

    DTIC Science & Technology

    2008-12-01

    virtual environments have been shown to be effective for training, and distributed game -based architectures contribute an added benefit of wide...investigation of how a demonstration authoring toolset can be constructed from existing virtual training environments using 3-D multiplayer gaming ...intelligent agents project to create AI middleware for simulations and videogames . The result was SimBionic®, which enables users to graphically author

  18. Which technology to investigate visual perception in sport: video vs. virtual reality.

    PubMed

    Vignais, Nicolas; Kulpa, Richard; Brault, Sébastien; Presse, Damien; Bideau, Benoit

    2015-02-01

    Visual information uptake is a fundamental element of sports involving interceptive tasks. Several methodologies, like video and methods based on virtual environments, are currently employed to analyze visual perception during sport situations. Both techniques have advantages and drawbacks. The goal of this study is to determine which of these technologies may be preferentially used to analyze visual information uptake during a sport situation. To this aim, we compared a handball goalkeeper's performance using two standardized methodologies: video clip and virtual environment. We examined this performance for two response tasks: an uncoupled task (goalkeepers show where the ball ends) and a coupled task (goalkeepers try to intercept the virtual ball). Variables investigated in this study were percentage of correct zones, percentage of correct responses, radial error and response time. The results showed that handball goalkeepers were more effective, more accurate and started to intercept earlier when facing a virtual handball thrower than when facing the video clip. These findings suggested that the analysis of visual information uptake for handball goalkeepers was better performed by using a 'virtual reality'-based methodology. Technical and methodological aspects of these findings are discussed further. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Stereopsis, Visuospatial Ability, and Virtual Reality in Anatomy Learning

    PubMed Central

    Vorstenbosch, Marc; Kooloos, Jan

    2017-01-01

    A new wave of virtual reality headsets has become available. A potential benefit for the study of human anatomy is the reintroduction of stereopsis and absolute size. We report a randomized controlled trial to assess the contribution of stereopsis to anatomy learning, for students of different visuospatial ability. Sixty-three participants engaged in a one-hour session including a study phase and posttest. One group studied 3D models of the anatomy of the deep neck in full stereoptic virtual reality; one group studied those structures in virtual reality without stereoptic depth. The control group experienced an unrelated virtual reality environment. A post hoc questionnaire explored cognitive load and problem solving strategies of the participants. We found no effect of condition on learning. Visuospatial ability however did impact correct answers at F(1) = 5.63 and p = .02. No evidence was found for an impact of cognitive load on performance. Possibly, participants were able to solve the posttest items based on visuospatial information contained in the test items themselves. Additionally, the virtual anatomy may have been complex enough to discourage memory based strategies. It is important to control the amount of visuospatial information present in test items. PMID:28656109

  20. Virtual working systems to support R&D groups

    NASA Astrophysics Data System (ADS)

    Dew, Peter M.; Leigh, Christine; Drew, Richard S.; Morris, David; Curson, Jayne

    1995-03-01

    The paper reports on the progress at Leeds University to build a Virtual Science Park (VSP) to enhance the University's ability to interact with industry, grow its applied research and workplace learning activities. The VSP exploits the advances in real time collaborative computing and networking to provide an environment that meets the objectives of physically based science parks without the need for the organizations to relocate. It provides an integrated set of services (e.g. virtual consultancy, workbased learning) built around a structured person- centered information model. This model supports the integration of tools for: (a) navigating around the information space; (b) browsing information stored within the VSP database; (c) communicating through a variety of Person-to-Person collaborative tools; and (d) the ability to the information stored in the VSP including the relationships to other information that support the underlying model. The paper gives an overview of a generic virtual working system based on X.500 directory services and the World-Wide Web that can be used to support the Virtual Science Park. Finally the paper discusses some of the research issues that need to be addressed to fully realize a Virtual Science Park.

  1. The potential of virtual reality-based training to enhance the functional autonomy of Alzheimer's disease patients in cooking activities: A single case study.

    PubMed

    Foloppe, Déborah A; Richard, Paul; Yamaguchi, Takehiko; Etcharry-Bouyx, Frédérique; Allain, Philippe

    2018-07-01

    Impairments in performing activities of daily living occur early in the course of Alzheimer's disease (AD). There is a great need to develop non-pharmacological therapeutic interventions likely to reduce dependency in everyday activities in AD patients. This study investigated whether it was possible to increase autonomy in these patients in cooking activities using interventions based on errorless learning, vanishing-cue, and virtual reality techniques. We recruited a 79-year-old woman who met NINCDS-ADRDA criteria for probable AD. She was trained in four cooking tasks for four days per task, one hour per day, in virtual and in real conditions. Outcome measures included subjective data concerning the therapeutic intervention and the experience of virtual reality, repeated assessments of training activities, neuropsychological scores, and self-esteem and quality of life measures. The results indicated that our patient could relearn some cooking activities using virtual reality techniques. Transfer to real life was also observed. Improvement of the task performance remained stable over time. This case report supports the value of a non-immersive virtual kitchen to help people with AD to relearn cooking activities.

  2. Stereopsis, Visuospatial Ability, and Virtual Reality in Anatomy Learning.

    PubMed

    Luursema, Jan-Maarten; Vorstenbosch, Marc; Kooloos, Jan

    2017-01-01

    A new wave of virtual reality headsets has become available. A potential benefit for the study of human anatomy is the reintroduction of stereopsis and absolute size. We report a randomized controlled trial to assess the contribution of stereopsis to anatomy learning, for students of different visuospatial ability. Sixty-three participants engaged in a one-hour session including a study phase and posttest. One group studied 3D models of the anatomy of the deep neck in full stereoptic virtual reality; one group studied those structures in virtual reality without stereoptic depth. The control group experienced an unrelated virtual reality environment. A post hoc questionnaire explored cognitive load and problem solving strategies of the participants. We found no effect of condition on learning. Visuospatial ability however did impact correct answers at F (1) = 5.63 and p = .02. No evidence was found for an impact of cognitive load on performance. Possibly, participants were able to solve the posttest items based on visuospatial information contained in the test items themselves. Additionally, the virtual anatomy may have been complex enough to discourage memory based strategies. It is important to control the amount of visuospatial information present in test items.

  3. Studies of the field-of-view resolution tradeoff in virtual-reality systems

    NASA Technical Reports Server (NTRS)

    Piantanida, Thomas P.; Boman, Duane; Larimer, James; Gille, Jennifer; Reed, Charles

    1992-01-01

    Most virtual-reality systems use LCD-based displays that achieve a large field-of-view at the expense of resolution. A typical display will consist of approximately 86,000 pixels uniformly distributed over an 80-degree by 60-degree image. Thus, each pixel subtends about 13 minutes of arc at the retina; about the same as the resolvable features of the 20/200 line of a Snellen Eye Chart. The low resolution of LCD-based systems limits task performance in some applications. We have examined target-detection performance in a low-resolution virtual world. Our synthesized three-dimensional virtual worlds consisted of target objects that could be positioned at a fixed distance from the viewer, but at random azimuth and constrained elevation. A virtual world could be bounded by chromatic walls or by wire-frame, or it could be unbounded. Viewers scanned these worlds and indicated by appropriate gestures when they had detected the target object. By manipulating the viewer's field size and the chromatic and luminance contrast of annuli surrounding the field-of-view, we were able to assess the effect of field size on the detection of virtual objects in low-resolution synthetic worlds.

  4. Novel Virtual Environment for Alternative Treatment of Children with Cerebral Palsy

    PubMed Central

    de Oliveira, Juliana M.; Fernandes, Rafael Carneiro G.; Pinto, Cristtiano S.; Pinheiro, Plácido R.; Ribeiro, Sidarta

    2016-01-01

    Cerebral palsy is a severe condition usually caused by decreased brain oxygenation during pregnancy, at birth or soon after birth. Conventional treatments for cerebral palsy are often tiresome and expensive, leading patients to quit treatment. In this paper, we describe a virtual environment for patients to engage in a playful therapeutic game for neuropsychomotor rehabilitation, based on the experience of the occupational therapy program of the Nucleus for Integrated Medical Assistance (NAMI) at the University of Fortaleza, Brazil. Integration between patient and virtual environment occurs through the hand motion sensor “Leap Motion,” plus the electroencephalographic sensor “MindWave,” responsible for measuring attention levels during task execution. To evaluate the virtual environment, eight clinical experts on cerebral palsy were subjected to a questionnaire regarding the potential of the experimental virtual environment to promote cognitive and motor rehabilitation, as well as the potential of the treatment to enhance risks and/or negatively influence the patient's development. Based on the very positive appraisal of the experts, we propose that the experimental virtual environment is a promising alternative tool for the rehabilitation of children with cerebral palsy. PMID:27403154

  5. Cardiovascular effects of Zumba® performed in a virtual environment using XBOX Kinect

    PubMed Central

    Neves, Luceli Eunice Da Silva; Cerávolo, Mariza Paver Da Silva; Silva, Elisangela; De Freitas, Wagner Zeferino; Da Silva, Fabiano Fernandes; Higino, Wonder Passoni; Carvalho, Wellington Roberto Gomes; De Souza, Renato Aparecido

    2015-01-01

    [Purpose] This study evaluated the acute cardiovascular responses during a session of Zumba® Fitness in a virtual reality environment. [Subjects] Eighteen healthy volunteers were recruited. [Methods] The following cardiovascular variables: heart rate, systolic blood pressure, diastolic blood pressure, and double product were assessed before and after the practice of virtual Zumba®, which was performed as a continuous sequence of five choreographed movements lasting for 22 min. The game Zumba Fitness Core®, with the Kinect-based virtual reality system for the XBOX 360, was used to create the virtual environment. Comparisons were made among mean delta values (delta=post-Zumba® minus pre-Zumba® values) for systolic and diastolic blood pressure, heart rate, and double product using Student’s t-test for paired samples. [Results] After a single session, a significant increase was noted in all the analyzed parameters (Systolic blood pressure=18%; Diastolic blood pressure=13%; Heart rate=67%; and Double product=97%). [Conclusion] The results support the feasibility of the use of Zumba Fitness Core® with the Kinect-based virtual reality system for the XBOX 360 in physical activity programs and further favor its indication for this purpose. PMID:26504312

  6. The Effects of Web-Based Interactive Virtual Tours on the Development of Prospective Mathematics Teachers' Spatial Skills

    ERIC Educational Resources Information Center

    Kurtulus, Aytac

    2013-01-01

    The aim of this study was to investigate the effects of web-based interactive virtual tours on the development of prospective mathematics teachers' spatial skills. The study was designed based on experimental method. The "one-group pre-test post-test design" of this method was taken as the research model. The study was conducted with 3rd year…

  7. A Descriptive Case Study of Writing Standards-Based Individualized Education Plan Goals via Problem-Based Learning in a Virtual World

    ERIC Educational Resources Information Center

    Blair, Peter J.

    2017-01-01

    The goal of this study was to examine the professional development experiences of two contrastive participants while they were creating standards-based individualized education plan (IEP) goals using a virtual world called TeacherSim. Two specific focuses of the study were on how special educators engaged with the task of creating standards-based…

  8. Training Language Teachers to Sustain Self-Directed Language Learning: An Exploration of Advisers' Experiences on a Web-Based Open Virtual Learning Environment

    ERIC Educational Resources Information Center

    Bailly, Sophie; Ciekanski, Maud; Guély-Costa, Eglantine

    2013-01-01

    This article describes the rationale for pedagogical, technological and organizational choices in the design of a web-based and open virtual learning environment (VLE) promoting and sustaining self-directed language learning. Based on the last forty years of research on learner autonomy at the CRAPEL according to Holec's definition (1988), we…

  9. Problem-Based Learning in Instrumentation: Synergism of Real and Virtual Modular Acquisition Chains

    ERIC Educational Resources Information Center

    Nonclercq, A.; Biest, A. V.; De Cuyper, K.; Leroy, E.; Martinez, D. L.; Robert, F.

    2010-01-01

    As part of an instrumentation course, a problem-based learning framework was selected for laboratory instruction. Two acquisition chains were designed to help students carry out realistic instrumentation problems. The first tool is a virtual (simulated) modular acquisition chain that allows rapid overall understanding of the main problems in…

  10. Students' Expectations of the Learning Process in Virtual Reality and Simulation-Based Learning Environments

    ERIC Educational Resources Information Center

    Keskitalo, Tuulikki

    2012-01-01

    Expectations for simulations in healthcare education are high; however, little is known about healthcare students' expectations of the learning process in virtual reality (VR) and simulation-based learning environments (SBLEs). This research aims to describe first-year healthcare students' (N=97) expectations regarding teaching, studying, and…

  11. Usual and Virtual Reality Video Game-Based Physiotherapy for Children and Youth with Acquired Brain Injuries

    ERIC Educational Resources Information Center

    Levac, Danielle; Miller, Patricia; Missiuna, Cheryl

    2012-01-01

    Little is known about how therapists promote learning of functional motor skills for children with acquired brain injuries. This study explores physiotherapists' description of these interventions in comparison to virtual reality (VR) video game-based therapy. Six physiotherapists employed at a children's rehabilitation center participated in…

  12. Virtual Reality versus Computer-Aided Exposure Treatments for Fear of Flying

    ERIC Educational Resources Information Center

    Tortella-Feliu, Miquel; Botella, Cristina; Llabres, Jordi; Breton-Lopez, Juana Maria; del Amo, Antonio Riera; Banos, Rosa M.; Gelabert, Joan M.

    2011-01-01

    Evidence is growing that two modalities of computer-based exposure therapies--virtual reality and computer-aided psychotherapy--are effective in treating anxiety disorders, including fear of flying. However, they have not yet been directly compared. The aim of this study was to analyze the efficacy of three computer-based exposure treatments for…

  13. A Competence-Based Service for Supporting Self-Regulated Learning in Virtual Environments

    ERIC Educational Resources Information Center

    Nussbaumer, Alexander; Hillemann, Eva-Catherine; Gütl, Christian; Albert, Dietrich

    2015-01-01

    This paper presents a conceptual approach and a Web-based service that aim at supporting self-regulated learning in virtual environments. The conceptual approach consists of four components: 1) a self-regulated learning model for supporting a learner-centred learning process, 2) a psychological model for facilitating competence-based…

  14. A Hybrid Computing Testbed for Mobile Threat Detection and Enhanced Research and Education in Information

    DTIC Science & Technology

    2014-11-20

    techniques to defend against stealthy malware, i.e., rootkits. For example, we have been developing new virtualization-based security service called AirBag ...for mobile devices. AirBag is a virtualization-based system that enables dynamic switching of (guest) Android im- ages in one VM, with one image

  15. Understanding Player Activity in a Game-Based Virtual Learning Environment

    ERIC Educational Resources Information Center

    Boyer, David Matthew

    2011-01-01

    This study examines player activity in a game-based virtual learning environment as a means toward evaluating instructional and game design. By determining the goals embedded in project development and the availability and structure of in-game activities, the first part of this research highlights opportunities for players to engage with learning…

  16. The View of Scientific Inquiry Conveyed by Simulation-Based Virtual Laboratories

    ERIC Educational Resources Information Center

    Chen, Sufen

    2010-01-01

    With an increasing number of studies evincing the effectiveness of simulation-based virtual laboratories (VLs), researchers have discussed replacing traditional laboratories. However, the approach of doing science endorsed by VLs has not been carefully examined. A survey of 233 online VLs revealed that hypothetico-deductive (HD) logic prevails in…

  17. Fundamental Research in Engineering Education. Student Learning in Industrially Situated Virtual Laboratories

    ERIC Educational Resources Information Center

    Koretsky, Milo D.; Kelly, Christine; Gummer, Edith

    2011-01-01

    The instructional design and the corresponding research on student learning of two virtual laboratories that provide an engineering task situated in an industrial context are described. In this problem-based learning environment, data are generated dynamically based on each student team's distinct choices of reactor parameters and measurements.…

  18. The Development of a Web-Based Virtual Environment for Teaching Qualitative Analysis of Structures

    ERIC Educational Resources Information Center

    O'Dwyer, D. W.; Logan-Phelan, T. M.; O'Neill, E. A.

    2007-01-01

    The current paper describes the design and development of a qualitative analysis course and an interactive web-based teaching and assessment tool called VSE (virtual structural environment). The widespread reliance on structural analysis programs requires engineers to be able to verify computer output by carrying out qualitative analyses.…

  19. Experience of Adult Facilitators in a Virtual-Reality-Based Social Interaction Program for Children with Autism

    ERIC Educational Resources Information Center

    Ke, Fengfeng; Im, Tami; Xue, Xinrong; Xu, Xinhao; Kim, Namju; Lee, Sungwoong

    2015-01-01

    This phenomenological study explored and described the experiences and perceptions of adult facilitators who facilitated virtual-reality-based social interaction for children with autism. Extensive data were collected from iterative, in-depth interviews; online activities observation; and video analysis. Four salient themes emerged through the…

  20. Surface-Roughness-Based Virtual Textiles: Evaluation Using a Multi-Contactor Display.

    PubMed

    Philpott, Matthew; Summers, Ian R

    2015-01-01

    Virtual textiles, generated in response to exploratory movements, are presented to the fingertip via a 24-contactor vibrotactile array. Software models are based on surface-roughness profiles from real textiles. Results suggest that distinguishable "textile-like" surfaces are produced, but these lack the necessary accuracy for reliable matching to real textiles.

  1. Falling into Story: Teaching Reading with the Literary MOO.

    ERIC Educational Resources Information Center

    Rozema, Robert Adams

    2003-01-01

    Describes how the author uses text-based virtual environments to connect his students to a course. Details his experiences with this innovative technology to explore the development of critical thinking and discussion with high school students. Defines a "MOO" as a text-based virtual environment, a sort of sophisticated chat room…

  2. Game-Based Learning in an OpenSim-Supported Virtual Environment on Perceived Motivational Quality of Learning

    ERIC Educational Resources Information Center

    Kim, Heesung; Ke, Fengfeng; Paek, Insu

    2017-01-01

    This experimental study was intended to examine whether game-based learning (GBL) that encompasses four particular game characteristics (challenges, a storyline, immediate rewards and the integration of game-play with learning content) in an OpenSimulator-supported virtual reality learning environment can improve perceived motivational quality of…

  3. Virtual surgical planning in endoscopic skull base surgery.

    PubMed

    Haerle, Stephan K; Daly, Michael J; Chan, Harley H L; Vescan, Allan; Kucharczyk, Walter; Irish, Jonathan C

    2013-12-01

    Skull base surgery (SBS) involves operative tasks in close proximity to critical structures in a complex three-dimensional (3D) anatomy. The aim was to investigate the value of virtual planning (VP) based on preoperative magnetic resonance imaging (MRI) for surgical planning in SBS and to compare the effects of virtual planning with 3D contours between the expert and the surgeon in training. Retrospective analysis. Twelve patients with manually segmented anatomical structures based on preoperative MRI were evaluated by eight surgeons in a randomized order using a validated National Aeronautics and Space Administration Task Load Index (NASA-TLX) questionnaire. Multivariate analysis revealed significant reduction of workload when using VP (P<.0001) compared to standard planning. Further, it showed that the experience level of the surgeon had a significant effect on the NASA-TLX differences (P<.05). Additional subanalysis did not reveal any significant findings regarding which type of surgeon benefits the most (P>.05). Preoperative anatomical segmentation with virtual surgical planning using contours in endoscopic SBS significantly reduces the workload for the expert and the surgeon in training. Copyright © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  4. Manually locating physical and virtual reality objects.

    PubMed

    Chen, Karen B; Kimmel, Ryan A; Bartholomew, Aaron; Ponto, Kevin; Gleicher, Michael L; Radwin, Robert G

    2014-09-01

    In this study, we compared how users locate physical and equivalent three-dimensional images of virtual objects in a cave automatic virtual environment (CAVE) using the hand to examine how human performance (accuracy, time, and approach) is affected by object size, location, and distance. Virtual reality (VR) offers the promise to flexibly simulate arbitrary environments for studying human performance. Previously, VR researchers primarily considered differences between virtual and physical distance estimation rather than reaching for close-up objects. Fourteen participants completed manual targeting tasks that involved reaching for corners on equivalent physical and virtual boxes of three different sizes. Predicted errors were calculated from a geometric model based on user interpupillary distance, eye location, distance from the eyes to the projector screen, and object. Users were 1.64 times less accurate (p < .001) and spent 1.49 times more time (p = .01) targeting virtual versus physical box corners using the hands. Predicted virtual targeting errors were on average 1.53 times (p < .05) greater than the observed errors for farther virtual targets but not significantly different for close-up virtual targets. Target size, location, and distance, in addition to binocular disparity, affected virtual object targeting inaccuracy. Observed virtual box inaccuracy was less than predicted for farther locations, suggesting possible influence of cues other than binocular vision. Human physical interaction with objects in VR for simulation, training, and prototyping involving reaching and manually handling virtual objects in a CAVE are more accurate than predicted when locating farther objects.

  5. The Virtual Mouse Brain: A Computational Neuroinformatics Platform to Study Whole Mouse Brain Dynamics.

    PubMed

    Melozzi, Francesca; Woodman, Marmaduke M; Jirsa, Viktor K; Bernard, Christophe

    2017-01-01

    Connectome-based modeling of large-scale brain network dynamics enables causal in silico interrogation of the brain's structure-function relationship, necessitating the close integration of diverse neuroinformatics fields. Here we extend the open-source simulation software The Virtual Brain (TVB) to whole mouse brain network modeling based on individual diffusion magnetic resonance imaging (dMRI)-based or tracer-based detailed mouse connectomes. We provide practical examples on how to use The Virtual Mouse Brain (TVMB) to simulate brain activity, such as seizure propagation and the switching behavior of the resting state dynamics in health and disease. TVMB enables theoretically driven experimental planning and ways to test predictions in the numerous strains of mice available to study brain function in normal and pathological conditions.

  6. Haptic simulation framework for determining virtual dental occlusion.

    PubMed

    Wu, Wen; Chen, Hui; Cen, Yuhai; Hong, Yang; Khambay, Balvinder; Heng, Pheng Ann

    2017-04-01

    The surgical treatment of many dentofacial deformities is often complex due to its three-dimensional nature. To determine the dental occlusion in the most stable position is essential for the success of the treatment. Computer-aided virtual planning on individualized patient-specific 3D model can help formulate the surgical plan and predict the surgical change. However, in current computer-aided planning systems, it is not possible to determine the dental occlusion of the digital models in the intuitive way during virtual surgical planning because of absence of haptic feedback. In this paper, a physically based haptic simulation framework is proposed, which can provide surgeons with the intuitive haptic feedback to determine the dental occlusion of the digital models in their most stable position. To provide the physically realistic force feedback when the dental models contact each other during the searching process, the contact model is proposed to describe the dynamic and collision properties of the dental models during the alignment. The simulated impulse/contact-based forces are integrated into the unified simulation framework. A validation study has been conducted on fifteen sets of virtual dental models chosen at random and covering a wide range of the dental relationships found clinically. The dental occlusions obtained by an expert were employed as a benchmark to compare the virtual occlusion results. The mean translational and angular deviations of the virtual occlusion results from the benchmark were small. The experimental results show the validity of our method. The simulated forces can provide valuable insights to determine the virtual dental occlusion. The findings of this work and the validation of proposed concept lead the way for full virtual surgical planning on patient-specific virtual models allowing fully customized treatment plans for the surgical correction of dentofacial deformities.

  7. An interactive three-dimensional virtual body structures system for anatomical training over the internet.

    PubMed

    Temkin, Bharti; Acosta, Eric; Malvankar, Ameya; Vaidyanath, Sreeram

    2006-04-01

    The Visible Human digital datasets make it possible to develop computer-based anatomical training systems that use virtual anatomical models (virtual body structures-VBS). Medical schools are combining these virtual training systems and classical anatomy teaching methods that use labeled images and cadaver dissection. In this paper we present a customizable web-based three-dimensional anatomy training system, W3D-VBS. W3D-VBS uses National Library of Medicine's (NLM) Visible Human Male datasets to interactively locate, explore, select, extract, highlight, label, and visualize, realistic 2D (using axial, coronal, and sagittal views) and 3D virtual structures. A real-time self-guided virtual tour of the entire body is designed to provide detailed anatomical information about structures, substructures, and proximal structures. The system thus facilitates learning of visuospatial relationships at a level of detail that may not be possible by any other means. The use of volumetric structures allows for repeated real-time virtual dissections, from any angle, at the convenience of the user. Volumetric (3D) virtual dissections are performed by adding, removing, highlighting, and labeling individual structures (and/or entire anatomical systems). The resultant virtual explorations (consisting of anatomical 2D/3D illustrations and animations), with user selected highlighting colors and label positions, can be saved and used for generating lesson plans and evaluation systems. Tracking users' progress using the evaluation system helps customize the curriculum, making W3D-VBS a powerful learning tool. Our plan is to incorporate other Visible Human segmented datasets, especially datasets with higher resolutions, that make it possible to include finer anatomical structures such as nerves and small vessels. (c) 2006 Wiley-Liss, Inc.

  8. [Construction of information management-based virtual forest landscape and its application].

    PubMed

    Chen, Chongcheng; Tang, Liyu; Quan, Bing; Li, Jianwei; Shi, Song

    2005-11-01

    Based on the analysis of the contents and technical characteristics of different scale forest visualization modeling, this paper brought forward the principles and technical systems of constructing an information management-based virtual forest landscape. With the combination of process modeling and tree geometric structure description, a software method of interactively and parameterized tree modeling was developed, and the corresponding renderings and geometrical elements simplification algorithms were delineated to speed up rendering run-timely. As a pilot study, the geometrical model bases associated with the typical tree categories in Zhangpu County of Fujian Province, southeast China were established as template files. A Virtual Forest Management System prototype was developed with GIS component (ArcObject), OpenGL graphics environment, and Visual C++ language, based on forest inventory and remote sensing data. The prototype could be used for roaming between 2D and 3D, information query and analysis, and virtual and interactive forest growth simulation, and its reality and accuracy could meet the needs of forest resource management. Some typical interfaces of the system and the illustrative scene cross-sections of simulated masson pine growth under conditions of competition and thinning were listed.

  9. Quantum probability ranking principle for ligand-based virtual screening.

    PubMed

    Al-Dabbagh, Mohammed Mumtaz; Salim, Naomie; Himmat, Mubarak; Ahmed, Ali; Saeed, Faisal

    2017-04-01

    Chemical libraries contain thousands of compounds that need screening, which increases the need for computational methods that can rank or prioritize compounds. The tools of virtual screening are widely exploited to enhance the cost effectiveness of lead drug discovery programs by ranking chemical compounds databases in decreasing probability of biological activity based upon probability ranking principle (PRP). In this paper, we developed a novel ranking approach for molecular compounds inspired by quantum mechanics, called quantum probability ranking principle (QPRP). The QPRP ranking criteria would make an attempt to draw an analogy between the physical experiment and molecular structure ranking process for 2D fingerprints in ligand based virtual screening (LBVS). The development of QPRP criteria in LBVS has employed the concepts of quantum at three different levels, firstly at representation level, this model makes an effort to develop a new framework of molecular representation by connecting the molecular compounds with mathematical quantum space. Secondly, estimate the similarity between chemical libraries and references based on quantum-based similarity searching method. Finally, rank the molecules using QPRP approach. Simulated virtual screening experiments with MDL drug data report (MDDR) data sets showed that QPRP outperformed the classical ranking principle (PRP) for molecular chemical compounds.

  10. Effects on Training Using Illumination in Virtual Environments

    NASA Technical Reports Server (NTRS)

    Maida, James C.; Novak, M. S. Jennifer; Mueller, Kristian

    1999-01-01

    Camera based tasks are commonly performed during orbital operations, and orbital lighting conditions, such as high contrast shadowing and glare, are a factor in performance. Computer based training using virtual environments is a common tool used to make and keep CTW members proficient. If computer based training included some of these harsh lighting conditions, would the crew increase their proficiency? The project goal was to determine whether computer based training increases proficiency if one trains for a camera based task using computer generated virtual environments with enhanced lighting conditions such as shadows and glare rather than color shaded computer images normally used in simulators. Previous experiments were conducted using a two degree of freedom docking system. Test subjects had to align a boresight camera using a hand controller with one axis of rotation and one axis of rotation. Two sets of subjects were trained on two computer simulations using computer generated virtual environments, one with lighting, and one without. Results revealed that when subjects were constrained by time and accuracy, those who trained with simulated lighting conditions performed significantly better than those who did not. To reinforce these results for speed and accuracy, the task complexity was increased.

  11. Quantum probability ranking principle for ligand-based virtual screening

    NASA Astrophysics Data System (ADS)

    Al-Dabbagh, Mohammed Mumtaz; Salim, Naomie; Himmat, Mubarak; Ahmed, Ali; Saeed, Faisal

    2017-04-01

    Chemical libraries contain thousands of compounds that need screening, which increases the need for computational methods that can rank or prioritize compounds. The tools of virtual screening are widely exploited to enhance the cost effectiveness of lead drug discovery programs by ranking chemical compounds databases in decreasing probability of biological activity based upon probability ranking principle (PRP). In this paper, we developed a novel ranking approach for molecular compounds inspired by quantum mechanics, called quantum probability ranking principle (QPRP). The QPRP ranking criteria would make an attempt to draw an analogy between the physical experiment and molecular structure ranking process for 2D fingerprints in ligand based virtual screening (LBVS). The development of QPRP criteria in LBVS has employed the concepts of quantum at three different levels, firstly at representation level, this model makes an effort to develop a new framework of molecular representation by connecting the molecular compounds with mathematical quantum space. Secondly, estimate the similarity between chemical libraries and references based on quantum-based similarity searching method. Finally, rank the molecules using QPRP approach. Simulated virtual screening experiments with MDL drug data report (MDDR) data sets showed that QPRP outperformed the classical ranking principle (PRP) for molecular chemical compounds.

  12. Synergism of virtual screening and medicinal chemistry: identification and optimization of allosteric antagonists of metabotropic glutamate receptor 1.

    PubMed

    Noeske, Tobias; Trifanova, Dina; Kauss, Valerjans; Renner, Steffen; Parsons, Christopher G; Schneider, Gisbert; Weil, Tanja

    2009-08-01

    We report the identification of novel potent and selective metabotropic glutamate receptor 1 (mGluR1) antagonists by virtual screening and subsequent hit optimization. For ligand-based virtual screening, molecules were represented by a topological pharmacophore descriptor (CATS-2D) and clustered by a self-organizing map (SOM). The most promising compounds were tested in mGluR1 functional and binding assays. We identified a potent chemotype exhibiting selective antagonistic activity at mGluR1 (functional IC(50)=0.74+/-0.29 microM). Hit optimization yielded lead structure 16 with an affinity of K(i)=0.024+/-0.001 microM and greater than 1000-fold selectivity for mGluR1 versus mGluR5. Homology-based receptor modelling suggests a binding site compatible with previously reported mutation studies. Our study demonstrates the usefulness of ligand-based virtual screening for scaffold-hopping and rapid lead structure identification in early drug discovery projects.

  13. Virtual tryout planning in automotive industry based on simulation metamodels

    NASA Astrophysics Data System (ADS)

    Harsch, D.; Heingärtner, J.; Hortig, D.; Hora, P.

    2016-11-01

    Deep drawn sheet metal parts are increasingly designed to the feasibility limit, thus achieving a robust manufacturing is often challenging. The fluctuation of process and material properties often lead to robustness problems. Therefore, numerical simulations are used to detect the critical regions. To enhance the agreement with the real process conditions, the material data are acquired through a variety of experiments. Furthermore, the force distribution is taken into account. The simulation metamodel contains the virtual knowledge of a particular forming process, which is determined based on a series of finite element simulations with variable input parameters. Based on the metamodels, virtual process windows can be displayed for different configurations. This helps to improve the operating point as well as to adjust process settings in case the process becomes unstable. Furthermore, the time of tool tryout can be shortened due to transfer of the virtual knowledge contained in the metamodels on the optimisation of the drawbeads. This allows the tool manufacturer to focus on the essential, to save time and to recognize complex relationships.

  14. Virtual reality and robotics for stroke rehabilitation: where do we go from here?

    PubMed

    Wade, Eric; Winstein, Carolee J

    2011-01-01

    Promoting functional recovery after stroke requires collaborative and innovative approaches to neurorehabilitation research. Task-oriented training (TOT) approaches that include challenging, adaptable, and meaningful activities have led to successful outcomes in several large-scale multisite definitive trials. This, along with recent technological advances of virtual reality and robotics, provides a fertile environment for furthering clinical research in neurorehabilitation. Both virtual reality and robotics make use of multimodal sensory interfaces to affect human behavior. In the therapeutic setting, these systems can be used to quantitatively monitor, manipulate, and augment the users' interaction with their environment, with the goal of promoting functional recovery. This article describes recent advances in virtual reality and robotics and the synergy with best clinical practice. Additionally, we describe the promise shown for automated assessments and in-home activity-based interventions. Finally, we propose a broader approach to ensuring that technology-based assessment and intervention complement evidence-based practice and maintain a patient-centered perspective.

  15. Worse than imagined: Unidentified virtual water flows in China.

    PubMed

    Cai, Beiming; Wang, Chencheng; Zhang, Bing

    2017-07-01

    The impact of virtual water flows on regional water scarcity in China had been deeply discussed in previous research. However, these studies only focused on water quantity, the impact of virtual water flows on water quality has been largely neglected. In this study, we incorporate the blue water footprint related with water quantity and grey water footprint related with water quality into virtual water flow analysis based on the multiregional input-output model of 2007. The results find that the interprovincial virtual flows accounts for 23.4% of China's water footprint. The virtual grey water flows are 8.65 times greater than the virtual blue water flows; the virtual blue water and grey water flows are 91.8 and 794.6 Gm 3 /y, respectively. The use of the indicators related with water quantity to represent virtual water flows in previous studies will underestimate their impact on water resources. In addition, the virtual water flows are mainly derived from agriculture, chemical industry and petroleum processing and the coking industry, which account for 66.8%, 7.1% and 6.2% of the total virtual water flows, respectively. Virtual water flows have intensified both quantity- and quality-induced water scarcity of export regions, where low-value-added but water-intensive and high-pollution goods are produced. Our study on virtual water flows can inform effective water use policy for both water resources and water pollution in China. Our methodology about virtual water flows also can be used in global scale or other countries if data available. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Bats' avoidance of real and virtual objects: implications for the sonar coding of object size.

    PubMed

    Goerlitz, Holger R; Genzel, Daria; Wiegrebe, Lutz

    2012-01-01

    Fast movement in complex environments requires the controlled evasion of obstacles. Sonar-based obstacle evasion involves analysing the acoustic features of object-echoes (e.g., echo amplitude) that correlate with this object's physical features (e.g., object size). Here, we investigated sonar-based obstacle evasion in bats emerging in groups from their day roost. Using video-recordings, we first show that the bats evaded a small real object (ultrasonic loudspeaker) despite the familiar flight situation. Secondly, we studied the sonar coding of object size by adding a larger virtual object. The virtual object echo was generated by real-time convolution of the bats' calls with the acoustic impulse response of a large spherical disc and played from the loudspeaker. Contrary to the real object, the virtual object did not elicit evasive flight, despite the spectro-temporal similarity of real and virtual object echoes. Yet, their spatial echo features differ: virtual object echoes lack the spread of angles of incidence from which the echoes of large objects arrive at a bat's ears (sonar aperture). We hypothesise that this mismatch of spectro-temporal and spatial echo features caused the lack of virtual object evasion and suggest that the sonar aperture of object echoscapes contributes to the sonar coding of object size. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Research on multi - channel interactive virtual assembly system for power equipment under the “VR+” era

    NASA Astrophysics Data System (ADS)

    Ren, Yilong; Duan, Xitong; Wu, Lei; He, Jin; Xu, Wu

    2017-06-01

    With the development of the “VR+” era, the traditional virtual assembly system of power equipment has been unable to satisfy our growing needs. In this paper, based on the analysis of the traditional virtual assembly system of electric power equipment and the application of VR technology in the virtual assembly system of electric power equipment in our country, this paper puts forward the scheme of establishing the virtual assembly system of power equipment: At first, we should obtain the information of power equipment, then we should using OpenGL and multi texture technology to build 3D solid graphics library. After the completion of three-dimensional modeling, we can use the dynamic link library DLL package three-dimensional solid graphics generation program to realize the modularization of power equipment model library and power equipment model library generated hidden algorithm. After the establishment of 3D power equipment model database, we set up the virtual assembly system of 3D power equipment to separate the assembly operation of the power equipment from the space. At the same time, aiming at the deficiency of the traditional gesture recognition algorithm, we propose a gesture recognition algorithm based on improved PSO algorithm for BP neural network data glove. Finally, the virtual assembly system of power equipment can really achieve multi-channel interaction function.

  18. Fat ViP MRI: Virtual Phantom Magnetic Resonance Imaging of water-fat systems.

    PubMed

    Salvati, Roberto; Hitti, Eric; Bellanger, Jean-Jacques; Saint-Jalmes, Hervé; Gambarota, Giulio

    2016-06-01

    Virtual Phantom Magnetic Resonance Imaging (ViP MRI) is a method to generate reference signals on MR images, using external radiofrequency (RF) signals. The aim of this study was to assess the feasibility of ViP MRI to generate complex-data images of phantoms mimicking water-fat systems. Various numerical phantoms with a given fat fraction, T2* and field map were designed. The k-space of numerical phantoms was converted into RF signals to generate virtual phantoms. MRI experiments were performed at 4.7T using a multi-gradient-echo sequence on virtual and physical phantoms. The data acquisition of virtual and physical phantoms was simultaneous. Decomposition of the water and fat signals was performed using a complex-based water-fat separation algorithm. Overall, a good agreement was observed between the fat fraction, T2* and phase map values of the virtual and numerical phantoms. In particular, fat fractions of 10.5±0.1 (vs 10% of the numerical phantom), 20.3±0.1 (vs 20%) and 30.4±0.1 (vs 30%) were obtained in virtual phantoms. The ViP MRI method allows for generating imaging phantoms that i) mimic water-fat systems and ii) can be analyzed with water-fat separation algorithms based on complex data. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Robust hopping based on virtual pendulum posture control.

    PubMed

    Sharbafi, Maziar A; Maufroy, Christophe; Ahmadabadi, Majid Nili; Yazdanpanah, Mohammad J; Seyfarth, Andre

    2013-09-01

    A new control approach to achieve robust hopping against perturbations in the sagittal plane is presented in this paper. In perturbed hopping, vertical body alignment has a significant role for stability. Our approach is based on the virtual pendulum concept, recently proposed, based on experimental findings in human and animal locomotion. In this concept, the ground reaction forces are pointed to a virtual support point, named virtual pivot point (VPP), during motion. This concept is employed in designing the controller to balance the trunk during the stance phase. New strategies for leg angle and length adjustment besides the virtual pendulum posture control are proposed as a unified controller. This method is investigated by applying it on an extension of the spring loaded inverted pendulum (SLIP) model. Trunk, leg mass and damping are added to the SLIP model in order to make the model more realistic. The stability is analyzed by Poincaré map analysis. With fixed VPP position, stability, disturbance rejection and moderate robustness are achieved, but with a low convergence speed. To improve the performance and attain higher robustness, an event-based control of the VPP position is introduced, using feedback of the system states at apexes. Discrete linear quartic regulator is used to design the feedback controller. Considerable enhancements with respect to stability, convergence speed and robustness against perturbations and parameter changes are achieved.

  20. The effects of game-based virtual reality movement therapy plus mental practice on upper extremity function in chronic stroke patients with hemiparesis: a randomized controlled trial.

    PubMed

    Park, Jin-Hyuck; Park, Ji-Hyuk

    2016-03-01

    [Purpose] The purpose of this study was to investigate the effects of game-based virtual reality movement therapy plus mental practice on upper extremity function in chronic stroke patients with hemiparesis. [Subjects] The subjects were chronic stroke patients with hemiparesis. [Methods] Thirty subjects were randomly assigned to either the control group or experimental group. All subjects received 20 sessions (5 days in a week) of virtual reality movement therapy using the Nintendo Wii. In addition to Wii-based virtual reality movement therapy, experimental group subjects performed mental practice consisting of 5 minutes of relaxation, Wii games imagination, and normalization phases before the beginning of Wii games. To compare the two groups, the upper extremity subtest of the Fugl-Meyer Assessment, Box and Block Test, and quality of movement subscale of the Motor Activity Log were performed. [Results] Both groups showed statistically significant improvement in the Fugl-Meyer Assessment, Box and Block Test, and quality of the movement subscale of Motor Activity Log after the interventions. Also, there were significant differences in the Fugl-Meyer Assessment, Box and Block Test, and quality of movement subscale of the Motor Activity Log between the two groups. [Conclusion] Game-based virtual reality movement therapy alone may be helpful to improve functional recovery of the upper extremity, but the addition of MP produces a lager improvement.

Top