Sample records for xenobiotic detoxifying enzymes

  1. Carboxylesterases: General detoxifying enzymes

    PubMed Central

    Hatfield, M. Jason; Umans, Robyn A.; Hyatt, Janice L.; Edwards, Carol C; Wierdl, Monika; Tsurkan, Lyudmila; Taylor, Michael R.; Potter, Philip M.

    2016-01-01

    Carboxylesterases (CE) are members of the esterase family of enzymes, and as their name suggests, they are responsible for the hydrolysis of carboxylesters into the corresponding alcohol and carboxylic acid. To date, no endogenous CE substrates have been identified and as such, these proteins are thought to act as a mechanism to detoxify ester-containing xenobiotics. As a consequence, they are expressed in tissues that might be exposed to such agents (lung and gut epithelia, liver, kidney, etc.). CEs demonstrate very broad substrate specificities and can hydrolyze compounds as diverse as cocaine, oseltamivir (Tamiflu), permethrin and irinotecan. In addition, these enzymes are irreversibly inhibited by organophosphates such as Sarin and Tabun. In this overview, we will compare and contrast the two human enzymes that have been characterized, and evaluate the biology of the interaction of these proteins with organophosphates (principally nerve agents). PMID:26892220

  2. Xenobiotic metabolizing enzyme (XME) expression in aging humans.

    EPA Science Inventory

    In the presence of foreign compounds, metabolic homeostasis of the organism is maintained by the liver’s ability to detoxify and eliminate these xenobiotics. This is accomplished, in part, by the expression of XMEs, which metabolize xenobiotics and determine whether exposure will...

  3. Genomic analysis of the aging rodent and human liver: impact on xenobiotic metabolism

    EPA Science Inventory

    Metabolic homeostasis of the organism is maintained by the liver’s ability to detoxify and eliminate xenobiotics. This is accomplished, in part, by xenobiotic metabolizing enzymes (XMEs), which metabolize xenobiotics and determine whether exposure will result in toxicity. Some ev...

  4. Multiple resistance to carcinogens and xenobiotics: P-glycoproteins as universal detoxifiers.

    PubMed

    Efferth, Thomas; Volm, Manfred

    2017-07-01

    The detoxification of toxic substances is of general relevance in all biological systems. The plethora of exogenous xenobiotic compounds and endogenous toxic metabolic products explains the evolutionary pressure of all organisms to develop molecular mechanisms to detoxify and excrete harmful substances from the body. P-glycoprotein and other members of the ATP-binding cassette (ABC) transporter family extrude innumerous chemical compounds out of cells. Their specific expression in diverse biological contexts cause different phenotypes: (1) multidrug resistance (MDR) and thus failure of cancer chemotherapy, (2) avoidance of accumulation of carcinogens and prevention of carcinogenesis in healthy tissues, (3) absorption, distribution, metabolization and excretion (ADME) of pharmacological drugs in human patients, (4) protection from environmental toxins in aquatic organisms (multi-xenobiotic resistance, MXR). Hence ABC-transporters may have opposing effects for organismic health reaching from harmful in MDR of tumors to beneficial for maintenance of health in MXR. While their inhibition by specific inhibitors may improve treatment success in oncology and avoid carcinogenesis, blocking of ABC-transporter-driven efflux by environmental pollutants leads to ecotoxicological consequences in marine biotopes. Poisoned seafood may enter the food-chain and cause intoxications in human beings. As exemplified with ABC-transporters, joining forces in interdisciplinary research may, therefore, be a wise strategy to fight problems in human medicine and environmental sciences.

  5. GENE EXPRESSION PROFILING OF XENOBIOTIC METABOLIZING ENZYMES (XMES) THROUGH THE LIFE STAGES OF THE MALE C57BL/6 MOUSE

    EPA Science Inventory

    In the presence of foreign compounds, metabolic homeostasis of the organism is maintained by the liver's ability to detoxify and eliminate these xenobiotics. This is accomplished, in part, by the expression of XMEs, which metabolize xenobiotics and determine whether exposure will...

  6. Coordinated changes in xenobiotic metabolizing enzyme (XME) gene expression through the life stages of the male C57BL/6 mouse

    EPA Science Inventory

    Metabolic homeostasis of the organism is maintained by the liver's ability to detoxify and eliminate xenobiotics. This is accomplished, in part, by the expression of XMEs, which metabolize xenobiotics and determine whether exposure will result in toxicity. Some evidence indicates...

  7. Nicergoline reverts haloperidol-induced loss of detoxifying-enzyme activity.

    PubMed

    Vairetti, Mariapia; Ferrigno, Andrea; Canonico, Pier Luigi; Battaglia, Angelo; Bertè, Francantonio; Richelmi, Plinio

    2004-11-28

    We evaluated the effects of nicergoline on antioxidant defense enzymes (detoxifying enzymes), during chronic treatment with haloperidol in rats. Chronic use of haloperidol (10 weeks, 1.5 mg/kg/day) induces a significant decrease in glutathione reductase, glutathione peroxidase and superoxide dismutase activity, in selected areas of the brain. Co-administration of nicergoline (20 days, 10 mg/kg/day) significantly restored the activity of these enzymes to levels comparable to those observed in control rats. These observations suggest beneficial effects of nicergoline in the prevention and in the treatment of haloperidol-induced side effects.

  8. Coordinated Changes in Xenobiotic Metabolizing Enzyme Gene Expression in Aging Male Rats

    EPA Science Inventory

    In order to gain better insight on aging and susceptibility, we characterized the expression of xenobiotic metabolizing enzymes (XMEs) from the livers of rats to evaluate the change in capacity to respond to xenobiotics across the adult lifespan. Gene expression profiles for XMEs...

  9. It’s War Out There: Fighting for life with xenobiotic degrading enzymes

    USDA-ARS?s Scientific Manuscript database

    It’s War Out There: Fighting for life with xenobiotic degrading enzymes Beta-lactamase enzymes are well studied because of their tremendous impact on medicine. Their prominent role is in resistance to beta-lactam (four membered lactam ring) antibiotics including the first and most famous fungally d...

  10. Xenobiotic Metabolism and Gut Microbiomes

    PubMed Central

    Das, Anubhav; Srinivasan, Meenakshi; Ghosh, Tarini Shankar; Mande, Sharmila S.

    2016-01-01

    Humans are exposed to numerous xenobiotics, a majority of which are in the form of pharmaceuticals. Apart from human enzymes, recent studies have indicated the role of the gut bacterial community (microbiome) in metabolizing xenobiotics. However, little is known about the contribution of the plethora of gut microbiome in xenobiotic metabolism. The present study reports the results of analyses on xenobiotic metabolizing enzymes in various human gut microbiomes. A total of 397 available gut metagenomes from individuals of varying age groups from 8 nationalities were analyzed. Based on the diversities and abundances of the xenobiotic metabolizing enzymes, various bacterial taxa were classified into three groups, namely, least versatile, intermediately versatile and highly versatile xenobiotic metabolizers. Most interestingly, specific relationships were observed between the overall drug consumption profile and the abundance and diversity of the xenobiotic metabolizing repertoire in various geographies. The obtained differential abundance patterns of xenobiotic metabolizing enzymes and bacterial genera harboring them, suggest their links to pharmacokinetic variations among individuals. Additional analyses of a few well studied classes of drug modifying enzymes (DMEs) also indicate geographic as well as age specific trends. PMID:27695034

  11. The Therapeutic Role of Xenobiotic Nuclear Receptors against Metabolic Syndrome.

    PubMed

    Pu, Shuqi; Wu, Xiaojie; Yang, Xiaoying; Zhang, Yunzhan; Dai, Yunkai; Zhang, Yueling; Wu, Xiaoting; Liu, Yan; Cui, Xiaona; Jin, Haiyong; Cao, Jianhong; Li, Ruliu; Cai, Jiazhong; Cao, Qizhi; Hu, Ling; Gao, Yong

    2018-06-10

    Xenobiotic nuclear receptors (XNRs) are nuclear receptors that characterized by coordinately regulating the expression of genes encoding drug-metabolizing enzymes and transporters to essentially eliminate and detoxify xenobiotics and endobiotics from the body, including the peroxisome proliferator-activated receptor (PPAR), the farnesoid X receptor (FXR), the liver X receptor (LXR), the pregnane X receptor (PXR) and the constitutive androstane receptor (CAR). Heretofore, increasing evidences have suggested that these five XNRs are not only involved in the regulation of xeno-/endo-biotics detoxication but also the development of human diseases, such as cancer, obesity and diabetes. PPAR, FXR, LXR, PXR and CAR, as the receptors for numerous natural or synthetic compounds may be the most effective therapeutic targets in the treatment of metabolic diseases. In this review, we will focus on these five XNRs and their recently discovered functions in diabetes and its complications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Two horizontally transferred xenobiotic resistance gene clusters associated with detoxification of benzoxazolinones by Fusarium species

    USDA-ARS?s Scientific Manuscript database

    Microbes encounter a broad spectrum of chemical compounds in their diverse environments. These xenobiotics may negatively impact growth or cause death. To counter such adverse effects, many microbes possess metabolic strategies to detoxify and biotransform xenobiotics. Fusarium verticillioides is a ...

  13. Differences in the expression of xenobiotic-metabolizing enzymes between islets derived from the ventral and dorsal anlage of the pancreas.

    PubMed

    Standop, Jens; Ulrich, Alexis B; Schneider, Matthias B; Büchler, Markus W; Pour, Parviz M

    2002-01-01

    Chronic pancreatitis and pancreatic cancer have been linked to the exposure of environmental chemicals (xenobiotics), which generally require metabolic activation to highly reactive toxic or carcinogenic intermediates. The primary enzyme system involved is made up of numerous cytochrome P450 mono-oxygenases (CYP). Glutathione S-transferases (GST) belong to the enzyme systems that catalyze the conjugation of the reactive intermediates produced by CYPs to less toxic or readily excretable metabolites. Because the majority of chronic pancreatitis and pancreatic cancers develop in the organ's head, we compared the expression of selected CYP and GST enzymes between the tissues deriving from the ventral anlage (head) and dorsal anlage (corpus, tail). A total of 20 normal pancreatic tissue specimen from organ donors and early autopsy cases were processed immunohistochemically by using antibodies to CYP 1A1, 1A2, 2B6, 2C8/9/19, 2D6, 2E1, 3A1, 3A2 and 3A4, GST-alpha, GST-mu and GST-pi, and the NADPH cytochrome P450 oxido-reductase (NA-OR), the specificity of which has been verified in our previous study by Western blot and RT-PCR analyses. In all pancreatic regions, most of the enzymes were expressed in islet cells. However, more islets in the head region expressed CYP 2B6, 2C8/9/19, 2E1 and the NA-OR, than those in the body and tail. Moreover, the expression of CYP 2B6 and 2E1 was restricted to the pancreatic polypeptide (PP) cells, and the concentration of CYP 3A1 and 3A4 was stronger in PP cells than in other islet cells. On the other hand, GST-mu and GST-pi were expressed primarily in islet cells of the body and tail. The greater content of xenobiotic-metabolizing and carcinogen-activating CYP enzymes and a lower expression of detoxifying GST enzymes in the head of the pancreas could be one reason for the greater susceptibility of this region for inflammatory and malignant diseases. Copyright 2002 S. Karger AG, Basel and IAP

  14. Effects of imidacloprid on detoxifying enzyme glutathione S-transferase on Folsomia candida (Collembola).

    PubMed

    Sillapawattana, Panwad; Schäffer, Andreas

    2017-04-01

    Chemical analyses of the environment can document contamination by various xenobiotics, but it is also important to understand the effect of pollutants on living organisms. Thus, in the present work, we investigated the effect of the pesticide imidacloprid on the detoxifying enzyme glutathione S-transferase (GST) from Folsomia candida (Collembola), a standard test organism for estimating the effects of pesticides and environmental pollutants on non-target soil arthropods. Test animals were treated with different concentrations of imidacloprid for 48 h. Changes in steady-state levels of GST messenger RNA (mRNA) and GST enzyme activity were investigated. Extracted proteins were separated according to their sizes by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the resolved protein bands were detected by silver staining. The size of the glutathione (GSH) pool in Collembola was also determined. A predicted protein sequence of putative GSTs was identified with animals from control group. A 3-fold up-regulation of GST steady-state mRNA levels was detected in the samples treated with 5.0 mg L -1 imidacloprid compared to the control, while a 2.5- and 2.0- fold up-regulation was found in organisms treated with 2.5 and 7.5 mg L -1 imidacloprid, respectively. GST activity increased with increasing imidacloprid amounts from an initial activity of 0.11 μmol min -1  mg -1 protein in the control group up to 0.25 μmol min -1  mg -1 protein in the sample treated with the 5.0 mg L -1 of pesticide. By contrast, the total amount of GSH decreased with increasing imidacloprid concentration. The results suggest that the alteration of GST activity, steady-state level of GST mRNA, and GSH level may be involved in the response of F. candida to the exposure of imidacloprid and can be used as biomarkers to monitor the toxic effects of imidacloprid and other environmental pollutants on Collembola.

  15. Xenobiotic metabolism capacities of human skin in comparison with a 3D-epidermis model and keratinocyte-based cell culture as in vitro alternatives for chemical testing: phase II enzymes.

    PubMed

    Götz, Christine; Pfeiffer, Roland; Tigges, Julia; Ruwiedel, Karsten; Hübenthal, Ulrike; Merk, Hans F; Krutmann, Jean; Edwards, Robert J; Abel, Josef; Pease, Camilla; Goebel, Carsten; Hewitt, Nicola; Fritsche, Ellen

    2012-05-01

    The 7th Amendment to the EU Cosmetics Directive prohibits the use of animals in cosmetic testing for certain endpoints, such as genotoxicity. Therefore, skin in vitro models have to replace chemical testing in vivo. However, the metabolic competence neither of human skin nor of alternative in vitro models has so far been fully characterized, although skin is the first-pass organ for accidentally or purposely (cosmetics and pharmaceuticals) applied chemicals. Thus, there is an urgent need to understand the xenobiotic-metabolizing capacities of human skin and to compare these activities to models developed to replace animal testing. We have measured the activity of the phase II enzymes glutathione S-transferase, UDP-glucuronosyltransferase and N-acetyltransferase in ex vivo human skin, the 3D epidermal model EpiDerm 200 (EPI-200), immortalized keratinocyte-based cell lines (HaCaT and NCTC 2544) and primary normal human epidermal keratinocytes. We show that all three phase II enzymes are present and highly active in skin as compared to phase I. Human skin, therefore, represents a more detoxifying than activating organ. This work systematically compares the activities of three important phase II enzymes in four different in vitro models directly to human skin. We conclude from our studies that 3D epidermal models, like the EPI-200 employed here, are superior over monolayer cultures in mimicking human skin xenobiotic metabolism and thus better suited for dermatotoxicity testing. © 2012 John Wiley & Sons A/S.

  16. A saponin-detoxifying enzyme mediates suppression of plant defences

    NASA Astrophysics Data System (ADS)

    Bouarab, K.; Melton, R.; Peart, J.; Baulcombe, D.; Osbourn, A.

    2002-08-01

    Plant disease resistance can be conferred by constitutive features such as structural barriers or preformed antimicrobial secondary metabolites. Additional defence mechanisms are activated in response to pathogen attack and include localized cell death (the hypersensitive response). Pathogens use different strategies to counter constitutive and induced plant defences, including degradation of preformed antimicrobial compounds and the production of molecules that suppress induced plant defences. Here we present evidence for a two-component process in which a fungal pathogen subverts the preformed antimicrobial compounds of its host and uses them to interfere with induced defence responses. Antimicrobial saponins are first hydrolysed by a fungal saponin-detoxifying enzyme. The degradation product of this hydrolysis then suppresses induced defence responses by interfering with fundamental signal transduction processes leading to disease resistance.

  17. Hepatic Xenobiotic Metabolizing Enzyme Gene Expression Through the Life Stages of the Mouse

    EPA Science Inventory

    BACKGROUND: Differences in responses to environmental chemicals and drugs between life stages are likely due in part to differences in the expression of xenobiotic metabolizing enzymes and transporters (XMETs). No comprehensive analysis of the mRNA expression of XMETs has been ca...

  18. Comparative investigation of the xenobiotic metabolizing arylamine N-acetyltransferase enzyme family among fungi

    USDA-ARS?s Scientific Manuscript database

    Arylamine N-acetyltransferases (NATs) are xenobiotic metabolizing enzymes well-characterized in several bacteria and higher eukaryotes. The role of NATs in fungal biology has only recently been investigated. The NAT1 gene of Gibberella moniliformis was the first NAT cloned and characterized from fun...

  19. Comparative genomic and phylogenetic investigation of the xenobiotic metabolizing arylamine N-acetyltransferase enzyme family

    USDA-ARS?s Scientific Manuscript database

    Arylamine N-acetyltransferases (NATs) are xenobiotic metabolizing enzymes characterized in several bacteria and eukaryotic organisms. We report a comprehensive phylogenetic analysis employing an exhaustive dataset of NAT-homologous sequences recovered through inspection of 2445 genomes. We describe ...

  20. Effects of frying oil and Houttuynia cordata thunb on xenobiotic-metabolizing enzyme system of rodents

    PubMed Central

    Chen, Ya-Yen; Chen, Chiao-Ming; Chao, Pi-Yu; Chang, Tsan-Ju; Liu, Jen-Fang

    2005-01-01

    AIM: To evaluate the effects of frying oil and Houttuynia cordata Thunb (H. cordata), a vegetable traditionally consumed in Taiwan, on the xenobiotic-metabolizing enzyme system of rodents. METHODS: Forty-eight Sprague-Dawley rats were fed with a diet containing 0%, 2% or 5% H. cordata powder and 15% fresh soybean oil or 24-h oxidized frying oil (OFO) for 28 d respectively. The level of microsomal protein, total cytochrome 450 content (CYP450) and enzyme activities including NADPH reductase, ethoxyresorufin O-deethylase (EROD), pentoxyresorufin O-dealkylase (PROD), aniline hydroxylase (ANH), aminopyrine demethylase (AMD), and quinone reductase (QR) were determined. QR represented phase II enzymes, the rest of the enzymes tested represented phase I enzymes. RESULTS: The oxidized frying oil feeding produced a significant increase in phase I and II enzyme systems, including the content of CYP450 and microsomal protein, and the activities of NADPH reductase, EROD, PROD, ANH, AMD and QR in rats (P<0.05). In addition, the activities of EROD, ANH and AMD decreased and QR increased after feeding with H. cordata in OFO-fed group (P<0.05). The feeding with 2% H. cordata diet showed the most significant effect. CONCLUSION: The OFO diet induces phases I and II enzyme activity, and the 2% H. cordata diet resulted in a better regulation of the xenobiotic-metabolizing enzyme system. PMID:15637750

  1. Homologues of xenobiotic metabolizing N-acetyltransferases in plant-associated fungi: Novel functions for an old enzyme family

    USDA-ARS?s Scientific Manuscript database

    Plant-pathogenic fungi and their hosts engage in chemical warfare, attacking each other with toxic products of secondary metabolism and defending themselves via an arsenal of xenobiotic metabolizing enzymes. One such enzyme is homologous to arylamine N-acetyltransferase (NAT) and has been identified...

  2. Behavior of detoxifying enzymes of Aedes aegypti exposed to girgensohnine alkaloid analog and Cymbopogon flexuosus essential oil.

    PubMed

    Carreño Otero, Aurora L; Palacio-Cortés, Angela Maria; Navarro-Silva, Mario Antonio; Kouznetsov, Vladimir V; Duque L, Jonny E

    2018-01-01

    Because mosquito control depend on the use of commercial insecticides and resistance has been described in some of them, there is a need to explore new molecules no resistant. In vivo effects of girgensohnine analog 2-(3,4-dimethoxyphenyl)-2-(piperidin-1-yl)acetonitrile DPPA and Cymbopogon flexuosus essential oil CFEO, on the detoxifying enzymes acetylcholinesterase (AChE), glutathione-S-transferase (GST), nonspecific esterases (α- and β-), mixed function oxidases (MFO) and p-NPA esterases were evaluated on a Rockefeller (Rock) and wild Aedes aegypti population from Santander, Colombia (WSant). The action was tested after 24h of exposure at concentrations of 20.10, 35.18 and 70.35mgL -1 of DPPA and 18.45, 30.75 and 61.50mgL -1 of CFEO, respectively. It was found that AChE activity of Rock and WSant was not influenced by the evaluated concentration of DPPA and CFEO (p>0.05), while MFO activity was significantly affected by all CFEO concentrations in WSant (p<0.05). GST, α- and β-esterase activities were affected in Rock exposed at the highest CFEO concentration, this concentration also modified β-esterases activity of WSant. DPPA and CFEO sublethal doses induced inhibition of AChE activity on untreated larvae homogenate from 12 to 20% and 18 to 26%, respectively. For untreated adult homogenate, the inhibition activity raised up to 14 to 27% for DPPA and 26 to 34% for CFEO. Elevated levels of detoxifying enzymes, found when CFEO was evaluated, showed a larval sensitivity not observed by the pure compound suggesting that DPPA, contrary to CFEO, was not recognized, transformed or eliminated by the evaluated detoxifying enzymes. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Assessing the effect of selection with deltamethrin on biological parameters and detoxifying enzymes in Aedes aegypti (L.).

    PubMed

    Alvarez-Gonzalez, Leslie C; Briceño, Arelis; Ponce-Garcia, Gustavo; Villanueva-Segura, O Karina; Davila-Barboza, Jesus A; Lopez-Monroy, Beatriz; Gutierrez-Rodriguez, Selene M; Contreras-Perera, Yamili; Rodriguez-Sanchez, Iram P; Flores, Adriana E

    2017-11-01

    Resistance to insecticides through one or several mechanisms has a cost for an insect in various parameters of its biological cycle. The present study evaluated the effect of deltamethrin on detoxifying enzymes and biological parameters in a population of Aedes aegypti selected for 15 generations. The enzyme activities of alpha- and beta-esterases, mixed-function oxidases and glutathione-S-transferases were determined during selection, along with biological parameters. Overexpression of mixed-function oxidases as a mechanism of metabolic resistance to deltamethrin was found. There were decreases in percentages of eggs hatching, pupation and age-specific survival and in total survival at the end of the selection (F 16 ). Although age-specific fecundity was not affected by selection with deltamethrin, total fertility, together with lower survival, significantly affected gross reproduction rate, gradually decreasing due to deltamethrin selection. Similarly, net reproductive rate and intrinsic growth rate were affected by selection. Alterations in life parameters could be due to the accumulation of noxious effects or deleterious genes related to detoxifying enzymes, specifically those coding for mixed-function oxidases, along with the presence of recessive alleles of the V1016I and F1534C mutations, associating deltamethrin resistance with fitness cost in Ae. aegypti. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Phylogenetic and biological investigation of the xenobiotic metabolizing arylamine N-acetyltransferase enzyme family among fungi

    USDA-ARS?s Scientific Manuscript database

    Arylamine N-acetyltransferases (NATs) are xenobiotic metabolizing enzymes well-characterized in several bacteria and eukaryotic organisms. The role of NATs in fungal biology has only recently been investigated. The NAT1 (FDB2) gene of Fusarium verticillioides was the first NAT cloned and character...

  5. Xenobiotic metabolizing enzyme activities in cells used for testing skin sensitization in vitro.

    PubMed

    Fabian, E; Vogel, D; Blatz, V; Ramirez, T; Kolle, S; Eltze, T; van Ravenzwaay, B; Oesch, F; Landsiedel, R

    2013-09-01

    For ethical and regulatory reasons, in vitro tests for scoring potential toxicities of cosmetics are essential. A test strategy for investigating potential skin sensitization using two human keratinocytic and two human dendritic cell lines has been developed (Mehling et al. Arch Toxicol 86:1273–1295, 2012). Since prohaptens may be metabolically activated in the skin, information on xenobiotic metabolizing enzyme (XME) activities in these cell lines is of high interest. In this study, XME activity assays, monitoring metabolite or cofactor, showed the following: all three passages of keratinocytic (KeratinoSens® and LuSens) and dendritic (U937 und THP-1) cells displayed N-acetyltransferase 1 (NAT1) activities (about 6–60 nmol/min/mg S9-protein for acetylation of para-aminobenzoic acid). This is relevant since reactive species of many cosmetics are metabolically controlled by cutaneous NAT1. Esterase activities of about 1–4 nmol fluorescein diacetate/min/mg S9-protein were observed in all passages of investigated keratinocytic and about 1 nmol fluorescein diacetate/min/mg S9-protein in dendritic cell lines. This is also of practical relevance since many esters and amides are detoxified and others activated by cutaneous esterases. In both keratinocytic cell lines, activities of aldehyde dehydrogenase (ALDH) were observed (5–17 nmol product/min/mg cytosolic protein). ALDH is relevant for the detoxication of reactive aldehydes. Activities of several other XME were below detection, namely the investigated cytochrome P450-dependent alkylresorufin O-dealkylases 7-ethylresorufin O-deethylase, 7-benzylresorufin O-debenzylase and 7-pentylresorufin O-depentylase (while NADPH cytochrome c reductase activities were much above the limit of quantification), the flavin-containing monooxygenase, the alcohol dehydrogenase as well as the UDP glucuronosyl transferase activities.

  6. Hematopoietic Stem Cell Regeneration Enhanced by Ectopic Expression of ROS-detoxifying Enzymes in Transplant Mice

    PubMed Central

    Miao, Weimin; XuFeng, Richard; Park, Moo-Rim; Gu, Haihui; Hu, Linping; Kang, Jin Wook; Ma, Shihui; Liang, Paulina H; Li, Yanxin; Cheng, Haizi; Yu, Hui; Epperly, Michael; Greenberger, Joel; Cheng, Tao

    2013-01-01

    High levels of reactive oxygen species (ROS) can exhaust hematopoietic stem cells (HSCs). Thus, maintaining a low state of redox in HSCs by modulating ROS-detoxifying enzymes may augment the regeneration potential of HSCs. Our results show that basal expression of manganese superoxide dismutase (MnSOD) and catalase were at low levels in long-term and short-term repopulating HSCs, and administration of a MnSOD plasmid and lipofectin complex (MnSOD-PL) conferred radiation protection on irradiated recipient mice. To assess the intrinsic role of elevated MnSOD or catalase in HSCs and hematopoietic progenitor cells, the MnSOD or catalase gene was overexpressed in mouse hematopoietic cells via retroviral transduction. The impact of MnSOD and catalase on hematopoietic progenitor cells was mild, as measured by colony-forming units (CFUs). However, overexpressed catalase had a significant beneficial effect on long-term engraftment of transplanted HSCs, and this effect was further enhanced after an insult of low-dose γ-irradiation in the transplant mice. In contrast, overexpressed MnSOD exhibited an insignificant effect on long-term engraftment of transplanted HSCs, but had a significant beneficial effect after an insult of sublethal irradiation. Taken together, these results demonstrate that HSC function can be enhanced by ectopic expression of ROS-detoxifying enzymes, especially after radiation exposure in vivo. PMID:23295952

  7. Xenobiotic Compounds Degradation by Heterologous Expression of a Trametes sanguineus Laccase in Trichoderma atroviride

    PubMed Central

    Balcázar-López, Edgar; Méndez-Lorenzo, Luz Helena; Batista-García, Ramón Alberto; Esquivel-Naranjo, Ulises; Ayala, Marcela; Kumar, Vaidyanathan Vinoth; Savary, Olivier; Cabana, Hubert; Herrera-Estrella, Alfredo; Folch-Mallol, Jorge Luis

    2016-01-01

    Fungal laccases are enzymes that have been studied because of their ability to decolorize and detoxify effluents; they are also used in paper bleaching, synthesis of polymers, bioremediation, etc. In this work we were able to express a laccase from Trametes (Pycnoporus) sanguineus in the filamentous fungus Trichoderma atroviride. For this purpose, a transformation vector was designed to integrate the gene of interest in an intergenic locus near the blu17 terminator region. Although monosporic selection was still necessary, stable integration at the desired locus was achieved. The native signal peptide from T. sanguineus laccase was successful to secrete the recombinant protein into the culture medium. The purified, heterologously expressed laccase maintained similar properties to those observed in the native enzyme (Km and kcat and kcat/km values for ABTS, thermostability, substrate range, pH optimum, etc). To determine the bioremediation potential of this modified strain, the laccase-overexpressing Trichoderma strain was used to remove xenobiotic compounds. Phenolic compounds present in industrial wastewater and bisphenol A (an endocrine disruptor) from the culture medium were more efficiently removed by this modified strain than with the wild type. In addition, the heterologously expressed laccase was able to decolorize different dyes as well as remove benzo[α]pyrene and phenanthrene in vitro, showing its potential for xenobiotic compound degradation. PMID:26849129

  8. Transcriptional profiling of mouse and human livers at different life stages

    EPA Science Inventory

    In the presence offoreign compounds,metabolichomeostasis oftheorganismismaintained by the liver's ability to detoxify and eliminate these xenobiotics. This is accomplished, in part, by the expression ofxenobiotic metabolizing enzymes (XMEs), which metabolize xenobiotics and det...

  9. Comparative genomic, phylogenetic, and functional investigation of the xenobiotic metabolizing arylamine N-acetyltransferase enzyme family among fungi

    USDA-ARS?s Scientific Manuscript database

    Arylamine N-acetyltransferases (NATs) are xenobiotic metabolizing enzymes well-characterized in several bacteria and higher eukaryotes. The role of NATs in fungal biology has only recently been investigated (Glenn and Bacon, 2009; Glenn et al., 2010). The NAT1 gene of Gibberella moniliformis was the...

  10. Natural allelic variations of xenobiotic-metabolizing enzymes affect sexual dimorphism in Oryzias latipes.

    PubMed

    Katsumura, Takafumi; Oda, Shoji; Nakagome, Shigeki; Hanihara, Tsunehiko; Kataoka, Hiroshi; Mitani, Hiroshi; Kawamura, Shoji; Oota, Hiroki

    2014-12-22

    Sexual dimorphisms, which are phenotypic differences between males and females, are driven by sexual selection. Interestingly, sexually selected traits show geographical variations within species despite strong directional selective pressures. This paradox has eluded many evolutionary biologists for some time, and several models have been proposed (e.g. 'indicator model' and 'trade-off model'). However, disentangling which of these theories explains empirical patterns remains difficult, because genetic polymorphisms that cause variation in sexual differences are still unknown. In this study, we show that polymorphisms in cytochrome P450 (CYP) 1B1, which encodes a xenobiotic-metabolizing enzyme, are associated with geographical differences in sexual dimorphism in the anal fin morphology of medaka fish (Oryzias latipes). Biochemical assays and genetic cross experiments show that high- and low-activity CYP1B1 alleles enhanced and declined sex differences in anal fin shapes, respectively. Behavioural and phylogenetic analyses suggest maintenance of the high-activity allele by sexual selection, whereas the low-activity allele possibly has experienced positive selection due to by-product effects of CYP1B1 in inferred ancestral populations. The present data can elucidate evolutionary mechanisms behind genetic variations in sexual dimorphism and indicate trade-off interactions between two distinct mechanisms acting on the two alleles with pleiotropic effects of xenobiotic-metabolizing enzymes. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  11. Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics.

    PubMed

    Abhilash, P C; Jamil, Sarah; Singh, Nandita

    2009-01-01

    Phytoremediation--the use of plants to clean up polluted soil and water resources--has received much attention in the last few years. Although plants have the inherent ability to detoxify xenobiotics, they generally lack the catabolic pathway for the complete degradation of these compounds compared to microorganisms. There are also concerns over the potential for the introduction of contaminants into the food chain. The question of how to dispose of plants that accumulate xenobiotics is also a serious concern. Hence the feasibility of phytoremediation as an approach to remediate environmental contamination is still somewhat in question. For these reasons, researchers have endeavored to engineer plants with genes that can bestow superior degradation abilities. A direct method for enhancing the efficacy of phytoremediation is to overexpress in plants the genes involved in metabolism, uptake, or transport of specific pollutants. Furthermore, the expression of suitable genes in root system enhances the rhizodegradation of highly recalcitrant compounds like PAHs, PCBs etc. Hence, the idea to amplify plant biodegradation of xenobiotics by genetic manipulation was developed, following a strategy similar to that used to develop transgenic crops. Genes from human, microbes, plants, and animals are being used successfully for this venture. The introduction of these genes can be readily achieved for many plant species using Agrobacterium tumefaciens-mediated plant transformation or direct DNA methods of gene transfer. One of the promising developments in transgenic technology is the insertion of multiple genes (for phase 1 metabolism (cytochrome P450s) and phase 2 metabolism (GSH, GT etc.) for the complete degradation of the xenobiotics within the plant system. In addition to the use of transgenic plants overexpressed with P450 and GST genes, various transgenic plants expressing bacterial genes can be used for the enhanced degradation and remediation of herbicides, explosives

  12. Do heavy metals and metalloids influence the detoxification of organic xenobiotics in plants?

    PubMed

    Schröder, Peter; Lyubenova, Lyudmila; Huber, Christian

    2009-11-01

    Mixed pollution with trace elements and organic industrial compounds is characteristic for many spill areas and dumping sites. The danger for the environment and human health from such sites is large, and sustainable remediation strategies are urgently needed. Phytoremediation seems to be a cheap and environmentally sound option for the removal of unwanted compounds, and the hyperaccumulation of trace elements and toxic metals is seemingly independent from the metabolism of organic xenobiotics. However, stress reactions, ROS formation and depletion of antioxidants will also cause alterations in xenobiotic detoxification. Here, we investigate the capability of plants to detoxify chlorophenols via glutathione conjugation in a mixed pollution situation. Typha latifolia and Phragmites australis plants for the present study were grown under greenhouse conditions in experimental ponds. A Picea abies L. suspension culture was grown in a growth chamber. Cadmium sulphate, sodium arsenate and lead chloride in concentrations from 10 to 500 microM were administered to plants. Enzymes of interest for the present study were: glutathione transferase (GST), glutathione reductase, ascorbate peroxidase and peroxidase. Measurements were performed according to published methods. GST spectrophotometric assays included the model substrates CDNB, DCNB, NBC, NBoC and the herbicide Fluorodifen. Heavy metals lead to visible stress symptoms in higher plants. Besides one long-term experiment of 72 days duration, the present study shows time and concentration-dependent plant alterations already after 24 and 72 h Cd incubation. P. abies spruce cell cultures react to CdSO(4) and Na(2)HAsO(4) with an oxidative burst, similar to that observed after pathogen attack or elicitor treatment. Cd application resulted in a reduction in GSH and GSSG contents. When a heavy metal mixture containing Na(2)HAsO(4), CdSO(4) and PbCl(2) was applied to cultures, both GSH and GSSG levels declined. Incubation with

  13. Xenobiotic-metabolizing enzymes in plants and their role in uptake and biotransformation of veterinary drugs in the environment.

    PubMed

    Bártíková, Hana; Skálová, Lenka; Stuchlíková, Lucie; Vokřál, Ivan; Vaněk, Tomáš; Podlipná, Radka

    2015-08-01

    Many various xenobiotics permanently enter plants and represent potential danger for their organism. For that reason, plants have evolved extremely sophisticated detoxification systems including a battery of xenobiotic-metabolizing enzymes. Some of them are similar to those in humans and animals, but there are several plant-specific ones. This review briefly introduces xenobiotic-metabolizing enzymes in plants and summarizes present information about their action toward veterinary drugs. Veterinary drugs are used worldwide to treat diseases and protect animal health. However, veterinary drugs are also unwantedly introduced into environment mostly via animal excrements, they persist in the environment for a long time and may impact on the non-target organisms. Plants are able to uptake, transform the veterinary drugs to non- or less-toxic compounds and store them in the vacuoles and cell walls. This ability may protect not only plant themselves but also other organisms, predominantly invertebrates and wild herbivores. The aim of this review is to emphasize the importance of plants in detoxification of veterinary drugs in the environment. The results of studies, which dealt with transport and biotransformation of veterinary drugs in plants, are summarized and evaluated. In conclusion, the risks and consequences of veterinary drugs in the environment and the possibilities of phytoremediation technologies are considered and future perspectives are outlined.

  14. The Role of Xenobiotic-Metabolizing Enzymes in Anthelmintic Deactivation and Resistance in Helminths.

    PubMed

    Matoušková, Petra; Vokřál, Ivan; Lamka, Jiří; Skálová, Lenka

    2016-06-01

    Xenobiotic-metabolizing enzymes (XMEs) modulate the biological activity and behavior of many drugs, including anthelmintics. The effects of anthelmintics can often be abolished by XMEs when the drugs are metabolized to an inefficient compound. XMEs therefore play a significant role in anthelmintic efficacy. Moreover, differences in XMEs between helminths are reflected by differences in anthelmintic metabolism between target species. Taking advantage of the newly sequenced genomes of many helminth species, progress in this field has been remarkable. The present review collects up to date information regarding the most important XMEs (phase I and phase II biotransformation enzymes; efflux transporters) in helminths. The participation of these XMEs in anthelmintic metabolism and their possible roles in drug resistance are evaluated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Retinoid-xenobiotic interactions: the Ying and the Yang

    PubMed Central

    2015-01-01

    The literature provides compelling evidence pointing to tight metabolic interactions between retinoids and xenobiotics. These are extensive and important for understanding xenobiotic actions in the body. Within the body, retinoids affect xenobiotic metabolism and actions and conversely, xenobiotics affect retinoid metabolism and actions. This article summarizes data that establish the importance of retinoid-dependent metabolic pathways for sustaining the body’s responses to xenobiotic exposure, including the roles of all-trans- and 9-cis-retinoic acid for protecting mammals from harmful xenobiotic effects and for ensuring xenobiotic elimination from the body. This review will also consider molecular mechanisms underlying xenobiotic toxicity focusing on how this may contribute to retinoid deficiency and disruption of normal retinoid homeostasis. Special attention is paid to xenobiotic molecular targets (nuclear receptors, regulatory proteins, enzymes, and transporters) which affect retinoid metabolism and signaling. PMID:26311625

  16. Effect of sprout extract from Tuscan black cabbage on xenobiotic-metabolizing and antioxidant enzymes in rat liver.

    PubMed

    Melega, Simone; Canistro, Donatella; Pagnotta, Eleonora; Iori, Renato; Sapone, Andrea; Paolini, Moreno

    2013-02-18

    In recent years, health protection by natural products has received considerable attention, and a multitude of nutraceuticals have been characterized and their use promoted. Dietary consumption of Cruciferous vegetables, rich in glucosinolates (GLs), and their myrosinase-mediated hydrolysis products isothiocyanates (ITCs), were associated with reductions in cancer risk. In this study, the chemo-preventive potential of sprout extract of Tuscan black cabbage (Brassica oleracea L. var. acephala subvar. Laciniata L.) (TBCSE), through modulation of the xenobiotic-metabolizing apparatus and antioxidant defenses, was investigated in Sprague-Dawley rat liver. TBCSE was administered either orally or intraperitoneally, at a dose of 15mg/kg b.w., daily for twenty-one consecutive days, in the absence or presence of exogenous myrosinase, β-thioglucoside glucohydrolase (MYR), to distinguish the effects of intact GLs and ITCs, in the context of the extract. A complex, mild modulation pattern of P450-related monooxygenases was observed, mainly regarding CYP content (up to 36% loss), NADPH cytochrome (P450) c-reductase (up to 26% loss), CYP1A1 (up to 23% loss), but no evident distinctions among the effects of the extracts containing GLs or ITCs, were noted. In contrast, significant inductions of phase-II enzymes (up to 107% for UDP-glucuronosyl-transferase, and up to 36% for glutathione S-transferase) were recorded only where the GLs to ITCs conversion had occurred. A boosting effect on catalase (up to 38%), NAD(P)H:quinone reductase (up to 70%), glutathione reductase and glutathione peroxidase (up to 10%) was also recorded, suggesting an indirect antioxidant capacity of the extracts. Overall, the general phase-I inhibition, together with the up-regulation of detoxifying phase-II and antioxidant enzymes, exerted by the TBCSE supplementation, seem to be in line with the classical chemopreventive theory, but whether the addition of exogenous MYR is relevant, still remains to be

  17. Hepatic Xenobiotic Metabolizing Enzyme Gene Expression ...

    EPA Pesticide Factsheets

    BACKGROUND: Differences in responses to environmental chemicals and drugs between life stages are likely due in part to differences in the expression of xenobiotic metabolizing enzymes and transporters (XMETs). No comprehensive analysis of the mRNA expression of XMETs has been carried out through life stages in any species. RESULTS: Using full-genome arrays, the mRNA expression of all XMETs and their regulatory proteins was examined during fetal (gestation day (GD) 19), neonatal (postnatal day (PND) 7), prepubescent (PND32), middle age (12 months), and old age (18 and 24 months) in the C57BL/6J (C57) mouse liver and compared to adults. Fetal and neonatal life stages exhibited dramatic differences in XMET mRNA expression compared to the relatively minor effects of old age. The total number of XMET probe sets that differed from adults was 636, 500, 84, 5, 43, and 102 for GD19, PND7, PND32, 12 months, 18 months and 24 months, respectively. At all life stages except PND32, under-expressed genes outnumbered over-expressed genes. The altered XMETs included those in all of the major metabolic and transport phases including introduction of reactive or polar groups (Phase I), conjugation (Phase II) and excretion (Phase III). In the fetus and neonate, parallel increases in expression were noted in the dioxin receptor, Nrf2 components and their regulated genes while nuclear receptors and regulated genes were generally down-regulated. Suppression of male-specific XMETs w

  18. Phase I to II cross-induction of xenobiotic metabolizing enzymes: a feedforward control mechanism for potential hormetic responses.

    PubMed

    Zhang, Qiang; Pi, Jingbo; Woods, Courtney G; Andersen, Melvin E

    2009-06-15

    Hormetic responses to xenobiotic exposure likely occur as a result of overcompensation by the homeostatic control systems operating in biological organisms. However, the mechanisms underlying overcompensation that leads to hormesis are still unclear. A well-known homeostatic circuit in the cell is the gene induction network comprising phase I, II and III metabolizing enzymes, which are responsible for xenobiotic detoxification, and in many cases, bioactivation. By formulating a differential equation-based computational model, we investigated in this study whether hormesis can arise from the operation of this gene/enzyme network. The model consists of two feedback and one feedforward controls. With the phase I negative feedback control, xenobiotic X activates nuclear receptors to induce cytochrome P450 enzyme, which bioactivates X into a reactive metabolite X'. With the phase II negative feedback control, X' activates transcription factor Nrf2 to induce phase II enzymes such as glutathione S-transferase and glutamate cysteine ligase, etc., which participate in a set of reactions that lead to the metabolism of X' into a less toxic conjugate X''. The feedforward control involves phase I to II cross-induction, in which the parent chemical X can also induce phase II enzymes directly through the nuclear receptor and indirectly through transcriptionally upregulating Nrf2. As a result of the active feedforward control, a steady-state hormetic relationship readily arises between the concentrations of the reactive metabolite X' and the extracellular parent chemical X to which the cell is exposed. The shape of dose-response evolves over time from initially monotonically increasing to J-shaped at the final steady state-a temporal sequence consistent with adaptation-mediated hormesis. The magnitude of the hormetic response is enhanced by increases in the feedforward gain, but attenuated by increases in the bioactivation or phase II feedback loop gains. Our study suggests a

  19. Characterization of the Impact of Life Stage on Xenobiotic Metabolizing Enzyme Expression and Gene -Chemical Interactions in the Liver

    EPA Science Inventory

    Differences in responses to environmental chemicals and drugs between life stages are likely due in part to differences in the expression of xenobiotic metabolizing enzymes and transporters (XMETs). We have carried out a comprehensive analysis of the mRNA expression of XMETs thro...

  20. Activity changes of antioxidant and detoxifying enzymes in Tenebrio molitor (Coleoptera: Tenebrionidae) larvae infected by the entomopathogenic nematode Heterorhabditis beicherriana (Rhabditida: Heterorhabditidae).

    PubMed

    Li, Xingyue; Liu, Qizhi; Lewis, Edwin E; Tarasco, Eustachio

    2016-12-01

    Entomopathogenic nematodes (EPNs) of the genera Steinernema and Heterorhabditis are lethal parasites of many insect species. To investigate defensive mechanisms towards EPNs in relation to antioxidative and detoxifying enzymes, we chose Tenebrio molitor (Coleoptera: Tenebrionidae) as experimental insect. We studied the activity changes of superoxide dismutases (SODs), peroxidases (PODs), and catalases (CATs), as well as tyrosinase (TYR), acetylcholinesterase (AChE), carboxylesterase (CarE), and glutathione S-transferase (GSTs) for 40 h in T. molitor larvae infected with Heterorhabditis beicherriana infective juveniles (IJs) at 5 rates (0, 20, 40, 80, and 160 IJs/larva). We found that when T. molitor larvae infected with H. beicherriana at higher rates (80 and 160 IJs/larva), SOD activity quickly increased to more than 70 % higher than that control levels. The activities of POD and CAT increased after 24 h. TYR activity increased slowly at lower rates of infection for 16 h, followed by a slight decrease, and then increasing from 32 to 40 h. The other detoxifying enzymes (GST, CarE, and AChE) were enhanced at lower infection rates, but were inhibited at higher rates. Our results suggested that host antioxidative response and detoxification reactions played a central role in the defensive reaction to EPNs, and that this stress which was reflected by the higher level enzymes activity contributed to the death of hosts. Further study should explore the exact function of these enzymes using different species of EPNs and investigate the links between enzyme activity and host susceptibility to EPNs.

  1. Xenobiotic Metabolizing Enzyme and Transporter Gene Expression in Primary Cultures of Human Hepatocytes Modulated by ToxCast Chemicals

    EPA Science Inventory

    ToxCast chemicals were assessed for induction or suppression of xenobiotic metabolizing enzyme and transporter gene expression using primary human hepatocytes. The mRNA levels of 14 target and 2 control genes were measured: ABCB1, ABCB11, ABCG2, SLCO1B1, CYP1A1, CYP1A2, CYP2B6, C...

  2. Aldo-keto reductase enzymes detoxify glyphosate and improve herbicide resistance in plants.

    PubMed

    Vemanna, Ramu S; Vennapusa, Amaranatha Reddy; Easwaran, Murugesh; Chandrashekar, Babitha K; Rao, Hanumantha; Ghanti, Kirankumar; Sudhakar, Chinta; Mysore, Kirankumar S; Makarla, Udayakumar

    2017-07-01

    In recent years, concerns about the use of glyphosate-resistant crops have increased because of glyphosate residual levels in plants and development of herbicide-resistant weeds. In spite of identifying glyphosate-detoxifying genes from microorganisms, the plant mechanism to detoxify glyphosate has not been studied. We characterized an aldo-keto reductase gene from Pseudomonas (PsAKR1) and rice (OsAKR1) and showed, by docking studies, both PsAKR1 and OsAKR1 can efficiently bind to glyphosate. Silencing AKR1 homologues in rice and Nicotiana benthamiana or mutation of AKR1 in yeast and Arabidopsis showed increased sensitivity to glyphosate. External application of AKR proteins rescued glyphosate-mediated cucumber seedling growth inhibition. Regeneration of tobacco transgenic lines expressing PsAKR1 or OsAKRI on glyphosate suggests that AKR can be used as selectable marker to develop transgenic crops. PsAKR1- or OsAKRI-expressing tobacco and rice transgenic plants showed improved tolerance to glyphosate with reduced accumulation of shikimic acid without affecting the normal photosynthetic rates. These results suggested that AKR1 when overexpressed detoxifies glyphosate in planta. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  3. Influence of bacterial N-acyl-homoserine lactones on growth parameters, pigments, antioxidative capacities and the xenobiotic phase II detoxification enzymes in barley and yam bean.

    PubMed

    Götz-Rösch, Christine; Sieper, Tina; Fekete, Agnes; Schmitt-Kopplin, Philippe; Hartmann, Anton; Schröder, Peter

    2015-01-01

    Bacteria are able to communicate with each other and sense their environment in a population density dependent mechanism known as quorum sensing (QS). N-acyl-homoserine lactones (AHLs) are the QS signaling compounds of Gram-negative bacteria which are frequent colonizers of rhizospheres. While cross-kingdom signaling and AHL-dependent gene expression in plants has been confirmed, the responses of enzyme activities in the eukaryotic host upon AHLs are unknown. Since AHL are thought to be used as so-called plant boosters or strengthening agents, which might change their resistance toward radiation and/or xenobiotic stress, we have examined the plants' pigment status and their antioxidative and detoxifying capacities upon AHL treatment. Because the yield of a crop plant should not be negatively influenced, we have also checked for growth and root parameters. We investigated the influence of three different AHLs, namely N-hexanoyl- (C6-HSL), N-octanoyl- (C8-HSL), and N-decanoyl- homoserine lactone (C10-HSL) on two agricultural crop plants. The AHL-effects on Hordeum vulgare (L.) as an example of a monocotyledonous crop and on the tropical leguminous crop plant Pachyrhizus erosus (L.) were compared. While plant growth and pigment contents in both plants showed only small responses to the applied AHLs, AHL treatment triggered tissue- and compound-specific changes in the activity of important detoxification enzymes. The activity of dehydroascorbate reductase in barley shoots after C10-HSL treatment for instance increased up to 384% of control plant levels, whereas superoxide dismutase activity in barley roots was decreased down to 23% of control levels upon C6-HSL treatment. Other detoxification enzymes reacted similarly within this range, with interesting clusters of positive or negative answers toward AHL treatment. In general the changes on the enzyme level were more severe in barley than in yam bean which might be due to the different abilities of the plants to

  4. Influence of bacterial N-acyl-homoserine lactones on growth parameters, pigments, antioxidative capacities and the xenobiotic phase II detoxification enzymes in barley and yam bean

    PubMed Central

    Götz-Rösch, Christine; Sieper, Tina; Fekete, Agnes; Schmitt-Kopplin, Philippe; Hartmann, Anton; Schröder, Peter

    2015-01-01

    Bacteria are able to communicate with each other and sense their environment in a population density dependent mechanism known as quorum sensing (QS). N-acyl-homoserine lactones (AHLs) are the QS signaling compounds of Gram-negative bacteria which are frequent colonizers of rhizospheres. While cross-kingdom signaling and AHL-dependent gene expression in plants has been confirmed, the responses of enzyme activities in the eukaryotic host upon AHLs are unknown. Since AHL are thought to be used as so-called plant boosters or strengthening agents, which might change their resistance toward radiation and/or xenobiotic stress, we have examined the plants’ pigment status and their antioxidative and detoxifying capacities upon AHL treatment. Because the yield of a crop plant should not be negatively influenced, we have also checked for growth and root parameters. We investigated the influence of three different AHLs, namely N-hexanoyl- (C6-HSL), N-octanoyl- (C8-HSL), and N-decanoyl- homoserine lactone (C10-HSL) on two agricultural crop plants. The AHL-effects on Hordeum vulgare (L.) as an example of a monocotyledonous crop and on the tropical leguminous crop plant Pachyrhizus erosus (L.) were compared. While plant growth and pigment contents in both plants showed only small responses to the applied AHLs, AHL treatment triggered tissue- and compound-specific changes in the activity of important detoxification enzymes. The activity of dehydroascorbate reductase in barley shoots after C10-HSL treatment for instance increased up to 384% of control plant levels, whereas superoxide dismutase activity in barley roots was decreased down to 23% of control levels upon C6-HSL treatment. Other detoxification enzymes reacted similarly within this range, with interesting clusters of positive or negative answers toward AHL treatment. In general the changes on the enzyme level were more severe in barley than in yam bean which might be due to the different abilities of the plants to

  5. Modulation of Xenobiotic Metabolizing Enzyme and Transporter Gene Expression in Primary Cultures of Human Hepatocytes by ToxCast Chemicals

    EPA Science Inventory

    ToxCast chemicals were assessed for induction or suppression of xenobiotic metabolizing enzyme and transporter gene expression using primary human hepatocytes. The mRNA levels of 14 target and 2 control genes were measured: ABCB1, ABCB11, ABCG2, SLCO1B1, CYP1A1, CYP1A2, CYP2B6, C...

  6. PROXIMAL: a method for Prediction of Xenobiotic Metabolism.

    PubMed

    Yousofshahi, Mona; Manteiga, Sara; Wu, Charmian; Lee, Kyongbum; Hassoun, Soha

    2015-12-22

    Contamination of the environment with bioactive chemicals has emerged as a potential public health risk. These substances that may cause distress or disease in humans can be found in air, water and food supplies. An open question is whether these chemicals transform into potentially more active or toxic derivatives via xenobiotic metabolizing enzymes expressed in the body. We present a new prediction tool, which we call PROXIMAL (Prediction of Xenobiotic Metabolism) for identifying possible transformation products of xenobiotic chemicals in the liver. Using reaction data from DrugBank and KEGG, PROXIMAL builds look-up tables that catalog the sites and types of structural modifications performed by Phase I and Phase II enzymes. Given a compound of interest, PROXIMAL searches for substructures that match the sites cataloged in the look-up tables, applies the corresponding modifications to generate a panel of possible transformation products, and ranks the products based on the activity and abundance of the enzymes involved. PROXIMAL generates transformations that are specific for the chemical of interest by analyzing the chemical's substructures. We evaluate the accuracy of PROXIMAL's predictions through case studies on two environmental chemicals with suspected endocrine disrupting activity, bisphenol A (BPA) and 4-chlorobiphenyl (PCB3). Comparisons with published reports confirm 5 out of 7 and 17 out of 26 of the predicted derivatives for BPA and PCB3, respectively. We also compare biotransformation predictions generated by PROXIMAL with those generated by METEOR and Metaprint2D-react, two other prediction tools. PROXIMAL can predict transformations of chemicals that contain substructures recognizable by human liver enzymes. It also has the ability to rank the predicted metabolites based on the activity and abundance of enzymes involved in xenobiotic transformation.

  7. Xenobiotics and the Glucocorticoid Receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulliver, Linda S M, E-mail: linda.gulliver@otago.

    Glucocorticoid Receptor (GR) is present in virtually every human cell type. Representing a nuclear receptor superfamily, GR has several different isoforms essentially acting as ligand-dependent transcription factors, regulating glucocorticoid-responsive gene expression in both a positive and a negative manner. Although the natural ligand of the Glucocorticoid Receptor, glucocorticoids (GC) represent only some of the multiple ligands for GR. Xenobiotics, ubiquitous in the environment, bind to GR and are also capable of activating or repressing GR gene expression, thereby modulating GR cell and tissue-specific downstream effects in a multitude of ways that include responses to inflammatory, allergic, metabolic, neoplastic and autoimmunemore » processes. Many xenobiotics, if inadequately metabolized by xenobiotic metabolizing enzymes and not wholly eliminated, could have deleterious toxic effects with potentially lethal consequences. This review examines GR, the genomic and non-genomic actions of natural and synthetic GC and the body's handling of xenobiotic compounds, before reviewing what is presently known about GR's interactions with many of the more commonly encountered and some of the less well known GR-associated xenobiotics. GR promiscuity and crosstalk with other signaling pathways is discussed, alongside novel roles for GR that include mood disorder and addiction. A knowledge of GR interactions with xenobiotics is increasingly relevant when considering aging populations and the related prevalence of neoplastic disease, together with growing concerns around human exposure to mixtures of chemicals in the environment. Furthermore, escalating rates of obesity, Type 2 diabetes; autoimmune, allergy, addiction and mood disorder-related pathologies, require novel targeted interventions and GR appears a promising pharmacological candidate. - Highlights: • Biological impact of xenobiotics acting through Glucocorticoid Receptor. • Promiscuity of Glucocorticoid

  8. Activity of xenobiotic-metabolizing enzymes in the liver of rats with multi-vitamin deficiency.

    PubMed

    Tutelyan, Victor A; Kravchenko, Lidia V; Aksenov, Ilya V; Trusov, Nikita V; Guseva, Galina V; Kodentsova, Vera M; Vrzhesinskaya, Oksana A; Beketova, Nina A

    2013-01-01

    The purpose of the study was to determine how multi-vitamin deficiency affects xenobiotic-metabolizing enzyme (XME) activities in the rat liver. Vitamin levels and XME activities were studied in the livers of male Wistar rats who were fed for 4 weeks with semi-synthetic diets containing either adequate (100 % of recommended vitamin intake) levels of vitamins (control), or decreased vitamin levels (50 % or 20 % of recommended vitamin intake). The study results have shown that moderate vitamin deficiency (50 %) leads to a decrease of vitamin A levels only, and to a slight increase, as compared with the control, in the following enzyme activities: methoxyresorufin O-dealkylase (MROD) activity of CYP1 A2 - by 34 % (p < 0.05), UDP-glucuronosyl transferase - by 26 % (p < 0.05), and quinone reductase - by 55 % (p < 0.05). Profound vitamin deficiency (20 %) led to a decrease of vitamins A, E, B1, B2, and C, and enzyme activities in the liver: MROD - to 78 % of the control level (p < 0.05), 4-nitrophenol hydroxylase - to 74 % (p < 0.05), heme oxygenase-1 - to 83 % (p < 0.05), and quinone reductase - to 60 % (p < 0.05). At the same time, the UDP-glucuronosyl transferase activity and ethoxyresorufin O-dealkylase activity of CYP1A1, pentoxyresorufin O-dealkylase activity of CYP2B1/2 and 6β-testosterone hydroxylase, as well as the total activity of glutathione transferase did not differ from the control levels. The study has demonstrated that profound multi-vitamin deficiency is associated with a decrease in the expression of CYP1A2 and CYP3A1 mRNAs to 62 % and 79 %, respectively. These data indicated that a short-term but profound multi-vitamin deficiency in rats leads to a decrease in the activities and expression of the some XME that play an important role in detoxification of xenobiotics and metabolism of drugs and antioxidant protection.

  9. Ecologically Appropriate Xenobiotics Induce Cytochrome P450s in Apis mellifera

    PubMed Central

    Johnson, Reed M.; Mao, Wenfu; Pollock, Henry S.; Niu, Guodong; Schuler, Mary A.; Berenbaum, May R.

    2012-01-01

    Background Honey bees are exposed to phytochemicals through the nectar, pollen and propolis consumed to sustain the colony. They may also encounter mycotoxins produced by Aspergillus fungi infesting pollen in beebread. Moreover, bees are exposed to agricultural pesticides, particularly in-hive acaricides used against the parasite Varroa destructor. They cope with these and other xenobiotics primarily through enzymatic detoxificative processes, but the regulation of detoxificative enzymes in honey bees remains largely unexplored. Methodology/Principal Findings We used several approaches to ascertain effects of dietary toxins on bee susceptibility to synthetic and natural xenobiotics, including the acaricide tau-fluvalinate, the agricultural pesticide imidacloprid, and the naturally occurring mycotoxin aflatoxin. We administered potential inducers of cytochrome P450 enzymes, the principal biochemical system for Phase 1 detoxification in insects, to investigate how detoxification is regulated. The drug phenobarbital induces P450s in many insects, yet feeding bees with phenobarbital had no effect on the toxicity of tau-fluvalinate, a pesticide known to be detoxified by bee P450s. Similarly, no P450 induction, as measured by tau-fluvalinate tolerance, occurred in bees fed xanthotoxin, salicylic acid, or indole-3-carbinol, all of which induce P450s in other insects. Only quercetin, a common pollen and honey constituent, reduced tau-fluvalinate toxicity. In microarray comparisons no change in detoxificative gene expression was detected in phenobarbital-treated bees. However, northern blot analyses of guts of bees fed extracts of honey, pollen and propolis showed elevated expression of three CYP6AS P450 genes. Diet did not influence tau-fluvalinate or imidacloprid toxicity in bioassays; however, aflatoxin toxicity was higher in bees consuming sucrose or high-fructose corn syrup than in bees consuming honey. Conclusions/Significance These results suggest that regulation of

  10. Impact of environmental exposures on ovarian function and role of xenobiotic metabolism during ovotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharya, Poulomi; Keating, Aileen F., E-mail: akeating@iastate.edu

    2012-06-15

    The mammalian ovary is a heterogeneous organ and contains oocyte-containing follicles at varying stages of development. The most immature follicular stage, the primordial follicle, comprises the ovarian reserve and is a finite number, defined at the time of birth. Depletion of all follicles within the ovary leads to reproductive senescence, known as menopause. A number of chemical classes can destroy follicles, thus hastening entry into the menopausal state. The ovarian response to chemical exposure can determine the extent of ovotoxicity that occurs. Enzymes capable of bioactivating as well as detoxifying xenobiotics are expressed in the ovary and their impact onmore » ovotoxicity has been partially characterized for trichloroethylene, 7,12-dimethylbenz[a]anthracene, and 4-vinylcyclohexene. This review will discuss those studies, as well as illustrate where knowledge gaps remain for chemicals that have also been established as ovotoxicants. -- Highlights: ► Summary of ovotoxicant action during ovotoxicity. ► Discussion of impact of biotransformation on chemical toxicity. ► Identification of knowledge gaps in chemical metabolism.« less

  11. Computer-aided prediction of xenobiotic metabolism in the human body

    NASA Astrophysics Data System (ADS)

    Bezhentsev, V. M.; Tarasova, O. A.; Dmitriev, A. V.; Rudik, A. V.; Lagunin, A. A.; Filimonov, D. A.; Poroikov, V. V.

    2016-08-01

    The review describes the major databases containing information about the metabolism of xenobiotics, including data on drug metabolism, metabolic enzymes, schemes of biotransformation and the structures of some substrates and metabolites. Computational approaches used to predict the interaction of xenobiotics with metabolic enzymes, prediction of metabolic sites in the molecule, generation of structures of potential metabolites for subsequent evaluation of their properties are considered. The advantages and limitations of various computational methods for metabolism prediction and the prospects for their applications to improve the safety and efficacy of new drugs are discussed. Bibliography — 165 references.

  12. Xenobiotic-metabolizing enzymes in Bacillus anthracis: molecular and functional analysis of a truncated arylamine N-acetyltransferase isozyme.

    PubMed

    Kubiak, Xavier; Duval, Romain; Pluvinage, Benjamin; Chaffotte, Alain F; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2017-07-01

    The arylamine N-acetyltransferases (NATs) are xenobiotic-metabolizing enzymes that play an important role in the detoxification and/or bioactivation of arylamine drugs and xenobiotics. In bacteria, NATs may contribute to the resistance against antibiotics such as isoniazid or sulfamides through their acetylation, which makes this enzyme family a possible drug target. Bacillus anthracis, a bacterial species of clinical significance, expresses three NAT isozymes with distinct structural and enzymatic properties, including an inactive isozyme ((BACAN)NAT3). (BACAN)NAT3 features both a non-canonical Glu residue in its catalytic triad and a truncated C-terminus domain. However, the role these unusual characteristics play in the lack of activity of the (BACAN)NAT3 isozyme remains unclear. Protein engineering, recombinant expression, enzymatic analyses with aromatic amine substrates and phylogenetic analysis approaches were conducted. The deletion of guanine 580 (G580) in the nat3 gene was shown to be responsible for the expression of a truncated (BACAN)NAT3 isozyme. Artificial re-introduction of G580 in the nat3 gene led to a functional enzyme able to acetylate several arylamine drugs displaying structural characteristics comparable with its functional Bacillus cereus homologue ((BACCR)NAT3). Phylogenetic analysis of the nat3 gene in the B. cereus group further indicated that nat3 may constitute a pseudogene of the B. anthracis species. The existence of NATs with distinct properties and evolution in Bacillus species may account for their adaptation to their diverse chemical environments. A better understanding of these isozymes is of importance for their possible use as drug targets. This article is part of a themed section on Drug Metabolism and Antibiotic Resistance in Micro-organisms. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.14/issuetoc. © 2016 The British Pharmacological Society.

  13. Bardoxolone methyl modulates efflux transporter and detoxifying enzyme expression in cisplatin-induced kidney cell injury.

    PubMed

    Atilano-Roque, Amandla; Aleksunes, Lauren M; Joy, Melanie S

    2016-09-30

    Cisplatin is prescribed for the treatment of solid tumors and elicits toxicity to kidney tubules, which limits its clinical use. Nuclear factor erythroid 2-related factor 2 (Nrf2, NFE2L2) is a critical transcription factor that has been shown to protect against kidney injury through activation of antioxidant mechanisms. We aimed to evaluate the ability of short-term treatment with the Nrf2 activator bardoxolone methyl (CDDO-Me) to protect against cisplatin-induced kidney cell toxicity. Cell viability was assessed in human kidney proximal tubule epithelial cells (hPTCs) exposed to low, intermediate, and high cisplatin concentrations in the presence and absence of CDDO-Me, administered either prior to or after cisplatin. Treatment with cisplatin alone resulted in reductions in hPTC viability, while CDDO-Me administered prior to or after cisplatin exposure yielded significantly higher cell viability (17%-71%). Gene regulation (mRNA expression) studies revealed the ability of CDDO-Me to modify protective pathways including Nrf2 induced detoxifying genes [GCLC (increased 1.9-fold), NQO1 (increased 9.3-fold)], and an efflux transporter [SLC47A1 (increased 4.5-fold)] at 12h. Protein assessments were in agreement with gene expression. Immunofluorescence revealed localization of GCLC and NQO1 to the nucleus and cytosol, respectively, with CDDO-Me administered prior to or after cisplatin exposure. The findings of enhanced cell viability and increased expression of detoxifying enzymes (GCLC and NQO1) and the multidrug and toxin extrusion protein 1 (MATE1) efflux transporter (SLC47A1) in hPTCs exposed to CDDO-Me, suggest that intermittent treatment with CDDO-Me prior to or after cisplatin exposure may be a promising approach to mitigate acute kidney injury. Copyright © 2016. Published by Elsevier Ireland Ltd.

  14. Effects of Sublethal Exposure to a Glyphosate-Based Herbicide Formulation on Metabolic Activities of Different Xenobiotic-Metabolizing Enzymes in Rats.

    PubMed

    Larsen, Karen; Najle, Roberto; Lifschitz, Adrián; Maté, María L; Lanusse, Carlos; Virkel, Guillermo L

    2014-07-01

    The activities of different xenobiotic-metabolizing enzymes in liver subcellular fractions from Wistar rats exposed to a glyphosate (GLP)-based herbicide (Roundup full II) were evaluated in this work. Exposure to the herbicide triggered protective mechanisms against oxidative stress (increased glutathione peroxidase activity and total glutathione levels). Liver microsomes from both male and female rats exposed to the herbicide had lower (45%-54%, P < 0.01) hepatic cytochrome P450 (CYP) levels compared to their respective control animals. In female rats, the hepatic 7-ethoxycoumarin O-deethylase (a general CYP-dependent enzyme activity) was 57% higher (P < 0.05) in herbicide-exposed compared to control animals. Conversely, this enzyme activity was 58% lower (P < 0.05) in male rats receiving the herbicide. Lower (P < 0.05) 7-ethoxyresorufin O-deethlyase (EROD, CYP1A1/2 dependent) and oleandomycin triacetate (TAO) N-demethylase (CYP3A dependent) enzyme activities were observed in liver microsomes from exposed male rats. Conversely, in females receiving the herbicide, EROD increased (123%-168%, P < 0.05), whereas TAO N-demethylase did not change. A higher (158%-179%, P < 0.01) benzyloxyresorufin O-debenzylase (a CYP2B-dependent enzyme activity) activity was only observed in herbicide-exposed female rats. In herbicide-exposed rats, the hepatic S-oxidation of methimazole (flavin monooxygenase dependent) was 49% to 62% lower (P < 0.001), whereas the carbonyl reduction of menadione (a cytosolic carbonyl reductase-dependent activity) was higher (P < 0.05). Exposure to the herbicide had no effects on enzymatic activities dependent on carboxylesterases, glutathione transferases, and uridinediphospho-glucuronosyltransferases. This research demonstrated certain biochemical modifications after exposure to a GLP-based herbicide. Such modifications may affect the metabolic fate of different endobiotic and xenobiotic substances. The pharmacotoxicological significance of these

  15. The activity of detoxifying enzymes in the infective juveniles of Heterorhabditis bacteriophora strains: Purification and characterization of two acetylcholinesterases.

    PubMed

    Mohamed, Magda A; Mahdy, El-Sayed M E; Ghazy, Abd-El-Hady M; Ibrahim, Nihal M; El-Mezayen, Hatem A; Ghanem, Manal M E

    2016-02-01

    The infectivity and detoxifying enzyme activities including glutathione-S-transferase (GST), acetylcholinesterase (AChE) and carboxylesterase (CaE) are investigated in the infective juveniles (IJs) of six different strains of Heterorhabditis bacteriophora as a biocontrol agent against insect pests. The specific activities ranged from 10.8-29.8 and 50-220units/mg protein for GST and AChE, respectively; and from 24.7-129 and 22.6-77.3units/mg protein for CaE as estimated by P-nitrophenyl and α-naphthyl acetates, respectively. H. bacteriophora EM2 strain has the highest infectivity and the highest enzymatic activities as well. AChE is the predominant detoxifying enzyme that might imply its major role in the detoxification of insecticide(s). The isoenzyme pattern demonstrated two major slow-moving isoforms in all EPN strains examined. Purification of two AChE isoforms, AChEAII and AChEBI, from H. bacteriophora EM2 strain is performed by ammonium sulfate precipitation, gel filtration on Sephacryl S-200 and chromatography on DEAE-Sepharose. AChEAII and AChEBII have specific activities of 1207 and 1560unit/mg protein, native molecular weights of 180 and 68kDa, and are found in dimeric and monomeric forms, respectively. Both isoforms showed optimum activity at pH8.5 and 35°C. AChEBI exhibited higher thermal stability and higher activation energy than AChEAII. The enzymatic activities of purified AChEs are completely inhibited by Hg(+2) and Ni(+2) and greatly enhanced by Mn(+2). The substrate specificity, the relative efficiency of substrates hydrolysis, substrate inhibition and inhibition by BW284C51, but not by iso-OMPA, clearly indicated that they are true AChEs; their properties are compared with those recorded for insects as target hosts for H. bacteriophora EM2. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. GENE EXPRESSION PROFILING IN AGING RATS AND MICE REVEALS CHANGES IN XENOBIOTIC METABOLISM GENES

    EPA Science Inventory

    Detoxification and elimination of xenobiotics are major functions of the liver and is important in maintaining the metabolic homeostasis of the organism. The degree to which aging affects hepatic metabolism is not known. The expression of xenobiotic metabolizing enzymes (XMEs), i...

  17. Molecular, cellular, and tissue impact of depleted uranium on xenobiotic-metabolizing enzymes.

    PubMed

    Gueguen, Yann; Rouas, Caroline; Monin, Audrey; Manens, Line; Stefani, Johanna; Delissen, Olivia; Grison, Stéphane; Dublineau, Isabelle

    2014-02-01

    Enzymes that metabolize xenobiotics (XME) are well recognized in experimental models as representative indicators of organ detoxification functions and of exposure to toxicants. As several in vivo studies have shown, uranium can alter XME in the rat liver or kidneys after either acute or chronic exposure. To determine how length or level of exposure affects these changes in XME, we continued our investigation of chronic rat exposure to depleted uranium (DU, uranyl nitrate). The first study examined the effect of duration (1-18 months) of chronic exposure to DU, the second evaluated dose dependence, from a level close to that found in the environment near mining sites (0.2 mg/L) to a supra-environmental dose (120 mg/L, 10 times the highest level naturally found in the environment), and the third was an in vitro assessment of whether DU exposure directly affects XME and, in particular, CYP3A. The experimental in vivo models used here demonstrated that CYP3A is the enzyme modified to the greatest extent: high gene expression changed after 6 and 9 months. The most substantial effects were observed in the liver of rats after 9 months of exposure to 120 mg/L of DU: CYP3A gene and protein expression and enzyme activity all decreased by more than 40 %. Nonetheless, no direct effect of DU by itself was observed after in vitro exposure of rat microsomal preparations, HepG2 cells, or human primary hepatocytes. Overall, these results probably indicate the occurrence of regulatory or adaptive mechanisms that could explain the indirect effect observed in vivo after chronic exposure.

  18. Current knowledge of detoxification mechanisms of xenobiotic in honey bees.

    PubMed

    Gong, Youhui; Diao, Qingyun

    2017-01-01

    The western honey bee Apis mellifera is the most important managed pollinator species in the world. Multiple factors have been implicated as potential causes or factors contributing to colony collapse disorder, including honey bee pathogens and nutritional deficiencies as well as exposure to pesticides. Honey bees' genome is characterized by a paucity of genes associated with detoxification, which makes them vulnerable to specific pesticides, especially to combinations of pesticides in real field environments. Many studies have investigated the mechanisms involved in detoxification of xenobiotics/pesticides in honey bees, from primal enzyme assays or toxicity bioassays to characterization of transcript gene expression and protein expression in response to xenobiotics/insecticides by using a global transcriptomic or proteomic approach, and even to functional characterizations. The global transcriptomic and proteomic approach allowed us to learn that detoxification mechanisms in honey bees involve multiple genes and pathways along with changes in energy metabolism and cellular stress response. P450 genes, is highly implicated in the direct detoxification of xenobiotics/insecticides in honey bees and their expression can be regulated by honey/pollen constitutes, resulting in the tolerance of honey bees to other xenobiotics or insecticides. P450s is also a key detoxification enzyme that mediate synergism interaction between acaricides/insecticides and fungicides through inhibition P450 activity by fungicides or competition for detoxification enzymes between acaricides. With the wide use of insecticides in agriculture, understanding the detoxification mechanism of insecticides in honey bees and how honeybees fight with the xenobiotis or insecticides to survive in the changing environment will finally benefit honeybees' management.

  19. Transcriptional regulation of xenobiotic detoxification in Drosophila

    PubMed Central

    Misra, Jyoti R.; Horner, Michael A.; Lam, Geanette; Thummel, Carl S.

    2011-01-01

    Living organisms, from bacteria to humans, display a coordinated transcriptional response to xenobiotic exposure, inducing enzymes and transporters that facilitate detoxification. Several transcription factors have been identified in vertebrates that contribute to this regulatory response. In contrast, little is known about this pathway in insects. Here we show that the Drosophila Nrf2 (NF-E2-related factor 2) ortholog CncC (cap ‘n’ collar isoform-C) is a central regulator of xenobiotic detoxification responses. A binding site for CncC and its heterodimer partner Maf (muscle aponeurosis fibromatosis) is sufficient and necessary for robust transcriptional responses to three xenobiotic compounds: phenobarbital (PB), chlorpromazine, and caffeine. Genetic manipulations that alter the levels of CncC or its negative regulator, Keap1 (Kelch-like ECH-associated protein 1), lead to predictable changes in xenobiotic-inducible gene expression. Transcriptional profiling studies reveal that more than half of the genes regulated by PB are also controlled by CncC. Consistent with these effects on detoxification gene expression, activation of the CncC/Keap1 pathway in Drosophila is sufficient to confer resistance to the lethal effects of the pesticide malathion. These studies establish a molecular mechanism for the regulation of xenobiotic detoxification in Drosophila and have implications for controlling insect populations and the spread of insect-borne human diseases. PMID:21896655

  20. Xenobiotic/medium chain fatty acid: CoA ligase - a critical review on its role in fatty acid metabolism and the detoxification of benzoic acid and aspirin.

    PubMed

    van der Sluis, Rencia; Erasmus, Elardus

    2016-10-01

    Activation of fatty acids by the acyl-CoA synthetases (ACSs) is the vital first step in fatty acid metabolism. The enzymatic and physiological characterization of the human xenobiotic/medium chain fatty acid: CoA ligases (ACSMs) has been severely neglected even though xenobiotics, such as benzoate and salicylate, are detoxified through this pathway. This review will focus on the nomenclature and substrate specificity of the human ACSM ligases; the biochemical and enzymatic characterization of ACSM1 and ACSM2B; the high sequence homology of the ACSM2 genes (ACSM2A and ACSM2B) as well as what is currently known regarding disease association studies. Several discrepancies exist in the current literature that should be taken note of. For example, the single nucleotide polymorphisms (SNPs) reported to be associated with aspirin metabolism and multiple risk factors of metabolic syndrome are incorrect. Kinetic data on the substrate specificity of the human ACSM ligases are non-existent and currently no data exist on the influence of SNPs on the enzyme activity of these ligases. One of the biggest obstacles currently in the field is that glycine conjugation is continuously studied as a one-step process, which means that key regulatory factors of the two individual steps remain unknown.

  1. Laccase enzyme detoxifies hydrolysates and improves biogas production from hemp straw and miscanthus.

    PubMed

    Schroyen, Michel; Van Hulle, Stijn W H; Holemans, Sander; Vervaeren, Han; Raes, Katleen

    2017-11-01

    The impact of various phenolic compounds, vanillic acid, ferulic acid, p-coumaric acid and 4-hydroxybenzoic acid on anaerobic digestion of lignocellulosic biomass (hemp straw and miscanthus) was studied. Such phenolic compounds have been known to inhibit biogas production during anaerobic digestion. The different phenolic compounds were added in various concentrations: 0, 100, 500, 1000 and 2000mg/L. A difference in inhibition of biomethane production between the phenolic compounds was noted. Hydrolysis rate, during anaerobic digestion of miscanthus was inhibited up to 50% by vanillic acid, while vanillic acid had no influence on the initial rate of biogas production during the anaerobic digestion of hemp straw. Miscanthus has a higher lignin concentration (12-30g/100gDM) making it less accessible for degradation, and in combination with phenolic compounds released after harsh pretreatments, it can cause severe inhibition levels during the anaerobic digestion, lowering biogas production. To counter the inhibition, lignin degrading enzymes can be used to remove or degrade the inhibitory phenolic compounds. The interaction of laccase and versatile peroxidase individually with the different phenolic compounds was studied to have insight in the polymerization of inhibitory compounds or breakdown of lignocellulose. Hemp straw and miscanthus were incubated with 0, 100 and 500mg/L of the different phenolic compounds for 0, 6 and 24h and pretreated with the lignin degrading enzymes. A laccase pretreatment successfully detoxified the substrate, while versatile peroxidase however was inhibited by 100mg/L of each of the individual phenolic compounds. Finally a combination of enzymatic detoxification and subsequent biogas production showed that a decrease in phenolic compounds by laccase treatment can considerably lower the inhibition levels of the biogas production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Cytotoxic effects and aromatase inhibition by xenobiotic endocrine disrupters alone and in combination.

    PubMed

    Benachour, Nora; Moslemi, Safa; Sipahutar, Herbert; Seralini, Gilles-Eric

    2007-07-15

    Xenobiotics may cause long-term adverse effects in humans, especially at the embryonic level, raising questions about their levels of exposure, combined effects, and crucial endpoints. We are interested in the possible interactions between xenobiotic endocrine disrupters, cellular viability and androgen metabolism. Accordingly, we tested aroclor 1254 (A1254), atrazine (AZ), o,p'-DDT, vinclozolin (VZ), p,p'-DDE, bisphenol A (BPA), chlordecone (CD), nonylphenol (NP), tributylin oxide (TBTO), and diethylstilbestrol (DES) for cellular toxicity against human embryonic 293 cells, and activity against cellular aromatase, but also on placental microsomes and on the purified equine enzyme. Cellular viability was affected in 24 h by all the xenobiotics with a threshold at 50 microM (except for TBTO and DES, 10 microM threshold), and aromatase was inhibited at non-toxic doses. In combination synergism was observed reducing the threshold values of toxicity to 4-10 microM, and aromatase activity by 50% in some cases. In placental microsomes the most active xenobiotics rapidly inhibited microsomal aromatase in a manner independent of NADPH metabolism. Prolonged exposures to low doses in cells generally amplified by 50 times aromatase inhibition. These xenobiotics may act by inhibition of the active site or by allosteric effects on the enzyme. Bioaccumulation is a feature of some xenobiotics, especially chlordecone, DDT and DDE, and low level chronic exposures can also affect cell signaling mechanisms. This new information about the mechanism of action of these xenobiotics will assist in improved molecular design with a view to providing safer compounds for use in the (human) environment.

  3. Protective effect of Tuscan black cabbage sprout extract against serum lipid increase and perturbations of liver antioxidant and detoxifying enzymes in rats fed a high-fat diet.

    PubMed

    Melega, S; Canistro, D; De Nicola, G R; Lazzeri, L; Sapone, A; Paolini, M

    2013-09-28

    A diet rich in fat is considered a primary risk factor for CVD, cancer and failures in metabolism and endocrine functions. Hyperlipidaemia generates oxidative stress and weakens antioxidant defences as well as metabolic detoxification systems. Brassicaceae are vegetables rich in glucosinolates and isothiocyanates, affecting enzymatic antioxidant as well as phase II enzymes and conceivably counteracting high-fat diet (HFD)-associated pathologies. The protective role of Tuscan black cabbage (a variety of kale) sprout extract (TBCSE) intake against HFD alterations was here studied. The effects on rat hepatic antioxidant as well as detoxifying enzymes, and serum lipid- and body weightlowering properties of TBCSE, were investigated. Feeding the animals with a HFD for 21 d increased body as well as liver weights, and induced hyperlipidaemia, as confirmed by a higher serum lipid profile v. control diet. Daily intragastric administration of TBCSE to HFD-fed rats lowered serum total cholesterol, TAG and NEFA. Body and liver weight gains were also reduced. Antioxidant (catalase, NAD(P)H:quinone reductase, oxidised glutathione reductase and superoxide dismutase) and phase II (glutathione S-transferase and uridine diphosphate glucuronosyl transferase) enzymes were down-regulated by the HFD, while the extract restored normal levels in most groups. Generation of toxic intermediates, and membrane fatty acid composition changes by the HFD, might account for the altered hepatic antioxidant and detoxifying enzyme functions. The recovering effects of TBCSE could be attributed to high flavonoid, phenolic and organosulphur compound content, which possess free-radical-scavenging properties, enhance the antioxidant status and stimulate lipid catabolism. TBCSE intake emerges to be an effective alimentary strategy to counteract the perturbations associated with a diet rich in fat.

  4. Fermented wheat powder induces the antioxidant and detoxifying system in primary rat hepatocytes.

    PubMed

    La Marca, Margherita; Beffy, Pascale; Pugliese, Annalisa; Longo, Vincenzo

    2013-01-01

    Many plants exhibit antioxidant properties which may be useful in the prevention of oxidative stress reactions, such as those mediated by the formation of free radical species in different pathological situations. In recent years a number of studies have shown that whole grain products in particular have strong antioxidant activity. Primary cultures of rat hepatocytes were used to investigate whether and how a fermented powder of wheat (Lisosan G) is able to modulate antioxidant and detoxifying enzymes, and whether or not it can activate Nrf2 transcription factor or inhibit NF-kB activation. All of the antioxidant and detoxifying enzymes studied were significantly up-regulated by 0.7 mg/ml Lisosan G treatment. In particular, quinone oxidoreductase and heme oxygenase-1 were induced, although to different degrees, at the transcriptional, protein and/or activity levels by the treatment. As for the Nrf2 transcription factor, a partial translocation of its protein from the cytosol to the nucleus after 1 h of Lisosan G treatment was revealed by immunoblotting. Lisosan G was also observed to decrease H2O2-induced toxicity Taken together, these results show that this powder of wheat is an effective inducer of ARE/Nrf2-regulated antioxidant and detoxifying genes and has the potential to inhibit the translocation of NF-kB into the nucleus.

  5. Maternal drug abuse and human term placental xenobiotic and steroid metabolizing enzymes in vitro.

    PubMed

    Paakki, P; Stockmann, H; Kantola, M; Wagner, P; Lauper, U; Huch, R; Elovaara, E; Kirkinen, P; Pasanen, M

    2000-02-01

    We evaluated the impact of maternal drug abuse at term on human placental cytochrome P450 (CYP)-mediated (Phase I) xenobiotic and steroid-metabolizing activities [aromatase, 7-ethoxyresorufin O-deethylase (EROD), 7-ethoxycoumarin O-deethylase (ECOD), pyrene 1-hydroxylase (P1OH), and testosterone hydroxylase], and androstenedione-forming isomerase, NADPH quinone oxidoreductase (Phase II), UDP-glucuronosyltransferase (UGT), and glutathione S-transferase (GST) activities in vitro. Overall, the formation of androstenedione, P1OH, and testosterone hydroxylase was statistically significant between control and drug-abusing subjects; we observed no significant differences in any other of the phase I and II activities. In placentas from drug-abusing mothers, we found significant correlations between ECOD and P1OH activities (p < 0. 001), but not between ECOD and aromatase or P1OH and EROD activities; we also found significant correlations between blood cotinine and UGT activities (p < 0.01). In contrast, in controls (mothers who did not abuse drugs but did smoke cigarettes), the P1OH activity correlated with ECOD, EROD (p < 0.001), and testosterone hydroxylase (p < 0.001) activities. Our results (wider variation in ECOD activity among tissue from drug-abusing mothers and the significant correlation between P1OH and ECOD activities, but not with aromatase or EROD activities) indicate that maternal drug abuse results in an additive effect in enhancing placental xenobiotic metabolizing enzymes when the mother also smokes cigarettes; this may be due to enhancing a "silent" CYP form, or a new placental CYP form may be activated. The change in the steroid metabolism profile in vitro suggests that maternal drug abuse may alter normal hormonal homeostasis during pregnancy.

  6. Acetaminophen induces xenobiotic-metabolizing enzymes in rat: Impact of a uranium chronic exposure.

    PubMed

    Rouas, Caroline; Souidi, Maâmar; Grandcolas, Line; Grison, Stephane; Baudelin, Cedric; Gourmelon, Patrick; Pallardy, Marc; Gueguen, Yann

    2009-11-01

    The extensive use of uranium in civilian and military applications increases the risk of human chronic exposure. Uranium is a slightly radioactive heavy metal with a predominantly chemical toxicity, especially in kidney but also in liver. Few studies have previously shown some effects of uranium on xenobiotic-metabolizing enzymes (XME) that might disturb drug pharmacokinetic. The aim of this study was to determine whether a chronic (9 months) non-nephrotoxic low dose exposure to depleted uranium (DU, 1mg/rat/day) could modify the liver XME, using a single non-hepatotoxic acetaminophen (APAP) treatment (50mg/kg). Most of XME analysed were induced by APAP treatment at the gene expression level but at the protein level only CYP3A2 was significantly increased 3h after APAP treatment in DU-exposed rats whereas it remained at a basal level in unexposed rats. In conclusion, these results showed that a chronic non-nephrotoxic DU exposure specially modify CYP3A2 after a single therapeutic APAP treatment. Copyright © 2009 Elsevier B.V. All rights reserved.

  7. Carcinogen-induced mdr overexpression is associated with xenobiotic resistance in rat preneoplastic liver nodules and hepatocellular carcinomas.

    PubMed

    Fairchild, C R; Ivy, S P; Rushmore, T; Lee, G; Koo, P; Goldsmith, M E; Myers, C E; Farber, E; Cowan, K H

    1987-11-01

    We have previously reported the isolation of a human breast cancer cell line resistant to doxorubicin (adriamycin; AdrR MCF-7 cells) that has also developed the phenotype of multidrug resistance (MDR). MDR in this cell line is associated with increased expression of mdr (P glycoprotein) gene sequences. The development of MDR in AdrR MCF-7 cells is also associated with changes in the expression of several phase I and phase II drug-detoxifying enzymes. These changes are remarkably similar to those associated with development of xenobiotic resistance in rat hyperplastic liver nodules, a well-studied model system of chemical carcinogenesis. Using an mdr-encoded cDNA sequence isolated from AdrR MCF-7 cells, we have examined the expression of mdr sequences in rat livers under a variety of experimental conditions. The expression of mdr increased 3-fold in regenerating liver. It was also elevated (3- to 12-fold) in several different samples of rat hyperplastic nodules and in four of five hepatomas that developed in this system. This suggests that overexpression of mdr, a gene previously associated with resistance to antineoplastic agents, may also be involved in the development of resistance to xenobiotics in rat hyperplastic nodules. In addition, although the acute administration of 2-acetylaminofluorene induced an 8-fold increase in hepatic mdr-encoded RNA, performance of a partial hepatectomy either before or after administration of 2-acetylaminofluorene resulted in a greater than 80-fold increase in mdr gene expression over that in normal untreated livers. This represents an important in vivo model system in which to study the acute regulation of this drug resistance gene.

  8. The biochemistry and molecular biology of xenobiotic polymer degradation by microorganisms.

    PubMed

    Kawai, Fusako

    2010-01-01

    Research on microbial degradation of xenobiotic polymers has been underway for more than 40 years. It has exploited a new field not only in applied microbiology but also in environmental microbiology, and has greatly contributed to polymer science by initiating the design of biodegradable polymers. Owing to the development of analytical tools and technology, molecular biological and biochemical advances have made it possible to prospect for degrading microorganisms in the environment and to determine the mechanisms involved in biodegradation when xenobiotic polymers are introduced into the environment and are exposed to microbial attack. In this review, the molecular biological and biochemical aspects of the microbial degradation of xenobiotic polymers are summarized, and possible applications of potent microorganisms, enzymes, and genes in environmental biotechnology are suggested.

  9. Back to the future: transgenerational transmission of xenobiotic-induced epigenetic remodeling

    PubMed Central

    Jiménez-Chillarón, Josep C; Nijland, Mark J; Ascensão, António A; Sardão, Vilma A; Magalhães, José; Hitchler, Michael J; Domann, Frederick E; Oliveira, Paulo J

    2015-01-01

    Epigenetics, or regulation of gene expression independent of DNA sequence, is the missing link between genotype and phenotype. Epigenetic memory, mediated by histone and DNA modifications, is controlled by a set of specialized enzymes, metabolite availability, and signaling pathways. A mostly unstudied subject is how sub-toxic exposure to several xenobiotics during specific developmental stages can alter the epigenome and contribute to the development of disease phenotypes later in life. Furthermore, it has been shown that exposure to low-dose xenobiotics can also result in further epigenetic remodeling in the germ line and contribute to increase disease risk in the next generation (multigenerational and transgenerational effects). We here offer a perspective on current but still incomplete knowledge of xenobiotic-induced epigenetic alterations, and their possible transgenerational transmission. We also propose several molecular mechanisms by which the epigenetic landscape may be altered by environmental xenobiotics and hypothesize how diet and physical activity may counteract epigenetic alterations. PMID:25774863

  10. Spatio-temporal Model of Xenobiotic Distribution and Metabolism in an in Silico Mouse Liver Lobule

    NASA Astrophysics Data System (ADS)

    Fu, Xiao; Sluka, James; Clendenon, Sherry; Glazier, James; Ryan, Jennifer; Dunn, Kenneth; Wang, Zemin; Klaunig, James

    Our study aims to construct a structurally plausible in silico model of a mouse liver lobule to simulate the transport of xenobiotics and the production of their metabolites. We use a physiologically-based model to calculate blood-flow rates in a network of mouse liver sinusoids and simulate transport, uptake and biotransformation of xenobiotics within the in silico lobule. Using our base model, we then explore the effects of variations of compound-specific (diffusion, transport and metabolism) and compound-independent (temporal alteration of blood flow pattern) parameters, and examine their influence on the distribution of xenobiotics and metabolites. Our simulations show that the transport mechanism (diffusive and transporter-mediated) of xenobiotics and blood flow both impact the regional distribution of xenobiotics in a mouse hepatic lobule. Furthermore, differential expression of metabolic enzymes along each sinusoid's portal to central axis, together with differential cellular availability of xenobiotics, induce non-uniform production of metabolites. Thus, the heterogeneity of the biochemical and biophysical properties of xenobiotics, along with the complexity of blood flow, result in different exposures to xenobiotics for hepatocytes at different lobular locations. We acknowledge support from National Institute of Health GM 077138 and GM 111243.

  11. [THE SYSTEM OF XENOBIOTICS BIOTRANSFORMATION OF HELMINTHS. RESEMBLANCE AND DIFFERENSES FROM SIMILAR HOST SYSTEMS (REWEW)].

    PubMed

    Smirnov, L P; Borvinskaya, E V; Suhovskaya, I V

    2016-01-01

    The three phases system xenobiotic biotransformation in cells as prokaryotes as eukaryotes was formed during the process of evolution. Clear and managed function of all three links of this system guarantee the survival of living organisms at alteration of chemical component of environment. Oxidation, reduction or hydrolysis of xenobiotics realize in phase I by insertion or opening reactive and hydrophilic groups in structure of drug molecule. In phase II xenobiotics or their metabolites from phase I conjugate with endogenic compounds, main of there are glutathione, glucuronic acid, amino acids and sulphates. Active transport of substrata, metabolites and conjugates through cell lipid membranes special transport proteins carry out (phase III). The system of xenobiotics biotransformation of helminths has essential differences from the same of vertebrate hosts. In particular, parasites do not reveal the activity of prime oxidases of phase I, such as CYP or FMO, in spite of the genes of these enzymes in DNA. As this phenomenon displays mainly in adult helminths, living in guts of vertebrates, then the hypothesis was formulated that this effect is related with adaptation to conditions of strong deficiency of oxygen, arise in a process of evolution (Kotze et al., 2006). Literature data testify the existence in helminths of unique forms of enzymes of phase II, the investigation of which present doubtless interest in relation with possible role in adaptation to parasitic mode of life. Notwithstanding that many of helminths GST in greater or lesser degree similar with enzymes of M, P, S and О classes of other organisms, nevertheless they have essential structural differences as compared with enzymes of hosts that makes perspective the search of specific anthelminthics vaccines. Transport of xenobiotics is now considered phase III of biotransformation. It was shown that proteins of this phase (ATP binding cassette transporters (ABC ) of parasites) play a key role in efflux

  12. Free Radical Mechanisms of Xenobiotic Mammalian Cytotoxicities

    DTIC Science & Technology

    1991-06-30

    injury process was mediated through biotransformation of the halocarbons to a free radical intermediate, similar to what happens in the liver . However...peroxidation) of antioxidant agents - is not limited to the liver , but also occurs in vascular cells as well. Unlike the liver , where most of the injury is...frequent mechanism of xenobiotic liver toxicity is biotransformation by cytochrome P,5o-enzymes to toxic free radical intermediates. The primary objective

  13. Characterization of xenobiotic metabolizing enzymes of a reconstructed human epidermal model from adult hair follicles.

    PubMed

    Bacqueville, Daniel; Jacques, Carine; Duprat, Laure; Jamin, Emilien L; Guiraud, Beatrice; Perdu, Elisabeth; Bessou-Touya, Sandrine; Zalko, Daniel; Duplan, Hélène

    2017-08-15

    In this study, a comprehensive characterization of xenobiotic metabolizing enzymes (XMEs) based on gene expression and enzyme functionality was made in a reconstructed skin epidermal model derived from the outer root sheath (ORS) of hair follicles (ORS-RHE). The ORS-RHE model XME gene profile was consistent with native human skin. Cytochromes P450 (CYPs) consistently reported to be detected in native human skin were also present at the gene level in the ORS-RHE model. The highest Phase I XME gene expression levels were observed for alcohol/aldehyde dehydrogenases and (carboxyl) esterases. The model was responsive to the CYP inducers, 3-methylcholanthrene (3-MC) and β-naphthoflavone (βNF) after topical and systemic applications, evident at the gene and enzyme activity level. Phase II XME levels were generally higher than those of Phase I XMEs, the highest levels were GSTs and transferases, including NAT1. The presence of functional CYPs, UGTs and SULTs was confirmed by incubating the models with 7-ethoxycoumarin, testosterone, benzo(a)pyrene and 3-MC, all of which were rapidly metabolized within 24h after topical application. The extent of metabolism was dependent on saturable and non-saturable metabolism by the XMEs and on the residence time within the model. In conclusion, the ORS-RHE model expresses a number of Phase I and II XMEs, some of which may be induced by AhR ligands. Functional XME activities were also demonstrated using systemic or topical application routes, supporting their use in cutaneous metabolism studies. Such a reproducible model will be of interest when evaluating the cutaneous metabolism and potential toxicity of innovative dermo-cosmetic ingredients. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Metabolic and redox barriers in the skin exposed to drugs and xenobiotics.

    PubMed

    Korkina, Liudmila

    2016-01-01

    Growing exposure of human skin to environmental and occupational hazards, to numerous skin care/beauty products, and to topical drugs led to a biomedical concern regarding sustainability of cutaneous chemical defence that is essential for protection against intoxication. Since skin is the largest extra-hepatic drug/xenobiotic metabolising organ where redox-dependent metabolic pathways prevail, in this review, publications on metabolic processes leading to redox imbalance (oxidative stress) and its autocrine/endocrine impact to cutaneous drug/xenobiotic metabolism were scrutinised. Chemical and photo-chemical skin barriers contain metabolic and redox compartments: their protective and homeostatic functions. The review will examine the striking similarity of adaptive responses to exogenous chemical/photo-chemical stressors and endogenous toxins in cutaneous metabolic and redox system; the role(s) of xenobiotics/drugs and phase II enzymes in the endogenous antioxidant defence and maintenance of redox balance; redox regulation of interactions between metabolic and inflammatory responses in skin cells; skin diseases sharing metabolic and redox problems (contact dermatitis, lupus erythematosus, and vitiligo) Due to exceptional the redox dependence of cutaneous metabolic pathways and interaction of redox active metabolites/exogenous antioxidants with drug/xenobiotic metabolism, metabolic tests of topical xenobiotics/drugs should be combined with appropriate redox analyses and performed on 3D human skin models.

  15. Solid-water detoxifying reagents for chemical and biological agents

    DOEpatents

    Hoffman, Dennis M [Livermore, CA; Chiu, Ing Lap [Castro Valley, CA

    2006-04-18

    Formation of solid-water detoxifying reagents for chemical and biological agents. Solutions of detoxifying reagent for chemical and biological agents are coated using small quantities of hydrophobic nanoparticles by vigorous agitation or by aerosolization of the solution in the presence of the hydrophobic nanoparticles to form a solid powder. For example, when hydrophobic fumed silica particles are shaken in the presence of IN oxone solution in approximately a 95:5-weight ratio, a dry powder results. The hydrophobic silica forms a porous coating of insoluble fine particles around the solution. Since the chemical or biological agent tends to be hydrophobic on contact with the weakly encapsulated detoxifying solution, the porous coating breaks down and the detoxifying reagent is delivered directly to the chemical or biological agent for maximum concentration at the point of need. The solid-water (coated) detoxifying solutions can be blown into contaminated ventilation ducting or other difficult to reach sites for detoxification of pools of chemical or biological agent. Once the agent has been detoxified, it can be removed by flushing the area with air or other techniques.

  16. Pregnane xenobiotic receptor in cancer pathogenesis and therapeutic response

    PubMed Central

    Pondugula, Satyanarayana R.; Mani, Sridhar

    2012-01-01

    Pregnane xenobiotic receptor (PXR) is an orphan nuclear receptor that regulates the metabolism of endobiotics and xenobiotics. PXR is promiscuous and unique in that it is activated by a diverse group of xenochemicals, including therapeutic anticancer drugs and naturally-occurring endocrine disruptors. PXR has been predominantly studied to understand its regulatory role in xenobiotic clearance in liver and intestine via induction of drug metabolizing enzymes and drug transporters. PXR, however, is widely expressed and has functional implications in other normal and malignant tissues, including breast, prostate, ovary, endometrium and bone. The differential expression of PXR and its target genes in cancer tissues has been suggested to determine the prognosis of chemotherapeutic outcome. In addition, the emerging evidence points to the implications of PXR in regulating apoptotic and antiapoptotic as well as growth factor signaling that promote tumor proliferation and metastasis. In this review, we highlight the recent progress made in understanding the role of PXR in cancer, discuss the future directions to further understand the mechanistic role of PXR in cancer, and conclude with the need to identify novel selective PXR modulators. PMID:22939994

  17. Gene expression analysis and enzyme assay reveal a potential role of the carboxylesterase gene CpCE-1 from Cydia pomonella in detoxification of insecticides.

    PubMed

    Yang, Xue-Qing

    2016-05-01

    Carboxylesterases (CarEs) are responsible for metabolism of xenobiotics including insecticides in insects. Understanding the expression patterns of a such detoxifying gene and effect of insecticides on its enzyme activity are important to clarify the function of this gene relevant to insecticides-detoxifying process, but little information is available in the codling moth Cydia pomonella (L.). In this study, we investigated the expression profiles of CarE gene CpCE-1 at different developmental stages and in different tissues of C. pomonella, as well as the larvae exposed to chlorpyrifos-ethyl and lambda-cyhalothrin by using absolute real-time quantitative PCR (absolute RT-qPCR). Results indicated that CpCE-1 expression was significantly altered during C. pomonella development stages, and this expression differed between sexes, with a higher transcript in females than males. Meanwhile, CpCE-1 is overexpressed in cuticle, midgut and head than silk gland, fat body and Malpighian tubules. Exposure of third instar larvae to a non-lethal dosage of chlorpyrifos-ethyl and lambda-cyhalothrin resulted in induction of CpCE-1 transcript. The total carboxylesterase enzyme activity was inhibited by chlorpyrifos-ethyl in vivo; in contrast, the activity of Escherichia coli produced recombinant CpCE-1 was significantly inhibited by both lambda-cyhalothrin and chlorpyrifos-ethyl in vitro. These results suggested that CpCE-1 in C. pomonella is potentially involved in the development and in detoxification of chlorpyrifos-ethyl and lambda-cyhalothrin.

  18. Hepatoprotective effects of lycopene on liver enzymes involved in methionine and xenobiotic metabolism in hyperhomocysteinemic rats.

    PubMed

    Yefsah-Idres, Aicha; Benazzoug, Yasmina; Otman, Amel; Latour, Alizée; Middendorp, Sandrine; Janel, Nathalie

    2016-06-15

    Hyperhomocysteinemia, defined by an increased plasma homocysteine level, is commonly associated with chronic liver diseases. A link between the elevated homocysteine level and oxidative stress has been demonstrated. Indeed the pathogenesis of liver diseases in the case of hyperhomocysteinemia could be due to this production of oxidative stress. Many studies have demonstrated the antioxidative properties of lycopene, a carotenoid. Therefore, the present study was designed to induce hyperhomocysteinemia in male Wistar rats in order to analyze the effect of lycopene supplementation on homocysteine metabolism, on phase I and phase II xenobiotic-metabolizing enzyme activities, and on liver injury by histological examination and analysis of biochemical markers. We found that rats with a high methionine diet showed abnormal histological features, with an increase of serum homocysteine, alanine aminotransferase and aspartate aminotransferase levels, decreased hepatic cystathionine beta synthase and S-adenosyl-homocysteine hydrolase activities and an increased hepatic malondialdehyde level. We demonstrated the reversal effect of lycopene supplementation on hyperhomocysteinemia. Taken together, these findings provide additional clues on the hepatoprotective effects of lycopene.

  19. Pharmacogenetic profile of xenobiotic enzyme metabolism in survivors of the Spanish toxic oil syndrome.

    PubMed Central

    Ladona, M G; Izquierdo-Martinez, M; Posada de la Paz, M P; de la Torre, R; Ampurdanés, C; Segura, J; Sanz, E J

    2001-01-01

    In 1981, the Spanish toxic oil syndrome (TOS) affected more than 20,000 people, and over 300 deaths were registered. Assessment of genetic polymorphisms on xenobiotic metabolism would indicate the potential metabolic capacity of the victims at the time of the disaster. Thus, impaired metabolic pathways may have contributed to the clearance of the toxicant(s) leading to a low detoxification or accumulation of toxic metabolites contributing to the disease. We conducted a matched case-control study using 72 cases (54 females, 18 males) registered in the Official Census of Affected Patients maintained by the Spanish government. Controls were nonaffected siblings (n =72) living in the same household in 1981 and nonaffected nonrelatives (n = 70) living in the neighborhood at that time, with no ties to TOS. Genotype analyses were performed to assess the metabolic capacity of phase I [cytochrome P450 1A1 (CYP1A1), CYP2D6] and phase II [arylamine N-acetyltransferase-2 (NAT2), GSTM1 (glutathione S-transferase M1) and GSTT1] enzyme polymorphisms. The degree of association of the five metabolic pathways was estimated by calculating their odds ratios (ORs) using conditional logistic regression analysis. In the final model, cases compared with siblings (72 pairs) showed no differences either in CYP2D6 or CYP1A1 polymorphisms, or in conjugation enzyme polymorphisms, whereas cases compared with the unrelated controls (70 pairs) showed an increase in NAT2 defective alleles [OR = 6.96, 95% confidence interval (CI), 1.46-33.20] adjusted by age and sex. Glutathione transferase genetic polymorphisms (GSTM1, GSTT1) showed no association with cases compared with their siblings or unrelated controls. These findings suggest a possible role of impaired acetylation mediating susceptibility in TOS. PMID:11335185

  20. Effects of long-term alachlor exposure on hepatic antioxidant defense and detoxifying enzyme activities in crucian carp (Carassius auratus).

    PubMed

    Yi, Xionghai; Ding, Hui; Lu, Yitong; Liu, Haohua; Zhang, Min; Jiang, Wei

    2007-07-01

    Alachlor has been widely used in agriculture all over the world. It is suggested that it may be a carcinogen and also an environmental estrogen. In this paper, the physiological and biochemical perturbations of crucian carp (Carassius auratus) exposed to alachlor at different concentrations over 60 days were investigated. The gonadosomatic index (GSI) and hepatosomatic index (HSI) were measured. The activity of hepatic antioxidant defense and detoxifying enzymes, superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST) and the content of glutathione (GSH) were determined and compared with the control group. The result showed that GSI and HSI decreased significantly (P<0.05) in almost all treatments. The activities of SOD, CAT and GST were induced continuously (P<0.05), while the content of reduced glutathione (GSH) was inhibited on the whole. These changes reflect that the antioxidant systems of the tested fishes were affected. The possible defense mechanistic implications about the changes were thus discussed. Furthermore, hepatic SOD and GST were sensitive to alachlor at low concentration, indicating that they might be potential biomarkers in early detection of alachlor contamination in aquatic ecosystems.

  1. GENE EXPRESSION PROFILING OF XENOBIOTIC METABOLIZING ENZYMES (XMES) IN THE AGING MALE FISHER RAT

    EPA Science Inventory

    Detoxification and elimination of xenobiotics is a major function of the liver and is important in maintaining the metabolic homeostasis of the organism. The degree to which aging affects hepatic metabolism is not known. The expression of XMEs, in part, determines the fate of the...

  2. Cryptic indole hydroxylation by a non-canonical terpenoid cyclase parallels bacterial xenobiotic detoxification

    NASA Astrophysics Data System (ADS)

    Kugel, Susann; Baunach, Martin; Baer, Philipp; Ishida-Ito, Mie; Sundaram, Srividhya; Xu, Zhongli; Groll, Michael; Hertweck, Christian

    2017-06-01

    Terpenoid natural products comprise a wide range of molecular architectures that typically result from C-C bond formations catalysed by classical type I/II terpene cyclases. However, the molecular diversity of biologically active terpenoids is substantially increased by fully unrelated, non-canonical terpenoid cyclases. Their evolutionary origin has remained enigmatic. Here we report the in vitro reconstitution of an unusual flavin-dependent bacterial indoloterpenoid cyclase, XiaF, together with a designated flavoenzyme-reductase (XiaP) that mediates a key step in xiamycin biosynthesis. The crystal structure of XiaF with bound FADH2 (at 2.4 Å resolution) and phylogenetic analyses reveal that XiaF is, surprisingly, most closely related to xenobiotic-degrading enzymes. Biotransformation assays show that XiaF is a designated indole hydroxylase that can be used for the production of indigo and indirubin. We unveil a cryptic hydroxylation step that sets the basis for terpenoid cyclization and suggest that the cyclase has evolved from xenobiotics detoxification enzymes.

  3. Detoxification function of the Arabidopsis sulphotransferase AtSOT12 by sulphonation of xenobiotics.

    PubMed

    Chen, Jinhua; Gao, Liqiong; Baek, Dongwon; Liu, Chunlin; Ruan, Ying; Shi, Huazhong

    2015-08-01

    Cytosolic sulphotransferases have been implicated in inactivation of endogenous steroid hormones and detoxification of xenobiotics in human and animals. Yet, the function of plant sulphotransferases in xenobiotic sulphonation and detoxification has not been reported. In this study, we show that the Arabidopsis sulphotransferase AtSOT12 could sulphonate the bacterial-produced toxin cycloheximide. Loss-of-function mutant sot12 exhibited hypersensitive phenotype to cycloheximide, and expression of AtSOT12 protein in yeast cells conferred resistance to this toxic compound. AtSOT12 exhibited broad specificity and could sulphonate a variety of xenobiotics including phenolic and polycyclic compounds. Enzyme kinetics analysis indicated that AtSOT12 has different selectivity for simple phenolics with different side chains, and the position of the side chain in the simple phenolic compounds affects substrate binding affinity and catalytic efficiency. We proposed that the broad specificity and induced production of AtSOT12 may have rendered this enzyme to not only modify endogenous molecules such as salicylic acid as we previously reported, but also sulphonate pathogen-produced toxic small molecules to protect them from infection. Sulphonation of small molecules in plants may constitute a rapid way to inactivate or change the physiochemical properties of biologically active molecules that could have profound effects on plant growth, development and defence. © 2015 John Wiley & Sons Ltd.

  4. Xenobiotica-metabolizing enzymes in the skin of rat, mouse, pig, guinea pig, man, and in human skin models.

    PubMed

    Oesch, F; Fabian, E; Landsiedel, Robert

    2018-06-18

    Studies on the metabolic fate of medical drugs, skin care products, cosmetics and other chemicals intentionally or accidently applied to the human skin have become increasingly important in order to ascertain pharmacological effectiveness and to avoid toxicities. The use of freshly excised human skin for experimental investigations meets with ethical and practical limitations. Hence information on xenobiotic-metabolizing enzymes (XME) in the experimental systems available for pertinent studies compared with native human skin has become crucial. This review collects available information of which-taken with great caution because of the still very limited data-the most salient points are: in the skin of all animal species and skin-derived in vitro systems considered in this review cytochrome P450 (CYP)-dependent monooxygenase activities (largely responsible for initiating xenobiotica metabolism in the organ which provides most of the xenobiotica metabolism of the mammalian organism, the liver) are very low to undetectable. Quite likely other oxidative enzymes [e.g. flavin monooxygenase, COX (cooxidation by prostaglandin synthase)] will turn out to be much more important for the oxidative xenobiotic metabolism in the skin. Moreover, conjugating enzyme activities such as glutathione transferases and glucuronosyltransferases are much higher than the oxidative CYP activities. Since these conjugating enzymes are predominantly detoxifying, the skin appears to be predominantly protected against CYP-generated reactive metabolites. The following recommendations for the use of experimental animal species or human skin in vitro models may tentatively be derived from the information available to date: for dermal absorption and for skin irritation esterase activity is of special importance which in pig skin, some human cell lines and reconstructed skin models appears reasonably close to native human skin. With respect to genotoxicity and sensitization reactive

  5. Two Horizontally Transferred Xenobiotic Resistance Gene Clusters Associated with Detoxification of Benzoxazolinones by Fusarium Species

    PubMed Central

    Glenn, Anthony E.; Davis, C. Britton; Gao, Minglu; Gold, Scott E.; Mitchell, Trevor R.; Proctor, Robert H.; Stewart, Jane E.; Snook, Maurice E.

    2016-01-01

    Microbes encounter a broad spectrum of antimicrobial compounds in their environments and often possess metabolic strategies to detoxify such xenobiotics. We have previously shown that Fusarium verticillioides, a fungal pathogen of maize known for its production of fumonisin mycotoxins, possesses two unlinked loci, FDB1 and FDB2, necessary for detoxification of antimicrobial compounds produced by maize, including the γ-lactam 2-benzoxazolinone (BOA). In support of these earlier studies, microarray analysis of F. verticillioides exposed to BOA identified the induction of multiple genes at FDB1 and FDB2, indicating the loci consist of gene clusters. One of the FDB1 cluster genes encoded a protein having domain homology to the metallo-β-lactamase (MBL) superfamily. Deletion of this gene (MBL1) rendered F. verticillioides incapable of metabolizing BOA and thus unable to grow on BOA-amended media. Deletion of other FDB1 cluster genes, in particular AMD1 and DLH1, did not affect BOA degradation. Phylogenetic analyses and topology testing of the FDB1 and FDB2 cluster genes suggested two horizontal transfer events among fungi, one being transfer of FDB1 from Fusarium to Colletotrichum, and the second being transfer of the FDB2 cluster from Fusarium to Aspergillus. Together, the results suggest that plant-derived xenobiotics have exerted evolutionary pressure on these fungi, leading to horizontal transfer of genes that enhance fitness or virulence. PMID:26808652

  6. [Study of enzymes of xenobiotic metabolism in the evaluation of quality of protein-containing wheat germ flakes and wallpaper flour].

    PubMed

    Martinchuk, A N; E En Gyn; Safronova, A M; Peskova, E V

    1991-01-01

    Intake of wheat upholstery meal by growing rats was attended by a sharp decrease in the content and activity of xenobiotic metabolism enzymes in the hepatic microsomes, that was caused by the low biological value of the meal proteins. Hepatic microsomes of the rats that were fed with wheat germ flakes showed increased specific content of cytochromes P-450 and b5, but the total blood protein content per 100 g of body mass was lower than during casein consumption. No significant changes were detected in hydroxylation rate of benz(a)pyrene, aniline and ethylmorphine. During consumption of wheat germ flakes induction of UDP-glucuronide-transferase was detected in hepatic microsomes. Wheat germ flakes induced a 5-fold increase of Se-dependent glutathione peroxidase activity. Wheat germ flakes produced no significant effect on glutathione-S-aryltransferase and glutathione reductase activity.

  7. Xenobiotics: Chapter 15

    USGS Publications Warehouse

    Bridges, Christine M.; Semlitsch, Raymond D.; Lannoo, Michael

    2005-01-01

    While a number of compounds have been reported as toxic to amphibians, until recently, there have been conspicuously few ecotoxicological studies concerning amphibians. Studies are now focusing on the effects of xenobiotics on amphibians, an interest likely stimulated by widespread reports of amphibian declines. It has been speculated that chemical contamination may be partially to blame for some documented amphibian declines, by disrupting growth, reproduction, and behavior. However, evidence that xenobiotics are directly to blame for population declines is sparse because environmental concentrations are typically not great enough to generate direct mortality. Although the effects of environmental contaminants on the amphibian immune system are currently unknown, it is possible that exposure to stressors such as organic pollutants (which enter ecosystems in the form of pesticides) may depress immune system function, thus allowing greater susceptibility to fungal infections. This chapter discusses toxicity testing for xenobiotics and presents the results of a study that has focused on the subtle effects of sublethal concentrations of the chemical carbaryl on tadpoles.

  8. Advances in Phytoremediation and Rhizoremediation

    NASA Astrophysics Data System (ADS)

    Macek, Tomas; Uhlik, Ondrej; Jecna, Katerina; Novakova, Martina; Lovecka, Petra; Rezek, Jan; Dudkova, Vlasta; Stursa, Petr; Vrchotova, Blanka; Pavlikova, Daniela; Demnerova, Katerina; Mackova, Martina

    Phytoremediation, with the associated role of rhizospheric microorganisms, is an important tool in bioremediation processes. Plants have an inherent ability to detoxify some xenobiotics and remove compounds from soil by direct uptake of the contaminants followed by subsequent transformation, transport and product accumulation, using enzymes similar to detoxification enzymes in mammals. Being autotrophic organisms, plants do not utilize organic compounds for their energy and carbon metabolism. As a consequence, they usually lack the catabolic enzymes necessary to achieve full mineralization of organic molecules. Plants can be used for removal of both inorganic and organic xenobiotics present in the soil, water and air. The chapter summarizes the classical approaches and possibilities for increasing effectiveness of phyto-and rhizo-remediation using genetically modified organisms. Perspectives are presented related to the use of molecular methods, including metagenomics and stable isotope probing, for obtaining deeper knowledge with a view to influencing the composition of consortia of organisms living in the contaminated environment.

  9. Interactions among infections, nutrients and xenobiotics.

    PubMed

    Ilbäck, Nils-Gunnar; Friman, Göran

    2007-01-01

    During recent years there have been several incidents in which symptoms of disease have been linked to consumption of food contaminated by chemical substances (e.g., 2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD). Furthermore, outbreaks of infections in food-producing animals have attracted major attention regarding the safety of consumers, e.g., Bovine Spongiform Encephalitis (BSE) and influenza in chicken. As shown for several xenobiotics in an increasing number of experimental studies, even low-dose xenobiotic exposure may impair immune function over time, as well as microorganism virulence, resulting in more severe infectious diseases and associated complications. Moreover, during ongoing infection, xenobiotic uptake and distribution are often changed resulting in increased toxic insult to the host. The interactions among infectious agents, nutrients, and xenobiotics have thus become a developing concern and new avenue of research in food toxicology as well as in food-borne diseases. From a health perspective, in the risk assessment of xenobiotics in our food and environment, synergistic effects among microorganisms, nutrients, and xenobiotics will have to be considered. Otherwise, such effects may gradually change the disease panorama in society.

  10. Resveratrol protects primary rat hepatocytes against oxidative stress damage: activation of the Nrf2 transcription factor and augmented activities of antioxidant enzymes.

    PubMed

    Rubiolo, Juan Andrés; Mithieux, Gilles; Vega, Félix Victor

    2008-09-04

    Oxidative stress is recognized as an important factor in the development of liver pathologies. The reactive oxygen species endogenously generated or as a consequence of xenobiotic metabolism are eliminated by enzymatic and nonenzymatic cellular systems. Besides endogen defences, the antioxidant consumption in the diet has an important role in the protection against the development of diseases product of oxidative damage. Resveratrol is a naturally occurring compound which is part of the human diet. This molecule has been shown to have many biological properties, including antioxidant activity. We decided to test if resveratrol could protect primary hepatocytes in culture from oxidative stress damage and if so, to determine if this compound affects the cellular detoxifying systems and their regulation through the Nrf2 transcription factor that regulates the expression of antioxidant and phase II detoxifying enzymes. Cell death by necrosis was detected by measuring the activity of lactate dehydrogenase liberated to the medium. The activities of antioxidant and phase II enzymes were measured using previously described methods. Activation of the Nrf2 transcription factor was studied by confocal microscopy and the Nrf2 and its coding mRNA levels were determined by western blot and quantitative PCR respectively. Resveratrol pre-treatment effectively protected hepatocytes in culture exposed to oxidative stress, increasing the activities of catalase, superoxide dismutase, glutathione peroxidase, NADPH quinone oxidoreductase and glutathione-S-transferase. Resveratrol increases the level of Nrf2 and induces its translocation to the nucleus. Also, it increases the concentration of the coding mRNA for Nrf2. In this work we show that resveratrol could be a useful drug for the protection of liver cells from oxidative stress induced damage.

  11. Polymorphisms in xenobiotic metabolizing enzymes and diet influence colorectal adenoma risk.

    PubMed

    Northwood, Emma L; Elliott, Faye; Forman, David; Barrett, Jennifer H; Wilkie, Murray J V; Carey, Francis A; Steele, Robert J C; Wolf, Roland; Bishop, Timothy; Smith, Gillian

    2010-05-01

    We have earlier shown that diet and xenobiotic metabolizing enzyme genotypes influence colorectal cancer risk, and now investigate whether similar associations are seen in patients with premalignant colorectal adenomas (CRA), recruited during the pilot phase of the Scottish Bowel Screening Programme. Nineteen polymorphisms in 13 genes [cytochrome P450 (P450), glutathione S-transferase (GST), N-acetyl transferase, quinone reductase (NQ01) and microsomal epoxide hydrolase (EPHX1) genes] were genotyped using multiplex PCR or Taqman-based allelic discrimination assays and analyzed in conjunction with diet, assessed by food frequency questionnaire, in a case-control study [317 CRA cases (308 cases genotyped), 296 controls]. Findings significant at a nominal 5% level are reported. CRA risk was inversely associated with fruit (P=0.02, test for trend) and vegetable (P=0.001, test for trend) consumption. P450 CYP2C9*3 heterozygotes had reduced CRA risk compared with homozygotes for the reference allele [odds ratio (OR): 0.60; 95% confidence interval (CI): 0.36-0.99], whereas CYP2D6*4 homozygotes (OR: 2.72; 95% CI: 1.18-6.27) and GSTM1 'null' individuals (OR: 1.43; 95% CI: 1.04-1.98) were at increased risk. The protective effect of fruit consumption was confined to GSTP1 (Ala114Val) reference allele homozygotes (OR: 0.49; 95% CI: 0.34-0.71, P=0.03 for interaction). CRA risk was not associated with meat consumption, although a significant interaction between red meat consumption and EPHX1 (His139Arg) genotype was noted (P=0.02 for interaction). We report the novel associations between P450 genotype and CRA risk, and highlight the risk association with GSTM1 genotype, common to our CRA and cancer case-control series. In addition, we report a novel modifying influence of GSTP1 genotype on dietary chemoprevention. These novel findings require independent confirmation.

  12. [Human drug metabolizing enzymes. II. Conjugation enzymes].

    PubMed

    Vereczkey, L; Jemnitz, K; Gregus, Z

    1998-09-01

    In this review we focus on human conjugation enzymes (UDP-glucuronyltransferases, methyl-trasferases, N-acetyl-transferases, O-acetyl-transferases, Amidases/carboxyesterases, sulfotransferases, Glutation-S-transferases and the enzymes involved in the conjugation with amino acids) that participate in the metabolism of xenobiotics. Although conjugation reactions in most of the cases result in detoxication, more and more publications prove that the reactions catalysed by these enzymes very often lead to activated molecules that may attack macromolecules (proteins, RNAs, DNAs), resulting in toxicity (liver, neuro-, embryotoxicity, allergy, carcinogenecity). We have summarised the data available on these enzymes concerning their catalytic profile and specificity, inhibition, induction properties, their possible role in the generation of toxic compounds, their importance in clinical practice and drug development.

  13. The fetal/neonatal mouse liver exhibits transcriptional features of the adult pancreas.

    EPA Science Inventory

    Metabolic homeostasis of the organism is maintained by the liver’s ability to detoxify and eliminate xenobiotics through the expression of xenobiotic metabolism enxymes (XME). The fetus and neonate have been hypothesized to exhibit increased sensitivity to xenobiotic toxicity. T...

  14. In Bacillus subtilis, the SatA (Formerly YyaR) Acetyltransferase Detoxifies Streptothricin via Lysine Acetylation.

    PubMed

    Burckhardt, Rachel M; Escalante-Semerena, Jorge C

    2017-11-01

    Soil is a complex niche, where survival of microorganisms is at risk due to the presence of antimicrobial agents. Many microbes chemically modify cytotoxic compounds to block their deleterious effects. Streptothricin is a broad-spectrum antibiotic produced by streptomycetes that affects Gram-positive and Gram-negative bacteria alike. Here we identify the SatA (for s treptothricin a ce t yltransferase A , formerly YyaR) enzyme of Bacillus subtilis as the mechanism used by this soil bacterium to detoxify streptothricin. B. subtilis strains lacking satA were susceptible to streptothricin. Ectopic expression of satA + restored streptothricin resistance to B. subtilis satA ( Bs SatA) strains. Purified Bs SatA acetylated streptothricin in vitro at the expense of acetyl-coenzyme A (acetyl-CoA). A single acetyl moiety transferred onto streptothricin by SatA blocked the toxic effects of the antibiotic. SatA bound streptothricin with high affinity ( K d [dissociation constant] = 1 μM), and did not bind acetyl-CoA in the absence of streptothricin. Expression of B. subtilis satA + in Salmonella enterica conferred streptothricin resistance, indicating that SatA was necessary and sufficient to detoxify streptothricin. Using this heterologous system, we showed that the SatA homologue from Bacillus anthracis also had streptothricin acetyltransferase activity. Our data highlight the physiological relevance of lysine acetylation for the survival of B. subtilis in the soil. IMPORTANCE Experimental support is provided for the functional assignment of gene products of the soil-dwelling bacilli Bacillus subtilis and Bacillus anthracis This study focuses on one enzyme that is necessary and sufficient to block the cytotoxic effects of a common soil antibiotic. The enzyme alluded to is a member of a family of proteins that are broadly distributed in all domains of life but poorly studied in B. subtilis and B. anthracis The initial characterization of the enzyme provides insights into its

  15. In Bacillus subtilis, the SatA (Formerly YyaR) Acetyltransferase Detoxifies Streptothricin via Lysine Acetylation

    PubMed Central

    Burckhardt, Rachel M.

    2017-01-01

    ABSTRACT Soil is a complex niche, where survival of microorganisms is at risk due to the presence of antimicrobial agents. Many microbes chemically modify cytotoxic compounds to block their deleterious effects. Streptothricin is a broad-spectrum antibiotic produced by streptomycetes that affects Gram-positive and Gram-negative bacteria alike. Here we identify the SatA (for streptothricin acetyltransferase A, formerly YyaR) enzyme of Bacillus subtilis as the mechanism used by this soil bacterium to detoxify streptothricin. B. subtilis strains lacking satA were susceptible to streptothricin. Ectopic expression of satA+ restored streptothricin resistance to B. subtilis satA (BsSatA) strains. Purified BsSatA acetylated streptothricin in vitro at the expense of acetyl-coenzyme A (acetyl-CoA). A single acetyl moiety transferred onto streptothricin by SatA blocked the toxic effects of the antibiotic. SatA bound streptothricin with high affinity (Kd [dissociation constant] = 1 μM), and did not bind acetyl-CoA in the absence of streptothricin. Expression of B. subtilis satA+ in Salmonella enterica conferred streptothricin resistance, indicating that SatA was necessary and sufficient to detoxify streptothricin. Using this heterologous system, we showed that the SatA homologue from Bacillus anthracis also had streptothricin acetyltransferase activity. Our data highlight the physiological relevance of lysine acetylation for the survival of B. subtilis in the soil. IMPORTANCE Experimental support is provided for the functional assignment of gene products of the soil-dwelling bacilli Bacillus subtilis and Bacillus anthracis. This study focuses on one enzyme that is necessary and sufficient to block the cytotoxic effects of a common soil antibiotic. The enzyme alluded to is a member of a family of proteins that are broadly distributed in all domains of life but poorly studied in B. subtilis and B. anthracis. The initial characterization of the enzyme provides insights into its

  16. Monobromobimane occupies a distinct xenobiotic substrate site in glutathione S-transferase pi.

    PubMed

    Ralat, Luis A; Colman, Roberta F

    2003-11-01

    Monobromobimane (mBBr), functions as a substrate of porcine glutathione S-transferase pi (GST pi): The enzyme catalyzes the reaction of mBBr with glutathione. S-(Hydroxyethyl)bimane, a nonreactive analog of monobromobimane, acts as a competitive inhibitor with respect to mBBr as substrate but does not affect the reaction of GST pi with another substrate, 1-chloro-2,4-dinitrobenzene (CDNB). In the absence of glutathione, monobromobimane inactivates GST pi at pH 7.0 and 25 degrees C as assayed using mBBr as substrate, with a lesser effect on the enzyme's use of CDNB as substrate. These results indicate that the sites occupied by CDNB and mBBr are not identical. Inactivation is proportional to the incorporation of 2 moles of bimane/mole of subunit. Modification of GST pi with mBBr does not interfere with its binding of 8-anilino-1-naphthalene sulfonate, indicating that this hydrophobic site is not the target of monobromobimane. S-Methylglutathione and S-(hydroxyethyl)bimane each yield partial protection against inactivation and decrease reagent incorporation, while glutathionyl-bimane protects completely against inactivation. Peptide analysis after trypsin digestion indicates that mBBr modifies Cys45 and Cys99 equally. Modification of Cys45 is reduced in the presence of S-methylglutathione, indicating that this residue is at or near the glutathione binding region. In contrast, modification of Cys99 is reduced in the presence of S-(hydroxyethyl)bimane, suggesting that this residue is at or near the mBBr xenobiotic substrate binding site. Modification of Cys99 can best be understood by reaction with monobromobimane while it is bound to its xenobiotic substrate site in an alternate orientation. These results support the concept that glutathione S-transferase accomplishes its ability to react with a diversity of substrates in part by harboring distinct xenobiotic substrate sites.

  17. A Compilation of In Vitro Rate and Affinity Values for Xenobiotic Biotransformation in Fish, Measured Under Physiological Conditions

    EPA Science Inventory

    This manuscript presents a summary of in vitro rate and affinity data for xenobiotic biotransformation enzymes in fish...One potential use of this data summary is to support in vitro to in vivo metabolism extrapolations which can be used as inputs to chemical kinetic models for f...

  18. Comparative liver accumulation of dioxin-like compounds in sheep and cattle: Possible role of AhR-mediated xenobiotic metabolizing enzymes.

    PubMed

    Girolami, F; Spalenza, V; Benedetto, A; Manzini, L; Badino, P; Abete, M C; Nebbia, C

    2016-11-15

    PCDDs, PCDFs, and PCBs are persistent organic pollutants (POPs) that accumulate in animal products and may pose serious health problems. Those able to bind the aryl hydrocarbon receptor (AhR), eliciting a plethora of toxic responses, are defined dioxin-like (DL) compounds, while the remainders are called non-DL (NDL). An EFSA opinion has highlighted the tendency of ovine liver to specifically accumulate DL-compounds to a greater extent than any other farmed ruminant species. To examine the possible role in such an accumulation of xenobiotic metabolizing enzymes (XME) involved in DL-compound biotransformation, liver samples were collected from ewes and cows reared in an area known for low dioxin contamination. A related paper reported that sheep livers had about 5-fold higher DL-compound concentrations than cattle livers, while the content of the six marker NDL-PCBs did not differ between species. Specimens from the same animals were subjected to gene expression analysis for AhR, AhR nuclear translocator (ARNT) and AhR-dependent oxidative and conjugative pathways; XME protein expression and activities were also investigated. Both AhR and ARNT mRNA levels were about 2-fold lower in ovine samples and the same occurred for CYP1A1 and CYP1A2, being approximately 3- and 9-fold less expressed in sheep compared to cattle, while CYP1B1 could be detectable in cattle only. The results of the immunoblotting and catalytic activity (most notably EROD) measurements of the CYP1A family enzymes were in line with the gene expression data. By contrast, phase II enzyme expression and activities in sheep were higher (UGT1A) or similar (GSTA1, NQO1) to those recorded in cattle. The overall low expression of CYP1 family enzymes in the sheep is in line with the observed liver accumulation of DL-compounds and is expected to affect the kinetics and the dynamics of other POPs such as many polycyclic aromatic hydrocarbons, as well as of toxins (e.g. aflatoxins) or drugs (e.g. benzimidazole

  19. Maleic acid treatment of biologically detoxified corn stover liquor.

    PubMed

    Kim, Daehwan; Ximenes, Eduardo A; Nichols, Nancy N; Cao, Guangli; Frazer, Sarah E; Ladisch, Michael R

    2016-09-01

    Elimination of microbial and enzyme inhibitors from pretreated lignocellulose is critical for effective cellulose conversion and yeast fermentation of liquid hot water (LHW) pretreated corn stover. In this study, xylan oligomers were hydrolyzed using either maleic acid or hemicellulases, and other soluble inhibitors were eliminated by biological detoxification. Corn stover at 20% (w/v) solids was LHW pretreated LHW (severity factor: 4.3). The 20% solids (w/v) pretreated corn stover derived liquor was recovered and biologically detoxified using the fungus Coniochaeta ligniaria NRRL30616. After maleic acid treatment, and using 5 filter paper units of cellulase/g glucan (8.3mg protein/g glucan), 73% higher cellulose conversion from corn stover was obtained for biodetoxified samples compared to undetoxified samples. This corresponded to 87% cellulose to glucose conversion. Ethanol production by yeast of pretreated corn stover solids hydrolysate was 1.4 times higher than undetoxified samples, with a reduction of 3h in the fermentation lag phase. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Study on Utilization of Detoxified Jatropha curcas Seed Cake Subjected to Solid State Fermentation as a Dietary Supplement in Wistar Rats.

    PubMed

    Sharath, Belame S; Muthukumar, Sevva P; Somashekar, Devappa

    2017-01-01

    The presence of anti-nutrients and toxins like phorbol esters in Jatropha curcas seed cake (JSC) limits its application in feeds. This study was done to assess the potential of detoxified JSC as rat feed. The rats were fed a diet containing 0-5 and 10% of detoxified fermented JSC for four weeks. For the group I, only casein diet was used in rat feed as a negative control. For the group II, untreated JSC was used in rat feed as a positive control. For the group III, fermented JSC using Saccharomyces cerevisiae MTCC-36 was used. For the group IV, the fermented JSC treated with 65% ethanol to remove the residual toxic phorbol esters was used as rat feed. The rats fed with untreated JSC showed increased levels of serum liver enzymes as an indication of the onset of liver disease resulting in mortality. In this group, rats died in week 2, confirming that the cake is not safe as feed until it is processed. The rats fed with detoxified JSC with 5 and 10% level survived with no adverse effects, and the performance was on par with the control groups, although the body weight was slightly less compared to control. Therefore, it was concluded that the detoxified JSC might be the potential and alternative source of protein in the animal feedstuffs up to 10% level. There are recent patents also suggesting the use of alternative feed supplements in the animal feed applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. High-throughput metagenomic analysis of petroleum-contaminated soil microbiome reveals the versatility in xenobiotic aromatics metabolism.

    PubMed

    Bao, Yun-Juan; Xu, Zixiang; Li, Yang; Yao, Zhi; Sun, Jibin; Song, Hui

    2017-06-01

    The soil with petroleum contamination is one of the most studied soil ecosystems due to its rich microorganisms for hydrocarbon degradation and broad applications in bioremediation. However, our understanding of the genomic properties and functional traits of the soil microbiome is limited. In this study, we used high-throughput metagenomic sequencing to comprehensively study the microbial community from petroleum-contaminated soils near Tianjin Dagang oilfield in eastern China. The analysis reveals that the soil metagenome is characterized by high level of community diversity and metabolic versatility. The metageome community is predominated by γ-Proteobacteria and α-Proteobacteria, which are key players for petroleum hydrocarbon degradation. The functional study demonstrates over-represented enzyme groups and pathways involved in degradation of a broad set of xenobiotic aromatic compounds, including toluene, xylene, chlorobenzoate, aminobenzoate, DDT, methylnaphthalene, and bisphenol. A composite metabolic network is proposed for the identified pathways, thus consolidating our identification of the pathways. The overall data demonstrated the great potential of the studied soil microbiome in the xenobiotic aromatics degradation. The results not only establish a rich reservoir for novel enzyme discovery but also provide putative applications in bioremediation. Copyright © 2016. Published by Elsevier B.V.

  2. Endothelial Targeting of Semi-permeable Polymer Nanocarriers for Enzyme Therapies

    PubMed Central

    Dziubla, Thomas D; Shuvaev, Vladimir V.; Hong, Nan Kang; Hawkins, Brian; Muniswamy, Madesh; Takano, Hajime; Simone, Eric; Nakada, Marian T.; Fisher, Aron; Albelda, Steven M.; Muzykantov, Vladimir R.

    2007-01-01

    The medical utility of proteins, e.g. therapeutic enzymes, is greatly restricted by their liable nature and inadequate delivery. Most therapeutic enzymes do not accumulate in their targets and are inactivated by proteases. Targeting of enzymes encapsulated into substrate-permeable Polymeric Nano-Carriers (PNC) impermeable for proteases might overcome these limitations. To test this hypothesis, we designed endothelial targeted PNC loaded with catalase, the H2O2-detoxifying enzyme, and tested if this approach protects against vascular oxidative stress, a pathological process implicated in ischemia-reperfusion and other disease conditions. Encapsulation of catalase (MW 240KD), peroxidase (MW 42kD) and xanthine oxidase (XO, MW 300 kD) into ~300nm diameter PNC composed of co-polymers of PEG-PLGA (polyethylene glycol and poly-lactic/poly-glycolic acid) was in the range ~10% for all enzymes. PNC/catalase and PNC/peroxidase were protected from external proteolysis and exerted the enzymatic activity on their PNC diffusible substrates, H2O2 and ortho-phenylendiamine, whereas activity of encapsulated XO was negligible due to polymer impermeability to the substrate. PNC targeted to platelet-endothelial cell adhesion molecule-1 delivered active encapsulated catalase to endothelial cells and protected the endothelium against oxidative stress in cell culture and animal studies. Vascular targeting of PNC-loaded detoxifying enzymes may find wide medical applications including management of oxidative stress and other toxicities. PMID:17950837

  3. Characterization and profiling of hepatic cytochromes P450 and phase II xenobiotic-metabolizing enzymes in beluga whales (Delphinapterus leucas) from the St. Lawrence River Estuary and the Canadian Arctic.

    PubMed

    McKinney, Melissa A; Arukwe, Augustine; De Guise, Sylvain; Martineau, Daniel; Béland, Pierre; Dallaire, André; Lair, Stéphane; Lebeuf, Michel; Letcher, Robert J

    2004-07-30

    Cytochromes P450 (CYP, phase I) and conjugating (phase II) enzymes can be induced by and influence the toxicokinetics (metabolism) and toxicity of xenobiotic contaminants in exposed organisms. Beluga whale (Delphinapterus leucas) from the endangered St. Lawrence (SL) River Estuary population exhibit deleterious health effects and various severe pathologies that have been associated with contaminant exposure. In contrast, such effects (e.g. reproductive and immunological impairment) are generally less frequent in less exposed populations in the Canadian Arctic (CA). In the present study, opportunistic sampling resulted in the collection immediately after death of liver tissue from a single female neonate SL beluga (SL6) and male and female CA beluga (n=10) from the Arviat region of western Hudson Bay, in addition to sampling of stranded carcasses of male and female SL beluga (n=5) at least 12 h postmortem. We immunologically characterized cross-reactive proteins of hepatic microsomal CYP1A, CYP2B, CYP3A, CYP2E, epoxide hydrolase (EH) and uridine diphosphoglucuronosyl transferase (UDPGT) isozymes. Cross-reactive proteins were found in all SL and CA beluga using anti-rat CYP1A1, anti-rainbow trout CYP3A, anti-human CYP2E1, anti-rabbit EH and anti-human UDPGT1A1 polyclonal antibodies (Abs), whereas faintly cross-reactive CYP2B proteins were only found in SL6 and the CA samples using an anti-rabbit CYP2B1 Ab. In corresponding catalytic activity assessments, only SL6 and all CA beluga microsomal samples exhibited CYP1A-mediated 7-ethoxyresorufin O-deethylase (EROD) activity (51-260 pmol/mg/min), CYP3A-mediated activity (113-899 pmol/mg/min) based on the formation of 6beta-hydroxytestosterone using a testosterone hydroxylase assay, and UDPGT activity (830-4956 pmol/mg/min) based on 1-naphthylglucuronide formation. The marginal cross-reactivity with the anti-CYP2B1 Ab and lack of catalytically measurable hydroxytestosterone isomers associated with CYP2B-type activity in

  4. INTERINDIVIDUAL VARIANCE OF CYTOCHROME P450 FORMS IN HUMAN HEPATIC MICROSOMES: CORRELATION OF INDIVIDUAL FORMS WITH XENOBIOTIC METABOLISM AND IMPLICATIONS IN RISK ASSESSMENT

    EPA Science Inventory

    Differences in biotransformation activities may alter the bioavailability or efficacy of drugs, provide protection from certain xenobiotic and environmental agents, or increase toxicity of others. Cytochrome P450 (CYP450) enzymes are responsible for the majority of oxidation reac...

  5. Down-regulation of the detoxifying enzyme NAD(P)H:quinone oxidoreductase 1 by vanadium in Hepa 1c1c7 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anwar-Mohamed, Anwar; El-Kadi, Ayman O.S.

    2009-05-01

    Recent data suggest that vanadium (V{sup 5+}) compounds exert protective effects against chemical-induced carcinogenesis, mainly through modifying various xenobiotic metabolizing enzymes. In fact, we have shown that V{sup 5+} down-regulates the expression of Cyp1a1 at the transcriptional level through an ATP-dependent mechanism. However, incongruously, there is increasing evidence that V{sup 5+} is found in higher amounts in cancer cells and tissues than in normal cells or tissues. Therefore, the current study aims to address the possible effect of this metal on the regulation of expression of an enzyme that helps maintain endogenous antioxidants used to protect tissues/cells from mutagens, carcinogens,more » and oxidative stress damage, NAD(P)H:quinone oxidoreductase 1 (Nqo1). In an attempt to examine these effects, Hepa 1c1c7 cells and its AhR-deficient version, c12, were treated with increasing concentrations of V{sup 5+} in the presence of two distinct Nqo1 inducers, the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and isothiocyanate sulforaphane (SUL). Our results showed that V{sup 5+} inhibits the TCDD- and SUL-mediated induction of Nqo1 at mRNA, protein, and catalytic activity levels. At transcriptional level, V{sup 5+} was able to decrease the TCDD- and SUL-induced nuclear accumulation of Nrf2 and the subsequent binding to antioxidant responsive element (ARE) without affecting Nrf2 protein levels. Looking at post-transcriptional level; we found that V{sup 5+} did not affect Nqo1 mRNA transcripts turn-over rates. However, at the post-translational level V{sup 5+} increased Nqo1 protein half-life. In conclusion, the present study demonstrates that V{sup 5+} down-regulates Nqo1 at the transcriptional level, possibly through inhibiting the ATP-dependent activation of Nrf2.« less

  6. Monocrotophos Induces the Expression and Activity of Xenobiotic Metabolizing Enzymes in Pre-Sensitized Cultured Human Brain Cells

    PubMed Central

    Tripathi, Vinay K.; Kumar, Vivek; Singh, Abhishek K.; Kashyap, Mahendra P.; Jahan, Sadaf; Pandey, Ankita; Alam, Sarfaraz; Khan, Feroz; Khanna, Vinay K.; Yadav, Sanjay; Lohani, Mohtshim; Pant, Aditya B.

    2014-01-01

    The expression and metabolic profile of cytochrome P450s (CYPs) is largely missing in human brain due to non-availability of brain tissue. We attempted to address the issue by using human brain neuronal (SH-SY5Y) and glial (U373-MG) cells. The expression and activity of CYP1A1, 2B6 and 2E1 were carried out in the cells exposed to CYP inducers viz., 3-methylcholanthrene (3-MC), cyclophosphamide (CPA), ethanol and known neurotoxicant- monocrotophos (MCP), a widely used organophosphorous pesticide. Both the cells show significant induction in the expression and CYP-specific activity against classical inducers and MCP. The induction level of CYPs was comparatively lower in MCP exposed cells than cells exposed to classical inducers. Pre-exposure (12 h) of cells to classical inducers significantly added the MCP induced CYPs expression and activity. The findings were concurrent with protein ligand docking studies, which show a significant modulatory capacity of MCP by strong interaction with CYP regulators-CAR, PXR and AHR. Similarly, the known CYP inducers- 3-MC, CPA and ethanol have also shown significantly high docking scores with all the three studied CYP regulators. The expression of CYPs in neuronal and glial cells has suggested their possible association with the endogenous physiology of the brain. The findings also suggest the xenobiotic metabolizing capabilities of these cells against MCP, if received a pre-sensitization to trigger the xenobiotic metabolizing machinery. MCP induced CYP-specific activity in neuronal cells could help in explaining its effect on neurotransmission, as these CYPs are known to involve in the synthesis/transport of the neurotransmitters. The induction of CYPs in glial cells is also of significance as these cells are thought to be involved in protecting the neurons from environmental insults and safeguard them from toxicity. The data provide better understanding of the metabolizing capability of the human brain cells against xenobiotics

  7. Computational Prediction of Metabolism: Sites, Products, SAR, P450 Enzyme Dynamics, and Mechanisms

    PubMed Central

    2012-01-01

    Metabolism of xenobiotics remains a central challenge for the discovery and development of drugs, cosmetics, nutritional supplements, and agrochemicals. Metabolic transformations are frequently related to the incidence of toxic effects that may result from the emergence of reactive species, the systemic accumulation of metabolites, or by induction of metabolic pathways. Experimental investigation of the metabolism of small organic molecules is particularly resource demanding; hence, computational methods are of considerable interest to complement experimental approaches. This review provides a broad overview of structure- and ligand-based computational methods for the prediction of xenobiotic metabolism. Current computational approaches to address xenobiotic metabolism are discussed from three major perspectives: (i) prediction of sites of metabolism (SOMs), (ii) elucidation of potential metabolites and their chemical structures, and (iii) prediction of direct and indirect effects of xenobiotics on metabolizing enzymes, where the focus is on the cytochrome P450 (CYP) superfamily of enzymes, the cardinal xenobiotics metabolizing enzymes. For each of these domains, a variety of approaches and their applications are systematically reviewed, including expert systems, data mining approaches, quantitative structure–activity relationships (QSARs), and machine learning-based methods, pharmacophore-based algorithms, shape-focused techniques, molecular interaction fields (MIFs), reactivity-focused techniques, protein–ligand docking, molecular dynamics (MD) simulations, and combinations of methods. Predictive metabolism is a developing area, and there is still enormous potential for improvement. However, it is clear that the combination of rapidly increasing amounts of available ligand- and structure-related experimental data (in particular, quantitative data) with novel and diverse simulation and modeling approaches is accelerating the development of effective tools for

  8. Metagenomic analysis of the pinewood nematode microbiome reveals a symbiotic relationship critical for xenobiotics degradation

    PubMed Central

    Cheng, Xin-Yue; Tian, Xue-Liang; Wang, Yun-Sheng; Lin, Ren-Miao; Mao, Zhen-Chuan; Chen, Nansheng; Xie, Bing-Yan

    2013-01-01

    Our recent research revealed that pinewood nematode (PWN) possesses few genes encoding enzymes for degrading α-pinene, which is the main compound in pine resin. In this study, we examined the role of PWN microbiome in xenobiotics detoxification by metagenomic and bacteria culture analyses. Functional annotation of metagenomes illustrated that benzoate degradation and its related metabolisms may provide the main metabolic pathways for xenobiotics detoxification in the microbiome, which is obviously different from that in PWN that uses cytochrome P450 metabolism as the main pathway for detoxification. The metabolic pathway of degrading α-pinene is complete in microbiome, but incomplete in PWN genome. Experimental analysis demonstrated that most of tested cultivable bacteria can not only survive the stress of 0.4% α-pinene, but also utilize α-pinene as carbon source for their growth. Our results indicate that PWN and its microbiome have established a potentially mutualistic symbiotic relationship with complementary pathways in detoxification metabolism. PMID:23694939

  9. Structural insights into xenobiotic and inhibitor binding to human aldehyde oxidase.

    PubMed

    Coelho, Catarina; Foti, Alessandro; Hartmann, Tobias; Santos-Silva, Teresa; Leimkühler, Silke; Romão, Maria João

    2015-10-01

    Aldehyde oxidase (AOX) is a xanthine oxidase (XO)-related enzyme with emerging importance due to its role in the metabolism of drugs and xenobiotics. We report the first crystal structures of human AOX1, substrate free (2.6-Å resolution) and in complex with the substrate phthalazine and the inhibitor thioridazine (2.7-Å resolution). Analysis of the protein active site combined with steady-state kinetic studies highlight the unique features, including binding and substrate orientation at the active site, that characterize human AOX1 as an important drug-metabolizing enzyme. Structural analysis of the complex with the noncompetitive inhibitor thioridazine revealed a new, unexpected and fully occupied inhibitor-binding site that is structurally conserved among mammalian AOXs and XO. The new structural insights into the catalytic and inhibition mechanisms of human AOX that we now report will be of great value for the rational analysis of clinical drug interactions involving inhibition of AOX1 and for the prediction and design of AOX-stable putative drugs.

  10. Altered carbohydrate, lipid, and xenobiotic metabolism by liver from rats flown on Cosmos 1887

    NASA Technical Reports Server (NTRS)

    Merrill, A. H. Jr; Hoel, M.; Wang, E.; Mullins, R. E.; Hargrove, J. L.; Jones, D. P.; Popova, I. A.; Merrill AH, J. r. (Principal Investigator)

    1990-01-01

    To determine the possible biochemical effects of prolonged weightlessness on liver function, samples of liver from rats that had flown aboard Cosmos 1887 were analyzed for protein, glycogen, and lipids as well as the activities of a number of key enzymes involved in metabolism of these compounds and xenobiotics. Among the parameters measured, the major differences were elevations in the glycogen content and hydroxymethylglutaryl-CoA (HMG-CoA) reductase activities for the rats flown on Cosmos 1887 and decreases in the amount of microsomal cytochrome P-450 and the activities of aniline hydroxylase and ethylmorphine N-demethylase, cytochrome P-450-dependent enzymes. These results support the earlier finding of differences in these parameters and suggest that altered hepatic function could be important during spaceflight and/or the postflight recovery period.

  11. Paternal nicotine exposure alters hepatic xenobiotic metabolism in offspring

    PubMed Central

    Vallaster, Markus P; Kukreja, Shweta; Bing, Xin Y; Ngolab, Jennifer; Zhao-Shea, Rubing; Gardner, Paul D; Tapper, Andrew R; Rando, Oliver J

    2017-01-01

    Paternal environmental conditions can influence phenotypes in future generations, but it is unclear whether offspring phenotypes represent specific responses to particular aspects of the paternal exposure history, or a generic response to paternal ‘quality of life’. Here, we establish a paternal effect model based on nicotine exposure in mice, enabling pharmacological interrogation of the specificity of the offspring response. Paternal exposure to nicotine prior to reproduction induced a broad protective response to multiple xenobiotics in male offspring. This effect manifested as increased survival following injection of toxic levels of either nicotine or cocaine, accompanied by hepatic upregulation of xenobiotic processing genes, and enhanced drug clearance. Surprisingly, this protective effect could also be induced by a nicotinic receptor antagonist, suggesting that xenobiotic exposure, rather than nicotinic receptor signaling, is responsible for programming offspring drug resistance. Thus, paternal drug exposure induces a protective phenotype in offspring by enhancing metabolic tolerance to xenobiotics. DOI: http://dx.doi.org/10.7554/eLife.24771.001 PMID:28196335

  12. Xenobiotic Transporter Expression along the Male Genital Tract1

    PubMed Central

    Klein, David M.; Wright, Stephen H.; Cherrington, Nathan J.

    2015-01-01

    The male genital tract plays an important role in protecting sperm by forming a distinct compartment separate from the body which limits exposure to potentially toxic substrates. Transporters along this tract can influence the distribution of xenobiotics into the male genital tract through efflux back into the blood or facilitating the accumulation of toxicants. The aim of this study was to quantitatively determine the constitutive mRNA expression of 30 xenobiotic transporters in caput and cauda regions of the epididymis, vas deferens, prostate, and seminal vesicles from adult Sprague-Dawley rats. The epididymis was found to express at least moderate levels of 18 transporters, vas deferens 15, seminal vesicles 23, and prostate 18. Constitutive expression of these xenobiotic transporters in the male genital tract may provide insight into the xenobiotics that can potentially be transported into these tissues and may provide the molecular mechanism for site specific toxicity of select agents. PMID:24814985

  13. Cross-induction of detoxification genes by environmental xenobiotics and insecticides in the mosquito Aedes aegypti: impact on larval tolerance to chemical insecticides.

    PubMed

    Poupardin, Rodolphe; Reynaud, Stéphane; Strode, Clare; Ranson, Hilary; Vontas, John; David, Jean-Philippe

    2008-05-01

    The effect of exposure of Aedes aegypti larvae to sub-lethal doses of the pyrethroid insecticide permethrin, the organophosphate temephos, the herbicide atrazine, the polycyclic aromatic hydrocarbon fluoranthene and the heavy metal copper on their subsequent tolerance to insecticides, detoxification enzyme activities and expression of detoxification genes was investigated. Bioassays revealed a moderate increase in larval tolerance to permethrin following exposure to fluoranthene and copper while larval tolerance to temephos increased moderately after exposure to atrazine, copper and permethrin. Cytochrome P450 monooxygenases activities were induced in larvae exposed to permethrin, fluoranthene and copper while glutathione S-transferase activities were induced after exposure to fluoranthene and repressed after exposure to copper. Microarray screening of the expression patterns of all detoxification genes following exposure to each xenobiotic with the Aedes Detox Chip identified multiple genes induced by xenobiotics and insecticides. Further expression studies using real-time quantitative PCR confirmed the induction of multiple CYP genes and one carboxylesterase gene by insecticides and xenobiotics. Overall, this study reveals the potential of xenobiotics found in polluted mosquito breeding sites to affect their tolerance to insecticides, possibly through the cross-induction of particular detoxification genes. Molecular mechanisms involved and impact on mosquito control strategies are discussed.

  14. Xenobiotic-metabolizing enzymes in the skin of rat, mouse, pig, guinea pig, man, and in human skin models.

    PubMed

    Oesch, F; Fabian, E; Guth, K; Landsiedel, R

    2014-12-01

    The exposure of the skin to medical drugs, skin care products, cosmetics, and other chemicals renders information on xenobiotic-metabolizing enzymes (XME) in the skin highly interesting. Since the use of freshly excised human skin for experimental investigations meets with ethical and practical limitations, information on XME in models comes in the focus including non-human mammalian species and in vitro skin models. This review attempts to summarize the information available in the open scientific literature on XME in the skin of human, rat, mouse, guinea pig, and pig as well as human primary skin cells, human cell lines, and reconstructed human skin models. The most salient outcome is that much more research on cutaneous XME is needed for solid metabolism-dependent efficacy and safety predictions, and the cutaneous metabolism comparisons have to be viewed with caution. Keeping this fully in mind at least with respect to some cutaneous XME, some models may tentatively be considered to approximate reasonable closeness to human skin. For dermal absorption and for skin irritation among many contributing XME, esterase activity is of special importance, which in pig skin, some human cell lines, and reconstructed skin models appears reasonably close to human skin. With respect to genotoxicity and sensitization, activating XME are not yet judgeable, but reactive metabolite-reducing XME in primary human keratinocytes and several reconstructed human skin models appear reasonably close to human skin. For a more detailed delineation and discussion of the severe limitations see the "Overview and Conclusions" section in the end of this review.

  15. Natural variations in xenobiotic-metabolizing enzymes: developing tools for coral monitoring

    NASA Astrophysics Data System (ADS)

    Rougée, L. R. A.; Richmond, R. H.; Collier, A. C.

    2014-06-01

    The continued deterioration of coral reefs worldwide demonstrates the need to develop diagnostic tools for corals that go beyond general ecological monitoring and can identify specific stressors at sublethal levels. Cellular diagnostics present an approach to defining indicators (biomarkers) that have the potential to reflect the impact of stress at the cellular level, allowing for the detection of intracellular changes in corals prior to outright mortality. Detoxification enzymes, which may be readily induced or inhibited by environmental stressors, present such a set of indicators. However, in order to apply these diagnostic tools for the detection of stress, a detailed understanding of their normal, homeostatic levels within healthy corals must first be established. Herein, we present molecular and biochemical evidence for the expression and activity of major Phase I detoxification enzymes cytochrome P450 (CYP450), CYP2E1, and CYP450 reductase, as well as the Phase II enzymes UDP, glucuronosyltransferase (UGT), β-glucuronidase, glutathione- S-transferase (GST), and arylsulfatase C (ASC) in the coral Pocillopora damicornis. Additionally, we characterized enzyme expression and activity variations over a reproductive cycle within a coral's life history to determine natural endogenous changes devoid of stress exposure. Significant changes in enzyme activity over the coral's natural lunar reproductive cycle were observed for CYP2E1 and CYP450 reductase as well as UGT and GST, while β-glucuronidase and ASC did not fluctuate significantly. The data represent a baseline description of `health' for the expression and activity of these enzymes that can be used toward understanding the impact of environmental stressors on corals. Such knowledge can be applied to address causes of coral reef ecosystem decline and to monitor effectiveness of mitigation strategies. Achieving a better understanding of cause-and-effect relationships between putative stressors and biological

  16. Interplay of drug metabolizing enzymes with cellular transporters.

    PubMed

    Böhmdorfer, Michaela; Maier-Salamon, Alexandra; Riha, Juliane; Brenner, Stefan; Höferl, Martina; Jäger, Walter

    2014-11-01

    Many endogenous and xenobiotic substances and their metabolites are substrates for drug metabolizing enzymes and cellular transporters. These proteins may not only contribute to bioavailability of molecules but also to uptake into organs and, consequently, to overall elimination. The coordinated action of uptake transporters, metabolizing enzymes, and efflux pumps, therefore, is a precondition for detoxification and elimination of drugs. As the understanding of the underlying mechanisms is important to predict alterations in drug disposal, adverse drug reactions and, finally, drug-drug interactions, this review illustrates the interplay between selected uptake/efflux transporters and phase I/II metabolizing enzymes.

  17. In Silico Prediction of Cytochrome P450-Mediated Biotransformations of Xenobiotics: A Case Study of Epoxidation.

    PubMed

    Zhang, Jing; Ji, Li; Liu, Weiping

    2015-08-17

    Predicting the biotransformation of xenobiotics is important in toxicology; however, as more compounds are synthesized than can be investigated experimentally, powerful computational methods are urgently needed to prescreen potentially useful candidates. Cytochrome P450 enzymes (P450s) are the major enzymes involved in xenobiotic metabolism, and many substances are bioactivated by P450s to form active compounds. An example is the conversion of olefinic substrates to epoxides, which are intermediates in the metabolic activation of many known or suspected carcinogens. We have calculated the activation energies for epoxidation by the active species of P450 enzymes (an iron-oxo porphyrin cation radical oxidant, compound I) for a diverse set of 36 olefinic substrates with state-of-the-art density functional theory (DFT) methods. Activation energies can be estimated by the computationally less demanding method of calculating the ionization potentials of the substrates, which provides a useful and simple predictive model based on the reaction mechanism; however, the preclassification of these diverse substrates into weakly polar and strongly polar groups is a prerequisite for the construction of specific predictive models with good predictability for P450 epoxidation. This approach has been supported by both internal and external validations. Furthermore, the relation between the activation energies for the regioselective epoxidation and hydroxylation reactions of P450s and experimental data has been investigated. The results show that the computational method used in this work, single-point energy calculations with the B3LYP functional including zero-point energy and solvation and dispersion corrections based on B3LYP-optimized geometries, performs well in reproducing the experimental trends of the epoxidation and hydroxylation reactions.

  18. Efficacy and safety testing of mycotoxin-detoxifying agents in broilers following the European Food Safety Authority guidelines.

    PubMed

    Osselaere, A; Devreese, M; Watteyn, A; Vandenbroucke, V; Goossens, J; Hautekiet, V; Eeckhout, M; De Saeger, S; De Baere, S; De Backer, P; Croubels, S

    2012-08-01

    Contamination of feeds with mycotoxins is a worldwide problem and mycotoxin-detoxifying agents are used to decrease their negative effect. The European Food Safety Authority recently stated guidelines and end-points for the efficacy testing of detoxifiers. Our study revealed that plasma concentrations of deoxynivalenol and deepoxy-deoxynivalenol were too low to assess efficacy of 2 commercially available mycotoxin-detoxifying agents against deoxynivalenol after 3 wk of continuous feeding of this mycotoxin at concentrations of 2.44±0.70 mg/kg of feed and 7.54±2.20 mg/kg of feed in broilers. This correlates with the poor absorption of deoxynivalenol in poultry. A safety study with 2 commercially available detoxifying agents and veterinary drugs showed innovative results with regard to the pharmacokinetics of 2 antibiotics after oral dosing in the drinking water. The plasma and kidney tissue concentrations of oxytetracycline were significantly higher in broilers receiving a biotransforming agent in the feed compared with control birds. For amoxicillin, the plasma concentrations were significantly higher for broilers receiving an adsorbing agent in comparison to birds receiving the biotransforming agent, but not to the control group. Mycotoxin-detoxifying agents can thus interact with the oral bioavailability of antibiotics depending on the antibiotic and detoxifying agent, with possible adverse effects on the health of animals and humans.

  19. Monobromobimane occupies a distinct xenobiotic substrate site in glutathione S-transferase π

    PubMed Central

    Ralat, Luis A.; Colman, Roberta F.

    2003-01-01

    Monobromobimane (mBBr), functions as a substrate of porcine glutathione S-transferase π (GST π): The enzyme catalyzes the reaction of mBBr with glutathione. S-(Hydroxyethyl)bimane, a nonreactive analog of monobromobimane, acts as a competitive inhibitor with respect to mBBr as substrate but does not affect the reaction of GST π with another substrate, 1-chloro-2,4-dinitrobenzene (CDNB). In the absence of glutathione, monobromobimane inactivates GST π at pH 7.0 and 25°C as assayed using mBBr as substrate, with a lesser effect on the enzyme’s use of CDNB as substrate. These results indicate that the sites occupied by CDNB and mBBr are not identical. Inactivation is proportional to the incorporation of 2 moles of bimane/mole of subunit. Modification of GST π with mBBr does not interfere with its binding of 8-anilino-1-naphthalene sulfonate, indicating that this hydrophobic site is not the target of monobromobimane. S-Methylglutathione and S-(hydroxyethyl)bimane each yield partial protection against inactivation and decrease reagent incorporation, while glutathionyl-bimane protects completely against inactivation. Peptide analysis after trypsin digestion indicates that mBBr modifies Cys45 and Cys99 equally. Modification of Cys45 is reduced in the presence of S-methylglutathione, indicating that this residue is at or near the glutathione binding region. In contrast, modification of Cys99 is reduced in the presence of S-(hydroxyethyl)bimane, suggesting that this residue is at or near the mBBr xenobiotic substrate binding site. Modification of Cys99 can best be understood by reaction with monobromobimane while it is bound to its xenobiotic substrate site in an alternate orientation. These results support the concept that glutathione S-transferase accomplishes its ability to react with a diversity of substrates in part by harboring distinct xenobiotic substrate sites. PMID:14573868

  20. Environmental Factors and Bioremediation of Xenobiotics Using White Rot Fungi

    PubMed Central

    Fragoeiro, Silvia; Bastos, Catarina

    2010-01-01

    This review provides background information on the importance of bioremediation approaches. It describes the roles of fungi, specifically white rot fungi, and their extracellular enzymes, laccases, ligninases, and peroxidises, in the degradation of xenobiotic compounds such as single and mixtures of pesticides. We discuss the importance of abiotic factors such as water potential, temperature, and pH stress when considering an environmental screening approach, and examples are provided of the differential effect of white rot fungi on the degradation of single and mixtures of pesticides using fungi such as Trametes versicolor and Phanerochaete chrysosporium. We also explore the formulation and delivery of fungal bioremedial inoculants to terrestrial ecosystems as well as the use of spent mushroom compost as an approach. Future areas for research and potential exploitation of new techniques are also considered. PMID:23956663

  1. Xanthine Oxidoreductase in Drug Metabolism: Beyond a Role as a Detoxifying Enzyme.

    PubMed

    Battelli, Maria Giulia; Polito, Letizia; Bortolotti, Massimo; Bolognesi, Andrea

    2016-01-01

    The enzyme xanthine oxidoreductase (XOR) catalyzes the last two steps of purine catabolism in the highest uricotelic primates. XOR is an enzyme with dehydrogenase activity that, in mammals, may be converted into oxidase activity under a variety of pathophysiologic conditions. XOR activity is highly regulated at the transcriptional and post-translational levels and may generate reactive oxygen and nitrogen species, which trigger different consequences, ranging from cytotoxicity to inflammation. The low specificity for substrates allows XOR to metabolize a number of endogenous metabolites and a variety of exogenous compounds, including drugs. The present review focuses on the role of XOR as a drug-metabolizing enzyme, specifically for drugs with anticancer, antimicrobial, antiviral, immunosuppressive or vasodilator activities, as well as drugs acting on metabolism or inducing XOR expression. XOR has an activating role that is essential to the pharmacological action of quinone drugs, cyadox, antiviral nucleoside analogues, allopurinol, nitrate and nitrite. XOR activity has a degradation function toward thiopurine nucleotides, pyrazinoic acid, methylxanthines and tolbutamide, whose half-life may be prolonged by the use of XOR inhibitors. In conclusion, to avoid potential drug interaction risks, such as a toxic excess of drug bioavailability or a loss of drug efficacy, caution is suggested in the use of XOR inhibitors, as in the case of hyperuricemic patients affected by gout or tumor lysis syndrome, when it is necessary to simultaneously administer therapeutic substances that are activated or degraded by the drug-metabolizing activity of XOR.

  2. Detoxification of Atrazine by Low Molecular Weight Thiols in Alfalfa (Medicago sativa).

    PubMed

    Zhang, Jing Jing; Xu, Jiang Yan; Lu, Feng Fan; Jin, She Feng; Yang, Hong

    2017-10-16

    Low molecular weight (LMW) thiols in higher plants are a group of sulfur-rich nonprotein compounds and play primary and multiple roles in cellular redox homeostasis, enzyme activities, and xenobiotics detoxification. This study focused on identifying thiols-related protein genes from the legume alfalfa exposed to the herbicide atrazine (ATZ) residues in environment. Using high-throughput RNA-sequencing, a set of ATZ-responsive thiols-related protein genes highly up-regulated and differentially expressed in alfalfa was identified. Most of the differentially expressed genes (DEGs) were involved in regulation of biotic and abiotic stress responses. By analyzing the genes involved in thiols-mediated redox homeostasis, we found that many of them were thiols-synthetic enzymes such as γ-glutamylcysteine synthase (γECS), homoglutathione synthetase (hGSHS), and glutathione synthetase (GSHS). Using liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS), we further characterized a group of ATZ-thiols conjugates, which are the detoxified forms of ATZ in plants. Cysteine S-conjugate ATZ-HCl+Cys was the most important metabolite detected by MS. Several other ATZ-conjugates were also examined as ATZ-detoxified metabolites. Such results were validated by characterizing their analogs in rice. Our data showed that some conjugates under ATZ stress were detected in both plants, indicating that some detoxified mechanisms and pathways can be shared by the two plant species. Overall, these results indicate that LMW thiols play critical roles in detoxification of ATZ in the plants.

  3. Constitutive expression of the AHR signaling pathway in a bovine mammary epithelial cell line and modulation by dioxin-like PCB and other AHR ligands.

    PubMed

    Girolami, Flavia; Spalenza, Veronica; Manzini, Livio; Carletti, Monica; Nebbia, Carlo

    2015-01-05

    Environmental pollutants, such as dioxin-like (DL) PCBs, benzo(a) pyrene (B[a]P), and flavonoids are aryl hydrocarbon receptor (AHR) ligands and may be excreted in dairy milk. The expression of AHR-target genes, particularly those involved in xenobiotic biotransformation, and their modulation by two DL-PCBs, B[a]P, and β-naphthoflavone was investigated in a bovine mammary epithelial cell line (BME-UV). As assessed by quantitative PCR, BME-UV cells expressed a functional AHR signaling pathway. All the AHR ligands induced a concentration-related increase in the transcription of cytochrome P450 1A1 and 1B1, known to be implicated in the bioactivation of several xenobiotics. Conversely, genes encoding for antioxidant and detoxifying enzymes, like quinone oxidoreductase or glutathione S-transferase A2, were not affected or even depressed. This study demonstrates the occurrence and the modulation by different AHR-ligands of genes involved in xenobiotic metabolism in BME-UV cells, with the potential generation of (re) active metabolites that may damage mammary tissue and/or affect animal or human health via the contaminated milk. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Insecticide susceptibility status and major detoxifying enzymes' activity in Aedes albopictus (Skuse), vector of dengue and chikungunya in Northern part of West Bengal, India.

    PubMed

    Bharati, Minu; Saha, Dhiraj

    2017-06-01

    Mosquitoes belonging to Aedes genus, Aedes aegypti and Aedes albopictus transmit many globally important arboviruses including Dengue (DENV) and Chikungunya (CHIKV). Vector control with the use of insecticide remains the suitable method of choice to stop the transmission of these diseases. However, vector control throughout the world is failing to achieve its target results because of the worldwide development of insecticide resistance in mosquitoes. To assess the insecticide susceptibility status of Aedes albopictus from northern part of West Bengal, the susceptibility of eight different Aedes albopictus populations were tested against a commonly used larvicide (temephos) and some adulticides (malathion, deltamethrin and lambda cyhalothrin) along with the major insecticide detoxifying enzymes' activity in them. Through this study, it was revealed that most of the populations were found susceptible to temephos except Nagrakata (NGK) and Siliguri (SLG), which showed both a higher resistance ratio (RR 99 ) and a lower susceptibility, thereby reflecting the development of resistance against temephos in them. However, all tested adulticides caused 100% mortality in all the population implying their potency in control of this mosquito in this region of India. Through the study of carboxylesterase activity, it was revealed that the NGK population showed a 9.6 fold higher level of activity than susceptible population. The same population also showed a lower level of susceptibility and a higher resistance ratio (RR 99 ), indicating a clear correlation between susceptibility to temephos and carboxylesterase enzymes' activity in this population. This preliminary data reflects that the NGK population is showing a trend towards resistance development and with time, there is possibility that this resistance phenomenon will spread to other populations. With the recurrence of dengue and chikungunya, this data on insecticide susceptibility status of Aedes albopictus could help the

  5. SAGE Analysis of Transcriptome Responses in Arabidopsis Roots Exposed to 2,4,6-Trinitrotoluene1

    PubMed Central

    Ekman, Drew R.; Lorenz, W. Walter; Przybyla, Alan E.; Wolfe, N. Lee; Dean, Jeffrey F.D.

    2003-01-01

    Serial analysis of gene expression was used to profile transcript levels in Arabidopsis roots and assess their responses to 2,4,6-trinitrotoluene (TNT) exposure. SAGE libraries representing control and TNT-exposed seedling root transcripts were constructed, and each was sequenced to a depth of roughly 32,000 tags. More than 19,000 unique tags were identified overall. The second most highly induced tag (27-fold increase) represented a glutathione S-transferase. Cytochrome P450 enzymes, as well as an ABC transporter and a probable nitroreductase, were highly induced by TNT exposure. Analyses also revealed an oxidative stress response upon TNT exposure. Although some increases were anticipated in light of current models for xenobiotic metabolism in plants, evidence for unsuspected conjugation pathways was also noted. Identifying transcriptome-level responses to TNT exposure will better define the metabolic pathways plants use to detoxify this xenobiotic compound, which should help improve phytoremediation strategies directed at TNT and other nitroaromatic compounds. PMID:14551330

  6. The Chemically Inducible Plant Cytochrome P450 CYP76B1 Actively Metabolizes Phenylureas and Other Xenobiotics1

    PubMed Central

    Robineau, Tiburce; Batard, Yannick; Nedelkina, Svetlana; Cabello-Hurtado, Francisco; LeRet, Monique; Sorokine, Odile; Didierjean, Luc; Werck-Reichhart, Danièle

    1998-01-01

    Cytochrome P450s (P450s) constitute one of the major classes of enzymes that are responsible for detoxification of exogenous molecules both in animals and plants. On the basis of its inducibility by exogenous chemicals, we recently isolated a new plant P450, CYP76B1, from Jerusalem artichoke (Helianthus tuberosus) and showed that it was capable of dealkylating a model xenobiotic compound, 7-ethoxycoumarin. In the present paper we show that CYP76B1 is more strongly induced by foreign compounds than other P450s isolated from the same plant, and metabolizes with high efficiency a wide range of xenobiotics, including alkoxycoumarins, alkoxyresorufins, and several herbicides of the class of phenylureas. CYP76B1 catalyzes the double N-dealkylation of phenylureas with turnover rates comparable to those reported for physiological substrates and produces nonphytotoxic compounds. Potential uses for CYP76B1 thus include control of herbicide tolerance and selectivity, as well as soil and groundwater bioremediation. PMID:9808750

  7. Expanding the Halohydrin Dehalogenase Enzyme Family: Identification of Novel Enzymes by Database Mining.

    PubMed

    Schallmey, Marcus; Koopmeiners, Julia; Wells, Elizabeth; Wardenga, Rainer; Schallmey, Anett

    2014-12-01

    Halohydrin dehalogenases are very rare enzymes that are naturally involved in the mineralization of halogenated xenobiotics. Due to their catalytic potential and promiscuity, many biocatalytic reactions have been described that have led to several interesting and industrially important applications. Nevertheless, only a few of these enzymes have been made available through recombinant techniques; hence, it is of general interest to expand the repertoire of these enzymes so as to enable novel biocatalytic applications. After the identification of specific sequence motifs, 37 novel enzyme sequences were readily identified in public sequence databases. All enzymes that could be heterologously expressed also catalyzed typical halohydrin dehalogenase reactions. Phylogenetic inference for enzymes of the halohydrin dehalogenase enzyme family confirmed that all enzymes form a distinct monophyletic clade within the short-chain dehydrogenase/reductase superfamily. In addition, the majority of novel enzymes are substantially different from previously known phylogenetic subtypes. Consequently, four additional phylogenetic subtypes were defined, greatly expanding the halohydrin dehalogenase enzyme family. We show that the enormous wealth of environmental and genome sequences present in public databases can be tapped for in silico identification of very rare but biotechnologically important biocatalysts. Our findings help to readily identify halohydrin dehalogenases in ever-growing sequence databases and, as a consequence, make even more members of this interesting enzyme family available to the scientific and industrial community. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  8. Establishing the role of detoxifying enzymes in field-evolved resistance to various insecticides in the brown planthopper (Nilaparvata lugens) in South India.

    PubMed

    Malathi, Vijayakumar Maheshwari; Jalali, Sushil K; Gowda, Dandinashivara K Sidde; Mohan, Muthugounder; Venkatesan, Thiruvengadam

    2017-02-01

    The brown planthopper (BPH), Nilaparvata lugens (Stål), is one of the major pests of rice throughout Asia. Extensive use of insecticides for suppressing N. lugens has resulted in the development of insecticide resistance leading to frequent control failures in the field. The aim of the present study was to evaluate resistance in the field populations of N. lugens from major rice growing states of South India to various insecticides. We also determined the activity of detoxifying enzymes (esterases [ESTs], glutathione S-transferases [GSTs], and mixed-function oxidases [MFOs]). Moderate levels of resistance were detected in the field populations to acephate, thiamethoxam and buprofezin (resistance factors 1.05-20.92 fold, 4.52-14.99 fold, and 1.00-18.09 fold, respectively) as compared with susceptible strain while there were low levels of resistance to imidacloprid (resistance factor 1.23-6.70 fold) and complete sensitivity to etofenoprox (resistance factor 1.05-1.66 fold). EST activities in the field populations were 1.06 to 3.09 times higher than the susceptible strain while for GST and MFO the ratios varied from 1.29 to 3.41 and 1.03 to 1.76, respectively. The EST activity was found to be correlated to acephate resistance (r = 0.999, P ≥ 0.001). The high selection pressure of organophosphate, neonicotinoid, and insect growth regulator (IGR) in the field is likely to be contributing for resistance in BPH to multiple insecticides, leading to control failures. The results obtained will be beneficial to IPM recommendations for the use of effective insecticides against BPH. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  9. Transformation of RDX and other energetic compounds by xenobiotic reductases XenA and XenB

    PubMed Central

    McClay, Kevin; Hawari, Jalal; Paquet, Louise; Malone, Thomas E.; Fox, Brian G.; Steffan, Robert J.

    2017-01-01

    The transformation of explosives, including hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), by xenobiotic reductases XenA and XenB (and the bacterial strains harboring these enzymes) under both aerobic and anaerobic conditions was assessed. Under anaerobic conditions, Pseudomonas fluorescens I-C (XenB) degraded RDX faster than Pseudomonas putida II-B (XenA), and transformation occurred when the cells were supplied with sources of both carbon (succinate) and nitrogen (NH4+), but not when only carbon was supplied. Transformation was always faster under anaerobic conditions compared to aerobic conditions, with both enzymes exhibiting a O2 concentration-dependent inhibition of RDX transformation. The primary degradation pathway for RDX was conversion to methylenedinitramine and then to formaldehyde, but a minor pathway that produced 4-nitro-2,4-diazabutanal (NDAB) also appeared to be active during transformation by whole cells of P. putida II-B and purified XenA. Both XenA and XenB also degraded the related nitramine explosives octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane. Purified XenB was found to have a broader substrate range than XenA, degrading more of the explosive compounds examined in this study. The results show that these two xenobiotic reductases (and their respective bacterial strains) have the capacity to transform RDX as well as a wide variety of explosive compounds, especially under low oxygen concentrations. PMID:19455327

  10. DEVELOPMENT OF A CLASS-SELECTIVE ENZYME IMMUNOASSAY FOR URINARY PHENOLIC GLUCURONIDES. (R825433)

    EPA Science Inventory

    Class-selective immunoassays for the measurement of glucuronides in human urine can aid evaluation of human exposure to complex mixtures of xenobiotics. Therefore, an enzyme immunoassay (EIA) for the group-selective detection of phenolic Membrane Phospholipid Augments Cytochrome P4501a Enzymatic Activity by Modulating Structural Conformation during Detoxification of Xenobiotics

    PubMed Central

    Ghosh, Manik C.; Ray, Arun K.

    2013-01-01

    Cytochrome P450 is a superfamily of membrane-bound hemoprotein that gets involved with the degradation of xenobiotics and internal metabolites. Accumulated body of evidence indicates that phospholipids play a crucial role in determining the enzymatic activity of cytochrome P450 in the microenvironment by modulating its structure during detoxification; however, the structure-function relationship of cytochrome P4501A, a family of enzymes responsible for degrading lipophilic aromatic hydrocarbons, is still not well defined. Inducibility of cytochrome P4501A in cultured catfish hepatocytes in response to carbofuran, a widely used pesticide around the world, was studied earlier in our laboratory. In this present investigation, we observed that treating catfish with carbofuran augmented total phospholipid in the liver. We examined the role of phospholipid on the of cytochrome P4501A-marker enzyme which is known as ethoxyresorufin-O-deethylase (EROD) in the context of structure and function. We purified the carbofuran-induced cytochrome P4501A protein from catfish liver. Subsequently, we examined the enzymatic activity of purified P4501A protein in the presence of phospholipid, and studied how the structure of purified protein was influenced in the phospholipid environment. Membrane phospholipid appeared to accelerate the enzymatic activity of EROD by changing its structural conformation and thus controlling the detoxification of xenobiotics. Our study revealed the missing link of how the cytochrome P450 restores its enzymatic activity by changing its structural conformation in the phospholipid microenvironment. PMID:23469105

  11. Membrane phospholipid augments cytochrome P4501a enzymatic activity by modulating structural conformation during detoxification of xenobiotics.

    PubMed

    Ghosh, Manik C; Ray, Arun K

    2013-01-01

    Cytochrome P450 is a superfamily of membrane-bound hemoprotein that gets involved with the degradation of xenobiotics and internal metabolites. Accumulated body of evidence indicates that phospholipids play a crucial role in determining the enzymatic activity of cytochrome P450 in the microenvironment by modulating its structure during detoxification; however, the structure-function relationship of cytochrome P4501A, a family of enzymes responsible for degrading lipophilic aromatic hydrocarbons, is still not well defined. Inducibility of cytochrome P4501A in cultured catfish hepatocytes in response to carbofuran, a widely used pesticide around the world, was studied earlier in our laboratory. In this present investigation, we observed that treating catfish with carbofuran augmented total phospholipid in the liver. We examined the role of phospholipid on the of cytochrome P4501A-marker enzyme which is known as ethoxyresorufin-O-deethylase (EROD) in the context of structure and function. We purified the carbofuran-induced cytochrome P4501A protein from catfish liver. Subsequently, we examined the enzymatic activity of purified P4501A protein in the presence of phospholipid, and studied how the structure of purified protein was influenced in the phospholipid environment. Membrane phospholipid appeared to accelerate the enzymatic activity of EROD by changing its structural conformation and thus controlling the detoxification of xenobiotics. Our study revealed the missing link of how the cytochrome P450 restores its enzymatic activity by changing its structural conformation in the phospholipid microenvironment.

  12. Xenobiotic metabolism capacities of human skin in comparison with a 3D epidermis model and keratinocyte-based cell culture as in vitro alternatives for chemical testing: activating enzymes (Phase I).

    PubMed

    Götz, Christine; Pfeiffer, Roland; Tigges, Julia; Blatz, Veronika; Jäckh, Christine; Freytag, Eva-Maria; Fabian, Eric; Landsiedel, Robert; Merk, Hans F; Krutmann, Jean; Edwards, Robert J; Pease, Camilla; Goebel, Carsten; Hewitt, Nicola; Fritsche, Ellen

    2012-05-01

    Skin is important for the absorption and metabolism of exposed chemicals such as cosmetics or pharmaceuticals. The Seventh Amendment to the EU Cosmetics Directive prohibits the use of animals for cosmetic testing for certain endpoints, such as genotoxicity; therefore, there is an urgent need to understand the xenobiotic metabolizing capacities of human skin and to compare these activities with reconstructed 3D skin models developed to replace animal testing. We have measured Phase I enzyme activities of cytochrome P450 (CYP) and cyclooxygenase (COX) in ex vivo human skin, the 3D skin model EpiDerm™ (EPI-200), immortalized keratinocyte-based cell lines and primary normal human epidermal keratinocytes. Our data demonstrate that basal CYP enzyme activities are very low in whole human skin and EPI-200 as well as keratinocytes. In addition, activities in monolayer cells differed from organotypic tissues after induction. COX activity was similar in skin, EPI-200 and NHEK cells, but was significantly lower in immortalized keratinocytes. Hence, the 3D model EPI-200 might represent a more suitable model for dermatotoxicological studies. Altogether, these data help to better understand skin metabolism and expand the knowledge of in vitro alternatives used for dermatotoxicity testing. © 2012 John Wiley & Sons A/S.

  13. Molecular cloning, biochemical characterization, and expression analysis of two glutathione S-transferase paralogs from the big-belly seahorse (Hippocampus abdominalis).

    PubMed

    Tharuka, M D Neranjan; Bathige, S D N K; Lee, Jehee

    2017-12-01

    Glutathione S-transferases (GSTs, EC 2.5.1.18) are important Phase II detoxifying enzymes that catalyze hydrophobic, electrophilic xenobiotic substance with the conjugation of reduced glutathione (GSH). In this study, GSTμ and GSTρ paralogs of GST in the big belly seahorse (Hippocampus abdominalis; HaGSTρ, HaGSTμ) were biochemically, molecularly, functionally characterized to determine their detoxification range and protective capacities upon different pathogenic stresses. HaGSTρ and HaGSTμ are composed of coding sequences of 681bp and 654bp, which encode proteins 225 and 217 amino acids, with predicted molecular masses of 26.06kDa and 25.74kDa respectively. Sequence analysis revealed that both HaGSTs comprise the characteristic GSH-binding site in the thioredoxin-like N-terminal domain and substrate binding site in the C-terminal domain. The recombinant HaGSTρ and HaGSTμ proteins catalyzed the model GST substrate 1-chloro-2, 4-dinitrobenzene (CDNB). Enzyme kinetic analysis revealed different K m and V max values for each rHaGST, suggesting that they have different conjugation rates. The optimum conditions (pH, temperature) and inhibitory assays of each protein demonstrated different optimal ranges. However, HaGSTμ was highly expressed in the ovary and gill, whereas HaGSTρ was highly expressed in the gill and pouch. mRNA expression of HaGSTρ and HaGSTμ was significantly elevated upon lipopolysaccharide, Poly (I:C), and Edwardsiella tarda challenges in liver and in blood cells as well as with Streptococcus iniae challenge in blood cells. From these collective experimental results, we propose that HaGSTρ and HaGSTμ are effective in detoxifying xenobiotic toxic agents, and importantly, their mRNA expression could be stimulated by immunological stress signals in the aquatic environment. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Addressing species diversity in biotransformation: variability in expressed transcripts of hepatic biotransformation enzymes among fishes

    EPA Science Inventory

    There is increasing evidence that diverse xenobiotic metabolizing enzymes exist among fishes, potentially resulting in different chemical sensitivities and accumulation, but this has never been systematically evaluated. One concern is that model test species such as rainbow trou...

  15. Oral enzyme therapy for celiac sprue

    PubMed Central

    Bethune, Michael T; Khosla, Chaitan

    2012-01-01

    Celiac sprue is an inflammatory disease of the small intestine caused by dietary gluten and treated by adherence to a lifelong gluten-free diet. The recent identification of immunodominant gluten peptides, the discovery of their cogent properties, and the elucidation of the mechanisms by which they engender immunopathology in genetically-susceptible individuals have advanced our understanding of the molecular pathogenesis of this complex disease, enabling the rational design of new therapeutic strategies. The most clinically advanced of these is oral enzyme therapy, in which enzymes capable of proteolyzing gluten (i.e. glutenases) are delivered to the alimentary tract of a celiac sprue patient to detoxify ingested gluten in situ. In this chapter, we discuss the key challenges for discovery and preclinical development of oral enzyme therapies for celiac sprue. Methods for lead identification, assay development, gram-scale production and formulation, and lead optimization for next-generation proteases are described and critically assessed. PMID:22208988

  16. Genetically detoxified pertussis toxin (PT-9K/129G): implications for immunization and vaccines.

    PubMed

    Seubert, Anja; D'Oro, Ugo; Scarselli, Maria; Pizza, Mariagrazia

    2014-10-01

    Pertussis toxin (PT) is one of the major virulence factors of Bordetella pertussis and the primary component of all pertussis vaccines available to date. Because of its various noxious effects the toxin needs to be detoxified. In all currently available vaccines, detoxification is achieved by treatment with high quantity of chemical agents such as formaldehyde, glutaraldehyde or hydrogen peroxide. Although effective in detoxification, this chemical treatment alters dramatically the immunological properties of the toxin. In contrast, PT genetically detoxified through the substitution of two residues necessary for its enzymatic activity maintains all functional and immunological properties. This review describes in detail the characteristics of this PT-9K/129G mutant and shows that it is non-toxic and a superior immunogen compared with chemically detoxified PT. Importantly, data from an efficacy trial show that the PT-9K/129G-based vaccine induces earlier and longer-lasting protection, further supporting the hypothesis that PT-9K/129G represents an ideal candidate for future pertussis vaccine formulations.

  17. A single amino acid controls the functional switch of human constitutive androstane receptor (CAR) 1 to the xenobiotic-sensitive splicing variant CAR3.

    PubMed

    Chen, Tao; Tompkins, Leslie M; Li, Linhao; Li, Haishan; Kim, Gregory; Zheng, Yuxin; Wang, Hongbing

    2010-01-01

    The constitutive androstane receptor (CAR) is constitutively activated in immortalized cell lines independent of xenobiotic stimuli. This feature of CAR has limited its use as a sensor for xenobiotic-induced expression of drug-metabolizing enzymes. Recent reports, however, reveal that a splicing variant of human CAR (hCAR3), which contains an insertion of five amino acids (APYLT), exhibits low basal but xenobiotic-inducible activities in cell-based reporter assays. Nonetheless, the underlying mechanisms of this functional shift are not well understood. We have now generated chimeric constructs containing various residues of the five amino acids of hCAR3 and examined their response to typical hCAR activators. Our results showed that the retention of alanine (hCAR1+A) alone is sufficient to confer the constitutively activated hCAR1 to the xenobiotic-sensitive hCAR3. It is noteworthy that hCAR1+A was significantly activated by a series of known hCAR activators, and displayed activation superior to that of hCAR3. Moreover, intracellular localization assays revealed that hCAR1+A exhibits nuclear accumulation upon 6-(4-chlorophenyl) imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl) oxime (CITCO) treatment in COS1 cells, which differs from the spontaneous nuclear distribution of hCAR1 and the nontranslocatable hCAR3. Mammalian two-hybrid and glutathione S-transferase pull-down assays further demonstrated that hCAR1+A interacts with the coactivator SRC-1 and GRIP-1 at low level before activation, while at significantly enhanced level in the presence of CITCO. Thus, the alanine residue in the insertion of hCAR3 seems in charge of the xenobiotic response of hCAR3 through direct and indirect mechanisms. Activation of hCAR1+A may represent a sensitive avenue for the identification of hCAR activators.

  18. A Single Amino Acid Controls the Functional Switch of Human Constitutive Androstane Receptor (CAR) 1 to the Xenobiotic-Sensitive Splicing Variant CAR3

    PubMed Central

    Chen, Tao; Tompkins, Leslie M.; Li, Linhao; Li, Haishan; Kim, Gregory; Zheng, Yuxin

    2010-01-01

    The constitutive androstane receptor (CAR) is constitutively activated in immortalized cell lines independent of xenobiotic stimuli. This feature of CAR has limited its use as a sensor for xenobiotic-induced expression of drug-metabolizing enzymes. Recent reports, however, reveal that a splicing variant of human CAR (hCAR3), which contains an insertion of five amino acids (APYLT), exhibits low basal but xenobiotic-inducible activities in cell-based reporter assays. Nonetheless, the underlying mechanisms of this functional shift are not well understood. We have now generated chimeric constructs containing various residues of the five amino acids of hCAR3 and examined their response to typical hCAR activators. Our results showed that the retention of alanine (hCAR1+A) alone is sufficient to confer the constitutively activated hCAR1 to the xenobiotic-sensitive hCAR3. It is noteworthy that hCAR1+A was significantly activated by a series of known hCAR activators, and displayed activation superior to that of hCAR3. Moreover, intracellular localization assays revealed that hCAR1+A exhibits nuclear accumulation upon 6-(4-chlorophenyl) imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl) oxime (CITCO) treatment in COS1 cells, which differs from the spontaneous nuclear distribution of hCAR1 and the nontranslocatable hCAR3. Mammalian two-hybrid and glutathione S-transferase pull-down assays further demonstrated that hCAR1+A interacts with the coactivator SRC-1 and GRIP-1 at low level before activation, while at significantly enhanced level in the presence of CITCO. Thus, the alanine residue in the insertion of hCAR3 seems in charge of the xenobiotic response of hCAR3 through direct and indirect mechanisms. Activation of hCAR1+A may represent a sensitive avenue for the identification of hCAR activators. PMID:19820207

  19. Functioning of Microsomal Cytochrome P450s: Murburn Concept Explains the Metabolism of Xenobiotics in Hepatocytes.

    PubMed

    Manoj, Kelath Murali; Parashar, Abhinav; Gade, Sudeep K; Venkatachalam, Avanthika

    2016-01-01

    Using oxygen and NADPH, the redox enzymes cytochrome P450 (CYP) and its reductase (CPR) work in tandem to carry out the phase I metabolism of a vast majority of drugs and xenobiotics. As per the erstwhile understanding of the catalytic cycle, binding of the substrate to CYP's heme distal pocket allows CPR to pump electrons through a CPR-CYP complex. In turn, this trigger (a thermodynamic push of electrons) leads to the activation of oxygen at CYP's heme-center, to give Compound I, a two-electron deficient enzyme reactive intermediate. The formation of diffusible radicals and reactive oxygen species (DROS, hitherto considered an undesired facet of the system) was attributed to the heme-center. Recently, we had challenged these perceptions and proposed the murburn ("mured burning" or "mild unrestricted burning") concept to explain heme enzymes' catalytic mechanism, electron-transfer phenomena and the regulation of redox equivalents' consumption. Murburn concept incorporates a one-electron paradigm, advocating obligatory roles for DROS. The new understanding does not call for high-affinity substrate-binding at the heme distal pocket of the CYP (the first and the most crucial step of the erstwhile paradigm) or CYP-CPR protein-protein complexations (the operational backbone of the erstwhile cycle). Herein, the dynamics of reduced nicotinamide nucleotides' consumption, peroxide formation and depletion, product(s) formation, etc. was investigated with various controls, by altering reaction variables, environments and through the incorporation of diverse molecular probes. In several CYP systems, control reactions lacking the specific substrate showed comparable or higher peroxide in milieu, thereby discrediting the foundations of the erstwhile hypothesis. The profiles obtained by altering CYP:CPR ratios and the profound inhibitions observed upon the incorporation of catalytic amounts of horseradish peroxidase confirm the obligatory roles of DROS in milieu, ratifying

  1. Exploring the Role of Host-associated Microbiota as Mediators of Bisphenol Chemical Toxicity in Zebrafish..

    EPA Science Inventory

    Exposure to Bisphenol A (BPA), a widespread environmental contaminant, has been associated with adverse endocrine and neurodevelopmental effects. Because host-associated microbiota play important roles in neurodevelopment and may bioactivate or detoxify xenobiotics, we hypothesiz...

  2. Xenobiotic metabolism in the fourth dimension: PARtners in time.

    PubMed

    Green, Carla B; Takahashi, Joseph S

    2006-07-01

    A significant portion of the transcriptome in mammals, including the PAR bZIP transcription factors DBP, HLF, and TEF, is under circadian clock control. In this issue of Cell Metabolism, Gachon and colleagues (Gachon et al., 2006) show that disruption of these three genes in mice alters gene expression patterns of many proteins involved in drug metabolism and in liver and kidney responses to xenobiotic agents. Triple mutant mice have severe physiological deficits, including increased hypersensitivity to xenobiotic agents and premature aging, highlighting the profound effect the circadian clock has on this important response system.

  3. Xenobiotics: How the Environment Changes Your Body

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Erin

    Erin Baker studies how substances foreign to your body affect your health. To do so, her team at PNNL developed a rapid way to separate and study both xenobiotics and endogenous molecules using ion mobility.

  4. Bisphenol A-Associated Alterations in the Expression and Epigenetic Regulation of Genes Encoding Xenobiotic Metabolizing Enzymes in Human Fetal Liver

    PubMed Central

    Nahar, Muna S.; Kim, Jung H.; Sartor, Maureen A.; Dolinoy, Dana C.

    2014-01-01

    Alterations in xenobiotic metabolizing enzyme (XME) expression across the life course, along with genetic, nutritional, and environmental regulation, can influence how organisms respond to toxic insults. In this study, we investigated the hypothesis that in utero exposure to the endocrine active compound, bisphenol A (BPA), influences expression and epigenetic regulation of phase I and II XME genes during development. Using healthy 1st to 2nd trimester human fetal liver specimens quantified for internal BPA levels, we examined XME gene expression using PCR Array (n =8) and RNA-sequencing (n =12) platforms. Of the greater than 160 XME genes assayed, 2 phase I and 12 phase II genes exhibited significantly reduced expression with higher BPA levels, including isoforms from the carboxylesterase, catechol O-methyltransferase, glutathione S-transferase, sulfotransferase, and UDP-glucuronosyltransferase families. When the promoters of these candidate genes were evaluated in silico, putative binding sites for the E-twenty-six (ETS) and activator protein1 (AP1) related transcription factor families were identified and unique to 97% of all candidate transcripts. Interestingly, many ETS binding sites contain cytosine-guanine dinucleotides (CpGs) within their consensus sequences. Thus, quantitative analysis of CpG methylation of three candidate genes was conducted across n =50 samples. Higher BPA levels were associated with increased site-specific methylation at COMT (P <0.005) and increased average methylation at SULT2A1 (P <0.020) promoters. While toxicological studies have traditionally focused on high-dose effects and hormonal receptor mediated regulation, our findings suggest the importance of low-dose effects and nonclassical mechanisms of endocrine disruption during development. PMID:24214726

  5. 6-shogaol, a major compound in ginger, induces aryl hydrocarbon receptor-mediated transcriptional activity and gene expression.

    PubMed

    Yoshida, Kazutaka; Satsu, Hideo; Mikubo, Ayano; Ogiwara, Haru; Yakabe, Takafumi; Inakuma, Takahiro; Shimizu, Makoto

    2014-06-18

    Xenobiotics are usually detoxified by drug-metabolizing enzymes and excreted from the body. The expression of many of drug-metabolizing enzymes is regulated by the aryl hydrocarbon receptor (AHR). Some substances in vegetables have the potential to be AHR ligands. To search for vegetable components that exhibit AHR-mediated transcriptional activity, we assessed the activity of vegetable extracts and identified the active compounds using the previously established stable AHR-responsive HepG2 cell line. Among the hot water extracts of vegetables, the highest activity was found in ginger. The ethyl acetate fraction of the ginger hot water extract remarkably induced AHR-mediated transcriptional activity, and the major active compound was found to be 6-shogaol. Subsequently, the mRNA levels of AHR-targeting drug-metabolizing enzymes (CYP1A1, UGT1A1, and ABCG 2) and the protein level of CYP1A1 in HepG2 cells were shown to be increased by 6-shogaol. This is the first report that 6-shogaol can regulate the expression of detoxification enzymes by AHR activation.

  6. Interference with xenobiotic metabolic activity by the commonly used vehicle solvents dimethylsulfoxide and methanol in zebrafish (Danio rerio) larvae but not Daphnia magna

    PubMed Central

    David, Rhiannon M.; Jones, Huw S.; Panter, Grace H.; Winter, Matthew J.; Hutchinson, Thomas H.; Kevin Chipman, J.

    2012-01-01

    Organic solvents, such as dimethylsulfoxide (DMSO) and methanol are widely used as vehicles to solubilise lipophilic test compounds in toxicity testing. However, the effects of such solvents upon innate detoxification processes in aquatic organisms are poorly understood. This study assessed the effect of solvent exposure upon cytochrome P450 (CYP)-mediated xenobiotic metabolism in Daphnia magna and zebrafish larvae (4 d post fertilisation). Adult D. magna were demonstrated to have a low, but detectable, metabolism of ethoxyresorufin in vivo and this activity was not modulated by pre-exposure to DMSO or methanol (24 h, up to 0.1% and 0.05% v/v, respectively). In contrast, the metabolism of ethoxyresorufin in zebrafish larvae was significantly reduced by both solvents (0.1% and 0.05% v/v, respectively) after 24 h of exposure. In zebrafish, these observed decreases in activity towards ethoxyresorufin were accompanied by decreased expression of a variety of genes coding for drug metabolising enzymes (corresponding to CYP1, CYP2, CYP3 and UDP-glucuronyl transferase [UGT] family enzymes), measured by quantitative PCR. Reduction of gene expression and CYP1 enzyme activities by methanol (0.05% v/v) in zebrafish larvae was partially reversed by co-exposure with Aroclor 1254 (100 μg L−1). Overall this study suggests that relatively low concentrations of organic solvents can impact upon the biotransformation of certain xenobiotics in zebrafish larvae, and that this warrants consideration when assessing compounds for metabolism and toxicity in this species. PMID:22472102

  7. Symposium overview: alterations in cytokine receptors by xenobiotics.

    PubMed

    Cohen, M D; Schook, L B; Oppenheim, J J; Freed, B M; Rodgers, K E

    1999-04-01

    A symposium entitled Alterations in Cytokine Receptors by Xenobiotics was held at the 37th Annual Meeting of the Society of Toxicology (SOT) in Seattle, Washington. The symposium was sponsored by the Immunotoxicology Specialty Section of SOT and was designed to present information on the effect of several different classes of xenobiotics on various aspects of receptor function (i.e., post-receptor signal transduction of receptor expression), or the involvement of cytokine receptors in the action of the toxicant under consideration. This symposium brought together scientists in the area of receptor immunobiology whose expertise in receptor modulation encompassed those major signaling agents involved in the normal immune response, i.e., proinflammatory cytokines, chemokines, interleukins, and interferons. The following is a summary of each of the individual presentations.

  8. Expression, functional analysis and mutation of a novel neutral zearalenone-degrading enzyme.

    PubMed

    Wang, Meixing; Yin, Lifeng; Hu, Huizhen; Selvaraj, Jonathan Nimal; Zhou, Yuling; Zhang, Guimin

    2018-06-24

    The crops and grains were often contaminated by high level of mycotoxin zearalenone (ZEN). In order to remove ZEN and keep food safe, ZEN-degrading or detoxifying enzymes are urgently needed. Here, a newly identified lactonohydrolase responsible for the detoxification of ZEN, annotated as Zhd518, was expressed and characterized. Zhd518 showed 65% amino acid identity with Zhd101, which was widely studied for its ZEN-degrading ability. A detailed activity measurement method of ZEN-degrading enzyme was provided. Biochemical analysis indicated that the purified recombinant Zhd518 from E. coli exhibited a high activity against ZEN (207.0 U/mg), with the optimal temperature and pH of 40 °C and 8.0, respectively. The Zhd518 can degrade ZEN derivatives, and the specific activities against α-Zearalenol, β-Zearalenol, α-Zearalanol and β-Zearalanol were 23.0 U/mg, 64.7 U/mg, 119.8 U/mg and 66.5 U/mg, respectively. The active sites of Zhd518 were predicted by structure modeling and determined by mutation analysis. A point mutant N156H exhibited 3.3-fold activity against α-Zearalenol comparing to Zhd518. Zhd518 is the first reported neutral and the second characterized ZEN-degrading enzyme, which provides a new and more excellent candidate for ZEN detoxifying in food and feed industry. Copyright © 2018. Published by Elsevier B.V.

  9. In silico platform for xenobiotics ADME-T pharmacological properties modeling and prediction. Part II: The body in a Hilbertian space.

    PubMed

    Jacob, Alexandre; Pratuangdejkul, Jaturong; Buffet, Sébastien; Launay, Jean-Marie; Manivet, Philippe

    2009-04-01

    We have broken old surviving dogmas and concepts used in computational chemistry and created an efficient in silico ADME-T pharmacological properties modeling and prediction toolbox for any xenobiotic. With the help of an innovative and pragmatic approach combining various in silico techniques, like molecular modeling, quantum chemistry and in-house developed algorithms, the interactions between drugs and those enzymes, transporters and receptors involved in their biotransformation can be studied. ADME-T pharmacological parameters can then be predicted after in vitro and in vivo validations of in silico models.

  10. ALDEHYDE DEHYDROGENASES EXPRESSION DURING POSTNATAL DEVELOPMENT: LIVER VS. LUNG

    EPA Science Inventory

    Aldehydes are highly reactive molecules present in the environment, and can be produced during biotransformation of xenobiotics. Although the lung can be a major target for aldehyde toxicity, development of aldehyde dehydrogenases (ALDHs), which detoxify aldehydes, in lung has be...

  11. Xenobiotics enhance laccase activity in alkali-tolerant γ-proteobacterium JB.

    PubMed

    Singh, Gursharan; Batish, Mona; Sharma, Prince; Capalash, Neena

    2009-01-01

    Various genotoxic textile dyes, xenobiotics, substrates (10 µM) and agrochemicals (100 µg/ml) were tested for enhancement of alkalophilic laccase activity in γ-proteobacterium JB. Neutral Red, Indigo Carmine, Naphthol Base Bordears and Sulphast Ruby dyes increased the activity by 3.7, 2.7, 2.6 and 2.3 fold respectively. Xenobiotics/substrates like p-toluidine, 8-hydroxyquinoline and anthracine increased it by 3.4, 2.8 and 2.3 fold respectively. Atrazine and trycyclozole pesticides enhanced the activity by 1.95 and 1.5 fold respectively.

  12. Xenobiotics enhance laccase activity in alkali-tolerant γ-proteobacterium JB

    PubMed Central

    Singh, Gursharan; Batish, Mona; Sharma, Prince; Capalash, Neena

    2009-01-01

    Various genotoxic textile dyes, xenobiotics, substrates (10 µM) and agrochemicals (100 µg/ml) were tested for enhancement of alkalophilic laccase activity in γ-proteobacterium JB. Neutral Red, Indigo Carmine, Naphthol Base Bordears and Sulphast Ruby dyes increased the activity by 3.7, 2.7, 2.6 and 2.3 fold respectively. Xenobiotics/substrates like p-toluidine, 8-hydroxyquinoline and anthracine increased it by 3.4, 2.8 and 2.3 fold respectively. Atrazine and trycyclozole pesticides enhanced the activity by 1.95 and 1.5 fold respectively. PMID:24031313

  13. Research Resource: A Reference Transcriptome for Constitutive Androstane Receptor and Pregnane X Receptor Xenobiotic Signaling

    PubMed Central

    Ochsner, Scott A.; Tsimelzon, Anna; Dong, Jianrong; Coarfa, Cristian

    2016-01-01

    The pregnane X receptor (PXR) (PXR/NR1I3) and constitutive androstane receptor (CAR) (CAR/NR1I2) members of the nuclear receptor (NR) superfamily of ligand-regulated transcription factors are well-characterized mediators of xenobiotic and endocrine-disrupting chemical signaling. The Nuclear Receptor Signaling Atlas maintains a growing library of transcriptomic datasets involving perturbations of NR signaling pathways, many of which involve perturbations relevant to PXR and CAR xenobiotic signaling. Here, we generated a reference transcriptome based on the frequency of differential expression of genes across 159 experiments compiled from 22 datasets involving perturbations of CAR and PXR signaling pathways. In addition to the anticipated overrepresentation in the reference transcriptome of genes encoding components of the xenobiotic stress response, the ranking of genes involved in carbohydrate metabolism and gonadotropin action sheds mechanistic light on the suspected role of xenobiotics in metabolic syndrome and reproductive disorders. Gene Set Enrichment Analysis showed that although acetaminophen, chlorpromazine, and phenobarbital impacted many similar gene sets, differences in direction of regulation were evident in a variety of processes. Strikingly, gene sets representing genes linked to Parkinson's, Huntington's, and Alzheimer's diseases were enriched in all 3 transcriptomes. The reference xenobiotic transcriptome will be supplemented with additional future datasets to provide the community with a continually updated reference transcriptomic dataset for CAR- and PXR-mediated xenobiotic signaling. Our study demonstrates how aggregating and annotating transcriptomic datasets, and making them available for routine data mining, facilitates research into the mechanisms by which xenobiotics and endocrine-disrupting chemicals subvert conventional NR signaling modalities. PMID:27409825

  14. Research Resource: A Reference Transcriptome for Constitutive Androstane Receptor and Pregnane X Receptor Xenobiotic Signaling.

    PubMed

    Ochsner, Scott A; Tsimelzon, Anna; Dong, Jianrong; Coarfa, Cristian; McKenna, Neil J

    2016-08-01

    The pregnane X receptor (PXR) (PXR/NR1I3) and constitutive androstane receptor (CAR) (CAR/NR1I2) members of the nuclear receptor (NR) superfamily of ligand-regulated transcription factors are well-characterized mediators of xenobiotic and endocrine-disrupting chemical signaling. The Nuclear Receptor Signaling Atlas maintains a growing library of transcriptomic datasets involving perturbations of NR signaling pathways, many of which involve perturbations relevant to PXR and CAR xenobiotic signaling. Here, we generated a reference transcriptome based on the frequency of differential expression of genes across 159 experiments compiled from 22 datasets involving perturbations of CAR and PXR signaling pathways. In addition to the anticipated overrepresentation in the reference transcriptome of genes encoding components of the xenobiotic stress response, the ranking of genes involved in carbohydrate metabolism and gonadotropin action sheds mechanistic light on the suspected role of xenobiotics in metabolic syndrome and reproductive disorders. Gene Set Enrichment Analysis showed that although acetaminophen, chlorpromazine, and phenobarbital impacted many similar gene sets, differences in direction of regulation were evident in a variety of processes. Strikingly, gene sets representing genes linked to Parkinson's, Huntington's, and Alzheimer's diseases were enriched in all 3 transcriptomes. The reference xenobiotic transcriptome will be supplemented with additional future datasets to provide the community with a continually updated reference transcriptomic dataset for CAR- and PXR-mediated xenobiotic signaling. Our study demonstrates how aggregating and annotating transcriptomic datasets, and making them available for routine data mining, facilitates research into the mechanisms by which xenobiotics and endocrine-disrupting chemicals subvert conventional NR signaling modalities.

  15. Mycotoxin Biotransformation by Native and Commercial Enzymes: Present and Future Perspectives.

    PubMed

    Loi, Martina; Fanelli, Francesca; Liuzzi, Vania C; Logrieco, Antonio F; Mulè, Giuseppina

    2017-03-24

    Worldwide mycotoxins contamination has a significant impact on animal and human health, and leads to economic losses accounted for billions of dollars annually. Since the application of pre- and post- harvest strategies, including chemical or physical removal, are not sufficiently effective, biological transformation is considered the most promising yet challenging approach to reduce mycotoxins accumulation. Although several microorganisms were reported to degrade mycotoxins, only a few enzymes have been identified, purified and characterized for this activity. This review focuses on the biotransformation of mycotoxins performed with purified enzymes isolated from bacteria, fungi and plants, whose activity was validated in in vitro and in vivo assays, including patented ones and commercial preparations. Furthermore, we will present some applications for detoxifying enzymes in food, feed, biogas and biofuel industries, describing their limitation and potentialities.

  16. Mycotoxin Biotransformation by Native and Commercial Enzymes: Present and Future Perspectives

    PubMed Central

    Loi, Martina; Fanelli, Francesca; Liuzzi, Vania C.; Logrieco, Antonio F.; Mulè, Giuseppina

    2017-01-01

    Worldwide mycotoxins contamination has a significant impact on animal and human health, and leads to economic losses accounted for billions of dollars annually. Since the application of pre- and post- harvest strategies, including chemical or physical removal, are not sufficiently effective, biological transformation is considered the most promising yet challenging approach to reduce mycotoxins accumulation. Although several microorganisms were reported to degrade mycotoxins, only a few enzymes have been identified, purified and characterized for this activity. This review focuses on the biotransformation of mycotoxins performed with purified enzymes isolated from bacteria, fungi and plants, whose activity was validated in in vitro and in vivo assays, including patented ones and commercial preparations. Furthermore, we will present some applications for detoxifying enzymes in food, feed, biogas and biofuel industries, describing their limitation and potentialities. PMID:28338601

  17. Biotransformation enzymes in the rodent nasal mucosa: the value of a histochemical approach.

    PubMed Central

    Bogdanffy, M S

    1990-01-01

    An increasing number of chemicals have been identified as being toxic to the nasal mucosa of rats. While many chemicals exert their effects only after inhalation exposure, others are toxic following systemic administration, suggesting that factors other than direct deposition on the nasal mucosa may be important in mechanisms of nasal toxicity. The mucosal lining of the nasal cavity consists of a heterogeneous population of ciliated and nonciliated cells, secretory cells, sensory cells, and glandular and other cell types. For chemicals that are metabolized in the nasal mucosa, the balance between metabolic activation and detoxication within a cell type may be a key factor in determining whether that cell type will be a target for toxicity. Recent research in the area of xenobiotic metabolism in nasal mucosa has demonstrated the presence of many enzymes previously described in other tissues. In particular, carboxylesterase, aldehyde dehydrogenase, cytochromes P-450, epoxide hydrolase, and glutathione S-transferases have been localized by histochemical techniques. The distribution of these enzymes appears to be cell-type-specific and the presence of the enzyme may predispose particular cell types to enhanced susceptibility or resistance to chemical-induced injury. This paper reviews the distribution of these enzymes within the nasal mucosa in the context of their contribution to xenobiotic metabolism. The localization of the enzymes by histochemical techniques has provided important information on the potential mechanism of action of esters, aldehydes, and cytochrome P-450 substrates known to injure the nasal mucosa. Images PLATE 1. PLATE 2. PLATE 3. PMID:2200661

  18. EFFECT OF HUMIC CONSTITUENTS ON THE TRANSFORMATION OF CHLORINATED PHENOLS AND ANILINES IN THE PRESENCE OF OXIDOREDUCTIVE ENZYMES OR BIRNESSITE. (R823847)

    EPA Science Inventory

    Chlorinated phenols and anilines are transformed and detoxified in soil
    through oxidative coupling reactions mediated by enzymes or metal oxides. The
    reactions may be influenced by humic constituents, such as syringaldehyde or
    catechol, that originate from lignin d...

  19. The dark and bright sides of an enzyme: a three dimensional structure of the N-terminal domain of Zophobas morio luciferase-like enzyme, inferences on the biological function and origin of oxygenase/luciferase activity.

    PubMed

    Prado, R A; Santos, C R; Kato, D I; Murakami, M T; Viviani, V R

    2016-05-11

    Beetle luciferases, the enzymes responsible for bioluminescence, are special cases of CoA-ligases which have acquired a novel oxygenase activity, offering elegant models to investigate the structural origin of novel catalytic functions in enzymes. What the original function of their ancestors was, and how the new oxygenase function emerged leading to bioluminescence remains unclear. To address these questions, we solved the crystal structure of a recently cloned Malpighian luciferase-like enzyme of unknown function from Zophobas morio mealworms, which displays weak luminescence with ATP and the xenobiotic firefly d-luciferin. The three dimensional structure of the N-terminal domain showed the expected general fold of CoA-ligases, with a unique carboxylic substrate binding pocket, permitting the binding and CoA-thioesterification activity with a broad range of carboxylic substrates, including short-, medium-chain and aromatic acids, indicating a generalist function consistent with a xenobiotic-ligase. The thioesterification activity with l-luciferin, but not with the d-enantiomer, confirms that the oxygenase activity emerged from a stereoselective impediment of the thioesterification reaction with the latter, favoring the alternative chemiluminescence oxidative reaction. The structure and site-directed mutagenesis support the involvement of the main-chain amide carbonyl of the invariant glycine G323 as the catalytic base for luciferin C4 proton abstraction during the oxygenase activity in this enzyme and in beetle luciferases (G343).

  20. Removal of xenobiotics from effluent discharge by adsorption on zeolite and expanded clay: an alternative to activated carbon?

    PubMed

    Tahar, A; Choubert, J M; Miège, C; Esperanza, M; Le Menach, K; Budzinski, H; Wisniewski, C; Coquery, M

    2014-04-01

    Xenobiotics such as pesticides and pharmaceuticals are an increasingly large problem in aquatic environments. A fixed-bed adsorption filter, used as tertiary stage of sewage treatment, could be a solution to decrease xenobiotics concentrations in wastewater treatment plants (WWTPs) effluent. The adsorption efficiency of two mineral adsorbent materials (expanded clay (EC) and zeolite (ZE)), both seen as a possible alternative to activated carbon (AC), was evaluated in batch tests. Experiments involving secondary treated domestic wastewater spiked with a cocktail of ten xenobiotics (eight pharmaceuticals and two pesticides) known to be poorly eliminated in conventional biological process were carried out. Removal efficiencies and partitions coefficients were calculated for two levels of initial xenobiotic concentration, i.e, concentrations lower to 10 μg/L and concentrations ranged from 100 to 1,000 μg/L. While AC was the most efficient adsorbent material, both alternative adsorbent materials showed good adsorption efficiencies for all ten xenobiotics (from 50 to 100 % depending on the xenobiotic/adsorbent material pair). For all the targeted xenobiotics, at lower concentrations, EC presented the best adsorption potential with higher partition coefficients, confirming the results in terms of removal efficiencies. Nevertheless, Zeolite presents virtually the same adsorption potential for both high and low xenobiotics concentrations to be treated. According to this first batch investigation, ZE and EC could be used as alternative absorbent materials to AC in WWTP.

  1. The evolution of new enzyme function: lessons from xenobiotic metabolizing bacteria versus insecticide-resistant insects

    PubMed Central

    Russell, Robyn J; Scott, Colin; Jackson, Colin J; Pandey, Rinku; Pandey, Gunjan; Taylor, Matthew C; Coppin, Christopher W; Liu, Jian-Wei; Oakeshott, John G

    2011-01-01

    Here, we compare the evolutionary routes by which bacteria and insects have evolved enzymatic processes for the degradation of four classes of synthetic chemical insecticide. For insects, the selective advantage of such degradative activities is survival on exposure to the insecticide, whereas for the bacteria the advantage is simply a matter of access to additional sources of nutrients. Nevertheless, bacteria have evolved highly efficient enzymes from a wide variety of enzyme families, whereas insects have relied upon generalist esterase-, cytochrome P450- and glutathione-S-transferase-dependent detoxification systems. Moreover, the mutant insect enzymes are less efficient kinetically and less diverged in sequence from their putative ancestors than their bacterial counterparts. This presumably reflects several advantages that bacteria have over insects in the acquisition of new enzymatic functions, such as a broad biochemical repertoire from which new functions can be evolved, large population sizes, high effective mutation rates, very short generation times and access to genetic diversity through horizontal gene transfer. Both the insect and bacterial systems support recent theory proposing that new biochemical functions often evolve from ‘promiscuous’ activities in existing enzymes, with subsequent mutations then enhancing those activities. Study of the insect enzymes will help in resistance management, while the bacterial enzymes are potential bioremediants of insecticide residues in a range of contaminated environments. PMID:25567970

  2. An activated sludge modeling framework for xenobiotic trace chemicals (ASM-X): assessment of diclofenac and carbamazepine.

    PubMed

    Plósz, Benedek Gy; Langford, Katherine H; Thomas, Kevin V

    2012-11-01

    Conventional models for predicting the fate of xenobiotic organic trace chemicals, identified, and calibrated using data obtained in batch experiments spiked with reference substances, can be limited in predicting xenobiotic removal in wastewater treatment plants (WWTPs). At stake is the level of model complexity required to adequately describe a general theory of xenobiotic removal in WWTPs. In this article, we assess the factors that influence the removal of diclofenac and carbamazepine in activated sludge, and evaluate the complexity required for the model to effectively predict their removal. The results are generalized to previously published cases. Batch experimental results, obtained under anoxic and aerobic conditions, were used to identify extensions to, and to estimate parameter values of the activated sludge modeling framework for Xenobiotic trace chemicals (ASM-X). Measurement and simulation results obtained in the batch experiments, spiked with the diclofenac and carbamazepine content of preclarified municipal wastewater shows comparably high biotransformation rates in the presence of growth substrates. Forward dynamic simulations were performed using full-scale data obtained from Bekkelaget WWTP (Oslo, Norway) to evaluate the model and to estimate the level of re-transformable xenobiotics present in the influent. The results obtained in this study demonstrate that xenobiotic loading conditions can significantly influence the removal capacity of WWTPs. We show that the trace chemical retransformation in upstream sewer pipes can introduce considerable error in assessing the removal efficiency of a WWTP, based only on parent compound concentration measurements. The combination of our data with those from the literature shows that solids retention time (SRT) can enhance the biotransformation of diclofenac, which was not the case for carbamazepine. Model approximation of the xenobiotic concentration, detected in the solid phase, suggest that between

  3. Textile/metal-organic-framework composites as self-detoxifying filters for chemical-warfare agents.

    PubMed

    López-Maya, Elena; Montoro, Carmen; Rodríguez-Albelo, L Marleny; Aznar Cervantes, Salvador D; Lozano-Pérez, A Abel; Cenís, José Luis; Barea, Elisa; Navarro, Jorge A R

    2015-06-01

    The current technology of air-filtration materials for protection against highly toxic chemicals, that is, chemical-warfare agents, is mainly based on the broad and effective adsorptive properties of hydrophobic activated carbons. However, adsorption does not prevent these materials from behaving as secondary emitters once they are contaminated. Thus, the development of efficient self-cleaning filters is of high interest. Herein, we report how we can take advantage of the improved phosphotriesterase catalytic activity of lithium alkoxide doped zirconium(IV) metal-organic framework (MOF) materials to develop advanced self-detoxifying adsorbents of chemical-warfare agents containing hydrolysable P-F, P-O, and C-Cl bonds. Moreover, we also show that it is possible to integrate these materials onto textiles, thereby combining air-permeation properties of the textiles with the self-detoxifying properties of the MOF material. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Nontargeted analysis of the urine nonpolar sulfateome: a pathway to the nonpolar xenobiotic exposome

    PubMed Central

    Yao, Yuanyuan; Wang, Poguang; Shao, Gang; Anzalota Del Toro, Liza V.; Codero, Jose; Giese, Roger W.

    2016-01-01

    RATIONALE Testing the urine nonpolar sulfateome can enable discovery of xenobiotics that are most likely to be bioactive. This is based on the fact that nonpolar xenobiotics are more likely to enter cells where they tend to undergo metabolism, in part, to sulfates that are then largely excreted into the urine. METHODS The following sequence of steps, with conditions that achieve high reproducibility, was applied to large human urine samples: (1) competitive nonpolar extraction with a porous extraction paddle; (2) weak anion exchange extraction with strong organic washing; and (3) UHPLC/negative ion-MALDI-TOF/TOF-MS with recording of ions with S/N ≥ 20 that yielded M-1-80 (loss of SO3) or m/z 97 (HSO4−) upon fragmentation. RESULTS From a collection of urine samples from six pregnant women, the masses of 1129 putative sulfates were measured. Three lists of candidate compounds (preliminary hits) from these masses were formed by searching METLIN, especially via MATLAB, yielding putative xenobiotic contaminants (35 compounds), steroids (122), and flavonoids (1582). CONCLUSION A new way to reveal some of the nonpolar xenobiotic exposome has been developed that applies to urine samples. The value of the method is to suggest xenobiotics for subsequent targeted analysis in the population of people under study, in order to relate the environment to health and disease. PMID:27557133

  5. Knockout of cytochrome P450 3A yields new mouse models for understanding xenobiotic metabolism

    PubMed Central

    van Herwaarden, Antonius E.; Wagenaar, Els; van der Kruijssen, Cornelia M.M.; van Waterschoot, Robert A.B.; Smit, Johan W.; Song, Ji-Ying; van der Valk, Martin A.; van Tellingen, Olaf; van der Hoorn, José W.A.; Rosing, Hilde; Beijnen, Jos H.; Schinkel, Alfred H.

    2007-01-01

    Cytochrome P450 3A (CYP3A) enzymes constitute an important detoxification system that contributes to primary metabolism of more than half of all prescribed medications. To investigate the physiological and pharmacological roles of CYP3A, we generated Cyp3a-knockout (Cyp3a–/–) mice lacking all functional Cyp3a genes. Cyp3a–/– mice were viable, fertile, and without marked physiological abnormalities. However, these mice exhibited severely impaired detoxification capacity when exposed to the chemotherapeutic agent docetaxel, displaying higher exposure levels in response to both oral and intravenous administration. These mice also demonstrated increased sensitivity to docetaxel toxicity, suggesting a primary role for Cyp3a in xenobiotic detoxification. To determine the relative importance of intestinal versus hepatic Cyp3a in first-pass metabolism, we generated transgenic Cyp3a–/– mice expressing human CYP3A4 in either the intestine or the liver. Expression of CYP3A4 in the intestine dramatically decreased absorption of docetaxel into the bloodstream, while hepatic expression aided systemic docetaxel clearance. These results suggest that CYP3A expression determines impairment of drug absorption and efficient systemic clearance in a tissue-specific manner. The genetic models used in this study provide powerful tools to further study CYP3A-mediated xenobiotic metabolism, as well as interactions between CYP3A and other detoxification systems. PMID:17975676

  6. Generation Z: Adolescent Xenobiotic Abuse in the 21st Century.

    PubMed

    Eggleston, William; Stork, Christine

    2015-12-01

    NMDA receptor antagonists include the prescription medication ketamine, the illicit xenobiotics PCP, MXE, and other novel PCP analogs, and the OTC medication DXM. The NMDA receptor antagonist most commonly abused by adolescents in the United States is DXM. These xenobiotics cause dissociative effects by non-competitively inhibiting the action of glutamate at the NMDA receptor. Additionally, these agents modulate the actions of monoamine neurotransmitters, agonize opioid receptors, and inhibit nitric oxide synthase. Patients typically present with sympathomimetic and neuropsychiatric clinical manifestations after abuse of NMDA receptor antagonists. Treatment is generally symptomatic and supportive. Interventions include benzodiazepines, propofol, fluids, antiemetics, aggressive cooling, and respiratory support.

  7. Bio-remediation of colored industrial wastewaters by the white-rot fungi Phanerochaete chrysosporium and Pleurotus ostreatus and their enzymes.

    PubMed

    Faraco, V; Pezzella, C; Miele, A; Giardina, P; Sannia, G

    2009-04-01

    The effect of Phanerochaete chrysosporium and Pleurotus ostreatus whole cells and their ligninolytic enzymes on models of colored industrial wastewaters was evaluated. Models of acid, direct and reactive dye wastewaters from textile industry have been defined on the basis of discharged amounts, economic relevance and representativeness of chemical structures of the contained dyes. Phanerochaete chrysosporium provided an effective decolourization of direct dye wastewater model, reaching about 45% decolourization in only 1 day of treatment, and about 90% decolourization within 7 days, whilst P. ostreatus was able to decolorize and detoxify acid dye wastewater model providing 40% decolourization in only 1 day, and 60% in 7 days. P. ostreatus growth conditions that induce laccase production (up to 130,000 U/l) were identified, and extra-cellular enzyme mixtures, with known laccase isoenzyme composition, were produced and used in wastewater models decolourization. The mixtures decolorized and detoxified the acid dye wastewater model, suggesting laccases as the main agents of wastewater decolourization by P. ostreatus. A laccase mixture was immobilized by entrapment in Cu-alginate beads, and the immobilized enzymes were shown to be effective in batch decolourization, even after 15 stepwise additions of dye for a total exposure of about 1 month.

  8. Review and evaluation of the effects of xenobiotic chemicals on microorganisms in soil. [139 references

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hicks, R.J.; Van Voris, P.

    1988-02-01

    The primary objective was to review and evaluate the relevance and quality of existing xenobiotic data bases and test methods for evaluating direct and indirect effects (both adverse and beneficial) of xenobiotics on the soil microbial community; direct and indirect effects of the soil microbial community on xenobiotics; and adequacy of test methods used to evaluate these effects and interactions. Xenobiotic chemicals are defined here as those compounds, both organic and inorganic, produced by man and introduced into the environment at concentrations that cause undesirable effects. Because soil serves as the main repository for many of these chemicals, it thereforemore » has a major role in determining their ultimate fate. Once released, the distribution of xenobiotics between environmental compartments depends on the chemodynamic properties of the compounds, the physicochemical properties of the soils, and the transfer between soil-water and soil-air interfaces and across biological membranes. Abiotic and biotic processes can transform the chemical compound, thus altering its chemical state and, subsequently, its toxicity and reactivity. Ideally, the conversion is to carbon dioxide, water, and mineral elements, or at least, to some harmless substance. However, intermediate transformation products, which can become toxic pollutants in their own right, can sometimes be formed. 139 refs., 6 figs., 11 tabs.« less

  9. An Acetyltransferase Conferring Tolerance to Toxic Aromatic Amine Chemicals

    PubMed Central

    Martins, Marta; Rodrigues-Lima, Fernando; Dairou, Julien; Lamouri, Aazdine; Malagnac, Fabienne; Silar, Philippe; Dupret, Jean-Marie

    2009-01-01

    Aromatic amines (AA) are a major class of environmental pollutants that have been shown to have genotoxic and cytotoxic potentials toward most living organisms. Fungi are able to tolerate a diverse range of chemical compounds including certain AA and have long been used as models to understand general biological processes. Deciphering the mechanisms underlying this tolerance may improve our understanding of the adaptation of organisms to stressful environments and pave the way for novel pharmaceutical and/or biotechnological applications. We have identified and characterized two arylamine N-acetyltransferase (NAT) enzymes (PaNAT1 and PaNAT2) from the model fungus Podospora anserina that acetylate a wide range of AA. Targeted gene disruption experiments revealed that PaNAT2 was required for the growth and survival of the fungus in the presence of toxic AA. Functional studies using the knock-out strains and chemically acetylated AA indicated that tolerance of P. anserina to toxic AA was due to the N-acetylation of these chemicals by PaNAT2. Moreover, we provide proof-of-concept remediation experiments where P. anserina, through its PaNAT2 enzyme, is able to detoxify the highly toxic pesticide residue 3,4-dichloroaniline in experimentally contaminated soil samples. Overall, our data show that a single xenobiotic-metabolizing enzyme can mediate tolerance to a major class of pollutants in a eukaryotic species. These findings expand the understanding of the role of xenobiotic-metabolizing enzyme and in particular of NATs in the adaptation of organisms to their chemical environment and provide a basis for new systems for the bioremediation of contaminated soils. PMID:19416981

  10. Xenobiotics removal by adsorption in the context of tertiary treatment: a mini review.

    PubMed

    Tahar, Alexandre; Choubert, Jean-Marc; Coquery, Marina

    2013-08-01

    Many xenobiotics, including several pharmaceuticals and pesticides, are poorly treated in domestic wastewater treatment plants. Adsorption processes, such as with activated carbons, could be a solution to curb their discharge into the aquatic environment. As adsorbent-like activated carbon is known to be expensive, identifying promising alternative adsorbent materials is a key challenge for efficient yet affordable xenobiotic removal from wastewaters. As part of the effort to address this challenge, we surveyed the literature on pharmaceutical and pesticide xenobiotics and built a database compiling data from 38 scientific publications covering 65 xenobiotics and 58 materials. Special focus was given to the relevance and comparability of the data to the characteristics of the adsorbent materials used and to the operating conditions of the batch tests inventoried. This paper gives an in-depth overview of the adsorption capacities of various adsorbents. The little data on alternative adsorbent materials, especially for the adsorption of pharmaceuticals, makes it difficult to single out any one activated carbon alternative capable of adsorbing pesticides and pharmaceuticals at the tertiary stage of treatment. There is a pressing need for further lab-scale experiments to investigate the tertiary treatment of discharged effluents. We conclude with recommendations on how future data should best be used and interpreted.

  11. Modulation of xenobiotic biotransformation system and hormonal responses in Atlantic salmon (Salmo salar) after exposure to tributyltin (TBT).

    PubMed

    Mortensen, Anne Skjetne; Arukwe, Augustine

    2007-04-01

    Multiple biological effects of tributyltin (TBT) on juvenile salmon have been investigated. Fish were exposed for 7 days to waterborne TBT at nominal concentrations of 50 and 250 microg/L dissolved in dimethyl sulfoxide (DMSO). Hepatic samples were analyzed for gene expression patterns in the hormonal and xenobiotic biotransformation pathways using validated real-time PCR method. Immunochemical and several cytochrome P450 (CYP)-mediated enzyme activity (ethoxyresorufin: EROD, benzyloxyresorufin: BROD, methoxyresorufin: MROD and pentoxyresorufin: PROD) assays were analyzed. Our data show that TBT produced concentration-specific decrease of estrogen receptor-alpha (ERalpha), vitellogenin (Vtg), zona radiata protein (Zr-protein) and increase of estrogen receptor-beta (ERbeta) and androgen receptor-beta (ARbeta) in the hormonal pathway. In the xenobiotic biotransformation pathway, TBT produced apparent increase and decrease at respective low and high concentration, on aryl hydrocarbon receptor-alpha (AhRalpha), AhR nuclear translocator (ARNT) and AhR repressor (AhRR) mRNA. The expression of CYP1A1 and GST showed a TBT concentration-dependent decrease. The AhRbeta, CYP3A and uridine diphosphoglucuronosyl transferase (UGT) mRNA expressions were significantly induced after exposure to TBT. Immunochemical analysis of CYP3A and CYP1A1 protein levels confirmed the TBT effects observed at the transcriptional levels. The effect of TBT on the biotransformation enzyme gene expressions partially co-related but did not directly parallel enzyme activity levels for EROD, BROD, MROD and PROD. In general, these findings confirm previous reports on the endocrine effects of TBT, in addition to effects on hepatic CYP1A isoenzyme at the transcriptional level that transcends to protein and enzymatic levels. The induced expression patterns of CYP3A and UGT mRNA after TBT exposure, suggest the involvement of CYP3A and UGT in TBT metabolism in fish. The effect of TBT on CYP3A is proposed to

  12. Modulation of expression and activity of intestinal multidrug resistance-associated protein 2 by xenobiotics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tocchetti, Guillermo Nicolás

    The multidrug resistance-associated protein 2 (MRP2/ABCC2) is a transporter that belongs to the ATP-binding cassette (ABC) superfamily. In the intestine, it is localized to the apical membrane of the enterocyte and plays a key role in limiting the absorption of xenobiotics incorporated orally. MRP2 may also play a role in systemic clearance of xenobiotics available from the serosal side of the intestine. MRP2 transports a wide range of substrates, mainly organic anions conjugated with glucuronic acid, glutathione and sulfate and its expression can be modulated by xenobiotics at transcriptional- and post-transcriptional levels. Transcriptional regulation is usually mediated by a groupmore » of nuclear receptors. The pregnane X receptor (PXR) is a major member of this group. Relevant drugs described to up-regulate intestinal MRP2 via PXR are rifampicin, spironolactone and carbamazepine, among others. The constitutive androstane receptor (CAR, NR1I3) was also reported to modulate MRP2 expression, phenobarbital being a typical activator. Dietary compounds, including micronutrients and other natural products, are also capable of regulating intestinal MRP2 expression transcriptionally. We have given them particular attention since the composition of the food ingested daily is not necessarily supervised and may result in interactions with therapeutic drugs. Post-transcriptional regulation of MRP2 activity by xenobiotics, e.g. as a consequence of inhibitory actions, is also described in this review. Unfortunately, only few studies report on drug-drug or nutrient-drug interactions as a consequence of modulation of intestinal MRP2 activity by xenobiotics. Future clinical studies are expected to identify additional interactions resulting in changes in efficacy or safety of therapeutic drugs. - Highlights: • Intestinal MRP2 (ABCC2) expression and activity can be regulated by xenobiotics. • PXR and CAR are major MRP2 modulators through a transcriptional mechanism.

  13. Rb and p53 Liver Functions Are Essential for Xenobiotic Metabolism and Tumor Suppression

    PubMed Central

    Nantasanti, Sathidpak; Toussaint, Mathilda J. M.; Youssef, Sameh A.; Tooten, Peter C. J.; de Bruin, Alain

    2016-01-01

    The tumor suppressors Retinoblastoma (Rb) and p53 are frequently inactivated in liver diseases, such as hepatocellular carcinomas (HCC) or infections with Hepatitis B or C viruses. Here, we discovered a novel role for Rb and p53 in xenobiotic metabolism, which represent a key function of the liver for metabolizing therapeutic drugs or toxins. We demonstrate that Rb and p53 cooperate to metabolize the xenobiotic 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). DDC is metabolized mainly by cytochrome P450 (Cyp)3a enzymes resulting in inhibition of heme synthesis and accumulation of protoporphyrin, an intermediate of heme pathway. Protoporphyrin accumulation causes bile injury and ductular reaction. We show that loss of Rb and p53 resulted in reduced Cyp3a expression decreased accumulation of protoporphyrin and consequently less ductular reaction in livers of mice fed with DDC for 3 weeks. These findings provide strong evidence that synergistic functions of Rb and p53 are essential for metabolism of DDC. Because Rb and p53 functions are frequently disabled in liver diseases, our results suggest that liver patients might have altered ability to remove toxins or properly metabolize therapeutic drugs. Strikingly the reduced biliary injury towards the oxidative stress inducer DCC was accompanied by enhanced hepatocellular injury and formation of HCCs in Rb and p53 deficient livers. The increase in hepatocellular injury might be related to reduce protoporphyrin accumulation, because protoporphrin is well known for its anti-oxidative activity. Furthermore our results indicate that Rb and p53 not only function as tumor suppressors in response to carcinogenic injury, but also in response to non-carcinogenic injury such as DDC. PMID:26967735

  14. Human extrahepatic cytochromes P450: function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts.

    PubMed

    Ding, Xinxin; Kaminsky, Laurence S

    2003-01-01

    Cytochrome P450 (CYP) enzymes in extrahepatic tissues often play a dominant role in target tissue metabolic activation of xenobiotic compounds. They may also determine drug efficacy and influence the tissue burden of foreign chemicals or bioavailability of therapeutic agents. This review focuses on xenobiotic-metabolizing CYPs of the human respiratory and gastrointestinal tracts, including the lung, trachea, nasal respiratory and olfactory mucosa, esophagus, stomach, small intestine, and colon. Many CYPs are expressed in one or more of these organs, including CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2A13, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2D6, CYP2E1, CYP2F1, CYP2J2, CYP2S1, CYP3A4, CYP3A5, and CYP4B1. Of particular interest are the preferential expression of certain CYPs in the respiratory tract and the regional differences in CYP expression profile in different parts of the gastrointestinal tract. Current research activities on the characterization of CYP expression, function, and regulation in these tissues, as well as future research needs, are discussed.

  15. Xenobiotic effects on intestinal stem cell proliferation in adult honey bee (Apis mellifera L) workers.

    PubMed

    Forkpah, Cordelia; Dixon, Luke R; Fahrbach, Susan E; Rueppell, Olav

    2014-01-01

    The causes of the current global decline in honey bee health are unknown. One major group of hypotheses invokes the pesticides and other xenobiotics to which this important pollinator species is often exposed. Most studies have focused on mortality or behavioral deficiencies in exposed honey bees while neglecting other biological functions and target organs. The midgut epithelium of honey bees presents an important interface between the insect and its environment. It is maintained by proliferation of intestinal stem cells throughout the adult life of honey bees. We used caged honey bees to test multiple xenobiotics for effects on the replicative activity of the intestinal stem cells under laboratory conditions. Most of the tested compounds did not alter the replicative activity of intestinal stem cells. However, colchicine, methoxyfenozide, tetracycline, and a combination of coumaphos and tau-fluvalinate significantly affected proliferation rate. All substances except methoxyfenozide decreased proliferation rate. Thus, the results indicate that some xenobiotics frequently used in apiculture and known to accumulate in honey bee hives may have hitherto unknown physiological effects. The nutritional status and the susceptibility to pathogens of honey bees could be compromised by the impacts of xenobiotics on the maintenance of the midgut epithelium. This study contributes to a growing body of evidence that more comprehensive testing of xenobiotics may be required before novel or existing compounds can be considered safe for honey bees and other non-target species.

  16. Xenobiotic Effects on Intestinal Stem Cell Proliferation in Adult Honey Bee (Apis mellifera L) Workers

    PubMed Central

    Forkpah, Cordelia; Dixon, Luke R.; Fahrbach, Susan E.; Rueppell, Olav

    2014-01-01

    The causes of the current global decline in honey bee health are unknown. One major group of hypotheses invokes the pesticides and other xenobiotics to which this important pollinator species is often exposed. Most studies have focused on mortality or behavioral deficiencies in exposed honey bees while neglecting other biological functions and target organs. The midgut epithelium of honey bees presents an important interface between the insect and its environment. It is maintained by proliferation of intestinal stem cells throughout the adult life of honey bees. We used caged honey bees to test multiple xenobiotics for effects on the replicative activity of the intestinal stem cells under laboratory conditions. Most of the tested compounds did not alter the replicative activity of intestinal stem cells. However, colchicine, methoxyfenozide, tetracycline, and a combination of coumaphos and tau-fluvalinate significantly affected proliferation rate. All substances except methoxyfenozide decreased proliferation rate. Thus, the results indicate that some xenobiotics frequently used in apiculture and known to accumulate in honey bee hives may have hitherto unknown physiological effects. The nutritional status and the susceptibility to pathogens of honey bees could be compromised by the impacts of xenobiotics on the maintenance of the midgut epithelium. This study contributes to a growing body of evidence that more comprehensive testing of xenobiotics may be required before novel or existing compounds can be considered safe for honey bees and other non-target species. PMID:24608542

  17. In silico identification and construction of microbial gene clusters associated with biodegradation of xenobiotic compounds.

    PubMed

    Awasthi, Garima; Kumari, Anjani; Pant, Aditya Bhushan; Srivastava, Prachi

    2018-01-01

    Chemical substances not showing any importance in existence of biological systems and causing serious health hazards may be designated as Xenobiotic compound. Elimination or degradation of these unwanted substances is a major issue of concern for current time research. Process of biodegradation is a very important aspect of current research as discussed in current manuscript. Current study focuses on the detailed mining of data for the construction of microbial consortia for wide range of xenobiotics compounds. Intensive literature search was done for the construction of this library. Desired data was retrieved from NCBI in fasta format. Data was analysed through homology approaches by using BLAST. This homology based searched enriched with a great vision that not only bacterial population but many other cheap and potential sources are available for different xenobiotic degradation. Though it was focused that bacterial population covers a major part of biodegradation which is near about 90.6% but algae and fungi are also showing promising future in degradation of some important xenobiotic compounds. Analysis of data reveals that Pseudomonas putida has potential for degrading maximum compounds. Establishment of correlation through cluster analysis signifies that Pseudomonas putida, Aspergillus niger and Skeletonema costatum can have combined traits that can be used in finding out actual evolutionary relationship between these species. These findings may also givea new outcome in terms of much cheaper and eco-friendly source in the area of biodegradation of specified xenobiotic compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Influence of xenobiotics on the microbiological and agrochemical parameters of soddy-podzolic soil

    NASA Astrophysics Data System (ADS)

    Vakkerov-Kouzova, N. D.

    2010-08-01

    We studied the influence of various chemical compounds, i.e., azobenzene (an insecticide and acaricide), nitrification inhibitors (DCD, dicyandiamide and DMPP, and 3,4-dimetylpyrazolphosphate), and inhibitors of urease activity (HQ-hydroquinone), on the agrochemical and microbiological parameters of a soddy-podzolic soil. It is proved that these xenobiotics are able to influence the agrochemical parameters (the pH and the content of NO{3/-} and NH{4/+}, the microbial activity (the basal respiration, the microbial mass carbon, and the microbial quotient), and the number of bacteria of different physiological groups in soddypodzolic soil. The influence of the xenobiotics was preserved for some time, which testified to their persistence in the soil. Upon cultivating the soil microorganisms in different media, the growth of the heterotrophic bacteria was inhibited, the radial growth velocity was slowed down, and the sporogenesis of the micromycetes was retarded. The toxic effect of the xenobiotics was higher with their increasing concentrations.

  19. Free Radical Mechanisms of Xenobiotic Mammalian Cytotoxicities

    DTIC Science & Technology

    1988-10-31

    cytochrome P450 is small compared to that of the liver (about 0.1%), cardiovascular tissues may be more susceptible to oxidative injury because of the... injury participates in the pathogenic mechanisms of many lipophilic xenobiotic compounds). The most dramatic finding is our demonstration that five...UPID PEROXIDATION BETTER THAN THE INITIAL RADICAL OR HYDROPEROXIDE. INDIRECT IRP EFFECTS ON FREE RADICAL MEMBRANE INJURY : 4) POISONING OF THE ELECTRON

  20. Development of an ATP measurement method suitable for xenobiotic treatment activated sludge biomass.

    PubMed

    Nguyen, Lan Huong; Chong, Nyuk-Min

    2015-09-01

    Activated sludge consumes a large amount of energy to degrade a xenobiotic organic compound. By tracking the energy inventory of activated sludge biomass during the sludge's degradation of a xenobiotic, any disadvantageous effect on the sludge's performance caused by energy deficiency can be observed. The purpose of this study was to develop a reliable and accurate method for measuring the ATP contents of activated sludge cells that were to degrade a xenobiotic organic. Cell disruption and cellular ATP extraction were performed by a protocol with which xenobiotic degrading activated sludge biomass was washed with SDS, treated by Tris and TCA, and followed by bead blasting. The suspension of disrupted cells was filtered before the filtrate was injected into HPLC that was set at optimal conditions to measure the ATP concentration therein. This extraction protocol and HPLC measurement of ATP was evaluated for its linearity, limits of detection, and reproducibility. Evaluation test results reported a R(2) of 0.999 of linear fit of ATP concentration versus activated sludge concentration, a LOD=0.00045mg/L, a LOQ=0.0015mg/L for HPLC measurement of ATP, a MDL=0.46mg/g SS for ATP extraction protocol, and a recovery efficiency of 96.4±2%. This method of ATP measurement was simple, rapid, reliable, and was unburdened of some limitations other methods may have. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Urine mutagenicity and biochemical effects of the drinking water mutagen, 3-chloro-4-(dichloromethyl)-5-hydroxy-2[5H]-furanone (MX), following repeated oral administration to mice and rats.

    PubMed

    Meier, J R; Monarca, S; Patterson, K S; Villarini, M; Daniel, F B; Moretti, M; Pasquini, R

    1996-06-17

    Mutagenicity analysis of urine from rats treated by oral gavage with MX at a dose of 64 mg/kg for 14 days revealed that only 0.3% of the administered compound was excreted in a genotoxically active form. At lower doses, mutagenicity was not detectable. No evidence of micronucleus induction in peripheral blood erythrocytes was observed in mice treated similarly. These findings indicate that MX is extensively detoxified in vivo and is unlikely to cause genetic damage in systemic tissues except at relatively high doses where detoxification pathways become saturated. In a separate experiment, significant depressions were observed in D-glucaric acid and thioether excretion and in levels of several liver enzymes involved in xenobiotic metabolism. The mechanism for these metabolic alterations and their relevance to the in vivo metabolism of the compound require further investigation.

  2. Glutathione and antioxidant enzymes serve complementary roles in protecting activated hepatic stellate cells against hydrogen peroxide-induced cell death.

    PubMed

    Dunning, Sandra; Ur Rehman, Atta; Tiebosch, Marjolein H; Hannivoort, Rebekka A; Haijer, Floris W; Woudenberg, Jannes; van den Heuvel, Fiona A J; Buist-Homan, Manon; Faber, Klaas Nico; Moshage, Han

    2013-12-01

    In chronic liver disease, hepatic stellate cells (HSCs) are activated, highly proliferative and produce excessive amounts of extracellular matrix, leading to liver fibrosis. Elevated levels of toxic reactive oxygen species (ROS) produced during chronic liver injury have been implicated in this activation process. Therefore, activated hepatic stellate cells need to harbor highly effective anti-oxidants to protect against the toxic effects of ROS. To investigate the protective mechanisms of activated HSCs against ROS-induced toxicity. Culture-activated rat HSCs were exposed to hydrogen peroxide. Necrosis and apoptosis were determined by Sytox Green or acridine orange staining, respectively. The hydrogen peroxide detoxifying enzymes catalase and glutathione-peroxidase (GPx) were inhibited using 3-amino-1,2,4-triazole and mercaptosuccinic acid, respectively. The anti-oxidant glutathione was depleted by L-buthionine-sulfoximine and repleted with the GSH-analogue GSH-monoethylester (GSH-MEE). Upon activation, HSCs increase their cellular glutathione content and GPx expression, while MnSOD (both at mRNA and protein level) and catalase (at the protein level, but not at the mRNA level) decreased. Hydrogen peroxide did not induce cell death in activated HSCs. Glutathione depletion increased the sensitivity of HSCs to hydrogen peroxide, resulting in 35% and 75% necrotic cells at 0.2 and 1mmol/L hydrogen peroxide, respectively. The sensitizing effect was abolished by GSH-MEE. Inhibition of catalase or GPx significantly increased hydrogen peroxide-induced apoptosis, which was not reversed by GSH-MEE. Activated HSCs have increased ROS-detoxifying capacity compared to quiescent HSCs. Glutathione levels increase during HSC activation and protect against ROS-induced necrosis, whereas hydrogen peroxide-detoxifying enzymes protect against apoptotic cell death. © 2013.

  3. Systems approaches evaluating the perturbation of xenobiotic metabolism in response to cigarette smoke exposure in nasal and bronchial tissues.

    PubMed

    Iskandar, Anita R; Martin, Florian; Talikka, Marja; Schlage, Walter K; Kostadinova, Radina; Mathis, Carole; Hoeng, Julia; Peitsch, Manuel C

    2013-01-01

    Capturing the effects of exposure in a specific target organ is a major challenge in risk assessment. Exposure to cigarette smoke (CS) implicates the field of tissue injury in the lung as well as nasal and airway epithelia. Xenobiotic metabolism in particular becomes an attractive tool for chemical risk assessment because of its responsiveness against toxic compounds, including those present in CS. This study describes an efficient integration from transcriptomic data to quantitative measures, which reflect the responses against xenobiotics that are captured in a biological network model. We show here that our novel systems approach can quantify the perturbation in the network model of xenobiotic metabolism. We further show that this approach efficiently compares the perturbation upon CS exposure in bronchial and nasal epithelial cells in vivo samples obtained from smokers. Our observation suggests the xenobiotic responses in the bronchial and nasal epithelial cells of smokers were similar to those observed in their respective organotypic models exposed to CS. Furthermore, the results suggest that nasal tissue is a reliable surrogate to measure xenobiotic responses in bronchial tissue.

  4. Systems Approaches Evaluating the Perturbation of Xenobiotic Metabolism in Response to Cigarette Smoke Exposure in Nasal and Bronchial Tissues

    PubMed Central

    Iskandar, Anita R.; Martin, Florian; Talikka, Marja; Schlage, Walter K.; Mathis, Carole; Hoeng, Julia; Peitsch, Manuel C.

    2013-01-01

    Capturing the effects of exposure in a specific target organ is a major challenge in risk assessment. Exposure to cigarette smoke (CS) implicates the field of tissue injury in the lung as well as nasal and airway epithelia. Xenobiotic metabolism in particular becomes an attractive tool for chemical risk assessment because of its responsiveness against toxic compounds, including those present in CS. This study describes an efficient integration from transcriptomic data to quantitative measures, which reflect the responses against xenobiotics that are captured in a biological network model. We show here that our novel systems approach can quantify the perturbation in the network model of xenobiotic metabolism. We further show that this approach efficiently compares the perturbation upon CS exposure in bronchial and nasal epithelial cells in vivo samples obtained from smokers. Our observation suggests the xenobiotic responses in the bronchial and nasal epithelial cells of smokers were similar to those observed in their respective organotypic models exposed to CS. Furthermore, the results suggest that nasal tissue is a reliable surrogate to measure xenobiotic responses in bronchial tissue. PMID:24224167

  5. Laboratory procedure for estimating residue dynamics of xenobiotic contaminants in a freshwater food chain

    USGS Publications Warehouse

    Johnson, B. Thomas

    1980-01-01

    A laboratory method of measuring the accumulation, transfer, elimination, and degradation of xenobiotic contaminants is described for organisms in a freshwater food chain (microorganisms, filter-feeder, and fish). A flow-through diluter-system, 14C-labeled contaminants, gas and thin-layer chromatography, autoradiography, and liquid scintillation spectrometry are used in making residue determinations. Accumulation factors and various index values are developed for measuring and estimating potential accumulation of xenobiotic contaminants by aquatic organisms. The laboratory procedure is economical, simple, reproducible, and ecologically relevant.

  6. The UDP-glycosyltransferase (UGT) superfamily expressed in humans, insects and plants: Animal-plant arms-race and co-evolution.

    PubMed

    Bock, Karl Walter

    2016-01-01

    UDP-glycosyltransferases (UGTs) are major phase II enzymes of a detoxification system evolved in all kingdoms of life. Lipophilic endobiotics such as hormones and xenobiotics including phytoalexins and drugs are conjugated by vertebrates mainly with glucuronic acid, by invertebrates and plants mainly with glucose. Plant-herbivore arms-race has been the major driving force for evolution of large UGT and other enzyme superfamilies. The UGT superfamily is defined by a common protein structure and signature sequence of 44 amino acids responsible for binding the UDP moiety of the sugar donor. Plants developed toxic phytoalexins stored as glucosides. Upon herbivore attack these conjugates are converted to highly reactive compounds. In turn, animals developed large families of UGTs in their intestine and liver to detoxify these phytoalexins. Interestingly, phytoalexins, exemplified by quercetin glucuronides and glucosinolate-derived isocyanates, are known insect attractant pigments in plants, and antioxidants, anti-inflammatory and chemopreventive compounds of humans. It is to be anticipated that phytochemicals may provide a rich source in beneficial drugs. Copyright © 2015. Published by Elsevier Inc.

  7. Method of detoxifying animal suffering from overdose

    DOEpatents

    Mehlhorn, Rolf J.

    1997-01-01

    A method for accumulating drugs or other chemicals within synthetic, lipid-like vesicles by means of a pH gradient imposed on the vesicles just prior to use is described. The method is suited for accumulating molecules with basic or acid moieties which are permeable to the vesicles membranes in their uncharged form and for molecules that contain charge moieties that are hydrophobic ions and can therefore cross the vesicle membranes in their charged form. The method is advantageous over prior art methods for encapsulating biologically active materials within vesicles in that it achieves very high degrees of loading with simple procedures that are economical and require little technical expertise, furthermore kits which can be stored for prolonged periods prior to use without impairment of the capacity to achieve drug accumulation are described. A related application of the method consists of using this technology to detoxify animals that have been exposed to poisons with basic, weak acid or hydrophobic charge groups within their molecular structure.

  8. High glucose recovery from direct enzymatic hydrolysis of bisulfite-pretreatment on non-detoxified furfural residues.

    PubMed

    Xing, Yang; Bu, Lingxi; Sun, Dafeng; Liu, Zhiping; Liu, Shijie; Jiang, Jianxin

    2015-10-01

    This study reports four schemes to pretreat wet furfural residues (FRs) with sodium bisulfite for production of fermentable sugar. The results showed that non-detoxified FRs (pH 2-3) had great potential to lower the cost of bioconversion. The optimal process was that unwashed FRs were first pretreated with bisulfite, and the whole slurry was then directly used for enzymatic hydrolysis. A maximum glucose yield of 99.4% was achieved from substrates pretreated with 0.1 g NaHSO3/g dry substrate (DS), at a relatively low temperature of 100 °C for 3 h. Compared with raw material, enzymatic hydrolysis at a high-solid of 16.5% (w/w) specifically showed more excellent performance with bisulfite treated FRs. Direct bisulfite pretreatment improved the accessibility of substrates and the total glucose recovery. Lignosulfonate in the non-detoxified slurry decreased the non-productive adsorption of cellulase on the substrate, thus improving enzymatic hydrolysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. The Tridimensional Personality Questionnaire as a predictor of relapse in detoxified alcohol dependents. The European Fluvoxamine in Alcoholism Study Group.

    PubMed

    Meszaros, K; Lenzinger, E; Hornik, K; Füreder, T; Willinger, U; Fischer, G; Schönbeck, G; Aschauer, H N

    1999-03-01

    Personality traits have been found as strong predictors for treatment response in different psychiatric disorders. We administered the Tridimensional Personality Questionnaire, which measures the three personality dimensions: novelty seeking, harm avoidance (HA), and reward dependence, as introduced by Cloninger in a multicenter study (11 centers in the United Kingdom, Eire, Switzerland, and Austria) with detoxified alcohol-dependent patients (n = 521). The objective of this study was to evaluate a possible predictive value of these three dimensions on relapse over 1 -year follow up. A logistic regression analysis showed that novelty seeking is a strong predictor for relapse in detoxified male alcoholics (p = 0.0007; p values adjusted for treatment), but not in females. In both sexes, HA and reward dependence were of no predictive value. However, we found a trend for significance of HA for predicting "early" relapse (4 weeks) in females (p = 0.074). Our results show that Tridimensional Personality Questionnaire personality traits have direct clinical applications for prediction of relapse in detoxified alcohol dependents and indicate the necessity of additional therapeutic treatment in risk groups.

  10. Do Candida spp. "read" Nietzsche? Can xenobiotics modulate their aggressiveness? Proposition that chemicals may interfere in their virulence attributes.

    PubMed

    Rosa, Edvaldo Antonio Ribeiro

    2012-01-01

    As well as the host, opportunist Candida spp. enface all sorts of exogenous chemicals, so-called xenobiotics. It is plausible that xenobiotics exert some effects on such microorganisms; among them, the modulation of virulence attributes.

  11. Delineation of xenobiotic substrate sites in rat glutathione S-transferase M1-1.

    PubMed

    Hearne, Jennifer L; Colman, Roberta F

    2005-10-01

    Glutathione S-transferases catalyze the conjugation of glutathione with endogenous and exogenous xenobiotics. Hu and Colman (1995) proposed that there are two distinct substrate sites in rat GST M1-1, a 1-chloro-2,4-dintrobenzene (CDNB) substrate site located in the vicinity of tyrosine-115, and a monobromobimane (mBBr) substrate site. To determine whether the mBBr substrate site is distinguishable from the CDNB substrate site, we tested S-(hydroxyethyl)bimane, a nonreactive derivative of mBBr, for its ability to compete kinetically with the substrates. We find that S-(hydroxyethyl)bimane is a competitive inhibitor (K(I) = 0.36 microM) when mBBr is used as substrate, but not when CDNB is used as substrate, demonstrating that these two sites are distinct. Using site-directed mutagenesis, we have localized the mBBr substrate site to an area midway through alpha-helix 4 (residues 90-114) and have identified residues that are important in the enzymatic reaction. Substitution of alanine at positions along alpha-helix 4 reveals that mutations at positions 103, 104, and 109 exhibit a greater perturbation of the enzymatic reaction with mBBr than with CDNB as substrate. Various other substitutions at positions 103 and 104 reveal that a hydrophobic residue is necessary at each of these positions to maintain optimal affinity of the enzyme for mBBr and preserve the secondary structure of the enzyme. Substitutions at position 109 indicate that this residue is important in the enzyme's affinity for mBBr but has a minimal effect on Vmax. These results demonstrate that the promiscuity of rat GST M1-1 is in part due to at least two distinct substrate sites.

  12. Interaction of xenobiotics on the glucose-transport system and the Na+/K(+)-ATPase of human skin fibroblasts.

    PubMed

    Cascorbi, I; Forêt, M

    1991-02-01

    The effects of individual and combined xenobiotics on functional properties of the plasma membrane of human skin fibroblasts were investigated. Good correlations between toxic effects on the D-glucose transport system or the Na+/K(+)-ATPase and the lipophilicity of the substances could be observed. The linear regression coefficients plotting log EC20 values (doses, leading to 20% inhibition) versus log Pow (octanol/water partition coefficient) were r = 0.95 (P less than 0.05). The combination of lipophilic with less lipophilic xenobiotics, such as pentachlorophenol with 4-chloroaniline, leads to additional effects. However, when the detergent sodium dodecyl benzenesulfonate was combined with the herbicide 2,4-dichlorophenoxyacetate (2,4-D), the toxic effect of 2,4-D on the Na+/K(+)-ATPase decreased considerably. The results support in general the assumption that the inhibition of integral functional proteins is based on an accumulation of xenobiotics in the plasma membrane, probably due to the enhanced membrane fluidity. Thus, the basic toxicity of xenobiotics can be predicted by their physicochemical properties.

  13. Tracing the evolution of degraders in activated sludge during the sludge’s acclimation to a xenobiotic organic

    NASA Astrophysics Data System (ADS)

    Chong, N. M.; Fan, C. H.; Yang, Y. C.

    2017-01-01

    The molecular biology method of high-throughput pyrosequencing was employed to examine the change of activated sludge community structures during the process in which activated sludge was acclimated to and degraded a target xenobiotic. The sample xenobiotic organic compound used as the activated sludge acclimation target was the herbicide 2,4-dichlorphenoxyacetic acid (2,4-D). Indigenous activated sludge microorganisms were acclimated to 2,4-D as the sole carbon source in both the batch and the continuous-flow reaction modes. Sludge masses at multiple time points during the course of acclimation were subjected to pyrosequencing targeting the microorganisms’ 16S rRNA genes. With the bacterial 16S rRNA sequencing results the genera that increased in abundance were checked with degradative pathway databases or literature to confirm that they are commonly seen as potent degraders of 2,4-D. From this systematic examination of degrader changes at time points during activated sludge acclimation and degradation of the target xenobiotic, the trend of degrader evolution in activated sludge over the sludge’s acclimation process to a xenobiotic was traced.

  14. Cells for bioartificial liver devices: the human hepatoma-derived cell line C3A produces urea but does not detoxify ammonia.

    PubMed

    Mavri-Damelin, Demetra; Damelin, Leonard H; Eaton, Simon; Rees, Myrddin; Selden, Clare; Hodgson, Humphrey J F

    2008-02-15

    Extrahepatic bioartificial liver devices should provide an intact urea cycle to detoxify ammonia. The C3A cell line, a subclone of the hepatoma-derived HepG2 cell line, is currently used in this context as it produces urea, and this has been assumed to be reflective of ammonia detoxification via a functional urea cycle. However, based on our previous findings of perturbed urea-cycle function in the non-urea producing HepG2 cell line, we hypothesized that the urea produced by C3A cells was via a urea cycle-independent mechanism, namely, due to arginase II activity, and therefore would not detoxify ammonia. Urea was quantified using (15)N-ammonium chloride metabolic labelling with gas chromatography-mass spectrometry. Gene expression was determined by real-time reverse transcriptase-PCR, protein expression by western blotting, and functional activities with radiolabelling enzyme assays. Arginase inhibition studies used N(omega)-hydroxy-nor-L-arginine. Urea was detected in C3A conditioned medium; however, (15)N-ammonium chloride-labelling indicated that (15)N-ammonia was not incorporated into (15)N-labelled urea. Further, gene expression of two urea cycle genes, ornithine transcarbamylase and arginase I, were completely absent. In contrast, arginase II mRNA and protein was expressed at high levels in C3A cells and was inhibited by N(omega)-hydroxy-nor-L-arginine, which prevented urea production, thereby indicating a urea cycle-independent pathway. The urea cycle is non-functional in C3A cells, and their urea production is solely due to the presence of arginase II, which therefore cannot provide ammonia detoxification in a bioartificial liver system. This emphasizes the continued requirement for developing a component capable of a full repertoire of liver function. (c) 2007 Wiley Periodicals, Inc.

  15. Live-cell imaging approaches for the investigation of xenobiotic-induced oxidant stress.

    PubMed

    Wages, Phillip A; Cheng, Wan-Yun; Gibbs-Flournoy, Eugene; Samet, James M

    2016-12-01

    Oxidant stress is arguably a universal feature in toxicology. Research studies on the role of oxidant stress induced by xenobiotic exposures have typically relied on the identification of damaged biomolecules using a variety of conventional biochemical and molecular techniques. However, there is increasing evidence that low-level exposure to a variety of toxicants dysregulates cellular physiology by interfering with redox-dependent processes. The study of events involved in redox toxicology requires methodology capable of detecting transient modifications at relatively low signal strength. This article reviews the advantages of live-cell imaging for redox toxicology studies. Toxicological studies with xenobiotics of supra-physiological reactivity require careful consideration when using fluorogenic sensors in order to avoid potential artifacts and false negatives. Fortunately, experiments conducted for the purpose of validating the use of these sensors in toxicological applications often yield unexpected insights into the mechanisms through which xenobiotic exposure induces oxidant stress. Live-cell imaging using a new generation of small molecule and genetically encoded fluorophores with excellent sensitivity and specificity affords unprecedented spatiotemporal resolution that is optimal for redox toxicology studies. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu. Published by Elsevier B.V.

  16. Development of in vivo biotransformation enzyme assays for ecotoxicity screening: In vivo measurement of phases I and II enzyme activities in freshwater planarians.

    PubMed

    Li, Mei-Hui

    2016-08-01

    The development of a high-throughput tool is required for screening of environmental pollutants and assessing their impacts on aquatic animals. Freshwater planarians can be used in rapid and sensitive toxicity bioassays. Planarians are known for their remarkable regeneration ability but much less known for their metabolic and xenobiotic biotransformation abilities. In this study, the activities of different phase I and II enzymes were determined in vivo by directly measuring fluorescent enzyme substrate disappearance or fluorescent enzyme metabolite production in planarian culture media. For phase I enzyme activity, O-deethylation activities with alkoxyresorufin could not be detected in planarian culture media. By contrast, O-deethylation activities with alkoxycoumarin were detected in planarian culture media. Increases in 7-ethoxycoumarin O-deethylase (ECOD) activities was only observed in planarians exposed to 1μM, but not 10μM, β-naphthoflavone for 24h. ECOD activity was inhibited in planarians exposed to 10 and 100μM rifampicin or carbamazepine for 24h. For phase II enzyme activity, DT-diaphorase, arylsulfatases, uridine 5'-diphospho (UDP)-glucuronosyltransferase or catechol-O-methyltransferase activity was determined in culture media containing planarians. The results of this study indicate that freshwater planarians are a promising model organism to monitor exposure to environmental pollutants or assess their impacts through the in vivo measurement of phase I and II enzyme activities. Copyright © 2016. Published by Elsevier Inc.

  17. Procyanidins from wild grape (Vitis amurensis) seeds regulate ARE-mediated enzyme expression via Nrf2 coupled with p38 and PI3K/Akt pathway in HepG2 cells.

    PubMed

    Bak, Min-Ji; Jun, Mira; Jeong, Woo-Sik

    2012-01-01

    Procyanidins, polymers of flavan-3-ol units, have been reported to exhibit many beneficial health effects such as antioxidant and anti-carcinogenic effects. In this study, we investigated the cancer chemopreventive properties of procyanidins from wild grape (Vitis amurensis) seeds in particular their roles in inducing phase II detoxifying/antioxidant enzymes as well as in modulating the upstream kinases. Ethanolic extract of V. amurensis seeds was fractionated with a series of organic solvents and finally separated into six fractions, F1-F6. Chemical properties of the procyanidins were analyzed by vanillin assay, BuOH-HCl test, and depolymerization with phloroglucinol followed by LC/MS analysis. The F5 had the highest procyanidin content among all the fractions and strongly induced the reporter activity of antioxidant response element as well as the protein expression of nuclear factor E2-related factor (Nrf2) in HepG2 human hepatocarcinoma cells. The procyanidin-rich F5 also strongly induced the expression of the phase II detoxifying and antioxidant enzymes such as NAD(P)H:quinone oxidoreductase1 and hemeoxygenase1. Phosphorylations of the upstream kinases such as MAPKs and PI3K/Akt were significantly increased by treatment with procyanidin fraction. In addition, the procyanidin-mediated Nrf2 expression was partly attenuated by PI3K inhibitor LY294002, and almost completely by p38 inhibitor SB202190, but neither by JNK inhibitor SP600125 nor by MEK1/2 inhibitor U0126. Taken together, the procyanidins from wild grape seeds could be used as a potential natural chemopreventive agent through Nrf2/ARE-mediated phase II detoxifying/antioxidant enzymes induction via p38 and PI3K/Akt pathway.

  18. Toxic compound, anti-nutritional factors and functional properties of protein isolated from detoxified Jatropha curcas seed cake.

    PubMed

    Saetae, Donlaporn; Suntornsuk, Worapot

    2010-12-28

    Jatropha curcas is a multipurpose tree, which has potential as an alternative source for biodiesel. All of its parts can also be used for human food, animal feed, fertilizer, fuel and traditional medicine. J. curcas seed cake is a low-value by-product obtained from biodiesel production. The seed cake, however, has a high amount of protein, with the presence of a main toxic compound: phorbol esters as well as anti-nutritional factors: trypsin inhibitors, phytic acid, lectin and saponin. The objective of this work was to detoxify J. curcas seed cake and study the toxin, anti-nutritional factors and also functional properties of the protein isolated from the detoxified seed cake. The yield of protein isolate was approximately 70.9%. The protein isolate was obtained without a detectable level of phorbol esters. The solubility of the protein isolate was maximal at pH 12.0 and minimal at pH 4.0. The water and oil binding capacities of the protein isolate were 1.76 g water/g protein and 1.07 mL oil/g protein, respectively. The foam capacity and stability, including emulsion activity and stability of protein isolate, had higher values in a range of basic pHs, while foam and emulsion stabilities decreased with increasing time. The results suggest that the detoxified J. curcas seed cake has potential to be exploited as a novel source of functional protein for food applications.

  19. Toxic Compound, Anti-Nutritional Factors and Functional Properties of Protein Isolated from Detoxified Jatropha curcas Seed Cake

    PubMed Central

    Saetae, Donlaporn; Suntornsuk, Worapot

    2011-01-01

    Jatropha curcas is a multipurpose tree, which has potential as an alternative source for biodiesel. All of its parts can also be used for human food, animal feed, fertilizer, fuel and traditional medicine. J. curcas seed cake is a low-value by-product obtained from biodiesel production. The seed cake, however, has a high amount of protein, with the presence of a main toxic compound: phorbol esters as well as anti-nutritional factors: trypsin inhibitors, phytic acid, lectin and saponin. The objective of this work was to detoxify J. curcas seed cake and study the toxin, anti-nutritional factors and also functional properties of the protein isolated from the detoxified seed cake. The yield of protein isolate was approximately 70.9%. The protein isolate was obtained without a detectable level of phorbol esters. The solubility of the protein isolate was maximal at pH 12.0 and minimal at pH 4.0. The water and oil binding capacities of the protein isolate were 1.76 g water/g protein and 1.07 mL oil/g protein, respectively. The foam capacity and stability, including emulsion activity and stability of protein isolate, had higher values in a range of basic pHs, while foam and emulsion stabilities decreased with increasing time. The results suggest that the detoxified J. curcas seed cake has potential to be exploited as a novel source of functional protein for food applications. PMID:21339978

  20. Regulation of hepatic ABCC transporters by xenobiotics and in disease states

    PubMed Central

    Gu, Xinsheng; Manautou, Jose E.

    2015-01-01

    The subfamily of ABCC transporters consists of 13 members in mammals, including the multidrug resistance-associated proteins (MRPs), sulfonylurea receptors (SURs), and the cystic fibrosis transmembrane conductance regulator (CFTR). These proteins play roles in chemical detoxification, disposition, and normal cell physiology. ABCC transporters are expressed differentially in the liver and are regulated at the transcription and translation level. Their expression and function are also controlled by post-translational modification and membrane-trafficking events. These processes are tightly regulated. Information about alterations in the expression of hepatobiliary ABCC transporters could provide important insights into the pathogenesis of diseases and disposition of xenobiotics. In this review, we describe the regulation of hepatic ABCC transporters in humans and rodents by a variety of xenobiotics, under disease states and in genetically modified animal models deficient in transcription factors, transporters, and cell-signaling molecules. PMID:20233023

  1. Antioxidant response elements: Discovery, classes, regulation and potential applications.

    PubMed

    Raghunath, Azhwar; Sundarraj, Kiruthika; Nagarajan, Raju; Arfuso, Frank; Bian, Jinsong; Kumar, Alan P; Sethi, Gautam; Perumal, Ekambaram

    2018-07-01

    Exposure to antioxidants and xenobiotics triggers the expression of a myriad of genes encoding antioxidant proteins, detoxifying enzymes, and xenobiotic transporters to offer protection against oxidative stress. This articulated universal mechanism is regulated through the cis-acting elements in an array of Nrf2 target genes called antioxidant response elements (AREs), which play a critical role in redox homeostasis. Though the Keap1/Nrf2/ARE system involves many players, AREs hold the key in transcriptional regulation of cytoprotective genes. ARE-mediated reporter constructs have been widely used, including xenobiotics profiling and Nrf2 activator screening. The complexity of AREs is brought by the presence of other regulatory elements within the AREs. The diversity in the ARE sequences not only bring regulatory selectivity of diverse transcription factors, but also confer functional complexity in the Keap1/Nrf2/ARE pathway. The different transcription factors either homodimerize or heterodimerize to bind the AREs. Depending on the nature of partners, they may activate or suppress the transcription. Attention is required for deeper mechanistic understanding of ARE-mediated gene regulation. The computational methods of identification and analysis of AREs are still in their infancy. Investigations are required to know whether epigenetics mechanism plays a role in the regulation of genes mediated through AREs. The polymorphisms in the AREs leading to oxidative stress related diseases are warranted. A thorough understanding of AREs will pave the way for the development of therapeutic agents against cancer, neurodegenerative, cardiovascular, metabolic and other diseases with oxidative stress. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Methylglyoxal causes strong weakening of detoxifying capacity and apoptotic cell death in rat hippocampal neurons.

    PubMed

    Di Loreto, Silvia; Zimmitti, Vincenzo; Sebastiani, Pierluigi; Cervelli, Carla; Falone, Stefano; Amicarelli, Fernanda

    2008-01-01

    The hippocampus is known to play a crucial role in learning and memory. Recent data from literature show that cognitive problems, common to aged or diabetic patients, may be related to accumulation of toxic alpha-oxoaldehydes such as methylglyoxal. Thus, it is possible that methylglyoxal could be, at least in part, responsible for the impairment of cognitive functions, and the knowledge of the mechanisms through which this compound elicits neuronal toxicity could be useful for the development of possible therapeutic strategies. We previously reported a high susceptibility of hippocampal neurons to methylglyoxal, through an oxidation-dependent mechanism. In the present study, we extend our investigation on the molecular mechanisms which underlie methylglyoxal toxicity, focusing on possible effects on expression and activity of glyoxalases, its main detoxifying enzymes, and glutathione peroxidase, as well as on the levels of reduced glutathione. We also investigate methylglyoxal-induced modulation of brain derived neurotrophic factor and proinflammatory cytokines. Our results show that methylglyoxal causes a dramatic depletion of reduced glutathione and a significant inhibition of both glyoxalase and glutathione peroxidase activities. Furthermore, methylglyoxal treatment seems to affect the expression of inflammatory cytokines and survival factors. In conclusion, our findings suggest that methylglyoxal-induced neurotoxicity occurs through the impairment of detoxification pathway and depletion of reduced glutathione. This, in turn, triggers widespread apoptotic cell death, occurring through the convergence of both mitochondrial and Fas-receptor pathways.

  3. Xenobiotic metabolizing gene variants, pesticide use, and risk of prostate cancer

    PubMed Central

    Koutros, Stella; Andreotti, Gabriella; Berndt, Sonja I.; Barry, Kathryn Hughes; Lubin, Jay H.; Hoppin, Jane A.; Kamel, Freya; Sandler, Dale P.; Burdette, Laurie A.; Yuenger, Jeffrey; Yeager, Meredith; Alavanja, Michael C.R.; Beane Freeman, Laura E.

    2011-01-01

    Background To explore associations with prostate cancer and farming, it is important to investigate the relationship between pesticide use and single nucleotide polymorphisms (SNPs) in xenobiotic metabolic enzyme (XME) genes. Objectives We evaluated pesticide-SNP interactions between 45 pesticides and 1,913 XME SNPs with respect to prostate cancer among 776 cases and 1,444 controls in the Agricultural Health Study. Methods We used unconditional logistic regression to estimate odds ratios (ORs) and 95% confidence intervals (CIs). Multiplicative SNP-pesticide interactions were calculated using a likelihood ratio test. Results A positive monotonic interaction was observed between petroleum oil/petroleum distillate use and rs1883633 in the oxidative stress gene glutamate-cysteine ligase (GCLC) (p-interaction=1.0×10−4); men carrying at least one variant allele (minor allele) experienced an increased prostate cancer risk (OR=3.7, 95% CI: 1.9–7.3). Among men carrying the variant allele for thioredoxin reductase 2 (TXNRD2) rs4485648, microsomal epoxide hyrdolase 1 (EPHX1) rs17309872, or myeloperoxidase (MPO) rs11079344, increased prostate cancer risk was observed with high compared to no petroleum oil/petroleum distillate (OR=1.9, 95% CI: 1.1–3.2, p-interaction=0.01), (OR=2.1, 95% CI: 1.1–4.0, p-interaction=0.01), or terbufos (OR=3.0, 95% CI: 1.5–6.0 p-interaction=2.0×10−3) use, respectively. No interactions were deemed noteworthy at the false discovery rate = 0.20 level; the number of observed interactions in XMEs was comparable to the number expected by chance alone. Conclusions We observed several pesticide-SNP interactions in oxidative stress and phase I/phase II enzyme genes and risk of prostate cancer. Additional work is needed to explain the joint contribution of genetic variation in XMEs, pesticide use, and prostate cancer risk. PMID:21716162

  4. Structure-activity relationships for xenobiotic transport substrates and inhibitory ligands of P-glycoprotein.

    PubMed Central

    Bain, L J; McLachlan, J B; LeBlanc, G A

    1997-01-01

    The multixenobiotic resistance phenotype is characterized by the reduced accumulation of xenobiotics by cells or organisms due to increased efflux of the compounds by P-glycoprotein (P-gp) or related transporters. An extensive xenobiotic database, consisting primarily of pesticides, was utilized in this study to identify molecular characteristics that render a xenobiotic susceptible to transport by or inhibition of P-gp. Transport substrates were differentiated by several molecular size/shape parameters, lipophilicity, and hydrogen bonding potential. Electrostatic features differentiated inhibitory ligands from compounds not catagorized as transport substrates and that did no interact with P-gp. A two-tiered system was developed using the derived structure-activity relationships to identify P-gp transport substrates and inhibitory ligands. Prediction accuracy of the approach was 82%. We then validated the system using six additional pesticides of which tow were predicted to be P-gp inhibitors and four were predicted to be noninteractors, based upon the structure-activity analyses. Experimental determinations using cells transfected with the human MDR1 gene demonstrated that five of the six pesticides were properly catagorized by the structure-activity analyses (83% accuracy). Finally, structure-activity analyses revealed that among P-gp inhibitors, relative inhibitory potency can be predicted based upon the surface area or volume of the compound. These results demonstrate that P-gp transport substrates and inhibitory ligands can be distinguished using molecular characteristics. Molecular characteristics of transport substrates suggest that P-gp may function in the elimination of hydroxylated metabolites of xenobiotics. Images Figure 1. A Figure 1. B Figure 1. C Figure 1. D Figure 1. E Figure 1. F Figure 1. G Figure 1. H Figure 2. Figure 2. Figure 2. Figure 2. Figure 2. Figure 2. Figure 3. A Figure 3. B PMID:9347896

  5. Inhibitors of steroidal cytochrome p450 enzymes as targets for drug development.

    PubMed

    Baston, Eckhard; Leroux, Frédéric R

    2007-01-01

    Cytochrome P450's are enzymes which catalyze a large number of biological reactions, for example hydroxylation, N-, O-, S- dealkylation, epoxidation or desamination. Their substrates include fatty acids, steroids or prostaglandins. In addition, a high number of various xenobiotics are metabolized by these enzymes. The enzyme 17alpha-hydroxylase-C17,20-lyase (P450(17), CYP 17, androgen synthase), a cytochrome P450 monooxygenase, is the key enzyme for androgen biosynthesis. It catalyzes the last step of the androgen biosynthesis in the testes and adrenal glands and produces androstenedione and dehydroepiandrosterone from progesterone and pregnenolone. The microsomal enzyme aromatase (CYP19) transforms these androgens to estrone and estradiol. Estrogens stimulate tumor growth in hormone dependent breast cancer. In addition, about 80 percent of prostate cancers are androgen dependent. Selective inhibitors of these enzymes are thus important alternatives to treatment options like antiandrogens or antiestrogens. The present article deals with recent patents (focus on publications from 2000 - 2006) concerning P450 inhibitor design where steroidal substrates are involved. In this context a special focus is provided for CYP17 and CYP19. Mechanisms of action will also be discussed. Inhibitors of CYP11B2 (aldosterone synthase) will also be dealt with.

  6. Polymorphisms in xenobiotic metabolizing genes, intakes of heterocyclic amines and red meat, and postmenopausal breast cancer

    PubMed Central

    Lee, Hae-Jeung; Wu, Kana; Cox, David G.; Hunter, David; Hankinson, Susan E.; Willett, Walter C.; Sinha, Rashmi; Cho, Eunyoung

    2013-01-01

    Heterocyclic amines (HCAs) are mutagenic compounds generated when meats are cooked at high temperature and for long duration. The findings from previous studies on the relation between HCAs and breast cancer are inconsistent, possibly due to genetic variations in the enzymes metabolizing HCAs. To evaluate whether the associations of intakes of estimated HCAs, meat-derived mutagenicity (MDM), and red meat with risk of postmenopausal breast cancer were modified by N-acetyltransferase 2 (NAT2) acetylator genotype or cytochrome P450 1A2 -164 A/C (CYP1A2) polymorphism, we conducted a nested case-control study with 579 cases and 981 controls within a prospective cohort, the Nurses’ Health Study (NHS). HCAs and MDM intakes were derived using a cooking method questionnaire administered in 1996. NAT2 acetylator genotype, the CYP1A2 polymorphism, and intakes of HCAs, MDM, and red meat were not associated with risk of postmenopausal breast cancer. There was also no interaction between NAT2 acetylator genotype or CYP1A2 polymorphism and HCAs and MDM and red meat intake in relation to breast cancer. These results do not support the hypothesis that genetic polymorphisms of xenobiotic enzymes involved in the metabolism of HCAs may modify the associations between intakes of red meat or meat-related mutagens and breast cancer risk. PMID:24099317

  7. Understanding Substrate Selectivity of Human UDP-glucuronosyltransferases through QSAR modeling and analysis of homologous enzymes

    PubMed Central

    Dong, Dong; Ako, Roland; Hu, Ming; Wu, Baojian

    2015-01-01

    The UDP-glucuronosyltransferase (UGT) enzyme catalyzes the glucuronidation reaction which is a major metabolic and detoxification pathway in humans. Understanding the mechanisms for substrate recognition by UGT assumes great importance in an attempt to predict its contribution to xenobiotic/drug disposition in vivo. Spurred on by this interest, 2D/3D-quantitative structure activity relationships (QSAR) and pharmacophore models have been established in the absence of a complete mammalian UGT crystal structure. This review discusses the recent progress in modeling human UGT substrates including those with multiple sites of glucuronidation. A better understanding of UGT active site contributing to substrate selectivity (and regioselectivity) from the homologous enzymes (i.e., plant and bacterial UGTs, all belong to family 1 of glycosyltransferase (GT1)) is also highlighted, as these enzymes share a common catalytic mechanism and/or overlapping substrate selectivity. PMID:22385482

  8. Procyanidins from Wild Grape (Vitis amurensis) Seeds Regulate ARE-Mediated Enzyme Expression via Nrf2 Coupled with p38 and PI3K/Akt Pathway in HepG2 Cells

    PubMed Central

    Bak, Min-Ji; Jun, Mira; Jeong, Woo-Sik

    2012-01-01

    Procyanidins, polymers of flavan-3-ol units, have been reported to exhibit many beneficial health effects such as antioxidant and anti-carcinogenic effects. In this study, we investigated the cancer chemopreventive properties of procyanidins from wild grape (Vitis amurensis) seeds in particular their roles in inducing phase II detoxifying/antioxidant enzymes as well as in modulating the upstream kinases. Ethanolic extract of V. amurensis seeds was fractionated with a series of organic solvents and finally separated into six fractions, F1–F6. Chemical properties of the procyanidins were analyzed by vanillin assay, BuOH-HCl test, and depolymerization with phloroglucinol followed by LC/MS analysis. The F5 had the highest procyanidin content among all the fractions and strongly induced the reporter activity of antioxidant response element as well as the protein expression of nuclear factor E2-related factor (Nrf2) in HepG2 human hepatocarcinoma cells. The procyanidin-rich F5 also strongly induced the expression of the phase II detoxifying and antioxidant enzymes such as NAD(P)H:quinone oxidoreductase1 and hemeoxygenase1. Phosphorylations of the upstream kinases such as MAPKs and PI3K/Akt were significantly increased by treatment with procyanidin fraction. In addition, the procyanidin-mediated Nrf2 expression was partly attenuated by PI3K inhibitor LY294002, and almost completely by p38 inhibitor SB202190, but neither by JNK inhibitor SP600125 nor by MEK1/2 inhibitor U0126. Taken together, the procyanidins from wild grape seeds could be used as a potential natural chemopreventive agent through Nrf2/ARE-mediated phase II detoxifying/antioxidant enzymes induction via p38 and PI3K/Akt pathway. PMID:22312287

  9. Cognitive performance of detoxified alcoholic Korsakoff syndrome patients remains stable over two years.

    PubMed

    Fujiwara, Esther; Brand, Matthias; Borsutzky, Sabine; Steingass, Hans-P; Markowitsch, Hans J

    2008-07-01

    Excessive alcohol consumption is assumed to promote cognitive decline, eventually increasing the risk of dementia. However, little is known about the time course of cognitive functions in patients with chronic alcoholic Korsakoff syndrome (KS). Therefore, we assessed neuropsychological performance in 20 detoxified chronic KS inpatients at time 1 (T1) with a follow-up after two years (T2). The neuropsychological tests assessed verbal and visual short- and long-term memory, working memory, basic executive functions, language, general knowledge, and visual-spatial abilities. Surveys with caregivers and medical records provided information about current and previous disease-related parameters, drinking history, additional pathologies, as well as psychosocial and cognitive therapy within the two-year period. At both sessions, the majority of the KS patients' results were inferior to those of normal subjects. Comparing T1 and T2 revealed no significant decline in any of the investigated functions. Instead, general knowledge, visual long-term memory, and verbal fluency improved slightly after two years, though they still remained within pathological range. Comparing most improved and most deteriorated patients, better outcome occurred more frequently in men than women and was associated with higher premorbid education and fewer detoxifications in the past. In this sample of detoxified KS patients there was no indication of accelerated cognitive decline or onset of dementia-like symptoms over two years.

  10. Differences in glycogen, lipids, and enzymes in livers from rats flown on Cosmos 2044

    NASA Technical Reports Server (NTRS)

    Merrill, Alfred H., Jr.; Wang, Elaine; Laroque, Regina; Mullins, Richard E.; Morgan, Edward T.; Hargrove, James L.; Bonkovsky, Herbert L.; Popova, Irina A.

    1992-01-01

    Livers from rats flown aboard Cosmos 2044 were analyzed for protein, carbohydrate (glycogen), and lipids as well as the activities of a number of key enzymes involved in metabolism of these compounds and xenobiotics. The major differences between the flight group and the synchronous control were elevations in microsomal protein, liver glycogen content, tyrosine aminotransferase, and tryptophan oxygenase and reductions in sphingolipids and the rate-limiting enzyme of heme biosynthesis delta-aminolevulinic acid synthase. These results provide further evidence that spaceflight has pronounced and diverse effects on liver function; however, some of the results with samples from Cosmos 2044 differed notably from those from previous spaceflights. This may be due to conditions of spaceflight and/or the postflight recovery period for Cosmos 2044.

  11. Dietary lipids differentially modulate the initiation of experimental breast carcinogenesis through their influence on hepatic xenobiotic metabolism and DNA damage in the mammary gland.

    PubMed

    Manzanares, Miguel Ángel; de Miguel, Cristina; Ruiz de Villa, M Carme; Santella, Regina M; Escrich, Eduard; Solanas, Montserrat

    2017-05-01

    Breast cancer is the most common malignancy among women worldwide. In addition to reproductive factors, environmental factors such as nutrition and xenobiotic exposure have a role in the etiology of this malignancy. A stimulating and a potentially protective effect on experimental breast cancer has been previously described for high corn oil and high extra-virgin olive oil diets, respectively. This work investigates the effect of these lipids on the metabolism of 7,12-dimethylbenz(a)anthracene (DMBA), a polycyclic aromatic hydrocarbon that can initiate carcinogenesis and its consequences in an experimental rat breast cancer model. The PUFA n-6-enriched diet increased expression of Phase I enzymes prior to DMBA administration and raised the activity of CYP1s in the hours immediately after induction, while reducing the activity of Phase II enzymes, mainly NQO1. The levels of reactive metabolites measured in plasma by GC-MS and DMBA-DNA adducts in the mammary gland of the animals fed the high corn oil diet were also higher than in the other groups. On the other hand, the high extra-virgin olive oil diet and the control low-fat diet exhibited better coordinated Phase I and Phase II activity, with a lower production of reactive metabolites and less DNA damage in the mammary gland. The concordance between these effects and the different efficacy of the carcinogenesis process due to the dietary treatment suggest that lipids may differently modify mammary gland susceptibility or resistance to cancer initiation over the exposure to environmental carcinogens. Dietary lipids influence the initiation of DMBA-induced mammary cancer through the modulation of liver xenobiotic metabolism, formation of reactive metabolites and subsequent DNA damage in the target tissue. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Inkjet-printed selective microfluidic biosensor using CNTs functionalized by cytochrome P450 enzyme

    NASA Astrophysics Data System (ADS)

    Krivec, Matic; Leitner, Raimund; Überall, Florian; Hochleitner, Johannes

    2017-05-01

    An additive manufacturing concept, consisting of 3D photopolymer printing and Ag nanoparticle printing, was investigated for the construction of a microfluidic biosensor based on immobilized cytochrome P450 enzyme. An acylate-type microfluidic chamber composed of two parts, i.e. chamber-housing and chamber-lid was printed with a polyjet 3D printer. A 3-electrode sensor structure was inkjet-printed on the lid using a combination of Ag and graphene printing. The working electrode was covered with carbon nanotubes by drop-casting and immobilized with cytochrome P450 2D6 enzyme. The microfluidic sensor shows a significant response to a test xenobiotic, i.e. dextromethorphan; the cyclic voltammetrical measurements show a corresponding oxidation peak at 0.4 V with around 5 μM detection limit.

  13. Limonin Methoxylation Influences Induction of Glutathione S-Transferase and Quinone Reductase

    PubMed Central

    PEREZ, JOSE LUIS; JAYAPRAKASHA, G. K.; VALDIVIA, VIOLETA; MUNOZ, DIANA; DANDEKAR, DEEPAK V.; AHMAD, HASSAN; PATIL, BHIMANAGOUDA S.

    2009-01-01

    Previous studies have indicated the chemoprevention potential of citrus limonoids due to the induction of phase II detoxifying enzymes. In the present study, three citrus limonoids were purified and identified from sour orange seeds as limonin, limonin glucoside (LG), deacetylnomilinic acid glucoside (DNAG). In addition, limonin was modified to defuran limonin and limonin 7-methoxime. The structures of these compounds were confirmed by NMR studies. These five compounds were used to investigate the influence of Phase II enzymes in female A/J mice. Our results indicated that the highest induction of Glutathione S-Transferase (GST) activity against 1-chloro-2, 4-dinitrobenzene (CDNB) by DNAG (67%) in lung homogenates followed by limonin-7-methoxime (32%) in treated liver homogenates. Interestingly, the limonin-7-methoxime showed the highest GST activity (270%) in liver against 4-nitroquinoline 1-oxide (4NQO), while the same compound in stomach induced GST by 51% compared to the control. DNAG treated group induced 55% in stomach homogenates. Another Phase II enzyme, quinone reductase (QR), was significantly induced by limonin-7-methoxime by 65 and 32% in liver and lung homogenates, respectively. Defuran limonin, induced QR in lung homogenates by 45%. Our results indicated that modification of the limonin have differential induction of phase II enzymes. These findings are indicative of a possible mechanism for the prevention of cancer by aiding in detoxification of xenobiotics. PMID:19480426

  14. Live-cell Imaging Approaches for the Investigation of Xenobiotic-Induced Oxidant Stress

    EPA Science Inventory

    BACKGROUND: Oxidant stress is arguably a universal feature in toxicology. Research studies on the role of oxidant stress induced by xenobiotic exposures have typically relied on the identification of damaged biomolecules using a variety of conventional biochemical and molecular t...

  15. Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways

    PubMed Central

    Ma, Menggen; Song, Mingzhou

    2010-01-01

    Lignocellulosic biomass conversion inhibitors, furfural and HMF, inhibit microbial growth and interfere with subsequent fermentation of ethanol, posing significant challenges for a sustainable cellulosic ethanol conversion industry. Numerous yeast genes were found to be associated with the inhibitor tolerance. However, limited knowledge is available about mechanisms of the tolerance and the detoxification of the biomass conversion inhibitors. Using a robust standard for absolute mRNA quantification assay and a recently developed tolerant ethanologenic yeast Saccharomyces cerevisiae NRRL Y-50049, we investigate pathway-based transcription profiles relevant to the yeast tolerance and the inhibitor detoxification. Under the synergistic inhibitory challenges by furfural and HMF, Y-50049 was able to withstand the inhibitor stress, in situ detoxify furfural and HMF, and produce ethanol, while its parental control Y-12632 failed to function till 65 h after incubation. The tolerant strain Y-50049 displayed enriched genetic background with significantly higher abundant of transcripts for at least 16 genes than a non-tolerant parental strain Y-12632. The enhanced expression of ZWF1 appeared to drive glucose metabolism in favor of pentose phosphate pathway over glycolysis at earlier steps of glucose metabolisms. Cofactor NAD(P)H generation steps were likely accelerated by enzymes encoded by ZWF1, GND1, GND2, TDH1, and ALD4. NAD(P)H-dependent aldehyde reductions including conversion of furfural and HMF, in return, provided sufficient NAD(P)+ for NAD(P)H regeneration in the yeast detoxification pathways. Enriched genetic background and a well maintained redox balance through reprogrammed expression responses of Y-50049 were accountable for the acquired tolerance and detoxification of furfural to furan methanol and HMF to furan dimethanol. We present significant gene interactions and regulatory networks involved in NAD(P)H regenerations and functional aldehyde reductions under

  16. Retrofit Strategies for Incorporating Xenobiotic Metabolism into High Throughput Screening Assays (EMGS)

    EPA Science Inventory

    The US EPA’s ToxCast program is designed to assess chemical perturbations of molecular and cellular endpoints using a variety of high-throughput screening (HTS) assays. However, existing HTS assays have limited or no xenobiotic metabolism which could lead to a mischaracterization...

  17. Allyl isothiocyanate that induces GST and UGT expression confers oxidative stress resistance on C. elegans, as demonstrated by nematode biosensor.

    PubMed

    Hasegawa, Koichi; Miwa, Satsuki; Tsutsumiuchi, Kaname; Miwa, Johji

    2010-02-17

    Electrophilic xenobiotics and endogenous products from oxidative stresses induce the glutathione S-transferases (GSTs), which form a large family within the phase II enzymes over both animal and plant kingdoms. The GSTs thus induced in turn detoxify these external as well as internal stresses. Because these stresses are often linked to ageing and damage to health, the induction of phase II enzymes without causing adverse effects would be beneficial in slowing down ageing and keeping healthy conditions. We have tested this hypothesis by choosing allyl isothiocyanate (AITC), a functional ingredient in wasabi, as a candidate food ingredient that induces GSTs without causing adverse effects on animals' lives. To monitor the GST induction, we constructed a gst::gfp fusion gene and used it to transform Caenorhabditis elegans for use as a nematode biosensor. With the nematode biosensor, we found that AITC induced GST expression and conferred tolerance on the nematode against various oxidative stresses. We also present evidence that the transcription factor SKN-1 is involved in regulating the GST expression induced by AITC. We show the applicability of the nematode biosensor for discovering and evaluating functional food substances and chemicals that would provide anti-ageing or healthful benefits.

  18. Live-cell imaging approaches for the investigation of xenobiotic-induced oxidant stress☆,☆☆

    PubMed Central

    Wages, Phillip A.; Cheng, Wan-Yun; Gibbs-Flournoy, Eugene; Samet, James M.

    2017-01-01

    Background Oxidant stress is arguably a universal feature in toxicology. Research studies on the role of oxidant stress induced by xenobiotic exposures have typically relied on the identification of damaged biomolecules using a variety of conventional biochemical and molecular techniques. However, there is increasing evidence that low-level exposure to a variety of toxicants dysregulates cellular physiology by interfering with redox-dependent processes. Scope of review The study of events involved in redox toxicology requires methodology capable of detecting transient modifications at relatively low signal strength. This article reviews the advantages of live-cell imaging for redox toxicology studies. Major conclusions Toxicological studies with xenobiotics of supra-physiological reactivity require careful consideration when using fluorogenic sensors in order to avoid potential artifacts and false negatives. Fortunately, experiments conducted for the purpose of validating the use of these sensors in toxicological applications often yield unexpected insights into the mechanisms through which xenobiotic exposure induces oxidant stress. General significance Live-cell imaging using a new generation of small molecule and genetically encoded fluorophores with excellent sensitivity and specificity affords unprecedented spatiotemporal resolution that is optimal for redox toxicology studies. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu. PMID:27208426

  19. Behavioral responses of honey bees (Apis mellifera) to natural and synthetic xenobiotics in food.

    PubMed

    Liao, Ling-Hsiu; Wu, Wen-Yen; Berenbaum, May R

    2017-11-21

    While the natural foods of the western honey bee (Apis mellifera) contain diverse phytochemicals, in contemporary agroecosystems honey bees also encounter pesticides as floral tissue contaminants. Whereas some ubiquitous phytochemicals in bee foods up-regulate detoxification and immunity genes, thereby benefiting nestmates, many agrochemical pesticides adversely affect bee health even at sublethal levels. How honey bees assess xenobiotic risk to nestmates as they forage is poorly understood. Accordingly, we tested nine phytochemicals ubiquitous in nectar, pollen, or propolis, as well as five synthetic xenobiotics that frequently contaminate hives-two herbicides (atrazine and glyphosate) and three fungicides (boscalid, chlorothalonil, and prochloraz). In semi-field free-flight experiments, bees were offered a choice between paired sugar water feeders amended with either a xenobiotic or solvent only (control). Among the phytochemicals, foragers consistently preferred quercetin at all five concentrations tested, as evidenced by both visitation frequency and consumption rates. This preference may reflect the long evolutionary association between honey bees and floral tissues. Of pesticides eliciting a response, bees displayed a preference at specific concentrations for glyphosate and chlorothalonil. This paradoxical preference may account for the frequency with which these pesticides occur as hive contaminants and suggests that they present a greater risk factor for honey bee health than previously suspected.

  20. Avian species differences in the intestinal absorption of xenobiotics (PCB, dieldrin, Hg2+)

    USGS Publications Warehouse

    Serafin, J.A.

    1984-01-01

    1. Intestinal absorption of a polychlorinated biphenyl, dieldrin, and mercury (from HgCl2) was measured in adult Northern bobwhites, Eastern screech owls, American kestrels, black-crowned night-herons and mallards in vivo by an in situ luminal perfusion technique.2. Bobwhites, screech owls and kestrels absorbed much more of each xenobiotic than black-crowned night-herons and mallards.3. Mallards absorbed less dieldrin and mercury than black-crowned night-herons.4. Mercury absorption by kestrels was more than twice that in screech owls and eight times that observed in mallards.5. Pronounced differences in xenobiotic absorption rates between bobwhites, screech owls and kestrels on the one hand, and black-crowned night-herons and mallards on the other, raise the possibility that absorptive ability may be associated with the phylogenetic classification of birds.

  1. Purification and characterization of akr1b10 from human liver: role in carbonyl reduction of xenobiotics.

    PubMed

    Martin, Hans-Jörg; Breyer-Pfaff, Ursula; Wsol, Vladimir; Venz, Simone; Block, Simone; Maser, Edmund

    2006-03-01

    Members of the aldo-keto reductase (AKR) superfamily have a broad substrate specificity in catalyzing the reduction of carbonyl group-containing xenobiotics. In the present investigation, a member of the aldose reductase subfamily, AKR1B10, was purified from human liver cytosol. This is the first time AKR1B10 has been purified in its native form. AKR1B10 showed a molecular mass of 35 kDa upon gel filtration and SDS-polyacrylamide gel electrophoresis. Kinetic parameters for the NADPH-dependent reduction of the antiemetic 5-HT3 receptor antagonist dolasetron, the antitumor drugs daunorubicin and oracin, and the carcinogen 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK) to the corresponding alcohols have been determined by HPLC. Km values ranged between 0.06 mM for dolasetron and 1.1 mM for daunorubicin. Enzymatic efficiencies calculated as kcat/Km were more than 100 mM-1 min-1 for dolasetron and 1.3, 0.43, and 0.47 mM-1 min-1 for daunorubicin, oracin, and NNK, respectively. Thus, AKR1B10 is one of the most significant reductases in the activation of dolasetron. In addition to its reducing activity, AKR1B10 catalyzed the NADP+-dependent oxidation of the secondary alcohol (S)-1-indanol to 1-indanone with high enzymatic efficiency (kcat/Km=112 mM-1 min-1). The gene encoding AKR1B10 was cloned from a human liver cDNA library and the recombinant enzyme was purified. Kinetic studies revealed lower activity of the recombinant compared with the native form. Immunoblot studies indicated large interindividual variations in the expression of AKR1B10 in human liver. Since carbonyl reduction of xenobiotics often leads to their inactivation, AKR1B10 may play a role in the occurrence of chemoresistance of tumors toward carbonyl group-bearing cytostatic drugs.

  2. Glutathione S-transferase of brown planthoppers (Nilaparvata lugens) is essential for their adaptation to gramine-containing host plants.

    PubMed

    Sun, Xiao-Qin; Zhang, Mao-Xin; Yu, Jing-Ya; Jin, Yu; Ling, Bing; Du, Jin-Ping; Li, Gui-Hua; Qin, Qing-Ming; Cai, Qing-Nian

    2013-01-01

    Plants have evolved complex processes to ward off attacks by insects. In parallel, insects have evolved mechanisms to thwart these plant defenses. To gain insight into mechanisms that mediate this arms race between plants and herbivorous insects, we investigated the interactions between gramine, a toxin synthesized by plants of the family Gramineae, and glutathione S transferase (GST), an enzyme found in insects that is known to detoxify xenobiotics. Here, we demonstrate that rice (Oryza sativa), a hydrophytic plant, also produces gramine and that rice resistance to brown planthoppers (Nilaparvata lugens, BPHs) is highly associated with in planta gramine content. We also show that gramine is a toxicant that causes BPH mortality in vivo and that knockdown of BPH GST gene nlgst1-1 results in increased sensitivity to diets containing gramine. These results suggest that the knockdown of key detoxification genes in sap-sucking insects may provide an avenue for increasing their sensitivity to natural plant-associated defense mechanisms.

  3. Glutathione S-Transferase of Brown Planthoppers (Nilaparvata lugens) Is Essential for Their Adaptation to Gramine-Containing Host Plants

    PubMed Central

    Yu, Jing-Ya; Jin, Yu; Ling, Bing; Du, Jin-Ping; Li, Gui-Hua; Qin, Qing-Ming; Cai, Qing-Nian

    2013-01-01

    Plants have evolved complex processes to ward off attacks by insects. In parallel, insects have evolved mechanisms to thwart these plant defenses. To gain insight into mechanisms that mediate this arms race between plants and herbivorous insects, we investigated the interactions between gramine, a toxin synthesized by plants of the family Gramineae, and glutathione S transferase (GST), an enzyme found in insects that is known to detoxify xenobiotics. Here, we demonstrate that rice (Oryza sativa), a hydrophytic plant, also produces gramine and that rice resistance to brown planthoppers (Nilaparvata lugens, BPHs) is highly associated with in planta gramine content. We also show that gramine is a toxicant that causes BPH mortality in vivo and that knockdown of BPH GST gene nlgst1-1 results in increased sensitivity to diets containing gramine. These results suggest that the knockdown of key detoxification genes in sap-sucking insects may provide an avenue for increasing their sensitivity to natural plant-associated defense mechanisms. PMID:23700450

  4. [Hypothetical link between endometriosis and xenobiotics-associated genetically modified food].

    PubMed

    Aris, A; Paris, K

    2010-12-01

    Endometriosis is an oestrogen-dependent inflammatory disease affecting 10 % of reproductive-aged women. Often accompanied by chronic pelvic pain and infertility, endometriosis rigorously interferes with women's quality of life. Although the pathophysiology of endometriosis remains unclear, a growing body of evidence points to the implication of environmental toxicants. Over the last decade, an increase in the incidence of endometriosis has been reported and coincides with the introduction of genetically modified foods in our diet. Even though assessments of genetically modified food risk have not indicated any hazard on human health, xenobiotics-associated genetically modified food, such as pesticides residues and xenoproteins, could be harmful in the long-term. The "low-dose hypothesis", accumulation and biotransformation of pesticides-associated genetically modified food and the multiplied toxicity of pesticides-formulation adjuvants support this hypothesis. This review summarizes toxic effects (in vitro and on animal models) of some xenobiotics-associated genetically modified food, such as glyphosate and Cry1Ab protein, and extrapolates on their potential role in the pathophysiology of endometriosis. Their roles as immune toxicants, pro-oxidants, endocrine disruptors and epigenetic modulators are discussed. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  5. Correlation of the lipophilicity of xenobiotics with their synergistic effects on DNA synthesis in human fibroblasts.

    PubMed

    Jacobi, H; Leier, G; Witte, I

    1996-04-01

    The binary combination effects of DNA synthesis of human fibroblasts were investigated using 2,4-D with 15 xenobiotics of different chemical substance classes. Results were compared with previous investigations on cell growth. Each of the 15 chemicals tested at their no effect concentrations (NOEC's) increased the effects of 2,4-D on DNA synthesis. Thereby, the EC20 value of 2,4-D was reduced by approximately 40% in the combinations. The NOEC's of the xenobiotics used in the combinations varied by a factor of 1,600 and depended strongly on the lipophilicity of the agents combined with 2,4-D. A significant statistical correlation of r = 0.90 was found between the NOEC's of the 15 combined xenobiotics and their lipophilicity. The combination effects on DNA synthesis were similar to those on cell growth. The regression lines of the relationship between the NOEC's and lipophilicity in both assays showed only slight differences in the slopes. This is an additional confirmation of our hypothesis on a facilitated uptake of 2,4-D in the binary combinations.

  6. Lignin Peroxidase from Streptomyces viridosporus T7A: Enzyme Concentration Using Ultrafiltration

    NASA Astrophysics Data System (ADS)

    Gottschalk, Leda M. F.; Bon, Elba P. S.; Nobrega, Ronaldo

    It is well known that lignin degradation is a key step in the natural process of biomass decay whereby oxidative enzymes such as laccases and high redox potential ligninolytic peroxidases and oxidases play a central role. More recently, the importance of these enzymes has increased because of their prospective industrial use for the degradation of the biomass lignin to increase the accessibility of the cellulose and hemicellulose moieties to be used as renewable material for the production of fuels and chemicals. These biocatalysts also present potential application on environmental biocatalysis for the degradation of xenobiotics and recalcitrant pollutants. However, the cost for these enzymes production, separation, and concentration must be low to permit its industrial use. This work studied the concentration of lignin peroxidase (LiP), produced by Streptomyces viridosporus T7A, by ultrafiltration, in a laboratory-stirred cell, loaded with polysulfone (PS) or cellulose acetate (CA) membranes with molecular weight cutoffs (MWCO) of 10, 20, and 50 KDa. Experiments were carried out at 25 °C and pH 7.0 in accordance to the enzyme stability profile. The best process conditions and enzyme yield were obtained using a PS membrane with 10 KDa MWCO, whereby it was observed a tenfold LiP activity increase, reaching 1,000 U/L and 90% enzyme activity upholding.

  7. Impairments in learning by monetary rewards and alcohol-associated rewards in detoxified alcoholic patients.

    PubMed

    Jokisch, Daniel; Roser, Patrik; Juckel, Georg; Daum, Irene; Bellebaum, Christian

    2014-07-01

    Excessive alcohol consumption has been linked to structural and functional brain changes associated with cognitive, emotional, and behavioral impairments. It has been suggested that neural processing in the reward system is also affected by alcoholism. The present study aimed at further investigating reward-based associative learning and reversal learning in detoxified alcohol-dependent patients. Twenty-one detoxified alcohol-dependent patients and 26 healthy control subjects participated in a probabilistic learning task using monetary and alcohol-associated rewards as feedback stimuli indicating correct responses. Performance during acquisition and reversal learning in the different feedback conditions was analyzed. Alcohol-dependent patients and healthy control subjects showed an increase in learning performance over learning blocks during acquisition, with learning performance being significantly lower in alcohol-dependent patients. After changing the contingencies, alcohol-dependent patients exhibited impaired reversal learning and showed, in contrast to healthy controls, different learning curves for different types of rewards with no increase in performance for high monetary and alcohol-associated feedback. The present findings provide evidence that dysfunctional processing in the reward system in alcohol-dependent patients leads to alterations in reward-based learning resulting in a generally reduced performance. In addition, the results suggest that alcohol-dependent patients are, in particular, more impaired in changing an established behavior originally reinforced by high rewards. Copyright © 2014 by the Research Society on Alcoholism.

  8. Neurotoxicity Linked to Dysfunctional Metal Ion Homeostasis and Xenobiotic Metal Exposure: Redox Signaling and Oxidative Stress.

    PubMed

    Garza-Lombó, Carla; Posadas, Yanahi; Quintanar, Liliana; Gonsebatt, María E; Franco, Rodrigo

    2018-06-20

    Essential metals such as copper, iron, manganese, and zinc play a role as cofactors in the activity of a wide range of processes involved in cellular homeostasis and survival, as well as during organ and tissue development. Throughout our life span, humans are also exposed to xenobiotic metals from natural and anthropogenic sources, including aluminum, arsenic, cadmium, lead, and mercury. It is well recognized that alterations in the homeostasis of essential metals and an increased environmental/occupational exposure to xenobiotic metals are linked to several neurological disorders, including neurodegeneration and neurodevelopmental alterations. Recent Advances: The redox activity of essential metals is key for neuronal homeostasis and brain function. Alterations in redox homeostasis and signaling are central to the pathological consequences of dysfunctional metal ion homeostasis and increased exposure to xenobiotic metals. Both redox-active and redox-inactive metals trigger oxidative stress and damage in the central nervous system, and the exact mechanisms involved are starting to become delineated. In this review, we aim to appraise the role of essential metals in determining the redox balance in the brain and the mechanisms by which alterations in the homeostasis of essential metals and exposure to xenobiotic metals disturb the cellular redox balance and signaling. We focus on recent literature regarding their transport, metabolism, and mechanisms of toxicity in neural systems. Delineating the specific mechanisms by which metals alter redox homeostasis is key to understand the pathological processes that convey chronic neuronal dysfunction in neurodegenerative and neurodevelopmental disorders. Antioxid. Redox Signal. 28, 1669-1703.

  9. Estimation of maximum transdermal flux of nonionized xenobiotics from basic physicochemical determinants

    PubMed Central

    Milewski, Mikolaj; Stinchcomb, Audra L.

    2012-01-01

    An ability to estimate the maximum flux of a xenobiotic across skin is desirable both from the perspective of drug delivery and toxicology. While there is an abundance of mathematical models describing the estimation of drug permeability coefficients, there are relatively few that focus on the maximum flux. This article reports and evaluates a simple and easy-to-use predictive model for the estimation of maximum transdermal flux of xenobiotics based on three common molecular descriptors: logarithm of octanol-water partition coefficient, molecular weight and melting point. The use of all three can be justified on the theoretical basis of their influence on the solute aqueous solubility and the partitioning into the stratum corneum lipid domain. The model explains 81% of the variability in the permeation dataset comprised of 208 entries and can be used to obtain a quick estimate of maximum transdermal flux when experimental data is not readily available. PMID:22702370

  10. Xenobiotics and loss of cell adhesion drive distinct transcriptional outcomes by aryl hydrocarbon receptor signaling.

    PubMed

    Hao, Nan; Lee, Kian Leong; Furness, Sebastian G B; Bosdotter, Cecilia; Poellinger, Lorenz; Whitelaw, Murray L

    2012-12-01

    The aryl hydrocarbon receptor (AhR) is a signal-regulated transcription factor, which is canonically activated by the direct binding of xenobiotics. In addition, switching cells from adherent to suspension culture also activates the AhR, representing a nonxenobiotic, physiological activation of AhR signaling. Here, we show that the AhR is recruited to target gene enhancers in both ligand [isopropyl-2-(1,3-dithietane-2-ylidene)-2-[N-(4-methylthiazol-2-yl)carbamoyl]acetate (YH439)]-treated and suspension cells, suggesting a common mechanism of target gene induction between these two routes of AhR activation. However, gene expression profiles critically differ between xenobiotic- and suspension-activated AhR signaling. Por and Cldnd1 were regulated predominantly by ligand treatments, whereas, in contrast, ApoER2 and Ganc were regulated predominantly by the suspension condition. Classic xenobiotic-metabolizing AhR targets such as Cyp1a1, Cyp1b1, and Nqo1 were regulated by both ligand and suspension conditions. Temporal expression patterns of AhR target genes were also found to vary, with examples of transient activation, transient repression, or sustained alterations in expression. Furthermore, sequence analysis coupled with chromatin immunoprecipitation assays and reporter gene analysis identified a functional xenobiotic response element (XRE) in the intron 1 of the mouse Tiparp gene, which was also bound by hypoxia-inducible factor-1α during hypoxia and features a concatemer of four XRE cores (GCGTG). Our data suggest that this XRE concatemer site concurrently regulates the expression of both the Tiparp gene and its cis antisense noncoding RNA after ligand- or suspension-induced AhR activation. This work provides novel insights into how AhR signaling drives different transcriptional programs via the ligand versus suspension modes of activation.

  11. Detoxification of corn stover and corn starch pyrolysis liquors by ligninolytic enzymes of Phanerochaete chrysosporium.

    PubMed

    Khiyami, Mohammad A; Pometto, Anthony L; Brown, Robert C

    2005-04-20

    Phanerochaete chrysosporium (ATCC 24725) shake flask culture with 3 mM veratryl alcohol addition on day 3 was able to grow and detoxify different concentrations of diluted corn stover (Dcs) and diluted corn starch (Dst) pyrolysis liquors [10, 25, and 50% (v/v)] in defined media. GC-MS analysis of reaction products showed a decrease and change in some compounds. In addition, the total phenolic assay with Dcs samples demonstrated a decrease in the phenolic compounds. A bioassay employing Lactobacillus casei growth and lactic acid production was developed to confirm the removal of toxic compounds from 10 and 25% (v/v) Dcs and Dst by the lignolytic enzymes, but not from 50% (v/v) Dcs and Dst. The removal did not occur when sodium azide or cycloheximide was added to Ph. chrysosporium culture media, confirming the participation of lignolytic enzymes in the detoxification process. A concentrated enzyme preparation decreased the phenolic compounds in 10% (v/v) corn stover and corn starch pyrolysis liquors to the same extent as the fungal cultures.

  12. A QUANTITATIVE MODEL FOR XENOBIOTIC METABOLIZING ENZYME (XME) INDUCTION REGULATED BY THE PREGNANE X RECEPTOR (PXR)

    EPA Science Inventory

    The nuclear receptor, PXR, is an integral part of the regulation of hepatic metabolism. It has been shown to regulate specific CYPs (phase I drug-metabolizing enzymes) as well as certain phase II drug metabolism activities, including UDP-glucuronosyl transferase (UGT), sulfotran...

  13. Effects of salinity acclimation on the expression and activity of Phase I enzymes (CYP450 and FMOs) in coho salmon (Oncorhynchus kisutch)

    PubMed Central

    Lavado, Ramon; Aparicio-Fabre, Rosaura; Schlenk, Daniel

    2013-01-01

    Phase I biotransformation enzymes are critically important in the disposition of xenobiotics within biota and are regulated by multiple environmental cues, particularly in anadromous fish species. Given the importance of these enzyme systems in xenobiotic/endogenous chemical bioactivation and detoxification, the current study was designed to better characterize the expression of Phase I biotransformation enzymes in coho salmon (Oncorhynchus kisutch) and the effects of salinity acclimation on those enzymes. Livers, gills and olfactory tissues were collected from coho salmon (Oncorhynchus kisutch) after they had undergone acclimation from freshwater to various salinity regimes of seawater (8, 16 and 32 g/L). Using immunoblot techniques coupled with testosterone hydroxylase catalytic activities, 4 orthologs of cytochrome P450 (CYP1A, CYP2K1, CYP2M1 and CYP3A27) were measured in each tissue. Also the expression of 2 transcripts of flavin-containing monooxygenases (FMO A and B) and associated activities were measured. With the exception of CYP1A, which was down-regulated in liver, protein expression of the other 3 enzymes was induced at higher salinity, with the greatest increase observed in CYP2M1 from olfactory tissues. In liver and gills, 6 - and 16 -hydroxylation of testosterone was also significantly increased after hypersaline acclimation. Similarly, FMO A was up-regulated in all 3 tissues in a salinity-dependent pattern, whereas FMO B mRNA was down-regulated. FMO-catalyzed benzydamine N-oxygenase and methyl p-tolyl sulfoxidation were significantly induced in liver and gills by hypersalinity, but was either unchanged or not detected in olfactory tissues. These data demonstrate thatenvironmental conditions may significantly alter the toxicity of environmental chemicals in salmon during freshwater/saltwater acclimation. PMID:23925894

  14. Delineation of xenobiotic substrate sites in rat glutathione S-transferase M1-1

    PubMed Central

    Hearne, Jennifer L.; Colman, Roberta F.

    2005-01-01

    Glutathione S-transferases catalyze the conjugation of glutathione with endogenous and exogenous xenobiotics. Hu and Colman (1995) proposed that there are two distinct substrate sites in rat GST M1-1, a 1-chloro-2,4-dintrobenzene (CDNB) substrate site located in the vicinity of tyrosine-115, and a monobromobimane (mBBr) substrate site. To determine whether the mBBr substrate site is distinguishable from the CDNB substrate site, we tested S-(hydroxyethyl)bimane, a nonreactive derivative of mBBr, for its ability to compete kinetically with the substrates. We find that S-(hydroxyethyl)bimane is a competitive inhibitor (KI = 0.36 μM) when mBBr is used as substrate, but not when CDNB is used as substrate, demonstrating that these two sites are distinct. Using site-directed mutagenesis, we have localized the mBBr substrate site to an area midway through α-helix 4 (residues 90–114) and have identified residues that are important in the enzymatic reaction. Substitution of alanine at positions along α-helix 4 reveals that mutations at positions 103, 104, and 109 exhibit a greater perturbation of the enzymatic reaction with mBBr than with CDNB as substrate. Various other substitutions at positions 103 and 104 reveal that a hydrophobic residue is necessary at each of these positions to maintain optimal affinity of the enzyme for mBBr and preserve the secondary structure of the enzyme. Substitutions at position 109 indicate that this residue is important in the enzyme’s affinity for mBBr but has a minimal effect on Vmax. These results demonstrate that the promiscuity of rat GST M1-1 is in part due to at least two distinct substrate sites. PMID:16195544

  15. Acute biotoxic effect of styrene on rat liver. Correlation with enzyme-mediated mutagenicity of benzpyrene and acrylonitrile.

    PubMed

    Roberfroid, M; Poncelet, F; Lambotte-Vandepaer, M; Duverger-Van Bogaert, M; de Meester, C; Mercier, M

    1978-01-01

    Styrene is commonly used in western Europe for the manufacture of plastics suitable for packaging foodstuffs. This report demonstrates that, injected intraperitoneally at a dose as low as 10 mg/kg, styrene modifies the catalytic properties of aryl hydrocarbon hydroxylase by reducing its KM value. A similar effect is reported for two potent chemical carcinogens, 3-methylcholanthrene and benzo(a)pyrene. Ethylbenzene and benzo(e)pyrene and phenobarbital do not produce the same effect. Pretreatments of the rats with chemicals which modify aryl hydrocarbon hydroxylase also increase the capacity of the liver enzymes to activate benzopyrene to a mutagenic intermediate in vitro, as measured by the Ames test for mutagenicity. Exposure to both styrene and the other modifiers of the xenobiotic-metabolizing enzymes could thus influence the carcinogenic and toxic effects of chemicals which are activated by these enzymes. This hypothesis needs further investigation.

  16. Nuclear Shield: A Multi-Enzyme Task-Force for Nucleus Protection

    PubMed Central

    Pallottini, Valentina; Canuti, Lorena; De Canio, Michele; Urbani, Andrea; Marzano, Valeria; Cornetta, Tommaso; Stano, Pasquale; Giovanetti, Anna; Stella, Lorenzo; Canini, Antonella; Federici, Giorgio; Ricci, Giorgio

    2010-01-01

    Background In eukaryotic cells the nuclear envelope isolates and protects DNA from molecules that could damage its structure or interfere with its processing. Moreover, selected protection enzymes and vitamins act as efficient guardians against toxic compounds both in the nucleoplasm and in the cytosol. The observation that a cytosolic detoxifying and antioxidant enzyme i.e. glutathione transferase is accumulated in the perinuclear region of the rat hepatocytes suggests that other unrecognized modalities of nuclear protection may exist. Here we show evidence for the existence of a safeguard enzyme machinery formed by an hyper-crowding of cationic enzymes and proteins encompassing the nuclear membrane and promoted by electrostatic interactions. Methodology/Principal Findings Electron spectroscopic imaging, zeta potential measurements, isoelectrofocusing, comet assay and mass spectrometry have been used to characterize this surprising structure that is present in the cells of all rat tissues examined (liver, kidney, heart, lung and brain), and that behaves as a “nuclear shield”. In hepatocytes, this hyper-crowding structure is about 300 nm thick, it is mainly formed by cationic enzymes and the local concentration of key protection enzymes, such as glutathione transferase, catalase and glutathione peroxidase is up to seven times higher than in the cytosol. The catalytic activity of these enzymes, when packed in the shield, is not modified and their relative concentrations vary remarkably in different tissues. Removal of this protective shield renders chromosomes more sensitive to damage by oxidative stress. Specific nuclear proteins anchored to the outer nuclear envelope are likely involved in the shield formation and stabilization. Conclusions/Significance The characterization of this previously unrecognized nuclear shield in different tissues opens a new interesting scenario for physiological and protection processes in eukaryotic cells. Selection and

  17. Novel insights into the fungal oxidation of monoaromatic and biarylic environmental pollutants by characterization of two new ring cleavage enzymes.

    PubMed

    Schlüter, Rabea; Lippmann, Ramona; Hammer, Elke; Gesell Salazar, Manuela; Schauer, Frieder

    2013-06-01

    The phenol-degrading yeast Trichosporon mucoides can oxidize and detoxify biarylic environmental pollutants such as dibenzofuran, diphenyl ether and biphenyl by ring cleavage. The degradation pathways are well investigated, but the enzymes involved are not. The high similarity of hydroxylated biphenyl derivatives and phenol raised the question if the enzymes of the phenol degradation are involved in ring cleavage or whether specific enzymes are necessary. Purification of enzymes from T. mucoides with catechol cleavage activity demonstrated the existence of three different enzymes: a classical catechol-1,2-dioxygenase (CDO), not able to cleave the aromatic ring system of 3,4-dihydroxybiphenyl, and two novel enzymes with a high affinity towards 3,4-dihydroxybiphenyl. The comparison of the biochemical characteristics and mass spectrometric sequence data of these three enzymes demonstrated that they have different substrate specificities. CDO catalyzes the ortho-cleavage of dihydroxylated monoaromatic compounds, while the two novel enzymes carry out a similar reaction on biphenyl derivatives. The ring fission of 3,4-dihydroxybiphenyl by the purified enzymes results in the formation of (5-oxo-3-phenyl-2,5-dihydrofuran-2-yl)acetic acid. These results suggest that the ring cleavage enzymes catalyzing phenol degradation are not involved in the ring cleavage of biarylic compounds by this yeast, although some intermediates of the phenol metabolism may function as inducers.

  18. Short-term calorie restriction feminizes the mRNA profiles of drug metabolizing enzymes and transporters in livers of mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Zidong Donna; Klaassen, Curtis D., E-mail: cklaasse@kumc.edu

    2014-01-01

    Calorie restriction (CR) is one of the most effective anti-aging interventions in mammals. A modern theory suggests that aging results from a decline in detoxification capabilities and thus accumulation of damaged macromolecules. The present study aimed to determine how short-term CR alters mRNA profiles of genes that encode metabolism and detoxification machinery in the liver. Male C57BL/6 mice were fed CR (0, 15, 30, or 40%) diets for one month, followed by mRNA quantification of 98 xenobiotic processing genes (XPGs) in the liver, including 7 uptake transporters, 39 phase-I enzymes, 37 phase-II enzymes, 10 efflux transporters, and 5 transcription factors.more » In general, 15% CR did not alter mRNAs of most XPGs, whereas 30 and 40% CR altered over half of the XPGs (32 increased and 29 decreased). CR up-regulated some phase-I enzymes (fold increase), such as Cyp4a14 (12), Por (2.3), Nqo1 (1.4), Fmo2 (5.4), and Fmo3 (346), and numerous number of phase-II enzymes, such as Sult1a1 (1.2), Sult1d1 (2.0), Sult1e1 (33), Sult3a1 (2.2), Gsta4 (1.3), Gstm2 (1.3), Gstm3 (1.7), and Mgst3 (2.2). CR feminized the mRNA profiles of 32 XPGs in livers of male mice. For instance, CR decreased the male-predominantly expressed Oatp1a1 (97%) and increased the female-predominantly expressed Oatp1a4 (11). In conclusion, short-term CR alters the mRNA levels of over half of the 98 XPGs quantified in livers of male mice, and over half of these alterations appear to be due to feminization of the liver. - Highlights: • Utilized a graded CR model in male mice • The mRNA profiles of xenobiotic processing genes (XPGs) in liver were investigated. • CR up-regulates many phase-II enzymes. • CR tends to feminize the mRNA profiles of XPGs.« less

  19. The Simplest Flowchart Stating the Mechanisms for Organic Xenobiotics-induced Toxicity: Can it Possibly be Accepted as a "Central Dogma" for Toxic Mechanisms?

    PubMed

    Park, Yeong-Chul; Lee, Sundong; Cho, Myung-Haing

    2014-09-01

    Xenobiotics causing a variety of toxicity in biological systems could be classified as two types, inorganic and organic chemicals. It is estimated that the organic xenobiotics are responsible for approximately 80~90% of chemical-induced toxicity in human population. In the class for toxicology, we have encountered some difficulties in explaining the mechanisms of toxicity caused especially by organic chemicals. Here, a simple flowchart was introduced for explaining the mechanism of toxicity caused by organic xenobiotics, as the central dogma of molecular biology. This flowchart, referred to as a central dogma, was described based on a view of various aspects as follows: direct-acting chemicals vs. indirect-acting chemicals, cytochrome P450-dependent vs. cytochrome P450-independent biotransformation, reactive intermediates, reactivation, toxicokinetics vs. toxicodynamics, and reversibility vs. irreversibility. Thus, the primary objective of this flowchart is to help better understanding of the organic xenobiotics-induced toxic mechanisms, providing a major pathway for toxicity occurring in biological systems.

  20. Neutralizing Antibodies Elicited by a Novel Detoxified Pneumolysin Derivative, PlyD1, Provide Protection against Both Pneumococcal Infection and Lung Injury

    PubMed Central

    Salha, Danielle; Szeto, Jason; Myers, Lisa; Claus, Carol; Sheung, Anthony; Tang, Mei; Ljutic, Belma; Hanwell, David; Ogilvie, Karen; Ming, Marin; Messham, Benjamin; van den Dobbelsteen, Germie; Hopfer, Robert; Ochs, Martina M.

    2012-01-01

    Streptococcus pneumoniae pneumolysin (PLY) is a virulence factor that causes toxic effects contributing to pneumococcal pneumonia. To date, deriving a PLY candidate vaccine with the appropriate detoxification and immune profile has been challenging. A pneumolysin protein that is appropriately detoxified and that retains its immunogenicity is a desirable vaccine candidate. In this study, we assessed the protective efficacy of our novel PlyD1 detoxified PLY variant and investigated its underlying mechanism of protection. Results have shown that PlyD1 immunization protected mice against lethal intranasal (i.n.) challenge with pneumococci and lung injury mediated by PLY challenge. Protection was associated with PlyD1-specific IgG titers and in vitro neutralization titers. Pretreatment of PLY with PlyD1-specific rat polyclonal antiserum prior to i.n. delivery of toxin reduced PLY-mediated lung lesions, interleukin-6 (IL-6) production, and neutrophil infiltration into lungs, indicating that protection from lung lesions induced by PLY is antibody mediated. Preincubation of PLY with a neutralizing monoclonal PLY antibody also specifically reduced the cytotoxic effects of PLY after i.n. inoculation in comparison to nonneutralizing monoclonal antibodies. These results indicate that the induction of neutralizing antibodies against PLY can contribute to protection against bacterial pneumonia by preventing the development of PLY-induced lung lesions and inflammation. Our detoxified PlyD1 antigen elicits such PLY neutralizing antibodies, thus serving as a candidate vaccine antigen for the prevention of pneumococcal pneumonia. PMID:22473606

  1. Neutralizing antibodies elicited by a novel detoxified pneumolysin derivative, PlyD1, provide protection against both pneumococcal infection and lung injury.

    PubMed

    Salha, Danielle; Szeto, Jason; Myers, Lisa; Claus, Carol; Sheung, Anthony; Tang, Mei; Ljutic, Belma; Hanwell, David; Ogilvie, Karen; Ming, Marin; Messham, Benjamin; van den Dobbelsteen, Germie; Hopfer, Robert; Ochs, Martina M; Gallichan, Scott

    2012-06-01

    Streptococcus pneumoniae pneumolysin (PLY) is a virulence factor that causes toxic effects contributing to pneumococcal pneumonia. To date, deriving a PLY candidate vaccine with the appropriate detoxification and immune profile has been challenging. A pneumolysin protein that is appropriately detoxified and that retains its immunogenicity is a desirable vaccine candidate. In this study, we assessed the protective efficacy of our novel PlyD1 detoxified PLY variant and investigated its underlying mechanism of protection. Results have shown that PlyD1 immunization protected mice against lethal intranasal (i.n.) challenge with pneumococci and lung injury mediated by PLY challenge. Protection was associated with PlyD1-specific IgG titers and in vitro neutralization titers. Pretreatment of PLY with PlyD1-specific rat polyclonal antiserum prior to i.n. delivery of toxin reduced PLY-mediated lung lesions, interleukin-6 (IL-6) production, and neutrophil infiltration into lungs, indicating that protection from lung lesions induced by PLY is antibody mediated. Preincubation of PLY with a neutralizing monoclonal PLY antibody also specifically reduced the cytotoxic effects of PLY after i.n. inoculation in comparison to nonneutralizing monoclonal antibodies. These results indicate that the induction of neutralizing antibodies against PLY can contribute to protection against bacterial pneumonia by preventing the development of PLY-induced lung lesions and inflammation. Our detoxified PlyD1 antigen elicits such PLY neutralizing antibodies, thus serving as a candidate vaccine antigen for the prevention of pneumococcal pneumonia.

  2. Intermolecular Forces as a Key to Understanding the Environmental Fate of Organic Xenobiotics

    ERIC Educational Resources Information Center

    Casey, Ryan E.; Pittman, Faith A.

    2005-01-01

    A module that can be incorporated into chemistry or environmental science classes at the high school or undergraduate level is described. The module is divided into a series of segments, each of which incorporates several concepts and results in students making significant predictions about the behavior of organic xenobiotics.

  3. Virtual Screening as a Strategy for the Identification of Xenobiotics Disrupting Corticosteroid Action

    PubMed Central

    Praxmarer, Lukas; Chantong, Boonrat; Cereghetti, Diego; Winiger, Rahel; Schuster, Daniela; Odermatt, Alex

    2012-01-01

    Background Impaired corticosteroid action caused by genetic and environmental influence, including exposure to hazardous xenobiotics, contributes to the development and progression of metabolic diseases, cardiovascular complications and immune disorders. Novel strategies are thus needed for identifying xenobiotics that interfere with corticosteroid homeostasis. 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2) and mineralocorticoid receptors (MR) are major regulators of corticosteroid action. 11β-HSD2 converts the active glucocorticoid cortisol to the inactive cortisone and protects MR from activation by glucocorticoids. 11β-HSD2 has also an essential role in the placenta to protect the fetus from high maternal cortisol concentrations. Methods and Principal Findings We employed a previously constructed 3D-structural library of chemicals with proven and suspected endocrine disrupting effects for virtual screening using a chemical feature-based 11β-HSD pharmacophore. We tested several in silico predicted chemicals in a 11β-HSD2 bioassay. The identified antibiotic lasalocid and the silane-coupling agent AB110873 were found to concentration-dependently inhibit 11β-HSD2. Moreover, the silane AB110873 was shown to activate MR and stimulate mitochondrial ROS generation and the production of the proinflammatory cytokine interleukin-6 (IL-6). Finally, we constructed a MR pharmacophore, which successfully identified the silane AB110873. Conclusions Screening of virtual chemical structure libraries can facilitate the identification of xenobiotics inhibiting 11β-HSD2 and/or activating MR. Lasalocid and AB110873 belong to new classes of 11β-HSD2 inhibitors. The silane AB110873 represents to the best of our knowledge the first industrial chemical shown to activate MR. Furthermore, the MR pharmacophore can now be used for future screening purposes. PMID:23056542

  4. The Simplest Flowchart Stating the Mechanisms for Organic Xenobiotics-induced Toxicity: Can it Possibly be Accepted as a “Central Dogma” for Toxic Mechanisms?

    PubMed Central

    Lee, Sundong; Cho, Myung-Haing

    2014-01-01

    Xenobiotics causing a variety of toxicity in biological systems could be classified as two types, inorganic and organic chemicals. It is estimated that the organic xenobiotics are responsible for approximately 80~90% of chemical-induced toxicity in human population. In the class for toxicology, we have encountered some difficulties in explaining the mechanisms of toxicity caused especially by organic chemicals. Here, a simple flowchart was introduced for explaining the mechanism of toxicity caused by organic xenobiotics, as the central dogma of molecular biology. This flowchart, referred to as a central dogma, was described based on a view of various aspects as follows: direct-acting chemicals vs. indirect-acting chemicals, cytochrome P450-dependent vs. cytochrome P450-independent biotransformation, reactive intermediates, reactivation, toxicokinetics vs. toxicodynamics, and reversibility vs. irreversibility. Thus, the primary objective of this flowchart is to help better understanding of the organic xenobiotics-induced toxic mechanisms, providing a major pathway for toxicity occurring in biological systems. PMID:25343011

  5. DEVELOPMENT OF MOLECULAR INDICATORS OF EXPOSURE TO ENDOCRINE DISRUPTING COMPOUNDS, PESTICIDES & OTHER XENOBIOTIC AGENTS

    EPA Science Inventory

    A great deal of uncertainty exists regarding the extent to which humans and wildlife are exposed to chemical stressors in aquatic resources. Scientific literature is replete with studies of xenobiotics in surface waters, including a recent national USGS survey of endocrine disrup...

  6. Differential Regulation of CYP3A4 and CYP3A5 and Its Implication in Drug Discovery

    PubMed Central

    Lolodi, Ogheneochukome; Wang, Yue-Ming; Wright, William C.; Chen, Taosheng

    2017-01-01

    Cancer cells use several mechanisms to resist the cytotoxic effects of drugs, resulting in tumor progression and invasion. One such mechanism capitalizes on the body’s natural defense against xenobiotics by increasing the rate of xenobiotic efflux and metabolic inactivation. Xenobiotic metabolism typically involves conversion of parent molecules to more soluble and easily excreted derivatives in reactions catalyzed by Phase I and Phase II drug metabolizing enzymes. Recent reports indicate that components of the xenobiotic response system are upregulated in some diseases, including many cancers. Such components include the pregnane X receptor (PXR) and the cytochrome P450 (CYP) 3A4 and 3A5 enzymes. The CYP3A enzymes are a subset of the numerous enzymes that are transcriptionally activated following the interaction of PXR and many ligands. Intense research is ongoing to understand the functional ramifications of aberrant expression of these components in diseased states with the goal of designing novel drugs that can selectively target them. PMID:28558634

  7. Impact of haloperidol and quetiapine on the expression of genes encoding antioxidant enzymes in human neuroblastoma SH-SY5Y cells.

    PubMed

    Schmidt, Andreas Johannes; Hemmeter, Ulrich Michael; Krieg, Jürgen-Christian; Vedder, Helmut; Heiser, Philip

    2009-05-01

    Antipsychotics are known to alter antioxidant activities in vivo. Therefore, the aim of the present study was to examine in the human neuroblastoma SH-SY5Y cell line the impact of a typical (haloperidol) and an atypical (quetiapine) antipsychotic on the expression of genes encoding the key enzymes of the antioxidant metabolism (Cu, Zn superoxide dismutase; Mn superoxide dismutase; glutathione peroxidase; catalase) and enzymes of the glutathione metabolism (gamma-glutamyl cysteine synthetase, glutathione-S-transferase, gamma-glutamyltranspeptidase, glutathione reductase). The cells were incubated for 24h with 0.3, 3, 30 and 300microM haloperidol and quetiapine, respectively; mRNA levels were measured by polymerase chain reaction. In the present study, we observed mostly significant decreases of mRNA contents. With respect to the key pathways, we detected mainly effects on the mRNA levels of the hydrogen peroxide detoxifying enzymes. Among the enzymes of the glutathione metabolism, glutathione-S-transferase- and gamma-glutamyltranspeptidase-mRNA levels showed the most prominent effects. Taken together, our results demonstrate a significantly reduced expression of genes encoding for antioxidant enzymes after treatment with the antipsychotics, haloperidol and quetiapine.

  8. Adjuvant Effects Elicited by Novel Oligosaccharide Variants of Detoxified Meningococcal Lipopolysaccharides on Neisseria meningitidis Recombinant PorA Protein: A Comparison in Mice

    PubMed Central

    Mehta, Ojas H.; Norheim, Gunnstein; Hoe, J . Claire; Rollier, Christine S.; Nagaputra, Jerry C.; Makepeace, Katherine; Saleem, Muhammad; Chan, Hannah; Ferguson, David J. P.; Jones, Claire; Sadarangani, Manish; Hood, Derek W.; Feavers, Ian; Derrick, Jeremy P.; Pollard, Andrew J.; Moxon, E . Richard

    2014-01-01

    Neisseria meningitidis lipopolysaccharide (LPS) has adjuvant properties that can be exploited to assist vaccine immunogenicity. The modified penta-acylated LPS retains the adjuvant properties of hexa-acylated LPS but has a reduced toxicity profile. In this study we investigated whether two modified glycoform structures (LgtE and IcsB) of detoxified penta-acylated LPS exhibited differential adjuvant properties when formulated as native outer membrane vesicles (nOMVs) as compared to the previously described LgtB variant. Detoxified penta-acylated LPS was obtained by disruption of the lpxL1 gene (LpxL1 LPS), and three different glycoforms were obtained by disruption of the lgtB, lgtE or icsB genes respectively. Mice (mus musculus) were immunized with a recombinant PorA P1.7-2,4 (rPorA) protein co-administered with different nOMVs (containing a different PorA serosubtype P1.7,16), each of which expressed one of the three penta-acylated LPS glycoforms. All nOMVs induced IgG responses against the rPorA, but the nOMVs containing the penta-acylated LgtB-LpxL1 LPS glycoform induced significantly greater bactericidal activity compared to the other nOMVs or when the adjuvant was Alhydrogel. Compared to LgtE or IcsB LPS glycoforms, these data support the use of nOMVs containing detoxified, modified LgtB-LpxL1 LPS as a potential adjuvant for future meningococcal protein vaccines. PMID:25545241

  9. Simultaneous quantification of the abundance of several cytochrome P450 and uridine 5'-diphospho-glucuronosyltransferase enzymes in human liver microsomes using multiplexed targeted proteomics.

    PubMed

    Achour, Brahim; Russell, Matthew R; Barber, Jill; Rostami-Hodjegan, Amin

    2014-04-01

    Cytochrome P450 (P450) and uridine 5'-diphospho-glucuronosyltransferase (UGT) enzymes mediate a major proportion of phase I and phase II metabolism of xenobiotics. In vitro-in vivo extrapolation (IVIVE) of hepatic clearance in conjunction with physiologically-based pharmacokinetics (PBPK) has become common practice in drug development. However, prediction of xenobiotic kinetics in virtual populations requires knowledge of both enzyme abundances and the extent to which these correlate. A multiplexed quantification concatemer (QconCAT) strategy was used in this study to quantify the expression of several P450 and UGT enzymes simultaneously and to establish correlations between various enzyme abundances in 24 individual liver samples (ages 27-66, 14 male). Abundances were comparable to previously reported values, including CYP2C9 (40.0 ± 26.0 pmol mg(-1)), CYP2D6 (11.9 ± 13.2 pmol mg(-1)), CYP3A4 (68.1 ± 52.3 pmol mg(-1)), UGT1A1 (33.6 ± 34.0 pmol mg(-1)), and UGT2B7 (82.9 ± 36.1 pmol mg(-1)), expressed as mean ± S.D. Previous reports of correlations in expression of various P450 (CYP3A4/CYP3A5*1/*3, CYP2C8/CYP2C9, and CYP3A4/CYP2B6) were confirmed. New correlations were demonstrated between UGTs [including UGT1A6/UGT1A9 (r(s) = 0.82, P < 0.0001) and UGT2B4/UGT2B15 (r(s) = 0.71, P < 0.0001)]. Expression of some P450 and UGT enzymes were shown to be correlated [including CYP1A2/UGT2B4 (r(s) = 0.67, P = 0.0002)]. The expression of CYP3A5 in individuals with *1/*3 genotype (n = 11) was higher than those with *3/*3 genotype (n = 10) (P < 0.0001). No significant effect of gender or history of smoking or alcohol use on enzyme expression was observed; however, expression of several enzymes declined with age. The correlation matrix produced for the first time by this study can be used to generate more realistic virtual populations with respect to abundance of various enzymes.

  10. Effect of benzo[a]pyrene on detoxification and the activity of antioxidant enzymes of marine microalgae

    NASA Astrophysics Data System (ADS)

    Shen, Chen; Miao, Jingjing; Li, Yun; Pan, Luqing

    2016-04-01

    The objective of this study was to examine the effect of benzo[a]pyrene (BaP) on the detoxification and antioxidant systems of two microalgae, Isochrysis zhanjiangensis and Platymonas subcordiformis. In our study, these two algae were exposed to BaP for 4 days at three different concentrations including 0.5 μg L-1 (low), 3 μg L-1 (mid) and 18 μg L-1 (high). The activity of detoxification enzymes, ethoxyresorufin O-deethylase (EROD) and glutathione S-transferase (GST) increased in P. subcordiformis in all BaP-treated groups. In I. zhanjiangensis, the activity of these two enzymes increased at the beginning of exposure, and then decreased in the groups treated with mid- and high BaP. The activity of antioxidant enzyme superoxide dismutase (SOD) increased in I. zhanjiangensis in all BaP-treated groups, and then decreased in high BaP-treated group, while no significant change was observed in P. subcordiformis. The activity of antioxidant enzyme catalase (CAT) increased in I. zhanjiangensis and P. subcordiformis in all BaPtreated groups. The content of malondialdehyde (MDA) in Isochrysis zhanjiangensis increased first, and then decreased in high BaP-treated group, while no change occurred in P. subcordiformis. These results demonstrated that BaP significantly influenced the activity of detoxifying and antioxidant enzymes in microalgae. The metabolic related enzymes (EROD, GST and CAT) may serve as sensitive biomarkers of measuring the contamination level of BaP in marine water.

  11. Xenobiotic-induced apoptosis: significance and potential application as a general biomarker of response

    USGS Publications Warehouse

    Sweet, Leonard I.; Passino-Reader, Dora R.; Meier, Peter G.; Omann, Geneva M.

    1999-01-01

    The process of apoptosis, often coined programmed cell death, involves cell injury induced by a variety of stimuli including xenobiotics and is morphologically, biochemically, and physiologically distinct from necrosis. Apoptotic death is characterized by cellular changes such as cytoplasm shrinkage, chromatin condensation, and plasma membrane asymmetry. This form of cell suicide is appealing as a general biomarker of response in that it is expressed in multiple cell systems (e.g. immune, neuronal, hepatal, intestinal, dermal, reproductive), is conserved phylogenetically (e.g. fish, rodents, birds, sheep, amphibians, roundworms, plants, humans), is modulated by environmentally relevant levels of chemical contaminants, and indicates a state of stress of the organism. Further, apoptosis is useful as a biomarker as it serves as a molecular control point and hence may provide mechanistic information on xenobiotic stress. Studies reviewed here suggest that apoptosis is a sensitive and early indicator of acute and chronic chemical stress, loss of cellular function and structure, and organismal health. Examples are provided of the application of this methodology in studies of health of lake trout (Salvelinus namaycush) in the Laurentian Great Lakes.

  12. High-Fat Diets Alter the Modulatory Effects of Xenobiotics on Cytochrome P450 Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadler, Natalie C.; Webb-Robertson, Bobbie-Jo M.; Clauss, Therese R.

    Cytochrome P450 monooxygenases (P450) are key to the metabolism of myriad endogenous chemicals and xenobiotics, including the majority of therapeutic drugs. Dysregulated P450 activities can lead to altered drug metabolism and toxicity, oxidative stress, and inflammation; all physiological states frequently charged as the impetus for various chronic pathologies. We characterized the impact of common xenobiotic exposures, specifically high-fat diet and active or passive cigarette smoke, on the functional capacity of hepatic and pulmonary P450s. We employed an activity-based protein profiling approach to characterize the identity and activity level of measured individual P450 isoforms. Our results confirm expectations of significant alterationsmore » in pulmonary P450s due to cigarette smoke, but now reveal the repressive impact of high-fat diet-induced obesity on many hepatic P450s activities, and the dynamic alterations due to concomitant diet and smoke exposures on liver and lung P450 activities impacting drug metabolism and pathways of inflammation.« less

  13. EVALUATION OF NUTRITIONAL AND OPERATIONAL REQUIREMENTS FOR BIODEGRADATION OF CHLORINATED PHENOLS BY THE WHITE ROT BASIDIOMYCETE, PHANEROCHAETE CHRYSOSPORIUM IN RBC REACTORS

    EPA Science Inventory

    The ability to degrade and detoxify organic & inorganic constituents requires complementary features of microbial competence; the biochem. means (enzymes) to detoxify wastes and the capability of a single organism or a multiplicity of compatible organisms of complementary compete...

  14. Systemic responses to inhaled ozone in mice: cachexia and down-regulation of liver xenobiotic metabolizing genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Last, Jerold A.; Gohil, Kishorchandra; Mathrani, Vivek C.

    2005-10-15

    Rats or mice acutely exposed to high concentrations of ozone show an immediate and significant weight loss, even when allowed free access to food and water. The mechanisms underlying this systemic response to ozone have not been previously elucidated. We have applied the technique of global gene expression analysis to the livers of C57BL mice acutely exposed to ozone. Mice lost up to 14% of their original body weight, with a 42% decrease in total food consumption. We previously had found significant up-regulation of genes encoding proliferative enzymes, proteins related to acute phase reactions and cytoskeletal functions, and other biomarkersmore » of a cachexia-like inflammatory state in lungs of mice exposed to ozone. These results are consistent with a general up-regulation of different gene families responsive to NF-{kappa}B in the lungs of the exposed mice. In the present study, we observed significant down-regulation of different families of mRNAs in the livers of the exposed mice, including genes related to lipid and fatty acid metabolism, and to carbohydrate metabolism in this tissue, consistent with a systemic cachexic response. Several interferon-dependent genes were down-regulated in the liver, suggesting a possible role for interferon as a signaling molecule between lung and liver. In addition, transcription of several mRNAs encoding enzymes of xenobiotic metabolism in the livers of mice exposed to ozone was decreased, suggesting cytokine-mediated suppression of cytochrome P450 expression. This finding may explain a previously controversial report from other investigators more than 20 years ago of prolongation of pentobarbital sleeping time in mice exposed to ozone.« less

  15. Systemic responses to inhaled ozone in mice: cachexia and down-regulation of liver xenobiotic metabolizing genes.

    PubMed

    Last, Jerold A; Gohil, Kishorchandra; Mathrani, Vivek C; Kenyon, Nicholas J

    2005-10-15

    Rats or mice acutely exposed to high concentrations of ozone show an immediate and significant weight loss, even when allowed free access to food and water. The mechanisms underlying this systemic response to ozone have not been previously elucidated. We have applied the technique of global gene expression analysis to the livers of C57BL mice acutely exposed to ozone. Mice lost up to 14% of their original body weight, with a 42% decrease in total food consumption. We previously had found significant up-regulation of genes encoding proliferative enzymes, proteins related to acute phase reactions and cytoskeletal functions, and other biomarkers of a cachexia-like inflammatory state in lungs of mice exposed to ozone. These results are consistent with a general up-regulation of different gene families responsive to NF-kappaB in the lungs of the exposed mice. In the present study, we observed significant down-regulation of different families of mRNAs in the livers of the exposed mice, including genes related to lipid and fatty acid metabolism, and to carbohydrate metabolism in this tissue, consistent with a systemic cachexic response. Several interferon-dependent genes were down-regulated in the liver, suggesting a possible role for interferon as a signaling molecule between lung and liver. In addition, transcription of several mRNAs encoding enzymes of xenobiotic metabolism in the livers of mice exposed to ozone was decreased, suggesting cytokine-mediated suppression of cytochrome P450 expression. This finding may explain a previously controversial report from other investigators more than 20 years ago of prolongation of pentobarbital sleeping time in mice exposed to ozone.

  16. Upregulation of CYP 450s expression of immortalized hepatocyte-like cells derived from mesenchymal stem cells by enzyme inducers

    PubMed Central

    2011-01-01

    Background The strenuous procurement of cultured human hepatocytes and their short lives have constrained the cell culture model of cytochrome P450 (CYP450) induction, xenobiotic biotransformation, and hepatotoxicity. The development of continuous non-tumorous cell line steadily containing hepatocyte phenotypes would substitute the primary hepatocytes for these studies. Results The hepatocyte-like cells have been developed from hTERT plus Bmi-1-immortalized human mesenchymal stem cells to substitute the primary hepatocytes. The hepatocyte-like cells had polygonal morphology and steadily produced albumin, glycogen, urea and UGT1A1 beyond 6 months while maintaining proliferative capacity. Although these hepatocyte-like cells had low basal expression of CYP450 isotypes, their expressions could be extensively up regulated to 80 folds upon the exposure to enzyme inducers. Their inducibility outperformed the classical HepG2 cells. Conclusion The hepatocyte-like cells contained the markers of hepatocytes including CYP450 isotypes. The high inducibility of CYP450 transcripts could serve as a sensitive model for profiling xenobiotic-induced expression of CYP450. PMID:21961524

  17. Diversity of Ligninolytic Enzymes and Their Genes in Strains of the Genus Ganoderma: Applicable for Biodegradation of Xenobiotic Compounds?

    PubMed Central

    Torres-Farradá, Giselle; Manzano León, Ana M.; Rineau, François; Ledo Alonso, Lucía L.; Sánchez-López, María I.; Thijs, Sofie; Colpaert, Jan; Ramos-Leal, Miguel; Guerra, Gilda; Vangronsveld, Jaco

    2017-01-01

    White-rot fungi (WRF) and their ligninolytic enzymes (laccases and peroxidases) are considered promising biotechnological tools to remove lignin related Persistent Organic Pollutants from industrial wastewaters and contaminated ecosystems. A high diversity of the genus Ganoderma has been reported in Cuba; in spite of this, the diversity of ligninolytic enzymes and their genes remained unexplored. In this study, 13 native WRF strains were isolated from decayed wood in urban ecosystems in Havana (Cuba). All strains were identified as Ganoderma sp. using a multiplex polymerase chain reaction (PCR)-method based on ITS sequences. All Ganoderma sp. strains produced laccase enzymes at higher levels than non-specific peroxidases. Native-PAGE of extracellular enzymatic extracts revealed a high diversity of laccase isozymes patterns between the strains, suggesting the presence of different amino acid sequences in the laccase enzymes produced by these Ganoderma strains. We determined the diversity of genes encoding laccases and peroxidases using a PCR and cloning approach with basidiomycete-specific primers. Between two and five laccase genes were detected in each strain. In contrast, only one gene encoding manganese peroxidase or versatile peroxidase was detected in each strain. The translated laccases and peroxidases amino acid sequences have not been described before. Extracellular crude enzymatic extracts produced by the Ganoderma UH strains, were able to degrade model chromophoric compounds such as anthraquinone and azo dyes. These findings hold promises for the development of a practical application for the treatment of textile industry wastewaters and also for bioremediation of polluted ecosystems by well-adapted native WRF strains. PMID:28588565

  18. Development of biomarkers of exposure to xenobiotics in the honey bee Apis mellifera: application to the systemic insecticide thiamethoxam.

    PubMed

    Badiou-Bénéteau, Alexandra; Carvalho, Stephan M; Brunet, Jean-Luc; Carvalho, Geraldo A; Buleté, Audrey; Giroud, Barbara; Belzunces, Luc P

    2012-08-01

    This study describes the development of acetylcholinesterase (AChE), carboxylesterases (CaE1, CaE2, CaE3), glutathion-S-transferase (GST), alkaline phosphatase (ALP) and catalase (CAT) as enzyme biomarkers of exposure to xenobiotics such as thiamethoxam in the honey bee Apis mellifera. Extraction efficiency, stability under freezing and biological variability were studied. The extraction procedure achieved good recovery rates in one extraction step and ranged from 65 percent (AChE) to 97.3 percent (GST). Most of the enzymes were stable at -20°C, except ALP that displayed a slight but progressive decrease in its activity. Modifications of enzyme activities were considered after exposure to thiamethoxam at the lethal dose 50 percent (LD(50), 51.16 ng bee(-1)) and two sublethal doses, LD(50)/10 (5.12 ng bee(-1)) and LD(50)/20 (2.56 ng bee(-1)). The biomarker responses revealed that, even at the lowest dose used, exposure to thiamethoxam elicited sublethal effects and modified the activity of CaEs, GST, CAT and ALP. Different patterns of biomarker responses were observed: no response for AChE, an increase for GST and CAT, and differential effects for CaEs isoforms with a decrease in CaE1 and CaE3 and an increase in CaE2. ALP and CaE3 displayed contrasting variations but only at 2.56 ng bee(-1). We consider that this profile of biomarker variation could represent a useful fingerprint to characterise exposure to thiamethoxam in the honey bee A. mellifera. This battery of honey bee biomarkers might be a promising option to biomonitor the health of aerial and terrestrial ecosystems and to generate valuable information on the modes of action of pesticides. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Cholinesterase and Paraoxonase (PON1) enzyme activities in Mexican-American Mothers and Children from an Agricultural Community

    PubMed Central

    Gonzalez, V.; Huen, K.; Venkat, S.; Pratt, K.; Xiang, P.; Harley, K.G.; Kogut, K.; Trujillo, C.M.; Bradman, A.; Eskenazi, B.; Holland, N.T.

    2014-01-01

    Exposure to organophosphate and carbamate pesticides can lead to neurotoxic effects through inhibition of cholinesterase enzymes. The paraoxonase (PON1) enzyme can detoxify oxon derivatives of some organophosphates. Lower PON1, acetylcholinesterase, and butyrylcholinesterase activities have been reported in newborns relative to adults, suggesting increased susceptibility to organophosphate exposure in young children. We determined PON1, acetylcholinesterase, and butyrylcholinesterase activities in Mexican-American mothers and their 9-year-old children (n=202 pairs) living in an agricultural community in California. We used paired t-tests to compare enzymatic activities among mothers and their children and analysis of variance to determine which factors are associated with enzyme activities. Substrate-specific PON1 activities were slightly lower in children than their mothers; however, these differences were not statistically significant. We observed significantly lower acetylcholinesterase but higher butyrylcholinesterase levels in children compared to their mothers. Mean butyrylcholinesterase levels were strongly associated with child obesity status (BMI Z scores >95%). We observed highly significant correlations among mother-child pairs for each of the enzymatic activities analyzed; however, PON1 activities did not correlate with acetylcholinesterase or butyrylcholinesterase activities. Our findings suggest that by age nine, PON1 activities approach adult levels and host factors including sex and obesity may affect key enzymes involved in pesticide metabolism. PMID:22760442

  20. Disposition of xenobiotic chemicals and metabolites in marine organisms.

    PubMed Central

    Varanasi, U; Stein, J E

    1991-01-01

    Studies with several bottom fish species from urban waterways show that of the identified xenobiotic chemicals in bottom sediments, polycylic aromatic hydrocarbons (PAHs) are the most strongly associated with the prevalence of liver lesions, including neoplasms. Accordingly, there is concern about the transfer of contaminants, such as PAHs, from aquatic species to humans. Because PAHs exert their toxicity only after being biotransformed, increasing attention has been focused on the ability of aquatic organisms to metabolize these chemicals. Overall, the results of both laboratory and field studies show that generally low levels (nanograms per gram wet weight) of a few low molecular weight PAHs may be present in edible tissue of fish from contaminated areas and that high molecular weight PAHs, such as the carcinogen benzo(a)pyrene, will rarely be detected because of extensive metabolism. Additionally, the results from a few studies suggest that even though interactions between xenobiotics can affect both biochemical and physiological systems to alter the disposition of PAHs in fish, these interactions do not markedly change the relative proportions of metabolites to parent PAH in tissues. Thus, these studies clearly demonstrate that to obtain some insight into the questions of whether there is any risk to human health from consuming fish and crustaceans from urban areas, techniques must be developed that measure metabolites of carcinogens, such as PAHs, in edible tissue. Initial attempts may focus on semiquantitative methods that permit rapid assessment of the level of metabolites in edible tissues of fish and crustaceans from many urban areas.(ABSTRACT TRUNCATED AT 250 WORDS) Images FIGURE 4. FIGURE 4. FIGURE 4. PMID:2050086

  1. [Ligninolytic enzyme production by white rot fungi during paraquat (herbicide) degradation].

    PubMed

    Camacho-Morales, Reyna L; Gerardo-Gerardo, José Luis; Guillén Navarro, Karina; Sánchez, José E

    Paraquat is a widely used herbicide in agriculture. Its inappropriate use and wide distribution represents a serious pollution problem for soil and water. White rot fungi are capable of degrading pollutants having a similar structure to that of lignin, such as paraquat. This study evaluated the degradation effect of paraquat on the production of ligninolytic enzymes by white rot fungi isolated from the South of Mexico. Six fungal strains showed tolerance to the herbicide in solid culture. Three of the six evaluated strains showed levels of degradation of 32, 26 and 47% (Polyporus tricholoma, Cilindrobasidium laeve and Deconica citrispora, respectively) after twelve days of cultivation in the presence of the xenobiotic. An increase in laccase and manganese peroxidase (MnP) activities was detected in the strains showing the highest percentage of degradation. Experiments were done with enzyme extracts from the extracellular medium with the two strains showing more degradation potential and enzyme production. After 24hours of incubation, a degradation of 49% of the initial paraquat concentration was observed for D. citrispora. These results suggest that paraquat degradation can be attributed to the presence of extracellular enzymes from white rot fungi. In this work the first evidence of the biodegradation potential of D. citrispora and Cilindrobasidium leave is shown. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Catalase and ascorbate peroxidase-representative H2O2-detoxifying heme enzymes in plants.

    PubMed

    Anjum, Naser A; Sharma, Pallavi; Gill, Sarvajeet S; Hasanuzzaman, Mirza; Khan, Ekhlaque A; Kachhap, Kiran; Mohamed, Amal A; Thangavel, Palaniswamy; Devi, Gurumayum Devmanjuri; Vasudhevan, Palanisamy; Sofo, Adriano; Khan, Nafees A; Misra, Amarendra Narayan; Lukatkin, Alexander S; Singh, Harminder Pal; Pereira, Eduarda; Tuteja, Narendra

    2016-10-01

    Plants have to counteract unavoidable stress-caused anomalies such as oxidative stress to sustain their lives and serve heterotrophic organisms including humans. Among major enzymatic antioxidants, catalase (CAT; EC 1.11.1.6) and ascorbate peroxidase (APX; EC 1.11.1.11) are representative heme enzymes meant for metabolizing stress-provoked reactive oxygen species (ROS; such as H2O2) and controlling their potential impacts on cellular metabolism and functions. CAT mainly occurs in peroxisomes and catalyzes the dismutation reaction without requiring any reductant; whereas, APX has a higher affinity for H2O2 and utilizes ascorbate (AsA) as specific electron donor for the reduction of H2O2 into H2O in organelles including chloroplasts, cytosol, mitochondria, and peroxisomes. Literature is extensive on the glutathione-associated H2O2-metabolizing systems in plants. However, discussion is meager or scattered in the literature available on the biochemical and genomic characterization as well as techniques for the assays of CAT and APX and their modulation in plants under abiotic stresses. This paper aims (a) to introduce oxidative stress-causative factors and highlights their relationship with abiotic stresses in plants; (b) to overview structure, occurrence, and significance of CAT and APX in plants; (c) to summarize the principles of current technologies used to assay CAT and APX in plants; (d) to appraise available literature on the modulation of CAT and APX in plants under major abiotic stresses; and finally, (e) to consider a brief cross-talk on the CAT and APX, and this also highlights the aspects unexplored so far.

  3. Genetic variation in genes for the xenobiotic-metabolizing enzymes CYP1A1, EPHX1, GSTM1, GSTT1 and GSTP1 and susceptibility to colorectal cancer in Lynch syndrome

    PubMed Central

    Pande, Mala; Amos, Christopher I.; Osterwisch, Daniel R.; Chen, Jinyun; Lynch, Patrick M.; Broaddus, Russell; Frazier, Marsha L.

    2011-01-01

    Individuals with Lynch syndrome are predisposed to cancer due to an inherited DNA mismatch repair gene mutation. However, there is significant variability observed in disease expression, likely due to the influence of other environmental, lifestyle, or genetic factors. Polymorphisms in genes encoding xenobiotic-metabolizing enzymes may modify cancer risk by influencing the metabolism and clearance of potential carcinogens from the body. In this retrospective analysis, we examined key candidate gene polymorphisms in CYP1A1, EPHX1, GSTT1, GSTM1, and GSTP1 as modifiers of age at onset of colorectal cancer among 257 individuals with Lynch syndrome. We found that subjects heterozygous for CYP1A1 I462V (c.1384A>G) developed colorectal cancer 4 years earlier than those with the homozygous wild-type genotype (median ages 39 and 43 years, respectively; log-rank test P = 0.018). Furthermore, being heterozygous for the CYP1A1 polymorphisms, I462V and Msp1 (g.6235T>C), was associated with an increased risk for developing colorectal cancer [adjusted hazard ratio for AG relative to AA = 1.78, 95% CI = 1.16–2.74, P = 0.008; and hazard ratio for TC relative to TT = 1.53, 95% CI = 1.06–2.22, P = 0.02]. Since homozygous variants for both CYP1A1 polymorphisms were rare, risk estimates were imprecise. None of the other gene polymorphisms examined were associated with an earlier onset age for colorectal cancer. Our results suggest that the I462V and Msp1 polymorphisms in CYP1A1 may be an additional susceptibility factor for disease expression in Lynch syndrome since they modify the age of colorectal cancer onset by up to 4 years. PMID:18768509

  4. Targeting xenobiotic receptors PXR and CAR in human diseases

    PubMed Central

    Banerjee, Monimoy; Robbins, Delira; Chen, Taosheng

    2014-01-01

    Nuclear receptors such as the pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are xenobiotic receptors regulating not only drug metabolism and disposition but also various human diseases such as cancer, diabetes, inflammatory disease, metabolic disease and liver diseases, suggesting that PXR and CAR are promising targets for drug discovery. Consequently, there is an urgent need to discover and develop small molecules that target these PXR- and/or CAR-mediated human-disease-related pathways for relevant therapeutic applications. This review proposes approaches to target PXR and CAR, either individually or simultaneously, in the context of various human diseases, taking into consideration the structural differences between PXR and CAR. PMID:25463033

  5. Contribution of the NO-detoxifying enzymes HmpA, NorV and NrfA to nitrosative stress protection of Salmonella Typhimurium in raw sausages.

    PubMed

    Mühlig, Anna; Kabisch, Jan; Pichner, Rohtraud; Scherer, Siegfried; Müller-Herbst, Stefanie

    2014-09-01

    The antimicrobial action of the curing agent sodium nitrite (NaNO2) in raw sausage fermentation is thought to mainly depend on the release of cytotoxic nitric oxide (NO) at acidic pH. Salmonella Typhimurium is capable of detoxifying NO via the flavohemoglobin HmpA, the flavorubredoxin NorV and the periplasmic cytochrome C nitrite reductase NrfA. In this study, the contribution of these systems to nitrosative stress tolerance in raw sausages was investigated. In vitro growth assays of the S. Typhimurium 14028 deletion mutants ΔhmpA, ΔnorV and ΔnrfA revealed a growth defect of ΔhmpA in the presence of acidified NaNO2. Transcriptional analysis of the genes hmpA, norV and nrfA in the wild-type showed a 41-fold increase in hmpA transcript levels in the presence of 150 mg/l acidified NaNO2, whereas transcription of norV and nrfA was not enhanced. However, challenge assays performed with short-ripened spreadable sausages produced with 0 or 150 mg/kg NaNO2 failed to reveal a phenotype for any of the mutants compared to the wild-type. Hence, none of the NO detoxification systems HmpA, NorV and NrfA is solely responsible for nitrosative stress tolerance of S. Typhimurium in raw sausages. Whether these systems act cooperatively, or if there are other yet undescribed mechanisms involved is currently unknown. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Structures and functions of insect arylalkylamine N-acetyltransferase (iaaNAT); a key enzyme for physiological and behavioral switch in arthropods.

    PubMed

    Hiragaki, Susumu; Suzuki, Takeshi; Mohamed, Ahmed A M; Takeda, Makio

    2015-01-01

    The evolution of N-acetyltransfeases (NATs) seems complex. Vertebrate arylalkylamine N-acetyltransferase (aaNAT) has been extensively studied since it leads to the synthesis of melatonin, a multifunctional neurohormone prevalent in photoreceptor cells, and is known as a chemical token of the night. Melatonin also serves as a scavenger for reactive oxygen species. This is also true with invertebrates. NAT therefore has distinct functional implications in circadian function, as timezymes (aaNAT), and also xenobiotic reactions (arylamine NAT or simply NAT). NATs belong to a broader enzyme group, the GCN5-related N-acetyltransferase superfamily. Due to low sequence homology and a seemingly fast rate of structural differentiation, the nomenclature for NATs can be confusing. The advent of bioinformatics, however, has helped to classify this group of enzymes; vertebrates have two distinct subgroups, the timezyme type and the xenobiotic type, which has a wider substrate range including imidazolamine, pharmacological drugs, environmental toxicants and even histone. Insect aaNAT (iaaNAT) form their own clade in the phylogeny, distinct from vertebrate aaNATs. Arthropods are unique, since the phylum has exoskeleton in which quinones derived from N-acetylated monoamines function in coupling chitin and arthropodins. Monoamine oxidase (MAO) activity is limited in insects, but NAT-mediated degradation prevails. However, unexpectedly iaaNAT occurs not only among arthropods but also among basal deuterostomia, and is therefore more apomorphic. Our analyses illustrate that iaaNATs has unique physiological roles but at the same time it plays a role in a timezyme function, at least in photoperiodism. Photoperiodism has been considered as a function of circadian system but the detailed molecular mechanism is not well understood. We propose a molecular hypothesis for photoperiodism in Antheraea pernyi based on the transcription regulation of NAT interlocked by the circadian system

  7. A vacuolar iron-transporter homologue acts as a detoxifier in Plasmodium

    PubMed Central

    Slavic, Ksenija; Krishna, Sanjeev; Lahree, Aparajita; Bouyer, Guillaume; Hanson, Kirsten K.; Vera, Iset; Pittman, Jon K.; Staines, Henry M.; Mota, Maria M.

    2016-01-01

    Iron is an essential micronutrient but is also highly toxic. In yeast and plant cells, a key detoxifying mechanism involves iron sequestration into intracellular storage compartments, mediated by members of the vacuolar iron-transporter (VIT) family of proteins. Here we study the VIT homologue from the malaria parasites Plasmodium falciparum (PfVIT) and Plasmodium berghei (PbVIT). PfVIT-mediated iron transport in a yeast heterologous expression system is saturable (Km∼14.7 μM), and selective for Fe2+ over other divalent cations. PbVIT-deficient P. berghei lines (Pbvit−) show a reduction in parasite load in both liver and blood stages of infection in mice. Moreover, Pbvit− parasites have higher levels of labile iron in blood stages and are more sensitive to increased iron levels in liver stages, when compared with wild-type parasites. Our data are consistent with Plasmodium VITs playing a major role in iron detoxification and, thus, normal development of malaria parasites in their mammalian host. PMID:26786069

  8. A vacuolar iron-transporter homologue acts as a detoxifier in Plasmodium.

    PubMed

    Slavic, Ksenija; Krishna, Sanjeev; Lahree, Aparajita; Bouyer, Guillaume; Hanson, Kirsten K; Vera, Iset; Pittman, Jon K; Staines, Henry M; Mota, Maria M

    2016-01-20

    Iron is an essential micronutrient but is also highly toxic. In yeast and plant cells, a key detoxifying mechanism involves iron sequestration into intracellular storage compartments, mediated by members of the vacuolar iron-transporter (VIT) family of proteins. Here we study the VIT homologue from the malaria parasites Plasmodium falciparum (PfVIT) and Plasmodium berghei (PbVIT). PfVIT-mediated iron transport in a yeast heterologous expression system is saturable (Km ∼ 14.7 μM), and selective for Fe(2+) over other divalent cations. PbVIT-deficient P. berghei lines (Pbvit(-)) show a reduction in parasite load in both liver and blood stages of infection in mice. Moreover, Pbvit(-) parasites have higher levels of labile iron in blood stages and are more sensitive to increased iron levels in liver stages, when compared with wild-type parasites. Our data are consistent with Plasmodium VITs playing a major role in iron detoxification and, thus, normal development of malaria parasites in their mammalian host.

  9. Proteomic analysis of drought resistance in crabapple seedlings primed by the xenobiotic Beta-aminobutyric acid

    USDA-ARS?s Scientific Manuscript database

    In a variety of annual crops and model plants, the xenobiotic DL-Beta-aminobutyric acid (BABA) has been shown to enhance disease resistance and increase salt, drought and thermotolerance. BABA does not activate stress genes directly, but sensitizes plants to respond more quickly and strongly to biot...

  10. Vitreous humor analysis for the detection of xenobiotics in forensic toxicology: a review.

    PubMed

    Bévalot, Fabien; Cartiser, Nathalie; Bottinelli, Charline; Fanton, Laurent; Guitton, Jérôme

    2016-01-01

    Vitreous humor (VH) is a gelatinous substance contained in the posterior chamber of the eye, playing a mechanical role in the eyeball. It has been the subject of numerous studies in various forensic applications, primarily for the assessment of postmortem interval and for postmortem chemical analysis. Since most of the xenobiotics present in the bloodstream are detected in VH after crossing the selective blood-retinal barrier, VH is an alternative matrix useful for forensic toxicology. VH analysis offers particular advantages over other biological matrices: it is less prone to postmortem redistribution, is easy to collect, has relatively few interfering compounds for the analytical process, and shows sample stability over time after death. The present study is an overview of VH physiology, drug transport and elimination. Collection, storage, analytical techniques and interpretation of results from qualitative and quantitative points of view are dealt with. The distribution of xenobiotics in VH samples is thus discussed and illustrated by a table reporting the concentrations of 106 drugs from more than 300 case reports. For this purpose, a survey was conducted of publications found in the MEDLINE database from 1969 through April 30, 2015.

  11. COMPARISON OF MICROBIAL TRANSFORMATION RATE COEFFICIENTS OF XENOBIOTIC CHEMICALS BETWEEN FIELD-COLLECTED AND LABORATORY MICROCOSM MICROBIOTA

    EPA Science Inventory

    Two second-order transformation rate coefficients--kb, based on total plate counts, and kA, based on periphyton-colonized surface areas--were used to compare xenobiotic chemical transformation by laboratory-developed (microcosm) and by field-collected microbiota. Similarity of tr...

  12. Disposition of xenobiotic chemicals and metabolites in marine organisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varanasi, U.; Stein, J.E.

    1991-01-01

    Studies with several bottom fish species from urban waterways show that of the identified xenobiotic chemicals in bottom sediments, polycyclic aromatic hydrocarbons (PAHs) are the most strongly associated with the prevalence of liver lesions, including neoplasms. Accordingly, there is concern about the transfer of contaminants, such as PAHs, from aquatic species to humans. Because PAHs exert their toxicity only after being biotransformed, increasing attention has been focused on the ability of aquatic organisms to metabolize these chemicals. Overall, the results of both laboratory and field studies show that generally low levels of a few low molecular weight PAHs may bemore » present in edible tissue of fish from contaminated areas and that high molecular weight PAHs, such as the carcinogen benzo(a)pyrene, will rarely be detected because of extensive metabolism. Additionally, the results from a few studies suggest that even though interactions between xenobiotics can affect both biochemical and physiological systems to alter the disposition of PAHs in fish, these interactions do not markedly change the relative proportions of metabolites to parent PAH in tissues. Thus, these studies clearly demonstrate that to obtain some insight into the questions of whether there is any risk to human health from consuming fish and crustaceans from urban areas, techniques must be developed that measure metabolites of carcinogens, such as PAHs, in edible tissue. Initial attempts may focus on semiquantitative methods that permit rapid assessment of the level of metabolites in edible tissues of fish and crustaceans from many urban areas. Based on information from such screening studies, further refinement in methodology leading to identification of specific compounds may be needed because certain metabolites may not be as toxic or carcinogenic as others.« less

  13. Self-Reporting and Detoxifying Materials Based on Extremophilic Proteins

    DTIC Science & Technology

    2010-01-01

    thermosome (Therm), a chaperonin from the thermophilic organism Thermoplasma acidophilum, with the spectral properties of fluorescent...We have developed a new approach to enzyme immobilization/stabilization in which an enzyme - chaperone chimera is engineered to attach a functional...chaperone domain (in this case, a subunit of the recombinant thermosome from Methanocaldococcus jannaschii) to the enzyme of interest (the model

  14. Survey of Human Oxidoreductases and Cytochrome P450 Enzymes Involved in the Metabolism of Xenobiotic and Natural Chemicals

    PubMed Central

    2015-01-01

    Analyzing the literature resources used in our previous reports, we calculated the fractions of the oxidoreductase enzymes FMO (microsomal flavin-containing monooxygenase), AKR (aldo-keto reductase), MAO (monoamine oxidase), and cytochrome P450 participating in metabolic reactions. The calculations show that the fractions of P450s involved in the metabolism of all chemicals (general chemicals, natural, and physiological compounds, and drugs) are rather consistent in the findings that >90% of enzymatic reactions are catalyzed by P450s. Regarding drug metabolism, three-fourths of the human P450 reactions can be accounted for by a set of five P450s: 1A2, 2C9, 2C19, 2D6, and 3A4, and the largest fraction of the P450 reactions is catalyzed by P450 3A enzymes. P450 3A4 participation in metabolic reactions of drugs varied from 13% for general chemicals to 27% for drugs. PMID:25485457

  15. Update on nandrolone and norsteroids: how endogenous or xenobiotic are these substances?

    PubMed

    Bricout, V; Wright, F

    2004-06-01

    Norsteroids are xenobiotics with androgenic and anabolic properties known since as far back as the 1930s. In doping controls, the use of the banned xenobiotic norsteroids is detected in the competitor's urines by the measurement of norandrosterone (19-NA) and noretiocholanolone (19-NE), which are the main metabolites for nandrolone (NT) and most norsteroids with anabolic properties. In 1996, the IOC subcommission "Doping and Biochemistry of Sport" informed the Heads of the "IOC Accredited Laboratories" that the recommended cut-off limit for reporting an offence was to be 1-2 ng ml(-1) urine for either 19-NA or 19-NE. We will discuss how technical progress in gas chromatography coupled to high-resolution mass spectrometry permitted a dramatic increase in sensitivity with a detection limit of 1 pg ml(-1) urine, or less, and an assay limit of 20-50 pg ml(-1) urine, for either 19-NA or 19-NE. As a paradox, norsteroids have been known for decades as not only xenobiotics but also obligatory endogenous intermediates in the biosynthesis of estrogens from androgens in all species, man included. It is this biochemical observation which fed the active scientific and medical controversy initiated in 1998 over the possibly endogenous production of nandrolone and metabolites well over the new IOC's recommended cut-off limit of 2 ng ml(-1) urine. Notwithstanding the particular technical difficulties attached, we will provide data and discuss the minute endogenous levels detected and measured in man either at rest, after performance or training and compare them to the relatively high levels reported in male athlete's doping controls today. We will also discuss data on the pharmacological effects of some contraceptive therapies containing norsteroids in women. In view of the well-documented noxious effects repeatedly observed after anabolic steroid misuse, the confirmation and implementation of technically proven procedures for reporting norsteroid abuse in sports seems an

  16. Identification of Genes Potentially Responsible for extra-Oral Digestion and Overcoming Plant Defense from Salivary Glands of the Tarnished Plant Bug (Hemiptera: Miridae) Using cDNA Sequencing

    PubMed Central

    Zhu, Yu-Cheng; Yao, Jianxiu; Luttrell, Randall

    2016-01-01

    Saliva is known to play a crucial role in tarnished plant bug (TPB, Lygus lineolaris [Palisot de Beauvois]) feeding. By facilitating the piercing, the enzyme-rich saliva may be used for extra-oral digestion and for overcoming plant defense before the plant fluids are ingested by TPBs. To identify salivary gland genes, mRNA was extracted from salivary glands and cDNA library clones were sequenced. A de novo-assembling of 7,000 Sanger sequences revealed 666 high-quality unique cDNAs with an average size of 624 bp, in which the identities of 347 cDNAs were determined using Blast2GO. Kyoto Encyclopedia of Genes and Genomes analysis indicated that these genes participate in eighteen metabolic pathways. Identifications of large number of enzyme genes in TPB salivary glands evidenced functions for extra-oral digestion and feeding damage mechanism, including 45 polygalacturonase, two α- amylase, one glucosidase, one glycan enzyme, one aminopeptidase, four lipase, and many serine protease cDNAs. The presence of multiple transcripts, multigene members, and high abundance of cell wall degradation enzymes (polygalacturonases) indicated that the enzyme-rich saliva may cause damage to plants by breaking down plant cell walls to make nutrients available for feeding. We also identified genes potentially involved in insect adaptation and detoxifying xenobiotics that may allow insects to overcome plant defense responses, including four glutathione S-transferases, three esterases, one cytochrome P450, and several serine proteases. The gene profiles of TPB salivary glands revealed in this study provides a foundation for further understanding and potential development of novel enzymatic inhibitors, or other RNAi approaches that may interrupt or minimize TPB feeding damage. PMID:27324587

  17. An in vitro bioassay for xenobiotics using the SXR-driven human CYP3A4/lacZ reporter gene.

    PubMed

    Lee, Mi R; Kim, Yeon J; Hwang, Dae Y; Kang, Tae S; Hwang, Jin H; Lim, Chae H; Kang, Hyung K; Goo, Jun S; Lim, Hwa J; Ahn, Kwang S; Cho, Jung S; Chae, Kap R; Kim, Yong K

    2003-01-01

    The dose and time effect of nine xenobiotics, including 17beta-estradiol, corticosterone, dexamethasone, progesterone, nifedipine, bisphenol A, rifampicin, methamphetamine, and nicotine were investigated, in vitro, using human steroid and xenobiotics receptor (SXR)-binding sites on the human CYP3A4 promoter, which can enhance the linked lacZ reporter gene transcription. To test this, liver-specific SAP (human serum amyloid P component)-SXR (SAP/SXR) and human CYP3A4 promoter-regulated lacZ (hCYP3A4/lacZ) constructs were transiently transfected into HepG2 and NIH3T3 cells to compare the xenobiotic responsiveness between human and nonhuman cell lines. In the HepG2 cells, rifampicin, followed by corticosterone, nicotine, methamphetamine, and dexamethasone, exhibited enhanced levels of the lacZ transcript, whereas those of bisphenol A and nifedipine were found to be reduced. No significant responses were observed with 17beta-estradiol or progesterone. In addition, 17beta-estradiol and progesterone did not change the levels of the lacZ transcripts in the HepG2 cells, but did induce significant increases in the transcripts of the NIH3T3 cells. Treatment with corticosterone and dexamethasone, which were highly expressed in the HepG2 cells, did not affect the levels of the lacZ transcript in NIH3T3 cells. These results show that lacZ transcripts can be measured, rapidly and reproducibly, using reverse transcriptase-polymerase chain reaction (RT-PCR) based on the expression of the hCYP3A4/lacZ reporter gene, and was mediated by the SXR. Thus, this in vitro reporter gene bioassay is useful for measuring xenobiotic activities, and is a means to a better relevant bioassay, using human cells, human genes and human promoters, in order to get a closer look at actual human exposure.

  18. Visualization of the Drosophila dKeap1-CncC interaction on chromatin illumines cooperative, xenobiotic-specific gene activation

    PubMed Central

    Deng, Huai; Kerppola, Tom K.

    2014-01-01

    Interactions among transcription factors control their physiological functions by regulating their binding specificities and transcriptional activities. We implement a strategy to visualize directly the genomic loci that are bound by multi-protein complexes in single cells in Drosophila. This method is based on bimolecular fluorescence complementation (BiFC) analysis of protein interactions on polytene chromosomes. Drosophila Keap1 (dKeap1)-CncC complexes localized to the nucleus and bound chromatin loci that were not bound preferentially by dKeap1 or CncC when they were expressed separately. dKeap1 and CncC binding at these loci was enhanced by phenobarbital, but not by tert-butylhydroquinone (tBHQ) or paraquat. Endogenous dKeap1 and CncC activated transcription of the Jheh (Jheh1, Jheh2, Jheh3) and dKeap1 genes at these loci, whereas CncC alone activated other xenobiotic response genes. Ectopic dKeap1 expression increased CncC binding at the Jheh and dKeap1 gene loci and activated their transcription, whereas dKeap1 inhibited CncC binding at other xenobiotic response gene loci and suppressed their transcription. The combinatorial chromatin-binding specificities and transcriptional activities of dKeap1-CncC complexes mediated the selective activation of different sets of genes by different xenobiotic compounds, in part through feed-forward activation of dKeap1 transcription. PMID:25063457

  19. ADAPTATION OF AQUIFER MICROBIAL COMMUNITIES TO THE BIODEGRADATION OF XENOBIOTIC COMPOUNDS: INFLUENCE OF SUBSTRATE CONCENTRATION AND PREEXPOSURE

    EPA Science Inventory

    Studies were conducted to examine the adaptation response of aquifer microbial communities to xenobiotic compounds and the influence of chemical preexposure in the laboratory and in situ on adaptation. Adaptation and biodegradation were assessed as mineralization and cellular inc...

  20. Plant phenolics are detoxified by prophenoloxidase in the insect gut

    PubMed Central

    Wu, Kai; Zhang, Jie; Zhang, Qiaoli; Zhu, Shoulin; Shao, Qimiao; Clark, Kevin D.; Liu, Yining; Ling, Erjun

    2015-01-01

    Plant phenolics are a group of important secondary metabolites that are toxic to many animals and insects if ingested at high concentrations. Because most insects consume plant phenolics daily, they have likely evolved the capacity to detoxify these compounds. Here, we used Drosophila melanogaster, Bombyx mori and Helicoverpa armigera as models to study the metabolism of plant phenolics by prophenoloxidases. We found that insect foreguts release prophenoloxidases into the lumen, and that the survival of prophenoloxidase-deletion mutants was impaired when fed several plant phenolics and tea extracts. Using l-DOPA as a model substrate, biochemical assays in large Lepidopteran insects demonstrated that low levels of l-DOPA are rapidly metabolized into intermediates by phenoloxidases. Feeding with excess l-DOPA showed that the metabolic intermediate 5,6-dihydroxyindole reached the hindgut either by passing directly through the midgut, or by transport through the hemolymph. In the hindgut, 5,6-dihydroxyindole was further oxidized by prophenoloxidases. Intermediates exerted no toxicity in the hemocoel or midgut. These results show that plant phenolics are not toxic to insects unless prophenoloxidase genes are lost or the levels of phenolics exceed the catalytic activity of the gut prophenoloxidases. PMID:26592948

  1. [The role of glucosinolates in the prevention of cancer--mechanisms of actions].

    PubMed

    Kwiatkowska, Edyta; Bawa, Sa'eed

    2007-01-01

    Foods of plant origin, despite plenty of nutrients contain many non-nutrition compounds, which may prevent many diet-related non-communicable diseases, such as cancer. Plants produce thousands of phenolic compounds as secondary metabolites, such as nitrous compounds. Glucosinolates are responsible for the secretion of detoxifying enzymes that remove carcinogens for the organism. Furthermore, they activate proteins and II phase detoxifying enzymes. The compounds are very important that is why scientists are still investigating their beneficial note in cancer prevention and management.

  2. A framework and case studies for evaluation of enzyme ontogeny in children's health risk evaluation.

    PubMed

    Ginsberg, Gary; Vulimiri, Suryanarayana V; Lin, Yu-Sheng; Kancherla, Jayaram; Foos, Brenda; Sonawane, Babasaheb

    2017-01-01

    Knowledge of the ontogeny of Phase I and Phase II metabolizing enzymes may be used to inform children's vulnerability based upon likely differences in internal dose from xenobiotic exposure. This might provide a qualitative assessment of toxicokinetic (TK) variability and uncertainty pertinent to early lifestages and help scope a more quantitative physiologically based toxicokinetic (PBTK) assessment. Although much is known regarding the ontogeny of metabolizing systems, this is not commonly utilized in scoping and problem formulation stage of human health risk evaluation. A framework is proposed for introducing this information into problem formulation which combines data on enzyme ontogeny and chemical-specific TK to explore potential child/adult differences in internal dose and whether such metabolic differences may be important factors in risk evaluation. The framework is illustrated with five case study chemicals, including some which are data rich and provide proof of concept, while others are data poor. Case studies for toluene and chlorpyrifos indicate potentially important child/adult TK differences while scoping for acetaminophen suggests enzyme ontogeny is unlikely to increase early-life risks. Scoping for trichloroethylene and aromatic amines indicates numerous ways that enzyme ontogeny may affect internal dose which necessitates further evaluation. PBTK modeling is a critical and feasible next step to further evaluate child-adult differences in internal dose for a number of these chemicals.

  3. Cytochrome P450 peroxidase/peroxygenase mediated xenobiotic metabolic activation and cytotoxicity in isolated hepatocytes.

    PubMed

    Anari, M R; Khan, S; Liu, Z C; O'Brien, P J

    1995-12-01

    Cytochrome P450 (P450) can utilize organic hydroperoxides and peracids to support hydroxylation and dealkylation of various P450 substrates. However, the biological significance of this P450 peroxygenase/peroxidase activity in the bioactivation of xenobiotics in intact cells has not been demonstrated. We have shown that tert-butyl hydroperoxide (tBHP) markedly enhances 3-20-fold the cytotoxicity of various aromatic hydrocarbons and their phenolic metabolites. The tBHP-enhanced hepatocyte cytotoxicity of 4-nitroanisole (4-NA) and 4-hydroxyanisole (4-HA) was also accompanied by an increase in the hepatocyte O-demethylation of 4-NA and 4-HA up to 7.5- and 21-fold, respectively. Hepatocyte GSH conjugation by 4-HA was also markedly increased by tBHP. An LC/MS analysis of the GSH conjugates identified hydroquinone-GSH and 4-methoxy-catechol:GSH conjugates as the predominant adducts. Pretreatment of hepatocytes with P450 inhibitors, e.g., phenylimidazole, prevented tBHP-enhanced 4-HA metabolism, GSH depletion, and cytotoxicity. In conclusion, hydroperoxides can therefore be used by intact cells to support the bioactivation of xenobiotics through the P450 peroxidase/peroxygenase system.

  4. Single-Walled Carbon Nanotubes Inhibit the Cytochrome P450 Enzyme, CYP3A4

    NASA Astrophysics Data System (ADS)

    El-Sayed, Ramy; Bhattacharya, Kunal; Gu, Zonglin; Yang, Zaixing; Weber, Jeffrey K.; Li, Hu; Leifer, Klaus; Zhao, Yichen; Toprak, Muhammet S.; Zhou, Ruhong; Fadeel, Bengt

    2016-02-01

    We report a detailed computational and experimental study of the interaction of single-walled carbon nanotubes (SWCNTs) with the drug-metabolizing cytochrome P450 enzyme, CYP3A4. Dose-dependent inhibition of CYP3A4-mediated conversion of the model compound, testosterone, to its major metabolite, 6β-hydroxy testosterone was noted. Evidence for a direct interaction between SWCNTs and CYP3A4 was also provided. The inhibition of enzyme activity was alleviated when SWCNTs were pre-coated with bovine serum albumin. Furthermore, covalent functionalization of SWCNTs with polyethylene glycol (PEG) chains mitigated the inhibition of CYP3A4 enzymatic activity. Molecular dynamics simulations suggested that inhibition of the catalytic activity of CYP3A4 is mainly due to blocking of the exit channel for substrates/products through a complex binding mechanism. This work suggests that SWCNTs could interfere with metabolism of drugs and other xenobiotics and provides a molecular mechanism for this toxicity. Our study also suggests means to reduce this toxicity, eg., by surface modification.

  5. Single-Walled Carbon Nanotubes Inhibit the Cytochrome P450 Enzyme, CYP3A4

    PubMed Central

    El-Sayed, Ramy; Bhattacharya, Kunal; Gu, Zonglin; Yang, Zaixing; Weber, Jeffrey K.; Li, Hu; Leifer, Klaus; Zhao, Yichen; Toprak, Muhammet S.; Zhou, Ruhong; Fadeel, Bengt

    2016-01-01

    We report a detailed computational and experimental study of the interaction of single-walled carbon nanotubes (SWCNTs) with the drug-metabolizing cytochrome P450 enzyme, CYP3A4. Dose-dependent inhibition of CYP3A4-mediated conversion of the model compound, testosterone, to its major metabolite, 6β-hydroxy testosterone was noted. Evidence for a direct interaction between SWCNTs and CYP3A4 was also provided. The inhibition of enzyme activity was alleviated when SWCNTs were pre-coated with bovine serum albumin. Furthermore, covalent functionalization of SWCNTs with polyethylene glycol (PEG) chains mitigated the inhibition of CYP3A4 enzymatic activity. Molecular dynamics simulations suggested that inhibition of the catalytic activity of CYP3A4 is mainly due to blocking of the exit channel for substrates/products through a complex binding mechanism. This work suggests that SWCNTs could interfere with metabolism of drugs and other xenobiotics and provides a molecular mechanism for this toxicity. Our study also suggests means to reduce this toxicity, eg., by surface modification. PMID:26899743

  6. Preclinical evaluation of a chemically detoxified pneumolysin as pneumococcal vaccine antigen.

    PubMed

    Hermand, Philippe; Vandercammen, Annick; Mertens, Emmanuel; Di Paolo, Emmanuel; Verlant, Vincent; Denoël, Philippe; Godfroid, Fabrice

    2017-01-02

    The use of protein antigens able to protect against the majority of Streptococcus pneumoniae serotypes is envisaged as stand-alone and/or complement to the current capsular polysaccharide-based pneumococcal vaccines. Pneumolysin (Ply) is a key virulence factor that is highly conserved in amino acid sequence across pneumococcal serotypes, and therefore may be considered as a vaccine target. However, native Ply cannot be used in vaccines due to its intrinsic cytolytic activity. In the present work a completely, irreversibly detoxified pneumolysin (dPly) has been generated using an optimized formaldehyde treatment. Detoxi-fication was confirmed by dPly challenge in mice and histological analysis of the injection site in rats. Immunization with dPly elicited Ply-specific functional antibodies that were able to inhibit Ply activity in a hemolysis assay. In addition, immunization with dPly protected mice against lethal intranasal challenge with Ply, and intranasal immunization inhibited nasopharyngeal colonization after intranasal challenge with homologous or heterologous pneumococcal strain. Our findings supported dPly as a valid candidate antigen for further pneumococcal vaccine development.

  7. Preclinical evaluation of a chemically detoxified pneumolysin as pneumococcal vaccine antigen

    PubMed Central

    Hermand, Philippe; Vandercammen, Annick; Mertens, Emmanuel; Di Paolo, Emmanuel; Verlant, Vincent; Denoël, Philippe; Godfroid, Fabrice

    2017-01-01

    ABSTRACT The use of protein antigens able to protect against the majority of Streptococcus pneumoniae serotypes is envisaged as stand-alone and/or complement to the current capsular polysaccharide-based pneumococcal vaccines. Pneumolysin (Ply) is a key virulence factor that is highly conserved in amino acid sesec-typsecquence across pneumococcal serotypes, and therefore may be considered as a vaccine target. However, native Ply cannot be used in vaccines due to its intrinsic cytolytic activity. In the present work a completely, irreversibly detoxified pneumolysin (dPly) has been generated using an optimized formaldehyde treatment. Detoxi-fication was confirmed by dPly challenge in mice and histological analysis of the injection site in rats. Immunization with dPly elicited Ply-specific functional antibodies that were able to inhibit Ply activity in a hemolysis assay. In addition, immunization with dPly protected mice against lethal intranasal challenge with Ply, and intranasal immunization inhibited nasopharyngeal colonization after intranasal challenge with homologous or heterologous pneumococcal strain. Our findings supported dPly as a valid candidate antigen for further pneumococcal vaccine development. PMID:27768518

  8. Biotransformation of Trichoderma spp. and their tolerance to aromatic amines, a major class of pollutants.

    PubMed

    Cocaign, Angélique; Bui, Linh-Chi; Silar, Philippe; Chan Ho Tong, Laetitia; Busi, Florent; Lamouri, Aazdine; Mougin, Christian; Rodrigues-Lima, Fernando; Dupret, Jean-Marie; Dairou, Julien

    2013-08-01

    Trichoderma spp. are cosmopolitan soil fungi that are highly resistant to many toxic compounds. Here, we show that Trichoderma virens and T. reesei are tolerant to aromatic amines (AA), a major class of pollutants including the highly toxic pesticide residue 3,4-dichloroaniline (3,4-DCA). In a previous study, we provided proof-of-concept remediation experiments in which another soil fungus, Podospora anserina, detoxifies 3,4-DCA through its arylamine N-acetyltransferase (NAT), a xenobiotic-metabolizing enzyme that enables acetyl coenzyme A-dependent detoxification of AA. To assess whether the N-acetylation pathway enables AA tolerance in Trichoderma spp., we cloned and characterized NATs from T. virens and T. reesei. We characterized recombinant enzymes by determining their catalytic efficiencies toward several toxic AA. Through a complementary approach, we also demonstrate that both Trichoderma species efficiently metabolize 3,4-DCA. Finally, we provide evidence that NAT-independent transformation is solely (in T. virens) or mainly (in T. reesei) responsible for the observed removal of 3,4-DCA. We conclude that T. virens and, to a lesser extent, T. reesei likely utilize another, unidentified, metabolic pathway for the detoxification of AA aside from acetylation. This is the first molecular and functional characterization of AA biotransformation in Trichoderma spp. Given the potential of Trichoderma for cleanup of contaminated soils, these results reveal new possibilities in the fungal remediation of AA-contaminated soil.

  9. Development of an invitro technique to use mouse embryonic stem cell in evaluating effects of xenobiotics

    EPA Science Inventory

    Our goal has been to develop a high-throughput, in vitro technique for evaluating the effects of xenobiotics using mouse embryonic stem cells (mESCs). We began with the Embryonic Stem Cell Test (EST), which is used to predict the embryotoxic potential of a test compound by combin...

  10. A Txnrd1-dependent metabolic switch alters hepatic lipogenesis, glycogen storage, and detoxification

    PubMed Central

    Iverson, Sonya V.; Eriksson, Sofi; Xu, Jianqiang; Prigge, Justin R.; Talago, Emily A.; Meade, Tesia A.; Meade, Erin S.; Capecchi, Mario R.; Arnér, Elias S.J.; Schmidt, Edward E.

    2013-01-01

    Besides helping to maintain a reducing intracellular environment, the thioredoxin (Trx) system impacts bioenergetics and drug-metabolism. We show that hepatocyte-specific disruption of Txnrd1, encoding Trx reductase-1 (TrxR1), causes a metabolic switch in which lipogenic genes are repressed and periportal hepatocytes become engorged with glycogen. These livers also overexpress machinery for biosynthesis of glutathione and conversion of glycogen into UDP-glucuronate; they stockpile glutathione-S-transferases and UDP-glucuronyl-transferases; and they overexpress xenobiotic exporters. This realigned metabolic profile suggested that the mutant hepatocytes might be preconditioned to more effectively detoxify certain xenobiotic challenges. Hepatocytes convert the pro-toxin acetaminophen (APAP, paracetamol) into cytotoxic N-acetyl-p-benzoquinone imine (NAPQI). APAP defenses include glucuronidation of APAP or glutathionylation of NAPQI, allowing removal by xenobiotic exporters. We found that NAPQI directly inactivates TrxR1, yet Txnrd1-null livers were resistant to APAP-induced hepatotoxicity. Txnrd1-null livers did not have more effective gene expression responses to APAP challenge; however their constitutive metabolic state supported more robust GSH biosynthesis-, glutathionylation-, and glucuronidation-systems. Following APAP challenge, this effectively sustained the GSH system and attenuated damage. PMID:23743293

  11. Oxidation and adduct formation of xenobiotics in a microfluidic electrochemical cell with boron doped diamond electrodes and an integrated passive gradient rotation mixer.

    PubMed

    van den Brink, Floris T G; Wigger, Tina; Ma, Liwei; Odijk, Mathieu; Olthuis, Wouter; Karst, Uwe; van den Berg, Albert

    2016-10-05

    Reactive xenobiotic metabolites and their adduct formation with biomolecules such as proteins are important to study as they can be detrimental to human health. Here, we present a microfluidic electrochemical cell with integrated micromixer to study phase I and phase II metabolism as well as protein adduct formation of xenobiotics in a purely instrumental approach. The newly developed microfluidic device enables both the generation of reactive metabolites through electrochemical oxidation and subsequent adduct formation with biomolecules in a chemical microreactor. This allows us to study the detoxification of reactive species with glutathione and to predict potential toxicity of xenobiotics as a result of protein modification. Efficient mixing in microfluidic systems is a slow process due to the typically laminar flow conditions in shallow channels. Therefore, a passive gradient rotation micromixer has been designed that is capable of mixing liquids efficiently in a 790 pL volume within tens of milliseconds. The mixing principle relies on turning the concentration gradient that is initially established by bringing together two streams of liquid, to take advantage of the short diffusion distances in the shallow microchannels of thin-layer flow cells. The mixer is located immediately downstream of the working electrode of an electrochemical cell with integrated boron doped diamond electrodes. In conjunction with mass spectrometry, the two microreactors integrated in a single device provide a powerful tool to study the metabolism and toxicity of xenobiotics, which was demonstrated by the investigation of the model compound 1-hydroxypyrene.

  12. Characterization of human DHRS4: an inducible short-chain dehydrogenase/reductase enzyme with 3beta-hydroxysteroid dehydrogenase activity.

    PubMed

    Matsunaga, Toshiyuki; Endo, Satoshi; Maeda, Satoshi; Ishikura, Shuhei; Tajima, Kazuo; Tanaka, Nobutada; Nakamura, Kazuo T; Imamura, Yorishige; Hara, Akira

    2008-09-15

    Human DHRS4 is a peroxisomal member of the short-chain dehydrogenase/reductase superfamily, but its enzymatic properties, except for displaying NADP(H)-dependent retinol dehydrogenase/reductase activity, are unknown. We show that the human enzyme, a tetramer composed of 27kDa subunits, is inactivated at low temperature without dissociation into subunits. The cold inactivation was prevented by a mutation of Thr177 with the corresponding residue, Asn, in cold-stable pig DHRS4, where this residue is hydrogen-bonded to Asn165 in a substrate-binding loop of other subunit. Human DHRS4 reduced various aromatic ketones and alpha-dicarbonyl compounds including cytotoxic 9,10-phenanthrenequinone. The overexpression of the peroxisomal enzyme in cultured cells did not increase the cytotoxicity of 9,10-phenanthrenequinone. While its activity towards all-trans-retinal was low, human DHRS4 efficiently reduced 3-keto-C(19)/C(21)-steroids into 3beta-hydroxysteroids. The stereospecific conversion to 3beta-hydroxysteroids was observed in endothelial cells transfected with vectors expressing the enzyme. The mRNA for the enzyme was ubiquitously expressed in human tissues and several cancer cells, and the enzyme in HepG2 cells was induced by peroxisome-proliferator-activated receptor alpha ligands. The results suggest a novel mechanism of cold inactivation and role of the inducible human DHRS4 in 3beta-hydroxysteroid synthesis and xenobiotic carbonyl metabolism.

  13. Effects of Brown Rice and White Rice on Expression of Xenobiotic Metabolism Genes in Type 2 Diabetic Rats

    PubMed Central

    Imam, Mustapha Umar; Ismail, Maznah

    2012-01-01

    Xenobiotics constantly influence biological systems through several means of interaction. These interactions are disturbed in type 2 diabetes, with implications for disease outcome. We aimed to study the implications of such disturbances on type 2 diabetes and rice consumption, the results of which could affect management of the disease in developing countries. In a type 2 diabetic rat model induced through a combination of high fat diet and low dose streptozotocin injection, up-regulation of xenobiotic metabolism genes in the diabetic untreated group was observed. Xenobiotic metabolism genes were upregulated more in the white rice (WR) group than the diabetic untreated group while the brown rice (BR) group showed significantly lower expression values, though not as effective as metformin, which gave values closer to the normal non-diabetic group. The fold changes in expression in the WR group compared to the BR group for Cyp2D4, Cyp3A1, Cyp4A1, Cyp2B1, Cyp2E1, Cyp2C11, UGT2B1, ALDH1A1 and Cyp2C6 were 2.6, 2, 1.5, 4, 2.8, 1.5, 1.8, 3 and 5, respectively. Our results suggest that WR may upregulate these genes in type 2 diabetes more than BR, potentially causing faster drug metabolism, less drug efficacy and more toxicity. These results may have profound implications for rice eating populations, constituting half the world’s population. PMID:22942722

  14. Optimized laser-induced breakdown spectroscopy for determination of xenobiotic silver in monosodium glutamate and its verification using ICP-AES.

    PubMed

    Rehan, I; Gondal, M A; Rehan, K

    2018-04-20

    Laser-induced breakdown spectroscopy (LIBS) was applied as a potential tool for the determination of xenobiotic metal in monosodium glutamate (MSG). In order to achieve a high-sensitivity LIBS system required to determine trace amounts of metallic silver in MSG and to attain the best detection limit, the parameters used in our experiment (impact of focusing laser energy on the intensity of LIBS emission signals, the influence of focusing lens distance on the intensity of LIBS signals, and time responses of the plasma emissions) were optimized. The spectra of MSG were obtained in air using a suitable detector with an optical resolution of 0.06 nm, covering a spectral region from 220 to 720 nm. Along with the detection of xenobiotic silver, other elements such as Ca, Mg, S, and Na were also detected in MSG. To determine the concentration of xenobiotic silver in MSG, the calibration curve was plotted by preparing standard samples having different silver abundances in an MSG matrix. The LIBS results of each sample were cross-verified by analyzing with a standard analytical technique such as inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Both (LIBS and ICP-AES) results were in mutual agreement. The limit of detection of the LIBS setup was found to be 0.57 ppm for silver present in MSG samples.

  15. Adaptation to environmental stress in Daphnia magna simultaneously exposed to a xenobiotic.

    PubMed

    Coors, Anja; Hammers-Wirtz, Monika; Ratte, Hans Toni

    2004-07-01

    In standardized ecotoxicological testing chemicals are investigated under optimal conditions for the test organisms despite the fact that environmental factors such as predation pressure and food availability are important parameters regulating natural populations. Food limitation and predator presence can induce shifts in life-history traits in various Daphnia species, especially trade-offs in reproductive biomass allocation. These adaptive responses are thought to ensure survival of the population in a highly variable environment. A xenobiotic dispersant (used in textile dyeing processes) also shifted the biomass allocation of Daphnia magna. To assess whether the dispersant could hinder D. magna adaptation to varying environmental conditions, we conducted experiments with food level and presence of Chaoborus larvae as environmental factors and simultaneous exposure to the dispersant. At low food level and in presence of the predator, D. magna produced fewer but larger sized neonates, regardless of dispersant exposure. The dispersant shifted biomass allocation towards more but smaller sized offspring in all experiments. However, the adaptive response to the environmental factors and the dispersant effect cancelled each other out in that they induced independently from each other opposite shifts in biomass allocation. In summary, the dispersant exposure resulted not in an inhibition of the adaptive response but in a reduction of the value of the response. Our study with this model substance demonstrates that xenobiotics can affect the adaptation of organisms to environmental stress which can result in effects likely to be overlooked in standardized testing.

  16. Extended-release intramuscular naltrexone (VIVITROL®): a review of its use in the prevention of relapse to opioid dependence in detoxified patients.

    PubMed

    Syed, Yahiya Y; Keating, Gillian M

    2013-10-01

    Naltrexone is a μ-opioid receptor antagonist that blocks the euphoric effects of heroin and prescription opioids. In order to improve treatment adherence, a once-monthly, intramuscular, extended-release formulation of naltrexone (XR-NTX) [VIVITROL(®)] has been developed, and approved in the USA and Russia for the prevention of relapse to opioid dependence, after opioid detoxification. The clinical efficacy of this formulation in patients with opioid dependence was demonstrated in a 24-week, randomized, double-blind, placebo-controlled, multicentre, phase III trial (ALK21-013; n = 250). In this trial, opioid-detoxified patients receiving XR-NTX 380 mg once every 4 weeks, in combination with psychosocial support, had a significantly higher median proportion of weeks of confirmed opioid abstinence during weeks 5-24, compared with those receiving placebo (primary endpoint). A significantly higher proportion of patients receiving XR-NTX achieved total confirmed abstinence during this period than those receiving placebo. XR-NTX was also associated with a significantly greater reduction in opioid craving and a significantly longer treatment retention period than placebo. XR-NTX was generally well tolerated in the phase III trial. The most common (incidence ≥5 %) treatment-emergent adverse events that also occurred more frequently with XR-NTX than with placebo were hepatic enzyme abnormalities, nasopharyngitis, insomnia, hypertension, influenza and injection-site pain. Thus, XR-NTX is a useful treatment option for the prevention of relapse to opioid dependence, following opioid detoxification.

  17. Structures and functions of insect arylalkylamine N-acetyltransferase (iaaNAT); a key enzyme for physiological and behavioral switch in arthropods

    PubMed Central

    Hiragaki, Susumu; Suzuki, Takeshi; Mohamed, Ahmed A. M.; Takeda, Makio

    2015-01-01

    The evolution of N-acetyltransfeases (NATs) seems complex. Vertebrate arylalkylamine N-acetyltransferase (aaNAT) has been extensively studied since it leads to the synthesis of melatonin, a multifunctional neurohormone prevalent in photoreceptor cells, and is known as a chemical token of the night. Melatonin also serves as a scavenger for reactive oxygen species. This is also true with invertebrates. NAT therefore has distinct functional implications in circadian function, as timezymes (aaNAT), and also xenobiotic reactions (arylamine NAT or simply NAT). NATs belong to a broader enzyme group, the GCN5-related N-acetyltransferase superfamily. Due to low sequence homology and a seemingly fast rate of structural differentiation, the nomenclature for NATs can be confusing. The advent of bioinformatics, however, has helped to classify this group of enzymes; vertebrates have two distinct subgroups, the timezyme type and the xenobiotic type, which has a wider substrate range including imidazolamine, pharmacological drugs, environmental toxicants and even histone. Insect aaNAT (iaaNAT) form their own clade in the phylogeny, distinct from vertebrate aaNATs. Arthropods are unique, since the phylum has exoskeleton in which quinones derived from N-acetylated monoamines function in coupling chitin and arthropodins. Monoamine oxidase (MAO) activity is limited in insects, but NAT-mediated degradation prevails. However, unexpectedly iaaNAT occurs not only among arthropods but also among basal deuterostomia, and is therefore more apomorphic. Our analyses illustrate that iaaNATs has unique physiological roles but at the same time it plays a role in a timezyme function, at least in photoperiodism. Photoperiodism has been considered as a function of circadian system but the detailed molecular mechanism is not well understood. We propose a molecular hypothesis for photoperiodism in Antheraea pernyi based on the transcription regulation of NAT interlocked by the circadian system

  18. Annotation and expression of carboxylesterases in the silkworm, Bombyx mori.

    PubMed

    Yu, Quan-You; Lu, Cheng; Li, Wen-Le; Xiang, Zhong-Huai; Zhang, Ze

    2009-11-24

    Carboxylesterase is a multifunctional superfamily and ubiquitous in all living organisms, including animals, plants, insects, and microbes. It plays important roles in xenobiotic detoxification, and pheromone degradation, neurogenesis and regulating development. Previous studies mainly used Dipteran Drosophila and mosquitoes as model organisms to investigate the roles of the insect COEs in insecticide resistance. However, genome-wide characterization of COEs in phytophagous insects and comparative analysis remain to be performed. Based on the newly assembled genome sequence, 76 putative COEs were identified in Bombyx mori. Relative to other Dipteran and Hymenopteran insects, alpha-esterases were significantly expanded in the silkworm. Genomics analysis suggested that BmCOEs showed chromosome preferable distribution and 55% of which were tandem arranged. Sixty-one BmCOEs were transcribed based on cDNA/ESTs and microarray data. Generally, most of the COEs showed tissue specific expressions and expression level between male and female did not display obvious differences. Three main patterns could be classified, i.e. midgut-, head and integument-, and silk gland-specific expressions. Midgut is the first barrier of xenobiotics peroral toxicity, in which COEs may be involved in eliminating secondary metabolites of mulberry leaves and contaminants of insecticides in diet. For head and integument-class, most of the members were homologous to odorant-degrading enzyme (ODE) and antennal esterase. RT-PCR verified that the ODE-like esterases were also highly expressed in larvae antenna and maxilla, and thus they may play important roles in degradation of plant volatiles or other xenobiotics. B. mori has the largest number of insect COE genes characterized to date. Comparative genomic analysis suggested that the gene expansion mainly occurred in silkworm alpha-esterases. Expression evidence indicated that the expanded genes were specifically expressed in midgut, integument and

  19. Annotation and expression of carboxylesterases in the silkworm, Bombyx mori

    PubMed Central

    2009-01-01

    Background Carboxylesterase is a multifunctional superfamily and ubiquitous in all living organisms, including animals, plants, insects, and microbes. It plays important roles in xenobiotic detoxification, and pheromone degradation, neurogenesis and regulating development. Previous studies mainly used Dipteran Drosophila and mosquitoes as model organisms to investigate the roles of the insect COEs in insecticide resistance. However, genome-wide characterization of COEs in phytophagous insects and comparative analysis remain to be performed. Results Based on the newly assembled genome sequence, 76 putative COEs were identified in Bombyx mori. Relative to other Dipteran and Hymenopteran insects, alpha-esterases were significantly expanded in the silkworm. Genomics analysis suggested that BmCOEs showed chromosome preferable distribution and 55% of which were tandem arranged. Sixty-one BmCOEs were transcribed based on cDNA/ESTs and microarray data. Generally, most of the COEs showed tissue specific expressions and expression level between male and female did not display obvious differences. Three main patterns could be classified, i.e. midgut-, head and integument-, and silk gland-specific expressions. Midgut is the first barrier of xenobiotics peroral toxicity, in which COEs may be involved in eliminating secondary metabolites of mulberry leaves and contaminants of insecticides in diet. For head and integument-class, most of the members were homologous to odorant-degrading enzyme (ODE) and antennal esterase. RT-PCR verified that the ODE-like esterases were also highly expressed in larvae antenna and maxilla, and thus they may play important roles in degradation of plant volatiles or other xenobiotics. Conclusion B. mori has the largest number of insect COE genes characterized to date. Comparative genomic analysis suggested that the gene expansion mainly occurred in silkworm alpha-esterases. Expression evidence indicated that the expanded genes were specifically

  20. Differences in response of glucuronide and glutathione conjugating enzymes to aflatoxin B/sub 1/ and N-acetylaminofluorene in underfed rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajpurohit, R.; Krishnaswamy, K.

    Changes in the hepatic drug/xenobiotic-metabolizing enzymes in underfed rats exposed to aflatoxin B/sub 1/ and N-acetylaminofluorene were investigated. Neither carcinogen, fed at the level of 10 ..mu..g and 0.667 mg per 100 g body weight, respectively, over a period of 3 wk, had any significant influence on cytochrome P-450 and aryl hydrocarbon hydroxylase in the undernourished rats. Significantly low activities of UDP-glucuronyltransferase and glutathione S-transferase were observed in food-restricted animals fed on aflatoxin B/sub 1/. N-acetylaminofluorene, on the other hand stimulated both the enzyme activities in the underfed group, to as much observed in the respective well-fed treated group. UDP-Glucuronyltransferasemore » and glutathione S-transferase in undernutrition seem to respond differently to aflatoxin B/sub 1/ and N-acetylaminofluorene. Further studies are needed to assess the possible consequences of such alterations.« less

  1. Effect of elevated CO2 on the interaction between invasive thrips, Frankliniella occidentalis, and its host kidney bean, Phaseolus vulgaris.

    PubMed

    Qian, Lei; He, Shuqi; Liu, Xiaowei; Huang, Zujin; Chen, Fajun; Gui, Furong

    2018-05-08

    Elevated CO 2 can alter the leaf damage caused by insect herbivores. Frankliniella occidentalis (Pergande) is highly destructive invasive pest in crop production worldwide. To investigate how elevated CO 2 affects F. occidentalis fed with Phaseolus vulgaris and in particularly, the interaction between plant defense and thrips anti-defense, nutrients content and antioxidant enzymes activity of P. vulgaris have been measured, as well as the detoxifying enzymes activity of adult thrips. Elevated CO 2 increased soluble sugar, soluble protein, and free amino acids content in non-thrips plants, and decreased SOD and POD activity in these plants. Thrips feeding reduced the nutrients content in plants, and increased their SOD, CAT and POD activity. Variation of nutrients content and antioxidant enzymes activity in plants showed an opposite tendency over thrips feeding time. After feeding, AchE, CarE, and MFO activity in thrips increased to against plant defense. More thrips densities induced stronger plant defense, in return, detoxifying enzymes in thrips increased over thrips number. Our study revealed that F. occidentalis can induce not only antioxidant-associated plant defense, but also the thrips detoxifying enzymes. Elevated CO 2 might not only enhance plant defense to thrips attack, but also increase thrips anti-defense against plant defense. This article is protected by copyright. All rights reserved.

  2. Humanized mouse lines and their application for prediction of human drug metabolism and toxicological risk assessment

    PubMed Central

    Cheung, Connie; Gonzalez, Frank J

    2008-01-01

    Cytochrome P450s (P450s) are important enzymes involved in the metabolism of xenobiotics, particularly clinically used drugs, and are also responsible for metabolic activation of chemical carcinogens and toxins. Many xenobiotics can activate nuclear receptors that in turn induce the expression of genes encoding xenobiotic metabolizing enzymes and drug transporters. Marked species differences in the expression and regulation of cytochromes P450 and xenobiotic nuclear receptors exist. Thus obtaining reliable rodent models to accurately reflect human drug and carcinogen metabolism is severely limited. Humanized transgenic mice were developed in an effort to create more reliable in vivo systems to study and predict human responses to xenobiotics. Human P450s or human xenobiotic-activated nuclear receptors were introduced directly or replaced the corresponding mouse gene, thus creating “humanized” transgenic mice. Mice expressing human CYP1A1/CYP1A2, CYP2E1, CYP2D6, CYP3A4, CY3A7, PXR, PPARα were generated and characterized. These humanized mouse models offers a broad utility in the evaluation and prediction of toxicological risk that may aid in the development of safer drugs. PMID:18682571

  3. Rapid birth-and-death evolution of the xenobiotic metabolizing NAT gene family in vertebrates with evidence of adaptive selection

    PubMed Central

    2013-01-01

    Background The arylamine N-acetyltransferases (NATs) are a unique family of enzymes widely distributed in nature that play a crucial role in the detoxification of aromatic amine xenobiotics. Considering the temporal changes in the levels and toxicity of environmentally available chemicals, the metabolic function of NATs is likely to be under adaptive evolution to broaden or change substrate specificity over time, making NATs a promising subject for evolutionary analyses. In this study, we trace the molecular evolutionary history of the NAT gene family during the last ~450 million years of vertebrate evolution and define the likely role of gene duplication, gene conversion and positive selection in the evolutionary dynamics of this family. Results A phylogenetic analysis of 77 NAT sequences from 38 vertebrate species retrieved from public genomic databases shows that NATs are phylogenetically unstable genes, characterized by frequent gene duplications and losses even among closely related species, and that concerted evolution only played a minor role in the patterns of sequence divergence. Local signals of positive selection are detected in several lineages, probably reflecting response to changes in xenobiotic exposure. We then put a special emphasis on the study of the last ~85 million years of primate NAT evolution by determining the NAT homologous sequences in 13 additional primate species. Our phylogenetic analysis supports the view that the three human NAT genes emerged from a first duplication event in the common ancestor of Simiiformes, yielding NAT1 and an ancestral NAT gene which in turn, duplicated in the common ancestor of Catarrhini, giving rise to NAT2 and the NATP pseudogene. Our analysis suggests a main role of purifying selection in NAT1 protein evolution, whereas NAT2 was predicted to mostly evolve under positive selection to change its amino acid sequence over time. These findings are consistent with a differential role of the two human isoenzymes

  4. Identification of a CYP3A form (CYP3A126) in fathead minnow (Pimephales promelas) and characterisation of putative CYP3A enzyme activity.

    PubMed

    Christen, Verena; Caminada, Daniel; Arand, Michael; Fent, Karl

    2010-01-01

    Cytochrome P450-dependent monooxygenases (CYPs) are involved in the metabolic defence against xenobiotics. Human CYP3A enzymes metabolise about 50% of all pharmaceuticals in use today. Induction of CYPs and associated xenobiotic metabolism occurs also in fish and may serve as a useful tool for biomonitoring of environmental contamination. In this study we report on the cloning of a CYP3A family gene from fathead minnows (Pimephales promelas), which has been designated as CYP3A126 by the P450 nomenclature committee (GenBank no. EU332792). The cDNA was isolated, identified and characterised by extended inverse polymerase chain reaction (PCR), an alternative to the commonly used method of rapid amplification of cDNA ends. In a fathead minnow cell line we identified a full-length cDNA sequence (1,863 base pairs (bp)) consisting of a 1,536 bp open reading frame encoding a 512 amino acid protein. Genomic analysis of the identified CYP3A isoenzyme revealed a DNA sequence consisting of 13 exons and 12 introns. CYP3A126 is also expressed in fathead minnow liver as demonstrated by reverse transcription PCR. Exposure of fathead minnow (FHM) cells with the CYP3A inducer rifampicin leads to dose-dependent increase in putative CYP3A enzyme activity. In contrast, inhibitory effects of diazepam treatment were observed on putative CYP3A enzyme activity and additionally on CYP3A126 mRNA expression. This indicates that CYP3A is active in FHM cells and that CYP3A126 is at least in part responsible for this CYP3A activity. Further investigations will show whether CYP3A126 is involved in the metabolism of environmental chemicals.

  5. The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism

    PubMed Central

    Spanogiannopoulos, Peter; Bess, Elizabeth N.; Carmody, Rachel N.; Turnbaugh, Peter J.

    2016-01-01

    Although the significance of human genetic polymorphisms in therapeutic outcomes is well established, the importance of our “second genome” (the microbiome) has been largely overlooked. In this Review, we highlight recent studies that shed light on the mechanisms linking the human gut microbiome to the efficacy and toxicity of xenobiotics, including drugs, dietary compounds and environmental toxins. Continued progress in this area could enable more precise tools for predicting patient responses and the development of a next generation of therapeutics based on or targeted at the gut microbiome. Indeed, the admirable goal of precision medicine may require us to first understand the microbial pharmacists within. PMID:26972811

  6. An enhanced in vivo stable isotope labeling by amino acids in cell culture (SILAC) model for quantification of drug metabolism enzymes.

    PubMed

    MacLeod, A Kenneth; Fallon, Padraic G; Sharp, Sheila; Henderson, Colin J; Wolf, C Roland; Huang, Jeffrey T-J

    2015-03-01

    Many of the enzymes involved in xenobiotic metabolism are maintained at a low basal level and are only synthesized in response to activation of upstream sensor/effector proteins. This induction can have implications in a variety of contexts, particularly during the study of the pharmacokinetics, pharmacodynamics, and drug-drug interaction profile of a candidate therapeutic compound. Previously, we combined in vivo SILAC material with a targeted high resolution single ion monitoring (tHR/SIM) LC-MS/MS approach for quantification of 197 peptide pairs, representing 51 drug metabolism enzymes (DME), in mouse liver. However, as important enzymes (for example, cytochromes P450 (Cyp) of the 1a and 2b subfamilies) are maintained at low or undetectable levels in the liver of unstimulated metabolically labeled mice, quantification of these proteins was unreliable. In the present study, we induced DME expression in labeled mice through synchronous ligand-mediated activation of multiple upstream nuclear receptors, thereby enhancing signals for proteins including Cyps 1a, 2a, 2b, 2c, and 3a. With this enhancement, 115 unique, lysine-containing, Cyp-derived peptides were detected in the liver of a single animal, as opposed to 56 in a pooled sample from three uninduced animals. A total of 386 peptide pairs were quantified by tHR/SIM, representing 68 Phase I, 30 Phase II, and eight control proteins. This method was employed to quantify changes in DME expression in the hepatic cytochrome P450 reductase null (HRN) mouse. We observed compensatory induction of several enzymes, including Cyps 2b10, 2c29, 2c37, 2c54, 2c55, 2e1, 3a11, and 3a13, carboxylesterase (Ces) 2a, and glutathione S-transferases (Gst) m2 and m3, along with down-regulation of hydroxysteroid dehydrogenases (Hsd) 11b1 and 17b6. Using DME-enhanced in vivo SILAC material with tHR/SIM, therefore, permits the robust analysis of multiple DME of importance to xenobiotic metabolism, with improved utility for the study of

  7. Induction of Nrf2-mediated cellular defenses and alteration of phase I activities as mechanisms of chemoprotective effects of coffee in the liver.

    PubMed

    Cavin, C; Marin-Kuan, M; Langouët, S; Bezençon, C; Guignard, G; Verguet, C; Piguet, D; Holzhäuser, D; Cornaz, R; Schilter, B

    2008-04-01

    Coffee consumption has been associated with a significant decrease in the risk of developing chronic diseases such as Parkinson disease, diabetes type-2 and several types of cancers (e.g. colon, liver). In the present study, a coffee-dependent induction of enzymes involved in xenobiotic detoxification processes was observed in rat liver and primary hepatocytes. In addition, coffee was found to induce the mRNA and protein expression of enzymes involved in cellular antioxidant defenses. These inductions were correlated with the activation of the Nrf2 transcription factor as shown using an ARE-reporter luciferase assay. The induction of detoxifying enzymes GSTs and AKR is compatible with a protection against both genotoxicity and cytotoxicity of aflatoxin B1 (AFB1). This hypothesis was confirmed in in vitro and ex vivo test systems, where coffee reduced both AFB1-DNA and protein adducts. Interestingly, coffee was also found to inhibit cytochrome CYP1A1/2, indicating that other mechanisms different from a stimulation of detoxification may also play a significant role in the chemoprotective effects of coffee. Further investigations in either human liver cell line and primary hepatocytes indicated that the chemoprotective effects of coffee against AFB1 genotoxicity are likely to be of relevance for humans. These data strongly suggest that coffee may protect against the adverse effects of AFB1. In addition, the coffee-mediated stimulation of the Nrf2-ARE pathway resulting in increased endogenous defense mechanisms against electrophilic but also oxidative insults further support that coffee may be associated with a protection against various types of chemical stresses.

  8. Expression and characterization of recombinant bifunctional enzymes with glutathione peroxidase and superoxide dismutase activities.

    PubMed

    Guan, Tuchen; Song, Jian; Wang, Yanan; Guo, Liying; Yuan, Lin; Zhao, Yingding; Gao, Yuan; Lin, Liangru; Wang, Yali; Wei, Jingyan

    2017-09-01

    To balance the production and decomposition of reactive oxygen species, living organisms have generated antioxidant enzymes and non-enzymatic antioxidant defense systems. Glutathione peroxidase (GPx) and superoxide dismutase (SOD) are two important antioxidant enzymes. Apart from their catalytic functions, they protect each other, resulting in more efficient removal of reactive oxygen species, protection of cells against injury, and maintenance of the normal metabolism of reactive oxygen species. SOD catalyzes the dismutation of the superoxide anion (O 2 •- ) to oxygen (O 2 ) and hydrogen peroxide (H 2 O 2 ). H 2 O 2 is then detoxified to water by GPx. In this study, human GPx1 Ser and the Alvinella pompejana SOD (ApSOD) gene were used to design and generate several recombinant proteins with both GPx and SOD activities by combining traditional fusion protein technology, a cysteine auxotrophic expression system, and a single protein production (SPP) system. Among the fusion proteins, Se-hGPx1 Ser -L-ApSOD exhibited the highest SOD and GPx activities. Additional research was conducted to better understand the properties of Se-hGPx1 Ser -L-ApSOD. The synergism of Se-hGPx1 Ser -L-ApSOD was evaluated by using an in vitro model. This research may facilitate future studies on the cooperation and catalytic mechanisms of GPx and SOD. We believe that the bifunctional enzyme has potential applications as a potent antioxidant. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Structure–function relationships of inhibition of mosquito cytochrome P450 enzymes by flavonoids of Andrographis paniculata.

    PubMed

    Kotewong, Rattanawadee; Duangkaew, Panida; Srisook, Ekaruth; Sarapusit, Songklod; Rongnoparut, Pornpimol

    2014-09-01

    The cytochrome P450 monooxygenases are known to play a major role in pyrethroid resistance, by means of increased rate of insecticide detoxification as a result of their overexpression. Inhibition of detoxification enzymes may help disrupting insect detoxifying defense system. The Anopheles minimus CYP6AA3 and CYP6P7 have shown pyrethroid degradation activity and been implicated in pyrethroid resistance. In this study inhibition of the extracts and constituents of Andrographis paniculata Nees. leaves and roots was examined against benzyloxyresorufin O-debenzylation (BROD) of CYP6AA3 and CYP6P7. Four purified flavones (5,7,4′-trihydroxyflavone, 5-hydroxy-7,8-dimethoxyflavone, 5-hydroxy-7,8,2′,3′-tetramethoxyflavone, and 5,4′-dihydroxy-7,8,2′,3′-tetramethoxyflavone), one flavanone (5-hydroxy-7,8-dimethoxyflavanone) and a diterpenoid (14-deoxy-11,12-didehydroandrographolide) containing inhibitory effects toward both enzymes were isolated from A. paniculata. Structure–function relationships were observed for modes and kinetics of inhibition among flavones, while diterpenoid and flavanone were inferior to flavones. Docking of flavones onto enzyme homology models reinforced relationships on flavone structures and inhibition modes. Cell-based inhibition assays employing 3-(4,5-dimethylthiazol-2-y-l)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assays revealed that these flavonoids efficiently increased susceptibility of CYP6AA3- and CYP6P7-expressing Spodoptera frugiperda (Sf9) cells to cypermethrin toxicity, due to inhibition effects on mosquito enzymes. Thus synergistic effects on cypermethrin toxicity of A. paniculata compounds as a result of enzyme inhibition could be useful for mosquito vector control and insecticide resistance management in the future.

  10. A Global Genomic and Genetic Strategy to Predict Pathway Activation of Xenobiotic Responsive Transcription Factors in the Mouse Liver

    EPA Science Inventory

    Many drugs and environmentally-relevant chemicals activate xenobiotic-responsive transcription factors(TF). Identification of target genes of these factors would be useful in predicting pathway activation in in vitro chemical screening. Starting with a large compendium of Affymet...

  11. Effects of zinc and influence of Acremonium lolii on growth parameters, chlorophyll a fluorescence and antioxidant enzyme activities of ryegrass (Lolium perenne L. cv Apollo).

    PubMed

    Bonnet, M; Camares, O; Veisseire, P

    2000-05-01

    The effects of zinc on growth, mineral content, chlorophyll a fluorescence, and detoxifying enzyme activity (ascorbate peroxidase (APX), EC 1.11.1.11; superoxide dismutase (SOD), EC 1.15.1.1) of ryegrass infected or not by Acremonium lolii, and treated with nutrient solution containing 0-50 mM ZnSO(4) were studied. The introduction of zinc induces stress with a decrease in growth at 1, 5 and 10 mM ZnSO(4) and a cessation of growth at 50 mM ZnSO(4), in ryegrass plants infected by A. lolii or not. This decrease in growth may be due to an accumulation of zinc in leaves. Nevertheless, symbiotic plants showed higher values in tiller number, an advantage conferred by the fungus. After 24 d of Zn exposure, leaf fresh weights and leaf water content were lower in plants growing with Zn in the culture medium and no advantage was conferred by the fungus to its host. An increase in Zn supply resulted in a decrease of the Ca, K, Mg, and Cu content of the leaves, a reduction in the quantum yield of electron flow throughout photosystem II (DeltaF/F(1)(m))and a lowering of the efficiency of photosynthetic energy conversion (F(v)/F(m)), compared to control plants. To counter this zinc stress, detoxifying enzymes APX and SOD increased (100%) when Zn reached the value of 50 mM in the nutrient solution. At 10 mM ZnSO(4), the presence of the fungus in the plant led to an increase in the threshold toxicity of plants to zinc by a diminution of APX activity.

  12. In vitro metabolism and interactions of pyridostigmine bromide, N,N-diethyl-m-toluamide, and permethrin in human plasma and liver microsomal enzymes.

    PubMed

    Abu-Qare, A W; Abou-Donia, M B

    2008-03-01

    1. The in vitro human plasma activity and liver microsomal metabolism of pyridostigmine bromide (PB), a prophylactic treatment against organophosphate nerve agent attack, N,N-diethyl-m-toluamide (DEET), an insect repellent, and permethrin, a pyrethroid insecticide, either alone or in combination were investigated. 2. The three chemicals disappeared from plasma in the following order: permethrin > PB > DEET. The combined incubation of DEET with either permethrin or PB had no effect on permethrin or PB. Binary incubation with permethrin decreased the metabolism of PB and its disappearance from plasma and binary incubation with PB decreased the metabolism of permethrin and its clearance from plasma. Incubation with PB and/or permethrin shortened the DEET terminal half-life in plasma. These agents behaved similarly when studied in liver microsomal assays. The combined incubation of DEET with PB or permethrin (alone or in combination) diminished DEET metabolism in microsomal systems. 3. The present study evidences that PB and permethrin are metabolized by both human plasma and liver microsomal enzymes and that DEET is mainly metabolized by liver oxidase enzymes. Combined exposure to test chemicals increases their neurotoxicity by impeding the body's ability to eliminate them because of the competition for detoxifying enzymes.

  13. Selection of Reference Genes for Expression Studies of Xenobiotic Adaptation in Tetranychus urticae.

    PubMed

    Morales, Mariany Ashanty; Mendoza, Bianca Marie; Lavine, Laura Corley; Lavine, Mark Daniel; Walsh, Douglas Bruce; Zhu, Fang

    2016-01-01

    Quantitative real-time PCR (qRT-PCR) is an extensively used, high-throughput method to analyze transcriptional expression of genes of interest. An appropriate normalization strategy with reliable reference genes is required for calculating gene expression across diverse experimental conditions. In this study, we aim to identify the most stable reference genes for expression studies of xenobiotic adaptation in Tetranychus urticae, an extremely polyphagous herbivore causing significant yield reduction of agriculture. We chose eight commonly used housekeeping genes as candidates. The qRT-PCR expression data for these genes were evaluated from seven populations: a susceptible and three acaricide resistant populations feeding on lima beans, and three other susceptible populations which had been shifted host from lima beans to three other plant species. The stability of the candidate reference genes was then assessed using four different algorithms (comparative ΔCt method, geNorm, NormFinder, and BestKeeper). Additionally, we used an online web-based tool (RefFinder) to assign an overall final rank for each candidate gene. Our study found that CycA and Rp49 are best for investigating gene expression in acaricide susceptible and resistant populations. GAPDH, Rp49, and Rpl18 are best for host plant shift studies. And GAPDH and Rp49 were the most stable reference genes when investigating gene expression under changes in both experimental conditions. These results will facilitate research in revealing molecular mechanisms underlying the xenobiotic adaptation of this notorious agricultural pest.

  14. Selection of Reference Genes for Expression Studies of Xenobiotic Adaptation in Tetranychus urticae

    PubMed Central

    Morales, Mariany Ashanty; Mendoza, Bianca Marie; Lavine, Laura Corley; Lavine, Mark Daniel; Walsh, Douglas Bruce; Zhu, Fang

    2016-01-01

    Quantitative real-time PCR (qRT-PCR) is an extensively used, high-throughput method to analyze transcriptional expression of genes of interest. An appropriate normalization strategy with reliable reference genes is required for calculating gene expression across diverse experimental conditions. In this study, we aim to identify the most stable reference genes for expression studies of xenobiotic adaptation in Tetranychus urticae, an extremely polyphagous herbivore causing significant yield reduction of agriculture. We chose eight commonly used housekeeping genes as candidates. The qRT-PCR expression data for these genes were evaluated from seven populations: a susceptible and three acaricide resistant populations feeding on lima beans, and three other susceptible populations which had been shifted host from lima beans to three other plant species. The stability of the candidate reference genes was then assessed using four different algorithms (comparative ΔCt method, geNorm, NormFinder, and BestKeeper). Additionally, we used an online web-based tool (RefFinder) to assign an overall final rank for each candidate gene. Our study found that CycA and Rp49 are best for investigating gene expression in acaricide susceptible and resistant populations. GAPDH, Rp49, and Rpl18 are best for host plant shift studies. And GAPDH and Rp49 were the most stable reference genes when investigating gene expression under changes in both experimental conditions. These results will facilitate research in revealing molecular mechanisms underlying the xenobiotic adaptation of this notorious agricultural pest. PMID:27570487

  15. Daphnia HR96 is a Promiscuous Xenobiotic and Endobiotic Nuclear Receptor

    PubMed Central

    Karimullina, Elina; Li, Yangchun; Ginjupalli, Gautam; Baldwin, William S.

    2012-01-01

    Daphnia pulex is the first crustacean to have its genome sequenced. The genome project provides new insight and data into how an aquatic crustacean may respond to environmental stressors, including toxicants. We cloned Daphnia pulex HR96 (DappuHR96), a nuclear receptor orthologous to the CAR/PXR/VDR group of nuclear receptors. In Drosophila melanogaster, (hormone receptor 96) HR96 responds to phenobarbital exposure and has been hypothesized as a toxicant receptor. Therefore, we set up a transactivation assay to test whether DappuHR96 is a promiscuous receptor activated by xenobiotics and endobiotics similar to the constitutive androstane receptor (CAR) and the pregnane X-receptor (PXR). Transactivation assays performed with a GAL4-HR96 chimera demonstrate that HR96 is a promiscuous toxicant receptor activated by a diverse set of chemicals such as pesticides, hormones, and fatty acids. Several environmental toxicants activate HR96 including estradiol, pyriproxyfen, chlorpyrifos, atrazine, and methane arsonate. We also observed repression of HR96 activity by chemicals such as triclosan, androstanol, and fluoxetine. Nearly 50% of the chemicals tested activated or inhibited HR96. Interestingly, unsaturated fatty acids were common activators or inhibitors of HR96 activity, indicating a link between diet and toxicant response. The omega-6 and omega-9 unsaturated fatty acids linoleic and oleic acid activated HR96, but the omega-3 unsaturated fatty acids alpha-linolenic acid and docosahexaenoic acid inhibited HR96, suggesting that these two distinct sets of lipids perform opposing roles in Daphnia physiology. This also provides a putative mechanism by which the ratio of dietary unsaturated fats may affect the ability of an organism to respond to a toxic insult. In summary, HR96 is a promiscuous nuclear receptor activated by numerous endo- and xenobiotics. PMID:22466357

  16. Discovery and characterization of a prevalent human gut bacterial enzyme sufficient for the inactivation of a family of plant toxins

    PubMed Central

    Koppel, Nitzan; Bisanz, Jordan E; Pandelia, Maria-Eirini

    2018-01-01

    Although the human gut microbiome plays a prominent role in xenobiotic transformation, most of the genes and enzymes responsible for this metabolism are unknown. Recently, we linked the two-gene ‘cardiac glycoside reductase’ (cgr) operon encoded by the gut Actinobacterium Eggerthella lenta to inactivation of the cardiac medication and plant natural product digoxin. Here, we compared the genomes of 25 E. lenta strains and close relatives, revealing an expanded 8-gene cgr-associated gene cluster present in all digoxin metabolizers and absent in non-metabolizers. Using heterologous expression and in vitro biochemical characterization, we discovered that a single flavin- and [4Fe-4S] cluster-dependent reductase, Cgr2, is sufficient for digoxin inactivation. Unexpectedly, Cgr2 displayed strict specificity for digoxin and other cardenolides. Quantification of cgr2 in gut microbiomes revealed that this gene is widespread and conserved in the human population. Together, these results demonstrate that human-associated gut bacteria maintain specialized enzymes that protect against ingested plant toxins. PMID:29761785

  17. Preparation of trout liver microsomes for iron speciation in P-450 enzymes by AE-FPLC with ICP-(ORS)MS detection.

    PubMed

    Rodríguez-Cea, Andrés; de la Campa, María Rosario Fernández; Sanz-Medel, Alfredo

    2005-01-01

    Cytochromes P-450 are members of a superfamily of hemoproteins involved in the oxidative metabolism of various physiological and xenobiotic compounds in eukaryotes and prokaryotes. The multiplicity of this group of enzymes has been widely studied by chromatographic techniques, mainly high-performance liquid chromatography (HPLC). Because these enzymes are membrane-bound proteins, sample preparation for chromatographic separation of P-450 enzymes requires a solubilization step. The sample-preparation procedures are critical, because detergents affect not only the efficiency of protein solubilization but also their further chromatographic resolution. Trout liver microsomes have been taken here as a model sample to investigate iron speciation in cytochrome P-450. Trouts were treated intraperitoneally with beta-naphthoflavone, a potent inducer of some P-450 enzymes, and a microsomal suspension containing 7.4+/-0.1 nmol mL(-1) P-450 enzymes was obtained by ultracentrifugation. Lubrol PX was selected as detergent for solubilization, resulting in about 90% solubilization recovery. The solubilized cytochromes P-450 were further separated by AE-FPLC, with UV detection, or coupled to ICP-MS with an octapole reaction system, ICP-(ORS)MS (monitoring Fe signals at masses 54, 56, and 57). A sampling procedure and chromatographic conditions are developed and were successfully applied to iron speciation in trout liver P-450 enzymes. ICP-(ORS)MS detection of P-450 enzymes is Fe-specific and so will give accurate information on the prosthetic group of the protein, which can constitute an advantageous alternative to classical methods for detection of these hemoproteins.

  18. Mercaptosuccinate Dioxygenase, a Cysteine Dioxygenase Homologue, from Variovorax paradoxus Strain B4 Is the Key Enzyme of Mercaptosuccinate Degradation

    PubMed Central

    Brandt, Ulrike; Schürmann, Marc; Steinbüchel, Alexander

    2014-01-01

    The versatile thiol mercaptosuccinate has a wide range of applications, e.g. in quantum dot research or in bioimaging. Its metabolism is investigated in Variovorax paradoxus strain B4, which can utilize this compound as the sole source of carbon and sulfur. Proteomic studies of strain B4 resulted in the identification of a putative mercaptosuccinate dioxygenase, a cysteine dioxygenase homologue, possibly representing the key enzyme in the degradation of mercaptosuccinate. Therefore, the putative mercaptosuccinate dioxygenase was heterologously expressed, purified, and characterized in this study. The results clearly demonstrated that the enzyme utilizes mercaptosuccinate with concomitant consumption of oxygen. Thus, the enzyme is designated as mercaptosuccinate dioxygenase. Succinate and sulfite were verified as the final reaction products. The enzyme showed an apparent Km of 0.4 mm, and a specific activity (Vmax) of 20.0 μmol min−1 mg−1 corresponding to a kcat of 7.7 s−1. Furthermore, the enzyme was highly specific for mercaptosuccinate, no activity was observed with cysteine, dithiothreitol, 2-mercaptoethanol, and 3-mercaptopropionate. These structurally related thiols did not have an inhibitory effect either. Fe(II) could clearly be identified as metal cofactor of the mercaptosuccinate dioxygenase with a content of 0.6 mol of Fe(II)/mol of enzyme. The recently proposed hypothesis for the degradation pathway of mercaptosuccinate based on proteome analyses could be strengthened in the present study. (i) Mercaptosuccinate is first converted to sulfinosuccinate by this mercaptosuccinate dioxygenase; (ii) sulfinosuccinate is spontaneously desulfinated to succinate and sulfite; and (iii) whereas succinate enters the central metabolism, sulfite is detoxified by the previously identified putative molybdopterin oxidoreductase. PMID:25228698

  19. The in vivo effects of adenine-induced chronic kidney disease on some renal and hepatic function and CYP450 metabolizing enzymes.

    PubMed

    Al Za'abi, M; Shalaby, A; Manoj, P; Ali, B H

    2017-05-04

    Adenine-induced model of chronic kidney disease (CKD) is a widely used model especially in studies testing novel nephroprotective agents. We investigated the effects of adenine-induced CKD in rats on the activities of some xenobiotic metabolizing enzymes in liver and kidneys, and on some in vivo indicators of drug metabolism (viz pentobarbitone sleeping time, and plasma concentration of theophylline 90 min post administration). CKD was induced by orally feeding adenine (0.25 % w/w) for 35 days. Adenine induced all the characteristics of CKD, which was confirmed by biochemical and histological findings. Glutathione concentration and activities of some enzymes involved in its metabolism were reduced in kidneys and livers of rats with CKD. Renal CYP450 1A1 activity was significantly inhibited by adenine, but other measured isoenzymes (1A2, 3A4 and 2E1) were not significantly affected. Adenine significantly prolonged pentobarbitone-sleeping time and increased plasma theophylline concentration 90 min post administration. Adenine also induced a moderate degree of hepatic damages as indicated histologically and by significant elevations in some plasma enzymes. The results suggest that adenine-induced CKD is associated with significant in vivo inhibitory activities on some drug-metabolizing enzymes, with most of the effect on the kidneys rather than the liver.

  20. Classification and modelling of non-extractable residue (NER) formation from xenobiotics in soil - a synthesis

    NASA Astrophysics Data System (ADS)

    Kaestner, Matthias; Nowak, Karolina; Miltner, Anja; Trapp, Stefan; Schaeffer, Andreas

    2014-05-01

    This presentation provides a comprehensive overview about the formation of non-extractable residues (NER) from organic pesticides and contaminants in soil and tries classifying the different types. Anthropogenic organic chemicals are deliberately (e.g. pesticides) or unintentionally (e.g. polyaromatic hydrocarbons [PAH], chlorinated solvents, pharmaceuticals) released in major amounts to nearly all compartments of the environment. Soils and sediments as complex matrices provide a wide variety of binding sites and are the major sinks for these compounds. Many of the xenobiotics entering soil undergo turnover processes and can be volatilised, leached to the groundwater, degraded by microorganisms or taken up and enriched by living organisms. Xenobiotic NER may be derived from parent compounds and primary metabolites that are sequestered (sorbed or entrapped) within the soil organic matter (type I NER) or can be covalently bound (type II NER). Especially type I NER may pose a considerably environmental risk of potential release. However, NER resulting from productive biodegradation, which means the conversion of carbon (or nitrogen) from the compounds into microbial biomass molecules during microbial degradation (type III, bioNER), do not pose any risk. Experimental and analytical approaches to clearly distinguish between the types are provided and a model to prospectively estimate their fate in soil is proposed.

  1. Molecular cloning of a family of xenobiotic-inducible drosophilid cytochrome P450s: Evidence for involvement in host-plant allelochemical resistance

    PubMed Central

    Danielson, Phillip B.; MacIntyre, Ross J.; Fogleman, James C.

    1997-01-01

    Cytochrome P450s constitute a superfamily of genes encoding mostly microsomal hemoproteins that play a dominant role in the metabolism of a wide variety of both endogenous and foreign compounds. In insects, xenobiotic metabolism (i.e., metabolism of insecticides and toxic natural plant compounds) is known to involve members of the CYP6 family of cytochrome P450s. Use of a 3′ RACE (rapid amplification of cDNA ends) strategy with a degenerate primer based on the conserved cytochrome P450 heme-binding decapeptide loop resulted in the amplification of four cDNA sequences representing another family of cytochrome P450 genes (CYP28) from two species of isoquinoline alkaloid-resistant Drosophila and the cosmopolitan species Drosophila hydei. The CYP28 family forms a monophyletic clade with strong regional homologies to the vertebrate CYP3 family and the insect CYP6 family (both of which are involved in xenobiotic metabolism) and to the insect CYP9 family (of unknown function). Induction of mRNA levels for three of the CYP28 cytochrome P450s by toxic host-plant allelochemicals (up to 11.5-fold) and phenobarbital (up to 49-fold) corroborates previous in vitro metabolism studies and suggests a potentially important role for the CYP28 family in determining patterns of insect–host-plant relationships through xenobiotic detoxification. PMID:9380713

  2. Photobiodegradation of chlorinated water pollutants by a combined TiO2-polyaniline-enzyme catalytic system

    NASA Astrophysics Data System (ADS)

    Campanella, Luigi; Crescentini, G.; Militerno, S.

    1995-10-01

    The removal of xenobiotic compounds, such as chlorophenols and pesticides, from municipal and industrial wastewaters is an important task because of the toxicity and the tendency to bioaccumulation of these compounds. Among the several methods proposed, photodegradation catalyzed by suspended inorganic semiconductors (i.e. TiO2) has lately received wide attention because this process is fast, leads to non-toxic final products and shows a high degradation efficiency. In this work, the results obtained in the photodegradation of monochlorophenols using a new catalyst, made of TiO2 and polyaniline both immobilized on a polyvinylchloride (PVC) membrane, in presence (and in absence) of an enzyme are presented. Different enzymes have been tested by adding 5, 10 or 15 U/mL to 50 mL of aqueous solution (1 multiplied by 10-4 mol/L) of o-chloro-phenol containing the catalytic membrane. The samples were irradiated using a QUV panel accelerated weathering tester, which simulates very well the solar radiation up to lambda equals 400 nm and HPLC was used to measure the variation of the compound's concentration with the time. While some enzymes (i.e., peroxidase) do not improve the photodegradation process since they do not survive under the irradiation conditions used, some of them show marked effect both in terms of rate degradation and time required to reach the total degradation of the compound examined. For example, the addition of Laccase reduces the 100% degradation time from 35 hrs to about 20 hrs. Attempts to immobilize the enzyme on the catalytic membrane (by adsorption) have been carried out and the performance of the catalyst with non-immobilized and immobilized enzyme has been studied.

  3. Characteristics of a newly isolated fungus Geotrichum candidum Dec 1 with broad degradation spectrum of xenobiotic compounds.

    PubMed

    Shoda, M

    2003-01-01

    A newly isolated fungus, Geotrichum candidum Dec 1 (abbreviated as Dec 1), was found to have the ability to degrade many xenobiotic compounds such as synthetic dyes, food coloring agents, molasses, organic halogens, lignin and kraft pulp effluents. The broad spectrum of the degradation of these compounds are associated mainly with peroxidases produced by the fungus.

  4. Sulforaphane-stimulated phase II enzyme induction inhibits cytokine production by airway epithelial cells stimulated with diesel extract.

    PubMed

    Ritz, Stacey A; Wan, Junxiang; Diaz-Sanchez, David

    2007-01-01

    Airborne particulate pollutants, such as diesel exhaust particles, are thought to exacerbate lung and cardiovascular diseases through induction of oxidative stress. Sulforaphane, derived from cruciferous vegetables, is the most potent known inducer of phase II enzymes involved in the detoxification of xenobiotics. We postulated that sulforaphane may be able to ameliorate the adverse effects of pollutants by upregulating expression of endogenous antioxidant enzymes. Stimulation of bronchial epithelial cells with the chemical constituents of diesel particles result in the production of proinflammatory cytokines. We first demonstrated a role for phase II enzymes in regulating diesel effects by transfecting the airway epithelial cell line (BEAS-2B) with the sentinel phase II enzyme NAD(P)H: quinine oxidoreductase 1 (NQO1). IL-8 production in response to diesel extract was significantly reduced in these compared with untransfected cells. We then examined whether sulforaphane would stimulate phase II induction and whether this would thereby ablate the effect of diesel extracts on cytokine production. We verified that sulforaphane significantly augmented expression of the phase II enzyme genes GSTM1 and NQO1 and confirmed that sulforaphane treatment increased glutathione S-transferase activity in epithelial cells without inducing cell death or apoptosis. Sulforaphane pretreatment inhibited IL-8 production by BEAS-2B cells upon stimulation with diesel extract. Similarly, whereas diesel extract stimulated production of IL-8, granulocyte-macrophage colony-stimulating factor, and IL-1beta from primary human bronchial epithelial cells, sulforaphane pretreatment inhibited diesel-induced production of all of these cytokines. Our studies show that sulforaphane can mitigate the effect of diesel in respiratory epithelial cells and demonstrate the chemopreventative potential of phase II enzyme enhancement.

  5. Non-targeted, high resolution mass spectrometry strategy for simultaneous monitoring of xenobiotics and endogenous compounds in green sea turtles on the Great Barrier Reef.

    PubMed

    Heffernan, Amy L; Gómez-Ramos, Maria M; Gaus, Caroline; Vijayasarathy, Soumini; Bell, Ian; Hof, Christine; Mueller, Jochen F; Gómez-Ramos, Maria J

    2017-12-01

    Chemical contamination poses a threat to ecosystem, biota and human health, and identifying these hazards is a complex challenge. Traditional hazard identification relies on a priori-defined targets of limited chemical scope, and is generally inappropriate for exploratory studies such as explaining toxicological effects in environmental systems. Here we present a non-target high resolution mass spectrometry environmental monitoring study with multivariate statistical analysis to simultaneously detect biomarkers of exposure (e.g. xenobiotics) and biomarkers of effect in whole turtle blood. Borrowing the concept from clinical chemistry, a case-control sampling approach was used to investigate the potential influence of xenobiotics of anthropogenic origin on free-ranging green sea turtles (Chelonia mydas) from a remote, offshore 'control' site; and two coastal 'case' sites influenced by urban/industrial and agricultural activities, respectively, on the Great Barrier Reef in North Queensland, Australia. Multiple biomarkers of exposure, including sulfonic acids (n=9), a carbamate insecticide metabolite, and other industrial chemicals; and five biomarkers of effect (lipid peroxidation products), were detected in case sites. Additionally, two endogenous biomarkers of neuroinflammation and oxidative stress were identified, and showed moderate-to-strong correlations with clinical measures of inflammation and liver dysfunction. Our data filtering strategy overcomes limitations of traditional a priori selection of target compounds, and adds to the limited environmental xenobiotic metabolomics literature. To our knowledge this is the first case-control study of xenobiotics in marine megafauna, and demonstrates the utility of green sea turtles to link internal and external exposure, to explain potential toxicological effects in environmental systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Biotransformation of Trichoderma spp. and Their Tolerance to Aromatic Amines, a Major Class of Pollutants

    PubMed Central

    Cocaign, Angélique; Bui, Linh-Chi; Silar, Philippe; Chan Ho Tong, Laetitia; Busi, Florent; Lamouri, Aazdine; Mougin, Christian; Rodrigues-Lima, Fernando

    2013-01-01

    Trichoderma spp. are cosmopolitan soil fungi that are highly resistant to many toxic compounds. Here, we show that Trichoderma virens and T. reesei are tolerant to aromatic amines (AA), a major class of pollutants including the highly toxic pesticide residue 3,4-dichloroaniline (3,4-DCA). In a previous study, we provided proof-of-concept remediation experiments in which another soil fungus, Podospora anserina, detoxifies 3,4-DCA through its arylamine N-acetyltransferase (NAT), a xenobiotic-metabolizing enzyme that enables acetyl coenzyme A-dependent detoxification of AA. To assess whether the N-acetylation pathway enables AA tolerance in Trichoderma spp., we cloned and characterized NATs from T. virens and T. reesei. We characterized recombinant enzymes by determining their catalytic efficiencies toward several toxic AA. Through a complementary approach, we also demonstrate that both Trichoderma species efficiently metabolize 3,4-DCA. Finally, we provide evidence that NAT-independent transformation is solely (in T. virens) or mainly (in T. reesei) responsible for the observed removal of 3,4-DCA. We conclude that T. virens and, to a lesser extent, T. reesei likely utilize another, unidentified, metabolic pathway for the detoxification of AA aside from acetylation. This is the first molecular and functional characterization of AA biotransformation in Trichoderma spp. Given the potential of Trichoderma for cleanup of contaminated soils, these results reveal new possibilities in the fungal remediation of AA-contaminated soil. PMID:23728813

  7. Biological definition of multiple chemical sensitivity from redox state and cytokine profiling and not from polymorphisms of xenobiotic-metabolizing enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Luca, Chiara; Scordo, Maria G.; Cesareo, Eleonora

    Background: Multiple chemical sensitivity (MCS) is a poorly clinically and biologically defined environment-associated syndrome. Although dysfunctions of phase I/phase II metabolizing enzymes and redox imbalance have been hypothesized, corresponding genetic and metabolic parameters in MCS have not been systematically examined. Objectives: We sought for genetic, immunological, and metabolic markers in MCS. Methods: We genotyped patients with diagnosis of MCS, suspected MCS and Italian healthy controls for allelic variants of cytochrome P450 isoforms (CYP2C9, CYP2C19, CYP2D6, and CYP3A5), UDP-glucuronosyl transferase (UGT1A1), and glutathione S-transferases (GSTP1, GSTM1, and GSTT1). Erythrocyte membrane fatty acids, antioxidant (catalase, superoxide dismutase (SOD)) and glutathione metabolizing (GST,more » glutathione peroxidase (Gpx)) enzymes, whole blood chemiluminescence, total antioxidant capacity, levels of nitrites/nitrates, glutathione, HNE-protein adducts, and a wide spectrum of cytokines in the plasma were determined. Results: Allele and genotype frequencies of CYPs, UGT, GSTM, GSTT, and GSTP were similar in the Italian MCS patients and in the control populations. The activities of erythrocyte catalase and GST were lower, whereas Gpx was higher than normal. Both reduced and oxidised glutathione were decreased, whereas nitrites/nitrates were increased in the MCS groups. The MCS fatty acid profile was shifted to saturated compartment and IFNgamma, IL-8, IL-10, MCP-1, PDGFbb, and VEGF were increased. Conclusions: Altered redox and cytokine patterns suggest inhibition of expression/activity of metabolizing and antioxidant enzymes in MCS. Metabolic parameters indicating accelerated lipid oxidation, increased nitric oxide production and glutathione depletion in combination with increased plasma inflammatory cytokines should be considered in biological definition and diagnosis of MCS.« less

  8. Studies on the role of six enzymes in the metabolism of kinetin in mustard aphid, Lipaphis erysimi (Kalt.).

    PubMed

    Rup, Pushpinder J; Sohal, S K; Kaur, H

    2006-07-01

    The activity of catalase, glutathione peroxidase, superoxide dismutase, O-demethylase, ATPase and succinate dehydrogenase, belonging to two main classes of detoxification enzymes (i.e. hydrolases and oxido-reductases), mostly involved in metabolism and degradation of xenobiotics in insects, were assessed under the influence of kinetin, a plant growth regulator (PGR). The nymphs (48-52 hr old) of Lipaphis erysimi (Kalt.) were permitted to feed on radish plant, Raphanus sativus L. treated with kinetin (400 ppm) for 13, 25 and 37 hr. It was found that the activity of catalase, glutathione peroxidase and superoxide dismutase increased significantly when compared with the control of the same age group, which indicated that these enzymes might be playing a significant role in the metabolism of kinetin in this insect. The activity of O-demethylase showed an increase up to 25 hr of the treatment but it decreased under prolonged treatment whereas the activity of succinate dehydrogenase fluctuated insignificantly. ATPase showed a decrease in the activity with the treatment suggesting kinetin's interference in synthesis of ATPase.

  9. Expression profiles of phases 1 and 2 metabolizing enzymes in human skin and the reconstructed skin models Episkin and full thickness model from Episkin.

    PubMed

    Luu-The, Van; Duche, Daniel; Ferraris, Corinne; Meunier, Jean-Roch; Leclaire, Jacques; Labrie, Fernand

    2009-09-01

    Episkin and full thickness model from Episkin (FTM) are human skin models obtained from in vitro growth of keratinocytes into the five typical layers of the epidermis. FTM is a full thickness reconstructed skin model that also contains fibroblasts seeded in a collagen matrix. To assess whether enzymes involved in chemical detoxification are expressed in Episkin and FTM and how their levels compare with the human epidermis, dermis and total skin. Quantification of the mRNA expression levels of phases 1 and 2 metabolizing enzymes in cultured Episkin and FTM and human epidermis, dermis and total skin using Realtime PCR. The data show that the expression profiles of 61 phases 1 and 2 metabolizing enzymes in Episkin, FTM and epidermis are generally similar, with some exceptions. Cytochrome P450-dependent enzymes and flavin monooxygenases are expressed at low levels, while phase 2 metabolizing enzymes are expressed at much higher levels, especially, glutathione-S-transferase P1 (GSTP1) catechol-O-methyl transferase (COMT), steroid sulfotransferase (SULT2B1b), and N-acetyl transferase (NAT5). The present study also identifies the presence of many enzymes involved in cholesterol, arachidonic acid, leukotriene, prostaglandin, eicosatrienoic acids, and vitamin D3 metabolisms. The present data strongly suggest that Episkin and FTM represent reliable and valuable in vitro human skin models for studying the function of phases 1 and 2 metabolizing enzymes in xenobiotic metabolisms. They could be used to replace invasive methods or laboratory animals for skin experiments.

  10. Cytochrome P450 humanised mice

    PubMed Central

    2004-01-01

    Humans are exposed to countless foreign compounds, typically referred to as xenobiotics. These can include clinically used drugs, environmental pollutants, food additives, pesticides, herbicides and even natural plant compounds. Xenobiotics are metabolised primarily in the liver, but also in the gut and other organs, to derivatives that are more easily eliminated from the body. In some cases, however, a compound is converted to an electrophile that can cause cell toxicity and transformation leading to cancer. Among the most important xenobiotic-metabolising enzymes are the cytochromes P450 (P450s). These enzymes represent a superfamily of multiple forms that exhibit marked species differences in their expression and catalytic activities. To predict how humans will metabolise xenobiotics, including drugs, human liver extracts and recombinant P450s have been used. New humanised mouse models are being developed which will be of great value in the study of drug metabolism, pharmacokinetics and pharmacodynamics in vivo, and in carrying out human risk assessment of xenobiotics. Humanised mice expressing CYP2D6 and CYP3A4, two major drug-metabolising P450s, have revealed the feasibility of this approach. PMID:15588489

  11. Biotransformation of albendazole and activities of selected detoxification enzymes in Haemonchus contortus strains susceptible and resistant to anthelmintics.

    PubMed

    Vokřál, Ivan; Jirásko, Robert; Stuchlíková, Lucie; Bártíková, Hana; Szotáková, Barbora; Lamka, Jiří; Várady, Marián; Skálová, Lenka

    2013-09-23

    The increased activity of drug-metabolizing enzymes can protect helminths against the toxic effect of anthelmintics. The aim of this study was to compare the metabolism of the anthelmintic drug albendazole (ABZ) and the activities of selected biotransformation and antioxidant enzymes in three different strains of Haemonchus contortus: the ISE strain (susceptible to common anthelmintics), the BR strain (resistant to benzimidazole anthelmintics) and the WR strain (multi-resistant). H. contortus adults were collected from the abomasum of experimentally infected lambs. In vitro (subcellular fractions of H. contortus homogenate) as well as ex vivo (living nematodes cultivated in flasks with medium) experiments were performed. HPLC with spectrofluorimetric and mass-spectrometric detection was used in the analysis of ABZ metabolites. The in vitro activities of oxidation/antioxidation and conjugation enzymes toward model substrates were also assayed. The in vitro data showed significant differences between the susceptible (ISE) and resistant (BR, WR) strains regarding the activities of peroxidases, catalase and UDP-glucosyltransferases. S-oxidation of ABZ was significantly lower in BR than in the ISE strain. Ex vivo, four ABZ metabolites were identified: ABZ sulphoxide and three ABZ glucosides. In the resistant strains BR and WR, the ex vivo formation of all ABZ glucosides was significantly higher than in the susceptible ISE strain. The altered activities of certain detoxifying enzymes might partly protect the parasites against the toxic effect of the drugs as well as contribute to drug-resistance in these parasites. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Engineering Herbicide Metabolism in Tobacco and Arabidopsis with CYP76B1, a Cytochrome P450 Enzyme from Jerusalem Artichoke1

    PubMed Central

    Didierjean, Luc; Gondet, Laurence; Perkins, Roberta; Lau, Sze-Mei Cindy; Schaller, Hubert; O'Keefe, Daniel P.; Werck-Reichhart, Danièle

    2002-01-01

    The Jerusalem artichoke (Helianthus tuberosus) xenobiotic inducible cytochrome P450, CYP76B1, catalyzes rapid oxidative dealkylation of various phenylurea herbicides to yield nonphytotoxic metabolites. We have found that increased herbicide metabolism and tolerance can be achieved by ectopic constitutive expression of CYP76B1 in tobacco (Nicotiana tabacum) and Arabidopsis. Transformation with CYP76B1 conferred on tobacco and Arabidopsis a 20-fold increase in tolerance to linuron, a compound detoxified by a single dealkylation, and a 10-fold increase in tolerance to isoproturon or chlortoluron, which need successive catalytic steps for detoxification. Two constructs for expression of translational fusions of CYP76B1 with P450 reductase were prepared to test if they would yield even greater herbicide tolerance. Plants expressing these constructs had lower herbicide tolerance than CYP76B1 alone, which is apparently a consequence of reduced stability of the fusion proteins. In all cases, increased herbicide tolerance results from more extensive metabolism, as demonstrated with exogenously fed phenylurea. Beside increased herbicide tolerance, expression of CYP76B1 has no other visible phenotype in the transgenic plants. Our data indicate that CYP76B1 can function as a selectable marker for plant transformation, allowing efficient selection in vitro and in soil-grown plants. Plants expressing CYP76B1 may also be a potential tool for phytoremediation of contaminated sites. PMID:12226498

  13. Passive rGE or developmental gene-environment cascade? An investigation of the role of xenobiotic metabolism genes in the association between smoke exposure during pregnancy and child birth weight

    PubMed Central

    Marceau, Kristine; Palmer, Rohan H.C.; Neiderhiser, Jenae M.; Smith, Taylor F.; McGeary, John E.; Knopik, Valerie S.

    2016-01-01

    There is considerable evidence that smoke exposure during pregnancy (SDP) environmentally influences birth weight after controlling for genetic influences and maternal characteristics. However, maternal smoking during pregnancy – the behavior that leads to smoke exposure during pregnancy – is also genetically-influenced, indicating the potential role of passive gene-environment correlation. An alternative to passive gene-SDP correlation is a cascading effect whereby maternal and child genetic influences are causally linked to prenatal exposures, which then have an ‘environmental’ effect on the development of the child’s biology and behavior. We describe and demonstrate a conceptual framework for disentangling passive rGE from this cascading GE effect using a systems-based polygenic scoring approach comprised of genes shown to be important in the xenobiotic (substances foreign to the body) metabolism pathway. Data were drawn from 5,044 families from the Avon Longitudinal Study of Parents and Children with information on maternal SDP, birth weight, and genetic polymorphisms in the xenobiotic pathway. Within a k-fold cross-validation approach (k=5), we created weighted maternal and child polygenic scores using 18 polymorphisms from 10 genes that have been implicated in the xenobiotic metabolism pathway. Mothers and children shared variation in xenobiotic metabolism genes. Amongst mothers who smoked during pregnancy, neither maternal nor child xenobiotic metabolism polygenic scores were associated with a higher likelihood of smoke exposure during pregnancy, or the severity of smoke exposure during pregnancy (and therefore, neither proposed mechanism was supported), or with child birth weight. SDP was consistently associated with lower child birth weight controlling for the polygenic scores, maternal educational attainment, social class, psychiatric problems, and age. Limitations of the study design and the potential of the framework using other designs are

  14. Effect of endotoxin and radio-detoxified endotoxin on the serum T4 level of rats and response of their thyroid gland to exogenous TSH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertok, L.; Nagy, S.U.

    Experiments were performed to demonstrate that, while the shock-inducing dose of parent (toxic) endotoxin significantly decreases the serum T4 level of rats and inhibits the T4 response given to exogenous thyroid stimulating hormone (TSH), the radio-detoxified (/sup 60/Co-gamma, 150 kGy) endotoxin preparation does not inhibit the response to exogenous TSH. It also decreases serum T4 level to a lesser extent than untreated endotoxin.

  15. Xenobiotic metabolism in human skin and 3D human skin reconstructs: a review.

    PubMed

    Gibbs, Sue; van de Sandt, Johannes J M; Merk, Hans F; Lockley, David J; Pendlington, Ruth U; Pease, Camilla K

    2007-12-01

    In this review, we discuss and compare studies of xenobiotic metabolism in both human skin and 3D human skin reconstructs. In comparison to the liver, the skin is a less studied organ in terms of characterising metabolic capability. While the skin forms the major protective barrier to environmental chemical exposure, it is also a potential target organ for adverse health effects. Occupational, accidental or intended-use exposure to toxic chemicals could result in acute or delayed injury to the skin (e.g. inflammation, allergy, cancer). Skin metabolism may play a role in the manifestation or amelioration of adverse effects via the topical route. Today, we have robust testing strategies to assess the potential for local skin toxicity of chemical exposure. Such methods (e.g. the local lymph node assay for assessing skin sensitisation; skin painting carcinogenicity studies) incorporate skin metabolism implicitly in the in vivo model system used. In light of recent European legislation (i.e. 7(th) Amendment to the Cosmetics Directive and Registration Evaluation and Authorisation of existing Chemicals (REACH)), non-animal approaches will be required to reduce and replace animal experiments for chemical risk assessment. It is expected that new models and approaches will need to account for skin metabolism explicitly, as the mechanisms of adverse effects in the skin are deconvoluted. 3D skin models have been proposed as a tool to use in new in vitro alternative approaches. In order to be able to use 3D skin models in this context, we need to understand their metabolic competency in relation to xenobiotic biotransformation and whether functional activity is representative of that seen in human skin.

  16. Sex- and age-dependent gene expression in human liver: An implication for drug-metabolizing enzymes.

    PubMed

    Uno, Yasuhiro; Takata, Ryo; Kito, Go; Yamazaki, Hiroshi; Nakagawa, Kazuko; Nakamura, Yusuke; Kamataki, Tetsuya; Katagiri, Toyomasa

    2017-02-01

    Sex and age differences in hepatic expression of drug-metabolizing enzyme genes could cause variations in drug metabolism, but has not been fully elucidated, especially in Asian population. In this study, the global expression of human hepatic genes was analyzed by microarrays in 40 Japanese subjects (27 males and 13 females). Thirty-five sex-biased genes were identified (P < 0.005). Whereas, 60 age-biased genes in two age groups, <60 years and ≥70 years (P < 0.001), were identified in males. By Gene Ontology analysis, the sex-biased genes were related to protein catabolism and modification, while the age-biased genes were related to transcription regulation and cell death. Quantitative polymerase chain reaction confirmed the female-biased expression of drug-metabolizing enzyme genes BChE, CYP4X1, and SULT1E1 (≥1.5-fold, P < 0.05). Further analysis of drug-metabolizing enzyme genes indicated that expression of CYP2A6 and CYP3A4 in females in the ≥70 age group was less than in the <60 age group (≥1.5-fold, P < 0.05), and this trend was also observed for PXR expression in males (≥1.5-fold, P < 0.05). The results presented provide important insights into hepatic physiology and function, especially drug metabolism, with respect to sex and age. Copyright © 2016 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  17. Key role for a glutathione transferase in multiple-herbicide resistance in grass weeds.

    PubMed

    Cummins, Ian; Wortley, David J; Sabbadin, Federico; He, Zhesi; Coxon, Christopher R; Straker, Hannah E; Sellars, Jonathan D; Knight, Kathryn; Edwards, Lesley; Hughes, David; Kaundun, Shiv Shankhar; Hutchings, Sarah-Jane; Steel, Patrick G; Edwards, Robert

    2013-04-09

    Multiple-herbicide resistance (MHR) in black-grass (Alopecurus myosuroides) and annual rye-grass (Lolium rigidum) is a global problem leading to a loss of chemical weed control in cereal crops. Although poorly understood, in common with multiple-drug resistance (MDR) in tumors, MHR is associated with an enhanced ability to detoxify xenobiotics. In humans, MDR is linked to the overexpression of a pi class glutathione transferase (GSTP1), which has both detoxification and signaling functions in promoting drug resistance. In both annual rye-grass and black-grass, MHR was also associated with the increased expression of an evolutionarily distinct plant phi (F) GSTF1 that had a restricted ability to detoxify herbicides. When the black-grass A. myosuroides (Am) AmGSTF1 was expressed in Arabidopsis thaliana, the transgenic plants acquired resistance to multiple herbicides and showed similar changes in their secondary, xenobiotic, and antioxidant metabolism to those determined in MHR weeds. Transcriptome array experiments showed that these changes in biochemistry were not due to changes in gene expression. Rather, AmGSTF1 exerted a direct regulatory control on metabolism that led to an accumulation of protective flavonoids. Further evidence for a key role for this protein in MHR was obtained by showing that the GSTP1- and MDR-inhibiting pharmacophore 4-chloro-7-nitro-benzoxadiazole was also active toward AmGSTF1 and helped restore herbicide control in MHR black-grass. These studies demonstrate a central role for specific GSTFs in MHR in weeds that has parallels with similar roles for unrelated GSTs in MDR in humans and shows their potential as targets for chemical intervention in resistant weed management.

  18. Key role for a glutathione transferase in multiple-herbicide resistance in grass weeds

    PubMed Central

    Cummins, Ian; Wortley, David J.; Sabbadin, Federico; He, Zhesi; Coxon, Christopher R.; Straker, Hannah E.; Sellars, Jonathan D.; Knight, Kathryn; Hughes, David; Kaundun, Shiv Shankhar; Hutchings, Sarah-Jane; Steel, Patrick G.; Edwards, Robert

    2013-01-01

    Multiple-herbicide resistance (MHR) in black-grass (Alopecurus myosuroides) and annual rye-grass (Lolium rigidum) is a global problem leading to a loss of chemical weed control in cereal crops. Although poorly understood, in common with multiple-drug resistance (MDR) in tumors, MHR is associated with an enhanced ability to detoxify xenobiotics. In humans, MDR is linked to the overexpression of a pi class glutathione transferase (GSTP1), which has both detoxification and signaling functions in promoting drug resistance. In both annual rye-grass and black-grass, MHR was also associated with the increased expression of an evolutionarily distinct plant phi (F) GSTF1 that had a restricted ability to detoxify herbicides. When the black-grass A. myosuroides (Am) AmGSTF1 was expressed in Arabidopsis thaliana, the transgenic plants acquired resistance to multiple herbicides and showed similar changes in their secondary, xenobiotic, and antioxidant metabolism to those determined in MHR weeds. Transcriptome array experiments showed that these changes in biochemistry were not due to changes in gene expression. Rather, AmGSTF1 exerted a direct regulatory control on metabolism that led to an accumulation of protective flavonoids. Further evidence for a key role for this protein in MHR was obtained by showing that the GSTP1- and MDR-inhibiting pharmacophore 4-chloro-7-nitro-benzoxadiazole was also active toward AmGSTF1 and helped restore herbicide control in MHR black-grass. These studies demonstrate a central role for specific GSTFs in MHR in weeds that has parallels with similar roles for unrelated GSTs in MDR in humans and shows their potential as targets for chemical intervention in resistant weed management. PMID:23530204

  19. Xenobiotics that affect oxidative phosphorylation alter differentiation of human adipose-derived stem cells at concentrations that are found in human blood

    PubMed Central

    Llobet, Laura; Toivonen, Janne M.; Montoya, Julio; Ruiz-Pesini, Eduardo; López-Gallardo, Ester

    2015-01-01

    ABSTRACT Adipogenesis is accompanied by differentiation of adipose tissue-derived stem cells to adipocytes. As part of this differentiation, biogenesis of the oxidative phosphorylation system occurs. Many chemical compounds used in medicine, agriculture or other human activities affect oxidative phosphorylation function. Therefore, these xenobiotics could alter adipogenesis. We have analyzed the effects on adipocyte differentiation of some xenobiotics that act on the oxidative phosphorylation system. The tested concentrations have been previously reported in human blood. Our results show that pharmaceutical drugs that decrease mitochondrial DNA replication, such as nucleoside reverse transcriptase inhibitors, or inhibitors of mitochondrial protein synthesis, such as ribosomal antibiotics, diminish adipocyte differentiation and leptin secretion. By contrast, the environmental chemical pollutant tributyltin chloride, which inhibits the ATP synthase of the oxidative phosphorylation system, can promote adipocyte differentiation and leptin secretion, leading to obesity and metabolic syndrome as postulated by the obesogen hypothesis. PMID:26398948

  20. Fermented wheat aleurone induces enzymes involved in detoxification of carcinogens and in antioxidative defence in human colon cells.

    PubMed

    Stein, Katrin; Borowicki, Anke; Scharlau, Daniel; Glei, Michael

    2010-10-01

    Dietary fibre is fermented by the human gut flora resulting mainly in the formation of SCFA, for example, acetate, propionate and butyrate. SCFA, in particular butyrate, may be important for secondary cancer prevention by inducing apoptosis and inhibiting cell growth of cancer cells, thereby inhibiting the promotion and/or progression of cancer. Furthermore, SCFA could also act on primary cancer prevention by activation of detoxifying and antioxidative enzymes. We investigated the effects of fermented wheat aleurone on the expression of genes involved in stress response and toxicity, activity of drug-metabolising enzymes and anti-genotoxic potential. Aleurone was digested and fermented in vitro to obtain samples that reflect the content of the colon. HT29 cells and colon epithelial stripes were incubated with the resulting fermentation supernatant fractions (fs) and effects on mRNA expression of CAT, GSTP1 and SULT2B1 and enzyme activity of glutathione S-transferase (GST) and catalase (CAT) were measured. Fermented aleurone was also used to study the protection against H2O2-induced DNA damage in HT29 cells. The fs of aleurone significantly induced the mRNA expression of CAT, GSTP1 and SULT2B1 (HT29) and GSTP1 (epithelial stripes), respectively. The enzyme activities of GST (HT29) and CAT (HT29, epithelial stripes) were also unambiguously increased (1.4- to 3.7-fold) by the fs of aleurone. DNA damage induced by H2O2 was significantly reduced by the fs of aleurone after 48 h, whereupon no difference was observed compared with the faeces control. In conclusion, fermented aleurone is able to act on primary prevention by inducing mRNA expression and the activity of enzymes involved in detoxification of carcinogens and antioxidative defence.

  1. Liver X receptor alpha mediated genistein induction of human dehydroepiandrosterone sulfotransferase (hSULT2A1) in Hep G2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yue; Zhang, Shunfen; Zhou, Tianyan

    2013-04-15

    Cytosolic sulfotransferases are one of the major families of phase II drug metabolizing enzymes. Sulfotransferase-catalyzed sulfonation regulates hormone activities, metabolizes drugs, detoxifies xenobiotics, and bioactivates carcinogens. Human dehydroepiandrosterone sulfotransferase (hSULT2A1) plays important biological roles by sulfating endogenous hydroxysteroids and exogenous xenobiotics. Genistein, mainly existing in soy food products, is a naturally occurring phytoestrogen with both chemopreventive and chemotherapeutic potential. Our previous studies have shown that genistein significantly induces hSULT2A1 in Hep G2 and Caco-2 cells. In this study, we investigated the roles of liver X receptor (LXRα) in the genistein induction of hSULT2A1. LXRs have been shown to induce expressionmore » of mouse Sult2a9 and hSULT2A1 gene. Our results demonstrate that LXRα mediates the genistein induction of hSULT2A1, supported by Western blot analysis results, hSULT2A1 promoter driven luciferase reporter gene assay results, and mRNA interference results. Chromatin immunoprecipitation (ChIP) assay results demonstrate that genistein increase the recruitment of hLXRα binding to the hSULT2A1 promoter. These results suggest that hLXRα plays an important role in the hSULT2A1 gene regulation. The biological functions of phytoestrogens may partially relate to their induction activity toward hydroxysteroid SULT. - Highlights: ► Liver X receptor α mediated genistein induction of hSULT2A1 in Hep G2 cells. ► LXRα and RXRα dimerization further activated this induction. ► Western blot results agreed well with luciferase reporter gene assay results. ► LXRs gene silencing significantly decreased hSULT2A1 expression. ► ChIP analysis suggested that genistein enhances hLXRα binding to the hSULT2A1 promoter.« less

  2. Nicotine as a Factor in Stress Responsiveness Among Detoxified Alcoholics

    PubMed Central

    Gilbertson, Rebecca; Frye, Reginald F.; Nixon, Sara Jo

    2011-01-01

    Aims: The effect of transdermal nicotine on stress reactivity was investigated in currently smoking, detoxified, substance-dependent individuals (65% alcohol dependent, n = 51; 31 male) following a psychosocial stressor. Methods: Using a randomized, double-blind, placebo-controlled design, subjects were assigned to receive either active transdermal nicotine (low or high dose) or placebo. Six hours following nicotine administration, subjects performed a laboratory psychosocial stressor consisting of two 4-min public-speaking sessions. Results: Consistent with prior reports, substance-dependent individuals displayed a blunted stress response. However, a review of the cortisol distribution data encouraged additional analyses. Notably, a significant minority of the substance-dependent individuals (33%) demonstrated elevated poststress cortisol levels. This group of responders was more likely to be alcohol dependent and to have received the high dose of nicotine [χ2(2) = 32, P < 0.0001], [χ2(2) = 18.66, P < 0.0001]. Differences in salivary cortisol responses between responders and nonresponders could not be accounted for by the length of sobriety, nicotine withdrawal levels, anxiety or depressive symptomatology at the time of the psychosocial stressor. Conclusion: These results suggest that nicotine administration may support a normalization of the salivary cortisol response following psychosocial stress in subgroups of substance-dependent individuals, particularly those who are alcohol dependent. Given the association between blunted cortisol levels and relapse, and the complex actions of nicotine at central and peripheral sites, these findings support the systematic study of factors including nicotine, which may influence stress reactivity and the recovery process in alcohol-dependent individuals. PMID:21045074

  3. Geraniol Pharmacokinetics, Bioavailability and Its Multiple Effects on the Liver Antioxidant and Xenobiotic-Metabolizing Enzymes.

    PubMed

    Pavan, Barbara; Dalpiaz, Alessandro; Marani, Luca; Beggiato, Sarah; Ferraro, Luca; Canistro, Donatella; Paolini, Moreno; Vivarelli, Fabio; Valerii, Maria C; Comparone, Antonietta; De Fazio, Luigia; Spisni, Enzo

    2018-01-01

    Geraniol is a natural monoterpene showing anti-inflammatory, antioxidant, neuroprotective and anticancer effects. No pharmacokinetic and bioavailability data on geraniol are currently available. We therefore performed a systematic study to identify the permeation properties of geraniol across intestinal cells, and its pharmacokinetics and bioavailability after intravenous and oral administration to rats. In addition, we systematically investigated the potential hepatotoxic effects of high doses of geraniol on hepatic phase I, phase II and antioxidant enzymatic activities and undertook a hematochemical analysis on mice. Permeation studies performed via HPLC evidenced geraniol permeability coefficients across an in vitro model of the human intestinal wall for apical to basolateral and basolateral to apical transport of 13.10 ± 2.3 × 10 -3 and 2.1 ± 0.1⋅× 10 -3 cm/min, respectively. After intravenous administration of geraniol to rats (50 mg/kg), its concentration in whole blood (detected via HPLC) decreased following an apparent pseudo-first order kinetics with a half-life of 12.5 ± 1.5 min. The absolute bioavailability values of oral formulations (50 mg/kg) of emulsified geraniol or fiber-adsorbed geraniol were 92 and 16%, respectively. Following emulsified oral administration, geraniol amounts in the cerebrospinal fluid of rats ranged between 0.72 ± 0.08 μg/mL and 2.6 ± 0.2 μg/mL within 60 min. Mice treated with 120 mg/kg of geraniol for 4 weeks showed increased anti-oxidative defenses with no signs of liver toxicity. CYP450 enzyme activities appeared only slightly affected by the high dosage of geraniol.

  4. Second-generation ethanol from non-detoxified sugarcane hydrolysate by a rotting wood isolated yeast strain.

    PubMed

    Bazoti, Suzana F; Golunski, Simone; Pereira Siqueira, Diego; Scapini, Thamarys; Barrilli, Évelyn T; Alex Mayer, Diego; Barros, Katharina O; Rosa, Carlos A; Stambuk, Boris U; Alves, Sérgio L; Valério, Alexsandra; de Oliveira, Débora; Treichel, Helen

    2017-11-01

    This work aims to evaluate the production of second-generation ethanol from sugarcane bagasse hydrolysate without acetic acid (inhibitor) detoxification. Three isolated yeast strains from lignocellulosic materials were evaluated, and one strain (UFFS-CE-3.1.2), identified using large subunit rDNA sequences as Wickerhamomyces sp., showed satisfactory results in terms of ethanol production without acetic acid removal. A Plackett-Burman design was used to evaluate the influence of hydrolysate composition and nutrients supplementation in the fermentation medium for the second-generation ethanol production. Two fermentation kinetics were performed, with controlled pH at 5.5, or keeping the initial pH at 4.88. The fermentation conducted without pH adjustment and supplementation of nutrients reported the best result in terms of second-generation ethanol production. Wickerhamomyces sp., isolated as UFFS-CE-3.1.2, was considered promising in the production of second-generation ethanol by using crude (non-detoxified) sugarcane hydrolysate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Low levels of graphene and graphene oxide inhibit cellular xenobiotic defense system mediated by efflux transporters.

    PubMed

    Liu, Su; Jiang, Wei; Wu, Bing; Yu, Jing; Yu, Haiyan; Zhang, Xu-Xiang; Torres-Duarte, Cristina; Cherr, Gary N

    2016-01-01

    Low levels of graphene and graphene oxide (GO) are considered to be environmentally safe. In this study, we analyzed the potential effects of graphene and GO at relatively low concentrations on cellular xenobiotic defense system mediated by efflux transporters. The results showed that graphene (<0.5 μg/mL) and GO (<20 μg/mL) did not decrease cell viability, generate reactive oxygen species, or disrupt mitochondrial function. However, graphene and GO at the nontoxic concentrations could increase calcein-AM (CAM, an indicator of membrane ATP-binding cassette (ABC) transporter) activity) accumulation, indicating inhibition of ABC transporters' efflux capabilities. This inhibition was observed even at 0.005 μg/mL graphene and 0.05 μg/mL GO, which are 100 times and 400 times lower than their lowest toxic concentration from cytotoxicity experiments, respectively. The inhibition of ABC transporters significantly increased the toxicity of paraquat and arsenic, known substrates of ABC transporters. The inhibition of ABC transporters was found to be based on graphene and GO damaging the plasma membrane structure and fluidity, thus altering functions of transmembrane ABC transporters. This study demonstrates that low levels of graphene and GO are not environmentally safe since they can significantly make cell more susceptible to other xenobiotics, and this chemosensitizing activity should be considered in the risk assessment of graphene and GO.

  6. A gene horizontally transferred from bacteria protects arthropods from host plant cyanide poisoning

    PubMed Central

    Wybouw, Nicky; Dermauw, Wannes; Tirry, Luc; Stevens, Christian; Grbić, Miodrag; Feyereisen, René; Van Leeuwen, Thomas

    2014-01-01

    Cyanogenic glucosides are among the most widespread defense chemicals of plants. Upon plant tissue disruption, these glucosides are hydrolyzed to a reactive hydroxynitrile that releases toxic hydrogen cyanide (HCN). Yet many mite and lepidopteran species can thrive on plants defended by cyanogenic glucosides. The nature of the enzyme known to detoxify HCN to β-cyanoalanine in arthropods has remained enigmatic. Here we identify this enzyme by transcriptome analysis and functional expression. Phylogenetic analysis showed that the gene is a member of the cysteine synthase family horizontally transferred from bacteria to phytophagous mites and Lepidoptera. The recombinant mite enzyme had both β-cyanoalanine synthase and cysteine synthase activity but enzyme kinetics showed that cyanide detoxification activity was strongly favored. Our results therefore suggest that an ancient horizontal transfer of a gene originally involved in sulfur amino acid biosynthesis in bacteria was co-opted by herbivorous arthropods to detoxify plant produced cyanide. DOI: http://dx.doi.org/10.7554/eLife.02365.001 PMID:24843024

  7. Effects of a Model Inducer, Phenobarbital, on Thyroid Hormone Glucuronidation in Rat Hepatocytes

    EPA Science Inventory

    In vivo, hepatic enzyme inducers such as phenobarbital (PB) decrease circulating thyroid hormone (TH) concentrations. This decrease in circulating TH occurs in part through extrathyroidal mechanisms. Specifically, through the induction of hepatic xenobiotic metabolizing enzymes...

  8. Use of biomarkers to evaluate the ecological risk of xenobiotics associated with agriculture.

    PubMed

    Lima, Liana Bezerra Dias de; Morais, Paula Benevides de; Andrade, Ricardo Lopes Tortorela de; Mattos, Luciana Vieira; Moron, Sandro Estevan

    2018-06-01

    This research aimed to evaluate the ecological risk of xenobiotics associated with agricultural activities by determining metal contents and biomarker responses using tucunaré (Cichla sp.) as a bioindicator. The work was conducted in the southwest region of the state of Tocantins, in the cities of Lagoa da Confusão and Pium. Water samples and specimens of Cichla sp. were collected in the Javaés and Formoso Rivers at three collection points (A, B and C). The concentrations of Cd, Pb, Cu, Cr, Mn, Ni and Zn in water and fish were analyzed. In fish, genotoxic, biochemical (glucose serum levels, AST (aspartate aminotransferase) and ALT (alanine aminotransferase) and histological (gills and liver) biomarkers were assessed. In the water, the Cr and Mn concentrations at the three collection points exceeded the values for Class 1 rivers. In the muscle, Cr was above the maximum limit allowed for human consumption at the three collection points, although the values at Points B and C were not significantly different from that at Point A (p > 0.05). At the three collection points, the micronucleus test revealed a low frequency of micronuclei. Significant hyperglycemia and a decrease in the AST activity of the fish collected at Point C was observed. In the gills, the most frequent alterations were at Stages I and II, which indicated mild to moderate damage, and epithelial detachment was the most frequent variation. In the liver tissue, the most frequently observed histological changes were at Stages I and II and included cytoplasmic vacuolization, nuclear hypertrophy, dilated sinusoids and bile stagnation. The integrated evaluation of these biomarkers indicated that fish collected from areas with intense agricultural activities presented adaptive responses that were likely caused by the availability and bioaccumulation of certain xenobiotics in the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Episodic Memory in Detoxified Alcoholics: Contribution of Grey Matter Microstructure Alteration

    PubMed Central

    Chanraud, Sandra; Leroy, Claire; Martelli, Catherine; Kostogianni, Nikoleta; Delain, Françoise; Aubin, Henri-Jean; Reynaud, Michel; Martinot, Jean-Luc

    2009-01-01

    Even though uncomplicated alcoholics may likely have episodic memory deficits, discrepancies exist regarding to the integrity of brain regions that underlie this function in healthy subjects. Possible relationships between episodic memory and 1) brain microstructure assessed by magnetic resonance diffusion tensor imaging (DTI), 2) brain volumes assessed by voxel-based morphometry (VBM) were investigated in uncomplicated, detoxified alcoholics. Diffusion and morphometric analyses were performed in 24 alcohol dependent men without neurological or somatic complications and in 24 healthy men. The mean apparent coefficient of diffusion (ADC) and grey matter volumes were measured in the whole brain. Episodic memory performance was assessed using a French version of the Free and Cued Selective Reminding Test (FCSRT). Correlation analyses between verbal episodic memory, brain microstructure, and brain volumes were carried out using SPM2 software. In those with alcohol dependence, higher ADC was detected mainly in frontal, temporal and parahippocampal regions, and in the cerebellum. In alcoholics, regions with higher ADC typically also had lower grey matter volume. Low verbal episodic memory performance in alcoholism was associated with higher mean ADC in parahippocampal areas, in frontal cortex and in the left temporal cortex; no correlation was found between regional volumes and episodic memory scores. Regression analyses for the control group were not significant. These findings support the hypothesis that regional microstructural but no macrostructural alteration of the brain might be responsible, at least in part, for episodic memory deficits in alcohol dependence. PMID:19707568

  10. Geraniol Pharmacokinetics, Bioavailability and Its Multiple Effects on the Liver Antioxidant and Xenobiotic-Metabolizing Enzymes

    PubMed Central

    Pavan, Barbara; Dalpiaz, Alessandro; Marani, Luca; Beggiato, Sarah; Ferraro, Luca; Canistro, Donatella; Paolini, Moreno; Vivarelli, Fabio; Valerii, Maria C.; Comparone, Antonietta; De Fazio, Luigia; Spisni, Enzo

    2018-01-01

    Geraniol is a natural monoterpene showing anti-inflammatory, antioxidant, neuroprotective and anticancer effects. No pharmacokinetic and bioavailability data on geraniol are currently available. We therefore performed a systematic study to identify the permeation properties of geraniol across intestinal cells, and its pharmacokinetics and bioavailability after intravenous and oral administration to rats. In addition, we systematically investigated the potential hepatotoxic effects of high doses of geraniol on hepatic phase I, phase II and antioxidant enzymatic activities and undertook a hematochemical analysis on mice. Permeation studies performed via HPLC evidenced geraniol permeability coefficients across an in vitro model of the human intestinal wall for apical to basolateral and basolateral to apical transport of 13.10 ± 2.3 × 10-3 and 2.1 ± 0.1⋅× 10-3 cm/min, respectively. After intravenous administration of geraniol to rats (50 mg/kg), its concentration in whole blood (detected via HPLC) decreased following an apparent pseudo-first order kinetics with a half-life of 12.5 ± 1.5 min. The absolute bioavailability values of oral formulations (50 mg/kg) of emulsified geraniol or fiber-adsorbed geraniol were 92 and 16%, respectively. Following emulsified oral administration, geraniol amounts in the cerebrospinal fluid of rats ranged between 0.72 ± 0.08 μg/mL and 2.6 ± 0.2 μg/mL within 60 min. Mice treated with 120 mg/kg of geraniol for 4 weeks showed increased anti-oxidative defenses with no signs of liver toxicity. CYP450 enzyme activities appeared only slightly affected by the high dosage of geraniol. PMID:29422862

  11. Piper betle Induced Cytoprotective Genes and Proteins via the Nrf2/ARE Pathway in Aging Mice.

    PubMed

    Aliahmat, Nor Syahida; Abdul Sani, Nur Fathiah; Wan Hasan, Wan Nuraini; Makpol, Suzana; Wan Ngah, Wan Zurinah; Mohd Yusof, Yasmin Anum

    2016-01-01

    The objective of this study was to elucidate the underlying antioxidant mechanism of aqueous extract of Piper betle (PB) in aging rats. The nuclear factor erythroid 2-related factor 2 (Nrf2)/ARE pathway involving phase II detoxifying and antioxidant enzymes plays an important role in the antioxidant system by reducing electrophiles and reactive oxygen species through induction of phase II enzymes and proteins. Genes and proteins of phase II detoxifying antioxidant enzymes were analyzed by QuantiGenePlex 2.0 Assay and Western blot analysis. PB significantly induced genes and proteins of phase II and antioxidant enzymes, NAD(P)H quinone oxidoreductase 1, and catalase in aging mice (p < 0.05). The expression of these enzymes were stimulated via translocation of Nrf2 into the nucleus, indicating the involvement of ARE, a cis-acting motif located in the promoter region of nearly all phase II genes. PB was testified for the first time to induce cytoprotective genes through the Nrf2/ARE signaling pathway, thus unraveling the antioxidant mechanism of PB during the aging process. © 2016 S. Karger AG, Basel.

  12. VARIANCE OF MICROSOMAL PROTEIN AND CYTOCHROME P450 2E1 AND 3A FORMS IN ADULT HUMAN LIVER

    EPA Science Inventory

    Differences in the pharmacokinetics of xenobiotics among humans makes them differentially susceptible to risk. Differences in enzyme content can mediate pharmacokinetic differences. Microsomal protein is often isolated fromliver to characterize enzyme content and activity, but no...

  13. Effects of phenobarbital on thyroid hormone contabolism in rat hepatocytes

    EPA Science Inventory

    Hepatic enzyme inducers such as phenobarbital (PB) decrease circulating thyroid hormone (TH) concentrations in rodents. PB induction of hepatic xenobiotic metabolizing enzymes increases thyroid hormones catabolism and biliary elimination. This study examines the catabolism and cl...

  14. Higher cortical and lower subcortical metabolism in detoxified methamphetamine abusers.

    PubMed

    Volkow, N D; Chang, L; Wang, G J; Fowler, J S; Franceschi, D; Sedler, M J; Gatley, S J; Hitzemann, R; Ding, Y S; Wong, C; Logan, J

    2001-03-01

    Methamphetamine has raised concerns because it may be neurotoxic to the human brain. Although prior work has focused primarily on the effects of methamphetamine on dopamine cells, there is evidence that other neuronal types are affected. The authors measured regional brain glucose metabolism, which serves as a marker of brain function, to assess if there is evidence of functional changes in methamphetamine abusers in regions other than those innervated by dopamine cells. Fifteen detoxified methamphetamine abusers and 21 comparison subjects underwent positron emission tomography following administration of [(18)F]fluorodeoxyglucose. Whole brain metabolism in the methamphetamine abusers was 14% higher than that of comparison subjects; the differences were most accentuated in the parietal cortex (20%). After normalization for whole brain metabolism, methamphetamine abusers exhibited significantly lower metabolism in the thalamus (17% difference) and striatum (where the differences were larger for the caudate [12%] than for the putamen [6%]). Statistical parametric mapping analyses corroborated these findings, revealing higher metabolism in the parietal cortex and lower metabolism in the thalamus and striatum of methamphetamine abusers. The fact that the parietal cortex is a region devoid of any significant dopaminergic innervation suggests that the higher metabolism seen in this region in the methamphetamine abusers is the result of methamphetamine effects in circuits other than those modulated by dopamine. In addition, the lower metabolism in the striatum and thalamus (major outputs of dopamine signals into the cortex) is likely to reflect the functional consequence of methamphetamine in dopaminergic circuits. These results provide evidence that, in humans, methamphetamine abuse results in changes in function of dopamine- and nondopamine-innervated brain regions.

  15. Investigation of runoff generation from anthropogenic sources with dissolved xenobiotics

    NASA Astrophysics Data System (ADS)

    Krein, A.; Pailler, J.; Guignard, C.; Iffly, J.; Pfister, L.; Hoffmann, L.

    2009-04-01

    In the experimental Mess basin (35 km2, Luxembourg) dissolved xenobiotics in surface water are used to study the influences of anthropogenic sources like separated sewer systems on runoff generation. Emerging contaminants like pharmaceuticals are of growing interest because of their use in large quantities in human and veterinary medicine. The amounts reaching surface waters depend on rainfall patterns, hydraulic conditions, consumption, metabolism, degradation, and disposal. The behaviour of endocrine disruptors including pharmaceuticals in the aquatic environment is widely unknown. The twelve molecules analyzed belong to three families: the estrogens, the antibiotics (sulfonamides, tetracyclines), and the painkillers (ibuprofen, diclofenac). Xenobiotics can be used as potential environmental tracers for untreated sewerage. Our results show that the concentrations are highly variable during flood events. The highest concentrations are reached in the first flush period, mainly during the rising limb of the flood hydrographs. As a result of the kinematic wave effect the concentration peak occurs in some cases a few hours after the discharge maximum. In floodwater (eleven floods, 66 samples) the highest concentrations were measured for ibuprofen (g/l range), estrone, and diclofenac (all ng/l range). From the tetracycline group, essentially tetracycline itself is of relevance, while the sulfonamides are mainly represented by sulfamethoxazole (all in ng/l range). In the Mess River the pharmaceuticals fluxes during flood events proved to be influenced by hydrological conditions. Different pharmaceuticals showed their concentration peaks during different times of a flood event. An example is the estrone peak that - during summer flash floods - often occurred one to two hours prior to the largest concentrations of the painkillers. This suggests for more sources than the sole storm drainage through the spillway of the single sewage water treatment plant, different

  16. Relationship between GSTM1 and GSTT1 polymorphisms and schizophrenia: a case-control study in a Tunisian population.

    PubMed

    Raffa, Monia; Lakhdar, Ramzi; Ghachem, Meriem; Barhoumi, Sana; Safar, Mohamed Taher; Bel Hadj Jrad, Besma; Haj Khelil, Amel; Kerkeni, Abdelhamid; Mechri, Anwar

    2013-01-10

    There is substantial evidence found in the literature that supports the fact that the presence of oxidative stress may play an important role in the pathophysiology of schizophrenia. The glutathione S-transferases (GSTs) forms one of the major detoxifying groups of enzymes responsible for eliminating products of oxidative stress. Interindividual differences observed in the metabolism of xenobiotics have been attributed to the genetic polymorphism of genes coding for enzymes involved in detoxification. Thus, in this study we investigated the association of glutathione S-transferase Mu-1 (GSTM1) and glutathione S-transferase theta-1 (GSTT1) gene deletion polymorphisms and schizophrenia in a Tunisian population. A case-control study including 138 schizophrenic patients and 123 healthy controls was enrolled. The GSTM1 and GSTT1 polymorphisms were analyzed by multiplex polymerase chain reaction (PCR). No association was found between the GSTM1 genotype and schizophrenia, whereas the prevalence of the GSTT1 active genotype was significantly higher in the schizophrenic patients (57.2%) than in the controls (45.5%) with (OR=0.6, IC 0.37-0.99, p=0.039). Thus, we noted a significant association between schizophrenia and GSTT1 active genotype. Furthermore, the combination of the GSTM1 and GSTT1 null genotypes showed a non-significant trend to an increased risk of schizophrenia. The present finding indicated that GSTT1 seems to be a candidate gene for susceptibility to schizophrenia in at least Tunisian population. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Insight into cofactor recognition in arylamine N-acetyltransferase enzymes: structure of Mesorhizobium loti arylamine N-acetyltransferase in complex with coenzyme A.

    PubMed

    Xu, Ximing; Li de la Sierra-Gallay, Inés; Kubiak, Xavier; Duval, Romain; Chaffotte, Alain F; Dupret, Jean Marie; Haouz, Ahmed; Rodrigues-Lima, Fernando

    2015-02-01

    Arylamine N-acetyltransferases (NATs) are xenobiotic metabolizing enzymes that catalyze the acetyl-CoA-dependent acetylation of arylamines. To better understand the mode of binding of the cofactor by this family of enzymes, the structure of Mesorhizobium loti NAT1 [(RHILO)NAT1] was determined in complex with CoA. The F42W mutant of (RHILO)NAT1 was used as it is well expressed in Escherichia coli and displays enzymatic properties similar to those of the wild type. The apo and holo structures of (RHILO)NAT1 F42W were solved at 1.8 and 2 Å resolution, respectively. As observed in the Mycobacterium marinum NAT1-CoA complex, in (RHILO)NAT1 CoA binding induces slight structural rearrangements that are mostly confined to certain residues of its `P-loop'. Importantly, it was found that the mode of binding of CoA is highly similar to that of M. marinum NAT1 but different from the modes reported for Bacillus anthracis NAT1 and Homo sapiens NAT2. Therefore, in contrast to previous data, this study shows that different orthologous NATs can bind their cofactors in a similar way, suggesting that the mode of binding CoA in this family of enzymes is less diverse than previously thought. Moreover, it supports the notion that the presence of the `mammalian/eukaryotic insertion loop' in certain NAT enzymes impacts the mode of binding CoA by imposing structural constraints.

  18. Aldo-Keto Reductases 1B in Endocrinology and Metabolism

    PubMed Central

    Pastel, Emilie; Pointud, Jean-Christophe; Volat, Fanny; Martinez, Antoine; Lefrançois-Martinez, Anne-Marie

    2012-01-01

    The aldose reductase (AR; human AKR1B1/mouse Akr1b3) has been the focus of many research because of its role in diabetic complications. The starting point of these alterations is the massive entry of glucose in polyol pathway where it is converted into sorbitol by this enzyme. However, the issue of AR function in non-diabetic condition remains unresolved. AR-like enzymes (AKR1B10, Akr1b7, and Akr1b8) are highly related isoforms often co-expressed with bona fide AR, making functional analysis of one or the other isoform a challenging task. AKR1B/Akr1b members share at least 65% protein identity and the general ability to reduce many redundant substrates such as aldehydes provided from lipid peroxidation, steroids and their by-products, and xenobiotics in vitro. Based on these properties, AKR1B/Akr1b are generally considered as detoxifying enzymes. Considering that divergences should be more informative than similarities to help understanding their physiological functions, we chose to review specific hallmarks of each human/mouse isoforms by focusing on tissue distribution and specific mechanisms of gene regulation. Indeed, although the AR shows ubiquitous expression, AR-like proteins exhibit tissue-specific patterns of expression. We focused on three organs where certain isoforms are enriched, the adrenal gland, enterohepatic, and adipose tissues and tried to connect recent enzymatic and regulation data with endocrine and metabolic functions of these organs. We presented recent mouse models showing unsuspected physiological functions in the regulation of glucido-lipidic metabolism and adipose tissue homeostasis. Beyond the widely accepted idea that AKR1B/Akr1b are detoxification enzymes, these recent reports provide growing evidences that they are able to modify or generate signal molecules. This conceptually shifts this class of enzymes from unenviable status of scavenger to upper class of messengers. PMID:22876234

  19. Foreign compounds and intermediary metabolism: sulfoxidation bridges the divide.

    PubMed

    Mitchell, S C; Steventon, G B

    2009-03-01

    It is widely appreciated that as a xenobiotic travels through an organism and interacts with the biochemical machinery of a living system, it most probably will undergo a number of metabolic alterations usually leading to a cluster of differing chemical species. Indeed, the modern 'metabonomic' approach, where earlier studied drug metabolism profiles have been reassessed, has indicated that there are normally many more previously unrecognised minor metabolites, and when all such biotransformation products are considered, then their total number is legion. It is now being recognised also that the same metabolic alteration of a substrate, especially a xenobiotic substrate, may be catalysed by more than one enzyme and that the previously sacrosanct notion of an enzyme's 'substrate specificity' may well be inverted to read a substrate's 'enzyme preference'. The following brief article attempts to highlight another aspect where our general acceptance of the 'status quo' needs to be reconsidered. The conventionally acknowledged division between the collection of enzymes that undertake intermediary metabolism and the group of enzymes responsible for xenobiotic metabolism may be becoming blurred. It may well be a prudent time to reassess the current dichotomous view. Overcoming inertia, with a realignment of ideas or alteration of perception, may permit new concepts to emerge leading to a more profound understanding and hopefully eventual benefits for mankind.

  20. Broccoli sprouts: An exceptionally rich source of inducers of enzymes that protect against chemical carcinogens

    PubMed Central

    Fahey, Jed W.; Zhang, Yuesheng; Talalay, Paul

    1997-01-01

    Induction of phase 2 detoxication enzymes [e.g., glutathione transferases, epoxide hydrolase, NAD(P)H: quinone reductase, and glucuronosyltransferases] is a powerful strategy for achieving protection against carcinogenesis, mutagenesis, and other forms of toxicity of electrophiles and reactive forms of oxygen. Since consumption of large quantities of fruit and vegetables is associated with a striking reduction in the risk of developing a variety of malignancies, it is of interest that a number of edible plants contain substantial quantities of compounds that regulate mammalian enzymes of xenobiotic metabolism. Thus, edible plants belonging to the family Cruciferae and genus Brassica (e.g., broccoli and cauliflower) contain substantial quantities of isothiocyanates (mostly in the form of their glucosinolate precursors) some of which (e.g., sulforaphane or 4-methylsulfinylbutyl isothiocyanate) are very potent inducers of phase 2 enzymes. Unexpectedly, 3-day-old sprouts of cultivars of certain crucifers including broccoli and cauliflower contain 10–100 times higher levels of glucoraphanin (the glucosinolate of sulforaphane) than do the corresponding mature plants. Glucosinolates and isothiocyanates can be efficiently extracted from plants, without hydrolysis of glucosinolates by myrosinase, by homogenization in a mixture of equal volumes of dimethyl sulfoxide, dimethylformamide, and acetonitrile at −50°C. Extracts of 3-day-old broccoli sprouts (containing either glucoraphanin or sulforaphane as the principal enzyme inducer) were highly effective in reducing the incidence, multiplicity, and rate of development of mammary tumors in dimethylbenz(a)anthracene-treated rats. Notably, sprouts of many broccoli cultivars contain negligible quantities of indole glucosinolates, which predominate in the mature vegetable and may give rise to degradation products (e.g., indole-3-carbinol) that can enhance tumorigenesis. Hence, small quantities of crucifer sprouts may protect

  1. Reappraisal of xenobiotic-induced, oxidative stress-mediated cellular injury in chronic pancreatitis: A systematic review

    PubMed Central

    Siriwardena, Ajith K

    2014-01-01

    AIM: To reappraise the hypothesis of xenobiotic induced, cytochrome P450-mediated, micronutrient-deficient oxidative injury in chronic pancreatitis. METHODS: Individual searches of the Medline and Embase databases were conducted for each component of the theory of oxidative-stress mediated cellular injury for the period from 1st January 1990 to 31st December 2012 using appropriate medical subject headings. Boolean operators were used. The individual components were drawn from a recent update on theory of oxidative stress-mediated cellular injury in chronic pancreatitis. RESULTS: In relation to the association between exposure to volatile hydrocarbons and chronic pancreatitis the studies fail to adequately control for alcohol intake. Cytochrome P450 (CYP) induction occurs as a diffuse hepatic and extra-hepatic response to xenobiotic exposure rather than an acinar cell-specific process. GSH depletion is not consistently confirmed. There is good evidence of superoxide dismutase depletion in acute phases of injury but less to support a chronic intra-acinar depletion. Although the liver is the principal site of CYP induction there is no evidence to suggest that oxidative by-products are carried in bile and reflux into the pancreatic duct to cause injury. CONCLUSION: Pancreatic acinar cell injury due to short-lived oxygen free radicals (generated by injury mediated by prematurely activated intra-acinar trypsin) is an important mechanism of cell damage in chronic pancreatitis. However, in contemporary paradigms of chronic pancreatitis this should be seen as one of a series of cell-injury mechanisms rather than a sole mediator. PMID:24659895

  2. Cytochrome P450 enzyme mediated herbal drug interactions (Part 1)

    PubMed Central

    Wanwimolruk, Sompon; Prachayasittikul, Virapong

    2014-01-01

    It is well recognized that herbal supplements or herbal medicines are now commonly used. As many patients taking prescription medications are concomitantly using herbal supplements, there is considerable risk for adverse herbal drug interactions. Such interactions can enhance the risk for an individual patient, especially with regard to drugs with a narrow therapeutic index such as warfarin, cyclosporine A and digoxin. Herbal drug interactions can alter pharmacokinetic or/and pharmacodynamic properties of administered drugs. The most common pharmacokinetic interactions usually involve either the inhibition or induction of the metabolism of drugs catalyzed by the important enzymes, cytochrome P450 (CYP). The aim of the present article is to provide an updated review of clinically relevant metabolic CYP-mediated drug interactions between selected herbal supplements and prescription drugs. The commonly used herbal supplements selected include Echinacea, Ginkgo biloba, garlic, St. John's wort, goldenseal, and milk thistle. To date, several significant herbal drug interactions have their origins in the alteration of CYP enzyme activity by various phytochemicals. Numerous herbal drug interactions have been reported. Although the significance of many interactions is uncertain but several interactions, especially those with St. John’s wort, may have critical clinical consequences. St. John’s wort is a source of hyperforin, an active ingredient that has a strong affinity for the pregnane xenobiotic receptor (PXR). As a PXR ligand, hyperforin promotes expression of CYP3A4 enzymes in the small intestine and liver. This in turn causes induction of CYP3A4 and can reduce the oral bioavailability of many drugs making them less effective. The available evidence indicates that, at commonly recommended doses, other selected herbs including Echinacea, Ginkgo biloba, garlic, goldenseal and milk thistle do not act as potent or moderate inhibitors or inducers of CYP enzymes. A good

  3. Application of simple mathematical expressions to relate the half-lives of xenobiotics in rats to values in humans.

    PubMed

    Ward, Keith W; Erhardt, Paul; Bachmann, Kenneth

    2005-01-01

    Previous publications from GlaxoSmithKline and University of Toledo laboratories convey our independent attempts to predict the half-lives of xenobiotics in humans using data obtained from rats. The present investigation was conducted to compare the performance of our published models against a common dataset obtained by merging the two sets of rat versus human half-life (hHL) data previously used by each laboratory. After combining data, mathematical analyses were undertaken by deploying both of our previous models, namely the use of an empirical algorithm based on a best-fit model and the use of rat-to-human liver blood flow ratios as a half-life correction factor. Both qualitative and quantitative analyses were performed, as well as evaluation of the impact of molecular properties on predictability. The merged dataset was remarkably diverse with respect to physiochemical and pharmacokinetic (PK) properties. Application of both models revealed similar predictability, depending upon the measure of stipulated accuracy. Certain molecular features, particularly rotatable bond count and pK(a), appeared to influence the accuracy of prediction. This collaborative effort has resulted in an improved understanding and appreciation of the value of rats to serve as a surrogate for the prediction of xenobiotic half-lives in humans when clinical pharmacokinetic studies are not possible or practicable.

  4. SPE-IMS-MS: An automated platform for sub-sixty second surveillance of endogenous metabolites and xenobiotics in biofluids

    DOE PAGES

    Zhang, Xing; Romm, Michelle; Zheng, Xueyun; ...

    2016-12-29

    Characterization of endogenous metabolites and xenobiotics is essential to deconvoluting the genetic and environmental causes of disease. However, surveillance of chemical exposure and disease-related changes in large cohorts requires an analytical platform that offers rapid measurement, high sensitivity, efficient separation, broad dynamic range, and application to an expansive chemical space. Here in this article, we present a novel platform for small molecule analyses that addresses these requirements by combining solid-phase extraction with ion mobility spectrometry and mass spectrometry (SPE-IMS-MS). This platform is capable of performing both targeted and global measurements of endogenous metabolites and xenobiotics in human biofluids with highmore » reproducibility (CV ≤ 3%), sensitivity (LODs in the pM range in biofluids) and throughput (10-s sample-to-sample duty cycle). We report application of this platform to the analysis of human urine from patients with and without type 1 diabetes, where we observed statistically significant variations in the concentration of disaccharides and previously unreported chemical isomers. Lastly, this SPE-IMS-MS platform overcomes many of the current challenges of large-scale metabolomic and exposomic analyses and offers a viable option for population and patient cohort screening in an effort to gain insights into disease processes and human environmental chemical exposure.« less

  5. SPE-IMS-MS: An automated platform for sub-sixty second surveillance of endogenous metabolites and xenobiotics in biofluids.

    PubMed

    Zhang, Xing; Romm, Michelle; Zheng, Xueyun; Zink, Erika M; Kim, Young-Mo; Burnum-Johnson, Kristin E; Orton, Daniel J; Apffel, Alex; Ibrahim, Yehia M; Monroe, Matthew E; Moore, Ronald J; Smith, Jordan N; Ma, Jian; Renslow, Ryan S; Thomas, Dennis G; Blackwell, Anne E; Swinford, Glenn; Sausen, John; Kurulugama, Ruwan T; Eno, Nathan; Darland, Ed; Stafford, George; Fjeldsted, John; Metz, Thomas O; Teeguarden, Justin G; Smith, Richard D; Baker, Erin S

    2016-12-01

    Characterization of endogenous metabolites and xenobiotics is essential to deconvoluting the genetic and environmental causes of disease. However, surveillance of chemical exposure and disease-related changes in large cohorts requires an analytical platform that offers rapid measurement, high sensitivity, efficient separation, broad dynamic range, and application to an expansive chemical space. Here, we present a novel platform for small molecule analyses that addresses these requirements by combining solid-phase extraction with ion mobility spectrometry and mass spectrometry (SPE-IMS-MS). This platform is capable of performing both targeted and global measurements of endogenous metabolites and xenobiotics in human biofluids with high reproducibility (CV 6 3%), sensitivity (LODs in the pM range in biofluids) and throughput (10-s sample-to-sample duty cycle). We report application of this platform to the analysis of human urine from patients with and without type 1 diabetes, where we observed statistically significant variations in the concentration of disaccharides and previously unreported chemical isomers. This SPE-IMS-MS platform overcomes many of the current challenges of large-scale metabolomic and exposomic analyses and offers a viable option for population and patient cohort screening in an effort to gain insights into disease processes and human environmental chemical exposure.

  6. SPE-IMS-MS: An automated platform for sub-sixty second surveillance of endogenous metabolites and xenobiotics in biofluids

    PubMed Central

    Zhang, Xing; Romm, Michelle; Zheng, Xueyun; Zink, Erika M.; Kim, Young-Mo; Burnum-Johnson, Kristin E.; Orton, Daniel J.; Apffel, Alex; Ibrahim, Yehia M.; Monroe, Matthew E.; Moore, Ronald J.; Smith, Jordan N.; Ma, Jian; Renslow, Ryan S.; Thomas, Dennis G.; Blackwell, Anne E.; Swinford, Glenn; Sausen, John; Kurulugama, Ruwan T.; Eno, Nathan; Darland, Ed; Stafford, George; Fjeldsted, John; Metz, Thomas O.; Teeguarden, Justin G.; Smith, Richard D.; Baker, Erin S.

    2017-01-01

    Characterization of endogenous metabolites and xenobiotics is essential to deconvoluting the genetic and environmental causes of disease. However, surveillance of chemical exposure and disease-related changes in large cohorts requires an analytical platform that offers rapid measurement, high sensitivity, efficient separation, broad dynamic range, and application to an expansive chemical space. Here, we present a novel platform for small molecule analyses that addresses these requirements by combining solid-phase extraction with ion mobility spectrometry and mass spectrometry (SPE-IMS-MS). This platform is capable of performing both targeted and global measurements of endogenous metabolites and xenobiotics in human biofluids with high reproducibility (CV 6 3%), sensitivity (LODs in the pM range in biofluids) and throughput (10-s sample-to-sample duty cycle). We report application of this platform to the analysis of human urine from patients with and without type 1 diabetes, where we observed statistically significant variations in the concentration of disaccharides and previously unreported chemical isomers. This SPE-IMS-MS platform overcomes many of the current challenges of large-scale metabolomic and exposomic analyses and offers a viable option for population and patient cohort screening in an effort to gain insights into disease processes and human environmental chemical exposure. PMID:29276770

  7. Protection by Chrysanthemum zawadskii extract from liver damage of mice caused by carbon tetrachloride is maybe mediated by modulation of QR activity

    PubMed Central

    Seo, Ji Yeon; Lim, Soon Sung; Park, Jia; Lim, Ji-Sun; Kim, Hyo Jung; Kang, Hui Jung; Yoon Park, Jung Han

    2010-01-01

    Our previous study demonstrated that methanolic extract of Chrysanthemum zawadskii Herbich var. latilobum Kitamura (Compositae) has the potential to induce detoxifying enzymes such as NAD(P)H:(quinone acceptor) oxidoreductase 1 (EC 1.6.99.2) (NQO1, QR) and glutathione S-transferase (GST). In this study we further fractionated methanolic extract of Chrysanthemum zawadskii and investigated the detoxifying enzyme-inducing potential of each fraction. The fraction (CZ-6) shown the highest QR-inducing activity was found to contain (+)-(3S,4S,5R,8S)-(E)-8-acetoxy-4-hydroxy-3-isovaleroyloxy-2-(hexa-2,4-diynyliden)-1,6-dioxaspiro [4,5] decane and increased QR enzyme activity in a dose-dependent manner. Furthermore, CZ-6 fraction caused a dose-dependent enhancement of luciferase activity in HepG2-C8 cells generated by stably transfecting antioxidant response element-luciferase gene construct, suggesting that it induces antioxidant/detoxifying enzymes through antioxidant response element (ARE)-mediated transcriptional activation of the relevant genes. Although CZ-6 fraction failed to induce hepatic QR in mice over the control, it restored QR activity suppressed by CCl4 treatment to the control level. Hepatic injury induced by CCl4 was also slightly protected by pretreatment with CZ-6. In conclusion, although CZ-6 fractionated from methanolic extract of Chrysanthemum zawadskii did not cause a significant QR induction in mice organs such as liver, kidney, and stomach, it showed protective effect from liver damage caused by CCl4. PMID:20461196

  8. Protection by Chrysanthemum zawadskii extract from liver damage of mice caused by carbon tetrachloride is maybe mediated by modulation of QR activity.

    PubMed

    Seo, Ji Yeon; Lim, Soon Sung; Park, Jia; Lim, Ji-Sun; Kim, Hyo Jung; Kang, Hui Jung; Yoon Park, Jung Han; Kim, Jong-Sang

    2010-04-01

    Our previous study demonstrated that methanolic extract of Chrysanthemum zawadskii Herbich var. latilobum Kitamura (Compositae) has the potential to induce detoxifying enzymes such as NAD(P)H:(quinone acceptor) oxidoreductase 1 (EC 1.6.99.2) (NQO1, QR) and glutathione S-transferase (GST). In this study we further fractionated methanolic extract of Chrysanthemum zawadskii and investigated the detoxifying enzyme-inducing potential of each fraction. The fraction (CZ-6) shown the highest QR-inducing activity was found to contain (+)-(3S,4S,5R,8S)-(E)-8-acetoxy-4-hydroxy-3-isovaleroyloxy-2-(hexa-2,4-diynyliden)-1,6-dioxaspiro [4,5] decane and increased QR enzyme activity in a dose-dependent manner. Furthermore, CZ-6 fraction caused a dose-dependent enhancement of luciferase activity in HepG2-C8 cells generated by stably transfecting antioxidant response element-luciferase gene construct, suggesting that it induces antioxidant/detoxifying enzymes through antioxidant response element (ARE)-mediated transcriptional activation of the relevant genes. Although CZ-6 fraction failed to induce hepatic QR in mice over the control, it restored QR activity suppressed by CCl(4) treatment to the control level. Hepatic injury induced by CCl(4) was also slightly protected by pretreatment with CZ-6. In conclusion, although CZ-6 fractionated from methanolic extract of Chrysanthemum zawadskii did not cause a significant QR induction in mice organs such as liver, kidney, and stomach, it showed protective effect from liver damage caused by CCl(4).

  9. Screening and monitoring microbial xenobiotics' biodegradation by rapid, inexpensive and easy to perform microplate UV-absorbance measurements.

    PubMed

    Herzog, Bastian; Lemmer, Hilde; Horn, Harald; Müller, Elisabeth

    2014-02-22

    Evaluation of xenobiotics biodegradation potential, shown here for benzotriazoles (corrosion inhibitors) and sulfamethoxazole (sulfonamide antibiotic) by microbial communities and/or pure cultures normally requires time intensive and money consuming LC/GC methods that are, in case of laboratory setups, not always needed. The usage of high concentrations to apply a high selective pressure on the microbial communities/pure cultures in laboratory setups, a simple UV-absorbance measurement (UV-AM) was developed and validated for screening a large number of setups, requiring almost no preparation and significantly less time and money compared to LC/GC methods. This rapid and easy to use method was evaluated by comparing its measured values to LC-UV and GC-MS/MS results. Furthermore, its application for monitoring and screening unknown activated sludge communities (ASC) and mixed pure cultures has been tested and approved to detect biodegradation of benzotriazole (BTri), 4- and 5-tolyltriazole (4-TTri, 5-TTri) as well as SMX. In laboratory setups, xenobiotics concentrations above 1.0 mg L(-1) without any enrichment or preparation could be detected after optimization of the method. As UV-AM does not require much preparatory work and can be conducted in 96 or even 384 well plate formats, the number of possible parallel setups and screening efficiency was significantly increased while analytic and laboratory costs were reduced to a minimum.

  10. Confirmation of high-throughput screening data and novel mechanistic insights into VDR-xenobiotic interactions by orthogonal assays.

    PubMed

    Mahapatra, Debabrata; Franzosa, Jill A; Roell, Kyle; Kuenemann, Melaine Agnes; Houck, Keith A; Reif, David M; Fourches, Denis; Kullman, Seth W

    2018-06-11

    High throughput screening (HTS) programs have demonstrated that the Vitamin D receptor (VDR) is activated and/or antagonized by a wide range of structurally diverse chemicals. In this study, we examined the Tox21 qHTS data set generated against VDR for reproducibility and concordance and elucidated functional insights into VDR-xenobiotic interactions. Twenty-one potential VDR agonists and 19 VDR antagonists were identified from a subset of >400 compounds with putative VDR activity and examined for VDR functionality utilizing select orthogonal assays. Transient transactivation assay (TT) using a human VDR plasmid and Cyp24 luciferase reporter construct revealed 20/21 active VDR agonists and 18/19 active VDR antagonists. Mammalian-2-hybrid assay (M2H) was then used to evaluate VDR interactions with co-activators and co-regulators. With the exception of a select few compounds, VDR agonists exhibited significant recruitment of co-regulators and co-activators whereas antagonists exhibited considerable attenuation of recruitment by VDR. A unique set of compounds exhibiting synergistic activity in antagonist mode and no activity in agonist mode was identified. Cheminformatics modeling of VDR-ligand interactions were conducted and revealed selective ligand VDR interaction. Overall, data emphasizes the molecular complexity of ligand-mediated interactions with VDR and suggest that VDR transactivation may be a target site of action for diverse xenobiotics.

  11. Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota.

    PubMed

    Bates, Jennifer M; Akerlund, Janie; Mittge, Erika; Guillemin, Karen

    2007-12-13

    Vertebrates harbor abundant lipopolysaccharide (LPS) in their gut microbiota. Alkaline phosphatases can dephosphorylate and detoxify the endotoxin component of LPS. Here, we show that expression of the zebrafish intestinal alkaline phosphatase (Iap), localized to the intestinal lumen brush border, is induced during establishment of the gut microbiota. Iap-deficient zebrafish are hypersensitive to LPS toxicity and exhibit the excessive intestinal neutrophil influx characteristic of wild-type zebrafish exposed to LPS. Both of these Iap mutant phenotypes are dependent on Myd88 and Tumor Necrosis Factor Receptor (Tnfr), proteins also involved in LPS sensitivity in mammals. When reared germ-free, the intestines of Iap-deficient zebrafish are devoid of neutrophils. Together, these findings demonstrate that the endogenous microbiota establish the normal homeostatic level of neutrophils in the zebrafish intestine through a process involving Iap, Myd88, and Tnfr. Thus, by preventing inflammatory responses, Iap plays a crucial role in promoting mucosal tolerance to resident gut bacteria.

  12. Efficacy of ozone as a fungicidal and detoxifying agent of aflatoxins in peanuts.

    PubMed

    de Alencar, Ernandes Rodrigues; Faroni, Lêda Rita D'Antonino; Soares, Nilda de Fátima Ferreira; da Silva, Washington Azevedo; Carvalho, Marta Cristina da Silva

    2012-03-15

    Peanut contamination by fungi is a concern of processors and consumers owing to the association of these micro-organisms with quality deterioration and aflatoxin production. In this study the fungicidal and detoxifying effects of ozone on aflatoxins in peanuts was investigated. Peanut kernels were ozonated at concentrations of 13 and 21 mg L⁻¹ for periods of 0, 24, 48, 72 and 96 h. Ozone was effective in controlling total fungi and potentially aflatoxigenic species in peanuts, with a reduction in colony-forming units per gram greater than 3 log cycles at the concentration of 21 mg L⁻¹ after 96 h of exposure. A reduction in the percentage of peanuts with internal fungal populations was also observed, particularly after exposure to ozone at 21 mg L⁻¹. A reduction in the concentrations of total aflatoxins and aflatoxin B1 of approximately 30 and 25% respectively was observed for kernels exposed to ozone at 21 mg L⁻¹ for 96 h. It was concluded that ozone is an important alternative for peanut detoxification because it is effective in controlling potentially aflatoxigenic fungi and also acts in the reduction of aflatoxin levels in kernels. Copyright © 2011 Society of Chemical Industry.

  13. Microbiota and environmental stress: how pollution affects microbial communities in Manila clams.

    PubMed

    Milan, M; Carraro, L; Fariselli, P; Martino, M E; Cavalieri, D; Vitali, F; Boffo, L; Patarnello, T; Bargelloni, L; Cardazzo, B

    2018-01-01

    Given the crucial role of microbiota in host development, health, and environmental interactions, genomic analyses focusing on host-microbiota interactions should certainly be considered in the investigation of the adaptive mechanisms to environmental stress. Recently, several studies suggested that microbiota associated to digestive tract is a key, although still not fully understood, player that must be considered to assess the toxicity of environmental contaminants. Bacteria-dependent metabolism of xenobiotics may indeed modulate the host toxicity. Conversely, environmental variables (including pollution) may alter the microbial community and/or its metabolic activity leading to host physiological alterations that may contribute to their toxicity. Here, 16s rRNA gene amplicon sequencing has been applied to characterize the hepatopancreas microbiota composition of the Manila clam, Ruditapes philippinarum. The animals were collected in the Venice lagoon area, which is subject to different anthropogenic pressures, mainly represented by the industrial activities of Porto Marghera (PM). Seasonal and geographic differences in clam microbiotas were explored and linked to host response to chemical stress identified in a previous study at the transcriptome level, establishing potential interactions among hosts, microbes, and environmental parameters. The obtained results showed the recurrent presence of putatively detoxifying bacterial taxa in PM clams during winter and over-representation of several metabolic pathways involved in xenobiotic degradation, which suggested the potential for host-microbial synergistic detoxifying actions. Strong interaction between seasonal and chemically-induced responses was also observed, which partially obscured such potentially synergistic actions. Seasonal variables and exposure to toxicants were therefore shown to interact and substantially affect clam microbiota, which appeared to mirror host response to environmental variation. It

  14. The Adaptive Response to Intestinal Oxidative Stress in Mammalian Hibernation

    DTIC Science & Technology

    2003-10-24

    redox status and pro- and anti- oxidant enzymes . a) Determination of oxidized lipids in intestinal mucosa: The tissue samples for these studies...hibernation season or between hibernating and summer squirrels. However, a strong trend was observed for lowest values of both enzyme activities in...depression involves moderate release of ROS that are detoxified by GSH-related enzymes . Although seemingly paradoxical, we have previously observed

  15. Toxicological aspects of photocatalytic degradation of selected xenobiotics with nano-sized Mn-doped TiO2.

    PubMed

    Ozmen, Murat; Güngördü, Abbas; Erdemoglu, Sema; Ozmen, Nesrin; Asilturk, Meltem

    2015-08-01

    The toxic effects of two selected xenobiotics, bisphenol A (BPA) and atrazine (ATZ), were evaluated after photocatalytic degradation using nano-sized, Mn-doped TiO2. Undoped and Mn-doped TiO2 nanoparticles were synthesized. The samples were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), UV-vis-diffuse reflectance spectra (DRS), X-ray fluorescence spectroscopy (XRF), and BET surface area. The photocatalytic efficiency of the undoped and Mn-doped TiO2 was evaluated for BPA and ATZ. The toxicity of the synthesized photocatalysts and photocatalytic by-products of BPA and ATZ was determined using frog embryos and tadpoles, zebrafish embryos, and bioluminescent bacteria. Possible toxic effects were also evaluated using selected enzyme biomarkers. The results showed that Mn-doped TiO2 nanoparticles did not cause significant lethality in Xenopus laevis embryos and tadpoles, but nonfiltered samples caused lethality in zebrafish. Furthermore, Mn-doping of TiO2 increased the photocatalytic degradation capability of nanoparticles, and it successfully degraded BPA and AZT, but degradation of AZT caused an increase of the lethal effects on both tadpoles and fish embryos. Degradation of BPA caused a significant reduction of lethal effects, especially after 2-4h of degradation. However, biochemical assays showed that both Mn-doped TiO2 and the degradation by-products caused a significant change of selected biomarkers on X. laevis tadpoles; thus, the ecological risks of Mn-doped TiO2 should be considered due to nanomaterial applications and for spilled nanoparticles in an aquatic ecosystem. Also, the risk of nanoparticles should be considered using indicator reference biochemical markers to verify the environmental health impacts. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Characterisation of human tubular cell monolayers as a model of proximal tubular xenobiotic handling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Colin D.A.; Sayer, Rachel; Windass, Amy S.

    2008-12-15

    The aim of this study was to determine whether primary human tubular cell monolayers could provide a powerful tool with which to investigate the renal proximal tubular handling of xenobiotics. Human proximal and distal tubule/collecting duct cells were grown as monolayers on permeable filter supports. After 10 days in culture, proximal tubule cells remained differentiated and expressed a wide palette of transporters at the mRNA level including NaPi-IIa, SGLT1, SGLT2, OCT2, OCTN2, OAT1, OAT3, OAT4, MDR1, MRP2 and BCRP. At the protein level, the expression of a subset of transporters including NaPi-IIa, OAT1 and OAT3 was demonstrated using immunohistochemistry. Analysismore » of the expression of the ATP binding cassette efflux pumps MDR1, MRP2 and BCRP confirmed their apical membrane localisation. At the functional level, tubule cell monolayers retain the necessary machinery to mediate the net secretion of the prototypic substrates; PAH and creatinine. PAH secretion across the monolayer consisted of the uptake of PAH across the basolateral membrane by OAT1 and OAT3 and the apical exit of PAH by a probenecid and MK571-sensitive route consistent with actions of MRP2 or MRP4. Creatinine secretion was by OCT2-mediated uptake at the basolateral membrane and via MDR1 at the apical membrane. Functional expression of MDR1 and BCRP at the apical membrane was also demonstrated using a Hoechst 33342 dye. Similarly, measurement of calcein efflux demonstrated the functional expression of MRP2 at the apical membrane of cell monolayers. In conclusion, human tubular cell monolayers provide a powerful tool to investigate renal xenobiotic handling.« less

  17. Alteration of the Expression of Pesticide-Metabolizing Enzymes in Pregnant Mice: Potential Role in the Increased Vulnerability of the Developing Brain

    PubMed Central

    Fortin, Marie C.; Aleksunes, Lauren M.

    2013-01-01

    Studies on therapeutic drug disposition in humans have shown significant alterations as the result of pregnancy. However, it is not known whether pesticide metabolic capacity changes throughout pregnancy, which could affect exposure of the developing brain. We sought to determine the effect of pregnancy on the expression of hepatic enzymes involved in the metabolism of pesticides. Livers were collected from virgin and pregnant C57BL/6 mice at gestational days (GD)7, GD11, GD14, GD17, and postpartum days (PD)1, PD15, and PD30. Relative mRNA expression of several enzymes involved in the metabolism of pesticides, including hepatic cytochromes (Cyp) P450s, carboxylesterases (Ces), and paraoxonase 1 (Pon1), were assessed in mice during gestation and the postpartum period. Compared with virgin mice, alterations in the expression occurred at multiple time points, with the largest changes observed on GD14. At this time point, the expression of most of the Cyps involved in pesticide metabolism in the liver (Cyp1a2, Cyp2d22, Cyp2c37, Cyp2c50, Cyp2c54, and Cyp3a11) were downregulated by 30% or more. Expression of various Ces isoforms and Pon1 were also decreased along with Pon1 activity. These data demonstrate significant alterations in the expression of key enzymes that detoxify pesticides during pregnancy, which could alter exposure of developing animals to these chemicals. PMID:23223497

  18. Maleic acid treatment of biologically detoxified corn stover liquor

    USDA-ARS?s Scientific Manuscript database

    Elimination of microbial and/or enzyme inhibitors from pretreated lignocellulose is critical for effective cellulose conversion and yeast fermentation of liquid hot-water (LHW) pretreated corn stover. In this study, xylan oligomers were hydrolyzed using either maleic acid or hemicellulases. Other so...

  19. Draft Genome Sequence of Paenibacillus sp. Strain DMB20, Isolated from Alang Ship-Breaking Yard, Which Harbors Genes for Xenobiotic Degradation

    PubMed Central

    Shah, Binal; Jain, Kunal; Patel, Namrata; Pandit, Ramesh; Patel, Anand; Joshi, Chaitanya G.

    2015-01-01

    Paenibacillus sp. strain DMB20, in cometabolism with other Proteobacteria and Firmicutes, exhibits azoreduction of textile dyes. Here, we report the draft genome sequence of this bacterium, consisting of 6,647,181 bp with 7,668 coding sequences (CDSs). The data presented highlight multiple sets of functional genes associated with xenobiotic compound degradation. PMID:26067950

  20. Preliminary Evaluation of Three-Dimensional Primary Human Hepatocyte Culture System for Assay of Drug-Metabolizing Enzyme-Inducing Potential.

    PubMed

    Arakawa, Hiroshi; Kamioka, Hiroki; Jomura, Tomoko; Koyama, Satoshi; Idota, Yoko; Yano, Kentaro; Kojima, Hajime; Ogihara, Takuo

    2017-01-01

    Drug-induced liver injury (DILI) is a common reason for withdrawal of candidate drugs from clinical trials, or of approved drugs from the market. DILI may be induced not only by intact parental drugs, but also by metabolites or intermediates, and therefore should be evaluated in the enzyme-induced state. Here, we present a protocol for assay of drug-metabolizing enzyme-inducing potential using three-dimensional (3D) primary cultures of human hepatocytes (hepatocyte spheroids). Hepatocyte spheroids could be used up to 21 d after seeding (pre-culture for 7 d and exposure to inducer for up to 14 d), based on preliminary evaluation of basal activities of CYP subtypes and mRNA expression of the corresponding transcription factor and xenobiotic receptors (aryl hydrocarbon receptor (AhR), constitutive androstane receptor (CAR) and pregnane X receptor (PXR)). After 2 d exposure of hepatocyte spheroids to omeprazole, phenobarbital and rifampicin (typical inducers of CYP1A2, 2B6 and 3A4, respectively), CYP1A2, 2B6 and 3A4 mRNA expression levels were significantly increased. The mRNA induction of CYP2B6 remained reasonably stable between days 2 and 14 of exposure to inducers, while induction of both CYP1A2 and 3A4 continued to increase up to day 14. These enzyme activities were all significantly increased compared with the control until day 14. Our findings indicate that our 3D hepatocyte spheroids system would be especially suitable for long-term testing of enzyme activity induction by drugs, either to predict or to verify clinical events.

  1. Pigs in Toxicology: Breed Differences in Metabolism and Background Findings.

    PubMed

    Helke, Kristi L; Nelson, Keith N; Sargeant, Aaron M; Jacob, Binod; McKeag, Sean; Haruna, Julius; Vemireddi, Vimala; Greeley, Melanie; Brocksmith, Derek; Navratil, Nicole; Stricker-Krongrad, Alain; Hollinger, Charlotte

    2016-06-01

    Both a rodent and a nonrodent species are required for evaluation in nonclinical safety studies conducted to support human clinical trials. Historically, dogs and nonhuman primates have been the nonrodent species of choice. Swine, especially the miniature swine or minipigs, are increasingly being used in preclinical safety as an alternate nonrodent species. The pig is an appropriate option for these toxicology studies based on metabolic pathways utilized in xenobiotic biotransformation. Both similarities and differences exist in phase I and phase II biotransformation pathways between humans and pigs. There are numerous breeds of pigs, yet only a few of these breeds are characterized with regard to both xenobiotic-metabolizing enzymes and background pathology findings. Some specific differences in these enzymes based on breed and sex are known. Although swine have been used extensively in biomedical research, there is also a paucity of information in the current literature detailing the incidence of background lesions and differences between commonly used breeds. Here, the xenobiotic-metabolizing enzymes are compared between humans and pigs, and minipig background pathology changes are reviewed with emphasis on breed differences. © The Author(s) 2016.

  2. Therapeutic and toxic blood concentrations of nearly 1,000 drugs and other xenobiotics

    PubMed Central

    2012-01-01

    Introduction In order to assess the significance of drug levels measured in intensive care medicine, clinical and forensic toxicology, as well as for therapeutic drug monitoring, it is essential that a comprehensive collection of data is readily available. Therefore, it makes sense to offer a carefully referenced compilation of therapeutic and toxic plasma concentration ranges, as well as half-lives, of a large number of drugs and other xenobiotics for quick and comprehensive information. Methods Data have been abstracted from original papers and text books, as well as from previous compilations, and have been completed with data collected in our own forensic and clinical toxicology laboratory. The data presented in the table and corresponding annotations have been developed over the past 20 years and longer. A previous compilation has been completely revised and updated. In addition, more than 170 substances, especially drugs that have been introduced to the market since 2003 as well as illegal drugs, which became known to cause intoxications, were added. All data were carefully referenced and more than 200 new references were included. Moreover, the annotations providing details were completely revised and more than 100 annotations were added. Results For nearly 1,000 drugs and other xenobiotics, therapeutic ("normal") and, if data were available, toxic and comatose-fatal blood-plasma concentrations and elimination half-lives were compiled in a table. Conclusions In case of intoxications, the concentration of the ingested substances and/or metabolites in blood plasma better predicts the clinical severity of the case when compared to the assumed amount and time of ingestion. Comparing and contrasting the clinical case against the data provided, including the half-life, may support the decision for or against further intensive care. In addition, the data provided are useful for the therapeutic monitoring of pharmacotherapies, to facilitate the diagnostic assessment

  3. Marine Invertebrate Xenobiotic-Activated Nuclear Receptors: Their Application as Sensor Elements in High-Throughput Bioassays for Marine Bioactive Compounds

    PubMed Central

    Richter, Ingrid; Fidler, Andrew E.

    2014-01-01

    Developing high-throughput assays to screen marine extracts for bioactive compounds presents both conceptual and technical challenges. One major challenge is to develop assays that have well-grounded ecological and evolutionary rationales. In this review we propose that a specific group of ligand-activated transcription factors are particularly well-suited to act as sensors in such bioassays. More specifically, xenobiotic-activated nuclear receptors (XANRs) regulate transcription of genes involved in xenobiotic detoxification. XANR ligand-binding domains (LBDs) may adaptively evolve to bind those bioactive, and potentially toxic, compounds to which organisms are normally exposed to through their specific diets. A brief overview of the function and taxonomic distribution of both vertebrate and invertebrate XANRs is first provided. Proof-of-concept experiments are then described which confirm that a filter-feeding marine invertebrate XANR LBD is activated by marine bioactive compounds. We speculate that increasing access to marine invertebrate genome sequence data, in combination with the expression of functional recombinant marine invertebrate XANR LBDs, will facilitate the generation of high-throughput bioassays/biosensors of widely differing specificities, but all based on activation of XANR LBDs. Such assays may find application in screening marine extracts for bioactive compounds that could act as drug lead compounds. PMID:25421319

  4. Decreased detoxification genes and genome size make the human body louse an efficient model to study xenobiotic metabolism

    PubMed Central

    Lee, Si Hyeock; Kang, Jae Soon; Min, Jee Sun; Yoon, Kyong Sup; Strycharz, Joseph P.; Johnson, Reed; Mittapalli, Omprakash; Margam, Venu M.; Sun, Weilin; Li, Hong-Mei; Xie, Jun; Wu, Jing; Kirkness, Ewen F.; Berenbaum, May R.; Pittendrigh, Barry R.; Clark, J. Marshall

    2010-01-01

    The human body louse, Pediculus humanus humanus, has one of the smallest insect genomes, containing ~10,775 annotated genes (Kirkness et al. 2010). Annotation of detoxification [cytochrome P450 monooxygenase (P450), glutathione-S-transferase (GST), esterase (Est), and ATP-binding cassette transporter (ABC transporter)] genes revealed that they are dramatically reduced in P. h. humanus compared to other insects except for Apis mellifera. There are 37 P450, 13 GST and 17 Est genes present in P. h. humanus, approximately half of that found in Drosophila melanogaster and Anopheles gambiae. The number of putatively functional ABC transporter genes in P. h. humanus and A. mellifera are the same (36) but both have fewer than An. gambiae (44) or D. melanogaster (65). The reduction of detoxification genes in P. h. humanus may be due to their simple life history, where they do not encounter a wide variety of xenobiotics. Neuronal component genes are highly conserved across different insect species as expected due to their critical function. Although reduced in number, P. h. humanus still retains at least a minimum repertoire of genes known to confer metabolic or toxicokinetic resistance to xenobiotics (e.g., Cyp3 clade P450s, Delta GSTs, B clade Ests and B/C subfamily ABC transporters), suggestive of its high potential for resistance development. PMID:20561088

  5. Decreased detoxification genes and genome size make the human body louse an efficient model to study xenobiotic metabolism.

    PubMed

    Lee, S H; Kang, J S; Min, J S; Yoon, K S; Strycharz, J P; Johnson, R; Mittapalli, O; Margam, V M; Sun, W; Li, H-M; Xie, J; Wu, J; Kirkness, E F; Berenbaum, M R; Pittendrigh, B R; Clark, J M

    2010-10-01

    The human body louse, Pediculus humanus humanus, has one of the smallest insect genomes, containing ∼10 775 annotated genes. Annotation of detoxification [cytochrome P450 monooxygenase (P450), glutathione-S-transferase (GST), esterase (Est) and ATP-binding cassette transporter (ABC transporter)] genes revealed that they are dramatically reduced in P. h. humanus compared to other insects except for Apis mellifera. There are 37 P450, 13 GST and 17 Est genes present in P. h. humanus, approximately half the number found in Drosophila melanogaster and Anopheles gambiae. The number of putatively functional ABC transporter genes in P. h. humanus and Ap. mellifera are the same (36) but both have fewer than An. gambiae (44) or Dr. melanogaster (65). The reduction of detoxification genes in P. h. humanus may be a result of this louse's simple life history, in which it does not encounter a wide variety of xenobiotics. Neuronal component genes are highly conserved across different insect species as expected because of their critical function. Although reduced in number, P. h. humanus still retains at least a minimum repertoire of genes known to confer metabolic or toxicokinetic resistance to xenobiotics (eg Cyp3 clade P450s, Delta GSTs, B clade Ests and B/C subfamily ABC transporters), suggestive of its high potential for resistance development. © 2010 The Authors. Insect Molecular Biology © 2010 The Royal Entomological Society.

  6. Prevalence of xenobiotic substances in first-trimester blood samples from Danish pregnant women: a cross-sectional study.

    PubMed

    Aagaard, Sissel Kramer; Larsen, Agnete; Andreasen, Mette Findal; Lesnikova, Iana; Telving, Rasmus; Vestergaard, Anna Louise; Tørring, Niels; Uldbjerg, Niels; Bor, Pinar

    2018-03-03

    The aim of this study was to investigate the prevalence of xenobiotic substances, such as caffeine, nicotine and illicit drugs (eg, cannabis and cocaine), in blood samples from first-trimester Danish pregnant women unaware of the screening. A cross - sectional study examined 436 anonymised residual blood samples obtained during 2014 as part of the nationwide prenatal first-trimester screening programme. The samples were analysed by ultra performance liquid chromatography with high-resolution time-of-flight mass spectrometry. An antenatal clinic in a Danish city with 62 000 inhabitants, where >95% of pregnant women joined the screening programme. The prevalence and patterns of caffeine, nicotine, medication and illicit drug intake during the first trimester of pregnancy. The prevalence of prescription and over-the-counter drug detection was 17.9%, including acetaminophen (8.9%) and antidepressants (3.0%), of which citalopram (0.9%) was the most frequent. The prevalence of illegal drugs, indicators of smoking (nicotine/cotinine) and caffeine was 0.9%, 9.9%, and 76.4%, respectively. Only 17.4% of women had no substance identified in their sample. This study emphasises the need for further translational studies investigating lifestyle habits during pregnancy, as well as the underlying molecular mechanisms through which xenobiotic substances may affect placental function and fetal development. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  7. Towards an Understanding of the Function of the Phytochelatin Synthase of Schistosoma mansoni

    PubMed Central

    Rigouin, Coraline; Nylin, Elyse; Cogswell, Alexis A.; Schaumlöffel, Dirk; Dobritzsch, Dirk; Williams, David L.

    2013-01-01

    Phytochelatin synthase (PCS) is a protease-like enzyme that catalyzes the production of metal chelating peptides, the phytochelatins, from glutathione (GSH). In plants, algae, and fungi phytochelatin production is important for metal tolerance and detoxification. PCS proteins also function in xenobiotic metabolism by processing GSH S-conjugates. The aim of the present study is to elucidate the role of PCS in the parasitic worm Schistosoma mansoni. Recombinant S. mansoni PCS proteins expressed in bacteria could both synthesize phytochelatins and hydrolyze various GSH S-conjugates. We found that both the N-truncated protein and the N- and C-terminal truncated form of the enzyme (corresponding to only the catalytic domain) work through a thiol-dependant and, notably, metal-independent mechanism for both transpeptidase (phytochelatin synthesis) and peptidase (hydrolysis of GSH S-conjugates) activities. PCS transcript abundance was increased by metals and xenobiotics in cultured adult worms. In addition, these treatments were found to increase transcript abundance of other enzymes involved in GSH metabolism. Highest levels of PCS transcripts were identified in the esophageal gland of adult worms. Taken together, these results suggest that S. mansoni PCS participates in both metal homoeostasis and xenobiotic metabolism rather than metal detoxification as previously suggested and that the enzyme may be part of a global stress response in the worm. Because humans do not have PCS, this enzyme is of particular interest as a drug target for schistosomiasis. PMID:23383357

  8. Draft Genome Sequence of Paenibacillus sp. Strain DMB20, Isolated from Alang Ship-Breaking Yard, Which Harbors Genes for Xenobiotic Degradation.

    PubMed

    Shah, Binal; Jain, Kunal; Patel, Namrata; Pandit, Ramesh; Patel, Anand; Joshi, Chaitanya G; Madamwar, Datta

    2015-06-11

    Paenibacillus sp. strain DMB20, in cometabolism with other Proteobacteria and Firmicutes, exhibits azoreduction of textile dyes. Here, we report the draft genome sequence of this bacterium, consisting of 6,647,181 bp with 7,668 coding sequences (CDSs). The data presented highlight multiple sets of functional genes associated with xenobiotic compound degradation. Copyright © 2015 Shah et al.

  9. Detoxified Endotoxin Vaccine (J5dLPS/OMP) Protects Mice Against Lethal Respiratory Challenge with Francisella tularensis SchuS4

    PubMed Central

    Gregory, Stephen H.; Chen, Wilbur H.; Mott, Stephanie; Palardy, John E.; Parejo, Nicholas A.; Heninger, Sara; Anderson, Christine A.; Artenstein, Andrew W.; Opal, Steven M.; Cross, Alan S.

    2010-01-01

    Francisella tularensis is a category A select agent. J5dLPS/OMP is a novel vaccine construct consisting of detoxified, O-polysaccharide side chain-deficient, lipopolysaccharide non-covalently complexed with the outer membrane protein of N. meningitidis group B. Immunization elicits hightiter polyclonal antibodies specific for the highly-conserved epitopes expressed within the glycolipid core that constitutes gram-negative bacteria (e.g., F. tularensis). Mice immunized intranasally with J5dLPS/OMP exhibited protective immunity to intratracheal challenge with the live vaccine strain, as well as the highly-virulent SchuS4 strain, of F. tularensis. The efficacy of J5dLPS/OMP vaccine suggests its potential utility in immunizing the general population against several different gram-negative select agents concurrently. PMID:20170768

  10. Advances in phytoremediation.

    PubMed Central

    Dietz, A C; Schnoor, J L

    2001-01-01

    Phytoremediation is the use of plants to remedy contaminated soils, sediments, and/or groundwater. Sorption and uptake are governed by physicochemical properties of the compounds, and moderately hydrophobic chemicals (logarithm octanol--water coefficients = 1.0--3.5) are most likely to be bioavailable to rooted, vascular plants. Some hydrophilic compounds, such as methyl-tert-butylether and 1,4-dioxane, may also be taken up by plants via hydrogen bonding with transpiration water. Organic chemicals that pass through membranes and are translocated to stem and leaf tissues may be converted (e.g., oxidized by cytochrome P450s), conjugated by glutathione or amino acids, and compartmentalized in plant tissues as bound residue. The relationship between metabolism of organic xenobiotics and toxicity to plant tissues is not well understood. A series of chlorinated ethenes is more toxic to hybrid poplar trees (Populus deltoides x nigra, DN-34) than are the corresponding chlorinated ethanes. Toxicity correlates best with the number of chlorine atoms in each homologous series. Transgenic plants have been engineered to rapidly detoxify and transform such xenobiotic chemicals. These could be used in phytoremediation applications if issues of cost and public acceptability are overcome. PMID:11250813

  11. Advances in phytoremediation.

    PubMed

    Dietz, A C; Schnoor, J L

    2001-03-01

    Phytoremediation is the use of plants to remedy contaminated soils, sediments, and/or groundwater. Sorption and uptake are governed by physicochemical properties of the compounds, and moderately hydrophobic chemicals (logarithm octanol--water coefficients = 1.0--3.5) are most likely to be bioavailable to rooted, vascular plants. Some hydrophilic compounds, such as methyl-tert-butylether and 1,4-dioxane, may also be taken up by plants via hydrogen bonding with transpiration water. Organic chemicals that pass through membranes and are translocated to stem and leaf tissues may be converted (e.g., oxidized by cytochrome P450s), conjugated by glutathione or amino acids, and compartmentalized in plant tissues as bound residue. The relationship between metabolism of organic xenobiotics and toxicity to plant tissues is not well understood. A series of chlorinated ethenes is more toxic to hybrid poplar trees (Populus deltoides x nigra, DN-34) than are the corresponding chlorinated ethanes. Toxicity correlates best with the number of chlorine atoms in each homologous series. Transgenic plants have been engineered to rapidly detoxify and transform such xenobiotic chemicals. These could be used in phytoremediation applications if issues of cost and public acceptability are overcome.

  12. Atrazine-xenobiotic nuclear receptor interactions induce cardiac inflammation and endoplasmic reticulum stress in quail (Coturnix coturnix coturnix).

    PubMed

    Li, Xue-Nan; Zuo, Yu-Zhu; Qin, Lei; Liu, Wei; Li, Yan-Hua; Li, Jin-Long

    2018-05-09

    Atrazine (ATR) is one of the most extensively used herbicide that eventually leaches into groundwater and surface water from agricultural areas. Exposure to ATR does harm to the health of human and animals, especially the heart. However, ATR exposure caused cardiotoxicity in bird remains unclear. To evaluate ATR-exerted potential cardiotoxicity in heart, quail were exposed with 0, 50, 250, and 500 mg/kg BW/day ATR by gavage treatment for 45 days. Cardiac histopathological alternation was observed in ATR-induced quail. ATR exposure increased the Cytochrome P450s and Cytochrome b5 contents, Cytochrome P450 (CYP) enzyme system (APND, ERND, AH, and NCR) activities and the expression of CYP isoforms (CYP1B1, CYP2C18, CYP2D6, CYP3A4, CYP3A7, and CYP4B1) in quail heart. The expression of nuclear xenobiotic receptors (NXRs) was also influenced in the heart by ATR exposure. ATR exposure significantly caused the up-regulation of pro-inflammatory cytokines (TNF-α, IL-6, NF-κB, and IL-8), down-regulation of anti-inflammatory cytokines (IL-10) expression levels and increased NO content and iNOS activity. The present research provides new insights into the mechanism that ATR-induced cardiotoxicity through up-regulating the expression levels of GRP78 and XBP-1s, triggering ER stress, activating the expression of IRE1α/TRAF2/NF-κB signaling pathway related factors (IRE1α, TRAF2, IKK, and NF-κB) and inducing an inflammatory response in quail hearts. In conclusion, ATR exposure could induce cardiac inflammatory injury via activating NXRs responses, disrupting CYP homeostasis and CYP isoforms transcription, altering NO metabolism and triggering ER stress and inflammatory response by activating IRE1α/TRAF2/NF-κB signaling pathway. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Infrared-Assisted Extraction and HPLC-Analysis of Prunus armeniaca L. Pomace and Detoxified-Kernel and their Antidiabetic Effects.

    PubMed

    Raafat, Karim; El-Darra, Nada; Saleh, Fatima A; Rajha, Hiba N; Maroun, Richard G; Louka, Nicolas

    2018-03-01

    Prunus armeniaca L. (P. armeniaca) is one of the medicinal plants with a high safety-profile. The aim of this work was to make an infrared-assisted extraction (IR-AE) of P. armeniaca fruit (pomace) and kernel, and analyse them using reverse phase high-performance liquid chromatography (RP-HPLC) aided method. IR-AE is a novel-technique aimed at increasing the extraction-efficiency. The antidiabetic-potentials of the P. armeniaca pomace (AP) and the detoxified P. armeniaca kernel extract (DKAP) were monitored exploring their possible hypoglycemic-mechanisms. Acute (6 h), subchronic (8 days) and long-term (8 weeks) assessment of Diabetes mellitus (DM) using glucometers and glycated hemoglobin (HbA1c) methods were applied. Serum-insulin levels, the inhibitory effects on alpha-glucosidase, serum-catalase (CAT) and lipid peroxidation (LPO) levels were also monitored. AP was shown to be rich in polyphenolics like trans-lutein (14.1%), trans-zeaxanthin (10.5%), trans-ß-cryptoxanthin (11.6%), 13, cis-ß-carotene (6.5%), trans 9, cis-ß-carotene (18.4%), and ß-carotene (21.5%). Prunus armeniaca kernel extract before detoxification (KAP) was found to be rich in amygdaline (16.1%), which caused a high mortality rate (50.1%), while after detoxification (amygdaline, 1.4%) a lower mortality rate (9.1%) was found. AP showed significant (p ≤ 0.05, n = 7/group) antidiabetic-activity more prominent than DKAP acutely, subchronically and on longer-terms. IR-AEs displayed more efficient acute and subchronic blood glucose level (BGL) reduction than a conventional extraction method, which might be attributed to IR-AE superiority in extraction of active ingredients. AP showed more-significant and dose-dependent increase in serum-insulin, CAT-levels and body-weights more prominent than those of DKAP. Alpha-glucosidase and LPO levels were inhibited with AP-groups more-significantly. In comparison to conventional-methods, IR-AE appeared to be an efficient and time-conserving novel

  14. Does alcohol craving mediate the impulsivity-aggression relationship in recently detoxified alcohol-dependent patients?

    PubMed

    Roozen, H G; Wetering, B J M van de; Franken, I H A

    2013-01-01

    The relationship between the use of alcohol and aggression is complex and represents major public health issues. Delving into the nature of this association is vital, since various underlying factors may contribute to the expression of aggression. This study examined trait aggression by assessing correlates and, subsequently, the unique contribution of alcohol craving, and dysfunctional impulsivity, by means of correlational and mediational analyses. Forty inpatient detoxified alcohol-dependent patients were recruited. These participants completed the Desire for Alcohol Questionnaire (DAQ), Dickman Impulsivity Inventory (DII), and the Aggression Questionnaire (AQ). The findings indicated that aggression, dysfunctional impulsivity, and alcohol craving were all positively intercorrelated. The association between dysfunctional impulsivity and aggression was robust. The mediational analyses yielded that craving partially mediated this relationship, although not very substantial. It was shown that impulsivity, as a personality characteristic, is strongly associated with aggressive behaviors, whereby the impact of craving on the relationship between impulsivity and trait aggression in alcohol-dependent inpatients was weak. Since it has been posited that factors such as impulsivity and craving may contribute to the lucid association between substance use and aggression, these findings mirror previous research on stimulant users and, subsequently, substantiates that craving exerts only a minor weight on the strong impulsivity-aggression relationship.

  15. A Liver-Centric Multiscale Modeling Framework for Xenobiotics.

    PubMed

    Sluka, James P; Fu, Xiao; Swat, Maciej; Belmonte, Julio M; Cosmanescu, Alin; Clendenon, Sherry G; Wambaugh, John F; Glazier, James A

    2016-01-01

    We describe a multi-scale, liver-centric in silico modeling framework for acetaminophen pharmacology and metabolism. We focus on a computational model to characterize whole body uptake and clearance, liver transport and phase I and phase II metabolism. We do this by incorporating sub-models that span three scales; Physiologically Based Pharmacokinetic (PBPK) modeling of acetaminophen uptake and distribution at the whole body level, cell and blood flow modeling at the tissue/organ level and metabolism at the sub-cellular level. We have used standard modeling modalities at each of the three scales. In particular, we have used the Systems Biology Markup Language (SBML) to create both the whole-body and sub-cellular scales. Our modeling approach allows us to run the individual sub-models separately and allows us to easily exchange models at a particular scale without the need to extensively rework the sub-models at other scales. In addition, the use of SBML greatly facilitates the inclusion of biological annotations directly in the model code. The model was calibrated using human in vivo data for acetaminophen and its sulfate and glucuronate metabolites. We then carried out extensive parameter sensitivity studies including the pairwise interaction of parameters. We also simulated population variation of exposure and sensitivity to acetaminophen. Our modeling framework can be extended to the prediction of liver toxicity following acetaminophen overdose, or used as a general purpose pharmacokinetic model for xenobiotics.

  16. A Liver-Centric Multiscale Modeling Framework for Xenobiotics

    PubMed Central

    Swat, Maciej; Cosmanescu, Alin; Clendenon, Sherry G.; Wambaugh, John F.; Glazier, James A.

    2016-01-01

    We describe a multi-scale, liver-centric in silico modeling framework for acetaminophen pharmacology and metabolism. We focus on a computational model to characterize whole body uptake and clearance, liver transport and phase I and phase II metabolism. We do this by incorporating sub-models that span three scales; Physiologically Based Pharmacokinetic (PBPK) modeling of acetaminophen uptake and distribution at the whole body level, cell and blood flow modeling at the tissue/organ level and metabolism at the sub-cellular level. We have used standard modeling modalities at each of the three scales. In particular, we have used the Systems Biology Markup Language (SBML) to create both the whole-body and sub-cellular scales. Our modeling approach allows us to run the individual sub-models separately and allows us to easily exchange models at a particular scale without the need to extensively rework the sub-models at other scales. In addition, the use of SBML greatly facilitates the inclusion of biological annotations directly in the model code. The model was calibrated using human in vivo data for acetaminophen and its sulfate and glucuronate metabolites. We then carried out extensive parameter sensitivity studies including the pairwise interaction of parameters. We also simulated population variation of exposure and sensitivity to acetaminophen. Our modeling framework can be extended to the prediction of liver toxicity following acetaminophen overdose, or used as a general purpose pharmacokinetic model for xenobiotics. PMID:27636091

  17. Association of GSTM1, GSTT1 and GSTP1 Ile105Val polymorphisms with clinical response to imatinib mesylate treatment among Malaysian chronic myeloid leukaemia patients.

    PubMed

    Makhtar, Siti Maziras; Husin, Azlan; Baba, Abdul Aziz; Ankathil, Ravindran

    2017-09-01

    The detoxifying activity of glutathione S-transferases (GST) enzymes not only protect cells from the adverse effects of xenobiotics, but also alters the effectiveness of drugs in cancer cells, resulting in toxicity or drug resistance. In this study, we aimed to evaluate the association of GSTM1, GSTT1 and GSTP1 Ile105Val polymorphisms with treatment response among Malaysian chronic myeloid leukaemia (CML) patients who everyday undergo 400 mg of imatinib mesylate (IM) therapy. Multiplex polymerase chain reaction (multiplex-PCR) was performed to detect GSTM1 and GSTT1 polymorphisms simultaneously and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis was conducted to detect the GSTP1 Ile195Val polymorphism. On evaluating the association of the variant genotype with treatment outcome, heterozygous variant (AG) and homozygous variant (GG) of GSTP1 Ile105Val showed significantly a higher risk for the development of resistance to IM with OR: 1.951 (95% CI: 1.186-3.209, P = 0.009) and OR: 3.540 (95% CI: 1.305-9.606, P = 0.013), respectively. Likewise, GSTT1 null genotype was also associated with a significantly higher risk for the development of resistance to IM with OR = 1.664 (95% CI: 1.011-2.739, P = 0.045). Our results indicate the potential usefulness of GST polymorphism genotyping in predicting the IM treatment response among CML patients.

  18. Rice Seed Germination Underwater: Morpho-Physiological Responses and the Bases of Differential Expression of Alcoholic Fermentation Enzymes

    PubMed Central

    Miro, Berta; Longkumer, Toshisangba; Entila, Frederickson D.; Kohli, Ajay; Ismail, Abdelbagi M.

    2017-01-01

    a unique non-glycosylated form of ADH1 under AG. IR42 lacked the non-glycosylated ADH1 and contained only a truncated form of ALDH2a, which lacked the active site. Additionally, KHO exhibited increased activity and more isoforms for reactive oxygen species detoxifying enzymes under AG compared to IR42. These results highlight the need for a deeper functional understanding of the critical enzymes involved in AG. PMID:29123541

  19. Formetanate toxicity and changes in antioxidant enzyme system of Apis mellifera larvae.

    PubMed

    Staroň, Martin; Sabo, Rastislav; Sobeková, Anna; Sabová, Lucia; Legáth, Jaroslav; Lohajová, Ľuboslava; Javorský, Peter

    2017-06-01

    Substantial percentage of world food production depends on pollinating service of honeybees that directly depends on their health status. Among other factors, the success of bee colonies depends on health of developed larvae. The crucial phase of larval development is the first 6 days after hatching when a worker larva grows exponentially and larvae are potentially exposed to xenobiotics via diet. In the present study, we determined the lethal concentration LC 50 (72 h) following single dietary exposure of honeybee larvae to formetanate under laboratory conditions, being also the first report available in scientific literature. Activities of antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST) were also measured in the homogenates of in vitro reared honeybee larvae after single formetanate exposure. Decreased specific activity of SOD and increased activities of CAT and GST suggest the induction of oxidative stress. Higher levels of thiobarbituric reactive species in all samples supported this fact. Comparing determined larval toxicity (LC 50 of 206.01 mg a.i./kg diet) with adult toxicity data, we can suppose that the larvae may be less sensitive to formetanate than the adult bees.

  20. COMMENTS ON "EFFECT OF PRENATAL EXPOSURE OF DELTAMETHRIN ON THE ONTOGENY OF XENOBIOTIC METABOLIZING CYTOCHROME P450S IN THE BRAIN AND LIVER OF OFFSPRINGS.

    EPA Science Inventory

    Comments on: Effect of prenatal exposure of deltamethrin on the ontogeny of xenobiotic metabolizing cytochrome P450s in the brain and liver of offsprings [Johri et al. Toxicol Appl Pharmacol. 214:279-289, 2006]

    Johri and colleagues recently reported that maternal exposur...

  1. Molecular insights into the association of obesity with breast cancer risk: relevance to xenobiotic metabolism and CpG island methylation of tumor suppressor genes.

    PubMed

    Naushad, Shaik Mohammad; Hussain, Tajamul; Al-Attas, Omar S; Prayaga, Aruna; Digumarti, Raghunadha Rao; Gottumukkala, Suryanarayana Raju; Kutala, Vijay Kumar

    2014-07-01

    Obesity, genetic polymorphisms of xenobiotic metabolic pathway, hypermethylation of tumor suppressor genes, and hypomethylation of proapoptotic genes are known to be independent risk factors for breast cancer. The objective of this study is to evaluate the combined effect of these environmental, genetic, and epigenetic risk factors on the susceptibility to breast cancer. PCR-RFLP and multiplex PCR were used for the genetic analysis of six variants of xenobiotic metabolic pathway. Methylation-specific PCR was used for the epigenetic analysis of four genetic loci. Multifactor dimensionality reduction analysis revealed a significant interaction between the body mass index (BMI) and catechol-O-methyl transferase H108L variant alone or in combination with cytochrome P450 (CYP) 1A1m1 variant. Women with "Luminal A" breast cancer phenotype had higher BMI compared to other phenotypes and healthy controls. There was no association between the BMI and tumor grade. The post-menopausal obese women exhibited lower glutathione levels. BMI showed a positive association with the methylation of extracellular superoxide dismutase (r = 0.21, p < 0.05), Ras-association (RalGDS/AF-6) domain family member 1 (RASSF1A) (r = 0.31, p < 0.001), and breast cancer type 1 susceptibility protein (r = 0.19, p < 0.05); and inverse association with methylation of BNIP3 (r = -0.48, p < 0.0001). To conclude based on these results, obesity increases the breast cancer susceptibility by two possible mechanisms: (i) by interacting with xenobiotic genetic polymorphisms in inducing increased oxidative DNA damage and (ii) by altering the methylome of several tumor suppressor genes.

  2. Substrate specificity of xenobiotic metabolizing esterases in the liver of two catfish species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaiswal, R.G.; Huang, T.L.; Obih, P.O.

    1994-12-31

    The preliminary studies were conducted on the characterization of substrate specificity in the liver microsomes and cytosol of two catfish species, Ictalurus punctatus and Ictalurus natalie. A series of five esters of p-nitrophenol were used as calorimetric substrates to assay the carboxylesterases. The substrate specificity of liver microsomal and cytosolic carboxylesterases were remarkably different from each other. The valerate ester of p-nitrophenol was most rapidly hydrolyzed by the microsomal carboxylesterases, whereas the prioponate ester was the best substrate for cytosolic carboxylesterases. The Ictalurus natalie catfish species were obtained from the Devil Swamp site of the Mississippi River Basin which ismore » known to be heavily contaminated with toxic and hazardous industrial wastes. These results will be discussed in relation to the responses of xenobiotic metabolizing esterases to environmental pollutants and their possible use as biomarkers.« less

  3. Cytochrome P450 Monooxygenases for Fatty Acids and Xenobiotics in Marine Macroalgae1

    PubMed Central

    Pflugmacher, Stephan; Sandermann, Heinrich

    1998-01-01

    The metabolism of xenobiotics has mainly been investigated in higher plant species. We studied them in various marine macroalgae of the phyla Chlorophyta, Chromophyta, and Rhodophyta. Microsomes contained high oxidative activities for known cytochrome (Cyt) P450 substrates (fatty acids, cinnamic acid, 3- and 4-chlorobiphenyl, 2,3-dichlorobiphenyl, and isoproturon; up to 54 pkat/mg protein). The presence of Cyt P450 (approximately 50 pmol/mg protein) in microsomes of the three algal families was demonstrated by CO-difference absorption spectra. Intact algal tissue converted 3-chlorobiphenyl to the same monohydroxy-metabolite formed in vitro. This conversion was 5-fold stimulated upon addition of phenobarbital, and was abolished by the known P450 inhibitor, 1-aminobenzotriazole. It is concluded that marine macroalgae contain active species of Cyt P450 and could act as a metabolic sink for marine pollutants. PMID:9576781

  4. Combination of microautoradiography and fluorescence in situ hybridization for identification of microorganisms degrading xenobiotic contaminants.

    PubMed

    Yang, Yanru; Zarda, Annatina; Zeyer, Josef

    2003-12-01

    One of the central topics in environmental bioremediation research is to identify microorganisms that are capable of degrading the contaminants of interest. Here we report application of combined microautoradiography (MAR) and fluorescence in situ hybridization (FISH). The method has previously been used in a number of systems; however, here we demonstrate its feasibility in studying the degradation of xenobiotic compounds. With a model system (coculture of Pseudomonas putida B2 and Sphingomonas stygia incubated with [14C] o-nitrophenol), combination of MAR and FISH was shown to be able to successfully identify the microorganisms degrading o-nitrophenol. Compared with the conventional techniques, MAR-FISH allows fast and accurate identification of the microorganisms involved in environmental contaminant degradation.

  5. Subcellular compartmentalization of Cd and Zn in two bivalves. I. Significance of metal-sensitive fractions (MSF) and biologically detoxified metal (BDM)

    USGS Publications Warehouse

    Wallace, W.G.; Lee, B.-G.; Luoma, S.N.

    2003-01-01

    Many aspects of metal accumulation in aquatic invertebrates (i.e. toxicity, tolerance and trophic transfer) can be understood by examining the subcellular partitioning of accumulated metal. In this paper, we use a compartmentalization approach to interpret the significance of metal, species and size dependence in the subcellular partitioning of Cd and Zn in the bivalves Macoma balthica and Potamocorbula amurensis. Of special interest is the compartmentalization of metal as metal-sensitive fractions (MSF) (i.e. organelles and heat-sensitive proteins, termed 'enzymes' hereafter) and biologically detoxified metal (BDM) (i.e. metallothioneins [MT] and metal-rich granules [MRG]). Clams from San Francisco Bay, CA, were exposed for 14 d to seawater (20??? salinity) containing 3.5 ??g l-1 Cd and 20.5 ??g l-1 Zn, including 109Cd and 65Zn as radiotracers. Uptake was followed by 21 d of depuration. The subcellular partitioning of metal within clams was examined following exposure and loss. P. amurensis accumulated ???22x more Cd and ???2x more Zn than M. balthica. MT played an important role in the storage of Cd in P. amurensis, while organelles were the major site of Zn accumulation. In M. balthica, Cd and Zn partitioned similarly, although the pathway of detoxification was metal-specific (MRG for Cd; MRG and MT for Zn). Upon loss, M. balthica depurated ???40% of Cd with Zn being retained; P. amurensis retained Cd and depurated Zn (???40%). During efflux, Cd and Zn concentrations in the MSF compartment of both clams declined with metal either being lost from the animal or being transferred to the BDM compartment. Subcellular compartmentalization was also size-dependent, with the importance of BDM increasing with clam size; MSF decreased accordingly. We hypothesized that progressive retention of metal as BDM (i.e. MRG) with age may lead to size dependency of metal concentrations often observed in some populations of M. balthica.

  6. Manila clams from Hg polluted sediments of Marano and Grado lagoons (Italy) harbor detoxifying Hg resistant bacteria in soft tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldi, Franco, E-mail: baldi@unive.it; Gallo, Michele; Marchetto, Davide

    2013-08-15

    A mechanism of mercury detoxification has been suggested by a previous study on Hg bioaccumulation in Manila clams (Ruditapes philippinarum) in the polluted Marano and Grado lagoons and in this study we demonstrate that this event could be partly related to the detoxifying activities of Hg-resistant bacteria (MRB) harbored in clam soft tissues. Therefore, natural clams were collected in six stations during two different periods (winter and spring) from Marano and Grado Lagoons. Siphons, gills and hepatopancreas from acclimatized clams were sterile dissected to isolate MRB. These anatomical parts were glass homogenized or used for whole, and they were lyingmore » on a solid medium containing 5 mg l{sup −1} HgCl{sub 2} and incubated at 30 °C. A total of fourteen bacterial strains were isolated and were identified by 16S rDNA sequencing and analysis, revealing that strains were representative of eight bacterial genera, four of which were Gram-positive (Enterococcus, Bacillus, Jeotgalicoccus and Staphylococcus) and other four were Gram-negative (Stenotrophomonas, Vibrio, Raoultella and Enterobacter). Plasmids and merA genes were found and their sequences determined. Fluorescence in situ hybridization (FISH) technique shows the presence of Firmicutes, Actinobacteria and Gammaproteobacteria by using different molecular probes in siphon and gills. Bacterial clumps inside clam flesh were observed and even a Gram-negative endosymbiont was disclosed by transmission electronic microscope inside clam cells. Bacteria harbored in cavities of soft tissue have mercury detoxifying activity. This feature was confirmed by the determination of mercuric reductase in glass-homogenized siphons and gills. -- Highlights: ► We isolated Gram-positive and Gram-negative Hg resistant strains from soft tissues of Ruditapes philippinarum. ► We identify 14 mercury resistant strains by 16S rRNA gene sequences. ► Bacteria in siphon and gill tissues of clams were observed by TEM and

  7. Aldose reductase enzyme and its implication to major health problems of the 21(st) century.

    PubMed

    Alexiou, Polyxeni; Pegklidou, Kyriaki; Chatzopoulou, Maria; Nicolaou, Ioannis; Demopoulos, Vassilis J

    2009-01-01

    Aldose reductase enzyme (ALR2) of the polyol metabolic pathway, apart from its role as detoxifying enzyme towards toxic aldehydes, osmoregulator in the kidney and regulator of sperm maturation, was first found to be implicated in the etiology of the long term diabetic complications. However, to date, emerging reports have suggested that under normal glucose concentration, ALR2 may be up-regulated by factors other than hyperglycemia and therefore be involved also in other pathological processes that have become major threats to human health in the 21(st) century. Such pathologies are a number of cardiac disorders, inflammation, mood disorders, renal insufficiency and ovarian abnormalities. In addition, ALR2 was found to be over-expressed in different human cancers such as liver, breast, ovarian, cervical and rectal cancers. Although several aldose reductase inhibitors (ARIs) have progressed to the clinical level, only one is currently on the market. Thus, attention is currently targeted to discover ARIs of distinct chemical structures, being neither hydantoin nor carboxylic acid derivatives. The present review focuses on the molecular mechanisms by which ALR2 is implicated in a number of pathologies, on various aspects concerning its catalytic mechanism and its active site, and on the main classes of ARIs that have been developed to date, as well as on reported (quantitive) structure-activity relationships. The presented data aim to support the notion that ARIs are of pharmacotherapeutic interest for the pharmaceutical community and highlight essential aspects for the development of efficient and potent ARIs.

  8. The effect of sewage sludge application on soil properties and willow (Salix sp.) cultivation.

    PubMed

    Urbaniak, Magdalena; Wyrwicka, Anna; Tołoczko, Wojciech; Serwecińska, Liliana; Zieliński, Marek

    2017-05-15

    The aim of the study was to determine the impact of sewage sludge from three wastewater treatment plants of different sizes (small, medium and large) applied in two doses (3 and 9 tons per hectare) on soil properties, determined as the content of organic carbon and humus fractions, bacterial abundance, phytotoxicity and PCDD/PCDF TEQ concentrations. The study also evaluated the impact of this sewage sludge on the biometric and physiological parameters and detoxification reaction of willow (Salix sp.) as a typical crop used for the remediation of soil following sludge application. The cultivation of willow on soil treated with sludge was found to result in a gradual increase of humus fractions, total organic carbon content and bacterial abundance as well as soil properties measured using Lepidium sativum. However, it also produced an initial increase of soil phytotoxicity, indicated by Sinapis alba and Sorghum sacharatum, and PCDD/PCDF Toxic Equivalent (TEQ) concentrations, which then fell during the course of the experiment, particularly in areas planted by willow. Although the soil phytotoxicity and PCDD/PCDF TEQ content of the sewage sludge-amended soil initially increased, sludge application was found to have a positive influence on willow, probably due to its high nutrient and carbon content. The obtained results reveal increases in willow biomass, average leaf surface area and leaf length as well as chlorophyll a+b content. Moreover, a strong decline was found in the activity of the detoxifying enzyme glutathione S-transferase (GSTs), a multifunctional enzyme involved in the metabolism of xenobiotics in plants, again demonstrating the used sludge had a positive influence on willow performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A Global Genomic and Genetic Strategy to Identify, Validate and Use Gene Signatures of Xenobiotic-Responsive Transcription Factors in Prediction of Pathway Activation in the Mouse Liver

    EPA Science Inventory

    Many drugs and environmentally-relevant chemicals activate xenobiotic-responsive transcription factors. Identification of target genes of these factors would be useful in predicting pathway activation in in vitro chemical screening as well as their involvement in disease states. ...

  10. Chemopreventive effects of Furan-2-yl-3-pyridin-2-yl-propenone against 7,12-dimethylbenz[a]anthracene-inducible genotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Yong Pil; Han, Eun Hee; Choi, Jae Ho

    2008-05-01

    1-Furan-2-yl-3-pyridin-2-yl-propenone (FPP-3) is an anti-inflammatory agent with a propenone moiety and chemically synthesized recently. In this study, we examined the chemopreventive effect of FPP-3 on 7,12-dimethylbenz[a]anthracene (DMBA)-induced genotoxicity in MCF-7 cells. FPP-3 reduced the formation of the DMBA-DNA adduct. DMBA-induced CYP1A1 and CYP1B1 gene expression and enzyme activity were inhibited by FPP-3. It inhibited DMBA-induced aryl hydrocarbon receptor (AhR) transactivation and DMBA-inducible nuclear localization of the AhR. Induction of detoxifying phase II genes by chemopreventive agents represents a coordinated protective response against oxidative stress and neoplastic effects of carcinogens. Transcription factor NF-E2 related factor 2 (Nrf2) regulates antioxidant response elementmore » (ARE) of phase II detoxifying and antioxidant enzymes, such as glutathione S-transferase (GST) and NAD(P)H:quinone oxidoreductase (QR). FPP-3 increased the expression and enzymatic activity of GST and QR. Moreover, FPP-3 increased transcriptional activity of GST and QR. GST and QR induction and Nrf2 translocation by FPP-3 were blocked by the PKC inhibitor Goe6983, and the p38 inhibitor SB203580. These results reflected a partial role of PKC{delta} and p38 signaling in FPP-3-mediated GSTA and QR induction through nuclear translocation of Nrf2. Classically, chemopreventive agents either inhibit CYP metabolizing enzyme or induce phase II detoxifying enzymes. These results suggest that FPP-3 has a potent protective effect against DMBA-induced genotoxicity through modulating phase I and II enzymes and that it has potential as a chemopreventive agent.« less

  11. Short-term calorie restriction feminizes the mRNA profiles of drug metabolizing enzymes and transporters in livers of mice.

    PubMed

    Fu, Zidong Donna; Klaassen, Curtis D

    2014-01-01

    Calorie restriction (CR) is one of the most effective anti-aging interventions in mammals. A modern theory suggests that aging results from a decline in detoxification capabilities and thus accumulation of damaged macromolecules. The present study aimed to determine how short-term CR alters mRNA profiles of genes that encode metabolism and detoxification machinery in the liver. Male C57BL/6 mice were fed CR (0, 15, 30, or 40%) diets for one month, followed by mRNA quantification of 98 xenobiotic processing genes (XPGs) in the liver, including 7 uptake transporters, 39 phase-I enzymes, 37 phase-II enzymes, 10 efflux transporters, and 5 transcription factors. In general, 15% CR did not alter mRNAs of most XPGs, whereas 30 and 40% CR altered over half of the XPGs (32 increased and 29 decreased). CR up-regulated some phase-I enzymes (fold increase), such as Cyp4a14 (12), Por (2.3), Nqo1 (1.4), Fmo2 (5.4), and Fmo3 (346), and numerous number of phase-II enzymes, such as Sult1a1 (1.2), Sult1d1 (2.0), Sult1e1 (33), Sult3a1 (2.2), Gsta4 (1.3), Gstm2 (1.3), Gstm3 (1.7), and Mgst3 (2.2). CR feminized the mRNA profiles of 32 XPGs in livers of male mice. For instance, CR decreased the male-predominantly expressed Oatp1a1 (97%) and increased the female-predominantly expressed Oatp1a4 (11). In conclusion, short-term CR alters the mRNA levels of over half of the 98 XPGs quantified in livers of male mice, and over half of these alterations appear to be due to feminization of the liver. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Alginate Immobilization of Metabolic Enzymes (AIME) for High ...

    EPA Pesticide Factsheets

    Alginate Immobilization of Metabolic Enzymes (AIME) for High-Throughput Screening Assays DE DeGroot, RS Thomas, and SO SimmonsNational Center for Computational Toxicology, US EPA, Research Triangle Park, NC USAThe EPA’s ToxCast program utilizes a wide variety of high-throughput screening (HTS) assays to assess chemical perturbations of molecular and cellular endpoints. A key criticism of using HTS assays for toxicity assessment is the lack of xenobiotic metabolism (XM) which precludes both metabolic detoxification as well as bioactivation of chemicals tested in vitro thereby mischaracterizing the potential risk posed by these chemicals. To address this deficiency, we have developed an extracellular platform to retrofit existing HTS assays with XM activity. This platform utilizes the S9 fraction of liver homogenate encapsulated in an alginate gel network which reduces the cytotoxicity caused by direct addition of S9 to cells in culture. Alginate microspheres containing encapsulated human liver S9 were cross-linked to solid supports extending from a 96-well plate lid and were assayed using a pro-luciferin substrate specific for CYP3A4 (IPA). We demonstrate that S9 was successfully encapsulated and remained enzymatically active post-encapsulation with 5-10X the CYP3A4 activity as compared to 1 µg solubilized human liver S9. Ketoconazole, a known inhibitor of human CYP3A4, inhibited CYP3A4 activity in a concentration-dependent manner (IC50: 0.27 µM) and inhibiti

  13. Genetic enhancement of microsomal epoxide hydrolase improves metabolic detoxification but impairs cerebral blood flow regulation.

    PubMed

    Marowsky, Anne; Haenel, Karen; Bockamp, Ernesto; Heck, Rosario; Rutishauser, Sibylle; Mule, Nandkishor; Kindler, Diana; Rudin, Markus; Arand, Michael

    2016-12-01

    Microsomal epoxide hydrolase (mEH) is a detoxifying enzyme for xenobiotic compounds. Enzymatic activity of mEH can be greatly increased by a point mutation, leading to an E404D amino acid exchange in its catalytic triad. Surprisingly, this variant is not found in any vertebrate species, despite the obvious advantage of accelerated detoxification. We hypothesized that this evolutionary avoidance is due to the fact that the mEH plays a dualistic role in detoxification and control of endogenous vascular signaling molecules. To test this, we generated mEH E404D mice and assessed them for detoxification capacity and vascular dynamics. In liver microsomes from these mice, turnover of the xenobiotic compound phenanthrene-9,10-oxide was four times faster compared to WT liver microsomes, confirming accelerated detoxification. mEH E404D animals also showed faster metabolization of a specific class of endogenous eicosanoids, arachidonic acid-derived epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatrienoic acids (DHETs). Significantly higher DHETs/EETs ratios were found in mEH E404D liver, urine, plasma, brain and cerebral endothelial cells compared to WT controls, suggesting a broad impact of the mEH mutant on endogenous EETs metabolism. Because EETs are strong vasodilators in cerebral vasculature, hemodynamics were assessed in mEH E404D and WT cerebral cortex and hippocampus using cerebral blood volume (CBV)-based functional magnetic resonance imaging (fMRI). Basal CBV 0 levels were similar between mEH E404D and control mice in both brain areas. But vascular reactivity and vasodilation in response to the vasodilatory drug acetazolamide were reduced in mEH E404D forebrain compared to WT controls by factor 3 and 2.6, respectively. These results demonstrate a critical role for mEH E404D in vasodynamics and suggest that deregulation of endogenous signaling pathways is the undesirable gain of function associated with the E404D variant.

  14. Transposable elements are enriched within or in close proximity to xenobiotic-metabolizing cytochrome P450 genes

    PubMed Central

    Chen, Song; Li, Xianchun

    2007-01-01

    Background Transposons, i.e. transposable elements (TEs), are the major internal spontaneous mutation agents for the variability of eukaryotic genomes. To address the general issue of whether transposons mediate genomic changes in environment-adaptation genes, we scanned two alleles per each of the six xenobiotic-metabolizing Helicoverpa zea cytochrome P450 loci, including CYP6B8, CYP6B27, CYP321A1, CYP321A2, CYP9A12v3 and CYP9A14, for the presence of transposon insertions by genome walking and sequence analysis. We also scanned thirteen Drosophila melanogaster P450s genes for TE insertions by in silico mapping and literature search. Results Twelve novel transposons, including LINEs (long interspersed nuclear elements), SINEs (short interspersed nuclear elements), MITEs (miniature inverted-repeat transposable elements), one full-length transib-like transposon, and one full-length Tcl-like DNA transpson, are identified from the alleles of the six H. zea P450 genes. The twelve transposons are inserted into the 5'flanking region, 3'flanking region, exon, or intron of the six environment-adaptation P450 genes. In D. melanogaster, seven out of the eight Drosophila P450s (CYP4E2, CYP6A2, CYP6A8, CYP6A9, CYP6G1, CYP6W1, CYP12A4, CYP12D1) implicated in insecticide resistance are associated with a variety of transposons. By contrast, all the five Drosophila P450s (CYP302A1, CYP306A1, CYP307A1, CYP314A1 and CYP315A1) involved in ecdysone biosynthesis and developmental regulation are free of TE insertions. Conclusion These results indicate that TEs are selectively retained within or in close proximity to xenobiotic-metabolizing P450 genes. PMID:17381843

  15. Enhanced hepatic and kidney cytochrome p-450 activities in nandrolone decanoate treated albino mice.

    PubMed

    Acharjee, B K; Mahanta, R

    2009-04-01

    Anabolic androgenic steroids are the xenobiotic substrates that are metabolized in the body by the protective enzyme systems. Mixed function oxygenase enzymes include a group of enzymes which play an essential role in the metabolism of a broad range of xenobiotics including endogenous and exogenous substrates. Cytochrome P-450, a member of mixed function oxygenase enzymes, plays an important role in oxidative metabolism of drugs and xenobiotics entering human body. Various anabolic steroids are found either to increase or decrease the activity of cytochrome P-450. However, effect of nandrolone decanoate, most commonly abused anabolic steroid, on cytochrome P-450 activity is still fragmentary. In the present study, albino mice were administered intramuscular 2.5 mg of nandrolone decanoate injection at 15 days interval. Cytochrome P-450 activity is determined by following the method of Omura and Sato (1964) in liver and kidney tissues of both normal and experimental groups upto 90 days. Investigation shows a significant (p <0.01) increase of cytochrome P-450 (nmol/mg) activity in liver tissue as compared to that of kidney tissues. A tissue specific and dose specific increase of cytochrome P-450 activity is observed. Mean cytochrome P-450 is found highest in liver tissue on 45(th) day whereas the activity in kidney tissue is noticed on 90(th) day of treatment. From the above observation, nandrolone decanoate can be suggested as a potent inducer of cytochrome P-450 activity like other anabolic steroids.

  16. Enzyme

    MedlinePlus

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornton-Manning, J.R.; Hotchkiss, J.A.; Ding, Xinxin

    The nasal mucosa, the first tissue of contact for inhaled xenobiotics, possesses substantial enobiotic-metabolizing capacti. Enzymes of the nasal cavity may metabolize xenobiotics to innocuous, more water-soluble compounds that are eliminated from the body, or they may bioactivate them to toxic metabolites. These toxic metabolites may find to cellular macromolecules in the nasal cavity or be transported to other parts of the body where they may react. Nasal carcinogenesis in rodents often results from bioactivation of xenobiotics. The increased incidences of nasal tumors associated with certain occupations suggest that xenobiotic bioactivation may be important in human nasal cancer etiology, asmore » well. The increasing popularity of the nose as a route of drug administration makes information concerning nasal drug metabolism and disposition vital to accomplish therapeutic goals. For these reasons, the study of xenobiotic-met abolizing capacity of the nasal cavity is an important area of health-related research. In the present study, we have confirmed the presence of CYP2A6 mRNA in human respiratory mucosa.« less

  18. EFFECT OF PREGNANE XENOBIOTIC RECEPTOR ACTIVATION ON INFLAMMATORY BOWEL DISEASE TREATED WITH RIFAXIMIN.

    PubMed

    Wan, Y C; Li, T; Han, Y-D; Zhang, H-Y; Lin, H; Zhang, B

    2015-01-01

    The causes and pathogenesis of Inflammatory Bowel Disease (IBD) are still not clearly understood. This study aims to prove the important role of rifaximin played in inflammatory reaction caused by abnormity of the intestinal mucosal immune system. Intestinal microflora can greatly promote and maintain the inflammatory reaction of IBD, therefore, antibiotics can be used to treat IBD. Rifaximin is a medicine usually used for local intestinal infection. Many clinical and basic studies have shown that both a single application of rifaximin and the joint application with other medicines could achieve a good efficacy. This paper studied the activation of Pregnane Xenobiotic Receptor (PXR) in treating IBD with rifaximin and analyzed its efficacy in IBD when PXR was involved in the transport of medicine and metabolism. The results prove that rifaximin can not only serve as an anti-microbial drug, but can activate PXR and actually weaken the reaction of IBD. Thus it is safe to say that rifaximin has great potential in treating IBD.

  19. Phosphorylation of Isoflavones by Bacillus subtilis BCRC 80517 May Represent Xenobiotic Metabolism.

    PubMed

    Hsu, Chen; Wu, Bo-Yuan; Chang, Yu-Chuan; Chang, Chi-Fon; Chiou, Tai-Ying; Su, Nan-Wei

    2018-01-10

    The soy isoflavones daidzein (DAI) and genistein (GEN) have beneficial effects on human health. However, their oral bioavailability is hampered by their low aqueous solubility. Our previous study revealed two water-soluble phosphorylated conjugates of isoflavones, daidzein 7-O-phosphate and genistein 7-O-phosphate, generated via biotransformation by Bacillus subtilis BCRC80517 cultivated with isoflavones. In this study, two novel derivatives of isoflavones, daidzein 4'-O-phosphate and genistein 4'-O-phosphate, were identified by HPLC-ESI-MS/MS and 1 H, 13 C, and 31 P NMR, and their biotransformation roadmaps were proposed. Primarily, isoflavone glucosides were deglycosylated and then phosphorylated predominantly into 7-O-phosphate conjugates with traces of 4'-O-phosphate conjugates. Inevitably, trace quantities of glucosides were converted into 6″-O-succinyl glucosides. GEN was more efficiently phosphorylated than DAI. Nevertheless, the presence of GEN prolonged the time until the exponential phase of cell growth, whereas the other isoflavones showed little effect on cell growth. Our findings provide new insights into the novel microbial phosphorylation of isoflavones involved in xenobiotic metabolism.

  20. Xenobiotic metal-induced autoimmunity: mercury and silver differentially induce antinucleolar autoantibody production in susceptible H-2s, H-2q and H-2f mice

    PubMed Central

    Hansson, M; Abedi-Valugerdi, M

    2003-01-01

    Xenobiotic-metals such as mercury (Hg) and silver (Ag) induce an H-2 linked antinucleolar autoantibody (ANolA) production in susceptible mice. The mechanism for induction of ANolA synthesis is not well understood. However, it has been suggested that both metals interact with nucleolar proteins and reveal cryptic self-peptides to nontolerant autoreactive T cells, which in turn stimulate specific autoreactive B cells. In this study, we considered this suggestion and asked if mercury and silver display, if not identical, similar cryptic self-peptides, they would induce comparable ANolA responses in H-2 susceptible mice. We analysed the development of ANolA production in mercury- and/or silver-treated mice of H-2s, H-2q and H-2f genotypes. We found that while mercury stimulated ANolA synthesis in all strains tested, silver induced ANolA responses of lower magnitudes in only H-2s and H-2q mice, but not in H-2f mice. Resistance to silver in H-2f mice was independent of the dosage/time-period of silver-treatment and non-H-2 genes. Further studies showed that F1 hybrid crosses between silver-susceptible A.SW (H-2s) and -resistant A.CA (H-2f) mice were resistant to silver, but not mercury with regard to ANolA production. Additionally, the magnitudes of mercury-induced ANolA responses in the F1 hybrids were lower than those of their parental strains. The above differential ANolA responses to mercury and silver can be explained by various factors, including the different display of nucleolar cryptic peptides by these xenobiotics, determinant capture and coexistence of different MHC molecules. Our findings also suggest that the ability of a xenobiotic metal merely to create cryptic self-peptides may not be sufficient for the induction of an ANolA response. PMID:12605692

  1. The expression of xenobiotic-metabolizing enzymes in human prostate and in prostate epithelial cells (PECs) derived from primary cultures.

    PubMed

    Al-Buheissi, S Z; Cole, K J; Hewer, A; Kumar, V; Bryan, R L; Hudson, D L; Patel, H R; Nathan, S; Miller, R A; Phillips, D H

    2006-06-01

    Dietary heterocyclic amines (HCAs) are carcinogenic in rodent prostate requiring activation by enzymes such as cytochrome P450 (CYP) and N-acetyltransferase (NAT). We investigated by Western blotting and immunohistochemistry the expression of CYP1A1, CYP1A2, and NAT1 in human prostate and in prostate epithelial cells (PECs) derived from primary cultures and tested their ability to activate the dietary carcinogen 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) and its N-hydroxy metabolite (N-OH-IQ) to DNA-damaging moieties. Western blotting identified CYP1A1, CYP1A2, and NAT1. Immunohistochemistry localized NAT1 to the cytoplasm of PECs. Inter-individual variation was observed in the expression levels of CYP1A1, 1A2, and NAT1 (11, 75, and 35-fold, respectively). PECs expressed CYP1A1 and NAT1 but not CYP1A2. When incubated with IQ or N-OH-IQ, PECs formed DNA adducts indicating their ability to metabolically activate these compounds. Prostate cells possess the capacity to activate dietary carcinogens. PECs may provide a useful model system to study their role in prostate carcinogenesis.

  2. Microbial P450 Enzymes in Bioremediation and Drug Discovery: Emerging Potentials and Challenges.

    PubMed

    Bhattacharya, Sukanta S; Yadav, Jagjit S

    2018-01-01

    Cytochrome P450 enzymes are a structurally conserved but functionally diverse group of heme-containing mixed function oxidases found across both prokaryotic and eukaryotic forms of the microbial world. Microbial P450s are known to perform diverse functions ranging from the synthesis of cell wall components to xenobiotic/drug metabolism to biodegradation of environmental chemicals. Conventionally, many microbial systems have been reported to mimic mammalian P450-like activation of drugs and were proposed as the in-vitro models of mammalian drug metabolism. Recent reports suggest that native or engineered forms of specific microbial P450s from these and other microbial systems could be employed for desired specific biotransformation reactions toward natural and synthetic (drug) compounds underscoring their emerging potential in drug improvement and discovery. On the other hand, microorganisms particularly fungi and actinomycetes have been shown to possess catabolic P450s with unusual potential to degrade toxic environmental chemicals including persistent organic pollutants (POPs). Wood-rotting basidiomycete fungi in particular have revealed the presence of exceptionally large P450 repertoire (P450ome) in their genomes, majority of which are however orphan (with no known function). Our pre- and post-genomic studies have led to functional characterization of several fungal P450s inducible in response to exposure to several environmental toxicants and demonstration of their potential in bioremediation of these chemicals. This review is an attempt to summarize the postgenomic unveiling of this versatile enzyme superfamily in microbial systems and investigation of their potential to synthesize new drugs and degrade persistent pollutants, among other biotechnological applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. P450 GENETIC VARIATION: IMPLICATIONS FOR ENVIRONMENTAL AND WORKPLACE EXPOSURE

    EPA Science Inventory

    The Cytochrome P450 array detoxifies many chemicals by catalyzing the conversion of mostly hydrophobic chemicals into more hydrophilic forms that can subsequently be excreted by the body. Human genetic variation in the genes for these enzymes produces wide variations in the abili...

  4. Paraoxonase Enzyme Protects Retinal Pigment Epithelium from Chlorpyrifos Insult

    PubMed Central

    Jasna, Jagan Mohan; Anandbabu, Kannadasan; Bharathi, Subramaniam Rajesh; Angayarkanni, Narayanasamy

    2014-01-01

    Retinal pigment epithelium (RPE) provides nourishment and protection to the eye. RPE dysfunction due to oxidative stress and inflammation is one of the major reason for many of the retinal disorders. Organophosphorus pesticides are widely used in the agricultural, industrial and household activities in India. However, their effects on the eye in the context of RPE has not been studied. In this study the defense of the ARPE19 cells exposed to Chlorpyrifos (1 nM to 100 µM) in terms of the enzyme paraoxonase (PON) was studied at 24 hr and 9 days of treatment. Chlorpyrifos was found to induce oxidative stress in the ARPE19 cells as seen by significant increase in ROS and decrease in glutathione (GSH) levels without causing cell death. Tissue resident Paraoxonase 2 (PON2) mRNA expression was elevated with chlorpyrifos exposure. The three enzymatic activities of PON namely, paraoxonase (PONase), arylesterase (PON AREase) and thiolactonase (PON HCTLase) were also found to be significantly altered to detoxify and as an antioxidant defense. Among the transcription factors regulating PON2 expression, SP1 was significantly increased with chlorpyrifos exposure. PON2 expression was found to be crucial as ARPE19 cells showed a significant loss in their ability to withstand oxidative stress when the cells were subjected to chlorpyrifos after silencing PON2 expression. Treatment with N-acetyl cysteine positively regulated the PON 2 expression, thus promoting the antioxidant defense put up by the cells in response to chlorpyrifos. PMID:24979751

  5. Specificity of the trypanothione-dependent Leishmania major glyoxalase I: structure and biochemical comparison with the human enzyme.

    PubMed

    Ariza, Antonio; Vickers, Tim J; Greig, Neil; Armour, Kirsten A; Dixon, Mark J; Eggleston, Ian M; Fairlamb, Alan H; Bond, Charles S

    2006-02-01

    Trypanothione replaces glutathione in defence against cellular damage caused by oxidants, xenobiotics and methylglyoxal in the trypanosomatid parasites, which cause trypanosomiasis and leishmaniasis. In Leishmania major, the first step in methylglyoxal detoxification is performed by a trypanothione-dependent glyoxalase I (GLO1) containing a nickel cofactor; all other characterized eukaryotic glyoxalases use zinc. In kinetic studies L. major and human enzymes were active with methylglyoxal derivatives of several thiols, but showed opposite substrate selectivities: N1-glutathionylspermidine hemithioacetal is 40-fold better with L. major GLO1, whereas glutathione hemithioacetal is 300-fold better with human GLO1. Similarly, S-4-bromobenzylglutathionylspermidine is a 24-fold more potent linear competitive inhibitor of L. major than human GLO1 (Kis of 0.54 microM and 12.6 microM, respectively), whereas S-4-bromobenzylglutathione is >4000-fold more active against human than L. major GLO1 (Kis of 0.13 microM and >500 microM respectively). The crystal structure of L. major GLO1 reveals differences in active site architecture to both human GLO1 and the nickel-dependent Escherichia coli GLO1, including increased negative charge and hydrophobic character and truncation of a loop that may regulate catalysis in the human enzyme. These differences correlate with the differential binding of glutathione and trypanothione-based substrates, and thus offer a route to the rational design of L. major-specific GLO1 inhibitors.

  6. Evaluation of liver and brain esterases in the spotted gar fish (Lepisosteus oculatus) as biomarkers of effect in the lower Mississippi River basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, T.L.; Obih, P.O.; Jaiswal, R.

    1997-05-01

    The responses of various xenobiotic metabolizing enzymes in fish models are rapidly evolving as important biomarkers for monitoring unacceptable levels of environmental contaminants. Ethoxyresorufin O-deethylase, a specific cytochrome P450-dependent monooxygenase, is often used as an indicator of polycyclic aromatic hydrocarbon pollution. Another class of enzymes which are potential biomarkers are the B-type esterases. These enzymes are sensitive to inhibition by organophosphates, and include the cholinesterases (ChE) and carboxylesterases. ChEs are further subdivided into acetylcholinesterase and butyryl cholinesterase. Among fish, AChE is predominantly localized in the brain and muscle, whereas, BuChE activity is found mainly in liver and plasma. The precisemore » physiological role of BuChE is unknown, although it has been regarded as a marker enzyme for glial or supportive cells or other non-neuronal elements. Inhibition of ChE activity has often been associated with exposure to organophosphate and carbamate insecticides and other neurotoxic xenobiotics. Chemicals other than carbarnates and organophosphates that are environmental contaminants can also affect the activity of ChEs. Carboxylesterases represent a heterogenous group of isozymes that can catalyze the hydrolysis of a wide range of xenobiotic esters, amides and thioesters. For most CaE, their natural substrates are unknown, therefore, their physiological functions remain to be elucidated. These enzymes (CaE) occur widely in most tissues and are generally found in high levels in the liver. The purpose of this research was to evaluate the liver and brain esterases in the spotted gar fish as biomarkers of effect to multiple contaminants in the lower Mississippi River basin. 15 refs., 3 figs., 2 tabs.« less

  7. Enzyme/non-enzyme discrimination and prediction of enzyme active site location using charge-based methods.

    PubMed

    Bate, Paul; Warwicker, Jim

    2004-07-02

    Calculations of charge interactions complement analysis of a characterised active site, rationalising pH-dependence of activity and transition state stabilisation. Prediction of active site location through large DeltapK(a)s or electrostatic strain is relevant for structural genomics. We report a study of ionisable groups in a set of 20 enzymes, finding that false positives obscure predictive potential. In a larger set of 156 enzymes, peaks in solvent-space electrostatic properties are calculated. Both electric field and potential match well to active site location. The best correlation is found with electrostatic potential calculated from uniform charge density over enzyme volume, rather than from assignment of a standard atom-specific charge set. Studying a shell around each molecule, for 77% of enzymes the potential peak is within that 5% of the shell closest to the active site centre, and 86% within 10%. Active site identification by largest cleft, also with projection onto a shell, gives 58% of enzymes for which the centre of the largest cleft lies within 5% of the active site, and 70% within 10%. Dielectric boundary conditions emphasise clefts in the uniform charge density method, which is suited to recognition of binding pockets embedded within larger clefts. The variation of peak potential with distance from active site, and comparison between enzyme and non-enzyme sets, gives an optimal threshold distinguishing enzyme from non-enzyme. We find that 87% of the enzyme set exceeds the threshold as compared to 29% of the non-enzyme set. Enzyme/non-enzyme homologues, "structural genomics" annotated proteins and catalytic/non-catalytic RNAs are studied in this context.

  8. Associations Between Selected Xenobiotics and Antinuclear Antibodies in the National Health and Nutrition Examination Survey, 1999-2004.

    PubMed

    Dinse, Gregg E; Jusko, Todd A; Whitt, Irene Z; Co, Caroll A; Parks, Christine G; Satoh, Minoru; Chan, Edward K L; Rose, Kathryn M; Walker, Nigel J; Birnbaum, Linda S; Zeldin, Darryl C; Weinberg, Clarice R; Miller, Frederick W

    2016-04-01

    Potential associations between background environmental chemical exposures and autoimmunity are understudied. Our exploratory study investigated exposure to individual environmental chemicals and selected mixtures in relation to the presence of antinuclear antibodies (ANA), a widely used biomarker of autoimmunity, in a representative sample of the U.S. This cross-sectional analysis used data on 4,340 participants from the National Health and Nutrition Examination Survey (1999-2004), of whom 14% were ANA positive, to explore associations between ANA and concentrations of dioxins, dibenzofurans, polychlorinated biphenyls, organochlorines, organophosphates, phenols, metals, and other environmental exposures and metabolites measured in participants' serum, whole blood, or urine. For dioxin-like compounds with toxic equivalency factors, we developed and applied a new statistical approach to study selected mixtures. Lognormal models and censored-data methods produced estimates of chemical associations with ANA in males, nulliparous females, and parous females; these estimates were adjusted for confounders and accommodated concentrations below detectable levels. Several associations between chemical concentration and ANA positivity were observed, but only the association in males exposed to triclosan remained statistically significant after correcting for multiple comparisons (mean concentration ratio = 2.8; 95% CI: 1.8, 4.5; p < 0.00001). These data suggest that background levels of most xenobiotic exposures typical in the U.S. population are not strongly associated with ANA. Future studies should ideally reduce exposure misclassification by including prospective measurement of the chemicals of concern and should track changes in ANA and other autoantibodies over time. Dinse GE, Jusko TA, Whitt IZ, Co CA, Parks CG, Satoh M, Chan EKL, Rose KM, Walker NJ, Birnbaum LS, Zeldin DC, Weinberg CR, Miller FW. 2016. Associations between selected xenobiotics and antinuclear

  9. [Carbohydrate metabolism in acute poisoning with xenobiotics].

    PubMed

    Pach, Dorota; Szurkowska, Magdalena; Szafraniec, Krystyna; Targosz, Dorota; Sułek, Monika; Kamenczak, Aleksandra; Huszno, Bohdan

    2007-01-01

    The aim of the study was to evaluate carbohydrate metabolism in patients hospitalised because of acute intoxication with xenobiotics. An analysis of 3628 patients (1553 females and 2075 males; age: 40.6 +/- 15.9 y) hospitalized at the Ward of Toxicology and Environmental Diseases because of acute poisoning in 2004-2006 was done. The patients with diabetes mellitus diagnosed prior to hospitalisation were excluded from the analysis. The blood ethanol concentration was measured, medication drugs and/or psychoactive substance screening test were performed in all patients on admission. Fasting glucose level on admission and control level on second or third day of hospitalisation were determined. Risk ratio of hyperglycaemia according to toxic agent was assessed using multiple regression model considering age, gender, and the patient education. In 18.2% (398 males and 254 females) of the patients the blood glucose level on admission was > or = 7.8 mmol/l; in u 3.6% (78 males and 50 females) > or = 11.1 mmol/l. In 24 (0.6%) of the patients glycaemia on admission was < or = 3.5 mmol/l. Control fasting glucose level of > or = 7.0 mmol/l was determined in 115 males and 76 female patients. 42% elevation in risk of hyperglycaemia was noted in acute carbon monoxide poisoning (OR = 1.42; 95% PU: 1.11-1.82). In ethanol intoxicated patients 12% drop in risk of hyperglycaemia was noted (OR = 0.88; 95% PU: 0.72-1.07). Benzodiazepine poisoning diminished risk of hyperglycaemia in 36% (OR=0.64; 95%PU: 0.48-0.84). Risk of hyperglycaemia in poisoning by medicines co-ingested with ethanol was always lower compared to poisoning with the single agent. A higher risk of hyperglycaemia was related to acute carbon monoxide poisoning whereas lower risk of hyperglycaemia was attributed to benzodiazepines and alcohol. A frequency of hypoglycaemia in the group of poisoned patients was much more lower compared to hyperglycaemia.

  10. Primary enzyme quantitation

    DOEpatents

    Saunders, G.C.

    1982-03-04

    The disclosure relates to the quantitation of a primary enzyme concentration by utilizing a substrate for the primary enzyme labeled with a second enzyme which is an indicator enzyme. Enzyme catalysis of the substrate occurs and results in release of the indicator enzyme in an amount directly proportional to the amount of primary enzyme present. By quantifying the free indicator enzyme one determines the amount of primary enzyme present.

  11. Enzyme Informatics

    PubMed Central

    Alderson, Rosanna G.; Ferrari, Luna De; Mavridis, Lazaros; McDonagh, James L.; Mitchell, John B. O.; Nath, Neetika

    2012-01-01

    Over the last 50 years, sequencing, structural biology and bioinformatics have completely revolutionised biomolecular science, with millions of sequences and tens of thousands of three dimensional structures becoming available. The bioinformatics of enzymes is well served by, mostly free, online databases. BRENDA describes the chemistry, substrate specificity, kinetics, preparation and biological sources of enzymes, while KEGG is valuable for understanding enzymes and metabolic pathways. EzCatDB, SFLD and MACiE are key repositories for data on the chemical mechanisms by which enzymes operate. At the current rate of genome sequencing and manual annotation, human curation will never finish the functional annotation of the ever-expanding list of known enzymes. Hence there is an increasing need for automated annotation, though it is not yet widespread for enzyme data. In contrast, functional ontologies such as the Gene Ontology already profit from automation. Despite our growing understanding of enzyme structure and dynamics, we are only beginning to be able to design novel enzymes. One can now begin to trace the functional evolution of enzymes using phylogenetics. The ability of enzymes to perform secondary functions, albeit relatively inefficiently, gives clues as to how enzyme function evolves. Substrate promiscuity in enzymes is one example of imperfect specificity in protein-ligand interactions. Similarly, most drugs bind to more than one protein target. This may sometimes result in helpful polypharmacology as a drug modulates plural targets, but also often leads to adverse side-effects. Many cheminformatics approaches can be used to model the interactions between druglike molecules and proteins in silico. We can even use quantum chemical techniques like DFT and QM/MM to compute the structural and energetic course of enzyme catalysed chemical reaction mechanisms, including a full description of bond making and breaking. PMID:23116471

  12. Treatment of mcf-7 breast cancer cells with a red grape wine polyphenol fraction results in disruption of calcium homeostasis and cell cycle arrest causing selective cytotoxicity.

    PubMed

    Hakimuddin, Fatima; Paliyath, Gopinadhan; Meckling, Kelly

    2006-10-04

    Food components influence the physiology by modulating gene expression and biochemical pathways within the human body. The disease-preventive roles of several fruit and vegetable components have been related to such properties. Polyphenolic components such as flavonoids are strong antioxidants and induce the expression of several xenobiotic-detoxifying enzymes. The mechanism of selective cytotoxicity induced by red grape wine polyphenols against MCF-7 breast cancer cells was investigated in relation to their interference with calcium homeostasis. MCF-7 cells showed an increase in cytosolic calcium levels within 10 min of treatment with the polyphenols. Immunohistochemical localization of calmodulin with secondary gold-labeled antibodies showed similar levels of gold labeling in both MCF-7 cells and the spontaneously immortalized, normal MCF-10A cell line. MCF-7 cells treated with the red wine polyphenol fraction (RWPF) showed swelling of endoplasmic reticulum, dissolution of the nucleus, and loss of plasma membrane integrity as well as reduced mitochondrial membrane potential. These cells were arrested at the G2/M interphase. By contrast, MCF-10A cells did not show such changes after RWPF treatment. The results suggest that polyphenol-induced calcium release may disrupt mitochondrial function and cause membrane damage, resulting in selective cytotoxicity toward MCF-7 cells. This property could further be developed toward breast cancer prevention strategies either independently or in conjunction with conventional prevention therapies where a positive drug-nutrient interaction can be demonstrated.

  13. The Search for Reliable Biomarkers of Disease in Multiple Chemical Sensitivity and Other Environmental Intolerances

    PubMed Central

    De Luca, Chiara; Raskovic, Desanka; Pacifico, Valeria; Thai, Jeffrey Chung Sheun; Korkina, Liudmila

    2011-01-01

    Whilst facing a worldwide fast increase of food and environmental allergies, the medical community is also confronted with another inhomogeneous group of environment-associated disabling conditions, including multiple chemical sensitivity (MCS), fibromyalgia, chronic fatigue syndrome, electric hypersensitivity, amalgam disease and others. These share the features of poly-symptomatic multi-organ cutaneous and systemic manifestations, with postulated inherited/acquired impaired metabolism of chemical/physical/nutritional xenobiotics, triggering adverse reactions at exposure levels far below toxicologically-relevant values, often in the absence of clear-cut allergologic and/or immunologic involvement. Due to the lack of proven pathogenic mechanisms generating measurable disease biomarkers, these environmental hypersensitivities are generally ignored by sanitary and social systems, as psychogenic or “medically unexplained symptoms”. The uncontrolled application of diagnostic and treatment protocols not corresponding to acceptable levels of validation, safety, and clinical efficacy, to a steadily increasing number of patients demanding assistance, occurs in many countries in the absence of evidence-based guidelines. Here we revise available information supporting the organic nature of these clinical conditions. Following intense research on gene polymorphisms of phase I/II detoxification enzyme genes, so far statistically inconclusive, epigenetic and metabolic factors are under investigation, in particular free radical/antioxidant homeostasis disturbances. The finding of relevant alterations of catalase, glutathione-transferase and peroxidase detoxifying activities significantly correlating with clinical manifestations of MCS, has recently registered some progress towards the identification of reliable biomarkers of disease onset, progression, and treatment outcomes. PMID:21845158

  14. Iron Sulfur and Molybdenum Cofactor Enzymes Regulate the Drosophila Life Cycle by Controlling Cell Metabolism.

    PubMed

    Marelja, Zvonimir; Leimkühler, Silke; Missirlis, Fanis

    2018-01-01

    Iron sulfur (Fe-S) clusters and the molybdenum cofactor (Moco) are present at enzyme sites, where the active metal facilitates electron transfer. Such enzyme systems are soluble in the mitochondrial matrix, cytosol and nucleus, or embedded in the inner mitochondrial membrane, but virtually absent from the cell secretory pathway. They are of ancient evolutionary origin supporting respiration, DNA replication, transcription, translation, the biosynthesis of steroids, heme, catabolism of purines, hydroxylation of xenobiotics, and cellular sulfur metabolism. Here, Fe-S cluster and Moco biosynthesis in Drosophila melanogaster is reviewed and the multiple biochemical and physiological functions of known Fe-S and Moco enzymes are described. We show that RNA interference of Mocs3 disrupts Moco biosynthesis and the circadian clock. Fe-S-dependent mitochondrial respiration is discussed in the context of germ line and somatic development, stem cell differentiation and aging. The subcellular compartmentalization of the Fe-S and Moco assembly machinery components and their connections to iron sensing mechanisms and intermediary metabolism are emphasized. A biochemically active Fe-S core complex of heterologously expressed fly Nfs1, Isd11, IscU, and human frataxin is presented. Based on the recent demonstration that copper displaces the Fe-S cluster of yeast and human ferredoxin, an explanation for why high dietary copper leads to cytoplasmic iron deficiency in flies is proposed. Another proposal that exosomes contribute to the transport of xanthine dehydrogenase from peripheral tissues to the eye pigment cells is put forward, where the Vps16a subunit of the HOPS complex may have a specialized role in concentrating this enzyme within pigment granules. Finally, we formulate a hypothesis that (i) mitochondrial superoxide mobilizes iron from the Fe-S clusters in aconitase and succinate dehydrogenase; (ii) increased iron transiently displaces manganese on superoxide dismutase, which

  15. Iron Sulfur and Molybdenum Cofactor Enzymes Regulate the Drosophila Life Cycle by Controlling Cell Metabolism

    PubMed Central

    Marelja, Zvonimir; Leimkühler, Silke; Missirlis, Fanis

    2018-01-01

    Iron sulfur (Fe-S) clusters and the molybdenum cofactor (Moco) are present at enzyme sites, where the active metal facilitates electron transfer. Such enzyme systems are soluble in the mitochondrial matrix, cytosol and nucleus, or embedded in the inner mitochondrial membrane, but virtually absent from the cell secretory pathway. They are of ancient evolutionary origin supporting respiration, DNA replication, transcription, translation, the biosynthesis of steroids, heme, catabolism of purines, hydroxylation of xenobiotics, and cellular sulfur metabolism. Here, Fe-S cluster and Moco biosynthesis in Drosophila melanogaster is reviewed and the multiple biochemical and physiological functions of known Fe-S and Moco enzymes are described. We show that RNA interference of Mocs3 disrupts Moco biosynthesis and the circadian clock. Fe-S-dependent mitochondrial respiration is discussed in the context of germ line and somatic development, stem cell differentiation and aging. The subcellular compartmentalization of the Fe-S and Moco assembly machinery components and their connections to iron sensing mechanisms and intermediary metabolism are emphasized. A biochemically active Fe-S core complex of heterologously expressed fly Nfs1, Isd11, IscU, and human frataxin is presented. Based on the recent demonstration that copper displaces the Fe-S cluster of yeast and human ferredoxin, an explanation for why high dietary copper leads to cytoplasmic iron deficiency in flies is proposed. Another proposal that exosomes contribute to the transport of xanthine dehydrogenase from peripheral tissues to the eye pigment cells is put forward, where the Vps16a subunit of the HOPS complex may have a specialized role in concentrating this enzyme within pigment granules. Finally, we formulate a hypothesis that (i) mitochondrial superoxide mobilizes iron from the Fe-S clusters in aconitase and succinate dehydrogenase; (ii) increased iron transiently displaces manganese on superoxide dismutase, which

  16. Insecticidal Activity of Melaleuca alternifolia Essential Oil and RNA-Seq Analysis of Sitophilus zeamais Transcriptome in Response to Oil Fumigation.

    PubMed

    Liao, Min; Xiao, Jin-Jing; Zhou, Li-Jun; Liu, Yang; Wu, Xiang-Wei; Hua, Ri-Mao; Wang, Gui-Rong; Cao, Hai-Qun

    2016-01-01

    The cereal weevil, Sitophilus zeamais is one of the most destructive pests of stored cereals worldwide. Frequent use of fumigants for managing stored-product insects has led to the development of resistance in insects. Essential oils from aromatic plants including the tea oil plant, Melaleuca alternifolia may provide environmentally friendly alternatives to currently used pest control agents. However, little is known about molecular events involved in stored-product insects in response to plant essential oil fumigation. M. alternifolia essential oil was shown to possess the fumigant toxicity against S. zeamais. The constituent, terpinen-4-ol was the most effective compound for fumigant toxicity. M. alternifolia essential oil significantly inhibited the activity of three enzymes in S. zeamais, including two detoxifying enzymes, glutathione S-transferase (GST), and carboxylesterase (CarE), as well as a nerve conduction enzyme, acetylcholinesterase (AChE). Comparative transcriptome analysis of S. zeamais through RNA-Seq identified a total of 3,562 differentially expressed genes (DEGs), of which 2,836 and 726 were up-regulated and down-regulated in response to M. alternifolia essential oil fumigation, respectively. Based on gene ontology (GO) analysis, the majority of DEGs were involved in insecticide detoxification and mitochondrial function. Furthermore, an abundance of DEGs mapped into the metabolism pathway in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database were associated with respiration and metabolism of xenobiotics, including cytochrome P450s, CarEs, GSTs, and ATP-binding cassette transporters (ABC transporters). Some DEGs mapped into the proteasome and phagosome pathway were found to be significantly enriched. These results led us to propose a model of insecticide action that M. alternifolia essential oil likely directly affects the hydrogen carrier to block the electron flow and interfere energy synthesis in mitochondrial respiratory chain

  17. Two Enzymes of a Complete Degradation Pathway for Linear Alkylbenzenesulfonate (LAS) Surfactants: 4-Sulfoacetophenone Baeyer-Villiger Monooxygenase and 4-Sulfophenylacetate Esterase in Comamonas testosteroni KF-1

    PubMed Central

    Weiss, Michael; Denger, Karin; Huhn, Thomas

    2012-01-01

    Complete biodegradation of the surfactant linear alkylbenzenesulfonate (LAS) is accomplished by complex bacterial communities in two steps. First, all LAS congeners are degraded into about 50 sulfophenylcarboxylates (SPC), one of which is 3-(4-sulfophenyl)butyrate (3-C4-SPC). Second, these SPCs are mineralized. 3-C4-SPC is mineralized by Comamonas testosteroni KF-1 in a process involving 4-sulfoacetophenone (SAP) as a metabolite and an unknown inducible Baeyer-Villiger monooxygenase (BVMO) to yield 4-sulfophenyl acetate (SPAc) from SAP (SAPMO enzyme); hydrolysis of SPAc to 4-sulfophenol and acetate is catalyzed by an unknown inducible esterase (SPAc esterase). Transcriptional analysis showed that one of four candidate genes for BVMOs in the genome of strain KF-1, as well as an SPAc esterase candidate gene directly upstream, was inducibly transcribed during growth with 3-C4-SPC. The same genes were identified by enzyme purification and peptide fingerprinting-mass spectrometry when SAPMO was enriched and SPAc esterase purified to homogeneity by protein chromatography. Heterologously overproduced pure SAPMO converted SAP to SPAc and was active with phenylacetone and 4-hydroxyacetophenone but not with cyclohexanone and progesterone. SAPMO showed the highest sequence homology to the archetypal phenylacetone BVMO (57%), followed by steroid BVMO (55%) and 4-hydroxyacetophenone BVMO (30%). Finally, the two pure enzymes added sequentially, SAPMO with NADPH and SAP, and then SPAc esterase, catalyzed the conversion of SAP via SPAc to 4-sulfophenol and acetate in a 1:1:1:1 molar ratio. Hence, the first two enzymes of a complete LAS degradation pathway were identified, giving evidence for the recruitment of members of the very versatile type I BVMO and carboxylester hydrolase enzyme families for the utilization of a xenobiotic compound by bacteria. PMID:23001656

  18. Tyrosine 8 contributes to catalysis but is not required for activity of rat liver glutathione S-transferase, 1-1.

    PubMed Central

    Wang, J.; Barycki, J. J.; Colman, R. F.

    1996-01-01

    Reaction of rat liver glutathione S-transferase, isozyme 1-1, with 4-(fluorosulfonyl)benzoic acid (4-FSB), a xenobiotic substrate analogue, results in a time-dependent inactivation of the enzyme to a final value of 35% of its original activity when assayed at pH 6.5 with 1-chloro-2,4-dinitrobenzene (CDNB) as substrate. The rate of inactivation exhibits a nonlinear dependence on the concentration of 4-FSB from 0.25 mM to 9 mM, characterized by a KI of 0.78 mM and kmax of 0.011 min-1. S-Hexylglutathione or the xenobiotic substrate analogue, 2,4-dinitrophenol, protects against inactivation of the enzyme by 4-FSB, whereas S-methylglutathione has little effect on the reaction. These experiments indicate that reaction occurs within the active site of the enzyme, probably in the binding site of the xenobiotic substrate, close to the glutathione binding site. Incorporation of [3,5-3H]-4-FSB into the enzyme in the absence and presence of S-hexylglutathione suggests that modification of one residue is responsible for the partial loss of enzyme activity. Tyr 8 and Cys 17 are shown to be the reaction targets of 4-FSB, but only Tyr 8 is protected against 4-FSB by S-hexylglutathione. DTT regenerates cysteine from the reaction product of cysteine and 4-FSB, but does not reactivate the enzyme. These results show that modification of Tyr 8 by 4-FSB causes the partial inactivation of the enzyme. The Michaelis constants for various substrates are not changed by the modification of the enzyme. The pH dependence of the enzyme-catalyzed reaction of glutathione with CDNB for the modified enzyme, as compared with the native enzyme, reveals an increase of about 0.9 in the apparent pKa, which has been interpreted as representing the ionization of enzyme-bound glutathione; however, this pKa of about 7.4 for modified enzyme remains far below the pK of 9.1 for the -SH of free glutathione. Previously, it was considered that Tyr 8 was essential for GST catalysis. In contrast, we conclude that

  19. Bioavailability of catechins from guaraná (Paullinia cupana) and its effect on antioxidant enzymes and other oxidative stress markers in healthy human subjects.

    PubMed

    Yonekura, Lina; Martins, Carolina Aguiar; Sampaio, Geni Rodrigues; Monteiro, Marcela Piedade; César, Luiz Antônio Machado; Mioto, Bruno Mahler; Mori, Clara Satsuki; Mendes, Thaíse Maria Nogueira; Ribeiro, Marcelo Lima; Arçari, Demetrius Paiva; Torres, Elizabeth Aparecida Ferraz da Silva

    2016-07-13

    We assessed the effects of guaraná (Paullinia cupana) consumption on plasma catechins, erythrocyte antioxidant enzyme activity (superoxide dismutase, catalase and glutathione peroxidase) and biomarkers of oxidative stress (ex vivo LDL oxidation, plasma total antioxidant status and ORAC, and lymphocyte single cell gel electrophoresis) in healthy overweight subjects. Twelve participants completed a 15-day run-in period followed by a 15-day intervention with a daily intake of 3 g guaraná seed powder containing 90 mg (+)-catechin and 60 mg (-)-epicatechin. Blood samples were taken on the first and last day of the intervention period, fasting and 1 h post-dose. The administration of guaraná increased plasma ORAC, while reducing ex vivo LDL oxidation (only in the first study day) and hydrogen peroxide-induced DNA damage in lymphocytes, at 1 h post-dose. Plasma catechin (0.38 ± 0.12 and 0.44 ± 0.18 nmol mL(-1)), epicatechin (0.59 ± 0.18 and 0.64 ± 0.25 nmol mL(-1)) and their methylated metabolites were observed at 1 h post-dose but were almost negligible after overnight fasting. The activities of catalase (in both study days) and glutathione peroxidase (in the last intervention day) increased at 1 h post-dose. Furthermore, the activity of both enzymes remained higher than the basal levels in overnight-fasting individuals on the last intervention day, suggesting a prolonged effect of guaraná that continues even after plasma catechin clearance. In conclusion, guaraná catechins are bioavailable and contribute to reduce the oxidative stress of clinically healthy individuals, by direct antioxidant action of the absorbed phytochemicals and up-regulation of antioxidant/detoxifying enzymes.

  20. Effects of two strobilurins (azoxystrobin and picoxystrobin) on embryonic development and enzyme activities in juveniles and adult fish livers of zebrafish (Danio rerio).

    PubMed

    Jia, Wei; Mao, Liangang; Zhang, Lan; Zhang, Yanning; Jiang, Hongyun

    2018-09-01

    Azoxystrobin and picoxystrobin are two primary strobilurin fungicides used worldwide. This study was conducted to test their effects on embryonic development and the activity of several enzyme in the zebrafish (Danio rerio). After fish eggs were separately exposed to azoxystrobin and picoxystrobin from 24 to 144 h post fertilization (hpf), the mortality, hatching, and teratogenetic rates were measured. Additionally, effects of azoxystrobin and picoxystrobin on activities of three important antioxidant enzymes [catalase (CAT), superoxide dismutase (SOD) and peroxidase (POD)] and two primary detoxification enzymes [carboxylesterase (CarE) and glutathione S-transferase (GST)] and malondialdehyde (MDA) content in zebrafish larvae (96 h) and livers of adult zebrafish of both sexes were also assessed for potential toxicity mechanisms. Based on the embryonic development test results, the mortality, hatching, and teratogenetic rates of eggs treated with azoxystrobin and picoxystrobin all showed significant dose- and time-dependent effects, and the 144-h LC 50 values of azoxystrobin and picoxystrobin were 1174.9 and 213.8 μg L -1 , respectively. In the larval zebrafish (96 h) test, activities of CAT, POD, CarE, and GST and MDA content in azoxystrobin and picoxystrobin-treated zebrafish larvae increased significantly with concentrations of the pesticides compared with those in the control. We further revealed that azoxystrobin and picoxystrobin exposure both caused significant oxidative stress in adult fish livers and the changes differed between the sexes. Our results indicated that picoxystrobin led to higher embryonic development toxicity and oxidative stress than azoxystrobin in zebrafish and the male zebrafish liver had stronger ability to detoxify than that of the females. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Differential protein expression and localization of CYP450 enzymes in three species of earthworm; is this a reflection of environmental adaptation?

    PubMed

    Lu, Xiaoxu; Li, Yinsheng; Thunders, Michelle; Cavanagh, Jo; Matthew, Cory; Wang, Xiuhong; Zhou, Xinchu; Qiu, Jiangping

    2017-03-01

    Cytochrome P450 (CYP450) is a hemoprotein superfamily, among which CYP1, CYP2 and CYP3 play a major role in the metabolism of vast array of xenobiotics and endobiotics. This paper reports on three CYP enzyme variants (CYP1A2, CYP2E1 and CYP3A4) in three species of earthworm (Eisenia fetida, Metaphire guillelmi and Amynthas carnosus). The relative expression levels and localization of the three associated proteins were investigated at three life-cycle points (juvenile, sub-adult and adult), through comparison of anterior and posterior body tissue and between specific organs (body wall, intestine and reproductive tissues) using western blot analysis. This study confirmed the presence of CYP3A4, CYP1A2 and CYP2E1 in all three species of earthworm tested. The levels of expression varied with earthworm species, age, and body location. These differences in occurrence of the three CYP enzymes appeared to reflect the ecological niche (the spatial and temporal location and functional relationship of each individual or population in populations or communities), and the likelihood of contact with soil contaminants of the respective species. These results may help to explain why earthworms are capable of adapting to very different and extensively polluted soil environments and provide important data for subsequent ecotoxicology and ecological adaptability studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Enzyme nanoparticle fabrication: magnetic nanoparticle synthesis and enzyme immobilization.

    PubMed

    Johnson, Patrick A; Park, Hee Joon; Driscoll, Ashley J

    2011-01-01

    Immobilized enzymes are drawing significant attention for potential commercial applications as biocatalysts by reducing operational expenses and by increasing process utilization of the enzymes. Typically, immobilized enzymes have greater thermal and operational stability at various pH values, ionic strengths and are more resistant to denaturation that the soluble native form of the enzyme. Also, immobilized enzymes can be recycled by utilizing the physical or chemical properties of the supporting material. Magnetic nanoparticles provide advantages as the supporting material for immobilized enzymes over competing materials such as: higher surface area that allows for greater enzyme loading, lower mass transfer resistance, less fouling effect, and selective, nonchemical separation from the reaction mixture by an applied a magnetic field. Various surface modifications of magnetic nanoparticles, such as silanization, carbodiimide activation, and PEG or PVA spacing, aid in the binding of single or multienzyme systems to the particles, while cross-linking using glutaraldehyde can also stabilize the attached enzymes.

  3. Mechanism and Catalytic Diversity of Rieske Non-Heme Iron-Dependent Oxygenases

    PubMed Central

    Barry, Sarah M.; Challis, Gregory L.

    2013-01-01

    Rieske non-heme iron-dependent oxygenases are important enzymes that catalyze a wide variety of reactions in the biodegradation of xenobiotics and the biosynthesis of bioactive natural products. In this perspective article, we summarize recent efforts to elucidate the catalytic mechanisms of Rieske oxygenases and highlight the diverse range of reactions now known to be catalyzed by such enzymes. PMID:24244885

  4. Detoxification of corn stover and corn starch pyrolysis liquors by Pseudomonas putida and Streptomyces setonii suspended cells and plastic compost support biofilms.

    PubMed

    Khiyami, Mohammad A; Pometto Iii, Anthony L; Brown, Robert C

    2005-04-20

    Plant biomass can be liquefied into fermentable sugars (levoglucosan then to glucose) for the production of ethanol, lactic acid, enzymes, and more by a process called pyrolysis. During the process microbial inhibitors are also generated. Pseudomonas putida (ATCC 17484) and Streptomyces setonii75Vi2 (ATCC 39116) were employed to degrade microbial inhibitors in diluted corn stover (Dcs) and diluted corn starch (Dst) pyrolysis liquors. The detoxification process evaluation included measuring total phenols and changes in UV spectra, a GC-MS analysis, and a bioassay, which employed Lactobacillus casei subsp. rhamosus (ATCC 11443) growth as an indicator of detoxification. Suspended-cell cultures illustrated limited detoxification ability of Dcs and Dst. P. putida and S. setoniiplastic compost support (PCS) biofilm continuous-stirred-tank-reactor pure cultures detoxified 10 and 25% (v/v) Dcs and Dst, whereas PCS biofilm mixed culture also partially detoxified 50% (v/v) Dcs and Dst in repeated batch culture. Therefore, PCS biofilm mixed culture is the process of choice to detoxify diluted pyrolysis liquors.

  5. Antioxidant-enzyme reaction to the oxidative stress due to alpha-cypermethrin, chlorpyriphos, and pirimicarb in tomato (Lycopersicon esculentum Mill.).

    PubMed

    Chahid, Karim; Laglaoui, Amin; Zantar, Said; Ennabili, Abdeslam

    2015-11-01

    Tomato (Lycopersicon esculentum Mill.) becomes one of the world's foremost vegetables, and its world production and consumption have increased fairly quickly. The capacity to induce oxidative stress in tomato plant, exposed to three xenobiotics such as alpha-cypermethrin, chlorpyriphos, and pirimicarb, was investigated by the evaluation of lipid peroxidation by measuring malondialdehyde (MDA) rate; also, we studied the response of tomato to this stress by assessing the response of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), glutathione-s-transferase (GST), and glutathione reductase (GR). The effect of the insecticides was observed using four concentrations (25, 50, 75, and 100%) for germinating seeds and only the recommended concentration in agriculture (100%) for growing plants. Our results show an important accumulation of MDA, demonstrating the increase of lipid peroxidation in consequence of the excessive reactive oxygen species (ROS) production due to insecticide treatment. In response to this oxidative stress in tomato seedlings and plants, the activities of antioxidant-enzyme system were generally enhanced. The electrophoretic analysis showed also the apparition of new isoenzymes as the case for CAT and POD.

  6. Effects of Moderate Alcohol Consumption on Gene Expression Related to Colonic Inflammation and Antioxidant Enzymes in Rats

    PubMed Central

    Klarich, DawnKylee S.; Penprase, Jerrold; Cintora, Patricia; Medrano, Octavio; Erwin, Danielle; Brasser, Susan M.; Hong, Mee Young

    2017-01-01

    Excessive alcohol consumption is a risk factor associated with colorectal cancer; however, some studies have reported that moderate alcohol consumption may not contribute additional risk for developing colorectal cancer while others suggest that moderate alcohol consumption provides a protective effect that reduces colorectal cancer risk. The purpose of this study was to determine the effects of moderate voluntary alcohol (20% ethanol) intake on alternate days for 3 months in outbred Wistar rats on risk factors associated with colorectal cancer development. Colonic gene expression of cyclooxygenase-2, RelA, 8-oxoguanine DNA glycosylase 1, superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione-S-transferase M1, and aldehyde dehydrogenase 2 were determined. Blood alcohol content, liver function enzyme activities, and 8-oxo-deoxyguanosine DNA adducts were also assessed. Alcohol-treated rats were found to have significantly lower 8-oxo-deoxyguanosine levels in blood, a marker of DNA damage. Alanine aminotransferase and lactate dehydrogenase were both significantly lower in the alcohol group. Moderate alcohol significantly decreased cyclooxygenase-2 gene expression, an inflammatory marker associated with colorectal cancer risk. The alcohol group had significantly increased glutathione-S-transferase M1 expression, an antioxidant enzyme that helps detoxify carcinogens, such as acetaldehyde, and significantly increased aldehyde dehydrogenase 2 expression, which allows for greater acetaldehyde clearance. Increased expression of glutathione-S-transferase M1 and aldehyde dehydrogenase 2 likely contributed to reduce mucosal damage that is caused by acetaldehyde accumulation. These results indicate that moderate alcohol may reduce the risk for colorectal cancer development, which was evidenced by reduced inflammation activity and lower DNA damage after alcohol exposure. PMID:28599714

  7. Quantitation of cytokine mRNA expression as an endpoint for prediction and diagnosis of xenobiotic-induced hypersensitivity reactions.

    PubMed

    Gaspard, I; Kerdine, S; Pallardy, M; Lebrec, H

    1999-09-01

    Xenobiotic-induced hypersensitivity reactions are immune-mediated effects that involve specific antibodies and/or effector and regulatory T lymphocytes. Cytokines are key mediators of such responses and must be considered as possible endpoints for predicting sensitizing potency of drugs and chemicals, as well as for helping diagnosis of allergy. Detecting cytokine production at the protein level has been shown to not be always sensitive enough. This paper describes three examples of the utilization of semiquantitative or competitive reverse transcription polymerase chain reaction analysis of interleukin-4, interferon gamma, and interleukin-1beta mRNAs as endpoints for assessing T-cell or dendritic cell responses to sensitizing drugs (beta-lactam antibiotics) or chemicals (dinitrochlorobenzene). Copyright 1999 Academic Press.

  8. Clustering of two genes putatively involved in cyanate detoxification evolved recently and independently in multiple fungal lineages

    USDA-ARS?s Scientific Manuscript database

    Fungi that have the enzymes cyanase and carbonic anhydrase show a limited capacity to detoxify cyanate, a fungicide employed by both plants and humans. Here, we describe a novel two-gene cluster that comprises duplicated cyanase and carbonic anhydrase copies, which we name the CCA gene cluster, trac...

  9. Parasitization by Scleroderma guani influences expression of superoxide dismutase genes in Tenebrio molitor

    USDA-ARS?s Scientific Manuscript database

    Superoxide dismutase (SOD) is an antioxidant enzyme involved in detoxifying reactive oxygen species. In this study, we identified genes encoding the extracellular and intracellular copper-zinc SODs (ecCuZnSOD and icCuZnSOD) and a manganese SOD (MnSOD) in the yellow mealworm beetle, Tenebrio molitor....

  10. Molecular and physiological mechanisms of plant tolerance to toxic metals

    USDA-ARS?s Scientific Manuscript database

    Plants have evolved a myriad of adaptive mechanisms based on a number of genes to deal with the different toxic metals they encounter in the soils worldwide. These genes encode a range of different metal and organic compound transporters and enzyme pathways for the synthesis of metal detoxifying lig...

  11. The Megavirus Chilensis Cu,Zn-Superoxide Dismutase: the First Viral Structure of a Typical Cellular Copper Chaperone-Independent Hyperstable Dimeric Enzyme

    PubMed Central

    Lartigue, Audrey; Burlat, Bénédicte; Coutard, Bruno; Chaspoul, Florence; Claverie, Jean-Michel

    2014-01-01

    ABSTRACT Giant viruses able to replicate in Acanthamoeba castellanii penetrate their host through phagocytosis. After capsid opening, a fusion between the internal membranes of the virion and the phagocytic vacuole triggers the transfer in the cytoplasm of the viral DNA together with the DNA repair enzymes and the transcription machinery present in the particles. In addition, the proteome analysis of purified mimivirus virions revealed the presence of many enzymes meant to resist oxidative stress and conserved in the Mimiviridae. Megavirus chilensis encodes a predicted copper, zinc superoxide dismutase (Cu,Zn-SOD), an enzyme known to detoxify reactive oxygen species released in the course of host defense reactions. While it was thought that the metal ions are required for the formation of the active-site lid and dimer stabilization, megavirus chilensis SOD forms a very stable metal-free dimer. We used electron paramagnetic resonance (EPR) analysis and activity measurements to show that the supplementation of the bacterial culture with copper and zinc during the recombinant expression of Mg277 is sufficient to restore a fully active holoenzyme. These results demonstrate that the viral enzyme's activation is independent of a chaperone both for disulfide bridge formation and for copper incorporation and suggest that its assembly may not be as regulated as that of its cellular counterparts. A SOD protein is encoded by a variety of DNA viruses but is absent from mimivirus. As in poxviruses, the enzyme might be dispensable when the virus infects Acanthamoeba cells but may allow megavirus chilensis to infect a broad range of eukaryotic hosts. IMPORTANCE Mimiviridae are giant viruses encoding more than 1,000 proteins. The virion particles are loaded with proteins used by the virus to resist the vacuole's oxidative stress. The megavirus chilensis virion contains a predicted copper, zinc superoxide dismutase (Cu,Zn-SOD). The corresponding gene is present in some megavirus

  12. Risk assessment for selected xenobiotics by bioassay methods with higher plants

    NASA Astrophysics Data System (ADS)

    Günther, Petra; Pestemer, Wilfried

    1990-05-01

    Different bioassays with higher plants were approved for use in a bioassay procedure for testing of xenobiotics according to the German Chemicals Act. Selected environmental pollutants (atrazine, cadmium chloride, 2,6-dichlorobenzonitrile, pentachlorophenol, potassium dichromate, thiourea), all from a list of reference chemicals, were tested with these methods. Dose-response curves for growth of oats and turnips were evaluated in soil and vermiculite (nonsorptive substrate), and availability to plants was calculated by comparing the EC50 values for one chemical in both substrates. The most active chemical was atrazine, followed by 2,6-dichlorobenzonitrile, pentachlorophenol, potassium dichromate, cadmium chloride, and thiourea. The least available compound to plants was pentachlorophenol, tested with turnips ( Brassica rapa var. rapa). The strongest inhibition of germination, demonstrated in an in vitro assay with garden cress ( Lepidium sativum), was found with 2,6-dichlorobenzonitrile, the lowest with atrazine. The effect of an extended exposure of the plants to the chemicals was evaluated in a long-term bioassay with oats ( Avena sativa) in hydroponic culture. Several dose-response curves during the growing period were derived. It was found that the EC50 values for atrazine and thiourea decreased markedly during the first four weeks; thereafter the changes were much smaller. As an overall conclusion, a bioassay procedure is proposed that can be included in the graduated plan recommended by the German Chemicals Act.

  13. Measuring the Enzyme Activity of Arabidopsis Deubiquitylating Enzymes.

    PubMed

    Kalinowska, Kamila; Nagel, Marie-Kristin; Isono, Erika

    2016-01-01

    Deubiquitylating enzymes, or DUBs, are important regulators of ubiquitin homeostasis and substrate stability, though the molecular mechanisms of most of the DUBs in plants are not yet understood. As different ubiquitin chain types are implicated in different biological pathways, it is important to analyze the enzyme characteristic for studying a DUB. Quantitative analysis of DUB activity is also important to determine enzyme kinetics and the influence of DUB binding proteins on the enzyme activity. Here, we show methods to analyze DUB activity using immunodetection, Coomassie Brilliant Blue staining, and fluorescence measurement that can be useful for understanding the basic characteristic of DUBs.

  14. Lycopene, resveratrol, vitamin C and FeSO4 increase damage produced by pro-oxidant carcinogen 4-nitroquinoline-1-oxide in Drosophila melanogaster: Xenobiotic metabolism implications.

    PubMed

    Dueñas-García, I E; Heres-Pulido, M E; Arellano-Llamas, M R; De la Cruz-Núñez, J; Cisneros-Carrillo, V; Palacios-López, C S; Acosta-Anaya, L; Santos-Cruz, L F; Castañeda-Partida, L; Durán-Díaz, A

    2017-05-01

    4-nitroquinoline-1-oxide (4-NQO) is a pro-oxidant carcinogen bioactivated by xenobiotic metabolism (XM). We investigated if antioxidants lycopene [0.45, 0.9, 1.8 μM], resveratrol [11, 43, 172 μM], and vitamin C [5.6 mM] added or not with FeSO 4 [0.06 mM], modulate the genotoxicity of 4-NQO [2 mM] with the Drosophila wing spot test standard (ST) and high bioactivation (HB) crosses, with inducible and high levels of cytochromes P450, respectively. The genotoxicity of 4-NQO was higher when dissolved in an ethanol - acetone mixture. The antioxidants did not protect against 4-NQO in any of both crosses. In the ST cross, resveratrol [11 μM], vitamin C and FeSO 4 resulted in genotoxicity; the three antioxidants and FeSO 4 increased the damage of 4-NQO. In the HB cross, none of the antioxidants, neither FeSO 4 , were genotoxic. Only resveratrol [172 μM] + 4-NQO increased the genotoxic activity in both crosses. We concluded that the effects of the antioxidants, FeSO 4 and the modulation of 4-NQO were the result of the difference of Cyp450s levels, between the ST and HB crosses. We propose that the basal levels of the XM's enzymes in the ST cross interacted with a putative pro-oxidant activity of the compounds added to the pro-oxidant effects of 4-NQO. Copyright © 2017. Published by Elsevier Ltd.

  15. Phosphinothricin Acetyltransferases Identified Using In Vivo, In Vitro, and Bioinformatic Analyses

    PubMed Central

    VanDrisse, Chelsey M.; Hentchel, Kristy L.

    2016-01-01

    ABSTRACT Acetylation of small molecules is widespread in nature, and in some cases, cells use this process to detoxify harmful chemicals. Streptomyces species utilize a Gcn5 N-acetyltransferase (GNAT), known as Bar, to acetylate and detoxify a self-produced toxin, phosphinothricin (PPT), a glutamate analogue. Bar homologues, such as MddA from Salmonella enterica, acetylate methionine analogues such as methionine sulfoximine (MSX) and methionine sulfone (MSO), but not PPT, even though Bar homologues are annotated as PPT acetyltransferases. S. enterica was used as a heterologous host to determine whether or not putative PPT acetyltransferases from various sources could acetylate PPT, MSX, and MSO. In vitro and in vivo analyses identified substrates acetylated by putative PPT acetyltransferases from Deinococcus radiodurans (DR_1057 and DR_1182) and Geobacillus kaustophilus (GK0593 and GK2920). In vivo, synthesis of DR_1182, GK0593, and GK2920 blocked the inhibitory effects of PPT, MSX, and MSO. In contrast, DR_1057 did not detoxify any of the above substrates. Results of in vitro studies were consistent with the in vivo results. In addition, phylogenetic analyses were used to predict the functionality of annotated PPT acetyltransferases in Burkholderia xenovorans, Bacillus subtilis, Staphylococcus aureus, Acinetobacter baylyi, and Escherichia coli. IMPORTANCE The work reported here provides an example of the use of a heterologous system for the identification of enzyme function. Many members of this superfamily of proteins do not have a known function, or it has been annotated solely on the basis of sequence homology to previously characterized enzymes. The critical role of Gcn5 N-acetyltransferases (GNATs) in the modulation of central metabolic processes, and in controlling metabolic stress, necessitates approaches that can reveal their physiological role. The combination of in vivo, in vitro, and bioinformatics approaches reported here identified GNATs that can

  16. Thyroid disrupting chemicals: Mechanisms and mixtures

    EPA Science Inventory

    Environmental contaminants are known to act as thyroid disrupting chemicals (TDCs). Broadly defined, TDCs are xenobiotics that alter the structure or function of the thyroid gland, alter regulatory enzymes associated with thyroid hormone (TH) homeostasis, or change circulating o...

  17. THYROID DISRUPTING CHEMICALS: CHALLENGES IN ASSESSING NEUROTOXIC RISK FROM ENVIRONMENTAL MIXTURES.

    EPA Science Inventory

    Environmental contaminants are known to act as thyroid disrupting chemicals (TDCs). Broadly defined, TDCs are xenobiotics that alter the structure or function of the thyroid gland, alter regulatory enzymes associated with thyroid hormone (TH) homeostasis, or change circulating o...

  18. In-vitro synthesis of drug metabolites and their screening/characterization using liquid chromatography-mass spectrometry (LC-MS)

    USDA-ARS?s Scientific Manuscript database

    Drug metabolism is a biochemical process by which drugs and xenobiotics are chemically modified to metabolites, primarily by liver enzymes. Metabolites may sometimes affect cellular therapeutic or toxicological processes, therefore knowledge of metabolic processes is essential for understanding drug...

  19. In vivo deiodinase inhibition by iopanoic acid causes thyroid axis disruption and dysmorphogenesis in model amphibian species Xenopus laevis

    EPA Science Inventory

    Deiodinase (DIO) enzymes activate, deactivate and catabolize thyroid hormones (THs) and play an important role in thyroid-mediated amphibian metamorphosis. DIOs have been implicated as putative targets of xenobiotics leading to thyroid disruption. In an effort to characterize bi...

  20. [Steroid and xenobiotic receptor (SXR), multidrug resistance gene (MDR1) and GSTs, SULTs and CYP polymorphism expression in invasive bladder cancer, analysis of their expression and correlation with other prognostic factors].

    PubMed

    Rioja Zuazu, J; Bandrés Elizalde, E; Rosell Costa, D; Rincón Mayans, A; Zudaire Bergera, J; Gil Sanz, M J; Rioja Sanz, L A; García Foncillas, J; Berián Polo, J M

    2007-01-01

    Steroid and Xenobiotic Receptor (SXR) has demonstrated its activation by numerous drugs, including cytochrome P450 potent inducers like rifampicina or cotrimazol. The role of SXR is well known, and lies regulating in a positive manner cytochrome P450 3A4 (CYP3A4) transcription and the multidrug resistance gene (MDR1), it's considered a key in the xenobiotic detoxification mechanism, being involved in all phases of the detoxification process. Enzymes involved in Policyclic Aromatic hidrocarbures (PAH) metabolism and degradation are polymorphic in humans, including glutation S-transferases (GSTs), N-acetiltransferases (NATs), sulfotransferases (SULTs)1A1 and cytochrome p450 (CYP)1B1. The objectives we've planned are: 1. Analyze the expression of the transcription factor SXR and MDR1 in bladder by means of RT-PCR real time, both in normal bladder and in tumoral bladder. 2. Analyze the relation between clinical and pathological factors with the expression of SXR and MDR1. 3. Analyze the expression of the polymorphims CYP1B1, GSTM1 GSTT1 and SULT1A1 and their correlation with different clinic-pathological and molecular factors. In a prospective way the size of the sample was estimated. In 67 patients from two institutions (Hospital Universitario Miguel Servet (49 HUMS) and Clinica Universitaria de Navarra (18 CUN)), diagnosed of invasive bladder cancer and treated by means of radical cystectomy, were determined the expression of both SXR and MDR1 by means of real time PCR, as well as the polymorphisms CYP1B1, GSTM1 GSTT1 y SULT1A1 by means of RFLP (Restriction fragment length polymorphism). Correlations with other prognostic factors by contingency tables were performed. Average follow up was 23.7 months with a median of 28.26 months. Of the 67 patients studied, 31 patients (46.3) presented disease progression, in form of local recurrence or in distant metastasis or both. With a average time to progression of 12.4 months and a median of 10 months, with a range of 1

  1. AtMRP1 gene of Arabidopsis encodes a glutathione S-conjugate pump: isolation and functional definition of a plant ATP-binding cassette transporter gene.

    PubMed

    Lu, Y P; Li, Z S; Rea, P A

    1997-07-22

    Because plants produce cytotoxic compounds to which they, themselves, are susceptible and are exposed to exogenous toxins (microbial products, allelochemicals, and agrochemicals), cell survival is contingent on mechanisms for detoxifying these agents. One detoxification mechanism is the glutathione S-transferase-catalyzed glutathionation of the toxin, or an activated derivative, and transport of the conjugate out of the cytosol. We show here that a transporter responsible for the removal of glutathione S-conjugates from the cytosol, a specific Mg2+-ATPase, is encoded by the AtMRP1 gene of Arabidopsis thaliana. The sequence of AtMRP1 and the transport capabilities of membranes prepared from yeast cells transformed with plasmid-borne AtMRP1 demonstrate that this gene encodes an ATP-binding cassette transporter competent in the transport of glutathione S-conjugates of xenobiotics and endogenous substances, including herbicides and anthocyanins.

  2. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes.

    PubMed

    Wei, Hui; Wang, Erkang

    2013-07-21

    Over the past few decades, researchers have established artificial enzymes as highly stable and low-cost alternatives to natural enzymes in a wide range of applications. A variety of materials including cyclodextrins, metal complexes, porphyrins, polymers, dendrimers and biomolecules have been extensively explored to mimic the structures and functions of naturally occurring enzymes. Recently, some nanomaterials have been found to exhibit unexpected enzyme-like activities, and great advances have been made in this area due to the tremendous progress in nano-research and the unique characteristics of nanomaterials. To highlight the progress in the field of nanomaterial-based artificial enzymes (nanozymes), this review discusses various nanomaterials that have been explored to mimic different kinds of enzymes. We cover their kinetics, mechanisms and applications in numerous fields, from biosensing and immunoassays, to stem cell growth and pollutant removal. We also summarize several approaches to tune the activities of nanozymes. Finally, we make comparisons between nanozymes and other catalytic materials (other artificial enzymes, natural enzymes, organic catalysts and nanomaterial-based catalysts) and address the current challenges and future directions (302 references).

  3. Inhalation exposure of rats to asphalt fumes generated at paving temperatures alters pulmonary xenobiotic metabolism pathways without lung injury.

    PubMed Central

    Ma, Jane Y C; Rengasamy, Apavoo; Frazer, Dave; Barger, Mark W; Hubbs, Ann F; Battelli, Lori; Tomblyn, Seith; Stone, Samuel; Castranova, Vince

    2003-01-01

    Asphalt fumes are complex mixtures of various organic compounds, including polycyclic aromatic hydrocarbons (PAHs). PAHs require bioactivation by the cytochrome P-450 monooxygenase system to exert toxic/carcinogenic effects. The present study was carried out to characterize the acute pulmonary inflammatory responses and the alterations of pulmonary xenobiotic pathways in rats exposed to asphalt fumes by inhalation. Rats were exposed at various doses and time periods to air or to asphalt fumes generated at paving temperatures. To assess the acute damage and inflammatory responses, differential cell counts, acellular lactate dehydrogenase (LDH) activity, and protein content of bronchoalveolar lavage fluid were determined. Alveolar macrophage (AM) function was assessed by monitoring generation of chemiluminescence and production of tumor necrosis factor-alpha and interleukin-1. Alteration of pulmonary xenobiotic pathways was determined by monitoring the protein levels and activities of P-450 isozymes (CYP1A1 and CYP2B1), glutathioneS-transferase (GST), and NADPH:quinone oxidoreductase (QR). The results show that acute asphalt fume exposure did not cause neutrophil infiltration, alter LDH activity or protein content, or affect AM function, suggesting that short-term asphalt fume exposure did not induce acute lung damage or inflammation. However, acute asphalt fume exposure significantly increased the activity and protein level of CYP1A1 whereas it markedly reduced the activity and protein level of CYP2B1 in the lung. The induction of CYP1A1 was localized in nonciliated bronchiolar epithelial (Clara) cells, alveolar septa, and endothelial cells by immunofluorescence microscopy. Cytosolic QR activity was significantly elevated after asphalt fume exposure, whereas GST activity was not affected by the exposure. This induction of CYP1A1 and QR with the concomitant down-regulation of CYP2B1 after asphalt fume exposure could alter PAH metabolism and may lead to potential

  4. Hepatotoxicity of Herbal Supplements Mediated by Modulation of Cytochrome P450

    PubMed Central

    Chen, Taosheng

    2017-01-01

    Herbal supplements are a significant source of drug-drug interactions (DDIs), herb-drug interactions, and hepatotoxicity. Cytochrome P450 (CYP450) enzymes metabolize a large number of FDA-approved pharmaceuticals and herbal supplements. This metabolism of pharmaceuticals and supplements can be augmented by concomitant use of either pharmaceuticals or supplements. The xenobiotic receptors constitutive androstane receptor (CAR) and the pregnane X receptor (PXR) can respond to xenobiotics by increasing the expression of a large number of genes that are involved in the metabolism of xenobiotics, including CYP450s. Conversely, but not exclusively, many xenobiotics can inhibit the activity of CYP450s. Induction of the expression or inhibition of the activity of CYP450s can result in DDIs and toxicity. Currently, the United States (US) Food and Drug Administration does not require the investigation of the interactions of herbal supplements and CYP450s. This review provides a summary of herbal supplements that inhibit CYP450s, induce the expression of CYP450s, and/or whose toxicity is mediated by CYP450s. PMID:29117101

  5. Inhibition of Xenobiotic-Degrading Hydrolases by Organophosphinates

    DTIC Science & Technology

    1986-07-01

    TMB-4 doubled the rates of recovery. Concentrations of Lcarboxyl- CIprocaine in blood of mice were increased three-fold for 27 m I" exposure to 0-4...enzyme was found to have recovered 45.7% of its activity 24 h 35 after exposure to 4.87 x 10- 4 M EPP (Table 10). Neither rabbit liver carboxylesterase...case of a competitive mechanism of inhibition. It is possible that IPP and DPP were competitive inhibitors acting by occupation of the active site of

  6. Non-Alcoholic Fatty Liver Disease (NAFLD) - Pathogenesis, Classification, and Effect on Drug Metabolizing Enzymes and Transporters

    PubMed Central

    Cobbina, Enoch; Akhlaghi, Fatemeh

    2017-01-01

    Non-alcoholic fatty liver disease (NAFLD) is a spectrum of liver disorders. It is defined by the presence of steatosis in more than 5 % of hepatocytes with little or no alcohol consumption. Insulin resistance, the metabolic syndrome or type 2 diabetes and genetic variants of PNPLA3 or TM6SF2 seem to play a role in the pathogenesis of NAFLD. The pathological progression of NAFLD follows tentatively a ‘three-hit’ process namely steatosis, lipotoxicity and inflammation. The presence of steatosis, oxidative stress and inflammatory mediators like TNF-α and IL-6 have been implicated in the alterations of nuclear factors such as CAR, PXR, PPAR-α in NAFLD. These factors may results in altered expression and activity of drug metabolizing enzymes (DMEs) or transporters. Existing evidence suggests that the effect of NAFLD on CYP3A4, CYP2E1 and MRP3 are more consistent across rodent and human studies. CYP3A4 activity is down-regulated in NASH whereas the activity of CYP2E1 and the efflux transporter MRP3 are up-regulated. However, it is not clear how the majority of CYPs, UGTs, SULTs and transporters are influenced by NAFLD either in vivo or in vitro. The alterations associated with NAFLD could be a potential source of drug variability in patients and could have serious implications for the safety and efficacy of xenobiotics. In this review, we summarize the effects of NAFLD on the regulation, expression and activity of major drug metabolizing enzymes and transporters. We also discuss the potential mechanisms underlying these alterations. PMID:28303724

  7. Chemical Screening for Bioactivated Electrophilic Metabolites Using Alginate Immobilization of Metabolic Enzymes (AIME) (SOT)

    EPA Science Inventory

    The US EPA's ToxCast program is designed to assess chemical perturbations of molecular and cellular endpoints using a variety of high-throughput screening (HTS) assays. However, existing HTS assays have limited or no xenobiotic metabolism which could lead to a mischaracterization...

  8. Sex Amphibian, Xenopus tropicalis, following Larval Exposure to an Aromatase Inhibitor

    EPA Science Inventory

    Aromatase is a steroidogenic enzyme that catalyzes the conversion of androgens to estrogens in vertebrates. Modulation of this enzyme’s activity by xenobiotic exposure has been shown to adversely affect gonadal differentiation in a number of diverse species. We hypothesized tha...

  9. Arylamine n-acetyltransferases in eukaryotic microorganisms

    USDA-ARS?s Scientific Manuscript database

    Microorganisms can survive highly toxic environments through numerous xenobiotic metabolizing enzymes, including arylamine N-acetyltransferases (NATs). NAT genes are present in bacteria, archaea, protists and fungi. In lower taxa of fungi, NAT genes are found in chytridiomycetes. In Dikarya, NAT gen...

  10. Quantitative High-Throughput Screening and Confirmation Studies for Identification of Compounds that Activate the Aryl Hydrocarbon Receptor Pathway (SETAC)

    EPA Science Inventory

    The aryl hydrocarbon receptor (AhR) is a transcription factor that mediates adaptive responses to known environmental pollutants, such as aromatic hydrocarbons, through regulation of Phase I and II xenobiotic metabolizing enzymes as well as important growth and differentiation pa...

  11. Enzyme linked immunoassay with stabilized polymer saccharide enzyme conjugates

    DOEpatents

    Callstrom, Matthew R.; Bednarski, Mark D.; Gruber, Patrick R.

    1997-01-01

    An improvement in enzyme linked immunoassays is disclosed wherein the enzyme is in the form of a water soluble polymer saccharide conjugate which is stable in hostile environments. The conjugate comprises the enzyme which is linked to the polymer at multiple points through saccharide linker groups.

  12. Xenobiotic interaction with and alteration of channel catfish estrogen receptor.

    PubMed

    Nimrod, A C; Benson, W H

    1997-12-01

    In teleostean in vivo studies, the vitellogenin response to environmental estrogens is not completely predicted by mammalian literature. One possible explanation for differences is heterogeneity of the estrogen receptor (ER) structure between species. Therefore, ER from channel catfish (Ictalurus punctatus) hepatic tissue was characterized by binding affinity for several compounds. Affinity was indirectly measured as potency of the chemical for inhibiting binding of radiolabeled estradiol (E2) to specific binding sites. The order of potency among therapeutic chemicals was ethinylestradiol > unlabeled E2 = diethylstilbestrol > mestranol > tamoxifen > testosterone. Unlabeled E2 had an IC50 of 2.2 nM. Several environmentally relevant chemicals were evaluated in a similar manner and the order of potency established was the o-demethylated metabolite of methoxychlor (MXC) > nonylphenol (NP) > chlordecone > MXC > o,p'-DDT > o,p'-DDE > beta-hexachlorocyclohexane. Demethylated MXC had an IC50 1000-fold greater than that of E2. Of the most potent inhibitors, NP appeared to be a competitive inhibitor for the same binding site as E2, while o-demethylated MXC had a more complex interaction with the receptor protein. ER from nonvitellogenic females was determined to have a Kd value of 1.0 to 1.3 nM. Because E2 has been reported to up-regulate teleostean ER, the hepatic ER population following in vivo xenobiotic exposure was assessed. NP significantly increased ER per milligram hepatic protein almost to the same extent as E2, but did not increase Kd to the same extent as E2.

  13. [Advances on enzymes and enzyme inhibitors research based on microfluidic devices].

    PubMed

    Hou, Feng-Hua; Ye, Jian-Qing; Chen, Zuan-Guang; Cheng, Zhi-Yi

    2010-06-01

    With the continuous development in microfluidic fabrication technology, microfluidic analysis has evolved from a concept to one of research frontiers in last twenty years. The research of enzymes and enzyme inhibitors based on microfluidic devices has also made great progress. Microfluidic technology improved greatly the analytical performance of the research of enzymes and enzyme inhibitors by reducing the consumption of reagents, decreasing the analysis time, and developing automation. This review focuses on the development and classification of enzymes and enzyme inhibitors research based on microfluidic devices.

  14. Biotransformation and induction: implications for toxicity, bioaccumulation and monitoring of environmental xenobiotics in fish.

    PubMed Central

    Kleinow, K M; Melancon, M J; Lech, J J

    1987-01-01

    Biotransformation of xenobiotics in fish occurs by many of the same reactions as in mammals. These reactions have been shown to affect the bioaccumulation, persistence, residue dynamics, and toxicity of select chemicals in fish. P-450-dependent monooxygenase activity of fish can be induced by polycyclic aromatic hydrocarbons, but phenobarbital-type agents induce poorly, if at all. Fish monooxygenase activity exhibits ideal temperature compensation and sex-related variation. Induction of monooxygenase activity by polycyclic aromatic hydrocarbons can result in qualitative as well as quantitative changes in the metabolic profile of a chemical. Induction can also alter toxicity. In addition, multiple P-450 isozymes have been described for several fish species. The biotransformation products of certain chemicals have been related to specific P-450 isozymes, and the formation of these products can be influenced by induction. Exposure of fish to low levels of certain environmental contaminants has resulted in induction of specific monooxygenase activities and monitoring of such activities has been suggested as a means of identifying areas of pollutant exposure in the wild. PMID:3297653

  15. Aldo-keto reductase family 1 B10 protein detoxifies dietary and lipid-derived alpha, beta-unsaturated carbonyls at physiological levels.

    PubMed

    Zhong, Linlin; Liu, Ziwen; Yan, Ruilan; Johnson, Stephen; Zhao, Yupei; Fang, Xiubin; Cao, Deliang

    2009-09-18

    Alpha, beta-unsaturated carbonyls are highly reactive mutagens and carcinogens to which humans are exposed on a daily basis. This study demonstrates that aldo-keto reductase family 1 member B10 (AKR1B10) is a critical protein in detoxifying dietary and lipid-derived unsaturated carbonyls. Purified AKR1B10 recombinant protein efficiently catalyzed the reduction to less toxic alcohol forms of crotonaldehyde at 0.90 microM, 4-hydroxynonenal (HNE) at 0.10 microM, trans-2-hexanal at 0.10 microM, and trans-2,4-hexadienal at 0.05 microM, the concentrations at or lower than physiological exposures. Ectopically expressed AKR1B10 in 293T cells eliminated immediately HNE at 1 (subtoxic) or 5 microM (toxic) by converting to 1,4-dihydroxynonene, protecting the cells from HNE toxicity. AKR1B10 protein also showed strong enzymatic activity toward glutathione-conjugated carbonyls. Taken together, our study results suggest that AKR1B10 specifically expressed in the intestine is physiologically important in protecting the host cell against dietary and lipid-derived cytotoxic carbonyls.

  16. Enzyme linked immunoassay with stabilized polymer saccharide enzyme conjugates

    DOEpatents

    Callstrom, M.R.; Bednarski, M.D.; Gruber, P.R.

    1997-11-25

    An improvement in enzyme linked immunoassays is disclosed wherein the enzyme is in the form of a water soluble polymer saccharide conjugate which is stable in hostile environments. The conjugate comprises the enzyme which is linked to the polymer at multiple points through saccharide linker groups. 19 figs.

  17. A sampling scheme to assess persistence and transport characteristics of xenobiotics within an urban river section

    NASA Astrophysics Data System (ADS)

    Schwientek, Marc; Guillet, Gaelle; Kuch, Bertram; Rügner, Hermann; Grathwohl, Peter

    2014-05-01

    Xenobiotic contaminants such as pharmaceuticals or personal care products typically are continuously introduced into the receiving water bodies via wastewater treatment plant (WWTP) outfalls and, episodically, via combined sewer overflows in the case of precipitation events. Little is known about how these chemicals behave in the environment and how they affect ecosystems and human health. Examples of traditional persistent organic pollutants reveal, that they may still be present in the environment even decades after they have been released. In this study a sampling strategy was developed which gives valuable insights into the environmental behaviour of xenobiotic chemicals. The method is based on the Lagrangian sampling scheme by which a parcel of water is sampled repeatedly as it moves downstream while chemical, physical, and hydrologic processes altering the characteristics of the water mass can be investigated. The Steinlach is a tributary of the River Neckar in Southwest Germany with a catchment area of 140 km². It receives the effluents of a WWTP with 99,000 inhabitant equivalents 4 km upstream of its mouth. The varying flow rate of effluents induces temporal patterns of electrical conductivity in the river water which enable to track parcels of water along the subsequent urban river section. These parcels of water were sampled a) close to the outlet of the WWTP and b) 4 km downstream at the confluence with the Neckar. Sampling was repeated at a 15 min interval over a complete diurnal cycle and 2 h composite samples were prepared. A model-based analysis demonstrated, on the one hand, that substances behaved reactively to a varying extend along the studied river section. On the other hand, it revealed that the observed degradation rates are likely dependent on the time of day. Some chemicals were degraded mainly during daytime (e.g. the disinfectant Triclosan or the phosphorous flame retardant TDCP), others as well during nighttime (e.g. the musk fragrance

  18. Computational enzyme design: transitioning from catalytic proteins to enzymes.

    PubMed

    Mak, Wai Shun; Siegel, Justin B

    2014-08-01

    The widespread interest in enzymes stem from their ability to catalyze chemical reactions under mild and ecologically friendly conditions with unparalleled catalytic proficiencies. While thousands of naturally occurring enzymes have been identified and characterized, there are still numerous important applications for which there are no biological catalysts capable of performing the desired chemical transformation. In order to engineer enzymes for which there is no natural starting point, efforts using a combination of quantum chemistry and force-field based protein molecular modeling have led to the design of novel proteins capable of catalyzing chemical reactions not catalyzed by naturally occurring enzymes. Here we discuss the current status and potential avenues to pursue as the field of computational enzyme design moves forward. Published by Elsevier Ltd.

  19. CINPA1 Is an Inhibitor of Constitutive Androstane Receptor That Does Not Activate Pregnane X Receptor

    PubMed Central

    Cherian, Milu T; Lin, Wenwei; Wu, Jing

    2015-01-01

    Constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are xenobiotic sensors that enhance the detoxification and elimination of xenobiotics and endobiotics by modulating the expression of genes encoding drug-metabolizing enzymes and transporters. Elevated levels of drug-metabolizing enzymes and efflux transporters, resulting from CAR activation in various cancers, promote the elimination of chemotherapeutic agents, leading to reduced therapeutic effectiveness and acquired drug resistance. CAR inhibitors, in combination with existing chemotherapeutics, could therefore be used to attenuate multidrug resistance in cancers. Interestingly, all previously reported CAR inverse-agonists are also activators of PXR, rendering them mechanistically counterproductive in tissues where both these xenobiotic receptors are present and active. We used a directed high-throughput screening approach, followed by subsequent mechanistic studies, to identify novel, potent, and specific small-molecule CAR inhibitors that do not activate PXR. We describe here one such inhibitor, CINPA1 (CAR inhibitor not PXR activator 1), capable of reducing CAR-mediated transcription with an IC50 of ∼70 nM. CINPA1 1) is a specific xenobiotic receptor inhibitor and has no cytotoxic effects up to 30 µM; 2) inhibits CAR-mediated gene expression in primary human hepatocytes, where CAR is endogenously expressed; 3) does not alter the protein levels or subcellular localization of CAR; 4) increases corepressor and reduces coactivator interaction with the CAR ligand-binding domain in mammalian two-hybrid assays; and 5) disrupts CAR binding to the promoter regions of target genes in chromatin immunoprecipitation assays. CINPA1 could be used as a novel molecular tool for understanding CAR function. PMID:25762023

  20. Serum vitamin C and other biomarkers differ by genotype of phase 2 enzyme genes GSTM1 and GSTT1123

    PubMed Central

    Shaikh, Nishat; Jensen, Christopher D; Volberg, Vitaly; Holland, Nina

    2011-01-01

    Background: Glutathione S-transferases (GSTs) detoxify environmental chemicals and are involved in oxidative stress pathways. Deletion polymorphisms affect enzyme activities and have been associated with risk of disease. Objective: The objective was to clarify whether biomarkers of oxidation, antioxidation, inflammation, and nutritional factors differ by GST genotype in healthy adults. Design: Subjects (n = 383) consisted of nonsmokers and nonusers of antiinflammatory drugs and antioxidant vitamin supplements. Deletion polymorphisms of GSTM1 and GSTT1 were genotyped. F2-isoprostanes, malondialdehyde, C-reactive protein, serum vitamin C, carotenoids, tocopherols, and other nutritional factors were assessed. Results: The concentration of serum vitamin C was higher in persons with the inactive GSTM1-0 genotype (P = 0.006). This relation was unchanged after adjustment for age, sex, BMI, or dietary vitamin C. F2-isoprostanes and malondialdehyde were lower in the GSTM1-0 and GSTT1-0 groups, respectively, but significance was lost after control for serum vitamin C. The dual deletion, GSTM1-0/GSTT1-0 (n = 37), was associated with higher serum iron and total and LDL-cholesterol concentrations (all P < 0.01) and lower malondialdehyde concentrations, which persisted after adjustment for age, sex, BMI, and serum vitamin C. Carotenoids and α- and γ-tocopherols were not associated with either genotype. Conclusions: Oxidative stress and inflammation biomarkers differ by GST genotype, but serum vitamin C appears to be the most consistent factor. Examination of other relevant genes may be needed to understand the concentration and function of ascorbic acid in the GST enzyme system. This trial is registered at clinicaltrials.gov as NCT00079963. PMID:21813807

  1. The neem limonoids azadirachtin and nimbolide inhibit hamster cheek pouch carcinogenesis by modulating xenobiotic-metabolizing enzymes, DNA damage, antioxidants, invasion and angiogenesis.

    PubMed

    Priyadarsini, Ramamurthi Vidya; Manikandan, Palrasu; Kumar, Gurram Harish; Nagini, Siddavaram

    2009-05-01

    The neem tree has attracted considerable research attention as a rich source of limonoids that have potent antioxidant and anti-cancer properties. The present study was designed to evaluate the chemopreventive potential of the neem limonoids azadirachtin and nimbolide based on in vitro antioxidant assays and in vivo inhibitory effects on 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis. Both azadirachtin and nimbolide exhibited concentration-dependent anti-radical scavenging activity and reductive potential in the order: nimbolide > azadirachtin > ascorbate. Administration of both azadirachtin and nimbolide inhibited the development of DMBA-induced HBP carcinomas by influencing multiple mechanisms including prevention of procarcinogen activation and oxidative DNA damage, upregulation of antioxidant and carcinogen detoxification enzymes and inhibition of tumour invasion and angiogenesis. On a comparative basis, nimbolide was found to be a more potent antioxidant and chemopreventive agent and offers promise as a candidate agent in multitargeted prevention and treatment of cancer.

  2. Stabilization of enzymes in ionic liquids via modification of enzyme charge.

    PubMed

    Nordwald, Erik M; Kaar, Joel L

    2013-09-01

    Due to the propensity of ionic liquids (ILs) to inactivate enzymes, the development of strategies to improve enzyme utility in these solvents is critical to fully exploit ILs for biocatalysis. We have developed a strategy to broadly improve enzyme utility in ILs based on elucidating the effect of charge modifications on the function of enzymes in IL environments. Results of stability studies in aqueous-IL mixtures indicated a clear connection between the ratio of enzyme-containing positive-to-negative sites and enzyme stability in ILs. Stability studies of the effect of [BMIM][Cl] and [EMIM][EtSO4 ] on chymotrypsin specifically found an optimum ratio of positively-charged amine-to-negatively-charged acid groups (0.39). At this ratio, the half-life of chymotrypsin was increased 1.6- and 4.3-fold relative to wild-type chymotrypsin in [BMIM][Cl] and [EMIM][EtSO4 ], respectively. The half-lives of lipase and papain were similarly increased as much as 4.0 and 2.4-fold, respectively, in [BMIM][Cl] by modifying the ratio of positive-to-negative sites of each enzyme. More generally, the results of stability studies found that modifications that reduce the ratio of enzyme-containing positive-to-negative sites improve enzyme stability in ILs. Understanding the impact of charge modification on enzyme stability in ILs may ultimately be exploited to rationally engineer enzymes for improved function in IL environments. Copyright © 2013 Wiley Periodicals, Inc.

  3. Expanding P450 catalytic reaction space through evolution and engineering

    PubMed Central

    McIntosh, John A.; Farwell, Christopher C.; Arnold, Frances H.

    2014-01-01

    Advances in protein and metabolic engineering have led to wider use of enzymes to synthesize important molecules. However, many desirable transformations are not catalyzed by any known enzyme, driving interest in understanding how new enzymes can be created. The cytochrome P450 enzyme family, whose members participate in xenobiotic metabolism and natural products biosynthesis, catalyzes an impressive range of difficult chemical reactions that continues to grow as new enzymes are characterized. Recent work has revealed that P450-derived enzymes can also catalyze useful reactions previously accessible only to synthetic chemistry. The evolution and engineering of these enzymes provides an excellent case study for how to genetically encode new chemistry and expand biology’s reaction space. PMID:24658056

  4. Characterization of the impact of life stage on gene -chemical interactions in the liver

    EPA Science Inventory

    Differences in responses to environmental chemicals and drugs between life stages are likely due in part to differences in the expression of xenobiotic metabolizing enzymes and transporters (XMETs). We have carried out a comprehensive analysis of the mRNA expression of XMETs thro...

  5. Environmental Xenobiotics and the Antihormones Cyproterone Acetate and Spironolactone Use the Nuclear Hormone Pregnenolone X Receptor to Activate the CYP3A23 Hormone Response Element

    PubMed Central

    SCHUETZ, ERIN G.; BRIMER, CYNTHIA; SCHUETZ, JOHN D.

    2013-01-01

    The pregnenolone X receptor (PXR), a new member of the nuclear hormone receptor superfamily, was recently demonstrated to mediate glucocorticoid agonist and antagonist activation of a hormone response element spaced by three nucleotides (DR-3) within the rat CYP3A23 promoter. Because many other steroids and xenobiotics can up-regulate CYP3A23 expression, we determined whether some of these other regulators used PXR to activate the CYP3A23 DR-3. Transient cotransfection of LLC-PK1 cells with (CYP3A23)2-tk-CAT and mouse PXR demonstrated that the organochlorine pesticides transnonachlor and chlordane and the nonplanar polychlorinated biphenyls (PCBs) each induced the CYP3A23 DR-3 element, and this activation required PXR. Additionally, this study found that PXR is activated to induce (CYP3A23)2-tk-CAT by antihormones of several steroid classes including the antimineralocorticoid spironolactone and the antiandrogen cyproterone acetate. These studies reveal that PXR is involved in the induction of CYP3A23 by pharmacologically and structurally distinct steroids and xenobiotics. Moreover, PXR-mediated PCB activation of the (CYP3A23)2-tk-CAT may serve as a rapid assay for effects of nonplanar PCBs. PMID:9855641

  6. Transgenic Wheat Expressing a Barley UDP-Glucosyltransferase Detoxifies Deoxynivalenol and Provides High Levels of Resistance to Fusarium graminearum.

    PubMed

    Li, Xin; Shin, Sanghyun; Heinen, Shane; Dill-Macky, Ruth; Berthiller, Franz; Nersesian, Natalya; Clemente, Thomas; McCormick, Susan; Muehlbauer, Gary J

    2015-11-01

    Fusarium head blight (FHB), mainly caused by Fusarium graminearum, is a devastating disease of wheat that results in economic losses worldwide. During infection, F. graminearum produces trichothecene mycotoxins, including deoxynivalenol (DON), that increase fungal virulence and reduce grain quality. Transgenic wheat expressing a barley UDP-glucosyltransferase (HvUGT13248) were developed and evaluated for FHB resistance, DON accumulation, and the ability to metabolize DON to the less toxic DON-3-O-glucoside (D3G). Point-inoculation tests in the greenhouse showed that transgenic wheat carrying HvUGT13248 exhibited significantly higher resistance to disease spread in the spike (type II resistance) compared with nontransformed controls. Two transgenic events displayed complete suppression of disease spread in the spikes. Expression of HvUGT13248 in transgenic wheat rapidly and efficiently conjugated DON to D3G, suggesting that the enzymatic rate of DON detoxification translates to type II resistance. Under field conditions, FHB severity was variable; nonetheless, transgenic events showed significantly less-severe disease phenotypes compared with the nontransformed controls. In addition, a seedling assay demonstrated that the transformed plants had a higher tolerance to DON-inhibited root growth than nontransformed plants. These results demonstrate the utility of detoxifying DON as a FHB control strategy in wheat.

  7. The positive effects of high-frequency right dorsolateral prefrontal cortex repetitive transcranial magnetic stimulation on memory, correlated with increases in brain metabolites detected by proton magnetic resonance spectroscopy in recently detoxified alcohol-dependent patients.

    PubMed

    Qiao, Jun; Jin, Guixing; Lei, Licun; Wang, Lan; Du, Yaqiang; Wang, Xueyi

    2016-01-01

    To explore the effect of right dorsolateral prefrontal cortex (DLPFC) repetitive transcranial magnetic stimulation (rTMS) on memory, and its correlation with levels of hippocampal brain metabolites detected by proton magnetic resonance spectroscopy ( 1 H-MRS) in recently detoxified alcohol-dependent patients. In this randomized, double-blind sham-controlled trial, alcohol-dependent patients were enrolled and randomized into two groups: the experimental group (rTMS, 10 Hz, on right DLPFC, 20 sessions) and the control group (sham stimulation). Memory function was assessed using Hopkins Verbal Learning Test-Revised (HVLT-R) and Brief Visuospatial Memory Test-Revised (BVMT-R) before and after treatment. 1 H-MRS was used to detect the levels of N -acetyl aspartic acid (NAA), choline (Cho), and creatine (Cr) in bilateral hippocampi before and after treatment. Thirty-eight patients (18 in the experimental group and 20 in the control group) were included in the analyses. The experimental group showed significantly greater changes in HVLT-R, BVMT-R, NAA/Cr, and Cho/Cr after rTMS from baseline than the control group. The percentage change in BVMT-R and HVLT-R correlated with the percentage change in NAA/Cr and Cho/Cr in the right brain. High-frequency right DLPFC rTMS was associated with improvement in memory dysfunction, which is correlated with levels of hippocampal brain metabolites detected by 1 H-MRS in recently detoxified alcohol-dependent patients.

  8. Genetic polymorphism in three glutathione s-transferase genes and breast cancer risk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woldegiorgis, S.; Ahmed, R.C.; Zhen, Y.

    The role of the glutathione S-transferase (GST) enzyme family is to detoxify environmental toxins and carcinogens and to protect organisms from their adverse effects, including cancer. The genes GSTM1, GSTP1, and GSTT1 code for three GSTs involved in the detoxification of carcinogens, such as polycyclic aromatic hydrocarbons (PAHs) and benzene. In humans, GSTM1 is deleted in about 50% of the population, GSTT1 is absent in about 20%, whereas the GSTP1 gene has a single base polymorphism resulting in an enzyme with reduced activity. Epidemiological studies indicate that GST polymorphisms increase the level of carcinogen-induced DNA damage and several studies havemore » found a correlation of polymorphisms in one of the GST genes and an increased risk for certain cancers. We examined the role of polymorphisms in genes coding for these three GST enzymes in breast cancer. A breast tissue collection consisting of specimens of breast cancer patients and non-cancer controls was analyzed by polymerase chain reaction (PCR) for the presence or absence of the GSTM1 and GSTT1 genes and for GSTP1 single base polymorphism by PCR/RFLP. We found that GSTM1 and GSTT1 deletions occurred more frequently in cases than in controls, and GSTP1 polymorphism was more frequent in controls. The effective detoxifier (putative low-risk) genotype (defined as presence of both GSTM1 and GSTT1 genes and GSTP1 wild type) was less frequent in cases than controls (16% vs. 23%, respectively). The poor detoxifier (putative high-risk) genotype was more frequent in cases than controls. However, the sample size of this study was too small to provide conclusive results.« less

  9. Cancer Chemoprevention by Traditional Chinese Herbal Medicine and Dietary Phytochemicals: Targeting Nrf2-Mediated Oxidative Stress/Anti-Inflammatory Responses, Epigenetics, and Cancer Stem Cells

    PubMed Central

    Hun Lee, Jong; Shu, Limin; Fuentes, Francisco; Su, Zheng-Yuan; Tony Kong, Ah-Ng

    2013-01-01

    Excessive oxidative stress induced by reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive metabolites of carcinogens alters cellular homeostasis, leading to genetic/epigenetic changes, genomic instability, neoplastic transformation, and cancer initiation/progression. As a protective mechanism against oxidative stress, antioxidant/detoxifying enzymes reduce these reactive species and protect normal cells from endo-/exogenous oxidative damage. The transcription factor nuclear factor-erythroid 2 p45 (NF-E2)-related factor 2 (Nrf2), a master regulator of the antioxidative stress response, plays a critical role in the expression of many cytoprotective enzymes, including NAD(P)H:quinine oxidoreductase (NQO1), heme oxygenase-1 (HO-1), UDP-glucuronosyltransferase (UGT), and glutathione S-transferase (GST). Recent studies demonstrated that many dietary phytochemicals derived from various vegetables, fruits, spices, and herbal medicines induce Nrf2-mediated antioxidant/detoxifying enzymes, restore aberrant epigenetic alterations, and eliminate cancer stem cells (CSCs). The Nrf2-mediated antioxidant response prevents many age-related diseases, including cancer. Owing to their fundamental contribution to carcinogenesis, epigenetic modifications and CSCs are novel targets of dietary phytochemicals and traditional Chinese herbal medicine (TCHM). In this review, we summarize cancer chemoprevention by dietary phytochemicals, including TCHM, which have great potential as a safer and more effective strategy for preventing cancer. PMID:24716158

  10. Cancer chemoprevention by traditional chinese herbal medicine and dietary phytochemicals: targeting nrf2-mediated oxidative stress/anti-inflammatory responses, epigenetics, and cancer stem cells.

    PubMed

    Hun Lee, Jong; Shu, Limin; Fuentes, Francisco; Su, Zheng-Yuan; Tony Kong, Ah-Ng

    2013-01-01

    Excessive oxidative stress induced by reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive metabolites of carcinogens alters cellular homeostasis, leading to genetic/epigenetic changes, genomic instability, neoplastic transformation, and cancer initiation/progression. As a protective mechanism against oxidative stress, antioxidant/detoxifying enzymes reduce these reactive species and protect normal cells from endo-/exogenous oxidative damage. The transcription factor nuclear factor-erythroid 2 p45 (NF-E2)-related factor 2 (Nrf2), a master regulator of the antioxidative stress response, plays a critical role in the expression of many cytoprotective enzymes, including quinine oxidoreductase (NQO1), heme oxygenase-1 (HO-1), UDP-glucuronosyltransferase (UGT), and glutathione S-transferase (GST). Recent studies demonstrated that many dietary phytochemicals derived from various vegetables, fruits, spices, and herbal medicines induce Nrf2-mediated antioxidant/detoxifying enzymes, restore aberrant epigenetic alterations, and eliminate cancer stem cells (CSCs). The Nrf2-mediated antioxidant response prevents many age-related diseases, including cancer. Owing to their fundamental contribution to carcinogenesis, epigenetic modifications and CSCs are novel targets of dietary phytochemicals and traditional Chinese herbal medicine (TCHM). In this review, we summarize cancer chemoprevention by dietary phytochemicals, including TCHM, which have great potential as a safer and more effective strategy for preventing cancer.

  11. Phytochemicals enhance antioxidant enzyme expression to protect against NSAID-induced oxidative damage of the gastrointestinal mucosa.

    PubMed

    Cheng, Yu-Ting; Lu, Chi-Cheng; Yen, Gow-Chin

    2017-06-01

    The gastrointestinal (GI) mucosa provides the first protective barrier for digested food and xenobiotics, which are easily attacked by toxic substances. Nonsteroidal anti-inflammatory drugs, including aspirin, diclofenac, indomethacin, and ketoprofen, are widely used in clinical medicine, but these drugs may cause oxidative stress, leading to GI damage such as ulcers. Lansoprazol, omeprazole, and other clinical drugs are widely used to treat duodenal and gastric ulcers and have been shown to have multiple biological functions, such as antioxidant activity and the ability to upregulate antioxidant enzymes in vivo. Therefore, the reduction of oxidative stress may be an effective curative strategy for preventing and treating nonsteroidal anti-inflammatory drug induced ulcers of the GI mucosa. Phytochemicals, such as dietary phenolic compounds, phenolic acids, flavan-3-ols, flavonols, flavonoids, gingerols, carotenes, and organosulfur, are common antioxidants in fruits, vegetables, and beverages. A large amount of evidence has demonstrated that natural phytochemicals possess bioactivity and potential health benefits, such as antioxidant, anti-inflammatory, and antibacterial benefits, and they can prevent digestive disease processes. In this review, we summarize the literature on phytochemicals with biological effects, such as angiogenic, antioxidant, antiapoptotic, anti-inflammatory, and antiulceration effects, and their related mechanisms are also discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Evidence for triclosan-induced activation of human and rodent xenobiotic nuclear receptors.

    PubMed

    Paul, Katie B; Thompson, Jerry T; Simmons, Steven O; Vanden Heuvel, John P; Crofton, Kevin M

    2013-10-01

    The bacteriostat triclosan (2,4,4'-trichloro-2'-hydroxydiphenylether) (TCS) decreases rat serum thyroxine via putative nuclear receptor (NR) interaction(s) and subsequent transcriptional up-regulation of hepatic catabolism and clearance. However, due to the evolutionary divergence of the constitutive androstane and pregnane-X receptors (CAR, PXR), TCS-mediated downstream effects may be species-dependent. To test the hypothesis that TCS activates xenobiotic NRs across species, cell-based NR reporter assays were employed to assess potential activation of rat, mouse, and human PXR, and rat, mouse, and three splice variants of human CAR. TCS activated hPXR, acted as an inverse agonist of hCAR1, and as a weak agonist of hCAR3. TCS failed to activate rPXR in full-length receptor reporter assays, and instead acted as a modest inverse agonist of rCAR. Consistent with the rat data, TCS also failed to activate mPXR and was a modest inverse agonist of mCAR. These data suggest that TCS may interact with multiple NRs, including hPXR, hCAR1, hCAR3, and rCAR in order to potentially affect hepatic catabolism. Overall these data support the conclusion that TCS may interact with NRs to regulate hepatic catabolism and downstream thyroid hormone homeostasis in both rat and human models, though perhaps by divergent mechanisms. Published by Elsevier Ltd.

  13. Applications and Prospective of Peroxidase Biocatalysis in the Environmental Field

    NASA Astrophysics Data System (ADS)

    Torres-Duarte, Cristina; Vazquez-Duhalt, Rafael

    Environmental protection is, doubtless, one of the most important challenges for the human kind. The huge amount of pollutants derived from industrial activities represents a threat for the environment and ecologic equilibrium. Phenols and halogenated phenols, polycyclic aromatic hydrocarbons, endocrine disruptive chemicals, pesticides, dioxins, polychlorinated biphenyls, industrial dyes, and other xenobiotics are among the most important pollutants. A large variety of these xenobiotics are substrates for peroxidases and thus susceptible to enzymatic transformation. The literature reports mainly the use of horseradish peroxidase, manganese peroxidase, lignin peroxidase, and chloroperoxidase on the transformation of these pollutants. Peroxidases are enzymes able to transform a variety of compounds following a free radical mechanism, giving oxidized or polymerized products. The peroxidase transformation of these pollutants is accompanied by a reduction in their toxicity, due to a biological activity loss, a reduction in the bioavailability or due to the removal from aqueous phase, especially when the pollutant is found in water. In addition, when the pollutants are present in soil, peroxidases catalyze a covalent binding to soil organic matter. In most of cases, oxidized products are less toxic and easily biodegradable than the parent compounds. In spite of their versatility and potential use in environmental processes, peroxidases are not applied at large scale yet. Diverse challenges, such as stability, redox potential, and the production of large amounts, should be solved in order to apply peroxidases in the pollutant transformation. In this chapter, we critically review the transformation of different xenobiotics by peroxidases, with special attention on the identified transformation products, the probable reaction mechanisms, and the toxicity reports. Finally, the design and development of an environmental biocatalyst is discussed. The design challenges are

  14. LC/MSMS STUDY OF BENZO[A]PYRENE-7,8-QUINONE ADDUCTION TO GLOBIN TRYPTIC PEPTIDES AND N-ACETYLAMINO ACIDS

    EPA Science Inventory

    Benzo[a]pyrene-7,8-quinone (BPQ) is regarded as a reactive genotoxic compound enzymatically formed from a xenobiotic precursor benzo[a]pyrene-7,8-diol by aldo-keto-reductase family of enzymes. Because BPQ, a Michael electrophile, was previously shown to react with oligonucleotide...

  15. To Analyze the Amelioration of Phenobarbital Induced Oxidative Stress by Erucin, as Indicated by Biochemical and Histological Alterations.

    PubMed

    Arora, Rohit; Bhushan, Sakshi; Kumar, Rakesh; Mannan, Rahul; Kaur, Pardeep; Singh, Bikram; Sharma, Ritika; Vig, Adarsh Pal; Singh, Balbir; Singh, Amrit Pal; Arora, Saroj

    2016-01-01

    Phenobarbital is a commonly employed antidepressant and anti-epileptic drug. The cancer promoting activity of this genotoxic xenobiotic is often ignored. It is responsible for oxidative stress leading to modulation in xenobiotic and antioxidative enzymes. Glucosinolates and more specifically their hydrolytic products are known for their antioxidative and anticancer activities. The present study involves the analysis of hepatoprotective effect of erucin (isolated from Eruca sativa (Mill.) Thell.) against phenobarbital mediated hepatic damage in male wistar rats. The liver homogenate was analyzed for oxidative stress (superoxide dismutase, catalase, guaiacol peroxidase, ascorbate peroxidase, glutathione reductase and lactate dehydrogenase), other oxidative parameters (thiobarbituric acid reactive species, conjugated dienes and lipid hydroperoxide), phase I enzymes (NADPH-cytochrome P450 reductase, NADH-cytochrome b5 reductase, cytochrome P420, cytochrome P450 and cytochrome b5), phase II enzymes (γ-glutamyl transpeptidase, DT-diaphorase and glutathione-S-transferase), serum parameters (alkaline phosphatase, serum glutamic oxaloacetic transaminase, serum glutamic pyruvic transaminase, direct bilirubin and total bilirubin) and certain histological parameters. Erucin accorded protection from phenobarbital induced hepatic damage by normalizing antioxidative enzymes, other oxidative parameters, phase I, II, and serum parameters. Erucin, an analogue of sulforaphane has the potential to act as an anticancer agent by regulating various biochemical parameters.

  16. Isolation and expression of cytochrome P450 genes in the antennae and gut of pine beetle Dendroctonus rhizophagus (Curculionidae: Scolytinae) following exposure to host monoterpenes

    Treesearch

    Claudia Cano-Ramirez; Maria Fernanda Lopez; Ana K. Cesar-Ayala; Veronica Pineda-Martinez; Brian T. Sullivan; Gerardo and Zuniga

    2013-01-01

    Bark beetles oxidize the defensive monoterpenes of their host trees both to detoxify them and convert them into components of their pheromone system. This oxidation is catalyzed by cytochrome P450 enzymes and occurs in different tissues of the insect, including the gut (i.e., the site where the beetle's pheromones are produced and accumulated) and the antennae (i....

  17. 7 CFR 58.436 - Rennet, pepsin, other milk clotting enzymes and flavor enzymes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Rennet, pepsin, other milk clotting enzymes and flavor enzymes. 58.436 Section 58.436 Agriculture Regulations of the Department of Agriculture (Continued... clotting enzymes and flavor enzymes. Enzyme preparations used in the manufacture of cheese shall be safe...

  18. 7 CFR 58.436 - Rennet, pepsin, other milk clotting enzymes and flavor enzymes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Rennet, pepsin, other milk clotting enzymes and flavor enzymes. 58.436 Section 58.436 Agriculture Regulations of the Department of Agriculture (Continued... clotting enzymes and flavor enzymes. Enzyme preparations used in the manufacture of cheese shall be safe...

  19. 7 CFR 58.436 - Rennet, pepsin, other milk clotting enzymes and flavor enzymes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Rennet, pepsin, other milk clotting enzymes and flavor enzymes. 58.436 Section 58.436 Agriculture Regulations of the Department of Agriculture (Continued... clotting enzymes and flavor enzymes. Enzyme preparations used in the manufacture of cheese shall be safe...

  20. 7 CFR 58.436 - Rennet, pepsin, other milk clotting enzymes and flavor enzymes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Rennet, pepsin, other milk clotting enzymes and flavor enzymes. 58.436 Section 58.436 Agriculture Regulations of the Department of Agriculture (Continued... clotting enzymes and flavor enzymes. Enzyme preparations used in the manufacture of cheese shall be safe...